
Diss. ETH No. 19022 
 

 

 

 

 

Probabilistic/stochastic environmental exposure modeling: Methodology and 

applications to engineered nanomaterials  

 

 

 

A dissertation submitted to 

ETH ZURICH 

 

for the degree of 

Doctor of Sciences 

 

 

presented by 

FADRI GOTTSCHALK 

M.Sc., University of Hagen 

born July 28, 1970 

 

 

citizen of Tschlin (GR), Switzerland 

 

 

 

 

accepted on the recommendation of 

 

Prof. Dr. Roland W. Scholz (Examiner) 

PD Dr. Bernd Nowack (Co-examiner) 

Prof. Dr. Konrad Hungerbühler (Co-examiner) 

 

 

 

 

 

 

2010 





 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  In memory of my father and for my children Silvana, Flavio & Milena.





Table of Contents 

V 

Table of Contents 

Summary ......................................................................................................................................................IX 

Zusammenfassung ...................................................................................................................................XIII 

List of Figures..........................................................................................................................................XVII 

List of Tables ............................................................................................................................................ XIX 

Acronyms .................................................................................................................................................. XXI 

1.  Introduction........................................................................................................................................ 1 

1.1  Background of the thesis ....................................................................................................................1 

1.1.1 Invention .................................................................................................................................... 1 

1.1.2  Promised chances and unknown risks....................................................................................1 

1.2  The case of nanotechnology .............................................................................................................. 3 

1.2.1  Engineered nanomaterial ......................................................................................................... 3 

1.2.2  Environmental risk assessment...............................................................................................5 

1.2.2.1  Concepts and estimation procedures .....................................................................5 

1.2.2.2  Dealing with uncertainties ........................................................................................6 

1.2.2.3  Treating nanomaterials as particular chemicals?...................................................7 

1.2.3 Exposure assessment .............................................................................................................. 8 

1.2.4  (Nano-)Material flow analysis ................................................................................................10 

1.3 Research design and methodology .................................................................................................12 

1.3.1 Frame of the PhD thesis ........................................................................................................12 

1.3.2 Goals and methods ................................................................................................................13 

1.4 Papers included in the thesis............................................................................................................14 

1.5  Outline ................................................................................................................................................14 

1.6  References.........................................................................................................................................15 

2. Probabilistic material flow modeling for assessing the environmental exposure to 

compounds: Methodology and an application to engineered nano-TiO2 particles .............23 

Abstract.........................................................................................................................................................23 

2.1 Introduction.............................................................................................................................................23 

2.2 Methodology and modeling...............................................................................................................26 

2.2.1 Conceptualization ...................................................................................................................26 



Probabilistic/stochastic environmental exposure modeling: Methodology and applications to engineered nanomaterials 

VI 

2.2.2 System analysis ......................................................................................................................26 

2.2.3 Mathematical model ...............................................................................................................28 

2.2.3.1 System of equations................................................................................................29 

2.2.4  Computing and model calibration.........................................................................................30 

2.2.4.1 Modeled distributions .............................................................................................30 

2.2.4.2 Monte Carlo (MC) simulation .................................................................................31 

2.2.4.3 Number of iterations and smooth density curves.................................................31 

2.2.4.4 Markov Chain Monte Carlo (MCMC).....................................................................32 

2.2.4.5 Sensitivity analysis .................................................................................................33 

2.2.5 Implementation of a case study (nano-TiO2) ........................................................................34 

2.3 Results and discussion .....................................................................................................................37 

2.3.1 Algorithmic performance of the model ..................................................................................37 

2.3.2 Modeling results......................................................................................................................38 

2.3.2.1 MCMC simulations .................................................................................................40 

2.3.2.2 Sensitivity analysis .................................................................................................42 

2.3.2.3 Implications of the simulated case (nano-TiO2)....................................................42 

2.4 Acknowledgments .............................................................................................................................44 

2.5 Appendix ............................................................................................................................................45 

2.6 References.........................................................................................................................................47 

3. Modeled environmental concentrations of engineered nanomaterials (TiO2, ZnO, 

Ag, CNT, fullerenes) for different regions...................................................................................51 

Abstract.........................................................................................................................................................51 

3.1 Introduction ........................................................................................................................................51 

3.2 Materials and methods......................................................................................................................52 

3.2.1 Model information ...................................................................................................................52 

3.2.2 Toxicity assessment ...............................................................................................................55 

3.3 Results ...............................................................................................................................................55 

3.3.1 Material flow ............................................................................................................................55 

3.3.2 Environmental concentrations ...............................................................................................55 

3.3.3 Risk estimation........................................................................................................................58 

3.4 Discussion..........................................................................................................................................58 

3.5 Acknowledgments .............................................................................................................................62 

3.6 Supporting information available ......................................................................................................62 

3.7 References.........................................................................................................................................62 



Table of Contents 

VII 

4. Possibilities and Limitations of Modeling Environmental Exposure to Engineered 

Nanomaterials by Probabilistic Material Flow Analysis ...........................................................67 

Abstract.........................................................................................................................................................67 

4.1 Introduction ........................................................................................................................................68 

4.2 Materials and methods......................................................................................................................69 

4.2.1 System analysis ......................................................................................................................69 

4.2.2 Modeling and simulations.......................................................................................................70 

4.2.3 Input parameters.....................................................................................................................71 

4.2.4 Sensitivity analysis .................................................................................................................76 

4.2.5 Toxicity assessment ...............................................................................................................76 

4.3 Results ...............................................................................................................................................77 

4.3.1 Intermediate outputs of the MC simulations .........................................................................77 

4.3.2 Transfer coefficients ...............................................................................................................77 

4.3.3 Main MC simulation results....................................................................................................80 

4.3.4 Concentration and accumulation of ENMs ...........................................................................81 

4.3.5 Sensitivity and uncertainty analysis.......................................................................................83 

4.3.6 Risk quantification...................................................................................................................83 

4.4 Discussion..........................................................................................................................................84 

4.5 Acknowledgment ...............................................................................................................................88 

4.6 References.........................................................................................................................................88 

5. Engineered nanomaterials in rivers – an exposure assessment for Switzerland at 

high spatial resolution for nano-TiO2, nano-ZnO and nano-Ag ..............................................95 

Abstract.........................................................................................................................................................95 

5.1 Introduction ........................................................................................................................................96 

5.2 Material and methods........................................................................................................................97 

5.2.1 Input data and model setup ...................................................................................................97 

5.2.1.1 ENM input into rivers ..............................................................................................97 

5.2.1.2 ENM loads in rivers ................................................................................................98 

5.2.1.3 Procedure to link the two models ..........................................................................98 

5.2.1.4 Flow conditions and risk evaluation ......................................................................99 

5.3 Results ...............................................................................................................................................99 

5.3.1 Concentrations at base flow (Q95%) .......................................................................................99 

5.3.2 Concentrations modeled based on measured stream flows .............................................102 

5.4 Discussion........................................................................................................................................104 

5.5 Acknowledgments ...........................................................................................................................108 

5.6 References.......................................................................................................................................108 



Probabilistic/stochastic environmental exposure modeling: Methodology and applications to engineered nanomaterials 

VIII 

6. Concluding remarks .....................................................................................................................111 

6.1 Probabilistic material flow analysis – an adequate, however also limited tool for exposure 

modeling...........................................................................................................................................111 

6.2 Main insights from the simulation outputs .....................................................................................113 

6.3  Further research ..............................................................................................................................115 

6.4 References.......................................................................................................................................118 

7. Appendix: Modeled environmental concentrations of engineered nanomaterials 

(TiO2, ZnO, Ag, CNT, fullerenes) for different regions ............................................................121 

A.  Description of the system compartments ......................................................................................121 

B. ENM production volumes and allocation of these volumes to product categories .....................122 

C. Release of ENM ..............................................................................................................................125 

D. Considered toxicity studies .............................................................................................................126 

References .................................................................................................................................................127 

8. Acknowledgments.........................................................................................................................131 

Curriculum Vitae ......................................................................................................................................133 

List of Publications..................................................................................................................................135 

 



Summary 

IX 

Summary 

A fundamental step towards a quantitative assessment of the risks of new compounds or 

pollutants (chemicals, materials) to the environment is to estimate their environmental 

concentrations. Thus, the calculation of predicted environmental concentrations (PEC) comprises 

the basis for an initial exposure assessment. Potential risks are assessed in this thesis by means 

of a comparison of the PEC values with the predicted no effect concentrations (PNEC) derived 

from published data. 

The first part of the thesis presents a probabilistic method of computing distributions of PECs by 

means of probabilistic/stochastic material flow analysis (PMFA). The evolved model is basically 

applicable to any substance with a distinct lack of data concerning its environmental fate, 

exposure, emission and transmission characteristics. The model input parameters and variables 

consider production, application quantities and the fate of the compounds in natural and technical 

environments. In order to cope with uncertainties concerning the estimation of the model 

parameters (e.g. transfer and partitioning coefficients, emission factors) as well as uncertainties 

about the exposure, and the causal mechanisms (e.g. level of compound production and 

application) themselves, we utilized and combined the following probabilistic methods: sensitivity 

and uncertainty analysis, Monte Carlo simulation, Bayesian and Markov Chain modeling. The 

model developed is programmed and carried out with the computational tool R, and implemented 

and validated with data for an exemplary case study of flows for the engineered nanomaterial 

(ENM) nano-TiO2 in Switzerland. 

Engineered nanomaterials are already used in many products and consequently released into 

environmental media. Hence, in the second part of the thesis, we calculated predicted 

environmental concentrations (PEC) for different ENMs based on the probabilistic material flow 

analysis developed and from a life-cycle perspective of the ENMs and ENM-containing products. 

The model considered as input parameters the production volumes of the ENMs, the 

manufacturing and consumption quantities of products containing those materials, and the fate 

and pathways of ENMs in natural and technical environments. We modeled nano-TiO2, nano-

ZnO, nano-Ag, carbon nanotubes (CNT), and fullerenes for the USA, Europe and Switzerland. 

The environmental concentrations were calculated as probabilistic density functions and were 

compared to data from ecotoxicological studies. The simulated modes (most frequent values) 

ranged from 0.003 ng L-1 (fullerenes) to 21 ng L-1 (nano-TiO2) for surface waters and from 4 ng L-

1 (fullerenes) to 4 g L-1 (nano-TiO2) for sewage treatment effluents. For Europe and the USA, the 

annual increase of ENMs on sludge-treated soil ranged from 1 ng kg-1 for fullerenes to 89 g kg-1 

for nano-TiO2. The results of this part of the thesis indicate that risks to aquatic organisms may 

currently emanate from nano-Ag, nano-TiO2 and nano-ZnO in sewage treatment effluents for all 

regions considered and for nano-Ag in surface waters. For the other environmental 

compartments for which ecotoxicological data were available, we conclude that no risks to 

organisms are to be expected at this point in time. 

In the third part of the thesis a sensitivity analysis and a comprehensive discussion of the 

uncertainties of the simulation results and the limitations of the developed approach are 

presented. As case studies predicted environmental concentrations (PEC) were modeled for 
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nano-TiO2, carbon nanotubes (CNT) and nano-Ag in Switzerland. The PEC values of the ENMs 

in the different environmental compartments varied widely due to the different ENM production 

volumes and different life cycles of the nanoproducts. The use of ENM in products with high 

water relevance led to higher water and sediment concentrations for nano-TiO2 and nano-Ag, 

compared to CNTs, where smaller amounts of ENM reached the aquatic environment. For nano-

TiO2 and nano-Ag the sensitivity analysis showed that changes in the parameters STP inflow, 

STP overflow, and STP removal efficiency covered at least 98% of the source of variation of the 

ENM concentrations in water. The variation of the parameters STP overflow and STP removal 

efficiency explained to a probability of 88% how the CNT concentrations in water responded to 

changes in input parameters. Summing up the key limitations of the results, we see a general 

lack of input data, the focus on one unique region (Switzerland) and the steady state calculations 

for only one time period (2008). Especially data found in the literature for the annual production 

volumes of ENMs vary widely, sometimes by a factor of 100. Additional key limitations exist in the 

lack of data on the ENMs’ fate in nature. In particular the exchange between water and sediment 

through re-suspension and burial processes could not be considered in detail. Accumulation in 

sediments was equated to sedimentation/aggregation.  

In the fourth part of the thesis two models, one based on probabilistic material flow analysis 

(PMFA) and one based on graph theory were combined to calculate PECs of engineered 

nanomaterials (ENMs) in Swiss rivers at high spatial resolution. PECs for nano-TiO2, nano-ZnO 

and nano-Ag were calculated for 742 river sections at base flow conditions Q95% (flow reached or 

exceeded annually in 95% of the time). Additionally, flow measurements for 20 selected locations 

over a 20-year period (1988–2007) were used to assess temporal variations. At base flow the 

highest PECs (modal values) were found for nano-TiO2 where the concentrations at Q95% ranged 

from 0.1 ng L-1 to 7.8 g L-1, followed by nano-ZnO (0.004 ng L-1 to 0.5 g L-1) and nano-Ag (0.3 

pg L-1 to 0.03 g L-1). Comparing PECs with PNEC values (predicted no effect concentrations) 

revealed that based on the hydrological data used and averaged for all 20 stations and scenarios 

(scenario with and scenario without sedimentation) the PNEC was exceeded for nano-Ag using 

modal concentrations at 234 days annually. The equivalent results for nano-ZnO and nano-TiO2 

were 150 and 109. This part of the thesis showed that linking a probabilistic material flow analysis 

to a geo-referenced model fills two gaps: the PEC calculations for rivers were improved 

compared to calculations at regional level by considering geographical distribution of the ENM 

emissions and a clear distinction between input uncertainty and natural water flow variations 

could be achieved. Variability in the stream flow variation influenced the ENM concentrations up 

to a factor of 5, the uncertainty in the ENM loads caused a difference in the PEC calculations up 

to a factor 10.  

Summing up, we may state that currently attention is paid to potential life cycle impacts and 

toxicity of engineered nanomaterials. However, there is still limited data available on the 

environmental fate and effects of ENM, and consequently a lot of questions are still around 

concerning the possible risks caused to the environment and human health. In addition, there are 

almost no analytical methods available for such material. Hence, the discussion of ENM and the 

environment differs completely, e.g. from that on organic micropollutants, where advances in 

analytical detection of the compounds in the environment have been the starting point for 

scientific and public discussions. As a consequence, predictions of the concentrations to be found 

in the environment and studies on potential exposure pathways based on mathematical modeling 
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are needed and, as shown in this thesis, a valuable first tool to evaluate and predict risks posed 

by ENM to the environment. 
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Zusammenfassung 

Ein grundlegender Schritt in Richtung einer quantitativen Bewertung der Risiken neuer 

Verbindungen oder potenzieller Schadstoffe (Chemikalien, Materialien) für die Umwelt ist es, ihre 

Konzentrationen in der Umwelt zu schätzen. So bilden in dieser Arbeit berechnete PEC-Werte 

(Predicted Environmental Concentrations) die Basis einer ersten Bewertung der Umwelt-

Exposition bzw. -Risiken, welche von künstlich hergestellten Nanomaterialien ausgehen können. 

Solch potenzielle Risiken werden durch einen Vergleich von PEC-Werten mit aus veröffentlichten 

Daten abgeleiteten PNEC-Werten (Predicted No Effect Concentrations) ermittelt. 

Im ersten Teil dieser Arbeit wurde in der statistischen Programmiersprache R ein probabilistisch-

stochastisches Stoffflussanalyse-Modell entwickelt (probabilistic material flow analysis (PMFA)) 

und programmiert, welches zur Simulation von Emissions- und Umweltverhalten von 

sogenanntem Engineered Nanomaterial (ENM) dient. Dieses Modell ist basierend auf eine 

Formalisierung und Programmierung von Monte–Carlo- und Monte-Carlo-Markov-Ketten-

Algorithmen entwickelt worden. Das Modell eignet sich, um Schadstoffkonzentrationen in der 

Umwelt zu berechnen oder vorherzusagen. Es sollte angewendet werden bei schwacher 

Datenlage bezüglich Herstellung und Verwendung, Emissionsvolumen sowie bezüglich des 

Verhaltens der Kontaminanten in technischen Anlagen und in der natürlichen Umwelt. Es liefert 

Simulationsresultate in der Form von Wahrscheinlichkeitsverteilungen. Aus solchen Verteilungen 

können z. B. Modalwerte (die am häufigsten vorkommenden Simulationswerte) und Konfi-

denzintervalle der Simulationsergebnisse extrahiert werden. Um die unterschiedlichen Unsicher-

heiten hinsichtlich der Schätzung der Modellparameter sowie Unsicherheiten über die kausalen 

Mechanismen der Exposition (Dauer, Höhe, Häufigkeit, Pfade) zu modellieren, wurde zusätzlich 

eine Methode der Sensibilitäts- und Unsicherheitsanalyse für probabilistische Berechnungen 

entwickelt. Das Modell wurde mit Daten für eine exemplarische Fallstudie zu Stoffflüssen 

(Schweiz) von künstlich hergestelltem nano-TiO2 ein erstes Mal angewendet. 

Im zweiten Teil dieser Arbeit wurden mit Hilfe der probabilistisch-stochastischen Stoffflussanalyse 

(PMFA) Stoffflüsse zu nano-TiO2, nano-ZnO, nano-Ag, Kohlenstoff-Nanoröhren (CNT) und 

Fullerene für die USA, Europa und die Schweiz simuliert. Umweltkonzentrationen (PEC) wurden 

aus einer vollständigen Lebenszyklus-Perspektive von ENM und ENM-haltigen Produkten 

modelliert. Die Konzentrationen in der Umwelt wurden als Wahrscheinlichkeits-Dichte-Funktionen 

berechnet und mit Daten zu ökotoxikologischen Untersuchungen verglichen. Die simulierten Modi 

(häufigste Werte) umfassten einen Bereich von 0,003 ng L-1 (Fullerene) bis 21 ng L-1 (nano-TiO2) 

für Oberflächengewässer und einen solchen von 4 ng L-1 (Fullerene) bis 4 μg L-1 (nano-T iO2) in 

Abflüssen von Kläranlagen. Für Europa und die USA wurde der jährliche Anstieg der ENM-

Konzentration in Böden und in mit Klärschlamm behandelten Böden berechnet. Die Werte der 

jährlichen Zunahme reichen von 1 ng kg-1 für Fullerene bis 89 μg kg-1 für nano-TiO2. Die 

Ergebnisse dieser Studie zeigen, dass derzeit Risiken für aquatische Organismen in 

Klärschlamm ausgehend von nano-Ag, nano-TiO2 und ZnO für alle betrachteten Regionen 

möglich sind. Überschreitungen des kritischen Werts von eins bei Risikoquotienten (PEC/PNEC) 

wurden auch für nano-Ag in Oberflächengewässern beobachtet. Daraus lässt sich zumindest 

schliessen, dass weitere Untersuchungen dringend erforderlich sind, um das Risiko für die 
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aquatische Umwelt genauer zu bewerten. Für die übrigen Umweltkompartimente, für die 

ökotoxikologische Daten vorliegen, sind derzeit keine Risiken zu erwarten.  

Im dritten Teil dieser Arbeit wurden eine Sensitivitätsanalyse und eine umfassende Diskussion 

über Möglichkeiten und Grenzen des in der ersten Studie entwickelten Modellierungsansatzes 

durchgeführt. Dies erfolgte basierend auf modellierte Fallstudien zu Konzentrationen in der 

Umwelt von nano-TiO2, Kohlenstoff-Nanoröhren (CNT) und nano-Ag in der Schweiz. Die PEC-

Werte der ENMs in den verschiedenen Umweltkompartimenten variierten sehr stark. Diese 

Differenzen sind aufgrund von Unterschieden in den ENM-Produktionsmengen und den 

Lebenszyklen der verwendeten Nanoprodukte zu suchen. Die Verwendung von ENM in 

wasserrelevanten Produkten führt zu höheren Wasser- und Sediment-Konzentrationen für nano-

TiO2 und nano-Ag verglichen mit CNTs, von denen kleinere Mengen die aquatische Umwelt 

erreichen. Für nano-TiO2 und nano-Ag ergab die Sensitivitätsanalyse, dass Änderungen in den 

Parametern STP Zufluss Kläranlage, Überlauf Kläranlage und Abscheideleistung von 

Kläranlagen mindestens 98 % der Variation der ENM-Konzentrationen in Wasser abdecken. Die 

Variation der Parameter Überlauf Kläranlage und Abscheideleistung von Kläranlagen erklärte mit 

einer Wahrscheinlichkeit von 88 %, wie die CNT-Konzentrationen in Wasser auf Veränderungen 

von Modellparametern reagieren. Die Grenzen der Methode bzw. der Simulationsergebnisse 

zeigten sich einerseits im Umgang mit einer sehr ausgeprägten Lücke von empirischen Input-

Daten, welche auch durch differenzierte Expertenbefragung oder ausgeklügelte Monte-Carlo-

Algorithmen nicht gänzlich zu schliessen ist. Andererseits ist die Limitierung auf eine einzige 

Region (Schweiz) und auf Steady-State-Berechnungen für eine einzige Zeitspanne (2008) eine 

weitere Schwäche der Modellierung, welche z. B. die Dynamik zukünftiger Verwendungen von 

kommerziell verfügbaren ENM-haltigen Produkten nicht zulässt. Insbesondere die Daten in der 

Literatur für die jährliche Produktion von ENM sind mit grossen Unsicherheiten behaftet, 

manchmal mit einem Faktor von 100. Weitere wichtige Limitationen der Simulationsergebnisse 

sind im Mangel an Wissen über Verbleib und Verhalten der ENM in der Umwelt zu sehen. 

Insbesondere der einflussreiche Parameter Austausch zwischen Wasser und Sediment durch 

Sedimentation und Resuspension konnte aufgrund der kaum vorhandenen empirischen 

Datenbasis nicht im Detail betrachtet werden.  

Im Rahmen des vierten Teils dieser Arbeit wurden zwei Modelle, eines auf probabilistische 

Materialflussanalyse und eines auf der Grundlage von Graphentheorie beruhend, kombiniert. 

Somit konnten zum ersten Mal Konzentrationen von künstlich hergestellten Nanomaterialien in 

Schweizer Flüssen mit hoher räumlicher Auflösung berechnet werden. PECs wurden für nano-

TiO2, nano-ZnO und nano-Ag für 742 Flussabschnitte unterhalb von 742 Kläranlagen auf der 

Basis von Strömungsverhältnissen (Q95%), welche in 95 % der Zeit überschritten werden, 

berechnet. Darüber hinaus wurden auch Durchflussmessungen zu 20 ausgewählten Standorten 

über einen Zeitraum von 20 Jahren (1988–2007) verwendet, um die zeitliche Variation der 

Abflussmenge zu berücksichtigen. Basierend auf Q95%-Flussstände wurden die höchsten 

Belastungen (Modal-Werte) für die nano-TiO2 mit PEC-Werten zwischen 0,1 ng L-1 und 7,8 μg L-1 

beobachtet, gefolgt von nano-ZnO (0,004 ng L-1 und 0,5 μg L-1) und nano-Ag (0,3 pg L-1 und 0,03 

μg L-1). Der Vergleich von PECs mit PNECs ergab, dass basierend auf die verwendeten 

hydrologischen Daten und im Durchschnitt für alle Perioden und 20 Stationen und Szenarien 

(Szenario mit und Szenario ohne Sedimentation) der PNEC für nano-Ag bei Modal-

Konzentrationen an 234 Tagen pro Jahr überschritten wurde. Die entsprechenden Ergebnisse für 
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nano-ZnO und nano-TiO2 betrugen 150 und 109. Diese Studie zeigt, dass eine Verknüpfung der 

probabilistischen Materialflussanalyse mit einem georeferenzierten Modell zwei Lücken füllt: Die 

PEC-Berechnungen für Flüsse wurden gegenüber Berechnungen auf regionaler Ebene unter 

Berücksichtigung der geografischen Verteilung der ENM-Emissionen verbessert und eine klare 

Unterscheidung zwischen Unsicherheit im ENM-Eintrag und Unsicherheit im natürlichen Wasser-

fluss erreicht. Variabilität im Abfluss beeinflusst die ENM-Konzentrationen bis zu einem Faktor 

von 5, die Unsicherheit in der ENM-Belastung verursacht einen Unterschied in der PEC-

Berechnung bis zu einem Faktor von 10.  

Zusammenfassend lässt sich sagen, dass derzeit potenzielle Umweltauswirkungen und Toxizität 

von synthetisierten Nanomaterialien diskutiert werden. Allerdings sind noch immer nur sehr 

begrenzt Daten zu Umweltverhalten und möglichen negativen Auswirkungen von synthetisiertem 

Nanomaterial auf die Umwelt verfügbar. Auch stehen im Fall von ENM nahezu keine analytischen 

Methoden zur Verfügung. Daher muss die Diskussion rund um ENM in der Umwelt völlig anders 

geführt werden als z. B. diejenige über organische Mikroverunreinigungen, bei denen Methoden 

der Identifizierung und der Mengenbestimmung in der Umwelt zur Verfügung stehen und die 

somit Ausgangspunkt der wissenschaftlichen und öffentlichen Diskussion sein können. 

Infolgedessen sind im Fall von ENM Vorhersagen zu Konzentrationen in der Umwelt und Studien 

zu potenziellen Expositionspfaden basierend auf mathematische Modellierung nötig, und, wie in 

dieser Arbeit gezeigt, ein wertvolles erstes Instrument zur Bewertung und Vorhersage von 

möglichen Risiken für die Umwelt. 
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1.  Introduction 

1.1  Background of the thesis  

1.1.1 Invention 

December 29, 1959, annual meeting of the American Physical Society at the California Institute 

of Technology, Richard Feynman gives a talk: “There’s Plenty of Room at the Bottom: An 

invitation to enter a new field of physics” (Feynman 1960). This sufficed for Feynman (Nobel 

Prize laureate in physics, 1965) to be credited by a lot of people and scientists as being the first 

person to see the enormous potential of manipulating matter at the nanoscale (e.g. Drexler 1986 

and over 1200 Feynman speech citations in Google as of February 2010). However, this is a fairy 

tale! Feynman’s speech was only cited seven times (Toumey 2005) in the first two decades after 

it was first published in the Caltech magazine “Engineering and Science” in 1960. The truth is that 

when nanotechnology finally became a major area of research following the invention of the 

scanning tunneling microscope (STM) in 1981 (Binnig et al. 1982), some authoritative account of 

its origin was needed in idealized form (Nature Nanotechnology (Editorial) 2009; Toumey 2005).  

In contrast to the modern achievements, the historical beginnings of nanotechnology and the 

application of nanoscience are almost unknown. There are only a few scientific/technical 

advances that may be listed (Table 1), most of them relating to insights of the 20th century to 

atomic and molecular structures. Nevertheless, what we may state is that rather than chemists 

and physicists of the 20th century or workers in a modern semiconductor plant, the first 

“noteworthy” nanotechnologists were probably medieval glass workers that produced gold 

nanodots for Victorian and medieval churches (famous for marvelous stained glass windows) 

(Ratner and Ratner 2003; Shong et al. 2010). However, as stated above the “real” 

nanotechnology and nanoscience started in the early 1980s with the invention of the STM, 

followed by the discovery of fullerenes and carbon nanotubes (CNT) and the commercial use of 

metal oxide particles (e.g. TiO2, ZnO, Ag, Fe), e.g. for cosmetics, exterior coatings, plastics, 

textiles, or electronics (Hornyak et al. 2008).  

1.1.2  Promised chances and unknown risks 

There is some consensus that manipulation of matter at such small scales could lead e.g. to the 

development of unimaginably lightweight and strong materials, electrical devices that utilize spin 

properties of electrons in addition to their electrical charge, or e.g. to novel biomedical healthcare 

and disease treatment, for instance, significant improvements in finding a cure for cancer 

(Morose 2010; Shong et al. 2010). Nanodevices promise a future in which less material would be 

required during production and as a by-product of manufacturing processes also a reduction in 

the need for raw and manufactured material, a minimization of wastes and effluents and e.g. a 

reduction in the amount of toxins entering the environment. In addition, significant benefits for the 

environment are also expected from green manufacturing, pollution prevention, treatment, 

mitigation and remediation (e.g. Hornyak et al. 2008; Nowack 2008).  
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Table 1. Some historical events in the development of nanoscience and nanotechnology (Shong et al. 

2010, Institute 2010, Ratner & Ratner 2003).  

 

 

However, the development of such technologies and materials also raises concerns regarding 

environmental and human health hazards. Let us illustrate two realistic examples by way of 

introduction: i) CNTs are e.g. of great interest to researchers and industry because of their 

remarkable structural, mechanical and electronic properties (Gottschalk 2008). Since these tubes 

have tunable electronic properties, they are being investigated as possible new material for 

coming generations of microelectronics (Shong et al. 2010). Used as an intercalation medium to 

increase the electrical storage capacity of lithium ion batteries, CNTs could be released into the 

environment (Koehler et al. 2008). During battery manufacturing, for instance, nanotubes could 

be emitted before battery cells are sealed. In this case emissions during product use e.g. in the 

case of irregular recharge attempts or from recycling or disposal activities are imaginable. 

Recycling processes may break down the structure or matrix in which the CNTs are fixed within a 

battery. Sophisticated technologies that involve shredding, milling, mechanical sorting or thermal 

5th Century B.C. Democritus and Leucippus stated that matter was made up of tiny, indivisible 

particles in constant motion. 

1803 John Dalton, English chemist and physicist, developed the first relevant atomic 

theory of matter. 

19th Century Application of gold nanodots for Victorian churches. 

1914 Niels Bohr, Swedish physicist, advanced atomic theory further in discovering 

that electrons traveled around the nucleus in fixed energy levels. 

1959 Feynman gives after-dinner talk describing molecular machines building with 

atomic precision. 

1974 Taniguchi uses term “nano-technology” in paper on ion-sputter machining. 

1977 Drexler originates molecular nanotechnology concepts at MIT. 

1981 Scanning Tunneling Microscopy (STM) invented by Gerd Binnig and Heinrich 

Rohrer at IBM Zurich. 

1985 Buckyball discovered by Robert Curl, Harold Kroto and Richard Smalley. 

1986 Atomic Force Microscopy (AFM) invented by Gerd Binnig, Calvin Quate and 

Christoph Gerber. 

1988 First university course, Nanotechnology and Exploratory Engineering 

(Stanford). 

1989 IBM logo spelled in individual atoms by Don Eigler at IBM Almaden. 

1990 Nanotechnology: first nanotechnology journal founded by Institute of Physics 

UK. 

1991 Carbon nanotubes discovered by Sumio Iijima at NEC, Japan. 

1997 First nanotechnology company founded: Zyvex. 

2000 President Bill Clinton announces US National Nanotechnology Initiative. 
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processing such as pyrolysis or smelting could generate dust and emissions to the air. ii) There 

are also examples to illustrate direct unintended and intended releases of nanomaterial to the 

environment. The US Environmental Protection Agency (2009) emphasizes e.g. two different 

applications of nanoscale titanium dioxide (nano-TiO2). Cosmetic industry uses undoubtedly 

significant amounts of nanoscale titanium dioxide as an active ingredient e.g. in tropical 

sunscreen. Direct release is also caused by the use of such TiO2 to remove e.g. arsenic from 

drinking water.   

Based on such technical and scientific achievements made in recent decades on the one hand, 

positive impacts of nanotechnology are expected to be enormous and numerous for society (e.g. 

Drexler 1992; Hornyak et al. 2008; Shong et al. 2010); on the other hand, the same applies to 

negative effects as well (e.g. Oberdorster et al. 2007; Roco 2005). Hence, there is currently a lot 

of excitement and controversy concerning the potential and the risks of nanotechnologies (Hewitt 

and Goldstein 2008): advocates emphasize the enormous potential of applications and 

advantages of nanoparticulate material, while at the other end of the spectrum, others see 

unrealistic prognoses and a simple rush into hazardous technologies without ways to assess 

potential risks to humans and the environment. 

Roughly speaking, we may state that from an environmental perspective it will not be essential to 

predict to what degree nanotechnology will become a mature and well-accepted technology, or in 

what way there may be disappointment due to unrealized promises (Shong et al. 2010) and 

negative impacts. Scientific engagement in assessing risks does not depend on cycles of public 

hype that are eventually followed by disappointment or simply loss of interest (Arie 2006).  

