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In Ts’ui Pên’s novel,

all the outcomes in fact occur;

each is the starting point for further bifurcations.

Once in a while, the paths of that labyrinth converge:

for example, you come to this house,

but in one of the possible pasts you are my enemy, in another my friend.

- Jorge Luis Borges
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Abstract

Quantum mechanics is an overwhelmingly successful theory, nevertheless

nearly all of its applications do not demonstrate explicitly its most striking

features. Even seminal devices such as lasers and transistors only imply quan-

tum mechanics in a statistical sense, while all macroscopic observables can be

described by classical theories. The realization of a true quantum machine

could address problems which are intractable with any classical device such

as the simulation of complex quantum systems or the efficient factorization of

big numbers to cite only two examples.

Cavity quantum electrodynamics (CQED) features all unique character-

istics of quantum mechanics, studying the strong interaction of single pho-

tons and atoms. The implementation of artificial superconducting atoms in

high quality transmission line cavities realizes such a CQED setup in a solid

state environment. This opens the field of quantum optics to embedded de-

vices. Furthermore, the relatively simple fabrication of these devices makes

them a promising candidate for the realization of a quantum information pro-

cessor. In this architecture, macroscopic quantum circuits act as effective

two- and three-level systems (qubits and qutrits) by employing the large non-

linearity of a Josephson junction. They strongly couple to single photons in a

one-dimensional superconducting cavity which inhibits radiative decay for the

contained fragile states and at the same time acts as a readout device.

During this thesis a new laboratory for circuit cavity quantum electrody-

namics experiments at cryogenic temperatures and high frequencies is set up

at ETH Zurich. Devices fabricated at ETH are measured, demonstrating the

classical signatures of CQED operated resonantly such as vacuum Rabi mode

splitting, and dispersive effects such as AC-Stark and Lamb shifts.

The precise characterization of the relevant parameters of two- and three-

level artificial atoms, combined with an accurate model of coherent and dis-

sipative dynamics of the externally driven system show excellent quantitative

agreement between data and theory. On this basis high fidelity measurements



of the qutrit populations by monitoring the field transmitted through the cav-

ity are demonstrated. Arbitrary coherent superposition states to up to three

levels are prepared with high quality using optimal control techniques. They

are characterized for the first time outside the field of photon optics by a

tomographic method. Full three-level quantum state tomography enables to

test simplified qubit algorithms or generalized Bell-inequalities and can be

extended to several coupled systems.

Finally the qubit-induced nonlinear cavity response is analyzed in the dis-

persive regime and used as a measurement device. In the high-power, non-

linear regime high fidelity single-shot qubit read-out can readily be imple-

mented without the need of additional devices.

IV



Zusammenfassung

Trotz der überwältigende erfolge der Quantenmechanik, zeigt fast keine An-

wendung ihre bemerkenswertesten Eigenschaften. Selbst wegweisende Techno-

logien wie Laser oder Transistoren setzen die Quantenmechanik nur im statis-

tischen Sinne ein, während alle makroskopischen Observablen mit klassischen

Theorien beschrieben werden können. Die Realisierung einer echten Quanten-

maschine könnte sich mit Problemen befassen die für klassische Computer

schwer zu bewältigen sind, wie zum Beispiel die Simulation von komplexen

Quantensystemen oder die effiziente Primfaktorzerlegung grosser Zahlen.

Hohlraumquantenelektrodynamik (CQED) untersucht die starke Wechsel-

wirkung zwischen einzelnen Photonen und Atomen und weist alle frappierende

Eigenschaften der Quantenmechanik auf. Mittels künstlicher Atome in Mi-

krowellenresonatoren hoher Güte, kann die Hohlraumquantenelektrodynamik

in einem Festkörper realisiert werden. Diese Konstruktion eröffnet einem das

Feld der Quantenoptik in integrierten Schaltungen. Ausserdem stellt sie wegen

der relativ einfachen Herstellung solcher Bauelemente einen vielversprechen-

den Anwärter für die Implementierung eines Quanteninformationsprozessors

dar. In dieser Architektur fungieren makroskopische Quantenschaltungen als

effektive Zwei- und Dreiniveausysteme (Qubits und Qutrits) indem sie die gros-

se Nichtlinearität von Josephson-Kontakten ausnutzen und stark zu einzelnen

Photonen in einem supraleitenden quasi eindimensionalen Hohlraumresonato-

ren koppeln. Dieser unterbindet strahlungsbedingte Zerfälle von den fragilen

Zuständen und dient gleichzeitig als Messinstrument.

Im Rahmen der vorliegenden Dissertationsarbeit wurde an der ETH Zürich

ein neues Tieftemperatur- und Hochfrequenzlabor aufgebaut um Experimen-

te im Feld der Hohlraumquantenelektrodynamik durchzuführen. An der ETH

hergestellte Proben wurden charakterisiert und klassische Signaturen der re-

sonanten CQED, wie die Vakuum-Rabi-Modenaufspaltung, und dispersive Ef-

fekte, wie die Lamb- und Starkverschiebung, nachgewiesen.



Die gemessenen Daten sind in exzellenter quantitativer Übereinstimmung

mit einem Modell für das getriebene System, das kohärente und dissipative

Dynamik einbezieht. Die Population des Qutrits wird dabei durch der Beob-

achtung des Feldes, das durch den Resonator transmittiert wird rekonstruiert.

Beliebige kohärente Überlagerungen von bis zu drei Zuständen konnten dank

der Methoden der optimalen Steuerung mit hoher Güte präpariert werden.

Diese wurden erstmals ausserhalb des Feldes der Photonenoptik mit einer to-

mographischen Methode charakterisiert. Volle Dreiniveauquantenzustandsto-

mographie ermöglicht das Testen vereinfachter Qubitalgorithmen oder ver-

allgemeinerter Bell-Ungleichungen und kann auf mehrere gekoppelte Systeme

erweitert werden.

Schliesslich ist die Qubit-induzierte nichtlineare Resonatorantwort im di-

spersivem Regime analysiert und als Messvorrichtung benutzt worden. Im Be-

reich weit oberhalb der kritischen Leistung kann der Qubitzustand mit hoher

Genauigkeit durch eine einzelne Messung ausgelesen werden.
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Chapter1
Introduction

Information technology has become ubiquitous in everyday life as the need for

processing and storing information of our society continues to grow. Semiclas-

sical ensemble models can successfully describe the operation of semiconduct-

ing devices which are at the basis of modern computing where the striking

features of quantum mechanics do not matter. Counterintuitive phenomena

like tunneling, superposition of states or the uncertainty principle do never

play a role. The outstanding success of integrated circuits is, however, based

on the exponential miniaturization of the electronic structures, currently as

small as 32 nm. The domain where few or single electrons carry information

or are used to perform computations, thus where quantum mechanics must be

fully taken into account is therefore not far away. This is not a small correction

to the classical newtonian dynamics, but opens the doors to a new discipline

which has outreach in regimes which are intractable with current tools. A pri-

ori security in communication [Gisin02], efficient simulation of complex quan-

tum systems [Buluta09], enhancements in metrology [Uzan03, Giovannetti06]

and exponential speedup of selected computational tasks [Spiller05] become

possible.

The technological effort towards the ultimate control of isolated quantum

systems is, however, not the only driving force in current research. Unan-



swered, fundamental questions about the nature of reality [Einstein35]

[Schrödinger35] and information processing capabilities [Turing37], dating back

to the fathers of quantum mechanics and information theory can finally be ex-

perimentally tested. Furthermore, the observation of the interaction between

light and matter at the level of single quanta enables the verification of current

theories at an unprecedented level of accuracy and permits to investigate the

crossover between microscopic quantum world and our macroscopic reality.

In this thesis, superconducting circuits operated at low temperatures and

microwave frequencies are investigated. A novel regime of strong light matter

interaction, where the direct effect of single quanta can be observed is realized

in a solid state environment [Girvin09]. The resonant and the dispersive inter-

action of superconducting artificial atoms embedded in high quality resonators

with the electromagnetic fields is studied. The decoherence properties of such

a system are assessed, with a particular emphasis on its suitability for quantum

information processing. In Chapter 4, the preparation of high quality quantum

states and their read-out with high fidelity is demonstrated [Bianchetti09]. In

Chapter 5, the usual two level approach is generalized to three coherent states

which are excited to arbitrary superpositions using optimal control techniques.

The generated qutrit state fidelities are evaluated using full quantum state to-

mography [Bianchetti10]. Finally, in Chapter 6, the nonlinear, high measure-

ment power system response is analyzed, demonstrating single shot read-out

fidelities up to 84 %.

The experimental framework enabling such experiments was set up in the

first year of the thesis and is presented in Chapter 3. Under others, the ap-

propriate wiring of a dilution refrigerator, enabling experiments at the single

photon level and gigahertz frequencies is discussed. Also the generation of

high quality control signals suited for quantum information processing and

the measurement of single photons with commercial microwave equipment is

depicted.
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CHAPTER 1. INTRODUCTION

1.1 Quantum information processing

The idea of computation with intrinsically quantum mechanical objects dates

back to the early eighties and was formalized in terms of a quantum computer

by [Bennett82, Deutsch85]. Using such a controllable quantum computer to

simulate complex quantum system was first proposed by [Feynman82], while

the first quantum key distribution algorithm was proposed by [Bennett84].

Further research in the nineties led to the proposal of a set of rules every phys-

ical implementation of a quantum computer should fulfill [DiVincenzo97] and

the demonstration of the universality of quantum computation [Lloyd96]. Par-

allel to this work, the experimental realization of a Bell inequality test [Bell64]

by [Aspect82], ruled out local realistic theories and demonstrated quantum

entanglement [Horodecki09] experimentally for the fist time.

Diverse physical systems potentially fulfill the strict requirements of quan-

tum computation. Using natural quantum systems, such as ions has led to

early advances in the demonstration of the single building blocks of a quantum

computer, see [Leibfried03, Häffner08, Duan10] for a review. Ultracold neu-

tral atoms in optical lattices are promising candidates as quantum simulators

and are described in [Bloch08, Lewenstein07]. Rydberg atoms embedded in

high quality cavities [Raimond01] demonstrated many of the features needed

for quantum computing. Photons are best suited for quantum communica-

tion tasks, such as cryptography [Gisin02, Scarani09], but can also be used to

perform computations in linear optical networks [Dell’Anno06, Kok07]. Even

long time storage of photons was demonstrated at room temperature in atomic

ensembles [Hammerer10].

In solid state systems, several implementations of quantum computers

have been proposed. They are expected to profit from the current micro-

fabrication techniques to efficiently scale up to more complex systems. Later-

ally defined, electrically controlled quantum dots manipulating single electrons

or even single spins have been investigated [Hanson07]. Nitrogen vacancy

centers in diamond demonstrated striking coherence times at room temper-

ature [Gaebel06, Dutt07], while optically controlled, self assembled quantum

dots [Skolnick04] demonstrated strong coupling [Yoshie04, Reithmaier04]. Sin-

7



1.1 Quantum information processing

gle spins can be detected optically [Berezovsky06] and could be used as building

block of future quantum computers [Cerletti05].

Also, superconducting quantum circuits [Clarke08] significantly contribute

to the recent advances in quantum computing. System parameters can be

designed at will and diverse properties such as coupling mechanism, energy

level structure or susceptibility to different noise mechanisms can be chosen

by design. Superconducting artificial atoms can be regarded as qubits which

are easily initialized in the ground state, can be read-out locally, can be ma-

nipulated by a fast and universal set of gates and which can be employed

for a scalable architecture in a viable way. The reduced coherence compared

to atomic systems is more than offset by the flexibility of superconducting

devices.

A superconducting artificial atom embedded in a cavity, proposed in

[Blais04], has been implemented and is studied in this thesis. The cavity acts

both as a noise suppressing environment and as a coupling device between

photons and qubit. The strong coupling to photons [Wallraff04] is used to

read-out single or two-qubit states [Bianchetti09, Filipp09] and as a bus to

perform two-qubit operations [Majer07], while high fidelity single shot read-

out was demonstrated by [Mallet09, Reed10b]. Controlled NOT gates have

been demonstrated before in related systems [Yamamoto03, Plantenberg07]

and where carefully assessed in [Bialczak10], while [Chow09b] benchmarked

the fidelity of single qubit gates. Combining several of the mentioned methods

lead to a first demonstration of a simple quantum algorithm [DiCarlo09].

Furthermore, the implementation of geometric phases [Leek07] to generate

robust, high fidelity gates as well as novel cavity designs with separate stor-

age and read-out modes [Leek10] are encouraging steps towards the goal of

a viable quantum computer. A promising idea to scale up the system with

a cavity grid was proposed by [Helmer09a] and even the generation of GHZ-

states [Bishop09b, Helmer09b, DiCarlo10] or the implementation of a quantum

simulator, for example of a spin [Neeley09] have been investigated.

8



CHAPTER 1. INTRODUCTION

1.2 Quantum optics on a chip

Early studies of the energy exchange between light and matter led to the

development of quantum mechanics. The study of the interaction between

single atoms and few photons trapped in a cavity led to the development of

cavity quantum electrodynamics (CQED), see [Walther06] for a review and

references therein. The coherent exchange of one excitation between an atom

and the field in the resonant strong coupling regime is the most striking feature

of such a system. The interaction is, however, going well beyond simple energy

exchange and leads to dramatically different atomic decay rates and large

modifications of the atomic energy spectra compared to the free space case.

It enables for the realization of highly non classical Fock states and displays

characteristic lasing properties. Furthermore, the atomic state can be inferred

via the photons leaking out from the cavity and inversely the field state can

be read-out by the escaping atoms, demonstrating correlations characteristic

of entangled states.

The small mode volume realized in coplanar waveguides and the big dipole

moment of superconducting artificial atoms makes circuit cavity quantum elec-

trodynamics an ideal testbed for such phenomena. An instructive review has

been published by [Girvin09]. The strong coupling regime has been demon-

strated early on by measuring the vacuum Rabi mode splitting [Wallraff04],

while the dispersive operation and read-out of single qubit states was demon-

strated shortly later [Wallraff05]. Both the AC-Stark or light shift of the res-

onator [Schuster05] and the Lamb shift of the qubit [Fragner08], characteristic

of the dispersive system operation where measured. Direct quantum mechan-

ical system aspects such as the quantization of the photon number in a coher-

ent cavity state [Schuster07b], or the generation of single photons [Houck07]

and the generation of arbitrary photonic states [Hofheinz08, Hofheinz09] were

demonstrated. Even lasing indications from a single artificial atoms were found

in such systems [Astafiev07]. A first experiment violating the CHSH version

of the Bell inequality has also been performed [Ansmann09], closing the de-

tection loophole. Autler-Townes and Mollow transitions in a strongly driven

qubit were observed [Baur09], while the nonlinear response to multiple photons

9



1.2 Quantum optics on a chip

which could be used to realize the photon blockade effect [Birnbaum05] was

spectroscopically demonstrated [Fink08]. The high power response of the first

vacuum Rabi mode splitting, showing the supersplitting of each vacuum Rabi

peak and the appearance of extra peaks due to the coupling to higher qubit

excited states has been measured [Bishop09a]. The controlled resonant inter-

action of several qubits instead of several photons was also realized [Fink09],

effectively implementing the Tavis-Cummings model.

In addition to the promising applications in quantum computing and classi-

cal cavity quantum electrodynamics experiments, mesoscopic quantum circuits

could shed new light on the crossover between quantum and classical behav-

ior [Fink10]. Observing the measurement back action [Clerk10] and partial

collapse and revival of states [Katz06, Katz08, Jordan10] for the first time in

solid state physics could also lead to new insights in modern measurement the-

ory, experimentally addressing the quantum measurement problem [Zurek03].

10



Chapter2
Circuit Quantum

Electrodynamics

The fundamental components for a cavity quantum electrodynamics experi-

ment are an isolated quantum system with an anharmonic energy spectrum

and a harmonic cavity. The key parameters of such a general setup are the cav-

ity resonance frequency ωr, the frequency ω0 of the lowest atomic energy level

spacing and the coupling strength g [Walther06]. In a solid state implementa-

tion working at microwave frequencies, employing superconducting materials

naturally provides a low dissipation environment enabling long coherence times

and also suppresses low energy excitations due to the single macroscopic su-

perconducting ground-state. Superconducting qubits [Makhlin01], which rely

on the Josephson effect to generate an anharmonic energy spectrum are well

suited to be embedded in transmission line cavities.

The big effective dipole moment d of superconducting qubits, combined

with the enhanced zero-point electric field E0
rms provided by the quasi one-

dimensional cavity generates a large coupling coefficient g = E0
rmsd/~ [Blais04].

Typical coupling strengths of g/2π ∼ 100 MHz can easily exceed typical qubit

energy decay rates γ/2π ∼ 100 kHz and photon loss rates κ/2π ∼ 0.1−10 MHz,

bringing the system in the strong coupling regime [Wallraff04]. Transition



2.1 Transmission line cavities

frequencies of the order of 5 GHz correspond to a temperature of around

250 mK are high enough to benefit from suppressed thermal excitations when

working in a cryogenic environment at ∼ 20 mK. This temperature can be

reached by using commercial dilution refrigerators.

In contrast to a typical atomic experiment the qubits remain inside the

cavity and manipulation time is not limited by the time of flight. The solid

state fabrication leads to a well defined qubit number and a fixed interaction

strength which is not easy to reach with single atoms moving in the cav-

ity [Fink09]. Furthermore, the energy levels of superconducting qubits can be

tuned in a few nanoseconds, providing an unprecedented flexibility in CQED

experiments [Cooper04, McDermott05].

2.1 Transmission line cavities

It is advantageous to embed a qubit in a cavity which both acts as a filter

for environmental noise and as a device to achieve strong coupling to single

photons. A lumped element circuit is not well suited to couple to supercon-

ducting artificial atoms, with typical transition energies in the GHz range,

because of unavoidable stray inductances and capacitances in this frequency

range. To realize a distributed element resonator, the coplanar waveguide

(CPW) design was chosen under the many possible implementations [Pozar90]

because of its favorable properties. They can easily be matched to the stan-

dard 50 Ohm of commercial microwave components for arbitrary small lateral

dimensions, allowing for miniaturization and on chip integration. They also

have a simple geometry and are therefore relatively easy to design and fabri-

cate with standard lithographic methods compatible with the nano-fabrication

techniques used for Josephson junctions. Superconducting CPW were used to

study superconducting materials [Yoshida92, Watanabe94, Porch95], as radi-

ation detectors [Mazin02] and for quantum information purposes [Hammer07,

Gao07, O’Connell08, Göppl08, Kumar08, Barends08, Wang09b]. The small

gap between the ground planes and the center conductor generates a huge

vacuum field (0.2 V/m for typical devices [Blais04]) which is essential for the

strong coupling to a superconducting circuit. Also high quality factors can be

12



CHAPTER 2. CIRCUIT QUANTUM ELECTRODYNAMICS

2a2b
gap

ground

>>b

Figure 2.1 – Top view of a coplanar waveguide interrupted by a gap, effectively
implementing a mirror. The ratio a/b sets the characteristic impedance Z0 of the
line, while the gap size determines the coupling between the center conductor
of the feed line (in red) and the resonator (blue). Ground planes are shown in
green.

achieved, allowing for long coherence times. In this section the basic design

properties of transmission line cavities are discussed.

One can think of a CPW as a longitudinal slice trough a coaxial cable

which is intersected at two points to generate a resonant cavity, see Fig. 2.1.

Following [Simons01], the impedance is

Z0 =
30π
√
εeff

K(k′0)

K(k0)
(2.1)

for an effective dielectric constant on a thick dielectric substrate with εeff =

(1 + εm)/2. K(x) is the complete elliptic integral of the first kind, k0 = a/b,

k′0 =
√

1 + k2
0. For a coplanar waveguide on sapphire (εm ∼= 10), with a chosen

center conductor width 2a = 10 µm one finds b = 9.2 µm for a 50 Ohm line.

The metal thickness is not taken into account, but [Kitazawa86] predicted

a change in the characteristic impedance of 2% taking into account 100 nm

metallization thickness and 3% for 200 nm. Using the ”TxLine” tool included

in the software package [AWR-Corp.06], which solves the problem numerically

and additionally assuming a loss tangent tan δ = 10−6 and a conductivity of

1018 S/m, b = 9.7 µm on sapphire and 150 nm metal thickness. We choose

b = 9.5 µm, implying εeff = 5.5 using the analytical approach and εeff = 5.3

13



2.1 Transmission line cavities

using TxLine.

For a given geometry and choice of materials, the resonance frequency of a

cavity is fixed by its length. For a λ/2 resonator one can calculate the physical

length which corresponds to an electrical length of 180 degrees. Using the

parameters stated above, and designing 7 GHz for the first mode, one finds

9.14 mm with Eq. (2.1) and 9.31 mm with TxLine. These values do not take

into account for the shift of the resonance frequency due to the coupling of the

resonator to the leads [Göppl08] nor the kinetic inductance of the supercon-

ductor.

The kinetic inductance only slightly changes Z0 if the skin depth of the

superconductor stays smaller than the thickness of the metal. For our param-

eters, using aluminum or niobium metallizations, a small additional component

to the inductance of the line has to be considered [Watanabe94]

Z0 =
1
√
εeff

[
30πcµ

K(k′0)

K(k0)

(
K(k′0)

4K(k0)
+
λ2

2at
c1

)] 1
2

, (2.2)

where c1 is a geometrical factor, c is the speed of light in vacuum, µ = µ0µr

the magnetic permeability, λ the skin depth of the superconductor and t the

thickness of the superconducting layer. For a typical resonator, the frequency

shift of the resonance due to the kinetic inductance is 35 kHz (1% change in

Z0) at base temperature (20 mK), using µr = 1, t = 150 nm and λ = 50 nm for

aluminum. Considering other effects shifting the resonance frequency, such as

fabrication imperfections or the coupling to the input/output ports [Göppl08],

this is a small correction and is usually neglected.

The circuit counterparts to mirrors in optical cavities are capacitors im-

plemented as gaps in the center conductor. The size of the two capacitances

defines at which rate photons from the cavity are transmitted to the feed lines.

Due to the strong interaction with the artificial atom, the photonic state is

entangled with the qubit and can be used to infer its quantum state [Blais04].

The rate at which photons escape the cavity has to be bigger than the qubit

decay rate to ensure an efficient state detection.

To quantitatively model the coupling, the capacitance between the feedline

and resonator center conductor is calculated. Conventional optical lithogra-

14
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100 100

3

3 3

Figure 2.2 – ”Finger capacitor” used to increase the coupling and design res-
onators with lower quality factors. All units are in µm. The aspect ratio a/b,
sketched in Fig. 2.1, is kept constant while the physical dimensions are increased
without changing the impedance.

phy has not enough resolution to define gap capacitors bigger than about 1 fF

(corresponding to a gap of 2 µm, see Fig. 2.1). The resulting cavity linewidth

of 10 kHz would be too small for most read-out applications in circuit QED.

To increase the coupling, a design of an interdigitated capacitor with a longer

interface of the two center conductors, which we call ”finger capacitor”, is em-

ployed instead, see Fig. 2.2. The capacitance of such a component is calculated

using a finite element simulation [Ansoft-Corp.05], finding C = 20 fF for the

shown design.

Not only the coupling to the feed lines contributes to a finite resonance

linewidths, but also internal losses have to be taken into account. It is therefore

useful to define the loaded quality factor of a cavity with resonance frequency

ωr

QL := ωr
Stored energy

Dissipated power
= ωr

n~ωr
2Pout + Ploss

, (2.3)

which indicates how many times a photon is reflected back and forth before

it is lost. When the cavity is driven on resonance with a coherent tone, n is

the average number of photons in the cavity. Ploss is the power dissipated in

the resonator, while, in the case of symmetrical coupling capacitances, Pout

indicates the power coupled to the input and output ports. The loaded qual-

ity factor is therefore usually expressed as the reciprocal sum of the internal

quality factor Qint defined by internal losses and the external quality factor
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2.1 Transmission line cavities

Qext coming from photons leaking to the leads

Qint := ω
n~ωr
Ploss

, (2.4a)

Qext := ω
n~ωr
2Pout

, (2.4b)

1

QL
=

1

Qint
+

1

Qext
. (2.4c)

Using a simple RLC model, a resonator connected on both sides to identi-

cal input and output capacitors C, has a loaded quality factor of [Pozar90,

Schuster07a, Göppl08]

Qsymm =
lπ

4Z0

(
1

RLC2(lωr)2
+RL

)
, (2.5)

for the harmonic mode with index l and a load resistance RL connected to

each lead. The analytic RLC approximation is very good close to resonance

(less than 0.5% deviations from a model implying ABCD matrixes at 10 MHz

detuning for a resonator with QL =1000) but shows strong deviations between

two modes where a full analysis has to be performed.

A charge qubit placed at a voltage node of the field is coupled via an effec-

tive dipole interaction [Blais04, Girvin09]. To calculate such a coupling, the

root mean square zero-point electric field E0
rms at the qubit position must be

inferred. [Blais04, et al.] describe how to canonically quantize a transmission

line cavity, finding

V 0
rms =

√
~ωr
CLL

, (2.6)

where CL = (εeffπ)/(2LωrZ0) is the capacitance per unit length of the res-

onator and L is its physical length. At the center of the cavity, a field antin-

ode is present for the first harmonic l = 2, which with a fundamental resonant

frequency of 5 GHz, generates a voltage of V 0
rms ≈ 1 µV. This voltage drop be-

tween the center conductor and the ground plane, separated by b−a = 4.5 µm

implies an electric field E0
rms ≈ 0.2 V/m, which is generated by vacuum fluc-

tuations alone.
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CHAPTER 2. CIRCUIT QUANTUM ELECTRODYNAMICS

2.2 The Cooper-pair box

A qubit is usually defined as a quantum two-level system with well defined, long

lived states and well known coupling characteristics [Nielsen00]. Engineering

such a system with the conventional components of superconducting electronic

circuits, containing only capacitors (C), inductors (L) and resistors (R) is,

however, not possible. A dissipation free LC circuit only realizes an harmonic

oscillator with characteristic Hamiltonian

HLC =
φ̂2

2L
+
q̂2

2C
= ~ωr(â†â+

1

2
). (2.7)

φ̂ and q̂ denote the canonical conjugate variables for flux and charge respec-

tively and â(†) denote the bosonic ladder operators, annihilating (creating)

a single excitation/photon. The equally spaced energy levels impede an in-

dividual addressing and the system cannot be restricted to two-dimensional

subspace.

