
ETH Library

Tool support for qualitative
reasoning in event-B

Master Thesis

Author(s):
Yilmaz, Emre

Publication date:
2010

Permanent link:
https://doi.org/10.3929/ethz-a-006154359

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-006154359
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Tool Support for Qualitative
Reasoning in Event-B

Master Thesis

by

Emre Yilmaz

August, 2010

Supervisor : Dr. Thai Son Hoang

Professor : Prof. Dr. David Basin

Chair of Information Security

Department of Computer Science

ETH-Zurich

Abstract

Event-B is a notation and method for modelling discrete transition sys-

tems by re�nement. The standard reasoning in Event-B is based on non-

determinism, however some system behaviours are more appropriately mod-

elled probabilistically. Earlier work has extended Event-B with means for

reasoning about qualitative probability. The extension provides proof obliga-

tions to prove almost-certain termination of systems and does not complicate

the existing Event-B notation or method. However, this early work does not

mention the preservation of qualitative reasoning in the case of re�nement.

Within our work we discuss how qualitative probabilistic reasoning can be

maintained during re�nement and propose some restrictions and conditions

for almost-certain termination on re�nement.

We continue the above investigation with the integration of qualitative prob-

abilistic reasoning into Event-B further towards the direction of having a tool

support. We extend the Rodin Platform to support proving almost-certain

termination and using our new developed tool support we model some ex-

ample algorithms terminating almost-certainly. In passing by, we formalise a

non-trivial algorithm, namely Rabin's choice coordination. Our correctness

reasoning is a combination of termination proofs in terms of probabilistic

convergence and standard invariants techniques with re�nement. We use

the technique of splitting/merging the events to avoid having complicated

proofs.

iii

Contents

Abstract iii

List of Figures x

List of Tables xi

1 Introduction 1

2 Background and Related Work 3

2.1 The Event-B Modelling Method 3

2.1.1 Contexts and Machines 4

2.1.2 Machine Re�nement 7

2.2 Termination and Variant . 9

2.2.1 Proving Termination with Loop Variant 9

2.2.2 Termination in Event-B 10

2.3 Almost-Certain Termination 12

v

2.3.1 Proving Almost-Certain Termination with Loop Variant 12

2.3.2 Almost-Certain Termination in Event-B 13

3 Termination with Re�nement in Event-B 17

3.1 Lexicographic Variant . 18

3.2 Certain Termination with Re�nement 18

3.3 Almost-Certain Termination with Re�nement 26

4 Case Study: Rabin's Choice Coordination 29

4.1 Description of the Problem and Algorithm 29

4.2 Formal Development . 33

4.2.1 Initial Model. The Sets of Inside Tourists 34

4.2.2 Re�nement 1. The Sets of Outside Tourists 36

4.2.3 Re�nement 2. Rabin's Algorithm 38

4.2.4 Re�nements 3�6. Proving Convergence 42

4.2.5 Re�nement 7. Deadlock-freeness 47

4.2.6 Proof Statistics . 48

vi

5 Tool Support 51

5.1 Introducing Probabilistic Events 52

5.2 Bound Element . 53

5.3 Extending The Static Checker 53

5.4 Extending The Proof Obligation Generator 56

5.5 Con�guration . 58

6 Tool Usage with Examples 59

6.1 Duelling Cowboys . 59

6.1.1 Formal Development in Event-B 60

6.2 Contention Resolution . 64

6.2.1 Event-B Model of the Contention Problem 64

7 Conclusions and Future Work 69

7.1 Conclusion . 69

7.2 Future Work . 70

7.2.1 Theoretical Work . 70

7.2.2 Tool Support . 71

7.2.3 Case Studies . 71

Bibliography

vii

List of Figures

2.1 Machine and Context . 4

4.1 Possible places and movements of tourists 30

4.2 Movements of the tourists in the initial model 35

5.1 Choosing probabilistic attribute 53

5.2 Relationship diagram of editor items 54

5.3 Specifying a bound . 54

6.1 Selecting probabilistic events 61

6.2 Specifying a variant and a bound 62

6.3 Generated proof obligations 62

6.4 BFN proof obligation . 62

6.5 BND proof obligation . 63

6.6 XSHOOT/PRV proof obligation 63

6.7 YSHOOT/PRV proof obligation 63

ix

6.8 Selecting probabilistic event 66

6.9 Generated proof obligations 67

6.10 BND proof obligation . 67

6.11 PRV proof obligation . 67

x

List of Tables

4.1 Summary of event convergence 47

4.2 Proof statistics . 49

5.1 Types of events . 52

xi

Chapter 1

Introduction

In some systems, termination cannot be guaranteed for certain. Instead a

slightly weaker property is mostly su�cient and appropriate: termination

with probability one. An example having a such property is when tossing a

fair coin, eventually heads will come up. In other words, the coin will turn up

heads with probability one. There are many applications in distributed sys-

tems of such a �coin �ip� and in particular for symmetry-breaking protocols

[9, 11].

This kind of qualitative probabilistic reasoning has been integrated into

Event-B [6]. Beside the standard non-deterministic actions in Event-B, a

new kind of actions is added, namely, probabilistic actions with the probabil-

ities for each possible alternative is neither 0 nor 1 (being �proper� [10]). Most

of the time, actions of this type behave identically to the non-deterministic

actions, except when reasoning about termination: they are interpreted an-

gelically (as opposed to demonically nondeterminism). The result is a prac-

tical method for handling qualitative reasoning with the modi�ed obligations

stayed in standard �rst-order logic of Event-B. The integration of qualitative

probabilistic reasoning into Event-B [6] gives the required proof obligations

to prove almost-certain termination of events. However, it does not mention

1

preserving qualitative reasoning in case of re�nement. In this thesis, we pro-

pose some restrictions on re�nement and an additional condition on variant

so that probabilistic termination property is preserved.

We continue the investigation further to realise a tool support for this ex-

tension to Event-B. Our extension for Rodin Platform provides specifying

probabilistic events and generates proof obligations accordingly for prov-

ing probabilistic termination of these events. Therefore, not only simple

algorithms but also non-trivial algorithms can be developed with the tool

support. In passing by, we formalise a non-trivial algorithm, namely, Ra-

bin's choice coordination [11]. The reasoning on probabilistic termination of

the algorithm is non-trivial, involving a lexicographic variant which need to

be carefully formalised and mechanically proved to have a great assurance

about the correctness of the algorithm. The case study acts as an illustration

for the scalability of the approach for reasoning qualitatively in Event-B: It

can be applied to more complex systems than just �coin tossing� examples.

Our development comprises of several re�nements and includes reasoning

about both standard and probabilistic terminations, and deadlock-freeness.

Our approach is to �rst establish the model of the system without any termi-

nation arguments, then having several re�nement layers dedicated to proving

convergence properties of events according to a lexicographic variant. Essen-

tially, with this way of development, our probabilistic termination arguments

are preserved with re�nement.

The thesis is structured as follows. In Chapter 2 we give a brief overview of

the Event-B modelling method, focusing on proofs of convergent and qualita-

tive reasoning. Furthermore, Chapter 3 discusses the termination in several

re�nement levels. Chapter 4 dedicates to the formalisation of Rabin's choice

coordination algorithm. We present our tool support in Chapter 5. In Chap-

ter 6 we give some other developments to show usage of the tool. Finally,

we draw some conclusions in Chapter 7.

2

Chapter 2

Background and Related Work

2.1 The Event-B Modelling Method

Event-B is a notation used for developing mathematical models of discrete

transition systems by re�nement. It has been developed from the B-method

[3]. Key features of Event-B are the use of set theory as a modelling notation,

the use of re�nement to represent systems at di�erent abstraction levels and

the use of mathematical proofs to verify consistency between re�nement

levels.

Event-B models are described in terms of two basic constructs: contexts and

machines. Contexts contain the static part of a model whereas machines

contain the dynamic part. Contexts and machines are presented in Sec-

tion 2.1.1. In addition, machine re�nement in Event-B allows us to build a

model gradually by making it more and more precise. Machine re�nement

is presented in Section 2.1.2.

3

2.1.1 Contexts and Machines

Machines may contain variables, invariants, events and variants, whereas

contexts may contain carrier sets, constants, and axioms. Machines and con-

Figure 2.1: Machine and Context

texts have distinct names. Machines and contexts have various relationships:

a machine can be re�ned by another one, and a context can be extended by

another one. Moreover, a machine can see one or several contexts.

In a context, sets list various carrier sets, which de�ne pairwise disjoint types.

Axioms de�ne the main properties of the constants. Axioms can be marked

as theorems denotes derived properties (to be proved) from previously de-

clared the axioms.

In a machine, variables v1 de�ne the state of machine. Invariants I(v) and
the variant V (v) state the properties of variables, where they are de�ned in

terms of sets and constants. Events de�ne the dynamics of the transition

system. Each event is composed of a guard G(t, v) and an action S(t, v)
where t are parameters the event may contain. An event can occur when

1From now on, variables v denotes a vector of variable

4

the necessary conditions stated in the guard satisfy. The action describes

how the state variables evolve when the event occurs. An event E1 with

parameters, an event E2 without parameters and an event E3 without guard

can be represented by the following form

E1

any t where

G(t, v)
then

S(t, v)
end

E2

when

G(v)
then

S(v)
end

E3

begin

S(v)
end

init is a special event that allows one to de�ne initial situation of model.

Therefore, init event has no guard, i.e. the form of E3.

The action of an event may be skip or composed of several assignments of

the form

x := E (t, v) (2.1)

x :∈ E (t, v) (2.2)

x :| Q
(
t, v, x′) , (2.3)

where x are some variables, E (t, v) expressions, Q (t, v, x′) predicate. Assig-
ment form 2.1 is deterministic which directly assigns E (t, v) to x. Assigment

form 2.2 is nondeterministic which assigns an element of set E (t, v) to x.

Form 2.3 is a generalized form of assignment, which assigns a value x′ satis-

fying a before-after predicate Q (t, v, x′) to x. Assignments in form 2.1 and

2.2 can be written in form 2.3.

