
DISS. ETH NO. 19260

AUTONOMOUS VEHICLE NAVIGATION IN DYNAMIC URBAN
ENVIRONMENTS FOR INCREASED TRAFFIC SAFETY

A dissertation submitted to

ETH ZURICH

for the degree of

Doctor of Sciences

presented by

KRISTIJAN MAČEK

M.Sc., University of Zagreb

03 December 1975

citizen of Slovenia and Croatia

accepted on the recommendation of

Professor Roland Siegwart, Principal Supervisor
Professor Urbano Nunes, Co-Examiner
Professor Ivan Petrović, Co-Examiner

Doctor Thierry Fraichard, Co-Examiner

2010

Abstract

In recent years, there has been an extensive amount of research done on various

aspects of general vehicle traffic. It has been recognized both by industry manu-

facturers and research units that introducing intelligent driver assistance systems

on-board vehicles and enhancing the road infrastructure with additional networked

sensory information has an important impact on future of transportation. On one

side, these systems can greatly improve both traffic flow, reduce energy consump-

tion and emissions and on the other size they can enhance driver comfort and

safety of all the traffic participants.

This thesis addresses in particular the safety aspect of urban traffic by explor-

ing the potentials of autonomous vehicle navigation using on-board proprio- and

exteroceptive sensors and actuators that are used in a closed-loop fashion from dy-

namic scene analsis to decision making based on hierarchical planning techniques.

An autonomous vehicle navigation framework implicitly enables three principal

driver mitigation levels: in the passive mode it can provide an informative scene

interpretation and a warning signal in critical situations, in the semi-autonomous

mode it can act as an overriding copilot in order to prevent accidents potentially

provoked by driver misjudgement or fatigue and in the fully autonomous mode it

enables a situation adaptable driving mode in which respecting the traffic partic-

ipants safety and regulations can be explicitly embedded in the system.

The development of autonomous navigation framework in this work follows

the categorization of the vehicle environment both from perceptual and motion

planning problem into static and dynamic ones. Static environments may include

a-priori unknown static obstacles or slowly moving ones where the underlying as-

sumption is the that the environment representation and motion planning can be

based on instantaneous sensory information or the frozen world assumption. Since

the full information about obstacle configurations is not known a-priori, a success-

i

ful autonomous navigation scheme requires both a global on-line path planning

capability for objective deliberation and a reactive obstacle avoidance layer for

safety. The contribution for these types of environments is in a novel hierarchical

navigation structure that combines different available global path planning and

path following schemes with obstacle avoidance methods for an occupancy grid

based environment representation. Experimental results are provided for a vehicle

platform under real-world conditions. Alternative formulations to obstacle avoid-

ance via a probabilistic Bayesian inference and to motion planning problem using

optimization techniques were also studied.

The frozen world assumption is violated in highly dynamic environments,

therefore the timing constraints arising from the dynamic object perception, mo-

tion planning and execution have to be explicitly accounted for. Two distinct

motion planning approaches were proposed in the presence of dynamic objects, in

transformed state space and in trajectory space of vehicle and obstacle motion.

The key component is the partial motion planning module, where potentially feasi-

ble vehicle trajectories are explored within a given decision time limit. The trajec-

tory exploration phase is directed both by attaining the goal configuration as well

as exploring the free space in order to avoid collision with static and dynamic ob-

stacles. Moreover, the safety aspect of motion planning in dynamic environments

is a critical issue, due to the inherent uncertainty about future obstacle motion,

sensory limitations and real time planning requirements. Two safety levels are dis-

tinguished, namely the passive safety where the ego-vehicle is guaranteed to come

to a stop before any future potential collision could occur beyond the prediction

horizon and the passive friendly safety, where other dynamic objects are allowed

to come to a stop if they follow a particular breaking policy.

In order to close the loop from perception to motion planning, the dynamic

scene analsis was performed, where the road networked structure was described

via lane detection. The potential dynamic object candidates were extracted by

building an incremental locally consistent environmental map based on on-line

ii

sensory data and detection of temporal differences in map occupancy evidence.

The ultimate goal pursued in this thesis was to development a navigation archi-

tecture that would allow for safe autonomous vehicle navigation in dynamic urban

scenarios. In order to successfully navigate in such environments, a planning hier-

archy must be established from the strategic mission plan, global waypoints route

planning followed by a tactical behavioral level which triggers different vehicle

behavior modes according to the given traffic situation and rules, further down

to the operational level which must generate feasible trajectories for the vehicle

to be executed. In this respect, a hierarchical navigation scheme is proposed and

verified in simulation given various dynamic urban scenarios.

iii

Zusammenfassung

In den letzten Jahren wurden verschiedene Aspekte von allgemeinem Fahrzeug-

verkehr zunehmend gründlich recherchiert. Industrielle Hersteller sowie auch

Forschungszentren sind zur Schlussfolgerung gekommen, dass die Einführung intel-

ligenter Fahrzeugassisstenzsystemen auf Bord Fahrzeugen und die Erweiterung der

Strasseninfrastruktur durch zusätzliche vernetze sensorielle Informationsstellen

einen erheblichen Einfluss auf das zukünftige Transportwesen haben werden. Auf

einer Seite können solche Systeme den Verkehrsdurchfluss deutlich verbessern,

den Energieverbrauch und Emission reduzieren, auf anderer Seite aber auch den

Fahrkomfort und die Sicherheit aller Verkehrsteilnehmer steigern.

Diese Doktorarbeit befasst sich in besonderem mit dem Sicherheitsaspekt des

städtischen Strassenverkehrs durch die Erforschung des Potenzials autonomes

Fahrzeugfahrens. Es wurden propriozeptive und exterozeptive Sensoren und Ak-

tuatoren auf Bord des Fahrzeuges angewendet. Die Rückführung wurde von Er-

fassung und Analyse dynamischer Umgebungen bis zur hierarchischen Bewegungs-

plannung geschlossen. Ein autonomes Fahrzeugnavigationssytem ermöglicht im-

pliziterweise drei hauptsächliche Fahrerassistenzstufen: im passiven Modus

ermöglicht das System eine informative Umgebungsanalyse dass einen Warnsignal

in kritischen Situationen generieren kann, im semi-autonomen Modus agiert das

System als ein übergeordneter Kopilot dass die Verkehrsunfällen vermeiden lässt,

die durch die falsche Situationseinschätzung oder Müdigkeit des Fahrers potenziell

entstehen können und im autonomen Modus adaptiert das System die Fahrweise

automatisch situationsgemäss so das sich die Sicherheit der Verkehrsteilnehmer

und die Verkehrsregeln explizit miteinbeziehen lassen.

In dieser Arbeit basiert die Entwicklung eines autonomomen Navigationssystems

mittels Kategorisierung der Fahrzeugumgebung in statische und dynamische Typen.

Diese Kategorisierung ist bei Umgebungserfassung- sowie bei Bewegungsplan-

nungproblemen angewendet worden. Die statische Fahrzeugumgebung kann de-

v

mentsprechend statische oder langsam bewegliche Hindernisse enthalten die im

Vorraus nicht bekannt sind. Die grundlegende Annahme besteht somit darin, dass

die Umgebungsbeschreibung und Bewegungsplannung nur auf unmittelbarer sen-

sorieller Information basieren, der sogenannten gefrorenen Welt Annahme. Da die

umfassende Information über die Umgebungshindernisse zunächst nicht vorhan-

den ist, muss ein erfolgreiches autonomes Navigationssystem eine globale on-line

Pfadplannungfunktionalität für Zielstellung enthalten sowie eine reaktive Kolli-

sionsvermeidungschicht die für Sicherheit verantwortlich ist. Der Beitrag zur Nav-

igation in statischen Fahrzeugsumgebungen ist eine neuartige hierarchische Nav-

igationsstruktur die verschiedene vorhandene globale Pfadfandungs- und Pfad-

verfolgungschemas mit Kollisionsvermeidungschicht kombiniert wobei die Umge-

bungsbeschreibung durch eine Griddarstellungsstruktur konstruiert wird. Ergeb-

nisse experimenteller Testversuchen an einer Fahrzeugtestplatform unter reellen

Bedingungen sind präsentiert worden. Eine alternative Problemformulierung zur

Kollisionsvermeidung durch bayesische Inferenz und die Anwendung Optimiza-

tionstechniken zur Bewegungsplannung wurden auch analysiert.

Die Annahme zur sogennanten gefrorenen Welt ist in intensiv dynamischen Umge-

bungen nicht mehr gültig. Die zeitlichen Beschränkungen die durch die

Umgebungserfassung- Bewegungsplannung- und Bewegungsausführungsproble-

men entstehen, müssen explizit in Berechnung genommen werden. Zwei ver-

schiedene Ansätze zur Bewegungsplannung in Umgebungen mit dynamischen Hin-

dernissen wurden vorgeschlagen, nämlich die Bewegungsplannung im transform-

ierten Zustandsraum und die Bewegungsplannung im Trajektorienraum der

Fahrzeug- und Hindernissenbewegung. Eine der wichtigsten Komponenten ist der

Partieller-Bewegungsplannungmodul wodurch potenziell ausführbare und zulässige

Trajektorien wärend der Dauer der vorgegebenen zeitlichen Entscheidungsgrenzw-

ert gesucht werden. Die Trajektorien-Suchphase wird durch Zielorientierung wie

auch durch die Suche im freien Raum gelenkt, damit die statischen und dynamis-

chen Hindernisse vermieden werden können. Überdies ist die Sicherheit der Be-

vi

wegungsplannung in dynamischen Umgebungen ein kritischer Aspekt wegen der

inhärenten Ungewissheit über zukünftige Hindernissenbewegungen, Sensorenein-

schränkungen und Anspruch auf Echtzeit Bewegungsplannung. Zwei Sicherheits-

stufen wurden hier differenziert. Die erste ist die passive Sicherheit wodurch

garantiert wird, dass das Eigenfahrzeug zum Stillstand gebremst werden kann eher

eine zukünftige Kollision jenseits des Vorhersage-Horizonts auftreten könnte. Die

zweite ist die passiv-freundliche Sicherheit wodurch garantiert wird, dass neben

dem Eigenfahrzeug auch die dynamischen Objekten zum Stillstand gebremst wer-

den können, falls sie gewisse Bremsmanöver ausführen.

Damit die Rückführung von Umgebungserfassung bis zur Bewegungsplannung

geschlossen werden kann wurde die Analyse und Beschreibung der dynamischen

Fahrzeugumgebung durchgeführt. Die Strassenstruktur wurde durch Strassen-

kanten-Erkennung beschrieben. Die on-line vorhandenen sensorischen Daten wur-

den in einer inkrementaler, lokalerweise konsistenter Umgebungsmape fusioniert.

Die potenziellen dynamischen Objekten-Kandidaten wurden danach anhand

zeitlicher Differenz des Belegungsgrads der Umgebungsmape extrahiert.

Das Endziel dieser Doktorarbeit war die Entwicklung einer Navigationsarchitektur

dass eine sichere autonome Fahrzeugnavigation in dynamischen städtischen Umge-

bungen ermöglichen würde. Damit dieses Ziel erreicht werden kann, muss eine

Bewegungsplannung-Hierarchie aufgesetzt werden. Diese Bewegungsplannung-

Hierarchie fängt mit einer strategischen Zielsetzung und Plannung der globalen

Wegpunkten-Fahrstrecke an. Es wird von einer taktischen Verhaltensebene gefolgt,

wo gemäss der gegebenen Verkehrssituation verschiedene Fahrzeugverhaltensmodi

aufrufbar sind. Eine weitere operative Navigationsebene ist für die Generierung

und Ausführung einer zulässigen Fahrzeugstrajektorie verantwortlich. Im Sinne

der erwähnten Navigationsebenen wurde ein hierarchisches Navigationsschema

vorgeschlagen und durch Simulation verschiedener dynamischen städtischen Szenar-

ien verifiziert.

vii

Acknowledgements

In the first place I would like to express my thanks to Prof. Roland Siegwart,

my principal advisor, for the opportunity of pursuing a PhD at the Autonomous

Systems Lab. It has been a great learning experience both professionally and

personally. Roland’s immense enthusiasm and commitment to new ideas in the

robotic research has been a great source of inspiration. His open discussion and

comprehension has given my work at Autonomous Systems Lab the necessary

guidance, support and independence to accomplish my PhD.

To my thesis committee members Prof. Ivan Petrović, Prof. Urbano Nunes

and Dr. Thierry Fraichard for accepting to be my co-examiners and examining

carefully the presented work.

I have shared many days of experimental work, developments, discussions and

presentations with colleagues Sascha Kolski and Luciano Spinello. To Dizan

Vasquez who supported me with developing the simulation tools necessary to

test navigation algorithms as well as many interesting discussions on robotics.

To Thierry Fraichard for very enriching discussions on motion planning and con-

structive revision of my research in this field. To Roland Philippsen and Dave

Fergusson for their contributions in global planning algorithms that have been

applied in this work. To Ralf Kästner who has been a great colleague provid-

ing support on experimental vehicle development. My personal research work

with the Smart testing vehicle would not have been possible without software and

hardware contributions of Pierre Lamon, Rudolph Triebel, Francois Pomerleau,

Frédéric Pont, Marcelo Becker, Felix Mayer, Cyrill Stachniss, Janosch Nikolic,

Stefan Bertschi, Markus Bühler, Dario Fenner, Daniel Burnier, Tarek Baaboura

and many students and external partners who participated in vehicle platform

development. To Konrad Thoma and Richard Glatzel on their contribution to

dynamic vehicle modelling and Brian Williams on his contribution to the lane

detection module presented in this work.

ix

To Margot Fox-Ziekau, Luciana Borsatti and Marie-José Pellaud for their

valuable help in all administrative matters.

To all the current and former members of the Autonomous Systems Lab who

contributed to the productive but also culturally enriching environment that the

Lab is. I would like to mention Stefan Gächter, Viet Nguyen, Davide Scaramuzza,

Samir Bouabdallah, Xavier Perrin, André Noth, Fabien Tâche, Ambroise Krebs,

Jérome Mâye, Christian Bermes, Martin Rufli, David Remy, Masoud Asadpour,

Majid Nili, Ahad Harati, Shrihari Vasudevan, Christian Bacs, Jens Bathelt, Wolf-

gang Fischer, Gilles Caprari, Stephan Weiss, Markus Höpfinger, Stefan Leuteneg-

ger, Thomas Tüer, Francesco Mondada, Björn Jensen, Jan Weingarten, Jiwon

Shin, Cédric Pradalier, Francis Colas, Agostino Martinelli, Adriana Tapus, Car-

men Kobe who made my stay with the Autonomous Systems Lab ever so more

enjoyable.

To my former university mentors Prof. Ivan Petrović, Prof. Nedjeljko Perić

and colleagues Jadranko Matuško, Miroslav Barić and Mato Baotić at the Faculty

of Electrical Engineering and Computing Zagreb for their kind support during my

visiting student exchange to Switzerland preceeding my PhD studies.

To Paulo Augusto Dal Fabbro, Alexandre Dal Fabbro, Mark Butcher, Pietro Bu-

cella, Marcelo Leite Ribeiro, Danijel Močibob, Luis Borges, Sandy El Helou, Joana

Comas, Montserrat Badia, Sabrina Carvalho, Simone Voldrich, Vlasta Merc, Marko

Budimir, Dragan Čorić, Ana Paragǐs, Ana Vidǐs, Mario Barešić, Mario Starc, Ma-

rina Starc, Polona Alt and other dear friends that filled my PhD time in Switzer-

land with lots of nice moments.

Finally, to my brothers Mario and Robert as well as their partners Saša and

Alenka, my mum Marija and my dad Marijan, for their love, care and support,

always.

x

xii

Contents

List of Figures xvi

List of Tables xxiv

1 Introduction 1

1.1 Motivation and problem statement 1

1.2 State of the art . 4

1.3 Contributions . 19

1.4 Structure of this work . 21

2 Vehicle platform 23

2.1 Introduction . 23

2.2 Vehicle platform overview . 23

2.3 Vehicle dynamics modeling . 25

2.4 Conclusion . 42

3 Motion planning in static environments 45

3.1 Introduction . 45

3.2 Hierarchical navigation . 46

3.3 Probabilistic obstacle avoidance . 73

3.4 Optimal trajectory planning . 80

3.5 Conclusion . 98

xiii

4 Motion planning in dynamic environments 99

4.1 Introduction . 99

4.2 Time constraints in dynamic environments 101

4.3 Motion planning in transformed state space 104

4.4 Motion planning in trajectory space 130

4.5 Safety Issues . 144

4.6 Conclusion . 150

5 Dynamic scene analysis 153

5.1 Introduction . 153

5.2 Localization . 154

5.3 Lane detection . 157

5.4 Map building . 174

5.5 Detection and tracking of dynamic objects 179

5.6 Experimental results on dynamic scene analysis 185

5.7 Conclusion . 197

6 Autonomous navigation in dynamic urban scenarios 199

6.1 Introduction . 199

6.2 Navigation architecture . 200

6.3 World model and global route planning 201

6.4 In lane and intersection navigation 207

6.5 Unstructured parking zone navigation 213

6.6 Conclusion . 216

7 Conclusion and outlook 217

7.1 Conclusion . 217

7.2 Outlook . 218

A Route Nework Definition File (RNDF) 223

xiv

xvi

List of Figures

1.1 ADAS operation modes with respect to the crash event. 6

2.1 SmartTer experimental vehicle. 24

2.2 Coordinate Systems: In - Inertial, CoG - Center of Gravity, W -

Wheel. 27

2.3 Geometry and defined velocities of the vehicle. 27

2.4 Side slip angle front left tire. 30

2.5 Wheel slip. 30

2.6 Forces acting on the vehicle . 32

2.7 Normal Forces Calculation. 33

2.8 Friction coefficients for different ground surface conditions. 35

2.9 Friction coefficient dependency on slip 35

2.10 Measured input steering angle . 41

2.11 Measured input wheel velocity rear left 41

2.12 Measured input wheel velocity rear right 41

2.13 Estimated wheel forces front left . 41

2.14 Estimated wheel forces rear right 42

2.15 Estimated and measured yaw rate 42

2.16 Estimated and measured acceleration in the x-direction 42

2.17 Estimated and measured acceleration in the y-direction 42

3.1 Hierarchical navigation architecture. 48

3.2 Hierarchical navigation TADPF controller I 61

xvii

3.3 Hierarchical navigation TADPF controller II 61

3.4 Trajectory x-y comparison with individual and combined cost . . . 62

3.5 Orientation comparison with individual and combined cost 62

3.6 Steering angle comparison with individual and combined cost 62

3.7 Velocity for combined traversability and obstacle cost 62

3.8 Velocity for path orientation cost 63

3.9 Refpoint distance for path orientation cost 63

3.10 Lateral acceleration for path orientation cost 63

3.11 Curvature for path orientation cost 63

3.12 Experimental sequence TADPF controller 64

3.13 Trajectory comparison for TADPF, SMPF, KDSMPF 70

3.14 Orientation comparison for TADPF, SMPF, KDSMPF 70

3.15 Velocity comparison for TADPF, SMPF, KDSMPF 70

3.16 Steering angle comparison for TADPF, SMPF, KDSMPF 70

3.17 Lateral acceleration comparison for TADPF, SMPF, KDSMPF . . . 70

3.18 Curvature comparison for TADPF, SMPF, KDSMPF 70

3.19 Hierarchical navigation KDSMPF controller - configuration space . 71

3.20 Hierarchical navigation KDSMPF controller - workspace 71

3.21 Experimental sequence KDSMPF controller 72

3.22 Overview of the obstacle avoidance architecture. 74

3.23 Clearance map for obstacle avoidance. 74

3.24 Single clearance map sector Bayesian inference. 76

3.25 Vehicle steering command fusion Bayesian program. 77

3.26 Experimental sequence probabilistic reactive obstacle avoider 79

3.27 Parallel parking - robot motion (feasibility path) (J1) 85

3.28 Parallel parking - inputs kinematic level (feasibility path) (J1) . . . 85

3.29 Parallel parking - vehicle pose (feasibility path) (J1) 85

3.30 Parallel parking - robot motion (time optimal) (J2) 86

3.31 Parallel parking - inputs kinematic level (time optimal) (J2) 86

xviii

3.32 Parallel parking - vehicle pose (time optimal) (J2) 86

3.33 Row parking - robot motion (feasibility path) (J1) 87

3.34 Row parking - inputs kinematic level (feasibility path) (J1) 87

3.35 Row parking - vehicle pose (feasibility path) (J1) 87

3.36 Row parking - robot motion (time optimal) (J2) 88

3.37 Row parking - inputs kinematic level (time optimal) (J2) 88

3.38 Row parking - vehicle pose (time optimal) (J2) 88

3.39 Slide parking - robot motion (feasibility path) (J1) 89

3.40 Slide parking - inputs kinematic level (feasibility path) (J1) 89

3.41 Slide parking - vehicle pose (feasibility path) (J1) 89

3.42 Slide parking - robot motion (time optimal) (J2) 90

3.43 Slide parking - inputs kinematic level (time optimal) (J2) 90

3.44 Slide parking - vehicle pose (time optimal) (J2) 90

3.45 Parallel parking (no constraints) - robot motion (J2) 93

3.46 Parallel parking (no constraints) - xy coordinates (J2) 93

3.47 Parallel parking (no constraints) - vehicle heading (J2) 93

3.48 Parallel parking (no constraints) - linear velocity (J2) 93

3.49 Parallel parking (no constraints) - steering angle (J2) 93

3.50 Parallel parking (obstacle constraints) - robot motion (J2) 94

3.51 Parallel parking (obstacle constraints) - xy coordinates (J2) 94

3.52 Parallel parking (obstacle constraints) - vehicle heading (J2) 94

3.53 Parallel parking (obstacle constraints) - linear velocity (J2) 94

3.54 Parallel parking (obstacle constraints) - steering angle (J2) 94

3.55 Row parking (obstacle constraints) - robot motion (J2) 95

3.56 Row parking (obstacle constraints) - xy coordinates (J2) 95

3.57 Row parking (obstacle constraints) - vehicle heading (J2) 95

3.58 Row parking (obstacle constraints) - linear velocity (J2) 95

3.59 Row parking (obstacle constraints) - steering angle (J2) 95

3.60 Row parking failure (obstacle constraints) - robot motion (J2) . . . 96

xix

3.61 Row parking failure (obstacle constraints) - xy (J2) 96

3.62 Row parking failure (obstacle constraints) - vehicle heading (J2) . . 96

3.63 Row parking failure (obstacle constraints) - linear velocity (J2) . . . 96

3.64 Row parking failure (obstacle constraints) - steering angle (J2) . . . 96

3.65 Slide parking (obstacle constraints) - robot motion (J2) 97

3.66 Slide parking (obstacle constraints) - xy coordinates (J2) 97

3.67 Slide parking (obstacle constraints) - vehicle heading (J2) 97

3.68 Slide parking (obstacle constraints) - linear velocity (J2) 97

3.69 Slide parking (obstacle constraints) - steering (J2) 97

4.1 Vehicle motion simulation among moving obstacles 117

4.2 Vehicle motion planning among moving obstacles 118

4.3 Vehicle state and commands. 119

4.4 Ego-vehicle intersection crossing with automatic waiting 127

4.5 Ego-vehicle accelerating to nominal speed in free space area. 128

4.6 Ego-vehicle decelerating after approaching slowly moving vehicles. . 129

4.7 Partial motion planning iterative scheme. 131

4.8 Trajectory diffusion among dynamic obstacles 143

4.9 Trajectory diffusion and safety checking scene view 148

4.10 Trajectory diffusion and safety checking navigation view 148

5.1 The lane detection vision module schema. 160

5.2 The particle filter cycle. 161

5.3 Probability cube for summation based inference. 163

5.4 Probability cube for product based inference. 163

5.5 Canny filter edge image . 164

5.6 Hough transform image. 166

5.7 Left and right lane positions of the particle set 166

5.8 LoG filer edge image . 168

5.9 Delta color image . 170

xx

5.10 Highway - heavy traffic. 171

5.11 Highway - high curvature. 171

5.12 Highway - changing lanes I . 171

5.13 Highway - changing lanes II . 171

5.14 Highway - a front car occluding the view. 171

5.15 Magistral road - inner city. 171

5.16 Magistral road - ambiguous lane border position. 172

5.17 Magistral road - ground signs. 172

5.18 Magistral road - country lane. 172

5.19 Magistral road - leaving a small tunnel. 172

5.20 Magistral road - high curvature. 173

5.21 Magistral road - dirty windscreen. 173

5.22 Detection of a vehicle moving away I 187

5.23 Detection of a vehicle moving away II 188

5.24 Detection of a moving tram and pavement structure I 189

5.25 Detection of a moving tram and pavement structure II 190

5.26 Detection of moving vehicles at an intersection I 191

5.27 Detection of moving vehicles at an intersection II 192

5.28 Detection of a pedestrian, tram and an approaching vehicle 193

5.29 Detection of moving vehicles and a pedestrian I 194

5.30 Detection of moving vehicles and a pedestrian II 195

5.31 Detection of moving vehicles and a pedestrian III 196

6.1 Navigation architecture for dynamic urban environments 200

6.2 A simulated urban traffic scene. 202

6.3 Lane structure of the simulated environment 203

6.4 GPS based lane definition map . 204

6.5 Topological route network layout 205

6.6 In lane (scene view). 209

6.7 In lane (navigation view). 209

xxi

6.8 In lane pedestrian negotiation (scene view). 210

6.9 In lane pedestrian negotiation (navigation view). 210

6.10 Intersection handling I (scene view). 211

6.11 Intersection handling I (navigation view). 211

6.12 Intersection handling II (scene view). 212

6.13 Intersection handling II (navigation view). 212

6.14 Parking lot I (scene view). 214

6.15 Parking lot I (navigation view). 214

6.16 Parking lot II (scene view). 215

6.17 Parking lot II (navigation view). 215

xxii

xxiv

List of Tables

1.1 Low-level vehicle control systems overview I 13

1.2 Low-level vehicle control systems overview II 14

1.3 Advanced Driver Assistance Systems (ADAS) overview I 15

1.4 Advanced Driver Assistance Systems (ADAS) overview II 16

1.5 Advanced Driver Assistance Systems (ADAS) overview III 17

1.6 A list of potential future additional ADAS functionalities. 18

4.1 Bidirectional RRT search in the transformed space 116

4.2 Unidirectional RRT search in the transformed space 124

4.3 Diffusion process of the Partial Motion Planner I. 138

4.4 Diffusion process of the Partial Motion Planner II. 139

5.1 Semantic labelling of the map occupancy 179

5.2 Semantic labelling of the map dynamicity 180

xxv

Chapter 1

Introduction

1.1 Motivation and problem statement

1.1.1 Motivation - current traffic safety situation

According to a National Highway Traffic Safety Administration (NHTSA) com-

pleted statistic report for years 2007 and 2008 there have been 41, 259 and 37, 261

total fatalities in traffic crashes in these years, respectively, in the USA alone

[NHTSA, 2009]. Passenger vehicle casualties amounted to 29, 079 (70.7%) and

25, 251 (67.7%), whereas the pedestrian casualties amounted to 4, 699 (11.4%)

and 4, 378 (11.8%). The rest of the casualties belong to the groups large trucks,

motorcycles, pedalcyclists and other. It has also been estimated that 2.49, respec-

tively 2.35 million people were injured (non-fatal) in these years alone. Though

there is a overall decline in number of casualties over the last years, notably about

8.4% in 2009 with respect to 2008 according to the unfinished statistics of year

2009 [NHTSA, 2010], the human implications of these accidents are still signifi-

cant. Due to similar technological and traffic safety regulations levels in Europe,

comparable unfortunate figures persist, e.g. 41, 304 passenger vehicle casualties

and 1.7 million people injured in the year 2005 [SEiSS, 2005], [eImpact, 2008].

Putting in perspective also the economic implications of traffic accidents, which

1

2 CHAPTER 1. INTRODUCTION

include medical and insurance costs, workspace productivity loss and property

damage among others, a study of the year 2000 shows the total cost of $230.6

billion in the USA alone [NHTSA, 2002] equaling 2.3% of the USA Gross Domestic

Product (GDP). This is approximately the amount a typical Western country

spends yearly on education and research activities, for instance. Very similar

costs incur in Europe also, e.g. e160 billion in 2005, roughly amounting to 2% of

Europe’s GDP [SEiSS, 2005].

In presence of this figures, there is a clear need to improve the overall traffic

safety situation. The general category of new technologies under which the road

transportation improvements are made in recent years are called the “Intelli-

gent Transportation Systems” - ITS. These include systems for improving

the overall safety and efficiency of road transportation as well as user comfort and

convenience. Conservative estimates made for the OECD countries (“Organiza-

tion for Economic Co-Operation and Development” - representing a vast majority

of world’s industrial countries) as to the benefits of ITS in the next 20 years are

following [OECD, 2003]:

• ITS could save as many as 47, 000 lives per year;

• ITS could potentially reduce the total number of road crash injuries and

fatalities by approximately 40%;

• The savings related to a 40% reduction in injuries and fatalities would be

approximately USD 194 billion annually.

1.1.2 Problem statement

Exploration of the methods and potential of fully autonomous vehicle navigation is

the primary focus of this thesis. This task of finding essentially a vehicle command

at each time instant that enables feasible (safe and potentially optimal) navigation

of the ego-vehicle in a static or dynamic environment towards a given goal can

provide indispensable insight into the future extension of ITS systems that would

1.1. MOTIVATION AND PROBLEM STATEMENT 3

increase the autonomous vehicle maneuverability and consequentially the overall

traffic safety level as well. This could be achieved by scaling down in principle a

huge set of possible motion planning solutions to the ones acceptable for traffic

hazard mitigation.

At the other extreme, a future traffic situation can be envisaged where the ve-

hicles operate permanently in the autonomous mode, therefore putting the driver

“out of the equation”. There are numerous implications to such a scenario but

there is one that is particularly important - without the driver a huge behavioral

uncertainty is removed from the analysis, enabling very precise vehicle motion

prediction, planning and control. Since all the controlled vehicles would follow

predefined navigation patterns, the only real uncertainty would remain in inter-

preting the motion of uncontrolled traffic participants, such as pedestrians, cy-

clists, animals, etc. and correct assessment of the structural characteristics of the

road itself. This would enable a very precise analysis of possible critical scenarios

and defining the upper bound of how safe the vehicle traffic can be in presence

of autonomous vehicle agents. Moreover, due to the orderly driving patterns, the

overall traffic flow could be significantly increased. For instance, the current safety

distance/time recommendations that are applicable for a human driver could be

drastically reduced.

In order to develop a viable autonomous vehicle system, a possible structure

to some of the key aspects is proposed here:

1. Vehicle dynamics modeling.

2. Autonomous navigation scheme for static and unstructured environments.

3. Autonomous navigation scheme for dynamic environments with explicit ob-

stacle motion modeling.

4. Dynamic scene analysis.

5. Hierarchical navigation scheme for urban autonomous vehicle navigation.

4 CHAPTER 1. INTRODUCTION

In this thesis, each of the identified elements is analyzed individually and

validated according to the proposed algorithmic solutions.

1.2 State of the art

In order to identify the current state of the art in the Intelligent Transportation

Systems domain both approaches stemming from automotive industry research

and development as well as that of the robotic community are referenced here.

1.2.1 Intelligent Transportation Systems (ITS)

The Intelligent Transportation Systems (ITS) can be classified according to dif-

ferent criteria, possibly the most generic being [OECD, 2003]:

• Vehicle-Based Safety Systems: these safety systems assume presence

of on-board sensors that process the traffic conditions in real time. Based

on the situation assessment additional on-board units can issue warnings or

take partial to full control of the vehicle, depending on the mitigation level

between the driver and the ITS. The advantage of these systems is that they

can warn the driver of potential dangers or override to a specified degree

the driver’s control of the vehicle in attempt to avoid collisions. Notably,

these benefits are only available to vehicles equipped with such on-board

equipment. Nowadays, the open issues/problems concerning these systems

are mainly based on the need to correctly asses many various, complex and

partially unpredictable traffic situations. Besides guaranteeing reliability it

is also important to make drivers aware to which extend the on-board safety

systems are able to reduce the traffic dangers.

• Infrastructure-Based Safety Systems: these safety systems are primar-

ily comprised of roadside sensors that collect information and roadside equip-

ment that issues warnings and advises on different actions to take. The

1.2. STATE OF THE ART 5

advantages of these systems are measurement of different phenomena and

detection of events that on-board sensors typically cannot detect, such as

weather conditions, obstacles and traffic around curves or in the distance

(including the area traffic infrastructure). Variable data can be provided on

roadside signs and information can be provided to all potentially affected

vehicles in the vicinity. A problem associated with infrastructure-based sys-

tems is that the data must be standardized to improve driver understanding

of the provided information. Moreover, whereas the additional investments

due to such systems on new road networks may be considerate, the adap-

tation of the already existing road infrastructure may pose an even bigger

problem.

• Co-operative Safety Systems: these safety systems utilize both infras-

tructure based and vehicle based systems with communication links between

them. The advantage of these systems is that information is received from

the infrastructure (e.g. speed limits, traffic and road conditions) and pro-

vided dynamically at the appropriate time to individual vehicles. Informa-

tion can also be transmitted in the opposite direction, i.e. from vehicle to

infrastructure, for example to automatically notify emergency services when

a vehicle is in a collision. Such services can only be provided to vehicles

that are equipped with on-board units. Digital maps and technologies to

pinpoint exact locations are also considered to be co-operative technologies,

since safety-related information can be combined with the maps stored in the

on-board equipment, and a wider service area can be set as compared with

information provided by the infrastructure. Issues particularly related to co-

operative systems include the need to maintain a balance between system

safety, reliability and cost and the standardization of the human-machine

interface.

Since each of the aforementioned groups of safety systems targets specific safety

functions, it is to be expected that the ITS which will be operational in the general

6 CHAPTER 1. INTRODUCTION

transportation in the following years will most probably represent an integral

solution of these complementary subsystems.

1.2.2 Advanced Driver Assistance Systems (ADAS)

In this work the focus will be related to the Vehicle-Based Safety Systems,

also referred to as “Advanced Driver Assistance Systems” - ADAS in the

narrow sense. An important classification of the ADAS can be done according to

the urgency with respect to a potential crash situation. A timeline is presented in

Fig. 1.1 which distinguishes between five nominal modes of operation, namely:

1. Normal Driving: the system provides support and information to the driver.

2. Warning and Assistance (Emergency): the vehicle predicts a dangerous sit-

uation and optionally assists the driver.

3. Pre-crash: the crash is unavoidable, the vehicle is being prepared for the

crash.

4. In-crash: the crash happens.

5. Post-crash: the crash has been happened and emergency services are ap-

proaching.

C
R

A
S

H

EmergencyNormal Driving
Pre-

Crash

Post-

Crash

10s 1s 0s -10min

Figure 1.1: ADAS operation modes with respect to the crash event.

The timeline values are orientational only, since the emergency of a driving sit-

uation depends heavily on the vehicle speed. Each of these stages with respect

to the crash event require different levels of safety vs. comfort engagement of

1.2. STATE OF THE ART 7

the ADAS systems, starting as comfort functions at the beginning of the timeline

with a growing emphasis on safety as the crash event approaches. Interestingly,

the safety-relevant systems are often introduced as “comfort” systems, since it

is known from experience that buyers would rather pay for comfort than safety

[SEiSS, 2005].

The Tab. 1.1 and Tab. 1.2 show a set of low-level vehicle control systems that

support the Advanced Driver Assistance Systems [Wiki-ADAS-en, 2010], [Wiki-

ADAS-de, 2010]. The complexity of these low-level driving and safety support

systems can be very high and their presence indispensable for the overall vehicle

functionality and safety. The drawing line between low-level vehicle control sys-

tems and complex structural adaptations with respect to the “Advanced” Driver

Assistance Systems is therefore fluid. The term “Advanced” can be more properly

understood as high level warning, assistance and control, where the interaction

level with the driver takes place at nominal driver perception and control levels,

such as detecting critical driving related features of the environment (e.g. vehi-

cles and other participants), assessing the emergency level, notifying/warning the

driver, controlling the vehicle to a predefined setpoint and reacting to immediate

dangers in form of emergency maneuvers.

The Tab. 1.3, Tab. 1.4 and Tab. 1.5 show a non-exhaustive list of Advanced

Driver Assistance Systems (ADAS) ordered approximately according to increasing

time emergency (ref. to Fig. 1.1) [SEiSS, 2005], [Continental-ADAS, 2010], [Wiki-

ADAS-en, 2010], [Wiki-ADAS-de, 2010]. Manufacturers may use different com-

mercial names when referring to similar type systems, therefore the most common

nomenclature is used here.

The introduction of ADAS to the vehicle transportation through research, de-

velopment and finally serial production in newer generation vehicles can be viewed

as a “bottom-up” technological development. Each of the ADAS targets a specific

driving and vehicle operation functionality with increasing “higher-level” driving

conditions analysis and control. Moreover, the ADAS have been introduced to the

8 CHAPTER 1. INTRODUCTION

market gradually over several last decades, according to the rate of technological

progress but even more importantly due to the incremental way the market is

able to absorb these new products from the socio-economic and regulatory point

of view. In fact, many up-to-date regulations and recommendations concerning

the traffic safety have been formed a-posteriori based on available pre-production

ADAS solutions coming from the automotive industry.

When analyzing the level of autonomicity of current ADAS it can be stated

that on the level of steering mitigation, the Lane Keep Assist (LKA) and the Lane

Change Support (LCS) (Tab. 1.4) are the cutting-edge solutions in operation.

They both aim at keeping the ego-vehicle in the current lane due to possible

departure or rear-approaching vehicles when changing lanes, respectively. As far

as longitudinal velocity control is concerned the Follow-To-Stop Assist (Tab. 1.5),

a combination of Adaptive Cruise Control (ACC) and Active Brake Assist (ABA),

solves the problem of vehicle following in front and performing emergency braking

if a critical (crash) situation in front of the ego-vehicle is detected. In summary,

the autonomicity of the current ADAS solutions are limited to a set of well defined

control patterns within the current lane.

Clearly, these ADAS advancements will have a huge impact on overall traf-

fic safety in the present and in near future. However, it is also evident that the

full range of potentially useful maneuvers has not been exploited yet in the cur-

rent ADAS implementations. Some interesting useful maneuvers are presented in

Tab. 1.6. These and similar maneuvers could be considered as a subset of feasible

motion planning solutions within the scope of fully autonomous vehicle navigation

which will be discussed in Sec. 1.2.3.

1.2.3 Autonomous vehicle navigation

The problem of navigation of autonomous agents, which in essence comprise of

environment perception analysis and task planning and execution part, has been

an important focus of research within the robotic community for several decades.

1.2. STATE OF THE ART 9

Navigation algorithms have been developed and tested on various robotic plat-

forms. First reports on autonomous vehicle navigation go back two decades ago.

VaMoRs was a 5-ton test vehicle are given being able to stopping in front of

obstacles of at least 0.5 m2 cross section on unmarked two-lane roads at velocities

up to 40 km/h [Dickmanns, 1991], [Dickmanns and Christians, 1991]. Within the

NavLab project a color-based road classifier and follower was developed [Thorpe

et al., 1988], [Thorpe et al., 1991a], [Thorpe et al., 1991b]. A Mercedes-Benz T-

model OSCAR perforemed lane-keeping task based on vision-based lane detection

and a steering wheel neural controller what learned the closed-loop nonlinear dy-

namics of the vehicle on-line. The vehicle drove up to 180 km/h on a public highway

[Neusser et al., 1993]. Within the EUREKA framework project PROMETHEUS

(Program for European Traffic with Highest Efficiency and Unprecedented Safety).

a van for automatic driving on a private road network was reported with a subse-

quent second generation sedan vehicle commissioned for driver-vehicle interactions

studies with the option to automatically evaluate actual traffic situations around

the vehicle in real-time [Nagel et al., 1995]. The successor demonstrator to the

VaMoRs truck was VaMP, a Mercedes passenger car which autonomously per-

formed missions on German freeways. VaMP perceived the environment with its

sense of vision and radarbased sensors and controlled its actuators for locomotion

and attention focussing. A hierarchical system architecture for autonomous visual

road vehicle guidance was developed, which consists of four levels: a vehicle level,

a 4D-level, a rule-based level, and a knowledge-based level [Maurer et al., 1996],

[Maurer and Dickmanns, 1997], [Gregor et al., 2002]. The VaMP demonstrator

was indeed one of the most referenced platforms belonging to the last decade’s

autonomous vehicle research achievements. It drove more than 2,000 km from

Munich to Copenhagen and back in traffic at up to 180 km/h, planning and exe-

cuting maneuvers to pass other cars with safety driver approval. However, on a

few critical situations, such as unmodeled construction areas a safety driver took

over completely. Moreover, despite its huge distance covered, its operation was

10 CHAPTER 1. INTRODUCTION

still limited to the highly structured highway environment.

The main target of the ARGO project was the development of an active safety

system with the ability to act also as an automatic pilot for a standard road

vehicle with a real-time embedded vision system as the main perceptional frame-

work [Bertozzi and Broggi, 1999], [Bertozzi et al., 2000], [Broggi et al., 2001].

Another PROMETHEUS project based demonstrator VITA II which enabled au-

tonomous driving on highways was assigned several vision modules to a set of

processors in order to study algorithmic and system-architecture challenges for

complex urban traffic. The perceptional tasks included road structure detection,

traffic participants detection and tracking, traffic sign recognition. The authors

introduced their version of an intelligent Stop-and-Go system and discussed ap-

propriate algorithms and approaches for vision-module control [Franke et al.,

1998], [Paetzold and Franke, 2000]. The follow-up UTA project (Urban Traffic

Assistant) aimed at accomplishing a fully functional Stop-and-Go system for an

innercity environment. The DaimlerChrysler demonstrator UTA II was designed

with special attention for information, warning and intervention systems for this

purpose. Whereas, the radarbased advanced cruise control was already commer-

cialized by DaimlerChrysler (DC) in 1999 in their premium class vehicles and a

vision-based lane departure warning system for heavy trucks was introduced by

DC in 2000, the UTA II demonstrator was geared-up for the full driver assistance

task list available in the year 2000 - a stereo-based object detection and tracking,

pedestrian recognition based on neural network, lane detection and tracking on

the highway and in the city, traffic signs and traffic light recognition, recogni-

tion of road markings, crosswalk recognition, vehicle classification, vehicle control

(lateral/longitudinal), driver interface (2D/3D visualization) [Franke et al., 2001].

Recent developments in the field of autonomous vehicle navigation are closely

related to the DARPA (“Defense Advanced Research Projects Agency”) [Web-

DARPA, 2010a] autonomous vehicle competitions. In the years 2004 and 2005 two

DARPA Grand Challenges took place in the off-road Mojave desert area, Nevada

1.2. STATE OF THE ART 11

[Web-DARPA, 2010b], [Web-DARPA, 2010c]. The autonomous vehicles were re-

quired to take course in different terrains such as dirt roads, trails, lakebeds and

rocky terrain. In 2004 none of the 15 finalists completed a 7.4 miles long course

within a 10 h limit which proved to the difficulty of developing an autonomous

robot that is robust, perceptive, and intelligent enough to travel long distances

in unstructured terrain. In fact, the CMU vehicle Sandstorm came furthest to a

7.36 miles length before getting stuck on an embankment. In the second DARPA

Grand Challenge in 2005, 195 applicants started preparing for the race, whereas

only 23 finalist vehicles were allowed to the final race track after the elimination

phase of the National Qualification Event (NQE). Interestingly, 22 of the 23 fi-

nalists traveled farther than the 7.36 miles traversed by the most successful entry

from 2004. In the end, 5 vehicles successfully completed the course with The

Stanford Racing Team’s vehicle platform Stanley completing the 132 miles long

unpaved course in only 6 h,53 min [Iagnemma and Buehler, 2006], [Kurjanowicz,

2006], [Buehler, 2006].

The DARPA Urban Challenge was held on in November of year 2007 at a

former airforce base in California. This event differed from the previous two

in the sense that it required teams to build an autonomous vehicle capable of

driving in traffic, performing complex maneuvers such as merging, passing, parking

and negotiating intersections [Buehler et al., 2008], [Web-DARPA, 2010d]. In

addition to changing the environment to the urban like scenario that simulated

a city-like traffic, this event was also unique as it was the first time autonomous

vehicles have interacted with both manned and unmanned vehicle traffic. The

manned vehicles were driven by the DARPA instructors, whereas the unmanned

ones were the autonomous vehicles competing in the same traffic area in order to

reach their goal objectives, handed over to the teams just prior to the respective

vehicle’s start time. The objectives were simulated military supply missions, i.e.

reaching distinctive waypoints in a pre-determined order. While in the run mode,

the vehicles merged into moving traffic, navigated traffic circles, negotiated busy

12 CHAPTER 1. INTRODUCTION

intersections and avoided various obstacles. Race rules required that the 96 km

(60 mile) course be completed in less than 6 hours. The vehicles were carefully

monitored to obey all traffic regulations while avoiding other competitors and

humandriven traffic vehicles. If a vehicle failed to follow a traffic rule or performed

a dangerous maneuver, it was disqualified immediately from the race.

