
Diss. ETH No. 19230

Testing of
Wireless Sensor Networks

A dissertation submitted to the

ETH ZURICH

for the degree of

Doctor of Sciences

presented by

MW
Diplom in Electrical Engineering from TU Karlsruhe

born October 27, 1978
citizen of Germany

accepted on the recommendation of

Prof. Dr. Lothar Thiele, examiner
Prof. Dr. Koen Langendoen, co-examiner

2010

 Institut für Technische Informatik und Kommunikationsnetze
Computer Engineering and Networks Laboratory

TIK-SCHRIFTENREIHE NR. 114

MW

Testing of
Wireless Sensor Networks

 Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

A dissertation submitted to the
Swiss Federal Institute of Technology (ETH) Zürich
for the degree of Doctor of Sciences

Diss. ETH No. 19230

Prof. Dr. Lothar Thiele, examiner
Prof. Dr. Koen Langendoen, co-examiner

Examination date: August 27, 2010

Abstract

A Wireless Sensor Network (WSN) is an embedded computation system for dis-
tributed sensing of a dispersed phenomenon. It is a distributed system built of
autonomous, yet cooperating embedded devices, so-called sensor nodes. Each
sensor node provides computational, communication and storage resources
and typically operates on limited energy resources. WSNs are often deployed
in remote locations for long-term unattended operation. Hence, the validation
of correct functioning of the system before the actual installation is of utmost
importance.

Validation of WSNs is typically focused on system testing, i.e., analyzing sys-
tem executions including software and sensor node hardware. System testing
of WSNs is a complex task. WSNs are distributed systems and have a high
degree of concurrency, resulting in a very large state space. The internal state of
the sensor nodes is hidden rendering analysis of executions intricate. System
testing needs to consider that the operation of a WSN is highly dependent on
the environment. As a prominent example, wireless communication depends
on environmental conditions, is changing over time and hence unreliable.

This thesis contributes several solutions for testing WSNs. Its goal is to
provide automated tool support for executing testcases, extracting meaningful
information from test executions, analyzing the monitored information, and
checking for the conformance to a specification of expected behavior. To this
end, the first part of the thesis focuses on testing functional properties of a WSN.
It describes a framework to execute the same test on different test platforms
such as simulators and testbeds. Furthermore, an analysis framework is pre-
sented that allows a tester to extract behavioral information from test execution
logs. A corresponding programming language was developed that simplifies
common analysis tasks such as determining the routing paths of a network
protocol. The second part of the thesis focuses on testing non-functional prop-
erties, in particular power consumption. It presents a test architecture that
enables a tester to extract and monitor such properties. Moreover, it describes
a formal conformance test for measurements of power consumption and details
on its formal foundations. It discusses various optimizations to make the con-
formance test relevant for practical application and demonstrates its efficiency
by a comparison with a state-of-the-art online testing tool.

Zusammenfassung

Ein drahtloses Sensornetzwerk ist ein eingebettetes Rechensystem zur verteil-
ten Überwachung von räumlichen Phänomenen. Es ist ein verteiltes System
aus autonomen, jedoch kooperierenden Sensorknoten. Sensorknoten verfügen
über Rechen-, Kommunikations- und Speicherressourcen und haben ausser-
dem üblicherweise ein begrenztes Energiebudget. Drahtlose Sensornetzwerke
werden gewöhnlich für einen autonomen Langzeit-Betrieb eingesetzt. Daher
ist es wichtig das System vor der Installation auf korrekte Funktionsweise zu
überprüfen.

Die Überprüfung von drahtlosen Sensornetzwerken konzentriert sich meist
auf Systemtests. Es werden Ausführungen des kompletten Systems, bestehend
aus Hardware- und Softwarekomponenten, analysiert. Das Testen von draht-
losen Sensornetzwerken ist eine komplexe Aufgabe: Ein drahtloses Sensor-
netzwerk ist ein verteiltes, nebenläufiges System und hat daher einen grossen
Zustandsraum. Die Analyse ist erschwert, da der interne Zustand des Systems
verborgen ist. Systemtests müssen berücksichtigen, dass die Ausführung eines
drahtlosen Sensornetzwerks stark von der Umgebung abhängt. Zum Beispiel
hängt die Qualität der drahtlosen Kommunikation von den Umgebungsbedin-
gungen ab und ist zeitlich variabel.

Diese Dissertation stellt mehrere Lösungsansätze für Systemtests vor die
den Testprozesses zu unterstützen. Dies beinhaltet die Ausführung von Tests,
das Aufzeichnen von aussagekräftigen Informationen, die Analyse solcher
Testaufzeichnungen und die Überprüfung auf Konformanz mit einer Spezi-
fikation des Verhaltens. Der erste Teil der Dissertation behandelt funktionale
Eigenschaften von drahtlosen Sensornetzwerken. Ein Verfahren wird beschrie-
ben das es erlaubt Tests auf verschiedenen Testplatformen, wie einem Simulator
oder einem Testbett, auszuführen. Es wird ein Ansatz vorgestellt um Verhal-
tensinformationen aus Testaufzeichnungen zu extrahieren. Eine daraus ent-
wickelte Programmiersprache erleichtert typische Analyseaufgaben wie das
Bestimmen der Routingpfade eines Netzwerkprotokolls. Der zweite Teil der
Dissertation beschäftigt sich mit nicht-funktionalen Eigenschaften, im speziel-
len mit der Leistungsaufnahme. Er präsentiert eine Testarchitektur, die diese
Eigenschaften aufzeichnet und überwachen lässt. Ausserdem wird ein formaler
Konformanztest der Leistungsaufnahme beschrieben.

Acknowledgement

First and foremost I would like to express my gratitude to Prof. Dr. Lothar
Thiele for supporting my thesis and my research. Thank you for the oppor-
tunity to come back from industry and for the continuous support and trust
during my PhD studies.

I would like to thank Prof. Dr. Koen Langendoen for co-examining my
thesis and the time at TU Delft that provided fresh and interesting insights into
research and life.

I would also like to thank all my current and former colleagues and friends
of the whole TEC group and the ES group in Delft for their company and
support. In particular, I would like to thank my office buddies and my running
mates. Thanks to all my friends that made my time in Zurich so memorable.

Ultimately, this thesis would have never been possible without the support
of my family. Mein Dank geht daher im speziellen an meine Eltern und meine
Brüder, die immer für mich da sind.

The work presented here was supported by the National Competence Center in
Research on Mobile Information and Communication Systems (NCCR-MICS),
a center supported by the Swiss National Science Foundation under grant
number 5005-67322.

vi Acknowledgement

Contents

Abstract i

Zusammenfassung iii

Acknowledgement v

1 Introduction 1
1.1 Contributions . 2
1.2 Outline . 4

2 Wireless Sensor Networks and Testing 5
2.1 Wireless Sensor Network (WSN)s 5

2.1.1 Sensor node hardware . 6
2.1.2 Sensor node software . 7

2.2 Data collection application . 8
2.2.1 Low-power Medium Access Control (MAC) protocols . 9
2.2.2 Collection Tree Protocol (CTP) 10

2.3 A WSN Model for sensor node placement 11
2.3.1 Related work on sensor node placement 11
2.3.2 Deployment model . 12
2.3.3 Evaluation . 15
2.3.4 Summary . 16

2.4 Validation . 17
2.5 Testing . 18

3 Testing of Wireless Sensor Network (WSN) applications 21
3.1 Multi-platform testing . 23

3.1.1 Multi-platform test framework 23
3.1.2 Feasibility Study . 24
3.1.3 Testcase . 25
3.1.4 Discussion and related work 26

3.2 Analyzing test executions . 27
3.2.1 Traces, Events and Event Analysis 28
3.2.2 Event Analysis . 29

viii Contents

3.2.3 Event analysis operators 29
3.3 Rupeas . 32

3.3.1 Domain Specific Language 33
3.3.2 Language implementation 33
3.3.3 Case studies . 38
3.3.4 Discussion and related work 41

3.4 Summary . 43

4 Test automation for sensor networks 45
4.1 Testing power consumption . 46
4.2 Background . 47

4.2.1 Error classification . 48
4.2.2 Continuous Integration 49

4.3 The Power Testing Architecture 49
4.3.1 Physical parameter extraction 50
4.3.2 Cognitive aids . 51

4.4 Formulating tests for power consumption 52
4.4.1 Reference-based evaluation 53
4.4.2 Power unit tests implementation 56
4.4.3 Discussion . 58

4.5 Related work . 58
4.6 Summary . 59

5 Model-based conformance testing of power consumption 61
5.1 Background Theory . 63
5.2 Power Trace Testing (PTT) . 67

5.2.1 Timed automaton models employed in PTT 67
5.2.2 Reachability check for verifying PTT conformance 71
5.2.3 Compositional modeling of the system model 74
5.2.4 Trace Automaton Optimization 78

5.3 Testing power consumption with TRON 82
5.3.1 Timed input/output conformance relation 82
5.3.2 Trace adapter . 84
5.3.3 Sampler process . 84
5.3.4 PTT execution with TRON 85

5.4 Case Study . 86
5.4.1 Modeling the Harvester 87
5.4.2 Testcases . 90

5.5 Empirical evaluation: Results and Benchmarks 92
5.5.1 Power trace models . 92
5.5.2 Experimental setup . 92
5.5.3 Uppaal results . 93
5.5.4 TRON results . 95

Contents ix

5.5.5 Uppaal versus TRON comparison 96
5.6 Summary . 97

5.6.1 Related Work . 98
5.6.2 Discussion . 98

6 PTT for communicating sensor nodes 101
6.1 Background Theory . 102
6.2 Scalability, an open issue . 103

6.2.1 Problem . 103
6.2.2 Property of the power trace model: No absorbing loops. 106
6.2.3 Property of low-power (embedded) systems: Recurrent

identifiable locations. 109
6.2.4 Segmented power trace testing 111

6.3 Case Study . 112
6.3.1 Testing communicating sensor nodes 113
6.3.2 Experimental setup . 116
6.3.3 Results . 116

6.4 Related work . 118
6.5 Summary . 119

7 Conclusions 121
7.1 Contributions . 121
7.2 Future work . 122

Bibliography 124

A Acronyms 139

B List of Publications 141

x Contents

1
Introduction

A Wireless Sensor Network (WSN) is a novel scientific and industrial moni-
toring instrument to sense physical phenomena. WSNs are distributed sys-
tems built of autonomous, yet cooperating embedded devices, so-called sensor
nodes, which each provide computational, communication and storage re-
sources. Advances in micro-electronics and wireless networking have allowed
to apply this novel sensing-centric paradigm to a wide variety of applica-
tions, e.g., for monitoring flora [LBV06], fauna [MPS+02] and geo-scientific pro-
cesses [WALJ+06], structures [XRC+04] and for medical applications [LrCC+09].
Deployments of WSNs have shown that the technology is applicable and fea-
sible for very different scenarios. However these deployments have faced
various issues in a real-world setting concerning system failures and outages,
e.g., due to energy depletion, and unsatisfactory quality-of-service [BRWR10].
While some of the experienced problems are simply due to improper casing
and environmental protection, many problems stem from the fact that sensor
networks present a new, challenging class of computer systems. WSNs are
deployed for unattended and often long-term operation. Hence, validation of
correct functioning of the system before the actual deployment is of utmost
importance. Validation of WSNs is particularly focused on system testing, i.e.,
software running on the sensor node hardware. Ideally, each possible state that
the system may reach must be explored.

WSNs are distributed systems of sensor nodes. Each sensor node can be in
a number of states depending on the complexity of the embedded software and
the software’s use of different operating modes of the hardware. Since sensor
nodes operate autonomously and thus highly concurrent, the resulting number
of system states grows exponentially with the number of sensor nodes. Hence,
exploring all systems states of a WSN is difficult. A further complication is

2 Chapter 1. Introduction

that the exact internal state of a sensor node is unknown, since for such an
embedded system interaction is only possible through few distinct interfaces.
This means that determining the exact state of a WSN is hard. WSNs use
wireless technology. Thus, message exchange is stochastic in nature, as wireless
communication can fail for various reasons such as interference and multi-path
effects. In summary, the huge state space combined with limited visibility into
the system and the stochastic nature of communication render validation of
sensor nodes complex and challenging.

Since the number of states to be explored is prohibitively large, validation
has focused on testing, i.e., a non-exhaustive method. Testing of WSNs tries to
find the presence of adverse system states. As such, the software is tested as
a whole typically on the actual hardware, yet without the intent to determine
the underlying cause of such an adverse system state. Testing has the benefit
that actual executions of the real system in a specific environment can be
analyzed. This allows tests to explore intricate details such as the effects of the
environment, the interaction of hard- and software and the physical properties
of the hardware.

The main goal of this thesis is to support the development process with
respect to testing. Up to now, research has focused on providing instru-
ments for the evaluation in form of dedicated testbeds [DBT+07, WASW05,
HKWW06, EAR+06, HHP+08], simulators [LLWC03, ODE+06, Bou07], and em-
ulators [TLP05]. This thesis extends this work by focusing on the automation
of the testing process given test platforms and by providing novel methods
and tools for the evaluation of test executions in order to determine whether
they show valid behavior with respect to a specification. The evaluation of
executions may concern functional properties, such as the amount of success-
ful collected data from the WSN, and non-functional properties, such as the
energy-efficiency of the system.

1.1 Contributions
This thesis presents methods and tools for testing WSNs and thereby support-
ing the development process of WSN software. As such the contributions of
this thesis in order of appearance are listed below.

1. Multi-platform testing
When developing a sensor network application, various testing tools are
employed at different stages of development: In the beginning an abstract
model is simulated. During development, software is run on real sensor
nodes on a testbed in different test configurations. A test framework allows
the same test to be executed on different test platforms. Testcases need to
be devised only once and the evaluation can be formulated and performed

1.1. Contributions 3

independently. A test framework is presented using two state-of-art tools:
a simulator and a testbed.

2. Event analysis for the analysis of test executions
Given a platform-independent test framework, individual test execu-
tions necessitate an analysis of individual runs. Event analysis provides
a platform- and application-independent analysis approach based on the
notion that during a test all sensor nodes log events that comprise in-
formation about the execution. A new programming language, called
Rupeas, is presented for analyzing test executions that exploits the event
analysis approach. Based on different testcases, it is shown how event
analysis can be used to evaluate test executions of a WSN application in
both, testbed executions and simulations.

3. Architecture for automatically testing for power consumption
Automation is one of the key requirements for software testing. However,
typical test automation does not consider non-functional properties such
as power consumption. Hence, an architecture needs to be devised that
automatically executes tests, measures power consumption of the system
and checks whether the measurements conforms to a specification. To
this end, an approach for detecting power consumption measurements
deviating from a reference-based specification is presented.

4. A model-based approach for testing power consumption
A ramification of a reference-based approach for checking power con-
sumption is that it requires the specification of a single, deterministic
reference for each testcase. In contrast, a novel, model-based approach is
presented that presents a general approach, which can be used for testing
of different physical phenomena, e.g., for testing WSNs. The method
is based on modeling a physical quantity and the system as timed au-
tomata extended with data variables. The theoretical background of the
methodology is presented along with implementations for investigating
the power consumption of a sensor node.

5. Testing communicating sensor nodes
When considering a model-based approach for testing sensor networks,
an integral part is the communication models of the individual sensor
nodes. The modeling of the communication has a significant effect on the
tests as well as on analyzing the results of a test execution. Based on a
sample application, models, issues and a mixed-testing approach are pre-
sented in order to allow for model-based testing for power consumption
of WSNs.

The work presented in this thesis is based on the following book chapters,
journal articles, conference papers ad technical reports: [BDL+07, BLM+09,

4 Chapter 1. Introduction

LWMB09, WBHB08, WBLT08, WBH07, WBT08, WBYT08, WLT09, WPBT07,
WPL+08, WPT09, WPT10]

1.2 Outline
The outline of this thesis is as follows: In the following chapter, details on
wireless sensor network state-of-the-art and background on software testing
is provided. Chapter 3 presents multi-platform testing to facilitate testing on
different platforms and introduces a novel methodology for analysis of log files
based on an event abstraction. The event abstraction is implemented in a novel
programming language and applied to testing a WSN application. Chapter 4
describes a novel architecture for automatically testing sensor networks, in
particular their power consumption. Apart from the test architecture, a novel
method is presented to evaluate measured power consumption of a WSN
test execution. This concept is further elaborated on in Chapter 5, where a
model-based conformance test is presented that allows a system to be tested
for power consumption. The theoretical background is presented as well as
implementations using two timed verification tools. Results on testing power
consumption of a sensor node are presented and compared for the two tools.
Finally, Chapter 6 extends these concepts to communicating sensor nodes. It
details further optimizations based on domain-specific properties. Chapter 7
concludes the thesis and provides an outlook on future work.

2
Wireless Sensor Networks and

Testing

This chapter presents a background on sensor networks and testing. In par-
ticular, it describes the hardware and software used in sensor networks and
presents an example of a sensor network application, which is used as a test ap-
plication in many of the following chapters. Additionally, this chapter details
on software testing as a specific method for performing validation.

2.1 Wireless Sensor Network (WSN)s

WSNs are embedded sensing systems deeply integrated into the environment
to cooperatively monitor a dispersed phenomenon. Data is collected and
forwarded to one or more sink nodes which typically have additional pro-
cessing, energy and storage resources and provide the ability to connect to a
secondary network acting as gateways. WSNs are used in various application
areas [RM04] with different requirements and environmental characteristics.

WSNs are networks built of (typically homogeneous) sensor nodes. In prin-
cipal, each sensor node provides: (i) sensors that collect some data and ADCs
to convert analog measurements into the digital domain, (ii) a timer subsystem
for time-driven functionality, (iii) a small microprocessor with limited mem-
ory, (iv) communication capabilities using RF technology, (v) limited energy
resources typically provided by a battery and (vi) flash storage. The sensor
node software adds a minimal operating system including hardware drivers

6 Chapter 2. Wireless Sensor Networks and Testing

Tmote IRIS TinyNode 184
MCU MSP430F1611 ATmega1281 MSP430F2417

Architecture 16 bit 8 bit 16 bit
Clock (max) 8 MHz 16 MHz 8 MHz

Program Flash 40 kB 128 kB 92 kB
RAM 10 kB 8 kB 8 kB
Radio TI CC2420 AT86RF230 SX1211

802.15.4 Yes No
Frequency 2.4 GHz 868/915 MHz
Data Rate 250 kbps < 200 kbps

Serial Flash 1024 kB 512 kB

Table 2.1: Different sensor node platforms and their components. The MSP430 family is man-
ufactured by Texas Instruments, the Atmel Family is manufactured by Atmel. The AT86RF230
radio is manufactured by Atmel, the SX1211 is manufactured by Semtech. All memory sizes
are shown in byte (B) or kilobyte (kB).

and a protocol stack typically up to the networking layer, and an application
layer.

2.1.1 Sensor node hardware
There have been various different WSN hardware platforms used in research,
but most of these sensor nodes fall into the mote-class [HSW+00]. These are
built of Commodity-Off-The-Shelf components integrated onto a board with
a small form factor. The cost of application-specific hardware renders custom
design for individual projects economically infeasible. Typical sensor nodes
feature a Microcontroller Unit (MCU) with a very low sleep power e.g., the
Atmel AVR or the TI MSP430 as shown in Table 2.1. The processing power of
the 8 or 16 bit microcontrollers is fairly limited, comparable to microprocessors
in the 1970s.

Sensor nodes feature low-power radios for wireless communication in the
ISM bands1. In particular, radios based on the IEEE 802.15.4 standard have been
popular. Radios provide abundant bandwidth for typical sensing applications
with a few bytes every couple of minutes [BGH+09] as indicated in Table 2.1.
However, this bandwidth comes at a cost, since the radio is usually the major
consumer of energy. Table 2.2 indicates that the radio consumes an order
of magnitude more power than the MCU and multiple orders of magnitude
more power when communicating than when being in a low-power mode.
Additionally, the radio often consumes a large amount of power regardless of

1The ISM radio bands are internationally reserved for the unlicensed use of RF technology
for industrial, scientific and medical purposes.

2.1. Wireless Sensor Network (WSN)s 7

Components Platform current draw (mA)
MCU Radio Tmote MicaZ IRIS TinyNode

on RX/Idle 23.0 27.7 24.0 3.5
on TX 21.0 25.4 25.0 25.1
on low-power 2.4 8.0 8.0 4.2 (@8 MHz)

low-power low-power 21.0 · 10−3 16.0 · 10−3 8.0 · 10−3 2.5 · 10−3

Table 2.2: Current draw values for different states of the Microcontroller (MC) and the radio
of a Tmote Sky, a Crossbow MicaZ, a Crossbow Iris node and a TinyNode 184. Datasheet
values at highest transmission power are shown for the radio. These values are measured for
a constant supply, i.e., they are proportional to the power consumption of the sensor node.

whether it receives, sends or just listens to the channel as exemplified with the
CC2420 radio. For this reason, radios are often transferred into a low-power
mode, where no communication is possible. This so-called duty cycling trades
off available bandwidth for reduced energy consumption. Low-power radios
provide limited transmission range in the order of tens of meters (without
special antennas). Hence, to cover a large area it is not possible that every node
can directly communicate with a sink node. Rather a multi-hop, mesh-network
needs to be established. The mesh allows collaborative forwarding of the data
to the sink.

Sensor nodes are typically energy-constrained, i.e., running on batteries. In
some cases, energy can be harvested from the environment. However, except
for specific scenarios [CVS+07], harvested energy is not abundant and hence
there is still a tight bound on available energy.

Memory on sensor nodes is limited. In addition to volatile Random Access
Memory (RAM) memory, sensor nodes provide additional non-volatile flash
storage. This additional data memory allows for temporarily storing measure-
ments, e.g., when communication is temporarily not possible or for archiving
data for post-deployment validation [BGH+09].

2.1.2 Sensor node software
The availability of standard platforms and economical restrictions of custom
hardware design has resulted in an increased focus towards the embedded
software. Sensor node software can be categorized in two main classes: (i) the
communication stack including application logic and (ii) the operating system
including drivers. In the following, an OSI network model for the protocol
stack is used. Hence, the physical layer is provided by the radio hardware, the
data link layer is handled by the MAC protocol and the network layer uses
typically a many-to-one (convergecast) routing protocol. From layers 4-6, only
the Transport Layer has seen limited use for applications where data needs to

8 Chapter 2. Wireless Sensor Networks and Testing

be transferred reliably [PG07]. The application layer comprises the application
logic responsible for local sensing, processing of data and passing data to the
network layer.

Software needs to exploit low-power states of the hardware components to
drastically minimize the power consumption. Application-specific optimiza-
tions are pushed towards the software design, in particular the communication
protocols, rendering protocol design a lively field of research. As described,
the radio is typically the major consumer of power on a sensor node. MAC
Protocols are responsible for duty-cycling the radio. Hence, energy-efficient
MAC protocols have been extensively researched [Lan08]. An additional con-
sideration for the protocol stack is reliability. As wireless communication is
influenced by communication losses due to (internal and external) interference,
multi-path fading, etc., reliability is added to the protocol stack. Mechanisms
include (single-hop) message acknowledgments combined with retransmis-
sions from the MAC or Routing Protocol or even end-to-end acknowledgments
provided by a transport layer [PG07].

While the individual protocol layers are conceptually independent, there is
very close interaction and dependencies between individual protocol layers of
a sensor node [ZFWT10]. Optimization of the stack often requires a compre-
hensive analysis by studying cross-layer dependencies, e.g., [MLM+05].

Apart from the communication stack, the second class of sensor network
software is the operating system, which typically includes drivers for given
sensor node platforms. Operating systems for WSNs are designed very lean
due to the scarcity of resources. Hence, these operating systems, e.g., [LGH+05,
DGV04], restrict themselves to minimal capabilities such as interrupt handling,
thread scheduling and simple computation such as packet processing. Since the
underlying hardware architecture does not provide sophisticated mechanisms,
such as address translation and access protection, many features that typical
operating system offer cannot be provided on a sensor node.

The dominantly used, open-source TinyOS [LGH+05] is a prominent exam-
ple of a sensor network operating system. TinyOS natively provides a two-level
concurrency model with interrupt routines, which can be either preemptive or
non-preemptive, and a separate non-preemptive queue for deferred procedure
calls, so-called tasks. A separate preemptive threading library [KLP+09] addi-
tionally allows programmers to use thread-based programming. Additionally,
TinyOS provides a set of libraries, including various MAC, routing and security
protocols as well as different applications.

2.2 Data collection application
In order to evaluate many of the novel methods and tools presented in this
thesis, a test application is necessary, which is representative for a whole class

2.2. Data collection application 9

of applications. Hence, data collection is considered, which is the principal task
for sensor networks in monitoring, e.g., of the environment [MPS+02, BGH+09]
or buildings. A test application from the predominant operating system TinyOS
is selected: This application, the so-called MultihopOscilloscope application, per-
forms local measurements (like an oscilloscope) and sends aggregated measure-
ments back to a sink via multiple hops. The sink forwards all received packets
over the serial port to a host PC or a gateway. Data collection is evaluated
based on the data yield, i.e., how much of the data sensed and sent on each of
the sensor nodes actually arrives at the sink node.

MultihopOscilloscope uses the Collection Tree Protocol (CTP) [GFJ+09] on
the network layer, further described in Sec. 2.2.2. The basic variant of Multi-
hopOscilloscope used in this thesis uses a CSMA protocol on the data link layer.
In a nutshell, a CSMA protocol listens to the carrier before sending a packet.
However, collisions may still occur due to hidden-terminal effects. A CSMA
protocol performs no duty-cycling.

In some testcases an energy-efficient variant of the MultihopOscilloscope
application, the so-called Harvester [LWMB09], is used as a test application.
The energy-efficiency of Harvester comes from the use of a low-power MAC
protocol described below.

2.2.1 Low-power MAC protocols
Energy-efficient operation of the MAC layer necessitates trading off bandwidth
of the radio for energy consumption by periodically turning off the radio.
This so-called duty-cycling determines the energy consumption as well as the
available bandwidth. However, two nodes that want to communicate still need
to perform a rendezvous, i.e., one sending and the other one being in receive
mode at the same moment in time.

There are basically two fundamental types of MAC protocols: Those that
organize the rendezvous times and those that do not. The latter is the class of the
so-called random-access MAC protocols for which nodes independently select
a point in time, when they wake up for receiving a packet. An energy-efficient
subclass of random-access protocols is the family of Low-Power Listening (LPL)
protocols. In these protocols, the receiver periodically, yet independently of
its neighbors, wakes up every TW (the wake-up time) and listens for ongoing
traffic. A sender ready for a transmission starts to send a preamble at a given
point in time to signify intent of transmission to any waking up sensor node
in the environment. All nodes sampling the preamble stay on until the actual
packet transmission. In order to guarantee that the sender can address its
receiver, the preamble must last for (a little longer than) TW. After the preamble
is finished, the actual data packet is sent [PHC04].

The LPL scheme can be further improved when using a packet-based ra-
dio as in XMAC [BYAH06]. The preamble consists of individual packets that

10 Chapter 2. Wireless Sensor Networks and Testing

0

1 1 1

2 2 2 2 2

U
ps

tre
am

D
ow

ns
tre

am

Sink

Leaf nodes

Figure 2.1: Simple Tree built on the distance vector. The distance metric is the hop count.

contain the address of the intended receiver. Hence, any node that is not
addressed can go back to sleep. Additionally, packets can be directly acknowl-
edged allowing the receiver node to give an early acknowledgment as soon as
it receives the first preamble packet. This reduces the average preamble length
by a factor of two. A further step to increase energy efficiency is to synchronize
the sender to its receivers. WiseMac [EHD04] uses packets extended with time
information to estimate the wake-up times of communicating nodes. In turn,
this estimation can be used to start transmitting packets only shortly before the
intended receiver wakes up.

Note that all of these optimizations only work in unicast transmissions, i.e.,
when there is a single addressed receiver. For broadcast operations, all LPL
protocols need to transmit the message for a whole wake-up time TW. Hence,
for energy-efficient MAC protocols, broadcast messages are considerably more
expensive than unicasts [Mei09]. Harvester uses a synchronized LPL MAC
protocol similar to WiseMac [EHD04] on packet-based radios, sending the data
packet directly instead of a dedicated preamble packet [LWMB09].

2.2.2 Collection Tree Protocol (CTP)
In the test application, the Collection Tree Protocol (CTP), which is included
in the TinyOS distribution, is used for data collection. Data collection relies on
the network layer establishing a routing tree that allows nodes to send their
data to one or more sink nodes in a multi-hop fashion.

While CTP features elaborate mechanism for efficiently maintaining a rout-
ing tree even over unreliable links, for this discussion it is only important that
it is a distance-vector based protocol, i.e., each node maintains a notion of dis-
tance to the destination, the sink. Nodes periodically broadcast their distance
to the sink via so-called beacons, so that neighbors can send their data to a
node that is closer to the sink (or the sink itself). An example of such a tree
is depicted in Fig. 2.1. In this case, the distance metric is the hop count. CTP
has a more fine-grained distance metric that also evaluates the link quality to a
neighboring node to determine the distance.

2.3. A WSN Model for sensor node placement 11

In conclusion, the MultihopOscilloscope application refers to collection us-
ing CTP and a Carrier Sense Multiple Access (CSMA) MAC protocol. Similarly,
the Harvester application performs data collection using CTP on top of a syn-
chronized LPL MAC protocol.

2.3 A WSN Model for sensor node placement
For analyzing WSN deployments, models can support the design process. In
the following, the deployment problem of sensor nodes is described, which
can be stated as: “How many wireless sensor nodes should be used and where
should they be placed in order to form an optimal wireless sensor network
(WSN) deployment?”. The problem of how to distribute sensor nodes to cover
a certain area with as few nodes as possible but still provide reliable commu-
nication paths from each node to a data sink is studied. Before presenting a
model based on state-of-the-art research on wireless communication and how
it can be utilized with randomized search heuristics, related work is discussed.

2.3.1 Related work on sensor node placement
Several approaches for the deployment of WSNs have been proposed in the
literature. However, there is no work employing a realistic deployment model
for nodes and the environment and at the same time exploring the intricate
trade-offs between connectivity and cost, while guaranteeing coverage of the
deployment area.

For example, [DCI02] and [SY05] present algorithms to improve the de-
ployment coverage. Both papers do not consider deployment connectivity and
the corresponding trade-offs. [WXZ+03] present the integration of communi-
cation and sensing coverage whereas [Jou06] looks at coverage and lifetime.
Both works use communication models that are limited to a simplistic homoge-
neous Euclidean distance model. [BKX+06] proves the asymptotic optimality of
a stripe-based deployment pattern for different ratios of sensing range to com-
munication range. The latter approaches of [WXZ+03], [Jou06], and [BKX+06]
are based on simplifying assumptions, as discussed by [KNG+04]. [RVMM05]
uses a more realistic communication model and, in addition, investigates the
trade-offs with respect to energy consumption. However, only points on a
spatial grid are considered as possible node positions.

None of the related work addressing the coverage problem considers the
complex trade-off between reliability of communication and deployment costs.
To the best of our knowledge, only [KGGK06] consider coverage, cost and
communication in a realistic scenario. The authors present a polynomial-
time, data-driven algorithm using non-parametric probabilistic models called
Gaussian Processes. Since their work requires sensor and link quality data

12 Chapter 2. Wireless Sensor Networks and Testing

collected at an initial deployment, the work of [KGGK06] complements the
approach presented in this thesis, as the presented approach can determine an
optimized deployment without any preceding data collection.

2.3.2 Deployment model
The considered deployment model is divided into two parts, an environment
model and a model for a set of homogeneous sensor nodes. The environment
is represented by a data sink to which all the sensor readings need to be
communicated and an area of interest that is to be monitored. This area of
interest is outlined by a polygon and represented by a set of points of interest.
The area of interest is covered by sensors if every point of interest lies within
the sensing range of at least one node. Note, that the proposed formulation
explicitly allows sensor nodes outside the region of interest, although they only
contribute to the improvement of routing paths.
Communication: The radio model is derived from the prior work of Zu-
niga et al. [Zun04, ZK07] and the work of Zhou et al. [ZHKS06]. Zuniga et al.
present in [ZK07] an analysis of packet reception rates in low-power wireless
links. In particular, the authors present an analysis of asymmetry in wireless
links. Additionally models for the different regions in wireless communication
are presented: the connected region, where connectivity is almost perfect, the
transitional or gray region, where reception is very dynamic and the discon-
nected region where communication is not possible. While the expected packet
reception rate decreases with distance, a significant variance in the transitional
region requires a stochastic perception by defining probability thresholds for
low/high probability of low/high packet reception rates 2. The transitional re-
gion coefficient defines the ratio of the transitional to the connected region. The
transitional region coefficient is independent of noise floor and output power.
These models were previously used in other WSN communication studies such
as [OSFC07]. [ZHKS06] presents the Radio Irregularity Model (RIM) to account
for radio irregularities in WSNs. This is mainly due to anisotropic path losses
caused by the non-uniformity of the environment, and heterogeneous sending
powers, mainly due to device differences caused by manufacturing variations.
They present the effect of this model on protocol layers, such as MAC, routing,
localization and topology control. They introduce three different parameters:
The degree of irregularity (DOI) models the anisotropy by describing the max-
imum path loss percentage variation per unit degree change in the direction of
propagation and the corresponding variation with incremental changes. The
Variance of Sending Power (VSP) and the Variance of DOI values (VDOI) ac-
count for the heterogeneity of nodes.

2The disconnected region typically has a packet reception rate threshold (PRR) larger than
0, since links with low PRR incur too many communication losses to be of any practical use.

2.3. A WSN Model for sensor node placement 13

Based on this priori work, the deployment model for each node k ∈ {1, . . . ,n}
includes:
• A node’s position as 2-dimensional coordinates (xk, yk),
• a radio model to describe transitional regions in communication. The

packet reception rate is computed in detail as a function of the distance d
between the nodes as follows, cf. [Zun04]. The signal to noise ratio (SNR)
is defined as

γdB(d) := Pt − PL(d0) − 10η log10

(
d
d0

)
+N(0, σ) − Pn

The packet reception rate (PRR) follows as:

PRR(d) := (1 −
1
2

e−
γ(d)

2 ·
1

0.64)8 f ,

where Pt,PL(d0), d0, σ,Pn, f are constants. Note that γ(d) is not used in dB
in the equation and must be calculated as 10(γdB/10). η is dependent on
the degree of irregularity (see below), which is a function of the angle. It
follows that:

η = η(DOI) = η0 · Ki,

where Ki is the path loss coefficient in the direction of the transmission,
• a degree of irregularity (DOI), describing the anisotropy of radio commu-

nication due to the anisotropic medium and hardware variances, which
is used to adjust the path loss η. DOI is defined as the maximum path
loss percentage variation per unit degree change in the direction of the
radio propagation. In [ZHKS06], Ki (i ∈ N) is defined as a coefficient to
represent the difference in path loss in different directions 3:

Ki :=


1, if i = 0
Ki−1 ± R ∗DOI, if 0 < i < 360,

where
|K0 − K359| ≤ DOI

R is a random variable, uniformly drawn from [−1, 1]. The code shown
in Listing 2.1 is used in the presented node model to determine DOI.

• an elliptic sensing region per sensor type, defined by the sensing radius
rsense,

• an area of interest, in this study outlined by a polygon and represented
by a set of points of interest.

The settings for individual parameters are described in [WBH07].

3Although not mentioned in the original paper, there needs to be the requirement, that Ki ≥

0. This is not reflected in the pseudo-code of the algorithm below.

14 Chapter 2. Wireless Sensor Networks and Testing

K[0:359] = (1,1,1,1,...)
for i in 0 to 359 do:
random = uniform(-1,1)
K[(i+360-2) mod 360]+= 0.4*random*DOI
K[(i+360-1) mod 360]+= 0.8*random*DOI
K[(i+360) mod 360]+= 1.0*random*DOI
K[(i+360+1) mod 360]+= 0.8*random*DOI
K[(i+360+2) mod 360]+= 0.4*random*DOI

Listing 2.1: Code for determining DOI. uniform is a function that returns a random number
from a uniform distribution in the interval defined by its parameters.