A before-after predicate describes the relationship between the states before

and after an assignment has occured. We can represent the before values

by unprimed variable names x, whereas the after values can be represented

5

by primed variable names x′. Therefore, the before-after predicates of the

assignment forms 2.1 and 2.2 are x′ = E (t, v) and x′ ∈ E (t, v), respectively.
Q (t, v, x′) is the before-after predicate of the assignment form 2.3. Variables

y, that do not appear on the left-hand side of any assignment of an action

are not changed by the action. Formally, this is achieved by conjoining

Q (t, v, x′) with y′ = y. Hence, the before after predicate of the action

S(t, v) is Q (t, v, x′) ∧ y′ = y. In proof obligations, we represent the before-

after predicate of an action S(t, v) directly by the predicate S(t, v, v′).

Proof obligations serve to verify certain properties of a machine. All proof

obligations in this thesis are presented in the form of sequents: hypothesis

` goal. We assume that our model have some context, hence references to

constants, carrier sets and axioms are implicit, where hypothesis of all proof

obligations includes axioms de�ned in the context.

For each non-deterministic action, feasibility must be proved. By proving

feasibility, we achieve that S(t, v, v′) provides an after state whenever G(t, v)
holds.

I(v)
G(t, v)
`
∃v′ ·S(t, v, v′)

FIS

Invariants are supposed to hold whenever variable values change. The cor-

responding proof obligation is called invariant preservation.

6

I(v)
G(t, v)
S(t, v, v′)
`
I(v′)

INV

Similar proof obligations are associated with the initialisation event of a

machine. The only di�erence is that the invariant and guard do not ap-

pear in the hypothesis of the proof obligations for feasibility and invariant

establishment.

2.1.2 Machine Re�nement

Re�nement is a method for building models starting from the most abstract

one. In each re�nement level one can introduce new details and obtain more

concrete model. From a given abstract machine, a new concrete machine can

be built and asserted to be a re�nement of the abstract machine. The state

of the abstract machine is related to the state of the concrete machine by

a gluing invariant J(v, w), where v and w are the variables of the abstract

machine and the concrete machine, respectively.

Each event ea of the abstract machine is re�ned by one or more concrete

events ec. Let an abstract event ea and a concrete event ec be:

7

ea

any t where

G(t, v)
then

S(t, v)
end

ec

re�nes ea

any u where

H(u,w)
then

T (u,w)
end

Firstly, the concrete event must be feasible. Then, we can say that ec re�nes

ea if the guard of ec is stronger than the guard of ea (guard strengthening),

and the gluing invariants J(v, w) establish a simulation of ec by ea (simula-

tion).

I(v)
J(v, w)
H(u,w)
`
∃w′ ·T(u,w,w′)

FIS_REF

I(v)
J(v, w)
H(u,w)
T(u,w,w′)
`
∃t, v′ ·G(t, v) ∧ S(t, v, v′) ∧ J(v′, w′)

REF

The one-to-one correspondence between the abstract and concrete events can

be relaxed. When an abstract event ea is re�ned by more than one concrete

8

events ec, we say that the abstract event ea is split and prove that each

concrete ec is a valid re�nement of the abstract event. Conversely, several

abstract events ea can be re�ned by one concrete ec. We say that these

abstract events are merged together. A condition for merging events is that

all abstract events must have an identical action and this action will become

the action of the concrete event. Moreover, it is required that the guard of

the concrete event is stronger than the disjunction of the abstract guards.

2.2 Termination and Variant

2.2.1 Proving Termination with Loop Variant

A loop is a way of repeating a statement a number of times until some

condition no longer holds. An in�nite loop may be a desired behavior in some

cases. In the cases where termination of loop is desired, proving termination

becomes important. A loop variant is used to prove termination of a loop by

using well-founded relations. The use of well-founded relations for proving

that programs terminate has been suggested by Floyd [5].

De�nition 1. A well-founded relation is a binary relation ≺ on a set A such

that there are no in�nite descending chains ... ≺ ai ≺ ... ≺ a1 ≺ a0.

Note a well-founded relation is necessarily irre�exive i.e. for no a do we have

a ≺ a, as otherwise there would be the in�nite descending chains ... ≺ a ≺
... ≺ a ≺ a. In addition, a set equipped with a well-founded relation is said

to be a well-founded set.

De�nition 2. A loop variant is a mathematical function de�ned on the

state space of a computer program whose value is monotonically decreased

with respect to a well-founded relation by the iteration of a loop.

9

By the nature of the well-founded relation, the value cannot decrease indef-

initely, the loop certainly terminates.

An example of a well-founded relation is the usual order relation on N: any
decreasing sequence, such as 17, 15, 12, 10, 6, ... cannot go on strictly

decreasing forever, so it has to be stationary - e.g. it can go down to 0 and

stay there forever.

Let v be the variables in the following loop

while G(v) do S(v) end

G(v) is the the condition of the loop, where the iteration continues until

G(v) becomes false. S(v) is the body of loop where variables changed. Every
execution of the loop body replaces the value v by a new value v′. Therefore,

this loop terminates if

1. there is a variant function V from v to a well-founded set V (v),

2. the variant decreases with respect to well-founded relation on every

iteration of the loop i.e. V (v′) ≺ V (v).

2.2.2 Termination in Event-B

In Event-B, one can engage in proving convergence of any set of events.

Consider a set of event CEi, i ∈ 1, .., n. Proving that CEi converges is the

same as proving the following loop terminates.

while guard of some CEi hold do

Fire one such CEi event.

end

10

In Event-B, it may be proved that an event converges by proposing a variant

V and prove the following:

• The variant must be �nite if it is a set expression or an integer variant

must be natural number. Hence, the variant values produce a well-

founded order.

I(v)
J(v, w)
`
finite(V (w))

FIN

I(v)
J(v, w)
Hi(u,w)
`
V (w) ∈ N

NAT

FIN is proved once for a model where I and J are invariants of abstract

and conrete events respectively. On the other hand, NAT must be

proved for each convergent event CEi, where Hi(u,w) is the guard of

CEi.

• The convergent event CEi must decrease the numeric variant or narrow

the set variant in each iteration.

I(v)
J(v, w)
Hi(u,w)
Ti(u,w,w′)
`
V (w′) < V (w)

VAR

11

I(v)
J(v, w)
Hi(u,w)
Ti(u,w,w′)
`
V (w′) ⊂ V (w)

VAR

The convergence of an event may be proved in a later re�nement. In this

case the event is anticipated and we must prove that anticipated events do

not enlarge the variant by proving: V (w′) ≤ V (w) or V (w′) ⊆ V (w). In this

case a lexicographic variant is formed which will be explained in Chapter 3.

2.3 Almost-Certain Termination

2.3.1 Proving Almost-Certain Termination with Loop Vari-

ant

In probability theory, an event happens almost-certainly if it happens with

probability one. If an event certainly terminates, then every path in the

execution tree leads to termination. On the other hand, if there are some

in�nite paths, but the collective probability of the in�nite paths is zero, then

we say that this event almost-certainly terminates. For instance, if a coin is

�ipped often enough, then almost-certainly it will turn up heads. Although

there is an in�nite path which has no head, the probability of this in�nite

path is zero.

In Section 2.2.1, loop variant is used to prove termination of a loop. If

loop variant decreases at each iteration of a loop, then the loop certainly

terminates. It is proved in [10] that if a variant is bounded above and on

12

each iteration the variant decreases with at least �xed probability ε > 0, then
the loop almost-certainly terminates. Therefore, the probabilistic variant is

allowed to increase, but not above the upper bound.

For the same loop as de�ned in Section 2.2.1

while G(v) do S(v) end

the loop almost-certainly terminates if

• the variant function V from v to a well-founded set V (v) is bounded
above,

• the variant may (as in contrast to must) decrease with respect to well-

founded relation on every iteration of the loop i.e. ∃v′ · V (v′) ≺ V (v),

• there is �nite number of choices for v′ to guarantee probability of de-

crease ε > 0.

2.3.2 Almost-Certain Termination in Event-B

In [6], qualitative probabilistic reasoning was introduced into Event-B. The

purpose of qualitative probabilistic reasoning is to provide the concept of

almost-certain termination. According to this work, the action of an event

can be either probabilistic or non-deterministic (but not both). With respect

to most proof obligations, a probabilistic action is treated identically as a

nondeterministic action. However, it behaves angelically with respect to the

convergence proof obligations. We will say that an event is probabilistic, if it

almost-certainly terminates. It may be proved that an event almost-certainly

converges by proving:

13

• A constant upper boundB2 is required that dominates the probabilistic

numeric variant V (w).

I(v)
J(v, w)
`
V (w) ≤ B

BND

• A probabilistic event may decrease the probabilistic variant.

I(v)
J(v, w)
H(u,w)
`
∃w′ ·T(u,w,w′) ∧ V (w′) < V (w)

PRV

• Probabilistic action T(u,w,w′) has �nite number of possible choices

for w′.

I(v)
J(v, w)
H(u,w)
`
finite({w′ | T(u,w,w′)})

FINACT

In addition, the bound must be �nite if it is a set expression. It needs another

proof obligation BFN. Moreover, the proof obligation NAT or FIN is still

necessary to prove almost-certain termination.

2In general, this could be a non-decreasing function on the state.

14

I(v)
J(v, w)
`
finite(B)

BFN

15

Chapter 3

Termination with Re�nement

in Event-B

The use of re�nement to represent systems at di�erent abstraction levels is

a key feature of Event-B. In Chapter 2, necessary proof obligations to prove

termination of events in a machine is given. However, the convergence of

several events in di�erent abstraction levels must be formalised carefully. In

this chapter, we discuss the collective convergence of several events, where

they are convergent in di�erent re�nement levels using di�erent variants.

Section 3.1 brie�y explains the notion of lexicographic variant. In section

3.2, we construct a lexicographic variant for set of convergent events to prove

their collective convergence. In addition, we propose some restrictions on

re�nement and an additional condition on variant to preserve probabilistic

termination property in Section 3.3.

17

3.1 Lexicographic Variant

In Section 2.2.1, the de�nition of loop variant is given. It is used to prove ter-

mination with using well-founded relations. Sometimes standard variants are

inadequate for proving termination. Therefore, a layered variant is needed

for algorithms exhibiting several kinds of behaviour.