Initially, there were 68 teams that applied to the DARPA Urban Challenge,

of which 35 teams were invited to the National Qualification Event (NQE) which

was a rigorous eight-day vehicle testing period. Thereafter, 11 finalists made it

to the final event whereas 6 vehicles actually finished the race successfully. The

CMU Tartan Racing Team’s vehicle Boss accomplished the track in 4 h,10 min

at the average speed of 22.53 km/h [Urmson et al., 2008]. Second placed Stanford

Racing’s vehicle Junior performed very closely at 4 h,29 min at the average speed

of 22.05 km/h [Montemerlo et al., 2008a]. Similarly, the third placed Virginia Tech

Victor Tango’s vehicle Odin finished at 4 h,36 min at the average speed of 20.92 km/h

[Bacha et al., 2008]. These three vehicle teams were the clear winners, however

worth noting are also the other three finishing teams, notably MIT with Talos

[Fletcher et al., 2008], University of Pennsylvania Ben Franklin Racing Team with

Little Ben [Bohren et al., 2008] and Cornell’s vehicle Skynet [Miller et al., 2008].

1.2. STATE OF THE ART 13

Low-level
vehicle
control
system

Function Technical solution

Electric Power
Steering
(EPS)

Reduce the torque effort by
providing steering assist to the
driver

An electric motor coupled
directly to either the
steering gear or steering
column

Powertrain
Control
(PCM)

Engine and transmission
control

An electronic component
consisting of engine and
transmission control unit

Traction
Control
System (TCS)
or Anti-Slip
Regulation
(ASR)

Prevent loss of traction to the
driven road wheels

Combined throttle and
individual brake pressure
control

Electronic
Stability
Control (ESC)

Improves the safety of a
vehicle’s stability by detecting
and minimizing skids

Individual brake pressure
control, optionally also
engine control using
additional inertial
measurement unit input
data

Roll Stability
Control (RSC)

Improves vertical vehicle’s
stability, impending rollover

Individual brake pressure
control, optionally also
engine control using
additional inertial
measurement unit input
data

Antilock
Braking
System (ABS)

Prevents the wheels from
locking up and ceasing to
rotate while braking

Individual brake pressure
applied to each wheel

Emergency
Brake Assist
(EBA)

Increases braking pressure up
to maximum in an emergency
situation (response
significantly faster than full
driver’s foot movement)

Detection of a “panic gas
release” and assessment of
rate by which the brake is
applied by the driver

Table 1.1: A low-level vehicle control systems overview supporting the Advanced Driver
Assistance Systems (ADAS) (I).

14 CHAPTER 1. INTRODUCTION

Low-level
vehicle
control
system

Function Technical solution

Variable
Gear Ratio
Steering
(VGRS)

Torque assist to aid the
driver’s evasive steering
measures

Variable steering gear ratios

Adaptive
Variable
Suspension
(AVS)

Collision-avoidance
Steering Support

Variable suspension damper
firmness

Supplemen-
tal Restraint
System
(SRS) or Air
Bag System

Inflatable restraints
provide a significant
reduction of crash impact
on a passanger’s body

Frontal, side, side-torso,
side-curtain, knee, rear,
rear-curtain, seat-belt airbags

Adaptive
airbag
systems

Multi-stage airbags where
the pressure within the
airbag is adjusted
according to the severity
of crash

A control chemical reaction
produces a burst of propellant to
inflate the bag, optionally deflate
and re-inflate in several stages in
successive collisions

Pedestrian
Protection
System

Generic term for structural
modifications in vehicle
hood, windshield and
bumpers to reduce the
impact on pedestrians

Deformable and/or softer
material hoods and windshields,
deeper and lower bumpers,
possible pedestrian airbags in the
hood

Frontal
Protection
System
(FPS)

Frontal structure to
protect pedestrians and
cyclists at impact

Pedestrian and cyclist “friendly”
mounting structure, primarily
replacement for the bull bar in
SUVs

Table 1.2: A low-level vehicle control systems overview supporting the Advanced Driver
Assistance Systems (ADAS) (II).

1.2. STATE OF THE ART 15

ADAS system
type

Function Technical solution

Head-Up-Display
(HUD)

Displays relevant driver
information directly on the
windshield projection plane.
Facilitation of driver’s view of
the road and display
information

Solid-state LED display
in front of the
windshield

Alcohol Detection
System

Prevents a drunk driver from
starting the engine

Chemical and pulse
rate sensors

Intelligent
Headlamp Control
(IHC) or
Advanced Front
Lighting (AFL)

Switching between low- and
high intensity light beams
based on current traffic

Camera traffic
detection systems with
advanced headlight
technologies

Adaptive Curve
Illumination
(ACL)

Pointing the vehicle light
beams in the tangential
direction of curved roads

Camera lane detection
systems with advanced
headlight technologies

Intelligent Parking
Assist System
(IPAS) or
Advanced Parking
Guidance System
(APGS)

Assists the parking maneuver Camera and ultrasonic
sensors used to
determine parking free
space, Electric Power
Steering used for
steering-in

Night Vision
Support

Detects pedestrians, animals
and other heat-emmiting
objects before they are visible
to the human eye in the
headlights

Thermal imaging
camera

Driver Drowsiness
Detection System

Monitoring of driver alertness
to the driving task

Eye-closure vision
detection system or
Brain-wave monitors

Traffic Sign
Recognition or
Speed Limit
Monitoring (SLM)

Detection of traffic signs and
alert/notification on a driver
display about the speed limits

Camera system with or
without an underlying
navigation system

Table 1.3: An Advanced Driver Assistance Systems (ADAS) overview (I).

16 CHAPTER 1. INTRODUCTION

ADAS
system
type

Function Technical solution

Blind Spot
Detection
(BSD)

Warns the driver if there are
other vehicles in the blind
spot of the side-view mirror

Camera or lidar system (short
range up to 20m)

Lane
Change
Assist
(LCA)

Detects, tracks and informs
the driver about oncoming
vehicles from the rear. Active
if the side indicator light is on

Rear oriented radar (middle
range up to 70m)

Lane
Departure
Warning
(LDW)

Detects the lane structure and
possible ego-vehicle departure
from the nominal lane
trajectory giving an acoustic
warning. Active if the side
indicator light is off

Mono or stereo camera system

Lane Keep
Assist
(LKA)

Using the information based
on Lane Departure Warning
provides force-feedback on the
steering wheel both as a
warning and corrective
assistance towards the middle
of the lane

Lane Departure Warning and
Electric Power Steering

Blind Spot
Intervention
(BSI) or
Lane
Change
Support
(LCS)

Using the information based
on Lane Change Assist
provides force-feedback on the
steering wheel both as a
warning and corrective
assistance back to the original
lane of departure

Lane Change Assist and
Electric Power Steering

Adaptive
Cruise
Control
(ACC)

Adaptive speed control of the
ego-vehicle in order to follow
the flow of traffic ahead

Lidar or radar based vehicle
detection possibly coupled
with a camera, low-level
automatic engine and brake
control (driver still required to
brake in extreme situations)

Stop-and-Go
Assist or
City Safety
System

A version of the Adaptive
Cruise Control for slow traffic
(especially traffic jams)

Similar to Adaptive Cruise
Control but with automatic
stopping

Table 1.4: An Advanced Driver Assistance Systems (ADAS) overview (II).

1.2. STATE OF THE ART 17

ADAS system type Function Technical solution
Forward Collision
Alert (FCA)

Warning of an imminent
collision with the vehicle
in front (Pre-crash)

Radar, lidar or camera
front vehicle detection
with distance and
rate-of-approach
assessment

Active Brake Assist
(ABA) or Collision
Mitigation Braking
System (CMBS) or
Collision Warning
with Brake Assist
(CWBA)

Detection, warning and
mitigation of critical
front traffic situations.
The Emergency Brake
Assist mode is activated
first. If the driver does
not react within preset
conditions, maximum
automatic braking is
applied in order to avoid
or significantly reduce the
severity of the crash

Forward Collision Alert
detection system with
automatic brake control

Follow-To-Stop Assist An traffic situation
adaptive longitudinal
velocity system that is
capable of full brake
control till vehicle stop
within a large speed
range (typically
0-210 km)

A combination of
Adaptive Cruise Control
and Active Brake Assist

Pre-Sense Rear Detection of an imminent
collision from rear

Radar sensor

Pre-Crash Assist Generic term for
preparation of the vehicle
for imminent collision

Adjustment of passenger
seats and optionally
active head restraints,
tightening of seat-belts,
brakes pre-charging,
assessment of airbag
triggering conditions

Advanced Automatic
Collision Notification
or eCall

Automatic notification of
the eCall emergency
center about the location
and time of accident,
vehicle board computer
data

Mobile network device
able to connect to
different local eCall
emergency centers
(roaming)

Table 1.5: An Advanced Driver Assistance Systems (ADAS) overview (III).

18 CHAPTER 1. INTRODUCTION

Potential future
additional ADAS
functionalities

Description

Evasive steering maneuver
to the adjacent lanes

In certain critical situations the braking
distance to the vehicle in front may be too short
to avoid a crash, therefore an alternative evasive
steering maneuver may be executed to the left
adjacent lane or the safety stop lane to the right
if there is no oncoming traffic or other obstacles
in the way.

Avoiding rear collision by
an acceleration maneuver
and/or evasive steering
maneuver

Early detection of an approaching vehicle from
behind via e.g. Pre-Sense Rear and if
estimating the rate-of-approach as critically
high, the ego-vehicle may be accelerated in the
current lane or perform an evasive maneuver to
the adjacent lanes, if there is free space.

Prioritizing collision
avoidance with respect to
the more vulnerable traffic
participants

Some traffic participants such as pedestrians or
cyclists are especially vulnerable to any
collision. Assuming that due to situational
complexity a crash of the ego-vehicle is
inevitable, in such a case a maneuver may be
chosen to collide with other vehicles (e.g.
stopped vehicles in front or relatively slowly
approaching from the rear or side), rather than
crashing into a pedestrian or a cyclist. The
argument for such a behavioral pattern is that
there is a high chance that other vehicles will
also be equipped with passive/active ADAS
which render their passangers much less
vulnerable than the fully exposed pedestrians.
In total, this might result in a chain collision
with a higher material damage, but less severe
human injuries, potentially life-saving.

Overtake maneuver By combining a Follow-To-Stop Assist with an
evasive maneuver between adjacent lanes, an
overtake maneuver can be executed in nominal
traffic situation, compliant also with the Speed
Limit Monitoring Assist. This would increase
the driver comfort level, especially in highly
structured traffic environments such as
highways, thereby also increasing the overall
traffic flow.

Table 1.6: A list of potential future additional ADAS functionalities.

1.3. CONTRIBUTIONS 19

1.3 Contributions

The overall aim of this thesis was to develop algorithmic methods for the au-

tonomous vehicle navigation in static and dynamic environments, with the vision

of increasing the traffic safety, be such automatic systems introduced. The par-

ticular contributions of this work can be accounted for as follows.

A 3DOF dynamic Ackermann vehicle model for motion prediction was derived

that takes into account the relevant physical forces acting on the vehicle. The

geometry and inertia of the vehicle was included in the model as well as the inter-

action parameters with respect to the ground/road surface based on the contact

dynamics. The parameters of the vehicle that are not measurable directly were es-

timated via an optimization routine. Experimental validation of the model showed

that the dynamic physical effects are well within the range of expected values.

The autonomous navigation task in static, slowly changing environments that

may be unknown prior to the navigation execution was approached by proposing

a hierarchical navigation structure that includes the all the necessary levels of

deliberation to complete the task. In order to account for structured as well as

unstructured environments, the perceptional information about the environment

configuration was described in a form of a generic grid map. At the global nav-

igation level previously developed planning techniques were used which provide

global connectivity information at a sample rate that may be asynchronous to

sudden or unforeseen changes in the environment. Therefore a reactive collision

avoidance level was developed running at a high control cycle in order to avoid col-

lisions and also to account for non-holonomic constraints not taken into account in

the global planning cycle. The negotiating intermediate level between the global

navigation and reactive avoidance level in form of path following was proposed for

the cases were the global connectivity information is in form of an interpolated

navigation cost or a geometric global path. The hierarchical navigation scheme

was tested successfully on an experimental vehicle in unstructured environments

such as parking lots in presence of moving pedestrians.

20 CHAPTER 1. INTRODUCTION

In the case where the low-level vehicle control parameters may not be known

or the expert knowledge of the human driver can be introduced on-the-fly to the

automatic vehicle, a probabilistic formulation based on Bayesian reasoning was

analyzed for the task of reactive obstacle avoidance case and was tested on the

experimental vehicle for the case without parametric system adaptation.

Generic dynamic systems optimization techniques may be used for the mo-

tion planning problem where the terminal and path constraints must be properly

described for the vehicle motion and environmental obstacles. The case of au-

tonomous vehicle parking is an appealing case in static environments that was

studied in this work where the overall optimization objective is minimum parking

time while taking into account the vehicle motion constraints. The effect of two

different optimization approaches on the quality of motion planning solution was

compared.

Vehicle motion planning in dynamic environments requires special attention

to the coordination between dynamic object motion prediction, motion planning

cycle and motion execution. The timing constraints relating to these cycles were

explicitly accounted for. Two distinct motion planning procedures were proposed

based on the description of the ego-vehicle motion, namely the transformed and

trajectory space based and analyzed in simulated generic dynamic obstacle en-

vironment and urban dynamic scenarios. In comparison, the main advantageous

feature of the trajectory space approach is that it enables partial motion planning

for any type of dynamic ego-platform among dynamic obstacles that are described

with arbitrary motion models. The trajectory space partial motion planning was

integrated into a hierarchical navigation scheme for autonomous vehicle naviga-

tion in urban scenarios where the global mission is defined via a set of navigation

waypoints defined according to a topological description of an urban road net-

work. Simulated autonomous navigation results were provided in the presence of

dynamic objects such as vehicles and pedestrians for the lane, intersection and

parking zone situations. The safety level with respect to the braking capabilities

1.4. STRUCTURE OF THIS WORK 21

of the ego-vehicle and that of the dynamic objects was formulated explicitly.

In order to close the loop from motion planning to perception, a dynamic scene

analysis was made that includes the localization of the ego-vehicle in 3D that

can be based only inertial sensory information if the GPS signal is unavailable.

Furthermore, a vision based lane detection module was developed that defines the

basic road structure for the ego-vehicle to navigate to as well as a segmentation

of the surrounding vehicle environment into static and dynamic object candidates

based on temporal occupancy map labelling.

1.4 Structure of this work

According to the problem statement in Sec. 1.1.2 this thesis is divided into follow-

ing units: Chap. 2 describes the experimental vehicle platform used in navigation

schemes validation. Chap. 3 deals with autonomous vehicle navigation in static

and unstructured environments, whereas the Chap. 4 analysis the relevant aspects

of navigation in presence of dynamic obstacles. Chap. 5 analyzes the perceptional

part of a dynamic scene. Chap. 6 is a fusion of a proposed motion planning scheme

in dynamic environments of Chap. 4 and perceptional analysis of Chap. 5 applied

to the dynamic urban scenario.

Chapter 2

Vehicle platform

2.1 Introduction

Any autonomous navigation strategy includes a form of motion planning, thereby

the simulation of the ego-vehicle platform motion, its trajectory prediction, is

needed. The vehicle dynamic motion model should include all the relevant ve-

hicle structural aspects as well as its physical interaction with the environment.

Preferably, the model should be compact enough so that it can be simulated

computationally affordable for different initial conditions, motion commands or

workspace configurations. The aim in this chapter is to develop a dynamic model

for an Ackermann-like vehicle with relevant parameter identification that emulates

well the motion of the experimental platform vehicle.

Sec. 2.2 introduces briefly the vehicle platform used in experimental validation,

followed by the vehicle dynamic modeling in Sec. 2.3.

2.2 Vehicle platform overview

Fig. 2.1 shows the experimental vehicle platform SmartTer that was used in the

experiments throughout this thesis [Lamon et al., 2006a]. Different sensory setups

can interchangeably be used on the SmartTer vehicle.

23

24 CHAPTER 2. VEHICLE PLATFORM

Figure 2.1: SmartTer experimental vehicle.

The setup relevant to this work is based on the following infrastructure:

• ALASCA XT 4-plane laser with a horizontal range of up to 100 m;

• An outdoor SICK laser mounted sideways;

• A stereo-rig camera unit mounted on rooftop with frontal view;

• A centrally mounted camera inside the vehicle;

• A GPS unit;

• An Inertial Measurement Unit;

• Low level brake actuator and gas pedal control unit controllable via CAN

interface;

• A remote safety stop unit;

• A set of rack mounted computer units.

2.3. VEHICLE DYNAMICS MODELING 25

2.3 Vehicle dynamics modeling

In order to develop stabilizing control laws in dynamic vehicle regimes, a vehicle

model that takes dynamics into account is developed in this section. The model is

suitable for lane-keeping control and obstacle avoidance maneuvers when lateral

dynamic effects based on wheel slip come into place, i.e at increased vehicle speeds,

steering angles and decreased road friction.

The vehicle dynamic model is developed for an Ackermann-like vehicle based on

a static tire-road friction model and laws of technical mechanics. The model takes

as input the steering angle of the wheels in front and the rotational velocities of the

drive wheels in the back of the vehicle. It delivers a 3-DOF output in terms of CoG

vehicle velocity, body slip angle and the yaw rate of the vehicle in the x-y plane,

as well as estimates on the forces acting on the system. It is suitable for modeling

dynamic vehicle regimes in e.g. overtaking maneuvers/obstacle avoidance and

lane-keeping, enabling active steering control by stabilizing the dynamics of the

vehicle. The physical model description is based on previous works combined with

a suitable friction model that is tractable in practice. Experimental verification

of the obtained model is given for the Smart testing vehicle platform, where a

separate analysis is done for directly measured as opposed to estimated/optimized

parameters of the model [Macek et al., 2007].

A vehicle can be analyzed as consisting of five individual subsystems: one

vehicle body and four wheels. All the five bodies can in general move freely with

respect to each other in six degrees of freedom. Without further simplification the

dynamics of a vehicle model would therefore consist of thirty differential equations.

However, for control purposes this is neither necessary nor efficient. The existing

models cope with this problem by simplifying the model architecture as much as

possible while still satisfying the requirements of the model. The simplest solution

found in literature is the one-track bicycle model well described by Mitschke in

[Mitschke, 1990]. This model combines the front and rear wheels respectively and

treats the vehicle as a bicycle. It describes the vehicle motion in three degrees

26 CHAPTER 2. VEHICLE PLATFORM

of freedom (x-y position and yaw rate). More accurate models can be found in

[Junjie et al., 2004] and [Selby et al., 2001] which are four wheel models describing

also the pitch and roll movements of the vehicle (five DOF).

For the lane-keeping control, our model is required to generate an accurate

prediction of the yaw rate and the longitudinal/lateral acceleration of the vehicle,

therefore the calculation of the pitch and roll rate is not necessary and will not

be considered here. In consequence, a four wheel three degrees of freedom model

is derived, which describes the motion of the car in the x- and y- direction on a

horizontal plane and the rotation about the z-axis normal to it.

In Sec. 2.3.1, the architecture of the model is presented, with each segment

of the model analyzed in detail. The vehicle model proposed follows closely the

derivation of [Kiencke and Nielsen, 2000b] which is general for simulation of be-

havior of passenger cars. In Sec. 2.3.2, the procedure to measure and estimate

the parameters of the model is given. The relevant unknown parameters of the

model are identified by an optimization routine. The model/parameter validation

is based and validated on real vehicle data, where a good fit and realistic esti-

mation of the dynamic vehicle behavior is observed. The interest of the section

can be found mainly in combining an existing systematic vehicle dynamic model

derivation with a choice of a friction model that suits well the vehicle behavior

tested on real data and is still simple enough for control purposes. Furthermore,

a systematic methodology for model parameter measurement and estimation is

presented.

2.3.1 Vehicle model

2.3.1.1 Model Architecture

As mentioned earlier, the dynamic model developed here consists of five connected

subsystems: one vehicle body and four wheels, which are rigidly coupled to the

vehicle body. The model is symmetrical about the vehicle body’s longitudinal

2.3. VEHICLE DYNAMICS MODELING 27

axis. The rear wheels, which are driven by a torque, cannot be steered and are

therefore aligned with the vehicle body’s longitudinal axis. The front wheels can

be steered according to the Ackermann steering model and the vehicle motion is

constrained to horizontal movements only.

Figure 2.2: Coordinate Systems: In - Iner-
tial, CoG - Center of Gravity, W - Wheel.

Figure 2.3: Geometry and defined veloci-
ties of the vehicle.

As shown in Fig. 2.2 different coordinate systems for all subsystems are defined

with respect to an inertial (In) coordinate system, which is defined as a fixed

system in which the x- and y- axis describe a horizontal plane and the z-axis

points upwards. The center of gravity (CoG) coordinate system is associated with

the vehicle body and has its origin in the CoG of the total system (i.e. vehicle

body plus the five wheels). Each wheel has its own (W) coordinate system. The

wheels always touch the level horizontal plane described by the xIn- and yIn-axis

in one single point (Wheel Ground Contact Points). Relative to the CoG-system

the wheels are allowed to rotate freely about their rotational axis yW . The steering

angles δWFL
and δWFR

of the front wheels and the driving torque TDrive that acts

on both rear wheels are the physical inputs to the vehicle.

Due to the fact that the wheels are rigidly connected to the vehicle body no

28 CHAPTER 2. VEHICLE PLATFORM

suspension is implemented in our model. However, this assumption is acceptable

because the suspension forces are only internal forces to the vehicle system and

do not have an effect on the horizontal motions (x-, y- position and yaw motion).

However, different normal forces on the outside and inside wheels in a turn are

still taken into account as proposed in Sec. 2.3.1.4.2.

2.3.1.2 Vehicle kinematics

2.3.1.2.1 Vehicle Body Kinematics The velocity of the CoG in the CoG-

system is defined by:

−−−→
cvCoG =

 vCoG · cos(β)

vCoG · sin(β)

 (2.1)

Here vCoG is the absolute value of the velocity and β is the angle between the

x-axis of the CoG-system and the velocity vector as shown in Fig. 2.3. β is known

as the body side slip angle. Transformation of cvCoG to the In-system yields:

−−−→
ivCoG =

 cosψ − sinψ

sinψ cosψ

 · −−−→cvCoG

=

 vCoG · cos(β + ψ)

vCoG · sin(β + ψ)

 (2.2)

where the yaw angle ψ is the angle between the In-system and the CoG-system.

The acceleration iaCoG of the CoG is derived in the In-system [Kiencke and

Nielsen, 2000b](p.261):

−−−→
iaCoG = vCoG(β̇ + ψ̇)

 − sin(β + ψ)

cos(β + ψ)

+ (2.3)

+v̇CoG

 cos(β + ψ)

sin(β + ψ)



2.3. VEHICLE DYNAMICS MODELING 29

Transforming the iaCoG into the CoG-system is done by rotating the vector about

ψ around the zIn-axis:

−−−→
caCoG = vCoG(β̇ + ψ̇)

 − sin β

cos β

+ v̇CoG

 cos β

sin β


(2.4)

with additional notation caCoG,x ≡ ax and caCoG,y ≡ ay.

2.3.1.2.2 Wheel Kinematics The wheel ground contact point velocity is de-

fined as the velocity of the ground contact point of each wheel not taking into ac-

count the rotational speed of the wheel [Kiencke and Nielsen, 2000b] (p.226), repre-

senting a stationary point with respect to the vehicle body [Williams, 1996](pp.68):

−−→
cvwn = −−−→cvCoG +


0

0

ψ̇

×

xn

yn

0

 (2.5)

The wheel velocities then depend on vCoG, the yaw rate ψ̇, and the geometry of

the vehicle, where xn and yn are the coordinates of the four wheel ground contact

points, n = 1, . . . , 4, given in the CoG-system. The geometry of the car is shown

in Fig. 2.3. The lengths and widths lF , lR, bR, bR describe the exact position of

each wheel ground contact point with respect to CoG. The four wheel velocities

are given by:

−−−−→
cvwFL,R =

 vCoG cos β ∓ ψ̇ bF
2

vCoG sin β + ψ̇lF

 (2.6)

−−−−→
cvwRL,R =

 vCoG cos β ∓ ψ̇ bR
2

vCoG sin β − ψ̇lR

 (2.7)

The tire side slip angle α of each wheel is defined similar to the vehicle body

30 CHAPTER 2. VEHICLE PLATFORM

side slip angle β. α is the angle between the wheel axis xwn and the wheel velocity

vwn as shown in Fig. 2.4. The four α’s are calculated by:

Figure 2.4: Side slip angle front left tire. Figure 2.5: Wheel slip.

αFL,R = δWFL,R
− arctan

vCoG sin β + ψ̇lF

vCoG cos β ∓ ψ̇ bF
2

(2.8)

αRL,R = − arctan
vCoG sin β − ψ̇lR
vCoG cos β ∓ ψ̇ bR

2

(2.9)

The wheel equivalent velocity of each wheel, vRn , is given by the rotational

speed of the wheel ωn and the effective wheel radius, reff [Kiencke and Nielsen,

2000b](pp.249-250):

vRn = ωn · reff (2.10)

where its direction is the positive x-direction of the wheel coordinate system,

describing motion of the wheel if it rolled perfectly on the road.

2.3.1.2.3 Wheel Slip Calculation The three expressions for vw, α and vR are

now combined in the slip equations. The slip is a normalized description of the tire

movement relative to the road and is depicted well by Burckhardt in [Burckhardt,

1993]. This relative movement is solely responsible for the tire friction forces and

2.3. VEHICLE DYNAMICS MODELING 31

is therefore important for the friction forces calculation. The longitudinal slip sL

is defined in the direction of vw and describes the relative movement in forward

direction. The side slip sS is defined perpendicular to vw and describes the relative

movement in side direction as shown in Fig. 2.5. The two slip equations are

given in Tab. 2.11 [Kiencke and Nielsen, 2000b](p.237). Burckhardt differentiates

between the driving vehicle and the braking vehicle, thus the slip stays always

between -1 and 1.

Braking Driving

vR cosα ≤ vW vR cosα > vW

Longitudinal slip sL = vR cosα−vW
vW

sL = vR cosα−vW
vR cosα

Side slip sS = vR sinα
vW

sS = tanα

(2.11)

2.3.1.3 Vehicle dynamics

The dynamics of the system can be derived using the principles of linear and

angular momentum in two-dimensions for the vehicle body and the four wheels

[Williams, 1996](pp.68).

2.3.1.3.1 Vehicle Body Dynamics According to the principle of linear mo-

mentum, the acceleration of the car is determined by the sum of all forces cFi

acting upon it:
k∑
i=1

−→
cFi = mCoG · −−−→caCoG (2.12)

The rotational motion of the wheels is neglected here, thus the only rotation

allowed by the model architecture is the yaw motion around the z-axis, with Ti

being the torques induced by the forces acting on the car (angular momentum):

l∑
i=1

Ti = Jz · ψ̈ (2.13)

32 CHAPTER 2. VEHICLE PLATFORM

2.3.1.3.2 Wheel Dynamics The torque produced about the y-axis of each in-

dividual wheel is the engine torque TDrive, which is for the front wheels equal to

zero and for the rear wheels counter-balanced by the longitudinal friction forces

FWLn on each wheel:

Tdriven = JWnω̇n + reff · FWLn (2.14)

2.3.1.4 Forces description

The most important forces for the dynamics of the vehicle are the friction forces

which are generated at the tire/road contact area [Mitschke, 1995](p.17). All the

relevant forces for the model acting horizontally upon the system are shown in

Fig. 2.6.

Figure 2.6: Forces: FL (longitudinal) and FS (lateral) friction forces, Faer the aero-
dynamic force.

2.3.1.4.1 Aerodynamic Force The aerodynamic resistance due to the vehicle’s

motion through the air is the major braking force in the model and is aligned with

2.3. VEHICLE DYNAMICS MODELING 33

the xCoG direction of the car:

−−→
cFaer = −sgn(vCoG) · caerALρAir

2
· v2

CoG · −→cex (2.15)

with ρAir being air density, caer aerodynamic constant and AL the effective aero-

dynamic surface of the vehicle.

2.3.1.4.2 Normal Forces The normal forces are calculated at each wheel ground

contact point in the positive zw direction. Due to the asymmetry of the vehicle

body along the vehicle body’s lateral axis the normal forces differ already with

no motion of the car and become larger at the rear wheels while accelerating

and larger at the outside wheels while in a turn. The approach of [Kiencke and

Nielsen, 2000b] (pp.306-308) takes into account the shifting of the wheel load while

accelerating or driving in a turn.

Figure 2.7: Normal Forces Calculation.

Assuming no suspension and roll or pitch motion, the dependencies of the

normal forces on the longitudinal and lateral accelerations, ax and ay, can be

calculated separately. By balancing different loads on axles due to longitudinal

acceleration and furthermore axle load shift due to driving in a turn (see Fig. 2.7),

34 CHAPTER 2. VEHICLE PLATFORM

the torque balance at the front left contact point yields:

FZFR =
1

2
mCoG ·

(
lR
l
g − hCoG

l
ax

)
+ (2.16)

+mCoG ·
(
lR
l
g − hCoG

l
ax

)
· hCoG · ay

bF · g

where similar expressions can be derived for other normal forces as well.

2.3.1.4.3 Friction Forces The behavior of friction at the tire/road contact

area is a highly non-linear phenomenon which is complex to describe. Several

approaches to the friction characteristics have been developed. Among these are

dynamic friction models of which the LuGre model is among the most promising

[Canudas de Wit et al., 1995], [Claeys et al., 2001], [Villella, 2004]. In contrast,

static friction models empirically approximate the tire characteristics and are well

studied. Their output are two forces for each wheel which act upon the wheel

ground contact point in the direction of vW , FL - the longitudinal friction force

and perpendicular to it, FS - the lateral friction force.

2.3.1.4.4 Burckhardt Friction Model The static friction model that is used

in our system was proposed by Burckhardt in [Burckhardt, 1993]. The model

aims at obtaining a realistic relationship between the slip of the tires and the

friction coefficients in longitudinal and lateral direction µL and µS. Two auxiliary

parameters sRes and µRes are introduced:

sRes =
√
s2
L + s2

S (2.17)

µRes = c1 ·
(
1− e−c2·sRes)− c3 · sRes (2.18)

with calculation of the slips sL and sS as explained in Sec. 2.3.1.2.3.

By choosing values for the coefficients c1, c2 and c3 according to different

2.3. VEHICLE DYNAMICS MODELING 35

Figure 2.8: Friction coefficients for differ-
ent ground surface conditions.

Figure 2.9: µL dependency on slip sL and
different α side slip angles.

conditions for dry asphalt, wet asphalt and snow, the Fig. 2.8 shows the resulting

friction coefficient as given by Eq. 2.18. As one can see in Fig. 2.9, Eq. 2.18 also

provides the dependency of the friction coefficients on the tire side slip angles α.

Now the longitudinal and lateral friction coefficient µL and µS are calculated

by Eq. 2.19 and the longitudinal and lateral friction forces FL and FS are given

in Eq. 2.20 and Eq. 2.21.

µL = µRes
sL
sRes

, µS = µRes
sS
sRes

(2.19)

with the longitudinal and lateral friction force being:

FL = µL · FZ = µRes · sL
sRes

· FZ (2.20)

FS = µS · FZ = µRes · sS
sRes

· FZ (2.21)

2.3.1.5 Steering

This section deals with the relationship between the angle on the steering column

δS and the two wheel steering angles δWFL
and δWFR

on the front wheels.

36 CHAPTER 2. VEHICLE PLATFORM

2.3.1.5.1 Steering Column Model For the derivation of the relationship be-

tween δS, the steering column angle and δW , the steering angle of the hypothetical

wheel in the front center, the model used is a static proportional relationship,

where iT is the transmission coefficient of [Reimpel and Betzler, 2000](pp.224).

δW =
δS
iT

(2.22)

2.3.1.5.2 Ackermann Steering Since all y-axes of the wheels should intersect

in the instantaneous center of motion (ICM), the left and right front wheel angles,

δWFL
and δWFR

are a function of δW :

δWFL,R
= arctan

(
l

l
tan δW

∓ bF
2

)
(2.23)

2.3.1.6 Summary of the Model

The complete vehicle model combines individual segments elaborated so far. The

steering and torque as inputs are propagated through the model, generating forces

that produce following outputs: the CoG-velocity vCoG, the vehicle body side slip

angle β and the yaw rate ψ̇ as shown in the equations of motion:

v̇CoG =
cos β

mCoG

[
ΣFX − caerALρ

2
· v2

CoG

]
(2.24)

+
sin β

mCoG

[ΣFY]

β̇ =
cos β

mCoG · vCoG [ΣFY] (2.25)

− sin β

mCoG · vCoG
[
ΣFX − caerALρ

2
· v2

CoG

]
− ψ̇

JZψ̈ = [FY FL + FY FR] · lF − [FY RL + FY RR] · lR
+ [FXFR − FXFL] · bF + [FXRR − FXRL] · bR

(2.26)

2.3. VEHICLE DYNAMICS MODELING 37

where the sum of forces along each coordinate are:

ΣFX = FXFL + FXFR + FXRL + FXRR (2.27)

ΣFY = FY FL + FY FR + FY RL + FY RR (2.28)

2.3.2 Parameter estimation and experimental model validation

2.3.2.1 Acquisition of Measurement Data

From the CAN-Bus (Controller Area Network) that is included serially in the

Smart vehicle, the following data can be obtained:

• δS - steering wheel angle

• wFL, wFR - rotational wheel speed front left/right

• wRL, wRR- rotational wheel speed rear left/right

The IMU300CC-100 is an external inertial measurement unit supplementary inte-

grated in the test vehicle with following measurements taken:

• ψ̇ - yaw rate (range 100◦/s, bias < ±2.0◦/s, scale factor accuracy

< 1%)

• ax, ay - acceleration in the x- and y- direction (range ±2g, bias

< ±30mg, scale factor accuracy < 1%).

Both sensor systems take measurements at a sample rate of Ts=11ms.

2.3.2.2 Parameter Identification

2.3.2.2.1 Assured Parameters In this category of parameters, all natural con-

stants and tabulated values are considered, as well as the car geometry which is

given by the drivers manual.

The coefficients of the friction model given in Sec. 2.3.1.4.4 are taken for a dry

asphalt road, i.e. c1 = 1.2801, c2 = 23.99 and c3 = 0.52.

38 CHAPTER 2. VEHICLE PLATFORM

2.3.2.2.2 Measured Parameters

2.3.2.2.2.1 Effective Wheel Radius reff is a function of the two static

wheel radii r0 and rstat, where r0 is the radius of the unloaded wheel and rstat is

the compressed wheel radius as the vehicle stands on its four wheels [Kiencke and

Nielsen, 2000b](pp.250):

reff = r0 ·
sin(arccos(rstat

r0
))

arccos(rstat
r0

)
(2.29)

which for Smart vehicle yields reff = 0.273m.

2.3.2.2.2.2 Total Mass of the Smart and x-Position of the CoG The

vehicle was weighted on an industrial scale with an accuracy of 10kg. To find out

the x-position of the CoG described by the two lengths lR and lF , the law of lever

was used:

lF = l · mrear

mrear +mfront

, lR = l · mfront

mrear +mfront

(2.30)

where the results also depend on the number of passengers. For the case of no

load: m = 760kg, mfront = 330kg, mrear = 430kg, lF = 1.025m, lR = 0.787.

2.3.2.2.3 Estimated Parameters

2.3.2.2.3.1 Transmission Coefficient - iTrans The transmission coefficient

is important for the car behavior because it determines the magnitude of the wheel

steering angles. The initial estimate was iTrans= 15, which is in the range given

for other vehicles by [Reimpel and Betzler, 2000](pp.224) and was later optimized.

2.3.2.2.3.2 Inertial Momenta of the Vehicle Body and the Wheels To

estimate the value of the inertial moment the formula [Reimpel and Betzler, 2000]

(p.406) was used:

Jz = 0.1269 · LT · l (2.31)

2.3. VEHICLE DYNAMICS MODELING 39

where LT is the total length of the vehicle and l the length between the front and

rear axis. This formula gives a result for Jz of about 500kgm2.

For the estimation of the inertial momenta of the front wheels, the assumption

is that the wheel is a solid disk of radius r=20cm and a mass of m=5kg:

JWF
=

1

2
m · r2 (2.32)

which yields the inertial momentum of a single front wheel as JWF
=0.1kgm2.

2.3.2.2.4 Optimization of the Parameters To optimize the estimated param-

eters the difference between a set of experimentally measured and modeled outputs

is compared. An error function is defined as the sum of all normalized, weighted

and squared differences between the five measured and modeled variables:

err =
1

n



(
1 · 1

xψ̇q

)2(
0.5 · 1

xaxq

)2(
0.5 · 1

xayq

)2(
0.5 · 1

xωFLq

)2(
0.5 · 1

xωFRq

)2


·

n∑
i=1



(∆i(ψ̇))2

(∆i(ax))
2

(∆i(ay))
2

(∆i(ωFL))2

(∆i(ωFR))2


(2.33)

where the difference for each individual measurement is:

∆i(◦) = (◦)measured i− (◦)modeled i (2.34)

The error of the yaw rate ψ̇ is weighted twice as high as the errors of the four

other variables because of its importance and the quality of the measurements.

The data is normalized with the difference between the maximum and minimum

value of each measured parameter over the whole test drive (xψ̇q, xaxq, xayq,

xωFLq, xωFRq). The MatlabTM function fminsearch is applied in order to search

for the minimum of the error function. The optimized parameter values were

40 CHAPTER 2. VEHICLE PLATFORM

derived as:

iTrans = 28.5576 , Jz = 1490.3kgm2 , JWF
= 0.1071kgm2

which is in good correspondence with the Smart vehicle used, since smaller vehicles

types have typically a higher transmission coefficient.

2.3.2.3 Experimental Model Validation

After identifying the unknown parameters of the model and optimizing it with

measured data, the model is validated by comparing it to a new test drive of the

Smart vehicle. It is expected that the vehicle model follows the measured data

without any further optimization. The inputs to the model are shown in Fig. 2.10,

2.11 and 2.12, as front steering wheel angle δW (with the estimated steering angles

on left and right front wheel δWL, δWR) and the rear rotational wheel velocities

ωRL, ωRR, respectively. Peak differences in rear wheel velocities indicate that the

driving regime is dynamic. Note that the wheel dynamics is induced with the drive

torques on rear axis as explained in Sec. 2.3.1.3.2, however, the torque quantities

cannot be measured directly. They can only be estimated in a forward manner by

an additional model of vehicle engine and transmission or in a backward manner

according to Eq. 2.14, therefore the rear wheel velocities are considered as direct

inputs here and represent the driving quantities.

In Fig. 2.15, 2.16 and 2.17 the yaw rate ψ̇ and accelerations ax and ay are given

as a comparison between the measured and modeled dynamic variables, since they

can be directly measured by the IMU unit. For the given precision of the IMU,

the model errors are: |∆max|ψ̇ = 6.7◦/s, σψ̇ = 2.3◦/s, |∆max|ax = 0.71m/s2,

σax = 0.33m/s2 and |∆max|ay = 1.42m/s2, σay = 0.74m/s2. As can be seen,

the measured and modeled data correspond well, with maximal model deviations

|∆max| due to peaks of highly dynamic regime. The estimated forces on the front

left wheel of Fig. 2.13 show that the lateral force FSFL is considerable and changes

2.3. VEHICLE DYNAMICS MODELING 41

Figure 2.10: Measured input steering an-
gle δW and estimated left and right front
wheel angles δFL and δFR.

Figure 2.11: Measured input wheel veloc-
ity rear left ωRL.

Figure 2.12: Measured input wheel veloc-
ity rear right ωRR.

Figure 2.13: Estimated wheel forces front
left, longitudinal FLFL and lateral FSFL .

direction according to the steering angle. The longitudinal force FLFL at this wheel

is small negative or close to zero due to the small wheel inertia and net rolling

resistance, opposing the longitudinal motion. The estimated longitudinal force of

the rear right wheel FLRR of Fig. 2.14 is in contrast to FLFL much bigger since

it represents one of the two driving forces exerted on the vehicle by the engine

and transmission, changing from the acceleration phases (positive) to the braking

phases (negative). The overall magnitudes of the forces also correspond well to

those found in other literature [Kiencke and Nielsen, 2005], [Mitschke, 1990] taking

42 CHAPTER 2. VEHICLE PLATFORM

Figure 2.14: Estimated wheel forces rear
right, longitudinal FLRR and lateral FSRR .

Figure 2.15: Estimated and measured
yaw rate ψ̇.

Figure 2.16: Estimated and measured ac-
celeration in the x-direction ax.

Figure 2.17: Estimated and measured ac-
celeration in the y-direction ay.

into account the scale of the car class. The developed dynamic model will be used

for feed-forward trajectory simulation within a control scheme which relies also on

the on-line feedback action to account for model inaccuracies.

2.4 Conclusion

Sec. 2.2 provided a brief overview of the experimental vehicle platform Smart-

Ter followed by the Sec. 2.3 were a 3DOF dynamic vehicle model was developed

describing the motion of vehicle in horizontal plane by considering lateral and

2.4. CONCLUSION 43

longitudinal body dynamics and friction forces exerted by the ground surface act-

ing on the vehicle. A detailed analysis included identification of all the relevant

parameters of the model, either directly measured or estimated. An experimental

verification based on comparison of the model output and measured data of a test

vehicle proved a good correlation and validity of the model. The model can be

used for example for lane-keeping and obstacle avoidance control of the vehicle.

In particular, the dynamics of the vehicle must be taken into account at higher

speeds, i.e. in excess of 30km/h and on surfaces with small friction adhesion, e.g.

wet or icy ground surface. If additional information on the type of ground surface

is provided via a detection system (e.g. vision, acoustic) an automatic switching

between different friction models could also be performed.

Chapter 3

Motion planning in static

environments

3.1 Introduction

This chapter deals with navigation techniques suitable for autonomous vehicle

navigation in static, slowly changing and unstructured environments. Typical

navigation environments in this category would be parking lots in urban areas or

off-road terrains, however only the case of urban areas is further analyzed here.

The Sec. 3.2 presents a hierarchical navigation scheme for static environments

that is both complete in the sense of global objective and reactive in order to

account for previously unseen, partially known or changing obstacle configurations

in the environment.

A probabilistic obstacle avoidance module is developed in Sec. 3.3 that has the

potential of straightforward inclusion of expert knowledge of a human driver.

The Sec. 3.4 analyzes the problem of time optimal navigation applied to the

case of vehicle parking maneuver using two different constraint optimization tools.

45

46 CHAPTER 3. MOTION PLANNING IN STATIC ENVIRONMENTS

3.2 Hierarchical navigation

The aim of this section is to develop a navigation strategy for an environment

without identifiable or clearly present structure in the presence of slowly moving

obstacles, i.e. without explicit motion modeling (a typical example are pedestri-

ans). A suitable description of such a surrounding is an occupancy based repre-

sentation of occupied/free/unexplored areas. To compute a global path from a

start to a goal position, the obstacle areas are cast into the configuration space,

thereby increased by the contour of the ego-vehicle itself. By this procedure, the

ego-vehicle is reduced to a point in a grid for which any of the grid based global

planning algorithms, such as A* [Hart et al., 1968], D* [Stentz, 1994], FD* [Fer-

guson and Stentz, 2005] or E* [Philippsen, 2006] can be applied. The A* and E*

planners accumulate previously unseen/changing structure of the environment in

a buffer and launch a global re-planning phase after significant new information

have been accumulated, whereas the D* and its interpolated version FD* planner

deal with the environmental changes in an incremental way, thus using a true

global replanning phase only at bootstrap.

The geometric path generated in the global planning phase has three major

disadvantages:

• it does not comply to the kinodynamic constraints of the vehicle platform;

• the configuration space obstacle enhancement for all possible vehicle orien-

tations is only approximative;

• its refresh (replanning) rate is too slow for sudden changes in the environ-

ment.

In order to resolve these problems a reactive navigation level has to be introduced.

Its servo cycle rate is high enough to be able to react/avoid sudden changes in

the environment, such as moving obstacles or previously unseen structure in the

global environment representation, which requires an independent environment

3.2. HIERARCHICAL NAVIGATION 47

representation, typically in form of a local grid map centered on the ego-vehicle’s

current position. It uses a vehicle motion model based on vehicle’s dynamics

modeling that includes the relevant kinodynamic constraints to project potential

trajectory candidates for the next motion command to be issued. Trajectory

(thereby motion commands) are checked against potential collision with obstacles

in the workspace using the exact vehicle geometry (not the configuration space

approximation). The motion commands that would end in collision are inhibited.

Furthermore, a path following level is necessary to steer the vehicle towards the

goal objective, serving as a connecting level between purely deliberative (global)

and purely reactive (local) level of navigation.