Furthermore, there are two optimization criteria for the deployment prob-
lem additional to the requirement that the deployment area must be covered
by sensor nodes.
Sensor Cost: Each sensor node that has to be placed causes costs, i.e., for
production, deployment, and maintenance. Since one is interested in a cost-
effective solution, the first optimization criterion is to minimize these costs and
thereby the number of nodes. In a first approach, a cost of ’1’ is associated with
each node. Therefore, the number of nodes n is used as the first optimization
criterion:

f1 = n (2.1)

Transmission Failure Probability: The sensor readings need to be continu-
ously communicated from the nodes to the data sink. Thus, each of the nodes
needs a reliable routing path to the data sink; if the sink lies outside of the radio
range of a specific node, its routing path contains intermediate nodes which
forward the message to the sink. Since wireless communication is susceptible
to communication failures between nodes, e.g., due to interferences or node
failures, not only the reliabilities of the best routing paths are necessary to be
optimized but redundant transmission paths of high reliability as well. Instead
of maximizing the connection reliability, here the dual criterion of minimizing
the transmission failure probability is considered:

f2 =
1
W
·

Nred∑
j=1

w j · (1 − pworst, j) (2.2)

with W =

Nred∑
j=1

w j

Equation 2.2 scores the difference between the worst transmission path pworst, j

on redundancy level j to an optimal path with transmission probability 1.
Therefore, minimizing this criterion ensures that there is a preference for node
placements resulting in high transmission reliabilities; it explicitly allows for
assigning different weights w j to connections on different redundancy levels j.
In turn, f2 is normalized with the sum of these weights W.

2.3. A WSN Model for sensor node placement 15

200m

Sink

Sensor nodes

200m

Figure 2.2: Two non-dominated solutions of sensor node placements for the same area of
interest outlined by a polygon. Nodes are marked by circles and the sink is indicated by a
square. Both solutions are part of the set of non-dominated solutions shown in Fig. 2.3. The
left solution corresponds to an objective vector of (f 1, f 2) = (18, 0.5827) while the network
on the right has objective values (f 1, f 2) = (61, 0.0016).

The path reliabilities of the Nred most reliable paths between all nodes i and
the sink are computed as follows: For each node i, the most reliable path to
the sink and store its corresponding reliability pi,1, are determined by using
Dijkstra’s algorithm. Afterwards, all nodes of this path except source and sink
are deleted; this procedure iteratively repeats until Nred paths are found or no
longer a path exists (if less than Nred paths are found, all missing paths are
assigned a probability of zero).

2.3.3 Evaluation
The presented model can be used for exploring the design space of WSN
deployments with respect to node placement. Trade-offs between the number
nodes and the connection reliability can be explored by using an off-the-shelf
Multiobjective Evolutionary Algorithm (MOEA) [Deb01]. In this work, the
MOEA IBEA by [ZK04] is used, as it is provided in the PISA framework of
[BLTZ03]. Some domain-specific adaptations of the MOEA are performed. For
details the interested reader is referred to [WBHB08], which elaborates on the
adaption of the MOEA to the new search space, including a novel variation
operator based on Voronoi-diagrams.4

In optimization problems with many objectives, solutions are compared
using the pareto dominance relation [Deb01]. A solution dominates another
solution if it is not worse in any of its objectives and better in at least one of them.
The MOEA was evaluated based on a test scenario, i.e., a deployment of sensor
nodes in an area of interest as shown in Fig. 2.2. Fig. 2.3 shows that the MOEA

4The original work contains an extensive parameter evaluation. In the context of this work,
only the best parameterization with crossover probability κ = 1.0 and mutation ratio ρ = 3 : 1
is discussed.

16 Chapter 2. Wireless Sensor Networks and Testing

15 20 25 30 35 40 45 50

10−3

10−2

10−1

100

f1 = number of nodes

f 2
=

tra
ns

m
is

si
on

 fa
ilu

re
 p

ro
ba

bi
lty

Figure 2.3: Non-dominated solutions. To improve readability, the y-axis is plotted in log-scale.
Solutions that are non-dominated over all runs are depicted as large circles. As an example,
the dark circle depicts the solution shown on the left of Fig. 2.2.

provides a set of non-dominated solutions for this scenario. Figure 2.2 depicts
two example solutions from this non-dominated set exemplifying the trade-off
between few nodes and a high connectivity. As an example, the right solution
shows that due to the requirement of redundant paths to the sink, multiple
nodes may be placed side-by-side in spaces that are critical for routing. The
left solution corresponds to an objective vector of (f1, f2) = (18, 0.5827) while
the network on the right has objective values (f1, f2) = (61, 0.0016).5

2.3.4 Summary
The proposed MOEA shows its capabilities in identifying a broad range of
trade-offs between number of nodes and transmission reliability (see Fig. 2.2
and Fig. 2.3) while satisfying the constraint of sensor coverage. The presented
test scenario indicates that the MOEA provides valuable support for planning
a sensor network deployment. A specific real-world application where this
support would be valuable is the design of a WSN for fire detection: for this
type of WSN it is required to guarantee reliable data transmission on at least two
redundant paths to ensure that no fire alarm gets lost. On the other hand, the
number of nodes affects recurring costs: maintenance is expensive, especially
when considering that some of the nodes may be placed in locations that are
difficult to access. This is where the proposed MOEA can help by providing

5In Fig. 2.3, the left solution is indicated by a dark circle, the right solution is not depicted
since it is outside the plotted area.

2.4. Validation 17

good trade-off solutions that help the sensor network planner to decide on the
most desirable solution.

The planning of a deployment is merely the first step. The major challenge
for a sensor network is a correct, energy-efficient and autonomous operation.
Hence, the main question addressed in this thesis is how it can be checked
whether a deployment of a WSN system actually works.

2.4 Validation
The process of checking whether a WSN system deployed in a given environ-
ment operates correctly is called validation. More specifically:

Definition 2.1 (Validation of Wireless Sensor Networks). Validation concerns the
process of checking whether a deployment of a WSN satisfies its specification. The
specification includes different functional and non-functional properties that need to
be ensured under differing environmental conditions.

Various classes of methods have been previously proposed to address vali-
dation of generic computer systems. Each of these classes has a set of idiosyn-
crasies that make them more or less suitable for use in WSN validation. The
major classes include:
• Formal verification: Formal verification uses mathematical descriptions

of the systemM as well as desired properties φ and verifies that the sys-
tem satisfies these properties: M |= φ. As such, formal verification is an
exhaustive method. The two main approaches for formal verification are
(a) enumeration and search of the state space of a model or (b) deduction
on inference systems, i.e., using axioms and inference rules [KS08]. This
class of methods uses abstraction to trade off complexity, computability
and fidelity of models.

• Static analysis: Static analysis abstracts away from actual executions of
a system and statically approximates a set of possible executions. The
approximation renders such methods inexact. Due to the approximation,
some properties may be true for a system, but not in its approximation or
vice-versa. Analysis trades off complexity, computability and precision.

• Testing: Testing uses executions of the system and checks specific prop-
erties based on information about the executions. Hence, testing typically
requires some instrumentation to extract information. Instrumentation
may however interfere with the execution. This interference is partic-
ularly likely for access-limited embedded systems. However, tests on
real devices can reveal problems created by the intricacies of the inter-
action of hard- and software that have been the root cause for failed
deployments [BRWR10, BISV08, CLWL06, LBV06]. Measurements can

18 Chapter 2. Wireless Sensor Networks and Testing

be integrated with tests to quantify physical properties of a system exe-
cution. Measurements can often be performed without instrumentation,
but require additional, costly equipment.

• Simulation: Simulation uses models of a system and its environment on
different abstraction levels. Models are executed to either study specific
runs and their properties, e.g., for testing, or may be used for statis-
tical evaluations. Simulation requires executable models necessitating
assumptions about a system and its properties. Simulations can trade-
off complexity, i.e., simulation speed, for fidelity. For both, simulations
and system executions, only a subset of possible states can be checked in
practice; hence, both are non-exhaustive.

For validating a WSN it is of utmost importance to validate every aspect
of the system in particular implementation details such as hardware/software
interaction. Additionally, WSNs are inherently best-effort systems due to their
use of the wireless medium and typically accept violation of properties with a
low probability, e.g., there is no guarantee on successful message transmissions.
Hence, the focus of this thesis is on validating different aspects of the realization
of the system such as physical properties of sensor nodes. Rather than being
exhaustive, deficiencies due to intricacies of the implementation shall be un-
covered. For detecting deficiencies in design, implementation and of physical
properties of the system, testing is the primary choice. While this thesis focuses
on testing, different validation methods are integrated to assist sensor network
development. As such, Chapter 3 presents an integration of simulation and
testing in a framework, while Chapter 5 shows the integration of testing, taking
measurements and formal methods to test the power consumption of sensor
nodes.

2.5 Testing

Testing is a very general term mostly referring to an execution of the software
and the evaluation of a test run given a test criterion. Myers [Mye79] defines
testing as the process of executing a program with the intent of finding errors. To
better understand the exact semantics of the definition, an error is defined as
the system entering a state that deviates from the expectations with respect
to some criterion. This erroneous state is triggered by an underlying defect
in the software; however not all defects generate an error [Par97]. In order to
determine erroneous behavior a specification of expected outcome is necessary.
Such a specification may be employing formal models (cf. Chapter 5) or merely
the assumptions of the developer. In this thesis, the definition of testing is
refined to:

2.5. Testing 19

Definition 2.2 (Testing of Wireless Sensor Networks). Testing is the process of
executing a program with the intent of finding errors of the WSN system comprising
hardware and software with respect to a specification of observable behavior.

Basically, testing is experimentation using dedicated testcases. A testcase
is an execution in a specific environment and under given operating condi-
tions, e.g., typical or corner-case scenarios. In practice, testing can never be
exhaustive and cannot ensure complete correctness. Rather, specific testcases
are selected in order to increase the confidence in the quality of the software.6

Testing is the dominantly used validation method and is one of the most time-
consuming tasks in software development typically estimated as taking from
30% up to 70% of the development process [Bei90, PY08, Tre08].

Testing of sensor networks can be perceived as black-box testing. Embedded
systems, e.g., sensor nodes, only interact via dedicated inputs and outputs.
Low-level interfaces such as JTAG, UART or I2C are used for access to inter-
nal state. Software can be instrumented with test monitors to expose some
internal state [BRWR10]. This necessitates off-system logging, since RAM is
considerably limited on the sensor nodes and flash access can interfere with
system execution. Similarly, on sensor node platforms sharing a bus for the
serial interface and the radio such as the Tmote Sky, monitor output may also
interfere with the communication stack. In order to avoid system perturbation,
test monitors are used restrictively to the smallest set of outputs required to
deduce test success. Hence, access to an embedded system must be limited
necessitating black-box testing. This also implies that monitoring, test outputs
and thus test evaluation are highly application-specific.

Testing a particular run of a black-box system relies on input-output oracles
to evaluate whether a given execution was erroneous or not. Such oracles or
checkers can be on functional properties, which is addressed in Chapter 3, or
non-functional properties, as described for power consumption starting from
Chapters 4.7

The evaluation of test runs, addressed in the following chapters, is a hard
problem: Rice’s Theorem explains that in general, any nontrivial property
about software running on a computing system is undecidable.8 The state-
space explosion and the black-box nature of WSNs render exploring all systems
states as well as determining the exact state of a WSN difficult. Additionally,
in WSN testing non-functional properties such as timing constraints or power
consumption have to be considered. Moreover, the stochastic nature of wireless
communication exacerbates the complexity of testing.

6In theory, there are test generation algorithms that are sound and exhaustive [LMN04,
ST08]. Nevertheless, only a subset of tests will be selected for actual execution.

7In the software testing literature, non-functional properties are often referred to as perfor-
mance tests.

8More rigorously, any nontrivial property about the language recognized by a Turing ma-
chine is undecidable due to the halting problem.

20 Chapter 2. Wireless Sensor Networks and Testing

3
Testing of Wireless Sensor

Network (WSN) applications

When developing a WSN application, there are several possible options in the
development process. The typical goal is an application running autonomously
on tens to hundreds of WSN nodes. Usually, such a large-scale application is
developed by simulating a small number of nodes first. After the simulation
passes a set of tests, the developer faces two options: either the application is
refined and implemented on a testbed, or the simulation is extended to include
more WSN nodes. Detailed simulation and emulation of WSNs requires signif-
icant computational resources. Hence, large-scale WSNs can be simulated only
with a reduced accuracy and fidelity of the simulation results with reasonable
effort. In general, porting an application that has been validated in simulation
to the testbed is not trivial, due to inaccurate simulation assumptions, limited
debugging capabilities of the testbed, and the resource constraints on the wire-
less sensor nodes. In summary, various testing tools, so-called test platforms,
are employed at different stages of development as illustrated above with sim-
ulation and testbed experiments. However, tests are developed individually
for each of the different test platforms.

Motivated by many reported pitfalls [CLWL06] and discussions with in-
dustrial partners, it is argued that a systematic development approach accom-
panied by an end-to-end test methodology is key to build sustainable WSN
systems. The proposed new test methodology enables a development team to
continuously monitor the correctness of an implementation. The implemen-
tation of the new methodology in a test framework allows for testing WSNs
on different platforms as shown in Fig. 3.1 by exploiting so-called test plat-

22 Chapter 3. Testing of Wireless Sensor Network (WSN) applications

Test Framework

Te
st

ca
se

:
Sp

ec
ifi

ca
tio

n
of

 te
st

 in
pu

ts

an
d

ex
pe

ct
ed

 o
ut

pu
ts

Test platform 2
(Testbed)

Test platform 1
(Simulator)

...

Application

Test platform
adaptor 1

Pass
or

Fail
Test platform

adaptor 2

...

Figure 3.1: The test framework allows testcases to be executed on different platforms by ex-
ploiting test platform adaptors. A unified specification of test inputs and expected outputs
allows for checking executions on different platforms such as a simulator and a testbed.

form adaptors. The unified test specification, which includes test inputs and
expected outputs, are bundled with the WSN software into a testcase. This
methodology enables automated testing.

In the first part of this chapter, the methodology and its implementation in
a framework for testing in a simulator and on a testbed is presented. A crucial
part of the test framework (and testing in general) is the analysis and validation
of the information logged during a system execution. Test platforms, simu-
lators such as TOSSIM [LLWC03] and testbeds such as Motelab [WASW05]
and the Deployment Support Network (DSN) [DBT+07], feature different log-
ging mechanisms and formats. In all cases, the test data collected by the test
monitors during a test execution are centrally available for offline analysis.
However, system tests result in a large amount of log data, necessitating ade-
quate tools to analyze the logs. An analysis needs to consider the details of the
application, which data is logged, and the test platform. However, the analysis
of logged data is typically performed with ad-hoc scripting, which lacks rigor
and hence reusability.

To this end, the second part of this chapter presents a new programming lan-
guage for analyzing log data of WSNs. The Rupeas language, a Ruby Powered
Event Analysis facilitates analysis of WSN logs by using an event abstraction
for each log message. In turn, the log or trace is a set of such events. Rupeas
provides operators to process sets of events to extract behavioral information:
For example, starting from individual send and receive events logged while
routing packets, a Rupeas query can extract the actual routing paths of each
packet and determine whether and where a packet was lost along the way. By
exploiting a domain-specific abstraction, Rupeas provides a simple and concise
notation. Rupeas allows users to analyze executions from different platforms,
i.e., it is agnostic of actual test platforms and logging mechanisms and analyses
generic log files.

3.1. Multi-platform testing 23

3.1 Multi-platform testing
In this section, a methodology is proposed that allows testing WSN software
on different test platforms. This methodology is based on providing generic
test-platform adaptors for individual test platforms. Tests are specified in a
unified format. Hence, this methodology allows for:

1. describing testcases valid across multiple test platforms in a common
specification supporting testcase design and reusability throughout the
development process, and

2. executing the testcases automatically on several test platforms allowing
for test portability and comparability.

Before presenting an implementation of the test framework in a feasibility
study, details on the methodology are provided.

3.1.1 Multi-platform test framework
The multi-platform testing methodology bases on the idea to integrate self-
testing capabilities into tests. Self-testing is achieved by explicitly specifying
the inputs and the expected outputs of the software under test in an executable
format. This enables full automation of the test procedure. Automated testing
promotes frequent execution of the tests and enables the developer to continu-
ously compare the implementation’s behavior with the specification.

A test framework can utilize such a methodology to employ a unified test-
case as shown in Fig. 3.1. The same testcase can be executed on different test
platforms: real hardware, such as a testbed, or a simulator. The simulation can
target different levels of abstraction, e.g., pure functional simulation, functional
simulation with a refined radio channel model, cycle-accurate execution on an
instruction-set simulator, etc. The framework does neither implement nor
imply the capability to automatically translate a system or its model across ab-
straction levels. Instead, the framework provides the mechanism, so-called test
platform adaptors, that allow testcases that are valid on different abstraction
levels to be executed on the respective platforms. Note that these test-platform
adaptors need to be created only once for a given platform. However, these
adaptors rely on functionality provided by the test platform and wrap this com-
mon functionality such as logging some information into a unified interface.
The resulting reusability of the application-specific test specification promotes
multi-platform testing.

The framework uses a distinction of the System Under Test (SUT), drivers
stimulating the SUT, monitors observing outputs of the execution and checkers,
which analyze and evaluate the execution to determine whether a test satisfied
the specification. The test procedure is partitioned into three phases [WPBT07]:
test preparation, test execution, and result checking. In a nutshell, preparation

24 Chapter 3. Testing of Wireless Sensor Network (WSN) applications

Testbed adaptor

Simulation adaptor

Simulator

Testbed

Test driver
and control Test monitor Test checker

Simulator
executable
(n nodes)

compile for
simulation

cross-compile

Testbed data-
base

formatting

test
log

python i/f

Sensor node
executable

DSN access
channel

post-processing

DSN access
channelDSN access

channel
Distributed

instrumented
targets

Pass
or

Fail

file monitor

distributed
monitoring

TinyOS 2.x
application

distribute
and program

XML-RPC

Figure 3.2: Example framework implemented using a testbed and a simulator. Starting point
is an application (here TinyOS 2.x) on the left. The common test control logic executes
tests either on the simulator or the testbed and collects execution results into a test log in a
common format. Test platform adaptors (annotated in grey with a dashed outline) provide
a common interface to a test platform for the test control components. The checker on the
right determines the final verdict whether the test passed some conditions.

initializes the test platforms and performs instrumentation of the SUT. During
the actual execution each SUT is stimulated by a driver and execution is moni-
tored. In the result checking phase, the information logged by the test monitors
is collected, post-processed and evaluated. Result checking is the focus of the
Rupeas language presented in the second part of this chapter.

3.1.2 Feasibility Study
For studying the feasibility of the proposed framework, two commonly used
platforms for WSN testing, a standard WSN simulator and a testbed are se-
lected. For the simulation a code simulator for TinyOS applications is chosen:
TOSSIM [LLWC03]. It is a prominent example of an event-driven simulator
allowing to use the actual TinyOS application code. For the testbed platform,
the Deployment Support Network (DSN)[DBT+07] is selected using Tmote Sky
Sensor nodes.

Figure 3.2 depicts the test flow for the example application with a unified
testcase, and the corresponding tool chain for the two test platforms including
the test-platform adaptors. The starting point of the test flow is a TinyOS 2

3.1. Multi-platform testing 25

application. In a pre-processing step, the generic test primitives are replaced
by platform-specific test framework interfaces. The driver for the simulation
communicates with TOSSIM via the built-in python interface and generates
monitor output in a common format to a log file. The testbed infrastructure
provides a service that the test driver uses to communicate to the sensor nodes
via an XML-RPC interface. A TinyOS-based test monitor is developed as part
of the testbed adaptor to probe variables and state changes via its Universal
Asynchronous Receiver/Transmitter (UART) interface. A database collects the
distributed monitor information from the DSN and thus provides a common
data access point for post-processing. The common output format for both DSN
and TOSSIM allows testcases to use the same checker for both test platforms.
The checker outputs a pass or fail notification based on the previously specified
requirement.

3.1.3 Testcase
The testcase for the feasibility study checks the data yield of the Multihop-
Oscilloscope application (cf. Sec. 2.2). In this testcase, the application addition-
ally includes a dissemination protocol that allows the sink to broadcast updates
to all nodes in the network. In particular, it defines 10 Tmote Sky sensor nodes
set up in a typical office environment. The TOSSIM radio model parameters re-
flect the topology and communication characteristics of this environment. The
parameter fitting is based on data from previous link quality measurements for
the Tmotes [MRBT08].

At the beginning of the test, the test driver powers on all target nodes.
A local enable flag controls the generation of measurement packets, i.e., it
determines whether a sensor node sends its measurements to the sink. Initially,
the flag is disabled, i.e., no measurements are sent. After an idle interval,
allowing CTP to setup the routing tree, the test driver sets the enable flag on
the sink node and nodes send their local measurements. Sensor data is collected
for a predefined duration. Subsequently, the enable flag is disabled again and
the testcase ends after a phase-out interval for collecting data in transmission.
The target monitors log the following information, each with a timestamp: (i)
The sending of data packets including the sensed measurements (ii) packet
forwarding to the host via the serial port on the sink node including the actual
packet over the serial port, (iii) a boot event including code version and node
id, and (iv) enable flag changes. The checker uses the monitor information
from item (i) and (ii) above to derive the average data yield. The pass or fail
condition defined in this testcase is an average data yield of 90%.

Each testcase ran 40 times on both test platforms. Running a testcase on
the simulation platform takes about 0.5 min (on an IBM ThinkPad T42 laptop)
whereas a run on the testbed takes approximately 11 min. The test time differ-
ences are due to differences in the execution time on the platform and significant

26 Chapter 3. Testing of Wireless Sensor Network (WSN) applications

0 5 10 15 20 25 30 35 40
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Test Runs

D
at

a
yi

el
d

of
 te

st
 e

xe
cu

tio
n

(in
 %

)

TOSSIM
Testbed

Figure 3.3: 40 independent test runs ordered according to the resulting data yield. 32 out of 40
simulation results passed the test criteria of an average data yield ≥ 90%.

overheads in pre- and post-processing steps in particular code distribution and
target programming for the testbed platform. These overheads motivate the
aggregation of testcases to test suites in order to mitigate the overhead of these
expensive operations.

Figure 3.3 presents the test results. Additional to the binary checker output,
indicated by the horizontal line, the average packet yield derived by the checker
is displayed. The data in the graph is sorted with respect to the data yield to
point out its distribution. While 20% of the TOSSIM testcases fail, no test result
on the testbed platform passes the defined criterion. The simulation assesses
the data yield overly optimistic. This is due to a simplified modeling of the
wireless channel in TOSSIM, e.g., no temporal variability. The distributions
of yields for both platforms follow a similar trend but differ significantly in
absolute values.

3.1.4 Discussion and related work
A first feasibility study shows that a multi-platform test framework is feasible.
By exploiting generic test adaptors with a unified interface for the specifica-
tion, tests can be ported across different test platforms. This relies on the test
platforms providing the same functionality; in this case, a platform adaptor is
simply a wrapper around the given functionality. One of the benefits is shown
in the feasibility study: Test results are comparable across test platforms and
can be used to verify the fidelity of test platform assumptions, here for the

3.2. Analyzing test executions 27

simulator. On the other hand, tests are often designed to be platform-specific,
exploiting particular features of a platform, e.g., the scalability of a simulator
or measuring actual power consumption of a sensor node. A multi-platform
test framework does not provide any benefit for such tests, since they are not
portable across platforms.

While this work is the first approach to provide a test framework, two related
approaches have been researched that are complementary to the proposed
methodology. Zhao et al. [DCG08] discuss a design framework with Que.
Their framework enables rapid prototyping and provides some functionality
for performance evaluation. Que and the test framework could be combined
to provide a comprehensive design and testing tool. Osterlind et al. [ODE+06]
present a cross-level simulator. Multi-platform testing could be easily included
in such a framework extending the tool into a comprehensive testing tool.

One of the caveats of a multi-platform test framework is the evaluation of
test execution logs, i.e., to determine from the monitored information whether
a test passed or failed. This is exacerbated when using different node- and
test-platforms. In the following, a methodology based on an event abstraction
is presented which addresses this problem in detail.

3.2 Analyzing test executions
A crucial part of a test is the analysis of the information monitored during
the execution of a system. However, this information is dependent on: (i)
the specific SUT, (ii) the test monitors and (iii) the test platform used. While
the latter point may be handled by a test framework described above, there
is always a dependency on test monitors and so-called logging policies, i.e.,
which data is logged and its meaning with respect to the application. As an
example the relation between send and receive events may be studied. A
transmission typically associates a sent log message on a node and a received
log message on the intended receiver. However, depending on the logging
policy, i.e., where the sending of the message is monitored, the resulting log
differs considerably. Logging on the link layer results in sent messages, which
have no corresponding received messages, since a transmission may fail. On
the network layer a message is only logged as sent if the message has actually
been received on the receiver node, i.e., there is a one-to-one correspondence.
On the transport layer only the final destination node logs a receive indication.
Hence, the analysis needs to consider the logging policy and be able to describe
the semantic information of logged information. Since tools and languages
need to adapt to the employed logging policy, in practice ad-hoc scripts are
often used for analyzing execution logs. However, for increasing reusability of
analyses across different tests and test platforms, a more rigorous approach is
needed.

28 Chapter 3. Testing of Wireless Sensor Network (WSN) applications

Global
Event Trace

Local
Event Trace

Event
Monitoring

Sensor
Nodes

n1 n4n2 n3

E = E1 ∪ E2 ∪ ...

E1
E2

E3
E4

. . .

Figure 3.4: Data is logged from individual nodes ni into a totally-ordered local event trace Ei.
These traces are joined into a global event trace E. Since logging from the nodes is concurrent,
events in E are partially ordered.

The remaining of this chapter presents a novel programming language
Rupeas that allows users to analyze execution traces of WSN systems. This
section presents the underlying event framework, which provides the following
contributions:

1. is a generic framework for the analysis of WSN logs allowing independent
of logging policies, test and test platforms and

2. provides flexible domain-specific operators to describe application-, test-,
and platform-specific analyses.

Before presenting Rupeas in Sec. 3.3, this section describes the event ab-
straction and the corresponding operators on event sets. The event abstraction
allows Rupeas to be independent of the monitoring and trace formats and is
reusable across projects and platforms.

3.2.1 Traces, Events and Event Analysis
Events symbolize instantaneous information provided by the test monitors
during execution. An event e is defined as a single instance produced by a test
monitor on one of the k sensor nodes in the system, which are denoted as nodes
ni, i = 1 . . . k. As such, events may be test-, application- and platform-specific
and hence must be variable in their structure. Examples of events include
state changes induced by local code execution such as variable assignments
and function calls, state changes induced by external events such as messages
either sent or received and (periodic) snapshots of current state.

An event e is a k-tuple (k ≥ 2) of key-value pairs, which minimally comprises
a node identifier signifying the origin of the event and a type identifier to
classify the event. Further attributes of an event are appended as additional
key-value-pairs.

3.2. Analyzing test executions 29

e = (node : nodeid, type : typeid, key1 : value1, . . .)

The notation e.key1 denotes that event e features a key named key1 and that
the corresponding value is: value1 := e.key1. Events of a single type have a
consistent format. As an example, a reboot event logged on node n10 at time t =
10789 may be represented by the 3-tuple (node : n10, type : reboot, time : 10789)

Events are logged on all instrumented nodes. The collection of events from
node ni is a local event trace Ei, which is the set of all events that occurred on the
node during test execution. Figure 3.4 shows the process of collecting events
from individual nodes and comprising them into the global event trace. The
global trace E is the union of the collected event sets E =

⋃k
i=1 Ei.1 Local event

traces are totally ordered by the (sequential) execution of tasks on each sensor
node. However, sensor nodes operate concurrently and only synchronize
sporadically, e.g., through message exchange. Hence, events from different
sensor nodes may be concurrent, which means that the global event trace is
partially ordered. Order information may be included in the event attributes
such as recorded timestamps in case a global clock is available.

3.2.2 Event Analysis
A detailed analysis of a large event set is tedious and error-prone. Event anal-
ysis alleviates this problem by allowing a systematic approach: By iteratively
processing event sets, behavioral aspects of a system are extracted from the
global event trace. Figure 3.5 shows an example for this process considering
an analysis of all paths of routed packets. Starting from the event set E as the
input to the analysis, first the communication events are filtered into a set C.
For each event a hop count key is added (with initial value 0), resulting in a
set CH. In turn, the event set is processed to yield a set of routing paths RP,
from which the set of successful routes SP and the set of failed routes FP can be
determined. The outputs of the analysis are such processed event sets, which
provide extracted behavioral information. Each processing step uses a specific
set operator.

Figure 3.5 also shows that additional processing outside of the event analysis
framework may provide debugging and performance information such as the
average hop count of successfully routed packets. This can be achieved by
embedding event analysis into a scripting language.

3.2.3 Event analysis operators
Event analysis processes events in event sets to extract behavioral informa-
tion. It offers typical set operators such as union, intersection and relative

1Sets are denoted with upper-case letters, while events are denoted with lower-case letters.

30 Chapter 3. Testing of Wireless Sensor Network (WSN) applications

send/receive

Event set RP
Routing
Paths

Average Hop
Count

Input

Output

Rupeas

Event set E

F

Event set C
Communi-

cation
T

Event set HC
Add Hop

Vount
P*

F

Further
analyses

Most
frequently

failed nodes

Event Set FR
Failing
Routes

Event Set GR
Good

Routes

Figure 3.5: Event Analysis: From a logged event set E specific behaviors of a test execution are
extracted, e.g., the good routes GR and the failed routes FR.

complement. Additionally, event analysis offers three domain-specific opera-
tors especially tailored for processing WSN event sets. Each of the operators
specifies which events in the base set it processes using a selection predicate ϕ.
Selected event are processed using a transformation function f . In the following
description, S denotes the input set for the operators. R is the result set, i.e.,
the output of a given operator.

Definition 3.1 (Selection Predicate). A selection predicateϕ(A),A ⊆ S is defined
on a subset of events and uses relations on the values of specified event keys
for selecting events from a base set S.

In a nutshell, predicates select events based on their intrinsic information.
In order to select a reboot event from the event trace, the following predicate
is used: ϕ({s}) := s.type = ”reboot”
Predicates may also be defined on multiple events, e.g., to define a send-receive
relation: ϕ({s, r}) := s.destination = r.nodeid ∧ s.type = ”send” ∧ r.type = ”receive”

3.2. Analyzing test executions 31

Base Set S

Result Set
R

Result Set
R

Fixed Point
Iteration

Base Set S

Result Set
R

Base Set S

Filter Operator Set Transformator Fixed Point Processor

F T P*

Figure 3.6: The three event analysis operators process an event set S into a resulting set R.

Definition 3.2 (Transformation function). A transformation function is a func-
tion f : 2S

→ 2S on an event set A ∈ 2S returning an event set A′.

A transformation function is used to either (1) add information to events in
A or to (2) merge the events in A into a compound event. As an example, to
join a send and its corresponding receive event into a compound event (e.g.,
e11 and e21 in Fig. 3.7), a transmission, the event is transformed to maintain
information from both events a1 = (node : ni, type : ”send”, sendid : integer) and
a2 = (node : n j, type : ”receive”):
g(A) = {e|a1, a2 ∈ A ∧ e.node = a2.node ∧ e.type = ”transmission” ∧ e.sender =
a1.node ∧ e.receiver = a2.node ∧ e.sendid = a1.sendid}
The three domain-specific event analysis operators are defined as follows:

Definition 3.3 (Filter operator). The filter operator allows to select a set of
events into a subset based on the values of event keys. Filtering is performed
on a single set S. The operator returns a single set R, containing the events that
satisfy a given predicate ϕ(s).

R = {s|s ∈ S ∧ ϕ(s)} (3.1)

Definition 3.4 (Set transformator). The set transformator allows to select a
subset A from an input set S by using a predicate ϕ(A). Selected events are
processed based on a transformation function f . Processed events are added
to the result set R.

R = {e|e ∈ f (A) ∧ A ⊆ S ∧ ϕ(A)} (3.2)

The set transformator operates on a selected subset of events, i.e., one or
more.

Definition 3.5 (Fixed point processor). The fixed point processor computes
the least fixed point of a given function on an event set and produces a result
set. Selection and processing of events in a single iteration is performed as
described for the set transformator. Iteratively, the sets Ri are computed, until

32 Chapter 3. Testing of Wireless Sensor Network (WSN) applications

e11 e12 e13

e22 e23 e24

e31 e32 e33

e26

e34

n1

n2

sink

e21 e25 e27

Send event Receive event

e28

e35

sensor node

Figure 3.7: Using sending and receiving events to iteratively determine the routing paths. The
node where a packet originates is denoted as the origin, e.g., node n1 for the path starting at
e11.

a fix point is determined, i.e., Rk = Rk−1. All events that are not selected by the
predicate are maintained for each iteration.

R0 =S

Ri ={e|e ∈ f (A) ∧ A ⊆ Ri−1
∧ ϕ(A)}∪

{e|@A ⊆ Ri−1 : e ∈ A ∧ ϕ(A)}, i ∈N, i ≥ 1

(3.3)

A main application of the fixed point processor is to determine routing paths
as shown in Fig. 3.7. Iteratively, send and receive events are joined satisfying a
given predicate such as having the same origin and the same sequence number.
Fig. 3.6 illustrates the three operators as they are used in the initial example of
event analysis for routing analysis shown in Fig. 3.4.

3.3 Rupeas
Rupeas (Ruby powered event analysis) design goal is to provide a simple,
concise notation by using the domain specific abstraction of event analysis.
Rupeas provides the following contributions:

1. It enables an automated analysis and checking of event traces.

2. It uses an event abstraction, which allows the formulation of tests to be
independent of logging policies and sensor node platforms.

3. Rupeas is a language especially designed for WSN event trace analysis.
It facilitates writing analyses using a concise, declarative notation.

Rupeas does not impose any structure on the monitoring and its formats.
With merely adding a simple event parser, Rupeas is usable for any project.
Even heterogeneous logging is supported as described in Sec. 3.3.3. Moreover,

3.3. Rupeas 33

it is targeted for integration into a larger test (cf. Sec. 3.1) or design [DCG08]
framework. Hence, Rupeas needs to be integrated with a scripting language
allowing for typical testing tasks such as test automation, data processing and
visualization. To this end, Rupeas is integrated with a scripting language:
Ruby.

3.3.1 Domain Specific Language
Event analysis is an abstraction using the notion of events and event sets. This
domain specific abstraction can be used for formulating a Domain Specific
Language (DSL). The basic idea of a DSL is to facilitate the use of a language
by focusing on the domain-specific tasks, here processing of event sets, rather
than providing a general purpose language. Examples of DSLs include the
query language SQL, make and ant for building software and CSS for web
design. DSLs are categorized based on whether they have a custom syntax
such as SQL and make, or if they are embedded into a host language. Due to
its embedding, Rupeas can leverage Ruby’s flexible syntax, which facilitates
developing internal DSLs with a large degree of freedom on program structure.

Nevertheless, Rupeas is a language specifically designed for the analyzing
event sets: it is a DSL with a dedicated purpose. As such, Rupeas leverages the
semantic model of event analysis to process event sets. It extracts behavioral
information to analyze test executions. Using Rupeas provides a four-fold
benefit:
• The event analysis is written in a specifically designed concise language

with clear semantics and reduced syntactical noise.
• Supplementary processing and analyses can be formulated in Ruby.
• Rupeas can be easily extended in Ruby, e.g., for plotting results2 and

statistical analysis3.
• Rupeas is valid Ruby syntax and thus immediately usable on platforms

providing Ruby interpreters such as Linux and Mac OS X.

3.3.2 Language implementation
The Rupeas DSL uses a separate context to define the starting point of an event
analysis. The Listing below shows the inclusion of the Rupeas library and the
creation of the context.
require ’Rupeas.rb’ #Load Rupeas language definition
Rupeas.new do
#Sandboxed Rupeas context
end

2http://rgnuplot.sourceforge.net/
3http://rubyforge.org/projects/rsruby/

http://rgnuplot.sourceforge.net/
http://rubyforge.org/projects/rsruby/

34 Chapter 3. Testing of Wireless Sensor Network (WSN) applications

Type :senddone do
 with :name=>:seqNo, :fieldtype=>:periodic,:range=> 0..255
 with :name=>:origin,:fieldtype=>:integer, :range=> 0..100,:notification=>:error
 with :name=>:dest, :fieldtype=>:integer, :range=> 0..100,:notification=>:warning
 with :name=>:nodeid,:fieldtype=>:integer, :range=> 0..100,:notification=>:error
 with :name=>:time, :fieldtype=>:float, :notification=>:warning
end

 key type range notification level

Figure 3.8: Declaration of :senddone events in Rupeas.