If ≺1 is a well-founded relation on a set S1 and ≺2 a well-founded relation

on a set S2, then their lexicographic combination ≺lex is de�ned by:

(x′, y′) ≺lex (x, y)⇔ (x′ ≺1 x) ∨ (x′ = x ∧ y′ ≺2 y).

This lexicographic combination ≺lex is a well-founded relation on the set

S1 × S2. More generally, lexicographic ordering can be de�ned on n-tuple

of sets. Lexicographic ordering can be used in proving termination since it

is well-founded. Lexicographic variant de�ned in [10] is n-tuple of variants

such that V = (V1,, Vn) decreases at each iteration of loop with respect

to lexicographic ordering.

3.2 Certain Termination with Re�nement

Let E1 and E2 are two events in an abstract machine.

E1

status convergent

any t where

G1(t, v)
then

S1(t, v)
end

E2

status anticipated

any t where

G2(t, v)
then

S2(t, v)
end

18

E1 is convergent event decreasing V1(v) with respect to a well-founded order

≺V1 on set V S = {V1(v) | I (v) ∧ ∃t ·G1 (t, v)} such that V1(v′) ≺V1 V1(v),
and E2 is anticipated event which does not increase V1(v).

In concrete machine we have two re�ned events RE1 and RE2.

RE1

re�nes E1
status convergent

any u where

H1(u,w)
then

T1(u,w)
end

RE2

re�nes E2
status convergent

any u where

H2(u,w)
then

T2(u,w)
end

RE2 is convergent and decreases V2(w) with respect to a well-founded order

≺V2 such that V2(w′) ≺V2 V2(w).

We know that both events converge seperately. We want to prove both RE1

and RE2 converge collectively. Hence, we need to genereate a lexicographic

variant LV (w) and a well-founded order to prove the convergence of concrete
model where both events decrease the same variant.

Since variables v changed in the concrete machine we need to restate a variant

and a well-founded order for RE1. We assume the variant as identity function

for simplicity.

De�nition 1. ≺w is an order such that

w′ ≺w w ⇔ (∀v · I(v)∧ J(v, w)⇒ (∃v′ · I(v′)∧ J(v′, w′)∧ V1(v′) ≺V1 V1(v)))

Lemma 1. ≺w is a well-founded order on set

WS = {w | (∃v · I (v) ∧ J (v, w)) ∧ (∃u ·H1 (u,w))}.

19

Proof. We will prove the lemma by contradiction. Assume ≺w is not a well-

founded order onWS. Hence, there must be an in�nite descending sequence

of elements. Let w0, w1, ∈WS such that wn+1 ≺w wn, ∀n ∈ N.

If we start from the �rst pair, w1 ≺w w0 ⇒ (∀v0 · I (v0) ∧ J (v0, w0) ⇒
∃v1 · I (v1) ∧ J (v1, w1) ∧ V1(v1) ≺V1 V1(v0)). Since w0 ∈ WS we know

∃v0 · I (v0)∧ J (v0, w0) from the de�nition of the set WS. Hence, for this v0

there exists v1 such that I (v1)∧J (v1, w1)∧V1(v1) ≺V1 V1(v0). Similarly, for

this v1 there exists v2 such that V1(v2) ≺V1 V1(v1). As a result, we obtain an

in�nite descending sequence of elements v0, v1, such that V1(vn+1) ≺V1

V1(vn),∀n ∈ N. Obtaining an in�nite descending chain is impossible if all

V1(vn) ∈ V S, because ≺V1 is a well-founded order on set V S. Therefore, we

can prove that all V1(vn) belong to V S by proving the following sequent:

I(vn), J(vn, wn),∃u ·H1(u,wn) ` I(vn) ∧ (∃t ·G1(t, vn))

I(vn)
J(vn, wn)
∃u ·H1(u,wn)
`
I(vn) ∧ (∃t ·G1(t, vn))

EXL

I(vn)
J(vn, wn)
H1(u,wn)
`
I(vn) ∧ (∃t ·G1(t, vn))

ANDR

1.

I(vn)
J(vn, wn)
H1(u,wn)
`
I(vn)

HYP

20

2.

I(vn)
J(vn, wn)
H1(u,wn)
`
∃t ·G1(t, vn)

CUT(∃t, v′
n ·G1(t, vn) ∧ S1(t, vn, v

′
n) ∧ J(v′

n, w
′
n))

2.1.

I(vn)
J(vn, wn)
H1(u,wn)
`
∃t, v′

n · (G1(t, vn) ∧ S1(t, vn, v
′
n)

∧J(v′
n, w

′
n))

CUT(∃w′
n ·T1(u,wn, w

′
n))

2.2.

I(vn)
J(vn, wn)
H1(u,wn)
∃t, v′ ·G1(t, vn) ∧ S1(t, vn, v

′
n) ∧ J(v′

n, w
′
n)

`
∃t ·G1(t, vn)

EXL,EXR,HYP

2.1.1.

I(vn)
J(vn, wn)
H1(u,wn)
`
∃w′

n ·T1(u,wn, w
′
n)

FIS_REF

21

2.1.2.

I(vn)
J(vn, wn)
H1(u,wn)
∃w′

n ·T1(u,wn, w
′
n)

`
∃t, v′

n ·G1(t, vn) ∧ S1(t, vn, v
′
n) ∧ J(v′

n, w
′
n)

EXL

I(vn)
J(vn, wn)
H1(u,wn)
T1(u,wn, w

′
n)

`
∃t, v′

n ·G1(t, vn) ∧ S1(t, vn, v
′
n) ∧ J(v′

n, w
′
n)

REF

Lemma 2. Concrete event RE1 decreases the newly established variant with

respect to well-founded order ≺w.

Proof. We must prove the following sequent:

I(v), J(v, w), H1(u,w),T1(u,w,w′) ` w′ ≺w w

With using the De�nition 1, we get:

22

I(v)
J(v, w)
H1(u,w)
T1(u,w,w′)
`
∀v · I (v) ∧ J (v, w)⇒
(∃v′ · I (v′) ∧ J (v′, w′) ∧ V1 (v′) ≺V1 V1 (v))

ALLR(v := x), IMPR

...

H1(u,w)
T1(u,w,w′)
I(x)
J(x,w)
`
∃v′ · (I (v′) ∧ J (v′, w′)
∧V1 (v′) ≺V1 V1 (x))

CUT(∃t, v′ ·G1 (t, x)∧S1 (t, x, v′)∧ J(v′, w′))

1.

...

H1(u,w)
T1(u,w,w′)
I(x)
J(x,w)
`
∃t, v′ ·G1 (t, x) ∧ S1 (t, x, v′) ∧ J(v′, w′)

REF

23

2.

...

H1(u,w)
T1(u,w,w′)
I(x)
J(x,w)
∃t, v′ ·G1 (t, x) ∧ S1 (t, x, v′) ∧ J(v′, w′)
`
∃v′ · I (v′) ∧ J (v′, w′) ∧ V1 (v′) ≺V1 V1 (x)

EXL,ANDL

...

I(x)
J(x,w)
G1 (t, x)
S1 (t, x, v′)
J(v′, w′)
`
∃v′ · I (v′) ∧ J (v′, w′) ∧ V1 (v′) ≺V1 V1 (x)

CUT(I(v′))

2.1.

...

I(x)
G1 (t, x)
S1 (t, x, v′)
`
I(v′)

INV

24

2.2.

...

I(x)
J(x,w)
G1 (t, x)
S1 (t, x, v′)
J(v′, w′)
I(v′)
`
∃v′ · (I (v′) ∧ J (v′, w′)
∧V1 (v′) ≺V1 V1 (x))

CUT(V1 (v′) ≺V1 V1 (x))

2.2.1.

...

I(x)
G1 (t, x)
S1 (t, x, v′)
`
V1 (v′) ≺V1 V1 (x)

VAR

2.2.2.

...

J(v′, w′)
I(v′)
V1 (v′) ≺V1 V1 (x)
`
∃v′ · I (v′) ∧ J (v′, w′) ∧ V1 (v′) ≺V1 V1 (x)

EXR

25

...

J(v′, w′)
I(v′)
V1 (v′) ≺V1 V1 (x)
`
I (v′) ∧ J (v′, w′) ∧ V1 (v′) ≺V1 V1 (x)

ANDR,HYP

We proved that concrete event RE1 decreases the newly established variant

(identity function). Similarly we can prove RE2 does not increase the newly

established variant. In addition, we know RE2 decreases V2(w). Therefore,
we can construct our lexicographic variant LV (w) = (id, V2(w)), where both
events decrease it. As a result, RE1 and RE2 converge collectively which

guarantees the termination of iteration.

3.3 Almost-Certain Termination with Re�nement

In Section 3.2, we proved the collective convergence of two convergent events

in the case of re�nement. However, one of the events may be probabilistic

and we must consider the re�nement of probabilistic event. To prove proba-

bilistic convergence of an event, one must prove that this event may decrease

the variant (PRV). Therefore, there exists a �good� choice for probabilistic

action decreasing the variant. However, probabilistic convergence argument

does not preserved by standard re�nement since a good choice for termi-

nation can be removed accidentally. Hence, we require that after proving

probabilistic convergence the probabilistic event must keep the good choice

in later re�nements. For this problem, we propose superposition re�nement

to preserve consistency of probabilistic events. Superposition re�nement is

26

a special case of re�nement when the event and variable system is kept in

the re�nement.

For the same events of Section 3.2

E1

any t where

G1(t, v)
then

S1(t, v)
end

E2

any t where

G2(t, v)
then

S2(t, v)
end

RE1

re�nes E1
any u where

H1(u, v)
then

T1(u, v)
end

RE2

re�nes E2
any u where

H2(u, v)
then

T2(u, v)
end

we do not need to restate a variant for the �rst event since variables v are kept

in the superposition re�nement. Therefore, V = (V1, V2) is the lexicographic
variant of the model.