1.2  The case of nanotechnology 

1.2.1  Engineered nanomaterial 

Nanotechnologies involve, roughly speaking, the study and the control of matter in dimensions of 

approximately 1–100 nm, where unique physico-chemical material properties enable novel 

applications in industry and academia (Hornyak et al. 2008; Nikulainen and Palmberg 2010). For 

reference, often the diameter of a human hair (about 80,000 nm) is mentioned (Morose 2010).  

Human and environmental exposure to nanoparticles is not new; nanostructured materials have 

been present on earth for millions of years and have been used by humankind for millennia 

(Buzea et al. 2007; Nowack and Bucheli 2007): volcanic ash, dust storms, soot as part of the 

carbon black continuum (product of the incomplete combustion of fossil fuels and vegetation with 

a particle size partially in the nanometer range) or e.g. virus and bacteria (nanosized and around 

since prehistoric times). Another example is nanoparticulate indoor pollution as a result of badly 

ventilated stoves combined with the use of biomass fuels (wood, crop residue, coal etc.) that 

causes annually e.g. estimated 1.6 million deaths worldwide (Buzea et al. 2007).  

However, as mentioned in the introduction, it is a fact that manufactured nanosized 

matter/material did not attract scientific (and public) attention until recent decades when our 

ability to produce and manipulate matter on such a scale increased (Moriarty 2001). Noteworthy 

research in nanotechnology began in the 1980s with inventions in the field of microscopy (STM 

and the atomic force microscope (AFM) (Heinze 2004; Nikulainen and Palmberg 2010; Palmberg 

and Nikulainen 2006)). Since then great efforts in industry and academia have been observed for 
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developing novel products and applications in a wide range of industrial and consumer sectors 

(Helland et al. 2006; Som et al. 2010). Such “explosive” (Moriarty 2001) growth in interest arises 

mainly from new variations in fundamental electrical, optical and magnetic properties and large 

surface areas per unit volume that occur when particles of a particular material consist only of a 

countable number of atoms (Boverhof and David 2010; Moriarty 2001). Such properties can in 

the case of nanosized material be associated with a particular type of agglomeration behavior, 

dissolution rate, surface chemistry or reactivity, altered optical or magnetism properties, 

increased flexibility, strength or e.g. improved electrical conductivity or absorption – all factors 

which, however, have thus far not been studied much (Boverhof and David 2010). In addition to 

such promised “new” functionalities/material characteristics for products and substances, a 

reduction in the use of hazardous chemicals, of energy consumption, material and waste 

generation is also expected (Gottschalk 2008; Nowack 2007; Som et al. 2010). Furthermore, 

such engineered nanomaterials (ENM) are often coated e.g. with a surfactant, polymer or 

polyelectrolyte that can affect e.g. the above-mentioned ENM aggregation behavior in order to 

make them, for instance, water soluble or biocompatible (Lowry and Casman 2009; Nowack and 

Bucheli 2007). As the inner material is not allowed to be either water soluble or biocompatible, 

such new compounds are not very likely to have any analogues in nature, e.g. quantum dots 

containing heavy metals (Lowry and Casman 2009). 

ENM are already applied in a wide range of areas such as e.g. pharmaceutical, biomedical, 

cosmetic, electronic, energy, environmental, catalytic and material applications (Nowack and 

Bucheli 2007). As a consequence, impressive application prospects of nanosized materials could 

lead to a significant increase in the ENM production, manufacture and use of them in products, 

and consequently to a relevant ENM human and environmental exposure to them (Andreev et al. 

2009).  

The same physico-chemical characteristics that make ENM desirable for a lot of applications 

could pose a risk for organisms exposed to such material and its properties (Boverhof and David 

2010). No doubt, there is currently a distinctive data gap concerning such potential health and 

environmental effects (Alvarez et al. 2009; Andreev et al. 2009; Borm et al. 2006; Chaudhry et al. 

2008; Handy et al. 2008; Helland et al. 2006; Hund-Rinke and Simon 2006; Klaine et al. 2008; 

Nowack 2009; Nowack and Bucheli 2007; Oberdorster et al. 2007; Scheringer 2008; Wiesner et 

al. 2006). As a result potential negative effects of ENM are worldwide under discussion in 

governments, the public or the private sector (Helland et al. 2006; Hudson and Orviska 2009; 

Roco 2005; Siegrist et al. 2007a; Siegrist et al. 2007b). Hence, as seen e.g. in the cases of 

asbestos, CFCs, DDT, PCBs, mercury, and other former “wonder” substances and technologies 

(Kimbrell 2009), it does not take a prophet to predict that manufactured nanoparticulate material 

could also have significant unintended negative consequences on human and environmental 

health and that thus public reaction might have a strong influence on the development, funding 

and acceptance of these technologies and materials (Scholz and Siegrist 2010). However, in 

contrast to these negative past examples and e.g. to the fields of nuclear power and gene 

technology, in the case of nanotechnology researchers are trying to anticipate – probably for the 

first time (Donaldson 2009) – potential risks and public reaction/perception in advance (Scholz 

and Siegrist 2010; Siegrist et al. 2007a; Siegrist et al. 2007b). 



Introduction 

5 

1.2.2  Environmental risk assessment 

1.2.2.1  Concepts and estimation procedures 

Since the early days of industrial chemistry (toward the end of the 18th century) the control of the 

potential risks and hazards of chemical processes and products for human health – and later also 

for the natural environment – was discussed in research and development (Hungerbuehler et al. 

1998; Leeuwen and Vermeire 2007). However, an equivalent importance of the process and 

products health and environmental security – comparable to process and products efficiency and 

quality – was not observed until the 70s and 80s of the last century (Hungerbuehler et al. 1998). 

As a consequence today, in fact for long-term success, products also have to ensure the non-

existence of unacceptable health and environmental risks in addition to offering high quality and 

economic efficiency.  

Environmental and/or ecological risk assessment addresses anthropogenic adverse effects on 

the environment (SETAC 1997; Suter 2007) such as e.g. chemical pollution, habitat destruction, 

invasion of exotic species, infection with disease organisms etc. (Sergeant 2002). Risk is a basic 

concept of environmental literacy used to study uncertainty and negative impacts that derive from 

human action (Hungerbuehler et al. 1998; Scholz 2010; Scholz and Siegrist 2010; Scholz and 

Tietje 2002). Scholz (2010) refers to Kant as seeing in risk an elementary or primitive concept 

(Scholz and Tietje 2002; Sokolowska 2006). Based on this conceptualization, risk is denoted as a 

function ( r(P,E) ) of the probability P = (p1,..., pn )  and the valuation of the outcomes 

E = (E1,...,Ei ,...,En )  and related to a decision, where at least one of the outcomes may have a 

negative value (Scholz and Tietje 2002). Adapted from such a conceptualization, risk is often 

analyzed based on a technical view focused on a cause-effect framework. Thus, risk 

characterization is seen as the process of selecting and quantifying possible negative 

consequences (frequency and magnitude) that result from some action (or inaction) (McKone 

1999; Scholz and Tietje 2002). 

As shown in Scholz and Siegrist (2010) until the 1970s such technological risks were almost 

exclusively characterized by definitions of risk in which only losses were considered (pure risk). 

However, the environmental and health risk assessment methodologies developed since the 

1970s differ from such simple approaches (Paustenbach 2002b) providing risk estimations that 

relate a valuation of unwanted, negative effects to their likelihood of occurrence (Scholz 2010; 

Scholz and Tietje 2002). In addition, risk assessors also broadened their framework from pure 

risks to speculative risks (Brachinger and Weber 1997; Scholz and Tietje 2002) to avoid focusing 

solely on negative effects and their likelihood and neglecting potential benefits that may result 

from development and application of a particular technology. Scholz and Siegrist (2010) illustrate 

also how vital risk assessment, risk perception, and risk management are today, and how risk is 

dealt with in a wide breadth of disciplines (“risk sciences” (Bernard et al. 1995)) ranging from 

natural to technical, medical, social sciences and humanities. The authors emphasize in 

particular that environmental risk assessment gained a new dimension with the mastery of 

nuclear fission (Krohn and Weingart 1987) that provided our human species with the ability to 

damage not only microcosmic systems but also global ones (Beck and Sznaider 2006). 

Understanding this, we have to emphasize that no one can keep new technologies – genetic 

manipulations in a plant or animal, new organic compounds, or e.g. manufactured nanomaterial 
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(Scholz and Siegrist 2010) – from posing also intolerable risks for society and for the 

environment. 

Hungerbuehler et al. (1998) encapsulate a generic risk assessment procedure into three main 

steps: i) define a system whose potential damage should be considered (protective regulations); 

ii) design possible damage scenarios that should in principle be assessable quantitatively; iii) 

estimate the probabilities for such scenarios by means of relative frequencies of events in the 

past as well as using forward-looking probabilistic considerations. Such an assessment 

framework covers uncertainties of the choice of appropriate model structure/geometry and 

uncertainty and variability of the risk model input parameters. Whereas variability arises from true 

diversity across temporal, spatial or inter-individual differences in the model parameters, 

uncertainty is a measure of knowledge incompleteness about unknown input values whose true 

magnitude could be measured if measuring methods were available (Cullen and Frey 1999; 

Paustenbach 2002a). As a consequence, analyzing risks requires sufficient empirical data and 

may become cloudy if designing the assessment framework e.g. for nanomaterial is associated 

with several distinctive parametric and structural uncertainties.  

1.2.2.2  Dealing with uncertainties 

Scholz (2010) illustrates comprehensively the scientific inter-relationships among uncertainty, 

probability/stochasticity and risk assessment. Uncertainty derives from incomplete knowledge or 

data regarding the state of a particular object (model input parameters such as e.g. in this thesis 

nanomaterial emission and transmission characteristics) or of the system (e.g. framework and 

geometry (structure) of the nanomaterial exposure modeling). Probability is seen as a concept of 

the language of such uncertainty (Scholz 1987), whereas stochastic processes are denoted as 

sequences of events (e.g. nanomaterial concentrations in the environment) where there is 

indeterminacy about future states. Therefore, risk links the behavioral dimension of human 

systems’ actions (e.g. commercial use of engineered nanomaterial) with uncertain (however 

mostly negatively) evaluated environmental impacts resulting from such actions.   

One possible approach to risk estimation that one can use when faced with such uncertainties is 

inductive-stochastic risk assessment (Scholz et al. 1992), where the impacts from the source of 

risk (e.g. nanomaterial release into rivers from commercially used nanoproducts) to safeguard 

objects in a critical compartment (e.g. aquatic organisms) have to be considered. Thus, for 

exposure assessment one must model parameters such as nanomaterial production and 

integration into products, the amount of products consumed or nanomaterial released from such 

products. One critical issue is now that for each of those input parameters a probability 

distribution (Hoffmann et al. 2004; Scholz 2010) must be defined which covers the uncertainty in 

each specific parameter. Doing this means that the insecurity in such a modeling has been 

considered conceptually (Scholz and Schnabel 2006) and not corrected subsequently by the use 

of safety factors. At every stage of the path of the nanomaterial flows insecurities are considered. 

Input and output flows, transfer coefficients and environmental concentrations are modeled as 

probability distributions.  

One of the most critical points of such probabilistic/stochastic modeling is then the use of 

adequate input distributions (McKone and Bogen 1991; Nothbaum 1997; Scholz 2010; Scholz et 

al. 1991). The construction of such distributions depends on different types of knowledge (Scholz 

et al. 1992). If we have data, e.g. on the quantity of a compound produced daily, we can take a 
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statistical, frequentist approach, best when smoothing or adapting a given frequentistic 

distribution. If this is not the case, we can construct a subjectivist probability distribution, based 

on our own, or on experts’ best knowledge. There is, in principle, also the possibility of 

constructing distributions based on logical probability concepts, e.g. if frequentist distributions 

from other cases are available and transferable by weighted arguments (Carnap 1950; Scholz et 

al. 1992).  

In general, one should follow a two-step procedure when determining such probability 

distributions. The first step consists of defining the shape of the variable (e.g. normal, log-normal, 

trapezoid, triangular, uniform). The choice of the form of the distribution depends on the 

knowledge about the process. Then in a second step the parameters (e.g. mean/median/mode, 

standard deviation, range, kurtosis) are modeled. Form and mathematical parameters of the input 

distributions may be determined considering available empirical data or based on unstructured 

expert questioning without formal procedures. However, methodical (group) processes are also 

conceivable. The Delphi method e.g. (Brown 1968) is a forecasting method using independent 

experts. Other structured expert panel methods using a facilitator to elicit assessments 

concerning input distributions from the experts in attendance are e.g. Consensus Development 

Conferences (Murphy et al. 1998), or procedures for defining parameters by group decision 

making (Scholz and Hansmann 2007).  

1.2.2.3  Treating nanomaterials as particular chemicals? 

An established approach of dealing with uncertainties in conventional chemical risk assessment 

is the use of hazard indicators, in particular for properties such as persistence, bioaccumulation, 

and toxicity (Scheringer et al. 2006). However, often such hazard indicators are not available for 

most of new chemicals, although in the chemical industry it has become common to identify 

possible environmental impacts in an early stage in the chemical design process to avoid costly 

process changes later (Hoffmann et al. 2004; Hungerbuehler et al. 1998). However, early risk 

assessments are frequently faced also in the case of new chemicals with high uncertainty around 

possible economic, ecological, and technical parameters that have to be estimated. There are 

different approaches for assessing chemical process hazards at early design stages. Hoffmann et 

al. (2004) developed e.g. a method based on approximating flowsheets (as modeled e.g. in 

commercial flowsheet simulators) by using response surfaces to select promising process 

alternatives while taking explicit account of uncertainties. Shah et al. (2005) have also provided a 

systematic tool to support decision makers in evaluating chemical processes in early process 

phases. This approach covers the characteristics of the single chemical substances, possible 

interactions between substances (reactivity assessment), possible hazard scenarios resulting 

from the combination of substances and operating conditions in the different equipment and 

necessary safety technologies required to run a particular process safely and according to legal 

regulations.  

Such approaches have been developed for conventional chemicals and do not address the 

question if nanomaterials should be treated as particular chemicals due to their particular size 

and structural properties. Nanomaterials are covered by the definition of a “substance” in 

REACH1, although there is currently no explicit reference to nanomaterials. The first registration 

deadline under REACH (November 30, 2010) applies to substances manufactured or imported at 

                                                
1  REACH is the Regulation on Registration, Evaluation, Authorisation and Restriction of Chemicals of the European Union (EU).  
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1000 tons or more per year (REACH 2010). The registration of nanomaterials in this tonnage 

band will then undoubtedly create more information that may be used for the risk assessment. 

Nevertheless, expeditious evolution in the area of nanotechnologies has raised questions as to 

the applicability and adequacy of the established risk assessment paradigm and regulatory 

framework for chemicals (Gottschalk 2008; McKone 2010; Som et al. 2010). A critical point is that 

available experience with inorganic and organic chemicals may not be relevant to 

nanoparticulated materials (Linkov et al. 2007) due to unique physical and chemical properties 

that do not primarily depend on the chemical composition but on the material size, structure, 

surface modification and functionalization. ENM may, for instance, have large surface areas per 

volume unit and novel electronic properties relative to conventional chemicals. Their surface may 

be coated to improve material properties for specific applications (EPA 2007). Incorporating also 

potential environmental relevancies of such physical and chemical properties within a risk 

assessment framework for nanoparticulate material is difficult. Thus, conventional risk 

assessment tools for chemicals that are based mainly on chemical composition of the materials 

may not be applied directly to ENM. 

As a consequence, established risk assessment procedures for chemicals must be analyzed 

concerning the applicability also for ENM in order to propose a risk assessment framework for 

studying environmental risks to ENM and ENM containing products. ENM containing products are 

usually defined as commercially available products that either contain ENM, or that derive 

specific functions from nanostructured material with or without ENM (Som et al. 2010). Examples 

are textiles containing nano-silver, batteries with carbon nanotubes (CNTs), cosmetics or 

suncream with nano-TiO2 or nano-ZnO etc. However, also ENM-free emitters that contain 

nanostructures such as nm-thin coatings and that could thus lead to nanoscaled pollution are 

considered as well.  

As discussed in Som et al. (2010) currently there is a total absence of nano-specific regulations in 

the EU (Fuehr et al. 2007) or elsewhere in the world (Hodge et al. 2007) in addition to a distinct 

scarcity of available risk reports to ENM. Existing policies are focused on conventional chemicals 

and do not consider the particular physico-chemical properties of ENM (e.g. small size, reactivity, 

special surface chemistry and structure) (Chatterjee 2008; Franco et al. 2007). In addition, there 

is almost no reliable data on ENM application volumes in industry and households (Schmid and 

Riediker 2006; Schmid and Riediker 2008). However, some first studies to potential human and 

environmental health implications of ENM are available. Nowack and Bucheli (2007) reviewed 

recent works and found that attention is devoted more to toxicological studies (Helland et al. 

2007; Iavicoli et al. 2009; Kreyling et al. 2006; Lam et al. 2006; Norppa and Greim 2009; Xia et al. 

2009) than to environmental behavior and ecotoxicological aspects (Biswas and Wu 2005; 

Helland et al. 2007; Klaine et al. 2008; Moore 2006; Wiesner et al. 2006). However, to conduct 

exposure (and risk) assessment apart from toxicological and ecotoxicological effects also the 

concentrations organisms are exposed to in environmental media and technical compartments 

have to be considered. 

1.2.3 Exposure assessment  

Generally speaking, exposure assessment denotes the description/quantification of a 

contamination source, the pollutant’s transport and transformation within natural or technical 

environments, and the organism’s contact with pollutants (McKone and Daniels 1991). Exposure 
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assessment within its total framework includes at least for human populations time and activity 

patterns and microenvironmental (e.g. indoor concentrations) data providing a comprehensive 

view of exposure pathways and identifying main sources of uncertainty in addition to the 

estimation of potential pollutants’ environmental concentration in air, water etc. (McKone 1999).  

McKone and Small (2007) provide an overview of the state of the art in exposure assessment 

that is seen as a key element in estimating the environmental and public health impacts from 

chemical release in the life cycle of industrial products (McKone et al. 2006). The authors 

distinguish four main approaches: regulatory assessments for health protection, chemical-transfer 

and individual activity based models and models integrating environmental concentrations and 

human exposure. Regulatory assessments are intended for modeling human behavior in the 

environment and are focused on the variability of the time spent of individuals e.g. at maximal 

concentrations (exposure). Several methods for the United States are listed, e.g. the Total 

Exposure Assessment Methodology (TEAM) studies and the National Human Exposure 

Assessment Survey (NHEXAS). 

 

Figure 1. Simplified stages of the nanoproduct life cycle and the fate of ENMs (Som et al. 2010). 

These methodologies were created to study the relationship between environmental and indoor 

air concentrations and had been applied for different pollutants such as e.g. nitrogen oxides, 

volatile organic compounds (VOCs), fine particulate matter. Chemical transfer-based models 

focus on partitioning and mass transfer (McKone and MacLeod 2003) and may include also 

intake or uptake of pollutants. Individual activity models cover time allocation to individuals’ 

exposure in microenvironments (e.g. home workroom; office or factory). An example of models 

integrating estimations of environmental concentrations and human exposure is the CalTOX 

model (McKone 1993a; McKone 1993b; McKone 1993c) that estimates human exposure through 

23 potential exposure pathway scenarios for pollutants in the air, soil, or water.  

Since we know that several negative effects caused by exposure to some chemical substances 

and technologies did not come to light until years after the initial use and introduction of 

chemicals and technologies (Gottschalk 2008; Koehler et al. 2008; Renn 2002), it is imperative to 

address issues arising from nanotechnologies holistically and as early as possible (Som et al. 



Probabilistic/stochastic environmental exposure modeling: Methodology and applications to engineered nanomaterials 

10 

2010; Som et al. 2009). Hence, the exposure assessment for ENM has to include currently a 

wide range of ENM applications that are poorly researched and that may lead to diffuse release 

of such material into the environment. Thus such an assessment has to be done including all life 

stages (Fig. 1) of ENM and ENM containing products (von Gleich et al. 2008). In order to do this, 

Davis and Thomas (2006) propose a basic structure for a comprehensive environmental 

assessment (CEA) approach that allows one to identify and prioritize research efforts for ENM 

and ENM containing products (Fig. 2). The ambiguity between ENM2 and ENM containing 

products is clarified by Som et al. (2010): ENM (e.g. TiO2) can form part of nanomaterials (such 

as polymer-ENM composites, e.g. polyamid-TiO2 composite). However, such nanomaterials can 

in turn form part of products (e.g. a T-shirt, sun lotions, food packaging, etc.). Compared to the 

mentioned exposure assessment approaches listed above, the ENM exposure assessment 

planned in this work may be seen as a Chemical transfer-based model in terms of a material flow 

modeling that does, however, not include intake or uptake of ENM. 

 

Figure 2. Basic structure of the Comprehensive Environmental Assessment (CEA) approach to 

identifying and prioritizing research efforts for a nanoscale product (Davis & Thomas 2006). 

1.2.4  (Nano-)Material flow analysis 

Material Flow Analysis (MFA) is often described by means of the metaphor that material and 

energy illustrate the metabolism of a system (Scholz and Tietje 2002), e.g. as metabolism of the 

anthroposphere (Baccini and Brunner 1991) or as industrial metabolism (Tukker et al. 1997). 

Apart from initial input-output models with simple engineering or economic objectives, MFA was 

first applied to study the metabolism or physiology of cities (Wolman 1965), or in developed 

countries to reflect on systems such as densely populated regions (Brunner and Baccini 1992). 

However, MFA also became an approach to study flow dynamics of environmental pollutants. 

Binder (2007) mentions first studies on instance trace contaminants through watersheds or urban 

                                                
2  Due to the novelty and great interdisciplinarity of the field of nanotechnologies the terms “engineered nanomaterials (ENMs)”, 
“nanoparticles (NP)”, “engineered nanoparticles (ENPs)” and “nanoproducts” are not used in a uniform manner in the literature 
(Som, C., Berges, M., Chaudhry, Q., Dusinska, M., Fernandes, T. F., Olsen, S. I., and Nowack, B. (2010). "The importance of 
life cycle concepts for the development of safe nanoproducts." Toxicology, In Press, Corrected Proof.). 
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regions (e.g. Bergback et al. 1994; Kleijn et al. 1994) and in developing countries (e.g. Binder et 

al. 1997). In recent years and stimulated e.g. by industrial ecology approaches (Allenby 2006) the 

study of material flows between production of raw materials, manufacture and use of products, 

and their fate and behavior at their end of life became very popular to illuminate (Harper et al. 

2006) e.g. global and local material scarcity, energy and water consumption, waste management 

strategies, and the impacts of pollutants on human health and ecosystems (e.g. Chang et al. 

2009; Jiang et al. 2001; Lu et al. 2007). 

In the latter context MFA may form a subset of exposure assessment that can be used to model 

environmental concentrations of a particular pollutant. Standard MFA may e.g. be extended to a 

probabilistic/stochastic modeling to cope with model uncertainties. Such a mathematical 

approach might be a useful tool providing quantitative information to the flows of pollutants 

through and to economic and environmental compartments, in cases where only few empirical 

data on almost all model input parameters are available. A particular property of MFA is adequate 

to incorporate the spirit of Life Cycle Assessment (LCA) – and its uncertainty and variability 

(Geisler et al. 2005) – in the sense that the whole life cycle of a studied material (e.g. 

nanomaterial production, incorporation into products, products consumption, disposal and 

recycling phase etc.) may be considered.  

 

Figure 3. Nanoparticle pathways from the anthroposphere into the environment, reactions in the 

environment (Nowack & Bucheli 2007). 

There are various multimedia models that cover the fate and transport of contaminants in the 

environment differing only in structural characteristics such as spatial and temporal resolution and 

the processes and compartments considered (von Waldow et al. 2008). However, such 

multimedia transport models (an overview is given in Fenner et al. 2005) address only persistent 

organic pollutants whose calculations are mainly based on molecular weight and octanol-water 

and air-water partitioning coefficients. However, the use of the listed partitioning coefficients is 

obviously not adequate for an inorganic material such as ENM. Material transport between the 

model media has to be modeled using other partitioning characteristics e.g. by means of standard 

mass balance transfer coefficients as used in typical MFA. 



Probabilistic/stochastic environmental exposure modeling: Methodology and applications to engineered nanomaterials 

12 

Nowack and Bucheli (2007) illustrate potential ENM transfers from the anthroposphere into the 

environment (Fig. 3) considering the two main forms of released nanomaterial as crucial for 

exposure modeling: ENM may enter the environment as individual particles or agglomerates, e.g. 

silica nanoparticles used as solid lubricants, or fullerenes added to cosmetics, or e.g. metal oxide 

particles injected for groundwater remediation; second ENM in composites or mixtures would 

probably be released to the environment in an encapsulated form (attrition from products 

containing ENM e.g., CNT composites used in tires, brake pads, tennis rackets etc. (Koehler et 

al. 2008)). Furthermore, accidental release may also come from point sources such as 

nanomaterial production and manufacturing facilities or transport processes, landfills wastewater 

treatment or waste incineration plants or e.g. storm-water runoff from manufacturing facilities or 

city roads and highways (Lowry and Casman 2009; Nowack and Bucheli 2007). Intentional 

release is possible as well, e.g. nZVI injected into groundwater contaminated with chlorinated 

solvents (Nowack and Bucheli 2007). However, as with many pollutants, non-point sources of 

ENM – such as wearing or washing clothes containing nanomaterial, or using nanomaterial 

containing cosmetics, suncream etc. – are probably more important and the most difficult to 

control (Nowack and Bucheli 2007). 

Summing up, in the case of environmental risk assessment for ENM we have to cope with 

multiple emission sources, unknown ENM fate and behavior in nature and technical 

environments, complex exposure pathways that could vary significantly among organisms and 

individuals, and with high uncertainties (due to the lack of appropriate ecotoxicological 

information) regarding possible negative effects caused to organisms exposed to such material. 

Obviously it is a challenge for risk assessors to consider how such “events” can be captured best 

(McKone 2010), how addressing epistemic uncertainty (lack of knowledge in mechanisms and 

models) as well as parameter uncertainty and variability (lack of data) (McKone 2010; Scholz and 

Siegrist 2010). Epistemic uncertainties cannot be covered by standard quantitative uncertainty 

analyses only, but rather can only be addressed taking an interactive approach that enables one 

to incorporate timely detection, analysis, and correction of the model’s insufficiencies (McKone 

2010). Consequently, the discussion of methodological limitations of the developed risk 

assessment framework is crucial and a necessity to make progress from an epistemological point 

of view. 

1.3 Research design and methodology  

1.3.1 Frame of the PhD thesis 

This thesis is part of the EMPA project “Quantitative risk assessment of nanoparticles in the 

environment: Exposure modeling and ecotoxicological considerations”. The project aims to 

estimate quantitatively the risks that ENM may pose to the environment. PECs will be contrasted 

to PNECs. Such PECs will be derived from modeling realistic scenarios of ENM release to fate, 

transport and distribution in the environment, PNECs from analyzing results from ecotoxicological 

assays. In order to calculate and integrate the distinctive uncertainties concerning the estimation 

of the model input parameters (e.g. transfer and partitioning coefficients, emission factors) into 

the modeling, probabilistic/stochastic algorithms will be conceptualized and programmed. 
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1.3.2 Goals and methods 

In order to conduct environmental risk assessment for ENMs and to gain more knowledge on the 

occurrence, fate and behavior of these materials in the environment, the following questions were 

asked:  

 What are the relevant ENMs used in industry and household, and what are the ENM 

production and use amounts (worldwide, in Switzerland, Europe and the United States)?  

 What are the ENM emission volumes to and concentrations in the environment (surface 

waters, soil, sediments, air etc.) we have at present and what to expect in the near future? 

 What are the most crucial parameters that influence ENM concentrations in the environment? 

 Does the modeled exposure to ENM cause negative effects for organisms in the environment? 

Thus, the goals of this thesis are:  

1)  to evaluate available exposure models for chemicals regarding their potential to model also 

ENM release into and fate in the environment in order to develop a suitable modeling 

framework for coping with high ENM specific uncertainties of the model input parameters;  

2) to conceptualize and program the developed model in an appropriate computational software; 

3) to collect data on use, products, amounts of release, fate and behavior in natural and technical 

environments for relevant ENMs; 

4)  to use the model to calculate regional PEC values for Switzerland, Europe and the United 

States;  

5)  to calculate local PEC values for rivers in Switzerland based on a high geographical resolution 

incorporating spatial information and water flow level measurement data; 

6)  to evaluate PNECs; 

7)  to estimate environmental risks (on regional and local level); 

8)  to discuss potentials and limitations of the developed and implemented method. 

Methods used: 

1) System analysis: Based on literature, web review and personal communications (ENM 

producers, ENM containing product producers, operators of waste incineration and sewage 

treatment plants, operators of recycling facilities, scientists and governmental bodies), 

production volumes, ENM mass flows into the environment, environmental behavior and 

ecotoxicity of the selected ENM are identified. 

2) Mathematical formalization and computational programming of an exposure assessment 

model to derive ENM flows to and expected concentrations in the environment. 

3)  Risk calculation according to the ratio PEC/PNEC. 
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1.4 Papers included in the thesis  

Paper I (Chapter 2) 

Gottschalk F., Scholz, R. W., Nowack, B. (2010). Probabilistic material flow modeling for 

assessing the environmental exposure to compounds: Methodology and an application to 

engineered nano-TiO2 particles. Environmental Modelling & Software 25(3), 320–332. 

Paper II (Chapter 3) 

Gottschalk, F., Sonderer, T, Scholz, R. W., Nowack, B. (2009). Modeled environmental 

concentrations of engineered nanomaterials (TiO2, ZnO, Ag, CNT, fullerenes) for different 

regions. Environmental Science & Technology 43(24), 9216–9222. 

Paper III (Chapter 4) 

Gottschalk, F.; Sonderer, T.; Scholz, R. W.; Nowack, B. (2010). Possibilities and Limitations of 

Modeling Environmental Exposure to Engineered Nanomaterials by Probabilistic Material Flow 

Analysis. Environmental Toxicology & Chemistry 29(5), 1036–1048. 

Paper IV (Chapter 5) 

Gottschalk, F., Ort, Ch., Scholz, R. W., Nowack, B. (submitted). Engineered nanomaterials in 

rivers – an exposure assessment at high spatial and temporal resolution for nano-TiO2, nano-

ZnO and nano-Ag. Environmental Science & Technology. 

1.5  Outline 

In Chapter 2 a model framework to derive predicted environmental concentrations (PEC) based 

on probabilistic/stochastic calculations that are combined with substance/material flow modeling 

is developed. The evolved model is basically applicable for any possibly environmentally 

hazardous substance with a distinct lack of data concerning environmental fate, exposure and 

emission characteristics. As case study the exposure in the Swiss environment to nano-TiO2 is 

presented. 

Chapter 3 shows simulation results of predicted environmental concentrations (PEC) for soils, 

sludge treated soils, surface waters, sewage treatment plant effluents, sewage sludge, 

sediments, and air. These calculations were done for nano-TiO2, nano-ZnO, nano-Ag, carbon 

nanotubes (CNT), and fullerenes for the USA, Europe and Switzerland. The environmental 

concentrations are calculated as probabilistic density functions and are compared to data from 

ecotoxicological studies. 

Chapter 4 discusses based on a case study of nano-TiO2, CNTs and nano-Ag for Switzerland 

and based on a comparison with the scenario analysis presented in Mueller and Nowack (2008) 

the possibilities and limitations of modeling environmental exposure to engineered nanomaterials 

by means of probabilistic material flow analysis. This study extends the exposure modeling of 

Mueller and Nowack (2008) by using a probabilistic/stochastic approach and by considering the 

environmental compartments sediment and groundwater as well as production, manufacturing 

and recycling processes.  
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In Chapter 5 two models, one based on probabilistic material flow analysis and the other based 

on graph theory are combined to calculate predicted environmental concentrations (PEC) of 

engineered nanomaterials in Swiss rivers at high spatial resolution. PECs for nano-TiO2, nano-

ZnO and nano-Ag were calculated for 742 river sections at base flow conditions Q95% (flow 

reached or exceeded annually in 95% of the time, averaged in Switzerland over a 10-year period) 

and using historical hydrological data (flow measurements for 20 selected locations over a 20-

year period (1988–2007)). In addition, the river sections where PECs are expected to exceed 

PNECs at different water levels are identified. 