A hierarchical navigation structure that includes the global planning, path

following and reactive obstacle avoidance level is to be proposed and synchronized

in different refresh cycles with respect to planning, control and environmental

update.

3.2.1 Navigation architecture

Fig. 3.1 shows the proposed overall scheme for the navigation system of au-

tonomous vehicles. The Goal Manager (GM) handles the global scenario of the

vehicle, which is described by a set of goals/waypoints to pass through. The global

planner (GP) receives the occupancy information, i.e. occupied areas of the en-

vironment, with the map anchor (current vehicle pose) from the Mapper module

(MP) and dynamically replans the global path on-line. The versions of GP which

are employed in our system and are able to handle dynamic environment changes

are Field-D? [Ferguson and Stentz, 2005] and E? [Philippsen and Siegwart, 2005].

The current goal/waypoint is valid until the vehicle reaches a predefined vicinity

around the goal, whereupon the next goal is taken and the GP restarted.

The dynamically changing global geometric path is computed at each control

cycle and passed on to the Path Smoother/Optimizer (PSO) module, which in its

basic version interpolates a smooth continuous path through the geometric path

48 CHAPTER 3. MOTION PLANNING IN STATIC ENVIRONMENTS

Figure 3.1: Hierarchical navigation architecture.

vertices, using cubic splines ([Bartels et al., 1987]). This module can further opti-

mize thus obtained smooth path by minimizing the curvature change (jerk) along

3.2. HIERARCHICAL NAVIGATION 49

the path, which can improve both driving comfort and quality of path following

control.

The Path Following Controller (PFC) is employed to follow the smoothed

global path. The path to follow can also be a holonomic one. The PFC uses

the kinematic model with dynamic limitations of the vehicle, such as longitu-

dinal acceleration and steering rate limits, to generate a set of kinodynamically

feasible commands for each state of the vehicle, described by the pose {x, y, θ}
and the kinematic state {v, φ}, v and φ being the longitudinal velocity and the

steering angle, respectively. Each kinodynamically feasible command pair within

the set {vi, ψj; i = 1, . . . , Nv, j = 1, . . . , Nκ} at represents a possible circular tra-

jectory, if the commands are kept constant from the current control cycle onwards.

Therefore, each possible trajectory is checked for collision against obstacles in the

Collision Checker (CC) module, i.e. configuration space feasible trajectories. The

CC module receives obstacle occupancy data directly from the MP module on-line.

This renders the CC module independent of GP and ensures safe navigation even

in situation when the GP is in a replanning phase and a collision-free global path

is not available. From the set of kinodynamically and configuration space feasible

commands/trajectories, the optimal command v?, φ? taken is the one that ensures

path following (steering) and comfort driving by limiting the lateral acceleration

(longitudinal velocity profile).

The problem of path following in this architecture is analyzed with particular

emphasis on integrating the global path planning, path following and a collision

avoidance scheme in a unified framework. They assume existence of a navigation

function that generates an on-line path towards a global objective and optionally

also generates traversability cost estimates for changing environments with limited

vehicle’s sensor range (the GP module of the navigation architecture). Whereas

the traditional path following algorithms aim at minimizing an error function with

respect to a given path and kinematic and/or dynamic model of the robot, the

problem of collision avoidance is often neglected or simply cast to the replanning

50 CHAPTER 3. MOTION PLANNING IN STATIC ENVIRONMENTS

phase of the global planner which issues the given path. Such approaches that

do not check explicitly for collision for the given state of the ego-robot and the

environment can easily lead to hazardous situations, in particular if latencies are

present in the global path planning phase. In order to address obstacle avoidance

directly, a navigation framework is presented here that combines a path following

control scheme to attain a global objective with a collision checking scheme that

incrementally builds collision-free trajectories, thus ensuring ego-robot safety at

all times, with respect to the partially known static environment obstacles and

kinodynamic limitations of the ego-robot itself. Two novel path following schemes

are presented. Firstly, the “Traversability-Anchored Dynamic Path Following”

(TADPF) [Macek et al., 2008a] that was a follow-up development of a reference

point path following technique in [Macek et al., 2005]. Secondly, a combined

KinoDynamic Sliding Mode Path Following (KDSMPF), based on a previously

developed SMPF technique [Solea and Nunes, 2006]. Both the TADPF and

KDSMPF path following technique enabling collision-free navigation along the

global path with directly taking into account the dynamic limits of the vehicle as

well as specifics of the information provided by different global planner module

types.

The low-level controller (LC) converts the kinematic level commands v?, φ? to

the actuator signals on the gas pedal, brake (if in deceleration phase) and steering

motor reference. The longitudinal velocity controller is based on a Fuzzy logic

controller, which handles also the acceleration/deceleration/cruising phases. The

steering column controller is a PID implementation of power steering reference.

3.2.2 Feasible trajectories

The first step towards autonomous vehicle navigation is defining the set of feasible

trajectories to pursue. In order to achieve reactive level of navigation, kinodynam-

ically and configuration space feasible trajectories must be defined.

3.2. HIERARCHICAL NAVIGATION 51

3.2.2.1 Kinodynamically feasible trajectories

Kinodynamically feasible trajectories depend directly on the vehicle/robot motion

model, which is for this purpose assumed to be the Ackermann kinematic model:

ẋ = cos θ vl , ẏ = sin θvl , θ̇ =
vl
L

tanφ , (3.1)

with {x, y, θ} being the robot pose and {vl, φ} the longitudinal velocity and steer-

ing angle as control inputs and L the axes distance of the front and rear wheels.

According to the Ackermann kinematics, the vehicle follows a circular path

for a given kinematic level control input {vl, φ}. Therefore a set of arc vehicle

trajectories can be defined as:

A = {ai,j = {xi,j, yi,j} ; i = 1 . . . Nv, j = 1 . . . Nκ} , (3.2)

where Nvl denotes the number of arc sets due to longitudinal velocity vl,i dis-

cretization and Nκ the number of arcs due to curvature κj discretization, which

corresponds to a steering angle φj.

At each control cycle a trajectory ai,j is chosen, corresponding to a control

input (vl,i, φj) that is feasible with respect to the environment constraints, e.g.

obstacles and goal direction, but also according to the limitations on the vehicle

motion itself. The kinematic limitations on the vehicle motion are the maximum

longitudinal velocity vl,max, the minimum allowed1 vehicle speed vl,min, and the

maximum steering angle φmax. The dynamic limitations are the maximum lon-

gitudinal acceleration v̇l,max and the maximum steering rate φ̇max. The aim here

is to define a minimum set of arcs necessary to take into account the dynamic

limitations of the vehicle at each time instant. From Eq. 4.36 it follows that:

θ̈ =
vl

L cos2 φ
φ̇+

v̇l
L

tanφ . (3.3)

1unless the goal is reached or during an emergency brake

52 CHAPTER 3. MOTION PLANNING IN STATIC ENVIRONMENTS

Typically, the low-level steering control loop (e.g. power steering) is faster

than the longitudinal velocity control loop, thus for small time increments the

longitudinal velocity can be considered constant with respect to the angular rate

of the vehicle. Therefore, the second term can be neglected in Eq.3.3. Given that

the vehicle is currently on a trajectory defined by {vl, φ} and the steering rate is

at its maximum φ̇ = φ̇max, the curvature change within the kinematic level control

sample time-step Ts can be expressed as:

∆κ (φ) =
vl

L cos2 φ
φ̇maxTs . (3.4)

Taking the smallest curvature change within a control cycle Ts such that switch-

ing between neighboring arcs is feasible according to steering limitations leads to

the a-priori number of arcs that can be chosen at any given control cycle.

Although the combined set of arcs according to limitations of Eq. 3.4 could be

used for steering control, it is desired to impose additional constraints on longitu-

dinal velocity due to the comfort of the drive, which is related to the maximum

lateral acceleration along a given trajectory. In the perfect path following case,

the vehicle’s curvature would be equal to that of the path, so the maximum lateral

acceleration for each vl,i is defined as:

aL,i,max = κv2
l,i ≤ aL,max (3.5)

assuming constant movement along the path with curvature κ on the interval

duration Ts.

Note that even though the dynamic and kinematic constraints of the vehicle

motion are taken into account, surface contact dynamics is not modeled here, i.e.

there is no longitudinal or side slip of the wheels, under assumption of a surface

with high adhesion, such as asphalt. Nevertheless, the vehicle body acceleration

limit is still taken into account in v̇l,max.

3.2. HIERARCHICAL NAVIGATION 53

3.2.2.2 Configuration space feasible vehicle trajectories

Given a set of kinodynamically feasible trajectories it is further necessary to check

this set against potential collision with obstacles. Each obstacle whether pedes-

trian, vehicle or other generic structures in the environment can be described in

workspace of the vehicle as:

O(t) = {p(t) | p(t) = p1(t) . . . pn(t)} (3.6)

where p1(t) . . . pn(t) denote the vertices of the polygon the object describes. The

polygon O can be a grid cell object of a traversability map given by the Map-

per module of Sec. 3.2.1 or a fully tracked objects such as vehicle and pedestri-

ans of Chap. 5, where the important distinction is made between objects whose

workspace configuration does not change in time i.e. O(tc) = . . . = O(tc + Th)

and moving objects whose trajectory is described as Q(Ot) in time t. Here tc de-

notes current planning instant and Th the total prediction horizon beyond which

the movement is not considered from the current tc. The objects in this Chapter

are assumed static, or “quasi-static” with respect to the replanning cycle of the

navigation scheme.

The notion of safety as considered in this work is defined by the braking capa-

bility of the vehicle given the current kinematic state vl, φ and the set of kinody-

namically feasible trajectories/arcs ai,j. Indeed, for each such arc the brake time

is defined as:

Tb,i =
vl,i
v̇l,max

(3.7)

for which the vehicle is able to come to a complete stop for the given kinematic

state vl, φ. Assuming that the motion of the vehicle will be defined in the next Th

time by the arc ai,j, each arc’s obstacle collision check must extend to the length

l(ai,j) in the workspace:

l(ai,j) = vl,i(Th − Tb) +
1

2

v2
l,i

v̇l,max
(3.8)

54 CHAPTER 3. MOTION PLANNING IN STATIC ENVIRONMENTS

For Th = Tb there is no collision check beyond the instantaneous breaking limit

and the collision check scheme becomes similar to that of the Dynamic Window

approach of [Fox et al., 1996].

Therefore, in order to assess whether a given arc ai,j is obstacle free, each time

discretized node ai,j(tk), where tk = {tc, . . . tk . . . , tc + Th; k ∈ Nk}, must be check

against each individual object O(tk) at time tk in the future. Vehicle workspace

configuration is defined by node ai,j(tk) (pose) and its geometry, in this imple-

mentation a rectangular bounding box. If objects O are represented as generic

polygons, the collision checking is more involved and tools such as PQP package

[Larsen et al., 2000] can be used. However, in this implementation the objects are

either rectangles defined by their bounding boxes (pedestrians or vehicles) or point

objects for generic occupancy of the traversability map (if the map resolution is

high enough). This can speed up the collision check process significantly.

Such motion prediction and collision checking scheme insures safe navigation

among static and dynamic obstacles in cluttered environments. However, it must

be stated that the safety beyond Th is guaranteed only in terms that if a collision

with an object is to occur it will be the object hitting the ego-vehicle at full

stop and not the vehicle itself actively causing collision (exempt the case where

the ego-vehicle “blocks” an objects trajectory). In fact, choosing an appropriate

Th is directly linked with obstacle dynamic capabilities, perceptional constrains

(accuracy of prediction of obstacle motion) and dynamic capabilities of the ego

vehicle, where this choice on Th is still an open issue on current research on motion

planning in dynamic environments. Intuitively, it can be stated that choosing a

higher Th allows the ego-vehicle to travel at higher speeds for the same type of

obstacle/environment dynamics and configuration, however, the costs of collision

checking and future time exploration becomes computationally more expensive.

The exposed feasible trajectories scheme is based on the kinematic level steer-

ing control of the vehicle where the control input is the steering angle φ of the

vehicle, thus circular arcs are a natural trajectory choice. If the vehicle is con-

3.2. HIERARCHICAL NAVIGATION 55

trolled by its steering rate φ̇, which can be kept constant in a given control cycle

Ts, the natural trajectory choice are clothoid curves [Kelly, 2002]. However, the

collision checking scheme applies equally to such a case as well.

3.2.3 Traversability Anchored Dynamic Path Following (TADPF)

controller

With the set of feasible vehicle trajectories according to Sec. 3.2.2, the deliberate

navigation level must enable the vehicle to achieve a global objective, defined in our

case by the Goal Manager (GM) as a set of waypoints/goals. In an unstructured

environment where no topological information is available a Global Planner (GP)

level is needed in order to compute a path towards the current goal. Both FD?

and E? global geometric planners used in our case are guaranteeing global goal

free-space connectivity in partially unknown/changing environments. The issue is

how to integrate the global connectivity information with the currently available

feasible vehicle trajectories. FD? and E? global planners operate on a discrete

set of graph nodes, which in the workspace of the vehicle represent grid cells of

the environment. If an obstacle is present within a certain grid cell, the cost of

traversing that node can be set to infinite (not traversable) or to a cost that is

associated to a size metric of the cell if there is no obstacle present. The costs

can also interpolated between not traversable and free in the vicinity of obstacles

for increased smoothness. This cell traversability cost can be denoted as ct. In

order to achieve global connectivity, the information about the remaining cost to

global goal cg is also available from graph node planners and are recalculated on-

the-fly as new information about environment configuration is available. Due to

the fact that for the global path following the traversability information is used,

the PFC (“Path Following Controller”) to be presented is termed as the TADPF

- “Traversability-Anchored Dynamic Path Following” controller [Macek et al.,

2008a], [Philippsen et al., 2007].

56 CHAPTER 3. MOTION PLANNING IN STATIC ENVIRONMENTS

3.2.3.1 Configuration space feasible vehicle trajectories - traversability and

obstacle cost criteria (Γt, Γo)

In order to chose an optimal vehicle trajectory-arc at each cycle Ts, an arc that is

dynamically feasible is checked for potential collision with obstacles. The global

navigation function provides the configuration space obstacle regions. If a prohib-

ited node is encountered along an arc ai,j that is less then time Tb,i =
vl,i

v̇l,max
away

from the starting vehicle position, the arc is banned. For a prediction horizon Th

of vehicle motion along an arc ai,j with length l(ai,j) = vl,iTh, the traversability

cost Γ
(i,j)
t and cost to obstacles Γ

(i,j)
o are given as:

Γ
(i,j)
t =

Nt,ι∑
ι=1

r
(
a

(ι)
i,j

)
, Γ(i,j)

o = l(ai,j)− l(ai,j,o) (3.9)

where aιi,j corresponds to a sampled point on the arc ai,j, r(·) the increment in the

navigation function value (traversability and goal directedness cost at that point)

and Nt,ι being the number of discrete points up to the traversability prediction

horizon Tt ≤ Th. The l(ai,j,o) represents the length of the arc up to the first

occurrence of an obstacle along it, with the condition being l(ai,j,o) ≥ Tb,i, i.e. the

arc is still safe according to the dynamic breaking limitations of the vehicle. If

an arc is completely void of obstacles then Γ
(i,j)
o = 0. Traversability cost Γt gives

essentially the global direction of the vehicle to steer to and the obstacle cost slows

down the vehicle in presence of close obstacles.

3.2.3.2 Path orientation cost criterion (Γr)

In Sec. 3.2.3.1 there was no geometric path to the goal position needed. However,

by explicitly computing the path, additional information can be exploited. By fol-

lowing the negative gradient of the global navigation function from the current ve-

hicle position {x, y} to the goal {gx, gy}, a global reference path can be constructed

that is a set of points
{
cr,d = ck; k = 1, . . . , Ng, c1 = {x, y} , cNg = {gx, gy}

}
. This

3.2. HIERARCHICAL NAVIGATION 57

path is further smoothed by a spline technique to give a reference path Cr(s)
which is described with the curvilinear parameter s and curve gradient ‖Cr ′(s)‖ =√
p′2(s) + q′2(s) 6= 0,∀s ∈ [0, sf], p(s) and q(s) denoting the x− and y− compo-

nent of Cr(s), respectively.

The kinematic level control objective in this case is to find a longitudinal

velocity vl and steering angle φ of the vehicle to follow the reference path Cr given

by the global planner. In particular, a desired reference point is defined on Cr(sd)
as:

xd = p(sd) , yd = q(sd) , (0 ≤ sd ≤ sf) . (3.10)

Determining the suitable position of the reference point is important for the path

orientation cost of each arc. Here, it is proposed to set the curvilinear length of

the reference point proportional to the current longitudinal velocity vl of the robot

with a time prediction horizon Tr:

sd = Trvl (3.11)

and the orientation cost of each arc as:

Γ(i,j)
r =

∑Nr,ι
ι=1 ‖θd − θi,j(ι)‖

l(ai,j,r)
(3.12)

where θd is the reference point orientation and θi,j(ι) orientation of the vehicle

in the ι-th point along the arc ai,j. The cost is scaled to the cumulative length

l(ai,j,r) = vl,iTr, with the Tr being the orientation cost prediction horizon. This

scaling implicitly ensures that given the same orientation cost, the arcs with bigger

cumulative length, i.e. the arcs with bigger longitudinal velocity will be chosen.

Thus, the vehicle is assured to travel at maximum allowed current longitudinal

velocity, taking into account overall constraints.

58 CHAPTER 3. MOTION PLANNING IN STATIC ENVIRONMENTS

3.2.3.3 Optimal command choice with comfort criterion

The optimal steering commands φ? chosen at each control cycle minimizes the

total weighted sum cost:

φ? = argmin
φi?,j

{
Γ(i?,j) = γtΓ

(i?,j)
t + γoΓ

(i?,j)
o + γrΓ

(i?,j)
r

}
. (3.13)

where each of the costs Γt, Γo and Γr are normalized before weighting. Although

the combined cost Γ could be used also for the longitudinal velocity control, it is

desired to impose additional constraints on its profile, due to the comfort of the

drive, which is related to the maximum lateral acceleration along the path. In the

perfect path following case, the vehicle’s curvature would be equal to that of the

path, so the maximum lateral acceleration for each vl,i is defined as:

aL,i,max = κmaxv
2
l,i ≤ aL,max (3.14)

assuming constant movement along the path with curvature κmax on the interval

s ∈ [0, sκ], sκ being the curvilinear path lookahead. Therefore, the set of feasible

longitudinal velocities according to Sec. 3.2.2.1 is further constrained to a set of

ṽl,i velocities based on Eq. 3.14. In order to minimize the travel time, the velocity

chosen is:

v?l = max {ṽl,i} . (3.15)

3.2.3.4 Simulation and experimental results

The TADPF path following scheme was tested in a simulation environment with

polygonal obstacles. The vehicle scenario was to travel through a set of goal

waypoints (global objectives) while avoiding any obstacles on the way. A lidar

sensor is attached to the vehicle scanning in the frontal horizontal plane with

limited range. As new environment information is available, the global navigation

function is recomputed by wavefront expansion from the current goal position.

3.2. HIERARCHICAL NAVIGATION 59

Based on the gradient information from the navigation function, a globally feasible

path for the vehicle to follow is available on-line from any position in the free

configuration space. Fig. 3.2 shows a situation where the vehicle approaches a goal

position and the wayfront is re-expanded in order to account for newly available

obstacle information given by the lidar. In Fig. 3.3 the situation is reversed,

since the vehicle has all the information on the obstacle configuration available

up to the goal position and the wavefront is retracting. On both Fig. 3.2 and

3.3 right, a zoom-in on the vehicle and currently feasible trajectories (arcs) is

given. Free trajectories are marked green, the ones that hit obstacles but are still

valid according to the dynamic breaking distance of the vehicle (shown on each

arc with corresponding color points) are given in red and the trajectories along

the re-propagating wayfront are given in magenta. In the later case, the global

gradient is not available for the re-propagation period, however, the traversability

information (obstacles) is updated at all times, ensuring safety. The reference

point position on the path is given in green.

Figs. 3.6, 3.4, 3.5 show the steering comparison between the TADPF controllers

where only traversability-obstacle cost is taken into account (Γt, Γo) versus ref-

erence path orientation cost controller (Γr) and the full controller with all three

costs, when the vehicle is driven at a constant speed of vl = 20km/h. As can be

seen, both separate cost options give similar steering controls. The combined cost

pattern depends on the weighting factors of each contribution, where a balanced

weighting gives a smoothing effect on the net steering and trajectory.

In the next test drive, the vehicle was allowed to drive the speeds from vl,min =

10km/h up to vl,max = 30km/h. When analyzing the longitudinal velocity of the

traversability-obstacle cost in Fig. 3.7 it can be seen that the speed is maximized

due to the max. traversability change criteria (Eq. 3.9) with the longest arc

distance. Slowing down is performed at times only due to the obstacle cost com-

ponent. By taking the lateral acceleration constraints into account from Eq. 3.14,

the maximal vl along the path can be limited as is shown for the case of the orien-

60 CHAPTER 3. MOTION PLANNING IN STATIC ENVIRONMENTS

tation cost profile, where maximum speeds attained are lower (see Fig. 3.8). On

average, the aL stays well withing the bounds aL,max = 1m/s2 for fairly comfort-

able driving [c:I, 1997] as in Fig. 3.10. The peak values of up to aL = 2.5m/s2 are

due to abrupt change of path orientation and curvature beyond a goal waypoint,

when a completely new path is replanned to the next goal. This situation can be

improved by parallel planning of the next goal path, while the current one is still

being executed and jointed to the next one smoothly at the current goal position,

which is the topic of future work. Fig. 3.9 shows the reference point position ρ

which increases proportional to the longitudinal speed. Fig. 3.11 shows the cur-

rent vehicle curvature and that of the closest point along the path for the vehicle

and the reference point itself. In the perfect tracking case, the vehicle should have

the same curvature as the reference point with a time delay related to the vehicle

speed. Main differences can be observed due to initial misalignment of the vehi-

cle orientation with respect to the path and the holonomicity of the path itself.

Since the path is generated on-line and the vehicle motion is guaranteed to be

safe due to the collision checks along currently chosen command/trajectory, small

path following errors are acceptable. The velocity profile of Fig. 3.8 has a quality

of a time-optimal profile, in the sense that the vehicle is always driving with the

maximum allowed speed according to the safety and comfort measure on lateral

acceleration. A further improvement is forseen in generating a smoother profile

where the vehicle might take a longer time to traverse a given path but with less

acceleration-deceleration phases.

An interesting aspect of traversability based navigation is in the fact that dif-

ferent traversability costs can be assigned to vicinity of different type of obstacles

in the environment, if they are labelled appropriately. For instance, a cost mask

around an obstacle that is explicitly detected as pedestrian can be given higher

cost than that of a vehicle vicinity. This will have as effect that the global path

will be additionally moved from the zones deemed as critical, which is the case of

a pedestrian that is a completely unprotected object in the environment. In this

3.2. HIERARCHICAL NAVIGATION 61

Figure 3.2: Hierarchical navigation with the TADPF controller I. Left: Global environ-
ment with the planning phase. Right: Local trajectory view.

Figure 3.3: Hierarchical navigation with the TADPF controller II. Left: Global envi-
ronment with the planning phase. Right: Local trajectory view.

sense a prioritized-type navigation can be exerted.

The formentioned global planners are designed to seamlessly integrate new

information about the environment, but without considering the temporal aspect,

i.e. the future configurations of moving objects. Attempts to include temporal

aspect in global planning can be found in [Coué et al., 2006], [Ferguson and Stentz,

62 CHAPTER 3. MOTION PLANNING IN STATIC ENVIRONMENTS

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10 20 30 40 50 60 70 80 90 100

y
-

tr
aj

ec
to

ry
 [m

]

x - trajectory [m]

all costs
traversability-obstacle cost

orientation cost
goal waypoints

Figure 3.4: Trajectory x-y comparison for
the TADPF controller with individual and
combined cost criteria.

-2

-1

 0

 1

 2

 3

 4

 5

 6

 7

 0 10 20 30 40 50 60

ya
w

 a
ng

le
 -

 θ
 [r

ad
]

t [s]

all costs
traversability-obstacle cost

orientation cost

Figure 3.5: Orientation θ comparison for
the TADPF controller with individual and
combined cost criteria.

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0 10 20 30 40 50 60

st
ee

rin
g

an
gl

e
-

φ
[r

ad
]

t [s]

all costs
traversability-obstacle cost

orientation cost

Figure 3.6: Steering angle φ comparison
for the TADPF controller with individual
and combined cost criteria.

 0

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 5 10 15 20 25 30 35 40

lo
ng

itu
di

na
l v

el
oc

ity
 -

 v
l [

m
/s

]

t [s]

vehicle
control input

Figure 3.7: Longitudinal velocity vl for
the TADPF controller with combined
traversability Γt and obstacle Γo cost cri-
teria.

2007], [Seder and Petrovic, 2007]. However, since the cycle of the vehicle control

loop should be constant and real-time compliant, relying solely on traversability

information from global planning is not sufficient, since the replanning stage may

take considerable time in complex environments. Therefore, in order to assure

safety conditions our system relies exclusively on the collision checking scheme

of Sec. 3.2.3.1 based on Mapper (MP) information and considers global planner

information only as preferred direction for the vehicle to navigate to.

3.2. HIERARCHICAL NAVIGATION 63

 0

 1

 2

 3

 4

 5

 6

 0 10 20 30 40 50 60 70 80

lo
ng

itu
di

na
l v

el
oc

ity
 -

 v
l [

m
/s

]

t [s]

vehicle
control input

Figure 3.8: Velocity vl for the TADPF
controller with path orientation Γr cost
criterion.

 1

 2

 3

 4

 5

 6

 7

 8

 9

 0 10 20 30 40 50 60 70 80

re
fp

oi
nt

 d
is

ta
nc

e
-

ρ
[m

]

t [s]

refpoint distance

Figure 3.9: Refpoint distance ρ for
TADPF controller with path orientation
Γr cost criterion.

-3

-2.5

-2

-1.5

-1

-0.5

 0

 0.5

 1

 1.5

 2

 2.5

 0 10 20 30 40 50 60 70 80

la
te

ra
l a

cc
el

er
at

io
n

-
a L

 [m
/s

2]

t [s]

vehicle
path vehicle closest point

path reference point
min-max allowed

Figure 3.10: Lateral acceleration aL for
TADPF controller with path orientation
Γr cost criterion.

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 10 20 30 40 50 60 70 80

cu
rv

at
ur

e
-

κ
[1

/m
]

t [s]

vehicle
closest path point

path reference point
min-max allowed

Figure 3.11: Curvature κ for TADPF con-
troller with path orientation Γr cost cri-
terion (reference point, closest path point
and vehicle itself).

The newly proposed path following scheme TADPF and the overall navigation

framework of Sec. 3.2.1 have been tested extensively experimentally on the Smart

autonomous test vehicle at constant longitudinal speeds of up to 20km/h. Fig. 3.12

shows a sequence of snapshots taken from an experimental run with the testing

vehicle in an lane structured environment. The obstacle representation was based

on generic occupancy grid map used by the FD? global planner to calculate the

traversability costs with the lane structure rasterized to a cell size of 20cm.

64 CHAPTER 3. MOTION PLANNING IN STATIC ENVIRONMENTS

Figure 3.12: An experimental snapshot sequence of the testing vehicle navigating in a
lane structured environment using the hierarchical navigation architecture with TADPF
controller. The vehicle is following a path computed by the global planner based on
global waypoints and a grid lane obstacle representation.

3.2. HIERARCHICAL NAVIGATION 65

3.2.4 Sliding Mode Path Following (SMPF) controller

By querying the minimal total cost to goal, the global planners can extract the

global geometric path Cr, to goal from current vehicle location. Furthermore, the

global geometric path can also be given by the structure of the environment itself

as is the case in lane based navigation where the path to follow is given by the

lane’s spine or in the case of negotiating intersections which is an generalization

of lane following with predefined traffic rules. In case when global geometric path

is available, a control theory based path following scheme can be used.

In [Solea and Nunes, 2006] a sliding mode controller was developed for path

tracking of Ackermann-like vehicles in order to address the issues such as fast

response, good transient and robustness with respect to system uncertainties and

external disturbances. The path following errors are described by ye and θe, where

ye is the lateral distance from the vehicle reference point on the middle of the rear

axis {xr, yr}, to the closest point {xd, yd} on the reference curve Cr(s), denoted

as virtual vehicle position. Angular error θe is the difference between the vehicle

orientation θr and the tangent curve angle at the closest point θd, therefore the

errors can be written as:

 ye

θe

 =

 cos θd sin θd

− sin θd cosθd

 ·

xr − xd
yr − yd
θr − θd

 . (3.16)

Assuming the kinematics of the vehicle being the same as in Eq. 4.36, the

corresponding error dynamics are:

ẏe = vl · sin θe , θ̇e = θ̇r =
vl
L
tanφr , (3.17)

noting that θ̇d = 0 in the path following problem.

In [Solea and Nunes, 2006] a sliding surface was proposed which couples

66 CHAPTER 3. MOTION PLANNING IN STATIC ENVIRONMENTS

together the lateral error ye and the angular error θe:

s = ẏe + k1 · ye + k0 · sgn (ye) · θe . (3.18)

The dynamics of the sliding surface is defined as:

ṡ = −Q · s− P · sgn (s) , (3.19)

where Q and P are scalars.

The Eq. 3.18 can also be expressed as:

ṡ = vl · θ̇e cos θe + k1 · vl · sinθe +k0 · sgn (ye) · θ̇e . (3.20)

Combining Eq. 3.17, 3.19 and 3.20 yields the desired steering command:

φc = arctan

(
L

vl
· −Qs− P · sgn (s)− k1 · vl · sin θe

vl · θe + k0 · sgn (ye)

)
. (3.21)

It was proven in [Solea and Nunes, 2006] by Lyapunov analysis that it suffices

for the control law to be stable that Q,P ≥ 0. Note also, that the longitudinal

velocity vl in this case is not controlled, but is given as an input parameter to the

control law of Eq. 3.21. It may be constant or variable according to a predefined

velocity profile along the reference path Cr(s).

3.2.5 KinoDynamic Sliding Mode Path Following (KDSMPF)

controller

Although the sliding mode controller of Sec. 3.2.5 provides a fast transient response

and small path following error, it has two basic disadvantages. Firstly, it does not

take explicitly into account the constraints on the control inputs, such as maximal

steering angle φmax, nor the dynamic constraints v̇l,max and φ̇max as described in

Sec. 3.2.2.1.

3.2. HIERARCHICAL NAVIGATION 67

Secondly, there is no check for collision of the chosen vehicle trajectory aris-

ing from a given control input φc at vl, as is done for the TADPF controller in

Sec. 3.2.3.1. This effectively means that the vehicle may hit an obstacle or end in

other potentially hazardous situation if there is a significant deviation from the

pre-planned reference path, due to path following error, external disturbances or

other non-modeled effects. In order to resolve both these aspects and render the

navigation of the vehicle safe while taking into account the control and dynamic

limitations of the vehicle, the proposed new controller combines the SMPF con-

trol strategy with the trajectory feasibility both in kinodynamic and configuration

space sense.

As mentioned in Sec. on the SMPF controller, the longitudinal vehicle velocity

is considered a parameter, given by an external (hierarchically higher) velocity pro-

file module. Eventhough the interpolated traversability information of the global

planner may not be available, the global geometrical path and the binary obstacle

traversability map must be calculated. Therefore, the obstacle cost (Sec. 3.2.3.1)

and the path orientation cost (Sec. 3.2.3.1), that are partial measures used in the

TADPF controller to determine the longitudinal velocity and the steering angle,

can still be used here, removing the need of an external velocity profile mod-

ule. Rather, the longitudinal velocity is adjusted according to the local obstacle

configuration according to the Eq. 3.15, denoted v?l as explained in Sec. 3.2.3.3.

The steering command φc is given by the SMPF controller of Eq. 3.21. In order

to enforce the constraints of Sec. 3.2.2.1 and Sec. 3.2.3.1, the steering command

at each instant is calculated as:

φ?c = argmin
φc,j

{‖φc,j − φc‖} . (3.22)

Thus, the optimal control chosen is defined by the kinodynamic arc of the {v?l , φ?c}
that is also checked to be configuration space feasible and matches the closest the

input command given by the SMPF control strategy {vl, φc}. The resulting path

68 CHAPTER 3. MOTION PLANNING IN STATIC ENVIRONMENTS

following control strategy is termed KDSMPF - “KinoDynamic Sliding Mode Path

Following”.

In order to enable on-line adaptation to the changes in the environment the

global reference path that is recomputed by the global planner should be close

to the steering control cycle rate (in our application up to 10Hz). However, in

presence of newly detected or moving obstacles, the global reference path Cr may

become invalid. Indeed, due to the replanning phase of the global planner a new

reference path may be obtained by delay or the reference path is globally static

(lane based structure of the environment). In this case, the obstacle avoidance is

achieved entirely on the reactive level by inhibiting the infeasible vehicle trajecto-

ries due to potential collision with obstacles.

3.2.5.1 Simulation and experimental results

This results section deals with comparison of the TADPF, SMPF controller and

the proposed synergic version KDSMPF as given in Fig. 3.13 to Fig. 3.18. Since

the SMPF control scheme does not provide longitudinal velocity commands, the

lateral acceleration based constraints along the path of the TADPF control scheme

(Eq. 3.14 and Eq. 3.15) were used to generate the longitudinal velocity control

inputs in all three cases (Fig. 3.15). When analyzing the steering angle, curvature

and lateral acceleration of the vehicle in the Fig. 3.16, 3.18 and 3.17, respectively,

it can be seen that the peak values of the TADPF method are smaller, due to the

fact that a reference point look-ahead distance is used, combined with the global

navigation function in the configuration space. On the other hand, the SMPF

and KDSMPF rely exclusively on the vehicle reference point, which is effectively

the closest point on the path with respect to the vehicle rear-axes middle point.

As a consequence, abrupt changes in path curvature and tangent direction may

cause steering angle control peaks, which is the case when the vicinity of a global

waypoint is reached and the global planner recalculates the path to the next one

in the list. This issue could be resolved by introducing a middle layer for smooth

3.2. HIERARCHICAL NAVIGATION 69

waypoint transition, however, this is not considered here.

The KDSMPF method provides smaller path following errors with respect to

the path generated by the global planner and can be used efficiently and with less

control effort if the global path is smooth enough. In comparison, the TADPF

method alone tends to smoothen the vehicle trajectory through the free space

because it’s based on both global navigation function and current trajectory as

can be seen in Figs. 3.13 and 3.14.

If the smoothness and non-holonomicity of the on-line generated global path

is not guaranteed, the TADPF method alone is preferred, since it produces less

steering signal effort, while still following the global path direction. In contrast,

if a global path is smooth, possibly optimized for lesser curvature change along

the whole path, the preferred method is KDSMPF that provides smaller path

following errors and is invariant on the choice of the reference point lookahead

distance, since it bound to the closest point on the path. Note that the SMPF

controller alone is not suitable for real application, since it provides no guarantees

on safety with comparison to TADPF or KDSMPF method, which include collision

checks at each cycle. Moreover, in the pure SMPF scheme the dynamic constraints

are not taken into account, which can cause larger delays or even instabilities in

the cases of limited actuators, in this case particularly the steering rate φ̇.

The newly proposed path following scheme KDSMPF and the overall naviga-

tion framework of Sec. 3.2.1 have been tested extensively experimentally on the

Smart autonomous test vehicle at constant longitudinal speeds of up to 18km/h.

Fig. 3.21 shows a sequence of snapshots taken from an experimental run with the

testing vehicle in a parking lot unstructured environment in the presence of static

or slowly moving vehicle and pedestrians. The obstacle representation used by the

FD? global planned was based on generic occupancy grid map with a cell size of

20cm. However, the local feasible trajectory collision checks were performed on a

occupancy grid map (Mapper module) with reduced cell size of 10cm in order to

better account for arbitrary obstacle shapes and orientations.

70 CHAPTER 3. MOTION PLANNING IN STATIC ENVIRONMENTS

 0

 10

 20

 30

 40

 50

 60

 70

 80

 10 20 30 40 50 60 70 80 90 100

y
-

tr
aj

ec
to

ry
 [m

]

x - trajectory [m]

tadpf
smpf

tadpf-smpf
goal waypoints

Figure 3.13: Trajectory x-y comparison for
the TADPF, SMPF and KDSMPF.

-2

-1

 0

 1

 2

 3

 4

 5

 6

 7

 0 10 20 30 40 50 60 70 80

ya
w

 a
ng

le
 -

 θ
 [r

ad
]

t [s]

tadpf
smpf

tadpf-smpf

Figure 3.14: Orientation θ comparison for
the TADPF, SMPF and KDSMPF.

 0

 1

 2

 3

 4

 5

 6

 0 10 20 30 40 50 60 70 80

lo
ng

itu
di

na
l v

el
oc

ity
 -

 v
l [

m
/s

]

t [s]

tadpf
smpf

tadpf-smpf

Figure 3.15: Velocity vl comparison for
the TADPF, SMPF and KDSMPF.

-0.4

-0.3

-0.2

-0.1

 0

 0.1

 0.2

 0.3

 0.4

 0 10 20 30 40 50 60 70 80

st
ee

rin
g

an
gl

e
-

φ
[m

/s
]

t [s]

tadpf
smpf

tadpf-smpf

Figure 3.16: Steering angle φ comparison
for the TADPF, SMPF and KDSMPF.

-4

-3

-2

-1

 0

 1

 2

 3

 4

 0 10 20 30 40 50 60 70 80

la
te

ra
l a

cc
el

er
at

io
n

-
a L

 [m
/s

2]

t [s]

tadpf
smpf

tadpf-smpf

Figure 3.17: Lateral acceleration aL
comparison for the TADPF, SMPF and
KDSMPF.

-0.25

-0.2

-0.15

-0.1

-0.05

 0

 0.05

 0.1

 0.15

 0.2

 0.25

 0 10 20 30 40 50 60 70 80

cu
rv

at
ur

e
-

κ
[1

/m
]

t [s]

tadpf
smpf

tadpf-smpf

Figure 3.18: Curvature κ comparison for
the TADPF, SMPF and KDSMPF.

3.2. HIERARCHICAL NAVIGATION 71

Figure 3.19: Hierarchical navigation with KDSMPF controller - configuration space.
Left: Configuration space snapshot of the KDSMPF navigation scheme where the
global planner is used for on-line global path replanning. Red obstacles are configu-
ration space expanded obstacles. Feasible robot trajectories are marked in green, the
currently optimal robot trajectory according to the global path following marked in
magenta. Right: Snapshot of the environment.

Figure 3.20: Hierarchical navigation with KDSMPF controller - workspace.
Left: Workspace snapshot of the KDSMPF navigation scheme among pedestrians
(labelled in cyan) and vehicles in a parking lot scenario. The underlying generic obstacle
representation is based on an occupancy grid map (cells marked in red). Feasible
robot trajectories are marked in green, prohibited in red, the currently optimal robot
trajectory in magenta. Right: Snapshot of the environment.

72 CHAPTER 3. MOTION PLANNING IN STATIC ENVIRONMENTS

Figure 3.21: Experimental snapshots illustrating the obstacle (pedestrian) avoiding be-
havior of the hierarchical navigation scheme using KDSMPF controller. If there exists
a feasible trajectory given the current obstacle configuration and kinodynamic limita-
tions, the vehicle follows the on-line replanned global path with obstacle avoidance
maneuvers. If no feasible trajectory exists within the prediction horizon, the vehicle
performs a complete stop.

3.3. PROBABILISTIC OBSTACLE AVOIDANCE 73

3.3 Probabilistic obstacle avoidance

The reactive obstacle avoidance system presented in this section implements a

bayesian obstacle avoider module where the steering angle of the vehicle is the

control output variable modeled according to the reactive sensor-action model

with respect to measurement variables which are the longitudinal vehicle velocity

and the distance to obstacles in predefined sectors. Sensor-action model is initially

implemented as a simple a-priori knowledge based obstacle avoider. However, by

tuning the probabilistic model or even learning the model from initially unknown

knowledge base according to the human driver actions to the obstacles in scope

the performance of the controller can be increased. Therefore, the probabilistic

obstacle avoidance can be divided into the “reasoning” part where the proper

control action is inferred for a given situation and into the “learning” (adaptation)

part where new behaviors can be learned according to the experience data provided

by the driver control inputs.

3.3.1 Obstacle avoidance architecture

The task of obstacle avoidance requires a closed loop from sensing the environment,

motion planning and execution on the actuators of the vehicles. The implementa-

tion of the obstacle avoider for the experimental vehicle is presented in Fig. 3.22

and relies on the software framework Genom (Generator of Modules) developed

by LAAS, Toulouse [Fleury et al., 1997].

The upper layer illustrates the sensing and acting modules of the architecture.

Beside the range data delivered by the Sick LMS-291 attached to the system,

the inertial measurement unit delivers angular and translational velocities and

accelerations of the car as well. The vehicle’s internal bus provides an interface

for issuing input control commands, in this case the steering wheel angle.

The vehicle environment is described via an angular clearance map that is a

form of occupancy grid, generated from the laser sensor range data where the

74 CHAPTER 3. MOTION PLANNING IN STATIC ENVIRONMENTS

Figure 3.22: Overview of the obstacle avoidance architecture.

Figure 3.23: Clearance map for obstacle avoidance.

clearance in each of angular sectors is defined by means of the minimum free

distance among all range points within that sector and is illustrated in Fig. 3.23.

This raw polar obstacle information is fed into the ProBT bayesian proba-

bilistic inference engine [Mekhnacha et al., 2006]. Based on a obstacle avoidance

bayesian program that will be presented in more detail Sec. 3.3.2, a new control

input steering angle is calculated at each servo cycle.

3.3.2 Obstacle avoidance bayesian programming

The obstacle avoidance algorithm itself is based on the work in [Pradalier et al.,

2005] and [Koike et al., 2003] showing the avoidance of obstacles given a trajectory

by a centralized path-planner of human driver. This work focusses on the obstacle

avoidance module exclusively. However, since the longitudinal velocity is not yet

implemented in the car, the obstacle avoidance should be performed based only

3.3. PROBABILISTIC OBSTACLE AVOIDANCE 75

on the automated steering module of the car, i.e. the steering angle ΦT of the

car. To robustly account for different measured longitudinal velocities, the input

(evidence) to the inference scheme is the current longitudinal velocity Vm and

the minimal laser sensor distances within each of the angular sectors Di where

i = 1, . . . , Ns.

Effectively, since there are Ns different angular sectors, there are also Ns dif-

ferent control variables Φi possible. It is therefore mandatory to fuse the Φi com-

mands to a single final ΦT value. There are different possibilities to achieve that by

e.g. fusing as a weighted sum Nn neighboring commands Φi, where possible neigh-

bor numbers are Nn = 1, . . . , Ns and the weights for each command corresponding

to the angular distance from the sector with the minimal object distance for all

Di. However, a switching scheme is implemented here similar to [Pradalier et al.,

2005], [Koike et al., 2003] where only a single probabilistic sensor-action model

P (Φi|VmDi) is taken into account at a given time instant. With a sufficiently high

sampling rate and continuity of the environment, the control transitions between

different sectors should be smooth.

All the input variables, i.e. sector distances and measured vehicle velocity,

and the output steering angles are discretized into integer variables. The actual

mapping to the vehicle variables scale (e.g. bipolarity of steering angles) is done

separately. A single clearance map sector Bayesian inference program is presented

in Fig. 3.24. Since the a-priori knowledge about the environment P (Di|πi) and

the dynamics of the longitudinal velocity P (Vm|πi) is not known (i.e. the uniform

pdf is assumed) the joint distribution P (ΦiVmDi|πi) pdf is equal to the question

itself. However, if we assume that the obstacle avoidance is designed for a certain

longitudinal velocity with a variation margin, this can be easily incorporated into

the program by taking the pdf of P (Vm|πi) to be normally distributed around the

longitudinal velocity setpoint.

76 CHAPTER 3. MOTION PLANNING IN STATIC ENVIRONMENTS







Relevant Variables:
Φi ∈ {1, Nc}, |Φi| = 13
Vm ∈ {1, Nv}, |Vm| = 5
Di ∈ {1, Nd}, |Di| = 20

Decomposition:
P (ΦiVmDi|πi) = P (Di|πi)P (Vm|πi) P (Φi|VmDiπi)

Parametric Forms:
P (Di|πi) =Uniform
P (Vm|πi) =Uniform
P (Φi|VmDiπi) = GµΦ(V m,Di);σΦ(V m,Di)(Φi)

Identification:
A Priori

Question
P (Φi|VmDiπi)

Figure 3.24: Single clearance map sector Bayesian inference.

Vehicle steering command fusion program for fused steering angle ΦT is pre-

sented in Fig. 3.25, where a sector variable S is introduced that models the switch-

ing between different sector steering angle models. The parametric forms P (S| ~Dπ)

and P (ΦT |~ΦS π) are implemented as functional Diracs within the ProBT frame-

work. The first is defined by choosing the sector that has minimal distance among

all sectors at a given instant with probability 1. The second represents the one-to-

one probabilistic mapping between the fused steering angle ΦT and the Φi steering

angle in the i-th sector that is chosen. Alternatively, the sector random variable S

with pdf P (S| ~Dπ) could be also modelled with increased probability of occurrence

[S = i] as the distance Di within sector i decreases, as was implemented in [Koike

et al., 2003] according to e.g. sigmoid-shaped pdf.