We consider the case of collective convergence of two events where at least

one of them is probabilistic. Both events almost-certainly converges if the

lexicographic variant is bounded above and events decrease the variant with

at least �xed probability ε > 0. We know that both convergent and prob-

abilistic events decrease the variant with at least �xed probability ε > 0.
Hence, the only remaining condition is the upper bound for lexicographic

27

variant. Since the variants for probabilistic events are bounded above, it

must be guaranteed that all other variants are bounded above. Otherwise,

a probabilistic event may take the control and increase the lexicographic

variant forever.

As a result, we require that not only the variant concerning with the prob-

abilistic events, but all other variants need to be bounded above as well.

Furthermore, event splitting by having additional guards and event merging

preserve the probabilistic convergence proofs, because they must have an

identical action as mentioned in Section 2.1.2.

28

Chapter 4

Case Study: Rabin's Choice

Coordination

Rabin's Choice Coordination algorithm as explained in [11] is an example

of the use of probability for symmetry breaking. The Choice Coordinaton

is a problem that processes P1, ..., Pn must reach a common choice out of k

alternatives A1, ..., Ak. It does not matter which alternative will be chosen

at the end. The protocol uses k shared variables v1, ..., vk, one for each

alternative. A process Pj arriving at Ai can access and modify vi in one step

without any interruption from other processes. The algorithm proposed by

Rabin terminates with probability 1.

4.1 Description of the Problem and Algorithm

We will look at a simpli�ed version of the problem and the corresponding

algorithm as described by Morgan et. al. [10]. Instead of n processes and k

alternatives we have n tourists and 2 destinations (which we call LEFT and

29

RIGHT accordingly). We also distinguish the inside and outside for each

place.

ENV 1

Each tourist can be in one of the following

locations: inside-left, inside-right, outside-left,

outside-right.

The possible movements of the tourists can be seen in Figure 4.1.

Figure 4.1: Possible places and movements of tourists

Each tourist can move between the two outside locations, i.e. from outside-

left to outside-right and vice versa. Furthermore, a tourist can move from the

outside to the inside of the same place, e.g. from outside-left to inside-left.

ENV 2
A tourist can move between the two outside

locations.

30

ENV 3
A tourist can move from the outside to the inside of

the same place.

Other movements of the tourists are forbidden, in particular if a tourist

enters an inside place, he cannot change his place anymore.

ENV 4
A tourist in an inside place cannot change his

location.

The purpose of the algorithm is to have all tourists to reach a common

decision of entering the same place, without communicating directly with

each other.

FUN 5
Eventually, all tourists enter the same

place.

Rabin's Choice Coordination algorithm as described by Morgan et. al. in

[10] is as follows. Each tourist carries a notepad and he can write a number

on it. Moreover, there are two noticeboards on the outside-left and outside-

right.

ALG 6
Each tourist has a notepad which he can write a

number on it.

31

ALG 7
There are noticeboards at the outside-left and

outside-right.

In the beginning, number 0 is written on all tourist notepads and on the two

noticeboards. Initially, each tourist independently chooses LEFT or RIGHT

place and go to the outside location of that place (i.e. outside-left or outside-

right). Afterwards, a tourist at an outside location can alternate between

di�erent locations according the following algorithm.

ALG 8

• If there is any tourist inside, he enters this place.

• Otherwise, he compares the number n on his

notepad with the number N on the noticeboard.

� If N < n, the tourist goes inside.

� If N > n, the tourist replaces n with N

on his notepad and goes to the outside of

other place.

� If N = n, the tourist tosses a coin. If the

coin comes up head, the tourist sets N ′ to

N+2. Otherwise, he sets N ′ to conjugate1

of N + 2. Then, he writes N ′ on the no-

ticeboard and his notepad and goes to the

outside of the other place.

We formalise Morgan et. al.'s proof [10] accordingly in Event-B in the next

section.
1conjugate of a number n (denoted by n) is de�ned to be n + 1 if n is even and n− 1

if n is odd.

32

4.2 Formal Development

In this section, we present the formal development of Rabin's choice co-

ordination algorithm in Event-B2. Our proof method for reasoning about

probabilistic termination has several important features as follows.

• To prove that eventually all tourists will end up in the same place,

we follow the approach in [8] for reasoning about liveness properties,

with the correctness argument combining appropriate proofs of event

convergent (both standard and probabilistic) and deadlock-freeness.

• We �rst establish the full algorithm with several anticipated events,

before converting them to convergent, either standard or probabilistic.

The use of anticipated events is �rst hinted in [6].

• Finally, we rely on the fact that probabilistic convergence is preserved

during the re�nement. This holds for the type of re�nement that we

use after proving probabilistic convergence: We keep the variable and

event system the same, only splitting and merging of events are al-

lowed, with additional invariants added accordingly to prove the con-

vergent properties of events. By separating the proof of convergence

into several re�nement, we indeed produce a lexicographic variant for

all convergent events.

The details of re�nement strategy for our development is as follows.

Initial Model Introduce the tourists inside the left lin and inside the right

rin (Requirements ENV 3 and ENV 4).

Re�nement 1 Introduce the tourists outside the left lout and outside the

right rout (Requirements ENV 1 and ENV 2).

2The archive of the development can be found on-line [12].

33

Re�nement 2 Introduce the noticeboard on the left L and on the right

R and notepads for all tourists np (Requirements ALG 6, ALG 7).

Rabin's algorithm is introduced (ALG 8).

Re�nements 3�6 Complete the proofs of (probabilistic) convergence prop-

erties for events.

Re�nement 7 Proving deadlock-freeness theorem.

The main property FUN 5, i.e. all tourists eventually end up in the same

place, is a consequence of our convergence and deadlock-freeness theorems.

4.2.1 Initial Model. The Sets of Inside Tourists

We assume that there is a context with a �nite carrier set T representing

the set of tourists. In this initial model, we have two sets of tourists, namely

lin and rin, representing those at the inside-left and inside-right accordingly.

Note that invariant inv0_3 states that at least one of the two locations is

always empty. Initially, both variables are empty sets, since all tourists are

outside.

variables: lin, rin

invariants:

inv0_1: lin ⊆ T

inv0_2: rin ⊆ T

inv0_3: lin = ∅ ∨ rin = ∅

init

begin

lin := ∅
rin := ∅

end

We have two events L_IN and R_IN to model the situation when a tourist

enters the inside-left or inside-right accordingly (ENV 3). Moreover, there

are no leaving events: a tourist once inside cannot change his location (ENV

4).

34

L_IN

status convergent

any t where

rin = ∅
t /∈ lin

then

lin := lin ∪ {t}
end

R_IN

status convergent

any t where

lin = ∅
t /∈ rin

then

rin := rin ∪ {t}
end

variant: T \ (lin ∪ rin)

The two events are convergent, with the variant V0 representing the set of

tourists not inside the two places. Note that the variant V0 here is bounded

above by the set of tourists T which is �nite.

The movement of tourists at this level can be seen in Figure 4.2, as at the

moment, we do not distinguish the two outside locations.

Figure 4.2: Movements of the tourists in the initial model

Finally, we have one ordinary event, namely �nal. This is an observer event

(similar to what has been de�ned in [8]) in that sense that this does not

change the state of model, but to observe certain condition about the state

of the model. The observing condition is encoded as the guard of the events:

If the event is enabled, the condition is satis�ed. Here we are interested in

the fact that all tourists will end up in the same place. Note that according

to invariant inv0_3, if all tourists are in one place, the other place must be

empty.

35

�nal

when

rin = T ∨ lin = T

then

skip

end

Further re�nements keep event �nal unchanged and our goal is to prove that

eventually event �nal is enabled. At the end of the development, beside event

�nal we have a number of events e1, . . . , en. We will prove that all events

e1, . . . , en are convergent (standard or probabilistically). We must prove that

the event system containing e1, . . . , en and �nal are deadlock-free. According

to the convergent argument, all events e1, . . . , en will eventually converge, i.e.

these events will be disable. Together with the deadlock-freeness argument,

the only event that does not deadlock is �nal whose guard is >.

4.2.2 Re�nement 1. The Sets of Outside Tourists

There are two new variables lout and rout representing the tourists outside

the two places. Invariant inv1_1 states that a tourist cannot be at two

locations at the same time, and each tourist must be in one of the location3.

This corresponds to requirement ENV 1. Initially, some tourists decide to

go to the outside-left and some tourists to the outside-right.

variables: . . . , lout, rout
invariants:

inv1_1: partition(T, lin, rin, lout, rout)

3partion(S, s1, . . . , sn) means that subsets s1, . . . , sn together form a partition of S,
i.e. they are pairwise disjoint and having their union is S.

36

init

begin

. . .

lout, rout :| lout′ = T \ rout′

end

There are two new events namely L_2_R and R_2_L to model the move-

ment of a tourist between the two outside locations: from outside-left to

outside-right and vice versa. This corresponds to the requirement ENV 2.

L_2_R

status anticipated

any t where

t ∈ lout

lin = ∅
then

rout := rout ∪ {t}
lout := lout \ {t}

end

R_2_L

status anticipated

any t where

t ∈ rout

rin = ∅
then

lout := lout ∪ {t}
rout := rout \ {t}

end

The guards lin = ∅ and rin = ∅ state that the tourists can only alternate

between the outside locations if there is no one inside. This is a part of the

algorithm described by requirement ALG 8. The two new events only mod-

ify new variables rout, lout hence clearly re�ne skip. Moreover, invariant

inv1_1 is preserved since the events only change the location for one par-

ticular tourist from outside-left to outside-right and vice versa. These events

are anticipated at the moment, we will consider their convergence property

in subsequent re�nements.

Events L_IN and R_IN are re�ned accordingly to take into account the

new variables. Since the events corresponding to the LEFT -place and the

RIGHT -place are symmetric, from now on, we present only events corre-

sponding to the LEFT -place. The re�nement of event L_IN is as follows.

37

(abstract_)L_IN

any t where

rin = ∅
t /∈ lin

then

lin := lin ∪ {t}
end

(concrete_)L_IN

any t where

rin = ∅
t ∈ lout

then

lin, lout := lin ∪ {t}, lout \ {t}
end

Note that the guard strengthening proof obligation GRD follows from the

fact that a tourist can only be in one location at a time (invariant inv1_1).