A nonlinear element is needed to realize an anharmonic spectrum, but

canonical components such as diodes or transistors are intrinsically dissipa-

tive and therefore not suited to maintain coherence for long times. The

Josephson current flowing between two weakly linked superconducting ma-

terials [Tinkham96] through a thin tunnel barrier provides, however, such a

non-dissipative non-linear response. The voltage V and current I are governed

by the basic equations

V (t) = Φ0
∂ [∆φ(t)]

∂t
, (2.8)

I(t) = Ic sin [∆φ(t)] , (2.9)

where ∆φ is the difference in the phase factor of the Ginzburg-Landau complex

order parameter of the two superconductors. Below the maximal current Ic no

voltage drop across the barrier appears and therefore no power is dissipated.

A Josephson-junction can be voltage or current biased, leading to two broad

classes of devices named after the degree of freedom which characterizes the

basis states best. The first is defined by a small capacitance of the Josephson
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n
CgCJ

EJ
ZVg

Δφ

Figure 2.3 – Sketch of a Cooper-pair box. A superconducting island (red),
containing n Cooper-pairs is separated by a tunnel barrier (orange) from a bulk
superconductor (blue), forming a Josephson-junction with Josephson energy
EJ and capacitance CJ . An external gate voltage Vg is applied through the
impedance Z to the capacitance Cg.

junction leading to a well defined number of Cooper-pairs on a superconducting

island while the latter is best described by the superconducting phase difference

across the junction.

A voltage biased Josephson-junction is shown in Fig. 2.3, where a small

superconducting box (red) is separated by the junction (orange) on one side

and a small capacitance Cg on the other from the bulk of the superconductor,

realizing the so called Cooper-pair box (CPB) qubit. The system is coupled

to an external voltage source Vg via an environmental impedance Z. The

relevant energies are the single electron charging energy EC , needed to add a

Cooper-pair to the box and the Josephson energy

EC =
e2

2(Cg + CJ)
, (2.10)

EJ =
IcΦ0

2π
, (2.11)

where Φ0 = h/2e is the magnetic flux quantum. The system is described by

the Hamiltonian [Makhlin01]

H = 4EC(N̂ −Ng)2 − EJ cos
(

∆̂φ
)

(2.12)

≈
∑
N

[
4EC (N −Ng) |N〉〈N | −

EJ
2

(|N + 1〉〈N |+ |N〉〈N + 1|)
]
.
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Here N̂ is the number operator of Cooper-pairs on the island, while ∆̂φ

denotes the phase difference of the superconducting order parameter, while

Ng = CgVg/2e is the dimensionless gate charge acting as a control param-

eter. In the charge regime (4EC � EJ), the approximation of Eq. (2.12)

holds and the charge states |N〉 form a convenient basis. In the opposite limit,

a simple phase qubit in a superconducting ring geometry is realized, setting

Vg = Z = Cg = 0 and choosing a much bigger CJ , such that EJ dominates

over Ec. In this case the phase (or current) is well suited as basis states and

the environment couples trough the flux Φ enclosed by the ring [Makhlin01].

Considering only the two lowest charge states |0〉 and |1〉 and assuming

Ng ∈ [0, 1], the Hamiltonian reduces to a 2x2 matrix [Blais04]

H = −Eel
2
σ̂z −

EJ
2
σ̂x, (2.13)

with Eel = 4EC(1− 2Ng) and σ̂i the pauli matrixes. This realizes an effective

2-level system, with effective fields in the x and z directions.

Eel can be tuned with the control parameter Ng, while EJ is fixed by

fabrication. This can be changed replacing the single Josephson junction by a

parallel pair of junctions, each with energy EJ/2, which form a loop, enclosing

the flux Φ. The superconducting quantum interference device (SQUID) formed

in this way has a modified potential energy of the form

EJ cos

(
πΦ

Φ0

)
cos
(

∆̂φ
)
, (2.14)

so that both effective fields can be controlled externally, inducing transitions

or changing the effective transition frequencies.

2.3 Reaching the strong coupling regime of cir-

cuit QED

As discussed in Sec. 2.1, even the usually tiny vacuum fluctuations gener-

ate large voltages between the center conductor and the ground planes of

the resonator. The description of a charge qubit placed in the resonator gap
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ADC

Cg

300 K1.5 K20 mK300 K
Cin Coutωm

ωLO

ωs
Φ

Mixer

ωr

ω0

L=λ∼
10 mm

300 μm

5 μm

a) b)

Figure 2.4 – a) Schematic of a superconducting qubit embedded in a trans-
mission line resonator, realizing a cavity QED setup. The qubit is placed at a
voltage antinode of the cavity, coupling capacitively to the field. Additionally, a
capacitively coupled 50 Ohm line can be used to directly manipulate the qubit.
b) Circuit diagram of the experimental setup. A harmonic oscillator modeled as
an LC circuit with resonance frequency ωr is coupled to a transmon-type qubit
through the effective coupling capacitance Cg. The qubit transition frequency
ω0 is controlled by an externally applied magnetic flux Φ. The qubit state is
coherently manipulated by a pulsed microwave source at the frequency ωs. The
resonator is probed by a signal applied to the input capacitor Cin at the fre-
quency ωm. The transmitted signal is amplified and down-converted by mixing
with a local oscillator at frequency ωLO and then digitized using an analog to
digital converter (ADC).

must therefore take into account for this quantum effect by adding the term

V 0
rms

(
â† + â

)
. Following [Blais04], the Hamiltonian of the coupled system,

sketched in Fig. 2.4, restricted to the two-dimensional qubit subspace, as in

Eq. (2.13) reads

H = ~ωr
(
â†â+

1

2

)
+

~ω0

2
σ̂z − e

Cg
CJ + Cg

√
~ωr
CLL

(
â† + â

)
×

× [1− 2Ng − cos (θ) σ̂z + sin (θ) σ̂x] , (2.15)

where ω0 =
√
E2
J + [4EC (1− 2Ng)]

2
/~ is the energy splitting of the qubit and

θ = arctan [EJ/4EC (1− 2Ng)] the mixing angle. At the charge degeneracy

point Ng = 1/2, θ = π/2 and ω0 = EJ/~, Eq. (2.15) reduces to the well known

Jaynes-Cummings Hamiltonian [Jaynes63]

HJC = ~ωr
(
â†â+

1

2

)
+

~ω0

2
σ̂z + ~g

(
â†σ̂− + σ̂+â

)
, (2.16)

20
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where σ̂+/− = (σ̂x± iσ̂y)/2 are the raising and lowering operator for the qubit.

This Hamiltonian is obtained performing the rotating wave approximation

(RWA), effectively neglecting the terms â†σ̂+ and âσ̂− which do not conserve

the number of excitations in the system. If one transforms into the frame

rotating at the frequency ωr for the cavity and ω0 for the qubit, these terms

oscillate at the frequency ωr +ω0 which is usually very high and can therefore

be dropped. The coupling strength

g =
Cge

~(Cg + CJ)

√
~ωr
CLL

, (2.17)

can exceed 100 MHz with realistic coupling parameters Ci and is therefore

much bigger than any decay rate in the system. If damping is neglected, the

exact diagonalization leads to the eigenstates [Yamamoto99]

|n,+〉 = cos θn|e, n− 1〉+ sin θn|g, n〉, (2.18)

|n,−〉 = − sin θn|e, n− 1〉+ cos θn|g, n〉, (2.19)

where n > 0 is the number of photons. The corresponding eigenenergies are

E±,n = n~ωr ±
~
2

√
4g2n+ ∆2, (2.20)

and the ground state |0, g〉 has an energy Eg,0 = −~∆/2. ∆ = ω0 − ωr is the

atom-cavity detuning and

θn = arctan

(
∆−

√
∆2 + 4g2n

2g
√
n

)
. (2.21)

In the case of zero detuning (∆ = 0), sketched in Fig. 2.5a, the ex-

cited states consist of maximally entangled atom-field states [Rempe87] which

therefore decay with the combined rate (κ + γ)/2. The formed doublets

have Rabi splittings which scale with the square root of the number of pho-

tons [Brune96, Fink08]. This effect cannot be explained by any purely classical

theory (contrariwise to the Rabi splittings explained classically as the normal
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Figure 2.5 – a) Energy spectrum of the uncoupled cavity (left, blue) with
the characteristic equidistant levels and qubit (right, red). The dressed qubit-
photon states are shown in the center in the case of zero detuning (∆ = 0). The
degeneracy of the states is lifted by the strong coupling g, forming symmetric
and antisymmetric doublets consisting of n photons and a qubit excitation,
having spacing 2g

√
n. b) Energy spectrum in the dispersive regime (∆ � g).

The energies are conditionally shifted by the qubit state.

mode splitting of two coupled linear oscillators), demonstrating the purely

quantum nature of the system which should enable for novel effects such as

the photon blockade [Birnbaum05]. Furthermore, this can be used to gener-

ate Fock states by preparing the qubit in the excited state while the cavity is

empty and strongly off-resonant and then tune the qubit to resonance for the

time needed to swap the excitation to the cavity and at the end detune the

qubit again [Hofheinz08, Bozyigit10].
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2.4 Dispersive regime

The operation of the qubit at large detunings from the cavity resonance (λ =

g/∆� 1) realizes a different regime where the combined eigenstates are basi-

cally the tensor product of the uncoupled qubit and resonator states and only

their energies are shifted.

To get insight in the dispersive regime of the Hamiltonian (2.16), it is useful

to introduce the unitary transformation [Blais04, Boissonneault09]

U = exp

arctan
(

2λ
√
N̂e

)
2
√
N̂e

(âσ̂+ − â†σ̂−)

 ≈ exp
[
λ(âσ̂+ − â†σ̂−)

]
, (2.22)

where N̂e = â†â + (σ̂z + 1)/2 is the number operator for excitations in the

system, commuting with the operators (âσ̂+ ± â†σ̂−) and HJC , so that

HD
JC = ~ωrâ†â+ ~

[
ω0 −∆

(
1−

√
1 + 4λ2N̂e

)]
σ̂z
2

(2.23)

≈ ~ωr
(
â†â+

1

2

)
+ ~

(
ω0 +

g2

∆

)
σ̂z
2

+ 2~
g2

∆
â†â

σ̂z
2
, (2.24)

can be calculated exactly. Equation (2.24) is a first order approximation valid

only for 4λ2N̂e � 1. This naturally defines the critical photon number ncrit =

1/(4λ2) above which the dispersive approximation breaks down. In the regime

of large detuning and small photon numbers, however, this Hamiltonian is a

very good approximation. The Lamb shift of g2/(2∆) and the AC-Stark shift of

g2/∆ per photon both shifting the qubit become apparent from this expression.

The AC-Stark shift can alternatively be interpreted as a dispersive shift of the

cavity transmission frequency dependent on the qubit state, enabling for a

qubit state determination by the monitoring of the cavity field, as described

in Ch. 4.

Coupling a transmission line resonator to a qubit is not restricted to charge

qubits. In phase qubits, however, high single shot measurement fidelities

(90%) [Lucero08] are already available. Thus, the cavity is not used as a mea-

surement device for the qubit, but as a resource which can be manipulated by
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2.5 Transmon artificial atom

the qubit to demonstrate, for example, the creation of Fock states in an har-

monic resonator [Hofheinz08, Hofheinz09] and their decay [Wang08, Wang09a].

In such a hybrid system the qubit with his strong interaction performs quan-

tum computations and the photonic mode can be used as a resource with long

coherence time to store quantum information [Leek10]. The generated pho-

tons are also suited to carry quantum information and perform communication

tasks between separated systems.

The eigenstates (2.18) can also be approximated to first order in λ

|−, n〉 ≈ |g, n〉+
√
nλ|e, n− 1〉, (2.25)

|+, n− 1〉 ≈ |e, n− 1〉 −
√
nλ|g, n〉, (2.26)

making manifest that the states are only slightly mixed by the small parameter

λ. Using Fermi’s golden rule, it can be shown that this small photonic com-

ponent opens an additional spontaneous decay channel for the qubit excited

state, called Purcell effect [Walls94] which has been observed with Rydberg

atoms [Goy83] and in circuit QED [Houck07, Houck08]

γκ = κ
g2

∆2
. (2.27)

2.5 Transmon artificial atom

Low frequency noise coupling to the qubits leads to dephasing. This is one of

the challenges which still need to be solved to realize a quantum computer.

As seen in Sec. 2.2, the transition energy of CPB type qubits is tuned via an

externally applied gate voltage Vg which is affected by 1/f type noise limiting

the phase coherence time T2 of the two level systems [Abragam61, Ithier05].

Charge noise in such systems is the dominant noise contribution, strongly

limiting the coherence times. One possible solution to suppress this problem

is to operate the qubit at its ”sweet-spot”, where the charge dispersion is

independent of the applied voltage to first order [Vion02]. A second approach is

to decrease the charge dispersion by increasing the EJ/EC ratio and therefore

operate the qubit in a different regime [Koch07]. The charge dispersion can be
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decreased exponentially while the anharmonicity of the energy ladder, needed

to operate the qubit selectively, only decreases with a weak power law. Since

the qubits are capacitively coupled to the resonator, one would intuitively

expect also a reduced cavity coupling. Surprisingly, however, the coupling

strength is not affected, in the contrary it can even be increased. Designing

the charge dispersion smaller than the energy relaxation time T1 also makes

DC voltage lines superfluous, enabling for a simpler experimental setup, see

Sec. 3.1.

To increase the EJ/EC ratio while keeping the transition frequency in

the GHz range, EC = e2/(2CΣ) can be decreased by increasing the effective

CΣ = CJ + Cg + Cs, via an additional big shunt capacitance Cs across the

Josephson junction [Koch07]. Formally the same Hamiltonian as in Eq. (2.12)

is realized. The new qubit design is named transmission-line shunted plasma

oscillation qubit or ”transmon”. In a regime where EJ � EC , the phase basis

is best suited to diagonalize the Hamiltonian which can be solved analytically

and exactly using Mathieu functions. For EJ/EC & 10 the eigenenergies can

be approximated by [Koch07]

Em ≈ −EJ +
√

8ECEJ

(
m+

1

2

)
− EC

12

(
6m2 + 6m+ 3

)
(2.28)

resulting in an anharmonicity α = E1 − E0 ≈ −EC and a charge dispersion

εm = Em(ng = 1/2)− Em(ng = 0)

≈ (−1m)EC
24m+5

m!

√
2

π

(
EJ

2EC

)m
2 + 3

4

e−
√

8EJ/EC . (2.29)

For typical parameters E01/~ = 6 GHz, EC/~ = 300 MHz, the system anhar-

monicity enables for fast operations if the pulse shapes are optimized [Motzoi09]

and the charge dispersions ε0 = 10 kHz, ε1 = 300 kHz are small.

In analogy to Eq. (2.13), the transmon embedded in a cavity can be de-

scribed by the generalized Jaynes-Cummings Hamiltonian [Koch07],

HJC = ~ωrâ†â+ ~
M∑
i=0

ωi|i〉〈i|+ ~
M−1∑
ij=0

gij
(
|i〉〈j|â+ â†|j〉〈i|

)
, (2.30)
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where |i〉 describes the eigenstate with energy Ei and the coupling between

state |i〉 and |j〉 is given by

~gij = 2βeV 0
rms〈i|N̂ |j〉. (2.31)

Again, for this expression, N̂ is the number operator for the Cooper pairs,

while β = Cg/CΣ is the capacitance ratio. In the limit of small EC/EJ , the

matrix elements 〈i|N̂ |j〉 for non nearest neighbors vanish and

〈j + 1|N̂ |j〉 ≈
√
j + 1

2

(
EJ

8EC

)1/4

. (2.32)

Even if the DC voltage coupling is exponentially suppressed, the AC response

increases as (EJ/EC)1/4 and the transmon can be strongly coupled to the

cavity.

An example of a transmon spectrum versus applied magnetic flux in the

superconducting SQUID loop is shown in Fig. 2.6a and is magnified in panel b.

The transition frequencies are measured spectroscopically [Schreier08], while

the theoretical predictions are calculated evaluating numerically the Mathieu

functions and taking into account for a small asymmetry d between the two

Josephson junctions [Koch07]. The blue trace depicts the frequency of the first

transmon transition ω0, showing the flux periodicity expected from Eq. (2.14).

The red line shows the second transmon transition frequency ω1 which is driven

with two photons and therefore appears at the frequencies ω1/2 in the plot.

The charging energy EC/2π = 326 MHz and the maximal Josephson energy

EJ/2π = 15.4 GHz result from a fit to the measured data, with a junction

asymmetry d = 8%.
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Figure 2.6 – a) Transmon spectrum as a function of the applied magnetic field
measured spectroscopically. The blue line shows the ω0 transition, while the red
one ω1/2. b) Magnification of panel a, showing the region around the maximal
transition frequency.

2.6 Dispersive transmon regime

The dispersive approximation discussed in Sec. 2.4, applied to the transmon

multi level structure results in [Boissonneault10]

HD
JC/~ = ωrâ

†â+

M−1∑
i=0

ωi|i〉〈i|+
M−1∑
i=0

Li|i〉〈i|+
M−1∑
i=0

Si|i〉〈i|â†â+

M−1∑
i=0

Ki|i〉〈i|(â†â)2,

(2.33)

where Li, Si,Ki are the Lamb-shift, Stark-shift and self-Kerr effect coefficients

respectively of level i, which to third order in λi compute to

Li = χi−1(1− λ2
i−1)− 1

2
(3χi−2λ

2
i−1 + χi−1λ

2
i−1) (2.34)

≈ χi−1,

Si = χi−1(1− λ2
i − 2λ2

i−1 −
3

4
λ2
i−2) +

9

4
χi−2λ

2
i−1

−χi(1− λ2
i−1 −

1

4
λ2
i+1) ≈ χi−1 − χi, (2.35)

Ki =
3

4
χi−2λ

2
i−1 − χi−1(

1

4
λ2
i−2 + λ2

i + λ2
i−1)− 3

4
χi+1λ

2
i−1

+χi(
1

4
λ2
i+1 + λ2

i + λ2
i−1) ≈ 0, (2.36)
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Figure 2.7 – Measured cavity resonance frequency ωm versus magnetic flux.
The blue line, fitted to the data, evaluates S0 to calculate the pulled cavity
frequency.

with the generalized detunings ∆i = (ωi+1 − ωi) − ωr, coupling coefficients

gi ≡ gi,i+1, dispersive shifts χi = g2
i /∆i and small parameters λi = −gi/∆i,

where χi = λi = 0 ∀ i /∈ [0,M − 2].

An example of the dispersively shifted cavity resonance frequency ωr is

showed in Fig. 2.7, measured with the same sample investigated in Fig. 2.6.

The transmon energy level structure dispersively ”pushes” the cavity reso-

nance frequency to higher frequencies in function of the applied magnetic

flux, showing a larger shift when the first excited state is nearer resonance,

around φ = 0. The data is fitted to Eq. (2.33), finding the coupling coefficient

g0/2π = 111 MHz and the cavity resonance frequency ωr/2π = 6.9468 GHz.

Considering again only the two lowest states |g〉 and |e〉, the dispersive

Jaynes-Cummings Hamiltonian reduces to a 2x2 matrix, analog to Eq. (2.24)

Heff = ~ω′0
σ̂z
2

+ (~ω′r + ~χ′σ̂z) â†â, (2.37)

but with renormalized transition frequencies ω′r = ωr−χ1/2, ω′0 = ω1−ω0+χ0

and

χ′ = χ0 − χ1/2 ≈ −
(
βeV 0

rms

)2( EJ
2EC

)1/2
EC

~2∆0 (~∆0 − EC)
. (2.38)
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The effective dispersive shift can therefore change sign and even diverge when

the second excited state gets resonant with the cavity, where the dispersive

approximation breaks down.
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Chapter3
Experimental Setup

Connecting the quantum world, where single quanta produce observable ef-

fects, to the classical environment in the laboratory, where a single mobile

phone can generate 1018 photons per second, is a challenging task. Classical

control signals must be generated and ”fed” to the sample space minimiz-

ing different noise sources while weak fields from the experiment have to be

strongly amplified to be detected (up to a factor 109 in power). Addition-

ally, the sample has to be kept at millikelvin temperatures to avoid incoherent

populations caused by thermal excitations. Not only the standard phonon

temperature has to be kept low but also the black body radiation temperature

must fulfill the strict requirement kBT � ~ω. Moreover, the long time stabil-

ity of the environmental conditions, such as the magnetic field, must satisfy

stringent criteria to avoid state preparation imperfections and dephasing.

In this chapter all these aspects will be addressed, with a particular em-

phasis on the implementation chosen in the Quantum Device Lab at ETH.

3.1 Cryogenic wiring

Accomplishing different tasks such as detecting single photons and shielding

the experiments from room temperature radiation, requires different kinds of



3.1 Cryogenic wiring

cabling connecting the experiment to the laboratory equipment. The entire

wiring, however, must not transport more heat than the cryostat can han-

dle on every single cooling stage. For a presentation of the operation of a

dilution refrigerator and a discussion of low temperature heat flows one can

consult [Pobell06].

Conventional and pulse tube cooler based refrigerators such as the Vericold

DR200 have typical cooling powers of less than 1 W at the 4 Kelvin stage.

The installation of a single semirigid tin plated copper coaxial cable (UT85

TP) from room temperature to this stage would already transfer 0.6 W of

heat, considerably warming up the cryostat. For this reason, all coaxial cables

connecting different temperature stages are made of stainless steel (UT85 SS)

which has much lower thermal conductivity at the price of greatly decreased

electrical conductivity (copper cables have an attenuation of 2.2 dB per meter

at 10 GHz, while stainless steel attenuate 13.3 dB), for a detailed discussion of

the involved heat flow one can consult the Appendix A.1. The only exception

is the ”measurement” line, carrying the field from the sample to the first

cold amplifier, where losses must be avoided to maximize the signal to noise

ratio of the read-out. For this reason a special cable with silver plated center

conductor (4.8 dB attenuation per meter at 10 GHz) or a superconducting

niobium-titanium cable is installed.

Higher temperature stages of the cryostat have more cooling power than

plates at lower temperature. It is therefore essential to thermalize the cabling

at each stage. To ensure a complete thermalization of the center conductor

a dissipative element such as an attenuator or a component like a circulator

must be employed.

The thermalization of the center conductor at different temperatures also

provides the opportunity to dissipate the incident thermal radiation from a

50 Ohm load at higher temperature. The black body radiation emitted at

300 K in the microwave frequency range up to 40 GHz, is about 80 times more

intense than the radiation emitted at 4 K. Therefore a 20 dB attenuator is

mounted at the 4 K plate in the ”control” lines (connected to the resonator

input capacitor Cin and to the qubit via Cs), as shown in Fig. 3.1. These

lines are connected to the input port of the resonator and to the qubit charge
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Figure 3.1 – Schematics of the measurement setup used in CQED.
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3.1 Cryogenic wiring

lines and are used to populate the cavity and drive direct qubit transitions

respectively. The remaining radiation, corresponding to about 40 photons at

5 GHz is then attenuated at the 100 mK and base plate. The one-dimensional

black body radiation is further discussed in Appendix A.2.

Getting rid of the incoming black body radiation with attenuators is not

practical for the output port of the cavity Cout. The weak signal with an

average of less then 1 photon would as well be attenuated, compromising the

signal to noise ratio (SNR). For this reason, circulators are employed and the

incoming radiation is routed to a 50 Ohm termination where it is absorbed,

while the signal is transmitted to a first low-noise cold amplifier. Low temper-

ature circulators from Pamtech and Raditek have isolations of at least 18 dB

in the operating frequency range and have been successfully tested at 4 K,

see Appendix A.3. The noise properties of the wiring and the cold amplifier

mounted on the 1 K pot in the traditional, liquid helium precooled fridge and

on the cold plate of the pulse tube cooler in the DR200 fridge is analyzed in

Sec. 3.2. A complete list of the components installed originally in the input

and output cavity lines is shown in Tab. 3.1, while a photograph of the wiring

implemented in the Vericold DR200 is shown in Fig. 3.2.

Early Cooper-pair box samples had the bias voltage as additional control

parameter. The attenuation built-in in the described microwave lines would,

however, not allow for enough tunability and the currents flowing in the at-

tenuators would warm up the system. Therefore a separate line carrying the

DC voltage is implemented and connected to the sample with a bias-tee from

Anritsu (K250 with an RF bandwidth of 0.1-40 GHz and a DC bandwidth

up to 10 MHz). The K251 model, which has a 3 dB point on the DC side

of 23 kHz and a good transmission on the RF side starting at 50 kHz is used

to apply quasi DC signals on the RF side. The noise is filtered with a modi-

fied stainless steel low-pass powder filter (SSPF) similar to the one described

by [Lukashenko08]. High frequencies are strongly damped by the skin effect

while the low frequency smooth cutoff at around 10 MHz is realized using a

built-in lumped element RC-filter, see Appendix A.4.

The on-chip flux-lines, designed to quickly and locally shift the qubit tran-

sition frequency, require higher bandwidths (> 100 MHz to enable for 10 ns
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T Component Att. [dB] Component Att. [dB]

RT Source out +12/-90 ADC
RT UT85 TP -1.2 UT85 TP -1.9
RT Attenuator -10 Amplifier +24
RT Splitter -3 UT85 TP -0.2
RT Attenuator -30 IQ Downconverter 8
RT Splitter -3 UT85 TP -0.9
RT DC block -0.5 Amplifier +36
RT Attenuator -3
RT Filter -0.1
RT Amplifier +28
RT DC block -0.5
RT UT85 TP -4.2 UT85 TP -2
- UT85 SS -4 UT85 SS -4

4K Attenuator -20 Attenuator -3
- UT85 SS -12.3 UT85 SS -0.7

1.6K Amplifier +35
- UT85 SS -3.6

100mK Circulator -0.3
- UT85 SS -1.2

Base Attenuator -20 Circulator -0.3
Base Bias-tee -1.2 Bias-tee -1
Base UT85 TP -0.5 UT85 TP -0.5
Base Sample-holder -1 Sample-holder -1

Total -110.9 Total +90.8

Table 3.1 – Detailed list of the employed components and corresponding at-
tenuation factors for the main cabling used for the input and output resonator
lines for the original wet Oxford fridge.

long flux pulses), smoother cutoffs (to avoid pulse degradation), and lower

DC-damping to not warm up the sample due to the current flow. For this

reason two commercial Mini-Circuits VLFX-300 low pass filters, with a 3dB

point at around 450 MHz where tested at 4 K and installed in series in the

cryostat. A constant current of 1 mA could be safely passed trough the chip

without warming up the baseplate significantly and 10 ns long pulses could be

successfully implemented [Bozyigit10].