In the Appendix A to Chapter 3 a description of the system compartments used for the case 

studies in Chapter 3 and 4 is given. Furthermore, information to the model input parameters 

(ENM production volumes, allocation of these volumes to product categories and release of ENM 

from products, production and manufacturing processes and to the considered ecotoxicological 

studies) is presented.  
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Abstract 

An elementary step towards a quantitative assessment of the risks of new compounds or 

pollutants (chemicals, materials) to the environment is to estimate their environmental 

concentrations. Thus, the calculation of predicted environmental concentrations (PEC) builds the 

basis of a first exposure assessment. This paper presents a probabilistic method to compute 

distributions of PECs by means of a stochastic stationary substance/material flow modeling. The 

evolved model is basically applicable to any substance with a distinct lack of data concerning 

environmental fate, exposure, emission and transmission characteristics. The model input 

parameters and variables consider production, application quantities and fate of the compounds 

in natural and technical environments. To cope with uncertainties concerning the estimation of 

the model parameters (e.g. transfer and partitioning coefficients, emission factors) as well as 

uncertainties about the exposure causal mechanisms (e.g. level of compound production and 

application) themselves, we utilized and combined the following probabilistic methods, sensitivity 

and uncertainty analysis, Monte Carlo simulation, Bayesian and Markov Chain modeling. The 

combination of these methods is appropriate to calculate realistic PECs when facing a lack of 

data. The proposed model is programmed and carried out with the computational tool R and 

implemented and validated with data for an exemplary case study of flows of the engineered 

nanoparticle nano-TiO2 in Switzerland. 

Keywords: Probabilistic material flow analysis (PMFA); Monte Carlo (MC); Markov Chain Monte 

Carlo (MCMC); Uncertainty; Engineered nanomaterial (ENM); Exposure assessment; Predicted 

environmental concentrations (PEC). 

2.1 Introduction 

An elementary step towards a quantitative assessment of the risks of new compounds or 

pollutants (chemicals, materials) to the environment is to estimate their environmental 
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concentrations. Model input parameters describing production volumes, emissions, and fate in 

the environment have to be estimated to model environmental concentrations. An important 

example of a new class of environmental pollutants are engineered nanomaterials (ENM). The 

increase in the use and production of ENMs leads presumably to increased human and 

environmental ENM exposure. The discussion about potential risks of ENMs has a high priority in 

governments and the public (Roco, 2005; Helland et al., 2006; Siegrist et al., 2007). However, the 

adequacy of conventional tools for assessing health and environmental risks from the use and 

production of nanomaterials is unknown at the time (Kandlikar et al., 2006; Katao, 2006; Nowack 

and Bucheli, 2007; von der Kammer and Hofmann, 2007). Available experience with inorganic 

and organic chemicals may not be relevant to nanoparticulated materials (Linkov et al., 2007) 

because of the particular chemical and physical properties of ENMs. These physical and 

chemical properties depend on size, structure, surface modification and functionalization of the 

ENM. Furthermore, even rough estimations of production and application quantities of ENMs are 

difficult to obtain.  

Material flow analysis (MFA) is an established method to study material and energy flows into, 

throughout, and out of a system (Baccini and Brunner, 1991; Baccini and Bader, 1996; Scholz 

and Tietje, 2002; Brunner and Rechberger, 2004). To model the fate of chemicals after discharge 

to the environment, mass balance multi-compartment models are the most commonly used 

approach (Cowan et al., 1995; Mackay et al., 1996; Mackay, 2001; McKone and MacLeod, 2003; 

Scheringer et al., 2004; Arnot, 2009). Examples of such models are the Berkeley-Trent (BETR) 

model (MacLeod et al., 2001) and the Climate Zone Model for Chemicals (CliMoChem) 

(Scheringer et al., 2000).  

Normally for new compounds, there is a lack of data about the parameters needed for these 

material flow and fate models. For many environmental contaminants such data gaps are filled 

using assumptions, extrapolations or safety factors (Kandlikar et al., 2006; Mueller-Herold et al., 

2006). Estimating risks of new compounds, e.g. of the currently intensely discussed 

nanomaterials (Alvarez et al., 2009), demands approaches to handling the inherent uncertainties 

and to simulate the compounds’ environmental fate under various possible conditions. A 

particular challenge is that risk estimation of new compounds has to integrate the uncertainty 

about the accuracy of the calculated modeling parameters and the natural variability of these 

parameters. An extreme lack of empirical data cannot be treated only statistically, because we 

often need predictions about parameter values that have not yet been measured. As a result, 

some judgments, e.g. technically informed judgments or predictions in form of probability or 

frequency distributions, are required (Whitfield and Wallsten, 1989; Frey, 1992). 

Whereas variability arises from true diversity across temporal, spatial or interindividual 

differences in the input values of a modeled system, uncertainty is associated with the knowledge 

of the data. Uncertainty about the knowledge is a measure of knowledge incompleteness about a 

quantity whose true value could be measured if perfect measuring methods were available 

(Cullen and Frey, 1999; Paustenbach, 2002). A detailed overview of the various sources of such 

epistemic uncertainties and variabilities in a modeling study is given in Refsgaard et al. (2007). 

Probabilistic methods of risk and exposure assessment to cope with such uncertainty and 

variability have been broadly discussed (McKone and Bogen, 1991; Finley and Paustenbach, 

1994; Cullen and Frey, 1999; Maddalena et al., 2004; Caldas et al., 2006; Fryer et al., 2006; van 

der Voet and Slob, 2007; Mutshinda et al., 2008). All these existing approaches can be roughly 
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characterized as human intake assessment models (Fryer et al., 2006), which simulate exposure 

as intake resulting e.g. from inhalation, ingestion or dermal absorption of pollutants. Such intake 

assessment models use as target variable the probability of adverse effects in response to 

environmental contamination (Mutshinda et al., 2008) and not the probability of environmental 

concentration of a pollutant as precondition for adverse effects. The main sources of uncertainty 

within such studies stem from quantifying human physical and behavioral characteristics, which 

have to be determined to model rates of intake e.g. of air or agricultural products.  

In addition, methods for the probabilistic assessment of environmental levels within 

environmental fate models were developed as well. MacLoed et al. (2007) developed a 

multimedia model to assess diel variability of persistent semivolatile contaminants (SVOC) 

concentrations in the air. In this work a Monte Carlo (MC) analysis was applied to estimate 

uncertainty in the model output by means of confidence factors. Schenker et al. (2008) described 

the environmental fate of Perfluorooctanoate (PFO) using MC analysis to calculate the 

uncertainties in the model due to different pathways for Arctic contamination, and to estimate the 

relative importance of such pathways to the total contamination levels. MacLeod et al. (2002) 

provided an analytical approach to calculate the relationship between uncertainty in input 

parameters and uncertainty in output parameters. Applications to a regional contaminant fate and 

a food web bioaccumulation model showed that this approach may lead to results that are 

consistent with equivalent modeling outputs of a MC analysis. 

The goal of our study was to develop a probabilistic material flow analysis (PMFA) framework to 

derive probability distributions of PEC values for any compound or material. The PMFA aims at 

calculating from a whole life cycle perspective concentrations of potential contaminants in 

complex systems, covering all environmental compartments and life stages of these 

contaminants. Our model goes further than simple probabilistic exposure assessments (Cullen 

and Frey, 1999), which cover the contaminants’ concentration exclusively in produce or e.g. in 

indoor air to model intake (ingestion or inhalation) quantities of such materials. We simulate the 

emission of pollutants into the environment, which generates pollutant concentrations in natural 

compartments. However, compared to generic chemical fate models, the here presented material 

flow analysis includes besides the natural compartments also technical compartments (pollutant 

production; manufacturing of pollutant containing products; use, recycling and disposal of such 

products and pollutants fate in waste incineration and sewage treatment plants). Based on a 

material flow analysis, which covers the whole life cycle of a studied contaminant substance, the 

flows of the contaminant from the source to the natural compartments where organisms are 

exposed to are modeled. Thus, environmental concentrations of possibly environmentally 

hazardous substances are calculated considering uncertainty and variability within all input data 

by means of probability distributions. The results of the calculations are probability distributions 

representing the range and likelihood of possible concentrations. The uncertainty in this model is 

accounted for already conceptually (Scholz and Schnabel, 2006) and hence does not need to be 

corrected by the use of safety factors. At every point on the path of the compound flows 

uncertainties are considered. Input and output flows, transfer coefficients and environmental 

concentrations are modeled as probability distributions. As case study the simulation of PECs of 

engineered nano-TiO2 particles in Switzerland has been chosen.  
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2.2 Methodology and modeling  

First the modeling steps are defined. Based on this modeling procedure we then discuss how the 

model parameters are linked to input variables and outputs (modeled responses) and how such 

responses may be validated. Key aspects concerning model building, testing and verification 

have been presented e.g. in Jakeman et al. (2006).  

2.2.1 Conceptualization  

The proposed exposure assessment is based on a material flow modeling and involves: 1) 

characterization of sources and production volumes, 2) estimation of emissions to environmental 

compartments, 3) specification of the fate in the environment, and 4) derivation of distributions of 

PECs for the studied compounds. 

Table 2. Main steps of the developed modeling approach.  

 
Step 1: Goal definition, including system boundaries constituted by the studied 

compounds, time and space 

Step 2: System modeling, definition of goods, products, processes and 

functions/relations (transfer coefficients) 

Step 3: Stochastic/probabilistic modeling of the input parameters using distributions 

Step 4: Calculation/computation 

 Deterministically with point values (e.g. for model validation), (MFA 

standard) 

 Monte Carlo simulation with the modeled distributions 

• Bayesian optimization 

• Monte Carlo Markov Chain modeling  

Step 5: Sensitivity analysis 

Step 6: Interpretation, assessment of pollution potential (PEC) 

 

 
 

The method of substance/material flow analysis (Baccini and Brunner, 1991; Baccini and Bader, 

1996; Scholz and Tietje, 2002; Brunner and Rechberger, 2004) is used to determine flows to and 

amounts of compounds within the studied environmental compartments and is extended to a 

probabilistic material flow analysis (PMFA). We combine sensitivity and uncertainty analysis, MC 

simulation, Bayesian and Markov Chain modeling to propose a PEC modeling approach for 

cases characterized by a distinct lack of data (see Table 2). The simulated PECs for compounds 

in air, landfill, surface water, groundwater, soil, and sediment provide the basis for the 

quantitative exposure assessment and are derived from the results of the probabilistic material 

flow analysis.  

2.2.2 System analysis 

Compounds can be released from point sources such as production facilities, manufacturing 

plants, wastewater treatment or waste incineration plants, landfills or from line sources such as 

emissions during transportation or as components of personal care products or during aging of 
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materials. Accidental release during production and transport cannot be excluded, e.g. during 

product finishing. Compounds can also be released intentionally directly into the environment, 

e.g. from applications in agriculture. We structured the release to the environment as a three level 

emission. The quantity of compound synthesis is estimated in order to calculate direct emissions 

from production facilities to the environment. As second level, the emissions from the utilization 

phase of the compounds when manufacturing other products is modeled. Finally, calculations 

related to utilizing, wasting, and disposing available products are computed. Such emissions are 

estimated by grouping the products in product categories, which are supposed to have similar 

emission coefficients.  

The system flow chart (Fig. 4) for a regional analysis of ENMs comprises 11 processes (volumes, 

boxes), the first one is subdivided in production, manufacturing of products and consumption of 

products, 27 internal flows, 1 input flow (generation flow within the first process), 3 elimination 

flows and 3 output flows. The system includes flows between and within production-

manufacturing and consumption, wastewater treatment plant, waste incineration plant, lower 

atmosphere, landfill, soil, surface water, groundwater and sediments. Transfer coefficients imply 

the exchange of compounds between and within the compartments. As mentioned above this 

material exchange is triggered by a triple and simultaneous release of compounds (from the 

production, manufacturing and usage process) to the environmental and technical compartments. 

The mathematical structure of the system consists for the stationary input-output model of a set 

of n linear equations containing n unknowns. Matrix algebra is applicable and solutions to the 

linear system are in principle and for the deterministic case findable straightforward building 

inverse matrices. 

In case of a probabilistic approach, the construction of density functions representing the 

uncertainty introduces additional uncertainty and is part of the system analysis. The construction 

of such distributions depends on different types of knowledge (Scholz et al., 1992). If we have 

(some) data, e.g. about the daily quantity of production of a compound, we can take a statistical, 

frequentist approach, best when smoothing or adapting a given frequentistic distribution. If this is 

not the case, we can construct a subjectivist probability distribution, based on our or on experts’ 

best knowledge. There is, in principle, also the possibility to construct distributions based on the 

logical probability concept, e.g. if frequentist distributions from other cases are available and 

transferable by weighted arguments (Carnap, 1950; Scholz et al., 1992). 

For the case study presented, all probabilistic simulations including MC and MCMC simulations, 

uncertainty and sensitivity analysis have been implemented and programmed in R (R 

Development Core Team, 2008).  
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Figure 4. Basic structure of the model with the environmental compartments that are considered 

and the flows between them (the dotted flows concerning recycling processes were not relevant 

for the implementation case, import and export flows written in brackets were considered to be 

equal, small and/or not quantifiable). 

2.2.3 Mathematical model 

Our mathematical model describes the processes by rates of change of stocks and flows by 

transfer coefficients (e.g. TCrs , the transfer coefficient concerning the flow from box r  to s ). The 

transfer coefficients of output flows depend on the total input into the process. To avoid confusion 

we distinguish between variables and parameters. The term parameter refers to the constants 

e.g. transfer coefficients characterizing the probability density function of the random variables 

e.g. storage within the processes. The programmed probability density functions describe the 

probability that parameters and random variables fall within the estimated interval.  
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2.2.3.1 System of equations 

The investigated linear system is mapped mathematically on a mass flow modeling, which 

combines the law of mass and energy conservation principle with phenomenological model 

approaches based on experimental data or assumptions. It links the source, the metabolism 

paths and the sinks of compounds and allows modeling the pathway of compounds in the 

environment. According to the balance principle the mass of all inputs into a process equals the 

mass of all outputs of the process included accumulation or depletion (transformation) of mass:  

dMi
( j)(t)

dt
= m

rj
(i)(t) m

jr
(i)(t) +G

i
( j)  (1) 

Mi
( j ) is the mass amount of the compound i  in Vj , mrj

(i )  the mass/energy flow from Vr  to Vj  

and Gi
( j )  the mass production/transformation in Vj . 

The compound flows are induced by the compound flows or by the flow of compounds containing 

goods, which are calculated from the compound concentrations c  in these goods:  

m = mi = m
product c(i )  (2) 

The couple “goods/substances” (Brunner and Rechberger 2004) is decisive when developing an 

appropriate strategy for reduction or prevention of emissions from used goods. If potentially 

hazardous compound flows have to be reduced, we must know their concentration in the relevant 

goods. For constant stock change rates the studied system was mapped mathematically on a 

semi stationary model:  

 
M (i )

( j ) (t) = M (i )
( j )

+ M (i )
( j ) t   (3) 

Transfer coefficients (TC) describe the transfer of compounds from input flows into output flows: 

TCrj =
mrj

msr
s

,  (4) 

where the transfer coefficient TCrj  describes the partitioning of the process Vr  which is 

transferred to the process volume Vj  by the flow mrj .    

The linear equation system to calculate flows to and deposition within the examined processes of 

the system was formalized mathematically with the matrices T, A (see Fig. 5), and the vectors I  

and X . The nxn -matrix T (left) involves the transfer coefficients and the nxn -matrix A  (right) 

determines the equality of the input- and output-amount of compounds in the volumes 

(processes). V1  to Vn  represent production, manufacturing and environmental processes and 

Vm+1  to Vn  sinks, elimination and removal processes.  

The column vector I  determines the periodic input into the system, in this case study into the first 

process (left) and the column vector X  (right) the unknown variables of amount of compounds in 

every process. 
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Figure 5. Matrices of transfer coefficients (left) and compound quantities. 

 

I =

G

0

0

0

n

 and 

 

X= 

x1

x2

x3

xm

xm+1

xn

,  (I ,  X n 1)   (5) 

Thus, A defines a linear map from  
n to  

n by sending the column vector  X
n 1  to the 

column vector  AX
n 1 . As a result  

A X = I  (6) 

leads to the steady state of the studied system. 

2.2.4  Computing and model calibration 

2.2.4.1 Modeled distributions 

Table 3 presents the types of probability distributions used for modeling the nanomaterial case. 

They are restricted to uniform, triangular, and lognormal distributions. The uniform distribution is 

used for modeling most of the transfer coefficients. This is done as they are very poorly studied 

and there are no data for suggesting a specific distribution. The triangular distribution is used if 

the most probable outcome (mode or modal value) is vaguely known (guessed), it provides a less 

pronounced valuation of uncertainty and standard deviation as the uniform distribution. The 

triangular distribution may be applied when a lognormal distribution is not appropriate because of 

too little data and a uniform distribution not justified because of the “known” mode. Due to some 

available data lognormal distributions, which in principle may extend from zero to infinity, could be 

used to simulate the annual ENM production. 
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Table 3. Types of probability density functions of the model parameters programmed to run the 

MC and MCMC simulations.  

  Lognormal 

distribution 

Triangular distribution Uniform distribution 

Modeled 

parameters 

Logarithmic 

mean (m), log. 

standard 

deviation (sd). 

Mode, minimum and 

maximum value. 

Minimum and 

maximum value. 

Modeling 

characteristics 

Exponential 

modeling of a 

normal 

distribution of 

random 

variables, 

multiplicative 

standard 

deviation. 

Most likely outcome 

modeling, 

multiplicative 

standard deviation. 

Intervals of the same 

range are equally 

likely, addditive 

standard deviation. 

Shape  Skewed Skewed-symmetrical Symmetrical 

Epistemological 

approach 

statistical 

frequentist 

statistical frequentist/ 

subjectivist 

statistical 

frequentist/ 

subjectivist 

 

 

2.2.4.2 Monte Carlo (MC) simulation 

MC methods within this study denote first the modeling of probability distributions of all model 

input parameters and second the repeated computation of a proposed linear equation system 

(Fig. 6). As a first step sequences of independent uniform random numbers Un  on the interval 

0,1[ ]  are constructed in order to build functions 
 
(u1,...,uq ) F(u1,...,uq )  such that the uniform 

sequences of random variables X = F(Un )  follow the required distributions of the model input 

parameters (see Appendix A). Within the second step the algorithm to produce outcome 

scenarios (iterations) is performed solving thousands of systems of linear equations (see 

Appendix B).  

2.2.4.3 Number of iterations and smooth density curves  

The basic approach within this study to estimate a sufficient number of repetitions or iterations in 

MC simulations Sn  to get statistically acceptable results is based on the central limit theorem, 

which implies that the difference between the average of the observed output and the true mean 

is  



Probabilistic/stochastic environmental exposure modeling: Methodology and applications to engineered nanomaterials 

32 

Sn
n

μ =
n

Sn nμ

n
,  (7) 

thus, the variation in the observed means tend to zero as fast as 1 / n (Meerschaert, 2007). We 

performed test simulations with different numbers of repetitions to test the stability of the method.  

 

Figure 6. Basic structure of the proposed Monte Carlo (MC) and Markov Chain Monte Carlo 

(MCMC) modeling approach. 

The output distributions of the MC simulations are initially computed as a scatter of data points, 

which are then smoothed. The size of the bandwidth chosen for kernel density estimation controls 

the smoothness of the density curves. The choice of a reasonable bandwidth is a concession 

between smoothing as far that insignificant bumps are rubbed out and that real peaks are not 

eliminated. A principle with acceptable application in R is a bandwidth b calculated and controlled 

as  

b =
max(x) min(x)

2(1+ log2 n)
,    (8) 

where n  is the number of data points, x  the simulation output variable (Crawley, 2007). 

2.2.4.4 Markov Chain Monte Carlo (MCMC)  

Bayesian inferences provide in this study posterior distributions p( y)  defining what is known 

about unobservable model input parameters given measured or simulated data y : 

p( y) = p(y )p( ) / p(y )p( )d p(y ) p( )  (9) 

Markov Chain Monte Carlo (MCMC) algorithms are straightforward solutions to sample from such 

posterior distributions. Metropolis algorithms (Albert, 2007) with symmetric proposal distribution 

are used to build Markov Chains with the target posterior density as stationary distribution. 

MCMC packages containing Metropolis sampling routines for R are freely available (http://cran.r-

project.org). The algorithms can be described as follows: 
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1. Pick a candidate * from the proposal density p( * t 1) . 

2. Compute r = p( * y) / p( (t 1) y) . 

3. Accept t
=

*with probability P = min r,1( ) , otherwise t
=

t 1.  

The normalizing constant of p( y)  (see equation 9) is canceled out due to the ratio, which is 

computed in each iteration step. 

The MCMC outputs may be interpreted using graphical and numerical techniques. Once the 

simulation algorithm is performed it is necessary to check the convergence of the simulated 

sequences and if the chains have explored the entire posterior distribution. One informal 

possibility is to plot the posterior traces (Mutshinda et al., 2008) of (t )  against the iteration 

number to evaluate convergence visually.  

High correlation between successive iterates prevents the algorithm from exploring the entire 

parameter range. A method (Albert, 2007) to assess the mixing of the chains, the degree of 

dependence between successive iterations in the chain, is to measure the correlation between 

the sets t  and t+N ( i ) where N (i )  is the difference of iterates between the two sets of generated 

values. A standard approach is to plot the values of the correlation against the log N (i ) . In the 

case of a well mixing chain, the values of the described correlation will decrease to zero by 

increasing of the difference of the number of iterations.  

2.2.4.5 Sensitivity analysis 

The influence of individual input parameters on system output variables is examined showing the 

relative differences of the variables changing the parameters. Thus, sensitivity analysis allows to 

identify e.g. the compound flows that contribute most significantly to the variance of the 

calculated concentrations. If the most influential parameters are calculated on the most uncertain 

data, then the confidence in the results may be considered poor, otherwise if those parameters 

have a robust data basis, the confidence in the exposure assessment might be higher.  

Adapted from (Page et al., 1991; Finley and Paustenbach, 1994; Norton, 2008) sensitivity is 

defined as the ratio of the relative change in the output produced by a unit relative change in the 

input parameters. Thus, a baseline point value, in this case study the true mean of each 

distribution, is calculated for each output variable and input parameter of the MC simulation. Then 

a differential value is calculated for each output variable Xi  by decreasing the baseline input 

parameter Pj  value by 10%  

Si j =
( Ximean

/ Ximean
)

( Pjmean / Pjmean )
j . (10) 

In order to consider the parameter uncertainty the normalized sensitivity is multiplied by the 

standard deviation of the parameters, which describes the spread of the probability distribution of 

the analyzed parameters. Such a Gaussian approximation allows to consider both sensitivity and 

uncertainty (Finley and Paustenbach, 1994; Paustenbach, 2002).  
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Additionally all sensitivity values are summed to calculate each parameter’s relative and 

percental contribution to the total sensitivity. Thus, the sensitivity analysis ranks the modeling 

parameters in order of importance and augments the confidence in the model output values 

comparing the calculated sensitivity to the order of uncertainty of the input parameters. This 

allows identify the most important inputs that should be studied with priority in order to reduce 

uncertainty and to improve the exposure modeling.  

2.2.5 Implementation of a case study (nano-TiO2) 

As case study and to test computational performance of the model we simulated the behavior of 

nano-TiO2 in the environment. Amounts of application of nano-TiO2 and characteristics of the 

ENM translocation to and within the environment such as emission factors from products and 

transfer coefficients were required to run the model. Data to implement the simulations was 

principally taken from Mueller and Nowack (2008), if not other sources are indicated explicitly 

(Adam et al., 2006; Schmid and Riediker, 2006; Schmid and Riediker, 2008). For the 

environmental compartments sediment and groundwater which were not included in the study of 

Mueller and Nowack (2008) and where data was not available, the estimation of the transfer 

coefficients was based on assumptions. Recycling processes were not relevant for the 

implementation case and therefore not considered within the exemplary case study. 

The spatial boundary was the geographical boundary of Switzerland. Although most of 

Switzerland’s resident population is concentrated in urban centres, no internal geographical 

differentiation was assumed. Cosmetics consumption which are e.g. for the case study of nano-

TiO2 the most relevant sources are e.g. assumed to be in tourist destinations in the alpine and 

pre-alpine region about the same size as in urban regions. The following assumptions were 

made: a) Environmental compartments are homogenous and well mixed. b) The natural 

background concentration of particles is neglected. c) Biodegradation of ENMs is not relevant for 

the case study, nano-TiO2 as metal oxide is not biodegradable. d) For the reason of feasibility it is 

assumed that the system is stationary. e) Sludge application on soil and landfill is not admitted in 

Switzerland and therefore these flows are not considered. 

Table 4 shows the assumed ranges of the input parameters. These range values were used to 

simulate prior and posterior parameter distributions in order to run the model and calculate ENM 

concentrations. These so called initial values for the transfer coefficients between the studied 

compartments were taken a) from the literature where few data was available or b) calculated 

based on estimations within this work. Most of the uniform distributions were derived from Mueller 

and Nowack (2008) and are based on the mean value of the realistic and the high exposure 

scenario used in that work. We increased and decreased these mean values by 10% in order to 

calculate the so-called initial range of the concerned transfer coefficients. The range of the 

periodical ENM input into the system was modeled as a lognormal distribution based on 

indications (n = 4) from different sources. Having some indications about the ENM fate within the 

waste incineration plant (WIP), the transfer coefficient between WIP and atmosphere could be 

estimated based on a triangular distribution. For this case the uncertainty was reduced in 

comparison to all the uniformly distributed transfer coefficients where there was at the most one 

unique indication of parameter value available.  
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Table 4. Probability distributions of the modeling parameters used to simulate nano-TiO2 flows. I 

is the annual input of nanoparticles into the production, manufacturing and consumption process 

(PMC), TC12 represents e.g. the transfer coefficient of nanoparticles between process 1 (PMC) 

and process 2, the sewage treatment plant (STP) (see for numbering and nomenclature also Fig. 

4). The column references indicates the sources from which the prior mean values are derived: 

(1) Mueller and Nowack (2008), (2) Schmid and Riediker (2006), (3) Schmid and Riediker (2008), 

(4) Adam et al. (2006), (5) this work. 

 

Parameter PDF Minimum Maximum References 

  or or  

    Logarithmic 

Mean 

Mode   

I, Input lognormal 5.45959  (1),(2),(3) 

TC12, Wastewater uniform 0.58536 0.66075 (1) 

TC14, Waste uniform 0.06795 0.08305 (1) 

TC15, Emissions uniform 0.00131 0.00160 (1) 

TC16, Waste uniform 0.11250 0.13750 (1) 

TC17, Waste uniform 0.05625 0.06875 (1) 

TC18, Emissions uniform 0.02565 0.03135 (1) 

TC111, Export uniform 0.07560 0.09240 (1) 

TC23, Overflow uniform 0.06750 0.08250 (1) 

TC24, STP sludge uniform 0.85233 0.87918 (1) 

TC28, Cleaned water uniform 0.05333 0.06518 (1) 

TC45, Emissions trigonal  0.00050 (1),(4),(5) 

TC46, Slag, filter ash  uniform 0.79480 0.97143 (1),(4) 

TC411, Export of filter ash uniform 0.01857 0.20519 (1), (4) 

TC57, Particle emissions uniform 0.96700 0.97300 (1) 

TC58, Deposition (dry/wet) uniform 0.02700 0.03300 (1) 

TC69, Leaching uniform 0.0000009 0.0000011 (5) 

TC66, Storage uniform 0.9999989 0.9999991 (5) 

TC75, Emissions uniform 0.00090 0.00110 (1) 

TC78, Leaching uniform 0.00090 0.00110 (1) 

TC79, Erosion uniform 0.0000009 0.0000011 (5) 

TC710, Leaching uniform 0.00090 0.00110 (5) 

TC77, Storage uniform 0.99670 0.99730 (5) 

TC89, Groundwater infiltration uniform 0.00090 0.00110 (5) 

TC810, Sedimentation uniform 0.45000 0.55000 (5) 

TC811, Export uniform 0.44890 0.54910 (5) 

TC91, Consumption uniform 0.00090 0.00110 (5) 

TC99, Storage uniform 0.99890 0.99910 (5) 

TC108, Resuspension uniform 0.00090 0.00110 (5) 

TC1010, Storage uniform 0.99890 0.99910 (5) 
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The calculations of the ENM concentration in surface water (rivers and lakes) were performed 

based on the relevant mixing depth of 3 m (ECB, 2003), which were multiplied with 3% (ECB, 

2003) of the total area of Switzerland. This leads to a relevant water volume of 3.7 km3. The 

average concentration of ENMs in the soil was calculated based on the soil mixing depth which 

depends on the type of soil and is 0.2 m for agricultural soil and 0.05 m for natural and urban soil; 

the agriculturally used fraction is 0.27, natural ground 0.6 and urban ground 0.1 (ECB, 2003). 

This leads to a calculated soil volume of 6.2 km3
. The soil density was taken to be 1.7 kg/l (ECB, 

2003). The volume of the relevant sediment compartment was derived from the water surface, 

which was first assumed to be equal to the surface of the sediment and second multiplied with an 

average sediment depth of 0.04 m. This leads to an estimated relevant sediment volume of 0.05 

km3. The bulk density of the relevant sediment was taken to be 1.3 kg/l (ECB, 2003). The 

computation of the ENM concentration within the air compartment was based on the retention 

time of 10 days of superfine particles (Anastasio and Martin, 2001) and on the calculated relevant 

air volume (41, 285 km3) obtained by multiplying the total area of Switzerland with the relevant air 

height for terrestrial ecosystems of 1 km (ECB, 2003). Based on the assumed retention time of 10 

days about one thirty-sixth of the ENM input into the air compartment is constantly in the air. In 

addition to the compartments used by Mueller and Nowack (2008), the secondary compartments 

groundwater and sediments were included as well in this work. However, calculations of flows 

from and to these compartments e.g. sedimentation, resuspension, surface erosion or water-

sediment partitioning of ENMs are based on very crude assumptions, since currently there is no 

data available concerning ENM transfer to and from these two compartments. 
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Figure 7. Mass flows between the environmental compartments for nano-TiO2 and accumulation 

rates within the compartments in t/year (shown as 95% confidence intervals).  

2.3 Results and discussion 

2.3.1 Algorithmic performance of the model 

To test the mathematical/computational correctness of the model we recomputed exactly the high 

exposure scenario of nano-TiO2 flows presented in Mueller and Nowack (2008). First, the 

deterministic case was recomputed using the same model input values. All simulation outcomes 

rounded to 2 significant digits corresponded exactly to the values shown in the mentioned study. 

The same applied for the computation of the same scenario by means of the MC approach. We 

ran 100,000 iterations assuming the input parameters to be uniformly distributed (+/–10%) 

around the given input data in  
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Figure 8. Modes of the mass flows between the environmental compartments for the nano-TiO2 

study and the accumulation rates within the compartments in t/year. The mode is the most 

frequently computed probability (shown is the 95% confidence interval). 

Mueller and Nowack (2008). Eleven of the 14 flows, rounded to two significant digits, 

corresponded exactly to the values given by Mueller and Nowack (2008). Three of the 14 values 

corresponded exactly to the values of Mueller and Nowack (2008) if rounded to one significant 

digit. This shows that even with more complex systems (10 processes, 23 internal flows, 1 input 

flow, 3 elimination flows and 3 output flows) the programmed MC simulations solve the equations 

correctly providing results, which fit even as mean values available deterministic data.  