The assigned expressions to old variable lin are the same in both abstract

and concrete events. Moreover, invariant inv1_1 is maintained since the

event merely moves a tourist from one location (outside-left) to another

(inside-left). The movement of the tourists is now complete as in Figure 4.1.

4.2.3 Re�nement 2. Rabin's Algorithm

We introduce the two noticeboards outside the places and the tourists'

notepads where they can write some number on it. Initially, number 0 is

written on the noticeboards and all the notepads. This corresponds to the

requirements ALG 6 and ALG 7.

variables: . . . ,L,R,np

38

invariants:

inv2_1: L ∈ N
inv2_2: R ∈ N
inv2_3: np ∈ T→ N
inv2_4: ∀x·x ∈ lout⇒ np(x) ≤ R

inv2_5: ∀x·x ∈ lin⇒ np(x) ≤ R

inv2_6: ∀x·x ∈ rout⇒ np(x) ≤ L

inv2_7: ∀x·x ∈ rin⇒ np(x) ≤ L

inv2_8: lin 6= ∅⇒ (∃x·x ∈ lin ∧ np(x) > L)

inv2_9: rin 6= ∅⇒ (∃x·x ∈ rin ∧ np(x) > R)

init

begin

. . .

L := 0

R := 0

np := T× {0}
end

Invariants inv2_4, inv2_5, inv2_6 and inv2_7 states that every tourist

at the LEFT -place (respectively RIGHT -place) carrying a number smaller

than or equal to the right-noticeboard (respectively left-noticeboard). Invari-

ants inv2_8 and inv2_9 states that if there is somebody at the inside-left

(respectively inside-right), there exist a tourist at the inside-left (respectively

inside-right) whose notepad is greater than L (respectively R). We will prove

these invariants are maintained by all events later on.

We can now specify under which condition a tourist can move from one

location to another. Events modelling the movement of a tourist from an

outside location to an inside location are guard-strengthened. The re�ne-

ment of event L_IN is as follows.

(abstract_)L_IN

any t where

rin = ∅
t ∈ lout

then

lin, lout := lin ∪ {t}, lout \ {t}
end

(concrete_)L_IN

any t where

t ∈ lout

L < np(t) ∨ lin 6= ∅
then

lin, lout := lin ∪ {t}, lout \ {t}
end

The guard L < np(t)∨ lin 6= ∅ states that a tourist t can move inside the left

place only if the number on his notepad is greater than the number on the

39

left-noticeboard or if there is already someone at inside-left. To prove guard

strengthening proof obligation (GRD), we must prove that the concrete

guard implies the abstract one. If lin 6= ∅, then from inv0_3 rin must be

empty. If L < np(t), from inv2_4 we obtain np(t) ≤ R. Hence, L < R. If

L < R, then rin must be empty. Otherwise using inv2_7 and inv2_9 we

obtain L > R which is a contradiction.

For events modelling the movement of a tourist between two outside loca-

tions, there are two di�erent cases. The events corresponding to the move-

ment of a tourist from the LEFT to RIGHT are modelled by two events

L_2_R_EQ and L_2_R_NEQ depending on if the number on the tourist

notepad is equal or strictly smaller than the number on the noticeboard.

Using n for the conjugate number of n, the two events are as follows.

L_2_R_NEQ

re�nes L_2_R

status anticipated

any t where

. . .

np(t) < L

then

. . .

np(t) := L

end

L_2_R_EQ

re�nes L_2_R

status anticipated

any t where

. . .

np(t) = L

then

. . .

L,np :| L′ ∈ {L + 2,L + 2} ∧ np′ = np C− {t 7→ L′}
end

The actions of the above events update the tourist notepad and the notice-

board accordingly. Note that both events are re�nements of the original

event L_2_R, i.e. the original event is split into two cases. Similar events,

used to model the movement of a tourist from RIGHT to LEFT , are omit-

ted here. Note that these events model the movement of a tourist according

to requirement ALG 8, with the exception that we use nondeterministic

choice at the moment in L_2_R_EQ. This is an abstraction of the ac-

tual probabilistic implementation (i.e. coin tossing), which we will introduce

when necessary.

40

Now, we can prove the correctness of the declared invariants.

invariants:

inv2_4: ∀x·x ∈ lout⇒ np(x) ≤ R

inv2_5: ∀x·x ∈ lin⇒ np(x) ≤ R

inv2_6: ∀x·x ∈ rout⇒ np(x) ≤ L

inv2_7: ∀x·x ∈ rin⇒ np(x) ≤ L

Initially, all invariants are correct, because the value on all notepads and

noticeboards is 0. L and R never decrease. Notepads can only increase in

L_2_R and R_2_L events. If a tourist moves from LEFT to RIGHT , he

writes L on his notepad which does not falsify the invariants. Similarly, a

movement form RIGHT to LEFT does not falsify the invariants. Therefore,

invariants hold forever.

invariants:

inv2_8: lin 6= ∅⇒ (∃x·x ∈ lin ∧ np(x) > L)
inv2_9: rin 6= ∅⇒ (∃x·x ∈ rin ∧ np(x) > R)

A tourist can enter a place if the value on his notepad is greater than no-

ticeboard or if there is anybody inside. Hence, when the �rst tourist enters

inside, it means that the value on his notepad is greater than noticeboard.

If we assume a tourist entered LEFT place, then L will never increase any-

more, because it increases only in L_2_R_EQ event and this event has a

guard plin = ∅ which is not correct anymore.

Up to this re�nement model we have modelled all the requirements except

for FUN 5. In other words, we have established the model of the problem

and the algorithm. Subsequent re�nements are dedicated to prove the main

property of the algorithm, i.e. eventually all tourists end up in the same

place.

41

4.2.4 Re�nements 3�6. Proving Convergence

Recall in the previous model, we have an ordinary event �nal, two conver-

gent events, namely L_IN and R_IN, and anticipated events L_2_R_NEQ,

L_2_R_EQ, R_2_L_NEQ and R_2_L_EQ. In this section, we describe

our proof of (probabilistic) convergence of the anticipated events. We for-

malise the variant that has been proposed in [10]. The variant is a lexico-

graphic one, with two layers: the outer layer (with higher priority) deals

with the changes of L and R, the inner layer (with lower priority) deals with

the tourists' movements. The components of the lexicographic variant will

be spread over several re�nement steps, thus help us to simplify the proof of

convergence.

Outer Layer

We compare the values of L and R and notice how they can be varied. In

order to understand the variant at this layer, we look at the de�nition of

conjugate numbers. We separate the set of natural numbers into pairs:

(0, 1) | (2, 3) | (4, 5) | (6, 7) | . . .

For each pair, a number is the conjugate of the other number in the pair

and vice versa (e.g. 4 = 5, 5 = 4). The even number of each pair is also

the minimum of the two (e.g. 4̃ = 5̃ = 4). We will refer to this splitting of

natural numbers later in our reasoning. We reason about the outer variant

in two re�nement steps.

Re�nement 3. We have the following invariants about the relationship

between L and R. Below, we use the notation ñ to denote the minimum of

n and its conjugate n.

42

invariants:

inv3_1: L̃− R̃ ∈ {−2, 0, 2}
inv3_2: L /∈ np[rout]

inv3_3: R /∈ np[lout]

Invariant inv3_2 (respectively inv3_3) states that there is no tourist at the

outside-right (respectively outside-left) carrying the number which is the con-

jugate of the number on the left-noticeboard (respectively right-noticeboard).

Invariant inv3_2 initially holds. It can be falsi�ed only when a tourist goes

from left to right or when L increases. When a tourist t goes from left to

right, he writes L on his notepad. Since np(t) = L 6= L, invariant still holds.

Then invariant can only be falsi�ed when L increases. When L increases, it

will be equal to L + 2 or L + 2. It is obvious that both values are greater

than L. From inv2_6, ∀x·x ∈ rout ⇒ np(x) ≤ L. Since all tourists at

outside-right cannot have a greater notepad value than L, we can say that

L /∈ np[rout] when L increases. Proof of inv3_3 is analogous.

Invariant inv3_1 states that the values of the two noticeboards cannot be

�too far apart�. Referring to the splitting of natural numbers into pairs, this

invariant states that L and R must be in a same pair or in two adjacent

pairs. It holds initially and can be falsi�ed when noticeboard values change

(i.e. L_2_R_EQ and R_2_L_EQ increase the noticeboard values). For

L_2_R_EQ, np(t) = L. From the invariant inv2_4, we obtain L ≤ R.

Hence, L̃ ≤ R̃. It means that L is in same pair with R or L is in lower

adjacent pair. When we increment L, L̃ − R̃ can be at most 2. Therefore,

invariant still holds. The proof is similar for R_2_L_EQ.

Note that when L̃ = R̃, i.e. they are in a same pair, there can be two

cases, either L = R or L = R (equivalently R = L). We can distinguish the

relationship between L and R in three di�erent cases: either L̃− R̃ ∈ {−2, 2}
or L = R or L = R. Our variant is based on this relationship.

43

Re�nement 4. For the outer variant, we �rst de�ne the following constant

function rE as follows

axioms:

rE_1: rE ∈ N× N 7→ {0, 1, 2}
rE_2: ∀l, r·l 7→ r ∈ dom(rE)⇔ l̃ − r̃ ∈ {−2, 0, 2}
rE_3: ∀l, r·l ∈ N ∧ l = r⇒ rE(l 7→ r) = 2

rE_4: ∀l, r·l ∈ N ∧ l = r⇒ rE(l 7→ r) = 0

rE_5: ∀l, r·l ∈ N ∧ l̃ − r̃ ∈ {−2, 2}⇒ rE(l 7→ r) = 1

and de�ne the variant V1 as rE(L 7→ R) with an upper bound of 2. We

reason about the variant V1 as follows. We split event L_2_R_EQ into

three di�erent cases, depending on the current value of rE(L 7→ R).