The DC wiring of the external coils, used to tune the qubit transition
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Figure 3.2 – Picture of the fully wired Vericold dilution refrigerator DR200.
The input microwave cabling is visible on the right with its thermally anchored
attenuators labeled ’-20 dB’. The samples are shielded from magnetic fields by
a double layer of high permeability metal (cryoperm). For the output paths,
two lines with two circulators each before the two LNA are visible.
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frequencies is also shown in Fig. 3.1, for a full description of the filtering

please refer to Sec. 3.5, while the room temperature signal modulation and

demodulation is described in Sec. 3.3 and 3.4 respectively. The DC-blocks on

the RF lines avoid ground loops, through which induced currents could affect

the experiment, the low temperature thermometry and the sensitive microwave

equipment.

3.2 Noise temperature of the amplification chain

The efficient measurement of very weak signals is of utmost importance for

every experimental effort in CQED. Single photons in the microwave range

must be amplified by as much as 90 dB to be able to detect them with com-

mercial measurement devices. As discussed in Sec. 3.1, low temperature, low

noise HEMT amplifiers are the first link of the amplifying chain. They add

much more noise than the theoretical lower quantum bound for linear phase

preserving amplifiers [Caves82] (for a recent review on quantum limited ampli-

fication, see [Clerk10]). HEMT’s have, however, several practical advantages

over quantum limited amplifiers, such as high gain (≈ 30 dB), very large dy-

namic range (from single photons up to -30dBm input power), broadband

operation of several GHz and a simple and stable operation. The basic prop-

erties of amplification chains are reviewed and the noise temperature of the

implementation discussed in Sec. 3.1 is assessed.

The amount of noise added to a signal by an amplifier can be expressed by

several equivalent notations. The noise figure NF of an active device with gain

G quantifies the ratio of the total noise power P outn delivered into the output

load to the noise power P inn engendered by the input termination [IEE00]

NF = 10 log

(
P outn

G · P inn

)
. (3.1)

It is defined at a given frequency of the device, when the noise temperature of

its input termination is standard (290 K) and is expressed in dB. The noise
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3.2 Noise temperature of the amplification chain

factor F , is defined in an analog way

F :=
P outn

G · P inn
= 10

NF
10 . (3.2)

To understand the noise emitted by an amplifier, it is useful to separate the

different noise sources in two categories: the noise delivered to the amplifier

input and the noise added by the amplifier itself. The additional noise is

assumed to be generated by an ideal load at the amplifier input, having a

given noise temperature Tn, which not necessarily corresponds to the physical

temperature of the amplifier. The thermal radiation generated by this ideal

black body is then amplified by the device. So one can write the added power

per Hertz of bandwidth at the input of an amplifier as [Kerr99]

Pn = kBTn

[(
hν

kBTn

e
hν

kBTn − 1
+
hν

2

)]
. (3.3)

In the usual classical limit of kBTn � hν, Eq. (3.3) can be approximated by

the well known Rayleigh-Jeans law

Pn = kBTn. (3.4)

In the limit where Eq. (3.4) is valid, the noise temperature can also be ex-

pressed in terms of the noise factor

Tn = 290(F − 1). (3.5)

If k amplifiers are added in series, each having a different gain Gi and noise

factor Fi, the total noise factor F can easily be calculated and is given by

F = F1 +

k∑
i=2

Fi − 1∏i−1
j=1Gj

. (3.6)

Usually,
∏i−1
j=1Gj � (Fi− 1) so that the first amplifier defines the noise factor

of the entire chain.

To characterize the noise properties of a system it is crucial to know the
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total gain as stated in Eq. (3.2). This is not simple in a cryogenic environment

because the measured room temperature figures change when the components

are cooled down. Usually, one uses a temperature controlled, calibrated noise

source, as demonstrated in [Castellanos08], a fully isolated controller for a

low temperature mechanical switch is discussed in Appendix A.6. Since a

switchable resistor was not built in our setup, the qubit was employed to

asses independently the absolute photon number induced in the resonator by a

coherent tone. The AC-Stark shift experiment [Schuster05] indicated 1 photon

in average in the resonator for a generated external tone with -35.1 dBm power

for the wiring of the original wet Oxford cryostat, listed in Tab. 3.1. To ensure

a stable operation of the amplifier, a low noise power supply was developed and

implemented by the Elektronik-Lehrlabor (ELL) at ETH, see Appendix A.5.

Using input-output theory [Gardiner85, Walls94] to relate the power in the

resonator to the power transmitted through the cavity, results in

Psignal = n~ωrκ, (3.7)

where n is the number of photons in the resonator, ωr/2π = 6.440 GHz the

resonance frequency and κ/2π = 1.7 MHz the photon decay rate. Calculating

the power leaking out from the resonator with Eq. (3.7), leads to Psignal =

−141.4 dBm. The calculated signal power, found adding up all components

listed in Tab. 3.1 is Psignal = −146 dBm, where the difference of +4.6 dB is

likely coming from the better performance of the stainless steel coaxial cables

when cooled to low temperatures.

Before reaching the first cold amplifier, the signal transmitted through the

resonator is attenuated by 7.9 dB (at room temperature). The amplified signal

(38 dB gain expected) is then attenuated again by 10.2 dB before reaching

the first warm amplifier. At this point the spectrum is accessible and was

measured, finding -112.7 dBm for an applied -35 dBm resonant tone at the

room temperature resonator input, while the noise was under the noise floor

of the spectrum analyzer. The expected signal summing up all components is

-125.2 dBm. 6 dB less attenuation each way for the cold cables/components

are plausible and could again account for the difference.
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3.3 Amplitude and phase modulation of the control signal

After the two warm amplifiers, shown in Fig. 3.6, with 43 and 139 K

noise temperatures respectively and which amplify the signal by a total of

58.0 dB, the coherent tone has a power of -54.8 dBm. At this stage the

noise of the system is measurable. One measures -106 dBm Hz noise power,

showing the expected scaling with bandwidths. Using the nominal values for

the components between sample holder and the first amplifier, implying a loss

of around 8 dB, the system noise temperature is Tn = 9 K. With the big

uncertainties in the cold attenuation factors discussed above, this is only a

reference value. With 3 dB more or less attenuation, one would find Tn = 6

and 14 K respectively.

These figures can be improved deploying a cold amplifier with a smaller

noise temperature or minimizing the losses between the sample holder and

the first amplifier. The amplifier cannot be mounted closer the sample in the

cryostat because of its power dissipation but the cables can be exchanged by

superconducting lines which have similar electrical properties as the copper

cables and thermal properties as the stainless steel ones.

A complete setup with two equal superconducting coaxial cables, leading to

two separate cold amplifiers was implemented for the measurement of the corre-

lation function of a single photon source in the microwave regime [Bozyigit10].

3.3 Amplitude and phase modulation of the con-

trol signal

The manipulation of the qubit in the time-domain requires the generation of

fast RF pulses with accurate and precise control over frequency, phase and

amplitude of the pulse. The direct generation of signals in the GHz frequency

range with controlled phase and risetimes of the order of 1 ns cannot be ac-

complished with a single device. To circumvent this limitation the signal of

an arbitrary waveform generator with 1 ns resolution is upconverted to the

frequency generated by a low noise analog microwave generator ωLO using an

IQ-mixer, as sketched in Fig. 3.1. If the upconverting signal is modulated,

any frequency around ωLO (in the bandwidth of the mixer) can be generated.
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Figure 3.3 – Schematics of an IQ-mixer modeled as a 90◦ hybrid followed
by two mixers and a final symmetric hybrid to rejoin the signals. The signal
paths leading to upconversion are indicated in black, while the downconversion
is shown in red.

Using an IQ-mixer instead of a simple mixer allows to control the phase of the

signal.

An ideal IQ-mixer can be considered as composed by two balanced mix-

ers and two hybrids which multiply the signal applied to the local oscillator

port sLO with the in-phase signal sI and add it to the multiplication of the

quadrature signal sQ with sLO, phase shifted by π/2, as shown in Fig. 3.3.

The high frequency local oscillator is driving the mixer electronics and must

therefore have a fixed amplitude ALO. We use this tone as a reference, defin-

ing its phase zero and frequency ωLO. The I and Q quadrature signals are

assumed to have a fixed frequency ωI/Q but variable phases φI/Q(t) and time

dependent amplitudes AI/Q(t). sQ has an additional constant phase ϕ, which

will be useful to select the generated sideband. This definitions yield

sLO := ALO cos(ωLOt),

sI := AI(t) cos(ωIt+ φI(t)),

sQ := AQ(t) cos(ωQt+ φQ(t)− ϕ),

sRF =
ALO√

2
[cos(ωLOt) · sI + cos(ωLOt+ π/2) · sQ] . (3.8)

Using simple trigonometric relations and assuming AI(t) = AQ(t) ≡ AIQ(t),
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Figure 3.4 – sI (red) and sQ (blue) used to generate a gaussian pulse at
the frequency ωLO + ωIQ. This particular implementation has σ = 4 ns and
ωIQ/2π = 100 MHz. Note that sI/Q are 90 degrees off phase to generate a
pulse on a single sideband, as stated in Eq. (3.9). The used arbitrary waveform
generator (Tektronix AWG5014) has a time resolution of 1 ns, reflected in the
figure by the supporting points.

ωI = ωQ ≡ ωIQ and φI(t) = φQ(t) ≡ φIQ(t), it follows that

ϕ = 0 → sRF =
ALOAIQ(t)

2
{cos [(ωLO + ωIQ)t+ φIQ(t)− 3π/4]

+ cos [(ωLO − ωIQ)t− φIQ(t)− 3π/4]},

ϕ = π/2 → sRF =
ALOAIQ(t)√

2
cos [(ωLO + ωIQ)t+ φIQ(t)] ,

ϕ = −π/2 → sRF =
ALOAIQ(t)√

2
cos [(ωLO − ωIQ)t− φIQ(t)] . (3.9)

Adjusting the free parameter ϕ, a single mixer can generate identical signals

on both sidebands ωLO ± ωIQ of the local oscillator, like a normal mixer or

selectively suppress one sideband generating a single tone at ωLO + ωIQ or

ωLO − ωIQ. The amplitude of the selected sideband can be modulated with

AIQ(t), and the phase changed using φIQ(t), which is alike a frequency mod-

ulation. This flexibility is useful if one needs to generate pulses on different

transitions of the same qubit using a single generator and mixer. Moreover,

the implementation of a modulated IQ signal avoids the upconversion of 1/f

noise and unwanted resonant leakage. An exemplar gaussian pulse is shown in

Fig. 3.4.
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Figure 3.5 – Resonator spectrum weakly probed with a drive corresponding
to about 1 photon in average in the cavity on resonance (blue dots). The
red line is the best Lorentzian fit to the data, while the blue curve considers
a second Lorentzian peak, finding a detuning of 3.6 MHz, corresponding to
2χ/2π = 3.2 MHz. The side peak amplitude of 5±1% of the main peak enables
for a rough estimation of the incoherent population of the excited state.

These IQ-mixers usually do not behave ideally. They are affected by con-

siderable DC-offsets, leading to substantial leakage of sLO into sRF even if

sLO = sLO = 0 and phase and amplitude imbalance which generate substan-

tial signals at unwanted frequencies (only about 20 dB lower than the wanted

tone without further calibration). It is, however, possible to calibrate out these

nonlinearities and obtain an isolation of more than 40 dB. The calibration has

to be repeated for different ωLO frequencies as well as for different modulation

frequencies ωIQ. The magnitude of the generated signal ARF , needed for ex-

ample to compare Rabi oscillation rates at different detunings, as performed

in Sec. 5.5, depends on the selected ωLO and ωIQ and must therefore be mea-

sured each time. To avoid the presence of higher order sidebands typically at

ωLO±2ωIQ, it is necessary to drive the mixer with low enough sI/Q amplitudes

(typically 400 mV), to avoid its nonlinear response.

The additional installation of attenuation between the AWG output and

the mixer IQ ports is helping inhibiting broadband noise being upconverted to

the resonant qubit transition inducing unwanted populations of the order of

5 %. This population is evaluated measuring the resonator spectrum without

any explicit qubit drive, as shown in Fig. 3.5. The non-Lorentzian response
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3.4 Measurement signal demodulation

is due to a small incoherent excited state population of the qubit which shifts

the resonator by 2χ, see Sec. 2.4. The average over many realizations leads to

two separate Lorentzian peaks with amplitudes weighted by the populations,

as observed in Fig. 3.5. Switching off the microwave tone sLO, using the built

in pulse function to avoid such problems is not practical because the generator

is too slow. The risetime of about 10 ns, combined with fluctuations lasting

up to 100 ns affect the quality of the pulses in such a way that this technique

is not used.

3.4 Measurement signal demodulation

Information on the qubit state and on the field inside the cavity can be gained

by measuring the quadrature amplitudes of the electromagnetic wave leak-

ing out of the resonator through the output capacitance Cout, as described

in Sec. 2.4. Note that only half of the total signal amplitude is transmitted

through Cout (in the case Cout = Cin), while the other half is lost via Cin,

which could be accessed using an additional circulator placed just before Cin

and a second measurement line. A design with Cout � Cin, would ensure

almost every photon leaving the cavity from Cout, doubling the signal (con-

sidering a constant κ). The implementation of a second measurement line,

monitoring the reflected signal in the case Cout = Cin would, however, not

lead to an increased signal to noise ratio, since a second amplifier would dou-

ble the noise.

Operating the cavity in the few photons regime requires many repetitions

of the same experiment to average out the dominating amplifier noise dis-

cussed in Sec. 3.2. A direct measurement of the transmitted signal could

be performed with an high frequency oscilloscope, which can, however, not

average efficiently. An analog-to-digital converter (ADC) combined with a

field-programmable gate array (FPGA) on a computer card is much more ver-

satile. The microwave signal must be downconverted to be within the limited

bandwidth of the card, limiting the bandwidth of the measurement to the

downconverted frequency. The acquired signal can, however, be manipulated

in real time and diverse operations such as averaging, fourier transformation
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and arbitrary correlation measurements can be performed efficiently on a sin-

gle device. Commercial FPGA based acquisition cards usually also feature

digital-to-analog converters (DAC) which could be used to implement real time

feedback, enabling error correction algorithms [Knill00], quantum teleporta-

tion [Bennett93] without the need for post-selection or measurement based

state preparation [Bishop09b].

A time-resolved, phase sensitive measurement of the transmission quadra-

ture amplitudes is realized by down converting the measurement signal sRF

using an IQ-mixer in an inverted way compared to Eq. (3.8), as indicated by

the red arrows in Fig. 3.3. sRF is multiplied with sLO, generating two phase

shifted outputs sI/Q, which are both needed to reconstruct simultaneously the

phase and amplitude (or I and Q quadratures) of the original signal if one

downconverts to DC (ωRF = ωLO). The hardware used is sketched in Fig. 3.1

and shown in Fig. 3.6. The downconversion to an intermediate frequency

∆RF,LO = ωRF − ωLO = 25 MHz and the successive digital downconversion

to DC avoids the requirement to simultaneously measure both channels of the

IQ mixer. What is more important, DC-offsets do not carry any information

and can therefore be neglected, avoiding 1/f noise. The limited bandwidth of

this method of 25 MHz still exceeds the typical resonator bandwidth, yielding

one independent data point every 40 ns. A detailed description of the digital

downconversion and filtering procedure can be found in [Schuster07a, Lang09].

A typical time-resolved experiment is repeated every 10 µs and averaged

65’000 times to enhance the signal-to-noise-ratio. It is then digitally down con-

verted to DC, leading to a total measurement time of 650 milliseconds for 250

points in each of the traces sI/Q(t). Using input-output theory [Gardiner85,

Walls94], the measured, averaged signal quadratures sI/Q(t) at the output of

the resonator are related to the field inside the cavity by

sI(t) =
√
Z0~ωrκ <〈â(t)〉,

sQ(t) =
√
Z0~ωrκ =〈â(t)〉, (3.10)

where Z0 is the characteristic impedance of the transmission line connected to
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amp. power supply

from LNAfrom LNA

to ADC

LO inLO in

   IQ   IQ
mixermixer

+36dB+36dB

+28dB+28dB

+24dB+24dB

sRFRF

sLOLO

sI

Figure 3.6 – Downconversion board for the measurement signal. The sig-
nal from the cold amplifier is first further amplified, then filtered (to avoid a
saturation of the next amplifier by the broadband noise), again amplified, down-
converted to 25 MHz using an IQ mixer and finally amplified and filtered with
a low pass filter before being digitized.

the resonator. The reflected amplitudes can be calculated similarly, taking into

account both the signal leaking out from the cavity and the signal reflected

at the resonator input capacitance. From this relations one can reconstruct

the field inside the cavity which in turn carries information about the qubits

coupled to the resonator, enabling their state reconstruction, as discussed in

chapter 4.

3.5 Selective DC flux control

As discussed in Sec. 2.2, the qubit transition frequency can be tuned via an

externally applied flux Φ, threading the superconducting loop. The typical on

chip separation of the qubits is of the order of several millimeters. For this

reason it was possible to design and manufacture a set of small coils, mounted
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directly on the sample-holder able to tune three different qubits independently.

The fast on chip flux lines, seen in Sec. 3.3, have limited tunability due to

restrictions on the maximal current flowing without affecting the sample tem-

perature or stability. Moreover a DC current can be filtered efficiently avoiding

unwanted 1/f noise that affects the phase coherence of the qubits.

For a typical qubit SQUID-loop size of 2 µm2, a perpendicular field of

around 1 mT is necessary to tune the qubit by 1 period, corresponding to 1

flux quantum Φ0 = h/(2e). To reach such a field with coils small enough to

address separate qubits, they have to be close to the sample. Figure 3.7 shows

two small coils with an external radius of 3.5 mm, milled in the backplate of

the sample-holder and a third, bigger coil added on top. 67 m and 357 m of

a 36 µm thick superconducting wire (from Supercon Inc., Boston USA, wire

type SC-T48B-M-0.025mm) is used to wind 3600 and 7000 turns on the small

and big coils, respectively. The superconducting wire is needed to avoid an

excessive heat load on the baseplate. For the designed current of 1 mA, even

an unrealistic small resistance of 1 Ohm, for normal metallic wires with this

length, would already significantly heat up the cryostat. The inductance was

measured with a simple voltage meter using the included inductance function,

finding 0.05 and 0.77 H respectively, in good agreement with the expected

values from the Weeler formula.

First generation coil-bodies were made from copper, to ensure an adequate

thermalization of the coils. The thin wire isolation was, however, prone to

damages, resulting in shorts to the body. To avoid this problem, newer coil-

bodies are made of Stycast R©1266 epoxy which also thermalizes at millikelvin

temperatures [Armstrong78] and has proven to sustain thermal cycling.

The calculated field at the sample location (1 and 6 mm from the coil-

bodies ends) for a current of 1 mA is 0.37 and 0.20 mT for the small and

big coil respectively and is in good agreement with a measurement performed

with a small hall sensor, performed at room temperature. The small coils

generate a strong field only for qubits located immediately below their axis,

with a considerably smaller field for qubits placed few millimeters away. The

big coil, however, adds a constant and global field over the entire chip. Flux

focussing due to the superconducting ground planes increases the field at the
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a) b)

Figure 3.7 – a) Cad sketch of the coil-holders shown below the back of the
sample-holder lid. These are used to independently tune the flux of three sep-
arate qubits. b) Image of a loaded sample-holder with mounted coils and feed
lines.

qubit location by a factor up to 50. The effective coupling strengths can

therefore be substantially different in dependence of the sample geometry.

If different qubits show different coupling strengths to different coils, any

combination of fluxes can be chosen. This is desirable to tune the different

qubit transition frequencies to the needed values. Since the field of the coils

are additive, it is possible to solve the linear equation φa

φb

φc

−
 φoffa

φoffb

φoffc

 =

 f00 f01 f02

f10 f11 f12

f20 f21 f22


 I1

small

Ibig

I2
small

 , (3.11)

to find the currents Ii needed for the chosen fluxes φi. Formally, the coupling

matrix fij has to be nonsingular such that a solution of Eq. (3.11) exists for

arbitrary fluxes φi.

As discussed in Sec. 2.2, the qubit transition frequency depends on the flux
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φ threading the SQUID-loop as

ω0 ∝ EJ,max cos

(
πφ

φ0

)
. (3.12)

Assuming a linear relation between the current in a specific coil and the flux

in a given qubit, it is therefore possible to infer the current needed for a given

flux. This is done spectroscopically, where the qubit transition frequency is

measured in function of the applied current and the periodicity is fitted, as

shown in Fig. 2.6 and Fig. 2.7. The coupling strengths fij are then the inverse

of the measured periodicity of the qubit transition frequencies in the applied

current and φoffi ≈ 1− 10 mΦ0 are small offsets due to an imperfect magnetic

shielding of the sample. The experiment depicted above is repeated with every

possible qubit/coil combination to determine all fij elements. Typically, the

periodicity of the big coil is of the order of 0.2 mA for all qubits, while the

small coils show a stronger coupling, with a periodicity of around 0.1 mA for

the qubits on axis and a cross coupling to the off axis qubits of -1/4.7 mA. The

high degree of control achieved using these coils is demonstrated in [Fink09].

Low frequency current noise in the coils couples directly to the qubit tran-

sition frequency causing dephasing [Abragam61, Ithier05]. For this reason,

careful low-noise biasing has to be implemented avoiding in particular 50 Hz

noise from the power grid and 1/f noise. The cryogenic DC wiring also has to

minimize sources of noise, such as inductive coupling. The currents induced

by a current loop moving in a magnetic field are minimized using twisted pair

wires, so that current pickup in combination with vibrations e.g. from the

pulse tube cooler are suppressed.

To eliminate the ubiquitous 50 Hz noise, a simple first order RC filter,

sketched in Fig. 3.8a has been implemented. It simultaneously acts as a bias

resistor, enabling to generate the needed current in the superconducting coil

(L) with a programmable voltage source. The two R1 and C act as a filter on

both leads while R2 ensures a high impedance environment on the filter output.

The behavior of a single branch of the filter is shown in Fig. 3.8b, measured

with a low frequency, high impedance FFT analyzer between the two cyan

dots. A symmetric design was implemented to avoid any noise propagating
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Figure 3.8 – a) Circuit of the low pass filter used to voltage bias the supercon-
ducting coils. b) Measured spectral power density through one branch of the
filter shown in a) (C = 6.8 µF, R1 = 5 kOhm, R2 = 3 kOhm � RFFTanal. =
10 MOhm).

to the coil from one side and a single branch was measured to ensure the

working of the filter independently from the other branch. The calculated

filter response is shown as a solid line in the same plot. The total resistance

2R1 + 2R2 is chosen to exhaust the full range of the voltage source, while the

ratio R1/R2 is adjusted to optimize the filter cutoff, ensuring good suppression

of 50 Hz noise while maintaining a reasonable RC time constant τ of around

0.1 s. The DC offset in the noise power spectrum shown in Fig. 3.8b is due to

the resistors which act as voltage dividers.

The relative flux variation induced by a 1 V fluctuation at the input of two

different filters is shown in Fig. 3.9a, calculated with the full network shown

in Fig. 3.8a using Kirchoff Kirchhoff’s circuit laws

VL(ω) =
R2V

(1 + iC1R1ω) [−2 (R1 +R2)− iω (L+ 2R1R2C1) + C1R1Lω2]
.

(3.13)

VL is the voltage drop across the coil induced by the voltage V applied to the

filter and can be related to a flux if the flux periodicity of the considered coil is

known. A measured flux periodicity of 3.6 and 4.2 V/φ0, respectively is used

to calculate the flux noise in Fig. 3.8a. The 3 dB point is at 2 and 6 Hz for
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Figure 3.9 – a) Calculated relative flux noise amplitude induced by a 1 V
fluctuation for the filter used for the big coil (C = 6.8 µF, R1 = 5 kOhm,
R2 = 3 kOhm in red) and small coils (C = 6.8 µF,R1 = 11 kOhm, R2 = 5 kOhm
in blue). b) Measured Ramsey oscillations, driven with 10 MHz detuning, using
only bias resistors on a Yokogawa DC 7651 source (red) and the discussed
low pass filter (blue). The blue points are fitted to an exponentially decaying
oscillation, while the red dots are fitted to two different frequencies.

the small and big coil respectively, implying a waiting time after each voltage

change of 1 s to reach 99% of the new current. The flux noise at 50 Hz is

suppressed by a factor of 150 and 30 respectively (in addition of the voltage

division). The big inductance of the coils does not improve the filter behavior

below 1’000 Hz.

To asses the performance of the filters, Ramsey oscillations, see Sec. 4.7,

were measured to analyze the phase coherence of the qubit. The data taken

with the filters is shown in Fig. 3.9b in blue and displays the usual exponential

decay with T2 = 500 ns. The same result is obtained without any filter but

using a battery as voltage source. Using simple symmetric bias resistors with

a Yokogawa DC 7651 source results in the red dots. The coherence is clearly

reduced and the oscillations show beating, implying the presence of a second

frequency. This cannot be explained with broadband noise and must be as-

cribed to a coherent modulation of the qubit transition frequency, most likely

at 50 Hz. The data is fitted to two tones with 10 and 20 MHz respectively

and a decay time of 150 ns. A first generation of filters, with a single central

capacitance displayed the same issue.

The filters are able to suppress the pronounced 50 Hz noise from the Yoko-
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a)
b)

c)

1 mm

100 µm

5 µm

Figure 3.10 – a) Circuit QED device mounted onto a high frequency sample-
holder featuring 8 high frequency coplanar waveguides. The printed board cir-
cuit has a diameter of 30 mm. b) False color optical microscope image of a
multi-Q resonator sample [Leek10]. c) Zoom-in of a transmon type qubit with
further enlargement of the superconducting loop.

gawa source, but to avoid any future problems, it was decided to use only

battery powered voltage sources (SRS SIM928), in addition to the filters.

3.6 Sample fabrication

The resonators are fabricated using conventional optical lithography, while

the qubits are written with electron beam lithography and grown using a

shadow evaporation technique. All samples measured in this thesis have been

fabricated in the cleanroom facility for advanced micro and nanotechnology at

ETH (FIRST). The processes were mainly developed by Martin Göppl and are

described in detail in his Phd thesis [Göppl09]. Here, only the main techniques

used for the fabrication are briefly discussed.