The context provides for a sand-boxed execution of Rupeas scripts, i.e.,
Rupeas functionality is only valid within the context. The Rupeas library
provides amongst other things event and event set classes and the definition of
event set operators. The library contains 4 ruby files with ≈ 1300 lines of code.

3.3.2.1 Event Declaration

In Rupeas, users declare each event type in a trace to be analyzed. Rupeas
automatically parses the event traces based on the event declaration; the event
trace format is a flat file with individual event entries as displayed in Fig. 3.9.
Each event lists its properties, with the first column signifying the event type.

Rupeas declares event types in a "Type" block: Each property of a type
is specified by its name, its type, acceptable values and notification levels on
outliers. Types include the basic types (integer, float and strings) with the
addition of a ":periodic" type, which can be used for wrapping integers,
e.g., counters, commonly found in embedded systems, for conversion into a
long integer. Notification levels for input trace format problems include a
":warning" and an ":error". Warnings only display a message and the cause
for the warning, while errors stop the analysis. As an example, a send event as
shown in Fig. 3.8 specifies that each :senddone key is followed by a periodic-
type sequence number in the range of 0 to 255. The experiment features 101
sensor nodes. In case the there is an event with a :nodeid outside the range
0 . . . 100, Rupeas stops the analysis with an error assertion.

3.3.2.2 Processing event sets

Filtering in Rupeas is as simple as selecting events from a set. Either, events
are selected based on having a specific key or by the value of a specific key as
shown in Listing 3.1.
select all events having an : origin key
originevents = all[:origin]
select all events having a : type key with value :senddone
sends = originevents[:type=>:senddone]

Listing 3.1: Filtering :senddone events from an event set all in two steps

3.3. Rupeas 35

 ...
 51 receive 0 50 51 6.009753
 50 senddone 0 50 51 6.009921
 44 receive 0 34 44 6.009966
 34 senddone 0 34 44 6.010134
 62 receive 0 72 62 6.010889
 27 receive 0 28 27 6.010983
 72 senddone 0 72 62 6.011057
 28 senddone 0 28 27 6.011151
 ...

:node :type :seqNo :origin :dest :time

Figure 3.9: Event trace excerpt annotated with event keys.

From a set of all events only the (communication) events featuring an
:origin key are selected. Subsequently the events are filtered that feature a
:senddone type.

The set transformator and the fixed point processor are specified on a given
set, e.g., theall event set in line 2 of Listing 3.2. In this case the set transformator
(":transform") returns a set, which is assigned in this case to the event set
routestart. It is specified as a block, with the number and name of events it
processes, here only sending. The selection predicate is specified using two
constraints on the sending event. The start of a routing path is selected, hence
the event must be a :senddone event and its node identifier must match the
origin of the packet. If such a route start event is selected, its type gets changed
to :route. As described before, a fixed point processor is similar to a set
transformator but iteratively performs the transformation until a fixed point is
reached. Hence, in Rupeas the only difference of a fixed point processor to a
set transformator is an ":iterative" indication on the according code block
as shown in line 9 of Listing 3.2.

Selection predicates are differentiated depending on their usage: Con-
straints ("constraint") are global invariants on the set. Selections ("select")
specify predicates, which depend on the specifics of the events in the set.
Selections only allow for conjunction of terms. Selections are composed by
disjunction into a compound predicate.4 An example for selections is shown in
Listing 3.2 for determining the actual route in the ":iterative" step. The as-
sociation of individual send and receive events depends on the current events
in the set: In Fig. 3.7, e11, a :senddone event is first merged with e21, a :receive
event, forming a :route. This :route event is subsequently merged with the
:senddone event e22 and so on. Note that in this case, the selection depends on
the current state of the processing of the set. As an example of a global invari-

4This means that selections are formulated in disjunctive normal form.

36 Chapter 3. Testing of Wireless Sensor Network (WSN) applications

1 #Setup the start of taken routing paths
2 routestart = all.transform do |sending|
3 constraint sending[:type]==:senddone
4 constraint sending[:origin]==sending[:nodeid]
5 merging :type=> :route, :nodeid=>sending[:nodeid], :seqNo=>sending[:seqNo],

:origin=>sending[:origin]
6 end
7

8 # Iterate through transmissions and forwarding
9 routes = routestart.transform(:iterative) do |send, recv|

10 constraint send[:origin] == recv[:origin]
11 constraint send[:seqNo] == recv[:seqNo]
12 select send[:dest]==recv[:nodeid] and send[:type]==:route and

recv[:type]==:receive
13 select recv[:nodeid]==send[:nodeid] and recv[:type]==:route and

send[:type]==:senddone
14 merging :type=>:route, :nodeid=>recv[:nodeid], :seqNo=>send[:seqNo],

:origin=>send[:origin], :dest=>send[:dest]
15 end

Listing 3.2: Rupeas code for the routing paths analysis. A complete path is represented by its
origin and its final destination but not intermediate nodes. A set transformator determines
all events that start the path a packet is routed on through the network (lines 2-6). The fixed
point processor iteratively builds up the taken path of the packet by associating transmissions
across nodes and forwarding on nodes (lines 9-15).

ant, the packets must always feature the same sequence number and origin.
Hence, this is specified as a constraint in the :iterative step of Listing 3.2.

Transformation functions are restricted to only generate new events, e.g.,
based on the events selected by the predicate. These new events may either be
simply added (in Rupeas by using the keyword "create") or replace existing
events (using "merge"). Transformation functions are specified in terms of
resulting events: Each event generated is specified as key-value pairs of the
constituent selected events. As an example, Listing 3.2 shows how the start
of a packet route is determined. First, the event must indicate a sent packet
(:senddone, line 3) and secondly, the origin of the event must match its node
identifier (line 4). The transformation function maintains the inherent informa-
tion in the event, but changes the type to :route to mark the route start (line
5). The fixed point processor (line 9) associates a send and receive event. Only
packets with the same sequence number and origin are joined (lines 10-11).
Now a given event is joined either with a new sent event on the same node
(line 12) or with a receive event of a node to which a message is sent to (line 13,
sending[:dest] == receive[:nodeid]). Finally, the events are merged into
a :route event (line 14), which may be further processed in a further iteration.

3.3. Rupeas 37

3.3.2.3 Implementation details

Rupeas works on large sets of events. Hence, an implementation should be
concerned with providing efficient algorithms. An optimization of Rupeas
speeds up the execution of operators. Rupeas constraints specify when selec-
tion predicates hold globally and can internally perform a partitioning of the
set for a considerable speed-up (cf. Listing 3.2).

This optimization is illustrated on the routing paths example depicted in
Fig. 3.7. Each taken path has a dedicated start (origin) and some destination.
Typically, the path of a packet is uniquely identifiable e.g., by a sequence
number, which needs to be the same across all logged events and is reflected
in the selection predicate (constraint sending[:seqNo] == receive[:seqNo]). For
exemplification, it is assumed that there are k nodes each node sending l packets
to the sink. Assuming an average hop count of m, each packet incurs and
average number of m transmissions (one from the origin node and m− 1 times
forwarded by other nodes). Each transmission incurs 2 logging events, one
sending event and one receiving event. Hence, the total number of events n is
in the order of n = k ·l ·m ·2. For determining the paths, the fixed point processor
is used. In each step of the fixed point processor a sending or a receiving event is
joined into the route event (cf. Listing 3.2). However, the fixed point processor
iteratively selects any two events from the event set and tries to match them
based on the selection predicate. In the worst case, the fixed point processor
needs to examine each pair of events before finding a match or stopping if
there is no match and hence no change. A naive approach for the fixed point
processor on the complete set of transmission requires in such a worst case a
substantial number of evaluations: ((k · l ·m ·2)−1)!.5 On the other hand, before
applying the fixed point processor the set of all transmissions events can be
partitioned based on the origin node and the sequence number information in
each event. This results in small subsets that only contain events that were sent
from the same origin node and feature the same sequence number. The fixed
point processor needs to perform considerably fewer operations and builds
each of the k · l taken routing path individually: k · l · ((m · 2) − 1)!. Note that
typically k >> m and l >> m, so savings are significant. As a small example
for a deployment of 10 nodes each sending 5 messages and approximately 3
transmissions per message, a naive approach would take 149! ≈ 4 · 10260 fixed
point processor steps, while the partitioned approach requires 6, 000 steps in
the worst case.

5The worst case is just used for illustration. The average case will typically be substantially
better, however the benefits of the approach remain.

38 Chapter 3. Testing of Wireless Sensor Network (WSN) applications

Type :senddone do
with :name =>:nodeid,:fieldtype=> :integer, :range => 0..25
with :name =>:destination, :fieldtype => :integer, :range => 0..25
with :name =>:origin, :fieldtype => :integer, :range => 0..25
with :name =>:seqNo, :fieldtype=> :periodic, :range => 0..255
with :name =>:ack, :fieldtype => :string
end
Type :received do
with :name =>:nodeid,:fieldtype=> :integer, :range => 0..25
with :name =>:destination, :fieldtype => :integer, :range => 0..25
with :name =>:origin, :fieldtype => :integer, :range => 0..25
with :name =>:seqNo, :fieldtype=> :periodic, :range => 0..255
end
Type :drift do
with :name =>:nodeid,:fieldtype=> :integer, :range => 0..25
with :name =>:neighborid, :fieldtype => :integer, :range => 0..25
with :name =>:interval, :fieldtype => :integer, :range => 0..25
with :name =>:absolute_drift, :fieldtype => :float
with :name =>:drift_in_interval, :fieldtype => :float
end

Listing 3.3: Harvester specific events collected on each node (without notification levels).

3.3.3 Case studies
In the following, event analysis is shown on two different examples using the
Harvester and the MultihopOscilloscope application (cf. Sec. 2.2).6

3.3.3.1 Debugging the Harvester

In the first part of the case study, the Harvester application is tested for Tmote
Sky sensor nodes using the Deployment Support Network (DSN) [DBT+07].
Data is forwarded to a single sink. In this case study, heterogeneous logging is
performed: the sink node directly logs to a PC via the serial interface, while the
logs of all remote nodes are collected via the DSN. Listing 3.3 shows the event
types that are produced by the instrumented Harvester application. Receive
and send event types are extracted from the TinyOS 2 event handlers for a
path and data yield analysis. Measurement events allow for drift analysis as
described in this case study. The following analysis focuses on the Harvester
with respect to its data yield and its energy-efficiency determining the system
lifetime. The events collected for this case study are rather generic. Thus, the
case study is representative for a large class of WSN operating systems, sensor
nodes and test platforms.

6The first part of the case study is performed with EvAnT [WPL+08], the predecessor of
Rupeas, which is based on the same event analysis operators. Hence, the results are directly
transferable.

3.3. Rupeas 39

60

22

2

5

6

7

8
9

10

11

13

0
23

21

26
29

30
31

33

40

41 42

43

44

61
53/75

5/7

66/159

5/13

422/599

244/357

629/1118

205/790

Sink

Figure 3.10: Acknowledged and total number of sent packets for selected nodes.

The data yield is determined for multiple experiments performed using 17
nodes, each running for 3 hours. The experiments show that the average data
yield for each node is higher than 78%, with nodes in the one-hop neighborhood
having an average data yield higher than 90%. A further analysis shows
the interesting result, that for the different tests on average each data packet
required between 2.6 and 5.2 transmission. For a static network, this number
of sent packets should be stable. This indicates a considerable message loss
along the routes, which is counteracted by frequent retransmissions. While the
effect on the data yield is still tolerable for Harvester, the retransmissions are
very expensive with respect to energy. Nevertheless, both results necessitate
a deeper analysis of the underlying MAC layer. The analysis of one 17-node
experiment took approximately one minute on a MacBook (2GHz Intel Core 2
Duo / 1.5 GB RAM) running OSX 10.5.1 and Python 2.5.1.

A subsequent MAC analysis evaluates the energy-efficiency of the LPL
protocol. Figure 3.10 shows results from a 12 hour test run for a selected part of
the network. The sink, which is not shown in the figure, is positioned to the left
of the nodes. Each link is annotated with the acknowledged and total number of
packets sent along this link. In an ideal setting (perfect synchronization and no
interference) each packet should be sent only once and should be acknowledged
immediately. The discrepancy between the total number of packets and the
number of acknowledgments indicates that the synchronization of sender and
receiver does not work properly. While interference problems are also possible,
previous measurements on the testbed and current test results indicate that
this is considerably less likely. Hence, an in-depth analysis of the wakeup time
estimation and the time drift detection was performed.

The drift measurement data is computed from measurement packets, which
are exchanged by neighboring nodes to determine the clock drift. In a scenario
with perfect synchronization for each node pair (n1,n2) n1 measures the same
absolute drift of the local timebase to the timebase of its neighbor n2. That is, if
node n1 determines the drift of node n2 as +τ, node n2 will compute a drift of

40 Chapter 3. Testing of Wireless Sensor Network (WSN) applications

ID 29 40 41 42
29 - -0.964 0.932 -
40 0.949 - 0.095 -1.676
41 0.444 0.812 - -1.012
42 - -0.201 0.140 -

Table 3.1: Drift in ppm for selected nodes.

−τ. Thus, in a perfectly synchronized scenario the computed drifts add up to
0.

The test is run twice for 24 consecutive hours and the results are accumulated
in a single event set. A total of 494,316 events are collected. Table 3.1 shows that
certain links are synchronized accurately (e.g., 29 and 40 and nodes not shown
in the table), while some links are totally off (40 and 42). Hence, the analysis
shows that while the overall data yield is tolerable, the implementation of the
synchronized LPL stack needs improvement concerning the drift measurement
and interpretation. One of the problems can be attributed to a time-stamping
problem of the CC2420 driver as discussed on the TinyOS mailing list [M+07],
where corrupted or stale timestamps might be applied to a packet.

3.3.3.2 Routing paths analysis

As another example of an analysis of a data gathering application, Rupeas is
applied to data from simulating MultihopOscilloscope with two sink nodes
in TOSSIM [LLWC03]. Some of the questions Rupeas can answer are: Which
paths were data packets actually sent on? What is the average hop count? Are
packets routed equally among the sinks? To this end, CTP is instrumented
to log sent and received packets. The simulation topology is a 70 node grid
(cf. Fig. 3.11) including two sink nodes (D2, D7). The simulation uses gain
and noise models based on USC’s Realistic Wireless Link Quality Model and
Generator7. The log file and input for Rupeas captures data from a 6 hour run
resulting in over 2 million events.

The analysis features two basic steps: Loading the event trace using the
event description (cf. Fig. 3.8) and using the fixed point processor (cf. List-
ing 3.2). Rupeas allows for filtering routing paths for final destination, route
selection and hop count. The main results obtained are visualized in Fig. 3.11,
where all nodes are indexed by their row (A-G) and column (0-9) position8: It
depicts the yield of each individual node and the sink it mainly sent packets to.
The overall yield in simulation is high (99.6%) and the traffic is generally routed
evenly among the sinks: sink D7 receives moderately more packets (52.7%).

7http://anrg.usc.edu/www/index.php/Downloads
8As an example, the node where the routes originate from is node B4.

http://anrg.usc.edu/www/index.php/Downloads

3.3. Rupeas 41

D2 D7

0.991 0.995 0.993 0.989 0.996 0.997 0.997 0.996 0.994

0.989 0.999 0.998 0.991 0.995 0.998 0.998 0.996 0.999

0.998 0.999 0.999 0.999 0.999 0.998 0.998 0.999 0.999

0.998 0.999 0.998 0.993 0.998 0.996 0.999

0.997 1.000 0.999 0.994 0.991 0.984 0.999 0.999 0.999

0.997 0.998 0.998 0.995 0.991 0.997 0.999 0.999 0.997

0.984 0.994 0.993 0.987 0.984 0.995 0.998 0.998 0.998

 Part of route
 Yield for node

0.993

0.998

0.999

0.998

0.999

0.998

0.997

Routed to D2: 47.3%
Routed to D7: 52.7%

 Routing to D2
 Routing to both
 Routing to D70.984

0 1 2 3 4 5 6 7 8 9

A

B

C

D

E

F

G

Figure 3.11: Visualization of the routing paths analysis performed with Rupeas.

Most nodes route their packet to a single sink, except node B4 and node E5,
which send to both sinks (e.g., node B4 sends 50.4% of its packets to sink D2).
The yield for those nodes, especially B4, are nevertheless high. Hop counts for
the individual routes differ considerably. For node B4, packets are routed via
minimally two and maximally six intermediate hops (average: 5.303). When
considering average hop count per origin node, the longest average routes to
sink D2 are from node G5 (≈ 6 hops) and to sink D7 from node A8 (≈ 7 hops).
Hence, Rupeas shows that CTP provides a high data yield for all nodes and
routes traffic evenly among the two sinks in this test scenario.

3.3.4 Discussion and related work

Rupeas allows users to perform common analyses of test executions, e.g., for
data collection applications described above: What is the data yield from each
node? What do the routing paths look like? Are the routing paths efficient?
Such analyses can be performed by Rupeas even for multi-sink systems as
shown in Sec. 3.3.3. As an example, routing paths are determined by formu-
lating a relation on send and receive events gathered in traces. Rupeas does
not rely on any information about a specific application and test platform, but

42 Chapter 3. Testing of Wireless Sensor Network (WSN) applications

rather generates all routing paths by applying user-specified relations on event
sets. Further analysis on these productions identifies the desired information,
e.g., average routing path length to determine efficiency.

Previously proposed approaches cannot help with such analyses: Diagnos-
tic simulation [MKAG08] using data mining techniques on simulation data,
can help you with outlier detection, but does not provide a comprehensive
analysis. Note also that outlier detection relies on statistics and learned good
behavior for detection, while Rupeas looks at individual executions and de-
termines success based on domain knowledge. As such Rupeas is similar to
assertions on distributed, global state [LHL08, RR08]. While event based ap-
proaches analyze causal and temporal sequences, i.e., patterns, signifying a
specific behavior, such global state-based approaches focus on snapshots of
the distributed state, i.e., at a certain instant in time. Hence, these state-based
approaches are rather targeted at identifying problems such as selection of a
parent of the routing protocol, but cannot help in the analysis of taken routes.
Another difference is that with assertions, the collection of information and
analysis and oracles are tightly coupled. Even tighter integration is intended
with Wringer [TCLS08], a debugging system running on individual nodes,
utilizing dynamic instrumentation and collecting global information through
in-band communication. At its core a Scheme interpreter is used for evaluating
debugging scripts, using predicates to determine localized state conditions.
Rupeas takes a different approach: The monitoring and information collection
is decoupled allowing for running different analyses on the same monitoring
data and analyses from different test platforms.

Health monitoring tools ([RB06, RCK+05]) allow for detecting and de-
bugging failures by providing and communicating additional state informa-
tion. They extend the communication protocol to provide collaborative, au-
tomatic maintenance and recovery of WSNs after deployment. The main tar-
get is to provide online health monitoring for typical data collection applica-
tion in an energy-efficient manner by providing common failure indications.
MoMi [dJWL09] provides run-time monitoring support using a model-based
diagnosis framework for detecting abnormal conditions during execution. Ru-
peas’ approach is orthogonal, since testing and event analysis is targeted for
development, i.e., pre-deployment, and provides an analysis framework for
testing various WSN applications on different test platforms.

Analysis tools from other domains, e.g., wired distributed systems, typically
have large requirements on the instrumentation of a system. As an example,
Pip [RKW+06] is a system for automatically checking the behavior of a dis-
tributed system by specifying (or generating) expectations of program behav-
ior and checking the executions. However the considerable requirements on
instrumentation prohibit its use in resource- and instrumentation-constrained
WSNs. As discussed, these limitations in instrumentation lead to different
logging policies and differing communication relations on individual protocol

3.4. Summary 43

layers. These application- and logging-specific behavior needs to be integrated
in the analysis. Hence, standard methods as used in wired distributed systems
cannot be employed. Analysis of wireless systems has focused on inferring in-
formation from passively collected information, e.g., in WSNs [RR07, MKL+07]
and in WLAN [CBB+06, MRWZ06], rather information is complete, yet depen-
dent on application and test.

3.4 Summary
This chapter presented the concept of multi-platform testing and shows its fea-
sibility on a prototype allowing for testing WSN applications using a simulator
and a testbed. Initial results indicate that exploiting test platform adaptors, a
specification of the test can be (re-)used across different tools. A major part
of specifying tests is the analysis of test executions. Hence, the second part
of the chapter presents a novel programming language for analyzing WSN
test execution logs. Rupeas exploits an event abstraction and domain-specific
operators allowing for a concise syntax in a Domain Specific Language (DSL).
By being embedded into a scripting language, Rupeas can be integrated into
larger design or test frameworks. Its independence of trace formats and logging
policies allows its users to analyze execution logs of different test platforms.
Additionally, as shown in a case study, Rupeas enables incremental analyses
that can support a developer in debugging the application.

44 Chapter 3. Testing of Wireless Sensor Network (WSN) applications

4
Test automation for sensor networks

Test automation is indispensable in software development. Repetitive tasks
should be automated to reduce costs and improve the effectiveness of test and
analysis. However good tools for the automation process need to be avail-
able. Creating such tools is typically time-consuming and expensive. Various
approaches and methodologies have been proposed for automated testing of
software, both domain-specific such as Selenium1 for web applications and
generic such as autotest2. In recent years, Continuous Integration (CI) [PD07]
has been proposed in the software engineering community and corresponding
frameworks have been developed to support test automation. An open ques-
tion remains whether such tools can be used for automatically testing WSN
systems. Various differences to conventional software testing need to be con-
sidered: (i) The quality of sensor network software is mainly determined by its
interaction with a dedicated hardware platform. In order to evaluate software
using actual executions, tests need to be performed on the actual hardware
platform. (ii) Sensor network software is evaluated on different metrics includ-
ing metrics originating from the interaction with the hardware, e.g., physical
parameters such as power consumption. (iii) A test platform needs to provide
execution details on these metrics to allow for evaluating the test execution.
(iv) The building and evaluation of the software is separated from the execution
on the actual test platform.

The first step for creating WSN test automation tools is to develop an ar-
chitecture that allows for automatically performing tests on sensor nodes in a
specific environment. However, executing tests automatically is only beneficial

1http://seleniumhq.org/
2http://autotest.kernel.org/

http://seleniumhq.org/
http://autotest.kernel.org/

46 Chapter 4. Test automation for sensor networks

if the results of a test do not need to be manually inspected. Rather tests must
be automatically evaluated if they pass or fail with respect to some properties.
For functional properties, a language such as Rupeas (cf. Chapter 3) can be
employed. However for WSNs, physical properties are of major importance,
yet have been neglected as test results up to now.

To this end, a test automation tool for WSNs is presented focusing on power
consumption as the prime physical property to be examined. In particular, the
following contributions are described:

1. Power Test Architecture (PTA), a test automation architecture, is pre-
sented that integrates a CI server with different WSN testing and mea-
surement tools.

2. A novel method for automatically checking power measurements of a
sensor node is described.

3. The benefits of using PTA with respect to WSN-specific metrics are shown.

For detailing on WSN specific metrics, the chapter focuses on power con-
sumption of sensor nodes. Hence, the general approach is presented as a PTA
with respect to its use for testing power consumption of a sensor node running
some software. However, the approach is generic and may be applied for dif-
ferent metrics and for interactions with the sensor node as described in detail
in [WBT08].

4.1 Testing power consumption
Energy efficiency is a major concern as WSNs are often battery powered and
operated autonomously. For achieving a long term, self-sustained deploy-
ment efficient resource usage is of prime concern when it comes to design and
realization of wireless sensor networks. The design of a low-power sensor net-
work starts with choosing an appropriate hardware platform. The embedded
software needs to provide an energy-aware operation, which requires saving
energy by extensively using the hardware’s low-power modes. The power-
aware programming of such systems is complex and highly error-prone since
each hardware component features its own characteristic set of power modes,
software tasks can be executed concurrently and hardware components con-
tribute differently to the level of power consumption. Asserting the correctness
of such systems includes the assertion of functional and non-functional prop-
erties, e.g., such as power consumption as well as real-time properties.

Energy consumption is the integral of the power consumption of the sensor
node over time: Etotal =

∫ t

0
P(t) dt. Since also deviations in power consumption

need to be detected that manifest themselves only sporadically (in the test),

4.2. Background 47

11.608 11.609 11.61 11.611 11.612 11.613 11.614 11.615 11.616 11.617 11.618
0

5

10

15

20

C
u
rr

e
n
t
(m

A
)

Time (s)

1ms ⇒ 50 samples

➊ ➋ ➌ ➍ ➎

Figure 4.1: Power measurement (current draw under constant supply voltage) taken during
the power-up of a sensor node’s radio showing different modes: (1) Starting the voltage
regulator, (2) waiting for clock startup, (3) starting the crystal oscillator, (4) ramping up the
radio, and finally (5) the operational, idle-listening mode.

it does not suffice to look at total energy consumed during a test. Rather an
intricate analysis of detailed power consumption measurements over time is
required. Such an analysis needs to consider the sleep states of the WSN system
as well as duty-cycle patterns to detect even small deviations that may have a
substantial effect on energy consumption in a real deployment setting.

Contrary to functional properties, power consumption can be monitored
non-intrusively on testbeds [HHP+08], avoiding the probing effects of instru-
mentation. The obtained power traces capture the power consumption of the
system over time, where the patterns in the power consumption may indicate
distinctive internal actions. For exemplification one may refer to Fig. 4.1. It
shows a passively collected trace of power measurements as taken from the
Harvester application (cf. Sec. 2.2) running on a wireless sensor node. The
first peak (1) indicates the starting of the radio voltage regulator, followed by
the power consumption profile during initialization. The final level of power
consumption refers to the system’s idle listening state, where the radio is fully
powered on and ready for operation, enabling the node to listen on its channel
for ongoing traffic.

4.2 Background
Before detailing the proposed architecture for testing power consumption, an
overview of the type of errors that occur in WSNs with respect to power
consumption and energy-efficient programming, is presented. Furthermore,

48 Chapter 4. Test automation for sensor networks

the chapter provides some background on Continuous Integration (CI), which is
used in PTA.

4.2.1 Error classification
A short overview of different software and hardware errors in the context of
low-power embedded systems and energy-efficient programming is presented
below, differentiated by hardware-related and software-related errors.

4.2.1.1 Hardware-related errors

Hardware-related errors can be classified as follows:

• Environmental effects: An embedded system is deeply integrated into the
environment. As such, it is highly susceptible to changes in environmen-
tal conditions. One main contributor is temperature and its effects on
the clock oscillator [BISV08]. Hence, timing in deviating test conditions
may reveal an error due to missing parameterization of test environment
conditions.

• Hardware variance: hardware properties vary as each component has toler-
ances on its characteristic properties. Hence, it does not suffice to merely
characterize a single node, but rather a representative sample of nodes or
rely on the specification provided by the manufacturer. As an example for
the effect of hardware variances, Zuniga et al. [Zun04] present the effect
on radio communication in wireless sensor nodes. While some hard-
ware variance is intrinsic to each component, highly varying hardware,
whether it is sporadically or permanently, must be excluded from deploy-
ments as such nodes may drain their battery prematurely and deteriorate
system lifetime.

4.2.1.2 Software-related errors

In terms of testing non-functional properties such as power consumption, the
most important issues are the effective use of resources, e.g., turning off a
component when no meaningful work is performed and returning always to
the lowest power state possible. As such sensor nodes sleep most of the time
and return to operation by interrupts, e.g., by timers or external interrupts of an
Analog-to-Digital Converter (ADC). As such interrupt-related errors, e.g., due
to stack overflow, interrupt overflow and missing real-time deadlines [Reg07]
are common in low-power embedded software. Moreover sharing resources is
complicated by duty-cycling, e.g., of the radio, because contention on resources
increases. Other generic implementation errors apply as well, such as control-
flow faults due to algorithmic or logical errors and data-flow faults due to
initialization, addressing or typing.

4.3. The Power Testing Architecture 49

4.2.2 Continuous Integration
CI [PD07] is a software engineering methodology that promotes frequent in-
tegration, building and testing of the software. It provides rapid feedback to
developers. This facilitates early identification of software defects that are typ-
ically subject to recent changes. Up to this point, CI focuses on the integration
of enterprise-scale software projects designed by large teams and is a common
and well known methodology, e.g. in agile development [CLC04].

An overview CI can be seen on the left of Fig. 4.2. A CI server integrates
code repositories, tools to compile and build the software, software analysis
tools and testing into a comprehensive framework. The overall status of the
project, i.e., build, analysis and test results, are visualized, e.g., on a webpage,
for communication in the development team. Regular builds in CI are either
triggered upon code changes, by user requests or periodically. Builds are
referenced to a specific version of the code base in the repository using a
unique build id. Test jobs consist of a compilation process that is handled by
the CI framework: (i) job formation with subsequent submission to a testbed,
(ii) distribution of code to target devices, (iii) synchronous start of all target
devices and (iv) log file and power measurements collection. Depending on
the context of the test, analysis can take place online, e.g. for the monitoring of
operation or in more detail offline after completion of a test job.

Through the integrated approach, execution is greatly simplified and data
from all test jobs is logged in a repository that references the actual software
code version under test. This assures a maximum of transparency and the
ability for a comprehensive post-execution analysis and evaluation.

4.3 The Power Testing Architecture
This section presents PTA for testing WSN software combines established meth-
ods from software engineering with WSN-specific tools, i.e., the execution of
the software on a WSN platform in a realistic environment and the profiling of
power consumption of sensor nodes.

PTA is based on integrating a testbed with measurement devices, e.g., for
power consumption, and test control devices, such as a frequency genera-
tor, into an off-the-shelf CI framework as shown in Fig. 4.2. It additionally
allows the configuration of tests such as specifying a supply voltage and en-
vironmental control, e.g., temperature as discussed in [WBT08]. In a partic-
ular proof-of-concept setup, a testbed (the DSN [DBT+07]) is integrated with
CruiseControl [Cru10], an open-source CI framework. In this work, the fo-
cus is on power traces, i.e., measurements of power consumption over time,
and their evaluation in a test. Power measurements are performed with an
off-the-shelf power analyzer, an Agilent N6705A, providing automation of

50 Chapter 4. Test automation for sensor networks

Extension for
WSN Testing

Continuous
Integration

Continuous
Integration Server

Tools
Compile and Build

Projects

Control

User
Request

Start on trigger
Scheduled

TinyOS 2.x
...

Test Infrastructure
Code

repository

Support

Notification
Visualization

Testbed

Test
results

Measurements

Configuration
Supply Voltage
Environment

Testing

TinyOS 2.x

Power Traces
Evaluation

Check
out

Code
changes

Test
execution

and
config

Analysis

Data Logging

Sensor Nodes

Stimulation

Figure 4.2: A CI server is combined with a WSN specific test infrastructure that provides
detailed stimulation and monitoring, including power measurements and the evaluation
thereof.

the measurement process and data collection via an Ethernet connection. In
this test setting, each sensor node is provided with a stable voltage supply.
Hence, only current draw measurements are required for determining power
consumption. Measuring power consumption and current draw allows for
trending and parameter characterization.

4.3.1 Physical parameter extraction

For detailed characterization of the system performance and especially to pin-
point specific behavior, including variation of the power consumption, traces
of power measurements are a vital resource. In order to characterize device
variations, but also to understand the interplay of the power supply (battery,
regulated power, solar) and the system under varying load conditions, mea-
surements with a fine time resolution are necessary. The finest resolution
to consider is the order of the (MHz) clock frequency of the microcontroller.
However, sampling at higher frequencies requires measurement equipment
with higher fidelity and results in large traces. Additionally, many compo-
nents such as the radio only change state in the order of milliseconds. In the
following the focus is on testing the sensor node and its components rather
than the power supply. Hence, a coarser time resolution is chosen (sampling at
20 µs). For a prototypical implementation of the PTA, only a subset of nodes is

4.3. The Power Testing Architecture 51

Protocol enhacements (reduce energy consumption)
Fixes

3

5
1

1
2 3

4 5 5

C
ur

re
nt

 [

]

[Day-Month]

Figure 4.3: Harvester project evolution showing measured average current draw (under con-
stant supply voltage) extracted from CruiseControl. There are various code changes during
the project; some examples are marked to indicate specific protocol enhancements (circles)
or fixes (rectangles).

instrumented with lab equipment to allow for detailed analysis and automate
the process using an interface to CruiseControl.

4.3.2 Cognitive aids

For each build and its associated tests, all data generated, i.e., logs, build ar-
tifacts and test results, are stored in a central data structure available through
a web based reporting interface [Com08a]. The graphical reporting interface
helps to present an overview of the most critical aspects from the wealth of
information and contexts. Average power consumption history (Fig. 4.3) is
invaluable for analyzing the application’s behavior evolution over the devel-
opment process

As an example consider Harvester [Com08b] (cf. Sec. 2.2). Harvester is
designed for long-lasting deployments, thus critically optimizing power con-
sumption. Harvester is in its final development stage, where in-depth opti-
mizations try to minimize power consumption wherever possible. Figure 4.3
shows collected power consumption data from the Harvester application over
the development cycle. The visualization provided by the CI framework al-
lows testers to track power consumption changes along the timeline. With the
help of such cognitive aids, effects of fixes (in rectangles) and optimizations (in
circles) are easily traceable and analyzable.

Change 1 was the initial commit of the synchronized MAC built above the
LPL mechanism of the existing TinyOS 2.x CC2420 radio stack. Change 2 on the
22nd of December introduced a better estimation of the clock drift, resulting
in a considerable decrease in power consumption, while change 3 enhanced
synchronization by discarding of invalid time measurement. A functional
enhancement of adding real-valued sensor values and a fix for the Sensirion
sensor driver resulted in an increase power consumption on the 9th of January
(fix 4). Fix 5 added a CRC check for measurements.

52 Chapter 4. Test automation for sensor networks

C
ur

re
nt

 [

]

[Day-Month]

Figure 4.4: Parameterized Harvester project showing measured average current draw (under
constant supply voltage) as presented in CruiseControl. Application changes have differing
effects for the different parameter settings.

Harvester is tested for each new build on a small network of a base station
and two sensing nodes. One of the sensing nodes is monitored. In this setup,
the measurement period is configured as 5 minutes. It includes start up condi-
tions, since the initialization phase is an important part in its use for building
monitoring. The mean current draw over the whole monitoring window is
determined and presented for each build.

Another feature provided by PTA is the ability for parameterized applica-
tion projects, where the application is automatically built, tested and profiled
for a set of differing parameter settings. In the particular example of Har-
vester, different values for the duty cycle of the LPL protocol are set (TW, cf.
Sec. 2.2.1). For each of the parameters, the average power consumption for a
test is recorded and its history displayed as shown in Fig. 4.4. This allows for
tracking and comparing the varying effects of changes on the parameterized
application. In this example the start-up behavior is considered as described
above. Since Harvester’s MAC protocol is initially not synchronized, long
preambles are sent. Additionally, the network start-up requires a considerable
number of broadcast messages (also with long preambles). Hence, in the start-
up phase, long wake-up times result in higher average power consumption
than shorter ones.

4.4 Formulating tests for power consumption
Having a test architecture for automatic testing and measurements of power
consumption, it is fundamental to automatically process the measurements to
determine if the power consumption is acceptable for the given test execution.
This section presents a method to evaluating traces of power measurements
by using a reference (trace) that describes expected power. In a second step, a
prototype implementation of so-called power unit tests is presented that auto-

4.4. Formulating tests for power consumption 53

matically executes tests on PTA and uses the power measurement evaluation
method to generate the test verdict, i.e., whether the test passed or failed.

4.4.1 Reference-based evaluation
The formulation of a power unit test is based on a given testcase, i.e., specified
inputs and a given application including hardware and software. The testcase
is deterministic, i.e., the state of the system during test execution is known.
This allows for formulating a reference function. A reference may be determined
in different ways: using a model, e.g., derived from a specification or by using
previous measurements of the testcase on the target device. Reference functions
differ in level of detail and accuracy, e.g., physical characterization of the sensor
nodes may be incomplete.