3.3.3 Command learning (on-line adaptation)

Once the presented sector and command fusion bayesian programs are set, the

interested issue is to tune the probabilistic models in an on-line fashion while driv-

ing. From the bayesian programming perspective this is the a-priori identification

phase, that can actually be performed continuously during the periods where the

3.3. PROBABILISTIC OBSTACLE AVOIDANCE 77







Relevant Variables:
Number of sectors Ns = 8
ΦT ∈ {1, Nc}, |ΦT | = 13
Vm ∈ {1, Nv}, |Vm| = 5
Φi ∈ {1, Nc}, |Φi| = 13, i = 1 . . . 8
Di ∈ {1, Nd}, |Di| = 20, i = 1 . . . 8
S ∈ {1, Ns}, |S| = 8

Decomposition:

P (ΦTVm ~D~ΦS|π) = P (~D|π)P (Vm|π)P (S| ~Dπ)

P (ΦT |Vm ~D~Φπ)P (~Φ|π)
where:

P (ΦT |Vm ~D~Φπ)P (~Φ|π) =
∏Ns

i=1 P (Φi|Vm ~Dπi)P (ΦT |~ΦS π)

Parametric Forms:

P (~D|π) =Uniform
P (Vm|π) =Uniform

P ([S = i]|Di = min{ ~D} π) = 1

P (ΦT |~Φ [S = i] π) = P (Φi|Vm ~Dπi)
Identification:
A Priori

Question

P (ΦT |Vm ~Dπ) =
∑

S P (S| ~Dπ)∑
~Φ P (ΦT |~ΦS π)

∏Ns
i=1 P (Φi|Vm ~Dπi)

Figure 3.25: Vehicle steering command fusion Bayesian program.

active obstacle avoider mode is switched off and the human driver executes obsta-

cle avoidance maneuvers in different scenarios (i.e. obstacle configurations) but

within the longitudinal velocity range taken into account by the bayesian mod-

els. Since the initial implementation of the sensor action models P (Φi|VmDiπi)

is in this case a simple obstacle avoider where the shape of gaussian functions

GµΦ(V m,Di);σΦ(V m,Di)(Φi) is set in linear dependency fashion according to obstacle

distance and longitudinal velocity within a sector, it is expected that fine-tuning

these models could significantly improve the overall performance. The resultant

obstacle avoidance controller would then mimic the human driver. Although, the

implementation assumes choosing always a single sector model at each instant,

the learning phase would include tuning all the probabilistic models for Φi within

78 CHAPTER 3. MOTION PLANNING IN STATIC ENVIRONMENTS

each sector according to the overall ΦT that in the learning phase represents the

human driver action. The intercorrelations between the sectors would be encoded

in the variance for each possible Φi value given a certain measurement evidence.

3.3.4 Experimental results

The proposed probabilistic obstacle avoider was tested on the experimental plat-

form. Time snapshots of a vehicle run can be seen in Fig. 3.26 where the environ-

mental obstacles include a pedestrian and the confines of the surrounding area.

Note that the test was run in purely reactive mode, i.e. no global objective was

present. The vehicle motion was therefore governed by the occupancy presence in

the map sectors (cf Fig. 3.23) with the default behavior being to steer away from

currently activated obstacle sectors.

3.3.5 Conclusions

The Bayesian reasoning obstacle avoider presented here operates at the basic reac-

tive level of autonomous vehicle navigation based on sector map of environmental

obstacles. The experimental verification is made for a very basic scenario and if

compared to the reactive level module of Sec. 3.2.1 it does not include an explicit

vehicle motion model nor any collision checking in future timesteps. However, it’s

implicit advantage lies in the generic formulation based on the Bayesian reason-

ing. The underlying probabilistic inference engine is represented with Gaussian

kernel pdfs that can be adapted on-the-fly according to the input mapping be-

tween the sensory data and for instance human expert steering control. In that

sense, although not validated here, new navigation pattern could be “learned” by

the vehicle from scratch.

3.3. PROBABILISTIC OBSTACLE AVOIDANCE 79

Figure 3.26: An experimental snapshot sequence of the testing vehicle with the proba-
bilistic reactive obstacle avoider. The vehicle is steering away from sectors of occupied
angular clearance map (pedestrian and static environmental objects).

80 CHAPTER 3. MOTION PLANNING IN STATIC ENVIRONMENTS

3.4 Optimal trajectory planning

The focus of this section is on motion planning of non-holonomic mobile platforms

with particular application to autonomous parking. The motion planning problem

is formulated as a nonlinear optimal control problem with implicit non-holonomic

constraints stemming from the car-like steering vehicle (system equations). Ex-

plicit constraints are imposed due to the obstacles in the environment and limited

accelerations and velocities of the mobile platform. The optimization objective

is minimum time from a start to a goal configuration. Further motivation of the

project is to apply nonlinear programming techniques which are generic and widely

used in different domains. In particular, direct collocation method is to be used

for system discretization. Thereafter, sequential quadratic programming is to be

used as the nonlinear programming engine. The approach is motivated by [Kon-

dak and Hommel, 2001] where the problem of motion planning is formulated as a

non-linear constrained optimization problem. In contrast to geometric path plan-

ning techniques in configuration space [Latombe, 1991], this approach accounts for

non-holonomic constraints by considering the kinematic system equations within

the path planning phase itself.

3.4.1 Model of a non-holonomic mobile platform (system de-

scription)

A typical non-holonomic mobile platform with car-like steering is considered where

s = (x, y, θ) describes the pose of the system (reference point on the center of the

rear axle) and u = (v, ψ) is the control input, v the longitudinal velocity and ψ

the steering angle. The kinematic system equations are:

ẋ = v cos(θ) ẏ = v sin(θ) θ̇ =
v

L
tan(ψ) (3.23)

where L is the distance between the front and rear axes.

3.4. OPTIMAL TRAJECTORY PLANNING 81

3.4.2 Constraints on control inputs (path constraints)

The bounding box constraints on the control inputs and their rate of change for

the mobile platform are:

‖v(t)‖ ≤ vmax

‖v̇(t)‖ ≤ avmax

‖ψ(t)‖ ≤ ψmax

‖ψ̇(t)‖ ≤ vψmax (3.24)

In terms of optimal control description the constraints on control inputs through-

out the system evolution represent path constraints.

3.4.3 Constraints on system state due to obstacles in the en-

vironment (path constraints)

In order to obtain collision-free paths in the environment, obstacles impose addi-

tional path constrains on the system state, i.e. a current mobile platform config-

uration cannot be inside a given obstacle. The obstacles are modeled as a set of

points that each contribute to the artificial potential field of obstacles that influ-

ences the mobile platform movement. The potential field exerted by a particular

obstacle point is according to [Kondak and Hommel, 2001]:

P i(s) =


P i
x(s) : Ry − xiR ≥ Rx − yiR
P i
y(s) : Ry − xiR < Rx − yiR

(3.25)

where:

P i
x = Pmax(1− xiR

Rx

)

P i
y = Pmax(1− yiR

Ry

) (3.26)

82 CHAPTER 3. MOTION PLANNING IN STATIC ENVIRONMENTS

if the obstacle is inside the platform and

P i
x(s) = P i

y(s) = 0 (3.27)

if the obstacle i is outside the platform. The coordinates (xiR, y
i
R) of obstacle

i are taken with respect to the platform reference point (which can be arbitrary

but for simplicity taken to correspond with the point of rotation of the platform

in the center of the rear axis). Px and Py are distances from the reference point to

the platform boundaries (rectangular shape assumed) and Pmax is a scaling factor.

A collision-free movement is ensured if for each obstacle i :

Pi(s) ≤ 0 (i = 1, 2, . . . N) (3.28)

where N is the number of obstacle points in the environment. Thus defined

constraints on each of the obstacles i = 1, 2, . . . N allows for superposition of

constraints into a single one:

S(s) =
N∑
i=1

Pi(s) ≤ 0 (3.29)

3.4.4 Objective function

The objective function that minimizes the final position error only may be studied

(feasibility path):

J1(u, s, tf) = − (sref (tf)− s(tf))
2 (3.30)

where tf is a free parameter and sref (tf) reference pose at the final time.

In order to obtain a time-optimal solution the objective function is simply:

J2(u, s, tf) = −tf (3.31)

.

3.4. OPTIMAL TRAJECTORY PLANNING 83

3.4.5 Complete optimization problem formulation

Given the initial and final pose of the system sstart = s0 and sgoal = stf find

a control profile u(t) that minimizes the objective function J(u, s, tf) subject to

path constraints of (3.24) and (3.29).

In order to obtain a numerical optimization solution, the state space and input

variables will be discretized and cast as a static nonlinear optimization problem

[Kondak and Hommel, 2001], [Srinivasan, 2005]:

min
u,s,tf

J(u, s, tf) = min
x̃
J(x̃) (3.32)

subject to:

ceqi(x̃) = 0, i ∈ E (3.33)

cini(x̃) ≤ 0, i ∈ I (3.34)

where the vector x̃ = (sT1 ,u
T
1 , s

T
2 ,u

T
2 , . . . , s

T
M ,u

T
M , tf)

T contains values of the

states and the control vector at discrete time points tk:

uTk = (v(tk), ψ(tk)) (3.35)

sTk = (x(tk), y(tk), θ(tk)) (3.36)

for k = 1, 2, . . . ,M . The equality constraint functions ceqi are obtained after

discretization of state equations (3.23) and the inequality constraint functions cini

after discretization of path constraints (3.24) and (3.29).

84 CHAPTER 3. MOTION PLANNING IN STATIC ENVIRONMENTS

3.4.6 Simulation results for the parking problem of a non-

holonomic vehicle platform

According to the autonomous parking problem, three major scenarios have been

studied:

• Parallel parking with obstacles

• Row parking with obstacles

• Slide parking with obstacles

Scenarios of motion planning without obstacles are also referred to as steering

problems.

In all simulation runs the clearance to obstacles according to (3.25) was cal-

culated such that the size of the vehicle in the optimization problem corresponds

exactly to the ”physical” size. Therefore, constraints are satisfied already at the

vehicle-obstacle surface distance zero. In order to increase the safety, the vehicle

dimensions could be artificially increased for a safety margin in the optimization

task.

3.4.6.1 Matlab simulation results

In order to check the optimization idea the Matlab function ”fmincon” was used

with equidistant time discretization. Due to the calculation time and size lim-

itations only a small number of time discretization points was used (i.e. 15),

therefore, the nonlinear constraints due to the obstacles on the path was not com-

pletely satisfied. Due to the very coarse discretization based on kinematic input,

i.e. u = (v, ψ), the bounding box constraints on the rate of change of the sig-

nals, i.e. u̇ = (v̇, ψ̇), (Eq. (3.24)) were not considered in the Matlab simulations

whereas in the DIRCOL simulations this was the case.

3.4. OPTIMAL TRAJECTORY PLANNING 85

3.4.6.1.1 Parallel parking Results include figures Fig. 3.27 to Fig. 3.32.

−4 −2 0 2 4 6 8 10 12 14 16
−8

−6

−4

−2

0

2

4

6

8

10

12
End point:(5,3,3.2312e−05), Tf:15.807

Figure 3.27: Parallel parking - robot motion (feasibility path) (J1)

0 5 10 15
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

time step

v [m/s]
phi [rad]

Figure 3.28: Parallel parking - inputs kinematic level (feasibility path) (J1)

0 2 4 6 8 10 12 14 16
−2

0

2

4

6

8

10

12

time [s]

Tf : 15.807

x [m]
y [m]
theta [rad]

Figure 3.29: Parallel parking - vehicle pose (feasibility path) (J1)

86 CHAPTER 3. MOTION PLANNING IN STATIC ENVIRONMENTS

−4 −2 0 2 4 6 8 10 12 14 16
−8

−6

−4

−2

0

2

4

6

8

10

12
End point:(5.0041,3.0041,−0.0049433), Tf:8.7075

Figure 3.30: Parallel parking - robot motion (time optimal) (J2)

0 5 10 15
−1.5

−1

−0.5

0

0.5

1

1.5

time step

v [m/s]
phi [rad]

Figure 3.31: Parallel parking - inputs kinematic level (time optimal) (J2)

0 1 2 3 4 5 6 7 8 9
−2

0

2

4

6

8

10

12

time [s]

Tf : 8.7075

x [m]
y [m]
theta [rad]

Figure 3.32: Parallel parking - vehicle pose (time optimal) (J2)

3.4. OPTIMAL TRAJECTORY PLANNING 87

3.4.6.1.2 Row parking Results include figures Fig. 3.33 to Fig. 3.38.

−4 −2 0 2 4 6 8 10 12 14 16
−8

−6

−4

−2

0

2

4

6

8

10

12
End point:(4.9791,2.9996,1.5665), Tf:16.7448

Figure 3.33: Row parking - robot motion (feasibility path) (J1)

1 2 3 4 5 6 7 8 9 10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time step

v [m/s]
phi [rad]

Figure 3.34: Row parking - inputs kinematic level (feasibility path) (J1)

0 2 4 6 8 10 12 14 16 18
−3

−2

−1

0

1

2

3

4

5

time [s]

Tf : 16.7448

x [m]
y [m]
theta [rad]

Figure 3.35: Row parking - vehicle pose (feasibility path) (J1)

88 CHAPTER 3. MOTION PLANNING IN STATIC ENVIRONMENTS

−4 −2 0 2 4 6 8 10 12 14 16
−8

−6

−4

−2

0

2

4

6

8

10

12
End point:(5,3,1.5708), Tf:10.8862

Figure 3.36: Row parking - robot motion (time optimal) (J2)

1 2 3 4 5 6 7 8 9 10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

1.2

time step

v [m/s]
phi [rad]

Figure 3.37: Row parking - inputs kinematic level (time optimal) (J2)

0 2 4 6 8 10 12
−3

−2

−1

0

1

2

3

4

5

time [s]

Tf : 10.8862

x [m]
y [m]
theta [rad]

Figure 3.38: Row parking - vehicle pose (time optimal) (J2)

3.4. OPTIMAL TRAJECTORY PLANNING 89

3.4.6.1.3 Slide parking Results include figures Fig. 3.39 to Fig. 3.44.

−4 −2 0 2 4 6 8 10 12 14 16
−8

−6

−4

−2

0

2

4

6

8

10

12
End point:(6.9142,3.4142,0.7854), Tf:19.5807

Figure 3.39: Slide parking - robot motion (feasibility path) (J1)

1 2 3 4 5 6 7 8 9 10
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

time step

v [m/s]
phi [rad]

Figure 3.40: Slide parking - inputs kinematic level (feasibility path) (J1)

0 2 4 6 8 10 12 14 16 18 20
−2

−1

0

1

2

3

4

5

6

7

time [s]

Tf : 19.5807

x [m]
y [m]
theta [rad]

Figure 3.41: Slide parking - vehicle pose (feasibility path) (J1)

90 CHAPTER 3. MOTION PLANNING IN STATIC ENVIRONMENTS

−4 −2 0 2 4 6 8 10 12 14 16
−8

−6

−4

−2

0

2

4

6

8

10

12
End point:(6.9142,3.4142,0.7854), Tf:11.2586

Figure 3.42: Slide parking - robot motion (time optimal) (J2)

1 2 3 4 5 6 7 8 9 10
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time step

v [m/s]
phi [rad]

Figure 3.43: Slide parking - inputs kinematic level (time optimal) (J2)

0 2 4 6 8 10 12
−2

−1

0

1

2

3

4

5

6

7

time [s]

Tf : 11.2586

x [m]
y [m]
theta [rad]

Figure 3.44: Slide parking - vehicle pose (time optimal) (J2)

3.4. OPTIMAL TRAJECTORY PLANNING 91

3.4.6.2 DIRCOL-SNOPT simulation results

For an optimized discretization of the continuous (infinite-dimensional) nonlinear

system which takes into account dynamics of the system (approximation of the

system dynamics with cubic polynomials) as well as the stability of the optimiza-

tion procedure (stability of the adjoint variables), the DIRCOL software package

[von Stryk,] which implements the direct collocation method [von Stryk, 1993]

was used. The software is coupled with SNOPT sequential quadratic programming

(SQP) package [P.E. Gill and Saunders, 2005] which resolves the static nonlinear

optimization problem of (3.32).

3.4.6.2.1 Parallel parking Results include figures Fig. 3.45 to Fig. 3.54.

3.4.6.2.2 Row parking The successful row parking was shown on figures Fig. 3.55

to Fig. 3.59. A failure to meet the nonlinear obstacle constraints is shown in Fig.

3.60 to Fig. 3.64 where the parking space is much more confined. A possible rem-

edy would be a 3-stage maneuver with forward move -backward steering-forward

parking stages. The solution to this problem would require a more sophisticated

initial input/state estimate.

3.4.6.2.3 Slide parking The results are shown in Fig. 3.65 to Fig. 3.69.

3.4.7 Conclusion

In this section the non-holonomic path planning, obstacle avoidance and control

of autonomous vehicles was approached in a simultaneous manner. The particular

problem studied was autonomous parking mode. The system dynamic equations

which describe the kinematic level control of the vehicle discretized on equidistant

time scale. Since the system itself exhibits no discontinuities in motion, this is a

reasonable assumption. However, the nonlinear constrains imposed on the system

by the environmental obstacles may require more refined discretization in the crit-

92 CHAPTER 3. MOTION PLANNING IN STATIC ENVIRONMENTS

ical areas near the obstacles. This is a critical issue in successful optimization, i.e.

in acquiring a feasible robot/vehicle path. The refinement step was not possible

in the Matlab simulation runs, unless increasing the number of discrete steps (grid

nodes) to a large number. Nevertheless,this grid increase may become prohibitive

to the Matlab simulation altogether. Therefore, an alternative approach which

enables adaptive grid insertion based on the system dynamics and constraints was

also implemented using direct collocation method DIRCOL in coupling with the

SNOPT nonlinear solver. The results shown both in Matlab and DIRCOL simula-

tions show successful and failure scenarios of parallel, row and slide parking where

either the feasibility path is shown (objective function minimizes the final position

error) or the time optimal path. In the time optimal case, the vehicle actuators

are brought to the saturation level whenever possible. It became clear during the

simulation tests that an initial good estimation of the system dynamics and in-

puts may be a critical issue also. In the Matlab simulations the optimization runs

where in some cases restarted with the resulting input/time discretization values

from the previous runs. In the DIRCOL approach, a linear initial estimation from

the start to the goal position was assumed, whereas the inputs where left as free

parameters (no initial estimation). An promising approach to solve the problem

of initial estimation may be the kinodynamic planning in [Fraichard, 1992] which

consideres both structural and dynamic constraints as a search in discrete space.

Thereafter, the DIRCOL-SNOPT nonlinear optimization step could be performed,

in order to obtain a refined, time-optimal path, which is a subject of future work.

From the practical implementation point of view, the choice of the particular opti-

mization technique and dynamic system discretization is crucial. For comparison,

the Matlab optimization engine that uses SQP (Sequential Quadratic Program-

ming) optimization method computed a very coarse control sequence solution in

an order of 1 min whereas the DIRCOL-SNOPT performed the computation for

the same initial conditions at a much finer resolution within a 2 sec to 3 sec range

which is an order of magnitude better performance.

3.4. OPTIMAL TRAJECTORY PLANNING 93

−2 0 2 4 6 8 10 12 14

−4

−2

0

2

4

6

End point:(5,3,−1e−11), Tf:9.8126

Figure 3.45: Parallel parking (no constraints) - robot motion (time optimal) (J2)

0 1 2 3 4 5 6 7 8 9 10
−2

0

2

4

6

8

10

12

time [s]

Tf : 9.8126

x [m]
y [m]

Figure 3.46: Parallel parking (no con-
straints) - xy coordinates (time opti-
mal) (J2)

0 1 2 3 4 5 6 7 8 9 10
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

time [s]

Θ
 [r

ad
]

Pose angle, Tf : 9.8126

Figure 3.47: Parallel parking (no con-
straints) - vehicle heading (time opti-
mal) (J2)

0 1 2 3 4 5 6 7 8 9 10
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

time [s]

v
[m

/s
]

Linear velocity, Tf : 9.8126

Figure 3.48: Parallel parking (no con-
straints) - linear velocity (time opti-
mal) (J2)

0 1 2 3 4 5 6 7 8 9 10
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time [s]

Φ
 [m

/s
]

Steering angle, Tf : 9.8126

Figure 3.49: Parallel parking (no con-
straints) - steering angle (time opti-
mal) (J2)

94 CHAPTER 3. MOTION PLANNING IN STATIC ENVIRONMENTS

−2 0 2 4 6 8 10 12 14

−4

−2

0

2

4

6

End point:(5,3,−3e−13), Tf:12.0536

Figure 3.50: Parallel parking (obstacle constraints) - robot motion (time optimal) (J2)

0 2 4 6 8 10 12 14
−2

0

2

4

6

8

10

12

time [s]

Tf : 12.0536

x [m]
y [m]

Figure 3.51: Parallel parking (obstacle
constraints) - xy coordinates (time op-
timal) (J2)

0 2 4 6 8 10 12 14
−0.7

−0.6

−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

time [s]

Θ
 [r

ad
]

Pose angle, Tf : 12.0536

Figure 3.52: Parallel parking (obstacle
constraints) - vehicle heading (time op-
timal) (J2)

0 2 4 6 8 10 12 14
−1.2

−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

time [s]

v
[m

/s
]

Linear velocity, Tf : 12.0536

Figure 3.53: Parallel parking (obstacle
constraints) - linear velocity (time op-
timal) (J2)

0 2 4 6 8 10 12 14
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

time [s]

Φ
 [m

/s
]

Steering angle, Tf : 12.0536

Figure 3.54: Parallel parking (obstacle
constraints) - steering angle (time op-
timal) (J2)

3.4. OPTIMAL TRAJECTORY PLANNING 95

−2 0 2 4 6 8 10

−1

0

1

2

3

4

5

6

7

End point:(4.5,3,1.57), Tf:16.8805

Figure 3.55: Row parking (obstacle constraints) - robot motion (time optimal) (J2)

0 2 4 6 8 10 12 14 16 18
−1

0

1

2

3

4

5

time [s]

Tf : 16.8805

x [m]
y [m]

Figure 3.56: Row parking (obstacle
constraints) - xy coordinates (time op-
timal) (J2)

0 2 4 6 8 10 12 14 16 18
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

time [s]

Θ
 [r

ad
]

Pose angle, Tf : 16.8805

Figure 3.57: Row parking (obstacle
constraints) - vehicle heading (time op-
timal) (J2)

0 2 4 6 8 10 12 14 16 18
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time [s]

v
[m

/s
]

Linear velocity, Tf : 16.8805

Figure 3.58: Row parking (obstacle
constraints) - linear velocity (time op-
timal) (J2)

0 2 4 6 8 10 12 14 16 18
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time [s]

Φ
 [m

/s
]

Steering angle, Tf : 16.8805

Figure 3.59: Row parking (obstacle
constraints) - steering angle (time op-
timal) (J2)

96 CHAPTER 3. MOTION PLANNING IN STATIC ENVIRONMENTS

−6 −4 −2 0 2 4 6 8 10

−2

0

2

4

6

8

End point:(4.5,3,1.57), Tf:109.4422

Figure 3.60: Row parking failure (obstacle constraints) - robot motion (time optimal)
(J2)

0 20 40 60 80 100 120
−3

−2

−1

0

1

2

3

4

5

6

time [s]

Tf : 109.4422

x [m]
y [m]

Figure 3.61: Row parking failure (ob-
stacle constraints) - xy (time optimal)
(J2)

0 20 40 60 80 100 120
−1

−0.5

0

0.5

1

1.5

2

time [s]

Θ
 [r

ad
]

Pose angle, Tf : 109.4422

Figure 3.62: Row parking failure (ob-
stacle constraints) - vehicle heading
(time optimal) (J2)

0 20 40 60 80 100 120
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

time [s]

v
[m

/s
]

Linear velocity, Tf : 109.4422

Figure 3.63: Row parking failure (ob-
stacle constraints) - linear velocity
(time optimal) (J2)

0 20 40 60 80 100 120
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

time [s]

Φ
 [m

/s
]

Steering angle, Tf : 109.4422

Figure 3.64: Row parking failure (ob-
stacle constraints) - steering angle
(time optimal) (J2)

3.4. OPTIMAL TRAJECTORY PLANNING 97

−2 0 2 4 6 8 10 12 14

−4

−2

0

2

4

6

8

End point:(6.92,3.42,0.79), Tf:12.929

Figure 3.65: Slide parking (obstacle constraints) - robot motion (time optimal) (J2)

0 2 4 6 8 10 12 14
−2

−1

0

1

2

3

4

5

6

7

time [s]

Tf : 12.929

x [m]
y [m]

Figure 3.66: Slide parking (obstacle
constraints) - xy coordinates (time op-
timal) (J2)

0 2 4 6 8 10 12 14
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

time [s]

Θ
 [r

ad
]

Pose angle, Tf : 12.929

Figure 3.67: Slide parking (obstacle
constraints) - vehicle heading (time op-
timal) (J2)

0 2 4 6 8 10 12 14
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

time [s]

v
[m

/s
]

Linear velocity, Tf : 12.929

Figure 3.68: Slide parking (obstacle
constraints) - linear velocity (time op-
timal) (J2)

0 2 4 6 8 10 12 14
−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time [s]

Φ
 [m

/s
]

Steering angle, Tf : 12.929

Figure 3.69: Slide parking (obstacle
constraints) - steering (time optimal)
(J2)

98 CHAPTER 3. MOTION PLANNING IN STATIC ENVIRONMENTS

3.5 Conclusion

The presented chapter dealt with autonomous navigation approaches applicable to

static, unstructured environments. The hierarchical navigation scheme presented

in Sec. 3.2 is complete in the sense that it contains all the necessary levels of

deliberation from global goal objective to reactive avoidance level and was well

tested experimentally in parking lot conditions.

The motivation behind the development of a probabilistic obstacle avoider of

Sec. 3.3 or the motion planning using optimization techniques in Sec. 3.4 was to

explore the possibilities of very generic dynamic system description and inference

engines within the scope of autonomous vehicle navigation. The presented re-

sults are limited to very simple tasks such as instantaneous obstacle avoidance or

parking maneuvers, however, the inclusion of more complex tasks should be fairly

straightforward due to the flexibility of the system description while taking into

account the additional computation burden.

Chapter 4

Motion planning in dynamic

environments

4.1 Introduction

Assuming the presence of moving obstacles with arbitrary dynamics, a motion

planning technique is to be proposed that would enable the navigation of the ego-

vehicle from a start to a goal configuration. The motion planning consists in an

incremental trajectory search from the start to goal configuration, given the kino-

dynamic constraints of the ego-vehicle itself and the motion of the obstacles in the

surrounding environment/workspace. The main distinction to the motion planning

problem in a static environment is the constraint that at each instant of time the

trajectory of the ego-vehicle must be collision-free with respect to the static as well

as dynamic obstacles. From the implementation point of view, this implies that

the whole ego-vehicle trajectory must be discretized in time and checked against

collision against each of static as well as dynamic objects. The aim of this chapter

is to derive motion planning strategies in presence of dynamic obstacles that would

comply to the timing structure regarding the motion prediction, motion planning

and execution proposed here. Furthermore, explore different possibilities of the

trajectory exploration phase in the sense of state branching techniques (trajectory

99

100 CHAPTER 4. MOTION PLANNING IN DYNAMIC ENVIRONMENTS

diffusion) and directedness towards the goal objective in form of cost functions.

Furthermore, given the ego-vehicle motion planning scheme and various levels of

dynamic obstacle movement, different motion safety levels can be identified and

issued as safety guarantees.

Firstly, the general time constraints for motion planning in dynamic environ-

ments are identified and analyzed with respect to each other in Sec. 4.2.

Sec. 4.3 proposes motion planning solutions for the ego-vehicle whose motion is

described in the transformed state space. This enables the description of dynamic

obstacle traces in time and ego-vehicle trajectory increments in the trajectory ex-

ploration phase both linear which in turn renders the collision checks against many

moving obstacles and trajectory exploration updates fast. Under constrained ego-

vehicle motion along one transformed state axes, the final time of arrival at the

goal configuration can be predicted, enabling a bidirectional trajectory search from

start and goal configuration simultaneously. The proposed motion planning tech-

nique in analyzed in a generic dynamic environments with many moving objects

in Sec. 4.3.5. An unconstrained version of this motion planning technique that

performes a randomized search also in the longitudinal velocity space is analyzed

in Sec. 4.3.6 and applied to a urban dynamic scenario problem.

A generic motion planning scheme that is independent of a particular ego-

motion model is presented in Sec. 4.4, where the proposed motion planning scheme

can be applied to any dynamic model of the ego-platform as well as the predicted

motion of the dynamic obstacles and static configuration of the environment. All

the timing constraints for a generic motion problem in a dynamic environment

of Sec. 4.2 are inherently integrated in the scheme. Different trajectory explo-

ration/diffusion techniques are explored along with the integration of global nav-

igation level information about the static part of the environment structure.

Sec. 4.5 defines possible levels of motion planning safety each with an increasing

guaranty with respect to the ego-motion and dynamic obstacles movement delib-

eration. In particular, safety guaranty of the proposed motion planning scheme in

4.2. TIME CONSTRAINTS IN DYNAMIC ENVIRONMENTS 101

Sec. 4.4 is analyzed in detail. Formulating clear safety guaranty levels determine

the bounds of utilization of an autonomous vehicle platform.

4.2 Time constraints in dynamic environments

Since time is the key variable in the motion planning problem in dynamic envi-

ronments, there are several important time variables intrinsically associated with

it. The first is the motion planning horizon Tm, which denotes how far into the

future the motion of the ego-vehicle has been explored (the plan). The second is

the obstacle motion prediction horizon Tp, which denotes how far into the future

the motion of the environmental obstacles have been modeled and predicted (the

perception). Clearly, the fundamental requirement is that Tm ≤ Tp, that is one

can only plan so far into the future as the environment evolution prediction allows

for it.

Thirdly, another important aspect is the time allowed for computation of future

ego-vehicle motions, here called the decision time Td. Regardless of the compu-

tational details (whether the motion planning is a dedicated task run in parallel

or executed in succession with respect to other running tasks), the fundamental

limitation is Td ≤ Tm. Assuming that the motion planning task is run in cycles,

i.e. re-planning cycles, then the current motion planning cycle’s control execu-

tion is based on the previous cycle’s planning result. This further implies that

if the execution of the previous motion plan (“planned in the past for the cur-

rent time”) lasts Tm of time, than the decision time Td cannot exceed the motion

prediction horizon itself (“otherwise the ego-vehicle would run out of a valid plan

for the next execution cycle”). Note however that there is no lower bound for

the decision time, in fact it can be that Td � Tm, depending on the complexity

of the motion planning exploration itself. Fourthly, there is a perception update

cycle time Ts, which gives a global update on the motion prediction of the moving

obstacles, i.e. change in their future trajectories.

102 CHAPTER 4. MOTION PLANNING IN DYNAMIC ENVIRONMENTS

In an ideal world, the motion of the ego-vehicle could be predicted without any

uncertainty up to the motion planning horizon Tm. This holds true also for the

future trajectories of the moving obstacles up to the motion prediction horizon Tp.

Whereas, the former assumption could be assumed valid if a high-fidelity motion

model for the ego-vehicle is available (since motion prediction equals the computed

motion plan here), the latter assumption is more critical. Motion prediction for

the environment obstacles underlies inherently to greater uncertainty due to the

fact they are in principle not controllable by the ego-vehicle. Therefore, it is

sensible to set the perception update cycle smaller than the motion prediction

horizon, i.e. Ts < Tp. For instance, in an urban-like traffic environment the

motion of the participating vehicles, pedestrians, cyclists could be predicted up to

Tp ≈ 5 sec, whereas the perception update cycle that recomputes the trajectory

assumptions based on the new sensory data could be set at Ts ≈ 1 sec. Clearly,

these values depend strongly on the dynamicity of the environment itself. As

a consequence of the environment modeling uncertainty, the execution duration

of the current motion plan, notated Te, beyond Ts may not be sensible, due to

the fact that the obstacle trajectories may have unpredictably changed “in-the-

meantime”, invalidating the motion plan which was originally computed up to

motion planning horizon Tm.

Environmental modeling uncertainty therefore imposed an addition limitation

to the motion planning problem, namely the control execution of the current

motion plan cannot exceed the perception update cycle, in fact is equal to Te = Ts

(assuming unpredictable, unmodeled environmental changes could happen). The

restriction on the execution duration Te further imposes that the decision time Td

(time to compute a new motion plan) be Td ≤ Te. In fact, if the computation of

the motion planning is run parallel as an independent task with respect to other

computational processes it is beneficial to set Td = Te in order to evaluate as much

as possible solutions in the motion exploration phase. Therefore, it is important

to conclude that the decision-execution cycle and the perception cycle are all run

4.2. TIME CONSTRAINTS IN DYNAMIC ENVIRONMENTS 103

in synchronous mode, yielding Td = Te = Ts.

In addition to the above, it should be stated that all of the motion processes

are naturally continuous in time, but are emulated at discrete integration steps

according to standardized numerical techniques. Additionally, since the collision

checking can in general not be solved analytically, a time discretization Tl is intro-

duced for all the trajectories in order to resolve the geometric relations of the ego-

vehicle with respect to obstacles at each instant, as mentioned earlier. Typically,

Tl is much smaller than other time constants introduced above. Moreover, the

low-level control execution of the nominal trajectory computed for the ego-vehicle

implies other (shorter) time cycles which will be omitted here for simplicity.

In summary, the timing relations identified above allow for a very generic de-

scription of the motion planning problem in the dynamic environments, that takes

into account the interplay between motion prediction, motion planning and mo-

tion execution. Different computational implementations (parallel, serial) can be

described by the time constants relations as well as the overall modeling uncer-

tainty in the form of time limit constraints. The paradigm could be resumed

as “predict/plan as far as possible” but “re-observe/execute only close enough”

according to certainty limitations. A question that might arise is, why it may

be important to predict and plan beyond Ts and Te, respectively. The answer

concerns primarily the completeness of the motion planning problem with respect

to the goal objective and the fact that the uncertainty increases with respect to

time. Therefore, an far-sighted uncertain motion plan that potentially directs the

ego-vehicle to the goal is better than a plan that considers all future motions as

equally likely or unlikely beyond a given time limit.

104 CHAPTER 4. MOTION PLANNING IN DYNAMIC ENVIRONMENTS

4.3 Motion planning in transformed state space

4.3.1 Kinematic modeling and chained form state-space trans-

formation

Car-like kinematic model can be described by configuration coordinates q =

[x y θ φ], where the Cartesian coordinates (x, y) correspond to the midpoint be-

tween front and rear axle centers which are a separated by a length l, vehicle

orientation θ and φ being the steering angle. Denoting ρ the wheel radius, u1 the

angular velocity of the rear driving wheels, u2 the steering rate of the front wheels,

then the kinematic car-like model is:


ẋ

ẏ

θ̇

φ̇

 =


ρ cos(θ)− ρ

2
tan (φ) sin (θ) 0

ρ sin(θ) + ρ
2

tan (φ) cos (θ) 0

ρ
l

tan(φ) 0

0 1


 u1

u2

 . (4.1)

According to [Laumond, 1998] and [Qu et al., 2004] the kinematic model of

Eq. 4.1 can be transformed into the canonical chained form where derivatives of

transformed states depend only on lower states in the chain and the inputs:

ż1 = vc1 , ż3 = z2vc1 ,

ż2 = vc2 , ż4 = z3vc1 ,
(4.2)

where the configuration coordinates q = [x y θ φ] and inputs u1, u2 are trans-

formed to new state space of z = [z1, z2, z3, z4] and inputs vc1, vc2:

z1 = x− l
2

cos(θ) , z2 = tan(φ)
l cos3(θ)

,

z3 = tan(θ) , z4 = y − l
2

sin(θ) ,

u1 = vc1
ρ cos(θ)

,

u2 = − 3 sin(θ)
l cos2(θ)

sin2(φ)vc1 + l cos3(θ) cos2(φ)vc2 .

(4.3)

The state and control transformation of Eq. 4.3 is valid for angles θ 6= ±π/2.

4.3. MOTION PLANNING IN TRANSFORMED STATE SPACE 105

This singularity is not a hard limitation, since the x−y plane can be pre-rotated for

guaranteeing θ(t) ∈ (−π/2 , π/2) or by introducing an intermediate goal position.

The transformed states z2 and z3 can be further expressed as:

z3 = dz4
dz1

, z2 = d2z4
dz2

1
. (4.4)

4.3.2 Collision avoidance criterion for moving obstacles

The criterion for collision avoidance between the vehicle and a single moving ob-

stacle is adopted from [Qu et al., 2004]and is exposed here as follows:

• The physical limits of the vehicle are denoted by a 2D circle of radius R

at the center O(t) = (x(t) , y(t)). The choice of the reference point being

on the midpoint of the connecting line between the axes renders the R size

less conservative. The translational vehicle velocity to be determined is

vr = [ẋ(t) ẏ(t)]>.

• A set of i = 1, . . . , no objects is represented by circles at points Oi(t) and

radius ri denoted by Oi (Oi(t) , ri) and moving at linear velocities vi(t).

The state of the environment in terms of obstacle positions and directions

of movement is resampled at a rate Ts. Starting at sample instant k, the ith

obstacle’s description in the interval t ∈ [kTs , (k + 1)Ts] is assumed to be evolving

linearly from position Oi =
(
xki , y

k
i

)
with velocity vki =

[
vki,x v

k
i,y

]>
.

The relative vehicle velocity to the ith obstacle is defined as:

vkr,i = vr − vki =

 vkr,i,x

vkr,i,y

 =

 ẋ− vki,x
ẏ − vki,y

 . (4.5)

Taking into account the physical sizes of the vehicle and the ith obstacle, the

avoidance criterion to a single obstacle can be formulated as:

(
x′i − xki

)2
+
(
y′i − yki

)2 ≥ (ri +R)2 , (4.6)

106 CHAPTER 4. MOTION PLANNING IN DYNAMIC ENVIRONMENTS

where x′i = x− vki,xτ and y′i = y − vki,yτ , with τ being τ = t− kTs.

The avoidance relation according to Eq. 4.6 is based on relative vehicle motion

to a virtually static ith obstacle. The minimum distance between the two is a

radius of (ri +R) whenever the obstacle’s xki coordinate is in the following interval

in the x− y plane:

xki ∈ [x′i − ri −R, x′i + ri +R] . (4.7)

In order to obtain the avoidance criterion for the transformed state space,

the relations from Eq. 4.3 combining variable x with z1 and y with z4 are used.

Therefore, the avoidance criterion of Eq. 4.6 can be described in the transformed

plane z4 − z1 as:

(
z1 +

l

2
cos θ − vki,xτ − xki

)2

+

+

(
z4 +

l

2
sin θ − vki,yτ − yki

)2

≥ (ri +R)2 , (4.8)

or conversely in the relative motion plane z′4,i − z′1,i as:

(
z′1,i +

l

2
cos θ − xki

)2

+

(
z′4,i +

l

2
sin θ − yki

)2

≥ (ri +R)2 , (4.9)

where:

z′1,i = z1 − vki,xτ , z′4,i = z4 − vki,yτ . (4.10)

The criterion of Eq. 4.9 represents a snapshot at time t (or τ) and sample

interval k of the relative position of the vehicle with transformed coordinates(
z′1,i , z

′
4,i

)
to a virtually static obstacle at position Ok

i =
(
xki , y

k
i

)
in the interval:

xki ∈
[
z′1,i +

l

2
cos θ − ri −R , z′1,i +

l

2
cos θ + ri +R

]
(4.11)

4.3. MOTION PLANNING IN TRANSFORMED STATE SPACE 107

This criterion includes dependence on the current vehicle orientation θ which

can be undesirable if the orientation of the vehicle in the planning stage is not

known beforehand. By further geometric inspection an orientation independent

criterion was developed in [Qu et al., 2004] only in terms of relative transformed

variables z′1,i, z
′
4,i, vehicle and obstacles sizes.

Firstly, as the relative motion variables x′i and y′i can be expressed with the

relative transformed variables z′1,i, z
′
4,i as:

x′i = z′1,i + l
2

cos(θ) , y′i = z′4,i + l
2

sin(θ) (4.12)

and the fact that the vehicle orientation angle θ can only take values θ ∈
(−π/2 , π/2), then it follows that the points (x′i , y

′
i) can only be located at the

right semicircle located at
(
z′1,i , z

′
4,i

)
with radius l

2
in the z′4,i − z′1,i plane.

Furthermore, the Eq. 4.6 gives the condition on minimum distance of (ri +R)

between the possible relative vehicle point (x′i , y
′
i) and the ith obstacle’s virtual

static position
(
xki , y

k
i

)
. Therefore, by drawing circles of radius (ri +R) at all

possible (x′i , y
′
i) loci, a circular prohibitive region Υi for ith obstacle center Ok

i =(
xki , y

k
i

)
is defined and is of radius R̃ =

(
ri +R + l

2

)
, giving the final vehicle to

single ith obstacle collision avoidance criterion:

(
z′1,i − xki

)2
+
(
z′4,i − yki

)2 ≥
(
ri +R +

l

2

)2

(4.13)

with no vehicle orientation θ dependence. Because of the limited θ range, the

potential collision region for the z′1,i axis is defined as:

xki ∈
[
z′1,i − ri −R , z′1,i +

l

2
+ ri +R

]
. (4.14)

108 CHAPTER 4. MOTION PLANNING IN DYNAMIC ENVIRONMENTS

A criterion for the z′4,i axis that considers any possible orientation θ, results in

a rectangular region Ξi for an i -th obstacle:

yki ∈
[
z′4,i −

l

2
− ri −R , z′4,i +

l

2
+ ri +R

]
. (4.15)

for the z′4,i axis.

Although this modified collision avoidance criterion neglects some allowed

robot configurations, it renders the testing of collision-free regions linear, com-

pared to the circular prohibitive region of Eq. 4.13 which is quadratic in terms

of inequality testing. This facilitates computation, which can be important in

presence of many moving obstacles.

4.3.3 Trajectory representation

To generate a feasible trajectory, i.e. a trajectory that complies to the kinematic

model of Eq. 4.1 that involves nonholonomic constraints and that is collision-free, a

certain family of curves is assumed. In [Qu et al., 2004] this family were polynomial

curves where it was stipulated that the variable z4 is dependent on z1. In this work,

the family of curves chosen are B-splines [de Boor, 2001], since they enable better

local control of the trajectory shape. Their local controllability/flexibility may be

important in confined environments, so problems like large detours can be avoided.

Using the chained form transformation of Eq.4.2 for the vehicle kinematic

model allows to describe the variable z4 in a direct functional relation to z1:

z4(t) = b(z1(t)) =
m∑
j=0

BjNj,d(z1(t)) , (4.16)

whereBj arem+1 spline control points, Nd
j denote the basis functions of degree

d defined by a knot sequence z10 ≤ z11 ≤ · · · ≤ z1m+d+1
. The variable z1 represents

the spline parameter that can take any real value in the range
[
z10 , z1m+d+1

]
.

In order to calculate the state variables z2 and z3, the B-spline curve of degree

4.3. MOTION PLANNING IN TRANSFORMED STATE SPACE 109

d = 4 is derived as:

z3 = dz4
dz1

= b′(z1) =
∑m

j=0BjN
′
j,d(z1) ,

z2 = d2z4
dz12 = b′′(z1) =

∑m
j=0BjN

′′
j,d(z1) ,

ż2 = d3z4
dz13 · ż1 = b′′′(z1) · ż1 =

∑m
j=0BjN

′′′
j,d(z1) · ż1 .

(4.17)

Each B-spline curve has a control polygon associated to it, which is a poly-

line with vertices defined as spline control points Bj. In general, the B-spline

b(z1(t)) curve may or may not pass through the control points, depending on

control points alignment and knot vector (spline parameter) distribution. The

B-spline curve implementation in this work takes initial and final robot configu-

rations exactly into account. From the recursion relations for the basis functions

and derivatives [de Boor, 2001] this implies that the control points Bj, j = 0, . . . , 3

and j = m−3, . . . ,m are determined from boundary conditions.The degree of the

B-spline curve is determined as the minimum degree curve where the third degree

derivations of the basis functions of Eq. 4.17 are still continuous, hence d = 4.

At each point on the B-spline curve given by the knot vector (spline parameter)

z1i , there are exactly d + 1 control points Bj that locally determine the curve’s

shape, contained in the polygon spanned by these control points. The search for

a feasible trajectory in general involves determining both position of the control

points and the discretization/enumeration of the knot vector. The value of the

knot vector z1i where a particular control point Bj exerts maximum influence is

given by the so called Greville abscissae [de Boor, 2001]:

z∗1j =

j+d∑
i=j+1

z1i

d
. (4.18)

Collocation (discretization) of the B-spline curve based on these knot vector

values enables a minimalistic knot vector representation which can be calculated

a-priori, whereas on the other hand enabling the maximum influence on the B-

spline curve’s shape by the control points Bj, which are in our case the unknowns

110 CHAPTER 4. MOTION PLANNING IN DYNAMIC ENVIRONMENTS

to be determined by the search for a feasible trajectory.