For the fabrication of high quality resonators, a 150 nm thick layer of

niobium is sputtered on a sapphire substrate. A film of photoresist is spun

and baked on top of it and then exposed to UV light through a patterned mask

carrying the resonator design. The exposed resist is then developed and the
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uncovered metal layer is removed by reactive ion etching. A typical false color

microscope photograph of a chip, 7 × 2 mm in size, is shown in Fig. 3.10b.

Niobium film is shown as white and the sapphire substrate in green. The

resonator is meandered to reach the desired length within the limited chip

space. At the left and right end of the chip there is space to accommodate a

transmon type qubit with a charge gate line for the selective qubit control.

The qubits are fabricated in a separate step. Two thin films of electron

beam resist are spun and baked on a chip which already hosts a resonator, be-

fore being directly written with an electron beam with an appropriate pattern.

After development, a free standing bridge of photoresist is generated due to

the higher sensitivity of the lower layer of resist which is also exposed more due

to electrons backscattered from the sapphire substrate. A thin layer of alu-

minum is evaporated at a specific angle, forming the bottom electrode of the

Josephson junction. Afterwards, the sample is exposed for a controlled length

of time to an oxygen containing gas mixture which controllably oxidizes the

aluminum. This forms the tunnel barriers for the junctions. In a subsequent

step, a second layer of aluminum is evaporated at a different angle, generating

a partial overlapping region which defines the Josephson junction. In a final

step the photoresist and the remaining metallization layer are lifted off. A

resulting transmon type qubit is shown in Fig. 3.10c with its two big interdig-

itated metallic plates forming the shunt capacitor Cs. The superconducting

loop (∼ 2 µm2) with its two small junctions (∼ 100× 100 nm) is shown in the

center of Fig. 3.10.

Finally the chip is mounted on a printed board circuit (PCB) which is con-

nected to the cryogenic cables via commercial SMP connectors, see Fig. 3.10a.

The different conductors are wire-bonded to the PCB and unwanted microwave

frequency resonance modes are suppressed using wire bonds across the res-

onator.

3.7 Power dependence of high Q resonators

To achieve long coherence times, needed for any practical implementation of

a quantum processor or memory, the sources of decoherence have to be care-

53



3.7 Power dependence of high Q resonators

fully assessed and minimized. The photon loss to the feed lines, through

the capacitors (Sec. 2.1) can be changed during design [Göppl08], while a

generic and unknown internal loss mechanism is intrinsically given. Any

source of decoherence within the cavity, however, couples strongly to the

artificial atoms and causes unwanted noise. For this reason a quantitative

understanding of the losses and their sources in the few photon regime is

desirable [Gao06, Gao07, O’Connell08, Kumar08, Gao08b, Chen08, Gao08a,

Barends08, Wang09b, Barends10]. High quality resonators are therefore stud-

ied at low temperatures and low excitation powers and the loss mechanisms

are assessed.

In a linear system the photon number n in the resonator can be calcu-

lated with a simple energy conservation argument. In the steady state and

on resonance, an incoming traveling voltage wave with amplitude Vin gener-

ates a standing wave in the resonator. The incoming voltage wave is com-

pletely reflected and phase shifted by π at the resonator input capacitance

(Vref = −Vin). For a symmetrically coupled resonator, the voltage leaking

out from the cavity is identical on both sides (Vout,L = Vout,R = Vout), so the

energy conservation law implies

Pin = Pref + Ptrans + Ploss (3.14a)

= (Vref + Vout,L)2 + V 2
out,R + Ploss (3.14b)

= (
√
Pin −

√
Pout)

2 + Pout + Ploss. (3.14c)

Introducing the coupling coefficient g := Qint/Qext, and inserting Eq. (2.4)

into Eq. (3.14), the insertion loss (IL) can be expressed as follows

IL :=
Pout
Pin

= |S21|2 = 1/

(
1 +

P 2
loss

4P 2
out

+
Ploss
Pout

)
(3.15a)

=

(
g

g + 1

)2

, (3.15b)

where S21 is the scattering parameter voltage gain. The expression for the
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Figure 3.11 – a) Insertion loss fitted to the measured Lorentzian resonator
responses versus measurement power. b) Measured loaded quality factor QL

(black) versus photon number n reconstructed using Eq. (3.18). The inter-
nal Qint (red) and external Qext (blue) quality factors are calculated with
Eq. (3.15).

dissipated power can be evaluated with Eq. (3.15)

Ploss
Pin

= 2

√
Pout
Pin

− 2
Pout
Pin

=
2g

(g + 1)2
. (3.16)

The reflected power is then found subtracting Eq. (3.15) and Eq. (3.16) from

Eq. (3.14)
Pref
Pin

= |S11|2 =
1

(g + 1)2
. (3.17)

The same results are obtained by a full analysis of the equivalent electric cir-

cuit [McKinstry89] or using the ABCD matrix formalism [Leong02]. The spec-

trum of the system was calculated numerically using an exact ABCD matrix

approach finding no deviations from the results of Eq. (3.15) and Eq. (3.17).

Inserting Eq. (3.16) in Eq. (2.4) leads to the average number of photons n

inside the cavity on resonance

n = Pin

[
2g

(1 + g)2

]
Qint
~ω2

= 2Pin
√
IL

QL
~ω2

. (3.18)

From the measured insertion loss, loaded quality factor and applied power it is

therefore possible to infer the average photon number in the resonator and the

internal quality factor. Figure 3.11a shows the measured insertion loss, while
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Figure 3.12 – a) Average photon number on resonance in the cavity versus
driving power. The blue line indicates a linear dependence, typical for a system
with constant quality factor b) Scaling of the internal quality factor versus the
RMS voltage in the cavity. The black line is fitted to Eq. (3.19).

b) displays the fitted QL of the high quality resonator cooled to about 20 mK

versus the applied measurement power at the input of the resonator. The

resonator is made of niobium on a sapphire substrate, with the fundamental

resonance frequency at ωr/2π = 7.135 GHz and symmetric 10 µm gaps, im-

plying a theoretical Qext = 1.35 106 (sample ID: Sa05.5.Z3). At high powers,

the resonator is operated in the overcoupled regime, where Qint � Qext ≈ QL,

indicated by the low insertion loss. For lower powers, QL decreases steadily

until it saturates at low photon numbers. The constant Qext, observed in

Fig. 3.11b, arises naturally from Eq. (3.15) and confirms the validity of the

discussed method. The cold calibration of the insertion loss of the cabling lead-

ing to the resonator is accurate only up to about 2 dB, implying an uncertainty

∆Qext of 200’000.

This behavior has been observed in several experiments studying low power

responses of high quality resonators [Gao06, Gao07, O’Connell08, Kumar08,

Gao08b, Chen08, Gao08a, Barends08, Wang09b, Barends10] for different de-

signs and material choices. The typical photonic temperature at GHz frequen-

cies in the resonator is well below 100 mK [Fink10], which implies less than

0.04 photons in average in the cavity due to thermal fluctuations. The ob-

served onset of the saturation of the quality factor at around 100 photons is

therefore not due to thermally activated fluctuations.

The losses are usually explained by two level systems (TLS) which couple to
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the field and are saturated by high powers. Their exact origin and distribution

is being actively investigated but recent results [Wang09b, Barends10] suggest

their location on the metallic surface and not in the bulk of the dielectric,

implying a scaling

Qint = QTLS

√
1 + (Vrms/Vsat)

β
, (3.19)

where Vrms = Vin[2gQL/(1 + g)]1/2 is the root-mean squared voltage on the

center conductor and Vsat the saturation field for the TLS and β a geometry

dependent exponent. Figure 3.12a clearly shows the saturation of Qint at low

powers, where similarly to [O’Connell08], there is a linear relation between

input power and photon number (blue line), while for higher powers the TLS

are gradually saturated, resulting in a slope of around 3/2 (magenta line). The

data shown in Fig. 3.12b is fitted to Eq. (3.18), finding QTLS = 95′000, Vsat =

3 10−5 V and β = 0.7, similar to the result found for example by [Gao07].

The TLS’s which are probably limiting the photon lifetimes at low powers

could also be responsible of the limited lifetime of superconducting qubits.

Further research in the fabrication of high quality resonators could therefore

also help understanding the fundamental mechanisms of qubit relaxation.

57





Chapter4
Dispersive Quantum State

Readout

An indispensable prerequisite for each physical implementation of a quan-

tum information processing system is the ability to read-out the quantum

state of a specific qubit after each manipulation with high quantum effi-

ciency [DiVincenzo97, DiVincenzo00]. For a given single qubit state |Ψ〉 =

cg|g〉+ce|e〉, an ideal strong measurement returns ground state ”g” with prob-

ability |cg|2 and excited state ”e” with probability |ce|2, independent of the

state of other qubits or of the state of the environment. A measurement is said

to be quantum non-demolition (QND) if after the measurement the qubit state

is left in |g〉 after the ”g” outcome and |e〉 after the ”e” outcome [Walls94].

This property is not necessary for quantum computation since after the mea-

surement the system can be reinitialized, but is a valuable feature if one has

only a weak or noisy measurement because it allows for a subsequent state

determination which enhances the efficiency. A measurement is said to be

weak [Aharonov88] if the measurement apparatus couples only weakly to the

qubit and therefore does not induce a full wave function collapse. The proba-



bility of getting the result ’the system is in the ”g/e” state’ is then

pg/e =
1

2
+ δ

(
|cg/e|2 −

1

2

)
, (4.1)

with an arbitrary small δ. In the limit δ → 1, we obtain the strong mea-

surement. For small δ, however, the measurement efficiency me is lowered

to [Nielsen00]

me :=
1
2 + δ

(
|cg/e|2 − 1

2

)
|cg/e|2

. (4.2)

Such a weak measurement or a state determination with low efficiency due to

instrumental noise for example, is still sufficient for arbitrary quantum com-

putation. If a specific task requires a higher efficiency me, the measurement

is repeated or averaged over an ensemble of qubits to reach higher values.

For superconducting qubits, a number of read-out strategies specific to var-

ious implementations have been pursued. The first demonstration of coherent

superposition of quantum states in a macroscopic solid state superconduct-

ing system was performed by Nakamura and coworkers in 1999 [Nakamura99].

They considered a charge-qubit realized with a Cooper-pair box structure and

read-out the state measuring the current through a probe junction directly

connected to the qubit, biased to measure single quasi particle tunneling.

For charge qubits the charging energy EC dominates over the Josephson en-

ergy EJ , see Sec. 2.2. Different states are characterized by a well defined

number of Cooper-pairs localized on the island. A single electron transistor

(SET) [Devoret00] is a perfect device to detect this charge and therefore dis-

tinguish the states [Duty04, Astafiev04]. The strong current noise back-action

from the SET will, however, limit the qubit lifetime and interfere with other

nearby qubits. A related type of charge-qubit, the quantronium, has a third

big Josephson junction added to the qubit loop which is used as a read-out de-

vice [Vion02]. In this configuration the charging energy EC and the Josephson

energy EJ have similar magnitude and the number of charges on the island is

no more a good quantum number. To read-out the state, a current is applied

to the big junction and the probability of switching to the finite voltage state

is recorded.
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The read-out of early flux-qubits consisting of a loop interrupted by three

Josephson-junctions has been performed by a nearby direct current supercon-

ducting quantum interference device (DC-SQUID) [vanderWal00, Chiorescu03,

Chiorescu04]. For these devices EJ is much bigger than EC and each state is

characterized by a well defined current circulating in the loop. The different

values of the flux in the DC-SQUID produced by the persistent currents of

states are discerned by different bias currents at which the SQUID switches

from the supercurrent branch to a finite voltage state. The switching pro-

cess, however, produces quasiparticles, which in turn can interact with nearby

qubits in an uncontrolled way.

A third type of qubit, the phase qubit, is based on current biased Josephson

junctions and has similar EJ to EC ratio as a flux qubit, but is read-out in a

different way. The different states have different probabilities of tunneling out

from the potential and of building up a voltage across the junction which is in

turn measured [Martinis02, Simmonds04]. The tunneling of the state implies

a destructive measurement and produces dissipation, unwanted in a system

with many qubits.

To avoid these problems, different groups coupled the qubit to an harmonic

oscillator acting as a non dissipative read-out device. It was demonstrated for

a cooper pair box coupled to a lumped element circuit [Sillanpää05], for a flux

qubit coupled to a tank circuit [Grajcar04] and for a flux qubit dispersively

coupled to a resonator [Lupascu04, Lupascu05]. To improve the measurement

efficiency the intrinsic nonlinearity of the SQUID resonator was used to per-

form a latching measurement [Lupascu06] and demonstrated the QND nature

of the read-out [Lupascu07]. In a similar approach [Siddiqi06], a quantronium

type qubit was combined with a Josephson bifurcation amplifier [Siddiqi04].

In the circuit quantum electrodynamics architecture, a qubit is strongly

coupled to a high quality transmission line resonator [Blais04, Wallraff04]. The

read-out is accomplished by detecting the dispersive qubit state-dependent

shift of the resonator frequency [Wallraff05]. In the dispersive limit, the qubit

transition frequency ω0 is far detuned from the resonance frequency of the

cavity ωr, ensuring g/(ω0−ωr)� 1. Since the resonant coupling strength g is

much smaller than the detuning ∆ = ω0−ωr, no energy exchange between the
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two systems can take place. For small photon numbers, the detection of the

electromagnetic field leaking out of the cavity forms a quantum non demolition

measurement of the qubit state [Gambetta07, Gambetta08]. Combining a

transmon type qubit with a Josephson bifurcation amplifier [Vijay09] led to a

single shot read-out with a visibility of 94% [Mallet09].

Reading out the qubit state in the linear dispersive regime, which ensures a

QND type measurement, in a single experimental realization with high fidelity

is a challenging task. The current measurement setup does not implement a

quantum limited amplifier and the noise added by the cold HEMT dominates

over the very weak signal, as described in Sec. 3.2. A bigger signal would come

to the expense of a reduced qubit coherence [Boissonneault08, Boissonneault09]

and would lead to a complete breakdown of the dispersive approximation for

amplitudes larger than ncrit. The qubit induced nonlinear cavity response

at very high powers (> 1000 photons) is, however, providing an embedded

bistable read-out device that can provide high fidelity single shot qubit mea-

surements [Boissonneault10, Reed10a] and is discussed in more detail in chap-

ter 6.

Another way to improve the signal to noise ratio, but not the single shot

fidelity, demonstrated in the following, is to repeat each measurement many

times, as described in Sec. 3.4, and then average.

4.1 Cavity-Bloch equations

To quantitatively study the dynamics of the coupled qubit-resonator system

we derive Bloch-like equations of motions for the expectation value of the qubit

operators 〈σ̂i〉 (i = x, y, z) and the resonator field operator 〈â〉, valid in the

limit of an ensemble average, realized for example by repeating many times

the same experiment. Averaging over many identical experimental runs only

provides information on the dynamics of an ensemble average, ruling out the

observation of phenomena like quantum jumps.

The Hamiltonian (2.24) does not account for any external fields and needs

to be extended to take into account the measurement tone applied to the

resonator and for the coherent microwave field used to control the qubit state.
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The driving term of the Hamiltonian [Walls94]

Hdrive = ~
(
εm(t)â†e−iωmt + εs(t)σ̂+e

−iωst + h.c.
)
, (4.3)

models a coherent measurement field applied to the cavity with amplitude

εm(t) and frequency ωm, and a second tone at frequency ωs, with amplitude

εs(t) driving the qubit over a gateline, directly coupled via Cs to the qubit, see

Sec. 3.1. The dispersive transformation, see Sec. 2.4, applied to the Hamilto-

nian (4.3), to first order in λ, generates an additional term λεm(t)σ̂+e
−iωmt +

h.c.. This term describes the drive of qubit transitions over the resonator, with

a reduced Rabi rate (g/∆)εm.

To first order in λ in the dispersive approximation, the dynamics of the

system in presence of dissipation and dephasing is described by a Lindblad-

type master equation [Lindblad76]

ρ̇ = − i
~

[HD, ρ] + κD[â]ρ+ γ1D[σ̂−]ρ+
γφ
2
D[σ̂z]ρ ≡ Lρ, (4.4)

where HD = HD
JC +HD

drive, H
D
JC is defined in Eq. (2.24) and D[Â]ρ = ÂρÂ†−

Â†Âρ/2 − ρÂ†Â/2. Here, γ1 = 1/T1 is the qubit energy decay rate and γφ

the qubit pure dephasing rate. These equations are valid in the Born-Markov

approximation, where the reservoirs are assumed to be big, weakly coupled and

memoryless or in other words induce white noise. At a small photon number

n� nncrit = |∆2
ar|/4g2 and with γ1 exceeding the Purcell decay rate [Houck08]

we can neglect higher-order corrections [Boissonneault08, Boissonneault09].

For a full derivation up to third order one can refer to [Boissonneault07].

Equation (4.4) is not well suited for numerical solution since it contains

oscillatory terms with high frequencies (of order of GHz). A transformation

to a rotating frame with the unitary transformation

R = ei(ωmâ
†â+ωsσ̂z/2)t (4.5)

can solve this technical difficulty. Assuming ωr ≈ ωm and ω0 ≈ ωs, one can

drop the fast oscillating terms in the so called rotating frame approximation
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and find

HD
RF = ∆rmâ

†â+

[
∆0s + 2χ

(
â†â+

1

2

)]
σ̂z
2

+(
εmâ

† + ε∗mâ
)

+ [<(εs)σ̂x −=(εs)σ̂y] , (4.6)

where we have defined ∆0s = ω0 − ωs and ∆rm = ωr − ωm as the detuning

of the control and measurement microwave fields from the qubit and cavity

frequency, respectively.

Combining this Hamiltonian with the master equation (4.4) leads to an

infinite set of coupled equations for the expectation values. For instance, the

differential equation for 〈â〉 involves terms proportional to 〈âσ̂z〉, 〈â†ââσ̂z〉 and

〈âσ̂x〉, which in turn involve even higher order terms. We therefore truncate

this infinite series by factoring higher order terms 〈â†âσ̂i〉 ≈ 〈â†â〉〈σ̂i〉 and

〈â†ââσ̂i〉 ≈ 〈â†â〉〈âσ̂i〉, but keeping the terms 〈âσ̂i〉 which ensures that the

field contains information about the qubit state. This choice of factorization

yields the correct average values for coherent and Fock states [Boissonneault07]

and leads to a complete set of eight coupled differential equations

dt〈â〉 = −i∆rm〈â〉 − iχ〈âσ̂z〉 − iεm −
κ

2
〈â〉,

dt〈σ̂z〉 = εs〈σ̂y〉 − γ1 (1 + 〈σ̂z〉) ,

dt〈σ̂x〉 = −
[
∆0s + 2χ

(
〈â†â〉+

1

2

)]
〈σ̂y〉

−
(γ1

2
+ γφ

)
〈σ̂x〉,

dt〈σ̂y〉 =

[
∆0s + 2χ

(
〈â†â〉+

1

2

)]
〈σ̂x〉

−
(γ1

2
+ γφ

)
〈σ̂y〉 − εs〈σ̂z〉,

dt〈âσ̂z〉 = −i∆rm〈âσ̂z〉 − iχ〈â〉+ εs〈âσ̂y〉

−iεm〈σ̂z〉 − γ1〈â〉 −
(
γ1 +

κ

2

)
〈âσ̂z〉,

dt〈âσ̂x〉 = −i∆rm〈âσ̂x〉 −
[
∆0s + 2χ

(
〈â†â〉+ 1

)]
〈âσ̂y〉

−iεm〈σ̂x〉 −
(γ1

2
+ γφ +

κ

2

)
〈âσ̂x〉,
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dt〈âσ̂y〉 = −i∆rm〈âσ̂y〉+
[
∆0s + 2χ

(
〈â†â〉+ 1

)]
〈âσ̂x〉

−iεm〈σ̂y〉 −
(γ1

2
+ γφ +

κ

2

)
〈âσ̂y〉

−εs〈âσ̂z〉,

dt〈â†â〉 = −2εm=〈â〉 − κ〈â†â〉, (4.7)

which we refer to as cavity-Bloch equations. While these equations are appar-

ently more complex than Eq. (4.4), they can be analytically solved in some

cases and are much faster to solve numerically. Note, that they do not in-

clude measurement-induced dephasing caused by photon shot-noise [Blais04,

Gambetta06], because only the expectation value of â†â is taken into account,

and higher order moments are omitted.

The stationary state with a constant cavity drive is

〈â〉 =
−2iεm

κ+ 2i(∆rm − χ)
,

〈σ̂z〉 = −1,

〈σ̂x〉 = 0,

〈σ̂y〉 = 0, (4.8)

reproducing the expected Lorentzian cavity response centered around ∆rm−χ
and full width at half maximum κ. For the case of vanishing cavity and

qubit drive (εm = εs = 0) and arbitrary qubit initial conditions 〈σ̂i〉(0) and

〈â〉(0) = 0, the exact solution is [Boissonneault07]

〈â〉 = 0,

〈σ̂x〉(t) = [〈σ̂x〉(0) cos(ω′t)− 〈σ̂y〉(0) sin(ω′t)] e−(γφ+γ1/2)t,

〈σ̂y〉(t) = [〈σ̂y〉(0) cos(ω′t) + 〈σ̂x〉(0) sin(ω′t)] e−(γφ+γ1/2)t,

〈σ̂z〉(t) = −1 + e−γ1t [1 + 〈σ̂z〉(0)] , (4.9)

where ω′ = ∆0s + χ is the Ramsey frequency and γ2 = γφ + γ1/2 the phase

decoherence rate.
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Figure 4.1 – a) Pulse scheme used to prepare and continuously read-out single
qubit states. b) and c) averaged measurement response Q, I versus time t for
a continuous weak measurement at the frequency ωm = ωr − χ. Solid lines
show the predicted response from the cavity-Bloch equations, Eq. (4.7). Time
resolved data taken at different detunings ∆mr is shown in d) and e). The
arrows indicate the detuning at which the data shown in b) and c) is taken.
The colormap codes red for a positive amplitude and white for zero.

4.2 Continuous measurement

To experimentally determine the state of the qubit, we probe the dynamics

of the resonator-qubit system by measuring the resonator transmission. The

transmitted tone is demodulated, digitized and averaged, see Sec. 3.4. When

arbitrary qubit rotations can be performed, it is sufficient to consider the mea-

surement response for the qubit prepared in either its ground |g〉 or excited

state |e〉 for a full characterization of the qubit state [James01], a technique

called state tomography. Figure 4.1a shows the pulse scheme used for the

measurement. The time dependent quadrature amplitudes I and Q are mea-

sured at the cavity resonance frequency with the qubit in the ground state

(ωm = ωr − χ). The resonator is continuously driven at a measurement drive

amplitude of ε2m = κ/2, populating the resonator with n̄ ≈ 1 photons on av-

erage in resonance. A 10 ns long π pulse ending at time t = 0 and resonant

66



CHAPTER 4. DISPERSIVE QUANTUM STATE READOUT

with the ac-Stark [Schuster05] and Lamb shifted [Fragner08] qubit transition

frequency ωs = [ω0 + 2χ(〈a†a〉 + 1/2)] := ωs,res is then applied to the qubit,

see Figs. 4.1b and c. Qubit relaxation during the π pulse limits the achievable

|e〉 state population to 99%, as obtained by solving the cavity-Bloch equa-

tions. For a similar discussion see [Chow09b]. This is within the statistical

uncertainty of the detection. Furthermore, thermal excitation of the qubit is

expected to be very low and is therefore neglected. The actual black body

radiation in the cavity can be checked investigating the vacuum Rabi mode

splitting [Fink10], finding a temperature smaller then 100 mK, or in the disper-

sive regime the qubit population can be inferred directly by spectroscopically

characterizing the resonator response, as performed in Fig. 3.5.

The dependence of the quadrature components I and Q on the detuning

∆mr of the measurement frequency from the bare resonator frequency is plot-

ted in Fig. 4.1d and e. For clarity, the quadratures are rotated in the IQ-plane

for each measurement frequency ωm such that the Q quadrature is maximal

in the steady-state (qubit in the ground state), resulting in Q = A and I = 0

for t→∞. As a result, before the π-pulse the I quadrature is always zero.

The time and frequency dependence of the measurement signal is accu-

rately described by the cavity-Bloch equations with a single set of indepen-

dently measured, non adjustable parameters as indicated by the solid lines in

Figs. 4.1b and c. The cavity resonance frequency is determined as ωr/2π =

6.44252± 0.00002 GHz with a photon decay rate of κ/2π = 1.69± 0.02 MHz.

The qubit transition frequency is determined spectroscopically [Schreier08] as

ω0/2π ≈ 4.009±0.001 GHz with a charging energy of Ec/h = 232.5±0.5 MHz.

The transition frequency is adjusted using external magnetic flux. The qubit-

cavity coupling g/2π = 134± 1 MHz is extracted from a measurement of the

vacuum-Rabi mode splitting at ω0 = ωr [Wallraff04].

The cavity pull χ/2π = −0.69± 0.02 MHz is determined spectroscopically.

This is done by measuring the cavity resonance frequency leaving the qubit in

the ground state and then measuring its frequency shift applying a continuous

coherent tone to the effective qubit transition frequency ωs,res, which saturates

the qubit transition [Schuster05]. The resulting cavity resonance frequency

versus qubit drive power is plotted in Fig. 4.2. The red line is only a guide
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Figure 4.2 – Measured cavity resonance frequency shift versus resonant qubit
driving power ε2s. The observed shift corresponds to the the cavity pull χ.

to the eye used to extract the cavity pull using a fitting routine and not a

calculation considering the full system response. When the qubit transition is

saturated (εs � γ1), the resonator is shifted on average by χ. This value is

in good agreement with the full transmon model taking into account higher

levels [Koch07] (χ/2π = −0.71 MHz).

In fitting the measurement response in Fig. 4.1, the qubit decay rate

γ1/2π = 0.19 ± 0.01 MHz is used as an adjustable parameter which is equal

to a measurement of γ1 within the statistical uncertainty. In practice, the

qubit decay rate is determined for one measured trace, and then kept fixed for

all other traces. Note that, for short π-pulses, the dephasing rate γφ has no

measurable influence on the solution of the equations. Additionally, a single

scaling factor is introduced to relate the quadrature voltages at the output of

the resonator to the digitized voltages after amplification.

To interpret the time and frequency dependence of the measurement signal

shown in Fig. 4.1 it is instructive to plot I and Q as a function of ωm at fixed

times t, as shown in Fig. 4.3. With the qubit in |g〉, red points in Fig. 4.3, the

resonator transmission exhibits the expected line shapes for both quadratures.