2.3.2 Modeling results 

A sampling size of 100,000 was chosen for all simulations. Numerical stability of MC techniques 

for exposure assessment is commonly reached or accepted at 10,000 repetitions (Burmaster 

and Anderson, 1994). To test the numerical performance of the procedure, the stability of mean, 

median, standard deviation and kurtosis was tested starting from small statistics to arrive at a  
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Figure 9. Probability densities from Monte Carlo (line) and Monte Carlo Markov Chain (dotted 

lines) simulations of the predicted annual increase of nano-TiO2 concentrations in g/kg in soil 

and sediment and of the concentrations in air in g/m
3
 and surface water in g/l. 

sufficient number of iterations making larger ones. Above 10,000 iterations the mentioned central 

moments (mean, median) were insofar stable that there was no observable difference between 

the computed middle values of simulations with the same quantity of iterations and such with 

higher number of repetitions. It takes more iterations to stabilize the tails of the output 

distributions and to locate potential extreme events in those tails. Above 100,000 iterations even 

the standard deviations of the output variables were stable so that there was no significant 

difference between the computed values of simulations with the same quantity of repetitions and 

such with more iterations. From the collected data the mean, the range and the probability 

distribution for the input variable and parameters were calculated. The computed nano-TiO2 flows 

and accumulation rates in Fig. 7 indicate the 95% confidence interval within which the output 

probability distributions of the ENM flows are included when repeating the MC simulations. Fig. 8 
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shows the 95% confidence interval within which the modes of the computed output probability 

distributions of the ENM flows and accumulation rates are included when repeating these 

simulations. The mode is the value that appears most frequently in the computed probability 

distribution. It is regarded as the highest probability p(x)  for a discrete distribution or as the 

highest probability density f (x)  for a continuous case. Thus, the range of the flows within Fig. 8 

may be interpreted as the most probable indications for the expected ENM flows based on a 

relative probability, whereas the range of the values within Fig. 7 may be regarded as a range 

which covers with a very high probability the whole range of possible values. The most relevant 

ENM flows (95% confidence interval of the mode value) are wastewater (30.7–33.8 t/a), sludge 

from STP to WIP (26.0–29.2 t/a), filter ash from WIP to landfill (26.8–29.4 t/a), direct deposition 

from PMC to landfill and soil (6.2–6.8 t/a and 3.1–3.4 t/a), export from PMC and WIP outside the 

system boundary (4.1–4.6 t/a and 3.4–3.7 t/a) and waste from PMC to WIP (3.7–4.1 t/a). Figure 9 

shows the simulated PEC values for soil, water, air and sediments. Noteworthy are the very small 

concentrations in the air compartment compared to the simulated concentrations in surface water 

and to the annual increase of the concentrations in soil and sediments. 

Table 5. Examples of the modeled prior and posterior distributions of the parameters (mean 

values, standard deviation, reduction coefficient and percentiles) used to simulate nano-TiO2 

flows and to calibrate the evolved model.  

Parameter PDF Prior distribution Posterior 
distribution 

      

    Mean SD Mean SD 50th 75th 97.5th 

I, Input lognormal 
303.31

300 
245.69

44 
235.083

70 
191.950

6 182.14 294.64 743.49 
TC810, 

Sedimentation uniform 
0.5000

0 0.0289 0.48984 0.0277 0.4853 0.5111 0.5451 
TC12, 
Wastewater  uniform 

0.6231
5 0.0218 0.62340 0.0217 0.6235 0.6422 0.6589 

TC58, Deposition 
(dry/wet) uniform 

0.0300
0 0.0017 0.03000 0.0017 0.0300 0.0315 0.0328 

TC57, Particle 
emissions uniform 

0.9700
0 0.0017 0.97001 0.0017 0.9700 0.9715 0.9729 

TC24, STP 
sludge uniform 

0.8657
5 0.0078 0.86575 0.0078 0.8658 0.8725 0.8785 

TC45, Emissions trigonal 

0.0035

0 0.0023 – – – – – 

 

2.3.2.1 MCMC simulations 

The MCMC simulation results provide the highest posterior probabilities, which may be regarded 

as the “best” simulations. Prior data do not represent measured data in this case study, but the 

results of the Monte Carlo simulations. Insofar, the information in the data is small and the 

posterior distributions do not differ greatly from the prior. In such cases the prior 

distribution p( ) corresponds strongly to the distribution p(y ) , which indicates the probability of 

observing randomly the data y  for a given value of . Hence, the posterior simulation results 
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(Fig. 9) are not so much “best” estimations as rather an example how to improve and calibrate 

simulations in the future when more and more secure data concerning the input parameters will 

be available.  

Table 5 shows exemplarily results of the parameter conditioning based on the modeled Markov 

Chain properties (see section 2.4) and conducted for the MCMC simulations. For the prior 

distributions the mean values and the standard deviation are indicated, for the posterior 

distributions mean values, standard deviation and quantiles are given. For the parameters with 

downright small uncertainty space and transfer coefficient, no MCMC simulations were 

performed. To judge convergence by the mixing between the chains, several chains were run 

simultaneously from different initial states. Markov Chains that converge to the equilibrium 

indicate that they have approximated the target distribution. In Fig. 10 we see exemplarily the 

degree of mixing and convergence of Markov Chains from the last 3,000 of 100,000 posterior 

draws. The upper figure shows draws from the parameter range of the flow coefficient sewage 

treatment plant (STP) to WIP (STP sludge) (uniformly distributed) and the lower one posterior 

draws from the periodical ENM input (lognormally distributed) into the system. The chains have 

converged. The MCMC sampler jumps freely within the whole parameter space. The target mean 

value is 0.87 for the TC between STP and WIP and 233.22 t/a for the ENM input into the system.  

 

 

Figure 10. Trajectory plots of posterior draws from Monte Carlo Markov Chain simulations of the 

transfer coefficient sewage treatment plant to waste incineration plant (uniformly distributed, target 

mean: 0.87) and the periodical ENM input (bottom) into the system (lognormally distributed, target 

mean: 233.22 t/a) illustrated as Monte Carlo Markov Chain steps against the iteration number. 
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2.3.2.2 Sensitivity analysis 

First, the unitless results (see Table 6) show how a relative change of the input parameters 

produces a relative change of the simulation output values. Second, the results show the relative 

contribution of each parameter to the total sensitivity. In addition, the confidence in the simulation 

results may be estimated by comparing the sensitivity results with the robustness of the influential 

parameters. If the most influential parameters were based on very uncertain data, the confidence 

in the simulation output would be small. However, for this case study this estimation is not 

straightforward. The reason is that most of the probability distributions of the input parameters 

were computed based on the same data basis (Mueller and Nowack, 2008), and that most of the 

remaining distributions were calculated based on similar assumptions made within this work 

(Table 4). Insofar, the ranges of uncertainty of the model input parameters differ only slightly from 

each other. However, we may at least state that the most influential parameters to the 

compartments surface water and sediment (ENM flows from or to the sewage treatment plant) 

were estimated based on information taken from Mueller and Nowack (2008) and not exclusively 

based on assumptions. The most influential flows for surface waters are sludge from STP to WIP 

(83.2%), particle emissions from PMC to surface waters (6.6%), the STP overflow (4.1%) and the 

STP effluent (3.9%). The increase of concentrations in sediment is mostly influenced by the 

sludge flow from STP to WIP (60.1%), the sedimentation of ENMs in water (15.8%) and by the 

water flows leaving the system (11.8%). These results underline in accordance with the simulated 

flows that the parameters describing the flows of nano-TiO2 from the PMC process to the STP, 

the STP effluent and overflow, the sludge from STP to WIP, and the sedimentation process in 

water need a closer look.  

2.3.2.3 Implications of the simulated case (nano-TiO2) 

The very small concentrations of nano-TiO2 in the air compartment compared to the simulated 

concentrations in surface water and to the annual increase of the concentrations in soil and 

sediments are mainly due to the high volume of the compartment and the short residence time of 

the ENMs. Furthermore, ENMs reach the atmosphere during the usage of products or via 

emissions from waste incineration plants only at very low amounts. However, the simulated 

concentrations in surface water and the remarkable high annual increase of concentrations in 

sediments show that a further look at the nano-TiO2 concentrations in waters is needed to assess 

potential risks posed from these ENMs to aquatic organisms. Thus, the fate and behavior of 

nano-TiO2 in STPs (and STP sludge) and the sedimentation process of this nanomaterial need to 

be studied in more detail. Sludge application on landfills and soils is prohibited in Switzerland and 

thus the STP sludge mostly incinerated in WIPs. However, for other regions (e.g. USA, EU) 

where sludge application on soils is admitted, the sludge concentrations and as a result also the 

concentrations in STP sludge treated soils need to be studied as well. The results obtained with 

the new PMFA may be used to guide ecotoxicological research of these compounds as they 

provide a range of probable environmental concentrations. 
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Table 6. Results of the analysis of the model parameters sensitivity to the output variables.  

Exposure variable Sensitivity 

(unitless) 

Percentage 

of 

sensitivity 

Surface Water:   

F24, STP sludge 0.109615559 83.22% 

F18, Particle 

emissions 0.008690587 6.60% 

F23, Overflow 0.005422365 4.12% 

F28, Cleaned water 0.005208635 3.95% 

F16, Waste 0.001094578 0.83% 

F111, Export 0.000467249 0.35% 

F14, Waste 0.000370735 0.28% 

F12, Wastewater 0.000281325 0.21% 

F17, Waste 0.000247969 0.19% 

F46, Slag, filter ash  0.00016312 0.12% 

Groundwater:   

F810, Sedimentation 3.600084654 49.10% 

F811, Export 3.586067196 48.91% 

F24, STP sludge 0.108806519 1.48% 

F717, Storage 0.015171825 0.21% 

F18, Particle 

emissions 0.008626953 0.12% 

Sediments:   

F24, STP sludge 0.109483392 60.12% 

F810, Sedimentation 0.02885319 15.84% 

F811, Export 0.02158482 11.85% 

F18, Particle 

emissions 0.008678748 4.77% 

F23, Overflow 0.005415827 2.97% 

F28, Cleaned water 0.005202355 2.86% 

 

Furthermore, the results of this case study point out that the probabilistic material flow analysis 

(PMFA) is applicable i) to predict concentrations of compounds in the environment when little 

data are available, ii) to program and use any kind of probability distribution functions for the input 

variables incorporating a large number of processes and flows in order to compute 

probabilistically compound flows and deposition rates and iii) to improve at any time and any part 

of the system prior data to posterior results by formulating and incorporating e.g. MCMC 

algorithms and by starting from new available e.g. simulation or measured data.  

However, even sophisticated probabilistic techniques do not create more empirical data than 

what is available and empirical information is needed to generate model input distributions. In the 

case of ENMs such a data basis is often missing and thus, the use of uniform distributions 

unavoidable. In cases where no data are available, the borders of the distributions have to be 
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determined by experts, which in turn may lead to even higher uncertainties in the input 

parameters.  
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2.5 Appendix  

Appendix A  

R-code for input data generation  

(exemplified triangular distribution of the emission coefficient WIP to atmosphere) 

 

  triangulsim_WIP <- function(vecabc) {  

  min <- vecabc[1] 

  mode <- vecabc[2] 

  max <- vecabc[3] 

   u <- runif(1,0,1) 

    if (u <= (mode-min)/(max-min) ){ 

   r = min+sqrt(u*(max-min)*(mode-min))  }else{ 

    r = max-sqrt((1-u)*(max-min)*(max-mode)) 

       } 

      r 

     } 

       a = 0.00001 

       b = 0.0005 

       c = 0.01  

   M <- matrix(c(rep(a,10^5),rep(b,10^5),rep(c,10^5)),10^5,3) 

    tri <- apply(M,1,triangulsim_WIP)  
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Appendix B  

R-code for MC simulations 

 

  

 N <- 100000 

 V <- matrix(NA,n,N) 

  for (k in 1:N){ 

 

     I <- c(rlnorm(1,μ, ),rep(0,n-1)) 

     A <- matrix(0,n,n) 

     A[2,1] <- -(TCpmcstp[k])  # Exemplified transfer coefficienta from PMCb to STPc  

      

     ... 

     A[n,1] <- -(1+T[2,1]+T[4,1]+T[5,1]+...+T[n-1,1])  

   ... 

    V[,k] <- solve(A,I) 

     

   } 

 

 

 

 

aTransfer coefficient PMC to STP that includes: TC production to sewage treatment plants + TC 

manufacturing to sewage treatment plants + TC production to product category 1 * TC product category 1 to sewage 

treatment plants + TC production to product category 2 * TC product category 2 to sewage treatment plants + TC 

production to product category 3 * TC product category 3 to sewage treatment plants + … + TC production to product 

category n * TC product category n to sewage treatment plants. 
b Production, manufacturing and consumption process. 
c
 Sewage treatment plants. 
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Abstract 

Engineered nanomaterials (ENM) are already used in many products and consequently released 

into environmental compartments. In this study, we calculated predicted environmental 

concentrations (PEC) based on a probabilistic material flow analysis from a life-cycle perspective 

of ENM-containing products. We modeled nano-TiO2, nano-ZnO, nano-Ag, carbon nanotubes 

(CNT), and fullerenes for the USA, Europe and Switzerland. The environmental concentrations 

were calculated as probabilistic density functions and were compared to data from 

ecotoxicological studies. The simulated modes (most frequent values) range from 0.003 ng L
-1

 

(fullerenes) to 21 ng L
-1

 (nano-TiO2) for surface waters and from 4 ng L
-1

 (fullerenes) to 4 g L
-1

 

(nano-TiO2) for sewage treatment effluents. For Europe and the USA, the annual increase of 

ENMs on sludge-treated soil ranges from 1 ng kg
-1

 for fullerenes to 89 g kg
-1

 for nano-TiO2. The 

results of this study indicate that risks to aquatic organisms may currently emanate from nano-Ag, 

nano-TiO2 and nano-ZnO in sewage treatment effluents for all considered regions and for nano-

Ag in surface waters. For the other environmental compartments for which ecotoxicological data 

were available, no risks to organisms are presently expected. 

3.1 Introduction  

Engineered nanomaterials (ENM) are applied in many commercially available consumer products 

such as in cosmetics, textiles and paints. Due to the increasing production volumes, an 

environmental exposure to ENMs is likely (1). Whereas toxic effects of nanomaterials on different 

organisms have already been described (2, 3), measurements of environmental concentrations of 

ENMs are almost completely absent. The first study in this field reported the detection of nano-

TiO2 in water leaching from exterior facades (4). Despite the fact that the release of ENM from 

products is a very important entry pathway for ENMs into the environment, studies examining this 

process are very rare (5). One recent study quantified the release of silver ENM from socks 

during washing (6). 
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Because of the nearly absent information about environmental concentrations of ENMs, modeling 

of predicted environmental concentrations (PEC) currently constitutes a necessary and valuable 

substitute for measurement studies. ENMs may reach the environment during production of the 

material, incorporation into products or during the use-phase of such nanotechnology based 

goods (5). Only a few studies (7–9) have predicted environmental ENM concentrations. For 

instance, Mueller and Nowack (7) found that nano-TiO2 may currently pose a threat to organisms 

living in the aquatic environment, whereas the current concentrations of nano-Ag and CNT seem 

non-hazardous. But a major drawback for assessing the risk of ENM is not only the lack of 

information about fate and behavior but also the inconsistency of the available data (1). Mueller 

and Nowack (7) have modeled two scenarios to address this lack of available data. Still, some 

important environmental compartments such as sediments were not included in their study, and 

consideration of the three nanomaterials (TiO2, CNT, Ag) analyzed was limited to the 

geographical boundaries of Switzerland.  

Probabilistic methods of environmental exposure analysis (10–13) allow one to account for the 

inconsistency and variability of model input parameters by using probability (or density) 

distributions. Those input distributions may be constructed based on empirical data, on expert 

judgment or on a combination of these sources. Compared to a scenario analysis, this 

probabilistic/stochastic approach is not restricted to the use of single input values, but aims at 

considering all possible model inputs covering also extreme events. It provides in contrast to 

scenario estimations also an insight into the frequency probability of each simulated outcome. 

Such a probabilistic modeling approach (14) has been used to describe nano-TiO2, CNT and 

nano-Ag flows in Switzerland (15). 

The aim of this paper was to use the probabilistic material flow analysis proposed by Gottschalk 

et al. (14) to model the environmental concentrations of nano-TiO2, nano-ZnO, nano-Ag, CNT 

and fullerenes for the USA, Europe and Switzerland, considering all environmental compartments 

including sediments. To assess the risks posed by the ENMs, the simulated PEC was compared 

to the predicted no effect concentration (PNEC) based on toxicity data for the corresponding 

environmental compartment. 

3.2 Materials and methods 

3.2.1 Model information 

The modeling was performed based on a probabilistic material flow analysis approach developed 

by Gottschalk et al. (14). This mass balance and multi-compartment model allows one to treat all 

parameters throughout the modeling as probability distributions. Thus, the model outcome 

represents an ENM flow system, depicted by probability (or density) distributions. Model input 

and output distributions were derived from Monte Carlo (MC) and/or Markov Chain Monte Carlo 

(MCMC) simulations programmed and executed in R (16), an open source and open 

development software for statistical computing. For each region, the corresponding geographic 

boundaries were used as the spatial system boundary. The system was described by 11 boxes 

which represented environmental compartments (water, air, soil, sediment and groundwater) and 

technical compartments (production, manufacturing and consumption (PMC), sewage treatment 

plant (STP), waste incineration plant (WIP) landfill and recycling processes). The environmental 

compartments were considered homogeneous and well mixed as suggested for modeling the 
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regional PEC (17). Deposition and elimination/degradation of ENM within the compartments were 

modeled as constant annual flows into a sub-compartment of each box considered. The 

derivation of the sizes of the air, water, soil and sediment compartments is given in the 

Supporting Information (section A). These volumes were used to calculate the respective 

concentrations of the ENMs in these compartments.  

The worldwide annual production amounts of the studied ENMs were scaled to regional 

production volumes in proportion of the population of the high income countries to the total 

population of a particular region (18). Then, lognormal distributions were modeled based on 

logarithmic means and standard deviations derived from these data. For allocating ENM 

production volumes to the different products, the same method as described in Gottschalk et al. 

(15) was used. The details are given in the Supporting Information (section B). ENM containing 

products were grouped into different categories according to similarities in lifecycle by means of 

Internet based research for each ENM.  

Depending on the ENM-containing product, different release pathways of ENMs to the 

environment were assumed during the products’ life cycle. Section C in the Supporting 

Information gives a complete overview of the transfer coefficients (TC) used to model the ENM 

emission flows from PMC to other system compartments. For composites and plastics, complete 

disposal was assumed. For glass & ceramics and light bulbs, the main pathway was also 

disposal. For cosmetics, coatings & cleaning agents and dietary supplements, the major release 

of ENM to the environment was via sewage treatment plants. Released ENMs from paints were 

assumed to end up in STP, landfill, soil and surface waters. Metals, batteries & capacitors, filter 

aggregates, textiles and consumer electronics were considered as either recycled or discharged 

to waste incineration plants or to landfills. Furthermore, some of these recycled products were 

also exported abroad. For textiles, abrasion and emissions during the washing process were 

considered. The release of nanoparticles from Ag containing textiles was modeled using data 

from an experimental study (6). The dissolution of nano-ZnO and nano-Ag was modeled as 

elimination within the different compartments. For nano-ZnO the dissolution was modeled as 

elimination and calculated by means of a uniform distribution, which ranged from 0% to 100%. It 

has been shown that under natural conditions readily soluble minerals can be protected from 

dissolution by a corrosion layer (19, 20). Dissolution of nano-Ag was quantified based on 

information given in Blaser et al. (9) for the release of Ag from biocidal plastics and in Benn and 

Westerhoff (6) for release from textiles. No continuous dissolution was considered for natural 

waters, as little quantitative information was available. It has been shown that nano-Ag dissolves 

by less than 1% in various natural waters (21).  

The sedimentation rate of nano-TiO2 in water was derived using the sedimentation curves in 

Fang et al. (22) as measurement data to run MCMC iterations, which produced a distribution for 

the sedimented fraction with a minimum of 0.29 and a maximum of 1. Although a lot of research 

has been conducted to understand the behavior of fullerenes in aquatic systems or suspensions 

(23), most of the results were not applicable to our purpose because they yielded qualitative 

rather than quantitative data. We assumed almost complete dispersion (90–100%) for derivatized 

fullerenes and almost complete sedimentation (90–99.99%) for non-derivatized fullerenes based 

on Terashima et al. (24) in which fullerenes were added to water containing different amounts of 

humic acids. This range of sedimentation covers also the results provided by Li et al. (25). For 

CNT the MCMC sampling to calculate a posterior distribution of the deposited fraction was 
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carried out from data presented in Kennedy et al. (26) and Hyung et al. (27). A range of 

sedimentation between 79% and 99.9% was modeled. For nano-ZnO sedimentation, a constant 

probability distribution was chosen with a lower and upper boundary of 6% and 74%, 

respectively, based on a study in which nano-ZnO was flocculated by MgCl2 (28). No 

sedimentation studies were available for nanosized silver and thus a uniform distribution from 0% 

to 100% was assumed. 

A further pathway for nanomaterials to enter the environment is through the air via flue gas 

cleaning of waste incineration plants. For the efficiency of these filter systems, we used 

measurements on the removal of ultrafine particles during flue gas cleaning (29), which suggest a 

cleaning efficiency for nanoparticles between 99.6% and 99.9%. Combustible ENMs (i.e. CNT 

and fullerenes) should theoretically be completely burned unless they have no contact with 

oxygen, such as in batteries which may be intact in the bottom ash (5, 30). Therefore, a triangular 

probability function for elimination was chosen between 0% and 100% with a peak at 98% 

according to a typical carbon mass flow for incineration plants (31). The remaining part was then 

distributed randomly either to the slag or to the flue gas cleaning. Incombustible nanoparticles 

(i.e. nano-Ag, nano-TiO2 and nano-ZnO) were randomly distributed either to the slag or to the flue 

gas cleaning but without elimination. Expecting only small differences in the efficiency of waste 

incineration plants due to the highly developed technology commonly used, processes leading to 

nanoparticle outputs were modeled similarly for each region with the sole exception of 

Switzerland, which exports about 80% (32) of the filter ash. The EU and the USA were assumed 

to landfill all their incineration residues. 

For nano-Ag, nano-TiO2, and nano-ZnO a removal efficiency during wastewater treatment 

between 90.6% and 99.5% (uniform distribution) was used based on Limbach et al. (33). For 

CNT, a removal between 96.3% and 99.7% (uniform distribution) was assumed based on settling 

studies in water containing 100 mg L
-1

 NOM (26, 27). Because of the different types 

(functionalizations) of fullerenes, a quantification of treatment efficiency was not possible. 

Therefore, a distribution with constant probability from 0% to 100% was taken to account for this 

lack of knowledge. During and after heavy rainfall, untreated wastewater is discharged into 

surface water. For the EU and USA, 20% storm water overflow was assumed (17), and a uniform 

distribution between 3% and 16% (15) was used for Switzerland. Sewage sludge is used in 

different ways in the studied regions. In Switzerland it ends up entirely in waste incineration 

plants, whereas the majority of it is applied to soils in the EU and USA (EU: 55% (9), USA: 63% 

(34)). The remaining fraction is incinerated (EU: 25% (9) USA: 19% (34)) or landfilled (EU: 20% 

(9), USA: 18% (34)). Application of sewage sludge to soil is only relevant for 1% (35) of the 

agricultural area. The percentage of sources connected to sewage treatment facilities is 80% for 

the EU (17), 71% for the USA (36) and 100% for Switzerland. The treatment efficiency and 

ultimate fate of the sludge from other treatment systems such as septic tanks was assumed to be 

the same as for sewage treatment plants. For calculating the water volume in the effluent, a daily 

water consumption per inhabitant of 200 L for Switzerland and the EU was assumed (17); for the 

US 388 L (37). 

Due to the deposition of nanomaterials in soils and sediment, the simulation results for these two 

compartments show annual increases in the nanomaterial concentrations. In order to obtain 

current concentrations in these compartments, the time course of the annual deposition needs to 

be known. Based on estimations of both public sector expenditures to promote nanotechnology 
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(38) and the worldwide market value for products incorporating nanosized materials (39) for the 

period 2001–2012, the modeled increase (base year 2008) of ENM concentrations in sludge 

treated soil and sediment was scaled to calculate annual increases of these concentrations for 

each year within the indicated period. No market and thus zero deposition of ENM was assumed 

for the year 2000.  

3.2.2 Toxicity assessment 

Calculations of the predicted no effect concentration (PNEC) were based on ecotoxicological data 

from literature and were conducted according to established procedures on risk assessment (17). 

Due to the low accuracy of available data, an assessment factor of 1000 was applied to the 

lowest concentration for calculating the appropriate PNEC values that are listed in section D in 

the Supporting Information. The risk quotient (RQ) was calculated according to the European 

approach by dividing the PEC (mode value of the PEC density distribution) by the PNEC. If the 

RQ was greater than or equal to 1, further testing was required; less than 1 meant that no risk 

was currently posed to the environment and therefore further testing or risk reduction measures 

were not needed (17). 

3.3 Results 

3.3.1 Material flow 

In Figure 11, the calculated material flows for nano-TiO2, nano-ZnO, nano-Ag and CNTs for the 

system boundary of the USA are shown in t per year and as mode values of the simulation output 

distributions. Flows leaving the system describe the export of ENMs abroad. ENMs may be 

accumulated or eliminated (indicated as “dt”) within each compartment. For CNTs, the most 

prominent flows were from PMC to the waste incineration plant and to the landfill. For nano-ZnO, 

the flows from PMC to the sewage treatment plant and the application of sewage sludge to soil 

were the most important. The STP influent, the application of sewage sludge to soil, and the flow 

from PMC to the landfill were by far the predominant flows in the cases of nano-TiO2 and nano-

Ag. The most prominent flows for fullerenes (not shown) were from products to landfill and STP 

and from STP to WIP and surface waters; all flows, however, were less than 1 t/a. 

3.3.2 Environmental concentrations  

The main purpose of the model was to calculate the PEC for environmental compartments. Table 

7 shows the predicted ENM concentrations for air, surface water, STP effluent and sewage 

sludge for each region and the increase of ENM concentration per year (base year 2008) for soil, 

sludge-treated soil and sediment. No concentrations in sludge-treated soil were calculated for 

Switzerland since, contrary to Europe and the USA, sewage sludge is not applied to soil, but is 

instead incinerated in waste incineration plants or used in cement plants as solid fuel. All results 

are shown as simulated mode (the most frequent value) and as range of the lower and upper 

quantiles, Q0.15 and Q0.85. On average, the highest concentrations of ENM for Europe and USA 

were found in sludge-treated soil or in the sediment; for Switzerland in the sediment or in sewage 

treatment plants’ effluent. Among the ENMs considered, nano-TiO2 showed the highest 

concentrations in general for all regions. 
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Figure 11. Simulation results (mode values >0.0005 t/a) of the material flow for the ENMs TiO2, 

ZnO, Ag and CNT for the USA. The thickness of the arrows indicates the proportions of the ENM 

flows, the thickness of the horizontal line within the compartments the proportional magnitude of 

the removal or accumulation. 
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Table 7. Simulation results of the predicted environmental concentrations shown as mode (most 

frequent value) and as range of the lower and upper quantiles (Q(0.15) and Q(0.85). For air, 

surface water and sewage treatment plant effluents, the results illustrate current (2008) ENM 

concentrations, for soil, sludge treated soil and sediments the annual increase of ENM 

concentration. The results for nano-Ag, CNT and nano-TiO2 for Switzerland were taken from 

Gottschalk et al. (15).  

  Europe       USA       Switzerland       

nano-TiO2 Mode Q0.15 - Q0.85 Mode Q0.15 - Q0.85 Mode Q0.15 - Q0.85   

Soil 1.28 1.01 - 4.45 0.53 0.43 - 2.13 0.28 0.21 - 1.04 g kg
-1

y
-1

 

Sludge Treated Soil 89.2 70.6 - 310 42.0 34.5 - 170     g kg
-1

y
-1

 

Surface Water 0.015 0.012 - 0.057 0.002 0.002 - 0.010 0.021 0.016 - 0.085 g L
-1

 

STP Effluent 3.47 2.50 - 10.8 1.75 1.37 - 6.70 4.28 3.50 - 16.3 g L
-1

 

STP Sludge 136 100 - 433 137 107 - 523 211 172 - 802 mg kg
-1

 

Sediment 358 273 - 1409 53 44 - 251 499 426 - 2382 g kg
-1

y
-1

 

Air <0.0005     <0.0005       0.001 0.0007 - 0.003 g m
-3

 

nano-ZnO                  

Soil 0.093 0.085 - 0.661 0.050 0.041 - 0.274 0.032 0.026   0.127 g kg
-1

y
-1

 

Sludge Treated Soil 3.25 2.98 - 23.1 1.99 1.62 - 10.9     g kg
-1

y
-1

 

Surface Water 0.010 0.008 - 0.055 0.001 0.001 - 0.003 0.013 0.011  0.058 g L
-1

 

STP Effluent 0.432 0.340 - 1.42 0.3 0.22 - 0.74 0.441 0.343  1.32 g L
-1

 

STP Sludge 17.1 13.6 - 57.0 23.2 17.4 - 57.7 21.4 16.8  64.7 mg kg
-1

 

Sediment 2.90 2.65 - 51.7 0.51 0.49 - 8.36 3.33 3.30  56.0 g kg
-1

y
-1

 

Air <0.0005     <0.0005       <0.0005       g m
-3

 

nano-Ag                           

Soil 22.7 17.4 - 58.7 8.3 6.6 - 29.8 11.2 8.7 - 41.2 ng kg
-1

y
-1

 

Sludge Treated Soil 1581 1209 - 4091 662 526 - 2380     ng kg
-1

y
-1

 

Surface Water 0.764 0.588 - 2.16 0.116 0.088 - 0.428 0.717 0.555 - 2.63 ng L
-1

 

STP Effluent 42.5 32.9 - 111 21.0 16.4 - 74.7 38.7 29.8 - 127 ng L
-1

 

STP Sludge 1.68 1.31 - 4.44 1.55 1.29 - 5.86 1.88 1.46 - 6.24 mg kg
-1

 

Sediment 952 978 - 8593 195 153 - 1638 1203 965 - 10184 ng kg
-1

y
-1

 

Air 0.008 0.006 - 0.02 0.002 0.0020 - 0.0097 0.021 0.017 - 0.074 ng m
-3

 

CNT                           

Soil 1.51 1.07 - 3.22 0.56 0.43 - 1.34 1.92 1.44 - 3.83 ng kg
-1

y
-1

 

Sludge Treated Soil 73.6 52.1 - 157 31.4 23.9 - 74.6     ng kg
-1

y
-1

 

Surface Water 0.004 0.0035 - 0.021 0.001 0.0006 - 0.004 0.003 0.0028 - 0.025 ng L
-1

 

STP Effluent 14.8 11.4 - 31.5 8.6 6.6 - 18.4 11.8 7.6 - 19.1 ng L
-1

 

STP Sludge 0.062 0.047 - 0.129 0.068 0.053 - 0.147 0.069 0.051 - 0.129 mg kg
-1

 

Sediment 241 215 - 1321 46 40 - 229 229 176 - 1557 ng kg
-1

y
-1

 

Air 0.003 0.0025 - 0.007 0.001 0.00096 - 0.003 0.008 0.006 - 0.017 ng m
-3

 

Fullerenes                   

Soil 0.058 0.057 - 0.605 0.024 0.024 - 0.292 0.026 0.019 - 0.058 ng kg
-1

y
-1

 

Sludge Treated Soil 2.2 2.1 - 22.2 1.01 1.0 - 12.2     ng kg
-1

y
-1

 

Surface Water 0.017 0.015 - 0.12 0.003 0.0024 - 0.021 0.04 0.018 - 0.19 ng L
-1

 

STP Effluent 5.2 4.23 - 26.4 4.6 4.49 - 32.66 3.82 3.69 - 25.1 ng L
-1

 

STP Sludge 0.012 0.0088 - 0.055 0.01 0.0093 - 0.068 0.0107 0.0101 - 0.068 mg kg
-1

 

Sediment 17.1 6.22 - 530 2.5 1.05 - 91.3 20.2 8.2 - 787 ng kg
-1

y
-1

 

Air <0.0005     <0.0005       <0.0005       ng m
-3
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For soils and sediments, the simulations provided the ENM amount deposited in these 

compartments in 2008. Using estimations of the worldwide market evolution for products 

containing ENMs for the period 2001–2012 (38, 39) and assuming zero concentrations in 2000 

we scaled the deposition of ENM in 2008 to roughly estimate deposition amounts and ENM 

concentrations for each year of the period considered. (Fig. 12). The concentrations in sediments 

(USA) will presumably rise between 2008 and 2012 from 0.2 mg/kg to 0.6 mg/kg for nano-TiO2, 

from 1.8 g/kg to 5.7 g/kg for nano-ZnO, from 0.7 g/kg to 2.2 g/kg for nano-Ag, and from 0.2 

g/kg to 0.5 g/kg for CNT. In the case of fullerene, the concentrations remain close to zero. The 

concentrations in sludge-treated soil increase from 0.1 mg/kg to 0.5 mg/kg for nano-TiO2, from 

6.8 g/kg to 22.3 g/kg for nano-ZnO, from 2.3 g/kg to 7.4 g/kg for nano-Ag, and from 0.1 

g/kg to 0.4 g/kg for CNT. In a manner similar to that of concentrations in sediments, no 

meaningful concentrations were observed in sludge-treated soil for fullerenes. 