As will be described in more detail in Sec. 4.3.5 and Sec. 4.3.6, the control

pointsBj in this work represent vertices of a RRT tree (Rapidly-Exploring Random

Tree). The RRT-s were first introducted in [Kuffner and LaValle, 2000], where

the state transitions representing the leafs of the tree are determined as direct

robot state integration, given a current control input depending on the motion

model used. In this work, however, the transitions between the states (leafs) are

linear segments that rather determine the control polygon of the spline then the

curve itself. This enables a much faster calculation of the tree expansion during

the search phase, since all the expansions are linear segments. Moreover, the

collision checking with the obstacle traces which are polygonal segments according

to Sec. 4.3.2 and these linear expansion is extremely fast.

4.3.4 Motion planning problem

The motion planning problem can be stated as problem of moving the vehicle

from an initial configuration q0 =
[
x0, y0, θ0, φ0, φ̇0

]
to a final configuration qf =[

xf , yf , θf , φf , φ̇f

]
while avoiding the linearly moving obstacles Oi (Oi(t) , ri), i =

1, . . . , no, as described in Sec. 4.3.2. The configuration boundary conditions define

the set of transformed state boundary conditions
[
zk1 , ż

k
2 , z

k
2 , z

k
3 , z

k
4

]
in k = 0, . . . , Ns

global replanning sample intervals, where final time is Tf = Ns · Ts.
The task of finding the vehicle trajectory is divided into three phases:

• defining potential collision areas with obstacles;

• performing a RRT search expansion within the obstacle free regions of the

transformed space;

• smoothing of the linear segment based path with B-splines to obtain the

final smooth trajectory.

The search for a feasible path with RRT expansion in the transformed state

space spanned by z4 − z1 plane can be considered as an analogy to a y − x plane

4.3. MOTION PLANNING IN TRANSFORMED STATE SPACE 111

search. A tree leaf of the RRT is a line segment that represents a path increment,

where p, q are connected tree nodes indices. Due to dynamic obstacles, the collision

regions in z4−z1 plane where the tree leafs cannot be expanded, depend directly on

the vehicle motion and therefore control inputs beforehand, so that this space-time

combination results in a 3D search problem.

Nevertheless, the evolution of the state z1 can be analyzed independently from

the rest of the vehicle configuration, due to chained transform (Eq. 4.2) where ż1

is an input control variable. If the evolution of z1(t) is known by some defined

profile, the time component is embedded in z1 and a pure 2D geometric search

can be performed with moving obstacle traces in z4 − z1 plane related to their

respective velocities and z1 component. This fact is used in Sec. 4.3.5 and 4.3.6

where a bidirectional and a unidirectional trajectory search is performed in the

transformed space, respectfully.

The bidirectional trajectory search case [Macek and Siegwart, 2006], where a

RRT tree is expanded from the starting and the goal configuration simultaneously

assumes an a-priori know profile on ż1, therefore also the final time Tf is a fixed

parameter. Eventhough this trajectory search version affects both linear and ro-

tational velocity of the robot, due to the nature of chained form of Eq. 4.2 and

Eq. 4.3, the control input ż1 primarily influences the linear robot velocity. If ż1

is then kept constant, as will be elaborated further in Sec. 4.3.5, the bidirectional

method can be considered as a form of steering navigation method.

The unidirectional trajectory search case [Macek et al., 2006], in Sec. 4.3.6

makes no a-priori assumption on the profile of the transformed input ż1, which

has to be determined during the trajectory search. Consequently the final time Tf

is a free parameter, the search is performed only from the starting configuration

using incremental expansion of one RRT tree. The resulting trajectory is general

in the sense that the longitudinal and rotational robot velocities are independent.

112 CHAPTER 4. MOTION PLANNING IN DYNAMIC ENVIRONMENTS

4.3.5 Bidirectional trajectory search

4.3.5.1 Control input time profile

To obtain a collision-free movement of the robot, it has to be guaranteed at each

instant t that the avoidance condition discussed in Sec. 4.3.2 for a single obstacle

be fulfilled for all moving obstacles. In order to predict the possible collision zones

with obstacles for all future times τ , where τ ∈ [kTs, Tf], the main assumption

introduced in [Qu et al., 2004] was that the transformed velocity along the z1 axis

is kept constant:

vc1(t) = C =
zf1 − z0

1

Tf
. (4.19)

According to the chained form transformation of Eq. 4.2 this effectively means

that the state z1 can be analyzed independently from the rest of the robot trans-

formed configuration.

Since the robot is on a constant forward move along the z1 axis and due to the

fact that obstacles move in a linear fashion on a kth sample interval, the robot can

collide with an ith obstacle only on one interval from its current configuration to

the goal. Naturally, this is based on condition that the state of the environment,

i.e. the obstacle velocities and their directions remain unchanged from time inter-

val kTs to Tf . If at sample interval k + 1 the environment conditions change, the

possible collision intervals have to be revised.

4.3.5.2 Potential collision areas with obstacles

To determine the time limits of these collision intervals, the Eq. 4.14 can be

used since it implicitly contains the temporal information in the variable z′1,i(τ) =

z1(τ) − vki,xτ , where τ = t − kTs. Assuming there exist nko ≤ no obstacles which

can collide with the robot on the interval τ ∈ [kTs, Tf], the exact time boundaries

τ ki,1 ≤ τ ki,2, i = 1, . . . , nko can be calculated in the region where the robot and the

ith obstacle share the same z1 transformed coordinate. According to Eq. 4.14 it

4.3. MOTION PLANNING IN TRANSFORMED STATE SPACE 113

can be written:

τ̃ ki,1 =
z1(τ̃ ki,1)− ri −R− xki

vki,x
,

τ̃ ki,2 =
z1(τ̃ ki,2) + l

2
+ ri +R− xki
vki,x

. (4.20)

Since the z1 coordinate is dependent only on constant transformed velocity

input vc1 it can be expressed as:

z1(τ̃ ki,1) = z0
1 + C · (kTs + τ̃ ki,1) ,

z1(τ̃ ki,2) = z0
1 + C · (kTs + τ̃ ki,2) (4.21)

and it follows that:

τ̃ ki,1 =
z0

1 + CkTs − ri −R− xki
vki,x − C

,

τ̃ ki,2 =
z0

1 + CkTs + l
2

+ ri +R− xki
vki,x − C

, (4.22)

where vki,x 6= C. According to the obstacles direction, the time intervals τ ki,1

and τ ki,1 are obtained as:

τ ki,1 = min
{
τ̃ ki,1, τ̃

k
i,2

}
, τ ki,2 = max

{
τ̃ ki,1, τ̃

k
i,2

}
. (4.23)

Such decoupling of one state variable z1 reduces the search for a collision-

free path among all moving obstacles from a geometric space-time combination

(2D + 1D = 3D) to only geometric space search (2D). In [Qu et al., 2004] an

analytic solution to the collision avoidance problem was thereafter developed based

on recursive calculation of polynomial coefficients for each sample interval k. The

collision-free area was defined by a set of nko ≤ no quadratic inequalities based on

Eq. 4.13 for the obstacles sharing the same z1 transformed coordinate with the

robot.

114 CHAPTER 4. MOTION PLANNING IN DYNAMIC ENVIRONMENTS

Although, the polynomial approach was appealing since it provided a closed-

form solution to the trajectory generation, the sensitivity of the path shape to

only one coefficient proved to be important in our simulations. In particular,

by a small change in its value, or a choice of a different sign (as an alternative

solution to the quadratic inequalities), the path was changed importantly and

could exhibit large detours with respect to a nominal ”straight-line” path to the

goal. As mentioned earlier in Sec. 4.3.3, in order to remedy this problem, the B-

spline curve family introduced here (Eq. 4.16) enables better local control of the

trajectory shape. However, the advantage of the state decomposition and clear

separation of geometric and time criterion for collision avoidance as presented in

[Qu et al., 2004] is still preserved.

To account for all moving obstacles, the approach taken here is to combine all

prohibitive collision areas defined by the rectangular areas Ξi, i = 1, . . . , nko , for a

sample interval k as discussed in Sec. 4.3.2 for every τ ∈ [τ ki,1 , τ ki,2] and calculate

the prohibited regions in the z4− z1 plane. Each obstacle that potentially collides

with the robot leaves a ”trace” in the z4 − z1 in the shape of a parallelogram

defined by the points (zk1,i,1, z
k
4,i,1), (zk1,i,1, z

k
4,i,2), (zk1,i,2, z

k
4,i,3) and (zk1,i,2, z

k
4,i,4) as:

zk1,i,1 = zk1 + C · τ ki,1 , zk1,i,2 = zk1 + C · τ ki,2 ,
zk4,i,1 = yki − vki,yτ ki,1 − l

2
− ri −R ,

zk4,i,2 = yki − vki,yτi,1 + l
2

+ ri +R ,

zk4,i,3 = yki − vki,yτi,2 − l
2
− ri −R ,

zk4,i,4 = yki − vki,yτi,2 + l
2

+ ri +R .

(4.24)

4.3.5.3 Bidirectional RRT expansion

By introducing the B-spline curves, there is no unique solution to the trajectory

generation problem, since there can be many degrees of freedom as to the choice

of the spline control points Bj and knot vector. Therefore, the control points

to the B-spline are found by Rapidly-exploring Random Trees (RRT) based on

4.3. MOTION PLANNING IN TRANSFORMED STATE SPACE 115

[LaValle and Kuffner, 2001] for the geometric space spanned by the z4 − z1 plane

and the prohibited areas included. The start and end control points are identical

to the zinit = (zk1 , z
k
4) and zgoal = (zf1 , z

f
4) configurations. Since the coordinate

z1 already represents the knot parameter, a 1D spline approximation is required.

A bidirectional RRT search is employed here, with one tree Ta starting from the

(zk1 , z
k
4) configuration and the Tb starting from the goal configuration.

The trees are expanded through the EXTEND function in a random zrand

direction from the nearest znear point on the tree obtained by NEW NEIGHBOR

function. An increment from znear along the z1 axis is calculated based on the

Greville abscissae from Eq. 4.18. The possible new state is tested for collision

against all obstacles in the NEW STATE. Collision-free point znew is connected to

znew conn, if one exists, on the opposite tree, at a max distance z∗1j along z1, where

j represents the relative position from the root node of the tree.

A separate list of connected leaves La,b,cost from both Ta and Tb is kept. Along

the connections, the Euclidean traversal cost from the root parent node (zk1 , z
k
4)

of Ta to the goal root node zgoal = (zf1 , z
f
4) of Tb is kept, which enables choosing

the connected path between the two trees defined by the connected leafs l?a,b =

mincost {La,b,cost} with shortest overall distance on their corresponding backpointer

nodes along the path.

The RRT search results in a polyline polygon z4 = l(z1) connecting the

MIN PATH based tree leaf vertices. These tree leaf vertices represent the B-spline

control points B = {B0, . . . , Bm} of the spline control polygon:

l(z∗1j) = Bj , j = 0, . . . ,m . (4.25)

from which the final B-spline trajectory can be obtained according to Eq. 4.16.

116 CHAPTER 4. MOTION PLANNING IN DYNAMIC ENVIRONMENTS

RRT BIDIRECTIONAL SEARCH(zinit, zgoal)
1 Ta.init(zinit); Tb.init(zgoal) ; direction = 1;
2 for k = 1 to K do
3 znew ← EXTEND(Ta, zrand, direction);
4 if not (znew = ∅) then
5 if not(CONNECT(Tb, znew)=Failed) then
6 La,b,cost ← La,b,cost ∪ (znew, znew conn, cost);
7 direction ← SWAP(Ta, Tb);
8 end
9 if not La,b,cost = ∅ then
10 return MIN PATH(Ta, Tb);
11 else return Failure;

EXTEND(T , z, direction)
1 znear ← NEAREST NEIGHBOR(z,T , direction);
2 znew ← NEW STATE(z, znear, direction);
3 if not (znew = ∅) then
4 T ← T ∪ znew;
5 return znew;
6 else return ∅;

Table 4.1: Bidirectional RRT search in the z4 − z1 space.

4.3.5.4 Simulation results in a highly populated dynamic obstacle environ-

ment

Simulation results show a sequence of snapshots of an environment highly pop-

ulated with moving obstacles in Fig. 4.1, at the obstacle state and replanning

update rate Ts = 5s. The initial and final conditions are x(0) = 0, y(0) = −3,

θ(0) = −π/4, φ(0) = π/6, φ̇(0) = 0, x(Tf) = 15, y(Tf) = 7, θ(Tf) = π/6,

φ(Tf) = 0, φ̇(Tf) = 0 and Tf = 15s. The obstacles are allowed to randomly

change velocity and direction at the sample rate Ts = 5s, however, their max-

imum velocity is limited to the vehicle velocity towards goal vmax = C, since

the vehicle should always be at least as fast as the obstacles in order to prevent

4.3. MOTION PLANNING IN TRANSFORMED STATE SPACE 117

collision. Obstacles that can potentially collide with the vehicle on a certain seg-

ment are marked with full line paths (green), others are marked with dashed line

paths (blue). The obstacle trajectory traces and search for the ego-vehicle feasible

trajectory is depicted in Fig. 4.2.

0 5 10 15

−10

−5

0

5

10

x

y

0 5 10 15

−10

−5

0

5

10

x

y

0 5 10 15

−10

−5

0

5

10

x

y

0 5 10 15

−10

−5

0

5

10

x

y

Figure 4.1: Vehicle motion simulation among moving obstacles. Vehicle and obstacle
paths are depicted at global replanning instants t = 0, 5, 10, 15s, respectively. Obstacle
trajectories are re-evaluated for each replanning cycle, where the obstacles that can
potentially collide with the vehicle are depicted in solid (green).

118 CHAPTER 4. MOTION PLANNING IN DYNAMIC ENVIRONMENTS

0 2 4 6 8 10 12 14

−10

−5

0

5

10

z1

z4

5 6 7 8 9 10 11 12 13 14

−10

−5

0

5

10

z1

z4

10 10.5 11 11.5 12 12.5 13 13.5 14 14.5

−10

−5

0

5

10

z1

z4

Figure 4.2: Vehicle motion planning among moving obstacles. Bidirectional RRT
search (from start and goal configuration) and root B-spline trajectory generation in
transformed z4− z1 space is depicted at instants t = 0, 5, 10s, respectively. Trajectory
traces of obstacles on potential collision course are depicted as polygons.

4.3. MOTION PLANNING IN TRANSFORMED STATE SPACE 119

0 5 10 15
−1

−0.5

0

0.5

1

1.5

t

θ

(a) Vehicle orientation θ.

0 5 10 15
−1

−0.5

0

0.5

1

t

φ

(b) Front steering wheels angle φ.

0 5 10 15
4

6

8

10

12

14

16

18

t

u1

(c) Rear wheel rotational velocity u1.

0 5 10 15
−3

−2

−1

0

1

2

3

4

t

u2

(d) Front steering wheels rate u2.

Figure 4.3: Vehicle state and commands.

Due to the inherent randomness of the obstacles there is no guarantee that

a free path exists for the vehicle, however, it was shown through the simulations

that a feasible trajectory was found, if one existed, even in a densely cluttered

environment. At each resampling instant k = 0, 1, 2, the current obstacle motion

and the state of the vehicle at the end of the previous cycle was taken into account

in order to ensure continuous control inputs, in particular the steering wheels rate

u2 where the third derivative of the B-spline curve b(z1)′′′ must be continuous as

can be seen on Fig. 4.3.

In summary, the presented section deals with trajectory generation of a non-

holonomic platform in an dynamic environment with linearly moving obstacles.

Kinematic state transformation introduced in an earlier work enables predicting

potential collision with obstacles both in terms of time and geometric criteria.

The search of a feasible path among many moving obstacles is here performed as

120 CHAPTER 4. MOTION PLANNING IN DYNAMIC ENVIRONMENTS

a bidirectional RRT search in transformed state space and is further smoothed by

B-splines, resulting in a smooth, locally adjustable trajectory for the vehicle. The

boundary poses (states) of the vehicle can be precisely defined and the control

inputs are continuous. Simulation results of vehicle motion in an environment

with densely populated obstacles verify the approach.

4.3.6 Unidirectional trajectory search

4.3.6.1 Control input time profile

Let the RRT tree in the replanning phase t ∈ [kTs , (k + 1)Ts] be T k and let tree

nodes T kp , T kq define a connected tree leaf T kp,q =
{(
zk1,p, z

k
4,p

) (
zk1,q, z

k
4,q

)}
, where

p, q ∈ [0 . . . NT k] and NT k total number of connected leafs. The proposed żk1,p,q

velocity profile can be expressed as:

żk1,p,q(τ) = żk1,p + z̈k1,p,q · τ , (4.26)

as linear acceleration phase in τ ∈ [T ks,p, T
k
s,p + T ka,p,q] with z̈k1,p,q and then moving

forward with a constant speed of:

żk1,p,q(τ) = żk1,q , (4.27)

in the interval τ ∈ [T ks,p+T ka,p,q, T
k
s,p+T kd,p,q]. For full control search capabilities the

acceleration/deceleration z̈k1,p,q is randomized enabling full longitudinal velocity

control. The acceleration period T ka,p,q is also randomized changing the width of

the trapezoidal velocity shape. The length of the T kp,q leaf depends also on the

randomized time interval T kd,p,q on which the velocity profile is applied. This is

particularly interesting if the vehicle has to circumvent obstacles and a finer, i.e.

smaller leaf length is needed for tree search. It is then evident that the total time

T ks,p up from the tree root to the node T kp depends on the history of profiles along

the previous connected nodes. In terms of achieving a goal position, the final time

4.3. MOTION PLANNING IN TRANSFORMED STATE SPACE 121

τ kf in k -th resample period is therefore left as a free parameter in the search.

The velocity ż1 can be expressed also as:

ż1(τ) = ẋ(τ) +
l

2
sin(θ(τ)) · θ̇(τ) . (4.28)

By approximating the motion along leaf T kp,q as straight-line motion, the acceler-

ation z̈k1,p,q is bound by:

‖z̈k1,p,q‖ = accmax · cos θkp,q , (4.29)

where accmax denotes the maximal vehicle acceleration. θkp,q is a constant ve-

hicle orientation along the T kp,q leaf, according to Eq. 4.2 and Eq. 4.4 where

z3,p,q(τ) = tan(θp,q(τ)), representing the slope of a RRT line segment. Constant

angle approximation is valid if the leaf length and therefore the interval sample

time T kd,p,q is small enough.

4.3.6.2 Potential collision areas with obstacles

To calculate possible prohibited collision regions for a leaf T kp,q with obstacles

i = 1, . . . , nko , time intervals τ ∈ [τ ki,p,q,1 , τ ki,p,q,2] must be calculated. If any of

τ ki,p,q,1 or τ ki,p,q,2 lies in interval τ ∈ [T ks,p, T
k
s,p+T

k
d,p,q] the i -th obstacle has a potential

collision course with the vehicle.

By combining Eq. 4.10 with velocity profiles of Eq. 4.26 and Eq. 4.27 the

following four zk1,p,q,1, zk1,p,q,2, zk1,p,q,3, zk1,p,q,4 potential bound positions are calculated

for each i -th obstacle. On the linear acceleration part of the velocity profile it is

obtained:

zk1,p,q,{1,2}(τ̃
k
i,p,q,{1,2}) = zk1,p + żk1,p · τ̃ ki,p,q,{1,2}

+z̈k1,p,q ·
(τ̃ ki,p,q,{1,2})

2

2
(4.30)

122 CHAPTER 4. MOTION PLANNING IN DYNAMIC ENVIRONMENTS

and on the constant part of the velocity profile:

zk1,p,q,{3,4}(τ̃
k
i,p,q,{3,4}) = zk1,p + żk1,p · T ka,p,q+

z̈k1,p,q ·
(Ta,p,q)

2

2
+
(
τ̃ ki,p,q,{3,4} − T ka,p,q

) · żk1,q . (4.31)

Calculating the collision avoidance interval bounds from Eq. 4.14 yields:

xki = zk1,p,q,{1,3}(τ̃
k
i,p,q,{1,3})− ri −R

xki = zk1,p,q,{2,4}(τ̃
k
i,p,q,{2,4}) +

l

2
+ ri +R . (4.32)

By solving Eq. 4.30 and 4.31 with Eq. 4.32, the collision time bounds for i -th

obstacle are obtained as:

τ ki,p,q,1 = min
{
τ̃ ki,p,q,1, τ̃

k
i,p,q,2

}
τ ki,p,q,2 = max

{
τ̃ ki,p,q,3, τ̃

k
i,p,q,4

}
, (4.33)

if any of the time bounds is within the interval τ ∈ [T ks,p, T
k
s,p+T kd,p,q]. Addition-

ally, if entry into collision with i -th obstacle was detected in an adjacent previous

leaf or before and no change is detected on the current leaf, the time bounds are

set to τ ki,p,q,1 = T ks,p and τ ki,p,q,2 = T ks,p + T kd,p,q.

As mentioned earlier, the vehicle angle θkp,q can be considered constant for small

leaf lengths (profiles). Since the leaf orientation is known in the search phase, the

collision interval bounds for z4 of Eq. 4.15 where any possible orientation was

assumed, can be less strict. If the i -th obstacle can potentially collide with the

4.3. MOTION PLANNING IN TRANSFORMED STATE SPACE 123

vehicle on the interval, it’s trace in the z4 − z1 plane is a parallelogram:

zk1,i,p,q,1 = z1(τ ki,p,q,1) , zk1,i,p,q,2 = z1(τ ki,p,q,2)

zk4,i,p,q,1 = yki + vki,yτ
k
i,p,q,1 − l

2
sin(θkp,q)− ri −R ,

zk4,i,p,q,2 = yki + vki,yτ
k
i,p,q,1 + l

2
sin(θkp,q) + ri +R ,

zk4,i,p,q,3 = yki + vki,yτ
k
i,p,q,2 − l

2
sin(θkp,q)− ri −R ,

zk4,i,p,q,4 = yki + vki,yτ
k
i,p,q,2 + l

2
sin(θkp,q) + ri +R ,

(4.34)

where zk1,i,p,q,1 and zk1,i,p,q,2 are calculated depending on the velocity profile of

Eq. 4.30 or 4.31.

4.3.6.3 Unidirectional RRT expansion

In Sec. 4.3.6.1 it was stated that four different parameters of each tree leaf T kp,q
are randomized, namely, velocity profile’s acceleration z̈k1,p,q, acceleration duration

T ka,p,q, total leaf sample time T kd,p,q and the orientation angle θkp,q. The first three

parameters are related to the longitudinal control search, whereas the orientation

angle is related to the steering control search. At each replanning sample instant

k a tree T k is grown from the current vehicle position zinit = (zk1 (0), zk4 (0)) to a

goal region U(zkgoal, z
k
1,goalmax

, zk4,goalmax) =
[
zk1 (τ kf)± z1,goalmax , z

k
4 (τ kf)± z4,goalmax

]
.

The subgoal position zkgoal is defined by higher level meta-planner based on global

scenario waypoints. zk1,goalmax and zk4,goalmax are subgoal region bounds dependent

on current vehicle velocity. The subgoal region is not bound to a single point,

because it might be too restrictive in some cases, e.g. when a vehicle in front is

just positioned ”on the subgoal”, therefore more maneuvering flexibility is given

to the vehicle on intermediate goals, whereas the final goal zgoal(Tf) is a point in

state space. The time to reach subgoal τ kf and the final time Tf for the whole run

are free parameters. Note that replanning must be started either at sample rate

Ts from the k -th interval or even before, if τ kf < Ts.

The trees are expanded through the EXTEND function in a random zrand direc-

124 CHAPTER 4. MOTION PLANNING IN DYNAMIC ENVIRONMENTS

RRT SEARCH(zinit, U(zgoal, z1,goalmax , z4,goalmax))
1 T .init(zinit);
2 for n = 1 to N do
3 znew ← EXTEND(T , zrand);
4 if not (znew = ∅) then
5 if(znew ∈ U) then
6 L ← L ∪ (znew, cost);
7 end
8 if not L = ∅ then
9 return MIN PATH(T);
10 else return Failure;

EXTEND(T , z)
1 znear ← NEAREST NEIGHBOR(z,T);
2 znew ← NEW STATE(z, znear);
3 if not (znew = ∅) then
4 T ← T ∪ znew;
5 return znew;
6 else return ∅;

Table 4.2: Unidirectional RRT search in the z4 − z1 space.

tion from the nearest znear point on the tree obtained by NEAREST NEIGHBOR

function. An increment from znear along the z1 axis is based on the randomized

velocity profile (Sec. 4.3.6.1). The possible new state is tested for collision against

all obstacles in the NEW STATE.

A list L of final nodes that reached the goal region is kept separately. The

node with minimum cost and its backpointers form the final RRT path, which is

a polyline. The cost of a single node Tp on the list L is pondered as:

Γ(Tp) = ωtime · Γtime(Tp) + ωθdiff · Γθdiff (Tp) (4.35)

where Γtime is the total time cost from the k-th resample time and Γθdiff the

total absolute orientation change of the vehicle along the path to Tp that should

4.3. MOTION PLANNING IN TRANSFORMED STATE SPACE 125

be minimized.

As in the case of Sec. 4.3.5 the RRT polyline represents the control points z4 =

B(z1) of the spline polygon with the z1 coordinate sampled at Greville abscissae

(Eq. 4.18), from which the final B-spline robot trajectory can be determined.

4.3.6.4 Simulation results in an dynamic urban scenario environment

The Smart Car simulator used in the results of this section was developed in

MatLab. It reproduces a simple 2D urban-like environment (approximately 800

m x 800 m) with parked and moving cars, buses, trucks, and people, buildings,

walls, streets, and trees. Using the simulator one may reproduce the 2D kinematic

behavior of a car-like vehicle. In simulator all environment static and dynamic

features are represented by lines and/or arcs. The sensor data are extracted from

the environment based on its geometrical description and used as input data for

the algorithms. The simulator uses the global position of the Smart Car in the

environment for selecting a feature-window that contains all lines and/or arcs close

to the vehicle according to the exteroceptive sensor measurement. The Dijkstra

algorithm [Dijkstra, 1959] is used for calculating the shortest global path by tak-

ing into account the right-hand traffic convention. A sequence of intermediate

positions from the vehicle’s initial position to the goal is thus generated.

Sequences in Fig. 4.4, 4.5 and 4.6 show different scenarios with intersection

crossing of the vehicle (waiting for other vehicles to pass by), speeding up in free

space area and slowing down while approaching slowly moving vehicles, respec-

tively. The RRT search is shown in Fig. 4.4(b), 4.5(b) and 4.6(b) with potential

collision obstacle traces and the B-spline final trajectory which is obstacle free.The

vehicle commands, i.e. the speed and the steering angle, are shown in Fig. 4.4(c),

4.5(c) and 4.6(c). Vehicle specifications are: max. speed vmax = 10m/sec, max.

steering angle φmax = 0.4rad, max. acceleration accmax = 1.5m/sec2, the RRT

leaf randomized time interval Td,p,q ∈ [1, 2] sec and global planning sample rate of

Ts = 2sec. The RRT structure is built incrementally, so the obstacle traces drawn

126 CHAPTER 4. MOTION PLANNING IN DYNAMIC ENVIRONMENTS

are valid only for one path variant. In Fig. 4.4(b) it can be seen that the only

obstacle trace within the search area (defined by the sensor range) is the one of

the up most vehicle moving down, whereas the other moving vehicles have already

passed by the time the ego-vehicle reaches the collision zone. In the particular

case, there was no solution found to drive into the intersection before the other

vehicles due to the acceleration limits. In Fig. 4.6(b) there is no trace of the

obstacle in the front shown, since it is already gone from the search area by the

time the ego-vehicle reaches the subgoal position. However, the ego-vehicle is still

slowed down as a result of search for a feasible trajectory.

In summary, this section presents a motion planning algorithm for a nonholo-

nomic car-like platform in dynamic environments with linearly moving obstacles.

The potential collision check is performed in transformed space where time com-

ponent is resolved in a criterion based on relative vehicle to obstacle motion. In

consequence, generating a feasible path is a geometric search which is performed

here using unidirectional RRT expansion. Final smooth trajectory is obtained us-

ing B-spline interpolation. The approach enables full control of a vehicle both in

terms of longitudinal and rotational velocity (i.e. speed and steering). Simulation

results are provided for a dynamic urban traffic scenario.

4.3. MOTION PLANNING IN TRANSFORMED STATE SPACE 127

(a) Urban environment.

(b) Vehicle trajectory search and obstacle traces.

(c) Vehicle speed and steering angle.

Figure 4.4: Ego-vehicle intersection crossing with automatic waiting for vehicles to
pass.

128 CHAPTER 4. MOTION PLANNING IN DYNAMIC ENVIRONMENTS

(a) Urban environment.

(b) Vehicle trajectory search and obstacle traces.

(c) Vehicle speed and steering angle.

Figure 4.5: Ego-vehicle accelerating to nominal speed in free space area.

4.3. MOTION PLANNING IN TRANSFORMED STATE SPACE 129

(a) Urban environment.

(b) Vehicle trajectory search and obstacle traces.

(c) Vehicle speed and steering angle.

Figure 4.6: Ego-vehicle decelerating after approaching slowly moving vehicles.

130 CHAPTER 4. MOTION PLANNING IN DYNAMIC ENVIRONMENTS

4.4 Motion planning in trajectory space

4.4.1 Introduction

The motion planning analyzed in this section is part of a larger navigation scheme

oriented towards autonomous vehicle driving in dynamic urban environments with

a particular focus on the motion safety issue.

The deliberative part of the architecture features two key modules working

together in a hierarchical fashion: the Route Planner (global waypoints level) and

the Partial Motion Planner (trajectory level).

The purpose of the Route Planner is to provide the Partial Motion Planner

with a valid route towards a given goal. A route can be vary from a set of

global waypoints (checkpoints) to visit or can be comprised of a geometric path

augmented with additional information based on the structure of the environment

considered. Such a route should comply with the standard regulations for vehicles

driving in a urban setting. This means that factors such as speed limits and stop

signs should be taken into account. The Route Planner will be presented in more

detail in Sec. 6.2 and 6.3.

Suffice to say at this point that the output of the Route Planner module

consists of a list of configurations, i.e. waypoints Qg = {q1
g , · · · , qNgg } that the

vehicle should reach. These configurations are passed on to the Partial Motion

Planner which takes care of all the details of the actual driving. It relies upon the

route, obstacle information, i.e. the local vehicle’s environment (with up to date

information about the fixed and the moving objects) in order to determine the

next motion command to apply to the vehicle.

As the name suggests, a Partial Motion Planning scheme is used [Petti and

Fraichard, 2005], [Macek et al., 2006], [Macek et al., 2008b] in order to:

• take into account the decision time constraint imposed by dynamic environ-

ments;

4.4. MOTION PLANNING IN TRAJECTORY SPACE 131

Figure 4.7: Partial motion planning iterative scheme.

• search for a feasible trajectory given the current vehicle’s environment infor-

mation;

• improve convergence towards the desired goal configuration.

4.4.2 Partial Motion Planning

As mentioned in the introduction (Sec. 4.4.1) the Partial Motion Planner (PMP) is

the core navigational module of the deliberate navigation architecture for dynamic

132 CHAPTER 4. MOTION PLANNING IN DYNAMIC ENVIRONMENTS

urban scenarios.

Its primary purpose is to determine the motion command u that is sent to

the vehicle controller at every time cycle. The motion command u must meet the

following requirements:

• Feasibility: it must take into account the dynamic constraints of the vehicle;

• Goal Convergence: it must eventually drive the vehicle towards the desired

goal;

• Safety: it must ensure the safety of the vehicle, ie its ability to avoid colli-

sions.

According to the motion time constraints introducted in Sec. 4.2 PMP operates

iteratively within the decision time constraint Td which is determined primary by

the environment dynamicity (in an environment featuring moving objects, you

have a limited time only to decide upon your future course of action otherwise

you run the risk of being hit by a moving object).

To determine u, PMP (as the name suggests) applies the Partial Motion Plan-

ning principle [Petti and Fraichard, 2005]: it tries to make the best possible use

of the decision time Td available by computing a partial motion towards the goal.

To that end, a diffusion technique is used to explore the state×time space of the

vehicle and determine a partial motion π that is used during the next time cycle

to drive the vehicle towards its goal.

Fig. 4.7 illustrates how PMP operates. Let tk denote the current time instant

and the beginning of the kth PMP cycle. The previous PMP cycle has computed

the partial motion π(tk−1) that starts at time tk. The kth PMP cycle then has to

compute π(tk) that will start at time tk+1 = tk +Td. The process is repeated until

the goal is reached.

At every cycle, PMP takes as input an updated model of the environment that

comprises:

4.4. MOTION PLANNING IN TRAJECTORY SPACE 133

• the route computed by the Route Planner, ie the list Qg = {q1
g , · · · , qNgg }

and the corresponding constraints ci, i = 1 · · ·Ng (cf Sec. 6.3),

• a list Os of static objects: it is assumed that the static part of the environ-

ment is known from the road network structure and is described by a list of

forbidden regions represented by closed polygons;

• a list Od of dynamic objects: one fundamental task of the World Modelling

module is to provide PMP with an updated model of the environment of the

vehicle at every time cycle. PMP must know what are the moving objects

present in the environment and, most important, what their future behavior

will be. To that end, the World Modelling module features a Prediction mod-

ule whose purpose is to estimate the future behavior of the moving objects.

It is assumed that the prediction is valid over a given prediction horizon of

duration Tp. The moving objects are described by a list of forbidden regions

whose position varies over time. Their shape is modelled by rectangular

bounding boxes which is suitable for vehicles and pedestrians alike (more

general shapes could be used). The notation Od(t) is used to indicated the

fact that their position varies over time.

Each partial motion π computed respects the dynamic constraints of the vehicle

considered thus meeting the Feasibility requirement.

By nature, PMP aims at maximizing the lookahead of the navigation process

(the exploration of the future is carried out as far as possible given the decision

time Td available). In our opinion, this is one way to meet the Goal Convergence

requirement.

Finally, each partial motion π computed will be safe in a predefined way (for

instance, it will be guaranteed that the vehicle always have the possibility to

brake down and stop before a collision occurs). This is the answer to the Safety

requirement.

134 CHAPTER 4. MOTION PLANNING IN DYNAMIC ENVIRONMENTS

4.4.3 Diffusion Technique

The exploration phase of motion planning is based on an incremental search in the

trajectory-space of the ego-vehicle. The resulting final trajectory from the starting

to the goal configuration is a concatenation of trajectory chunks stemming from

the ego-vehicle state branching and transitions in the exploration phase. These

trajectory chunks can be understood as motion primitives of a single incremental

search step. In principle, there are many possible transitions from a single state

that are limited only by kino-dynamic characteristics of the vehicle and the con-

figuration space obstacle motions. The transitions that were explored in a single

incremental step can be branched further in the step, resulting in the exponential

increase of possible states/transitions in an undirected search. Therefore, special

attention must be payed on how the search and branching of possible states can

be directed toward the goal objective.

Regarding the partial motion ie, the trajectory, that is to be computed for

the vehicle it can be described as a single parametric curve, eg polynomial or

spline curve, or a concatenation of several geometrical primitives such as arcs

or clothoids. In the case of this presented trajectory diffusion here, the chunks

of trajectory primitives are defined by the kinematic level velocity profiles. For

instance, for a Ackermann vehicle the longitudinal and rotational velocity can be

described by chunks of trapezoidal or triangular time profiles, where the rotational

velocity profile is related to the steering wheel angle, since the kinematic vehicle

model is described by the Ackermann model:

ẋ = cos θ vl , ẏ = sin θvl , θ̇ =
vl
L

tanφ , (4.36)

with {x, y, θ} being the robot pose and {vl, φ} the longitudinal velocity and

steering angle. Therefore the full vehicle state at the beginning of the current

4.4. MOTION PLANNING IN TRAJECTORY SPACE 135

replanning cycle tk can be described as:

s(tk) = {x(tk), y(tk), θ(tk), vl(tk), φ(tk)} (4.37)

The dynamic update of the system can be described in the discrete general

form:

ṡ(tk) = f(s(tk), u(tk−1)) (4.38)

where the dynamic level control input vector u is the longitudinal acceleration

v̇l(tk−1) and the steering rate θ̇(tk−1). The dynamic update function f encapsulates

the dynamic model of the vehicle which can also include inertia and physical forces

acting on the vehicle itself (emulated by ODE numeric integration).

If a low-level control is implemented separately (cascade control) which handles

directly the actuators of the vehicle, ie gas pedal (longitudinal acceleration v̇l)

and steering wheel torque (steering rate θ̇), the system function f represents the

closed-loop response of the vehicle with low-level control. Therefore, the actual

commands issued from the Partial Motion Planning level are the kinematic level

control reference values:

u = {vl,ref , φref} (4.39)

whose time profile changes are limited by v̇l,max and φ̇max. In turn, this means

that the control vector u needed for low-level control is derived directly from

the planned trajectory since each vehicle configuration (state) on the trajectory

represents not only the pose of the vehicle but also the kinematic control inputs,

i.e. the steering angle and longitudinal velocity, according to Eq. 4.37.

In order to deliver a valid trajectory plan πk at the end of the planning cycle k

of duration Td (based on the Partial Motion iterative scheme depicted in Fig. 4.7),

the best feasible trajectory must represent vehicle motion at least of duration Te,

which is the execution cycle of the trajectory controller. Here it is assumed that

Td = Te. Using a single kinematic level steering and velocity profile for the whole

136 CHAPTER 4. MOTION PLANNING IN DYNAMIC ENVIRONMENTS

duration of Td would generate trajectories that lack enough complexity to find

a feasible free space solution in a complex dynamic scene. Therefore, as already

mentioned earlier, the trajectory consist of smaller trajectory primitive chunks

each of duration Th, the branching time. The whole exploration structure grows

as a tree, where each node represents a vehicle state and the transitions between

states are governed by the control inputs of Eq. 4.39.

The motion exploration phase starts with the current vehicle state s(tk) and the

control trajectory from the previous cycle πk−1, the goal configuration(s) Qg,the

set of dynamic obstacles Od(t) and static obstacles Os. Firstly, the current state

of the vehicle s(tk) is simulated to the beginning of the next execution cycle state

s(tk+1), according to the current available trajectory πk−1. Then, the trajectory

exploration phase starts as new states are inserted into the search tree T . The

available decision time for exploration is of duration Td, after which a valid trajec-

tory is given, if there exists a winning tree branch node that is at least a Te time

in the future with respect to the tree root node.

The whole diffusion process is depicted in Fig. 4.8. The node states being

explored for the next execution cycle k + 1 are a time t
(n)
k+1 = tk+1 + nTh further

in the future than the root node state s(tk+1), where n is a particular node’s

tree depth and the Th the branching time. The global index k + 1 represents the

execution cycle k+1, whereas the resultant trajectory πk at the end of exploration

is referenced to cycle k in which it was computed. The transition between states

s(t
(n−1)
k+1) and s(t

(n)
k+1) is governed by control inputs u(t

(n−1)
k+1 , t

(n)
k+1).

The pseudocode of trajectory diffusion is listed in Tab. 4.3. Firstly, the newly

formed tree T is initialized by its root node τroot, where the information contained

in each node is of the form:

τ = {s, u, wτ ,tτ , n} (4.40)

The s represents the state of the vehicle, u the reference input that induced the

state s, wτ the overall cost to reach the node τ, tτ the cumulative time with respect

4.4. MOTION PLANNING IN TRAJECTORY SPACE 137

to the root of the tree T and n the node depth within the tree. Therefore, τroot

contains the predicted state s(tk+1) (PREDICT STATE) for the given control

trajectory πk−1 from the previous navigation cycle and zeroed cost, cumulative

time and tree depth. The state prediction for the root node is necessary due

to the fact that the currently computed trajectory π(k) will be available only at

the end of the current navigation cycle. The L1 contains all the nodes that are

appended to the current tree depth dT . The overall computation time ts can only

be within the Td span (Tab. 4.3. L5).

There are three node expansion methods implemented in the randomized

scheme, inspired by the tree growing techniques of a RRT (“Rapidly-Exploring

Random Tree”) [LaValle and Kuffner Jr., 2001]:

1. randomized exploration: expansion towards a random configuration in the

environment - qrand (Tab. 4.3. L9-L13);

2. greedy goal search: expansion towards a goal configuration - qgoal (Tab. 4.3. L14-

L18);

3. randomized control input : extension from a given tree node (state) using a

randomized control input - urand (Tab. 4.3. L19-L23).

These cases are depicted further in Fig. 4.8. In case 1, the predicted state

s(tk+1) is expanded towards a random configuration qrand in the workspace (s1(t
(1)
k+1)),

whereas in case 2 the tree T is expanded towards the goal configuration qgoal

(s2(t
(1)
k+1)). In both cases the function EXTEND STATE SPACE first finds the

node τnear in the tree T which is the closest to the chosen configuration accord-

ing to a predefined distance metrics and than chooses the nearest feasible com-

mand with NEAREST COMMAND function. The case 3 represents the direct

search in the control space of currently kino-dynamically feasible commands with

RAND COM SPACE (s3(t
(1)
k+1)).

If the set of available control inputs is appropriately sized also the exhaus-

tive trajectory space search can be performed on the level of the whole planner

138 CHAPTER 4. MOTION PLANNING IN DYNAMIC ENVIRONMENTS

PMP SEARCH(s(tk), π(tk−1), Qg, Od(t), Os,Td)
1 ts=0.0, dT=0;
2 s(tk+1) ← PREDICT STATE(s(tk), π(tk−1));
3 τroot.init(s(tk+1), u(tk−1), 0.0, 0.0, dT);
4 T .init(τroot), L1.init(τroot), L2=∅, τ?=∅;
5 while ts ≤ Td do
6 for n=1 to |L1|
7 τext ← L1.pop();
8 p ← RAND();
9 if (p < T .pr)
10 qrandg ← RAND STATE SPACE(Os);
11 τnew ← EXTEND STATE SPACE(qrandg ,. . .);
12 if not (τnew = ∅) then
13 INSERT WITH COST(τnew, Qg, T , L2, dT , τ?);
14 if (T .pr ≤ p < T .pr + T .pg)
15 qrandg ← RAND SELECT(Qg);
16 τnew ← EXTEND STATE SPACE(qrandg ,. . .);
17 if not (τnew = ∅) then
18 INSERT WITH COST(τnew, Qg, T , L2, dT , τ?);
19 else
20 urand ← RAND COM SPACE(u(tk−1));
21 τnew ← EXPAND COM SPACE(τext, urand,. . .);
22 if not (τnew = ∅) then
23 INSERT WITH COST(τnew, Qg, T , L2, dT , τ?);
24 end
25 dT=dT+1;
26 swap(L1, L2);
27 UpdateTime(ts);
28 end
29 if not τ? = ∅ then
30 return PATH(T , τ?);
31 else return failure;

Table 4.3: Diffusion process of the Partial Motion Planner I.

tree. Such a case would for instance be that from each state node the current

steering angle and steering left or right based on the steering rate parameter is

performed for the duration of the arc primitive. This is a special case of the

randomized control input in Tab. 4.3. L19-L23, where the whole available set of

controls is explored, not only a randomly selected subsample. However, whereas

4.4. MOTION PLANNING IN TRAJECTORY SPACE 139

EXTEND COM SPACE(τ, u, Od, Os)
33 τnew ← EXTEND WITH SAFETY CHECK(τ, u,Od, Os);
34 if not (τnew==∅) then
35 τnew.n=τ.n+1;
36 T ← T ∪ τnew;
37 return τnew;
38 else return ∅;

EXTEND STATE SPACE(qg, T , Od, Os)
39 τnear ← NEAREST NEIGHBOR(qg, T);
40 unear ← NEAREST COMMAND(τnear, qg);
41 return EXTEND COM SPACE(τnear, Od, Os);

INSERT WITH COST(τ, Qg, T , L, dT , τ?)
42 COMPUTE COST(τ, Qg, τ?);
43 T ← T ∪ τ;
44 if (τ.n==dT+1) then
45L.push(τnew);

Table 4.4: Diffusion process of the Partial Motion Planner II.

the randomized control set can be arbitrarily finely discretized/large in the sense

of control samples, the exhaustive expansion case is bound to a small set of control

commands in order to keep the computation tractable.