When applying a π-pulse to prepare the qubit in |e〉, the cavity resonance

frequency shifts by 2χ, but the transmitted quadratures respond only on a

time scale corresponding to the photon lifetime Tκ ≡ 1/κ. The lineshape of

the cavity transmission spectrum centered at +χ will only be reached in the
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Figure 4.3 – Transmission spectrum of the resonator. The Q quadrature of
the field is shown in a) and the I quadrature in b). The datapoints represent
the instantaneous averaged response of the field before (red solid points), 180 ns
(blue diamonds) and 740 ns after (green crosses) the π-pulse is applied. The
underlying lines show the numerical simulations and the dotted line shows the
expected response of the system for the qubit in the excited state |e〉 with infinite
lifetime.

limit of T1 � Tκ, see dotted line in Fig. 4.3. The interplay of the cavity field

rise time and the qubit decay time results in the observed dynamics of the

cavity transmission in Figs. 4.1 and 4.3.

At time t = 180 ns ∼ 1.9 Tκ ∼ 0.2 T1 after the preparation of |e〉 the shift

of the cavity resonance to lower frequency towards +χ is clearly visible, see

blue diamonds in Fig. 4.3. At t = 740 ns ∼ 7.9 Tκ ∼ 0.9 T1, when ≈ 60%

of the excited state qubit population Pe is decayed, the measured curve is

approximately the average between the steady state |g〉 and |e〉 responses, see

green crosses in Fig. 4.3.

When looking at the time traces in Fig. 4.1d, the effective shift of the

resonance to lower frequency explains the reduction of the signal in the Q

quadrature for measurement detunings ∆mr > −0.6 MHz ∼ χ. For ∆mr <

−0.6 MHz the amplitude is increased after the π-pulse because the resonator
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4.3 Pulsed measurement

is driven closer to resonance. Given our choice of the rotation of the traces in

the IQ-plane, the I quadrature of Fig. 4.1e acts like a phase and always shows

a positive response to the π-pulse.

The same considerations explain the features seen in the single measure-

ment trace in Figs. 4.1b and c) taken at a measurement frequency correspond-

ing to ∆mr = −χ. The change of the I and Q quadratures on a timescale Tκ

after the π-pulse reflects the relaxation of the field in response to the qubit

excitation. The time scale of the return of the quadratures to their initial

values is determined by the qubit decay at rate γ1.

4.3 Pulsed measurement

To avoid measurement-induced dephasing during the qubit manipulation most

of the recent circuit QED experiments have been performed by probing the

qubit state with pulsed measurements [Majer07, Schreier08, Chow09b, Leek09,

Filipp09, DiCarlo09]. In contrast to a continuous measurement, the measure-

ment tone is switched on only after the qubit state preparation is completed,

see Fig. 4.4a for the pulse scheme. The absence of measurement photons dur-

ing qubit manipulation also avoids the unwanted AC-Stark shift of the qubit

transition frequency, thus simplifying qubit control.

With the qubit in |g〉 the resonator response reaches its steady state at

the rate κ, which is seen in the exponential rise of the Q quadrature, see blue

crosses in Fig. 4.4b. Since the resonator is measured on resonance at its pulled

frequency ∆mr = −χ, the I quadrature is left unchanged, see blue crosses

in Fig. 4.4c. As in the continuous case, the resonator frequency is pulled

to ωr + χ when the qubit is prepared in |e〉, see red dots in Figs. 4.4b and

c. Since the resonator is now effectively driven off-resonantly, the transmitted

signal has non vanishing I andQ quadrature components both of which contain

information about the qubit state. With the measurement frequency still at

∆mr = −χ, ringing occurs at the difference frequency (ωr +χ)−ωm = 2χ. At

later times, the average response is approaching again the steady-state value

as the qubit decays to |g〉 at the rate γ1. As in the continuous case, the qubit

lifetime in presence of measurement photons is obtained from a fit to the cavity-
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Bloch equations. Note, that the decay of the quadrature amplitudes shown in

Figs. 4.4b and c does not directly correspond to the exponential decay of the

qubit population 〈σ̂z〉, but is rather determined by the interplay of resonator

and qubit evolution.

The dynamics of the I and Q quadrature amplitudes can also be repre-

sented in a phase-space plot, see Fig. 4.4d. The response for the qubit in |g〉
follows a straight line while the response for the qubit in |e〉 is more complex.

The nontrivial shape of this curve reinforces the fact that both field quadra-

tures contain information about the qubit state. It is obvious that a simple

rotation in the IQ-plane cannot map the signal into a single quadrature.

Data taken at different measurement frequencies are shown in Fig. 4.5. As

in Sec. 4.2, the I and Q components are rotated such that Q = A and I = 0

in steady-state. For the theoretical curves (solid lines), the same set of pa-

rameters as for the analysis of the continuous measurement are used, leading
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Figure 4.5 – I and Q quadratures for pulsed measurements at different de-
tunings from the resonance frequency. The plots in a) are taken with the
qubit in the ground state |g〉. b) displays the response of the system with
the qubit prepared in the excited state |e〉. c) shows the result of the point-
wise difference of the data acquired with the qubit in the ground state and the
excited one. The lower panels show time traces taken at different detunings
(blue crosses: ∆mr = 1.4 MHz, black diamonds: ∆mr = 0.3 MHz, red dots:
∆mr = −0.7 MHz) with comparison to theory (solid lines).

to very good agreement. Figure 4.5a shows the measured response for the

qubit in |g〉. The Q quadrature shows the expected exponential rise in the

cavity population and for t & 0.5 µs we recover the continuous measurement

response. The I quadrature shows the transient part of the response during

the initial population of the resonator, having a negative value (blue crosses)

for measurements at a frequency above ωr − χ (blue detuned) and a positive

value (red dots) at frequencies below ωr−χ (red detuned). Ringing can be ob-

served when the measurement is off-resonant from the pulled cavity frequency.

Figure 4.5b shows the response with the qubit prepared in |e〉. The response

is similar to the one shown in Fig. 4.1 for the continuous measurement, if one

omits the initial 100 ns where the resonator is populated.

4.4 Population reconstruction

The detailed understanding of the dynamics of the dispersively coupled qubit/

resonator system can be used to infer the qubit excited state population pe =

(〈σ̂z〉 + 1)/2. Indeed, the difference in the measured response for a given
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unknown state sρ(t) and the ground state response sg(t), which corresponds

to the shaded area indicated in Fig. 4.4b and c, is directly proportional to pe.

To explicitly state this relation, we introduce an effective qubit measure-

ment operator M̂ i(t). Here, i = I,Q denote the I and Q field quadratures

used to measure the qubit state. In terms of this measurement operator, the

I and Q components of the signal siρ(t) for the qubit in state ρ before the

measurement are given by

siρ(t) ≡ 〈M̂ i(t)〉 = Tr[ρM̂ i(t)], (4.10)

where M̂ i(t) is determined by the solution to the master equation (4.4). Ana-

lytical solutions can be found in the limit of vanishing qubit decay [Filipp09],

M̂ I(t) = εm
e−κt/2 [2χ̂ cos (χ̂t) + κ sin (χ̂t)]− 2χ̂

χ̂2 + (κ/2)2
,

M̂Q(t) = εm
e−κt/2 [κ cos (χ̂t)− 2χ̂ sin (χ̂t)]− κ

χ̂2 + (κ/2)2
, (4.11)

which depend on the operator χ̂ ≡ ∆rm + χσ̂z for the qubit state-dependent

cavity pull. As a consequence of performing a quantum non-demolition mea-

surement with only a few photons populating the resonator, mixing transitions

between the two qubit states can be neglected [Blais04] and M̂ i(t) is diagonal

at all times. The qubit then remains in an eigenstate during the measure-

ment [Boissonneault09] and we can write M̂ i(t) = sig(t)|g〉〈g| + sie(t)|e〉〈e|.
The signals sig(t) = Tr[|g〉〈g|M̂ i(t)] and sie(t) = Tr[|e〉〈e|M̂ i(t)] are determined

by Eq. (4.11) for the values 〈χ̂〉 = ∆rm ± χ corresponding to the qubit in

the ground or excited state. To account for qubit relaxation, the cavity-Bloch

equations (4.7) are solved to determine sig/e(t).

The qubit excited state population pe(ρ) in a given state ρ is determined

by the normalized area between the measured signal siρ and theoretical ground

state response sig,

pe(ρ) =
1

T

∑
j

siρ(tj)− sig(tj)
sie(tj)− sig(tj)

∆t, (4.12)

where ∆t denotes the discrete time step between datapoints. Replacing siρ(tj)
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with the corresponding expressions from Eq. (4.10), we notice that Eq. (4.12)

simplifies to pe(ρ) = Tr[ρ|e〉〈e|], demonstrating that the excited state popu-

lation of an arbitrary input state is proportional to the normalized area be-

tween signal and ground state. Thus, the effective measurement operator

M̂ ′ i = |e〉〈e| defined by this procedure is equivalent to a projective measure-

ment of the excited qubit state.

The measurement protocol can be summarized as follows: First, the rele-

vant system parameters are determined in separate measurements. The qubit

lifetime T1, the single remaining parameter, is determined by applying a π-

pulse to the qubit and analyzing the resulting transmitted signal. From this

complete set of parameters, the signals sig(t) and sie(t) are computed. Finally,

the excited state population pe is calculated from the recorded signal siρ(t) of

an arbitrary qubit state ρ and the theoretical calculations of the responses sig(t)

and sie(t), using Eq. (4.12), which amounts to a measurement of M̂ ′ i = |e〉〈e|.
For the particular case of the qubit being in |e〉 after a π-pulse, the point-

by-point difference signal is shown in Fig. 4.5c. Note, that the excited state

population can also be directly inferred from a fit of the cavity-Bloch equations

to siρ(t) with pe as free fit parameter. It is, however, computationally less in-

tensive to calculate the population with the area method from Eq. (4.12), that

is, to perform algebraic operations for the data analysis rather than employing

a non-linear fit-routine. We have checked that both techniques provide the

same results within the experimental precision.

This method has already been used in tomographic measurements to accu-

rately measure both single and two-qubit density matrices [Filipp09, Leek09]

and for the characterization of entangled states [DiCarlo09, Leek10].

4.4.1 Maximizing signal-to-noise ratio

The qubit state reconstruction procedure is valid for every chosen measurement

frequency. For this reason we can maximize the total measurement signal

Si(∆mr) =
∑
j

[
sie(∆mr, tj)− sig(∆mr, tj)

]
∆t, (4.13)
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Figure 4.6 – Total integrated signal for the continuous a) and pulsed b) mea-
surement, the triangles on the orange line represents the signal in the Q quadra-
ture, while the squares on the magenta line show the I quadrature signal and
the dots on the black line represents the sum of the two. The vertical lines
indicate the position of the slices shown in Fig. 4.5.

used for the population reconstruction as a function of the detuning ∆mr.

Si(−χ) corresponds to the red area shown in Fig. 4.4. The frequency max-

imizing the signal is dependent on the χ/κ ratio. For κ � 2χ, the best

measurement frequency is the bare resonance frequency, ωm = ωr, and the

signal is then mainly in the phase component [Gambetta06]. In the opposite

regime, where 2χ � κ, the resonator shifts enough to measure in resonance

when the qubit is in the ground state ωm = ωr − χ, and the dominant signal

is in the amplitude of the transmitted signal.

For an intermediate regime, realized in the present experiment with χ/κ =

0.4, there is a significant signal in both quadratures for every detuning which

must be combined to optimize the measurement signal. The total signal

Si(∆mr) acquired in 2 µs, versus measurement detuning is shown in Fig. 4.6,

superimposed with the expected signal calculated using the cavity-Bloch equa-

tions. Since the population is linear in both quadratures, the simplest com-

bination of the I and Q components to maximize Si(∆mr) is to add them

together [Gambetta07]. The combined signal is plotted in Fig. 4.6 (black

dots). The frequency maximizing Si(∆mr) for a continuous measurement is

∆mr = 0.4 MHz, while the best frequency for the pulsed measurement is

∆mr = 0.3 MHz. The system response at this detuning is shown in Fig. 4.5c

(black trace), while the red trace indicates the position with almost no signal
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in the Q component.

4.5 Rabi oscillations measurements

To test the population reconstruction method experimentally, we perform

a Rabi-oscillation experiment [Wallraff05], where a square pulse of variable

length τ and amplitude εs is applied at the effective qubit transition fre-

quency ωs,res. In the limit of large driving fields (εs � γ1, γφ), the time-

dependent population of the qubit can be approximated by the simplified ex-

pression [Allen87]

pe(τ) ∼=
1

2
− 1

2
e−

τ
4 (3γ1+2γφ) cos(εsτ/2). (4.14)

Indeed, the population pe obtained with the area method (Fig. 4.7a, points) has

an rms deviation of less than 1% from the population predicted by Eq. (4.14),

see the solid line in Fig. 4.7a.

In early experiments [Wallraff05], the population was reconstructed using

the phase of the transmitted microwave instead of the quadrature amplitudes.

Since the phase and the amplitude of an arbitrary signal are nonlinear functions

of the I and Q quadratures, the measurement operator (4.11) is no more

linear in the qubit population and Eq. (4.12) does not hold anymore. To

demonstrate this effect, the qubit is prepared with different known populations

and then measured with the area method using the transmitted phase and

amplitude instead of the quadratures. The resulting estimated population

versus known population is plotted in Fig. 4.7b, where the lines arise from a

simulation using cavity-Bloch equations. The deviation from the ideal diagonal

line in black is the absolute error in the population reconstruction and is

shown on the same graph, on the right scala. For the parameters used in

Fig. 4.7b the maximal error, at pe = 0.5 is 0.05 and 0.12 for the amplitude

and phase respectively, much bigger than the statistical uncertainty of 0.01.

This systematic error depends on the chosen measurement frequency as well as

the χ/κ-ratio. Performing a simulation with the parameters from [Wallraff05]

leads to a maximal error of 0.02, which was not significant given their statistical
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Figure 4.7 – a) Rabi oscillations of the qubit population pe reconstructed
by analyzing the pulsed Q response of the resonator (dots) using Eq. (4.12).
The black line corresponds to the theoretical prediction calculated using cavity-
Bloch equations with the following parameters: ωa/2π = 4.504 GHz, χ/2π =
−1.02 MHz, T1 = 860 ns, εs/2π = 50 MHz. b) Effective population versus
population estimated with Eq. (4.12) for phase (red) and amplitude (blue) data.
The magenta (amplitude) and cyan (phase) curves depict the absolute error in
the estimated population on the right scala.

uncertainty of 0.06.

4.6 Energy decoherence measurements

Improving the overall system coherence is a primary goal in current efforts in

quantum information processing. The identification of loss mechanisms is a

first step towards the realization of devices with enhanced coherence times.

For example early transmon devices had limited lifetimes due to unwanted

spontaneous decay trough the cavity. Engineering devices with smaller κ’s or

with new designs minimizing the Purcell effect [Reed10b] led to coherences up

to a few µs in transmon type qubits [Houck08].

Having demonstrated the ability to excite and read-out the qubit popu-

lation with high accuracy we can implement a method to asses the energy

relaxation time T1 = 1/γ1 of the qubit independently of the field inside the

cavity. This is necessary because the rates fitted to the cavity-Bloch equa-

tions (4.7) can contain a significant contribution from photon dependent re-

laxation [Boissonneault08, Boissonneault09] due to the measurement photons.

The determination of the energy relaxation rate is crucial to asses the quality
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of a given qubit implementation. The ratio of the energy decoherence time and

the time needed for single and multi-qubit operations gives an upper limit to

the number of operations that can be performed in an actual implementation

of a quantum computer.

To determine the energy relaxation rate in absence of measurement pho-

tons, we prepare the qubit in the excited state, wait for the time ∆t during

which spontaneous decay may occur and then start the measurement to infer

the population at the time t0, as sketched in Fig. 4.8a. Fitting the decay shown

in Fig. 4.8b to a rate equation results in a measurement of the systems energy

relaxation, which is in good agreement with the value fitted to the cavity-Bloch

equations for n� ncrit. The rates obtained from the two methods in a single

experimental run usually deviate less then 10 %, which is of the same order as

the fluctuations in time observed over several successive measurements.

Figure 4.8c shows the dependence of the qubit energy relaxation time on

the qubit transition frequency ω0. T1 is not Purcell limited in this far detuned

regime and shows an intrinsic limited Q ≈ 20′000, similarly to [Houck08,

Reed10b]. The decoherence source is under active investigation, dielectric

loss in the tunnel barrier [Martinis05], surface two level systems [Shnirman05,

O’Connell08] or nonequilibrium quasiparticles [Martinis09] have been proposed

as possible sources.
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4.7 T2 measurements using Ramsey oscillations

The preservation of the excitation during the operation is not enough for quan-

tum information tasks, but the qubit phase plays a central role [Childs10].

In general, one can identify two contributions to the phase decoherence rate

γ2 = 1/T2: the decoherence related to the energy decay rate γ1 and an addi-

tional decoherence rate arising from slow (on the timescale 1/ω0) fluctuations

of the qubit transition frequency, called pure dephasing γφ [Nielsen00]. The

dephasing time T2 describes the timescale at which the off diagonal terms of

the qubits density matrix decay and is usually defined as

ρ01 = eiω0te−t/T2 . (4.15)

The environment model used to generate the cavity-Bloch equations makes

similar assumptions about the noise coupling mechanism. This can be seen by

comparing the exact solutions, Eq. (4.9) to Eq. (4.15), finding γ2 = γ1/2 + γφ.

In superconducting qubits, these fluctuations can arise from charge noise, flux

noise and critical current noise [Vion02, Nakamura02, Koch07, Pashkin09].

To investigate the phase decoherence, the most direct way is to monitor

the decay of the off diagonal terms of the density matrix for a state with a well

defined phase such as |Ψge〉 = (|g〉+|e〉)/
√

2. This can be performed with state

tomography or by mapping the phase information to a population that can

be easily read-out. A simple implementation of this method, called Ramsey

experiment, is to generate the state |Ψge〉 with a π/2-pulse and then rotate

the state in the Bloch-sphere after a free evolution time ∆t with a second

π/2-pulse, as sketched in Fig. 4.9a. The state evolution in the rotating frame

can be approximated by

pe =
1

2
+

1

2

[
cos(ω′t)e−t/T2

]
, (4.16)

where ω′ = ω0 − ωs + χ denotes the detuning of the qubit drive. It is clear

from Eq. (4.16), that this experiment is also useful to determine accurately the

Lamb shifted qubit transition frequency. The method is robust against pulse

imperfections which would deteriorate the visibility of the oscillations but not
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Figure 4.9 – a) Measurement scheme. b) Reconstructed qubit populations
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affect the frequency.

The results of such an experiment are shown in Fig. 4.9b, where coherent

Ramsey oscillations at the chosen detuning frequency ω′/2π = 7.5 MHz can

be seen. The line is not a fit to Eq. (4.16) but a numerical simulation of the

Bloch equations taking into account for the finite pulse lengths with a pure

dephasing time Tφ = 1.1 µs. The model is in very good agreement with the

data, showing a maximal deviation of only 2%. A pure dephasing time of

similar magnitude as T1 is typical for transmon samples fabricated at ETH.
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Chapter5
Generalization to 3-levels

Spin 1/2 or equivalent two-level systems are the most common computational

primitive for quantum information processing [Nielsen00]. Using physical sys-

tems with higher dimensional Hilbert spaces instead of qubits has a number

of potential advantages. They simplify quantum gates [Lanyon09], can natu-

rally simulate physical systems with spin greater than 1/2 [Neeley09], improve

security in quantum key distribution [Cerf02, Durt04] and show stronger vi-

olations of local realism when prepared in entangled states [Kaszlikowski00,

Inoue09]. Multilevel systems have been successfully realized in photon orbital

angular momentum states [Mair01, Molina-Terriza04], energy-time entangled

qutrits [Thew04] and polarization states of multiple photons [Vallone07]. Mul-

tiple levels were used before for pump-probe read-out of superconducting phase

qubits [Martinis02, Cooper04, Lucero08], were observed in the nonlinear scal-

ing of the Rabi frequency of DC SQUID’s [Murali04, Claudon04, Dutta08,

Ferrón10] and were explicitly populated and used to emulate the dynamics of

single spins [Neeley09]. In solid state devices, the experimental demonstration

of full quantum state tomography [Thew02] of the generated states, i.e. a full

characterization of the qutrit, is currently actively pursued by a number of

groups.

In circuit QED, the third level has also been used, for instance, in a mea-



5.1 Three level Cavity-Bloch equations

surement of the Autler-Townes doublet in a pump-probe experiment [Baur09,

Sillanpää09]. It has also been crucial in the realization of the first quantum

algorithms in superconducting circuits [DiCarlo09] and is used in a number of

recent quantum optical investigations, e.g. in Ref. [Abdumalikov10].

5.1 Three level Cavity-Bloch equations

To generalize the results of section 4.1 and study the system response to the

excitation of more than two levels we consider the full dispersive Hamilto-

nian (2.33) instead of the two level approximation Eq. (2.24). Similar as in

the two level case, the non-resonant interaction with the transmon in state

|n〉 leads to a dispersive shift Sn = −(χn − χn−1) in the cavity frequency,

different for each level. The expected transmission spectrum for the in-phase

quadrature is sketched in Fig. 5.1a for different transmon states. Neglect-

ing decoherence for now and choosing an appropriate measurement frequency

(∆rm = ωr − ωm = 5.1 MHz for example) gives a different signal αn for each

transmon state, allowing for a measurement of the population in each state.

Similarly to Eq. (4.4), we quantitatively study the dynamics of the coupled

artificial atom-resonator system, taking into account for the system decoher-

ence by performing an ensemble average. Each experiment is repeated many

times to average out the experimental noise and to acquire enough statistics

such that we can define the expectation values of the multilevel system pro-

jectors 〈|i〉〈i|〉 (i = 0, 1, 2). The master equation (4.4) is then expanded to

account for multilevel decoherence:

ρ̇ = − i
~

[H, ρ] + κD[â]ρ+

n−1∑
i=1

γi1D[|i+ 1〉〈i|]ρ+

n−1∑
i=1

γiφD[|i〉〈i|]ρ, (5.1)

where γi1 and γiφ are the energy decay rate and pure dephasing rate of level i,
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respectively. The Hamiltonian in the rotating frame

HRF = ∆rmâ
†â+

n∑
i=1

∆is|i〉〈i|+
n∑
i=0

Si|i〉〈i|â†â+

+

n−1∑
i=0

εi (|i+ 1〉〈i|+ |i〉〈i+ 1|) + εm
(
â+ â†

)
, (5.2)

takes into account two independent drives with amplitudes εi addressing the

0 ↔ 1 and 1 ↔ 2 transition respectively with a detuning of ∆is. The infinite

set of differential equations originating from the combination of Eq. (5.1) and

Eq. (5.2) is factorized similarly to the two level cavity-Bloch equations, leading

to 20 coupled differential equations which can be efficiently solved numerically,

see appendix B.1.

For a first characterization of the read-out of higher levels, the transmon

is prepared in one of its three lowest basis states |i〉 (i = 0, 1, 2). To perform

this experiment we choose a detuning ∆0 = ω0 − ωr = −1.319 ± 0.001 GHz.

We extracted g0/2π = 115± 1 MHz from a measurement of the vacuum Rabi

mode splitting [Wallraff04]. After state preparation, a coherent microwave

tone is applied to the cavity and the state dependent transmission amplitude

is measured, Fig. 5.1b. The amplitude of the tone was adjusted to maintain

the average population of the cavity well below the critical photon number

ncrit = ∆2
0/4g

2
0 = 25 [Blais04]. The time dependent transmission signals

are characteristic for the prepared qubit states and agree well with the ex-

pected transmission calculated based on the extended cavity-Bloch equations.

From the fits in Fig. 5.1b, we have extracted the state dependent cavity fre-

quency shifts S0,1,2/2π = 10.0, 5.9, 3.4±0.1 MHz, which are found to be within

0.1 MHz of the values calculated from independently measured Hamiltonian

parameters. Also, the dispersive frequency shifts Sn measured in this way

agree well with the linear dispersive model over a wide range of transmon

transition frequencies ω0, see Fig. 5.1c.

The frequency shifts can also be obtained by measuring the transmission

amplitude over a wide range of detunings ∆rm when preparing the transmon in

the |2〉 state and observing its decay into the |0〉 state. Three distinct maxima
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Figure 5.1 – a) Calculated in-phase transmission through the resonator for
transmon states n = 0, 1, 2. The dashed curve indicates the bare resonator re-
sponse. The vertical blue arrow indicates the detuning ∆rm of the measurement
tone. b) Pulsed I quadrature measurement responses for prepared states |0〉, |1〉
and |2〉. c) Measured dispersive shifts Sn versus transmon transition frequency
ω01. The solid lines are calculated within the linear dispersive approximation.

in the measured Q quadrature, see Fig. 5.2a, located at the expected frequen-

cies shifted by an amount Sn from ωr are characteristic for the measurement

of the n = 0, 1, 2 states of the transmon. The peaks appear successively in

time, as the transmon sequentially decays from |2〉 to |1〉 to the ground state

|0〉. Sequential decay is expected due to the near harmonicity of the transmon

qubit, for which only nearest-neighbor transitions are important [Koch07].

The Q quadrature calculated from cavity-Bloch equations is in good agree-

ment with the measurement data and yields the energy relaxation times of

the first and second excited state T 1
1 = 800 ± 50 ns and T 2

1 = 700 ± 50 ns as

the only fit parameters, see Fig. 5.2b. The relaxation times are much longer
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Figure 5.2 – a) Measured Q quadrature of the resonator transmission versus
time and measurement detuning for a preparation of the transmon in state |2〉.
b) Calculation based on cavity-Bloch equations.
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5.2 3-level population reconstruction

than the typical time required to prepare the state and allow for a maximum

second excited state population of 97%, limited by population decay during

state preparation [Chow09b]. The absolute difference between data and the-

ory, plotted in Fig. 5.3, is at most 3% at any given point indicating our ability

to populate and measure the second excited state with high fidelity. The small

difference could be ascribed to an imperfect state preparation due to our ma-

nipulation pulses or to an imprecise description of the coupled qutrit-cavity

system. Equation (5.2), is only a first order approximation in λ and the factor-

ization of terms, leading to the cavity-Bloch equations neglects higher-order

corrections [Boissonneault08, Boissonneault09].