A reference function returns the expected power consumption measured
on a sensor node. However, measurements include variations due to noise
and hardware differences, i.e., manufacturing variations, or changing environ-
mental conditions such as temperature changes. As such a reference is not
described as a function, but is given as a region within boundaries. This so-
called acceptance region is displayed in Fig. 4.5. If the measurements are within
the acceptance region the test passes.

4.4.1.1 Determining the acceptance region

Boundaries of the acceptance region are defined based on the reference func-
tion and a quantification of uncertainties, e.g., due to hardware variances and
measurement inadequacies.

Definition 4.1. A reference function is a function f : R≥0 → R≥0 of time t of a
measured physical quantity, e.g. power consumption. f (t) is a piecewise, typi-
cally discontinuous function that is composed of sub-functions fi : R≥0 → R≥0

with discontinuities ti ∈ R≥0, i ∈ N at the sub-interval boundaries of f . In the
following, for the sake of presentation the reference function is reduced to rep-
resent piece-wise constant power consumption. The definition of the reference
can be generalized to allow for fine-granular modeling of power consumption,
e.g., to include charge and discharge patterns. The extension of determining
acceptance region boundaries for a polynomial reference is straight-forward
and hence omitted here.

fi(t) =

ai, ai ∈ R≥0 if t ∈ [ti, ti+1)
0 if t < [ti, ti+1)

A reference function is hulled by two bounding functions (f +, f −) that are
the boundaries of the acceptance region. In order to compute these bounding
functions, the intermediate upper and lower bound functions f (+/−)

y,i need to be

54 Chapter 4. Test automation for sensor networks

Acceptance region

Test
start

Test
stop

Single outliers
are accepted

Datetime [hh:mm:ss]

Figure 4.5: Annotated visualization of a power unit test (current draw measurements in mA
under constant supply voltage of 3V) for the TinyOS 2.x MultihopOscilloscope application
on a TinyNode extracted from CruiseControl. The white area denotes the acceptance region
within the reference boundaries. Note that MultihopOscilloscope uses a CSMA MAC proto-
col and thus never turns of its radio. Hence, the basic power consumption or in this case the
current draw of the TinyNode is high, at about 15.5mA.

4.4. Formulating tests for power consumption 55

ti

fy
-

fy
+

ti

yi-1
+

yi
-

Adding variance
in the value range
in a sub-interval

ai-1

ai

Figure 4.6: Illustration of intermediate bounds derivation given a reference function.

determined first that only account for the variance in value in each interval,
but do not consider the sub-interval boundaries ti.

f −y,i(t) =

ai − y−i if t ∈ [ti, ti+1)
0 if t < [ti, ti+1)

f +y,i(t) =

ai + y+i if t ∈ [ti, ti+1)
0 if t < [ti, ti+1)

Variable bounds per interval allow for different granular checking. As
an example, a transmitting node has typically larger variation in its power
consumption than a node that is in a sleep state. Figure 4.6 illustrates the
process of generating the intermediate bounds given the reference and the
bound value at the sub-interval boundary ti. The bound functions f (+/−)

y are
defined by additive composition:

f +y (t) =
∑n

i=1 f +y,i(t) ; f −y (t) =
∑n

i=1 f −y,i(t)

Additionally, uncertainties in time are accounted for using a symmetric
variability in time∆t. These uncertainties are small compared to the individual
sub-intervals, i.e., ∆t < ti+1 − ti,∀i ∈ N. Thus, the lower bound of a reference
function is defined as:

f −(t) = minτ∈[−∆t,∆t](f −y (t + τ))

f +(t) = maxτ∈[−∆t,∆t](f +y (t + τ))

Figure 4.7 illustrates the effect of this temporal uncertainty around a sub-
interval boundary. Hence, f + and f − are the boundaries of the acceptance
region used for the power unit test given the intermediate reference and the
uncertainty ∆t.

56 Chapter 4. Test automation for sensor networks

ti

f-

f+

ti ti+∆tti-∆tti+∆tti-∆t

fy
-

fy
+ Adding variance

in time on a sub-
interval boundary

Figure 4.7: Illustration of bounds derivation of the acceptance region given the intermediate
bounds and the uncertainty ∆t.

4.4.1.2 Checking procedure

Testcases are described using a reference function and a start and stop time,
so that the checking procedure may exclude test initialization, e.g., transient
effects due to power-on or booting. The measurement apparatus has also some
inherent variability. This necessitates an automated compensation in the check-
ing procedure. A temporal shift of the reference function in time is allowed
that compensates for test start variances. An offset of the range values (in a
limited interval) compensates for differences in the measurement setup. To
this end, a least-square analysis between the measured power consumption
trace and the reference function is performed. A best fitting reference allows to
determine shift and offset to the test-specific reference. The resulting compen-
sated reference function is used to determine the boundaries of the acceptance
region. Consequently, for each measurement it is checked that it lies within
the acceptance region. If consecutive measurements lie outside this region, an
error is asserted. A single measurement outside the acceptance region may be
a spurious measurement device artifact as shown in Fig. 4.5.

4.4.2 Power unit tests implementation
As an example for an implementation of a power unit test, the MultihopOscillo-
scope (cf. Sec. 2.2) is tested on a TinyNode 5843. The reference is described
using an XML specification as depicted in Listing 4.1 for facilitating integration
with CruiseControl [Cru10]. It specifies the start and stop time of the checking
procedure. The reference function is specified using individual data points
to define constant segments, i.e., the value ai for the interval starting at ti is
specified. The implementation has periodic behavior, i.e., the reference repeats
itself after period of 1s. In each period in the test, MultihopOscilloscope has
2 distinct segments: (1) for radio idle and (2) for transmitting a measurement.
Here current draw is measured under constant voltage supply, e.g., for the first

3www.tinynode.com

www.tinynode.com

4.4. Formulating tests for power consumption 57

<referenceTrace name=’MultihopOscilloscope’>
<start>0.4</start>
<stop>9.5</stop>
<xVariance>0.05</xVariance>
<period>1.0</period>
<points>
<point>
<time>0.0</time>
<value>15.5</value>
<yVarianceMinus>0.5</yVarianceMinus>
<yVariancePlus>1.2</yVariancePlus>

</point>
<point>
<time>0.9</time>
<value>15.5</value>
<yVarianceMinus>0.5</yVarianceMinus>
<yVariancePlus>1.2</yVariancePlus>

</point>
<point>
<time>0.9</time>
<value>17</value>
<yVarianceMinus>2</yVarianceMinus>
<yVariancePlus>7</yVariancePlus>

</point>
<point>
<time>1.0</time>
<value>17</value>
<yVarianceMinus>2</yVarianceMinus>
<yVariancePlus>7</yVariancePlus>

</point>
</points>

</referenceTrace>

Listing 4.1: XML specification of the reference function of the MultihopOscilloscope
application on a TinyNode.

segment the expected current draw is a1 = 15.5mA. The reference specifies
variable upper and lower bound values, e.g., y+1 = 1.2mA and y−1 = 0.5mA for
the segment. Globally, a time variance (xVariance) for a reference function of
∆t = 0.05s is set. 4

The resulting boundaries for the reference function are displayed in Fig. 4.5.
It also displays the start time at 0.4s and the stop time at 9.5s. Although a single
reading is outside the reference bound, no error is asserted, as a single outlier
may also be attributed to a measurement artifact. Alternatively, the trace may
be filtered before being analyzed.

4Note that the format of the XML specification was initially targeted for piecewise linear
references, and may be reduced for piecewise constant reference formulations.

58 Chapter 4. Test automation for sensor networks

4.4.3 Discussion
Creating a power unit test starts with deriving the power consumption for each
component of the sensor node, either from a datasheet or using measurements
and linear regression as described in [WBLT08] and [FDLS08]. A second step
is to determine for a testcase the sequence of different states the system will
be in and annotating each state with its power consumption and the time the
system resides in the state. This necessitates that a testcase is deterministic.
However, non-determinism is inherent in many applications and protocols,
e.g., in the form of random backoffs. Additionally, generating a reference
for each individual testcase is expensive. Hence, in the following chapter
a more generic approach is used: While the concept of bounds on power
consumption is maintained, the deterministic reference function is replaced by
a (formal) model that allows the specification to include various aspects of the
system including non-deterministic or modal behavior. As such a single model
comprises a set of reference functions.

4.5 Related work
Related work is divided into two different subjects: Methods for automatically
testing for correct power consumption and the infrastructure for gathering
information on power consumption. For automatically testing power con-
sumption, this is the first time automatic power consumption is presented for
WSNs. There is little related work in different areas. In security research,
power consumption traces are exploited for side channel attacks [HMA+08].
The approach is similar: Reference measurements are compared to actual mea-
surements to reason about internal state. In the case of Homma et al., this is
only a binary decision: Is a squaring operation or a multiplication performed?
In comparison, power unit tests need to identify many internal states, in the
order of the number of combinations of each system component’s hardware
modes.

Concerning test platforms for WSNs, most related work is considering
simulation on different abstraction levels and testbeds: A prominent tool for
simulation is TOSSIM [LLWC03]. An extension to simulation is tracking the
power state of each component during the simulation as performed in Power-
TOSSIM [SHrC+04]. Instrumentation of the simulated hardware components
and using an additional power tracker, PowerTOSSIM calculates power con-
sumption using models based on measured current draw from Mica2 nodes.
AEON [LWG05] provides accurate power consumption prediction for WSN
nodes. It is built on top of Avrora [TLP05], a simulation and analysis toolbox
for programs written for the AVR microcontroller produced by Atmel and the
Mica2, and often used for instruction-level simulation. AEON extends Avrora

4.6. Summary 59

with an energy model, similar to PowerTOSSIM’s additions to TOSSIM and
also uses previous measurements of current draw for hardware characteriza-
tion of the individual components. Dunkels et al. [DOTH07] discuss online
energy monitoring for WSN nodes in the Contiki operating system. The au-
thors instrument device drivers to timestamp activation and deactivation of
components and multiply the on-time with an empirically determined current
draw. All these methods have a model of power consumption in given hard-
ware modes. In comparison, PTA measures power consumption to assure that
such models actually hold for real devices.

Schnyder et al. [SHrC+04] describe in-situ measurements on a testbed:
Motelab [WASW05] provides in-situ power measurement for a single node
(Mote 118) using a digital multimeter. The timestamped data is available
for users in a log file (e.g., for experimental validation). No further analysis
support is provided. A tool like SPOT [JDCS07] that provides in-situ measure-
ment of sensor node power and energy allows for large-scale instrumentation
of nodes in testbeds allowing for extensive distributed power analysis and
testing. Similarly, PowerBench [HHP+08] enables distributed power measure-
ments. PTA provides the groundwork for actually using these platforms to
create a distributed, automated approach for testing power consumption.

4.6 Summary
This chapter presents PTA, a testing architecture for automatically testing
WSNs. WSN-specific metrics are monitored during the test execution. Mea-
surements can be visualized to give trending information and compare different
parameterization. Moreover, measured traces can be automatically checked.
To this end, a first approach for power unit tests is presented: By using previ-
ous measurements and a piecewise constant model of power consumption, a
reference trace can be defined. By allowing for deviation in time and measured
value, upper and lower bounds of an acceptance region can be determined,
where monitored power traces must be included. If measurements lie outside
the acceptance region a test fails.

60 Chapter 4. Test automation for sensor networks

5
Model-based conformance testing of

power consumption

This chapter extends the previously presented testing for power consump-
tion with a model-based approach. As previously described, one of the main
challenges for designing and implementing WSNs is the assertion of their cor-
rectness, where correctness not only encompasses algorithmic and functional
aspects but also extra-functional properties that are closely related to the inher-
ent interaction with the environment. A prime example of an extra-functional
property is power consumption. This non-intrusively observable behavior of
a WSN may also help in assessing the overall correctness. To this end, this
chapter presents a model-based methodology for using non-intrusive power
measurements to reason about the correctness of a sensor node.

Power measurement traces are described as timed traces annotated with
the measurement values. Visual inspection of those traces or reference
measurement-based methods are typically not suitable for the large number
of tests that are required when analyzing various properties of the system in
different test environments. Rather an automated approach is required. To this
end, formal methods can be exploited for the analysis of the system. However,
two challenges need to be considered that often hamper exhaustive verifica-
tion: (1) formal verification may suffer from the state-space explosion problem
and (2) measurements have an intrinsic uncertainty due to the measurement
instruments, noise, influence from the physical environment and variations
in hardware components. The latter point has already been addressed using
bounds (on an acceptance region) on power consumption as described in the
previous chapter and is utilized for the model-based approach as well.

62 Chapter 5. Model-based conformance testing of power consumption

Model checking techniques have shown to be of great value when it comes
to the verification of systems. However, the expansion of all possible system
behaviors may yield a large number of system states, which is exponential in
the number of a system’s concurrently executed activities. This problem, the
well-known state-space explosion problem, worsens when timing and other
process variables have to be considered. Power measurements from a con-
tinuous domain are commonly excluded from any verification process. This
is problematic as they are important for guaranteeing lifetime requirements
given a system with constrained energy resources. Nevertheless formal meth-
ods support an expressive, concise and typically compositional formulation
of expected system behaviors. To this end, this chapter presents a scalable
approach for formally reasoning about the correctness of WSNs by means of
and with respect to power consumption.

The proposed procedure employs formal models for specifying the expected
behavior as well as for representing a time series of power measurements.
It allows investigating the conformance of expected and observed behavior
by using a standard timed model checker. The failure of the conformance
tests provides a diagnostic (debugging) trace to the test engineer. This allows
the tester to pinpoint implementation errors within a WSN’s hardware and
software. 1

As we are dealing with complex hard- and software systems deeply in-
tegrated into the environment, the presented approach has to cope with the
following challenges:
• As standard instrumentation techniques can falsify the system behavior,

non-intrusive techniques are preferable. However with such techniques
the internal state of a sensor node is hidden and cannot be observed
directly.

• The individual hardware components may contribute differently to the
power consumption, but it is only the sum of the individual power con-
sumptions that can be measured.

• The observed power consumption is a result of the interaction between
the sensor node and its environment. This interaction needs to be part of
the underlying system model and increases the complexity of the confor-
mance test.

• The complexity of systems yields a high-degree of non-determinism rul-
ing out an exhaustive analysis due to the notorious state-space explosion
problem.

• As with all physical observations, measurements are subject to uncer-
tainty and measurement inaccuracy.

1The proposed approach is also able to consider bidirectional interaction of a system with
its physical environment, i.e., the provided measurements serve as input to the system, e.g.,
for triggering behavior within the system model, or the value of a physical quantity results
from the system’s behavior.[WLT10]

5.1. Background Theory 63

To deal with these aspects, a non-exhaustive method is devised, i.e., for
a time series of measurements and a modeled system, both given as timed
automata it is examined if there is a joint execution. One central concept is
the mapping of continuous power measurements to a set of distinct, finite in-
tervals in order to (a) reduce the computational complexity of the underlying
verification problem and (b) to enable the use of existing tools that are tai-
lored towards value-discrete timed models, such as Uppaal [BY04, BDL04] and
TRON [LMN04, HLM+08].

In particular, the conformance between a power trace of a wireless sensor
node measured on actual hardware and a specification of the expected behavior
of the system is investigated. The main contributions of this chapter can be
summarized as follows:
• A new approach for automatic conformance testing wireless sensor nodes

is presented that is based on timed automata and model checking.
• An efficient modeling for the composition of physical measurements and

a system specification is presented. The chapter discusses optimizations
towards computational efficiency. These optimization are required when
dealing with measurements from a real system.

• A second approach for the conformance test using an online testing tool
is detailed.

• The computational efficiency of both approaches is optimized and com-
pared using a case study of a wireless sensor node application.

The chapter starts with a presentation of the theoretical background. Sub-
sequently, the proposed method is detailed. The main approach uses a model
checker for the actual conformance test. A second approach is presented that
uses a timed testing tool for the conformance test. Based on a case study using
the Harvester Application (cf. Sec. 2.2), both approaches are evaluated and
compared. The chapter concludes with a discussion of the proposed method.

5.1 Background Theory
A few notations need to be introduced that are used in the following. First the
concept of a timed trace is defined:

Definition 5.1 (Timed trace). A timed action is a pair (t, a) where a is some label
and t ∈ R≥0 some non-negative time stamp. A timed traceΠ := (t1, a1); (t2, a2); . . .
is a sequence of timed actions ordered by increasing time stamps, such that
ti ≤ ti+1 for i ∈N.

Timed automata are used as a formal model in the proposed method. In
particular, this work focuses on timed automata as used in the Uppaal model
checker and follows the notation of the corresponding literature [BY04, BDL04].

64 Chapter 5. Model-based conformance testing of power consumption

Definition 5.2 (Timed automaton extended with variables). A timed automaton
extended with variables is a tuple TA = (Loc,Loc0,Act,C,V, ↪→, I,AP,L) where:
• Loc is a finite set of locations.
• Loc0 ⊆ Loc is a set of initial locations.
• Act is a set of actions including the internal, unobservable action τ.
• C is a finite set of clocks.
• V is a finite set of (discrete) variables.
• ↪−→⊆ Loc × ClockCons(C) × VarCons(V) × Act × 2C

× F × Loc is an edge
relation, where ClockCons is a set of constraints on clocks and VarCons
is a set of constraints on (discrete) variables. These constraints on edges
are denoted as guards. F is a set of edge-specific valuation functions on
variables.

• I: Loc→ ClockCons(C) × VarCons(V) is an invariant-assignment function.
• AP is a finite set of atomic propositions.
• L : Loc→ 2AP is a labeling function for the locations.

Clock and variable constraints are conjunctions of atomic guards of the form
x ./ n, x ∈ C ∪ V,n ∈ N0 where ./∈ {<,≤, >,≥,=}. Clocks are assigned to real
values using a valuation function u : C → R≥0. Clocks implicitly increase their
value as time progresses. u + d denotes that each clock x ∈ C is mapped to the
value u(x)+d, i.e., time is increased by d ∈ R≥0. All clocks in the system increase
at the same rate. Clocks can only be inspected or reset denoted by u′ = [r→ 0]u,
which signifies resetting the clocks in r ⊆ C. All other (not resetted) clocks agree
with the valuation u, i.e., u′ = u for all clocks C \ r. Variable valuations are
determined by an edge-specific valuation function fe ∈ F with fe : D|V| → D|V|,
where D is the finite domain of the discrete variables: D ⊂ N0. Variables are
updated on (discrete) transitions, i.e., v′ = fe(v), where v is a vector of variables
before the update and v′ the corresponding variable vector after the update.
Unless specifically indicated, we always refer to a valuation of a clock or discrete
variable instead of the variable itself. Furthermore, u ∈ gc, gc ∈ ClockCons
denotes that a clock valuation u satisfies a clock constraint (v ∈ gv, gv ∈ VarCons
is the equivalent for a variable valuation v). We write (u, v) ∈ I(l), l ∈ Loc to
denote that the valuations of clocks and variables satisfy the location invariant.
Note that here a set notation on the valuation is used for the following reason:
Invariant and guards are constraints on clocks (or variables) that specify a set of
valuations allowed in a given location. Hence, a clock (or variable) valuation
is valid if it is included in the set of allowed valuations. This notation is is
used for consistency with literature [BY04, BDL04]. AP is a finite set of atomic
propositions for labeling locations and L : Loc→ 2AP is a function that assigns
atomic propositions to locations.

The active location of a (single) timed automaton is the location where the
execution of the automaton (currently) resides in. A state in a timed automaton
is defined by an active location and clock and variable valuations 〈l,u, v〉. The
transition relation T can be defined as follows:

5.1. Background Theory 65

Definition 5.3 (Transition relation T). A transition relation for TA can either
be a delay transition, i.e., the timed automaton stays in a given location and
time passes, or a discrete transition, i.e., the timed automaton changes location
and updates clocks and variables.

• delay transition

〈l,u, v〉 d
→ 〈l,u + d, v〉 if ∀d′ ∈ R≥0 : 0 ≤ d′ ≤ d⇒ (u + d′, v) ∈ I(l)

• discrete transition

〈l,u, v〉 α→ 〈l′,u′, v′〉 if l
gc,gv,α,r, fe
↪−→ l′ and u ∈ gc and v ∈ gv and u′ = [r→ 0]u

and v′ = fe(v) and (u′, v′) ∈ I(l′),

where gc ∈ ClockCons(C), gv ∈ VarCons(V), α ⊆ Act, r ⊆ C, fe ∈ F as speci-
fied above for TA.

As the delays may be sampled from intervals of R≥0, the above transition
rules yield an infinite set of state. This infinite set of reachable states is denoted
as R′. The infinite set of state-to-state transitions is denoted as T ′. These sets
can be mapped to the finite quotient system R and T , yielding the decidability
of the reachability question for timed automata; one solely needs to visit the |R|
different system configurations. For further details on clock regions and region
graphs the reader may refer to [AD94]. Clock regions and zones are further
described in the next chapter.
As the presented approach emphasizes a compositional modeling style, it is
required to extend the basic concept to networks of (cooperating) timed au-
tomata. In a network of timed automata, the clocks of the individual automata
all increase at the same rate. In the following, a brief overview of the related con-
cepts follows; more details can be found in the Uppaal tutorials [BY04, BDL04]
or in the textbook [BK08].
• Cooperation via shared variables: Variables can be declared on the level of

a network of timed automata, allowing the individual timed automaton
to read and manipulate them.

• Rendezvous mechanisms: Uppaal implements different rendezvous
mechanisms for jointly traversing over edges within different timed au-
tomata. It uses the concepts of channels and signals. By following Up-
paal’s nomenclature, the terms sender and receiver are used when dis-
cussing the synchronization of timed automata via channels: A sender
emits a signal on a channel, while receivers react on signals. Senders and
receivers differ in their composition: Only a single sender can take part
in a synchronization. Senders and receivers also differ in their transi-
tion order: Updates on sending edges are performed before updates on

66 Chapter 5. Model-based conformance testing of power consumption

receiving edges. The synchronization of pairs of a sender and receivers
is selected non-deterministically, i.e., all possible synchronization pairs
are considered in the state space exploration. Note that in the following
the traversal of an enabled edge from one location to another location is
denoted as executing an edge.
The following concepts need to be distinguished:

1. Binary synchronization: One sending and one receiving timed au-
tomaton synchronize on the joint transition of dedicated edges: one
from the sender, whose edge is labeled by a channel_id and an ex-
clamation mark, and one from the receiver, whose edge is labeled
by the same channel_id, but extended with a question mark. For
simplicity, edges are denoted as sending and receiving edges (see
the on! and on?-labeled edges in the timed automata of Fig. 5.5 and
5.6).

2. Broadcast channels: A single sender synchronizes with up to n re-
ceivers. This refers to the situation where one timed automaton
executes a sending edge, which can be understood as the emission
of a signal and where 0 to n receivers execute a receiving edge, which
can be interpreted as the instantaneous reception of this broadcast
signal. A broadcast requires that each timed automaton that con-
tains (one or more) enabled receiving edges must execute one of
these edges.

As some basic terms are needed later, the notions of urgent and initial
locations are briefly explained in the following. Fig. 5.5 shows that Uppaal
urgent locations are marked with a ’U’ and initial locations are marked with a
concentric circle.

• Urgent locations: Within urgent locations no time passes. Thus the system
has to execute any of its outgoing edge in zero time once the urgent
location is entered. If this is not possible, the execution of the timed
automaton deadlocks.

• Initial locations: Each timed automaton in Uppaal has exactly one initial
location l0.

Composed timed automata do not share clocks. Updates of global variables
on synchronized edges require special care; they are evaluated sequentially:
first the updates on the sending edge are performed, then the one(s) on the
receiving edge(s). In case of updates on multiple receiving edges, the resulting
update is not well-defined unless the operation is commutative, e.g., incre-
menting a variable. As the presented conformance testing approach deals with
networks of timed automata that are jointly executed, a state of the system
can be uniquely defined by a vector of location identifiers, each referring to the

5.2. Power Trace Testing (PTT) 67

active location held by the respective automaton, and the valuation of all clocks
and the vector of values held by the variables. The notation (~l,U,V) is used
for the elements of the set of reachable states R, where ~l refers to the vector of
active locations, U refers to the representation of the clock valuations and V to
the values currently held by the variables.

5.2 Power Trace Testing (PTT)
The main goal of this chapter is to present Power Trace Testing (PTT). PTT
employs a reachability query in order to decide whether a (finite) timed trace
of power measurements is included in the traces of a specification of a WSN.
For being applicable in an industrial environment the approach is designed in
such a way that it can be implemented on the basis of standard real-time tools.
The proposed methodology is illustrated in Fig. 5.1: It relies on models of a
timed trace of power measurements and a user-defined model that describes
the specification of the system under evaluation. Whereas the model of the
timed trace of measurements TM is automatically derived from the time series
of power measurements, the formal model of system behavior Sys needs to
be (manually) generated from some specification. Having formal models for
both, the measurements and the expected system behavior, we can specify a
conformance test. Both models are composed into a network of timed automata
Sys||TM. We formulate the conformance test as a reachability check on the
jointly executed network of timed automata:

Sys |= TM⇔ (~l,U,V) ∈ RSys||TM,where~l contains l f
TM,

where l f
TM denotes the final location of TM and RSys||TM is the set of reachable

states for Sys||TM. Intuitively, l f
TM corresponds to the final measurement in a

power trace. In order to automatically determine reachability on the composed
model, PTT utilizes a timed model checker. For representing the time series of
measurements a suitable model is required, such that (i) the model provides
sufficient expressiveness with respect to the tracked power measurements and
(ii) the model allows an efficient generation of the set of reachable states of the
composed models RSys||TM. In the following it is shown how timed automata
extended with (discrete) variables can be employed for this purpose. The pre-
sented approach can be implemented on top of standard timed model checkers
such as Uppaal.

5.2.1 Timed automaton models employed in PTT
In the following, the timed automata models for the power measurements (TM)
and for the system specification are presented (Sys).

68 Chapter 5. Model-based conformance testing of power consumption

Power Trace Testing

Model Checker

5000 6000 7000 8000 9000 10000 11000 12000
0

10

20

C
u
r
r
e
n
t

(
m

A
)

Time (ms)

Power Trace

Hardware
message_t uartbuf;
bool sendbusy=FALSE;
oscilloscope_t local;
uint8_t reading;
bool suppress_count_chg;

Software

TRANSITIONING_UP

a<= 200

STARTUP

a<=150

IDLE_TRANSITION

a<= 100

VOLTAGE_REG

a<=50

EFD

ActualTransmit

AttemptSend

TRANSITIONING_DN
a <= 50

LISTEN_and_RECEIVE
OFF

SEND

sending?

off?

event?
ready++

event?
ready++

RadioUp = 16000,
RadioLow = 6000

event?
ready++

event?
ready++

event?
ready++

event?
ready++

event?
ready++

RadioUp = 6000,
RadioLow = 200RadioUp = 200,

RadioLow = 0 on?

event?
ready++

event?
ready++

event?
ready++

event?
ready++

event?
ready++

event?
ready++

event?
ready++

RadioUp = 4000,
RadioLow = 200,
a=0

RadioUp = 200,
RadioLow = 0

RadioUp = 16000,
RadioLow = 500,
a = 0

RadioUp = 21700,
RadioLow = 16000

RadioUp = 20400,
RadioLow = 12900

RadioUp = 16100,
RadioLow = 11600

RadioUp = 23800,
RadioLow = 15000

RadioUp = 22800,
RadioLow = 11900

RadioUp = 20400,
RadioLow = 12900

RadioUp = 21700,
RadioLow = 16000

event?
ready++

event?
ready++

event?
ready++ event?

ready++

event?
ready++

event?
ready++

event?
ready++

event?
ready++

event?
ready++

event?
ready++

Power Measurement

Monitoring

y<=70 y<=117 and ready == 2 y<=2 and ready == 2 y<=1 and ready == 2 y<=210 and ready == 2

y==70

crrValue=100

IsInBounds()
event!

y=0, ready=0,
 stateTrace = 2

y==117

crrValue=200

IsInBounds()
event!

y=0, ready=0,
 stateTrace = 3

y==2

crrValue=100

IsInBounds()
event!

y=0, ready=0,
 stateTrace = 4

y==1

crrValue=200

IsInBounds()
event!

y=0, ready=0,
 stateTrace = 5

y==210

crrValue=100, traceTerminal=true

TM

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20

C
u
rr

e
n
t
(m

A
)

Time (s)

∼

No Yes

Im
pl

em
en

ta
tio

n

Sp
ec

ifi
ca

tio
n

of
 e

xp
ec

te
d

be
ha

vi
or

Environment

- Power Consumption
- Timing Annotations

Hardware

- Component Usage
- Control Flow
- Timing Constraints

Software

?

Testcase description

Automatic Trace Generation

Sys

H
W

-o
rie

nt
ed

Send

Receive

RadioOn

z<=2000IDLE

z <= 50000 receive?

z=0

z=0

sending!

send?

initial==true

z=0,
initial=false

z>=48000
z=0

off!

on!

SW
-o

rie
nt

ed

Counterexample

Figure 5.1: Power Trace Testing (PTT) overview: PTT uses (1) a model of the trace of power
measurements (TM) and (2) a model of the system (Sys). TM is automatically generated from
the trace measured from the implementation. Sys is (manually) created from the specification.
On the composed model TM||Sys, reachability is checked using a model checker. The model
checker provides a counterexample if the reachability check fails.

5.2.1.1 Model of timed measurements (TM)

The formal model of a time series of measurements is a timed automaton TM.
It contains a variable p that denotes the measured power consumption and a
single clock cTM that denotes the clock valuations at a change of p. Formally
TM is defined as follows:

TM = (LocTM,Loc0
TM,ActTM,uTM, vTM, ↪→TM, ITM,APTM,LTM),

ActTM = {τ},uTM = {cTM}, vTM = {p},

where we denote lTM ∈ LocTM as a location in TM. l f
TM ∈ LocTM is the final

location of TM.

TM is constructed by generating a location in the trace for each pair in the
timed trace of measurements. A clock is used to stay in a given location ex-
actly for the time between the current and the previous measurement, i.e., for
(t1, a1); (t2, a2) and assuming the trace starting at time 0, the time in location l1 is t1

and for the subsequent location l2 it is t2−t1. However, the size of a trace of mea-
surements is typically very large as (a) typical lab instruments provide a high
resolution, e.g., in the order of milliseconds (ms) down to nanoseconds (ns) for
power consumption, and (b) the measurement noise leads to frequent changes
of the power level resulting in frequent state transitions. As a result, there is

5.2. Power Trace Testing (PTT) 69

y<=150 y<=7 y<=1217y==150
crrValue=1000, y=0

y==7
crrValue=100, y=0

y==1217
crrValue=200, y=0

Figure 5.2: A short excerpt of an exemplary TM in Uppaal. In this implementation, the power
consumption is annotated as crrValue. The clock is specified as a clock variable y. A value
of crrValue = 1000 is initially measured for the first 150 time units.

a need for compressing millions of data points into a processable number of
locations in TM. This is described at the end of this section (cf. Sec. 5.2.3.2), as
necessary technical concepts need to be presented first.

5.2.1.2 System specification Sys

At first, it is assumed that Sys is a single timed automaton. This means that for
simplicity of presentation, it is initially ignored that the model may consist of
a set of cooperating timed automata. The locations of Sys are annotated with
invariants on clocks and variables. This results in a description of the system
with respect to timing and power consumption. For Sys, the following notation
is used:

Sys = (Locs,Loc0
s ,Acts,us, vs, ↪→Sys, Is,APs,Ls), {hlow, hup, p} ⊆ vs

In the following, some aspects of Sys are detailed:

1. Set of variables {hlow, hup, p} ⊆ vs. The model of the trace of power mea-
surements TM communicates with the system model Sys via a shared
variable p that holds the values of the measured power consumption. For
dealing with deviations in the measurements, Sys employs a pair of vari-
ables hlow, hup ∈ D that specify upper and lower bounds to be respected by
the power consumption as represented by variable p, i.e., p ∈ [hlow, hup].
Note that Sys only reads p; TM updates p to signify changes in mea-
sured power consumption. The variables hlow, hup are manipulated when
traversing a respective edge of Sys. These bounds on power consump-
tion are equivalent to y(+/−)

i as described in Sec. 4.4.1.1. Note that Sys
may contain additional variables. However such additional variables are
irrelevant for PTT.

2. Set of locations Locs. This set consists of two disjoint sets of locationsM
andN :

• Set of system modesM
A location m ∈ M represents a mode of operation that possesses
a fixed lower and upper bound hlow, hup on power consumption p.

70 Chapter 5. Model-based conformance testing of power consumption

Corresponding location invariants allow to invalidate pairs of lo-
cations and measured values, namely if p < [hlow, hup]. Hence, it
is straight-forward to define location invariants that assert that a
provided measurement held by variable p is conformant with the
modeled system.2 The upper and lower bounds are updated when
Sys executes a transition. In case variable p would be changed in
such a way that it does not agree with the currently provided power
bounds of a system mode hlow and hup, a violation of a location invari-
ant would occur. As this prohibits updates of p, update locations are
required. Fig. 5.3 shows a system mode m1 with hlow = 1 and hup = 3.
If the measurement needs to be updated to a value of p = 9, this is
not possible due to the location invariant. An additional location is
needed without an invariant. Subsequently, after the update of p,
the system can traverse to a new system mode m2.

• Set of update locationsN
Update locations n ∈ N are urgent locations without any invariants.
They are artifacts of the presented approach as they allow the update
of the shared variable p in another automaton, i.e., by executing a
transition of TM. Updates on p in system modes may not be possible,
as they may violate the location invariant p ∈ [hlow, hup]. Hence
update location and system mode locations are interleaved.

p <= h_1,up h_1,low <= p &&
p <= h_1,up

1 ≤ p
and
p ≤ 3

3 ≤ p
and

p ≤ 10

Update location

m1 m2

Figure 5.3: The update mechanism of Sys as implemented in Uppaal. System modes have an
intermediate urgent update location without any invariant.

For formalizing this behavior, the following discrete transition rule in Sys
is defined:

〈m,us, {hlow, hup, p}〉
τ
→Sys 〈n,us, {hlow, hup, p′}〉

αs
→Sys 〈m′,u′s, {h′low, h

′

up, p′}〉

〈m,us, {hlow, hup, p}〉
αs
→Sys 〈m′,u′s, {h′low, h

′
up, p′}〉

;

m,m′ ∈ M; n ∈ N ; I(n) = (∅, ∅); (us, {p, hlow, hup}) ∈ I(m);
(u′s, {p

′, h′low, h
′

up}) ∈ I(m′); u′s = [rs → 0]us (5.1)

2As a consequence, the presented approach requires measurements that do not refer to a
physical quantity that is an integral over time. It is exactly this assumption that allows the
conformance test to stay within the class of timed automata, rather than being forced to make
use of linear priced timed automata [BLR05] or other implementations of hybrid automata
[Hen96].

5.2. Power Trace Testing (PTT) 71

where x′ denotes a change of x after taking a transition, i.e., either a location
change or a change in the valuation. u′s = [rs → 0]us denotes that a subset of
clocks rs ⊆ us in Sys may be reset on a transition to a new system mode. Delay
transitions in update locations are not possible, since update locations are
urgent locations. Delay transitions in system modes follow from the definition
of timed automata.

5.2.2 Reachability check for verifying PTT conformance
The trace model TM and the system model Sys are executed concurrently
referred to by TM||Sys. TM and Sys only cooperate via a shared variable p, i.e.,
no rendezvous takes place between them, such that ActTM∩Acts = ∅, vTM∩vs =
{p} holds.
The global variable p is updated when transitions of TM take place. Updates
of p may potentially invalidate location invariants of Sys, which is the reason
for using update locations in Sys. This specific modeling of Sys results in the
transition relations defined below.

5.2.2.1 Definition of transition rules

With the presence of mode and update locations in Sys, the following transition
rules are obtained. Note that in order to distinguish transitions in TM and Sys
from the transitions in a composed model, a subscript is used on the transition
relation: ↪→TM for TM and ↪→Sys for Sys. For all transition rules, it holds that
m ∈ M and lTM ∈ LocTM.

(a) Delay transition: Sys and TM stay in their current location and increase
their clocks with the same duration.