3.3.3 Risk estimation 

Although several reports assessed toxic effects for different ENMs to organisms in environmental 

compartments (2, 3), difficulties in quantifying these effects still remain due to the lack of 

standardization in testing. However, toxicity data was available for some ENMs and 

environmental compartments (Table 19, Supporting Information), and risk quotients (RQ) could 

thus be calculated (Table 8). For the carbon based ENM fullerenes and CNTs, the RQs were 

below 1. For the inorganic ENMs (Ag, TiO2, ZnO), the RQs were greater than 1 for sewage 

treatment effluent, but below (TiO2, ZnO) this critical value for the other environmental 

compartments. However, with the exception of the USA, the RQs for nano-Ag in water bodies 

were around one. Unfortunately, due to the lack of available studies, it was not possible to 

calculate RQs for soil and sediment for some materials.  

3.4 Discussion 

Of all the ENMs considered, nano-TiO2 generally showed the highest concentrations for all 

compartments, followed by nano-ZnO. This reflects the worldwide production volumes of the 

ENMs. Therefore, it seems obvious that production volumes of ENMs are crucial input factors. 

The uncertainty about ENM production volumes is very high and, hence, the range of the 

available data is very broad. Thus, reducing the great uncertainties in the quantification of the 

total production volumes and the allocation of these volumes to application quantities in relevant 

commercially available products is crucial for improving the model. However, apart from 

worldwide production and application volumes, comparable environmental concentrations of 

nano-TiO2 and nano-ZnO also reflect a similar distribution of the main product categories 

(cosmetics and coatings & cleaning agents) that both result in significant release into water. 

Water concentrations of CNTs or fullerenes might possibly increase as well if those materials 

were applied in product categories with relevant ENM emissions to water bodies.  

Comparing the modeled regions, it is noteworthy that the ENM concentrations for a particular 

environmental compartment are in a similar range for all three regions. This may be due to the 

fact that ENM production volumes were scaled according to the number of inhabitants of the 

particular region. Regional distinctions regarding ENM applications would be needed to better 

model region-specific ENM flows from the production, manufacturing and consumption processes 

to environmental and technical compartments. In order to incorporate these differences, it would 
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be useful to build regional databases on products containing ENM. In addition to enhancing 

region-specific modeling of ENM emissions, it will also be important to follow the development of 

new products containing engineered nanomaterial to further improve the model. Products with 

novel ENM emission properties, which are not currently relevant and thus not considered in the 

product categories, could lead to significantly higher ENM emission volumes that, combined with 

unexpectedly high ENM application and production volumes, could turn upside down the 

simulation results of ENM emissions from the PMC process to environmental and technical 

compartments.  

 

Figure 12. Predicted nanomaterial concentrations (USA) in sediment and sludge treated soil for 

nano-TiO2 in mg/kg (left side axis ) and for nano-ZnO, nano-Ag, CNTs and fullerene in g/kg 

for the period 2001–2012. 

Due to a lack of the mentioned regional information in the presented modeling, the input 

parameters differed only by the total ENM production volumes and material disposal pathways 

between the considered regions. Thus, the simulated flows and environmental concentrations of 

the corresponding ENMs do not vary significantly between the modeled systems. The main 
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difference between the regions is visible in the different approaches of handling sewage sludge. 

Countries with a high proportion of land-disposal will have to deal with increasing concentrations 

of ENMs in sludge-treated soil, while countries with complete incineration of sludge should not 

experience this problem. 

Table 8. Risk quotients (PEC/PNEC) for all ENM and regions. The quotients for soils and 

sediments reflect the current state of ENM accumulation as illustrated in Figure 12. The values 

for nano-Ag, CNT and nano-TiO2 for Switzerland were taken from Gottschalk et al. (15). 

Compartment Europe USA CH 

nano TiO2  

Surface Water 0.015 0.002 0.021 

STP Effluent 3.47 1.75 4.28 

Air <0.0005 <0.0005 <0.0005 

Soil 0.004 0.002 0.001 

Sludge Treated Soil 0.303 0.143  

nano-ZnO 

Surface Water 0.247 0.019 0.316 

STP Effluent 10.81 7.7 11.02 

nano-Ag 

Surface Water 1.098 0.166 1.031 

STP Effluent 61.09 30.1 55.60 

Air <0.0005 <0.0005 <0.0005 

CNT  

Surface Water <0.0005 <0.0005 <0.0005 

STP Effluent <0.0005 <0.0005 <0.0005 

Sediment <0.0005 <0.0005 <0.0005 

Air <0.0005 <0.0005 <0.0005 

Soil <0.0005 <0.0005 <0.0005 

Sludge Treated Soil <0.0005 <0.0005  

Fullerenes 

Surface Water <0.0005 <0.0005 <0.0005 

STP Effluent 0.026 0.023 0.019 

Soil <0.0005 <0.0005 <0.0005 

Sludge Treated Soil <0.0005 <0.0005   

 

Our model assumes homogeneous and well-mixed compartments on a country or continent-wide 

scale (17). In order to cover local conditions such as e.g. those near ENM-producing factories, 

near sewage treatment outflows or for special release events such as accidents, further modeling 

has to be conducted which – once the data is available – will also be possible with the 

probabilistic approach. 

For Europe and the USA, relatively high concentrations of ENMs were found on soil treated with 

sewage sludge. Due to the very low fraction of soil to which sewage sludge is applied, the 

relevant volume for this compartment is very low. Therefore, it seems reasonable that these 

particular concentrations are much higher than for the soil compartment as a whole. Our model 

also includes sedimentation of ENMs in surface waters. Although information on aggregation and 
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sedimentation of ENMs under natural conditions is sparse, we can expect that a relevant fraction 

of the ENMs will be removed from waters and settle into the sediment. The inclusion of this 

sedimentation process can explain the relatively large difference in the surface water 

concentrations of TiO2 and nano-Ag compared to the previous study of Mueller and Nowack (7). 

For all regions, air shows the lowest PEC compared to the other environmental compartments; 

this is mainly due to its high volume and the short residence time (10 days) of ultrafine particles. 

ENMs reach the atmosphere either during the usage of products or via emissions from waste 

incineration plants at low percentages. Additionally, they could agglomerate and/or be coated by 

organic and inorganic material on time scales shorter than 10 days. 

In our modeling we did not distinguish between specific forms of ENMs, e.g. between single and 

multi-walled CNTs and the various forms of fullerenes (e.g. C60, C70). Due to the absence of 

data we also lumped together all the different modifications, functionalizations and surface-

coatings of the ENMs. ENMs may be technically altered to fit the purpose of the end product such 

as e.g. being water soluble or insoluble. With the probabilistic modeling, we included this 

uncertainty in some processes (e.g. the sedimentation behavior) by using transfer factors that 

include the behavior of both pristine and modified ENMs, e.g., CNT and fullerenes. Derivatized 

fullerenes are assumed to stay dispersed in water, whereas almost complete sedimentation is 

assumed for non-derivatized fullerenes. In such cases, bimodal distributions have to be modeled. 

For the soluble ENMs (e.g. nano-Ag and nano-ZnO), the dissolution rate in water is difficult to 

quantify; further studies are needed to fully understand their behavior and fate in natural water 

bodies and to quantify their release during usage or washing of ENM containing products. Slightly 

soluble materials such as e.g. ZnO (at pH 7) may be protected from dissolution by a corrosion 

layer. Furthermore, ENMs may also be coated by other substances, such as silica, meaning that 

it is difficult to generalize the environmental fate of a particular ENM. Additional to such 

technically intended modifications in functionalization or coating characteristics, changes in the 

engineered nanomaterial properties induced by chemical and physical processes in the 

environment or by their reaction with natural compounds cannot be excluded. Besides this 

mentioned environmental fate and behavior, size and functionalization of ENMs could also 

influence the toxic effects of the particular ENM. However, due to a lack of data, a differentiation 

of toxicological data based on derivatization and functionalization of ENMs was not possible.  

For nano-Ag, nano-TiO2 and nano-ZnO, the RQ (PEC/PNEC) exceeded the critical value of one 

for sewage treatment plant effluents, meaning that further investigations are needed to evaluate 

the risk posed to aquatic organisms by these ENMs. This urgent need for further investigations is 

in addition emphasized by the fact that the RQ for nano-Ag in water is slightly above one (EU, 

Switzerland). For the other environmental compartments for which toxicological data was 

available, no risks to organisms are currently expected. However, it should also be emphasized 

here that the calculation of the RQ involves a safety factor of 1000. A RQ slightly above one does 

therefore not constitute an immediate risk but is an indication that further data are needed. 

Although ENM concentrations in sediments and sludge-treated soil (USA) increase from 2008 to 

2012, the RQs derived for CNTs in sediments and for nano-TiO2, CNTs and fullerenes in sludge-

treated soil for 2012 are far below one. The only pronounced RQ (0.3) was calculated for nano-

TiO2 in sludge-treated soil. This parallels the modeled critical RQ for nano-TiO2 in sewage 

treatment plant effluents and, given the implication that both nano-Ag and nano-ZnO show even 
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higher RQs for sewage treatment plant effluents, the ecotoxicological effects in sludge-treated 

soils of these two ENMs need further investigation as well.  

In order to validate results of modeled environmental concentrations as presented in this study, a 

comparison between our data and measurement data is necessary. Kiser et al. (40) measured 5–

15 μg/L nano-TiO2 in STP effluents. This validates very well our calculations (mode values) of 

nano-TiO2 in STP effluents: EU 3.47 μg/L, USA 1.75 μg/L, Switzerland 4.28 μg/L. However, it has 

to be noted that in their study Kiser et al. used filtration with 0.45 m and their value may thus 

also include part of the bulk TiO2 released into STP. Blaser et al. (9) calculated total Ag 

concentrations in surface waters which were by a factor 10–100 higher than our simulation 

results for nano-Ag and they also concluded that nano-Ag contributes only 1–15% to the total Ag 

into the environment. First measurements (40) of nano-TiO2 in STP sludge indicated 

concentrations which ranged from 1 to 6 g/kg. Our simulations showed concentrations (mode 

values) of the same order of magnitude: EU and USA 0.14 g/kg, Switzerland 0.2 g/kg. These first 

measurements of ENM in the environment show concentrations in the same order of magnitude 

than our modeling results and thus allow a first validation of some aspects of our model. 
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Abstract 

Information on environmental concentrations is needed to assess the risks that engineered 

nanomaterials (ENM) may pose to the environment. In this study, predicted environmental 

concentrations (PEC) were modeled for nano-TiO2, carbon nanotubes (CNT) and nano-Ag for 

Switzerland. Based on a life-cycle perspective, the model considered as input parameters the 

production volumes of the ENMs, the manufacturing and consumption quantities of products 

containing those materials, and the fate and pathways of ENMs in natural and technical 

environments. Faced with a distinct scarcity of data, we used a probabilistic material flow analysis 

model, treating all parameters as probability distributions. The modeling included Monte Carlo 

and Markov Chain Monte Carlo simulations as well as a sensitivity and uncertainty analysis. The 

PEC values of the ENMs in the different environmental compartments vary widely due to different 

ENM production volumes and different life cycles of the nano-products. The use of ENM in 

products with high water relevance leads to higher water and sediment concentrations for nano-

TiO2 and nano-Ag, compared to CNTs, where smaller amounts of ENM reach the aquatic 

compartments. This study also presents a sensitivity analysis and a comprehensive discussion of 

the uncertainties of the simulation results and the limitations of the used approach. In order to 

estimate potential risks, the PEC values were compared to the predicted no effect concentrations 

(PNEC) derived from published data. The risk quotients (PEC/PNEC) for nano-TiO2 and nano-Ag 

were larger than one for treated wastewater and much smaller for all other environmental 

compartments (e.g., water, sediments, soils). We conclude that probabilistic modeling is very 

useful for predicting environmental concentrations of ENMs given the current lack of 

substantiated data.  

Keywords 

Probabilistic material flow analysis; Engineered nanomaterials; exposure assessment; Predicted 

environmental concentrations; Predicted no effect concentrations. 
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4.1 Introduction 

An expected increase in the manufacture and usage of engineered nanomaterials (ENM) for 

research purposes, environmental applications and use in commercial products is likely to result 

in exposure of the natural environment to these materials [1–5]. Nanosized TiO2 (nano-TiO2) and 

nanosized Ag (nano-Ag) are some of the ENMs most frequently used in consumer products [6; 7]: 

nano-TiO2 are produced mainly for utilization in paints, coatings, cleaning agents, and cosmetics, 

nano-Ag for applications in consumer electronics, cosmetics, coatings, cleaning agents, and 

textiles ([8; 9], http://www. nanotechproject.org/inventories; http://www.nanoroadmap.it/). Carbon 

nanotubes promise to be suitable for applications primarily in the polymer and consumer 

electronics industries and the energy sector [10].  

Release of ENMs into the environment may occur during the production of the ENMs, the 

manufacturing of ENM-containing products, and the use and reuse phases of these products [2; 

11]. Risks from ENM emissions may emerge if both exposure (due to ENM presence in the 

environment) and hazards (in the form of toxic effects) are observed [4]. Thus, investigations on 

the environmental concentrations and on the toxicity of ENMs provide the basis for assessing the 

potential risks these compounds pose to the environment.  

However, almost no analytical methods have been available so far to detect trace concentrations 

of such materials. Kaegi et al. [12] provided evidence of emissions of nano-TiO2 from exterior 

facades into water and also detected engineered nano-TiO2 in natural waters. Two other recent 

studies [13; 14] reported nano-Ag emissions into water from laundering nano-textiles. Due to the 

almost non-existent data basis concerning concentrations of manufactured ENMs in the 

environment, modeling of predicted environmental concentrations (PEC) is necessary. Only a few 

studies [6; 15–17] present quantitative estimations of PECs for engineered nanomaterials. Blaser 

et al. [15] have modeled Ag emissions from biocidal products which contained nanosized silver 

(nano-Ag). However, the emissions were modeled as the release of silver from ENMs; nano-Ag 

was seen exclusively as the source of Ag
+
. Thus, no particulate emission flows were considered. 

Boxall et al. [16] have presented a series of algorithms which were applied to predict 

concentrations of ENMs in air, soil and water. However, this is a simplistic modeling framework 

based on hypothetical usage scenarios for selected product types and applied to a limited range 

of products, environmental compartments and life cycle stages of ENMs. Mueller and Nowack [6] 

have presented the first investigations aimed at modeling quantities of engineered nanomaterials 

released into the environment from a complete life-cycle perspective. Three types of ENMs were 

studied: nano-Ag, nano-TiO2, and CNTs. The calculated PEC values for nano-TiO2 in surface 

water ranged from 0.7 to 16.0 μg/L (realistic scenario to high emission scenario); for nano-Ag, 

they were 30 to 80 ng/L, and for CNT 0.5 to 0.8 ng/L.  

For calculating risks, such PECs may be contrasted to predicted no effect concentrations 

(PNEC). Several studies have already reported toxic effects of ENMs on different organisms [2]. 

Predicted no effect concentrations may be derived, e.g. from NOECs (no observed effect 

concentrations), which are divided by extrapolation factors depending on the quality of available 

data (e.g., acute ecotoxicity, chronic ecotoxicity) [18]. Risk is then defined as the ratio 

PEC/PNEC, for which numbers equal to or greater than one indicate cause for concern. The 

calculated risk quotients (PEC/PNEC) for nano-Ag and CNT from Mueller and Nowack [6] did not 

indicate any expected negative effects. The risk quotient for nano-TiO2, however, was 0.7 to 16.0 

for the water compartment. The study was not comprehensive, as the environmental 
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compartments sediment and groundwater as well as production, manufacturing, and recycling 

processes with all their associated ENM flows were not included. Furthermore, the incorporation 

of uncertainties and variability of the model input parameters were restricted to a two-scenario 

analysis.  

A particular challenge in modeling environmental concentrations of ENMs is that risk estimation 

has to integrate the uncertainty about the accuracy of the calculated assessment parameters and 

the natural variability of these parameters. An extreme lack of empirical data cannot be resolved 

in a purely statistical manner because we often need predictions concerning parameter values 

that have not yet been measured. For many environmental contaminants, such data gaps are 

filled using assumptions, extrapolations or safety factors [19]. Estimating risks inherent in new 

compounds demands approaches to handling the inherent uncertainties and to simulating the 

compounds’ environmental fate under various possible conditions. Because of the absence of 

data on the use, release and environmental fate and because of inconsistencies in the available 

information, the use of a probabilistic modeling approach [20–23] may be appropriate if one 

intends to take uncertainties about the magnitude and variability of the model input parameters 

into account. However, a Monte Carlo (MC) approach to build probability input distributions 

requires empirical data as well [24]; otherwise model input distributions have to be calculated only 

by means of assumptions. As an alternative Bayesian techniques [25] can provide model input 

distributions combining pure judgment also with very few available data. Gottschalk et al. [26] 

developed a probabilistic material flow analysis model (PMFA) based on a Monte Carlo and 

Markov Chain Monte Carlo (MCMC) approach, which is suitable to calculate PEC values for any 

chemical when faced with a lack of data or inconsistency in available data. This PMFA was 

recently used to model PECs for different ENM and regions [27]. However, methodological 

possibilities and limitations were not analyzed and discussed. 

The goal of the present study is to discuss possibilities and limitations of the application of PMFA 

[26] in ENM exposure modeling based on a case study of nano-TiO2, CNTs and nano-Ag for 

Switzerland. The potential risks caused by these three ENMs were assessed by comparing the 

PEC values to available PNEC values. This study also extends the exposure modeling of Mueller 

and Nowack [6] by considering the environmental compartments sediment and groundwater as 

well as production, manufacturing and recycling processes. 

4.2 Materials and methods 

4.2.1 System analysis  

The material flow model [26] consists of 11 boxes representing all ENM life-cycle stages. The 

model considers 35 internal, 11 accumulation, 1 ENM generation (within the first process), 11 

elimination and 5 system leaving flows. The environmental compartments (lower atmosphere, 

soil, surface water, groundwater, and sediments) were regarded as homogeneous and equally 

mixed for estimating a regional PEC [18]. Accumulation in technical environments (production, 

manufacturing, and consumption processes (PMC), recycling process (R), sewage treatment 

plant (STP), waste incineration plant (WIP)) was not considered for steady state calculations. The 

geographical boundary of the model was Switzerland. All data and calculations refer to the base 

year 2008. No internal geographical differentiation was applied.  
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The PMC box was modeled as one unit subdivided into ENM production, manufacturing of ENM-

containing products and consumption processes of such products, including the end of life phase 

of the ENM-containing products. Hence, the system input of ENM and the resulting particle 

release to the environment are presented by a three-layer modeling. However, there are no 

quantitative data available concerning emission quantities from such production and 

manufacturing processes. Zero to two (uniformly distributed) of the ENMs were thus assumed to 

enter the system from each of the two last-mentioned processes.  

In Switzerland, all WIP are fitted with different types of filters ([28], http://www.bafu.admin.ch/ 

abfall/01495/01496/index.html?lang=en). Electrostatic filters trap fly ash and dust, while gaseous 

pollutants are removed by means of gas scrubbers. Catalytic NOx/furan/dioxin removal 

equipment is also in operation at all facilities. Due to a landfilling ban, all non-recycled 

combustible waste must be incinerated.  

Connection to STPs for wastewater is near 100% in Switzerland. The water volume of the STP 

effluent (treated water) was derived from a daily water consumption of 200 L [18] per inhabitant. 

The overflow discharge during heavy rainfall was uniformly distributed between 3 and 16% (P. 

Fischer, Federal Office for the Environment (FOEN), Bern, personal communication; R. Mueller, 

Kläranlage Hard, Winterthur, personal communication). The annual dry sewage sludge 

production in Switzerland was estimated to be 203,000 t [29] which was entirely burned in waste 

incineration plants. The application of sludge on landfills and soil is not permitted in Switzerland; 

all sludge is processed in the WIPs. 

The surface water volume (rivers and lakes) of 5.2 km
3
 was obtained considering a mixing depth 

of 3 m [18] which was then multiplied by 4.2% [18] of the total area (41,285 km
2
) of Switzerland. 

A water residence time of 40 d was considered [18]. The considered soil volume of 4.2 km
3
 was 

calculated by multiplying areas of different soil types with their corresponding soil mixing depth 

[18], i.e., 0.2 m for agricultural soil and 0.05 m for natural and urban soil; the fraction of 

agricultural soil was 0.369 [30] and that of natural and urban ground was 0.631. A soil density of 

1,500 kgm
-3

 was used. The considered air volume was 41,285 km
3 

and was obtained by 

multiplying the total area of Switzerland with the relevant air height for terrestrial ecosystems of 1 

km [18]. The relevant sediment volume of 0.05 km
3
 was calculated based on the area of the 

water surface, which was multiplied by a sediment depth of 0.03 m [18]. A dry sediment density of 

260 kgm
-3

 was taken. The density was calculated by subtracting the water content from the 

standardized value of 1,300 kgm
-3

 recommended by the European Commission [18].  

4.2.2 Modeling and simulations 

The simulations were conducted using a probabilistic material flow model presented in Gottschalk 

et al. [26], which is implemented in R [31] and allows one to treat all model parameters 

throughout the modeling process as probability distributions. The model output represents an 

ENM flow system, depicted by probability distributions. These distributions were derived from MC 

simulations. Bayesian inferences based on MCMC iterations were also modeled for parameters 

with available measurement data (e.g., sedimentation rate of nano-TiO2 and CNT). In contrast to 

scenario analysis, this method provides insight into the probability of each modeled output value 

along with a higher quantity of outputs. The uncertainty and variability of the model input 

parameters as well as their impact on the modeled outputs were analyzed as well. Monte Carlo 

techniques were first used to compute probability distributions of all model input parameters and 
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then to repeatedly solve a linear equation system on which the proposed ENM flow chart system 

was mapped mathematically. For the computation of those model-input distributions as well as for 

the resolution of the equation system, 100,000 iteration steps were carried out. The robustness of 

this number of iterations is discussed and verified in Gottschalk et al. [26]. In a further step, both 

a sensitivity and an uncertainty analysis [26] were carried out by decreasing each input 

parameter by 10% in order to recalculate the ENM flows in every single case. This allowed us to 

identify the ENM flows that contribute most to the variances of the computed concentrations and 

to estimate the confidence degree of the exposure assessment. The latter might be considered 

higher when the most influential variables are based on comparably secure and more detailed 

input data. 

Table 9. Production quantities of ENMs in t per year for Switzerland
a
  

 Mode Mean SD Sources 

nano-TiO2 114 240 195 [7; 33; 68]  

CNT
b
 1.9 2.6 1.2 [7; 11; 34; 69–71]  

nano-Ag 1.1 2.3 1.7 [7; 15; 35]  

a
The values are based on the worldwide production volumes, scaled to production volumes for 

Switzerland (factor 139.91). The volumes for Switzerland describe mode, mean and standard 

deviation (SD) of lognormal distributions, which stem from Monte Carlo simulations (100,000 

iterations), and which were modeled based on logarithmic means and standard deviations 

derived from the indicated data. 
 

b
Carbon nanotubes. 

4.2.3 Input parameters  

The model input parameters were comprised by the annual ENM input into the system, the mass 

distribution of ENMs to product categories, and the transfer coefficients (TC) which determined 

the ENM flows between (emissions) and inside of the compartments (elimination and 

accumulation) as well as into (ENM generation) and out of the system (export). The number of 

model input parameters considered were 104, 69, and 106 for nano-TiO2,, CNT, and nano-Ag, 

respectively. We chose triangular distributions for the input parameters when the most probable 

outcome was known (guessed or measured) and assumed this mode bounded between two 

parameter values, e.g., for some allocations of ENM production quantities to the amounts applied 

in different products categories or for coefficients of CNT flows in incineration plants. Uniform 

distributions were used for parameters that had not yet been well-studied, such as some TCs 

between the environmental compartments, and log normal distributions were applied where the 

input values ranged theoretically from 0 to an unlimited value, such as in the case of the amounts 

of the ENMs produced annually. 

ENM production. Data found for ENM worldwide production quantities were allocated to 

Switzerland based on a comparison of the total population of high income countries [32] to the 

Swiss population. Information from Schmid and Riediker [7], the only empirical study which 

provided direct information to ENM production volumes for the studied region was used as well. 
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Lognormal distributions were modeled based on logarithmic means and standard deviations 

derived from these data. The most frequently assumed values (modes, rounded to two digits) of 

ENM production volumes for Switzerland (Table 9) were 114 t/a for nano-TiO2, 1.9 t/a for CNT 

and 1.1 t/a for nano-Ag. However, the relatively high standard deviations caused by the variance 

of the data are worth noting (Table 9). For the nano-TiO2, the literature search provided 

production volumes which, scaled to Switzerland, ranged from 5 t/a [33] to 435 t/a [7]. For CNT, 

the values ranged from 1 t/a [7] to 3.57 t/a [34]. For nano-Ag, the maximum found was 4.03 t/a 

[15], the minimum being 0.026 t/a [35]. On average 2% of the ENMs were considered to be 

released to the other system compartments during manufacturing of ENM containing products 

and ENM production. The remaining part of ENM was allocated to commercially available ENM-

containing products.  

ENM products. The ENM containing products were grouped into product categories (see Table 

10). This categorization assumed equal ENM emission properties of the corresponding products. 

The categories were determined by means of an Internet-based ([8; 36], 

http://www.nanotechproject.org/; http://www.ec21.com/) qualitative analysis of commercially 

available ENM-containing products.  

Table 10. Mass fractions of engineered nanomaterials allocated to product categories
a
  

  nano-TiO2   CNT
b   nano-Ag 

Product 

Category Mean   Min   Max   Mean   Min   Max   Mean   Min   Max 
Cosmetics 0.4218   0.0036   0.8190   -   -   -   0.008   0.004   0.019 
Filter 
Aggregates 

0.2724  0.0359  0.7221  -  -  -  0.048  0.012  0.106 

Coatings and 
Cleaning 

Agents 
0.1051  0.0006  0.4421  -  -  -  0.291  0.081  0.590 

Plastics 0.1258  0.0004  0.5231  -  -  -  0.028  0.009  0.062 
Composites  -  -  -  0.4862  0.0000  0.9758  -    - 
Consumer 
Electronics 

0.0397  0.0002  0.2397  0.4517  0.0000  0.9785  0.055  0.021  0.118 

Paint 0.0198  0.0000  0.1648  -  -  -  0.201  0.000  0.528 
Glass and 
Ceramics 

0.0099  0.0000  0.0647  -  -  -  0.008  0.000  0.033 

Light Bulbs 0.0020  0.0000  0.0153  -  -  -  -  -  - 
Metals 0.0010  0.0000  0.0077  -  -  -  0.002  0.000  0.004 
Batteries and 
Capacitors 

0.0010  0.0000  0.0074  -  -  -  -  -  - 

Textiles 0.0008  0.0000  0.0062  -  -  -  0.254  0.119  0.490 
Ink 0.0007  0.0000  0.0045  -  -  -  -  -  - 
Dietary 
Supplement 

0.0000  0.0000  0.0000  -  -  -  0.106  0.034  0.283 

Research and 
Development 

-   -   -   0.0621   0.0000   0.8932   -   -   - 

a
The values (mean, minimum, maximum) describe the computed distributions of the input 

parameters extracted from Monte Carlo simulations (100,000 iterations). 
b
Carbon nanotubes. 
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The allocation of the considered ENM production mass to these product categories was 

calculated based on the ratio of the number of ENM-containing products in each category to the 

total number of ENM-containing products and the average mass of ENMs in each product. To 

count the commercially available ENM-containing products and assign them to the product 

categories, a four-fold web search was carried out. We used the international versions of Google 

(on 09/12/2008) and Yahoo (on 09/16/2008) search engines and the international inventories of 

EC21 ([36], http://www.ec21.com/) (on 09/15/2008) and the Woodrow Wilson Institute ([8], 

http://www.nanotechproject.org/) (on 09/15/2008; 10/6/2008). From the investigations based on 

the two search engines, the first 500 commercially available ENM-containing products were 

analyzed. Only products taken from the manufacturer’s site were counted; those presented in 

general online sales were not considered. From the EC21 inventories (EC21, 2008), all results 

were counted with the exception of commercially unavailable products, e.g., masterbatch 

solutions and ENM powders. All results obtained from the Woodrow Wilson Institute’s inventory of 

nanotechnology-based consumer products [8] were used. In addition, a report from National 

Industrial Chemicals Notification and Assessment Scheme (NICNAS) [33] was used for nano-

TiO2 applications, and Schmid and Riediker [7] was referred to for nano-TiO2, and nano-Ag ones. 

Based on the accuracy of the data, either a uniform or a triangular distribution of the fraction of 

products in each category was modeled. In most cases where the results from the four Internet 

search data basis showed identical or comparable values in at least three cases, triangular 

distributions were modeled. If the results did not show any trend, the lowest and the highest 

probable fraction of products per product category were considered when modeling uniform 

probability distributions. The average mass of ENMs per product in each category was estimated 

by means of the total mass of products containing ENM and the average fraction of ENMs per 

product in a corresponding product category. The ENM fraction was obtained from Boxall et al. 

[16], from manufacturer’s specifications or from personal communications.  
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Table 11. Release of engineered nanomaterials (ENM) from products, manufacturing of ENM containing products and ENM production
a 

 

a
The values (averages that were enlarged and reduced by 20% to build uniform model input distributions) refer to the fraction of the total amount of ENM 

released, transferred or dissolved from a particular source.
 

b
Sewage treatment plants. 

c
Carbon nanotubes. 

d
Waste incineration plants. 

Product Category STP
b
     WIP

d
     Atmosphere Landfill   Soil     Water   Recycling Elimination   Export   

Nanomaterial TiO2 Ag CNT
c
 TiO2 Ag CNT TiO2 Ag CNT TiO2 Ag CNT TiO2 Ag CNT TiO2 Ag CNT TiO2 Ag CNT TiO2 Ag CNT TiO2 Ag CNT 

Plastics       1.00 0.95 1.00                          0.05        

Cosmetics 0.90 0.73   0.05 0.04                 0.05 0.04         0.19        

Coatings and Cleaning Agents 0.90 0.73   0.05 0.04  0.05 0.04                      0.19        

Batteries and Capacitors       0.28                              0.73     

Metals 0.05 0.05   0.05 0.05                           0.05  0.90 0.86   

Paint 0.20 0.16            0.50 0.41  0.25 0.20   0.05 0.04         0.18        

Light Bulbs       0.10                              0.91     

Glass and Ceramics       1.00 0.81                           0.19        

Filter Aggregates       0.28 0.22                           0.19  0.73 0.59   

Consumer Electronics       0.28 0.26 0.28                       0.73  0.05  0.73 0.69   

Textiles 0.50 0.20   0.25 0.14    0.05                      0.48  0.25 0.13   

Dietary Supplement 0.90 0.90   0.10 0.10                                   

Research and Development     0.01   0.98     0.01                            

Ink 0.08     0.92                                    

Manufacturing 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33 0.33                            

Production 0.75 0.75 0.75    0.25 0.25 0.25                            
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ENM flows. The acquisition of input data to model ENM flows was focused on the estimation of 

distributions for each TC. In cases where absolutely no data were found, e.g., for the TC of nano-

TiO2 from textiles to the STP, the TCs were uniformly distributed between 0 and 1. For some 

TCs, only a single deterministic value could be derived, and in such cases uniform distributions 

were built by increasing and decreasing the assumed mean value by 20%. Particles ending up in 

soil, landfill and sediments were assumed to accumulate within these compartments.  