L_2_R_EQ_0

re�nes L_2_R_EQ

status convergent

any t where

t ∈ lout

lin = ∅
np(t) = L

rE(L 7→ R) = 0

then

. . .

end

L_2_R_EQ_1

re�nes L_2_R_EQ

status probabilistic

any t where

t ∈ lout

lin = ∅
np(t) = L

rE(L 7→ R) = 1

then

. . .

end

L_2_R_EQ_2

re�nes L_2_R_EQ

status convergent

any t where

t ∈ lout

lin = ∅
np(t) = L

rE(L 7→ R) = 2

then

. . .

end

We prove that L_2_R_EQ_0, L_2_R_EQ_2 are convergent, and L_2_R_

EQ_1 is probabilistically convergent whereas L_2_R_NEQ is anticipated

(which will be convergent with using the inner variant). The convergence

attribute for the events corresponding to the RIGHT are symmetric.

• First of all, we need to prove that the variant is bounded above (BND)

by the declared upper bound. It is trivial since by de�nition, rE(L 7→
R) ≤ 2.

44

• For L_2_R_EQ_0, this corresponds to the case that never happens,

since we have rE(L 7→ R) = 0, i.e. L = R, hence np(t) = R. However,

since t ∈ lout and according to invariant inv3_3, we have R /∈ np[lout]
which is a contradiction. In other words, the guard of L_2_R_EQ_0
can be used to derive ⊥. Hence, anything can be proved under the

assumption of the guard of this events, including convergence proof.

• For L_2_R_EQ_2, we have rE(L 7→ R) = 2, i.e. L = R. The action

will change L to either L+ 2 or L + 2, and keep R the same, hence the

new value L′ will be di�erent from R′, hence rE(L′ 7→ R′) 6= 2 which is

less than rE(L 7→ R). As a result, the variant V1 is decreased, hence

the event satis�es VAR.

• For L_2_R_NEQ, it does not change the value of L or R, hence the

value of V1 stays the same, i.e. non-increasing.

• For L_2_R_EQ_1, �rstly we have that the possible alternatives of the
after states are �nite (2 in this case) hence the event satis�es FINACT.
Secondly, we prove that the event may decrease the variant V1, i.e.

satis�es PRV. The actual proof obligation (with some simpli�cations

by removing unnecessary hypotheses) is as follows.

rE(L 7→ R) = 1

∀x·x ∈ lout⇒ np(x) ≤ R

t ∈ lout

np(t) = L

`
∃L′,np′ ·L′ ∈ {L + 2,L + 2} ∧ np′ = np C− {t 7→ L′}∧
rE(L′ 7→ R) < rE(L 7→ R)

We know that L̃ − R̃ ∈ {−2, 2} from rE(L 7→ R) = 1. In particular,

from invariant inv2_4, i.e. ∀x·x ∈ lout ⇒ np(x) ≤ R, and from

event's guards t ∈ lout and np(t) = L, we have that L ≤ R hence

L̃− R̃ must be −2. Referring to the splitting of natural numbers into

pairs, when we have L̃ − R̃ = −2, it means that L is in one pair and

45

R is in the next higher adjacent pair, for example, if L is either 2 or

3 then R is either 4 or 5. The meaning of the action assigning L′ to

either L + 2 or L + 2 is to have L′ to be in the same pair as R, hence

one of the alternative will satisfy condition L′ = R. For this case,

rE(L′ 7→ R) = 0 < 1 = rE(L 7→ R). As a result, we have proved that

L_2_R_EQ_1 may decrease the variant V1.

Inner Layer

The variant for the inner layer is used to prove the convergence property

of events L_2_R_NEQ and R_2_L_NEQ. This is done in two re�nement

steps. The variants that we used are simpler than the variants that has been

proposed in [10], because Event-B allows to use set expressions as variant.

Re�nement 5. We prove that L_2_R_NEQ converges and R_2_L_NEQ

is anticipated with the variant V2 de�ned to be {t | np(t) < L}, i.e. the set
of tourists carrying a number on strictly smaller than the left-noticeboard.

Event L_2_R_NEQ changes the value of a tourist notepad from strictly less

to equal to L hence it decreases V2. Event R_2_L_NEQ increase the value

of a tourist notepad, hence it cannot increase V2.

Re�nement 6. In the second step, we prove that R_2_L_NEQ converges

with a symmetric variant V3 to be {t | np(t) < R} following similar reasoning

as above.

Note that both variant V2 and V3 are bounded above by the �nite set of

tourists T.

Summary

The summary of convergence property for events according to each re�ne-

ment is in Table 4.1 (we skip the re�nement level where nothing change

46

to the convergence property). In the initial model we have two conver-

gent events L_IN and R_IN. In re�nement 1, we introduced two antici-

pated events L_2_R and R_2_L. As a result of splitting these two an-

ticipated events, we obtained four anticipated events (i.e. L_2_R_EQ,

L_2_R_NEQ, R_2_L_EQ and R_2_L_NEQ) in second re�nement. In

third re�nement, only some additional invariants are introduced. In re-

�nement 4, we proved the (probabilistic) convergence of L_2_R_EQ and

R_2_L_EQ events by splitting events. In the �fth and sixth re�nements,

convergence of L_2_R_NEQ and R_2_L_NEQ events are proved respec-

tively.

L_IN R_IN L_2_R R_2_L

I.M. conv. conv. � �

R.1 conv. conv. anticipated anticipated

L_IN R_IN EQ_0 EQ_1 EQ_2 NEQ EQ_0 EQ_1 EQ_2 NEQ

R.4 conv. conv. conv. prob. conv. anti. conv. prob. conv. anti.

R.5 conv. conv. conv. prob. conv. conv. conv. prob. conv. anti.

R.6 conv. conv. conv. prob. conv. conv. conv. prob. conv. conv.

Table 4.1: Summary of event convergence

At the end, V = (V0, V1, V2, V3) is the lexicographic variant of the model

with an upper bound U = (T, 2,T,T). All events except �nal decrease the

lexicographic variant V with at least �xed probability ε > 0. Therefore, the
set of convergent events (standard and probabilistic) will almost-certainly

terminate.

4.2.5 Re�nement 7. Deadlock-freeness

In this �nal re�nement, we merge the events that have been split earlier

together, i.e. L_2_R_EQ and R_2_L_EQ. Combining the convergent at-

tribute of the sub-events, we have now that these two events are probabilis-

tic convergent. We add a theorem to prove that our system at this point is

deadlock-free, i.e. the disjunction of all guards always holds.

47

(rin = T ∨ lin = T)

∨ (∃t·t ∈ lout ∧ (L < np(t) ∨ lin 6= ∅))

∨ (∃t·t ∈ rout ∧ (R < np(t) ∨ rin 6= ∅))

∨ (∃t·t ∈ lout ∧ lin = ∅ ∧ np(t) = L)

∨ (∃t·t ∈ lout ∧ lin = ∅ ∧ np(t) < L)

∨ (∃t·t ∈ rout ∧ rin = ∅ ∧ np(t) = R)

∨ (∃t·t ∈ rout ∧ rin = ∅ ∧ np(t) < R)

The proof of deadlock-freeness can be completed by contradiction. If the

�rst guard is false, then there must be a tourist outside. Let ∃t·t ∈ lout

(symmetric with rout), then one of the guards of L_IN, L_2_R_NEQ and

L_2_R_EQ must be true. If the the guard of L_IN is false, then we obtain

L ≥ np(t) ∧ lin = ∅. Therefore, one of the guards of L_2_R_NEQ and

L_2_R_EQ must be true.

Together with the proof of convergence earlier, we can now ensure that our

system satis�es requirement FUN 5. Our reasoning is based on the approach

in [8] and is as follows. At the last model, we have the following events: Event

�nal which is ordinary, events L_IN, R_IN, L_2_R_NEQ, R_2_L_NEQ

which are convergent and events L_2_R_EQ and R_2_L_EQ which are

probabilistically convergent. Because of the convergence proof, we ensure

that together the set of convergent events (standard and probabilistic) will

terminate (being disabled) with probability 1. Moreover, because of the

deadlock-freeness proof, when the convergent events are disabled, event �nal

is the only one left, and must be enabled, i.e. all tourists are in the same

place.

4.2.6 Proof Statistics

The statistics for our proofs is in Table 4.2. A large number of manual proofs

is in models for proving the outer variant and in the second re�nement, since

we need several additional supporting invariants. In particular, in order

to prove obligations related to the outer variant, we decided to split the

48

events L_2_R_EQ and R_2_L_EQ into di�erent cases. As a result, we

have more proof obligations, which are simpler to prove. As an alternative,

we can do the split while proving, i.e. to do proof by cases, without splitting

the events. This will reduce the number of proof obligations, however, it

hides the termination argument inside the proofs and they become more

complicated. Our development is more intuitive, with the correctness being

easier to observe by splitting the events accordingly.

Model Total Auto. (%) Man. (%)

Initial model 6 6 (100%) 0 (N/A)
1st Re�nement 8 7 (88%) 1 (12%)
2nd Re�nement 63 49 (78%) 14 (22%)
Outer variant 54 29 (54%) 25 (46%)
Inner variant 11 8 (73%) 3 (27%)
Deadlock-freeness 4 0 (N/A) 4 (100%)

Total 146 99 (68%) 47 (32%)

Table 4.2: Proof statistics

49

Chapter 5

Tool Support

The Rodin tool [4] is an industrial-strength tool for creating and analyzing

Event-B models. It is an Eclipse-based IDE and extensible with plugins.

Therefore, it can be adapted easily to di�erent application domains and

development methods.

The Rodin tool chain consists of three major components: the static checker

(SC), the proof obligation generator (POG), and the proof obligation man-

ager (POM). The static checker analyses Event-B contexts and machines and

provides feedback to users about syntactical and typing errors in them. The

proof obligation generator generates proof obligations many of which have

been outlined in Chapter 2. The proof obligation manager maintains the

proof status and the proofs associated with the obligations.

For tool support, we introduced the notion of probabilistic event in Section

5.1. In addition, we created bound element mentioned in Section 5.2 to

check if the variant is bounded above for probabilistic events. Section 5.3

and Section 5.4 dedicate to extention of the SC and the POG, respectively.1

Section 5.5 explains activating SC and POG extensions.