〈lTM,uTM, {p}〉
d
→TM 〈lTM,uTM + d, {p}〉 ∧

〈m,us, {hlow, hup, p}〉
d
→Sys 〈m,us + d, {hlow, hup, p}〉

〈(lTM,m), (uTM,us), {hlow, hup, p}〉
d
→ 〈(lTM,m), (uTM + d,us + d), {hlow, hup, p}〉

;

with d ∈ R≥0 and
∀d′ ∈ R≥0, 0 ≤ d′ ≤ d : (uTM + d′, vTM) ∈ I(lTM) ∧ (us + d′, vs) ∈ I(m)

(b) Current value of power consumption is accepted by different system loca-
tions: Sys may traverse into another system mode that also accepts the current
power consumption.

〈m,us, {hlow, hup, p}〉
αs
→Sys 〈m′,u′s, {h′low, h

′
up, p}〉

〈(lTM,m), (uTM,us), {hlow, hup, p}〉
αs
→ 〈(lTM,m′), (uTM,u′s), {h′low, h

′
up, p}〉

;

with (hlow ≤ p) ∧ (p ≤ hup) ∧ (h′low ≤ p) ∧ (p ≤ h′up)

72 Chapter 5. Model-based conformance testing of power consumption

(c) Current system location accepts value of power consumption before and
after update: TM updates the power consumption, yet Sys stays in the current
system mode, since this system mode accepts the power measurement before
and after the update.

〈lTM,uTM, {p}〉
τ
→TM 〈l′TM,u

′

TM, {p
′
}〉

〈(lTM,m), (uTM,us), {hlow, hup, p}〉
τ
→ 〈(l′TM,m), (u′TM,us), {hlow, hup, p′}〉

;

with u′TM = [rTM → 0]uTM, (hlow ≤ p) ∧ (p ≤ hup) ∧ (hlow ≤ p′) ∧ (p′ ≤ hup)

(d) Mode change: Sys needs to enter a new system mode to accept a change
in power consumption in TM. This will be denoted as a mode change in the
following.

〈lTM,uTM, {p}〉
τ
→TM 〈l′TM,u

′

TM, {p
′
}〉 ∧ 〈m,us, {hlow, hup, p}〉

αs
→Sys 〈m′,u′s, {h′low, h

′
up, p′}〉

〈(lTM,m), (uTM,us), {hlow, hup, p}〉
αs
→ 〈(l′TM,m

′), (u′TM,u
′
s), {h′low, h

′
up, p′}〉

;

with u′TM = [rTM → 0]uTM, (hlow ≤ p) ∧ (p ≤ hup) ∧ (h′low ≤ p′) ∧ (p′ ≤ h′up)

Note that an actual mode change only occurs if it holds that ¬(h′low ≤ p)∧¬(p ≤
h′up) ∧ ¬(hlow ≤ p′) ∧ ¬(p′ ≤ hup), i.e., the current system mode does not accept
the future power consumption and the new system mode does not accept the
current power consumption. Our modeling enables a traversal back to the
system mode if a mode change is not required. This is significant when Sys is
composed of a network of timed automata as explained below. Also note that
the conjunction of transitions in the antecedent of (a) and (d) denote that these
transitions happen at exactly the same time and each transition is only possible
in combination with the other. There may be a clock reset on cTM on discrete
transitions in TM, which is indicated by u′TM = [rTM → 0]uTM, rTM ⊆ uTM. Clock
resets on discrete transitions in Sys follow the definition in Eq. 5.1.

There is one special consideration for implementing mode changes for a
model Sys composed of a network of timed automata. Each individual com-
ponent timed automata model in Sys that reads the variable p features mode
changes. On a change of p in TM only a subset of the component timed au-
tomata may require a mode change. Other component timed automata may
stay in their given mode. However, all component timed automata must in-
termittently transfer into an update location to enable a mode change. For this
reason there is a back edge from update locations to the corresponding system
mode as shown in Fig. 5.3.

5.2. Power Trace Testing (PTT) 73

5.2.2.2 Implementing the transition rules

Implementing the transition rules within a standard model checker necessitates
careful modeling of the update process for p. Figure 5.4 depicts the update
process modeled within Uppaal. The model, which could be an excerpt of a
system model Sys, can unconditionally transfer into an update location; this is
needed when the new value of shared variable p necessitates a mode change
in Sys. At first Sys transits from a mode location into an update location. This
allows TM to execute a transition assigning a new value to p. Once leaving
the update location Sys updates upper and lower bounds, i.e., assigning new
values to hlow and hup. Depending on these new values, the location invariants
p ∈ [hlow, hup] of potential target mode locations hold (cf. transition rule (d)
above) or invalidate the transition. This implies that the overall model TM||Sys
deadlocks in an update location if the location invariant p ∈ [hlow, hup] does not
hold for any of the potential target mode locations.

h_1,low <= p &&
p <= h_1,up h_1,low <= p &&

p <= h_1,up

h_1,up = 10,
h_1,low = 3

h_1,up = 3,
h_1,low = 1

hlow ≤ p
and

p ≤ hup

hlow ≤ p
and

p ≤ hup
hlow = 1,
hup = 3

hlow = 3,
hup = 10

Figure 5.4: The update mechanism of Sys as implemented in Uppaal. The dashed box indicates
a single system mode and the corresponding update location. The update to power bounds
is performed on entering the system mode.

The coupling of TM and Sys allows to check if the finite timed trace as
produced by TM is included within the set of traces that can be produced by
Sys. Using a standard timed model checker like Uppaal, this can be formulated
as a reachability problem by querying the reachability of the final location l f

TM
of TM.

5.2.2.3 Counterexample

If TM models a behavior not explained by Sys, the concurrently executed model
TM||Sys does not reach a state where location l f

TM is marked as active. The last
transition that lets a property ultimately fail might be related to the underlying
cause similar to the case for liveness checking in [KAJV07]. In the employed
reachability property for PTT, this "deadly transition" is given by the last state
reached on the longest path ofTTM||Sys (longest with respect to time). A possible
method to receive this information is to first label the locations of TM, e.g., by
indexing them. Subsequently, one can repeatedly check for the reachability of
a location based on the label using some search strategy such as binary search.

74 Chapter 5. Model-based conformance testing of power consumption

In order to determine where a power trace fails, iterative calls to Uppaal on
reachability of annotated index labels are employed in PTT.

5.2.3 Compositional modeling of the system model
For simplicity, the explanations given above ignored the fact that a system
model Sys might be built in a compositional manner, where different timed
automata represent individual components of the system. In the following,
these basic building blocks of the overall system model will be addressed as
component timed automata. As an example, a hardware component timed
automaton may describe a certain piece of hardware such as a microcontroller
with different modes, e.g., performing a computation task or residing in a low-
power mode. A software component timed automaton may represent some
piece of software controlling some hardware components, where in particular
these software components are time-driven. Shared variables or rendezvous
mechanisms can be used for coordinating interactions among the component
timed automaton as explained in Sec. 5.1. Fig. 5.5 shows that the radio model
for a sensor node is periodically turned on for listening on the channel via the
label on. The corresponding software model is shown in Fig. 5.6: it specifies
that the radio must periodically exit its power-off state (with an invariant on
the IDLE location).

As a major difficulty, such a compositional approach has to cope with the
fact that individual hardware components may contribute differently to the
power consumption, i.e., each system mode of a hardware component timed
automaton may contribute differently. In particular, each hardware compo-
nent timed automaton has two variables for describing the allowed power
consumption in a specific system mode. The overall allowed power consump-
tion is defined by the set of system modes the hardware components of Sys are
residing in.

As an example, Fig. 5.5 shows the component timed automaton modeling
the radio: It features 11 system modes and the corresponding power consump-
tion bounds (here described with the variables RadioLow for the lower bound
and RadioUp for upper bound). Each system mode is annotated with its indi-
vidual power consumption bounds on the incoming edge. In a powered-off
state (OFF), power consumption, or equivalently in this case current draw, is
lower bounded by 0mA and upper bounded by 0.5mA.

5.2. Power Trace Testing (PTT) 75

a
<=

 2
50

 &
&

Is

In
Bo

un
ds

()
a

<=
 1

00
 &

&
Is

In
Bo

un
ds

()
a

<=
 1

00
 &

&
Is

In
Bo

un
ds

()
a

<=
 2

50
 &

&
Is

In
Bo

un
ds

()

R
ad

io
U

p
=

60
00

,
R

ad
io

Lo
w

 =
 5

00
,

a=
0

Is
In

Bo
un

ds
()

Is
In

Bo
un

ds
()

Is
In

Bo
un

ds
()

Is
In

Bo
un

ds
()

Is
In

Bo
un

ds
()

a
<=

 5
00

 &
&

Is
In

Bo
un

ds
() Is
In

Bo
un

ds
()

R
ad

io
U

p
=

21
70

0,
R

ad
io

Lo
w

 =
 5

00
,

a
=

0,
ra

di
oo

n
=

fa
ls

e

EF
D

A
ct

ua
lT

ra
ns

m
it

A
tte

m
pt

Se
nd

VO
LT

A
G

E_
R

EG

se
nd

in
g?

of
f?

TR
A

N
SI

TI
O

N
IN

G
_D

O
W

N
LI

ST
EN

_a
nd

_R
EC

EI
VE

SE
N

D

O
FF

TR
A

N
SI

TI
O

N
IN

G
_U

P

on
?

R
ad

io
U

p
=

60
00

,
R

ad
io

Lo
w

 =
 5

00
R

ad
io

U
p

=
16

00
0,

R
ad

io
Lo

w
 =

 6
00

0
R

ad
io

U
p

=
18

00
,

R
ad

io
Lo

w
 =

 0

R
ad

io
U

p
=

50
0,

R
ad

io
Lo

w
 =

 0

R
ad

io
U

p
=

20
40

0,
R

ad
io

Lo
w

 =
 1

29
00

R
ad

io
U

p
=

21
70

0,
R

ad
io

Lo
w

 =
 1

60
00

R
ad

io
U

p
=

23
80

0,
R

ad
io

Lo
w

 =
 1

50
00

R
ad

io
U

p
=

22
80

0,
R

ad
io

Lo
w

 =
 1

16
00

R
ad

io
U

p
=

21
70

0,
R

ad
io

Lo
w

 =
 1

60
00

,
ra

di
oo

n
=

tru
e

R
ad

io
U

p
=

16
00

0,
R

ad
io

Lo
w

 =
 1

16
00

R
ad

io
U

p
=

20
40

0,
R

ad
io

Lo
w

 =
 1

29
00

ST
A

R
TU

P
ID

LE
_T

R
A

N
SI

TI
O

N

Fi
gu

re
5.

5:
U

pp
aa

lm
od

el
of

th
e

ra
di

o
ha

rd
w

ar
e

co
m

po
ne

nt
.L

ow
er

an
d

up
pe

r
bo

un
ds

on
po

w
er

co
ns

um
pt

io
n

ar
e

an
no

ta
te

d
as
R
a
d
i
o
L
o
w

an
d

R
a
d
i
o
U
p

(i
n
µ

A
).

A
cl

oc
k
a

co
nt

ro
ls

tr
an

si
ti

on
ti

m
es

be
tw

ee
n

sy
st

em
m

od
es

.
I
s
I
n
B
o
u
n
d
s

is
th

e
lo

ca
ti

on
in

va
ri

an
to

n
po

w
er

co
ns

um
pt

io
n

of
th

e
co

m
pr

eh
en

si
ve

sy
st

em
m

od
el

as
de

sc
ri

be
d

in
Li

st
in

g
5.

1.

76 Chapter 5. Model-based conformance testing of power consumption

z>=48000

initial== truesendDone

Send

sending!

on!

receive?

send?

ReceiveRadioOn

on!

OFF

off!

off!

z=0,
initial = false

initial=true

z=0

z=0
z<=1250z <= 50000

Figure 5.6: Uppaal model of the radio software. The initial state of the software is the IDLE
location. This location must be periodically exited, at least every 50,000 times units as seen
by the invariant on the clock z: z <= 50000. The software model uses binary synchroniza-
tion (channels on, off, and sending) to synchronize with the radio component. Note that
receive? and send? synchronize with a testcase model that specifies when packets may be
received and sent.

5.2.3.1 Interval composition

Each component timed automaton i has its own set of variables {hi
low, h

i
up} that

indicate the currently accepted interval. As a system state (~l,U,V) contains the
location of each component, the interval bounds of the overall system model
Sys can be obtained by adding the lower and upper bounds associated with
the location of each n component timed automata: h1

low, . . . , h
n
low and h1

up, . . . , hn
up.

The sums are assigned to the global variables hlow and hup as introduced above:
hlow :=

∑n
i=1 hi

low and hup :=
∑n

i=1 hi
up. Since the bounds hlow and hup are additively

composed, the power intervals described by the bounds may not be disjoint.
All possible intervals of power consumption can be computed offline given the
system model Sys.

As an example, the case study in Sec. 5.4 uses two components, a microcon-
troller as well as a radio. The implementation in Uppaal is displayed below
for the bounds of the radio, RadioLow and RadioUp, and the bounds of the
microcontroller, MCLow and MCUp:

bool IsInBounds(){
int h_up = RadioUp+MCUp;
int h_low = RadioLow+MCLow;
if(crrValue > h_up or crrValue < h_low) return(false);
return(true);

}

Listing 5.1: Invariant on system modes checking that measured power consumption
(crrValue) is included in the specified (additive) bounds.

5.2. Power Trace Testing (PTT) 77

5.2.3.2 Reducing power trace size

As discussed in Sec. 5.2.1.1, the size of TM is a major obstacle. A timed
trace obtained from some measurement can include millions of measurements.
Given that the input size of models for standard model checkers is constrained,
a considerable reduction must be achieved. In order to reduce the number of
locations in the sequential TM, we can exploit the computed set of intervals
of Sys: We segment the value range of power measurements into intervals.
The use of intervals, i.e., valuations of hlow and hup, on power consumption in
Sys allows PTT to abstract from the measurements. For keeping the number
of power intervals as small as possible, PTT exploits the concept of Greatest
Common Intervals as described in the following.

5.2.3.3 Greatest Common Intervals

In order to determine a minimal representation of intervals, PTT exploits the
concept of a Greatest Common Interval (GCI) partitioning[Str00], whereby a
set of non-disjoint intervals, such as the set of bounds HSys, is transformed
into a minimal size set of disjoint intervals HGCI. Since GCIs are disjoint, a
single value can be used for the representation of a single GCI: the average
value of the interval. Fig. 5.7 exemplifies the procedure when transforming
a non-disjoint partitioning of a finite domain into a disjoint partitioning by
introducing GCIs. Solid lines indicate the (possibly) non-disjoint intervals,
given by different valuations of hlow and hup.

HSys = {hSys,1, hSys,2}

hSys,1
hSys,2

Figure 5.7: hSys,1, hSys,2 are intervals of two different valuations of the bounds on power con-
sumption hlow and hup. For these two non-disjoint intervals, three GCIs are created, i.e.,
HGCI = {hGCI,1, hGCI,2, hGCI,3}

The figure shows two intervals HSys = {hSys,1, hSys,2}. By introducing a set of
GCIs the non-disjoint intervals can be transformed into a disjoint partitioning,
where the GCIs are indicated by dashed lines, i.e., HGCI = {hGCI,1, hGCI,2, hGCI,3}.
Each of these disjoint intervals represents an equivalence class with respect to
power consumption. Different measurements inside a GCI cannot be distin-
guished. This is used in PTT for reducing the number of locations of TM.

78 Chapter 5. Model-based conformance testing of power consumption

5.2.4 Trace Automaton Optimization
The trace reduction described above must preserve the timed behavior with
respect to power consumption. The set of GCIs can be computed (offline)
from the system specification model Sys. As a result, the construction of a
compressed trace of measurements is in principle straight-forward. When the
compressed trace is constructed, a respective timed automaton can be derived,
which is denoted as quotient timed automaton TM′ in the following. Below,
it will be shown that TM and TM′ are equivalent with respect to the timed
sequence of GCI-visits, such that

Sys |= TM⇔ Sys |= TM′

5.2.4.1 Quotient transition system generation algorithm

For automating the generation of the quotient timed automaton TM’, PTT
employs Algorithm 5.1 that creates a list of locations l given the mea-
surement samples (power measurements p) and the endpoints of the GCIs
(GCIEndpoints[0...maxGCI]). Note that here we assume equidistant measure-
ment samples of power consumption as typically provided by lab instruments.
In a nutshell, a location is created for k consecutive measurements when the
value of the power measurement is within the same GCI hGCI,l. The time pass-
ing in a location is determined as r = k. The value crrValue, representing
a GCI, is determined as the (arithmetic) mean value of the GCI endpoints
1
2 · (h

low
GCI,l + hup

GCI,l). Note that for the GCIs of power measurements it holds that
hup

GCI,l = hlow
GCI,l+1∀l ∈ {1, ..., |GCI| − 1}.

Fig. 5.8 displays a trace excerpt that shows the GCIs of a typical system
model and the resulting GCI-based, compressed trace. Dashed horizontal lines
denote the GCI endpoints. The process of generating the compressed trace and
its timed automaton-based representation TM′, is exemplified in Fig. 5.9.

5.2.4.2 Correctness of quotient timed automaton generation algorithm

Definition 5.4. Each location l ∈ TM has a distinct residence time r ∈ R≥0 that
is given by the time between two differing measurements. This is modeled by
an invariant on a location d ≤ r with 〈l,u, v〉 r

→ 〈l,u+ r, v〉 where ∀d ∈ R≥0 : 0 ≤
d ≤ r ⇒ (u + d, v) ∈ I(l). The location invariant and a corresponding guard on
the outgoing transition ensure that the transition to the next location has to be
taken exactly after r time units have passed.

The example in Fig. 5.9 shows that a typical trace of measurements TM
with equidistant power measurements featuring a residence time of one for
each location l ∈ TM.

5.2. Power Trace Testing (PTT) 79

Algorithm 5.1 Generating the locations of TM′. Inputs are the list of power measurements p
and the list of GCI endpoints GCIEndpoints[0...maxGCI]. The output is a list of locations
l of TM′ each indicating the residence time r in that location and the corresponding
(abstracted) measurement value crrValue.

crrValue← 0, r← 0, l = [], j← 0
for all power measurements p do

i← 1
while i < maxGCI && p > GCIEndpoints[i] do

i← i + 1
end while
if i == maxGCI then

p′ ← GCIEndpoints[maxGCI]
else

p′ ← 0.5 · (GCIEndpoints[i] + GCIEndpoints[i − 1])
end if
if j == 0 then

crrValue← p′

end if
if crrValue == p′ then

r← r + 1
else

l[j] = new location(crrValue, r)
crrValue← p′, r← 1, j← j + 1

end if
end for
l[j] = new location(crrValue, r)

80 Chapter 5. Model-based conformance testing of power consumption

9.662 9.663 9.664 9.665 9.666 9.667 9.668 9.669
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Time in seconds

C
ur

re
nt

 d
ra

w
 in

 m
A

Raw Trace
GCI abstraction

Figure 5.8: Raw measurements of current draw under constant supply, i.e., power consump-
tion, and the compressed power trace using GCI abstraction. Horizontal, dotted lines indicate
the GCI boundaries.

Theorem 5.1. The quotient timed automaton generation algorithm (cf. Algo-
rithm 5.1) produces a reduced automaton TM′ that is equivalent with respect
to the timed sequence of GCI-visits to the automaton TM derived from the
original timed trace of measurements.

Proof 5.1 (By induction over the number of sequentially visited states).
Assumption: A location l′ ∈ TM′ is equivalent to a location l ∈ TM with respect
to its inclusion in a GCI iff for a location l ∈ TM the valuation of p is in a specific
GCI hl, i.e., p ∈ hl, hl ∈ HGCI and the valuation of p′ in the location l′ ∈ TM′ lies
inside the same interval: p′ ∈ hl. This is denoted as GCI-valuation-equivalent
in the following. The automaton TM′ is GCI-valuation-equivalent to TM
iff there is a GCI-valuation-equivalent sequential location in TM′ for each
location in TM.

Basis (i := 0): Let us assume that we are at a location l0 of TM that features
a power consumption of p0. The power consumption p0 is in a given GCI
p0 ∈ hl, hl ∈ HGCI, i.e., the system model Sys is indifferent to the specific value
within hl. Hence, l0 is equivalent with respect to the GCI of the quotient TM’
that resides in its initial location l′0 with p′0 ∈ hl.

Inductive step (i → i + 1): Let us assume we are at a location li with
power consumption pi with pi ∈ hl, hl ∈ HGCI. Now there are two possible
options for successor states li+1:

5.2. Power Trace Testing (PTT) 81

p=11

d≤1 d≤1 d≤1 d≤1 d≤1

d==1
p=12,
d=0

d==1
p=15,
d=0

d==1
p=12,
d=0

d==1
p=16,
d=0

p ∈ h1

d≤4 d≤12

d==4
p ∈ h2,

d=0

d d d d d

d d

TM

TM'

Figure 5.9: Construction of TM′ from TM by looking at the GCI-valuation-equivalence. Here
h1 = [10, 15] and h2 = [16, 18].

1. pi+1 ∈ hm, hm ∈ HGCI,m , l. A new location l′i+1 is generated in TM′ with
p′i+1 ∈ hm and residence time r′i+1 = ri+1 = 1. Hence, l′i+1 is GCI-valuation-
equivalent to li+1 at least for time r′i+1.

2. pi+1 ∈ hl. No additional location is added for TM′, but the residence time
is increased for l′i such that r′i+1 = r′i + ri+1 = r′i + 1. l′i features the same
valuation with respect to the GCI for both li and li+1. Hence, at each
instant in time TM and TM′ provide the same valuation with respect to
the currently visit GCI.

The induction scheme above proves that we can generate a quotient timed
automaton TM′ for any time series of measurements. The constructed quotient
timed automaton is GCI-valuation-equivalent with respect to the trace model
TM for the following reasons: Let TM′ be in any location l′i corresponding to the
location sequence lp, ..., lq in TM. By construction of TM′, it holds that the resi-
dence time in l′i is r′i =

∑q
j=p r j. Note that l′i is GCI-valuation-equivalent to lp, ..., lq.

Hence it follows that TM and TM′ are equivalent for the time t: δi ≤ t ≤ δi + r′i
with respect to their GCI-valuation, where δ0 = 0 and δ j =

∑i−1
j=0 r′j. As TM and

TM′ may only reside in a single location at any period in time, the induction
over i covers all points in time of the original time series of measurements and
yields again that TM and TM′ are GCI-valuation-equivalent.

Lemma 5.1. If TM′ is an GCI-valuation-equivalent automaton to TM, then
Sys |= TM⇔ Sys |= TM′ holds.

Proof. It only depends on the timed sequence of GCIs whether the final location
l f
TM of trace automaton TM or TM′ is reachable within the composed model

Sys||TM . As this is the same for TM and TM′, the lemma holds. �

82 Chapter 5. Model-based conformance testing of power consumption

5.3 Testing power consumption with TRON
As an alternative to the above approach one may also employ a conformance
online testing tool such as TRON [LMN04, HLM+08, KGL09]. As this tool also
utilizes a timed automata-based system specification, it appears to be highly
suited for benchmarking the approach presented so far. A detailed discussion
is provided that may help to understand the differences in terms of analysis
performance.

5.3.1 Timed input/output conformance relation
TRON is a model-based tool that tests the conformance of an implementation
and its timed automata-based specification, where conformance is tested with
respect to timed input/output behavior. Analogously to PTT, TRON employs
timed automata for specifying the desired behavior of an implementation,
i.e., only behavior that is allowed by the specification may be seen in any
test run. TRON uses a relativized timed input/output conformance relation
rtioco introduced by Larsen et al. [LMN04] as defined below. Note that in
this section the notations of the original publication are used. In particular,
Larsen et al. [LMN04] use a different notation for timed traces; in their work,
and hence in the following explanations, a timed trace is a sequence of labels.
The labels may include actions A and (time) delays d ∈ R≥0. Hence a timed
trace σ ∈ (A ∪ R≥0)∗ is of the form σ = d1a1d2a2...dkak with di ∈ R≥0 and ai ∈ A,
i.e., labels and delays are concatenated.

Definition 5.5 (rtioco).

Let imp and s be TIOTS :
imp rtioco s↔de f ∀σ ∈ Ttraces(e) : out(〈imp, e〉 after σ) ⊆ out(〈s, e〉 after σ) (5.2)

where

• TIOTS is a timed I/O transitions systems. For details on TIOTS, the
reader is referred to the original publications of TRON [LMN04], since it
is not necessary for the understanding of the application of TRON. It only
should be noted that TIOTS have labels L that include distinct inputs
Li, outputs Lo as well as timed transitions (d ∈ R≥0) and an unobservable
internal action label τ, i.e., L = Li ∪ Lo ∪ {τ} ∪R≥0.

• 〈imp, e〉 is the composition of implementation imp with the environment
e. 〈s, e〉 denotes the composition of specification s with e.

• σ is an observable timed trace, i.e., σ ∈ (Li∪Lo∪R≥0)∗, i.e., a trace containing
inputs, outputs and (time) delays.

5.3. Testing power consumption with TRON 83

TRON

Implementation imp

Specification s
a?

b!

rt
io
co ⊆

Uppaal
State
space
exploration

Trace
11.3: a?
21.1: b!
49.4: b!
50.0: b!

Trace
Adapter

logs

Sampler
Process

out(�s, e� after σ)

out(〈imp, e〉 after σ)

Figure 5.10: General overview for using TRON for PTT. TRON reads timed traces of the
implementation imp via a trace adapter (cf. Sec 5.3.2). TRON uses the Uppaal Engine to
compute the future state space of the specification s. Possible outputs are determined using
a sampler process (cf. Sec 5.3.3). Actual outputs of the implementation are compared to
outputs allowed by the specification as defined by the rtioco conformance relation.

• after σ denotes the set of possible states a system may be in after executing
a timed trace σ.

• Ttraces(e) is the set of all possible timed traces of the environment e.

• out(K) is the set of outputs (Lo ∪R≥0) a TIOTSmay produce from a set
of states K.

Intuitively, rtioco denotes that when providing the same environment
to specification and implementation and executing any timed trace from the
environment, the outputs that one may see from the implementation model
must be a subset of the specification model. Hence, the implementation has
only behavior that is allowed by the specification. Delays and outputs are only
allowed if they are specified in s.

Figure 5.10 shows a general overview for using TRON for PTT. TRON
verifies that the outputs of the implementation out(〈i, e〉) after σ are included in
the outputs allowed by the specification out(〈s, e〉) after σ. The discussion with
respect to PTT only focuses on outputs of a system, i.e., there is no modeled
input from the environment.

For determining the outputs of the implementation, TRON needs a
connection to the specific implementation. For offline testing as considered in
this work, a test adapter is provided that reads a textual trace. For accessing
the timed automaton-based system description, TRON needs a sampler
process to be provided by the test engineer. This sampler process uses
dedicated signals and variables, allowing a comparison of input/output values
of implementation and specification. In this work, the sampler process outputs

84 Chapter 5. Model-based conformance testing of power consumption

the system’s power consumption at a given time, allowing its comparison to
the respective value in the power trace at this instant. In order to understand
the testing procedure, trace adapter and sampler process are briefly discussed
in the following.

5.3.2 Trace adapter
TRON needs a connector to the implementation to read its outputs. For PTT,
traces are already available from a given execution. For such offline testing,
TRON provides a trace adapter that accepts a textual representation of the timed
trace. Input actions, output actions and delays are defined. As previously
mentioned, each action may have variables attached that are compared to the
specification when the action is triggered, but not in any other case.

Listing 5.2 shows an exemplary trace used in the case study, where the
physical quantity represents current draw under constant supply (i.e., power
consumption). Lines 1 and 2 show the declaration of input and outputs actions
and the associated (integer) variables: there are no input actions and only
a single output action (report) with an associated variable for defining the
power consumption (crrValue). Lines 3 and 4 are declarations for TRON
parameters that include the precision of individual time units (here specified
as 20µs.), and a timeout that is used to signal when to stop the testing process3.
The actual trace, which starts at line 6, is specified as a list of delays and
output actions with a corresponding value. Delays are specified with respect
to time units (delay @6.0;). Output actions are specified with the value of
the associated variable at that moment in time (output report1(4);). The
trace below describes that initially the current draw is 0µA. After 120µs, the
current draw changes to 400µA. Finally at 160µs, the implementation draws
100µA. For TRON such an execution trace for a given trace of measurements
is generated based on the optimization described in Sec. 5.2.4.

5.3.3 Sampler process
TRON uses timed automata models of the specification and employs the Up-
paal verification engine [MLN04] to compute the future state space of the
specification (cf. lower right in Fig. 5.10). The sampler process is a model that
specifies input and output actions of the specification. Figure 5.11 shows the
sampler process used in the case study with a single output. The sampler process
models the time when an output (report) may be generated. Additionally, it
defines the range of possible values for the output variable crrValue. These

3The length of the test is determined in the offline case of PTT by the length of the power
trace previously measured.

5.3. Testing power consumption with TRON 85

1 input ;
2 output report(crrValue);
3 precision 20;
4 timeout 20000000;
5

6 output report1(0);
7 delay @6.0;
8 output report1(400);
9 delay @8.0;

10 output report1(100);
11 ...

Listing 5.2: TRON trace format with a
single output variable crrValue describing
measured power consumption.

p: int[0,MaxPower/prec]
delay

crrValue=p*prec

sampled

report!

Figure 5.11: TRON sampler process for pro-
ducing the output (crrValue) from the Up-
paal model using a non-deterministic selec-
tion pwith granularity prec.

are the same output action and variable as specified in Listing 5.2, i.e., trace
and sampler process synchronize via report and crrValue.

On the transition, the current valuation of the power consumption vari-
able crrValue is selected non-deterministically from the interval [0, MaxPower],
which is achieved by using Uppaal’s selections (here p). Selections non-
deterministically assign an integer value within the given interval. To reduce
granularity of possible values for crrValue, we first divide by a constant prec
before the selection and then multiply by prec after the selection. Hence, prec
defines the granularity of allowed power consumption values. An evaluation
of prec is detailed in the case study (cf. Sec. 5.5.4.2). MaxPower is a constant,
defining the maximum value for the power consumption of the complete sys-
tem. Note that Uppaal’s selections require constants in their ranges, i.e., the
bounds of the interval need to be fixed at compile time. The sampler process
shown in Fig. 5.11 does not describe any temporal behavior for the output;
since power may be measured (and change) at any point in time, a change in
power consumption is allowed at any time by the model. The sampler process
is composed with the system specification model Sys. Sys is identical to the
PTT-based approach.

5.3.4 PTT execution with TRON
For a better understanding, we may assume that a timed trace σ, as provided
through the trace adapter, is executed. Let us further assume that from the last
observation at time t0 neither an input i ∈ Li nor an output o ∈ Lo is provided
by the implementation for δ time units (δ ∈ R≥0). After this δ time units
delay, the implementation produces a specific output o ∈ Lo. Remember, that
the outputs of a TIOTS in states K are defined as out(K) and that the set of
outputs includes Lo ∪ R≥0. Formally, this means that δ ∈ out(〈i, e〉 after σ) and
o ∈ out(〈i, e〉 after σδ), where σδ denotes the concatenation of time delay δ to

86 Chapter 5. Model-based conformance testing of power consumption

the timed trace σ. For resolving this situation, TRON performs a state space
exploration of the system model 〈s, e〉 and computes the largest delay dmax that
is possible starting at t0: dmax = max(d ∈ R≥0|d ∈ out(〈s, e〉 after σ)). Given dmax,
it can determined whether the delay δ is acceptable. If dmax < δ the delay is
not acceptable and the test fails. In case dmax ≥ δ, the delay is allowed by
the specification and TRON needs to check the respective target states for the
possible output o. Once again this is done by state space exploration and the
check whether o ∈ out(〈s, e〉 after σδ) holds. If this is true the delay and output
are appended to the timed trace: σ′ = σδo and the exploration proceeds with
all valid target states. This means that TRON needs to keep all potential target
states in memory, such that it is capable of exploring all potentially valid traces.
This yields that the reachable (valid) states are visited in a breadth-first search
and stepwise manner. Contrary to this, the reachability check as performed by
PTT can be organized in an arbitrary order, e.g., depth-first-search.

As pointed out above, TRON features the concept of a future size [KGL09]
that is used to limit the pre-computation to δmax time units. TRON features
the command line option -F for specifying the future size δmax (in time units).
For PTT, this is important, since it determines the computational overhead of
determining (future) outputs.4 Consider the previous example of determining
σ′ = σδo. Let us assume a delay transition of δ = 3000. If δmax = 1000,
TRON would need 3 separate pre-computation steps and arrive at a trace: σ′ =
σδmaxδmaxδmaxo. Choosing δmax = 5000 reduces the computational overhead by
pre-computing the state space, since it uses just one exploration step: σ′ = σδo.
The effect of the future size on checking power traces is explored in Sec. 5.5.4.1.

5.4 Case Study
In this case study, a Tmote Sky sensor node running the Harvester application
(cf. Sec. 2.2) is monitored. A simplified version of the Harvester application
is used that does not use the analog-to-digital converter to read sensor val-
ues but simply sends a given value periodically. Thus the components to be
modeled are reduced to the two main contributors to power consumption: the
microcontroller and the radio. Other components such as LEDs, sensors or the
external flash are persistently powered off and are not included in the analy-
sis. For the testcases, the power consumption of a sensor node is monitored
by the voltage drop across a MHP201R0F 1Ω (±1% tolerance) shunt resistor
measured by a digital multimeter (Agilent 34411A). Current draw is measured
under a constant supply voltage. Current draw and power consumption are
used interchangeably in the following. Note that for a variable supply voltage,

4The future size also plays a role in the testcase generation. This is however out-of-scope
for PTT.

5.4. Case Study 87

both voltage and current need to be measured in parallel to determine power
consumption. A node is monitored for 20 sec. This is due to the limitation of
107 data points that can be stored by the multimeter. A plot of a time series
of measurements is presented in Fig. 5.13, where the node periodically wakes
up and turns on its radio in order to listen for a carrier. The first wake-up of
Harvester occurs at 0.8s and the second one at 1.8s. As can be seen from these
wake-ups, Harvester is configured with a wake-up period of 1000 binary ms or
approximately 0.977s.5

5.4.1 Modeling the Harvester
Harvester is modeled as a network of timed automata. The Harvester is a com-
plex system running an intricate software stack on top of a heterogeneous em-
bedded system. The complexity of the system is managed through an abstract
representation of expected behavior and component decomposition. In partic-
ular, individual models of Sys are differentiated between hardware-oriented mod-
els capturing the low-level behavior of individual hardware components and
the corresponding low-level software (drivers), software-oriented models, repre-
senting the application-level software as well as the environment and testcase.
Note that there is no claim on the soundness of abstraction and decomposition.
As previously described, the system model is not a formal specification, but
rather a specification of assumed behavior that is itself subject to refinements
or improvements.

5.4.1.1 Modeling the hardware

The sensor node hardware is modeled as a network of timed automata, i.e.,
hardware components are modeled individually. Each system mode in a hard-
ware component automaton has associated power bounds. Power consump-
tion values for annotating the power bounds of the timed automata are based
either on the data-sheet provided by the manufacturer or on characterization
measurements. The system power consumption is the sum of the individ-
ual contributions as described in the invariant on system modes as shown in
Listing 5.1.

For the analysis of the Harvester, the microcontroller and the radio need
to be modeled focusing on their power modi in order to distinguish whether
they are performing work, are idle or are powered off. Fig. 5.12 shows that
the microcontroller has three modes: a low-power location (OFF_and_LP) that
represents the processor turned off or in one of the MSP430 low-power modes
(lpm1-4). In the IDLE location, the CPU is active and all clocks are enabled, but
no computation is performed. The ON location denotes the power consumption
of the microcontroller while performing computations. We refrain from timing

5One second contains 1024 binary milliseconds.

88 Chapter 5. Model-based conformance testing of power consumption

IDLE
IsInBounds()

ON
IsInBounds()

OFF_and_LP

IsInBounds()

lpm?

idle?

MCUp = 100,
MCLow = 0

MCUp = 1800,
MCLow = 100

MCUp=2400,
MCLow=1800

MCUp = 1800,
MCLow = 100

Figure 5.12: Model of the microcontroller hardware component. A corresponding software
model controls the hardware component model using channels idle and lpm.

models for the microcontroller as transition times between the different modes
are small.

Figure 5.5 shows the model based on the TI CC2420 radio datasheet6. On
the upper left of the figure is the initial location that represents the radio
being powered off. The upper half of the automaton models the startup of
the radio until it reaches the default power-on location to the lower right
(LISTEN_AND_RECEIVE). A corresponding magnified power trace of the startup
behavior is depicted in Fig. 4.1.