PMC process. Dissolution of nano-Ag was quantified based on information given in Blaser et al. 

[15] for the release of Ag from biocidal plastics and on Benn and Westerhoff [13] for release from 

textiles. No continuous dissolution was considered in natural waters, as relatively low dissolution 

was assumed during exposure [37] and little quantitative information was available on this 

reaction. It has been shown that nano-Ag dissolves by less than 1% in different natural waters 

[38] and in algal growth media [39]. For composites and sporting goods (plastics) complete waste 

disposal was assumed. Engineered nanomaterials from cosmetics, coating and cleaning agents, 

dietary supplements, or production processes were mainly emitted to sewage treatment plants. 

For textiles, emissions due to friction and especially laundering were considered, based on 

results obtained by Benn and Westerhoff [13]. Recycling was considered for consumer 

electronics (CNT), batteries and capacitors, textiles, cosmetics and filter aggregates (nano-Ag). 

There is no data basis to estimate ENM quantities leaving the recycling process. Engineered 

nanomaterials ending up in this process were assumed to be eliminated, as they are either 

combusted or incorporated into new materials, e.g., during metal smelting. Table 11 provides a 

complete overview of all TCs of the emission flows from PMC. 

Wastewater treatment. For nano-Ag and nano-TiO2, a removal between 90.6 and 99.5% (uniform 

distribution) was used based on the only available study of ENM removal from wastewater [40]. A 

removal efficiency between 96.3 and 99.7% (uniform distribution) was estimated for CNT based 

on data about its aggregation in the presence of high concentrations of dissolved organic matter 

[41; 42]. 

Waste incineration. Engineered nanomaterials entered the environment in very small quantities 

via flue gas cleaning from WIPs. The removal efficiency of multistage flue gas cleaning filters for 

particles smaller than 100 nm was taken from Burtscher et al. [43] and was at least 99.9%. Eighty 

percent of the filter ash was exported [44], with the remaining being deposited in landfills. Carbon 

nanotubes are combustible and should, theoretically, burn fully. However, in the absence of 

oxygen (as in the case of batteries), these particles may reach the bottom ash [11; 45]. Based on 

standard carbon mass flows for incineration plants [46], a triangular probability distribution with a 

peak at 0.98 and boundaries between 0 and 1 for elimination of CNT was modeled. The fraction 

not eliminated was randomly allocated either to the slag or to the flue gas cleaning. The fraction 

ending up in slag was modeled as uniform distribution from 0 to 1. According to this distribution 

the remaining part was assumed to reach the flue gas cleaning installation. In the same way 

incombustible nano-Ag and nano-TiO2 were allocated either to the flue gas cleaning installation 

or to the slag. 

Surface waters. It was presumed that ENMs entering this compartment were either deposited to 

the sediment or transferred out of the system as part of the rivers’ outflow. The sedimentation 

rate of nano-TiO2 in water was modeled using results from Fang et al. [47] as measurement data 

to run MCMC iterations, which produced a highly right skewed lognormal posterior distribution for 
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the sedimented fraction with a minimum of 0.29 and a maximum of 1. The same applied to CNTs 

where results presented in Hyung et al. [41] and Kennedy et al. [42] were used to generate 

uniform distributions for the sedimented fraction with minimal and maximal values of 0.79 and 

0.99. Due to an absence of information concerning the sedimentation of nano-Ag, a uniform 

distribution from 0 to 1 was assumed. 

Lower atmosphere. Considering a retention time of 10 d for ultrafine particles [48], approximately 

one thirty-sixth of the ENM input into the air compartment constantly remains in the lower 

atmosphere. Dry and wet deposition from air to water and to soil occurs according to the ratio of 

the land areas covered by water and soil (0.042/0.958). 

4.2.4 Sensitivity analysis 

The sensitivity analysis was performed as described in Gottschalk et al. [26]. First, the mean 

values of each simulated input parameter and output variable were calculated. Afterwards a 

differential value was computed for each output variable by decreasing in each case the mean of 

a particular input parameter by 10%. The proportional change in the output variable was then 

divided by the proportional change of the varied input. In order to calculate the “sensitivity” of a 

simulation output variable to the varied input considering also the uncertainty of the considered 

input, this ratio (proportional change of the input to the proportional change of the output) was 

multiplied by the standard deviation of the distribution of the changed input parameter. Lastly all 

single sensitivity values were summed (total sensitivity) to calculate each parameter’s 

contribution by percent to the total sensitivity of the studied simulation output variable. 

4.2.5 Toxicity assessment 

The PNEC values for the studied ENMs were extracted or calculated from ecotoxicological 

literature. The given values (NOEC, median lethal effect concentration [LC50] and median effect 

concentration [EC50]) were, due to the low number of available studies, divided by an 

assessment factor of 1000 to obtain the PNEC [18]. The PNECnano-TiO2
 
(water) of 1 g/L for 

organisms in water was derived from NOEC values of 1 mg/L [49] for Daphnia magna and 0.98 

mg/L [50] for Pseudokirchneriella subcapitata. The PNECnano-Ag (water) of 0. 696 ng/L was 

derived from an LC50 of 0.696 μg/L [38] for Ceriodaphnia dubia. In the case of CNTs for 

zebrafish embryos Danio rerio a NOEC of 40 g/ml [51] for multi-walled carbon nanotubes led to 

a PNECCNT (water) of 40 g/L. The only threshold concentrations found for sediments was an 

LC50 for Leptocheirus plumulosus of 68 g/kg [52], from which a PNECCNT (sediment) of 68 mg/kg 

was derived. For the air compartment, the PNECnano-TiO2 (air) of 10 g/m
3
 is based on a 

lowestobservedeffect concentration of 10 mg/m
3
 derived from different inhalation studies [53]. 

The PNECCNT (air) of 0.1 mg/m
3
 [54] was derived from a threshold providing a CNT occupational 

exposure limit. The PNECnano-Ag (air) of 0.1 g/m
3
 is based on a NOEC of 100 g/m

3
 [55]. 

Concentrations of 10 to 1000 g [56] TiO2/g dry food were identified as safe for terrestrial isopods 

P. scaber Latreille, 1804. Based on these thresholds a PNECnano-TiO2 (soil) >1000 g/kg was 

used. Furthermore, a PNECCNT (soil) for Eisenia Veneta of 176 g/kg was derived from an EC50 

of 176 mg/kg [57].  
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4.3 Results  

4.3.1 Intermediate outputs of the MC simulations  

Distribution of the ENM to Product Categories. The mass fractions of ENMs in product categories 

were modeled based on the categorization of products explained above. The simulation results, 

given as means (Table 10), showed that the proportions of the cosmetics (0.42), filter aggregates 

(0.27), plastics (0.13) and coating and cleaning agents (0.11) had covered the majority of the 

application field of nano-TiO2. For CNT, the results indicated that almost all the ENMs had been 

allocated nearly equally to the categories composites and consumer electronics. However, the 

estimation of the ENMs mass distribution within these three categories was difficult due to the 

particularly distinct lack of information concerning CNT-containing and commercially available 

products. In the case of nano-Ag, the proportions of the categories coating and cleaning agents 

(0.29), textiles (0.25), and paints (0.2) represented more than two thirds of the mass of ENMs 

incorporated in commercially available products. Figure 13 exemplarily illustrates the simulated 

mass proportions of nano-TiO2 in cosmetics (top left) and the proportion of nano-Ag in textiles 

(top right).  

4.3.2 Transfer coefficients 

The amounts of ENMs emitted to the environment or ending up in technical compartments were 

derived from the simulated ENM flows, quantified by transfer coefficients determined by the life 

cycle and lifetime of the products and on the strength of the fixation of the ENMs within the 

products in each product category. However, after the MC iterations were run, the modeled TCs 

that describe the total fraction of ENMs transferred from the PMC process to each other 

compartment were extracted from the simulation output. Such total TCs brought together all the 

single TCs from each product category into a unique TC. The most prominent TCs determining 

direct emissions of nano-TiO2 during product usage displayed the following means: emission as 

part of wastewater from PMC to STP was 0.48, transfer from PMC to WIP was 0.25, and transfer 

out of the system as part of exported products was 0.23. In the case of CNTs, the two relevant 

transfers were waste from PMC to WIP (0.66) and the transfer from PMC to the recycling process 

(0.3). Carbon nanotubes were almost exclusively incorporated in polymer matrices or in batteries 

and consumer electronics. Thus, except from CNTs in textiles, release during product usage was 

not observed [11]. Nano-Ag was mainly emitted from the PMC to the STP as part of the 

wastewater flow (0.39) or as part of the waste from PMC to the WIP (0.12). A third relevant part 

was eliminated as release of Ag from nanoparticles in ionic form (0.22). This release of Ag in 

ionic form has to be regarded as a major emission process from textiles and plastics [15].  

The most relevant simulated TCs that define the ENMs’ behavior after being emitted from the 

PMC process described the fate of ENMs in STP and WIP. For nano-TiO2 and nano-Ag, the 

mean simulated TCs showed the following results: from STP to WIP in the form of STP sludge 

accounted 0.86; from the WIP to the air compartment there was an equal-to-zero emission of 

0.002, and the remaining part was exported or transferred to landfills within slag or filter ash. In 

the case of CNTs, the greater part (mode) of the particles were burned during the waste 

incineration process (0.94). Most of the remaining fraction ended up in filter ash and slag (0.038). 

Figure 13 illustrates the simulation output of the removal efficiency of sewage treatment plants for 

nano-TiO2 (bottom left) and of the total mass fraction of CNTs ending up in waste incineration 
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plants (bottom right). The simulation results showed that 90.8 to 99.6 % of the nano-TiO2 mass 

had been removed in STPs and that 68.7 % (mode) of the CNTs had ended up in WIPs. 

 

Figure 13. Probability distributions of Monte Carlo simulation outputs (100,000 iterations) 

describing exemplarily input parameters such as the mass fraction of nano-TiO2 ending up in 

cosmetics (top left) and nano-Ag ending up in textiles (top right) and the mass fraction of the 

removed nano-TiO2 in sewage treatment plants (bottom left) and carbon nanotubes (CNTs) 

reaching e.g. waste incineration plants (bottom right). 
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Figure 14. (a) nano-TiO2 (>0.005 t/a), (b) carbon nanotubes (>0.0005 t/a), and (c) nano-Ag flows 

(>0.0005 t/a), accumulation and elimination rates shown as range of the lower and upper 

quantiles (Q(0.15) and Q(0.85). The thickness of the arrows indicates the proportions of the 

engineered nanomaterial flows. The thickness of the horizontal line in the boxes indicates the 

proportion of the yearly accumulation or elimination. 
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4.3.3 Main MC simulation results 

Material flow charts. Figure 14 shows the relevant flows of nano-TiO2 (>0.005t/a) and of CNTs 

and nano-Ag, the latter two of which were higher than 0.0005t/a. The most prominent emission 

flows of nano-TiO2, shown as the range of the lower and upper quantiles Q(0.15) and Q(0.85), 

were wastewater (33.7–197.3 t/a), sludge from STP to WIP (29.9–169.2 t/a), filter ash from WIP 

to landfill (27.7–162 t/a), export of filter ash from WIP outside the system boundary (18.5 – 108.2 

t/a), waste from PMC to WIP (17.3–101.6 t/a) and export in products from PMC outside the 

system boundary (15.8–92.4 t/a). The relevant CNT flows were waste from PMC to WIP (0.8–2.7 

t/a), elimination in WIP (0.5–1.8 t/a) and the transfer to and elimination within the recycling 

process (0.4–1.3 t/a). Due to a small periodic input of nano-Ag into the system, relative small 

amounts of nano-Ag were transferred to and within the studied compartments. The most 

noteworthy of these (albeit small) flows were those from PMC to STP (wastewater) (0.2–1.6 t/a), 

sludge from STP to WIP (0.2–1.4 t/a), filter ash from WIP to landfill (0.1–1.1 t/a) and filter ash 

export from WIP outside the system boundary (0.1–0.7 t/a).  

Table 12. Predicted environmental concentrations of nano-TiO2, carbon nanotubes and nano-Ag 

shown as mode and as range of the lower and upper quantiles (Q(0.15) and Q(0.85)
a
 

NP PEC   Unit 

nano-TiO2 Mode Q 0.15 - Q 0.85   

Air 0.001 0.0007 - 0.003 g m
-3

 
Surface 
Water 0.021 0.016 - 0.085 g L

-1
 

STP
b
 Effluent 4.3 3.5 - 16.3 g L

-1
 

STP Sludge 211 172 - 802 mg kg
-1

 

Sediment 499 426 - 2382 g kg
-1

y
-1

 

Soil 0.28 0.21 - 1.04 g kg
-1

y
-1

 

CNT
c
           

Air 0.008 0.006 - 0.017 ng m
-3

 

Surface 
Water 0.0033 0.0028 - 0.025 ng L

-1
 

STP Effluent 11.8 7.6 - 19.1 ng L
-1

 

STP Sludge 0.069 0.051 - 0.129 mg kg
-1

 

Sediment 229 176 - 1557 ng kg
-1

y
-1

 

Soil 1.92 1.44 - 3.83 ng kg
-1

y
-1

 

nano-Ag           

Air 0.021 0.017 - 0.074 ng m
-3

 
Surface 

Water 0.72 0.56 - 2.63 ng L
-1

 

STP Effluent 38.7 29.8 - 127 ng L
-1

 

STP Sludge 1.88 1.46 - 6.24 mg kg
-1

 

Sediment 1203 965 - 10184 ng kg
-1

y
-1

 

Soil 11.2 8.7 - 41.2 ng kg
-1

y
-1

 
a
For air, surface water and sewage treatment plants effluent the concentrations are given, for soil 

and sediments the annual augmentation of the concentration is shown.
 

b
Sewage treatment plants. 

c
Carbon nanotubes. 
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4.3.4 Concentration and accumulation of ENMs  

Figure 15 illustrates simulation results of the predicted concentrations in surface water, STP 

effluent and STP sludge and of the annual increase in soil for nano-TiO2, CNTs, and nano-Ag. It 

is worth mentioning that there was a very high probability of extremely small amounts of CNT 

ending up in surface water. All the other distributions showed typical skewed log-normal shapes 

as often observed for the distribution of chemicals in the environment and which are particularly 

common if the observed values are not negative, the mean values relative low and variances 

relative large [58]. Density distributions modes and quantile ranges were derived thereof. 

Table 12 shows the PEC values as modes within the range of lower and upper quantiles (Q(0.15) 

and Q(0.85)). The predicted values of ENMs’ concentration for air, surface water, STP effluent 

(treated water) and STP sludge as well as the predicted annual deposition of ENM concentrations 

in sediment and soil are illustrated. Noteworthy were the relatively small concentrations (modes) 

in surface water (nano-TiO2, 0.02 g/L; CNT, 0.003 ng/L; and nano-Ag, 0.72 ng/L compared to 

the concentrations in the STP effluent (nano-TiO2, 4.3 g/L; CNT, 11.8 ng/L; and nano-Ag, 38.7 

ng/L). High rates of sedimentation led to remarkable annual deposition in sediment: nano-TiO2, 

499 g/kg; CNT, 0.229 g/kg; and nano-Ag, 1.2 g/kg. Although sludge application on landfills 

and soils was not considered (prohibited in Switzerland) and the sludge incinerated in WIP or 

used in cement plants, the concentrations in STP sludge were calculated nonetheless. High ENM 

concentrations were predicted for STP sludge: 211 mg/kg for nano-TiO2, 0.069 mg/kg for CNT, 

and 1.88 mg/kg for nano-Ag.  
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Figure 15. Probability densities of the predicted concentrations in water and cleaned water 

(sewage treatment plants (STP) effluent), STP sludge and of the annual increase in soil for nano-

TiO2, carbon nanotubes (CNT) and nano-Ag.  
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4.3.5 Sensitivity and uncertainty analysis 

The 8 most influential parameters determining concentrations in water and soil are shown in 

Table 13. For nano-TiO2 and nano-Ag changes in the parameters STP inflow, STP overflow, and 

STP removal efficiency covered at least 98% of the source of variation of the ENM concentrations 

in water. The variation of the parameters STP overflow and STP removal efficiency showed an 

88% probability that CNT concentrations in water responded to changes in input parameters. 

Thus, the sensitivity results confirmed that CNTs ended up in water almost only via STP, and that 

CNT did not reach water environments in relevant amounts. Changes in waste and particle 

emissions from WIP to air explained 84% of the caused variation of CNT concentrations in soils. 

However, the sensitivity of CNT water concentrations to variation in the STP inflow was very 

marginal. For nano-TiO2 and nano-Ag the influence of the input parameter variation to the ENM 

concentrations in soils was distributed more evenly to various parameters. Due to the high 

uncertainties associated with the sedimentation process and the fate and behavior of ENMs in 

the air the sensitivity of ENM concentrations in air and sediments to variations of the input 

parameters was not evaluated. 

 

Table 13. Results of the sensitivity analysis indicating the most influential model input parameters 

to the calculated environmental concentrations of nano-TiO2, carbon nanotubes and nano-Ag in 

water and soil.  

  Water      Soil     

 
nano-
TiO2 CNT

a
 

nano-
Ag 

nano-
TiO2 CNT 

nano-
Ag 

STP
b
 Inflow 74% 1% 64% 32%  5% 

STP Overflow 18% 41% 33%    
STP Removal 
Efficiency 6% 47% 2%    

Waste Incineration  4%  13% 42%  
Emissions from WIP

c
 to 

Atmosphere  4%   42%  

Dry/Wet deposition to 
Soil     22% 12% 38% 
Direct Emissions to 

Atmosphere    10% 3% 35% 

Sedimentation             
a
Carbon nanotubes.

  

b
Sewage treatment plants. 

c
Waste incineration plants. 

 

 

4.3.6 Risk quantification  

The comparison of the PNECs to the modeled PECs provided the risk quotients (risk quotient = 

PEC/PNEC). A risk quotient (RQ) greater than or equal to one indicates a potential risk. The 

PECs were modeled within these risk assessments as mode and median values of the 

corresponding output distributions. The results based on the modes indicate the greatest 

observed frequency of RQ-values. Because of the positive skewed lognormal-shaped output 
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distributions (Fig. 15), the medians provided RQs higher than the mode-based results. The 

median was preferred to the mean, because in a skewed distribution, the mean is farther out in 

the long tail with low densities than is the median. 

The RQs (Table 14) suggest that CNTs currently do not pose a risk to organisms in air, surface 

waters, soils, and sediments. All RQCNT were smaller than 0.0005. For the other two ENMs, 

ecotoxicological data on sediment organisms are still scarce, and evaluation was therefore not 

yet possible for this compartment. Risk was observed for organisms in the STP effluent exposed 

to nano-TiO2 and nano-Ag and for organisms in waters exposed to nano-Ag. The RQnano-TiO2 for 

the STP effluent was 4.28 (quotient based on the mode) or 7.58 (quotient based on the median), 

and the RQnano-Ag for the STP effluent are 55.6 and 88.41, respectively. Nano-Ag in water showed 

RQs of 1.03 and 1.74.  

Table 14. Risk quotients (predicted environmental concentrations/predicted no effect 

concentrations) of nano-TiO2, carbon nanotubes and nano-Ag for air, surface water, cleaned 

water (sewage treatment plants effluent), sediments and soils (rounded to three digits). 

  Nano-TiO2   CNT
a
   Nano-Ag 

 mode  median  mode  median  mode  median 

Air <0.0005 <0.0005  <0.0005 <0.0005  <0.0005 <0.0005 

Surface 
Water 

0.02 0.04  <0.0005 <0.0005  1.03 1.74 

STP
b
 

Effluent 
4.28 7.58  <0.0005 <0.0005  55.60 88.41 

Sediment NA NA  <0.0005 <0.0005  NA NA 

Soil 0.001 0.003   <0.0005 <0.0005   NA NA 

a
Carbon nanotubes.

  

b
Sewage treatment plants. NA = ecotox studies not available. 

4.4 Discussion  

The flow charts of nano-TiO2 and nano-Ag show that for these materials the most dominant ENM 

transfers are from products to STP and WIP, STP to WIP and from there to landfills. In the case 

of CNTs, the majority of the nanotubes ended up in the WIP. These results are in agreement with 

the flow analysis of Mueller and Nowack [6]. However, the comparison of the single ENM flows 

computed in this work to the flows presented in the preceding study [6] is difficult given an 

enlargement of the system to more compartments and ENM flows associated to these 

compartments, newly available model input data and a different categorization of the products 

and allocation of the ENMs’ mass to the product categories. For CNTs, the values of the 

predominant flow PMC to WIP found in the “realistic” as well as in the “high exposure” scenarios 

in Mueller and Nowack [6] are covered by the range of the 0.15 and 0.85 quantiles presented in 

the present study. The predominant flows from production/manufacturing/consumption to STP 

and STP to WIP of the realistic scenario are, in the case of nano-Ag, also covered by the same 

range; in the case of nano-TiO2, they are smaller than the values of the 0.15 quantiles by about a 

factor of 1.5. The corresponding nano-TiO2 and nano-Ag flows of the high exposure scenario in 
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Mueller and Nowack [6] are approximately identical to or up to a factor of 2 higher than the results 

of the 0.85 quantiles calculated in this work. However, the most useful aspects of such 

comparisons are to test roughly the model’s consistency. Results of a two-scenario analysis 

evidently do not cover the whole range of output distributions of a MC or MCMC analysis.  

The lowest PEC values generated from the ENM flows to the environment were observed for 

CNTs. However, it would be a fallacy to conclude that the currently observed small ENM 

production volumes implicate a guarantee of small CNT environmental concentrations in the 

future. If the price of CNTs falls and CNT application becomes more widespread, the CNT 

concentration in the environment could increase considerably. For nano-TiO2 and nano-Ag, air 

shows the lowest PEC values. Particularly striking are the high PEC values for all materials in 

STP sludge. As mentioned, however, STP sludge is incinerated in WIP, exported or used for 

cement production in Switzerland. Nevertheless, one needs to take a closer look at such 

concentrations within a risk assessment, because STP sludge is applied to soil in other regions 

(United States, European Union). The highest ENM concentrations relevant for the studied region 

were found for all materials in the STP effluent, even though a high treatment efficiency of the 

STP was assumed. Due to the relative high volume, the air compartment showed the lowest 

PECs. This can be explained by the very small quantities of ENMs emitted to the air during the 

usage phase of the products and during the treatment of ENMs in the WIP. 

The sensitivity analysis allowed us to identify the key parameters that needed to be studied more 

precisely. From these results, we may conclude that a closer look is needed at the parameters 

covering the release of ENMs from the products to the STP, the STP removal efficiency and 

overflow and the sludge from this compartment ending up in the WIP, where it is incinerated, 

exported or deposited in landfills. Changes in the parameters STP inflow, STP overflow, and STP 

removal efficiency explain for nano-TiO2 and nano-Ag almost the whole variation of the ENM 

concentrations in water. The reason for the dominance of that factor is that the major application 

volumes of these ENMs are within the product categories cosmetics and coatings for nano-TiO2, 

and coatings, cosmetics, paints and textiles for nano-Ag. Releases from such applications mostly 

result in emissions into STP inflow. Even though CNTs end up in very small amounts in the STP 

inflow, the parameters STP overflow and STP removal efficiency influence most of all the CNT 

concentrations in water. The interpretation of these results is further complicated by the fact that 

very small amounts of ENMs actually reach this compartment. However, the sensitivity analysis 

shows that to improve the prediction of the final location of the ENMs, the most critical information 

is not only related to fate and behavior in technical systems or in the environment but also to the 

usage of ENMs in products and their release during the use phase. 

Except for nano-TiO2 and nano-Ag in STP effluent and nano-Ag in water, all the PNEC values 

derived were smaller than the corresponding modeled PEC values in the environment. However, 

although most of the modeled PECs were much smaller than the corresponding PNECs, 

toxicological effects of ENMs, even at such low concentrations, cannot be excluded when present 

in complex mixtures. In our modeling we lumped together all modifications of the ENMs, e.g., the 

different modifications of TiO2 or surface functionalizations, mainly due to the absence of data. 

However, the size and functionalization of ENMs might have an influence on their toxic effects 

[59; 60]. Further ecotoxicological studies should be carried out to elucidate whether the modeling 

has to take this into account, and the environmental behavior of the different functionalized ENMs 

also needs to be studied.  
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The risk estimation results provided by the present study suggest that, except for organisms 

exposed to nano-TiO2 and nano-Ag in STP effluent and STP sludge and especially nano-Ag in 

water, the ENMs studied currently (2008) pose no risks to organisms in the environment. Hence, 

further investigations are needed to evaluate the risks posed to aquatic organisms by nano-TiO2 

and nano-Ag. In addition an urgent need for further studies concerning silver concentrations in 

water is evidenced by the fact that silver ion release and emissions of microsized silver were not 

covered by our risk calculations. Ecotoxicological data on soils and sediments are very scarce, if 

available at all. Thus, this lack of data should be filled. 

Although a comparison of the present study to a previous study [6] and a first validation of 

modeled concentrations [27] has been done, the discussion of the limitations of such a 

probabilistic/stochastic modeling is essential to guarantee good scientific and practical use of the 

outputs and to illustrate simultaneously the requirements for reducing the uncertainties in the 

simulations. Summing up the key limitations of the results may be seen in the general lack of 

input data, the focus on one unique region (Switzerland) and the steady state calculations for only 

one time period (2008). 

First, the data found in the literature for the annual production volumes of ENMs vary widely, 

sometimes by a factor of 100. Hence, relatively large ranges of input distribution had to be 

modeled. In accordance with the deterministic study of Mueller and Nowack [6], the production 

quantities of ENMs was the key parameter in our modeling. In the meantime more data 

concerning the production volumes of ENMs had become available. However, estimating ENM 

production volumes was still difficult. Producers do not necessarily advertise nanosized 

ingredients, and whenever data from companies are available, such information should be trusted 

only sparingly. Furthermore, there are no complete inventories listing all products containing 

ENMs. Schmid and Riediker [7] provide the only quantitative overview containing product 

categories allocated to incorporated ENM volumes. More data on the production and use of 

ENMs in commercially available products will hopefully become available in the next few years 

when ongoing governmental investigations on nanosized materials are concluded. One critical 

point of the steady state approach is that storage of ENMs and ENM-containing products within 

the PMC was not considered. Data concerning such storage are missing entirely. Furthermore, 

production quantities of ENMs and ENM-containing products were only calculated for current 

(base year 2008) quantities of materials and products. Hence, modeling time-dependent ENM 

production quantities and consideration of storage processes would be crucial for improving the 

simulations. However, the available data do not show any correlation between the estimated 

nanomaterial production amounts and the year of estimation. Thus, no trend is obtainable from 

such estimations that would afford dynamic modeling of ENM production amounts. 

Furthermore, no quantitative data on ENM emissions during the manufacturing of ENM-

containing products and during the production of ENMs are available yet. Experimental data are 

restricted almost exclusively to emissions from textiles [13; 14] or paints [12]. The same absence 

of data is observed for the ENM release during the production of ENM and manufacturing of 

ENM-containing products although first measurements at companies producing ENM showed 

that worker exposure to these materials occurs [61–65]. Thus, there is a release, but it cannot be 

quantified for modeling purposes and an allocation has to be made based on assumptions. In 

addition, the assignment of the average mass of ENMs in products is also associated with great 

uncertainties. However, the estimation of the average weight of a prototypical product of each 



Possibilities and Limitations of Modeling Environmental Exposure to Engineered Nanomaterials 

87 

category and modeling the average proportion of ENM in these products by means of probability 

distributions allowed us to cope with the uncertainty and variability of these model parameters. 

Nevertheless, measurement data related to such model parameters are urgently needed. The 

allocation of ENMs to product categories also depends on the number of products sold, 

information that is even more lacking than the concentrations in products. 

Additional key limitations are represented by the lack of data on the fate of engineered 

nanomaterials in nature. In particular the exchange between water and sediment through re-

suspension and burial processes were not considered. Accumulation in sediments was equated 

to sedimentation/aggregation. The impact of streambed roughness, flow velocity, and streambed 

depth on ENM transport distances and accumulation in sediments were neglected, although they 

may influence considerably, e.g., ENM exposure of plankton and adsorbed microorganisms [66]. 

Carbon nanotubes and other ENMs may be functionalized to achieve water solubility or solubility 

of the products containing them [11]. Obviously, different behaviors in environmental and in 

technical compartments may result from such different material properties. While the aggregation 

behavior of ENMs has been extensively investigated in laboratory systems, almost nothing has 

been done under environmentally realistic conditions thus far. The extrapolation of laboratory 

aggregation studies to sedimentation in natural systems is difficult. We have based our modeling 

on the few studies that report quantitative data on the stability of ENM suspensions under natural 

conditions that can be used to obtain transfer coefficients. More research is clearly needed to 

investigate the conditions under which single suspended ENMs can be formed in the environment 

and how quickly ENMs sediment in the water column. The same applies to biotransformation and 

accumulation, or dissolution of ENMs. Furthermore, the modeling of aerodynamics was restricted 

to rough calculations on atmospheric deposition based only on data for ultrafine particles [48]. A 

distinction of dry and wet deposition, as well as insights into the tendency of suspended 

nanoparticles to agglomerate, are required. 

We should emphasize once again that this study was focused exclusively on Switzerland and that 

we assumed environmental compartments were mixed well. In Switzerland it is prohibited to 

apply sludge to landfills and soil, and almost 100% of all buildings are connected to STPs for 

wastewater and to WIPs for flows of waste. Hence, in order to understand system behavior in 

other countries and under different conditions, further investigations should be focused on more 

than one single region, as done for following the example of Gottschalk et al. [27]. Much higher 

concentrations could also occur locally, such as on sludge-treated soils or in industrial areas near 

ENM production plants. In addition, leachate from landfills, e.g., cannot be excluded, given that 

the standard of landfills most likely varies between regions. Thus, a further differentiation is 

necessary in the form of a spatial analysis of ENM flows inside environmental compartments.  

Finally, the risk assessment for ENM based on a PEC/PNEC comparison suffers also from the 

PNEC estimation uncertainties. The derivation of PNECs is difficult due to the limited number of 

studies that are mainly focused on acute toxicity and cover only a few numbers of test species 

and toxicity endpoints. Engineered nanomaterial toxicity is mostly studied on model organisms 

(bacteria and algae, daphnids, etc.) and using ENM concentrations several orders of magnitude 

higher than available PECs [66]. Long-term low exposure studies to obtain chronic endpoints are 

missing to a great extent [67]. In addition, adverse effects are not necessarily caused exclusively 

by individual nanoparticles but also by agglomerated particles as observed for nano-TiO2 [66]. 

Considering such limitations it is difficult to discuss conclusively to what extent the use of a safety 
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factor of 1000 covers all these limitations in ecotoxicological research. It is furthermore also 

difficult to compare a deterministic PNEC to PEC values from density distributions. In the present 

study we used mode and median values for this comparison. Mode and median were preferred to 

the mean and the 15 and 85% quantiles were used to avoid an overemphasis of very uncertain 

results on the long tail of lognormally shaped simulation outputs. However, in risk assessment 

such arbitrary choices are justified rather by practical applicability than by scientific legitimation. 