1Detailed information for extending Rodin Platform can be found in [1]

51

5.1 Introducing Probabilistic Events

The convergence of an event in Event-B is denoted by the keyword status

with three possible values: convergent, anticipated, and ordinary. To inte-

grate qualitative probabilistic reasoning into Event-B, we introduced a new

type of event called probabilistic in Section 2.3.2. A probabilistic event is

only treated di�erently from standard event when it comes to convergence

proof obligation.

There are di�erent ways to extend Rodin Database. Rodin Database in-

cludes elements (e.g. event, variant) and attributes related to elements (e.g.

convergence attribute of events). To introduce probabilistic event we added

an attribute called probabilistic. org.rodinp.core.attributeTypes is the

extension point to declare a new attribute. The value of this attribute is

either probabilistic or standard. According to its convergence value and its

probabilistic value the status of an event can have four possible values: con-

vergent, probabilistic, anticipated and ordinary. Table 5.1 shows the status

of an event with all possible convergence and probabilistic values.

Prob. Attr. / Conv. Attr. Ordinary Anticipated Convergent

Standard Ordinary Anticipated Convergent
Probabilistic Warning Warning Probabilistic

Table 5.1: Types of events

The structure editor is also needed to be extended for displaying and edit-

ing the probabilistic attribute by users. org.eventb.ui.editorItems is

the extension point for adding a new choice attribute for probabilistic at-

tribute. In addition, our new probabilistic attribute must be related with

an element. Hence, an attribute relation created between the Event ele-

ment (org.eventb.core.event) and probabilistic attribute. As a result,

each event has probabilistic attribute which can be chosen probabilistic or

standard from the editor (Figure 5.1).

52

Figure 5.1: Choosing probabilistic attribute

5.2 Bound Element

As mentioned earlier, the variant must be bounded above to prove almost-

certain termination. Therefore, we need to add a new internal element called

bound from the extension point org.rodinp.core.internalElementTypes.

Editing and displaying the bound element requires an extension of structure

editor, where org.eventb.ui.editorItems is the related extension point.

Firstly, we added an editor element for bound connected with newly de�ned

internal element. The bound can be a natural number or set to be consistent

with the variant. Hence, we have not created a new attribute for bound. We

used a text attribute called expression (org.eventb.ui.expression) which

is a prede�ned attribute for variant. An attribute relation created between

the bound element and expression attribute. Finally, the bound element

must be connected with machines. Therefore, a child relation created be-

tween the machine �le (org.eventb.core.machineFile) and the bound ele-

ment, where bound is a child of machine. The relationhip diagram for created

child relations and attribute relations can be seen in Figure 5.2. Therefore,

the bound element can be speci�ed using structure editor (Figure 5.3).

5.3 Extending The Static Checker

As mentioned before, the SC analyses Event-B contexts and machines and

provides feedback to users about syntactical and typing errors in them. Our

53

Figure 5.2: Relationship diagram of editor items

Figure 5.3: Specifying a bound

54

additions to the Rodin Database are probabilistic attribute and bound el-

ement. Hence, they must be checked statically and syntactical and typing

errors must be reported to user.

Firstly, new internal element called SC Bound is added using the extension

org.rodinp.core.internalElementTypes. SC bound is a bound that has

been statically checked and ready to use in proof obligations.

Secondly, Bound Information is added as a SC state. The static check

of the elements in a �le are independent of each other (di�erent and in-

dependent modules). Since the element checks are independent, the solu-

tion is to share data through states implemented using the extension point

org.eventb.core.scStateTypes. Therefore, we can use the added state in

the SC modules.

At this point, we can check the probabilistic attribute and bound element

using SC modules. There are three types of modules: �lter, processor, and

root. org.eventb.core.scModuleTypes is the extension point for adding a

module. We used a �lter and a processor in our tool support. Filters are used

to validate inserted elements. After the successful validation of all elements,

they can be processed and stored in the statically-checked �le. Processors

literally process the elements, storing them in the static checked �le, running

sub-processors and adding states to the repository if required.

In the �lter, the following conditions are checked for probabilistic events:

• Ordinary and anticipated events cannot be probabilistic. SC gives a

warning and assumes ordinary or anticipated, respectively.

• There must be a bound if there is a probabilistic event and a variant

in machine. Otherwise, SC gives an error.

• If abstract event is probabilistic, the concrete one must be probabilistic.

Otherwise, SC gives an error.

55

• Probabilistic event can re�ne a probabilistic event or an anticipated

event. Otherwise, SC gives an error.

• The result of merging a probabilistic event and a convergent event is a

probabilistic event. Otherwise, SC gives an error.

• Each event must have a probabilistic attribute value. Otherwise, SC

gives a warning and assumes standard.

In the processor, the following conditions are checked for bound:

• The bound must be of the same typed (i.e. integer or set) as the

declared variant. In addition, it must be constant if it is an integer.

Otherwise, SC gives an error.

• The bound is unnecessary if there is no probabilistic event or no variant.

Otherwise, SC gives a warning.

• There cannot be more than one bound. Otherwise, SC gives an error.

• The bound must be well-formed (e.g. it cannot include an undeclared

identi�er). Well-formedness is de�ned in terms of the syntax of the

mathematical language, dependencies between modelling elements, and

type-correctness of all formulas and declared identi�ers. Otherwise, SC

gives an error.

5.4 Extending The Proof Obligation Generator

The function of the POG in the Rodin tool chain is to generate proof obliga-

tions with using the output of the SC. The POG does not check the output

of the SC which are well-formed elements. In Section 2.3.2, necessary proof

obligations to integrate qualitative probabilistic reasoning into Event-B are

given. We extended the POG in accordance with required proof obligations.

56

Firstly, Machine Bound Information is added as a POG state. The pur-

pose of using POG state is similar with SC state mentioned in Section 5.3.

org.eventb.core.pogStateTypes is the related extension point.

Secondly, we added 3 POG modules to generate necessary proof obligations.

org.eventb.core.pogModuleTypes is the extension point for adding a POG

module. Following proof obligations are generated by newly created POG

modules:

• First module generates the BWD and BFN proof obligations. BWD

is the proof obligation for well-de�nedness of the bound. BFN is

generated in a machine to prove �niteness of the bound if it is a set.

I(v)
J(v, w)
`
finite(B)

BFN

• Second module generates theBND proof obligation if there is a bound,

variant and a probabilistic event. BND is the proof obligation to prove

that the bound dominates the variant.

I(v)
J(v, w)
`
V (w) ≤ B

BND

• Third module generates the VAR if the event is convergent or antici-

pated. If the event is probabilistic, the module generates PRV. In the

VAR, event must decrease (or not increase if the event is anticipated)

the variant, whereas it may decrease the variant in the PRV.

57

I(v)
J(v, w)
H(u,w)
T(u,w,w′)
`
V (w′) < V (w)

VAR

I(v)
J(v, w)
H(u,w)
`
∃w′ ·T(u,w,w′) ∧ V (w′) < V (w)

PRV

5.5 Con�guration

The con�guration is used to de�ne which modules are used by the SC and

POG. Each Event-B component has a con�guration and the standard con�g-

uration is org.eventb.core.fwd. In our con�guration we added all SC and

POG modules in the standard con�guration except the POG module produc-

ing VAR, because our third POG module produces this proof obligation. In

addition, we added the SC and POG modules which we created. The exten-

sion point is org.eventb.core.configurations for adding a module into

con�guration. As a result, to use our tool, one must change the standard

con�guration (org.eventb.core.fwd) into our probabilistic con�guration

namely ch.ethz.eventb.quantprob.probconf.

58

Chapter 6

Tool Usage with Examples

In this chapter, we consider two example algorithms which terminate almost-

certainly. We developed these algorithms in Rodin platform and proved their

almost-certain convergence with our tool. The �rst example is duelling cow-

boys explained in section 6.1. We give the development of simple contention

resolution algorithm for Firewire protocol in section 6.2.

6.1 Duelling Cowboys

The description of the problem previously de�ned in [7, Chapter 6] is as

follows. There are two cowboys X and Y �ghting a duel. They take turns to

shoot at each other. In each shoot, the probability for hitting the opponent

is neither 0 nor 1. Therefore, almost-certainly one cowboy will die and the

duel will be completed.

59

6.1.1 Formal Development in Event-B

Firstly, to use our tool we changed the standard con�guration into proba-

bilistic con�guration in context and machines with using a text editor. The

context of the model includes the de�nition of cowboys as follows.

carrier sets: COWBOY constants: X, Y

axioms:

partition(COWBOY, {X} , {Y })

In the initial model we have the set of alive cowboys S. Initially both of

them are alive.

variables: S

invariants:

inv1 S ⊆ COWBOY

inv2 S 6= ∅
DLF S = {X, Y } ∨ (S = {X} ∨ S = {Y })

init

begin

S := {X, Y }
end

We have two events XSHOOT and YSHOOT for cowboys to shoot at each

other. Each cowboy has two possibilities: hit or miss. Furthermore, we have

an observer event FINAL (similar event to �nal in Section 4.2.1) to observe

certain condition about the state of the model, where we are interested in

the fact that only one cowboy survives.

60

XSHOOT

status probabilistic

when

S = {X, Y }
then

S :| S′ = {X, Y } ∨ S′ = {X}
end

YSHOOT

status probabilistic

when

S = {X, Y }
then

S :| S′ = {X, Y } ∨ S′ = {Y }
end

FINAL

when

S = {X} ∨ S = {Y }
then

skip

end

The proof of inv2 and deadlock-freeness DLF are straight-forward. We

want to prove that shooting events almost-certainly terminate. Therefore,

we select them as probabilistic with using tool (Figure 6.1). In addition we

must specify a variant and a bound (Figure 6.2).

Figure 6.1: Selecting probabilistic events

variant: S bound: {X, Y }

As a result, necessary proof obligations are generated by POG (Figure 6.3).

WithBFN (Figure 6.4) we prove the �niteness of the bound which is obvious.

61

Figure 6.2: Specifying a variant and a bound

Figure 6.3: Generated proof obligations

Figure 6.4: BFN proof obligation

62

BND proof obligation (Figure 6.5) states that the bound dominates the

variant. It is correct since no event enlarges the set S.