The lower half describes the power consumption during the sending of a
packet. The sequencing of steps in a single transmission uses a specification
of the low-level radio driver of the radio to restrict possible state sequences.
The naming of the locations is chosen accordingly: AttemptSend is the location
where the clear channel assessment is performed. ActualTransmit is the loca-
tion where the packet is transmitted, while EFD signifies a detected End Frame
Delimiter, the end of the transmission.

5.4.1.2 Modeling the software

A software model controls a hardware model using binary channels. For
exemplification one may refer to Fig. 5.5, where turning on and off the radio
is achieved by binary channels. Sending is indicated with a channel label
followed by an exclamation mark, e.g., the software turns on the radio via the
symbol on! as seen in Fig. 5.6.

Due to the event-based, interrupt-driven nature of embedded systems,
a representation of every possible program flow is difficult and error-
prone [NS07]. Numerous possible interleavings are incurred by software run-
ning in a preemptable context. Moreover, differing semantics of the operating
system scheduler considering hardware interrupts, software interrupts and de-
ferred procedure calls as in TinyOS 2 make a comprehensive representation of
a sensor node application impractical. Instead, the models employed focus on
certain aspects of the system, e.g., the basic functionality of the MAC protocol,
which considerably simplifies the software modeling. The MAC protocol is
merely dependent on the radio. Its simplified operations, i.e., its use of the

6http://focus.ti.com/docs/prod/folders/print/cc2420.html

http://focus.ti.com/docs/prod/folders/print/cc2420.html

5.4. Case Study 89

radio component, may be described in a declarative way: The radio should listen
to the channel about every second, if it is neither receiving nor sending. The on period
should maximally last for 2.5 ms. In any other case, the radio should be turned off.
This behavior is modeled in the automaton illustrated in Fig. 5.6. It consists of
five distinct locations OFF, RadioOn, Send, sendDone and Receive plus two tran-
sitional locations. When no communication is performed, the system toggles
between OFF and RadioOn. This is achieved in Fig. 5.6 with the cycle containing
the respective locations. As the specification describes, the software is expected
to exit the OFFmode about every second, which is modeled as an invariant on
the OFF location. Secondly, the invariant is added to have the radio in RadioOn
for at most 2.5 ms. Note that this cycle within Fig. 5.6 includes a mode switch:
Strict timing requirements are only enforced on consecutive wake-ups. Initially
and on send operations, the requirements on being turned off for most of the
period is disabled using the Boolean variable initial on exiting OFF location.

The remaining part for the given software model is dedicated to the radio’s
receiving or sending. This is achieved by equipping location RadioOn with
two outgoing transitions send? and receive?. However, as enforced by
Uppaal’s synchronization semantics, these transitions can only be executed, if
the signals send! and receive! are present. To do so one may specify some
testcase automaton. Such a testcase automaton may non-deterministically emit
the required signals or impose some restrictions on the timing.

The Harvester radio software model shown in Fig. 5.6 is simple due to
its focus on a single functionality. Nevertheless it is a representative exam-
ple of a software model in that it (1) defines the (de)activation of components
(on!/off!), (2) defines a sequence of locations (e.g., OFF- RadioOn- OFF- . . .),
(3) features an additional, restrictive time bound on hardware locations
(RadioOn) and (4) specifies intervals between locations.

5.4.1.3 Modeling test specifications

As pointed out before the usage of testcase automata for reducing the set of
possible behaviors is advisory. For the ’Wake-up’ testcase (cf. Fig. 5.13), an
empty testcase automaton is used. This testcase automaton yields that the
LPL MAC protocol as specified in Fig. 5.6 is restricted to the locations IDLE
and RadioOn. This is because the software model never receives a signal
to synchronize with from the environment. This basically models that the
radio silently waits for incoming traffic. For analyzing a complex scenario (cf.
Fig. 5.14), where packets are sent and received non-deterministically, a testcase
automaton for emitting the respective send! and receive! signals is added.

For the sake of simplicity, the hardware and software models shown exhibit
a single initial location such as the OFF location for the radio software model
(cf. Fig. 5.6). In general, PTT may start at any system location and the system
models need to accommodate for this fact. A single initial location is entered.

90 Chapter 5. Model-based conformance testing of power consumption

0 2 4 6 8 10 12 14 16 18 20
0

5

10

15

20
C

u
rr

e
n
t
(m

A
)

Time (s)

Figure 5.13: ’Wake-up’ Trace: Periodic wake-up of the radio for listening on the channel.
Annotated is the injection of an error by removing the wake-up between 11.608 and 11.618
seconds.

From this location, the timed automaton can unconditionally traverse to any
other location and set the required context along an initial transition, e.g., the
power bounds for a hardware automaton or the required synchronization for
the software models.

5.4.2 Testcases
For the case study five different testcases are selected as discussed below.

5.4.2.1 Radio software testing

First, the ’Wake-up’ PT in Fig. 5.13 is tested. Apart from validating the PT, a
new trace is created by manually injecting an error (’Inject’). A single wake-up
in the trace is removed between 11.6 and 11.62 seconds. This is marked in
the figure. This injection models differences in temporal behavior. Hence, the
sleep interval is prolonged representing defects such as missed interrupts or
not setting the timer correctly. Uppaal verifies that this trace is not conformant
to its specification. Binary search can be used to determine the last valid state
that can be reached as 11.63s, i.e., shortly after the missing wake-up. Hence, a
test engineer can conclude that a temporal requirement of the specification is
not met due to a missing wake-up.

PTT is not restricted to simple examples. The elaborate trace (’Complex
Trace’) shown in Fig. 5.14 is analyzed using a general software model as pre-
sented in Fig. 5.5. In this case, an additional testcase automaton is used that
allows the software model to receive and send messages at any instant in time.

5.4.2.2 Testing microcontroller low-power states

One of the common errors in programming low-power embedded systems is to
forget to transfer the hardware into a low-power state. Given a testcase where
no substantial processing is performed (’MC state’), a declarative specification
of microcontroller operation can be formulated: The processor should be maxi-
mally turned on for 10ms at a time. Subsequently it should be in a low-power state for at

5.4. Case Study 91

10 11 12 13 14 15 16
0

5

10

15

20

25
Cu

rre
nt

 (m
A)

Time (s)

Figure 5.14: Power trace of a Tmote Sky sensor node. The sensor node performs send and
receive operations.

least 2ms. Hence, it can be determined whether the microcontroller is operated
correctly in a given PT. For validating this approach, an error is injected into
the low-power scheduler by sometimes transferring to the regular idle mode
instead of the lower power mode lpm4. In these specific sleep intervals, the
system draws an additional current of about 1.8mA. This is detected by PTT,
since a prolonged current draw can only be explained by an idle processor.
However, this is prohibited by the specification.

5.4.2.3 Specification error

As a final testcase (’Specification’), an application of PTT is shown that de-
tects an unexpected use of a hardware component that has not been modeled.
This illustrates the capability of PTT to detect issues related to failures in the
hardware or software modeling. In particular, the execution of a development
version of Harvester is analyzed. During the sampling routine of the sensors,
the development code turns on one of the LEDs for visual inspection. Fig-
ure 5.15 shows the current draw of the LED in such a case. Since the LED is
not included in a hardware model, the reachability query fails.

The last reachable location can be determined with the time interval
[14.593s, 14.599s]. This is exactly where the development code switched on
the LED. Hence, hardware model issues can be identified, which can be re-
vealed by an unexplainable power consumption pattern as in the case of the
LED.

92 Chapter 5. Model-based conformance testing of power consumption

13.6 13.8 14 14.2 14.4 14.6 14.8 15 15.2 15.4 15.6 15.8
0

5

10

15

20

25
C

u
rr

e
n
t
(m

A
)

Time (s)

LED on
(additional ~2.6 mA)

Last valid state:
14.593s till 14.599s

Figure 5.15: ’Specification’ testcase: The LED is powered on, yet it is not included in the
specification.

5.5 Empirical evaluation: Results and Benchmarks
In this section, experimental results are presented using a case study. The case
study concerns the power consumption of a wireless sensor node. Firstly, the
effect of the optimization presented in Sec. 5.2.4 on input problem sizes is de-
scribed. Secondly, experimental results are presented for the implementations
using TRON and Uppaal.

5.5.1 Power trace models
Table 5.1 presents a summary of the five testcases with respect to the original
power trace sizes in number of individual measurements, and the effect of the
quotient transition system optimization concerning the resulting number of
locations in Uppaal.7 As can be seen, for a typical example the optimization
results in a compression of locations by at least an order of magnitude.

5.5.2 Experimental setup
All conformance tests were performed on a Sun-Fire-X2200-M2-64 blade run-
ning Linux. It features 2 dual core 64-bit AMD Opteron processors, i.e. 4 cores,
running at 2.6 GHz. The blade has 8 GB RAM. The command-line verifier of
Uppaal 4.1.2 is used (verifyta). In particular, verifyta is run with the -u op-
tion to obtain information about explored and stored states. For TRON version
1.4b5 is used, since tests with version 1.5 showed considerable degradations in

7This is obviously equivalent to the number of entries in the trace for TRON.

5.5. Empirical evaluation: Results and Benchmarks 93

Model Samples Locations
Wake-up 1, 000, 000 1, 141

Inject 990, 000 1, 087
Complex 310, 000 23, 418
MC state 1, 000, 000 1, 293

Specification 1, 000, 000 1, 336

Table 5.1: Measurement samples for each individual testcase and corresponding location count
for the quotient transition system using the optimization described in Sec. 5.2.3.3

performance. TRON runs with a verbosity level of 8, in order to backup the
state set and allow for final diagnostics for a failed conformance test. A logical
(simulated or virtual) time clock (-Q log) is set. Unless otherwise noted, TRON
uses a future size of 50,000 (-F 50000, cf. Sec. 5.3.4).

The main performance metric of these experiments is the execution time of
the conformance test. The generation of the models from raw measurements
is out-of-scope of this evaluation, but in the same order of magnitude for
both tools. The models for Uppaal and TRON are the same for the system
specification Sys; the obvious difference is that Uppaal includes the trace model
TM, while TRON features the sampler process and an input trace as described
in Sec. 5.3. For measuring time, the UNIX time facility is used and user times
reported. Unless otherwise noted, the quotient transition system optimization
is performed as described in Sec. 5.2.4.

5.5.3 Uppaal results
In the following different design decisions are evaluated based on i) the repre-
sentation of time and ii) the representation of data values.

5.5.3.1 Measurement timing

The first experiments investigate whether the representation of time in the
power trace makes a difference for Uppaal. For each power trace location, an
invariant on the time a specific value was measured is used. In [WLT09] and
Algorithm 5.1, the trace model TM in Uppaal uses relative durations for each
measurement location. However, also an absolute time scale without resetting
clocks after each power trace location can be employed. The difference is
visualized in Fig. 5.16 and 5.17. As Table 5.2 shows, the runtimes of the
relative approach are better. However, the size of the explored state space is
comparable, indicating that Uppaal can internally better process short intervals
rather than intervals with a large offset. Our experiments on all testcases show
that using relative times performs generally better.

94 Chapter 5. Model-based conformance testing of power consumption

y==212y == 10089
crrValue = 1000,
y=0

crrValue = 4000,
y=0

Figure 5.16: Relative time specification for
power trace locations for clock y. Loca-
tion invariants are omitted for the sake
of a clearer presentation.

y==21750y == 21538
crrValue = 1000 crrValue = 4000

Figure 5.17: Absolute time specification
for power trace locations for clock y.
Location invariants are omitted for the
sake of a clearer presentation.

Model States stored States explored Runtime
rel. abs. rel. abs. rel. abs.

Wake-up 78, 394 77, 058 139, 456 152, 591 3s 5s
Inject 42, 605 41, 889 63, 697 74, 087 2s 3s

Complex 2, 059, 630 2, 065, 845 2, 083, 177 2, 099, 871 816s 1102s
MC state 64, 266 63, 050 109, 111 106, 454 3s 5s

Specification 64, 767 63, 483 123, 035 136, 873 3s 5s

Table 5.2: Uppaal results: Comparison of absolute (abs.) and relative (rel.) time specification
for power trace locations.

5.5.3.2 Measurement granularity

Similarly, Table 5.3 presents the results for the different testcases concerning
different measurement granularities. Initially a resolution for 1 µA of mea-
surements was used. As a second step, a restricted granularity of 100 µA was
employed. This experiment tries to explore whether the size of the value do-
main has an effect on the size of the state space and runtime in Uppaal. As
Table 5.3 shows, the results for the size of the state space are the same and
runtime results are comparable.

Model States visited States stored Runtime
1 µA 100 µA 1 µA 100 µA 1 µA 100 µA

Wake-up 78, 394 78, 394 139, 456 139, 456 3s 3s
Inject 42, 605 42, 605 63, 697 63, 697 2s 2s

Complex 2, 059, 630 2, 059, 630 2, 083, 177 2, 083, 177 827s 755s
MC state 64, 266 64, 266 109, 111 109, 111 3s 3s

Specification 64, 767 64, 767 123, 035 123, 035 3s 3s

Table 5.3: Uppaal results: Comparison of different granularities of power trace measurement
values {1µA, 100µA}.

5.5. Empirical evaluation: Results and Benchmarks 95

Model Future size
1, 000 10, 000 50, 000 100, 000 200, 000 500, 000

Wake-up 535s 468s 456s 461s 462s 463s
Inject 242s 220s 214s 214s 213s 214s

Complex 25, 456s 26, 673s 26, 482s 26, 682s 26, 385s 26, 273s
MC state 255s 241s 240s 238s 243s 244s

Specification 236s 221s 223s 225s 225s 222s

Table 5.4: TRON results: Comparison of different future sizes using a 1 µA granularity in the
sampler process.

5.5.4 TRON results
In a similar vein, the performance in TRON for measurement granularity and
representation of time was explored.

5.5.4.1 Measurement timing

For representation of time, the effect of different future sizes was explored. The
future option in TRON (-F) describes the number of time units the state space
of the specification is pre-computed. If this future window is short, TRON
has to go through multiple state space explorations as explained in Sec. 5.3.4.
If the future size parameter is too large, too much of the future state space is
explored; an output may be previously seen from the implementation. Note
that the Harvester model is periodic with 50,000 time units due to its wake-up
behavior, i.e., there is always an output within an interval less than this period
(cf. Fig. 5.13). Table 5.4 shows the exploration for different future sizes. The
results show all future sizes perform equally as long as the state space pre-
computation is larger than the periodicity of the software, i.e., ≥ 50, 000 time
unites. This is because larger future size values do not result in an expensive
exploration: As the models have a periodic behavior, the state space exploration
is finished after one wake-up period. Hence, increasing the future size value
larger than the period does not result in any exploration overhead. This is
indicated by the results shown in Table 5.4. However, there is a penalty for
shorter values, since the state space exploration is cut into smaller pieces. This
generates an overhead in terms of individual iterations of explorations (cf.
Sec. 5.3.4).

5.5.4.2 Measurement granularity

Table 5.5 presents the results for TRON concerning measurement granularity
(1µA and 100µA) for the different testcases. Note that in this case, the value
domain makes a significant difference. The difference stems from the coupling
through the sampler process: TRON needs to compute the future state space

96 Chapter 5. Model-based conformance testing of power consumption

Model Granularity
1 µA 100 µA GCI-based

Wake-up 456s 254s 210s
Inject 214s 120s 92s

Complex 26, 482s 9, 620s 13, 263s
MC state 240s 131s 98s

Specification 223s 122s 93s

Table 5.5: TRON results: Comparison of different measurement granularities for the sampler
process using a future size of 50,000.

of the specification and then performs a comparison with the implementation
trace. The sampler process allows the specification to select any integer value
within the given bounds. Hence, the finer the granularity, the larger the sets to
be compared. The interface between the Uppaal exploration and TRON needs
to compare each possible output with the trace output of the implementation.
This comparison creates a considerable overhead.

In order to allow for the largest minimization of the number of measurement
values, a trace abstraction based on GCIs was performed: Each measured
power consumption value is annotated only with its corresponding GCI in
the trace (cf. Sec. 5.2.3.3). In turn, the specification needs to be extended to
associate GCIs with system states. To this end, the invariant function of the
specification model is changed as shown in Listing 5.3. The number of possible
values in the sampler can be reduced from 262 (for 100 µA granularity) down
to 42 (GCI) values. This allows for some further improvements as shown in
the right column of Table 5.5. ’Complex’ apparently does not benefit from
a reduced representation in the sampler process, probably due to the large
degree of non-determinism. It seems that computing the value of actual for
each location invariant also creates some overhead.
bool IsInBounds(){
power_t actual = (intervals[crrValue]+intervals[crrValue+1])/2;
if(actual > RadioUp+MCUp or actual < RadioLow+MCLow) return(false);
return(true);

}

Listing 5.3: Power consumption invariant for GCI-based description of trace. crrValue
denotes the GCI associated with the measurement. The corresponding power consumption
actual is computed online in the invariant function.

5.5.5 Uppaal versus TRON comparison
Lastly, the runtime of the best TRON version with the best Uppaal version
is compared to give an overall impression of their relative performance. The

5.6. Summary 97

Model Uppaal TRON
Wake-up 3s 210s

Inject 2s 92s
Complex 755s 9, 620s
MC state 3s 98s

Specification 3s 93s

Table 5.6: Comparison of the best runtimes for Uppaal and for TRON

results are shown in Table 5.6. Uppaal outperforms TRON by at least an order
of magnitude.

While initially better performance using TRON was expected, its perfor-
mance can be explained by its typical usage as an online testing tool:

1. In offline testing, one exactly knows the time of the next event and can
in turn do a limited exploration for exactly this duration. Additionally,
in offline testing one knows exactly what the next state must be and
performs an exploration only for this particular future state. In contrast,
TRON has no knowledge of future states and must perform a (more
expensive) complete exploration. In a second step it must perform a
comparison between the (large) set of explored, possible states and match
them with the set of states allowed by the trace. This happens at each
synchronization point, i.e., when there is an output in the timed trace of
the implementation.

2. TRON naturally finds the last, "deadly transition" (cf. Sec. 5.2.2.3). Hence,
there is no need to perform a search as in the Uppaal-based version. Up-
paal approximately needs log2(n) runs of the model checker to determine
the failing location, where n is the number of locations in TM. This results
in about 11-15 runs for the traces used in the case study.

5.6 Summary
PTT is a novel method to test a WSN using power measurements. The prob-
lem can be mapped into the class of timed automata by exploiting discrete
value ranges of the continuous power measurements. This chapter presents
optimizations that allow PTT to use standard timed verification tools for confor-
mance testing of WSN based on power measurements. In particular, it presents
implementation based on a timed model-checker, Uppaal [BY04, BDL04],
and a timed online-testing tool, TRON [LMN04]. A comparison of the two
approaches shows that the Uppaal-based implementation outperforms the
TRON-based implementation.

98 Chapter 5. Model-based conformance testing of power consumption

5.6.1 Related Work

PTT is the first model-based approach to exploit power measurements of a
WSN to test for conformance to a specification. It is mainly inspired by the
previous work on testing power consumption of a system using actual hard-
ware described in the previous chapter. Typically physical quantities, such as
power and energy consumption, are rather explored in simulation than in real
tests, e.g., for sensor networks in [SHC+04, LWG05]. Simulation relies on the
accuracy and fidelity of models of power consumption. In comparison, test-
ing power consumption using actual measurements assures that such models
actually hold for real devices.

PTT is based on conformance testing. There is related work concerning
conformance relations both untimed [Tre94] and timed [LMN04] and even for
hybrid system descriptions [vO06]. Most closely PTT is related to the work
by Bohnenkamp et al. on quantitative testing [BS08a]. The main differences
is that in quantitative testing the uncertainty of the measurement is constant
throughout the specification, i.e., there is a behavior at a distance of at most x, x ∈
R≥0. However, hardware component states may have differing uncertainties
depending on the system mode. Hence, a mode-based uncertainty as employed
in PTT by using intervals on individual system modes of hardware components
is preferable. Moreover, for quantitative testing there is currently no tool
support. The presented evaluation includes TRON [LMN04], since it is an
available, maintained tool and allows a direct comparison with an Uppaal-
based approach. The use of hybrid systems for power consumption is described
in detail in the discussion below.

The conformance test between measurements and specification relies on
timed trace inclusion, i.e., whether a timed trace, the measurements, is included
in a timed automaton model, the specification. However, timed trace inclusion
as discussed in the context of generation of a validation automaton [BS08b]
or in the context of abstraction refinements [JLS00] is complementary to this
work, since PTT is focused on using available tools for conformance testing.

5.6.2 Discussion

Before discussing other approaches to conformance testing of power measure-
ments, there is one difference worth mentioning between PTT and the power
unit tests described in the previous chapter. While both use bounds on power
consumption, PTT does not specifically define or utilize an uncertainty on
transition times between system modes. Note that uncertainty with respect to
timing can still be included in the models by the specification engineer as shown
in Fig. 5.5 and Fig. 5.6: For the start-up behavior of the radio there are only
approximate upper bounds on the timing behavior in this case. However, the
method does not exploit this uncertainty, since, different to power consump-

5.6. Summary 99

tion, clock variables are not discrete (but real) variables and the optimizations
as performed for the power consumption do not apply here.

5.6.2.1 Other automata-centric options

Obvious choices for trace verification are hybrid model checkers such as
HyTech [HHWT97] or PHaver [Fre08]. The power trace itself can be better
described by a hybrid automaton that allows models to use continuous vari-
ables. For the power trace measurements a representation as a continuous
variable is suitable. However, the system specification abstracts away from the
continuous properties of measurements by using bounds. Additionally, the
transitional characteristics of power consumption are typically not of interest.
Rather the power consumption in a given system mode needs to be checked.
The formulation as a hybrid automaton does not provide any benefit in mod-
eling when using bounds on system modes. In contrast, model checking of
hybrid automata is a more difficult problem than model checking of timed
automata. In conclusion, PTT does not benefit from employing hybrid model
checkers.

Another option is the discretization of time. Fundamentally, since we deal
with a microprocessor that is synchronous with its clock cycle (for sensor net-
works in the order of tens of µs), we can safely abstract away from continuous
time to discrete time. In turn, the problem is discretized and model checkers
for untimed automata may be used such as SPIN8 or NuSMV9. Compared to
the blow-up introduced by discretization of time, the representation of time in
Uppaal using symbolic methods seems rather efficient and is not perceived as
the major issue of the limited performance as discussed in the following.

5.6.2.2 The issue with model checking

The fundamental problem of a model checker based approach to PTT is that
the model checker cannot exploit the simple, linear structure of the trace.
Model checkers must store visited states and hence typically run into memory
problems because of state-space explosion. This issue is further elaborated on
in the following chapter, since it is even more profound when concurrently
testing multiple, communicating sensor nodes.

8http://spinroot.com/
9http://nusmv.irst.itc.it

http://spinroot.com/
http://nusmv.irst.itc.it

100 Chapter 5. Model-based conformance testing of power consumption

6
PTT for communicating sensor nodes

PTT is a method for determining whether a (finite) timed trace of power mea-
surements is included in the traces of a specification of a WSN. However, as
discussed before, PTT is hampered by the so-called state-space explosion prob-
lem: The expansion of all possible system behaviors may yield a large number
of system states, which is exponential in the number of a system’s concurrently
executed activities. PTT faces a high degree of non-determinism, since it needs
to jointly execute timed automata-based models of multiple, communicating
sensor nodes. Sensor nodes operate autonomously and only communicate
sporadically; they show a high degree of concurrency. This may result in a
very large number of executions that need to be checked against the observed
power traces. A good state space exploration strategy would be needed that
produces the shortest witness that shows that the system model agrees with
the power measurements; yet it is unclear how such a strategy would operate.
Hence, PTT can be costly, particularly in terms of memory consumption. The
goal of this chapter is to scale PTT to formally reason about the correctness of
multiple, communicating sensor nodes. To this end, this chapter provides the
following contributions:

• It identifies the model checker as the memory bottleneck for PTT.
• It describes two domain-specific properties that can be used for reducing

memory consumption of PTT.
• It describes a sound and complete test procedure exploiting these domain-

specific properties.
• It shows in a case study that the novel test procedure allows an engineer

to test concurrent power measurements of two communicating sensor
nodes.

102 Chapter 6. PTT for communicating sensor nodes

clock x

clock y

1

1

5

5

Figure 6.1: A clock zone for two clocks x and y that is defined by 1 ≤ x ≤ 8∧1 ≤ y ≤ 4∧x− y ≥
0 ∧ x − y ≤ 4.

6.1 Background Theory
For the understanding of this chapter, some more background with respect to
the reachability analysis of a model checker for timed automata is necessary.
The analysis of reachable sets of states for timed automata exploits the parti-
tioning of clock valuations into distinct sets of assignments. Regions are equiv-
alence classes of an equivalence relation over clock valuations [Yov98, AD94].
Exploiting regions, a corresponding region automaton can be constructed from
the original timed automaton. The region automaton is a finite state model.
The set of regions is finite. However the number of regions is exponential in
the number of clocks [Yov98]. To this end, a more efficient representation in the
form of zones is used in model checkers such as Uppaal. A zone is the solution
set of a clock constraint that is maximal with respect to the clock assignments
satisfying the constraint. This provides a coarser and often more compact rep-
resentation. As an example consider Fig. 6.1: it features a single zone that is
defined by 1 ≤ x ≤ 8 ∧ 1 ≤ y ≤ 4 ∧ x − y ≥ 0 ∧ x − y ≤ 4, yet numerous regions
(e.g., one region for each of the 28 line segments of length 1).

We are interested in the reachability graph of a timed automaton. Let the
system state s of a reachability graph be a triple:

s = (~l,U,V),

where:
• ~l = (l0, ..., ln) is a location vector. li corresponds to the current location of

the i’th component automaton of a network of timed automata.
• U is a set of clock constraints defining the set of allowed clock valuations

in the current locations.
• V is the set of variable valuations.

6.2. Scalability, an open issue 103

AP is the set of atomic propositions of a timed automaton. L(s) → 2AP de-
notes the atomic propositions associated with a state s, i.e., the labels associated
with the corresponding location vector~l.

A path in the reachability graph is a sequence of states: π(s) = s, ..., s′, s′′, ...
where s is the initial state and each pair of adjunct states s′, s′′ corresponds to
a state-to-state transition in the reachability graph resulting from delay and
discrete transition of a timed automaton. The number of system states is
infinite, but the possible states can be grouped into a finite set of equivalence
classes using regions or zones as described above. The reachability query, used
in PTT, E <> f inal searches for a path π f = s, ..., s f , where f inal ∈ L(s f). f inal is
the label of the final location of TM, i.e., f inal ∈ L(l f

TM).

6.2 Scalability, an open issue
6.2.1 Problem
The fundamental problem of a model checker-based approach is state-space
explosion: the model checker cannot exploit the simple, linear structure of the
trace model TM. In general, model checkers need to store all already visited
states allowing to decide whether a state is newly reached and needs further
exploration, or has been visited before.

Experiments were performed to investigate scalability of Uppaal with re-
spect to trace length. To this end, a looping over TM was used to increase the
length of the power trace model and investigate the effect on Uppaal’s memory
consumption. Two different power trace models (TM) were used:

• Idle is an artificial power trace model where the system never leaves a
low-power mode.

• Wake − up is the testcase described in Sec. 5.4.2.

Let Sys be the system model as described in Sec. 5.4.1, i.e., a system model of
a single sensor node. For benchmarking PTT, the following properties were
verified: (a) Idle |= E <> f inal, (b) Wake − up |= E <> f inal, (c) Idle‖Sys |=
E <> f inal and (d) Wake − up‖Sys |= E <> f inal.

The obtained results are shown in Fig. 6.2: The number of reachable states
is shown in relation to the number of locations of the power trace model TM,
i.e., here for Idle and Wake − up. The figure shows that the number of stored
states is proportional to the number of locations of the corresponding power
trace model. When executing the reachability analysis the accumulation of
states consumes significant memory. Fig. 6.3 shows the ratio of the number of
states of a composed model (TM||Sys) to the number of states of a trace-only
model (TM) is constant. Hence, the composition of TM with the system model

104 Chapter 6. PTT for communicating sensor nodes

0 2 4 6 8 10 12
x 106

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5
x 107

of power trace locations in TM

of

 s
to

re
d

st
at

es

Idle
Idle || Sys
Wake up
Wake up||Sys

Figure 6.2: Number of stored states versus number of locations of the trace model. Experiments
are performed on TM alone as well as on the composed model TM||Sys.

Wake up Idle
100

101

102

#
st

at
es

(
T

M
||

S
y

s
)

#
st

at
es

(
T

M
)

Different models

 TM
 100 loops over TM
 1000 loops over TM
10000 loops over TM

Figure 6.3: Ratio of the number of states of a composed model (TM||Sys) and trace only (TM),
i.e., # states(TM||Sys)

states(TM) , for different numbers of looping rounds. (Longer runs for ’Wake-up’ did
not finish.)

Sys generates a proportionally constant overhead for the state space. Hence,
a major impediment for effective PTT is that the state space grows linearly
with the number of locations in the power trace model. Fig. 6.2 also shows
that this problem is exacerbated when there is more activity in the power

6.2. Scalability, an open issue 105

0 5 10 15 20 25 30 35 40
0

1

2

3

4

5

6

7 x 107

of power trace locations in TM1

of

 s
to

re
d

st
at

es

Unicast
Broadcast

Figure 6.4: Number of states stored during the state space exploration of
Sys1‖TM1‖Sys2‖TM2 |= E <> (f inal1 ∧ f inal2) versus the number of power trace
locations in TM1 for two different testcases.

trace: Idle‖Sys does not expose the non-determinism inherent in the system
model. In comparison, the steep slope of Wake − up‖Sys indicates the increased
non-determinism resulting from a power trace with more activity.

This problem of scaling PTT worsens for system models containing multiple
sensor nodes. To this end, a simple experiment was performed to show the
complexity of concurrently checking synchronously measured power traces of
communicating sensor nodes (cf. Sec. 6.3.1 for details). It was tested whether
two traces are conformant to the concurrently executed system models, i.e.,
whether Sys1‖TM1‖Sys2‖TM2 |= E <> (f inal1 ∧ f inal2) holds. Sysi is the model
of sensor node i (component models for hardware and software parts), TMi is
the model of the power measurements of sensor node i. f inali is the label of the
final location of power trace model TMi. The system models Sysi of the sensor
nodes include models of the communication between nodes. Hence, Sys1 and
Sys2 may synchronize via these communication models. For simplicity, we
iteratively checked for the reachability of a dedicated location in one of the
power trace models, TM1, i.e., the trace model for the first sensor node. The
result is shown in Fig. 6.4. After reaching the 30th location of TM1, Uppaal
has already stored 17, 986, 721 states. This prohibits timed verification of more
complex models as memory of commodity computers is limited.

Both experiments illustrate that timed verification is severely hampered by
state-space explosion. This also applies to PTT even though it only focuses on
the inclusion of finite timed traces in the behavior of a timed automata-based
system model. Testing the conformance of communicating sensor nodes is the
main motivation for this chapter. For ease of explanation, we focus on two

106 Chapter 6. PTT for communicating sensor nodes

e1

e2

e2

Figure 6.5: There may be loops in the reachability graph of TM||Sys. However, there are no
loops across multiple locations in TM. Once TM traverses to the next location via a discrete
transition ei, all previous visited states may be discarded.

communicating sensor nodes in the following. The extension to more sensor
nodes is straight-forward.

6.2.2 Property of the power trace model: No absorbing loops.
The power trace model TM can be exploited by the following fact: TM is a timed
automaton with a single line of development, no alternative system evolutions
are possible. We refer to this as linear behavior. When being composed with the
system model Sys, the resulting transition system of TM||Sys does not contain
loops that can be visited infinitely often as time progresses. This is because the
power measurement captured by TM evolves over time. This linear behavior
can be exploited for discarding all previously visited states in the state space
exploration, when TM traverses to the next location. This is illustrated in
Fig. 6.5, where discrete transitions between locations in TM are denoted as ei.
There is no access to the internals of Uppaal, yet there is a need to exploit its
elaborate mechanisms in terms of state space exploration.

The ultimate goal of this chapter is to test for conformance of synchronously
measured power traces of two communicating sensor nodes. Hence, we need
to test whether Sys1‖TM1‖Sys2‖TM2 |= E <> (f inal1∧ f inal2) holds. The confor-
mance test procedure needs to exploit the linear behavior of the trace models
TM1,TM2 to mitigate state-space explosion. The main idea is to segment trace
models TM1,TM2 into m smaller pieces TM j

1,TM j
2, j ∈ {1, 2, ...,m}. Let π f be

a path that leads from the initial state to a state s f , with f inal ∈ L(s f) as de-
fined above. Instead of generating the complete path, the proposed approach
produces subsegments of the path, such that π f = π1 ◦ π2 ◦ ... ◦ πn. Note that
π j ◦π j+1 denotes the concatenation of path π j , which is generated for checking
the conformance of trace segments TM j

1,TM j
2, and pathπ j+1, which is generated

for checking the conformance of trace segments TM j+1
1 ,TM j+1

2 . Segmentation
can be performed at any point. Using this segmentation, two trace models
TM1,TM2 of concurrently measured power consumption are defined as PTT-
conformant with respect to the system models Sys1 and Sys2 if the following

6.2. Scalability, an open issue 107

π
f

πnπ1

s
1

k1

s
1

0

s
n

kn

s
n

0s
2

0

s
n−1

kn−1e1 eu ev-1ev-2 ev

π
n−1

π
2

Figure 6.6: A path in the model is segmented into segments: π f = π1 ◦ π2 ◦ ... ◦ πn. ei denote
discrete transitions in TM.

PT1

PT2

PT
1

1

PT
1

2

PT
2

1

PT
3

2

PT
3

1

PT
2

2

...

...

Figure 6.7: The main idea for scalability: Power traces PT1 and PT2 can be cut into segments
PT j

1 and PT j
2, j ∈ {1, 2, ...,m}.

holds:

∀ j ∈ 1, ..,m : Sys1||TM j
1||Sys2||TM j

2||applyContext(con j−1) |= E <> f inal j
1 ∧ f inal j

2,

where TM j
1,TM j

2 are segments of the trace model. Since clocks progress
synchronously in a network of timed automata, such segments model the
same time interval for synchronous measurements. f inal j

1, f inal j
2 are labels of

the final locations of these segments. applyContext(con) is a model for applying
an initial state con to a segment as described below. This model is needed as
the segmentation requires to restore the context (state) con j−1 of a path when
verifying the succeeding segment j. This is because π1 ◦ π2 ◦ ... ◦ πn needs
to be equivalent to π f as illustrated in Fig. 6.6 and described below. Hence,
applyContext takes the context of the previous segment con j−1 and applies it as
the initial state to the current segment j. Note that con0 is the initial state of the
system models Sys1||Sys2.

Let us denote PT1,PT2 as the actual measured traces of power consumption.
A visualization of the segmentation based on PT1 and PT2 is shown in Fig. 6.7.
This segmentation strategy tries to keep the memory consumption of Uppaal
for the individual segments below a threshold. This tries to render the con-
formance test of two communicating nodes with respect to the synchronously
obtained power measurements feasible.

108 Chapter 6. PTT for communicating sensor nodes

6.2.2.1 Context restoration

As pointed out above, the aim is to generate a path π f that verifies the con-
formance, i.e., Sys1‖TM1‖Sys2‖TM2 |= E <> (f inal1 ∧ f inal2). Hence, the last
state generated when testing segment j must match the initial state when
testing the segment j + 1, so that π f = π1(s1

0) ◦ π2(s2
0) ◦ π3(s3

0) ◦ ... ◦ πm(sm
0),

where π1(s1
0) = s1

0, s
1
1, ..., s

1
k1

;π2(s2
0) = s2

0, s
2
1, ..., s

2
k2

; ...;πm(sm
0) = sm

0 , s
m
1 , ..., s

m
km

and
∀i ∈ {2, ...,m} : si

0 = si−1
ki−1

.
A context is a state consisting of a location vector, a set of variable con-

straints for discrete variables, and a set of clock constraints describing the
zone of valid clock valuations. The context of segment j is produced by gen-
erating a counterexample with the model checker using the inverted query:
A[] not(f inal j

1 ∧ f inal j
2). Note that A[] means always invariantly, i.e., this prop-

erty must always hold. Note that there may be several valid contexts for a
segment given by different paths. The model checker provides a single context
for a segment of a specific path in the form of a counterexample. If multiple
contexts need to be determined, a previous context prev can be excluded using
the reachability query, e.g., for Uppaal: A[] not(f inal j

1 ∧ f inal j
2 ∧ not prev). An

example is the black circle shown in Fig. 6.9; the corresponding query in Uppaal
is: A[] not (final_1 and final_2 and not(x==3 and y==2))

6.2.2.2 Applying context

The context provided by the model checker is applied as the initialization
(state) for the consecutive segment. This initialization includes the setting of
the initial location of each timed automaton and of the discrete variables and
the clocks. A dedicated initialization model, applyContext(con), is used for the
initialization of the context con. Fig. 6.8 outlines a conceptual model for setting
the clocks using an initialization model applyContext.