5.2 3-level population reconstruction

To realize high-fidelity qutrit control, arbitrary rotations in the three state

Hilbert space with well defined phases and amplitudes are essential. Cali-

bration of frequency, signal power and relative phases has to be performed

based only on the population measurements of the qutrit states. To do so,

we notice that the weak measurement partially projects the quantum state

into one of its eigenstates |0〉, |1〉 or |2〉 in each preparation and measure-

ment sequence [Blais04, Filipp09]. The average over many realizations of this

sequence, which leads to the traces in Fig. 5.1b, can therefore be described

as a weighted sum over the contributions of the different measured states.

This suggests the possibility of simultaneously extracting the populations of

all three levels from a single averaged time-resolved measurement trace. For-

mally, the projective quantum non-demolition measurement gives rise to the

following operator, which is diagonal in the three-level basis and linear in the

population of the different states at all times,

M̂I/Q(t) = s
I/Q
0 (t)|0〉〈0|+ s

I/Q
1 (t)|1〉〈1|+ s

I/Q
2 (t)|2〉〈2|. (5.3)
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Here, s
I/Q
n (t) are the averaged transmitted field amplitudes for the states |n〉

sketched in Fig 5.1a. The transmitted in-phase or quadrature amplitude

〈I/Qρ(t)〉 = Tr
[
ρ̂M̂I/Q(t)

]
= p0s

I/Q
0 (t) + p1s

I/Q
1 (t) + p2s

I/Q
2 (t), (5.4)

can be calculated for an arbitrary input state with density matrix ρ and pop-

ulations pi. Since any measured response is a linear combination of the known

pure |0〉, |1〉 and |2〉 state responses weighted by pi at each time step tj , the

populations can be reconstructed using an ordinary least squares linear re-

gression analysis. In standard notation, Eq. (5.4) reads y = Xβ + ε, where

yj = A(tj) are the measured quadrature amplitudes, Xji = si(tj) the pre-

dicted pure state responses, βi = pi and εj normally distributed noise with

variance σ2. The unknown populations β can be calculated by computing

β =
(
XTX

)−1
XTy = X ′y, (5.5)

which can be performed very efficiently because one has to pseudoinvert X only

once. The stored X ′ can then be reused for further population estimations.

5.3 Optimization of the measurement frequency

The reconstructed populations show larger statistical fluctuations than in the

two-level case due to the pseudo-inversion of the ill-conditioned matrix X

used to calculate the pi. The condition is a property of the matrix X, influ-

enced by the distinguishability between the different theoretically calculated

traces, see Fig. 5.1b, and does not depend on the experimental noise. For an

ill-conditioned matrix, a small error on the measured y, will result in a big

error in the populations β. It is, however, an useful technique because it can

reconstruct all qutrit state populations with a single measurement, enabling

for example a Rabi or Ramsey experiment used to calibrate the tomographic

measurement discussed in Sec. 5.9.

If the matrix XTX is nonsingular and the errors ε are normally distributed,
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5.3 Optimization of the measurement frequency

the variance of the calculated populations βi is well defined:

σ2
i =

εTε

n− 3

(
XTX

)−1

ii
, (5.6)

where n is the number of timesteps tj . σ can be simulated for an arbitrary set

of sample parameters by solving the three level cavity-Bloch equations, shown

in Appendix B.1, and evaluating Eq. (5.6). Keeping all other experimental

parameters constant, the errors can be minimized by optimizing the measure-

ment detuning, see Fig. 5.4. The standard deviation of the reconstructed

population of |0〉 (red trace), |1〉 (blue trace) and |2〉 (green trace), is shown

versus measurement detuning. The parameters are taken form Sec. 5.1 and we

assume a maximal signal of 1 V on resonance on top of a normally distributed

noise background with a standard deviation of 0.01 V. Both quadratures are

used to reconstruct the populations by calculating their weighted sum, with

the weights given by their respective variances. The frequency dependence of

the errors on the different states is nontrivial due to the complex interaction

between the cavity field and the transmon decay which affects the distinguisha-

bility of the state responses. There is no global minimum, so one has to adapt

the measurement detuning to the specific task. If one is interested only in

the ground state population, the best detuning is S0, while if one wants to

minimize the errors for all populations one should choose 5.1 MHz, as shown

in Fig. 5.1. These optimized measurement detunings are not globally valid

and will change for different dispersive shifts Si, cavity decoherence rates κ

and qutrit decoherence rates γi1.

For arbitrary system parameters it is not always clear which measurement

frequency generates the set of data minimizing the statistical uncertainty of

a desired qutrit population. Performing the analysis described in this section

before the effective data is measured allows therefore for an optimal parameter

choice, minimizing the experimental averaging time.
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Figure 5.4 – Standard deviation of the reconstructed populations versus mea-
surement detuning for the |0〉 (blue trace), |1〉 (red trace) and |2〉 (green trace)
populations, simulated using the same parameters found in Sec. 5.1.

5.4 Rabi oscillations on the 2nd excited state

To demonstrate our ability to generate and read-out coherent populations of

the |2〉 level we perform a simple time resolved Rabi oscillation experiment.

This experiment is also routinely used to find the correct pulse amplitudes

which generate π and π/2 rotations driving the transition between the first and

second excited state. The implemented pulse scheme is depicted in Fig. 5.5a,

where in contrast to Fig. 4.7 the transitions are driven by adjusting the pulse

amplitudes instead of the pulse lengths. This is preferable at short pulse

lengths of the order of 10 ns, because the employed commercial pulse generator

(Tektronix AWG5014) has very good resolution in the amplitude (effectively

11 Bit) and not in the timing (1 ns timesteps).

The reconstructed populations of all qutrit levels, using both measured

quadrature amplitudes are shown in Fig. 5.5b. The evolution of the |2〉 pop-

ulation fits well to Eq. (4.14), from which the amplitude for a π pulse can be

extracted, since the periodicity of the signal is not altered by small errors in the

population reconstruction. There are, however, several imperfections such as a
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Figure 5.5 – a) Pulse scheme to perform Rabi oscillations between the |1〉 and
|2〉 states. The qutrit is first prepared in the |1〉 state with a π pulse on the
0 ↔ 1 transition followed by a pulse on the 1 ↔ 2 transition with variable
amplitude ε. b) Qutrit populations reconstructed with Eq. (5.5). The lines are
fits to Eq. (4.14).

constant small (3%) population of the |0〉 level, and a reduced visibility of the

Rabi oscillations, apparent in the offset in the initial population of the |1〉 (8%)

and |2〉 (10%) states. There are two possible contributions to these imperfec-

tions: imperfect pulses generating imperfect final states or errors in the state

read-out. The generation of improved pulses is described in Sec. 5.6, while

errors in the state read-out could arise from small deviations from the linear

dispersive Hamiltonian (4.6) or from slightly wrong parameters used to gener-

ate the X matrix from the cavity-Bloch equations. These errors are enhanced

by the same mechanism described in section 5.3 but are of systematic rather

then statistic nature. To reduce the read-out errors, quantum state tomogra-

phy [Thew02] can be implemented at the expense of more measurements and

under the stringent requirement of accurate qutrit state manipulation, making

the implementation of optimally controlled pulses unavoidable.
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5.5 Measurement of the Rabi rates

Performing Rabi oscillations allows for a direct measurement of the coupling

strengths gi because the rate of the oscillation between the ground and ex-

cited state is proportional to the qubit dipole moment which in turn implies

the coupling coefficients gi. A direct measurement of gi was done before on

resonance [Fink08, Fink09], where ωr ≈ ω0. It is, however, interesting to

check the model also in the dispersive regime, where the transmon couples to

an external drive field via the Hamiltonian [Blais04, Koch07]

Hdrive = ~Ωi (|i〉〈i+ 1|+ |i+ 1〉〈i|) , (5.7)

where the Rabi rate Ωi = diE/~ is proportional to the electric field E gen-

erated by the drive tone and the transmon dipole moment di = ~gi/Erms.
The transmon is driven over a charge line, coupling directly to the qutrit, as

sketched in Fig. 3.1, so that the microwave tone is not filtered by the cavity.

When driven on resonance with the qubit, ωs = ωi+Li, Rabi oscillations with

frequency Ωi are induced. A measurement of Ωi at fixed drive amplitude E,

allows therefore to determine gi. According to equations (2.31) and (2.32),

the matrix element part of the coupling strength ratio is expected to scale as

gn/gn−1 ≈
√
n+ 1 due to the almost harmonic oscillator wavefunction of the

transmon qubit.

The measured Rabi frequencies for the first two transitions are observed

to decrease for decreasing driving frequency ωi, see Fig. 5.6. The observed

behavior can be explained by the frequency dependent loss of the cables, which

effectively changes the drive amplitude at the qutrit location as a function of

frequency, as discussed in Sec. 3.1. The dashed lines in Fig. 5.6 depict the

expected room temperature frequency dependent attenuation of the coaxial

cables listed in Tab. 3.1 and are found to be in good agreement with the

measured Rabi rate scaling.

To eliminate the uncertain attenuation in the cryostat, the measured Rabi

frequencies on the different transitions taken at the same frequency are com-

pared by taking Ω1/Ω0, as shown in the black crosses of Fig. 5.6, which gives

1.43± 0.04 on average, as expected.
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5.6 Pulse optimization

For a system with more than two levels and limited anharmonicity, the sim-

ple square pulses used in the previous sections do not provide a single qubit

gate with high fidelity. If short square or Gauss pulses are used on the

0 ↔ 1 transition, the second excited state is significantly populated. The

mere presence of the second level also introduces an AC-Stark shift which

results in phase errors on the first excited state. It is therefore unfeasible

to prepare 3-level states with high fidelity relying on short square pulses.

To avoid these problems we use optimal control techniques (see for exam-

ple [Steffen03, Jirari05, Rebentrost09, Safaei09] for earlier results in super-

conducting circuits) to shape our pulses, implementing the Derivative Re-

moval by Adiabatic Gate (DRAG) method proposed in [Motzoi09] and realized

in [Chow09a]. There, the interaction of the driving Hamiltonian (4.3) with the
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first three transmon levels is considered in the rotating frame

Hdrive =


0

εx(t) + iεy(t)

2
0

εx(t)− iεy(t)

2
−φ̇(t)

√
2
εx(t) + iεy(t)

2

0
√

2
εx(t)− iεy(t)

2
∆01 − 2φ̇(t),

 (5.8)

where εx and εy are the amplitudes of the two quadratures of the drive ε(t) =

εx(t) cos(ωst + φ(t)) + εy(t) sin(ωst + φ(t)) with time dependent phase φ(t).

∆01 = ω0 − ω1 is the anharmonicity. This expression is different from the one

derived in [Motzoi09], because it is technically easier to add an extra phase φ to

the control pulses than to vary the qubit frequency accurately on this timescale.

Changing the phase of the driving pulse equates to changing its frequency

which is formally equivalent to a time dependent qubit transition frequency.

One can use the free parameter εy(t), i. e. the second quadrature, and the

phase φ(t) to eliminate the phase error and the leakage to the third level. The

conditions found by transforming the Hamiltonian (5.8) adiabatically to the

two dimensional qubit subspace are

εy(t) = − ε̇x(t)

∆01
and φ(t) =

∫ t

0

3ε2x(s)

4∆01
ds. (5.9)

The leakage is eliminated to order ε4x/∆
3
01 at each time and the proposed

pulses do not require any sharp features if the intended pulse for the qubit

state manipulation εx is a smooth function of time, such as a Gaussian, as

shown in Fig. 5.7.

To experimentally test the feasibility of this method we choose a set of

pulse sequences which are particularly prone to phase errors and vary the

amplitude of the compensation quadrature εy. We implement Gauss pulses on

εx of standard deviation 3 ns and total length 12 ns and vary the amplitude

to implement π and π/2 rotations around the x-axis in the Bloch sphere. In

Fig. 5.8a, the measured excited state population is plotted versus a linear

scaling factor on εy for a π/2 rotation on the x-axis followed by a π rotation

on the y-axis (blue dots). An εy scale of 1 results in the pulse shown in Fig. 5.7,
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additional phase is shown in green, while the scaling parameters used for the
pulse optimization are depicted as εy and φ. The Gaussian envelope has a
standard deviation σ = 4 ns and the qubit has an anharmonicity ∆01/2π =
−300 MHz.

defined by Eq. (5.9), while εy scale=0 implies Q = 0. As control experiments

the second pulse is applied about the same axis as the first (red dots) and about

the minus y-axis (black dots). For perfect pulses, all three sequences should

result in the same population of 1/2 (neglecting decoherence during the pulses)

while any error in the phase of the first pulse is transformed into a population

error by the successive rotation on the other axis. This behavior is observed in

the data, where phase errors are revealed by changes in the populations with

opposite signs for rotations on the y- and minus y-axes, while the population

remains unchanged in the control experiment for subsequent rotations on the

x-axis. The experimental data confirms the validity of the approach finding

the correct population of 0.5 for an εy scaling factor of 1, demonstrating the

benefit of DRAG pulses versus a bare Gaussian which is implemented for a

scaling factor of 0, where the error is as big as 20% in population after only

two pulses.

The same experiment is performed by scaling linearly the phase compensa-

tion φ calculated in Eq. (5.9), and depicted in Fig. 5.7 using the correct quadra-
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Figure 5.8 – Calibration of the DRAG pulses. a) Population versus scaling
factor of the derivative component εy. b) Population versus scaling factor of
the phase compensation factor φ. c) Benchmarking of the DRAG pulses with a
set of standard qubit manipulations.

ture compensation εy. The measured data is plotted in Fig. 5.8b, showing the

same features discussed for Fig. 5.8a. The same considerations discussed above

apply here, demonstrating the necessity of the phase compensation to get high

pulse fidelities.

To further demonstrate the quality of the implemented pulses we measure

a set of 25 different pulse sequences, chosen to perform rotations about all

possible combinations of rotations about two different axis which would make

any phase error measurable as a population error, as shown in Fig 5.8c. The
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Figure 5.9 – Calibration of the DRAG pulses on the 1↔ 2 transition. a) Pop-
ulation p2 versus scaling factor of the derivative component εy. b) Population
p2 versus scaling factor of the phase compensation factor φ. c) Benchmark-
ing of the DRAG pulses with a set of standard qutrit manipulations after the
generation of the pure |1〉 state.

measured data does not show any systematic deviation from the expected

populations for different pulse sequences, demonstrating the quality of the

implemented pulses. To quantitatively asses remaining gate errors one could

implement randomized gate benchmarking [Chow09b]. The small deviations of

the single π pulse sequences from unity population are probably due to errors

in the population reconstruction routine and are not further investigated in

this section which focuses on the accurate control of the pulse phases.

We extend this technique to three levels using quadrature compensation
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and time-dependent phase ramps to suppress population leakage to other states

and to obtain well defined phases. In theory, the same pulses as the ones

described above should enable high fidelity transitions between higher lev-

els [Motzoi]. To benchmark them, we first excite the qutrit to the |1〉 state

with a DRAG π-pulse and then apply the pulse sequence described in the

previous paragraph but on the transition between |1〉 and |2〉, using the same

compensation factors derived in Eq. (5.9). Fig 5.9a and b show the same fea-

tures as before, demonstrating our ability to perform rotations between the

|1〉 and |2〉 states with high fidelity by avoiding phase errors. The population

resulting from uncorrected pulses (with errors of order of 10% in population),

shown in Fig. 5.9 with εy = 0 or with Φ = 0, clearly demonstrate how neces-

sary the DRAG pulses are to ensure the correct gate operations. The fidelity

of the pulses will be quantified in Sec. 5.9, where the states are analyzed using

full quantum state tomography, but it is already clear from Fig. 5.9 that any

remaining errors should be smaller then a few %.

5.7 T1-time of the 2nd excited state

In Sec. 4.6, the energy decoherence rate of the first excited state is assessed,

finding an intrinsically limited quality factor in the far detuned regime. Having

demonstrated the ability of reading out the population of the second excited

state, see Sec. 5.2, the question arises what the coherence time is for the second

excited state and how it scales with detuning.

The decoherence rate γ12
1 fitted to the data shown for example in Fig. 5.2

to the extended cavity-Bloch equations shown in Appendix B.1 for the second

excited state contains a larger contribution from photon induced relaxation

than the first level because of the larger coupling coefficient [Boissonneault08,

Boissonneault09, Boissonneault10]. A measurement of T 12
1 using the delayed

measurement procedure presented in Sec. 4.6 is used to investigate the energy

relaxation rate of the second excited state in absence of measurement photons.

Furthermore, a direct decay to the ground level T 02
1 is suppressed [Koch07] and

therefore not taken into account for in the three level cavity-Bloch equations.

This must be verified experimentally.
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5.7 T1-time of the 2nd excited state

The measurement, taken under the same conditions as described in Sec. 5.1,

using the same sample, is shown in Fig. 5.10. The data is fitted to the rate

equations

p′2(t) = −γ12
1 p2(t)− γ02

1 p2(t),

p′1(t) = −γ01
1 p1(t) + γ12

1 p2(t),

p′0(t) = γ02
1 p2(t) + γ01

1 p1(t), (5.10)

finding T 12
1 = 1.08± 0.05 µs as only free parameter since T 01

1 = 1.13± 0.05 µs

is measured independently in a previous experiment, using the methods pre-

sented in Sec. 4.6, and T 02
1 is assumed to be infinite. Considering also direct

decay from state |2〉 to |0〉, with coherence time T 02
1 , the fit is slightly better

(see dashed lines in Fig. 5.10, where the residues are smaller) and results in

T 12
1 = 1.31 ± 0.05 µs and T 02

1 = 11 ± 2 µs. The accuracy of these coherence

times is, however, low. This is apparent in the predicted difference of the

population between the two models which is smaller than 5%. The rate γ02
1 is

therefore sensitive on population differences in the percent range which could

be ascribed to population reconstruction errors, which in turn, if taken into ac-

count in a new fit, would imply a different T 02
1 . Thus, the found value for T 02

1

should be considered as a lower bound, confirming the theoretical predictions.

A first comparison between the energy relaxation time of the first and

second exited states, extracted from a fit to the cavity-Bloch equations over

a range of frequencies below the resonator frequency ωr results in a ratio of

energy relaxation times of T 12
1 /T 01

1 = 0.7± 0.1. There are, however, big fluc-

tuations and the influence of the chosen constant measurement power over

different detunings which imply different critical photon numbers ncrit and in

turn different photon dependent decoherence rates has not been taken into

account. This preliminary result, which has to be confirmed, is in agreement

with the simple model of a noisy reservoir having a white spectrum (for exam-

ple fluctuating two-level systems (TLS) with electric-dipole moments in the

substrate [Constantin09]) coupling via gi to each transition, predicting a scal-

ing of the coherence times with approximately 1/
√

2. In a different model,
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Figure 5.10 – Decay of the prepared pure |2〉 state. The |2〉 state is generated
with two subsequent π-pulses on the ω0 and ω1 transitions and the measurement
is delayed by a variable amount of time. The continuous solid lines result from a
simple rate equation fit and the dashed line has T 02

1 as additional free parameter.
The relevant energy levels and decay rates are sketched on the right.

considering the transmon as nearly harmonic, the coherence time of the sec-

ond excited state would be half the value of the first excited state, as found in

phase qubits [Neeley09].

5.8 Phase coherence of the 2nd excited state

To asses the precise value of ω1 and T 12
2 , we perform a Ramsey experiment

between the |1〉 and the |2〉 level, see Fig. 5.5. We apply a π-pulse at ω0,

to prepare the first excited state and then vary the delay time between two

successive π/2 pulses applied at ω1−7.5 MHz and finally perform a pulsed qubit

state read-out. Similarly to the simple two-level case, discussed in Sec. 4.7,

the coherent oscillations allow to determine the transition frequency with an

accuracy exceeding 100 kHz (which is a typical fluctuation rate of the qubit

transition). To avoid any phase error, the DRAG pulses, presented in Sec. 5.6,

must be driven on resonance.

The observed oscillatory decay in the qubit population with delay time
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Figure 5.11 – Ramsey experiment between the |1〉 and |2〉 state. Initially, the
state |1〉 is prepared and then the pulse scheme sketched in Fig. 4.9a is applied.
The shown qutrit populations are reconstructed with Eq. (5.5) and the solid lines
are a fit to three level Bloch equations with dephasing time T 2

2 = 500± 50 ns.

∆t of the Ramsey experiment can be simulated with a Bloch equation from

which the phase coherence of the second excited state is inferred. The energy

decay rates found in Sec. 5.7 and the dephasing of the |1〉 state are kept fixed

while T 12
φ = 650± 50 ns is extracted from the fit. Due to the decay of the |1〉

state, the |2〉 state population does not converge to 0.5 for long pulse delays

and the ground state population monotonically grows to 1 because the last

π/2-pulse, resonant on the 1↔ 2 transition, has no effect on a pure |0〉 state.

The good agreement with the theoretical prediction demonstrates the high

phase coherence of the |2〉 level. The small systematic deviations observed in

the data are due to the imperfect state read-out rather then imperfect state

preparation. This can be seen confronting the data presented in Fig. 5.11 with

the data shown in Fig. 5.13, taken in identical conditions but read-out using

a tomographic method, described in the following section.
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5.9 3-level tomography

Using a measurement of the population alone does not provide any information

on the phases of a given state. Using quantum state tomography [Thew02],

the full density matrix of the first three levels of a transmon can be recon-

structed. This is achieved by performing a complete set of nine independent

measurements after preparation of a given state and calculating the density

matrix based on the measurement outcomes. Since the measurement basis is

fixed by the Hamiltonian (2.30), the state is rotated by applying the following

pulses prior to measurement

I,
(π

2

)01

x
,
(π

2

)01

y
, (π)

01
x ,

(π
2

)12

x
,
(π

2

)12

y
,

(π)
01
x

(π
2

)12

x
, (π)

01
x

(π
2

)12

y
, (π)

01
x (π)

12
x , (5.11)

where I denotes the identity and (θ)
ij
a denotes a pulse resulting in a state

rotation of angle θ on the ij-transition about the a-axis. For each of these uni-

tary rotations (Uk) we measure the two coefficients 〈I/Qk〉 ≡ Tr[ρUkM̂I/QU
†
k ]

by integrating the transmitted in-phase (I) or quadrature (Q) component in

Eq. (5.3) over the measurement time, i.e. implementing the measurement op-

erator M̂I/Q =
∫ T

0
M̂I/Q(t) dt. This relation is inverted to reconstruct the

density matrix ρ by inserting the known operators UkM̂I/QU
†
k . Note, that un-

like in the preceding measurement of the populations only, we now extract a

single quantity, 〈I/Qk〉, for each measured time trace. Quantum state tomog-

raphy based on the simultaneous extraction of the populations of |0〉, |1〉 and

|2〉 could potentially reduce the number of required measurements, but might

come at the expense of larger statistical errors, as discussed in the previous

sections. The set of tomographic measurements chosen by the rotations stated

in Eq. (5.11) is complete if the matrix A, defined as 〈I/Qk〉 =
∑8
l=0Aklrl,

where rl are the coefficients of the density matrix ρ is nonsingular.

Examples of measured density matrices are shown in Fig. 5.12 for a set

of four significant states. Since the tomography routine does not in gen-

eral return a physical hermitian, positive definite density matrix with trace
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Figure 5.12 – Measured Real and imaginary part of the reconstructed den-
sity matrices of |Ψa〉 = 1/

√
2 (|0〉+ i|1〉), |Ψb〉 = 1/

√
2 (|1〉 − |2〉), |Ψc〉 =

1/
√

2 (|0〉 − |2〉) and |Ψd〉 = 1/
√

3 (|0〉+ i|1〉 − |2〉). The cyan cylinders indi-
cate the standard deviations, typically 0.02.

one, a maximum likelihood estimation procedure has been implemented fol-

lowing [James01]. This method numerically finds the density matrix that is

most likely to produce the measured data assuming Gaussian noise, see Ap-

pendix B.2. The cyan cylinders indicate the standard deviation in the den-

sity matrix entries and are obtained by propagating the measured statistical

standard deviations in the measurement outcomes M̂I/Q to the reconstructed

density matrix entries.

The extracted fidelities F ≡ 〈ψ|ρ|ψ〉 of 95±2%, 97±2%, 97±2% and 92±2%

respectively, demonstrate the high level of control and the good understanding

of the read-out of our three level system. Considering the measured decay

rates, the best achievable fidelity for the states |Ψ〉 is 97±1%. Preparing a set

of the 12 different states (comprising the basis states |i〉 and the superposition

states (|i〉+ |j〉)/
√

2, (|i〉+ ı|j〉)/
√

2, (|0〉+ |1〉+ |2〉)/
√

3, (|0〉+ |1〉+ ı|2〉)/
√

3

and (|0〉+ ı|1〉+ ı|2〉)/
√

3, where i, j = 0, 1, 2) we measure an average fidelity of

95%, with a minimum of 92± 2% for the pure |2〉 state. The small remaining

imperfections are likely due to phase errors in the DRAG pulses which affect

both state preparation and tomography or could be due to a slightly different
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Figure 5.13 – Ramsey experiment between the |1〉 and |2〉 state. a) Diagonal
entries of the density matrix. b) Real and imaginary part of the off diagonal
entries of the density matrix.

measurement operator from the used M̂I/Q.

The described tomographic reconstruction procedure can be used to asses

any operation on the qutrit. As an example a Ramsey experiment is performed

as in Sec. 5.8, driving both transitions on the y-axis. In contrast to the mea-

surements demonstrated in Sec. 5.8, the state tomography procedure has been

applied to emphasize any unwanted phase accumulated during the procedure

and rule out systematic errors from the three level population reconstruction

method. In this experiment the ω1 transition is driven 5 MHz below the res-

onance and the energy decoherence times T 01
1 = 840 ns and T 12

1 = 860 ns

have been extracted from a separate experiment similar the ones described in

Sec. 4.6 and 5.7. The measured data, shown in Fig. 5.13, displays the same

features discussed in Sec. 5.8 and is again fitted to three level Bloch equa-

tions finding T 12
φ = 1800 ± 50 ns. The data shown in Fig. 5.13b displays the

evolution of the off diagonal entries of the density matrix during the Ramsey

experiment. The data is in good agreement with the model, where the only

non-zero matrix element pij = 〈Ψ|i〉〈j|Ψ〉 is p12, depicted in green (real part)

and magenta (imaginary part). The Ramsey sequence should not generate

any phase component in the subspace of the 〈0|, 〈1| and 〈0|, 〈2| states and

decoherence does not generate any additional phase coherence, so the lack

of any significant population in the matrix elements p01 and p02 is a further

confirmation of the quality of the phase compensation implemented with the
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DRAG pulses.