For all the possible expansion methods, the newly obtained nodes/states and

the trajectory primitives that connect them to their predecessor nodes in the tree

have to be checked for collision against all the dynamic and static obstacles. This

is done by discretizing the generated connecting trajectory primitives according to

the state equation Eq. 4.37 in time and verifying possible polygonal intersections

that could occur between the ego-vehicle and obstacles intermediate configurations

in the EXTEND WITH SAFETY CHECK (Tab. 4.4. L33), ie no configuration

along a state transition should induce a collision and the vehicle must be able to

140 CHAPTER 4. MOTION PLANNING IN DYNAMIC ENVIRONMENTS

come to a full-stop without collision following the expanded node (further details

safety issues will be given in Sec. 4.5). In Fig. 4.8 this is depicted by the example

of the break-state s3(t
(1)
k+1 +Tb) originating from state s3(t

(1)
k+1), where the collision-

check test is performed for the duration of the breaking maneuver. The brake time

Tb is related to the dynamic capabilities of the vehicle, ie max linear deceleration

v̇l,decc:

Tb =
vl

v̇l,decc
(4.41)

where the longitudinal velocity depends on each given state, in this case s3(t
(1)
k+1 +

Tb).

As already mentioned, the diffusion process computation is limited to ts ≤ Td,

where at each new computational increment another layer of nodes is added to

the tree T . However, the final depth of T is upper bounded only with the motion

planning horizon Tm beyond the motion plan is considered too uncertain to be

further explored. (cf Sec. 4.2).

Regarding the goal search, ie finding a trajectory towards a goal configuration,

there are three approaches distinguished here:

1. waypoint following : the current set of waypoints Qgis the next topological

node to reach in the environment (see Sec.6.3), such as an intersection, route

crossing, lane changing waypoint, etc.;

2. route following : the current set of waypointsQgis a collection of intermediate

configurations, which together describe a route between topological nodes.

3. global navigation function: the cost to the next global waypoint is an inter-

polated navigation function that can be used as a goal cost metric.

In case 1 the cost function of a node to determine the best trajectory is based

on a distance metric ‖s̃−{qg, cq} ‖ between the goal waypoint with its constraints

and the last state s̃ on a trajectory:

wτ (s̃) = αg · ‖s̃− {qg, cq} ‖+ αt · tτ (s̃) (4.42)

4.4. MOTION PLANNING IN TRAJECTORY SPACE 141

αg and αt are the weighting factors between minimizing the distance to the

waypoint and minimizing the cumulative time tτ (s̃) to reach it, respectively. The

distance metric can be a simple Euclidean distance between the goal waypoint

and the node. However, to obtain a metric that takes into account also the non-

holonomic constraints of the vehicle, the Continuous Curvature Path length which

is comprised of line segments, circular arcs, and clothoids is used as the distance

metric [Fraichard and Asama, 2004a]. The advantage of using such metric over

the simple Euclidean distance is that the such paths are generated with continu-

ous, upper-bounded curvature and upper-bounded curvature derivative which can

be set directly as parameters relating to the maximum steering angle and steer-

ing rate, respectively, of the ego-vehicle. Therefore, given a node and waypoint

configuration it will appropriately estimate the non-holonomic distance.

In case 2 there is more information available based on the environment struc-

ture, in the form of a route. These geometrical configurations can be followed

with a type of path following technique, with the possibility of deviating from the

route based on the tree structure, if the dynamic obstacles trajectories require such

evasive maneuvers. However, in the absence of dynamic obstacles Od and proper

route definition according to the a-priori knowledge of static obstacles Os, the ve-

hicle should follow the route as close as possible. Assuming that a path following

controller (implementation details on the controller can be found in [Solea and

Nunes, 2006], [Macek et al., 2008a]) computes an error function E which describes

the discrepancy between a particular vehicle state s and the route Qg, then the

cost of a node can be computed in the error terms as:

wτ (s̃) =

Ns̃∑
j=1

‖E(sj,Qg)‖ (4.43)

where the set of discretized states {sj=1 = s(k + 1) . . . sj . . . sNs̃ = s̃} with the

associated arcs a forms a trajectory π̃. The cost calculation step is performed

in the INSERT WITH COST function (Tab. 4.4. L42-L45). The best trajectory

142 CHAPTER 4. MOTION PLANNING IN DYNAMIC ENVIRONMENTS

π? = π(k) which will be applied in the next navigation cycle can be therefore

determined from node τ? with minimum overall cost wτ , iff τ? 6= ∅.

The case 3 provides the connectivity to the goal configuration/waypoint in

form of a navigation function that can describe different costs to goal and are

typically computed in off-line fashion. Two interesting cases include performing

dynamic programming in 2-D grid on the a-priori static environment, ignoring the

non-holonomic constraints of the vehicle [Montemerlo et al., 2008b]. The resul-

tant navigation function, resembling a potential field represents the cost-to-goal

as Euclidean distance metrics that also takes into account the local obstacle con-

figuration. An off-line technique described in [Maxim Likhachev, 2008] computes

the time optimal cost to a goal configuration for each cell of a grid of discrete

vehicle configurations. This so-called lattice-based planning is particularly inter-

esting since it already includes the non-holonomic vehicle constraints in the cost

function, as well as the dynamics of the longitudinal and rotational velocity profile

and the static obstacle configuration of the environment.

4.4. MOTION PLANNING IN TRAJECTORY SPACE 143

��
��
��

��
��
��qgoal

qrand

π(tk)

π(tk−1)

s3(t
(1)
k+1)

s2(t
(1)
k+1)

s1(t
(1)
k+1)

s3(t
(1)
k+1 + Tb)

s̃(t
(n)
k+1) = s⋆

s(tk+1) = s(t
(0)
k+1)

Od(t
(0)
k+1)Od(t

(1)
k+1 + Tb)

s(tk)

u3(t
(0)
k+1, t

(1)
k+1)

u2(t
(0)
k+1, t

(1)
k+1)

u1(t
(0)
k+1, t

(1)
k+1)

Figure 4.8: Trajectory diffusion with individual node expansion among dynamic obsta-
cles. At the beginning of the replanning cycle at time tk, the vehicle state is simulated
according to the plan πk−1 available from previous cycle k − 1, from state sk to the
initial state sk+1. Only at the end of cycle k is the new plan πk available for execution.
The new trajectory πk consists of trajectory primitives concatenation up to the winning
node s̃

(n)
k+1, where n denotes the tree depth expansion and t

(n)
k+1 = tk+1 + nTh, where

Th is the expansion duration of a single trajectory primitive. t
(n)
k+1 ≥ Te, where Te is

the execution time of the low-level trajectory controller.

144 CHAPTER 4. MOTION PLANNING IN DYNAMIC ENVIRONMENTS

4.5 Safety Issues

The purpose of this section is to explore the safety issues related to the proposed

navigation scheme with trajectory space search.

The diffusion technique presented in Sec. 4.4.3 aims at building a tree embed-

ded in the state×time space of the system R and to extract from this tree a partial

motion π that is used during the next time cycle to drive the system towards its

goal.

The concept of Inevitable Collision State (ICS)1 [Fraichard and Asama, 2004b]

and the motion safety criteria introduced in [Fraichard, 2007] show that it does

not suffice that each partial motion π be collision-free to ensure the safety of R.

From a theoretical point of view, the safety of R is guaranteed if and only each

π is ICS-free up to the time Td (that corresponds to the initial state of the partial

motion that is to be computed at the next navigation cycle), because then, at the

next navigation cycle, the navigation module always has a safe evasive maneuver

available.

Now, checking whether a given state of π is an ICS or not requires in theory the

full knowledge of the environment of R and its future evolution, ie the knowledge

of the space-time W × [0,∞). In practice however, one has to deal with the

sensors’ limited field of views and the elusive nature of the future. Knowledge

about the environment of R is thus limited both spatially and temporally : it is

limited to Wp × [0, Tp] where Wp ⊂ W denotes the subset of the environment

which is perceived and Tp the prediction horizon.

To further ensure safety with respect to the objects that lie outside of Wp, its

boundary is treated in a manner similar to [Fraichard and Asama, 2004b] or [Alami

et al., 02] as a potentially moving object whose motion direction is unknown but

whose velocity is upper-bounded.

Wp× [0, Tp] and the objects within, fixed and moving, yields in the state×time

space of R a set of ICS which is only an approximation of the true set of ICS

1A state is an ICS iff a collision eventually occurs no matter how R moves.

4.5. SAFETY ISSUES 145

generated by W× [0, Tp].

This is the very reason why it is impossible to guarantee an absolute level of

safety (absolute in the sense that it can be guaranteed that R will never end up

in an ICS and therefore crash eventually).

This intrinsic impossibility compels us to settle for weaker levels of safety. Al-

though weaker, the important thing is that such levels of safety will be guaranteed

given the information that R knows about its environment, ie given Wp × [0, Tp].

We have explored two different levels of safety, they are detailed in the next two

sections.

4.5.1 Safety Level #1

The first safety level we have looked to enforce is the one which guarantees that

if a collision should ever occur, R will be at rest. In other words, if a collision is

inevitable, it can be guaranteed that R always have the possibility to brake down

and stop before the collision occurs. Such a safety level is a form of passive safety

in the sense that R will never actively collide with an object. It is henceforth

called Passive Safety and denoted by PS.

Under PS, a state s is considered as being safe iff there exists at least one

braking maneuver starting at s which is collision-free until the time where R has

stopped. PS yields the following definition for a safe state:

Def. 1 (Passive Safety). a state s is safe under PS (or p-safe) iff there exists

at least one braking maneuver starting at s and collision-free until Tb, with Tb the

time where R is at rest (the braking time).

In practice, the function EXTEND.WITH.SAFETY.CHECK (cf Tab. 4.3)

samples a finite and discrete set of braking maneuvers and checks them for colli-

sion againstWp× [0, Tp]. If one collision-free maneuver exists the state considered

is labeled as p-safe and unsafe otherwise.

146 CHAPTER 4. MOTION PLANNING IN DYNAMIC ENVIRONMENTS

4.5.2 Safety Level #2

In a way, PS leaves a part of the collision-avoidance burden to other objects.

In certain situations however, this may be unsatisfactory: R may for instance

decide to move on a railway track to reach its goal because, under PS, it is safe

to do so (indeed R would have the time to stop before being hit by the train).

Unfortunately, the train in spite of its best efforts may not be able to avoid crashing

into R because of its own dynamics.

In an environment where the moving objects are assumed to be friendly, ie

seeking to avoid collisions, and for which a certain knowledge about their dynamic

properties is available, it can be desirable to enforce a stronger level of safety. This

second safety level guarantees that, should a collision ever occur, R will be at rest

and the colliding object would have had the time to slow down and stop before the

collision had it wanted to. This safety level is henceforth called Passive Friendly

Safety and is denoted PFS. It yields the following definition for a safe state:

Def. 2 (Passive Friendly Safety). a state s is safe under PFS (or pf-safe)

iff there exists at least one braking maneuver starting at s and collision-free until

Tb + Tob, with Tb the braking time of R, and Tob the maximum braking time of the

moving objects present in the environment.

The conservative nature of Def. 2 should be noted. It is possible in practice to

refine it in order for example to take into account the dynamics of the particular

moving objects that would collide with R when it follows a particular braking

maneuver. For the time being, Def. 2 is left as is.

Other safety levels could be proposed. The ultimate one of course is to deter-

mine safety with respect to the set of ICS which is defined by Wp× [0, Tp]. Given

the complexity of characterizing this ICS set, Passive Safety and Passive Friendly

Safety constitutes interesting alternatives in the sense that they can be computed

efficiently and provide an adequate level of safety.

4.5. SAFETY ISSUES 147

4.5.3 Simulation results

In order to analyze the collision checking of the motion planning scheme based

on the described trajectory diffusion of Sec. 4.4.3 and the safety level defined

as Passive Safety of Sec. 4.5, the Fig. 4.9 represents a snapshot of the vehicle

environment whereas the Fig. 4.10 represents the the trajectory diffusion process

of the Partial Motion Planner (PMP) with included safety checking with braking

maneuvers.

According to the Fig. 4.8 the PMP trajectory diffusion starts at the root of the

tree structure which is then grown according to a particular expansion technique.

In the case of Fig. 4.10, the expansion method applied is the exhaustive search, i.e.

each tree node is expanded according to the full set of control inputs. The steering

control input includes in this case {steer left, keep current steering, steer right},
with respect to the maximum steering rate and the duration expansion of a single

trajectory arc (primitive). The longitudinal velocity of the vehicle is simulated

as a maximum setpoint. The vehicle starts accelerating from the tree root un-

til it achieves the maximum setpoint velocity, which can be seen from different

trajectory arc lengths connecting the expansion nodes. Note, that this is just a

depiction of a particular case of vehicle starting from a stop, whereas at the next

replanning cycle the tree root state would already describe at a certain non-zero

longitudinal velocity.

Different levels of the tree expansion (depths) are clearly visible as the delim-

iting space between each arc is an expansion node. The tree expansion is governed

by the goal target as well as the static environmental configuration and the dy-

namic object traces, expanding only in dynamically available free space. The

current best overall trajectory in accordance with the metric defined with respect

to goal objective (in this case placed in the lane leading to the right of to the

vehicle) is a concatenation of all the collision free trajectory primitives from the

tree root (depicted magenta). In this case, the vehicle has already traversed a part

of the best trajectory within the current cycle k of duration Td. In parallel to the

148 CHAPTER 4. MOTION PLANNING IN DYNAMIC ENVIRONMENTS

Figure 4.9: Trajectory diffusion and safety checking with braking maneuvers (scene
view).

Figure 4.10: Trajectory diffusion and safety checking with braking maneuvers (naviga-
tion view).

vehicle execution controller, the motion planner is already exploring the solution

for the next cycle tk+1, which will be available at the end of the cycle k as πk. In

fact, according to time index notation in Sec. 4.4.3, the depicted tree in Fig. 4.10

is from the previous exploration cycle k−1 and the best trajectory being executed

is πk−1.

4.5. SAFETY ISSUES 149

Each trajectory primitive is checked against collision at a discretized set of

trajectory points describing a particular vehicle configuration in time. Time is

given in the absolute frame, since the motion of dynamic objects is also described

for future time instances. The trajectory primitives that are completely void of

collisions (whether static environment or dynamic objects) as marked green in this

case. If a trajectory primitive expanding from a node leads to a colliding vehicle

configuration it is prohibited (depicted red).

However, as described in Sec. 4.5 on safety issues the collision check only on

the trajectory primitive itself is not enough. According to the definition of Pas-

sive Safety, a particular trajectory primitive from an expansion node is deemed

passively safe only if a braking maneuver following from the end of the trajectory

would enable the vehicle to come to a full stop. Therefore, for instance some trajec-

tory expansions in Fig 4.10 in the center of the intersection are passively safe, since

they are followed with non-colliding breaking maneuvers (depicted cyan), others

however are prohibited, since they wouldn’t allow for the vehicle to stop before

hitting the lane borders (depicted blue). Note, that different braking maneuvers

could be considered, in this case, they simulated maximum braking capability of

the vehicle while maintaining the current steering angle.

At this stage of development, more involved safety levels such as Passive

Friendly Safety of Sec. 4.5.2 were not explored, mainly due to the fact that simu-

lating such events would imply that all the dynamic objects considered would have

to react actively to changes in the environment, in a sense distributing the motion

planning problem among all the dynamic objects involved. However, given a dy-

namic object motion prediction that would also include their potential dynamic

limits, such as braking capabilities could straightforwardly be included in the tra-

jectory diffusion of the ego-vehicle as. Instead of collision checking at the end of

each trajectory primitive for Tb braking time of the vehicle, it would also have

to include the braking maneuver of the dynamic object for the total conservative

duration of Tb + Tob as mentioned earlier.

150 CHAPTER 4. MOTION PLANNING IN DYNAMIC ENVIRONMENTS

The proposed motion planning technique in trajectory space as described here

was applied successfully to the problem of autonomous vehicle navigation in urban

dynamic scenarios, the results of which will be presented in more detail in Chap. 6.

4.6 Conclusion

When considering the autonomous vehicle navigation in presence of dynamic ob-

stacles, the synchronization between the obstacle motion prediction, motion plan-

ning and execution is of key importance. This chapter analyzed the key time

constraints imposed on the navigation scheme.

Second important element is the exploration of possible feasible motions which

was approached here in transformed state space in Sec. 4.3 and direct trajectory

space of the vehicle and obstacle motion in Sec. 4.4. Both navigation schemes have

in common that the best feasible trajectory that defines the future vehicle motion

is build in an incremental fashion using various possible trajectory primitives that

define the transitions between two vehicle states. The trajectory primitives must

both comply to the kino-dynamic constraints of vehicle motion as well as be colli-

sion free. The underlying container structure present in both navigation schemes

was a tree of trajectory primitives starting from the starting vehicle state node

at each replanning cycle whereas the branching conditions (explorations) varied

according to a particular implementation.

The key overall paradigm to the problem of motion planning applied here was

the Partial Motion Planning approach which at each cycle receives the information

about the future dynamic obstacle motions, extrapolates the state of the ego-

system to the next replanning cycle according to the current trajectory solution

and then explores a new feasible trajectory until the decision time of the planner

is exhausted.

Due to the vehicle and dynamic obstacle inertia it is not sufficient to check for

possible obstacle collisions only for a particular state of the ego-vehicle but rather

4.6. CONCLUSION 151

it has to be assured that the system will be able to avoid collisions also at all

future times. The condition on avoiding Inevitable Collision States which imply all

future time instance was relaxed in Sec. 4.5 to Passive Safety and Passive Friendly

Safety, of which the Passive Safety is guaranteed in the current implementation of

the Partial Motion Planner.

The results included generic dynamic obstacle scenario and an urban like sce-

nario in Sec. 4.3, whereas the application results of motion planning developed in

Sec. 4.4 will be analyzed in more detail in Chap. 6 withing a larger hierarchical

navigation scheme.

Chapter 5

Dynamic scene analysis

5.1 Introduction

In order to develop a motion plan in a dynamic environment the ego-motion

estimation, the structure of the static environment and potential moving obstacles

must be identified. In Sec. 5.2 a localization module for full 3D vehicle pose

estimation is presented. The environment specifically analyzed here is a road

structure where the driving lane should be detected and described in a functional

form with respect to the ego-vehicle, which is presented in Sec. 5.3 including

experimental results on different road structures. Moreover, dynamic objects of

the environment such as moving vehicle on the road need be detected and tracked

in time in order to predict their future motion. Based on a occupancy map of

the environment that is updated based on range sensor measurements in Sec. 5.3,

temporal differences in grid’s occupancy cells can be detected which are associated

with dynamic objects. By segmenting locally adjacent cells with similar temporal

changes, parts or contours of objects are obtained in Sec. 5.5. By appropriate

association of detected objects to existing or newly created tracks, future motions

of the dynamic obstacles can be obtained. Experimental results on a set of dynamic

urban situations is presented in Sec. 5.6.

153

154 CHAPTER 5. DYNAMIC SCENE ANALYSIS

5.2 Localization

The localization scheme in this work is based on both global world frame GPS sig-

nal as well as inertial measurements of the ego-vehicle motion. Notably, following

signals were used:

• GPS unit: HPPOS (High-Precision Position Differential GPS), GGA (Global

Positioning System Fix Data) at 100 Hz

• Inertial Measurement Unit: vehicle attitude, roll φ, pitch θ, yaw ψ angles at

100 Hz

• Optical gyro unit: yaw rate, ωz at 100 Hz

• Ego-vehicle odometry: vehicle base speed vb at 100 Hz

The vehicle state estimation scheme is based on the Extended Information

Filter (EIF) algorithm, which is the dual form of the Extended Kalman Filter

(EKF). In brief, the EKF form implies that the probabilistic belief Bel(xt) about

the state of the system is approximated with Gaussian pdfs describing the the

first two statistical moments, namely the mean µt and covariance Σt of the state

xt. The EIF form represents the state estimate in form of the information vector

[Thrun, 2000]:

ξt = Σ−1
t µt (5.1)

whereas the covariance matrix is replaced by the information or precision matrix:

Ωt = Σ−1
t (5.2)

therefore, for instance, for a system with very high initial uncertainty, the infor-

mation matrix can simply be set to Ωt ≈ 0, which is numerically advantageous

over trying to represent covariances of almost infinite value.

5.2. LOCALIZATION 155

However, the most important advantage of the EIF form is that the innovation

step of the Kalman filtering, i.e. the fusion of new measurements to the state

estimation becomes additive. Therefore, if new information arrives in the system

in form of measurements it is simply added to the information vector ξ (after

appropriate system Jacobian transforms for full derivation). Since addition is

commutative it means that the measurements from different sensors can be added

in arbitrary order and arbitrary delays. In fact, the EIF canonical form represents

probability in logarithmic form [Thrun, 2000] and bears close resemblance to the

logOdds probabilistic representation that will be detailed in Sec. 5.4.

A complete EIF localization scheme that estimated global 3D vehicle pose

[x, y, z, φ, θ, ψ]T was already explored and implemented on the Smart vehicle in

[Lamon et al., 2006b]. It relied primarily on the GPS signal (HPPOS and GGA

signal) and inertial measurements attitude information, namely the roll, pitch

and yaw [φ, θ, ψ]T to estimate its 3D pose assuming an unconstrained 3D body

motion. Moreover, the unconstrained 3D body motion implied also that the 3D

vehicle velocity vector was estimated from the real-time kinematic GPS data. In

the presence of a stable GPS signal, this allows for globally consistent motion

estimation (up to the attitude bias).

However, the testing experience in particularly in urban environments showed

that the GPS signal can be denied for extensive periods of time due to weak signal

strength or become unstable due to the multipath problem between buildings.

In order to be able to estimate the 3D vehicle motion based only on inertial

measurements an additional 3D vehicle motion model was introduced here based

on [Kelly, 2004]. It describes the vehicle constrained motion on a tangential plane

defined by the roll φ and the pitch θ attitude angles. According to this model, the

full 3D kinematic motion equation derives as:

156 CHAPTER 5. DYNAMIC SCENE ANALYSIS



ẋ

ẏ

ż

φ̇

θ̇

ψ̇


=



vb cosψ cos θ

vb sinψ cos θ

−vb sin θ

ωx + tan θ(ωy sinφ+ ωz cosφ)

ωy cosφ− ωz sinφ

1
cos θ

(ωy sinφ+ ωz cosφ)


where the z–y–x Euler angle sequence is used, assuming the strapped down gy-

roscopes of the IMU oriented along the three axes of the body frame reading

the three components of the angular velocity [ωx, ωy, ωz]. In the practical im-

plementation, the yaw angle estimation from the IMU unit proved insufficiently

accurate, therefore a high precision optical gyro unit was introduced for accurate

ωz measurement and consequently ψ estimate. Note also, that the Ackermann

nonholonomic constraint of the vehicle motion, namely ψ̇ ≈ tanφs
L

vb, where φs is

the steering wheel angle and L the axis base, does not appear in the Eq. 5.5.3,

since the yaw angle rate ψ̇ is measured via the inertial units in the state transition

equation.

There is a pertaining problem of negotiating the state estimation belief from

the GPS measurement, which is global in nature but can induce a lot of outlier

values and the inertial measurement motion estimation on the other side, which is

locally smooth but inevitably introduces a vehicle pose estimation drift on a larger

estimation scale. If due to the multipath problem the GPS signal introduces an

outlier measurement zt at time t, it can in principle be filtered out using ellipsoidal

gating [Blackman and Popoli, 1999]:

z̃Tt S
−1z̃t ≤ G (5.3)

where S is the residual covariance matrix of the EIF/EKF filtering, G is the gate

value (a design parameter) and z̃t is the difference between the actual measurement

5.3. LANE DETECTION 157

zt and the expected measurement ẑt based on the system state update equations

and the current state estimate x̂t before the innovation step. Essentially, if the

actual measurement is close enough to the expected measurement value, it is

accepted, otherwise rejected according to the G value. However, this technique

only tackles the short cycle GPS outlier problem in the on-the-fly vehicle pose

estimation but does not solve the problem, for instance of a precise GPS signal

that is inaccurate, which can be the case for the urban environment with occlusions

and multipath problem.

5.3 Lane detection

An important aspect of dynamic scene analysis in structured environments is to

detect road boundaries and describe the lane configuration where the vehicles

travel. In this work, the lane detection module is based on a vision system. The

vision module presented here is based on several image filters that provide diverse

information about the environment. A set of hypotheses about the state of the

system is generated by a probabilistic particle filter. Assuming a predefined model

of the road the particles are tested according to image filters to infer the best

belief vehicle position. Emphasis was placed on extracting relevant information

from the scene and efficient testing. In particular, a new testing module based on

Canny edge filter and Hough transform increased the accuracy and robustness of

estimation. Performance of the vision module was tested under various real-road

conditions [Macek et al., 2004].

A vision module detecting road lane boundaries to determine position of the

ego vehicle forms the basis of a driver support system. Several approaches have

been employed already completing long distance road tests [Lützeler and Dick-

manns, 1998], [Jochem et al., 1993], [Broggi et al., 1999]. Researchers at the

Universityät der Bunderswehr München [Lützeler and Dickmanns, 1998] mod-

elled the road as a clothoid while using edge detection to search for lane markings

158 CHAPTER 5. DYNAMIC SCENE ANALYSIS

in the image. A multiple camera configuration was used to focus on regions of in-

terest around the vehicle. The approach used by the robotics institute of Carnegie

Mellon University [Jochem et al., 1993] used a single camera setup. The lane

position was determined using a neural network that had undergone a training

phase based on features in the image running parallel to the road. The ARGO

vehicle at the Universita di Parma [Broggi et al., 1999] [Bertozzi et al., 2000]

used the images from a single camera in which the perspective effect had been

removed. The lane marking features detected in these images were then matched

to a straight-line road model. The SCARF system [Crisman and Thorpe, 1991]

and MOSFET vehicle [Beuvais and Kreucher, 1997] used a color camera informa-

tion under the assumption of a homogeneously colored road. The former system

used Bayesian classification to determine the road-surface whereas the latter ap-

proach used color segmentation to identify lane markings and fit a parabola to the

detected lines. The Australian National University (ANU) approach [Apostoloff

and Zelinsky, 2002] is based on a single camera setup. The vision module relies

on different image filter information to assess the state of the vehicle. Possible

states of the system are described by a set of hypotheses which are generated by

a probabilistic particle filter.

5.3.1 Vision Module Description

The approach used in this paper is based on the ANU approach but the main

difference is in testing the hypothesis on the vehicle position against different

image filters, in particular the Hough transform testing that provides a more

robust evaluation. The presented module is the vision core of a larger navigation

module that is being developed.

The single CCD camera RGB image is used for two principal image filter types:

RGB image for the color filter and grayscale image for the Canny edge detector

and Laplacian of Gaussian (LoG) edge filter. Each filter that is used to test current

assumptions about position of the vehicle is called a cue.

5.3. LANE DETECTION 159

Hypotheses about the state of the system are assigned a certain probability

measure and are called particles. The particle filter handles probabilistic inference

in such a way that testing of each particle against each cue produces the final best

belief about the state of the system.

A cue-based probabilistic architecture has several advantages. Extracting dif-

ferent information about the environment enriches the information fusion. The

technique allows also including any non-image based useful information, such as

a-priori knowledge about the road configuration, number of lanes, etc., to be in-

cluded as a separate cue. The probabilistic fusion of different cues should give

a liable result even in cases where certain cues perform poorly which can also

give an indication when some cues should be given less credit or even switched off

[Apostoloff and Zelinsky, 2002].

The cues used in this work are all image based with the confinement being

that the road width is within a region less than two standard road widths which

reduces the possible search space. This prevents the system detecting a whole road

as a lane since the aim is to determine position of the vehicle within a single lane.

The road lane is assumed to be straight and flat which is valid on low curvature

roads where the look-ahead distance is not too great [Xu et al., 2000]. Using this

assumption only three parameters are needed to specify the vehicle’s ego state.

These are the road lane width L, the lateral offset of the vehicle d from the middle

of the lane, and its angle to the lane ϕ. Although the straight-line road model

may be adequate in many practical situations it is not suitable in particular for

high-curvature roads, roundabouts and intersections where extended road models

should be applied.

The layout for the lane detection system is shown in Fig. 5.1. The raw image

from the camera is processed as RGB and grayscale image before being used by

three image cues: Canny edge filter-Hough transform cue, LoG edge filter cue

and Colour segmentation cue. A particle filter handles the hypotheses about the

vehicle state and passes these particles to the cues for testing. Each cue tests all

160 CHAPTER 5. DYNAMIC SCENE ANALYSIS

Figure 5.1: The lane detection vision module schema.

of the particles and assigns a probability to each. The final belief is then formed

by the particle filter based on total evaluation from each separate cue.

5.3.2 Particle Filtering

Particle filtering is also known as Condensation or Monte Carlo algorithm and

is based on Bayesian probabilistic reasoning under Markov assumption (past and

future data are independent if the current state of the system is known) [Apostoloff

and Zelinsky, 2002], [Thrun et al., 2001], [Isard and Blake, 1998].

If the previous belief about the state of the system is Bel(xt−1), the action

model is P (xt|xt−1, at−1) representing the transition from previous state xt−1, the

sensor model is P (ot|xt) representing the observations at the current instant t and

ηt is the normalization factor, then the recursive Bayesian formula for the final

belief Bel(xt) at the current instant t can be described as:

Bel(xt) = ηtP (ot|xt)
∫
P (xt|xt−1, at−1)Bel(xt−1)dxt−1. (5.4)

Representing the continuous probability density function (pdf) by a set of n

weighted samples also called particles is computationally more efficient and proves

5.3. LANE DETECTION 161

Figure 5.2: The particle filter cycle.

satisfactory also for representation of multi-modal non-Gaussian belief states if the

number n is sufficiently large:

Bel(xt) ≈
{
x

(i)
t , ω

(i)
t

}
i=1,2,...,n

, (5.5)

where x
(i)
t is a sample state of the random variable xt, called a pose and ω

(i)
t

an importancy weight factor representing probability measure of each particle. In

the case of straight-line model of the road, a possible position of the ego-vehicle is

a sample in the state space defined as x
(i)
t =

{
L

(i)
t , d

(i)
t , ϕ

(i)
t

}
with the probability

ω
(i)
t associated to this hypothesis.

The particle filter cycle at each time step comprises of four parts as is shown

in Fig. 5.2. Firstly, a group of particles that received best probability estimates

from the previous step are resampled from the whole particle set, a fraction of

particles are resampled around the best belief particle to refine the search in that

region and a certain number of particles are resampled in the whole state space

(uniformly random). The later enables resolving the relocalization problem where

the particle filter may lost track due to disturbances such as obstacles in the

image or brightness intensity change where i.e. standard Kalman filtering may

fail. Secondly, particles are diffused according to the error model of the action

162 CHAPTER 5. DYNAMIC SCENE ANALYSIS

sensors (in the automotive case these are typically the translational and rotational

velocity of the vehicle). Thirdly, the action model takes into account the motion of

the system where for the automotive case this is generally the Ackermann motion

model [Kiencke and Nielsen, 2000a].

Finally, when particles are diffused in the state space they each represent a

hypothesis that has to be tested against the current vision information from the

cues. For an i -th particle x
(i)
t the j -th cue gives a probability P (o

(j)
t |x(i)

t) where

the observation o
(j)
t depends on the particular image representation of each cue.

Total discrete a-posteriori pdf for the sensor model of the whole state space xt is

given as:

P (ot|xt) =
m∏
j=1

P (o
(j)
t |xt). (5.6)

Combining probabilities from different cues using product operation implies

that no cue should return probability 0 since then information would be lost from

other cues. Therefore, each cue may return only a probability between [α, 1]

with α being the lowest probability measure that may also vary depending on

the general performance of each cue (typically set to α = 0.1). In general, the

combining and normalization step may be performed also by using a weighted sum

of contributions of each cue. However, by using product of probability measures to

infer the total probability the preferred combinations are those where each single

contribution is approximately equally likely. This can be seen when comparing

normalized probability cubes of two random variables X1, X2 for summation and

product case in Fig. 5.3 and Fig. 5.4.

In the summation based inference, the extremal case of the value of one variable

being very likely and the other variable being very unlikely may get an equal total

probability as in case when they are both equally likely. In the product based

inference the extremal cases are more suppressed. Thus, for a liable result all cues

must give a sufficiently high confidence. This feature is exploited furthermore in

testing of each single cue where the probabilities of detected position for the left

5.3. LANE DETECTION 163

Figure 5.3: Probability cube for summa-
tion based inference.

Figure 5.4: Probability cube for product
based inference.

and right lane boundary must be high for both boundaries resulting in a more

stable and robust inference scheme. The lowest probability measure in cue testing

is denoted as po (typical value 0.01).

5.3.3 Cue Testing

To test each particle a number of cues can been developed. Each cue measures

how well the image information matches what would be expected if the particle

correctly described the current state of the vehicle. It uses this to assign a prob-

ability as to the likeliness that the particle is correct. This section describes the

three image cues that have currently been implemented.

5.3.3.1 Canny Edge - Hough Transform Cue

Canny edge detector processes gray-scale image in multiple stages [Canny, 1986].

The image is first smoothed by a Gaussian convolution mask and then a 2-D first

derivative operator is applied to highlight the regions of high contrast - edges in

the image. Edges give rise to ridges of high gradient magnitude, however these

ridges may be wide and broken, therefore an adaptive threshold nonmaximum

suppression is performed by a recursive edge neighbor search to extract accurately

164 CHAPTER 5. DYNAMIC SCENE ANALYSIS

the position of a single pixel based connected edge. Such edges are suitable for

line detection algorithms [Haralick and Shapiro, 1992]. A typical highway scene

image is shown in Fig. 5.5.

Figure 5.5: A Canny filter edge image with the winning particle (red lines).

For small curvature roads the long straight line segments may represent the

road boundaries, lane markings or other objects, smaller size line segments may

represent dashed lane markings or other. However, trying to apply a neighborhood

based line detection algorithm directly in the image space may not be suitable for

two major reasons. Firstly, the length of the line segments in the image is not

known in advance. For instance, dashed lane markings that actually represent the

same road boundary will result in different line segments in the image that may

be difficult to segment in a postprocessing step. Secondly, in a real road scene

road boundaries may be occluded by other objects, in particular by other vehicles,

which render neighborhood based line algorithms difficult to use. Moreover, trying

to overlay a perspective road mask in the image space is not liable since single

pixel edges of the Canny filter do not provide enough hits for the mask summation.

In order to detect line segments, the Hough transform [Haralick and Shapiro,

1992] is used in this work since it is invariant to pixel position in an image. This

implies that it is not necessary to distinguish between full or dashed lane markings,

5.3. LANE DETECTION 165

marked road edges or natural road boundaries as long as the intensity difference

is sufficient for the Canny filter response. Essentially, it transforms edge pixels in

image space that lie along the same straight line to a single point in Hough space.

The coordinates of this point are the distance ρ of the line to an origin and the

angle θ the line makes to the Ox-coordinate axis. Its implementation requires a

two dimensional accumulator array where each cell corresponds to a small span of

line parameters ρ and θ.

Ordinarily, every possible line going through each edge element is plotted in

Hough space as a sine curve. An actual line detected in a particular accumulation

cell is then the overlap of all these curves rendering the processing slow. However,

by using the angle direction information of the first derivative operator each edge

pixel can be transformed directly to a unique accumulator cell by increasing only

the total count I of that cell which significantly speeds up the processing time.

The Hough transform image of the Canny edge map in Fig. 5.5 is shown in Fig. 5.6

where darker points represent accumulator cells with a higher intensity value I.

It is visible that the lane boundaries where the ego-vehicle is placed occupy very

confined regions of the accumulator array, i.e. the center of the left lane boundary

lying at coordinates (θ, ρ) = (59◦, 105) and the right lane boundary center lying

at (−51◦, 78) (transformation origin in the upper left corner).

To derive a probability measure of each particle according to the straight-line

model, the left and right edges of the hypothesized lane are converted to two

Hough point centers c
(i)
l =

{
θ

(i)
cl , ρ

(i)
cl

}
and c

(i)
r =

{
θ

(i)
cr , ρ

(i)
cr

}
, respectively. Fig. 5.7

shows left (blue color) and right (green color) lane positions for each particle of

the particle set. Several particles might have one same edge point in Hough space

but differ in other.

Since both lane boundaries may differ significantly in intensity and structure,

the particle edges must be tested and normalized separately. For instance, align-

ment of a particle’s hypothesized left edge center c
(i)
l to the left lane boundary clus-

ter of N points with intensity values I(k) in Hough space that are found within the

166 CHAPTER 5. DYNAMIC SCENE ANALYSIS

Figure 5.6: Hough transform image.

Figure 5.7: Left and right lane positions of the particle set (blue and green color
respectively).

circular threshold region with radius rtresh =
√

(θtresh)
2 + (ρtresh)

2 is best when

the particle’s edge is placed in the center of the real road cluster. The probability

measure describing this is:

δ
(i)
cl =

N∑
k=1

(rtresh −
√

(θ
(i)
cl − θ(k))

2
+ (ρ

(i)
cl − ρ(k))

2
)

rtresh
I(k). (5.7)

The threshold values θtresh and ρtresh are determined such that if the road lane

5.3. LANE DETECTION 167

is bounded by a lane marking which generally transforms in two distinguished

edges, both edge peaks are included as a single road boundary cluster (i.e. lane

marking is taken to occupy 8% of the standard road width). This can be distinctly

seen in Fig. 5.6 for the left lane boundary (the cluster radius is enlarged for clarity).

The total probability ωCanny
(i) of a particle for the cue is determined by taking

both left and right edge boundaries into account:

ωCanny
(i) = (

δ
(i)
cl − δclmin

δclmax − δclmin
+ po)(

δ
(i)
cr − δcrmin

δcrmax − δcrmin
+ po). (5.8)

Using a first derivative operator, in this case the Sobel operator, to determine

the gradient direction inherently involves an error [Haralick and Shapiro, 1992].

This reflects upon the Hough transformation where pixels with same gradient di-

rection error margin in the image space have a different spread in the ρ component

depending on the choice of transformation origin and the pixel position in the im-

age whereas the θ component spread depends only on the gradient direction error

itself. For instance, if the upper left corner of the image is chosen as the transfor-

mation origin the pixels most sensitive to this error belong to the right lane edge.

Since the edge’s cluster has a larger spread (cf Fig. 5.6) the measure of alignment

to the circular threshold region is less accurate resulting also in less accurate right

lane boundary detection.

Therefore, to increase robustness of the estimated lane position two Hough

transforms are used for each particle. The probability evaluations become ω
(i)
L

and ω
(i)
R where L and R denote the transformation origin at the upper left and

right image corner, respectively. These origins are chosen as to minimize the ρ

error sensitivity at values of θ at 45◦. The nominal angle in real road scene is

around 55◦ for the left lane edge to the L origin and right lane edge to the R

origin. Attempting to use a single centrally placed transformation origin is also

not robust enough and transforms points to all 4 angle quadrants (as opposed to

168 CHAPTER 5. DYNAMIC SCENE ANALYSIS

3 that are needed here). The final probability measure then becomes:

ω(i)
Canny = ω

(i)
L ω

(i)
R . (5.9)

5.3.3.2 Laplacian of Gaussian Edge Cue

The LoG filter performs a Laplacian 2nd -order spacial derivative of a Gaussian

smoothed grayscale image. A zero-crossing detection of the gradient magnitude

image enables extraction of edges which in general may be thicker than single

pixel based edges of the Canny edge detector. Thus, this type of edges is suitable

for comparison with a perspective model mask that is overlaid directly in image

space. The mask is taken to be left and right stripes that are lane marking size

wide, determining a generic non-lane region which may also be the road boundary

with no lane markings. Fig. 5.8 depicts a LoG edge map which is overlaid by the

winning particle’s perspective model mask (yellow). The stripes height is limited

to exclude the far-sight region close to the vanishing point where other vehicles

may represent false lane boundary detection.

Figure 5.8: A LoG filer edge image with the perspective model mask of the winning
particle.

The edge map can be regarded as a binary map, i.e. I(k) = {0, 1} where every

5.3. LANE DETECTION 169

edge pixel represents a positive hit. Each particle generates a different perspective

model mask where a simple measure of edge pixel count within the total mask

pixel count Nl,r of the left l and right r stripe represents the probability measure

for each side of the lane:

δ
(i)
l,r =

Nl,r∑
k=1

I
(k)
l,r . (5.10)

The probability measure of the i -th particle is then:

ωLoG
(i) = (

δ
(i)
l − δlmin

δlmax − δlmin
+ po)(

δ
(i)
r − δrmin

δrmax − δrmin
+ po). (5.11)

The zero-crossing detection phase involves searching for pixel neighborhood

where the 2-nd -order derivative of the image changes sign. By using a larger

neighborhood mask and appropriate smoothing noise variance the edges can be

further enhanced, i.e. thickened for a more robust comparison to the perspective

model mask.

5.3.3.3 Colour Cue

Colour cue performs comparison of the RGB input image to the mean values R,

G, B of each component of the road surface color. If a pixel’s RGB values lie

within the threshold defined by all three variances σR, σG , σB it is considered to

be of the road color. Thus, a binary delta map can be acquired which is used for

particle testing. The perspective mask that is overlaid on the delta map in this

case includes both left and right lane boundaries which must be of non-road color

and the central region which must be of road color (cf Fig. 5.9).

Similar to the LoG filter, for each part of the perspective mask a δ
(i)
l,r,c measure

is calculated representing pixel hit of non-road or road color within the total mask

area and the final probability measure of the i -th particle is:

170 CHAPTER 5. DYNAMIC SCENE ANALYSIS

Figure 5.9: A delta color image with the perspective model mask of the winning
particle.

ωColour
(i) = (

δ
(i)
l − δlmin

δlmax − δlmin
+ po)(

δ
(i)
r − δrmin

δrmax − δrmin
+ po)

(
δ

(i)
c − δcmin

δcmax − δcmin
+ po). (5.12)

At each instant a new R, G, B and σR, σG , σB are calculated based on the

winning particle information, rendering the cue adaptive to lightning condition

changes.

5.3.4 Experimental results

The lane detection module has been tested using a single SONY DFW-VL500

camera mounted in the rear view mirror position inside of the testing vehicle.

The module was tested in several typical real-road conditions that are shown in

Fig. 5.10 through Fig. 5.21.

The lane detection module proved robust under different road conditions. If a

cue performs poorly at a certain instant the contribution of other cues to the prob-

abilistic measure diminishes its negative effect to the overall performance. This

5.3. LANE DETECTION 171

Figure 5.10: Highway - heavy traffic. Figure 5.11: Highway - high curvature.

Figure 5.12: Highway - changing lanes I. Figure 5.13: Highway - changing lanes II

Figure 5.14: Highway - a front car oc-
cluding the view.

Figure 5.15: Magistral road - inner city.

172 CHAPTER 5. DYNAMIC SCENE ANALYSIS

Figure 5.16: Magistral road - ambiguous
lane border position.

Figure 5.17: Magistral road - ground
signs.

Figure 5.18: Magistral road - country
lane.

Figure 5.19: Magistral road - leaving a
small tunnel.

is particularly the case with the Colour cue which is quite sensitive to brightness

change and shadow areas on the road. A multimodal color histogram distribution

instead of a single mean for each color component may improve its performance.

In general, the Canny edge filter in combination with Hough transform proved to

be the most robust cue that responds immediately to a change in scene since it

retains information both about edge magnitude and direction, adapts to different

levels of noise and is pixel position insensitive. LoG filter is isotropic and does not

contain the edge direction information, thus it may become less stable when other

obstacles occlude the lane boundary view, in changing lanes situations or on roads

5.3. LANE DETECTION 173

Figure 5.20: Magistral road - high cur-
vature.

Figure 5.21: Magistral road - dirty wind-
screen.

with large shadow areas. Moreover, the LoG and Colour cue are tested directly in

the image space on pixel masks which increases significantly the processing time

in comparison to small edge pixel number of the Canny cue.

The case of dirty front window showed potential to tackle worse visibility

conditions particularly due the adaptive Canny filter which is also suitable for

abrupt lightning changes such as small tunnels, however, this assumption was not

extensively tested. The system detected correctly the near-sight contours of the

lane even for higher curvature roads which may be sufficient information for an

i.e. lane keeping module. However, using the straight-line model does not allow

to place correctly the objects in the far-sight view in the overall environment

representation.

In summary, in this section a vision module was presented for lane detection

in vehicles that forms the basis of a driver assistance navigation module. Edge

detection and color image filters were used to extract information about the road

environment of the ego vehicle. The information was processed within a proba-

bilistic framework using particle filtering where the belief about the state of the

system was described by a discrete set of particles each representing a possible

solution within the state space. Particles were assigned a probabilistic measure

according to evaluation against image filters called cues and the particle with the

174 CHAPTER 5. DYNAMIC SCENE ANALYSIS

best total probability measure from all cues described the most likely position of

the vehicle.

The single camera experimental setup mounted in a vehicle was tested in vari-

ous real-road conditions, such as highway traffic scenes and lane changing, magis-

tral road in inner town with different ground signs and magistral road in outer city

areas with different lightning conditions, road shadows and windscreen visibility.

The vision system performed robustly in most cases except in situations where

road edges were too obscured by dark areas in outer city areas and in ambiguous

positions on the border between two lanes where flickering between two lanes may

have occurred since no vehicle dynamics was included due to lack of vehicle motion

sensors.