The initialization of clocks requires to apply a set of clock assignments cor-
responding to the zone (i.e., clock constraints) of the context. This application
of a complete zone may result in a large model. This is because the initialization
model needs to non-deterministically sample from the complete set of allowed
clock assignments. As a remedy to a large model due to the initialization using
zones, we can also sample from a given zone and initialize the consecutive
segment with a discrete (integral) context. Fig. 6.9 depicts the approach for two
clocks. In the figure, discrete valuations (circles) for each clock are selected
from a given zone. Only a single discrete context is selected at a time, e.g., the
black circle.

Note that the testing method remains sound and complete, since the speci-
fication model Sys and the power trace model TM belong to the class of closed
timed automata. Closed timed automata only include (positive boolean com-
binations of) constraints on clocks in the form of x ≤ c and x ≥ c, where x is

6.2. Scalability, an open issue 109

applyContext(con) TM1 (clock x1)

Sys1 (clock y1)

start?

start?

start!

reset(x2)

reset(y2)

x1,y1,x2,y2 ∈ Ucon

TM2 (clock x2)

Sys2 (clock y2)

start?

start?
reset(x1)

reset(y1)

Figure 6.8: Conceptual model for initializing context in Uppaal using an initialization model
applyContext. Since Uppaal does not allow models to set initial values of clocks, clocks need
to be increased in an initialization phase before starting the actual exploration. applyContext
sets the clocks x1 of TM1, x2 of TM2, y1 of Sys1, and y2 of Sys2 corresponding to the constraints
of the context con = (~lcon,Ucon,Vcon). When the clocks are set to satisfy the constraints
(x1, x2, y1, y2 ∈ Ucon), the actual exploration is started by broadcasting a start signal.

a clock and c is an integer constant. Closed timed automata are closed un-
der digitization. The reachability query is a qualitative property, closed under
inverse digitization. Hence, an integral-time model can be used when transfer-
ring context between segments [HMP92, AM04]. Note however that choosing
a single, discrete (integral) context means in the worst case an large number
of contexts need to be consecutively applied for each segment. However, the
following case study shows that this approach works quite well in practice as
the specification provides some leeway in terms of timing requirements.

6.2.3 Property of low-power (embedded) systems: Recurrent
identifiable locations.

There is a second property, which is inherent to low-power systems, that can be
used to select when a trace PT should be segmented. For low-power embedded
systems, there is a dedicated recurrent location in each component model. This
is the low-power sleep mode, where the system does not need to perform any
task and switches to a low-power mode. The power consumption in the low-
power mode is unique and can be unambiguously associated with a measured
value in the power trace. In case of a sensor node, this is exemplified by the
radio component (cf. Fig. 6.11 and Fig. 6.12), which is the major contributor
to power consumption. After each operation, whether sending or receiving,
the radio needs to return to a low-power mode. In between these sleep modes
several operations can be performed that have different effects on the system
state, e.g., by setting variables or resetting clocks.

110 Chapter 6. PTT for communicating sensor nodes

clock x

clock y

y=2

x=3

Figure 6.9: Integral contexts for clocks x and y are selected from a zone for two clocks. The
black circle shows one selected context with x = 3 ∧ y = 2.

6.2.3.1 Identifying recurrent locations

Figure 6.10 shows that for a simplified system model, there is a location luniq the
timed automaton always returns to. In a network of timed automata, this is
obviously a location vector~luniq, i.e., a unique location for each of the individual
timed automata. Now, we can select ~luniq and also mark the corresponding
measurement locations in TM, as this recurrent location can be associated with
a unique power measurement.

6.2.3.2 Segmentation of traces

Traces may be segmented at any point. Such points are denoted segmentation
points in the following. In this work, segmentation points are selected such
that each trace is marked with the uniquely identifiable location of the system
model as depicted in Fig. 6.10. All sensor nodes must be in this uniquely
identifiable location; traces are only cut if each trace PTi, i = {1, ...,n} of n sensor
nodes indicates that this is the case. One may note that such points in time
usually exist, as sensor nodes reside most of their deployment time (≥ 90%)
in a low-power mode. In this work, segmentation points are restricted to the
points in time where one node enters the uniquely identifiable location. Note
that the other node must already be in the uniquely identifiable location as
described above.

6.2. Scalability, an open issue 111

Low-power mode location
luniq of timed automaton Segmentation points

Segmentation of power
traces

luniq
PT1

PT2

PT
1

1

PT
1

2

...

...

Figure 6.10: Given is a system model with an unambiguously identifiable location luniq (here
in grey) common to each possible execution. In this case, the segmentation of the traces
is performed such that each segment starts and ends in this location. The corresponding
segmentation of PT1 and PT2 is indicated on the upper right: Segmentation points are
encircled. The segmentation of PT1,PT2 results in segmented trace models TM1,TM2.

6.2.4 Segmented power trace testing
We propose a depth-first search approach for testing power trace segments. A
single context is generated (if the segment conforms). This context is directly
applied to the consecutive segment. This approach is outlined in procedure
S in Algorithm 6.1 for two power traces models TM1 and TM2.
It takes the system models and the set of segments TM j

(1,2), j ∈ {1, ...,m} as inputs,
where m ∈ N denotes the number of segments. Segments are checked using
the Uppaal model checker verifyta. verifyta is called with a property φ to
be verified for a model M, i.e., it checks whether M |= φ holds. It returns
a counterexample, i.e., a context, if the property fails. Hence, Algorithm 6.1
uses the inverted property A[] not(f inal1∧ f inal2) to generate a context newCon.
If the property does hold, verifyta does not return a counterexample, i.e., a
context does not exist. A context is applied to the models of the next segment
using the initialization model applyContext (cf. Fig. 6.8).

Segments are checked one at a time. There may be two results of checking
whether A[] not(f inal1 ∧ f inal2) holds for a given segment:
• A context newCon exists, so the exploration continues with the next seg-

ment. If the current segment was the last segment (cur == m), the con-
formance test has succeeded, i.e., the algorithm returns true.

• There exists no context. This means that the current segment does not
conform given its own context of the previous segment con[cur−1]. Hence,
the algorithm backtracks to the previous segment. It tries to generate a
new context by excluding previously unsuccessful contexts in the query to
the model checker. Therefore, it maintains the set of contexts it has already

112 Chapter 6. PTT for communicating sensor nodes

unsuccessfully explored (exclude[m]) for each segment. The algorithm
backtracks at most to the first segment. If the model checker cannot find
a valid context (anymore) for the first segment, the conformance test fails,
i.e., the algorithm returns false.

Note that the algorithm works for both a zone-based context and a single
discrete context. Algorithm 6.1 is used with discrete contexts in the case study.

Algorithm 6.1 Procedure S iteratively checks power trace model segments for
two sensor nodes. Inputs are the number of segments m, the trace model segments
{TM1

1, . . . ,TMm
1 }, {TM1

2, . . . ,TMm
2 }, and the two system models Sys1,Sys2. applyContext(con)

is an Uppaal model to apply a context con as the initial state for the system models.
initialContext is the initial state of the system models before the conformance test. The out-
put is a Boolean for indicating conformance of the power trace models to the specification
models.

procedure S(m, {TM1
1, . . . ,TMm

1 }, {TM1
2, . . . ,TMm

2 },Sys1,Sys2,
applyContext, initialContext){

exclude[m] = {∅, . . . , ∅}
con[m] = {∅, . . . , ∅}
con[0] = initialContext
cur = 1
while cur > 0 do

newCon = verifyta(Sys1||TMcur
1 ||Sys2||TMcur

2 ||applyContext(con[cur − 1]) |=
A[] not(f inal1 ∧ f inal2 ∧ not exclude[cur]))

if newCon exists then
if cur == m then

return true /* the conformance test succeeded */
else

con[cur] = newCon /* context applied to nextSegment */
cur = cur + 1 /* proceed to next Segment */

end if
else

cur = cur − 1 /* backtrack to previous segment */
exclude[cur] = exclude[cur] ∪ con[cur]

end if
end while
return false /* the conformance test failed */
}

6.3 Case Study
In this case study, the applicability of the proposed segmentation of power
trace models is investigated. As the main goal, it is tested whether

6.3. Case Study 113

Sys1‖TM1‖Sys2‖TM2 |= E <> (f inal1 ∧ f inal2) holds. One may already note
that the conformance of two interacting nodes with their simultaneously mea-
sured power consumptions cannot be verified by Uppaal in a single execution
(cf. Sec. 6.2.1). This is because Uppaal allocates a large amount of memory that
exceeds the capabilities of typically employed commodity computer.

6.3.1 Testing communicating sensor nodes
A fundamental property of sensor networks is their low-power operation.
Since the radio is the major contributor to power consumption, the focus of
this case study is on the MAC layer. MAC protocols trade off bandwidth for
energy by duty-cycling the radio. The MAC protocol used in the case study is
selected from the predominant class of random-access MAC protocols. When
testing such MAC protocols, one focuses on a small set of neighboring nodes.
In particular, most testcases can be formulated with two or three sensor nodes.
A sender and a receiver are fundamental. A third node may be added to test for
interference, hidden terminals, etc.. This case study tests for basic functionality
of the MAC protocol using two sensor nodes running the Harvester application
(cf. Sec. 2.2). The models from Chapter 5 are refined for better fidelity in testing
the interaction. Although Harvester was previously discussed, some important
concepts are recapitulated.

Harvester features a LPL MAC. This implies that a node may only receive
at certain times, when its radio is turned on. The time between two consecutive
wake-ups is called the wake-up interval TW. In particular, Harvester uses a
variant of a synchronized low-power MAC protocol as described in Sec. 2.2.1.
In this MAC protocol scheme, nodes sleep for most of the time, yet wake up
and turn on their radio after a given wake-up period to check for ongoing
traffic. The MAC protocol offers two distinct operations to the sensor node
software: (a) broadcast transmissions that are used to send a message to all
nodes in the neighborhood and (b) unicast transmissions, where a node sends
a message to a specific neighbor. In steady-state operation, nodes only send a
unicast message to another node shortly before this other node wakes up to be
ready for reception. A node stops its unicasts immediately after receiving an
acknowledgement from the addressed node. Broadcasts address all neighbors
and are sent therefore for the complete wake-up period TW in order to guarantee
that all nodes in the neighborhood receive this message. Hence, a broadcast
takes considerably longer than a unicast, since it needs to last a complete wake-
up period.

This allows the following high-level modeling:

• A wake-up window of Tw = [0.96s, 1s] is defined. A node must wake up
each TW.

• A sender wanting to send a unicast packet is synchronized to its receiver.

114 Chapter 6. PTT for communicating sensor nodes

broadcasting[sensornode]]!

receiving[sensornode]!

off[sensornode]!

off[sensornode]!

on[sensornode]!

on[sensornode]!

start?

initial[sensornode] = false

z=0

initial[sensornode]=true

startcnt++

initial[sensornode] == true

z>=47500

z=0

unicasting[sensornode]!

send[sensornode]? off[sensornode]!

IDLE

sendDone

RadioOn

Send

Receivez <= 50000 z<=50000

BroadcastDone

Figure 6.11: Uppaal radio software model. It includes periodically listening (on the right) and
support for broadcast and unicast operations (on the left).

• A sender may start a broadcast at any time and sends for a complete Tw.

• After any broadcast the wake-up cycle of the sending node may shift in
time.

• After any radio operation, i.e., sending, receiving or listening for traffic,
a node goes back to sleep.

The underlying radio and the basic MAC functionality is implemented in a
radio component model, including the timing of receive, unicast and broadcast
operations as shown in Fig. 6.12. The higher level functionality of periodic
wake-ups and re-synchronization after transmissions is modeled in a radio
software model. Figure 6.11 displays the refined software model that may send
broadcast and unicast packets using channels broadcasting and unicasting.
Both models feature an initialization synchronization start? as previously
described in Fig. 6.8. Additionally they exploit the domain-specific abstraction
of the recurrent state and feature a single initial location corresponding to the
low-power mode.

6.3. Case Study 115

O
FF

TR
A

N
SI

TI
O

N
IN

G
_D

O
W

N
TU

R
N

_O
FF

U
N

IC
A

ST

a>
=1

50

a>
=

48
00

0

VO
LT

A
G

E_
R

EG
TR

A
N

SI
TI

O
N

IN
G

_U
P

ID
LE

_T
R

A
N

SI
TI

O
N

B
R

O
A

D
C

A
ST

C
C

A

R
X_

O
R

_I
ID

LE

a>
=1

50

re
ce

iv
in

g[
se

ns
or

no
de

]?

on
[s

en
so

rn
od

e]
?

st
ar

t?

un
ic

as
tin

g[
se

ns
or

no
de

]?

br
oa

dc
as

tin
g[

se
ns

or
no

de
]?

of
f[s

en
so

rn
od

e]
?

a<
=

25
0

&&

Is
In

Bo
un

ds
()

a
<=

 5
00

 &
&

Is
In

Bo
un

ds
()

a
<=

 5
00

00
 &

&
Is

In
Bo

un
ds

()

R
ad

io
U

p
=

40
,

R
ad

io
Lo

w
 =

 8
,

a=
0

R
ad

io
U

p
=

18
0,

R
ad

io
Lo

w
 =

 8
,

ra
di

oo
n[

se
ns

or
no

de
] =

 0
,

a=
0

R
ad

io
U

p
=

18
,

R
ad

io
Lo

w
 =

 0

a
<=

 1
00

 &
&

Is
In

Bo
un

ds
()a<
=

25
0

&&

Is
In

Bo
un

ds
()

a
<=

 7
50

 &
&

Is
In

Bo
un

ds
()

a
<=

 2
50

0
&&

Is

In
Bo

un
ds

()

a<
=1

50
 &

&
Is

In
Bo

un
ds

()
a<

=3
00

 &
&

Is
In

Bo
un

ds
()

Is
In

Bo
un

ds
()

R
ad

io
Lo

w
 =

 1
64

,
a=

0,

R
ad

io
U

p
=

21
0,

R
ad

io
Lo

w
 =

 1
80

,
a

=
0,

un
i[s

en
so

rn
od

e]
 =

0

R
ad

io
U

p
=

21
0,

R
ad

io
Lo

w
 =

 1
80

,
a

=
0,

br
oa

d[
se

ns
or

no
de

] =
0

a=
0,

R
ad

io
U

p
=

8,
R

ad
io

Lo
w

 =
 0st
ar

tc
nt

++

R
ad

io
U

p
=

18
0,

R
ad

io
Lo

w
 =

 8
,

ra
di

oo
n[

se
ns

or
no

de
] =

1

R
ad

io
U

p
=

21
3,

rx
[s

en
so

rn
od

e]
 =

1

R
ad

io
U

p
=

8,
R

ad
io

Lo
w

 =
 0

R
ad

io
U

p
=

21
0,

R
ad

io
Lo

w
 =

 1
80

,
rx

[s
en

so
rn

od
e]

=0
,

a=
0

R
ad

io
U

p
=

20
5,

R
ad

io
Lo

w
 =

 1
64

,
a=

0,
br

oa
d[

se
ns

or
no

de
] =

1

R
ad

io
U

p
=

22
0,

R
ad

io
Lo

w
 =

 1
85

,
a=

0

R
ad

io
U

p
=

21
3,

R
ad

io
Lo

w
 =

 1
64

,
a=

0,
un

i[s
en

so
rn

od
e]

 =
1

Fi
gu

re
6.

12
:U

pp
aa

l
ha

rd
w

ar
e

co
m

po
ne

nt
m

od
el

co
m

pr
is

in
g

th
e

ra
di

o
ha

rd
w

ar
e

an
d

ba
si

c
M

A
C

fu
nc

ti
on

al
it

y
w

it
h

re
ce

iv
e,

un
ic

as
t

an
d

br
oa

dc
as

to
pe

ra
ti

on
s.

116 Chapter 6. PTT for communicating sensor nodes

6.3.2 Experimental setup
In the case study, two communicating sensor nodes are monitored: one that
only sends unicast or broadcast messages (node 10) and the other only receiving
(node 12). These sensor nodes are fed by a constant voltage from a DC Power
Supply (Agilent E3631A). Two channels, one per sensor node, of a Tektronix
MSO4054 Mixed Signal Oscilloscope are used for sampling power consumption
at a rate of 50kS/s, i.e., every 20µs. The low current draw of the sensor node
combined with the reduced fidelity of the oscilloscope for small measurements
necessitates an amplification of the sensor nodes current draw. We choose
a Maxim MAX9922 Evaluation kit and change the Sense resistor to 1Ω to be
comparable to the experiments in Chapter 5. All runs were performed on a
Sun-Fire-X2200-M2-64 blade running Linux. It features 2 dual core 64-bit AMD
Opteron processors, i.e. 4 cores, running at 2.6 GHz. The blade has 8 GB RAM.
The command-line verifier of Uppaal 4.1.2 is used (verifyta). In particular,
verifyta is run with the -u option to obtain information about explored and
stored states.

6.3.3 Results
There are two testcases that include the wake-up behavior of two nodes.
The first testcase (Unicast) includes a single unicast message as depicted in
Fig. 6.13. The second testcase (Broadcast) features a single broadcast as de-
picted in Fig. 6.14. Other than these communication events, both nodes only
perform periodic wake-ups for listening. Table 6.1 characterizes the measured
power traces and summarizes the experiments for both testcases. We can see
that the combined model always fails due to an "Out of memory"-exception
(having a high exploration load of 7,520,099 or 6,942,903 states) and hence is
not applicable, even for simple testcases.

The right part of Table 6.1 shows that using the segmentation approach
the traces are partitioned into 15 or 8 segments. By segmenting the power
traces, the number of locations per segment is limited. In turn, the number of
states per segment is limited. The maximal number of stored states is 1,881,237
states for the Unicast (for 88 locations in TM8

1 and 4 locations in TM8
2) and

2, 614, 433 for the Broadcast testcase (for 6265 locations in TM2
1 and 52 locations

in TM2
2, the broadcast can be seen in Fig. 6.14). This allows PTT for sequentially

testing the synchronously measured power traces. The limited number of
states for individual segments renders the method more tolerant with respect
to state-space explosion. The runtime for testing the conformance of the Unicast
testcase is 8597s; for the Broadcast testcase, the runtime is 5218s.

Fig. 6.15 depicts the results of the segmentation approach, where each data
point represents a segment (’x’ for the Unicast and ’o’ for the Broadcast testcase)
with respect to its number of locations of TM1 and the number of stored states
by the model checker. The number of locations visited within TM2 is not

6.3. Case Study 117

0 0.5 1 1.5 2 2.5 3 3.5
x 105

0

5

10

15

20

25
Po

w
er

 T
ra

ce
N

od
e

12
 (m

A)

0 0.5 1 1.5 2 2.5 3 3.5
x 105

0

5

10

15

20

25

20 us Samples

Po
w

er
 T

ra
ce

N
od

e
10

 (m
A)

Unicast

Figure 6.13: Unicast testcase: Power trace for a scenario with a single unicast transmitted from
node 10 to node 12.

0 0.5 1 1.5 2 2.5 3
x 105

0

5

10

15

20

25

Po
w

er
 T

ra
ce

N
od

e
12

 (m
A)

0 0.5 1 1.5 2 2.5 3
x 105

0

5

10

15

20

25

20 us Samples

Po
w

er
 T

ra
ce

N
od

e
10

 (m
A)

Broadcast

Figure 6.14: Broadcast testcase: Power trace for a scenario with a single broadcast transmitted
from node 10 to node 12.

reported. There is a single outlier in the figure on the right: the segment where
a broadcast is performed. It features many locations. Due to a low degree of
non-determinism in this case, the corresponding trace models do not induce a
large number of visited state.

The lines in the figure repeat the results for the naive verification from
Fig. 6.4 for comparison. Using the naive verification approach, the exploration
aborts after less than 40 locations visited within the power trace model TM1.
Fig. 6.15 also depicts the memory wall, an experimental barrier for the naive
verification of Sys1‖TM1‖Sys2‖TM2 |= (E <> f inal1 ∧ E <> f inal2). It is this

118 Chapter 6. PTT for communicating sensor nodes

100 101 102 103 104101

102

103

104

105

106

107

108

of power trace locations in TM1

of

 s
to

re
d

st
at

es

Unicast naive
Broadcast naive
Unicast segmentation
Broadcast segmentation

Limit of a naive model
checking approach.

Memory wall
When the state space grows too
large, the model checker aborts.

Figure 6.15: Log-log plot of the number of states stored by Uppaal versus the number of
locations in TM1 for both testcases.

memory wall that limits the number of state visits in a single run of the model
checker and that prohibits a scaling of PTT to more complex models. However,
due to the segmentation of the power traces as suggested in this chapter, the
individual executions of the model checker stay well below this memory wall.
It is this segmentation approach that allows PTT to be used for more complex
models.

Model Naive Segmented
Locations States Locations States Segments Σ States

Unicast 1213 Fails ≤217 ≤1,881,237 15 5,828,634
Broadcast 6957 Fails ≤6317 ≤2,614,433 8 6,318,540

Table 6.1: Comparing power trace locations (Locations) and the states stored (States) for two
testcases.

6.4 Related work
The idea of a segmentation of the state space is related to previous work on
stateless model checking [God97]. Stateless model checkers use a stateless
depth-first search of the state space, i.e., visited states are not permanently
stored. They verify safety properties, such as reachability of a given state.
Generally, the stateless approach may result in non-termination of the explo-
ration in case of cycles. It may also lead to multiple redundant explorations
of unstored parts of the state space. These drawbacks can be avoided for

6.5. Summary 119

power traces with linear behavior and the presented approach of segmenta-
tion. More closely related is the work of Dwyer et al. [DDH03] on quasi-cyclic
systems. Quasi-cyclic systems always return to a given state (set) that features
a fixed valuations for (a subset of) variables. This is equivalent to the discussed
domain-specific property of low-power embedded systems that always return
to the low-power mode. Different to our presented approach based on the lin-
ear power trace properties, Dwyer et al.’s approach may also lead to redundant
explorations of the state space. Additionally, both approaches are targeted for
untimed models, while PTT is focussed on timed automata.

6.5 Summary
To make PTT feasible for concurrent systems, such as a set of communicating
sensor nodes, a naive approach using a model checker does not work. The
issue is that the model checker cannot exploit the inherent linear behavior of
power trace models. In turn, it was shown that power traces can be segmented.
This allows PTT to partition the reachability problem into smaller, manageable
segments. This segmentation relies on the fact that for linear traces, states do
not have to be maintained (indefinitely). In order to check the conformance,
the context from each segment has to be considered when checking the consec-
utive segment. The context can be determined by utilizing counterexamples
provided by the model checker. The segmentation proposed in this chapter
exploits that there is a uniquely identifiable low-power location vector for low-
power systems - the low-power mode. The chapter presented a sound and
complete algorithm for sequentially checking power trace segments. While the
presented procedure is merely a first step towards an efficient PTT approach,
it clearly shows that domain-specific adaptations are a powerful mechanism in
order to allow the industrial application of state-based methods beyond pure
functional verification.

120 Chapter 6. PTT for communicating sensor nodes

7
Conclusions

This chapter summarizes the contributions of this thesis and discusses potential
directions for future research.

7.1 Contributions
System testing of WSNs is a complex task. This thesis contributes several
solutions for testing WSNs. Its goal is to provide automated tool support for
executing testcases, extracting meaningful information from test executions,
analyzing the monitored information, and checking for the conformance to a
specification of expected behavior. In the following, the main contributions for
testing sensor networks are presented topically grouped.

• Modeling
This thesis described different modeling techniques that can be exploited
for the analysis of a WSN. In Chapter 2, a stochastic model of commu-
nication was presented that can be used to analyze deployments with
respect to the placement of sensor nodes. It allows engineers to optimize
their node deployments using Multiobjective Evolutionary Algorithms to
achieve a well-connected, robust network of nodes. Chapter 5 presented
timed automata models for sensor nodes. By annotating timing behav-
ior and power consumption, the models can be used to automatically
analyze measured power consumption using a novel conformance test.
These timed automata models have potential for further use as described
in the future work below.

122 Chapter 7. Conclusions

• Test platforms
A second part of the thesis concerned test platforms for sensor networks.
Two specific open questions were addressed: Can there can be an inte-
gration of several test platforms into a comprehensive framework? How
can the test of sensor networks be automated for testing and monitoring
functional and non-functional properties of a sensor network over the de-
velopment period? Chapter 3 described an approach for multi-platform
testing based on test platform adaptors. Chapter 4 presented a test ar-
chitecture allowing engineers to continuously test their application and
monitor functional and non-functional properties.

• Analysis of system executions
An important part of testing is the analysis of test executions. In this
thesis, two different methods were presented: the first method concerned
the analysis of functional properties; the second method concerned non-
functional properties, or more specifically power consumption. The
Rupeas language uses an event abstraction for analyzing log files. As
Chapter 3 showed, Rupeas can be used to analyze log files from test
executions, e.g., to analyze for detecting defects in the MAC or routing
protocol. Chapter 5 and 6 presented Power Trace Testing (PTT). PTT
automatically tests the power consumption of a system. While the par-
ticular focus in this thesis was PTT’s application to WSNs, it is generally
applicable for the analysis of any system. In fact, it is applicable for many
physical properties, irrespective if they are inputs to or outputs of a sys-
tem. The only requirement is that the physical quantity only depends
on or affects the current state of the system. Chapter 5 presented formal
foundations of PTT’s conformance test and Chapter 5 and 6 described
various optimizations to make it applicable for a real sensor network
application.

The resulting tool implementations have been applied to test sensor net-
work application. As shown in several case studies, the tools find errors in
implementations and support the debugging process.

7.2 Future work
The work on testing WSNs, as presented in this thesis, has stimulated research
in several directions that bears potential for future work.

• Flocklab and PTT
To accommodate for distributed power measurements and control of

7.2. Future work 123

the tested sensor node, a new testbed was developed called Flock-
lab [BLM+09]. A particular feature of Flocklab is the capability to continu-
ously log power measurements and internal state via GPIO pins. Flocklab
was designed to apply the presented PTT in a distributed context, i.e., on
interacting sensor nodes. For supporting the adoption of PTT for the typi-
cal user, an easier description format for the specification of sensor nodes,
their components’ power consumption and the protocol stack, would be
beneficial. Additionally, the system model used in PTT can be easily
extended to concurrently test measurements of power consumption and
(binary) observations of internal state via GPIO pins.

• Test generation
In this work, various methods were presented that can be applied in
testing for the analysis of executions such as event analysis in Chap-
ter 3 and PTT in Chapter 5. A subject for future work is the auto-
matic generation of testcases. In particular, the formal models as in-
troduced for PTT can be exploited for testcase generation similar to
TRON [LMN04, HLM+08, KGL09]. However, testcase generation re-
lies on an association of high-level modeling with the implementation
on a sensor node. Further research needs to address methods to either
generate code from high-level models, e.g., on a virtual machine, or au-
tomatically generate test adaptor code for interacting with the sensor
nodes. As such the integration of design and testing towards "Design For
Validation" is much needed.

• Runtime monitoring
A prime concern of this thesis is to ensure that a WSN operates cor-
rectly when it is deployed. Nevertheless, experience has shown that de-
ployed systems still contain a non-negligible number of defects. Hence,
runtime systems are needed that detect problems of a running system
and may even try to correct them. For the online monitoring prob-
lem, some initial work was performed in [dJWL09] using a model-
based diagnosis approach. Other work investigated at the use of as-
sertions [RM09], overhearing [MKL+07, RRV07] and application-specific
solutions [RCK+05, RB06, MWW+09], yet a general runtime monitoring
solution is missing. Moreover, if problems are detected, software may
determine some action to alleviate the problem. A first approach using
software rejuvenation was performed in [WML10], inspired by [CGK+09].
It shows that rebooting individual software components instead of a com-
plete node improves system availability. This initial work highlights that
further research should investigate the application of software rejuvena-
tion and software healing approaches for sensor networks.

124 Chapter 7. Conclusions

Bibliography

[AD94] Rajeev Alur and David L. Dill. A theory of timed automata. Theo-
retical Computer Science, 126:183–235, 1994.

[AM04] Rajeev Alur and P. Madhusudan. Decision problems for timed au-
tomata: A survey. In In Proceedings of SFM’04, Lect. Notes Comput.
Sci. 3185, 1–24, pages 1–24. Springer, 2004.

[BDL04] Gerd Behrmann, Alexandre David, and Kim G. Larsen. A tuto-
rial on uppaal. In Marco Bernardo and Flavio Corradini, editors,
Formal Methods for the Design of Real-Time Systems: 4th International
School on Formal Methods for the Design of Computer, Communication,
and Software Systems, SFM-RT 2004, number 3185 in LNCS, pages
200–236. Springer–Verlag, September 2004.

[BDL+07] Jan Beutel, Matthias Dyer, Roman Lim, Christian Plessl, Matthias
Woehrle, Mustafa Yuecel, and Lothar Thiele. Demo abstract: Au-
tomated wireless sensor network testing. In Proc. 4th Int’l Conf. on
Networked Sensing Systems (INSS 2007), page 303. IEEE, June 2007.

[Bei90] Boris Beizer. Software testing techniques (2nd ed.). Van Nostrand
Reinhold Co., 1990.

[BGH+09] Jan Beutel, Stephan Gruber, Andreas Hasler, Roman Lim, An-
dreas Meier, Christian Plessl, Igor Talzi, Lothar Thiele, Christian
Tschudin, Matthias Woehrle, and Mustafa Yuecel. PermaDAQ: A
scientific instrument for precision sensing and data recovery in
environmental extremes. In Proc. 8th ACM/IEEE Int’l Conf. on In-
formation Processing in Sensor Networks (IPSN 2009), pages 265–276.
ACM/IEEE, April 2009.

[BISV08] Guillermo Barrenetxea, François Ingelrest, Gunnar Schaefer, and
Martin Vetterli. The hitchhiker’s guide to successful wireless sen-
sor network deployments. In Proc. 6th ACM Conf. Embedded Net-
worked Sensor Systems (SenSys 2008), 2008.

126 Bibliography

[BK08] Christel Baier and Joost-Pieter Katoen. Principles of Model Checking
(Representation and Mind Series). The MIT Press, 2008.

[BKX+06] Xiaole Bai, Santosh Kuma, Dong Xua, Ziqiu Yun, and Ten H. La.
Deploying wireless sensors to achieve both coverage and connec-
tivity. In MobiHoc ’06: Proceedings of the 7th ACM international
symposium on Mobile ad hoc networking and computing, pages 131–
142. ACM Press, 2006.

[BLM+09] Jan Beutel, Roman Lim, Andreas Meier, Lothar Thiele, Christoph
Walser, Matthias Woehrle, and Mustafa Yuecel. Poster abstract:
The FlockLab Testbed Architecture. In Proc. 7th ACM Conf. Em-
bedded Networked Sensor Systems (SenSys 2009), pages 415–416,
November 2009.

[BLR05] Gerd Behrmann, Kim G. Larsen, and Jacob I. Rasmussen. Priced
timed automata: Algorithms and applications. In Proc. of Formal
Methods for Components and Objects (FMCO’04), pages 162–182,
2005.

[BLTZ03] S. Bleuler, M. Laumanns, L. Thiele, and E. Zitzler. PISA—A
Platform and Programming Language Independent Interface for
Search Algorithms. In Conference on Evolutionary Multi-Criterion
Optimization (EMO 2003), volume 2632 of LNCS, pages 494–508,
2003.

[Bou07] Athanassios Boulis. Castalia: revealing pitfalls in designing dis-
tributed algorithms in wsn. In SenSys ’07: Proceedings of the 5th
international conference on Embedded networked sensor systems, pages
407–408. ACM, 2007.

[BRWR10] Jan Beutel, Kay Roemer, Matthias Woehrle, and Matthias Ring-
wald. Deployment Techniques for Sensor Networks. In Sensor
Networks - Where Theory Meets Practice, pages 219–248. Springer,
2010.

[BS08a] Henrik Bohnenkamp and Mariëlle Stoelinga. Quantitative testing.
In EMSOFT ’08: Proceedings of the 8th ACM international conference
on Embedded software, pages 227–236. ACM, 2008.

[BS08b] Timothy Bourke and Arcot Sowmya. Automatically transforming
and relating uppaal models of embedded systems. In EMSOFT
’08: Proceedings of the 8th ACM international conference on Embedded
software, pages 59–68. ACM, 2008.

Bibliography 127

[BY04] Johan Bengtsson and Wang Yi. Timed automata: Semantics, al-
gorithms and tools. In W. Reisig and G. Rozenberg, editors, In
Lecture Notes on Concurrency and Petri Nets, Lecture Notes in Com-
puter Science vol 3098. Springer–Verlag, 2004.

[BYAH06] Michael Buettner, Gary V. Yee, Eric Anderson, and Richard Han.
X-mac: a short preamble mac protocol for duty-cycled wireless
sensor networks. In Proc. 4th ACM Conf. Embedded Networked Sensor
Systems (SenSys 2006), pages 307–320. ACM Press, 2006.

[CBB+06] Yu-Chung Cheng, John Bellardo, Péter Benkö, Alex C. Snoeren,
Geoffrey M. Voelker, and Stefan Savage. Jigsaw: solving the puzzle
of enterprise 802.11 analysis. In SIGCOMM ’06: Proceedings of
the 2006 conference on Applications, technologies, architectures, and
protocols for computer communications, pages 39–50. ACM, 2006.

[CGK+09] Yang Chen, Omprakash Gnawali, Maria Kazandjieva, Philip
Levis, and John Regehr. Surviving sensor network software faults.
In SOSP ’09: Proceedings of the ACM SIGOPS 22nd symposium on
Operating systems principles, pages 235–246. ACM, 2009.

[CLC04] David Cohen, Mikael Lindvall, and Patricia Costa. An introduc-
tion to agile methods. Advances in Computers, 62:2–67, 2004.

[CLWL06] J.I. Choi, J.W. Lee, M. Wachs, and P. Levis. Opening the sensornet
black box. Technical Report SING-06-03, Stanford Information
Networks Group, Stanford University, CA, 2006.

[Com08a] Computer Engineering and Networks Lab - ETH Zürich. Cruisec-
ontrol at tik42x.ee.ethz.ch, April 2008.

[Com08b] Computer Engineering and Networks Lab - ETH Zürich. Har-
vester in tinyos 2 contrib, 2008.

[Cru10] CruiseControl. Cruisecontrol home, April 2010.

[CVS+07] Peter Corke, Philip Valencia, Pavan Sikka, Tim Wark, and Les
Overs. Long-duration solar-powered wireless sensor networks. In
EmNets ’07: Proceedings of the 4th workshop on Embedded networked
sensors, pages 33–37. ACM, 2007.

[DBT+07] M. Dyer, J. Beutel, L. Thiele, T. Kalt, P. Oehen, K. Martin, and
P. Blum. Deployment support network - a toolkit for the develop-
ment of WSNs. In Proc. 4th European Workshop on Sensor Networks
(EWSN 2007), pages 195–211, 2007.

128 Bibliography

[DCG08] F. Zhao; J. Liu D. Chu and M. Goraczko. Que: A sensor net-
work rapid prototyping tool with application experiences from a
data center deployment. In Proc. 5th European Workshop on Sensor
Networks (EWSN 2008), 2008.

[DCI02] S. Dhillon, K. Chakrabarty, and S. Iyengar. Sensor placement for
grid coverage under imprecise detections. In Proc. 5th Intl. Conf.
on Information Fusion, volume 2, pages 1581–1587, 2002.