5.10 Outlook

Populating and reading out higher excited transmon states is feasible with

the methods described above. The suppressed charge dispersion of transmons,

which allows for long coherence times is, however, exponentially enhanced for

higher levels, see Eq. (2.29). For example, the sample used to perform the

experiments described above, has a charge dispersion of the ω0 transition of

10 kHz, a manageable charge dispersion of the ω1 transition of 275 kHz, a

problematic charge dispersion of the ω2 transition of 5 MHz and a massive

charge dispersion of the ω3 transition of 60 MHz. 1/f noise would make the

accurate addressing of the fourth level impossible and its coherence would be

too short to be of any use in future quantum computation efforts.

On the other way, extending the three level read-out procedure to more

qubits, in the spirit of [Filipp09], to demonstrate entanglement in a higher

dimensional Hilbert space should be manageable without too much effort. It

could be utilized, for example, to benchmark the gates proposed and realized

in [Lanyon09]. Full quantum state tomography for larger systems is, however,

impractical because of the exponential growth of the necessary measurements.

To reconstruct a single two qubit density matrix up to three levels per qubit

would imply 80 measurements which are still practical but a four qubit density

matrix with three levels has already 6560 degrees of freedom.

The presented read-out methods, based on the linear dispersive approxi-

mation are limited to small photon numbers in the resonator, implying a low

signal to noise ratio in single shot realizations using commercial HEMT ampli-

fiers instead of quantum limited ones. A generalization to higher measurement

powers could open the way to high fidelity single shot read-out schemes and

are reviewed in Chapter 6.
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Chapter6
Nonlinear Cavity Response

The measurement procedure described in Chapter 4, based on the dispersive

qubit read-out cannot reach high single shot read-out fidelities for common sys-

tem parameters. Recent work exploiting bifurcation in a nonlinear oscillator to

amplify quantum signals [Vijay09] and the single shot read-out of a transmon

qubit [Mallet09], however, demonstrated the feasibility of high fidelity mea-

surements. The key element of these read-out schemes is the bistable dynamics

of a nonlinear element, where the system evolves to different macroscopic states

for different initial qubit states.

The goal of this chapter is to exploit the qubit induced nonlinear cavity re-

sponse as an embedded read-out device, as recently demonstrated in [Reed10a]

and modeled in [Boissonneault10, Bishop10]. The cavity is strongly driven,

enabling for a single shot qubit read-out with 84% fidelity. To achieve this

goal, we study the nonlinear response beyond the resonant limit investigated

in [Bishop09a]. The measured cavity responses near the critical photon number

ncrit = |∆ar|/4g2 are fitted to a Duffing model, and the inferred nonlinearity

is compared to an extended dispersive Hamiltonian. Finally, the single shot

fidelity of high power read-out is assessed.



6.1 High power cavity response

6.1 High power cavity response

The simplest extension to the harmonic oscillator is to consider a fourth order

contribution in the potential. This leads to a cubic term in the equations of

motion for the dimensionless field amplitude a [Duffing18, Landau76]

ä+ ω2
0a = −2µȧ− αa3 + k cos(Ωt), (6.1)

where ω0 is the resonance frequency of the harmonic oscillator, µ the dissi-

pation rate, α the strength of the cubic nonlinearity, k the drive amplitude

and Ω the drive frequency. This equation has been extensively studied in the

framework of nonlinear dynamics and chaos and is named after G. Duffing,

see [Holmes76] for a review. A simple stationary solution, in the limit of small

excitations is a ≈ u cos(Ωt− γ), has a constant amplitude u and phase γ. For

a given drive frequency Ω, there is no unique correspondence between driving

amplitude k and oscillation amplitude u. It is, however, possible to calculate

analytically the inverted relation, finding the oscillation frequency response to

a given oscillation amplitude

Ω− ω0 =
3

8

α

ω0
u2 ±

√
k2

4ω2
0u

2
− µ2, (6.2)

and the corresponding oscillation phase

γ = arctan

[
∓ 1

µ

√
k2

4ω2
0u

2
− µ2

]
, (6.3)

which has a solution for k2/(4ω2
0u

2) > µ2. A set of solutions in the bifur-

cating regime is plotted in Fig. 6.1a for the amplitude and b for the phase.

The solutions can be partitioned in three branches: the lower stable branch

colored in red, the higher stable branch in blue and the unstable branch with

an intermediate amplitude in black. An intuitive way to realize the two dis-

tinguishable solutions is to drive the system with a constant amplitude and

then change the frequency adiabatically, avoiding any sudden jumps. So if one

starts with a blue detuning, the state with bigger amplitude will be realized
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Figure 6.1 – a) Amplitude and b) phase of a Duffing oscillator. The high
(blue) and low (red) amplitude solutions to Eq. (6.1) are stable. Which branch
is realized depends on the drive history and is depicted by the arrows.

as sketched by the blue arrow and the opposite will happen for red detuning.

The same idea applies for a fixed measurement detuning and a qubit dependent

resonance frequency which would be detected by a different oscillation phase

and amplitude for a different initial qubit condition which would be detectable

even when the qubit is decayed [Vijay09].

To experimentally asses the realizability of such a read-out procedure, we

measure the resonator response in the dispersive regime with different drive

powers and extract all relevant parameters. Selected traces, at fixed measure-

ment powers are shown in Fig. 6.2a, while the full dataset is plotted in panel

b). The response is nearly harmonic at low driving powers and starts to show

the characteristic Duffing shape around a driving power populating the cav-

ity with ncrit. The amplitude, frequency and quality factor of the resonator

are extracted from a Lorentzian fit at low powers (below the first red arrow).

In a second step, the entire dataset, taken at different powers was fitted to

Eq. (6.2) with α = −0.1 10−3 GHz2/ Photon as the only free parameter. One

can clearly observe the crossover from the harmonic response to the nonlin-

ear case, in good agreement with the theoretical predictions. The measured

response far in the nonlinear regime shows saturation and the appearance of

multiple peaks, see Fig. 6.2b. For this reason data measured more than 3 dB

above the power showing the first bistable response, marked with the upper

red arrow, is not taken into account for the fit. In this region, further non-

linear terms must be taken into account to provide an accurate model. In
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Figure 6.2 – a) Measured power transmitted through the cavity versus excita-
tion frequency, taken at different driving powers (about 2, 5, 13 and 32 photons
on average in the cavity, indicated by yellow arrows in b for a qubit detunings
∆/2π = 906 MHz on sample 4 (see table 6.1). The black traces depict the
linear Lorentzian response, while the blue curves result from a fit to the Duffing
equation (6.2). The full dataset is shown in panel b, where -26 dBm correspond
to 1 photon on average in the cavity on resonance (orange line) and ncrit is
indicated by a green line. The red lines depict the region taken into account to
perform the global fit.

the strong driving limit, above ncrit, a non-perturbative approach, described

in [Boissonneault10] is more suited to describe the observed behavior. The

data measured in the intermediate regime is, however, in good agreement with

the simple Duffing model and returns useful information about the nonlinearity

of the underlying system. Similar investigations, in the contest of parametric

amplification where performed before [Castellanos08, Bergeal10]. In the next

section a theoretical framework is developed to analyze the system behavior

for arbitrary parameters.

6.2 Nonlinearity versus detuning

The simple classical picture considered in Sec. 6.1 cannot account for the source

of the nonlinearity which is fundamentally quantum mechanical and arises from

the transmon anharmonic level structure. The quantum anharmonic oscillator

driven with a coherent field has a rich history, and has been analyzed among

others by [Bhaumik75, Rozanov81, Krivoshlykov82, Bose87] and more recently
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by [Dykman05, Marthaler06, Dykman07, Serban07, Serban10]. So one has to

reconciliate the classical description, used to extract the nonlinearity, with the

system Hamiltonian derived in section 2.4, which quantitatively predicts the

nonlinearity.

To compare the measured α, fitted to Eq. (6.1) with the expected self Kerr

coefficients Ki of Eq. (2.33), one can start from the standard Hamiltonian of

a driven anharmonic oscillator

H =
1

2m
p̂2 +

mω2
0

2
x̂2 +

1

4
γx̂4 − x̂A cos Ωt, (6.4)

where γ is the nonlinarity constant. As a first step, we replace the generalized

moment p̂ with the charge operator q̂, the position x̂ with the flux operator

φ̂ and the mass with the capacitance C to switch to an electromagnetic pic-

ture and using Ω = 1/
√
LC and Z0 =

√
L/C. The new Hamiltonian can be

expressed in terms of rising and lowering operators of the oscillator, by replac-

ing φ̂ =
√
~Z0/2(â† + â), and q̂ = −i

√
~/2Z0(â† − â). Transforming to the

rotating frame with U(t) = exp
[
iΩâ†ât

]
, yields the Hamiltonian

HU = −~(Ω− ω0)n̂+
1

2
~V n̂(n̂+ 1)− ~f(â+ â†), (6.5)

where V = (3~γ)/(4ω2
0). This Hamiltonian has the same form as Eq. (2.33)

and can be used to express γ in terms of Ki, finding V/2 =
∑
iKi|i〉〈i|. To

write α in terms of γ, we calculate the equations of motion from Eq. (6.4),

using q̇ = −(∂/∂φ)H and φ̇ = (∂/∂q)H and find

ä+ ω2
0a = −2Z2~ω0γa

3 +
Aω0

√
Z√

2~
cos(Ωt). (6.6)

From this we find α = 2~Z2ω0γ and by comparison with Eq. (6.1) in the same

units we finally obtain

α =
4

3
ω0

M−1∑
i=0

Ki|i〉〈i|. (6.7)

Eq. (6.6) is written in units of number of photons (a?a = n), while the ampli-

tudes of Eq. (6.1) are expressed in Volts. It is therefore necessary to know the
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6.2 Nonlinearity versus detuning

ωr/2π [GHz] κ/2π [MHz] g0/2π [MHz] Ec/2π [MHz]

Sample 1×
6.425 1.57 133 232

Sample 2◦
6.439 3.98 54 475

Sample 3�
7.019 4.05 119 314

Sample 4�
6.936 3.45 111 285

Table 6.1 – Characteristic frequencies of 4 different samples used to asses the
transmon induced nonlinear cavity response.

average photon number n inside the cavity at a given driving power to calcu-

late the nonlinearity. We determined n from two independent measurements:

an AC-Stark calibration and an estimate of the applied microwave power at

the input of the resonator, which are in good agreement.

Figure 6.3 shows the fitted nonlinearity α on a logarithmic scale in depen-

dence of the qubit transition frequency ω0 for four different samples whose

parameters are summarized in table 6.1.

For n� ncrit, the linear dispersive approximation holds and no nonlinear

behavior can be observed. Increasing n deteriorates the dispersive approxi-

mation of Eq. (2.23) and more terms have to be taken into account while for

n ≈ ncrit the approximation starts to break down completely and excited levels

are significantly populated by the photons in the resonator [Boissonneault08,

Boissonneault09]. In the intermediate regime, used to fit the nonlinearity, K1

dominates over the other nonlinear terms and is therefore used to reproduce

the data.

The fitted nonlinearity versus qubit detuning, displayed in Fig. 6.3, shows a

monotonically falling nonlinearity over almost three orders of magnitude with

increasing detuning. In this logarithmic plot, the sign of the nonlinearity is

lost, but all Duffing resonators bend to lower frequencies, indicating a negative

nonlinearity induced by qubits operated below the cavity resonance. If the

qubit is operated above the resonator, however, the sign of the nonlinearity

changes and the simple monotonic behavior is lost, since the higher excited

states cross the resonance.
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Figure 6.3 – Nonlinearity versus detuning for four different samples (see
Tab. 6.1, qubit 1 - magenta crosses, qubit 2 - red dots, qubit 3 - blue dia-
monds, qubit 4 - cyan squares). The vertical lines indicate the frequency of the
respective resonator while the traces show the expected α, calculated evaluating
the single self Kerr coefficient K1.

To calculate the corresponding self-Kerr coefficients Ki, used to predict the

nonlinearities to lowest order, gi is approximated by gi '
√
i+ 1g0 and ωi '

ω0−iEc/~. The model contains only a single adjustable parameter, namely the

uncertainty of ∼ 3 dB about the driving power leading to n = 1, corresponding

to a small vertical offset in the logarithmic plot. Although it considers a

single component of the self Kerr shifts K1, the agreement between data and

theory, shown in Fig. 6.3 is remarkable. To explain the remaining differences,

more self-Kerr coefficients Ki must be taken into account, scaled with the

respective transmon states populations induced by the photons present in the

resonator. For small detunings this model breaks down and one has to solve

the full master equation of the Rabi vacuum mode splitted regime and the
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6.3 High power qubit read-out

responses must be analyzed using the same methods used in [Bishop09a]. At

large detunings the nonlinearity is too small to be observed and at very high

powers the perturbative model breaks down and one has to address the problem

analytically [Boissonneault10].

The impossibility to drive the Duffing resonator hard enough to reach

the bistable region before tipping over into an other regime makes the di-

rect implementation of the ideas discussed in [Vijay09], where the different

quantum states are distinguished via different macroscopic oscillation ampli-

tudes/phases impractical. Driving the resonator at even higher powers, in the

region where the response behaves classically allows, however, for a read-out

with improved signal to noise ratio and therefore high single shot fidelity at

the expense of the QND nature of the read-out.

6.3 High power qubit read-out

Measuring the resonator response at even higher powers manifests a new prop-

erty of the system. If the cavity is driven in a regime corresponding to around

1’000 photons, the low power peak disappears and a new bright Lorentzian

line arises at the bare cavity resonance frequency, see Fig. 6.4, with data

taken in July 2009. The emergence of the new peak can be explained in-

tuitively with a quantum to classical transition, driven by a strong coherent

tone, in the spirit of [Fink10] or modeled quantitatively, as recently performed

in [Boissonneault10]. Similar results as the ones described in this and in the

next section have been demonstrated recently in [Reed10a].

From the measured, dispersively shifted (see Eq. (2.23)) low power reso-

nance frequency ωm/2π = 7.036 GHz, fitted to Fig. 6.4, one can extract the

bare cavity frequency by subtracting S0, as demonstrated in Fig. 5.1c, de-

scribed by Eq. (2.34). The transmon from sample 3 of Tab. 6.1 is operated at

ω0/2π = 6.320 GHz, which implies S0 = 19 MHz and ωr/2π = 7.017 GHz. So

it is legitimate to interpret the measured high power resonance at ωm/2π =

7.018 GHz, which also has the same linewidth, as the bare cavity response.

This regime can be called ”classical”, because in contrast to the low power limit

which has to be described by the Jaynes-Cummings Hamiltonian, it is driven
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Figure 6.4 – a) Steady state cavity response for different measurement powers
on a logarithmic scala, measured on sample 3 (Tab. 6.1). The selected drive
powers correspond to 0.4 (red), 6 (magenta) 200 (blue) and 1’600 (cyan) photons
on average in a strictly linear cavity and are indicated with colored arrows in
panel b. b) Transmitted amplitude versus power and frequency. The resonator
behaves linearly at low powers, goes over to the bistable intermediate Duffing
regime and shows a different shifted resonance at very high drive amplitudes.
The red dots indicate the power and frequency of the measurement tone used
for the qubit read-out data shown in Fig. 6.5.

by a strong coherent field which can be described classically with the transmon

qubit as a small perturbation. The Jaynes-Cummings nonlinearity, induced

by the strong qubit-resonator coupling, which blocks the transmission at ωr is

suppressed by the classical field present in the resonator and the transmon, de-

scribed as a single multilevel system, is saturated [Reed10a, Boissonneault10].

If, however, a different transmon state would delay the emergence of the

classical field, one could detect the difference in this macroscopic field and

employ it as a single shot read-out device, as performed in [Castellanos08,

Bergeal10]. A time-resolved measurement, performed at the same power as

indicated in Fig. 6.4b with the red dot at higher power, repeated 1’000 times

for a prepared ground and excited state is shown in Fig. 6.5a. In this case the

experiment is not repeated many times to improve the signal to noise ratio,

as discussed in Ch. 4 but to acquire enough statistics to perform an ensemble

average and determine p1. The traces are clearly distinguishable, even on a

timescale which is much longer than the qubit lifetime T 01
1 ≈ 600 ns. The
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Figure 6.5 – a) High power, time resolved, pulsed response to prepared |g〉
(red, blue) and |e〉 (purple, cyan) states for the Q and I quadratures respec-
tively, measured with +6 dBm (1’600 photons) at ωm/2π = 7.020 GHz. b)
Comparison of low and high power read-out. Reconstructed populations for a
Rabi oscillations experiment measured with -30 dBm (0.4 photons, averaged 1.3
million times) at ωm/2π = 7.036 GHz (black dots). The red dots are recon-
structed with the area method at high power, but normalized to the measured
excited state traces shown in a) instead of theoretically generated ones.

measurements go beyond the scope of the cavity-Bloch equations or the linear

harmonic response and can, therefore, not be fitted to them. To compare

different traces taken at different measurement detunings, the I−Q traces are

rotated in the same way described in Sec. 4.2, ensuring Q = 0 in the steady

state.

Such a measurement could be used to reconstruct the qubit population

using the same procedures described in Sec. 4.4, where the area between the

measured curve and the ground state response is directly proportional to the

population of the unknown state. The lack of a theoretical prediction for the

ground and excited state responses sig/e(t) is not impeding the use of the area

method described by Eq. (4.12). This is demonstrated in Fig. 6.5b, where a

Rabi experiment (see Sec. 4.5) is performed and the populations are recon-

structed using the well established low power read-out to generate the black

dots. The same states are read-out at high power, with the parameters de-

scribed above, and the populations are reconstructed using the experimentally

measured sIg/e (shown in Fig. 6.5a), resulting in the red points. The high power

populations agree very well with the low power measurements, demonstrating

the validity of the read-out and were averaged more than 1’000 times less than
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typical measurements shown for example in chapter 4. Acquisition time can

therefore be shortened considerably.

This read-out method should not be projective in the qubit basis |g/e〉
because even much lower measurement powers induce significant populations

of higher excited states of the transmon [Boissonneault09]. After a short mea-

surement time, the transmon is excited to a superposition of higher excited

states [Boissonneault10, Wilson10]. This is not a problem to read-out the sys-

tem state but will destroy the state of any other qubits in the same cavity and

impede any feedback protocol.

6.4 Single shot read-out

The high SNR of the data shown in Fig. 6.5a suggests the possibility of per-

forming single shot read-out of the qubit state. While high single shot fidelities

in flux qubits are routinely achieved [Chiorescu03, Cooper04, McDermott05,

Lupascu06, Katz06, Lucero08] and are in reach for charge type qubits using an

additional read-out device [Siddiqi06, Mallet09, Bergeal10], direct single shot

read-out of a transmon using the dispersive interaction has been demonstrated

only recently [Reed10a].

As discussed in Ch. 4, the outcome of an ideal single measurement of the

state |Ψ〉 is ”g” with probability |cg|2 and ”e” with probability |ce|2. From

all the information acquired during a single measurement one has therefore to

define a ’decision’ function which returns ”g” for a prepared |g〉 state, ”e” for

a prepared |e〉 state and the right distributions for superposition states

[Gambetta07]. A simple way to do so, is to consider a single quadrature

channel, to sum the measured voltages, similarly to Eq. (4.12), up to a given

time tend defining a score. This has to be compared to a fixed threshold. If

the summed score is below the threshold, ”e” is returned else the result is ”g”.

The scores for 10’000 single shot measurements of state |g〉 and |e〉 are shown

in Fig. 6.6 in blue and red respectively.

The fidelity of such a measurement can be defined as the probability of the
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Figure 6.6 – Histogram of the measured scores for 10’000 prepared |g〉 (blue)
and |e〉 (red) states. The vertical axis indicates the fraction of the measured
values divided by the bin width. The pink threshold returns a fidelity of F =
84%.

wrong answer of the decision function [Gambetta07]:

F = 1− P (”g”||e〉) + P (”e”||g〉) ≈ 1− a”g”

ng
− a”e”

ne
, (6.8)

where P (”i”||j〉) is the conditional probability of the answer ”i”, given the

state |j〉 has been prepared, a”i” is the number of the wrong answers ”i” and

n is the number of repetitions for each prepared state.

Equation (6.8) is maximized experimentally varying different parameters,

such as the measurement frequency and power, the rotation angle in the IQ-

plane (a 2-dimensional approach, considering both quadratures does not sig-

nificantly improve the fidelity), the integration time tend and the threshold

value. This procedure was performed in collaboration with C. Lang and is de-

scribed in more details in [Lang09]. The data shown in Fig. 6.6 are optimized

in all these parameters and have a fidelity of F = 84%.
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The magenta states below the threshold score of -1 are prepared ground

states which are misinterpreted as excited states, while the states leading to

the magenta bars above the score -1 are prepared as excited states but de-

tected as ground states. Many prepared |e〉 states decay before the detection

(spontaneously or measurement induced [Boissonneault09]) and thus generate

the small magenta peak of states around score 1 which is erroneously identified

as ”g”. The strong measurement tone has also a finite probability of exciting

the qubit in the first part of the measurement, generating the long negative

score tail of the prepared ground states. These two error mechanisms account

for most of the misidentification of the states and dominate over the statistical

overlap of the distribution tails. They are, however, not relevant when reading

out the state in an ensemble average, as performed in Sec. 6.3 because in that

case a different average amplitude is sufficient to distinguish two states, in

theory with arbitrary precision by averaging more.

As discussed in Sec. 6.3, this measurement is not projective. This is not a

problem for the read-out, it is, however, a limiting factor for quantum feedback

protocols such as error correction algorithms [Knill00] or measurement based

state preparation [Bishop09b] because the QND property of the measurement

is lost and the final state is not restricted to the same 2-dimensional Hilbert

space anymore.
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AppendixA
Microwave Devices at Cryogenic

Temperatures

A.1 Cryogenic heat flows

For small temperature gradients, the rate of heat flow per unit area q̇ resulting

from a temperature difference ∆T in a material of cross-section A is given

by [Pobell06]

q̇ = Q̇/A = −κ ·∆T, (A.1)

where the thermal conductivity κ is assumed to be constant . It can be gen-

eralized to

Q̇ =
A

L

∫ L

0

q̇dx =
A

L

∫ T2

T1

κ(T )dT := −A
L

ΘT2

T1
(A.2)

for a solid of length L with temperatures T1 and T2 at its ends. ΘT2

T1
is called

thermal conductivity integral and can be calculated analytically in certain lim-

its or inferred from specific tables [Pobell06, Lake-Shore04]. For an insulating

material at less then one tenth of the Debye temperature TD, the main contri-

bution to the thermal conductivity is of phononic nature, with κphonon = bT 3,

implying ΘT2

T1
= −b/4(T 4

2−T 4
1 ). For metals below around 10 K, electrons domi-



A.1 Cryogenic heat flows

Constant Copper Stainless steel Teflon
Θ300

4 [W/m] 1.5 · 105 2′500 100
Θ300

60 [W/m] 5 · 104 2′000 100
Θ60

4 [W/m] 1 · 105 200 10
κ0 [W m−1 K−1] 100 0.15
b [W m−1 K−1] 5 · 10−4

Table A.1 – Thermal conductivity of solids frequently used in low temperature
applications

Temperature Vericold DR-200 Oxford 400HA
70 K 4 W -
4 K 0.5 W >1 W

1.6 K - >10 mW
Still 1 mW 1 mW

100 mK ∼20 µW ∼20 µW
base <1 µW <1 µW

Table A.2 – Cooling powers on different temperature stages

nate the thermal conductivity, implying κel = κ0T and ΘT2

T1
= −κ0/2(T 2

2−T 2
1 ).

The most relevant heat conductivities, needed to wire a dilution refrigerator

are tabulated in Tab. A.1.

To wire a dilution refrigerator without affecting its base temperature, one

must ensure that the combined head load on each plate from all the added

wires does not exceed the cooling power on that stage. The typical cooling

power available on different temperature stages of the cryostats are listed in

Tab. A.2. UT-85 semirigid coaxial cables have a surface area of 3.6 · 10−6

and 2.1 · 10−7 m2 for the shield and center conductor respectively which com-

bined with the actual cable length and material determine the heat-flow. They

usually use teflon as insulating material which at low temperature has a very

bad conductivity, see Tab. A.1 and can be neglected while calculating heat-

flows. However, Teflon contracts more then the surrounding metals when

cooled down, possibly making a bad thermal contact with either the outer

or inner conductor. Therefore, to ensure a complete thermalization of the

center-conductor of a coaxial cable an attenuator (which connects the center-

conductor to the ground with a resistor) or a circulator must be employed.
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Attenuators are usually thermalized with a copper clamp connected to the

cryostat via an unfluxed copper-braid, while bulkier components such as am-

plifiers or circulators have their own copper mounts. If no such measure is

implemented only the outer conductor can be thermlized reliably, while the

inner conductor must be assumed to thermalize only at the next stage and

therefore thermally load a lower cryostat plate.

Furthermore, to avoid big strains on the connectors due to the thermal

expansion of the cables, they are bended such that they can move, absorbing

the tension.

A.2 One-dimensional black body radiation

Coaxial cables and transmission lines provide a single degree of freedom for a

propagating electromagnetic field, so they can be approximated as being one-

dimensional. The spectral energy density emitted at frequency ν by a black

body at temperature T is given by

S =
2hν

e
hν
kBT − 1

, (A.3)

where kB is the Boltzmann constant. Similarly for an artificial atom with n+1

energy levels, the average thermal population Pi of a given energy level Ei in

equilibrium is given by

Pi =
e
− Ei
kBT∑n

j=0 e
−

Ej
kBT

, (A.4)

where E0 = 0.

To have an idea of the energy scales, 50 mK correspond to 1 GHz, so the

average thermal population of the first excited state with transition frequency

ω0/2π = 5 GHz in thermal equilibrium at 50 and 30 mK is 1 and 0.03%

respectively. Therefore, to manipulate a qubit with a precision higher then

1%, it must be in thermal equilibrium below 50 mK and should not be exposed

to any radiative field at higher temperature in the band of the relevant energy

transitions.
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A.3 Circulators

Again at 5 GHz, the flux of photons calculated with Eq. (A.3), generated

at 300 K is 80 times more intense then the one generated at 4 K. To attenuate

this noise, a 20 dB attenuator (absorbing a factor of 100 in power) is mounted

on the 4 K stage, see Fig. 3.2. The radiation emitted at 100 mK is in turn 160

times weaker then the power emitted at the 4 K plate, justifying the presence

of a second 20 dB attenuator. The remaining radiation corresponds to around

0.1 photons in average in the resonator which are further suppressed with a

last 10 dB attenuator placed at base temperature.