Figure 6.5: BND proof obligation

Finally, with PRV proof obligations (Figure 6.6 and 6.7) we prove that prob-

abilistic events may decrease the variant. For XSHOOT/PRV, if we select

S′ = {X}, then S′ = {X} ⊂ {X,Y } = S. Similarly, for YSHOOT/PRV

we can instantiate S′ with {Y }. Therefore, one of the two alternatives (i.e.

hitting the opponent) decreases the variant and events almost-certainly ter-

minate.

Figure 6.6: XSHOOT/PRV proof obligation

Figure 6.7: YSHOOT/PRV proof obligation

63

As a result, since the model is deadlock-free and shooting events almost-

certainly converge, FINAL event will be enabled with probability 1.

6.2 Contention Resolution

The contention problem in the Firewire tree identify protocol [2] is one ex-

ample of a use of probability to break the symmetry. We do not deal with

the full model but focus only on the contention problem that is explained in

[6]. We developed the same model as described in [6].

6.2.1 Event-B Model of the Contention Problem

We de�ne a carrier set WAIT containing the two constants: short and long.

carrier sets: WAIT constants: short, long

axioms:

partition(WAIT, {short} , {long})

In initial model, two variables x and y represent the state of the two nodes

in the contention: either sending the message in a short or long delay.

variables: x, y

invariants:

x ∈WAIT

y ∈WAIT

init

begin

x :∈WAIT

y :∈WAIT

end

64

There is only one event which resolves the contention (in one-shot) by as-

signing di�erent values to x and y. This only speci�es that the problem is to

be resolved but not how.

(abstract_)resolve

when

x = y

then

x, y :| x′ ∈WAIT ∧ y′ ∈WAIT ∧ x′ 6= y′

end

We re�ne the abstract model, introducing two new variables, namely u and

v. They represent the intermediate states of the two nodes during contention

resolution.

variables: x, y, u, v

invariants:

u ∈WAIT

v ∈WAIT

init

begin

u :∈WAIT

v :∈WAIT

end

A new event draw models (probabilistically) the e�ect of randomly choosing

for both the two nodes either sending messages after a long or a short delay.

The new event is enabled when the values of u and v are the same.

Event resolve has an additional guard u 6= v indicating that two di�erent

delay times u and v have been successfully drawn. In this case, x and y will

be assigned to u and v, respectively, and the contention is resolved.

65

draw

status probabilistic

when

u = v

then

u :∈WAIT

v :∈WAIT

end

(concrete_)resolve

when

u 6= v

x = y

then

x := u

y := v

end

We want to prove that the new event draw does not take the control of the

system forever. To prove almost-certain termination of the event, we select

the event as probabilistic (Figure 6.8). We de�ne a constant r to constitute

a variant as follows:

axioms:

axm_1: r ∈WAIT ×WAIT −→ {0, 1}
axm_2: ∀x, y ·x ∈WAIT ∧ y ∈WAIT ∧ x = y⇒ r(x 7→ y) = 1

axm_3: ∀x, y ·x ∈WAIT ∧ y ∈WAIT ∧ x 6= y⇒ r(x 7→ y) = 0

Figure 6.8: Selecting probabilistic event

r(x 7→ y) is de�ned to have value 1 if x = y and 0 otherwise. After specifying

the variant and the bound, generated proof obligations can be seen in Figure

6.9.

variant: r(u 7→ v) bound: 1

66

Figure 6.9: Generated proof obligations

Proof obligation BND (Figure 6.10) is obvious from the de�nition of r.

Moreover, PRV (Figure 6.11) is obvious since two of the four alternatives

(i.e. distinct u' and v' values) decrease the variant (e.g. u′ = short and

v′ = long ⇒ r(u′ 7→ v′) = 0 < 1 = r(u 7→ v)). Therefore, the new event

draw will terminate with probability 1 and the event resolve will be enabled.

Figure 6.10: BND proof obligation

Figure 6.11: PRV proof obligation

67

Chapter 7

Conclusions and Future Work

7.1 Conclusion

In conclusion, integrating qualitative probabilistic reasoning into Event-B

[6] provides to prove almost-certain termination with very little cost of extra

proof e�ort. The method preserves the simplicity of Event-B proof obliga-

tions only requiring a modest extension to existing proof obligations. There-

fore, we have extended the Rodin Platform to support almost-certain termi-

nation with proposing some restrictions and conditions based on re�nement.

Secondly, we have presented a development of Rabin's choice coordination

algorithm [11] in Event-B with extensions for reasoning about termination

with probability one [6]. In particular, we have formalised the lexicographical

variant as presented in [10]. The example of Rabin's choice coordination is

also used in [7, Chapter 3] as an illustrative example for reasoning about

almost-certain termination using classical B. The main di�erence between

the two developments is that in classical B, one ends up with a sequential

program which is a model of the algorithm. Our development in Event-B

gives us a model of a fully distributed system. Furthermore, the formalisation

69

of lexicographic variants suited better for Event-B since in classical B, one

can only have a single natural number variant. As a result, the lexicographic

variant has to be encoded (unnaturally) into a natural number variant, which

leads to more complicated proofs.

Moreover, we used the technique of splitting/merging the events to avoid

having complicated proofs. We have presented the rule for establishing con-

vergence value of merged events. The rule relies on the fact that convergence

arguments (both standard and probabilistic) are preserved by re�nement.

However, a necessary condition for event merging is that all sub-events must

have the same actions, which will be the action of the merged event. This

type of re�nement will preserve the probabilistic reasoning earlier since there

are all possible alternatives from the abstraction retained by the re�nement,

including the choice for termination.

7.2 Future Work

7.2.1 Theoretical Work

When we developed our tool and Rabin's choice coordination algorithm, we

only use superposition re�nement, in particular, when dealing with conver-

gence proofs, we merely keep the models the same, and the various re�ne-

ments are there to accommodate the lexicographic variant. For this reason,

i.e. having the same model through out, our reasoning about probabilistic

termination is preserved. However, in general, standard re�nement does not

preserve this type of reasoning: A valid standard re�nement can accidentally

remove the choice that lead to possible termination. The argument becomes

more complicated with data re�nement, i.e. when one replaces some abstract

variables by some new concrete variables. Additional proof obligation(s) will

be needed to guarantee that our reasoning at the abstract level about prob-

abilistic convergence remains valid at the concrete level. We regard this as

possible future work.

70

7.2.2 Tool Support

We extended the Rodin Platform for supporting the generation of appropri-

ate proof obligations concerning with qualitative reasoning. However, the

generation of FINACT proof obligation is not possible in current tool. In

the near future, we will add this proof obligation into our tool with creating

another POG module.

When using the tool, new Event-B components (i.e. machines and contexts)

are created with the standard con�guration (org.eventb.core.fwd). One

has to change con�guration manually with using text editor to use our static

checker and proof obligation generator extensions. With a future work, it

may be possible to choose con�guration when creating new project. Fur-

thermore, in Pretty Print view of machines the status of an event can be

seen. However, the status of probabilistic events are convergent in current

tool support. It may be changed to probabilistic with a future work. In

addition bound may also be added into Pretty Print view.

7.2.3 Case Studies

Rabin's Choice Coordination

We developed a simpli�ed version of the algorithm described by Morgan et.

al. [10] which has n tourists and 2 alternatives. The original version of the

algorithm with n tourists and k alternatives can be developed in the future.

However, proving convergence of the original version is more complicated,

because it necessitates to build generalized invariants and variants.

71

Other examples

Using our new developed tool support, we have modelled other examples for

proving termination including contention resolution [6] and duelling cowboys

[7, Chapter 6]. In the near future, we will try to integrate the reasoning

about contention resolution with the development of Firewire protocol [2].

72

Bibliography

[1] Rodin Developer Support. http://wiki.event-b.org/index.php/

Rodin_Developer_Support.

[2] J-R. Abrial, D. Cansell, and D. Méry. A mechanically proved and in-

cremental development of ieee 1394 tree identify protocol. Formal Asp.

Comput., 14(3):215�227, 2003.

[3] Jean-Raymond Abrial. The B-Book: Assigning Programs to Meanings.

Cambridge University Press, 1996.

[4] Jean-Raymond Abrial, Michael Butler, Stefan Hallerstede, Thai Son

Hoang, Farhad Mehta, and Laurent Voisin. RODIN: An open toolset for

modelling and reasoning in Event-B. Internation Journal on Software

Tools for Technology Transfer (STTT), apr 2010.

[5] Robert W. Floyd. Assigning meanings to programs. In Proceedings of

the Symposium on Applied Math., volume 19, pages 19�32. American

Mathematical Society, 1967.

[6] S. Hallerstede and T.S. Hoang. Qualitative Probabilistic Modelling in

Event-B. In Jim David and Jeremy Gibbons, editors, IFM 2007: Inte-

grated Formal Methods, Proceedings of the 6th International Conference,

volume 4591 of LNCS, pages 293�312, Oxford, U.K., jul 2007. Springer

Verlag.

73

http://wiki.event-b.org/index.php/Rodin_Developer_Support
http://wiki.event-b.org/index.php/Rodin_Developer_Support

[7] Thai Son Hoang. The Development of a Probabilistic B-Method and a

Supporting Toolkit. PhD thesis, The University of New South Wales,

2005.

[8] T.S. Hoang, H. Kuruma, D. Basin, and J-R. Abrial. Developing topol-

ogy discovery in event-b. Sci. Comput. Program., 74(11-12):879�899,

2009.

[9] IEEE. IEEE Standard for a High Performance Serial Bus (supplement).

Std 1394a-2000, 2000.

[10] Carroll Morgan and Annabelle McIver. Abstraction, Re�nement and

Proof for Probabilistic Systems. Springer Verlag, 2005.

[11] Michael Rabin. The choice coordination problem. Acta Informatica,

17:121�134, 1982.

[12] E. Yilmaz. Rabin's choice coordination development. http://

deploy-eprints.ecs.soton.ac.uk/232/, June 2010.

74

http://deploy-eprints.ecs.soton.ac.uk/232/
http://deploy-eprints.ecs.soton.ac.uk/232/