[DDH03] Matthew B. Dwyer, William Deng, and John Hatcliff. Space re-
ductions for model checking quasi-cyclic systems. In Proc. of the
3rd Int’l Conference on Embedded Software, pages 173–189. Springer,
2003.

[Deb01] Kalyanmoy Deb. Multi-Objective Optimization Using Evolutionary
Algorithms. Wiley, 2001.

[DGV04] A. Dunkels, B. Grönvall, and T Voigt. Contiki – a lightweight and
flexible operating system for tiny networked sensors. In Proc. 1nd
IEEE Workshop on Embedded Networked Sensors (EmNetS-I), pages
455–462, 2004.

[dJWL09] Adriaan de Jong, Matthias Woehrle, and Koen Langendoen. MoMi
- model-based diagnosis middleware for sensor networks. In Proc.
4th Int’l Conf. Workshop on Middleware Tools, Services and Run-Time
Support for Sensor Networks (MidSens 2009), pages 19–24. Springer,
December 2009.

[DOTH07] Adam Dunkels, Fredrik Osterlind, Nicolas Tsiftes, and Zhitao He.
Software-based on-line energy estimation for sensor nodes. In
EmNets ’07: Proceedings of the 4th workshop on Embedded networked
sensors, pages 28–32, 2007.

[EAR+06] Emre Ertin, Anish Arora, Rajiv Ramnath, Vinayak Naik, Sandip
Bapat, Vinod Kulathumani, Mukundan Sridharan, Hongwei
Zhang, Hui Cao, and Mikhail Nesterenko. Kansei: a testbed for
sensing at scale. In IPSN ’06: Proceedings of the 5th international con-
ference on Information processing in sensor networks, pages 399–406.
ACM, 2006.

[EHD04] A. El-Hoiydi and J.D. Decotignie. WiseMAC: An ultra low power
MAC protocol for multi-hop wireless sensor networks. In Proc.
1st Int’l Workshop Algorithmic Aspects of Wireless Sensor Networks
(ALGOSENSORS 2004), pages 18–31, 2004.

Bibliography 129

[FDLS08] Rodrigo Fonseca, Prabal Dutta, Philip Levis, and Ion Stoica.
Quanto: Tracking energy in networked embedded systems. In
8th USENIX Symposium on Operating Systems Design and Implemen-
tation (OSDI 2008), pages 323–338, December 2008.

[Fre08] Goran Frehse. Phaver: algorithmic verification of hybrid systems
past hytech. Int. J. Softw. Tools Technol. Transf., 10(3):263–279, 2008.

[GFJ+09] Omprakash Gnawali, Rodrigo Fonseca, Kyle Jamieson, David
Moss, and Philip Levis. Collection tree protocol. In SenSys ’09:
Proceedings of the 7th ACM conference on Embedded network sensor
systems, pages 1–14. ACM, 2009.

[God97] Patrice Godefroid. Model checking for programming languages
using verisoft. In POPL ’97: Proceedings of the 24th ACM SIGPLAN-
SIGACT symposium on Principles of programming languages, pages
174–186. ACM, 1997.

[Hen96] Thomas A. Henzinger. The theory of hybrid automata. In Proc.
11th Annual Symposium on Logic in Computer Science (LICS), pages
278–292. IEEE Computer Society Press, 1996.

[HHP+08] I.J. Haratcherev, G.P. Halkes, T.E.V. Parker, O.W. Visser, and K.G.
Langendoen. PowerBench: A scalable testbed infrastructure for
benchmarking power consumption. In Int. Workshop on Sensor
Network Engineering (IWSNE), pages 37–44, June 2008.

[HHWT97] Thomas A. Henzinger, Pei-Hsin Ho, and Howard Wong-Toi.
Hytech: A model checker for hybrid systems. In CAV ’97: Proceed-
ings of the 9th International Conference on Computer Aided Verification,
pages 460–463. Springer-Verlag, 1997.

[HKWW06] Vlado Handziski, Andreas Koepke, Andreas Willig, and Adam
Wolisz. Twist: a scalable and reconfigurable testbed for wireless
indoor experiments with sensor networks. In Proc. 2nd interna-
tional workshop on Multi-hop ad hoc networks: from theory to reality
(REALMAN ’06), pages 63–70. ACM Press, 2006.

[HLM+08] Anders Hessel, Kim G. Larsen, Marius Mikucionis, Brian Nielsen,
Paul Pettersson, and Arne Skou. Testing real-time systems using
UPPAAL. In Formal Methods and Testing, volume 4949/2008 of
Lecture Notes in Computer Science, pages 77–117. Springer, 2008.

[HMA+08] Naofumi Homma, Atsushi Miyamoto, Takafumi Aoki, Akashi
Satoh, and Adi Shamir. Collision-based power analysis of modular
exponentiation using chosen-message pairs. In 10th Int’l Workshop

130 Bibliography

on Cryptographic Hardware and Embedded Systems (CHES), pages
15–29. Springer, August 2008.

[HMP92] Thomas A. Henzinger, Zohar Manna, and Amir Pnueli. What
good are digital clocks? In ICALP ’92: Proceedings of the 19th
International Colloquium on Automata, Languages and Programming,
pages 545–558. Springer-Verlag, 1992.

[HSW+00] Jason Hill, Robert Szewczyk, Alec Woo, Seth Hollar, David Culler,
and Kristofer Pister. System architecture directions for networked
sensors. SIGPLAN Not., 35(11):93–104, 2000.

[JDCS07] Xiaofan Jiang, Prabal Dutta, David Culler, and Ion Stoica. Micro
power meter for energy monitoring of wireless sensor networks
at scale. In IPSN ’07: Proceedings of the 6th international conference
on Information processing in sensor networks, pages 186–195. ACM,
2007.

[JLS00] Henrik Ejersbo Jensen, Kim Guldstrand Larsen, and Arne Skou.
Scaling up uppaal automatic verification of real-time systems us-
ing compositionality and abstraction. In FTRTFT ’00: Proceedings
of the 6th International Symposium on Formal Techniques in Real-Time
and Fault-Tolerant Systems, pages 19–30. Springer-Verlag, 2000.

[Jou06] D. B. Jourdan. Wireless Sensor Network Planning with Application to
UWB Localization in GPS-Denied Environments. PhD thesis, Mas-
sachusetts Institute of Technology, 2006.

[KAJV07] Charles Edwin Killian, James W. Anderson, Ranjit Jhala, and
Amin Vahdat. Life, death, and the critical transition: Finding
liveness bugs in systems code (awarded best paper). In 4th Sympo-
sium on Networked Systems Design and Implementation (NSDI 2007).
USENIX, April 2007.

[KGGK06] Andreas Krause, Carlos Guestrin, Anupam Gupta, and Jon Klein-
berg. Near-optimal sensor placements: maximizing information
while minimizing communication cost. In Proc. 5th Int’l Conf. In-
formation Processing Sensor Networks (IPSN ’06), pages 2–10. ACM
Press, 2006.

[KGL09] Brian Nielsen Kim G. Larsen, Marius Mikucionis. Uppaal Tron User
Manual. CISS, BRICS, Aalborg University, Aalborg, Denmark, June
2009.

[KLP+09] Kevin Klues, Chieh-Jan Mike Liang, Jeongyeup Paek, Răzvan
Musăloiu-E, Philip Levis, Andreas Terzis, and Ramesh Govindan.

Bibliography 131

Tosthreads: thread-safe and non-invasive preemption in tinyos.
In SenSys ’09: Proceedings of the 7th ACM Conference on Embedded
Networked Sensor Systems, pages 127–140. ACM, 2009.

[KNG+04] D. Kotz, C. Newport, R.S. Gray, J. Liu, Y. Yuan, and C. Elliott.
Experimental evaluation of wireless simulation assumptions. In
Int’l Workshop Modeling Analysis and Simulation of Wireless and Mo-
bile Systems (MSWiM 04), pages 78–82. ACM Press, New York,
October 2004.

[KS08] Daniel Kroening and Ofer Strichman. Decision Procedures: An Algo-
rithmic Point of View. Springer Publishing Company, Incorporated,
2008.

[Lan08] K.G. Langendoen. Medium access control in wireless sensor net-
works. In H. Wu and Y. Pan, editors, Medium Access Control in
Wireless Networks, pages 535–560. Nova Science Publishers, Inc.,
may 2008.

[LBV06] K. Langendoen, A. Baggio, and O. Visser. Murphy loves potatoes:
Experiences from a pilot sensor network deployment in precision
agriculture. In Proc. 20th Int’l Parallel and Distributed Processing
Symposium (IPDPS 2006), pages 8–15, 2006.

[LGH+05] P. Levis, D. Gay, V. Handziski, J.-H.Hauer, B.Greenstein, M.Turon,
J.Hui, K.Klues, C.Sharp, R.Szewczyk, J.Polastre, P.Buonadonna,
L.Nachman, G.Tolle, D.Culler, and A.Wolisz. T2: A second gener-
ation os for embedded sensor networks. Technical Report TKN-05-
007, Telecommunication Networks Group, Technische Universität
Berlin, November 2005.

[LHL08] M. Lodder, G. Halkes, and K. Langendoen. A global-state perspec-
tive on sensor network debugging. In Proc. 5th IEEE Workshop on
Embedded Networked Sensors (HotEmNets 2008), pages 37–41, June
2008.

[LLWC03] P. Levis, N. Lee, M. Welsh, and D. Culler. TOSSIM: Accurate
and scalable simulation of entire TinyOS applications. In Proc.
1st ACM Conf. Embedded Networked Sensor Systems (SenSys 2003),
pages 126–137, November 2003.

[LMN04] Kim Guldstrand Larsen, Marius Mikucionis, and Brian Nielsen.
Online testing of real-time systems using uppaal. In 4th Int’l Work-
shop Formal Approaches to Software Testing (FATES 2004), Revised
Selected Papers, pages 79–94, September 2004.

132 Bibliography

[LrCC+09] Konrad Lorincz, Bor rong Chen, Geoffrey Werner Challen,
Atanu Roy Chowdhury, Shyamal Patel, Paolo Bonato, and Matt
Welsh. Mercury: a wearable sensor network platform for high-
fidelity motion analysis. In Proc. 7th Int’l Conf. on Embedded Net-
worked Sensor Systems (SenSys ’09), pages 183–196, November 2009.

[LWG05] O. Landsiedel, K. Wehrle, and S. Gotz. Accurate prediction of
power consumption in sensor networks. In Proc. 2nd IEEE Work-
shop on Embedded Networked Sensors (EmNetS-II), pages 37–44. IEEE
Computer Society, 2005.

[LWMB09] Roman Lim, Matthias Woehrle, Andreas Meier, and Jan Beutel.
Poster abstract: Harvester - energy savings through synchronized
low-power listening. In Adjunct Proc. 6th European Workshop on
Sensor Networks (EWSN 2009), pages 29–30. Springer, February
2009.

[M+07] David Moss et al. Bug in cc2420 timestamp.
https://www.millennium.berkeley.edu/pipermail/tinyos-
help/2007-October/028901.html, October 2007.

[Mei09] Andreas Meier. Safety-Critical Wireless Sensor Networks. PhD thesis,
ETH Zurich, June 2009.

[MKAG08] Mohammad Maifi, Hasan Khan, Tarek Abdelzaher, and Ka-
mal Kant Gupta. Towards diagnostic simulation in sensor net-
works. In Distributed Computing in Sensor Systems, pages 252–265.
Springer, 2008.

[MKL+07] Mohammad Maifi, Hasan Khan, Liqian Luo, Chengdu Huang,
and Tarek Abdelzaher. SNTS: Sensor network troubleshooting
suite. In Distributed Computing in Sensor Systems, volume Volume
4549/2007, pages 142–157. Springer, 2007.

[MLM+05] Pedro José Marrón, Andreas Lachenmann, Daniel Minder, Jörg
Hähner, Robert Sauter, and Kurt Rothermel. TinyCubus: A flexible
and adaptive framework for sensor networks. In Proceedings of the
Second European Workshop on Wireless Sensor Networks (EWSN 2005),
pages 278–289, January 2005.

[MLN04] Marius Mikucionis, Kim G. Larsen, and Brian Nielsen. T-uppaal:
Online model-based testing of real-time systems. In ASE ’04: Pro-
ceedings of the 19th IEEE international conference on Automated soft-
ware engineering, pages 396–397. IEEE Computer Society, 2004.

Bibliography 133

[MPS+02] A. Mainwaring, J. Polastre, R. Szewczyk, D. Culler, and J. Ander-
son. Wireless sensor networks for habitat monitoring. In 1st ACM
Int. Workshop on Wireless Sensor Networks and Application (WSNA
2002), pages 88–97, 2002.

[MRBT08] Andreas Meier, Tobias Rein, Jan Beutel, and Lothar Thiele. Coping
with unreliable channels: Efficient link estimation for low-power
wireless sensor networks. In Proc. 5th Intl Conf. Networked Sensing
Systems (INSS 2008), pages 19–26. IEEE, June 2008.

[MRWZ06] Ratul Mahajan, Maya Rodrig, David Wetherall, and John Zahor-
jan. Analyzing the MAC-level behavior of wireless networks in
the wild. SIGCOMM Comput. Commun. Rev., 36(4):75–86, 2006.

[MWW+09] Andreas Meier, Matthias Woehrle, Mischa Weise, Jan Beutel, and
Lothar Thiele. Nose: Efficient maintenance and initialization of
wireless sensor networks. In Proc. Sixth Annual IEEE Communica-
tions Society Conference on Sensor, Mesh, and Ad Hoc Communications
and Networks (SECON 2009), pages 1–9. IEEE, June 2009.

[Mye79] Glenford J. Myers. Art of Software Testing. John Wiley & Sons, Inc.,
1979.

[NS07] Nguyet T. M. Nguyen and Mary Lou Soffa. Program representa-
tions for testing wireless sensor network applications. In DOSTA
’07: Workshop on Domain specific approaches to software test automa-
tion, pages 20–26. ACM, 2007.

[ODE+06] Fredrik Osterlind, Adam Dunkels, Joakim Eriksson, Niclas Finne,
and Thiemo Voigt. Cross-level sensor network simulation with
COOJA. In Local Computer Networks, Proceedings 2006 31st IEEE
Conference on, pages 641–648, November 2006.

[OSFC07] D. O’Rourke, Conor Brennan Szymon Fedor, and Martin Collier.
Reception region characterisation using a 2.4ghz direct sequence
spread spectrum radio. In Proc. 4th IEEE Workshop on Embedded
Networked Sensors (EmNetS-IV), 2007.

[Par97] B. Parhami. Defect, fault, error,..., or failure? IEEE Transactions on
Reliability, 46(4):450–451, December 1997.

[PD07] Andrew Glover Paul Duvall, Steve Matyas. Continuous Integration:
Improving Software Quality and Reducing Risk. Addison-Wesley,
2007.

134 Bibliography

[PG07] Jeongyeup Paek and Ramesh Govindan. Rcrt: rate-controlled
reliable transport for wireless sensor networks. In SenSys ’07:
Proceedings of the 5th international conference on Embedded networked
sensor systems, pages 305–319. ACM, 2007.

[PHC04] J. Polastre, J. Hill, and D. Culler. Versatile low power media access
for wireless sensor networks. In Proc. 2nd ACM Conf. Embedded
Networked Sensor Systems (SenSys 2004), pages 95–107. ACM Press,
New York, 2004.

[PY08] Mauro Pezze and Michal Young. Software Testing and Analysis:
Process, Principles and Techniques. Wiley, 2008.

[RB06] Stanislav Rost and Hari Balakrishnan. Memento: A health mon-
itoring system for wireless sensor networks. In Proc. 3rd IEEE
Communications Society Conf. Sensor, Mesh and Ad Hoc Communica-
tions and Networks (IEEE SECON 2006), 2006.

[RCK+05] N. Ramanathan, K. Chang, R. Kapur, L. Girod, E. Kohler, and
D. Estrin. Sympathy for the sensor network debugger. In Proc.
3rd ACM Conf. Embedded Networked Sensor Systems (SenSys 2005),
pages 255–267. ACM Press, New York, 2005.

[Reg07] John Regehr. Safe and structured use of interrupts in real-time
and embedded software. In Handbook of Real-Time and Embedded
Systems. CRC Press, 2007.

[RKW+06] Patrick Reynolds, Charles Killian, Janet L. Wiener, Jeffrey C.
Mogul, Mehul A. Shah, and Amin Vahdat. Pip: detecting the
unexpected in distributed systems. In NSDI’06: Proceedings of the
3rd conference on 3rd Symposium on Networked Systems Design &
Implementation, pages 115–128. USENIX Association, 2006.

[RM04] K. Römer and F. Mattern. The design space of wireless sensor
networks. IEEE Wireless Communications, 11(6):54–61, December
2004.

[RM09] Kay Römer and Junyan Ma. Pda: Passive distributed assertions for
sensor networks. In IPSN ’09: Proceedings of the 2009 International
Conference on Information Processing in Sensor Networks, pages 337–
348. IEEE Computer Society, 2009.

[RR07] Matthias Ringwald and Kay Römer. Deployment of sensor net-
works: Problems and passive inspection. In Proceedings of the 5th
Workshop on Intelligent Solutions in Embedded Systems (WISES ’07),
pages 180–193, June 2007.

Bibliography 135

[RR08] Kay Römer and Matthias Ringwald. Increasing the visibility of
sensor networks with passive distributed assertions. In Proc. 4th
Workshop on Real-World Wireless Sensor Networks (REALWSN ’08),
pages 36–40, 2008.

[RRV07] Matthias Ringwald, Kay Römer, and Andrea Vitaletti. Passive in-
spection of sensor networks. In Proc. 3rd IEEE Int’l Conf. Distributed
Computing in Sensor Systems (DCOSS 2007), June 2007.

[RVMM05] R. Rajagopalan, P. K. Varshney, C. K. Mohan, and K. G. Mehrotra.
Sensor Placement for Energy Efficient Target Detection in Wireless
Sensor Networks: A Multi-objective Optimization Approach. In
Conference on Information Sciences and Systems, 2005.

[SHC+04] V. Shnayder, M. Hempstead, B. Chen, G. Werner-Allen, and
M. Welsh. Simulating the power consumption of large-scale sensor
network applications. In Proc. 2nd ACM Conf. Embedded Networked
Sensor Systems (SenSys 2004), pages 188–200. ACM Press, New
York, November 2004.

[SHrC+04] Victor Shnayder, Mark Hempstead, Bor rong Chen, GeoffWerner
Allen, and Matt Welsh. Simulating the power consumption of
large-scale sensor network applications. In SenSys ’04: Proceed-
ings of the 2nd international conference on Embedded networked sensor
systems, pages 188–200, 2004.

[ST08] Julien Schmaltz and Jan Tretmans. On conformance testing for
timed systems. In FORMATS ’08: Proceedings of the 6th international
conference on Formal Modeling and Analysis of Timed Systems, pages
250–264. Springer-Verlag, 2008.

[Str00] Karsten Strehl. Symbolic Methods Applied to Formal Verification and
Synthesis in Embedded Systems Design. PhD thesis, ETH Zurich,
March 2000.

[SY05] Anthony Man-Cho So and Yinyu Ye. On solving coverage prob-
lems in a wireless sensor network using voronoi diagrams. In
Proceedings of the 1st Workshop on Internet and Network Economics
(WINE 2005), pages 584–593. s-lncs, 2005.

[TCLS08] Arsalan Tavakoli, David Culler, Philip Levis, and Scott Shenker.
The case for predicate-oriented debugging of sensornets. In Pro-
ceedings of the 5th Workshop on Hot Topics in Embedded Networked
Sensors, 2008.

136 Bibliography

[TLP05] Ben L. Titzer, Daniel K. Lee, and Jens Palsberg. Avrora: scalable
sensor network simulation with precise timing. In Proc. 4th Int’l
Conf. Information Processing Sensor Networks (IPSN ’05), page 67,
2005.

[Tre94] Jan Tretmans. A formal approach to conformance testing. In
Proceedings of the IFIP TC6/WG6.1 Sixth International Workshop on
Protocol Test systems VI, pages 257–276. North-Holland Publishing
Co., 1994.

[Tre08] Jan Tretmans. Model based testing with labelled transition sys-
tems. In Robert M. Hierons, Jonathan P. Bowen, and Mark
Harman, editors, Formal Methods and Testing, An Outcome of the
FORTEST Network, Revised Selected Papers, volume 4949 of Lecture
Notes in Computer Science, pages 1–38. Springer, 2008.

[vO06] Michiel van Osch. Hybrid input-output conformance and test
generation. In Formal Approaches to Software Testing and Runtime
Verification, pages 70–84, 2006.

[WALJ+06] GeoffWerner-Allen, Konrad Lorincz, Jeff Johnson, Jonathan Lees,
and Matt Welsh. Fidelity and yield in a volcano monitoring sensor
network. In OSDI ’06: Proceedings of the 7th symposium on Oper-
ating systems design and implementation, pages 381–396. USENIX
Association, 2006.

[WASW05] G. Werner-Allen, P. Swieskowski, and M. Welsh. MoteLab: A
wireless sensor network testbed. In Proc. 4th Int’l Conf. Information
Processing Sensor Networks (IPSN ’05), pages 483–488, April 2005.

[WBH07] Matthias Woehrle, Dimo Brockhoff, and Tim Hohm. A new model
for deployment coverage and connectivity of wireless sensor net-
works. Technical Report 278, Computer Engineering and Net-
works Laboratory, ETH Zurich, September 2007.

[WBHB08] Matthias Woehrle, Dimo Brockhoff, Tim Hohm, and Stefan Bleuler.
Investigating coverage and connectivity trade-offs in wireless sen-
sor networks: The benefits of MOEAs. In 19th Int’l Conf. on Multiple
Criteria Decision Making (MCDM 2008), pages 211–221, 2008.

[WBLT08] Matthias Woehrle, Jan Beutel, Roman Lim, and Lothar Thiele.
Power monitoring and testing in wireless sensor network devel-
opment. In Workshop on Energy in Wireless Sensor Networks, Adj.
Proc. DCOSS 2008, pages IV–3–IV–9, June 2008.

Bibliography 137

[WBT08] Matthias Woehrle, Jan Beutel, and Lothar Thiele. The system
development lifecycle – learning from a sensornet review. Techni-
cal Report 283, Computer Engineering and Networks Laboratory,
ETH Zurich, May 2008.

[WBYT08] Matthias Woehrle, Jan Beutel, Mustafa Yuecel, and Lothar Thiele.
Approaching wireless sensor networks using systematic testing
strategies. Technical Report 284, Computer Engineering and Net-
works Laboratory, ETH Zurich, May 2008.

[WLT09] Matthias Woehrle, Kai Lampka, and Lothar Thiele. Exploiting
timed automata for conformance testing of power measurements.
In 7th Int’l Conf. on Formal Modelling and Analysis of Timed Systems
(FORMATS 2009), pages 275–290. Springer, September 2009.

[WLT10] Matthias Woehrle, Kai Lampka, and Lothar Thiele. Con-
formance testing for cyber-physical systems (available at
http://www.tik.ee.ethz.ch/∼woehrlem/tik/pub/woehrle.pdf). page
(in submission), April 2010.

[WML10] Matthias Woehrle, Andreas Meier, and Koen Langendoen. On the
potential of software rejuvenation for long-running sensor net-
work deployments (position paper). In Proc. 1st Int’l Workshop
on Software Engineering for Sensor Network Applications (SESENA
2010), pages 44–48, 2010.

[WPBT07] Matthias Woehrle, Christian Plessl, Jan Beutel, and Lothar Thiele.
Increasing the reliability of wireless sensor networks with a dis-
tributed testing framework. In Proc. 4th Workshop on Embedded
Networked Sensors (EmNets 2007), pages 93–97. ACM Press, New
York, June 2007.

[WPL+08] Matthias Woehrle, Christian Plessl, Roman Lim, Jan Beutel, and
Lothar Thiele. EvAnT: Analysis and checking of event traces for
wireless sensor networks. In Proc. IEEE Int’l Conf. on Sensor Net-
works, Ubiquitous, and Trustworthy Computing (SUTC 2008), pages
201–208. IEEE, June 2008.

[WPT09] Matthias Woehrle, Christian Plessl, and Lothar Thiele. Poster
abstract: Rupeas - an event analysis language for wireless sensor
network traces. In Adjunct Proc. 6th European Workshop on Sensor
Networks (EWSN 2009), pages 19–20, February 2009.

[WPT10] Matthias Woehrle, Christian Plessl, and Lothar Thiele. Rupeas:
Ruby Powered Event Analysis DSL. In Proc. 7th Int’l Conf. on

138 Bibliography

Networked Sensing Systems (INSS 2010), pages 245–248. IEEE, June
2010.

[WXZ+03] Xiaorui Wang, Guoliang Xing, Yuanfang Zhang, Chenyang Lu,
Robert Pless, and Christopher Gill. Integrated coverage and con-
nectivity configuration in wireless sensor networks. In Proc. 1st
ACM Conf. Embedded Networked Sensor Systems (SenSys 2003), pages
28–39. ACM Press, 2003.

[XRC+04] N. Xu, S. Rangwala, K.K. Chintalapudi, D. Ganesan, A. Broad,
R. Govindan, and D. Estrin. A wireless sensor network for struc-
tural monitoring. In Proc. 2nd ACM Conf. Embedded Networked
Sensor Systems (SenSys 2004), pages 13–24, 2004.

[Yov98] Sergio Yovine. Model checking timed automata. In Lectures on
Embedded Systems, European Educational Forum, School on Embedded
Systems, pages 114–152. Springer-Verlag, 1998.

[ZFWT10] Marco Zimmerling, Federico Ferrari, Matthias Woehrle, and
Lothar Thiele. Poster abstract: Exploiting protocol models for
generating feasible communication stack configurations. In Proc.
ACM/IEEE Int’l Conf. on Information Processing in Sensor Networks
(IPSN 2010), pages 380–381, April 2010.

[ZHKS06] Gang Zhou, Tian He, Sudha Krishnamurthy, and John A.
Stankovic. Models and solutions for radio irregularity in wire-
less sensor networks. ACM Trans. Sen. Netw., 2(2):221–262, 2006.

[ZK04] E. Zitzler and S. Künzli. Indicator-Based Selection in Multiobjec-
tive Search. In Conference on Parallel Problem Solving from Nature
(PPSN VIII), volume 3242 of LNCS, pages 832–842. Springer, 2004.

[ZK07] Marco Zuniga Zamalloa and Bhaskar Krishnamachari. An anal-
ysis of unreliability and asymmetry in low-power wireless links.
ACM Trans. Sen. Netw., 3(2):7, 2007.

[Zun04] B. Zuniga, M.; Krishnamachari. Analyzing the transitional region
in low power wireless links. In IEEE, editor, Sensor and Ad Hoc
Communications and Networks, 2004. IEEE SECON 2004. 2004 First
Annual IEEE Communications Society Conference on, Vol., pages 517–
526, 2004.

A
Acronyms

WSN Wireless Sensor Network

SUT System Under Test

MCU Microcontroller Unit

RAM Random Access Memory

kbps kilobit per second

MAC Medium Access Control

CTP Collection Tree Protocol

CSMA Carrier Sense Multiple Access

LPL Low-Power Listening

RF Radio Frequency

ISM Industrial, Scientific and Medical

DSL Domain Specific Language

DSN Deployment Support Network

UART Universal Asynchronous Receiver/Transmitter

PTA Power Test Architecture

140 Appendix A. Acronyms

ADC Analog-to-Digital Converter

CI Continuous Integration

PTT Power Trace Testing

GCI Greatest Common Interval

MOEA Multiobjective Evolutionary Algorithm

B
List of Publications

The following list summarizes the publications that constitute the basis of this
thesis. The corresponding chapters are indicated in parentheses.

Matthias Woehrle and Christian Plessl and Jan Beutel and Lothar Thiele.
Increasing the Reliability of Wireless Sensor Networks with a Distributed
Testing Framework. Proc. 4th Workshop on Embedded Networked Sensors
(EmNets 2007), June 2007 (Chapter 3)

Jan Beutel and Matthias Dyer and Roman Lim and Christian Plessl and
Matthias Woehrle and Mustafa Yuecel and Lothar Thiele. Demo Abstract:
Automated Wireless Sensor Network Testing. Proc. 4th Int’l Conference on
Networked Sensing Systems (INSS 2007), June 2007. (Chapter 3)

Matthias Woehrle and Dimo Brockhoff and Tim Hohm. A new model for de-
ployment coverage and connectivity of Wireless Sensor Networks. Computer
Engineering and Networks Laboratory, ETH Zurich, Tecreport 278, September 2007
(Chapter 2)

Matthias Woehrle and Dimo Brockhoff and Tim Hohm and Stefan Bleuler.
Investigating Coverage and Connectivity Trade-offs in Wireless Sensor
Networks: The Benefits of MOEAs. 19th Int’l Conference on Multiple Criteria
Decision Making (MCDM 2008), January, 2008. (Chapter 2)

142 Appendix B. List of Publications

Matthias Woehrle and Jan Beutel and Roman Lim and Lothar Thiele. Power
monitoring and testing in Wireless Sensor Network Development. Workshop
on Energy in Wireless Sensor Networks (WEWSN 2008), Adj. Proc. DCOSS, June
2008. (Chapter 4)

Matthias Woehrle and Christian Plessl and Roman Lim and Jan Beutel and
Lothar Thiele. EvAnT: Analysis and Checking of event traces for Wireless
Sensor Networks. Proc. IEEE Int’l Conference on Sensor Networks, Ubiquitous,
and Trustworthy Computing (SUTC 2008), June 2008. (Chapter 3)

Matthias Woehrle and Jan Beutel and Lothar Thiele. Wireless Sensor
Networks Test and Validation. Chapter in Handbook of Networked Embedded
Systems, 2009. (Chapter 4)

Matthias Woehrle and Christian Plessl and Lothar Thiele. Poster Abstract:
Rupeas - An Event Analysis Language for Wireless Sensor Network Traces.
Adjunct Proc. 6th European Workshop on Sensor Networks (EWSN 2009), February,
2009 (Chapter 3)

Roman Lim and Matthias Woehrle and Andreas Meier and Jan Beutel. Poster
Abstract: Harvester - Energy Savings Through Synchronized Low-power
Listening. Adjunct Proc. 6th European Workshop on Sensor Networks (EWSN
2009), February, 2009 (Chapter 2)

Matthias Woehrle and Kai Lampka and Lothar Thiele. Exploiting timed au-
tomata for conformance testing of power measurements. 7th Int’l Conference
on Formal Modeling and Analysis of Timed Systems (FORMATS 2009), September,
2009. (Chapter 5)

Jan Beutel and Roman Lim and Andreas Meier and Lothar Thiele and
Christoph Walser and Matthias Woehrle and Mustafa Yuecel. Poster Abstract:
The FlockLab Testbed Architecture. Proc. 7th ACM Conference on Embedded
Networked Sensor Systems (SenSys 2009), November 2009 (Chapter 7)

Adriaan de Jong and Matthias Woehrle and Koen Langendoen. MoMi -
Model-Based Diagnosis Middleware for Sensor Networks. Proc. 4th Int’l
Workshop on Middleware Tools, Services and Run-Time Support for Sensor Networks
(MidSens 2009), December 2009. (Chapter 7)

Matthias Woehrle and Christian Plessl and Lothar Thiele. Rupeas: Ruby
Powered Event Analysis DSL Proc. 7th Int’l Conference on Networked Sensing
Systems (INSS 2010), June 2010 (Chapter 3)

143

Matthias Woehrle and Andreas Meier and Koen Langendoen. On the Potential
of Software Rejuvenation for Long-Running Sensor Network Deployments.
Proc. 1st Int’l Workshop on Software Engineering for Sensor Network Applications
(SESENA 2010), May 2010 (Chapter 7)

Matthias Woehrle and Kai Lampka and Lothar Thiele. Conformance Testing
for Cyber-Physical Systems. In submission, April, 2010 (Chapter 5)

The following list summarizes the publications that were written during the
PhD studies, yet are not part of this thesis.

Jan Beutel and Stephan Gruber and Andreas Hasler and Roman Lim and
Andreas Meier and Christian Plessl and Igor Talzi and Lothar Thiele and
Christian Tschudin and Matthias Woehrle and Mustafa Yuecel. PermaDAQ:
A scientific instrument for precision sensing and data recovery in environ-
mental extremes. Proc. 8th ACM/IEEE Int’l Conference on Information Processing
in Sensor Networks (IPSN 2009), April 2009

Jan Beutel and Stephan Gruber and Andreas Hasler and Roman Lim and
Andreas Meier and Christian Plessl and Igor Talzi and Lothar Thiele and
Christian Tschudin and Matthias Woehrle and Mustafa Yuecel. Demo
Abstract: Operating a Sensor Network at 3500m Above Sea Level Proc. 8th
ACM/IEEE Int’l Conference on Information Processing in Sensor Networks (IPSN
2009), April 2009

Andreas Meier and Matthias Woehrle and Mischa Weise and Jan Beutel
and Lothar Thiele. NoSE: Efficient Maintenance and Initialization of
Wireless Sensor Networks.. Proc. IEEE Communications Society Conference on
Sensor, Mesh, and Ad Hoc Communications and Networks (SECON 2009), June 2009.

Jan Beutel and Kay Roemer and Matthias Woehrle and Matthias Ringwald.
Deployment Techniques for Sensor Networks. Chapter in Sensor Networks -
Where Theory Meets Practice, 2010

Marco Zimmerling and Federico Ferrari and Matthias Woehrle and Lothar
Thiele. Poster Abstract: Exploiting Protocol Models for Generating Feasible
Communication Stack Configurations. Proc. ACM/IEEE Int’l Conference on
Information Processing in Sensor Networks (IPSN 2010), April 2010

144 Appendix B. List of Publications

Andreas Meier and Matthias Woehrle and Marco Zimmerling and Lothar
Thiele. Zerocal: Automatic MAC Protocol Calibration. Proc. 6th IEEE Int’l
Conference on Distributed Computing in Sensor Systems (DCOSS 2010), June 2010

Venkatraman Iyer and Matthias Woehrle and Koen Langendoen. Chamaeleon:
Exploiting Multiple Channels to Mitigate Interference. Proc. 7th Int’l Confer-
ence on Networked Sensing Systems (INSS 2010), June 2010

	Abstract
	Zusammenfassung
	Acknowledgement
	Introduction
	Contributions
	Outline

	Wireless Sensor Networks and Testing
	Wireless Sensor Network (WSN)s
	Sensor node hardware
	Sensor node software

	Data collection application
	Low-power MAC protocols
	Collection Tree Protocol (CTP)

	A WSN Model for sensor node placement
	Related work on sensor node placement
	Deployment model
	Evaluation
	Summary

	Validation
	Testing

	Testing of Wireless Sensor Network (WSN) applications
	Multi-platform testing
	Multi-platform test framework
	Feasibility Study
	Testcase
	Discussion and related work

	Analyzing test executions
	Traces, Events and Event Analysis
	Event Analysis
	Event analysis operators

	Rupeas
	Domain Specific Language
	Language implementation
	Case studies
	Discussion and related work

	Summary

	Test automation for sensor networks
	Testing power consumption
	Background
	Error classification
	Continuous Integration

	The Power Testing Architecture
	Physical parameter extraction
	Cognitive aids

	Formulating tests for power consumption
	Reference-based evaluation
	Power unit tests implementation
	Discussion

	Related work
	Summary

	Model-based conformance testing of power consumption
	Background Theory
	Power Trace Testing (PTT)
	Timed automaton models employed in PTT
	Reachability check for verifying PTT conformance
	Compositional modeling of the system model
	Trace Automaton Optimization

	Testing power consumption with TRON
	Timed input/output conformance relation
	Trace adapter
	Sampler process
	PTT execution with TRON

	Case Study
	Modeling the Harvester
	Testcases

	Empirical evaluation: Results and Benchmarks
	Power trace models
	Experimental setup
	Uppaal results
	TRON results
	Uppaal versus TRON comparison

	Summary
	Related Work
	Discussion

	PTT for communicating sensor nodes
	Background Theory
	Scalability, an open issue
	Problem
	Property of the power trace model: No absorbing loops.
	Property of low-power (embedded) systems: Recurrent identifiable locations.
	Segmented power trace testing

	Case Study
	Testing communicating sensor nodes
	Experimental setup
	Results

	Related work
	Summary

	Conclusions
	Contributions
	Future work

	Bibliography
	Acronyms
	List of Publications