In comparison with the LoG edge cue and Colour segmentation cue that are

based on particle testing in image space, the Canny edge filter with double Hough

transform particle testing performed significantly better in terms of robustness and

computation speed. This cue presents a good basis for development of a higher

curvature road model from the straight-line road model that is currently being

used.

5.4 Map building

The map of interest in this work used for autonomous navigation is a local envi-

ronment map that is rebuild on-line according to the ego-vehicle motion, typically

in a range of 100 m-150 m in front of the ego-vehicle. The information about the

environment is gained in form of range point data, that is gathered via a laser

sensor, such as a SICK, ALASCA XT or as an output of a stereo-rig triangulated

feature points of the scene. The data may arrive asynchronously with respect to

the map update cycle, here simply noted as a discrete time index t. The individual

sensor point data is gathered in respective buffers as vehicle pose registered point-

cloud data. As an illustration, the case of Smart vehicle implementation features

5.4. MAP BUILDING 175

following sensory cycles:

• Localization cycle: 100 Hz

• SICK laser cycle: 75 Hz

• ALASCA XT laser cycle: 25 Hz

• Stereo-rig cycle: 7.5 Hz

• Local map recompute cycle: 5 Hz

In order to build a 3D consistent world representation, a voxel 3D grid map

M is used with different horizontal x-y and z-plane cell sizes, therefore each voxel

map cell represents a rectangular box volume in space. The anchor of the map

is redefined automatically in 3D global GPS space, also taking into account the

vehicle orientation as soon as the ego-vehicle exits the current local map bounds.

The pointcloud measurements at each map recompute cycle can be denoted

according to standard notation as:

zt = {z1
t , . . . , z

j
t , . . . , z

K
t } (5.13)

K corresponding to the total number of points in all the registered pointclouds

at t and zjt = {x̃jt , ỹjt , z̃jt }, coordinates of individual points in space. In order to

fuse the new measurements as occupancy evidence in the voxel map, the Bayesian

theorem is applied. The derivation follows the steps defined in [Vu et al., 2007]

and [Thrun, 2000], for a 2D gridmap occupancy representation, which applies the

same in 3D case as well.

Given all the observations in use for fusion of the current local map z1:t =

{z1, . . . , zt} and the known vehicle poses x1:t = {x1, . . . , xt}, the posterior prob-

ability of occupancy P (m|z1:t, x1:t) for each voxel cell m can be determined as:

P (m|z1:t, x1:t) =
P (zt|z1:t−1, x1:t,m)P (m|z1:t−1, x1:t)

P (zt|z1:t−1, x1:t)
(5.14)

176 CHAPTER 5. DYNAMIC SCENE ANALYSIS

where the expression P (zt|z1:t−1, x1:t,m) is the sensor model that can further be

simplified. Namely, given the assumption that the current measurement zt is

independent of previous measurements z1:t−1 and poses x1:t−1, the sensor model

probability P (zt|xt,m) can be factored as:

P (zt|xt,m) =
P (zt, xt,m)

P (xt,m)
=
P (m|zt, xt)P (zt|xt)P (xt)

P (xt)P (m)
(5.15)

where P (xt,m) = P (xt)P (m) is independent, since the current pose xt is assumed

known, depending only on previously applied control action. This assumption is

valid for the map building problem considered here, as opposed to a full SLAM

(Simultaneous Localization and Mapping) problem where current pose xt is also

estimated with respect to the map M being built.

According to Eq. 5.15, the Eq. 5.14 can now be expressed as:

P (m|z1:t, x1:t) =
P (m|zt, xt)P (zt|xt)P (m|z1:t−1, x1:t)

P (m)P (zt|z1:t−1, x1:t)
(5.16)

which represents the probability that a given voxel cell is occupied. According to

Eq. 5.16, similar reasoning can be applied to express the probability that a cell is

free:

P (m̄|z1:t, x1:t) =
P (m̄|zt, xt)P (zt|xt)P (m̄|z1:t−1, x1:t)

P (m̄)P (zt|z1:t−1, x1:t)
(5.17)

It is interesting to express the quotient of the two probabilities as:

P (m|z1:t, x1:t)

P (m̄|z1:t, x1:t)
=
P (m|zt, xt)
P (m̄|zt, xt)

P (m̄)

P (m)

P (m|z1:t−1, x1:t−1)

P (m̄|z1:t−1, x1:t−1)
(5.18)

also taking into account that P (m|z1:t−1, x1:t) = P (m|z1:t−1, x1:t−1), since the map

occupancy probability, given only previous time steps measurements z1:t−1 is in-

dependent of pose xt.

5.4. MAP BUILDING 177

The quotient of probabilities of a probabilistic event ω and its complement ω̄

is also known as the Odds representation:

Odds(ω) =
P (ω)

P (ω̄)
=

P (ω)

1− P (ω)
(5.19)

Therefore the Eq. 5.18 can be expressed as:

Odds(m|z1:t, x1:t) = Odds(m|zt, xt)Odds(m)−1Odds(m|z1:t−1, x1:t−1) (5.20)

which in its logarithmic form yields an iterative map occupancy update scheme:

logOdds(m|z1:t, x1:t) = logOdds(m|zt, xt)−logOdds(m)+logOdds(m|z1:t−1, x1:t−1)

(5.21)

The logOdds(m|z1:t−1, x1:t−1) refers to the logOdds map value of the previous

time step t− 1, the logOdds(m) is related to the a-priori map probability P (m),

typically set to 0.5 as being “unknown”. The probability P (m|zt, xt) represents

the inverse sensor model.

As mentioned earlier, all sensor measurements in the case of this work are fused

in the voxel map as pointcloud pose registered data zjt = {x̃jt , ỹjt , z̃jt } representing

an individual point coordinate with respect to the pointcloud origin xjt . Therefore,

the inverse sensor model represents the probability of map occupancy at all the

map voxel cells affected by ray tracing from a measurement point to the point-

cloud origin. The occupancy probability is modeled by a normally distributed

probability density, namely:

P (m(d)|zjt , xjt) = N (d, σj) (5.22)

where d is the distance of a voxel cell from the measurement point zjt and σj the

estimated radial point variance. This inverse sensor model corresponds well to

178 CHAPTER 5. DYNAMIC SCENE ANALYSIS

a laser based beam measurement. More involved inverse sensor models can in

practice render the inference on many thousands of pointcloud points impractical.

In order to consistently fuse incoming measurement data in a 3D environment,

a 3D environment representation is needed, in this case in a form of a 3D voxel

map, which can be used for various analysis of the environment. In the case of

this work, a more compact occupancy information is also derived in form of a 2D

gridmap. Among different inference methods to “flatten” the voxelmap columns

onto the 2D gridmap, also called flatmap F here, the conservative max operator

is chosen:

PF ,i,j(m) = max
k
PM,i,j,k(m) (5.23)

where the PM,i,j,k(m) represents the occupancy probability of a voxel map cell

with indices (i, j, k) and PF ,i,j(m) the occupancy probability of the corresponding

flatmap cell with indices (i, j).

Note, that the voxelmap orientation (map anchor) is computed with respect

to the Earth’s geoid (approximately gravity oriented), such that the map anchor

is re-initialized based on global vehicle [x, y, z, ψ]T coordinates (including the yaw

angle), whereas the roll φ and pitch angles θ are set to zero. This implies that

that the vehicle travels within the voxelmap on the tangential plane defined by

vehicle’s roll and pitch angles, whereas the flatmap F projection is defined with

respect to the gravity vector. This allows for consistent 2D approximation of the

local static 3D space since (buildings vertical to gravity). The effect of the pitch

and roll angle on the projection of dynamic objects on a slope is considered less

critical.

5.5. DETECTION AND TRACKING OF DYNAMIC OBJECTS 179

5.5 Detection and tracking of dynamic objects

5.5.1 Detection of dynamic regions of space

In Sec. 5.4 building of a local environment map in form of a 3D voxelmap was

presented. This section will be concerned with extracting dynamic vs. static parts

of the environment based on the temporal differences in the map occupancy. This

can be considered as a first step towards detection of dynamic objects in a static

background scene.

Based on the occupancy probability Pi,j,k(m) of each voxel cell and conse-

quently the occupancy probability of the flatmap PF ,i,j(m), there is a label Locc(P (m))

defined that can describe the occupancy semantically from the label set of Locc as

{UNKNOWN,FREE,BLURRED,OCCUPIED}:

Occupancy probability P (m) Label Locc

initial P (m) = 0.5 UNKNOWN
P (m) ≤ pfree FREE
pfree < P (m) < pocc BLURRED
pocc ≤ P (m) OCCUPIED

Table 5.1: Semantic labelling of the map occupancy.

where pfree and pocc are design parameters determining free or occupied cells,

respectively (typical values could be pfree = 0.2 and pocc = 0.8).

In order to determine whether there were any temporal changes in the pro-

jected flatmap F , the occupancy labels for each cell can be analyzed at times

[t, t − 1, . . .] from the corresponding occupancy labels L stored [Locct , Locct−1, . . .]

history. In principle, the whole local map history could be taken into account

for determining current temporal changes, however at this time we will consider

only the “first-order” temporal changes, namely by analyzing only the [Locct , Locct−1]

pair for each map cell, the current versus previous map update cycle. Tem-

poral change are described by the dynamicity label in the semantic set Ld ∈
{STATIC, TRANSIENT,DY NAMIC UP,DY NAMIC DOWN}. The dy-

180 CHAPTER 5. DYNAMIC SCENE ANALYSIS

namicity label Ld of each map cell is thus determined according to the following

inference Tab. 5.2:

Occupancy label Locct−1 Occupancy label Locct Dynamicity label Ldt
UNKNOWN FREE STATIC
UNKNOWN BLURRED TRANSIENT
UNKNOWN OCCUPIED TRANSIENT
FREE FREE STATIC
FREE BLURRED TRANSIENT
FREE OCCUPIED DYNAMIC UP
BLURRED FREE TRANSIENT
BLURRED BLURRED TRANSIENT
BLURRED OCCUPIED TRANSIENT
OCCUPIED FREE DYNAMIC DOWN
OCCUPIED BLURRED TRANSIENT
OCCUPIED OCCUPIED STATIC

Table 5.2: Semantic labelling of the map dynamicity (temporal changes).

In the current implementation, the only well defined dynamic cases are DY-

NAMIC UP and DYNAMIC DOWN that mark the occupancy change from

FREE to OCCUPIED and vice versa. It is important to remark that the dy-

namic objects considered here are dynamic in the absolute sense, that is with

respect to the local map and not relative to the ego-vehicle motion. For instance,

a vehicle moving in front of an ego-vehicle at a relative speed 0 with respect to

the ego-vehicle is still considered dynamic with respect to the local map.

According to Tab. 5.2 the TRANSIENT cases can be considered potentially

both static or dynamic. To resolve the ambiguity, the future work would include

exploring past cell dynamicity labels as well, namely [Ldt , L
d
t−1, . . .], following the

intuition that dynamic areas in the past are more likely to be dynamic at the cur-

rent cycle as well (same intuition applying to the static areas also). Furthermore,

in a complete loop from past object tracks to current measurement observation

many ambiguity areas could be resolved as well.

The step following the map cell labelling is the point measurement labelling

that were used to update the map in the current cycle. All the measurements

5.5. DETECTION AND TRACKING OF DYNAMIC OBJECTS 181

points (hits) found within a map cell are labelled in correspondence to the map

cell label itself. The exception are the DYNAMIC DOWN labelled map cells

which require an additional search in th vicinity of the current map cell. All

the measurement points found in the vicinity are labelled DYNAMIC DOWN

if their corresponding cell occupancy is labelled OCCUPIED or BLURRED.

This step is necessary to account for the fact that DYNAMIC DOWN marks

the presence of moving objects in the past that already left the analyzed map cell.

Similar approach to temporal map occupancy exploration using labelling was

implemented in [Burlet et al., 2007]. However, in [Burlet et al., 2007] dynamic-

ity labelling was done only on current measurement data. Accounting for past

dynamic events was done via a histogram binning, whereas the implementation

in this work allows for analysis of the full dynamic history of a map cell with

map cell labels associated with precise timestamping. Most importantly, the

DYNAMIC DOWN case was not modelled explicitly in [Burlet et al., 2007].

5.5.2 Object extraction

Object extraction following the dynamicity labelling is done on the measurement

points and not on the map cell level. This is to achieve higher precision object

geometry that is independent on map resolution limits as well as to account for

cases such as DYNAMIC DOWN that would on the contrary present “ghost

objects” from the past motion.

The measured points with labels of interest STATIC, TRANSIENT , DY-

NAMIC UP, DYNAMIC DOWN are now processed separately for each indi-

vidual label to obtain object contours based on their spacial relation. For this

purpose a KD-Tree (Kernel-Density Tree) structure is used to estimate the initial

spacial data density. The resultant spacial decomposition is used as the seed value

for the K-means clustering algorithm in order to obtain the final clusters (note

that the number of clusters was not known a-priori) [Redmond and Heneghan,

2007]. In order to obtain the object contours a bounding box was used for each

182 CHAPTER 5. DYNAMIC SCENE ANALYSIS

final cluster of points. A PCA (Principal Component Analysis) step was run on

the points in order to compute the first two principal axis, giving the cluster the

size and orientation. To speed up the object extraction phase, the whole clustering

procedure was run on the x-y coordinates of the measurement points only, thereby

implicitly assuming the objects are not hollow.

5.5.3 Dynamic object tracking

In the current state of development, the object tracking on real world measurement

data from urban scenarios is not yet tested. In order to close the loop from raw

measurement data to object tracking the following additional steps are yet to be

developed:

• Object size and orientation estimation: as mentioned in Sec. 5.5.2 the object

contours and orientation are based on PCA analysis and a bounding box

approach. This procedure is a good initial seed to estimation of the object

position, size and orientation. However, since only a partial view of the

objects (in particular oncoming vehicles) is available at any given moment,

the bounding box approach may be insufficient. Additional feature analysis

should be performed including line or corner feature segmentation within

each cluster, among others.

• Data association and track management : Associating the currently extracted

object to existing tracks, track update, initialization and pruning is a vast

topic on its own and will not be analyzed further here. Suffice to say here

that one of very promising approaches is the IMM (Interacting Multiple

Model) filtering [Blackman and Popoli, 1999].

Nevertheless, in order to render the dynamic object motion estimation in the

simulated environment close to real world estimation, the simulated object motion

prediction of Chap. 4 and Chap. 6 was computed via a Kalman Filtering target

tracking module. The simulated data provided by the simulator engine were the

5.5. DETECTION AND TRACKING OF DYNAMIC OBJECTS 183

position, bounding box size and identification number of an object, such as a

vehicle or a pedestrian (no orientation was given a priori). Clearly, given the

identification number information, the data association problem and track man-

agement reduced only to initialization of a new track for a new id and discarding

the old tracks for ids not present anymore.

In order to estimate the state of an individual tracked object the Constant-

Velocity (CV) target motion model is used, also known as Piecewise Constant

White Acceleration Model, which assumes that the acceleration between sampling

intervals with time constant T is unknown, thus white noise modeled. The state

of a tracked object is defined as:

xo = [x, vx, y, vy]T (5.24)

thereby defined by it’s 2D position [x, y] and velocities [vx, vy]. Formulating the

state estimation equation as:

xok+1 = Φxok + Γνk (5.25)

where νk is the process noise with zero-mean acceleration and noise gain [Singer,

1970]:

Γ =

Γx

Γy

 , Γx = Γy =

1

2
T 2

T


which implies the process noise:

Q = E[ΓνkνkΓ
T] =

Qx 0

0 Qy


as being:

184 CHAPTER 5. DYNAMIC SCENE ANALYSIS

Qx = Qy =

1
4
T 4 1

2
T 3

1
2
T 3 T 2

σ2
v

The recommendation for the choice of σv with respect to the maximum target

acceleration amax is [Blackman and Popoli, 1999]:

0.5amax ≤ σv ≤ amax (5.26)

The system transition matrix is a simple integrator:

Φ =

Φx 0

0 Φy

 , Φx = Φy =

1 T

0 1



The current heading Ψ of the tracked object is estimated via the velocity com-

ponents Ψ = arctan vy
vx

. Since the motion planning requires the state estimate

prediction of the track for the duration of the object prediction horizon, at each

filter update the heading is estimated anew and the object trajectory in the future

is extrapolated linearly according to the current position, velocity and heading.

Simulated results on object tracking used in Chap. 6 proved that given a suffi-

ciently high filter update cycle (in our case up to 50 Hz), the heading of the object

can be estimated accurately.

As an estimation enhancement, if also the orientation of the object is available

as the input information, it is interesting to estimate the current turning rate

ψ̇ = ω of a tracked object, which can be useful for estimation of turning maneuvers

around the corners at intersections and predicting for instance which lane a given

object might take. However, this aspect was not investigated here.

5.6. EXPERIMENTAL RESULTS ON DYNAMIC SCENE ANALYSIS 185

5.6 Experimental results on dynamic scene analysis

The experimental results in this section represent the fusion between the local-

ization module of Sec. 5.2, the local map building module of Sec. 5.4 and the

dynamic object detection and extraction of Sec. 5.5. The results are in Fig. 5.22

to Fig. 5.31 are divided into three views: top - the left (driver side) camera view,

middle - sensory measurements (point clouds) and extracted objects at the cur-

rent map update and clustering cycle, bottom - the flatmap occupancy values

for the whole history of the local map building with vehicle position traces. The

colors in the measurement and object extraction figures represent the following

dynamic labels: STATIC - blue, TRANSIENT - green, DYNAMIC UP - red,

DYNAMIC DOWN - magenta.

Fig. 5.22 and 5.23 depict detection of a moving vehicle in otherwise static

environment in two distinct snapshots. Fig. 5.24 and 5.25 depict detection of a

moving tram in the opposite lane. Since the tram is a fairly long vehicle, only the

front part of its silhouette is detected as being dynamic, whereas the longitudinal

parts whose occupancy evidence was longer respect to the map cycle update, are

labelled static. Also, the static part of the environment on the right side of the

moving ego-vehicle (pavement) can induce spurious dynamic readings in Fig. 5.24

which is corrected as the more evidence is gathered Fig. 5.25. In comparison, the

left side wall with a clearly distinct vertical structure in the upper part of the

measurement figure is detected accurately as being static.

Fig. 5.26 and 5.27 depict detection of moving vehicles at an intersection. The

same effect of dynamic detection can be visible, namely, the parts of the vehicle

that with the biggest motion change with respect to the ego-vehicles view are

detected dynamic (typically the front and the rear of the vehicles), whereas the

sides can be labelled static as well. Fig. 5.28 depicts detection of a pedestrian at

a zebra crossing that is on the move and an approaching vehicle in the opposite

lane. The tram is in this case stopping down at a tram station.

Fig. 5.29 to 5.31 depict detection of vehicles negotiating a lane intersection

186 CHAPTER 5. DYNAMIC SCENE ANALYSIS

and a pedestrian moving into the field of view of the ego-vehicle. The horizontal

occupancy cell size in this case is reduced (0.5 as opposed to the nominal 0.2) in

order to show that as long as the sensory measurements are labelled properly in the

sense of their dynamicity, the object clustering/extraction process is independent

with respect to the occupancy map resolution, which is the consequence of how the

voxel/flatmap and sensory measurement history are build (according to Sec. 5.4).

On the other side, an occupancy map too coarse would not reflect the spatial

object placements accurately enough.

As a general observation, it can be seen that whereas the frontal and rear parts

of the moving objects are fairly accurately detected as being dynamic, on the level

of bigger objects, there are also parts that appear longer in the occupancy map,

that are detected as being transient or static. Moreover, the static part of the

environment where the buildings have a clear vertical structure, the objects are

detected as being static, whereas the horizontal surfaces such as pavements or

vertical objects with complex structure (buildings with interchanging columns,

trees) can present spurious dynamic object detections. This implies that a post-

processing step would be required on the level of labelled clusters, namely connect

locally adjacent clusters into bigger objects where a voting procedure would be

applied, whether the whole object is dynamic or not. The applied clustering pro-

cedure represents a good seed for such object voting as well as refining the objects

orientation based on, for instance, line segmentation and corners detection.

5.6. EXPERIMENTAL RESULTS ON DYNAMIC SCENE ANALYSIS 187

Figure 5.22: Detection of a vehicle moving away I (top: scene view, middle: extracted
objects, bottom: occupancy map).

188 CHAPTER 5. DYNAMIC SCENE ANALYSIS

Figure 5.23: Detection of a vehicle moving away II (top: scene view, middle: extracted
objects, bottom: occupancy map).

5.6. EXPERIMENTAL RESULTS ON DYNAMIC SCENE ANALYSIS 189

Figure 5.24: Detection of a moving tram and pavement structure I (top: scene view,
middle: extracted objects, bottom: occupancy map).

190 CHAPTER 5. DYNAMIC SCENE ANALYSIS

Figure 5.25: Detection of a moving tram and pavement structure II (top: scene view,
middle: extracted objects, bottom: occupancy map).

5.6. EXPERIMENTAL RESULTS ON DYNAMIC SCENE ANALYSIS 191

Figure 5.26: Detection of moving vehicles at an intersection I (top: scene view, middle:
extracted objects, bottom: occupancy map).

192 CHAPTER 5. DYNAMIC SCENE ANALYSIS

Figure 5.27: Detection of moving vehicles at an intersection II (top: scene view,
middle: extracted objects, bottom: occupancy map).

5.6. EXPERIMENTAL RESULTS ON DYNAMIC SCENE ANALYSIS 193

Figure 5.28: Detection of a pedestrian, tram and an approaching vehicle (top: scene
view, middle: extracted objects, bottom: occupancy map).

194 CHAPTER 5. DYNAMIC SCENE ANALYSIS

Figure 5.29: Detection of moving vehicles and a pedestrian (low resolution occupancy
map) I (top: scene view, middle: extracted objects, bottom: occupancy map).

5.6. EXPERIMENTAL RESULTS ON DYNAMIC SCENE ANALYSIS 195

Figure 5.30: Detection of moving vehicles and a pedestrian (low resolution occupancy
map) II (top: scene view, middle: extracted objects, bottom: occupancy map).

196 CHAPTER 5. DYNAMIC SCENE ANALYSIS

Figure 5.31: Detection of moving vehicles and a pedestrian (low resolution occupancy
map) III (top: scene view, middle: extracted objects, bottom: occupancy map).

5.7. CONCLUSION 197

5.7 Conclusion

In Chap. 5 key elements of the dynamic scene analsis for autonomous vehicle

navigation were presented starting with the ego-motion estimation/localization

based on GPS, as well as ego-vehicle based inertial data. The initial road struc-

ture segmentation, namely the lane detection, was presented based on a vision

module. Local vehicle navigation map based on voxelmap representation and a

compact 2D occupancy map inferred from the voxelmap was presented. Based on

the occupancy grid evidence, the incoming sensory measurements were labelled

according to their dynamicity aspect, follow by a clustering procedure in order to

obtain a set of dynamic versus static or transient object candidates. The results

were experimentally tested in a urban dynamic scene. Although not used on the

current clustered object candidates, an object tracking method was also analzed

which was used to estimate the motion of dynamic objects, such as vehicles and

pedestrians in a simulated dynamic scene.

At the current stage of the development, the lane detection module of Sec. 5.3

is yet to be integrated with the scene map building and object extraction module.

A future integration is an interesting prospect. The vision lane detection module

could be enhanced by the laser measurements in order to better estimate the road

curvature, especially in the presence of pavements. On the other hand, the object

detection and extraction module could profit of the lane information in order to

filter out spurious dynamic readings labelling on the building structures of the

urban scenario as well as to be able to better predict the dynamic object motion

based on the lane information, with a strong prior probability that vehicles and

trams follow certain routes/lanes whereas the pedestrian motion is more “brown-

ian”, but two distinctive behaviors can still be defined - crossing a lane/road or

walking parallel to the road structure on the road side.

Chapter 6

Autonomous navigation in dynamic

urban scenarios

6.1 Introduction

Typical urban-like traffic environment consists of a road network structure con-

sisting of lanes and intersections where dynamic obstacles such as vehicles and

pedestrians are present. Alternatively, parking lot zones do not posses a clear

structure but are bounded only with the perimeter limits. Typical objects in-

volved static or slowly moving vehicles and pedestrians.

The aim of this chapter is to integrate the motion planning technique developed

in Sec. 4.4 into a hierarchical navigation structure that can be applied for the urban

traffic case. The hierarchy of the navigation structure itself is presented in Sec. 6.2.

The overall mission of the vehicle to follow is defined on the road topology as a

set of waypoints and represents hierarchically the highest planning level of the

navigation scheme. Sec. 6.3 describes how the road network is represented that

can be used for global route planning. Sec. 6.4 and Sec. 6.5 analyze simulation

results for the lane and intersection case as well as parking lot, respectively.

199

200 CHAPTER 6. AUTONOMOUS NAVIGATION IN DYNAMIC URBAN SCENARIOS

6.2 Navigation architecture

Fig. 6.1 presents an overview of the navigation architecture for the dynamic urban

environment. It is structured in layers where the higher level components interact

with all the lower level layers in the hierarchy. The only exception is the world

model, which is can be directly accessed by all the levels of hierarchy from static

road structure topology to current dynamic obstacles information based on the

requirements.

Figure 6.1: Overall components scheme of the navigation architecture for dynamic
urban environments.

1. Mission Manager : it is responsible of translating high-level tasks (eg pick-up

a person at an address) into initial and a goal configurations that the vehicle

should reach in order to accomplish those tasks.

2. Global Route Planning (cf Sec. 6.3): it is concerned with finding a global

route for the vehicle between the initial and goal configurations given by the

mission manager, using information about the static characteristics of the

environment (e.g. lane geometry, speed limits). It is assumed that the knowl-

edge about these characteristics is available a priori so that it is possible to

perform at least part of the computations off-line.

6.3. WORLD MODEL AND GLOBAL ROUTE PLANNING 201

3. Partial Motion Planning (cf Sec.4.4.2): it is responsible of trajectory plan-

ning level of the overall mission up to the next waypoint defined by Global

Route Planning. It integrates knowledge about the dynamic elements of the

environment and interacts tightly with the world model.

4. World model (cf Chap. 5): the world model gathers all the available in-

formation about the environment, including the vehicle’s localization, the

environment structure and the current and predicted states of the other ob-

jects that are present in the environment. As mentioned above, it is different

from other modules because it interacts with all the levels of the hierarchy.

Note that the Vehicle Controller module in the sense of the hierarchy pre-

sented here includes not only the low-level steering and gas pedal controllers but

also the intermediate trajectory controller that is provided by the Partial Motion

Planning for the duration of execution cycle Te according to Sec. 4.2 on time con-

straints, where the decision cycle of the planner Td equals Td = Te. Moreover,

the trajectory controller executes the reference trajectory motion in an open-loop

fashion, assuming that the dynamic limits such as maximum linear acceleration

and steering rate are taking into account in the trajectory generation. A closed

loop reference trajectory tracking is also possible, but has to be modelled accord-

ingly with the low-level control loop included in the trajectory diffusion phase

(cf Sec. 4.4.3).

6.3 World model and global route planning

6.3.1 World model

Fig. 6.2 depicts an urban traffic scene that is used to validate the proposed hierar-

chical navigation scheme. It contains essential elements of road structure based on

lanes and intersections as well as a parking area (the zone in the lower right corner

of the scene). The simulated dynamic objects are vehicles and pedestrians that

202 CHAPTER 6. AUTONOMOUS NAVIGATION IN DYNAMIC URBAN SCENARIOS

follow certain pre-recorded routes or can move in the scene in a randomized fash-

ion. The simulator engine also includes different laser and camera sensor models

as well as physical body dynamics and contact modeling as options.

Figure 6.2: A simulated urban traffic scene.

The prior knowledge about the road structure is described via a Route Net-

work Definition File (RNDF) [rnd, 2007] (cf Appendix A for the listing of RNDF

describing the scene in Fig. 6.2). The RNDF description represents essentially a

topological division of the environment into road segments that contain lanes in

both driving directions and zones that contain perimeters (arbitrarily structured

areas, such as parking lots). Type of lanes which can be broken white, solid white,

solid yellow, double yellow are also contained in the RNDF. The collision check-

ing module of the Partial Motion Planner treats the broken white as the absence

of static obstacles, the other cases are implemented as polyline obstacles.

6.3. WORLD MODEL AND GLOBAL ROUTE PLANNING 203

Fig. 6.3 depicts a possible lane division to the scene of Fig. 6.2 where all the

different types of lanes are present. The current state and future motion prediction

of all the potentially dynamic obstacles are estimated based on object’s current

position and the obstacle tracking module presented in Sec. 5.5.3 as can be seen

from object traces in Fig. 6.3.

Figure 6.3: Lane structure of the simulation environment based on RNDF topo-
logical description and the lane definition file containing the metric information
about the lanes. The lane types include broken white, solid white, solid yellow,
double yellow. On the collision checking level each lane is described as a static poly-
line obstacle. The present dynamic objects such as vehicles and pedestrians and their
corresponding future predicted motion trajectories are depicted as well (cyan).

In addition to the topological lane description and lane width defined in the

RNDF, also the geometric information is needed to define the static part of the

environment obstacles. In a real experimental vehicle this information may be

204 CHAPTER 6. AUTONOMOUS NAVIGATION IN DYNAMIC URBAN SCENARIOS

available via a lane detection module, such as the one described in the Sec. 5.3, a

GPS navigation system unit or by using an additional lane definition file based on

global GPS coordinates, an example of which is depicted in Fig. 6.4. Intersections

are not explicitly described in the RNDF form, since they are implicitly defined

by the adjacent road segments.

Figure 6.4: A section of the lane definition map based on global GPS coordinates.
The L labelled points define the outer lane boundaries, whereas the M labelled points
define the middle of the road. Other GPS points are the waypoints defined by the
RNDF description.

Within each lane or perimeter of the RNDF description, there is a set of

waypoints that contain position information. Additionally, a waypoint can be

defined as stop or exit point, which provides the connectivity information about

allowed transitions between lanes at intersection points. A subset of waypoints,

named checkpoints, are waypoints with an id number that can be used to define

the a global level navigation mission scenario. Fig. 6.5 represents full waypoints

connectivity map based on the RNDF description of the traffic scene in Fig. 6.2.

6.3. WORLD MODEL AND GLOBAL ROUTE PLANNING 205

Figure 6.5: Route Network Definition File (RNDF) describes topological connectivity
in a road structure. Basic waypoints (blue), checkpoints (circle dashed), exit points
(magenta) and stop points (red squared) all describe metric distances as well as tran-
sitions in lanes and intersection. Zones contain perimeters which are described by
polygons (green). A perimeter can among other contain a parking lot with parking
spots defined by checkpoints.

6.3.2 Global Route Planning

The global mission task is defined by the Mission Manager is as a list of check-

points, i.e. a list of waypoints from the RNDF that have to be traversed in order to

complete a mission (typical scenario in DARPA vehicle challenges, for instance).

The list can be only one goal checkpoint or a list of many. In either case, the Global

Route Planning module uses the RNDF connectivity map presented in Fig. 6.5 in

order augment the global route plan with the set of available intermediate way-

points. The route planning is straightforward by applying the A* graph search

206 CHAPTER 6. AUTONOMOUS NAVIGATION IN DYNAMIC URBAN SCENARIOS

algorithm using the length of the graph’s edges as a cost function in order to find

the shortest route between two checkpoints (an alternative cost function might

be the fastest route between the checkpoints). Each checkpoint defined by the

mission task contains specific speed limitations also, or the general traffic speed

limits in the urban area apply. The stop rule for a particular set of waypoints of

the RNDF file cannot be overruled. From the RNDF and the lane definition file

also the orientation of each waypoint within the lane structure can be derived.

The output of the Global Route Planning module consists therefore of a list of

waypoint configurations Qg = {q1
g , · · · , qNgg } that the vehicle should reach. Each

configuration can be described as a position and orientation:

qig = {xig, yig, θig} (6.1)

Associated with every configuration, there is a constraint vector describing the

bounds within which the vehicle’s motion is considered as acceptable with respect

to the task at hand and the traffic rules:

ci = {rimax,∆θ
i
max, v

i
min, v

i
des, v

i
max} (6.2)

where rimax stands for the maximum distance between the object’s actual position

and the desired one; ∆θimax is the maximum error tolerated for the heading; and

vimin, vides and vimax are the minimum, desired and maximum velocities associated

to the given configuration.

The waypoint configurations described by the Eq. 6.1 and the related con-

straints defined by Eq. 6.2 can be fed directly to the Partial Motion Planning

level that computes the current feasible trajectory for the vehicle based on ego-

motion trajectory exploration and collision checking with the static and dynamic

objects in the environment.

6.4. IN LANE AND INTERSECTION NAVIGATION 207

6.4 In lane and intersection navigation

Simulation results in this section are presented for different structured urban en-

vironment scenarios, i.e. in lane driving and intersection handling.

The dynamic obstacles presented in different scene views are pedestrians and

static and moving vehicles, whose shapes are described as polygons, more specif-

ically rectangular shapes. Their estimated positions and future trajectories are

depicted in navigation views which also includes the static part of the environ-

ment that is described via polylines (the lane boundaries). Collision checking

between the ego-vehicle and environmental obstacles has to be performed for the

whole given time horizon. The navigation scheme presented in the results is based

on waypoint following (cf Sec. 4.4.3, case 1) and exhaustive trajectory exploration

phase. The currently active goal waypoint is drawn in the navigation views as a

circular region based on the given constraints of Eq. 6.1 and 6.2. The trajectory

diffusion starting from the ego-vehicle contains tree nodes that are free of obstacles

(green) and prohibited nodes (marked red), whereas the currently best trajectory

towards the waypoint is marked in magenta. Note that the given navigation snap-

shots are based on a certain time instant tkand that the prohibited regions depend

on all the predicted future motions of the obstacles.

Fig. 6.6 and 6.7 depict a situation where the vehicle is driving in a lane behind

another vehicle. The space currently occupied by the leading vehicle is going to

be freed within a certain time in the future, therefore there exists a collision free

trajectory for the ego-vehicle to follow. In Fig. 6.8 and Fig. 6.9 the vehicle avoids

collision with an pedestrian in the lane. Due to the control input discretization and

confined maneuver space, there is just enough space to avoid the object otherwise

the vehicle would have to stop according to the braking maneuver capability. It

is also discutable if in practice passing this close to an object such as pedestrian

would be desired. To avoid this behavior, an enlarged comfort buffer zone around

the pedestrian’s actual size could be introduced in the collision checking stage.

Fig. 6.10 and 6.11 represent negotiating an intersection crossing in the presence

208 CHAPTER 6. AUTONOMOUS NAVIGATION IN DYNAMIC URBAN SCENARIOS

of several moving objects. The orientation of the next waypoint (blue circle in the

upper part of the Fig. 6.11) is deliberately set off the nominal lane orientation

in order to show that the partial motion planning scheme is to a certain extend

robust with respect to the waypoint configuration if the imposed constraints on

∆θmax are not too tight. In fact, in the case of in-lane driving the structure of the

environment itself forces the motion trajectory to be stay oriented with respect to

the lane boundaries.

Fig. 6.12 and 6.13 represent another intersection negotiation scenario.where

the vehicle successfully avoids dynamic and static obstacles. However, this partic-

ular case also shows the limitations of the current hierarchical navigation scheme.

The Partial Motion Planning level due to the execution/planning and obstacle

prediction time constraints has to provide a feasible trajectory at least of duration

Td = Te = Ts, according to Sec. 4.2. The currently active waypoint was “perma-

nently” occupied by pedestrians. Therefore, the next best trajectory that is at

computed at least to the Td decision horizon and has the best end node metric

with respect to the Continuous Curvature Path length (cf 4.4.3) is actually leading

to another lane. This detour is obviously undesirable but in principle cannot be

resolved on the Partial Motion Planning level.

This implies that there is a need to introduce a Behavioral Planning level as

an intermediate level between the Global Route Planning which provides the list

of waypoints to follow and the Partial Motion Planning trajectory level. This

module would assure that the search space for the Partial Motion Planning level

would not only be driven by the currently active waypoint but also by additional

constraints on the available free space. In the context of the presented scenario,

the lane entries straight and left with respect to the vehicle would be blocked with

polyline boundaries that would leave the maneuver space of the vehicle only to

the intersection area and the right turn lane. This aspect is left as future work.

6.4. IN LANE AND INTERSECTION NAVIGATION 209

Figure 6.6: In lane (scene view).

Figure 6.7: In lane (navigation view).

210 CHAPTER 6. AUTONOMOUS NAVIGATION IN DYNAMIC URBAN SCENARIOS

Figure 6.8: In lane pedestrian negotiation (scene view).

Figure 6.9: In lane pedestrian negotiation (navigation view).

6.4. IN LANE AND INTERSECTION NAVIGATION 211

Figure 6.10: Intersection handling I (scene view).

Figure 6.11: Intersection handling I (navigation view).

212 CHAPTER 6. AUTONOMOUS NAVIGATION IN DYNAMIC URBAN SCENARIOS

Figure 6.12: Intersection handling II (scene view).

Figure 6.13: Intersection handling II (navigation view).

6.5. UNSTRUCTURED PARKING ZONE NAVIGATION 213

6.5 Unstructured parking zone navigation

The unstructured parking zone navigation features the similar Partial Motion

Planning paradigm as the in-lane and intersection navigation, with the difference

a combined greedy goal search and randomized control input are used on the level

of tree node expansion methods (cf 4.4.3), except for the root node, in order to

explore the vast free space available. It can be seen from the results that the ego-

vehicle is able to reach the active waypoint while negotiating moving obstacles

and preventing head-on collisions, as can be seen in Fig. 6.14 to Fig. 6.17, proving

the generic applicability of the Partial Motion Planning scheme.

However, in order to explore the vast free space available more efficiently, a

comparison would be needed between the randomized exploration scheme and a

metric based on introducing a global navigation function metric (cf Sec. 4.4.3),

such as that of the dynamic programming goal cost function in [Montemerlo et

al., 2008b].

214 CHAPTER 6. AUTONOMOUS NAVIGATION IN DYNAMIC URBAN SCENARIOS

Figure 6.14: Parking lot I (scene view).

Figure 6.15: Parking lot I (navigation view).

6.5. UNSTRUCTURED PARKING ZONE NAVIGATION 215

Figure 6.16: Parking lot II (scene view).

Figure 6.17: Parking lot II (navigation view).

216 CHAPTER 6. AUTONOMOUS NAVIGATION IN DYNAMIC URBAN SCENARIOS

6.6 Conclusion

In this chapter a hierarchical approach to autonomous navigation in dynamic ur-

ban scenarios is discussed. It includes at the global navigation level a Mission

Manager defining the global navigation task that is used by the Global Route

Planner in order to compute a set of waypoints to be visited by the vehicle.

The current trajectory computation and collision avoidance is done at the level

of Partial Motion Planner. The World Model includes the relevant aspects of the

environment, such as the road network structure description and dynamic scene

analysis. Simulated autonomous navigation results in lane, intersection and park-

ing zone scenes where the ego-vehicle successfully negotiates the dynamic obstacles

while navigating towards the next active waypoint. A limitation of the current

hierarchical navigation structure was also identified, namely the lack of Behavioral

Planner that would act as a state machine between the Global Route Planner and

the Partial Motion Planner in order to define the next active waypoint but also to

impose further restrictions on the available free space trajectory search. Further-

more, the parking zone areas that include vast free space areas could be explored

more efficiently by including a global navigation function metric.

Chapter 7

Conclusion and outlook

7.1 Conclusion

In recent years the automotive industry has been spending increasing efforts in de-

velopment of Advanced Driver Assistance Systems (ADAS) and their introduction

to the modern day vehicles, which should significantly increase the safety, com-

fort and efficiency of vehicle traffic in the present and future. Several categories

of ADAS have been implemented in practice regarding different traffic scenarios,

ranging from notification and warning to the driver to automatic control in mit-

igation of potential critical traffic situations. However, the full range of vehicle

maneuverability, sensorial and perceptional capabilities are yet to be exploited.

The issue of autonomous navigation of mobile platforms, which in its essence

include environment modeling, motion planning and control, has been a key re-

search area in the robotic community from its very beginnings. Additionally to

the more traditional mobile platforms such as indoor exhibition/service mobile

robots or offroad exploration rovers, there is also an increase in research effort in

autonomous navigation of passenger vehicles, which can be regarded as a comple-

mentary approach to the automotive industry’s ADAS evolution.

In this sense, this thesis was concerned in autonomous vehicle navigation of

vehicles for static as well as dynamic urban scenarios. The main motivation is the

217

218 CHAPTER 7. CONCLUSION AND OUTLOOK

fact that the fully autonomous vehicle agents could in future completely replace

the driver engagement in the traffic. This would allow for a much more efficient

traffic analysis and reduction of perceptional uncertainty. Moreover, it would allow

for precise and optimized traffic planning and control, increasing the timing and

energy efficiency, but most importantly bringing the overall traffic safety level to

a significantly higher level, potentially life-saving.

The thesis explored several key elements needed to achieve full autonomous

driving, namely vehicle modeling, autonomous navigation in unstructured or static

environments, autonomous navigation in the presence of dynamic obstacles and

dynamic scene analysis. The vehicle modeling, the hierarchical autonomous nav-

igation architecture for static environments and the dynamic scene analysis were

tested on an experimental vehicle platform. The motion planning techniques pro-

posed in the presence of dynamic obstacles were investigated in simulation with

the particular interest to the case of urban traffic navigation, taking into account

the particularities of this environment with respect to dynamic object types such

as other participating vehicles and pedestrians, as well as the road network struc-

ture.

7.2 Outlook

The future work based on the results in this thesis would primarily include further

improvements for the case of autonomous navigation in dynamic urban scenarios.

From the point of view of navigation and motion planning, the hierarchical navi-

gation scheme would have to be refined to include the intermediate planning level

that would control the transitions on the level of road segments. Increased levels of

safety could be implemented by taking into account the maneuvering capabilities

of the dynamic objects. From the point of view of dynamic scene analysis, the

current dynamic regions detection module would have to be enhanced in order to

robustly extract the traffic participant objects by using additional segmentation

7.2. OUTLOOK 219

techniques as well as the information about the lanes of the road structure. The

motion prediction of the dynamic objects could therefore be more complex and

take into account their deliberation.

Ultimately, the goal would be to verify the proposed navigation architecture

for the dynamic urban scenarios, from perception to planning in different real life

experimental scenarios.

Appendices

221

Appendix A

Route Nework Definition File

(RNDF)

Route Nework Definition File (RNDF) is given for the simulated urban environ-

ment of Chap. 6 (cf Fig. 6.2, 6.3 and 6.5).