A.3 Circulators

Circulators are used as isolators, routing the weak measurement signal from

the sample to the cold amplifier, while absorbing the incoming signal in the

third port with a matched termination. They use a permanent magnet made

of ferrite to break the symmetry of the system, so one should avoid placing

them in vicinity of the experiment because of possible magnetic disturbance.

Pamtech (now owned by QuinStar Technology) produces cryogenic circula-

tors working in the bands 4-8 and 6-12 GHz with 18 dB isolation and 0.4 dB in-

sertion loss. They also offer double isolators with higher bandwidths 4-12 GHz

but with reduced isolation and higher insertion loss. 4-8 GHz circulators with

identical specifications are also offered by Raditek Inc.

A sample 4-8 GHz circulator from Pamtech (#110) is measured at 4 K, re-

sulting in the scattering matrix parameters (S-parameters) plotted in Fig. A.1.

Port 3 of the circulator was terminated with a matched 50 Ohm impedance.

The measured forward transmission S21, plotted in green displays the expected

flat band between 4 and 8 GHz, while the inverse measurement of S12, dis-

played in blue shows at least 18 dB attenuation at the lower end of the fre-

quency window but usually performs much better. The calibration of the cold

coaxial cables depends on the liquid helium level in the dewar used to perform

the measurement and is accurate only up to about 1 dB. The calibration could

therefore be responsible for the slightly higher observed insertion loss then the

one specified. The reflected signals S11 and S22 plotted in red and black, re-

spectively, show at most 10 dB return loss which could come from the used
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Figure A.1 – Measured S-parameters of the Pamtech circulator #110. S11

S12 S21 S22 are plotted in red, blue, green and black respectively. The specified
working figures are shown as gray lines.

cable connectors and must therefore not be ascribed to the circulator.

It is worthwhile to note that outside the specified frequency window not

only S21 can be large, impeding a measurement, but also S12 can be small

(only 10 dB at 3 and 10 GHz). Operating a qubit or resonator around these

frequencies results in increased black body radiation transmitted from room

temperature to the sample.

A.4 Copper powder filters

Copper powder filters are used as low pass filters working at cryogenic tem-

peratures [Martinis87, Fukushima97]. Their main advantage over conventional

lumped element filters is the very high attenuation at high frequency without

the presence of any resonance up to at least 40 GHz. A smooth low frequency

cutoff is warranted by a lumped element π-shaped RLC filter while the high

frequency damping is provided by the skin effect [Lukashenko08].

A twin housing for two filters is sketched in Fig. A.2. The employed con-

stantan wire and the stainless steel powder are resistive at low temperatures,
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04

20

01

Figure A.2 – Copper housing sketch used to manufacture two copper powder
filters. The dimensions are in millimeters.

ensuring an optimal filtering over a broad range of temperatures. The chosen

π geometry with a capacitor at each end of the filter implies a second order

RC filter which is confirmed by the measured filtering slope at 4 Kelvin, shown

in Fig. A.3. The considered set of filters were manufactured and measured by

Andreas Fragner during his Diploma thesis at ETH Zurich. The filters where

assembled following the recipe:

• Solder a 100 nF surface-mount (SMD) capacitor directly on the inside

of an SMA press mount receptacle from Delta electronics.

• Mix three parts in mass of Alfa Aesar 325 mesh stainless steel powder

(warning: toxic, wear latex gloves, breathing mask and protective cloth-

ing) into one part of Emerson and Cumming Stycast 1266.

• Pump out the mixture to eliminate enclosed air-bubbles.

• Fill a 3 mm inner diameter tube with the mixtures and let it dry for

24 hours (or speed cure at 60 degrees Celsius for 2 hours) ensuring no

curvature appears in the future winding rods.

• Remove the tube and cut 30 mm long rods.

• Wind 500 mm of 0.2 mm diameter constantan wire on the rod.

• Solder one SMA connector to the wire and push it into the copper case

shown in Fig. A.2, (there is a press machine in the machine shop and
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Figure A.3 – Measured transmitted power in dB trough a set of filters man-
ufactured using the given recipe. The 3 dB point is located around 3 MHz.

a fitting for our connectors). Make sure the soldered, exposed end does

not touch the housing, resulting in a short to ground.

• Solder the other SMA connector to the constantan wire.

• Fill the housing with evacuated SS-stycast mixture using a big syringe.

• Press in the other connector.

• Cure at 60 degrees Celsius for 2 hours in the oven located in the Print-

raum

A.5 Low noise power supply

The low noise HEMT amplifiers need both a stable and a carefully adjustable

voltage supply. We operate the LNC4-8A amplifier from Low Noise Factory

with a specified bandwidth of 4-8 GHz, a typical noise temperature of 2.6 K

and 40 dB gain. They need a single gate voltage of -1 to -2 V and a source

drain voltage of 0.5 to 1.5 V, depending on the actual device and operation

temperature. We also operate several amplifiers from the California institute
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A.5 Low noise power supply

of Technology with a bandwidth of 2-12 GHz, a typical noise temperature of

4 K and 36 dB gain. They need two separate gate voltages of 1.2 to 2.2 V

and a source drain voltage of 1.2 to 1.8 V, depending on the actual device and

operation temperature. The stated voltages must be adjusted within 10 mV

and kept as constant as possible while the current flowing through the source

drain must be monitored to ensure the correct operation.

The solution found and implemented by the Elektronik-Lehrlabor (ELL) at

ETH design a power supply with three transformers, arranged to strongly sup-

press 50 Hz noise and a separate low noise circuit used to source the amplifiers.

The schematics are shown in the following two pages.
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A.6 Switch electronics

Mechanical RF switches used at low temperature need special control elec-

tronics because the switching coils have different resistances at 4 Kelvin then

at room temperature. Therefore they cannot be voltage driven, as designed by

the manufacturer but need to be current driven. Furthermore, the electronics

must be decoupled from the PC ground to avoid ground-loops.

To control the switch from the PC, the Low-Cost Multifunction DAQ USB-

6009 from National Instrument is used in combination with a differential 30 V

lab voltage source. To switch the 6 to 1 channel Radiall mechanical switch

R573-423-600, 15 ms pulses carrying 125 mA are necessary (there is a reset

line which switches all channels simultaneously, draining 750 mA). The room

temperature resistance is about 220 Ohm, implying a specified applied voltage

of 28 V. The current is regulated using a Zener diode and a reference resistor,

switched with a power transistor. The grounds are decoupled using an opto-

isolator. Additional resistors are added to control the voltages on the opto-

isolator and a diode is put in parallel with the switch coil to drain the current

when the transistor switches off. Six identical circuits control the six channels

while an additional circuit is used as a global reset (with a smaller reference

resistance). The final design, PCB layout and routing was drawn using the

open source KiCad package. The circuit contains the following components

(labeled as in the sketches):

• 7x R1i → 470 Ohm

• 7x R2i → 470 Ohm

• 6x R3i → 12 Ohm

• 1x R31 → 2 Ohm

• 7x opto Darlington→ 4N32

• 7x PNP→ BD900A

• 7x D1i → 1N4728A

• 7x D2i → 1N4005
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A.6 Switch electronics

The circuit was designed, implemented and tested successfully. It cannot

control only the 6 channel R573-423-600 but also the 2 channel R572.433.000.

Note that the standard +5 V biased by the DAQ after each PC reboot result

in a constant current flowing simultaneously in all channels of the switch. It

is therefore necessary to initialize the DAQ first and then turn on the external

voltage supply or an inverting circuit could be preposed to the controller.

The schematics and implemented PCB are shown in the next two pages.
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AppendixB
Numerical Recipes

B.1 Three level cavity-Bloch equations

The full Cavity-Bloch equations for 3 levels, considering the master equa-

tion (5.1) and Hamiltonian (5.2) with three driving terms ε01, ε12, ε02 at the

respective frequencies ω0
s ≈ ω0, ω

1
s ≈ ω1 and ω2

s = ω0 + ω1 leading to the

detunings ∆1
s = ω0 − ω0

s and ∆2
s = ω1 − ω1

s are stated below.

As in Sec. 4.1, the terms 〈â†âP̂ij〉 ≈ 〈â†â〉〈P̂ij〉 and 〈â†ââP̂ij〉 ≈ 〈â†â〉〈âP̂ij〉
are factored, while the terms 〈âP̂ij〉 are kept, defining |i〉〈j| = P̂ij . For a

coherent field with complex amplitude α, defined by the state |α〉C and a

Fock state with n photons, defined by the state |n〉F this leads to the correct

expressions for the factored terms

〈â†âP̂ij〉C = |α|2〈P̂ij〉 = 〈â†â〉C〈P̂ij〉,

〈â†âP̂ij〉F = n〈P̂ij〉 = 〈â†â〉F 〈P̂ij〉 6= 〈â†〉F 〈âP̂ij〉F = 0. (B.1)



B.1 Three level cavity-Bloch equations

dt〈â〉 = −κ/2〈â〉 − i
(
εm + ∆rm〈â〉+ S0〈âP̂00〉+ S1〈âP̂11〉+ S2〈âP̂22〉

)
,

dt〈â†â〉 = −2εm=〈â〉 − κ〈â†â〉,

dt〈P̂00〉 = −i
(
ε?01〈P̂01〉 − ε01〈P̂10〉+ ε?02〈P̂02〉 − ε02〈P̂20〉

)
+ γ1

1〈P̂11〉,

dt〈P̂11〉 = i
(
ε?01〈P̂01〉 − ε01〈P̂10〉 − ε?12〈P̂12〉+ ε12〈P̂21〉

)
− γ1

1〈P̂11〉

+γ2
1〈P̂22〉,

dt〈P̂01〉 = −i
{
ε?12〈P̂02〉+ ε01

(
〈P̂00〉 − 〈P̂11〉

)
+ ε02〈P̂21〉+ 〈P̂01〉

[
∆1
s

+〈â†â〉 (−S0 + S1)
]}
− γ1

1/2〈P̂01〉 − γ1
φ〈P̂01〉,

dt〈P̂10〉 = i
{
ε?01

(
〈P̂00〉 − 〈P̂11〉

)
− ε?02〈P̂12〉+ ε12〈P̂20〉+ 〈P̂10〉

[
∆1
s

+〈â†â〉 (−S0 + S1)
]}
− γ1

1/2〈P̂10〉 − γ1
φ〈P̂10〉,

dt〈P̂12〉 = i
{
ε?01〈P̂02〉 − ε02〈P̂10〉 − ε12

(
〈P̂11〉 − 〈P̂22〉

)
+ 〈P̂12〉

[
∆1
s

−∆2
s〈â†â〉 (S1 − S2)

]}
− γ1

1/2〈P̂12〉 − γ2
1/2〈P̂12〉 − γ1

φ〈P̂12〉

−γ2
φ〈P̂12〉,

dt〈P̂21〉 = i
{
ε?02〈P̂01〉 − ε01〈P̂20〉+ ε?12

(
〈P̂11〉 − 〈P̂22〉

)
+ 〈P̂21〉

[
−∆1

s

+∆2
s〈â†â〉 (−S1 + S2)

]}
− γ1

1/2〈P̂21〉 − γ2
1/2〈P̂21〉 − γ1

φ〈P̂21〉

−γ2
φ〈P̂21〉,

dt〈P̂22〉 = i
(
ε?02〈P̂02〉+ ε?12〈P̂12〉 − ε02〈P̂20〉 − ε12〈P̂21〉

)
− γ2

1〈P̂22〉,

dt〈P̂02〉 = −i
{
ε12〈P̂01〉 − ε01〈P̂12〉+ ε?02

(
〈P̂00〉 − 〈P̂22〉

)
− 〈P̂02〉

[
∆2
s

+〈â†â〉 (S0 − S2)
]}
− γ2

1/2〈P̂02〉 − γ2
φ〈P̂02〉,

dt〈P̂20〉 = i
{
ε?12〈P̂10〉 − ε?01〈P̂21〉+ ε?02

(
〈P̂00〉 − 〈P̂22〉

)
− 〈P̂20〉

[
∆2
s

+〈â†â〉 (S0 − S2)
]}
− γ2

1/2〈P̂20〉 − γ2
φ〈P̂20〉,
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dt〈âP̂00〉 = −κ/2〈âP̂00〉 − i
{
εm〈P̂00〉+

[
ε?01〈âP̂01〉

+ε?02〈âP̂02〉 − ε01〈âP̂10〉 − ε02〈âP̂20〉+ 〈âP̂00〉 (∆rm + S0)
]}

+γ1
1〈âP̂11〉,

dt〈âP̂11〉 = −κ/2〈âP̂11〉 − i
{
εm〈P̂11〉+

[
ε?01〈âP̂01〉 − ε01〈âP̂10〉

−ε?12〈âP̂12〉+ ε12〈âP̂21〉+ 〈âP̂11〉 (∆rm + S1)
]}
− γ1

1〈âP̂11〉

+γ2
1〈âP̂22〉,

dt〈âP̂01〉 = −κ/2〈âP̂01〉 − i
{
εm〈P̂01〉+

[
ε?12〈âP̂02〉+ ε01

(
〈âP̂00〉 − 〈âP̂11〉

)
−ε02〈âP̂21〉+ 〈âP̂01〉

(
∆rm + ∆1

s + S1

)
+
(
〈â†â〉〈âP̂01〉

+〈âP̂01〉
)

(−S0 + S1)
]}
− γ1

1/2〈âP̂01〉 − γ1
φ〈âP̂01〉,

dt〈âP̂10〉 = −κ/2〈âP̂10〉+ i
{
−εm〈P̂10〉+

[
ε?01

(
〈âP̂00〉 − 〈âP̂11〉

)
−ε?02〈âP̂12〉+ ε12〈âP̂20〉 − 〈âP̂10〉

(
∆rm −∆1

s + S0

)
−(

〈â†â〉〈âP̂10〉+ 〈âP̂10〉
)

(S0 − S1)
]}
− γ1

1/2〈âP̂10〉 − γ1
φ〈âP̂10〉,

dt〈âP̂12〉 = −κ/2〈âP̂12〉+ i
{
−εm〈P̂12〉+

[
ε?01〈âP̂02〉 − ε02〈âP̂10〉

−ε12

(
〈âP̂11〉 − 〈âP̂22〉

)
− 〈âP̂12〉

(
∆rm −∆1

s + ∆2
s + S2

)
−
(
〈â†â〉〈âP̂12〉+ 〈âP̂12〉

)
(−S1 + S2)

]}
− γ1

1/2〈âP̂12〉

−γ2
1/2〈âP̂12〉 − γ1

φ〈âP̂12〉 − γ2
φ〈âP̂12〉,

dt〈âP̂21〉 = −κ/2〈âP̂21〉+ i
{
−εm〈P̂21〉+

[
ε?02〈âP̂01〉 − ε01〈âP̂20〉

+ε?12

(
〈âP̂11〉 − 〈âP̂22〉

)
− 〈âP̂21〉

(
∆rm + ∆1

s −∆2
s + S1

)
−
(
〈â†â〉〈âP̂21〉+ 〈âP̂21〉

)
(S1 − S2)

]}
− γ1

1/2〈âP̂21〉

−γ2
1/2〈âP̂21〉 − γ1

φ〈âP̂21〉 − γ2
φ〈âP̂21〉,
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dt〈âP̂22〉 = −κ/2〈âP̂22〉+ i
{
−εm〈P̂22〉+

[
−ε?02〈âP̂02〉 − ε?12〈âP̂12〉+

ε02〈âP̂20〉+ ε12〈âP̂21〉 − 〈âP̂22〉 (∆rm + S2)
]}
− γ2

1〈âP̂22〉,

dt〈âP̂02〉 = −κ/2〈âP̂02〉 − i
{
εm〈P̂02〉+

[
ε12〈âP̂01〉 − ε01〈âP̂12〉+

ε02

(
〈âP̂00〉 − 〈âP̂22〉

)
+ 〈âP̂02〉

(
∆rm + ∆2

s + S2

)
+(

〈â†â〉〈âP̂02〉+ 〈âP̂02〉
)

(−S0 + S2)
]}
− γ2

1/2〈âP̂02〉 − γ2
φ〈âP̂02〉,

dt〈âP̂20〉 = −κ/2〈âP̂20〉+ i
{
−εm〈P̂20〉+

[
ε?12〈âP̂10〉 − ε?01〈âP̂21〉

+ε?02

(
〈âP̂00〉 − 〈âP̂22〉

)
− 〈âP̂20〉

(
∆rm −∆2

s + S0

)
−(

〈â†â〉〈âP̂20〉+ 〈âP̂20〉
)

(S0 − S2)
]}
− γ2

1/2〈âP̂20〉 − γ2
φ〈âP̂20〉,

B.2 Maximum likelihood estimation

The density matrix ρ̃ is reconstructed by inverting the relations

nk := 〈I/Qk〉 ≡ Tr[ρ̃UkM̂I/QU
†
k ], (B.2)

where nk is the measurement outcome and UkM̂I/QU
†
k is known (Tr[ρiM̂I/Q(t)] =

s
I/Q
I is calculated solving the cavity-Bloch equations and Uk is stated in

Eq. (5.11)). The found density matrix ρ̃ must, however, not be a hermitian

positive semidefinite matrix with trace 1 and can therefore be nonphysical.

The maximum likelihood estimation finds a physical matrix ρ such that

the measured nk are most likely to be generated by Gaussian distributed

noise [James01]. A physical density matrix ρ can always be written as

ρ =
T †T

Tr[T †T ]
, (B.3)
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where all the ti are real and for a three level system

T =

 t1 0 0

t4 + ıt5 t2 0

t8 + ıt9 t6 + ıt7 t3

 . (B.4)

The likelihood function L calculates the logarithm of the probability P of

obtaining a set of nk with a given T

L(t1, t2, ..., t9) =
∑
i

(
Tr[ρUiM̂I/QU

†
i ]− ni

)2

σ2
i

, (B.5)

where σi are the observed standard deviations of the measurement outcomes

ni. Maximizing the probability P is equivalent to minimizing the likelyhood

function L in the variables ti. To minimize Eq. (B.5) numerically, an initial

guess for ρ is necessary. The nearest symmetric positive semidefinite matrix

ρ0 to the already known ρ̃ in the Frobenius norm (‖A‖F = (
∑
ij |aij |2)1/2) is

used [Higham86, Higham88]. ρ0 can be expressed as

ρ0 =
[(
ρ̃+ ρ̃†

)
/2 +

√
ρ̃†ρ̃
]
/2. (B.6)

The set of ti needed to evaluate the function L a first time is obtained by

the inversion of Eq. (B.3). Note that ρ0 is already a physical matrix but is

optimized in the Frobenius norm which has no direct physical meaning.
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[Thew04] R. T. Thew, A. Aćın, H. Zbinden et al. ‘Bell-Type
Test of Energy-Time Entangled Qutrits’. Phys. Rev. Lett.,
93(1):010503 (2004).

[Tinkham96] M. Tinkham. Introduction to Superconductivity. McGraw-
Hill International Editions (1996).

[Turing37] A. M. Turing. ‘On Computable Numbers, with an Applica-
tion to the Entscheidungsproblem’. Proc. London Math. Soc.,
42(1):230 (1937).

[Uzan03] J. P. Uzan. ‘The fundamental constants and their varia-
tion: observational and theoretical status’. Rev. Mod. Phys.,
75(2):403 (2003).

[Vallone07] G. Vallone, E. Pomarico, F. De Martini et al. ‘Experimental
realization of polarization qutrits from nonmaximally entan-
gled states’. Phys. Rev. A, 76(1):012319 (2007).

[vanderWal00] C. H. van der Wal, A. C. J. ter Haar, F. K. Wilhelm
et al. ‘Quantum superposition of macroscopic persistent-
current states’. Science, 290(5492):773 (2000).

[Vijay09] R. Vijay, M. H. Devoret and I. Siddiqi. ‘Invited Review Arti-
cle: The Josephson bifurcation amplifier’. Rev. Sci. Instrum.,
80(11):111101 (2009).

[Vion02] D. Vion, A. Aassime, A. Cottet et al. ‘Manipulating the quan-
tum state of an electrical circuit’. Science, 296(5569):886
(2002).

[Wallraff04] A. Wallraff, D. I. Schuster, A. Blais et al. ‘Strong coupling
of a single photon to a superconducting qubit using circuit
quantum electrodynamics’. Nature, 431(7005):162 (2004).

[Wallraff05] A. Wallraff, D. I. Schuster, A. Blais et al. ‘Approaching Unit
Visibility for Control of a Superconducting Qubit with Dis-
persive Readout’. Phys. Rev. Lett., 95(6):060501 (2005).

[Walls94] D. Walls and G. Milburn. Quantum optics. Spinger-Verlag,
Berlin (1994).

156



[Walther06] H. Walther, B. T. H. Varcoe, B. G. Englert et al. ‘Cavity quan-
tum electrodynamics’. Rep. Prog. Phys., 69(5):1325 (2006).

[Wang08] H. Wang, M. Hofheinz, M. Ansmann et al. ‘Measurement
of the Decay of Fock States in a Superconducting Quantum
Circuit’. Phys. Rev. Lett., 101(24):240401 (2008).

[Wang09a] H. Wang, M. Hofheinz, M. Ansmann et al. ‘Decoherence Dy-
namics of Complex Photon States in a Superconducting Cir-
cuit’. Phys. Rev. Lett., 103(20):200404 (2009).

[Wang09b] H. Wang, M. Hofheinz, J. Wenner et al. ‘Improving the co-
herence time of superconducting coplanar resonators’. Appl.
Phys. Lett., 95(23):233508 (2009).

[Watanabe94] K. Watanabe, K. Yohida, T. Aoki et al. ‘Kinetic Inductance
of Superconducting Coplanar Wave-Guides’. Jpn. J. Appl.
Phys., 33(10):5708 (1994).

[Wilson10] C. M. Wilson, G. Johansson, T. Duty et al. ‘Dressed relax-
ation and dephasing in a strongly driven two-level system’.
Phys. Rev. B, 81(2):024520 (2010).

[Yamamoto99] Y. Yamamoto and A. Imamoglu. Mesoscopic Quantum Op-
tics. Wiley (1999).

[Yamamoto03] T. Yamamoto, Y. A. Pashkin, O. Astafiev et al. ‘Demon-
stration of conditional gate operation using superconducting
charge qubits’. Nature, 425(6961):941 (2003).

[Yoshida92] K. Yoshida, M. S. Hossain, T. Kisu et al. ‘Modeling of Kinetic-
Inductance Coplanar Stripline With Nbn Thin-Films’. Jpn.
J. Appl. Phys., 31(12A):3844 (1992).

[Yoshie04] T. Yoshie, A. Scherer, J. Hendrickson et al. ‘Vacuum Rabi
splitting with a single quantum dot in a photonic crystal
nanocavity’. Nature, 432:200 (2004).

[Zurek03] W. H. Zurek. ‘Decoherence, einselection, and the quantum
origins of the classical’. Rev. Mod. Phys., 75(3):715 (2003).

157





Acknowledgements

This thesis could never ever have reached the present stage without the col-

laboration of the whole Quantum Device Lab team at ETH Zurich, which was

of utmost importance in every single aspect of the work during the last four

years. As group leader Andreas founded this effort, permitted me to join the

team and escorted me during all this time, even below the surface of a dark

lake in Lugano. I really want to thank him for all the thinks he allowed me

to do, while constantly coaching and advising me. My gratitude goes to Prof.

Dr. Alexey Ustinov from university of Karlsruhe for his co-supervision of my

thesis, in the hope that some inspiration for his own related work arised from

the reading of this thesis.

A big thank you goes to Hansruedi which has magic hands in fixing and

manufacturing any kind of mechanical devices while at the same time giving

irreplaceable advices over hiking destinations all around Switzerland. Gaby

on her turn never managed to enter our offices without a big smile and always

sorted out the messes from the ”professional” shipping and delivery companies

we deal with with a big laugh.

The constant presence of Pete in the case of any problem and the dis-

cussions on disparate thinks ranging from environmental issues to running

advices passing over all possible details on circuit quantum electrodynamic

experiments and theories merit my thankfulness. Without Stefan, three level

state tomography in particular would still be a far goal and his very active and



fruitful collaboration really justify my big gratefulness to him. He also rushed

trough an early version of this thesis providing precious feedback and finding

innumerable language mistakes.

In sparse order also many thanks to my early Phd. buddies Martin which

grew the first samples at ETH and Josch with whom the first fridge was cabled

and experiments performed. Playing soccer with Johannes without loosing a

leg and Diving disparate lakes with Martin and Matthias was great fun!

Sincere thanks go to Christian who, together with Deniz implemented our

FPGA computer card used under others to perform single shots measurements.

We had a lot of fruitful discussions over many possible measurement procedures

and to be finally beaten by the Yale group in the development of a single

shot readout was not too bad if one considers the good time we had and the

amount of stuff both of us learned. I did not forget Matthias which is not

only divemaster but also master of our Cleansweep software enabling a long

list of experiments. I need to acknowledge Lars for his positive mood, for

many fruitful discussions and the big amount of ingrate technical work we did

together. Last but not least tanks Gabe, not only for some of the best (and

scariest) boarding days of my life but also for all the time invested in debugging

the many many baby sicknesses of our Vericold dilution refrigerator.

160



List of Publications

1. R. Bianchetti, S. Filipp, M. Baur, J. M. Fink, C. Lang, L. Steffen, M.

Boissonneault, A. Blais and A. Wallraff, Control and Tomography of a

Three Level Superconducting Artificial Atom, submitted (2010)

arXiv:1004.5504

2. J. M. Fink, L. Steffen, P. Studer, L. S. Bishop, M. Baur, R. Bianchetti,

D. Bozyigit, C. Lang, S. Filipp, P. J. Leek and A. Wallraff,

Quantum-to-Classical Transition in Cavity Quantum Electrodynamics

(QED), submitted (2010) arXiv:1003.1161

3. D. Bozyigit, C. Lang, L. Steffen, J. M. Fink, M. Baur, R. Bianchetti,

P. J. Leek, S. Filipp, M. P. da Silva, A. Blais, and A. Wallraff,

Measurements of the Correlation Function of a Microwave Frequency

Single Photon Source, submitted (2010) arXiv:1002.3738

4. P. J. Leek, M. Baur, J. M. Fink, R. Bianchetti, L. Steffen, S. Filipp,

and A. Wallraff, Cavity Quantum Electrodynamics with Separate

Photon Storage and Qubit Readout Modes, Physica Scripta 104, 100504

(2010). DOI:10.1103/PhysRevLett.104.100504 or arXiv:0911.4951

5. J. M. Fink, M. Baur, R. Bianchetti, S. Filipp, M. Göppl, P. J. Leek, L.
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