Thus, simply concluding, e.g., that for carbon based ENM no risks for nature may be expected 

because all PNECs were smaller than the corresponding PECs (Table 14) would be 

irresponsible. Our risk quotients refer only to the base year of the simulations 2008 and only to a 

few ecotoxicological studies that in turn consider only single types of CNTs. Thus, especially for 

CNTs, where low current production amounts and use in water-irrelevant products were 

observed, a future breakthrough in the commercialization and the development of novel products 

containing new functionalized CNTs could make an immediate re-assessment necessary. 
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Abstract 

Two models, one based on probabilistic material flow analysis and one based on graph theory, 

were combined to calculate predicted environmental concentrations (PEC) of engineered 

nanomaterials (ENMs) in Swiss rivers at high spatial resolution. PECs for nano-TiO2, nano-ZnO 

and nano-Ag were calculated for 742 river sections downstream from 742 sewage treatment 

plants at base flow conditions Q95% (flow reached or exceeded annually in 95% of the time, 

averaged in Switzerland over a ten-year period). Additionally, flow measurements for 20 selected 

locations over a 20-year period (1988–2007) were used to assess temporal variations. At base 

flow the highest PECs (modal values) were found for nano-TiO2 where the PECs at Q95% ranged 

from 0.1 ng/L to 7,800 ng/L, followed by nano-ZnO (0.004 ng/L to 500 ng/L) and nano-Ag (0.3 

pg/lL to 32,500 pg/L). Comparing PECs with PNEC values (predicted no effect concentrations) 

revealed that based on the used hydrological data and averaged for all 20 stations and scenarios 

(scenario with and scenario without sedimentation) the PNEC was exceeded for nano-Ag using 

modal concentrations at 234 days annually. The equivalent results for nano-ZnO and nano-TiO2 

were 150 and 109. This study shows that linking a probabilistic material flow analysis to a geo-

referenced model fills two gaps: the PEC calculations for rivers were improved compared to 

calculations at regional level by considering geographical distribution of the ENM emissions and a 

clear distinction between input uncertainty and natural water flow variations could be achieved. 

Variability in the stream flow variation influenced the ENM concentrations up to a factor of 5, the 

uncertainty in the ENM loads caused a difference in the PEC calculations up to a factor 10.  
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5.1 Introduction 

Production and application quantities of engineered nanomaterials (ENMs) are growing and it has 

to be expected that ecosystems will be exposed to significant levels of such materials (1–5). 

Unfortunately, the quantitative detection of ENMs in the environment is currently extremely 

limited, the distinction between engineered and naturally occurring nanomaterial is almost 

impossible (6). Thus, modeling the ENM release to and fate in the environment is crucial to 

predict environmental exposure. However, in the case of ENM, modeling the exposure is difficult 

as it has to cover diffuse emissions from a large number of relevant ENM-containing products 

and life cycle stages. These include but are not limited to ENM release into the environment from 

ENM production, ENM incorporation into products and storage, use, waste generation and 

disposal of such products. Once released into the environment, ENMs will to some extent 

agglomerate, associate with suspended solids or sediments, and accumulate in organisms, 

entering into the food chain or drinking water sources (7).  

Recently, scientific awareness was emphasized particularly on aquatic pollution derived from the 

release of ENMs into surface waters (5, 7–9). Battin et al. (5) presented first evidence that nano-

TiO2 at ambient UV radiation levels and realistic nano-TiO2 concentrations have significant 

impacts on natural microbial aquatic communities. Basically, industrial and domestic products 

and wastes containing ENMs tend to end up in water: either they are released directly into rivers 

and lakes, e.g. from outdoor use of sunscreens, or indirectly via surface run-off, domestic or 

industrial wastewater (10). In addition, ENMs are also envisaged for applications in environmental 

remediation techniques (11, 12) that may lead to direct injection of such materials into aquifers 

(13). 

Mass balance partitioning models (14–18) have already been used to predict environmental 

concentrations of ENM. Boxall et al. (14) used a series of algorithms to predict concentrations of 

ENMs in water, soil, and air by means of a specified but non-comprehensive range of ENM 

applications. Blaser et al. (15) modeled the flow of silver in the environment including dissolved 

silver released from nano-Ag in textiles and biocidal plastics. Water and sediment concentrations 

were estimated based on a river box model developed by Scheringer et al. (19) where each box 

had been subdivided into a compartment of moving water, a compartment of stagnant water and 

a sediment compartment. However, biocidal plastics and textiles were predicted to account only 

for up to 15% of the total silver release into water. Mueller and Nowack (16) modeled ENM 

emissions to the environment based on analyzing the complete life cycle of ENM and ENM 

containing products concluding that in particular PECs (predicted environmental concentrations) 

for nano-TiO2 were close to or higher than the used PNECwater (predicted no effect 

concentrations) (<1 μg/L). Recently, ENM exposure studies (17, 18) were carried out by means of 

probabilistic mass balance multi-compartment modeling (20). Simulated PECs and risk quotients 

(PEC/PNEC) at regional (national) level indicated that risks to aquatic organisms may emanate 

from nano-TiO2, nano-ZnO and nano-Ag in sewage treatment effluents and for nano-Ag in 

surface waters (17). The latter modeled ENM concentrations could be validated roughly based on 

sewage treatment plant (STP) effluent and STP sludge specific measurements (nano-TiO2 (21)).  

To overcome one of the main limitations of PEC calculations at regional scale – the assumption 

of homogeneous material distribution within aggregated environmental compartments – the 

modeling of concentrations at higher spatial and temporal resolution at a local level (22) is 
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required. As a consequence, for studying ENM concentrations in rivers the following refinements 

are necessary: 1) The total (national) ENM input into rivers should be distributed to individual 

river sections according to population density. 2) Transport and fate of ENMs within the system – 

i.e. the real river network – need to be studied in more detail. 3) Geographical differentiation and 

temporal variations of relevant flow rates should be considered.  

Ort et al. (23) developed a model to predict realistic pollutant loads originating from STPs 

throughout complex river networks. With site-specific measurements in rivers the model was 

validated for several recalcitrant micropollutants. Only a minimum of input data is required to 

screen for hotspot concentrations in individual river stretches across catchments in Switzerland 

(existing structure of digital river network, location of STP discharge points, annual sales data for 

compounds of interest, transformation of compounds during application and average elimination 

in STPs). Conceptually, this model is not restricted to the simulation of micropollutant loads in 

rivers and can basically also be applied to study the distribution and concentrations of 

nanopollutants. First, the only catchment-related input, the population each STP serves, does not 

vary significantly among chemicals or size of pollutants. Second, as shown in Gottschalk et al. 

(20), estimates for the required substance-specific inputs such as e.g. consumption and STP 

removal rates are also available for ENMs.  

The innovation of the modeling framework presented in this study is that a probabilistic material 

flow analysis (PMFA) (20) covering the uncertainties related to the total ENM input into rivers was 

linked to a geo-referenced model (23). This approach fills two gaps: 1) The PEC calculations for 

rivers were improved compared to calculations at regional level by considering geographical 

distribution of the ENM emissions and 2) a clear distinction between input uncertainty and natural 

water flow variations could be achieved.  

Previous regional studies (17, 18) predicted the highest concentrations and risk coefficients in 

surface water for nano-TiO2, nano-Ag, and nano-ZnO. Thus, the goal of our study was to 

calculate local concentrations for these ENMs along all rivers in Switzerland at baseflow (Q95%). 

This is the flow reached or exceeded annually in 95% of the time, averaged in Switzerland over a 

ten-year period. This will allow identifying river sections where PECs are expected to exceed 

PNECs at minimum dilution at least during 5% of the year. Additionally, PECs and duration of 

exceedance should be calculated as a more detailed estimate of potential risks for aquatic 

organisms exposed to ENMs is possible for selected river sections with complete hydrological 

information.  

5.2 Material and methods 

5.2.1 Input data and model setup 

5.2.1.1 ENM input into rivers 

The total annual ENM input for nano-ZnO and nano-Ag into surface waters was taken from Monte 

Carlo (MC) simulation results by Gottschalk et al. (17). The total annual input of nano-TiO2 was 

recomputed considering also new data on production volumes (24). Annual ENM emissions into 

rivers were modeled as probability distributions that consider release from the ENM production 

process and the incorporation of ENM in consumer products (manufacturing), emissions during 
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the ENM containing products’ life cycle and immissions of these materials from STPs and natural 

compartments (atmosphere, soils, sediments). The distribution of the consumption and use of 

ENM-containing products and consequently the release of ENMs to the environment was 

assumed to be proportional to the population in the catchment of a particular STP. High short-

term emissions (STP overflow) leading mostly to short-term (<24 h) release of pollutants into 

rivers were not modeled in this work. 

In addition, direct ENM release during the consumption and disposal phase of ENM containing 

products into surface waters and the marginal amounts of material emitted from natural 

compartments into rivers were also weighted according to the population connected to the 

corresponding STPs. Such direct emissions from technical compartments depend strongly on the 

ENM containing products’ life cycle that is determined by the geographical distribution of the 

consuming population. 

5.2.1.2 ENM loads in rivers 

An elementary modeling approach based on graph theory was used to calculate ENM loads 

throughout all rivers in Switzerland. The model by Ort et al. is described in detail in (23). It 

comprises 742 STPs, each with a design capacity of more than 500 population equivalents (PE), 

covering over 97% of the population of Switzerland. The large number of STPs represent the 

distribution of the population density and provides geographic information of ENM discharge 

locations at high spatial resolution. The study of fate and behavior of ENM in river water was 

reduced to sedimentation. Due to the ambiguity of the available data on sedimentation rates and 

due to the fairly short residence time (<24 h) (23) of the Swiss rivers between reservoirs (lakes) 

two scenarios were considered to cover the possible spectrum: 1) No sedimentation in the whole 

surface water system – the effluent loads of all STPs were assumed to remain in the water phase 

and added up along the flow path. 2) Complete sedimentation between two STPs – in this 

scenario all ENM loads from upstream STPs are assumed to accumulate in the sediments and do 

not reach the discharge point of the next STP downstream (no resuspension). Therefore, total 

degradation or sedimentation was assumed to take place before water from a particular STP 

effluent reached a subsequent treatment plant. Dissolution of nano-Ag and nano-ZnO was not 

considered in the no-sedimentation scenario as currently no kinetic data are available to model 

dissolution of these ENM under natural conditions. However, for nano-Ag and nano-ZnO the 

complete sedimentation scenario would be equivalent to a complete dissolution scenario. 

5.2.1.3 Procedure to link the two models 

For the application of the model of Ort et al. (23) to ENM, removal rates for STPs were taken from 

Gottschalk et al. (17). To calculate the geographical referenced release of ENMs via STP, the 

STP box in Gottschalk et al. (17) was segmented into single STPs. The ENM input into rivers was 

assigned to all river sections according to the number of inhabitants (25) connected to each 

corresponding STP assuming a homogeneous per capita consumption over the population and 

throughout the year. Because the ENM input, the allocation of ENM emission volume to STPs as 

well as variations in the water flows were coded in the programming language for statistical 

computing R (26), the two models could be linked and the simulations run without the need of 

data transformation. Five thousand MC iterations were found to be sufficient to account for the 

variable input into rivers. 
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5.2.1.4 Flow conditions and risk evaluation 

To calculate local PECs the expected ENM loads were divided by the corresponding water flow. 

Base flow conditions (Q95%) were used to account for minimum dilution (worst-case scenario). A 

method was developed to estimate this flow rate also for locations without measurements (25). 

Measured Q95%-values were taken from Aschwanden et al. (26). River sections without an 

estimate for the Q95% only receive treated wastewater from small STPs, overall from 

approximately 5% of the total population. However, their ENM loads, as well as STPs discharging 

directly to lakes, were included in the simulations, but no concentrations could be calculated 

directly downstream from these STPs. This evaluation will identify river sections, where high ENM 

concentrations must be expected at base flow. The outcome is expected to mainly depend on the 

scenario for transportation and the variable ENM input into rivers because only one flow condition 

is considered.  

Additionally, 20 river sections where long-term discharge information was available – measured 

daily flow rates over a 20-year period (1988–2007) – were used to assess the exposure 

concentrations in more detail. This evaluation is thought to provide more insight into the question 

which of the three factors 1) the uncertain ENM input into rivers, 2) the transport scenario (with or 

without sedimentation) or 3) the natural flow variation is the most sensitive parameter in the 

prediction of environmental concentrations. This time period from (1988–2007) was not used to 

calculate ENM-concentrations during that time but was considered to be representative also for 

the changes in flow conditions in the near future. 

5.3 Results  

5.3.1 Concentrations at base flow (Q95%) 

The highest PECs (modal values) for the scenario without sedimentation were found for nano-

TiO2 where the results for all river sections ranged from 0.3 ng/L to 7,800 ng/L, followed by nano-

ZnO (0.02 ng/L to 500 ng/L) and nano-Ag (0.001 ng/L to 32 ng/L). The ranges for the scenario 

with sedimentation were 0.1 ng/L and 6,600 ng/L for nano-TiO2, for nano-ZnO  0.004 ng/L and 

500 ng/L and for nano-Ag 0.3 pg/L and 27,700 pg/L.  

Based on the PEC simulation results, PNEC-exceedances for all river sections (scenario with and 

scenario without sedimentation) considering base flow (Q95%) conditions were calculated. For 

nano-Ag (scenario without sedimentation) the 0.7 ng/L (PNEC) (17) was exceeded in 5000 

simulations at least once in 539 (99%) river sections directly downstream from 543 STPs and in 

443 (82%) river sections in at least 50% of the time. Considering the scenario with sedimentation 

the equivalent results were 448 (83%) and 298 (55%). In the case of nano-ZnO (scenario without 

sedimentation) 40 ng/L (PNEC) (17) were exceeded at least once in 525 (97%) river sections and 

in at least 50% of the time in 325 (60%) cases. For the scenario with sedimentation these values 

were 398 (73%) and 207 (38%). For nano-TiO2 (scenario without sedimentation) the PNEC of 

1 g/L (17) was exceeded at least once in 505 (93%) river sections and in at least 50% of the time 

in 241 (44%) cases. Considering sedimentation the equivalent results were 362 (67%) and 162 

(30%). 
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The modal values (most frequent modeled values) of the simulated density distributions for the 

PECs of the Q95% calculations (scenario with and scenario without sedimentation) were 

categorized into different concentration ranges. The spatial distribution of the concentrations for 

nano-Ag is shown in Figure 16. For all ENMs, scenarios and water level conditions, the highest 

concentrations were found in the midland or near urban centers. The calculated concentrations in 

rural, alpine and pre-alpine areas were even at low water for all three nanomaterials negligible 

small. One exception, however, were river sections in the area of large tourist destinations in the 

Alps, where the PECs were high compared to the values of rural areas. Roughly speaking, the 

concentrations are generally significantly higher for the scenario without sedimentation compared 

to the modeled concentrations for the scenario with sedimentation. However, there is no general 

factor that would predict such differences. For river sections at the beginning of a flow sequence 

the differences are marginal, for river sections near confluences to lakes however differences up 

to a factor of 10 and more were observed. 
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Figure 16. Predicted environmental concentrations (PECs) (mode values) of nano-Ag (A,B), 

nano-ZnO (C,D) and nano-TiO2 (E,F) in Swiss rivers derived at base flow conditions Q95% (water 

level reached or exceeded in 95% of the time) and categorized in different ranges of magnitude 

(scenario without sedimentation (left side) and scenario with sedimentation). Red dots indicate 

river sections downstream from sewage treatment plants in which the corresponding PNEC is 

exceeded. 
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5.3.2 Concentrations modeled based on measured stream flows 

Additionally, stream flow measurements for 20 selected locations over a 20-year period (1988–

2007) were used to assess temporal PEC variation. The alpine river stretch named Vorderrhein 

(Ilanz) showed the smallest concentrations. The modal PECs for nano-Ag ranged from 0.04 ng/L 

to 0.07 ng/L (scenario without sedimentation). However, they were almost zero for the 

sedimentation scenario and for the whole considered time period. The highest concentrations 

were observed within the lowland river section Ergolz (Liestal). The modal PECs ranged from 5 

ng/L to 12 ng/L (scenario without sedimentation). The sedimentation scenario values were 

approximately by a factor 3 smaller. The PECs (no sedimentation scenario) for nano-ZnO were 

approximately by a factor 17 higher and the same values for nano-TiO2 by a factor 250 higher 

than the nano-Ag simulation outputs. However, also for these two materials the PECs for the 

Vorderrhein river (sedimentation scenario) were innumerable small.  

The comparison PECs with PNEC values revealed that based on the used hydrological data and 

averaged for all 20 stations and scenarios (scenario with and scenario without sedimentation) the 

PNEC was exceeded for nano-Ag using modal concentrations at 234 days annually. The 

equivalent results for nano-ZnO and nano-TiO2 were 150 and 109. 

A detailed evaluation of simulated concentrations was conducted for two typical but different river 

sections (Fig. 17, left side): Birse-Soyhières after STP Courroux (initial part of the whole flow 

sequence) and Seyon-Valangin after STP Valangin (end of the flow sequence before flowing into 

a lake). For nano-Ag the most frequent simulated PECs for the scenario without sedimentation 

(modal values derived from the most frequent ENM load and water level data) ranged for the 

Birse-Soyhières river section (named Birse) from 0.7 ng/L (rain-packed year 1999) to 2 ng/L (dry 

year 1989), for the Seyon-Valangin river (named Seyon) from 3 ng/L to 8 ng/L. For the scenario 

with sedimentation in the Birse the equivalent PECs were all about half as large as for the 

scenario without sedimentation. For Seyon, those PECs for the scenario with sedimentation were 

immeasurably small. The reason is the small catchment area of this river section and that it is 

located after the last treatment plant before flowing (ca. 5 km) into Lake Neuchâtel. Thus, leaving 

out the ENM release from several other STPs has in such a case a higher impact on the ENM 

load than for river sections at the beginning of a flow sequence as the case e.g. for the Birse. For 

nano-TiO2 the PEC values were again about a factor 250 higher for both river sections, in the 

case of nano-ZnO approximately 17 times higher.  

The risk evaluation using water level data for the two prototypical river sections (Fig. 17, right 

side) showed (Birse, nano-Ag) for both scenarios (with and without sedimentation) and for most 

of the years annually approximately 200 and 350 days of exceedance at modal concentrations. In 

contrast, for Seyon a significant difference between the two scenarios was observed. For the 

case without sedimentation all the exceedances were higher than 340. However, considering full 

sedimentation between single STPs, only up to 50 days of PNEC-exceedance were observed. 

For nano-ZnO the simulations showed (Birse) for most of the years between 100 and 200 

exceedances (with sedimentation) and only up to 80 days for the scenario without sedimentation. 

For Seyon the same divergence as for nano-Ag was observed. Considering sedimentation almost 

no exceedances were seen. However, for the scenario without sedimentation in most of the years 

more than 250 days of exceedance have been identified. In the case of nano-TiO2 the number of 

exceedances was marginal for both scenarios (Birse), almost no exceedances for the scenario 
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with sedimentation and only between 10 and 100 days for the scenario where sedimentation was 

not considered. For Seyon the same divergence as for nano-Ag was observed. Almost no 

exceedances were observed for the sedimentation scenario, in contrast however, neglecting 

sedimentation about 200 to 300 exceedances. 

 

 

 

Figure 17. Predicted environmental concentrations (PECs) and exceedances (right side) of PECs 

above predicted no effect concentrations (PNECs) for nano-Ag (0.7 ng L
-1

) in two river sections 

(Birse-Soyhières after STP Courroux (Délemont) (A,B) and Seyon-Valangin after STP Valangin 

(Valangin) (C,D) derived based on modal ENM loads and by means of water level measurement 

data (scenario without sedimentation (gray box-and-whisker diagram) and scenario with 

sedimentation). 

Summing up, the diverging results – high correlation between the number of exceedances for the 

scenario with sedimentation and the scenario without sedimentation for the river Birse and 

conflicting results for the Seyon river (very high number of exceedances for the no sedimentation 

scenario and very low number of exceedances for the sedimentation scenario) – illustrate that the 

model parameter sedimentation influences considerably the ENM concentrations in river water 

(Fig. 17). The results showed in particular that the impact of sedimentation increases with 

increasing distance from the river source. However, the fact that such a crucial parameter had to 

be calculated based on hypothetical scenarios rather than based on a robust empirical data basis 

also shows the urgency of refining the sedimentation modeling. 



Probabilistic/stochastic environmental exposure modeling: Methodology and applications to engineered nanomaterials 

104 

5.4 Discussion 

Modeling concentrations of pollutants in natural waters is influenced by two main parameters, the 

amount discharged into water and the water volume the compound is diluted in. Concerning the 

discharge there are some critical points. First, the total ENM input into rivers was distributed to 

each single river section exclusively based on the population each STP serves. This is 

reasonable so far as the studied metallic nanomaterials are used mostly in household products 

like cosmetics, coatings and cleaning agents (or for nano-Ag also textiles) (18). However, such a 

geographical allocation should be reconsidered e.g. if the industrial ENM use predominates in 

terms of volume the amount of household applications. Second, emissions from industry as e.g. 

direct release into rivers from ENM production and manufacturing facilities or ENM transport 

processes may undoubtedly occur as well. This applies at least for nano-Ag that is produced also 

in Switzerland (16) and thus not only imported from outside of the analyzed system. However, a 

nearly complete lack of data to such direct emissions makes these ENM release calculations very 

difficult. For improving this part of the model a distinction between produced, imported and 

exported ENM would be necessary. Unfortunately, doing this is almost impossible without 

trustable information from industry.  

Regarding the ENM dilution this study represents an important improvement of the ENM PEC 

modeling for rivers since it considers real stream flows, avoiding to simply assume a one year 

retention time of ENM within a homogenous water cube as it is done for PEC calculations at 

regional level (national, continental resolution) (e.g. (20)). 

The local PECs for ENM modeled at high spatial resolution in this work can however be 

compared to regional PECs obtained in previous modeling studies (16–18). The modal PECs 

calculated at base flow (Q95%) conditions as well as the modal PECs calculated for the 20 river 

stretches based on historical water level measurement data are all covered by the range of the 

regional PECs (17) for surface water and for sewage treatment plant effluents (Table 15). 

However, Table 15 shows how challenging an improvement of the sedimentation modeling is and 

how difficult it is to compare results derived from different modeling approaches. PECs calculated 

in this study e.g. at base flow conditions (Q95%) assuming complete sedimentation between two 

STPs are only about a factor 1.3 smaller than the equivalent values calculated considering the 

effluent loads of all STPs to remain in the water phase along the whole flow path. In contrast, the 

highest no-sedimentation PEC values in Mueller and Nowack (16) are approximately by a factor 7 

higher than the highest no-sedimentation and Q95% (minimum dilution) PECs in this study. This 

shows again that results of a two-scenario analysis do not necessarily cover the whole range of 

relevant modeled output distributions of a MC analysis (18), in this study e.g. the range of the 

Q0.15 and Q0.85 quantiles. 
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Table 15. Predicted engineered nanomaterial (ENM) concentrations (PECs) in rivers, surface 

waters and sewage treatment effluents (STP) in Switzerland. 

nano-TiO2 
with 

sedimentation 

without 

sedimentation    sources 
STP Effluent (PECregional-probabilistic 

analysis)
a
   4.28 (3.5–16.3) g L

-1
 (17) 

Surface Water (PECregional-probabilistic 

analysis)
a
 

0.021 (0.02–
0.09)   g L

-1
 (17) 

Surface Water (PECregional-scenario 

analysis)
b
   0.7–16 g L

-1
 (16) 

River Water PEClocal ((Q95%) flows)
c
 0.01–2 0.09–2.5 g L

-1
 (this study) 

River Water PEClocal (Birse-

Soyhières)
d
 0.21 1.10 0.39 2.03 g L

-1
 (this study) 

 0.04 0.22 0.08 0.40 g L
-1

 (this study) 
River Water PEClocal (Seyon)

d
 0.07 0.35609 2.31 12.11 g L

-1
 (this study) 

 0.68 0.03561 0.23 1.21 g L
-1

 (this study) 

nano-ZnO            
STP Effluent (PECregional-probabilistic 

analysis)
a
   0.44 (0.3–1.3) g L

-1
 (17) 

Surface Water (PECregional-probabilistic 

analysis)
a
 

0.013 (0.01–
0.06)   g L

-1
 (17) 

River Water PEClocal ((Q95%) flows)
c
 0.00–0.14 0.01–0.2 g L

-1
 (this study) 

River Water PEClocal (Birse-
Soyhières)

d
 0.02 0.07 0.03 0.14 g L

-1
 (this study) 

 0.07 0.01 0.01 0.03 g L
-1

 (this study) 
River Water PEClocal (Seyon)

d
 0.01 0.02 0.17 0.81 g L

-1
 (this study) 

 0.00 0.00 0.02 0.08 g L
-1

 (this study) 

Nano-Ag            

STP Effluent (PECregional-probabilistic 

analysis)
a
   38.7 (30–127) ng L

-1
 (17) 

Surface Water (PECregional-probabilistic 

analysis)
a
 0.72 (0.6–2.6)   ng L

-1
 (17) 

Surface Water (PECregional-scenario 

analysis)
b
   30–80 ng L

-1
 (16) 

River Water PEClocal ((Q95%) flows)
c
 0.02–8.3 0.4–10.4 ng L

-1
 (this study) 

River Water PEClocal (Birse-
Soyhières)

d
 0.84 4.20 1.55 7.72 ng L

-1
 (this study) 

 0.16 0.82 0.30 1.51 ng L
-1

 (this study) 
River Water PEClocal (Seyon)

d
 0.27 1.36 9.26 46.08 ng L

-1
 (this study) 

  0.03 0.14 0.93 4.61 ng L
-1

 (this study) 

a
 Predicted environmental concentrations (PEC) modal values (lower and upper quantiles Q0.15 

and Q0.85) taken from Gottschalk et al. (17). 

b
 PEC range derived from the realistic scenario and high emission scenario in Mueller and 

Nowack (16). 

c
 PECs derived from modal ENM loads (range of the lower and upper quantiles (Q0.15 and Q0.85 of 

the ENM load distribution of all river sections) at water level conditions Q95% (water level reached 

or exceeded in 95% of the time). 

d
 PECs derived from lower (left side) and upper quantiles (Q0.15 and Q0.85) of ENM loads and 

lower (above) and upper quantiles (Q0.15 and Q0.85) of flow rates.  
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Thus, the results in Table 15 reflect very well the different approaches used to cope with the 

difficulties to model such water-sediment partitioning of ENM. In Mueller and Nowack (16) 

secondary compartments (sediment and groundwater) had not been considered due to a total 

lack of data. Gottschalk et al. (17) later reduced the analysis of ENM fate in rivers to the modeling 

of probability distributions for sedimentation rates based on first available data. Due to the 

consideration of the sedimentation of the ENM in surface water the simulated PECs are 

significantly smaller compared to the results in Mueller and Nowack (16). 

Finally, the results in Table 15 show also that different water flow conditions (15% and 85% 

quantiles of the water level distributions) may influence the concentrations up to a factor of 5. The 

comparison of concentrations based on different ENM loads (15% and 85% quantiles of ENM 

emission distribution) show a difference of about a factor 5 for the river section Birse and about a 

factor of 10 for the river section Seyon. This makes answering the question difficult whether the 

uncertainty in the input of ENM into rivers influences more or less the concentrations than the 

time dependent variability of the water level. In the case of the Birse the ENM input into rivers 

equals the uncertainty in the PECs caused by the uncertainties in the estimation of the natural 

variability of the water levels. However, the river section Seyon shows that the variability in the 

water levels influences much more (up to a factor 2) the ENM PECs than the computed variation 

in the ENM input. This underlines first that considering dilution caused by variability in water 

levels is significant in the ENM PEC modeling for rivers and second that the influence of such 

variability differs considerably between single river stretches. This illustrates however also the 

necessity to integrate in the calculations a dynamic (time dependent) modeling of the ENM input 

into the environment to improve the PEC calculations. Such a time based differentiation in the 

ENM input simulations would in combination with the consideration of water level dynamics lead 

for the first time to a real and high temporal resolution of the ENM PEC modeling for rivers.  

In addition, the results also showed that the geographical location between river head and 

estuary in the river sequence has a significant impact on the concentrations. Locations near the 

river head do normally not suffer from too high anthropogenic ENM input into river water and 

consequently show in general only marginal concentrations (see also Fig. 16). However, the 

stream flow variability, which was shown to be a crucial model parameter, may depend on the 

geographical position as well. River sections at the end of the river course near the river mouth 

show e.g. a different seasonal variation in the water flows than for instance alpine river sections 

near the river source with relatively small water catchments and e.g. small dependence of 

rainwater.  

Nevertheless, due to a revised modeling of ENM release to and water contents in rivers, such a 

model should primarily be improved by including the modeling of fate and behavior of the 

considered material in river water. Thus, studying in more detail the extent of solubility, 

agglomeration, aggregation, adsorption, deposition behavior and interaction of ENM with 

organisms in rivers has high priority in the improvement of such ENM load modeling. However, in 

this work we were still faced with similar uncertainties in the available data to ENM 

aggregation/deposition behavior in river water. Rapid deposition rates leading to almost full 

sedimentation after 24 h was shown in Boncagni et al. (27) e.g. for commercially available 

aeroxide P25 TiO2. In contrast, for sol-gel synthesized porous anatase TiO2 almost no 
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sedimentation was observed. Since the two nano-TiO2 types showed totally different 

deposition/aggregation behaviors the authors state that examining more types of nano-TiO2 to 

draw generic conclusions for modeling sedimentation of nano-TiO2 was necessary (27). Battin et 

al. (5) complemented the results of Boncagni et al. (27) by studying effects of benthic biofilms on 

ENM exchange between water and streambed. The authors demonstrated that biofilms strongly 

effect the travel distance of two types of nano-TiO2. Hombikat UV-100 and P25 nano-TiO2 

traveled in a control flume without biofilm 10 and 12 km downstream before being removed from 

the water. However the results also showed that biofilms had reduced the travel length 2.3 times 

for Hombikat UV-100 and 2.7 times for P25. In addition, the authors anticipated that in natural 

streams, streambed roughness and hydrodynamic exchange could shorten the transport distance 

of ENM. However, they also stated that different ratios of flow velocity to streambed depth may in 

contrary contribute to longer transport distances and that size fractionation during longitudinal 

transport leads to exposure to different particle sizes of the same material. Being far away from a 

comprehensive understanding of sedimentation our scenarios of no sedimentation as well as full 

sedimentation represented thus only a rough approximation to uncertainties and ambiguities on 

the ENM deposition behavior.  

So far, an improvement of dispersion and stability modeling of such compounds in river water 

requires a distinction between the different modifications of the analyzed compound. Efforts to 

improve the environmental fate analysis should e.g. focus on the impact of coatings and surface 

treatments that may affect considerably ENM aggregation and agglomeration behavior. However, 

besides intended surface functionalization of the ENM by chemical or biological processes, such 

an improved model should furthermore consider that nanomaterial may be modified on their 

surface also by environmental factors such as coatings of organic matter (3).  

A further way to overcome limitations of our approach would be to integrate also storm water 

runoffs (STP overflow) that cause short-time pollutant loads in rivers but at the same time also 

lead to very high water flows and thus dilution. However, in this study the mostly small and 

regulated Swiss rivers were estimated to have a residence time from their formation until they 

reach a reservoir (e.g. lake) or leave the national border of less than one day (23). Thus, STP 

overflows leading mostly to short-term (<24 h) release of pollutants into rivers were not relevant 

for such a small systems. 

Gottschalk et al. (17) calculated the following modal risk quotients for organisms in surface water 

based on available ecotoxicological literature and a safety factor of 1000: nano-Ag (1.03), nano-

ZnO (0.32), and nano-TiO2 (0.02). Our calculations for rivers confirmed these results reflecting 

the same order of PNEC exceedances for these three substances. At base flow conditions for 

nano-Ag the PNEC was exceeded in more than 90% of the simulations in 339 river sections out 

of 539, in the case of nano-ZnO in 210 river sections and for nano-TiO2 in 126 sections. 

Considering water level measurement data the PNEC was exceeded e.g. for the Birse-Soyhières 

river (scenario with sedimentation) in average at 314 days per year for nano-Ag, at 144 days for 

nano-ZnO and in the case of nano-TiO2 in 22 days. Also these latter results reflect the same 

order of concentrations and demonstrate in accordance to the previous works (16–18) especially 

the need for further studies on aquatic exposure to nano-Ag. Lastly, we should also keep in mind 

that although the simulations were carried out at high spatial and time resolution at local scale, in 

some river sections e.g. near ENM production sites much higher ENM concentrations could be 
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observed. Also accidents with ENM or e.g. new ENM products on the market with novel emission 

properties could lead to significant higher ENM loads. 