RNDF name urban scene rndf 3D

num segments 12

num zones 1

f o rmat ve r s i on 1 .0

fo rmat ang l e c a r t e s i a n

c r e a t i o n d a t e 19 June09

segment 1

num lanes 2

segment name segment 1

lane 1 .1

num waypoints 3

lane width 5

223

224 APPENDIX A. ROUTE NEWORK DEFINITION FILE (RNDF)

l e f t boundary broken white

r ight boundary s o l i d w h i t e

1 . 1 . 1 −62.5 52 .5 0 .0

1 . 1 . 2 −62.5 30 .0 0 .0

1 . 1 . 3 −62.5 7 .5 0 .0

checkpoint 1 . 1 . 1 1

checkpoint 1 . 1 . 2 2

checkpoint 1 . 1 . 3 3

e x i t 1 . 1 . 3 4 . 2 . 1

e x i t 1 . 1 . 3 1 2 . 1 . 1

end lane

lane 1 .2

num waypoints 3

lane width 5

l e f t boundary broken white

r ight boundary s o l i d y e l l o w

1 . 2 . 1 −57.5 7 .5 0 .0

1 . 2 . 2 −57.5 52 .5 0 .0

checkpoint 1 . 2 . 1 4

checkpoint 1 . 2 . 2 5

e x i t 1 . 2 . 2 2 . 2 . 1

end lane

end segment

segment 2

num lanes 2

segment name segment 2

225

l ane 2 .1

num waypoints 3

lane width 5

l e f t boundary s o l i d w h i t e

r ight boundary s o l i d w h i t e

2 . 1 . 1 −7.5 62 .5 0 .0

2 . 1 . 2 −30.0 62 .5 0 .0

2 . 1 . 3 −52.5 62 .5 0 .0

checkpoint 2 . 1 . 1 6

checkpoint 2 . 1 . 2 7

checkpoint 2 . 1 . 3 8

e x i t 2 . 1 . 3 1 . 1 . 1

end lane

lane 2 .2

num waypoints 3

lane width 5

l e f t boundary s o l i d w h i t e

r ight boundary s o l i d y e l l o w

2 . 2 . 1 −52.5 57 .5 0 .0

2 . 2 . 2 −30.0 57 .5 0 .0

2 . 2 . 3 −7.5 57 .5 0 .0

checkpoint 2 . 2 . 1 9

checkpoint 2 . 2 . 2 10

checkpoint 2 . 2 . 3 11

e x i t 2 . 2 . 3 3 . 1 . 1

e x i t 2 . 2 . 3 5 . 2 . 1

end lane

end segment

226 APPENDIX A. ROUTE NEWORK DEFINITION FILE (RNDF)

segment 3

num lanes 2

segment name segment 3

lane 3 .1

num waypoints 2

lane width 5

l e f t boundary broken white

r ight boundary s o l i d w h i t e

3 . 1 . 1 −2.5 52 .5 0 .0

3 . 1 . 2 −2.5 7 .5 0 .0

checkpoint 3 . 1 . 1 12

checkpoint 3 . 1 . 2 13

e x i t 3 . 1 . 2 4 . 1 . 1

e x i t 3 . 1 . 2 1 0 . 1 . 1

e x i t 3 . 1 . 2 7 . 2 . 1

stop 3 . 1 . 2

end lane

lane 3 .2

num waypoints 2

lane width 5

l e f t boundary broken white

r ight boundary s o l i d y e l l o w

3 . 2 . 1 2 .5 7 .5 0 .0

3 . 2 . 2 2 . 5 52 .5 0 .0

checkpoint 3 . 2 . 1 14

checkpoint 3 . 2 . 2 15

227

e x i t 3 . 2 . 2 5 . 2 . 1

e x i t 3 . 2 . 2 2 . 1 . 1

stop 3 . 2 . 2

end lane

end segment

segment 4

num lanes 2

segment name segment 4

lane 4 .1

num waypoints 3

lane width 5

l e f t boundary broken white

r ight boundary s o l i d y e l l o w

4 . 1 . 1 −7.5 2 .5 0 .0

4 . 1 . 2 −30.0 2 .5 0 .0

4 . 1 . 3 −52.5 2 .5 0 .0

checkpoint 4 . 1 . 1 16

checkpoint 4 . 1 . 2 17

checkpoint 4 . 1 . 3 18

e x i t 4 . 1 . 3 1 . 2 . 1

e x i t 4 . 1 . 3 1 2 . 1 . 1

end lane

lane 4 .2

num waypoints 3

lane width 5

l e f t boundary broken white

228 APPENDIX A. ROUTE NEWORK DEFINITION FILE (RNDF)

r ight boundary s o l i d y e l l o w

4 . 2 . 1 −52.5 −2.5 0 .0

4 . 2 . 2 −30.0 −2.5 0 .0

4 . 2 . 3 −7.5 −2.5 0 .0

checkpoint 4 . 2 . 1 19

checkpoint 4 . 2 . 2 20

checkpoint 4 . 2 . 3 21

e x i t 4 . 2 . 3 1 0 . 1 . 1

e x i t 4 . 2 . 3 7 . 2 . 1

e x i t 4 . 2 . 3 3 . 2 . 1

end lane

end segment

segment 5

num lanes 2

segment name segment 5

lane 5 .1

num waypoints 3

lane width 5

l e f t boundary broken white

r ight boundary s o l i d w h i t e

5 . 1 . 1 52 .5 62 .5 0 .0

5 . 1 . 2 30 .0 62 .5 0 .0

5 . 1 . 3 7 .5 62 .5 0 .0

checkpoint 5 . 1 . 1 22

checkpoint 5 . 1 . 2 23

checkpoint 5 . 1 . 3 24

e x i t 5 . 1 . 3 2 . 1 . 1

229

e x i t 5 . 1 . 3 3 . 1 . 1

end lane

lane 5 .2

num waypoints 3

lane width 5

l e f t boundary broken white

r ight boundary s o l i d y e l l o w

5 . 2 . 1 7 .5 57 .5 0 .0

5 . 2 . 2 30 .0 57 .5 0 .0

5 . 2 . 3 52 .5 57 .5 0 .0

checkpoint 5 . 2 . 1 25

checkpoint 5 . 2 . 2 26

checkpoint 5 . 2 . 3 27

e x i t 5 . 2 . 3 6 . 1 . 1

end lane

end segment

segment 6

num lanes 2

segment name segment 6

lane 6 .1

num waypoints 3

lane width 5

l e f t boundary doub l e ye l l ow

r ight boundary s o l i d y e l l o w

6 . 1 . 1 57 .5 52 .5 0 .0

6 . 1 . 2 57 .5 30 .0 0 .0

230 APPENDIX A. ROUTE NEWORK DEFINITION FILE (RNDF)

6 . 1 . 3 57 .5 7 .5 0 .0

checkpoint 6 . 1 . 1 28

checkpoint 6 . 1 . 2 29

checkpoint 6 . 1 . 3 30

e x i t 6 . 1 . 3 7 . 1 . 1

e x i t 6 . 1 . 3 8 . 1 . 1

stop 6 . 1 . 3

end lane

lane 6 .2

num waypoints 3

lane width 5

l e f t boundary doub l e ye l l ow

r ight boundary s o l i d w h i t e

6 . 2 . 1 62 .5 7 .5 0 .0

6 . 2 . 2 62 .5 30 .0 0 .0

6 . 2 . 3 62 .5 52 .5 0 .0

checkpoint 6 . 2 . 1 31

checkpoint 6 . 2 . 2 32

checkpoint 6 . 2 . 3 33

e x i t 6 . 2 . 3 5 . 1 . 1

end lane

end segment

segment 7

num lanes 2

segment name segment 7

lane 7 .1

231

num waypoints 3

lane width 5

l e f t boundary broken white

r ight boundary s o l i d y e l l o w

7 . 1 . 1 52 .5 2 .5 0 .0

7 . 1 . 2 7 . 5 2 .5 0 .0

checkpoint 7 . 1 . 1 34

checkpoint 7 . 1 . 2 35

e x i t 7 . 1 . 2 3 . 2 . 1

e x i t 7 . 1 . 2 4 . 1 . 1

e x i t 7 . 1 . 2 1 0 . 1 . 1

end lane

lane 7 .2

num waypoints 3

lane width 5

l e f t boundary broken white

r ight boundary s o l i d y e l l o w

7 . 2 . 1 7 .5 −2.5 0 .0

7 . 2 . 2 30 .0 −2.5 0 .0

7 . 2 . 3 52 .5 −2.5 0 .0

checkpoint 7 . 2 . 1 36

checkpoint 7 . 2 . 2 37

checkpoint 7 . 2 . 3 38

e x i t 7 . 2 . 3 8 . 1 . 1

e x i t 7 . 2 . 3 6 . 2 . 1

end lane

end segment

232 APPENDIX A. ROUTE NEWORK DEFINITION FILE (RNDF)

segment 8

num lanes 2

segment name segment 8

lane 8 .1

num waypoints 3

lane width 5

l e f t boundary doub l e ye l l ow

r ight boundary s o l i d y e l l o w

8 . 1 . 1 57 .5 −7.5 0 .0

8 . 1 . 2 57 .5 −30.0 0 .0

8 . 1 . 3 57 .5 −52.5 0 .0

checkpoint 8 . 1 . 1 40

checkpoint 8 . 1 . 2 41

checkpoint 8 . 1 . 3 42

e x i t 8 . 1 . 3 9 . 1 . 1

end lane

lane 8 .2

num waypoints 3

lane width 5

l e f t boundary doub l e ye l l ow

r ight boundary s o l i d w h i t e

8 . 2 . 1 62 .5 −52.5 0 .0

8 . 2 . 2 62 .5 −30.0 0 .0

8 . 2 . 3 62 .5 −7.5 0 .0

checkpoint 8 . 2 . 1 43

checkpoint 8 . 2 . 2 44

checkpoint 8 . 2 . 3 45

233

e x i t 8 . 2 . 3 6 . 2 . 1

e x i t 8 . 2 . 3 7 . 1 . 1

stop 8 . 2 . 3

end lane

end segment

segment 9

num lanes 2

segment name segment 9

lane 9 .1

num waypoints 3

lane width 5

l e f t boundary s o l i d y e l l o w

r ight boundary s o l i d y e l l o w

9 . 1 . 1 52 .5 −57.5 0 .0

9 . 1 . 2 30 .0 −57.5 0 .0

9 . 1 . 3 7 . 5 −57.5 0 .0

checkpoint 9 . 1 . 1 46

checkpoint 9 . 1 . 2 47

checkpoint 9 . 1 . 3 48

e x i t 9 . 1 . 3 1 0 . 2 . 1

e x i t 9 . 1 . 3 1 1 . 1 . 1

end lane

lane 9 .2

num waypoints 3

lane width 5

234 APPENDIX A. ROUTE NEWORK DEFINITION FILE (RNDF)

l e f t boundary s o l i d y e l l o w

r ight boundary s o l i d w h i t e

9 . 2 . 1 7 . 5 −62.5 0 .0

9 . 2 . 2 30 .0 −62.5 0 .0

9 . 2 . 3 52 .5 −62.5 0 .0

checkpoint 9 . 2 . 1 49

checkpoint 9 . 2 . 2 50

checkpoint 9 . 2 . 3 51

e x i t 9 . 2 . 3 8 . 2 . 1

end lane

end segment

segment 10

num lanes 2

segment name segment 10

lane 10 .1

num waypoints 3

lane width 5

l e f t boundary broken white

r ight boundary s o l i d y e l l o w

1 0 . 1 . 1 −2.5 −7.5 0 .0

1 0 . 1 . 2 −2.5 −30.0 0 .0

1 0 . 1 . 3 −2.5 −52.5 0 .0

checkpoint 1 0 . 1 . 1 52

checkpoint 1 0 . 1 . 2 53

checkpoint 1 0 . 1 . 3 54

e x i t 1 0 . 1 . 3 1 1 . 1 . 1

e x i t 1 0 . 1 . 3 9 . 2 . 1

235

end lane

lane 10 .2

num waypoints 4

lane width 5

l e f t boundary broken white

r ight boundary s o l i d y e l l o w

1 0 . 2 . 1 2 .5 −52.5 0 .0

1 0 . 2 . 2 2 . 5 −35.0 0 .0

1 0 . 2 . 3 2 . 5 −25.0 0 .0

1 0 . 2 . 4 2 . 5 −7.5 0 .0

checkpoint 1 0 . 2 . 1 55

checkpoint 1 0 . 2 . 2 56

checkpoint 1 0 . 2 . 3 57

checkpoint 1 0 . 2 . 4 58

e x i t 1 0 . 2 . 4 7 . 2 . 1

e x i t 1 0 . 2 . 4 3 . 2 . 1

e x i t 1 0 . 2 . 4 4 . 1 . 1

e x i t 1 0 . 2 . 2 1 0 0 . 3 . 1

end lane

end segment

segment 11

num lanes 2

segment name segment 11

lane 11 .1

num waypoints 3

lane width 5

236 APPENDIX A. ROUTE NEWORK DEFINITION FILE (RNDF)

l e f t boundary broken white

r ight boundary s o l i d y e l l o w

1 1 . 1 . 1 −7.5 −57.5 0 .0

1 1 . 1 . 2 −30.0 −57.5 0 .0

1 1 . 1 . 3 −52.5 −57.5 0 .0

checkpoint 1 1 . 1 . 1 59

checkpoint 1 1 . 1 . 2 60

checkpoint 1 1 . 1 . 3 61

e x i t 1 1 . 1 . 3 1 2 . 2 . 1

end lane

lane 11 .2

num waypoints 3

lane width 5

l e f t boundary broken white

r ight boundary s o l i d w h i t e

1 1 . 2 . 1 −52.5 −62.5 0 .0

1 1 . 2 . 2 −30.0 −62.5 0 .0

1 1 . 2 . 3 −7.5 −62.5 0 .0

checkpoint 1 1 . 2 . 1 62

checkpoint 1 1 . 2 . 2 63

checkpoint 1 1 . 2 . 3 64

e x i t 1 1 . 2 . 3 9 . 2 . 1

e x i t 1 1 . 2 . 3 1 0 . 2 . 1

end lane

end segment

segment 12

num lanes 2

237

segment name segment 12

lane 12 .1

num waypoints 2

lane width 5

l e f t boundary s o l i d w h i t e

r ight boundary s o l i d w h i t e

1 2 . 1 . 1 −62.5 −7.5 0 .0

1 2 . 1 . 2 −62.5 −52.5 0 .0

checkpoint 1 2 . 1 . 1 65

checkpoint 1 2 . 1 . 2 66

e x i t 1 2 . 1 . 2 1 1 . 2 . 1

end lane

lane 12 .2

num waypoints 2

lane width 5

l e f t boundary s o l i d w h i t e

r ight boundary s o l i d y e l l o w

1 2 . 2 . 1 −57.5 −52.5 0 .0

1 2 . 2 . 2 −57.5 −7.5 0 .0

checkpoint 1 2 . 2 . 1 67

checkpoint 1 2 . 2 . 2 68

e x i t 1 2 . 2 . 2 4 . 2 . 1

e x i t 1 2 . 2 . 2 1 . 2 . 1

stop 1 2 . 2 . 2

end lane

end segment

238 APPENDIX A. ROUTE NEWORK DEFINITION FILE (RNDF)

zone 100

num spots 3

zone name c i t y p a r k i n g

per imeter 100 .0

num per imeterpoints 6

1 0 0 . 0 . 1 5 .0 −27.5 0 .0

1 0 0 . 0 . 2 5 .0 −5.0 0 .0

1 0 0 . 0 . 3 55 .0 −5.0 0 .0

1 0 0 . 0 . 4 55 .0 −55.0 0 .0

1 0 0 . 0 . 5 5 .0 −55.0 0 .0

1 0 0 . 0 . 6 5 .0 −32.5 0 .0

e x i t 1 0 0 . 0 . 1 1 0 . 2 . 3

end per imeter

spot 100 .1

spot width 5

1 0 0 . 1 . 1 40 −17 0 .0

1 0 0 . 1 . 2 40 −15 0 .0

checkpoint 1 0 0 . 1 . 2 69

end spot

spot 100 .2

spot width 5

1 0 0 . 2 . 1 20 −45 0 .0

1 0 0 . 2 . 2 20 −47 0 .0

checkpoint 1 0 0 . 2 . 2 70

end spot

239

spot 100 .3

1 0 0 . 3 . 1 5 .0 −32.5 0 .0

checkpoint 1 0 0 . 3 . 1 71

end spot

end zone

e n d f i l e

Bibliography

[Alami et al., 02] R. Alami, T. Simeon, and K. Madhava Krishna. On the influ-
ence of sensor capacities and environment dynamics onto collision-free motion
plans. In Proc. of the IEEE-RSJ Int. Conf. on Intelligent Robots and Systems,
Lausanne (CH), October 02.

[Apostoloff and Zelinsky, 2002] N. Apostoloff and A. Zelinsky. Vision in and out
of vehicles: Integrated driver and road scene monitoring. In Proceedings of the
International Symposium of Experimental Robotics, Italy, 2002.

[Bacha et al., 2008] Andrew Bacha, Cheryl Bauman, Ruel Faruque, Michael
Fleming, Chris Terwelp, Charles Reinholtz, Dennis Hong, Al Wicks, Thomas
Alberi, David Anderson, Stephen Cacciola, Patrick Currier, Aaron Dalton, Jesse
Farmer, Jesse Hurdus, Shawn Kimmel, Peter King, Andrew Taylor, David Van
Covern, and Mike Webster. Odin: Team victortango’s entry in the darpa urban
challenge. J. Field Robot., 25(8):467–492, 2008.

[Bartels et al., 1987] R.H. Bartels, J.C. Beatty, and B.A. Barsky. An Introduction
to Splines for use in Computer Graphics and Geometric Modeling. Morgan
Kaufmann Publishers, Inc., Los Altos, CA 94022, 1987.

[Bertozzi and Broggi, 1999] Massimo Bertozzi and Alberto Broggi. Tools for code
optimization and system evaluation of the image processing system paprica-3.
Journal of Systems Architecture, 45(6-7):519–542, 1999.

[Bertozzi et al., 2000] Massimo Bertozzi, Alberto Broggi, and Alessandra Fascioli.
Vision-based intelligent vehicles: State of the art and perspectives. Robotics and
Autonomous Systems, 32(1):1–16, 2000.

[Beuvais and Kreucher, 1997] L. Michael Beuvais and C. Kreucher. Building
world model for mobile platforms using heterogeneous sensors fusion and tempo-
ral analysis. In Proceedings of the IEEE International Conference on Intelligent
Transportation Systems, page 101, Boston, MA, November 1997.

[Blackman and Popoli, 1999] S. Blackman and R. Popoli. Design and Analysis of
Modern Tracking Systems. Artech House, 1999.

241

242 BIBLIOGRAPHY

[Bohren et al., 2008] Jonathan Bohren, Tully Foote, Jim Keller, Alex Kushleyev,
Daniel Lee, Alex Stewart, Paul Vernaza, Jason Derenick, John Spletzer, and
Brian Satterfield. Little ben: The ben franklin racing team’s entry in the 2007
darpa urban challenge. J. Field Robot., 25(9):598–614, 2008.

[Broggi et al., 1999] A. Broggi, M. Bertozzi, A. Fascioli, and G. Conte. Auto-
matic vehicle guidance: The experience of the argo vehicle. In World Scientific.
Singapore, 1999.

[Broggi et al., 2001] Alberto Broggi, Massimo Bertozzi, Gianni Conte, and
Alessandra Fascioli. Argo prototype vehicle. In Ljubo Vlacic, Michel Parent,
and Fumio Harashima, editors, Intelligent Vehicle Technologies, pages 445–493.
Butterworth-Heinemann, Oxford, 2001.

[Buehler et al., 2008] Martin Buehler, Karl Iagnemma, and Sanjiv Singh. Edito-
rial. J. Field Robot., 25(8):423–424, 2008.

[Buehler, 2006] Martin Buehler. Summary of dgc 2005 results. Journal of Field
Robotics, 23(8):465–466, 2006.

[Burckhardt, 1993] M. Burckhardt. Fahrwerktechnik: Radschlupf-Regelsysteme.
Vogel Fachbuch, Wuerzburg, 1993.

[Burlet et al., 2007] J. Burlet, T.D. Vu, and O. Aycard. Grid-based localization
and online mapping with moving object detection and tracking. Rapport de
recherche 167687, INRIA, 2007.

[Canny, 1986] J. Canny. A computational approach to edge detection. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 8:679–698, 1986.

[Canudas de Wit et al., 1995] Carlos Canudas de Wit, H. Olsson, K. J. Astroem,
and Lischinsky. A new model for control of systems with friction. IEEE Trans-
actions on Automatic Control, 40(3), 1995.

[c:I, 1997] ISO, Mechanical vibration and shock - Evaluation of human exposure
to whole body vibrations - Part 1: General requirements, ISO 2631-1. 1997.

[Claeys et al., 2001] Xavier Claeys, Jingang Yi, Luis Alvarez, Roberto Horowitz,
and Carlos Canudas de Wit. A dynamictire/road friction model for 3d vehicle
control and simulation. In IEEE Intelliegent Transportation Systems, pages
483–488, Oakland(CA), USA, 2001.

[Continental-ADAS, 2010] http://www.conti-online.com/, March 2010.

[Coué et al., 2006] C. Coué, C. Pradalier, C. Laugier, T. Fraichard, and
P. Bessière. Bayesian occupancy filtering for multitarget tracking: an automo-
tive application. International Journal of Robotics Research (IJRR), 25(1):19–
30, 2006.

http://www.conti-online.com/

BIBLIOGRAPHY 243

[Crisman and Thorpe, 1991] J.D. Crisman and C.E. Thorpe. Unscarf-a color vi-
sion system for the detection of unstructured roads. In Robotics and Automa-
tion, 1991. Proceedings., 1991 IEEE International Conference on, pages 2496–
2501 vol.3, apr 1991.

[de Boor, 2001] C. de Boor. A practical guide to splines. Applied mathematical
sciences 27. Springer, 2001.

[Dickmanns and Christians, 1991] E.D. Dickmanns and Th. Christians. Relative
3d-state estimation for autonomous visual guidance of road vehicles. Robotics
and Autonomous Systems, 7(2-3):113–123, 1991. Special Issue Intelligent Au-
tonomous Systems.

[Dickmanns, 1991] E.D. Dickmanns. 4-d dynamic vision for intelligent motion
control. Engineering Applications of Artificial Intelligence, 4(4):301–307, 1991.

[Dijkstra, 1959] E. W. Dijkstra. A note on two problems in connexion with graphs.
Numerische Mathematik, 1:269–271, 1959.

[eImpact, 2008] eimpact - socio-economic impact assessment of stand-alone and
co-operative intelligent vehicle safety systems (ivss) in europe. Final Report
and Integration of Results and Perspectives for market introduction of IVSS,
eImpact Partners, November 2008. http://www.tno.nl.

[Ferguson and Stentz, 2005] Dave Ferguson and Anthony Stentz. Field D*: An
interpolation-based path planner and replanner. In Proceedings of the Interna-
tional Symposium on Robotics Research (ISRR), 2005.

[Ferguson and Stentz, 2007] D. Ferguson and A. Stentz. Anytime, dynamic plan-
ning in high-dimensional search spaces. In Proceedings of the IEEE International
Conference on Robotics and Automation (ICRA), 2007.

[Fletcher et al., 2008] Luke Fletcher, Seth Teller, Edwin Olson, David Moore,
Yoshiaki Kuwata, Jonathan How, John Leonard, Isaac Miller, Mark Campbell,
Dan Huttenlocher, Aaron Nathan, and Frank-Robert Kline. The mit–cornell
collision and why it happened. J. Field Robot., 25(10):775–807, 2008.

[Fleury et al., 1997] S. Fleury, M. Herrb, and R. Chatila. Genom: A tool for the
specification and the implementation of operating modules in a distributed robot
architecture. In International Conference on Intelligent Robots and Systems,
volume 2, pages 842–848, Grenoble (France), September 1997. IEEE.

[Fox et al., 1996] D. Fox, W. Burgard, and S. Thrun. Controlling synchro-drive
robots with the dynamic window approach to collision avoidance. In IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 1996.

http://www.tno.nl

244 BIBLIOGRAPHY

[Fraichard and Asama, 2004a] Th. Fraichard and H. Asama. Inevitable collision
states - a step towards safer robots? Advanced Robotics, 18(10):1001–1024,
2004.

[Fraichard and Asama, 2004b] Th. Fraichard and H. Asama. Inevitable collision
states. a step towards safer robots? Advanced Robotics, 18(10), 2004.

[Fraichard, 1992] C. Fraichard, T.; Laugier. Kinodynamic planning in a structured
and time-varying 2-d workspace. In International Conference on Robotics and
Automation. IEEE, May 1992.

[Fraichard, 2007] Th. Fraichard. A short paper about motion safety. In Proc. of
the IEEE Int. Conf. on Robotics and Automation, Roma (IT), April 2007.

[Franke et al., 1998] U. Franke, D. Gavrila, S. Gorzig, F. Lindner, F. Puetzold,
and C. Wohler. Autonomous driving goes downtown. Intelligent Systems and
their Applications, IEEE, 13(6):40–48, nov/dec 1998.

[Franke et al., 2001] Uwe Franke, Dariu Gavrila, Axel Gern, Steffen Gorzig, Rein-
hard Janssen, Frank Paetzold, and Christian Wohler. From door to door –
principles and applications of computer vision for driver assistant systems. In
Ljubo Vlacic, Michel Parent, and Fumio Harashima, editors, Intelligent Vehicle
Technologies, pages 131–188. Butterworth-Heinemann, Oxford, 2001.

[Gregor et al., 2002] R. Gregor, M. Lutzeler, M. Pellkofer, K.-H. Siedersberger,
and E.D. Dickmanns. Ems-vision: a perceptual system for autonomous ve-
hicles. Intelligent Transportation Systems, IEEE Transactions on, 3(1):48–59,
mar 2002.

[Haralick and Shapiro, 1992] Robert M. Haralick and Linda G. Shapiro. Com-
puter and Robot Vision Vol.1. Addison-Wesley Publishing Company, Inc., 1992.

[Hart et al., 1968] P.E. Hart, N.J. Nilsson, and B. Raphael. A formal basis for the
heuristic determination of minimum cost paths. IEEE Transactions on Systems
Science and Cybernetics, 4(2):100–107, 1968.

[Iagnemma and Buehler, 2006] Karl Iagnemma and Martin Buehler. Editorial for
journal of field robotics-special issue on the darpa grand challenge. Journal of
Field Robotics, 23(8):461–462, 2006.

[Isard and Blake, 1998] M. Isard and A. Blake. Condensation - conditional density
propagation for visual tracking. International Journal of Computer Vision,
29:5–28, 1998.

[Jochem et al., 1993] T.M. Jochem, D.A. Pomerleau, and C.E. Thorpe. Maniac:
A next generation neurally based autonomous road follower. In Proc. of the
Third International Conference on Intelligent Autonomous Systems, pages 341–
346, Pittsburg, PA, February 1993.

BIBLIOGRAPHY 245

[Junjie et al., 2004] He Junjie, D. A. Crolla, Martin C. Levesley, and Warren J.
Manning. Integrated active steering and variable torque distribution control
for improving vehicle handling and stability. Vehicle Dynamics and Simulation
2004, pages 107–116, 2004.

[Kelly, 2002] A. Kelly. Reactive nonholonomic trajectory generation via paramet-
ric optimal control. ijrr, 2002.

[Kelly, 2004] A. Kelly. Linearized error propagation in odometry. The Interna-
tional Journal of Robotics Research, 23(2):179–218, February 2004.

[Kiencke and Nielsen, 2000a] U. Kiencke and L. Nielsen. Automotive control sys-
tems. Springer, Inc., 2000.

[Kiencke and Nielsen, 2000b] Uwe Kiencke and Lars Nielsen. Automotive Control
Systems. Springer, Berlin; Heidelberg; New York; Hong Kong; London; Milan;
Paris; Singapore; Tokyo, 2000.

[Kiencke and Nielsen, 2005] Uwe Kiencke and Lars Nielsen. Automotive Control
Systems. Springer, Berlin; Heidelberg; New York; Hong Kong; London; Milan;
Paris; Singapore; Tokyo, 2 edition, 2005.

[Koike et al., 2003] C. Koike, C. Pradalier, P. Bessière, and E. Mazer. Obstacle
avoidance and proscriptive bayesian programming. In Proc. of the Workshop
on Reasoning with Uncertainty in Robotics, Acapulco (MX), July 2003.

[Kondak and Hommel, 2001] K. Kondak and G. Hommel. Computation of time
optimal movements for autonomous parking of non-holonomic mobile platforms.
In International Conference on Robotics and Automation, Seoul (Korea), May
2001. IEEE.

[Kuffner and LaValle, 2000] J. Kuffner and S. LaValle. RRT-Connect: An efficient
approach to single-query path planning. In Proc. of the IEEE International
Conference on Robotics and Automation (ICRA), San Francisco, CA, 2000.

[Kurjanowicz, 2006] Ron Kurjanowicz. Foreword for journal of field robotics-
special issue on the darpa grand challenge. Journal of Field Robotics, 23(8):463–
464, 2006.

[Lamon et al., 2006a] P. Lamon, S. Kolski, and R. Siegwart. The SmartTer - a
vehicle for fully autonomous navigation and mapping in outdoor environments.
In Proc. of the CLAWAR, Brussels, Belgium, 2006.

[Lamon et al., 2006b] P. Lamon, S. Kolski, and R.. Siegwart. The smartter - a
vehicle for fully autonomous navigation and mapping in outdoor environments.
In Proc. of the International Conference on Climbing and Walking Robots, 2006.

246 BIBLIOGRAPHY

[Larsen et al., 2000] E. Larsen, S. Gottschalk, M.C. Lin, and D. Manocha. Fast
proximity queries with swept sphere volumes. In Proc. of the IEEE International
Conference on Robotics and Automation (ICRA), 2000.

[Latombe, 1991] J.C. Latombe. Robot Motion Planning. Kluwer Academic Pub-
lishers, Norwell, Mass., 1991.

[Laumond, 1998] J.P. Laumond. Robot motion planning and control. Lecture
notes in control and information sciences 229. Springer, 1998.

[LaValle and Kuffner Jr., 2001] S. M. LaValle and J. J. Kuffner Jr. Randomized
kinodynamic planning. International Journal of Robotics Research, 20(5):378–
400, May 2001.

[LaValle and Kuffner, 2001] S. M. LaValle and J. J. Kuffner. Algorithmic and
Computational Robotics: New Directions, chapter Rapidly-exploring random
trees: Progress and prospects, pages 293–308. Wellesley,MA, 2001.

[Lützeler and Dickmanns, 1998] A.M. Lützeler and E.D. Dickmanns. Road recog-
nition with marveye. In Proc. of the IEEE Intelligent Vehicles Symposium, pages
341–346, Stuttgart, Germany, October 1998.

[Macek and Siegwart, 2006] K. Macek and R. Siegwart. Motion planning in the
presence of moving obstacles using RRT search and B-splines. In Proc. of the
8th International IFAC Symposium on Robot Control (SYROCO), 2006.

[Macek et al., 2004] K. Macek, B. Williams, S. Kolski, and R. Siegwart. A lane
detection vision module for driver assistance. In Proc. of the IEEE/APS Con-
ference on Mechatronics and Robotics (MECHROB), 2004.

[Macek et al., 2005] K. Macek, I. Petrovic, and R. Siegwart. A control method
for stable and smooth path following of mobile robots. In Proc. of the European
Conference on Mobile Robots (ECMR), 2005.

[Macek et al., 2006] K. Macek, M. Becker, and R. Siegwart. Motion planning
for car-like vehicles in dynamic urban scenarios. In Proc. of the IEEE/RSJ
International Conference on Intelligent Robots and Systems (IROS), 2006.

[Macek et al., 2007] K. Macek, K. Thoma, R. Glatzel, and R. Siegwart. Dynam-
ics modeling and parameter identification for autonomous vehicle navigation.
In Proc. of the IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS), 2007.

[Macek et al., 2008a] K. Macek, R. Philippsen, and R. Siegwart. Path following
for autonomous vehicle navigation with inherent safety and dynamics margin.
In Proc. of the IEEE Intelligent Vehicles Symposium (IV), 2008.

BIBLIOGRAPHY 247

[Macek et al., 2008b] K. Macek, D. Vasquez, T. Fraichard, and R. Siegwart. Save
vehicle navigation in dynamic urban scenarios. In Proc. of the Intelligent Trans-
portation Systems Conference (ITSC), 2008.

[Maurer and Dickmanns, 1997] M. Maurer and E.D. Dickmanns. A system ar-
chitecture for autonomous visual road vehicle guidance. In Intelligent Trans-
portation System, 1997. ITSC ’97., IEEE Conference on, pages 578–583, nov
1997.

[Maurer et al., 1996] M. Maurer, R. Behringer, S. Furst, F. Thomanek, and E.D.
Dickmanns. A compact vision system for road vehicle guidance. In Pattern
Recognition, 1996., Proceedings of the 13th International Conference on, vol-
ume 3, pages 313–317 vol.3, aug 1996.

[Maxim Likhachev, 2008] Dave Ferguson Maxim Likhachev. Planning long
dynamically-feasible maneuvers for autonomous vehicles. In Proceedings of
Robotics: Science and Systems IV, Zurich, Switzerland, June 2008.

[Mekhnacha et al., 2006] K. Mekhnacha, J. M. Ahuactzin, P. Bessíre, E. Mazer,
and L. Smail. A unifying framework for exact and approximate bayesian in-
ference. Technical Report RR-5797, NRIA - Rhone-Alpes Research Report -
E-MOTION team, Montbonnot, France, 2006.

[Miller et al., 2008] Isaac Miller, Mark Campbell, Dan Huttenlocher, Frank-
Robert Kline, Aaron Nathan, Sergei Lupashin, Jason Catlin, Brian Schimpf,
Pete Moran, Noah Zych, Ephrahim Garcia, Mike Kurdziel, and Hikaru Fu-
jishima. Team cornell’s skynet: Robust perception and planning in an urban
environment. J. Field Robot., 25(8):493–527, 2008.

[Mitschke, 1990] Manfred Mitschke. Dynamik der Kraftfahrzeuge, Band C:
Fahrverhalten. Springer, Berlin; Heidelberg; New York; London; Paris; Tokyo;
Hong Kong; Singapore, 2 edition, 1990.

[Mitschke, 1995] Manfred Mitschke. Dynamik der Kraftfahrzeuge, Band A:
Antrieb und Bremsung. Springer, Berlin; Heidelberg; New York; London; Paris;
Tokyo; Hong Kong, 3 edition, 1995.

[Montemerlo et al., 2008a] Michael Montemerlo, Jan Becker, Suhrid Bhat, Hen-
drik Dahlkamp, Dmitri Dolgov, Scott Ettinger, Dirk Haehnel, Tim Hilden,
Gabe Hoffmann, Burkhard Huhnke, Doug Johnston, Stefan Klumpp, Dirk
Langer, Anthony Levandowski, Jesse Levinson, Julien Marcil, David Orenstein,
Johannes Paefgen, Isaac Penny, Anna Petrovskaya, Mike Pflueger, Ganymed
Stanek, David Stavens, Antone Vogt, and Sebastian Thrun. Junior: The stan-
ford entry in the urban challenge. J. Field Robot., 25(9):569–597, 2008.

[Montemerlo et al., 2008b] Michael Montemerlo, Jan Becker, Suhrid Bhat, Hen-
drik Dahlkamp, Dmitri Dolgov, Scott Ettinger, Dirk Haehnel, Tim Hilden,

248 BIBLIOGRAPHY

Gabe Hoffmann, Burkhard Huhnke, Doug Johnston, Stefan Klumpp, Dirk
Langer, Anthony Levandowski, Jesse Levinson, Julien Marcil, David Orenstein,
Johannes Paefgen, Isaac Penny, Anna Petrovskaya, Mike Pflueger, Ganymed
Stanek, David Stavens, Antone Vogt, and Sebastian Thrun. Junior: The stan-
ford entry in the urban challenge. J. Field Robot., 25(9):569–597, 2008.

[Nagel et al., 1995] H. H. Nagel, W. Enkelmann, and G. Struck. Fhg-co-driver:
From map-guided automatic driving by machine vision to a cooperative driver
support. Mathematical and Computer Modelling, 22(4-7):185–212, 1995.

[Neusser et al., 1993] S. Neusser, J. Nijhuis, L. Spaanenburg, B. Hoefflinger,
U. Franke, and H. Fritz. Neurocontrol for lateral vehicle guidance. Micro,
IEEE, 13(1):57–66, feb 1993.

[NHTSA, 2002] The economic impact of motor vehicle crashes, 2000. NHTSA
Technical Report, May 2002. http://www.ntis.gov.

[NHTSA, 2009] 2008 traffic safety annual assessment – highlights. Traffic Safety
Facts, National Center for Statistics and Analysis, June 2009. http://www-nrd.
nhtsa.dot.gov/Pubs/811172.PDF.

[NHTSA, 2010] Early estimate of motor vehicle traffic fatalities for the first three
quarters (january – september) of 2009. Traffic Safety Facts, National Center
for Statistics and Analysis, January 2010. http://www-nrd.nhtsa.dot.gov/

Pubs/811255.PDF.

[OECD, 2003] Road safety - impact of new technologies. Technical Report ITRD
Number: E117683, ISBN-92-64-10322-8 OECD, 2003.

[Paetzold and Franke, 2000] F. Paetzold and U. Franke. Road recognition in ur-
ban environment. Image and Vision Computing, 18(5):377–387, 2000.

[P.E. Gill and Saunders, 2005] W. Murray P.E. Gill and M. A. Saunders. SNOPT:
An SQP algorithm for large-scale constrained optimization. In SIAM Review,
volume 47, pages 99–131. 2005.

[Petti and Fraichard, 2005] S. Petti and Th. Fraichard. Partial motion planning
framework for reactive planning within dynamic environments. In Proc. of the
IFAC/AAAI Int. Conf. on Informatics in Control, Automation and Robotics,
Barcelona (SP), September 2005.

[Philippsen and Siegwart, 2005] Roland Philippsen and Roland Siegwart. An in-
terpolated dynamic navigation function. In Proc. of the IEEE International
Conference on Robotics and Automation (ICRA), 2005.

[Philippsen et al., 2007] R. Philippsen, Kolski.S., K. Macek, and R. Siegwart.
Path planning, replanning and execution for autonomous driving in urban and

http://www.ntis.gov
http://www-nrd.nhtsa.dot.gov/Pubs/811172.PDF
http://www-nrd.nhtsa.dot.gov/Pubs/811172.PDF
http://www-nrd.nhtsa.dot.gov/Pubs/811255.PDF
http://www-nrd.nhtsa.dot.gov/Pubs/811255.PDF

BIBLIOGRAPHY 249

offroad environments. ICRA 2007 Workshop on Planning, Perception and Nav-
igation of Intelligent Vehicles (PPNIV), 2007.

[Philippsen, 2006] Roland Philippsen. A light formulation of the E* interpolated
path replanner. Technical report, Autonomous Systems Lab, Ecole Polytech-
nique Federale de Lausanne, 2006.

[Pradalier et al., 2005] C. Pradalier, J. Hermosillo, C. Koike, C. Braillon,
P. Bessière, and C. Laugier. The cycab: a car-like robot navigating au-
tonomously and safely among pedestrians. Robotics and Autonomous Systems,
50(1):51–68, 2005.

[Qu et al., 2004] Z. Qu, J. Wang, and C.E. Plaisted. A new analytical solution to
mobile robot trajectory generation in the presence of moving obstacles. IEEE
Transactions on Robotics, 20:978–993, 2004.

[Redmond and Heneghan, 2007] Stephen J. Redmond and Conor Heneghan. A
method for initialising the k-means clustering algorithm using kd-trees. Pattern
Recogn. Lett., 28(8):965–973, 2007.

[Reimpel and Betzler, 2000] Joernsen Reimpel and Juergen W. Betzler. Fahrw-
erktechnik: Grundlagen. Vogel Verlag, Wuerzburg, 4 edition, 2000.

[rnd, 2007] Route network definition file (RNDF) and mission data file (MDF)
formats, March 2007. http://www.darpa.mil/grandchallenge/docs.

[Seder and Petrovic, 2007] M. Seder and I. Petrovic. Dynamic window based ap-
proach to mobile robot motion control in the presence of moving obstacles.
In Proc. of the IEEE International Conference on Robotics and Automation
(ICRA), 2007.

[SEiSS, 2005] Exploratory study on the potential socio-economic impact of the
introduction of intelligent safety systems in road vehicles. SEiSS Final Report,
VDI/VDE Innovation and Institute for Transport Economics at the University
of Cologne, January 2005.

[Selby et al., 2001] M. Selby, W. J. Manning, M. D. Brown, and D. A. Crolla. A
coordination approach for dyc and active front steering. Vehicle Dynamics and
Simulation 2001, pages 49–55, 2001.

[Singer, 1970] R.A. Singer. Estimating optimal tracking filer performance for
manned maneuvering targets. IEEE Trans.on Aerospace and Electronic Sys-
tems, AES-5:473–483, July 1970.

[Solea and Nunes, 2006] R. Solea and U. Nunes. Trajectory planning with veloc-
ity planner for fully-automated passenger vehicles. In Proc. of the Intelligent
Transportation Systems Conference (ITSC), 2006.

250 BIBLIOGRAPHY

[Srinivasan, 2005] B. Srinivasan. Optimal Control Course: Lecture Notes. Ecole
Polytechnique Fédérale de Lausanne (EPFL), CH, July 2005.

[Stentz, 1994] Anthony Stentz. Optimal and efficient path planning for partially-
known environments. In Proceedings of the IEEE International Conference on
Robotics and Automation (ICRA), 1994.

[Thorpe et al., 1988] C. Thorpe, M.H. Hebert, T. Kanade, and S.A. Shafer. Vision
and navigation for the carnegie-mellon navlab. Pattern Analysis and Machine
Intelligence, IEEE Transactions on, 10(3):362–373, may 1988.

[Thorpe et al., 1991a] C. Thorpe, M. Herbert, T. Kanade, and S. Shafer. Toward
autonomous driving: the cmu navlab. i. perception. IEEE Expert, 6(4):31–42,
aug 1991.

[Thorpe et al., 1991b] C. Thorpe, M. Herbert, T. Kanade, and S. Shafter. Toward
autonomous driving: the cmu navlab. ii. architecture and systems. IEEE Expert,
6(4):44–52, aug 1991.

[Thrun et al., 2001] S. Thrun, D. Fox, W. Burgard, and F. Dellaert. Robust Monte
Carlo Localization for Mobile Robots, 2001.

[Thrun, 2000] S. Thrun. Probabilistic algorithms in robotics. AI Magazine,
21(4):93–109, 2000.

[Urmson et al., 2008] Chris Urmson, Joshua Anhalt, Drew Bagnell, Christopher
Baker, Robert Bittner, M. N. Clark, John Dolan, Dave Duggins, Tugrul
Galatali, Chris Geyer, Michele Gittleman, Sam Harbaugh, Martial Hebert,
Thomas M. Howard, Sascha Kolski, Alonzo Kelly, Maxim Likhachev, Matt
McNaughton, Nick Miller, Kevin Peterson, Brian Pilnick, Raj Rajkumar, Paul
Rybski, Bryan Salesky, Young-Woo Seo, Sanjiv Singh, Jarrod Snider, Anthony
Stentz, William “Red” Whittaker, Ziv Wolkowicki, Jason Ziglar, Hong Bae,
Thomas Brown, Daniel Demitrish, Bakhtiar Litkouhi, Jim Nickolaou, Varsha
Sadekar, Wende Zhang, Joshua Struble, Michael Taylor, Michael Darms, and
Dave Ferguson. Autonomous driving in urban environments: Boss and the
urban challenge. J. Field Robot., 25(8):425–466, 2008.

[Villella, 2004] Matthew G. Villella. Nonlinear modeling and control of automo-
biles with dynamic wheel-road friction and wheel torque inputs. Master’s thesis,
Georgia Institute of Technology, 2004.

[von Stryk,] O. von Stryk. User’s guide for DIRCOL: a direct colloca-
tion method for the numerical solution of optimal control problems. In
http://www.sim.informatik.tu-darmstadt.de/sw/dircol/.

BIBLIOGRAPHY 251

[von Stryk, 1993] O. von Stryk. Numerical solution of optimal control problems
by direct collocation. In J. Stoer R. Bulirsch, A. Miele and K.-H. Well, ed-
itors, Optimal Control - Calculus of Variations, Optimal Control Theory and
Numerical Methods, volume International Series of Numerical Mathematics 111.
Birkhäuser, Basel, 1993.

[Vu et al., 2007] Trung-Dung Vu, O. Aycard, and N. Appenrodt. Online local-
ization and mapping with moving object tracking in dynamic outdoor environ-
ments. In Intelligent Vehicles Symposium, 2007 IEEE, pages 190 –195, 13-15
2007.

[Web-DARPA, 2010a] http://www.darpa.mil/, March 2010.

[Web-DARPA, 2010b] http://www.darpa.mil/grandchallenge04/, March
2010.

[Web-DARPA, 2010c] http://www.darpa.mil/grandchallenge05/, March
2010.

[Web-DARPA, 2010d] http://www.darpa.mil/grandchallenge/index.asp,
March 2010.

[Wiki-ADAS-de, 2010] http://de.wikipedia.org/wiki/

Fahrerassistenzsystem, March 2010.

[Wiki-ADAS-en, 2010] http://en.wikipedia.org/wiki/Advanced_driver_

assistance_systems, March 2010.

[Williams, 1996] James H. Jr. Williams. Fundamentals of Applied Mechanics.
John Wiley & Sons, Inc., New York; chichester; Toronto; Singapore, 1996.

[Xu et al., 2000] Y. Xu, R. Wang, and J.S. Libling. A vision navigation algorithm
based on liner lane model. In Proceedings of the IEEE Intelligent Vehicles
Symposium, Dearborn, MI, 2000.

http://www.darpa.mil/
http://www.darpa.mil/grandchallenge04/
http://www.darpa.mil/grandchallenge05/
http://www.darpa.mil/grandchallenge/index.asp
http://de.wikipedia.org/wiki/Fahrerassistenzsystem
http://de.wikipedia.org/wiki/Fahrerassistenzsystem
http://en.wikipedia.org/wiki/Advanced_driver_assistance_systems
http://en.wikipedia.org/wiki/Advanced_driver_assistance_systems

	List of Figures
	List of Tables
	Introduction
	Motivation and problem statement
	State of the art
	Contributions
	Structure of this work

	Vehicle platform
	Introduction
	Vehicle platform overview
	Vehicle dynamics modeling
	Conclusion

	Motion planning in static environments
	Introduction
	Hierarchical navigation
	Probabilistic obstacle avoidance
	Optimal trajectory planning
	Conclusion

	Motion planning in dynamic environments
	Introduction
	Time constraints in dynamic environments
	Motion planning in transformed state space
	Motion planning in trajectory space
	Safety Issues
	Conclusion

	Dynamic scene analysis
	Introduction
	Localization
	Lane detection
	Map building
	Detection and tracking of dynamic objects
	Experimental results on dynamic scene analysis
	Conclusion

	Autonomous navigation in dynamic urban scenarios
	Introduction
	Navigation architecture
	World model and global route planning
	In lane and intersection navigation
	Unstructured parking zone navigation
	Conclusion

	Conclusion and outlook
	Conclusion
	Outlook

	 Route Nework Definition File (RNDF)