The results presented in our work provide ecotoxicologists with concentration ranges for ENM 

that can be used to design acute and chronic toxicity tests. The data also provide hints in which 

river stretches currently high concentrations and frequent PNEC-exceedances of ENM can be 

expected and thus effects on aquatic and benthic communities might be expected first. These 

results may thus provide ecologists with background information where to look for possible 

effects of ENM. Our modeled concentrations will also help analytical chemists to develop trace 

methods for ENM analysis in waters as they provide a guidance which concentration level needs 

to be reached and where the highest concentrations can be found. An experimental validation of 

the modeled concentrations would be highly desirable but currently no methods sensitive enough 

for trace analysis in the environment are available (28). 
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6. Concluding remarks  

Currently there is a lot of attention paid to potential life cycle impacts and toxicity of engineered 

nanomaterials (Alvarez et al. 2009; Andreev et al. 2009; Borm et al. 2006; Chaudhry et al. 2008; 

Handy et al. 2008; Helland et al. 2006; Hund-Rinke and Simon 2006; Klaine et al. 2008; Nowack 

2007; 2008; 2009; Oberdorster et al. 2007; Scheringer 2008; Som et al. 2010; Wiesner et al. 

2006; Wiesner et al. 2009). Unfortunately, there is still very limited data available on the 

environmental fate and effects of such material, and consequently a lot of questions arise 

concerning the possible risks caused to the environment and human health. In addition, ENM 

specific regulations lag behind the technological development of products containing 

nanomaterial and probably also behind first available scientific insights into the potential risks 

caused by ENM. Furthermore, voluntary industrial risk study initiatives are considered vital to 

questions on the effects of ENM on environmental health and safety (Helland 2007). However, 

availability and quality of such engagement from industry are difficult to monitor. Because hardly 

any analytical methods are available for ENM, the discussion of ENM and the environment differs 

completely from that on e.g. organic micropollutants, where advances in analytical detection of 

the compounds in the environment have been the starting point for scientific and public 

discussions (Nowack and Bucheli 2007). Thus, compared to conventional contaminants 

(chemicals) for ENM the discussion clearly anticipates the possibility of their quantitative 

detection in the environment. As a consequence, predictions of the concentrations to be found in 

the environment and studies on potential exposure pathways based on mathematical modeling 

are needed and, as shown in this thesis, would be a valuable first tool to evaluate and predict 

risks posed by ENM to the environment. In doing so, life cycle concepts should be considered to 

provide a comprehensive identification of priorities of the analysis of ENM release and assess the 

potential of organisms in the environment being exposed to such materials (Som et al. 2010). 

Since only a few studies are available on ENM release from products and almost no data on 

ENM emissions from ENM production and nanoproducts’ manufacture processes, and the 

existence of main or strong dominant single ENM polluter are not expected, covering all life 

stages of the contaminants will also in the future have a high priority in the ENM exposure 

modeling. However, such life cycle thinking is difficult, communication between the actors of the 

value chain and throughout the different life stages of the nanomaterial containing products is still 

needed (Koehler and Som 2008). 

6.1 Probabilistic material flow analysis – an adequate, however also limited 

tool for exposure modeling  

The developed probabilistic material flow analysis applies established approaches such as 

material flow analysis, sensitivity and uncertainty analysis, Monte Carlo simulation, Bayesian and 

Markov Chain modeling to calculate PECs for contaminants characterized by a distinct lack of 

model input data. From a methodological perspective, the use of each single technique is not 

new. However, the developed probabilistic material flow analysis (PMFA) includes 

probabilistic/stochastic computational routines that allow one to combine these different 

approaches into a single model framework covering the whole life cycle of potential contaminants 



Probabilistic/stochastic environmental exposure modeling: Methodology and applications to engineered nanomaterials 

112 

in complex systems of the biosphere as well as in technical compartments. Hence, the PMFA 

presented here includes all main natural media and main technical compartments (pollutant 

production; manufacturing of pollutant containing products; use, recycling and disposal of such 

products and pollutants’ fate in waste incineration and sewage treatment plants) in addition to 

extending standard MFA by means of stochastic algorithms compared to generic chemical fate 

models. 

Nevertheless, even sophisticated mathematical techniques do not create empirical model input 

data. Hence, a minimal input data basis is needed even in stochastic calculations to generate 

quantitative model input parameters. Thus, it is not surprising that the thin data base represents 

the key weakness in our ENM-flow modeling. For all ENM such data is very scarce and thus, the 

use e.g. of uniform distributions for some input parameters unavoidable. In cases where no data 

were available, the borders of the distributions had to be determined by experts, a fact which in 

turn may lead to even higher uncertainties in the input parameters. However, the case studies 

and first validations of the simulation results pointed out that the probabilistic material flow 

analysis is an adequate tool to predict ENM concentrations in the environment when little data 

are available. It allows using any kind of probability distribution functions for the input parameters. 

Such an analysis allows incorporating a large number of processes and flows in order to compute 

compound flows into and deposition rates in environmental and technical compartments. Another 

advantage of this modeling is that an improvement of prior input data by incorporating e.g. MCMC 

algorithms and by starting from new available e.g. simulation or measured data is possible at any 

time and for any part of the model.  

Furthermore, the model allows one to show how relative changes of input parameters produce 

variations in the simulation output by means of a sensitivity analysis. This is a valuable approach 

to find out the most influential model input parameters. Indeed, it does not provide new empirical 

model output knowledge to the material flow itself. However, by incorporating in this sensitivity 

analysis also the uncertainty of the parameter estimation the confidence in the simulation results 

is evaluated by comparing the parameter sensitivity with the robustness of the parameter 

estimation. As a consequence, the goal of each modeling should be to avoid that the most 

influential parameters are based on the most uncertain data, otherwise the confidence in the 

simulation output would be small.  

Although comparisons of the model outputs to previous studies (Blaser et al. 2008; Mueller and 

Nowack 2008) and first measurements (Kiser et al. 2009) had been done successfully, the 

discussion of the limitations of such a probabilistic/stochastic approach is essential to guarantee 

good scientific and practical use of the simulation outputs and to discuss the requirements for 

reducing the uncertainties in future simulations. There are two main limitations within the 

presented approach. On the one side, for several model input distributions large value ranges 

had to be used due to a general lack of empirical data. On the other side, all the calculations 

were restricted to steady state calculations for only one time period (2008). First, the data found 

in the literature for the key parameter, the annual production volumes of ENM, vary up to a factor 

of 100. Thus, large ranges of input distribution had to be modeled. Inventories listing all products 

containing ENMs and the used ENM masses are almost completely missing. However, an initial 

step was done by Schmid & Riediker (2008), who provided a first quantitative overview containing 

product categories allocated to incorporated ENM volumes. The second critical point is that the 

steady state modeling neglects storage of ENMs and ENM-containing products e.g. within the 
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ENM consumption processes. Data concerning such storage are missing entirely. Nevertheless, 

modeling time dependent ENM production quantities and storage processes would be one of the 

most important steps for improving the simulations. 

In addition, also very little quantitative information on ENM emissions during the manufacturing of 

ENM-containing products and during the production of ENMs are available yet and makes the 

modeling difficult. Experimental data are restricted almost exclusively to ENM release from 

textiles (Benn and Westerhoff 2008; Geranio et al. 2009) or paints (Kaegi et al. 2008). The same 

absence of data is observed for the ENM release during the production of ENM and the 

manufacturing of ENM containing products although first measurements at companies producing 

ENM showed that worker exposure to these materials occurs (e.g. Yeganeh et al. 2008). The 

assignment of the average mass of ENMs in products lacks also on empirical information and 

had thus to be carried out modeling relative large distributions for the average weight of a 

prototypical product of each category and for the average proportion of ENM in these products. 

Additional key limitations are represented by the simplification of the modeling of the ENMs’ fate 

in nature. Fate and behavior modeling was reduced to the consideration of transfer coefficients 

between the single compartments. The exchange between water and sediment through 

resuspension and burial processes could for instance not be considered due to a lack of data. 

The same applied to streambed roughness and depth, flow velocity and ENM exposure to 

plankton and adsorbed microorganisms that undoubtedly influence e.g. ENM transport distances 

and accumulation in sediments as well. Especially getting results from studying aggregation 

behavior of ENMs under environmentally realistic conditions is needed to improve this part of the 

modeling. Experimental results derived under realistic conditions are needed also to 

biotransformation and -accumulation, or dissolution of ENMs. Lastly also the modeling of 

aerodynamics should not remain restricted to rough calculations of atmospheric deposition based 

only on data for ultrafine particles.  

6.2 Main insights from the simulation outputs 

Of all the materials considered, nano-TiO2 generally showed the highest emission volumes and 

environmental concentrations, followed by nano-ZnO, nano-Ag, CNT and fullerenes. This reflects 

the chronology of the values of the most crucial input parameters, the ENM production volumes. 

However, similar environmental concentrations e.g. of nano-TiO2 and nano-ZnO also reflect a 

comparable mass distribution to product categories (cosmetics and coatings and cleaning 

agents) that led to significant emissions into water. Consequently, water concentrations of CNTs 

or fullerenes might increase as well in the future if those materials were applied in product 

categories with significant ENM release to water. The modeled flows of nano-TiO2 and nano-Ag 

show that for these materials the most dominant ENM transfers are from PMC to STP and WIP, 

STP to WIP and from there to landfills. In the case of CNTs and fullerenes, the majority of the 

material ended up in the WIP.  

A comparison of the modeled regions illustrates that ENM concentrations for most environmental 

compartments are in a similar range for all regions. This may be explained with the fact that ENM 

production volumes were scaled according to the inhabitants of each region. Hence, regional 

distinctions concerning ENM applications were neglected, although they would allow one to 

model regional or local specific ENM flows into natural and technical environments. In order to do 
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this, it would be necessary to create regional databases on products containing ENM. Apart from 

modeling region specific ENM emissions, it would also be important to monitor continuously the 

development of new products containing engineered nanomaterial. Products with novel emission 

properties which are not on the market now could lead to significantly higher ENM release in the 

future. The key variations among regions are also visible in the different approaches of handling 

sewage sludge. Countries that dispose of waste in landfill have to deal with significant 

concentrations of ENMs in sludge-treated soil, while countries with complete incineration of 

sludge are obviously not faced with this problem.  

From the sensitivity analysis, we may conclude in summary that for the metallic materials a closer 

look is needed at the parameters that cover the release of ENMs from the products to the STP, 

the STP removal efficiency and overflow and the sludge from this compartment ending up in the 

WIP, where it is incinerated, exported or deposited in landfills. The reason for the dominance of 

these parameters is that the major application volumes are in product categories such as 

cosmetics and coatings, paints and textiles and that releases from such applications mostly result 

in emissions into STP inflow. Even though CNTs and fullerenes end up in very small amounts in 

the STP inflow, the parameters STP overflow and STP removal efficiency influence most of all 

the CNT and fullerenes concentrations in water. The interpretation of these results is however 

complicated by the fact that very small amounts of ENMs actually reach this compartment. 

However, the sensitivity analysis shows that to improve the prediction of where ENMs end up, the 

most critical information is not related to fate and behavior in natural systems but to fate and 

behavior in the technosphere, all above in the application of ENMs in products and their release 

during the use consumption phase.  

PEC calculations at high spatial resolution were carried out (ENM in Swiss rivers) in addition to 

regional PEC studies. Those results showed that ENM concentrations in river waters are 

influenced by two main parameters, the amount discharged and the water volume the compound 

is diluted in. Thus, calculations of PNECs for rivers at regional or national resolution provide a 

first rough estimation of possible concentrations. Different water flow conditions (15% and 85% 

quantiles of the water level distributions) may influence the concentrations up to a factor of 5. The 

comparison of concentrations based on different ENM loads (15% and 85% quantiles of ENM 

emission distribution) showed a difference of up to a factor 5, for some river sections up to 10. 

This makes answering the question whether the uncertainty in the input of ENM into rivers 

influences more or less the concentrations than the time dependent variability of the water level 

difficult. However, for all ENMs, scenarios and water level conditions, the calculated 

concentrations are in a plausible range compared to all precedent studies, and the highest 

concentrations were found in the midland or near urban centers or large tourist destinations in the 

Alps. The concentrations modeled in rural areas were negligible small even at low water levels. 

However, we also observed that the geographical location between a river head and an estuary 

in the river sequence has a significant impact on the concentrations. Locations near the river 

head have a small catchment area and do consequently not suffer from too high ENM input into 

river water, showing thus in general only marginal concentrations. 

Additionally, the calculated modal risk quotients for organisms in surface water at regional 

resolution (nano-Ag (1.03), nano-ZnO (0.32), and nano-TiO2 (0.02)) were confirmed by the last 

mentioned simulations at high spatial resolution. The latter results reflect the same order of 

PNEC exceedances for these three substances. The PNEC (base flow conditions) for nano-Ag 
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was exceeded in more than 90% of the time in 72% of the river sections, for nano-ZnO in 39% of 

the river sections and for nano-TiO2 in 24% of the sections. However, the results at high spatial 

resolution provide also better indications than simple regional calculations to the question in 

which river stretches currently high concentrations and frequent PNEC exceedances of ENM can 

be expected and thus where effects on aquatic and benthic communities might be expected first. 

Such results give ecologists better information where to look for possible effects of ENM. 

However, they will also support analytical chemists to develop trace methods for ENM analysis in 

waters showing which concentration level is needed and where the highest concentrations can be 

found.  

Concluding, one can say that the risk assessment showed that risk cannot be excluded for 

organisms exposed to nano-TiO2 and nano-Ag in STP effluent and STP sludge and nano-Ag in 

water. For all other ENMs and compartments the currently (2008) calculated concentrations pose 

no risks to organisms. Hence above all, further investigations are needed to evaluate ENM 

exposure to aquatic organisms from these metallic materials. In particular, a need for further 

studies concerning silver concentrations in water is evidenced by the fact that silver ion release 

and emissions of microsized silver were not covered by our simulations.  

We conclude that:  

 data on ENM production, use and release to the environment is still very sparse;  

 extending MFA to stochastic/probabilistic MFA provides a model framework to calculate PECs 

of contaminants although only few data is available;  

 PEC simulations for different ENMs (TiO2, Ag, ZnO, fullerenes, carbon nanotubes) and 

different regions (Switzerland, Europe, USA) show that relevant exposure to these materials 

occurs for the metallic ENMs in aquatic environments;  

 the uncertainty of the parameter estimation may be incorporated in the sensitivity analysis and 

that this is essential to study the parameter sensitivity by considering also the robustness of 

stochastic simulation outputs; 

 the most influential model parameters cover the release of ENM to the STP, the STP removal 

efficiency and overflow and the sludge from this compartment reaching the WIP, where it is 

incinerated, exported or deposited in landfills; 

 the key limitations of the approach are represented by calculations that consider partially 

distributions with large value ranges and parameter dynamics for only one time period, and by 

the simplification of the modeling of the ENMs’ fate in nature by using simple mass transfer 

coefficients to model material exchange between the single natural compartments.  

6.3  Further research 

As seen in Helland (2007) and mentioned above, the environmental health and safety of 

nanomaterials will also depend to a significant extent on the voluntary initiatives by industry. 

However, in industry there are probably no structured methods available on how to assess the 

risks caused by engineered nanomaterials. Therefore, a refinement of the probabilistic/stochastic 

assessment framework provided here, e.g. into a user-optimized tool for private and industrial 

applications, could have some priority in further research. However, this cannot disguise the fact 
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that, in particular, improvements in the exposure modeling itself are needed. Although it is 

accepted (and partially already considered in toxicity studies) that ENM size may be crucial with 

respect to toxicity, size effects on the behavior and reactivity of ENM could, due to parametric 

insufficiencies caused by the distinct scarcity of empirical input data, not really be incorporated in 

the environmental fate modeling. Getting this type of empirical information is difficult since 

nanoproducts do not contain a homogeneous group of ENMs. ENMs incorporated may differ in 

size, shape, impurity and other physicochemical properties (Som et al. 2010). Consequently, an 

improved ENM emission and environmental fate modeling should also cover the different forms 

ENM may be released from nanomaterial containing products (single and free particles, 

aggregated/agglomerated material, or emissions of ENM as part of emitted nano- or microsized 

matrix particles). In addition, for future fate and behavior modeling we should consider that the 

used ENMs may be functionalized, e.g. to avoid aggregation and agglomeration or to stabilize the 

material in the product matrix, and that this could significantly affect ENM behavior in natural and 

technical environments (Nowack and Bucheli 2007; Som et al. 2010). However, also 

functionalization by environmental factors or the coating of the surface by natural compounds is 

neglected until now in the modeling and should therefore be integrated in future studies. 

Finally, the risk assessment based on a PEC/PNEC comparison suffers from high uncertainties in 

the PNEC estimation. The derivation of PNECs is difficult because of the limited number of 

studies and the focus of such studies only on acute toxicity and only on a few numbers of test 

species and toxicity endpoints. ENM toxicity is mostly studied on model organisms (bacteria and 

algae, daphnids etc.) and by means of ENM concentrations several orders of magnitude higher 

than available PECs. Hence, future work should include long-term exposure to derive chronic 

endpoints if at all possible. This should be carried out for the largest possible range of model 

organisms and under environmental ENM concentrations. 

One of the most important points for future research is the epistemological question as to what 

extent it is appropriate to model input (and structural) imprecision/uncertainty exclusively by 

means of precise probability distributions. Is the imprecision in the probabilities of input 

parameters expressed in a way sufficient to reflect an appropriate level of confidence in the 

modeling? Standard frameworks of decision theory do not provide any clear approach to deal 

with partial or fuzzy knowledge (Lossin 2005). The two fundamental ways of representing 

possibilities of coping with imprecision in the models are fuzzy probabilities, as initially presented 

by Dubois & Prade (1978), or the modeling of imprecise probabilities based more or less on 

upper and lower previsions, as initially proposed by Walley (1991). Both of them are similar 

regarding the mathematics they require, but different concerning the knowledge a decision maker 

needs to have about the probabilities (Lossin 2005). In this thesis we have combined data from 

empirical studies with expert knowledge and our own estimations of the model input to create 

probability distributions. In the case of nanotechnology the sample data is sparse due to the lack 

of experimental/empirical trials. Monte Carlo and Bayesian techniques could be used since some 

expert knowledge and a few empirical data were available. Such Monte Carlo Bayesian 

procedures have been used successfully also in other cases e.g. for modeling concentrations of 

DDT in the environment (Schenker et al. 2009) where calculations were carried out by means of 

the well established global multimedia model CliMoChem (Scheringer et al. 2000; Wegmann et 

al. 2004).  
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However, Bayesian thinking assumes that probabilities are precise. Unfortunately, in practice, the 

use of “precise” probabilities for the states of nature suffers from uncertainty due to the 

imprecision persisting in experts’ estimations or the data themselves. Hence, subsequent studies 

should also evaluate ways to extend such a Monte Carlo Bayesian model by integrating also 

imprecise uncertainties. Tu et al. (2008) present such an extension based on a decision support 

model that uses interval-valued probabilities to represent experts’ uncertain beliefs in Bayesian 

approaches. Scholz (2010) discusses Walley’s concept of imprecise probability (Walley 1991). 

This approach considers that exact subjective probability is unknown but that the range in which it 

is located may be estimated taking the lower probability to be the maximum rate at which an 

expert would bet on an event, and the upper probability to be the minimum rate at which it would 

bet against the event. However, the critical question of stochastic modeling what type of 

probability distribution to assume is not directly touched by such an approach. However, Fox & 

Rottenstreich (2003) illustrated that likelihood judgments may be biased toward an ignorance-

prior probability that allocates equal credence to mutually exclusive events considered by the 

expert judgment. The value of the prior ignorance depends strongly on how the set of model input 

parameter spaces is partitioned by the judge. Thus, lower-upper probability estimations by naïve 

judgments may show partition dependence, despite the potential that imprecise probabilities 

promise avoiding it.  

Another way to derive imprecise probabilities is the incorporation of logical techniques. Cozman 

et al. (2008) propose e.g. graph-theoretic representations for probabilistic logic providing 

complexity results and algorithms for their formalism. The authors examine a probabilistic logic 

generalizing relational Bayesian networks. Others (de Saint-Cyr and Prade 2008) propose 

formalisms in which uncertain default rules based on possibility theory can be expressed under 

incomplete information. 

Finally, climate change modeling techniques may eventually help to cope with imprecise 

probabilities in ENM exposure assessment as well. Several facets of climate uncertainty, e.g. 

uncertainties in emission scenarios, may not be reflected only by means of a quantification 

through simple probability distributions (e.g. Grubler and Nakicenovic 2001). Hall et al. (2007) 

modeled e.g. socio-economic scenarios as fuzzy linguistic constructs. The emissions trajectories 

required for climate modeling are characterized as a degree of membership in such a fuzzy 

scenario. Scenario uncertainties and imprecise probabilities of model uncertainties are combined 

using random set theory to generate lower and upper cumulative probability distributions e.g. for 

the Global Mean Temperature anomaly.  

In conclusion, we cannot provide here an authoritative discussion on how to deal with data and 

knowledge that are both uncertain and imprecise; nor can we discuss conclusively the necessity 

or potential that our model framework might integrate such techniques. However, it will be the 

task for further research to focus e.g. also on potentials of such stochastic computational routines 

for transformations from “precise” probabilities into other formalisms such as imprecise 

probabilities (lower and upper estimations, possibilities, belief functions, fuzzy sets etc.).  

However, structural imprecision should not fall totally into oblivion along with parametric 

uncertainties. The question of to what extent more empirical data would allow one to integrate 

e.g. biota (bioaccumulation) also in the model framework to expand and improve the simulations 

has e.g. to be answered. The same applies to the question of to what extent the use of transfer 

coefficients is adequate to model ENM fate and behavior in natural and technical compartments. 
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More experimental information e.g. to material (nanomaterial containing products) degradation 

would help restructure, for instance, the ENM fate and behavior modeling in environmental and 

technical compartments. Finally, our simulations assumed, besides constant production levels for 

all time periods, a total use of the ENM produced and a total transfer of this material to products, 

technical or environmental compartments during the considered time period. Thus, temporal 

aspects such as e.g. storage of ENM before used in products, storage of ENM in ENM containing 

products before been consumed and released and ENM production volumes that vary over time 

should be considered as well in future studies. 
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7. Appendix: Modeled environmental concentrations of 
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Society Laboratory, CH-9014 St. Gallen, Switzerland 

b
 ETH Zurich, Institute for Environmental Decisions, Natural and Social Science Interface, 

8092 Zurich, Switzerland 

A.  Description of the system compartments  

For calculating the concentrations of ENM in water bodies the dilution factor was calculated by 

multiplying the relevant water mixing depth of 3 m (1) by the water surface area of the 

corresponding region. It was assumed that all water body reaching ENM will either infiltrate the 

groundwater, settle to the sediment or are exported with the system leaving water flow. According 

to the technical guidance document (1) a residence time of 40 days was applied. 

The considered annual dry sewage treatment sludge productions for the studied regions were: 

203,000 t (2) for Switzerland, 7,500,000 t (3) for the USA and 9,000,000 t (4) for the EU. 

For airborne nanoparticles a residence time in the atmosphere of 10 days was assumed 

corresponding to ultrafine particles (5). The relevant air volume was calculated by multiplying the 

area of the particular region by the recommended value for atmospheric mixing height of 1 km 

(1). Deposition from air to soil and water occurred proportional to the land area covered by water 

and soil. Following water to soil proportions were used: Switzerland: 4.2% to 96.8% (6), EU: 3% 

to 97% (1) and USA: 6.8% to 93.2% (7). 

ENM reaching the soil were assumed to accumulate within this compartment. The soil volume 

was calculated by multiplying the soil depth depending on the mixing depth of different soil types 

(natural and urban soil: 0.05 m, agricultural soil: 0.2 m (1)) by the corresponding area of the 

particular region. This results in relevant soil volumes of 4.1667 km
3
 for Switzerland, 34.6602 km

3 

for Europe and 339.358 km
3 

for USA. The density of dry soil was calculated by subtracting the 

water content from the standardized value of 1,700 kg m
-3

 recommended by the European 

Commission (1) resulting in 1,500 kg m
-3

. 

ENM reaching the sediment were assumed to accumulate in this compartment. The relevant 

volume of the sediment was approximated by multiplying the water surface area by the depth of 

the sediment of 0.03 m (1). The density of dry sediment was calculated by subtracting the water 

content from the standardized value of 1300 kg m
-3

 recommended by the European Commission 

(1) resulting in 260 kg m
-3

. 
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Landfills were assumed to be sealed off at the bottom, and therefore almost no leachate reaches 

the soil or surrounding water bodies in this model. 

Although recycling was implemented in the model, it was impossible to quantify the amount of 

ENM leaving a certain recycling process. Therefore, it was reasonably assumed that during the 

recycling process of ENM containing products all particles were either incinerated or aggregated 

to larger particles. Hence, all particles entering the recycling compartment were eliminated in this 

model. 

B. ENM production volumes and allocation of these volumes to product 

categories 

Table 16 shows the worldwide production volumes in t per year for the studied ENM obtained 

from various sources. The ENM production volumes were allocated to commercially available 

ENM containing products. The ENM containing products themselves were grouped into product 

categories with similar ENM emission properties and fractions of ENMs (8). The allocation (see 

Table 17) of the ENM masses to the product categories was then modeled by means of 

probability distributions which were derived from two factors, the “number of products containing 

ENM” in each product category and the “average mass of ENMs” in each product (8, 9). To count 

the commercially available ENM containing products and allocate them to the product categories, 

a web search was carried out. Within the first 500 results of two common Internet search engines 

(10, 11) the ENM containing products were counted. Only commercially available products on 

manufacturer websites were considered. Furthermore, all products on a Global Marketplace 

Platform (12) were counted except master batches and powders. Finally, the inventory of 

nanotechnology-based consumer products from the Woodrow Wilson Institute (13) was 

considered as a representative database for the current market situation of commercially 

available consumer products containing ENM. Therefore, all products in this database were taken 

into account. Additionally, the survey of Schmid et al. (14) was used for classifying nano-ZnO, 

nano-TiO2, and nano-Ag and the information sheet from NICNAS (15) for nano-ZnO and nano-

TiO2. For CNT the classification was also based on expert information. 

The CNT results indicate that at least 90% of the ENMs are allocated to the categories 

composites and consumer electronics. In the case of nano-ZnO, about 65% (mean value) of the 

nanomaterial is applied in cosmetics. Cosmetics, coatings and cleaning agents, plastics and filter 

aggregates cover more than 90% of the fraction of the total ENM application for nano-TiO2. In the 

case of nanosized silver, the results are inconclusive. The fraction applied in textiles, paints and 

coatings and cleaning agents are weakly dominant and cover together about two-thirds of the 

mass distribution. In the case of fullerenes, the results show approximately a one-sided triangular 

distribution from 0.5 to 1 with a mode of 1 for the R&D sector. The remaining part was distributed 

uniformly to composites and cosmetics. 
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Table 16. Worldwide production volumes of ENM in t per year obtained from different sources. 

nano-TiO2 nano-ZnO nano-Ag CNT Fullerenes 

t a
-1 

 

 

Reference,  

year 

 

t a
-1 

 

 

Reference,  

year 

 

t a
-1 

 

 

Reference,  

year 

 

t a
-1 

 

 

Reference,  

year 

 

t a
-1 

 

 

Reference,  

year 

 

679 (15), 2007 18 (16), 2008 4 (17), 2005 140 (14), 2008 0.15 (18), 2002 

3000 (19), 2008 20 (20), 2007 5 (21), 2008 278 (22), 2007 5 (23), 2008 

5000 (20), 2007 528 (15), 2007 434 (14), 2008 295 (24), 2008 10 (25), 2005 

60926 (14), 2008 1800 (19), 2008 563 (26), 2008 426 (27), 2008   

  9845 (14), 2008   473 (28), 2004   

      500 (29), 2006   

 



Probabilistic/stochastic environmental exposure modeling: Methodology and applications to engineered nanomaterials 

124 

Table 17. Product categories for each ENM with the modeled input distribution. The values refer 

to the computed input parameters distributions extracted from the MC simulations (n = 100,000).  

Product Category 

Lower 

Boundary 

Upper 

Boundary Mean  

nano-TiO2       

Cosmetics 0.0036 0.8190 0.4218 

Filter Aggregates 0.0359 0.7221 0.2724 

Coatings & Cleaning Agent 0.0006 0.4421 0.1051 

Plastics 0.0004 0.5231 0.1258 

Consumer Electronics 0.0002 0.2397 0.0397 

Paint 0.0000 0.1648 0.0198 

Glass & Ceramics 0.0000 0.0647 0.0099 

Light Bulbs 0.0000 0.0153 0.0020 

Metals 0.0000 0.0077 0.0010 

Batteries & Capacitors 0.0000 0.0074 0.0010 

Textiles 0.0000 0.0062 0.0008 

Ink 0.0000 0.0045 0.0007 

Dietary Supplement 0.0000 0.0000 0.0000 

nano-ZnO       

Plastics 0.0000 0.0131 0.0016 

Cosmetics 0.1671 0.9780 0.6489 

Coatings & Cleaning Agent 0.0006 0.8108 0.3492 

Textiles 0.0000 0.0021 0.0002 

Dietary Supplement 0.0000 0.0004 0.0000 

nano-Ag       

Cosmetics 0.0037 0.0191 0.0085 

Filter Aggregates 0.0118 0.1059 0.0482 

Coatings & Cleaning Agent 0.0808 0.5900 0.2905 

Plastics 0.0086 0.0618 0.0280 

Consumer Electronics 0.0209 0.1179 0.0554 

Paint 0.0003 0.5277 0.2007 

Glass & Ceramics 0.0000 0.0333 0.0075 

Metals 0.0000 0.0042 0.0016 

Textiles 0.1190 0.4900 0.2536 

Dietary Supplement 0.0340 0.2825 0.1059 

CNT       

Composites 0.0000 0.9758 0.4862 

Consumer Electronics 0.0000 0.9785 0.4517 

R&D 0.0000 0.8932 0.0621 

Fullerenes       

Composites  0.0000 0.4558 0.1556 

Cosmetics 0.0000 0.0335 0.0114 

R&D 0.4907 0.9800 0.8330 
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C. Release of ENM 

Table 18. Release of engineered nanomaterials (ENM) from products, manufacturing of ENM 

containing products and ENM production. The values refer to the fraction of the total amount of 

ENM released, transferred or dissolved from a particular source. 
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D. Considered toxicity studies 

Table 19. Derived PNEC from standardized toxicity studies with an applied assessment factor of 

1000 (1). 

Toxic 
Particle Compartment Test Species 

Endpoint 
Concentration PNEC Ref. 

nano-Ag Water C. dubia LC50 0.696 g L
-1

 0.696  
ng 
L

-1
 

(30) 

  Air 
Specific pathogen-

free Sprague-Dawley 
rats (Slc:SD) 

NOEC 100 
g m

-

3
 

0.1 
g 

m
-3

 
(31) 

CNT Sediment 
Leptocheirus 

plumulosus 
LC50 68 g kg

-1
 68 

mg 

kg
-1

 
(32) 

 Water Danio rerio  NOEC 40 
g 

mL
-1

 
40 

g 
L

-1
 

(33) 

 Air 
Suggested Permissible exposure 
limit 

  0.1 
mg 
m

-3
 

(34) 

  Soil Eisenia Veneta  EC50 176 
mg 

kg
-1

 
176 

g 

kg
-1

 
(35) 

Fullerenes Water Daphnia Magna NOEC 0.2 
mg L

-

1
 

200 
ng 
L

-1
 

(36) 

  Soil 
Microbial community, effects on basal and 

glucose-induced soil respiration  
  1 

g 

g
-1

 
(37) 

nano-TiO2 Water 
Daphnia magna, 
Pseudokirchneriella 
subcapitata 

NOEC 1 
mg L

-

1
 

1 
g 

L
-1

 
(38, 39) 

 Air Different studies LOEC 10 
mg 
m

-3
 

10 
g 

m
-3

 
(40) 

  Soil 
Terrestrial isopods P. scaber 
Latreille, 1804 

    1000 
g 

kg
-1

 
(41) 

nano-ZnO Water 
Pseudokirchneriella 

subcapitata 
EC50 40 g L

-1
 40 

ng 

L
-1

 
(39) 
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