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Abstract—Intercell interference is a major limiting factor in
wireless multi-cell networks. Recently, it has been shown that
significant performance gains can be achieved by cooperation be-
tween base stations. Different degrees of cooperation are possible:
From full cooperation, where multiple base stations form a virtual
antenna array, to weak cooperation, where base stations take into
consideration the interference caused to users in neighboring
cells. In this work, weak cooperation in the form of interference
management is investigated. The base stations are equipped with
multiple antennas, while the mobile terminals only have a single
antenna. Due to the spatial degrees of freedom, a base station
can serve multiple users in the same slot. Each base station
performs beamforming, user group selection, and scheduling,
while the terminals treat interference as noise. The corresponding
resource allocation problem is cast as a utility maximization
problem, which includes common performance objectives such
as sum-throughput, max-min fairness, and proportional fairness.
Due to interference, the resulting utility maximization problem
is a nonconvex optimization problem. Still, after a suitable
reformulation, the problem can be solved to global optimality
using the framework of monotonic optimization. In other words,
we provide a framework for computing the jointly optimal
beamforming, user selection, and scheduling strategy for each
base station, under an arbitrary utility objective.

I. INTRODUCTION

The interference management problem in the downlink of a
cellular system is considered. The cellular system consists of
multiple base stations (BS) and a set of mobile stations (MS).
Moreover, the system is partitioned into cells, where each cell
consists of a base station and a subset of the mobile stations.
The base stations are assumed to have multiple antennas. In the
downlink, the base stations transmit independent information
to the mobile stations. In a conventional cellular system, each
base station transmits to the mobile stations within its cell,
without taking into consideration the interference caused in
neighboring cells. As a result, the performance of the cellular
downlink is limited by intercell interference.

Cooperation between base stations can help mitigate inter-
cell interference and thereby improve system performance.
Different degrees of cooperation are possible. Maximal per-
formance is achieved by coordinated transmission [1]. In
coordinated transmission, the base stations are connected by a
high-speed backbone link, enabling them to act as a single
transmitter, meaning that the antennas of all base stations
form a single antenna array, and the signals of all users are
jointly encoded across all base stations [1]. The coordinated
transmission scheme requires that the data signals and channel

state information for all users are available at each base station.
Moreover, in order to enable coherent reception, each mobile
station needs to be synchronized with all base stations.

In this work, a weaker form of cooperation between base
stations is considered. As in a conventional system, base
stations act as separate transmitters, meaning that the data
signals of one user are only available at one of the base
stations. Moreover, each mobile station is only synchronized
with one base station. Interference from signals intended for
other users is treated as noise. Due to the availability of
multiple transmit antennas, base stations can choose transmit
covariance matrices for transmission to their associated mobile
stations. In the following, a choice of transmit covariance
matrices for all base stations is denoted as a transmit strategy.
Evidently, system performance can be improved if the choice
of a transmit strategy is coordinated among base stations,
taking into account intercell interference.

Each choice of a transmit strategy yields a certain system
performance. Different models for the map from transmit
strategy to system performance are possible. In this work,
a generic utility model is used. Utility-based models have
seen wide application in resource allocation for wireless
networks, see, e.g., [2]. By allowing the base stations to switch
between transmit strategies during one transmit interval, a
further improvement of system performance is possible. Such a
switching between strategies can be interpreted as scheduling.

Finding the optimal transmit strategies (with or without
scheduling) in a coordinated manner represents a utility max-
imization problem. The presence of interference generally
results in a nonconvex optimization problem. There exist re-
source allocation problems in the multi-cell downlink that can
be reformulated as convex problems, such as the minimization
of total transmit power under target rate constraints [3]. For
the utility maximization problem considered in this work,
however, it is generally not possible to find a convex refor-
mulation. As a result, standard tools from convex optimization
cannot be applied to find the optimal transmit strategies. Based
on a framework proposed in [4], this work uses methods
from deterministic global optimization to compute the optimal
transmit strategies.

In the case that each base station serves only one mobile
station, our system setup corresponds to a multiple-input,
single-output interference channel (MISO IFC) with single-
user decoding. Recently, a number of works have explored
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the properties of the MISO IFC under single-user decoding
[5], [6], [7]. For the two-user MISO IFC without scheduling,
a method to find the optimal transmit strategies for a given
utility model is proposed in [8].

Notation: Lowercase bold letters and uppercase bold letters
denote vectors and matrices, respectively. The trace of a square
matrix Q is tr(Q). We write Q � 0 to say that a Hermitian
matrix Q is positive semidefinite. The symbol R+ denotes the
set of nonnegative real numbers. Order relations ≥ and ≤ are
defined component-wise. A subset R of RK

+ is comprehensive
if s ∈ R and 0 ≤ s′ ≤ s implies s′ ∈ R. A function u is
increasing if s′ ≤ s implies u(s′) ≤ u(s), provided both s
and s′ are in the domain of u.

II. SYSTEM MODEL

Downlink transmission in a cellular network is considered.
The network consists of B multi-antenna base stations and
K single-antenna mobile stations. Base station b is equipped
with M transmit antennas and sends independent information
to each of its associated MS, where the set of associated MS
is denoted by Kb ⊂ {1, . . . , K}. Each MS is associated with
one BS, i.e., Kb ∩ Kc = ∅ if b 	= c and

B⋃
b=1

Kb = {1, . . . , K} .

Let xk denote the signal transmitted to MS k by the associated
BS. The signal transmitted by base station b is the superpo-
sition of the signals transmitted to each of its associated MS.
Accordingly, the received signal at MS k is given by

yk =

K∑
q=1

hH
q,kxq + ηk,

where hH
q,k ∈ C1×N is the channel from the base station

associated with MS q to MS k, and ηk is circularly symmetric
AWGN with zero mean and variance σ2.

Each BS encodes information separately for each of its
associated MS using Gaussian codebooks. Each MS receives
independent information. Accordingly, the signal xk sent
to MS k is independent of the signals to all other MS.
Furthermore, it is assumed that each transmit signal xk is
a circularly symmetric Gaussian random variable with zero
mean and covariance matrix Qk ∈ CM×M . Finally, all MS
treat interference as noise. A transmit strategy Q is a K-tuple
of transmit covariance matrices, one for each MS:

Q = (Q1, . . . ,QK).

For each transmit strategy Q, an achievable rate of MS k is
given by

rk(Q) = log2

(
1 +

hH
k,kQkhk,k

σ2 +
∑

q �=k h
H
q,kQqhq,k

)

The transmitted signal from each BS is subject to a transmit
power constraint,∑

k∈Kb

tr(Qk) ≤ Pb, b = 1, . . . , B.

Accordingly, the set of feasible transmit strategies is given by

Q =

{
Q : Qk � 0, ∀k,

∑
k∈Kb

tr(Qk) ≤ Pb, ∀b
}
.

A rate region R is defined as the set of rate tuples achievable
by a feasible choice of Q,

R = {r(Q) : Q ∈ Q} .
The rate region R is compact and comprehensive. In general,
however, the rate region R is not convex. A convex rate region
C is obtained by taking the convex hull of R. Due to the fact
that R is a comprehensive set, each point in C can be written
as the convex combination of at most K points in R: For
each s ∈ C, there exist K transmit strategies Q1, . . . ,QK and
coefficients b1, . . . , bK such that Qk ∈ Q, bk ≥ 0,

∑
bk = 1,

and

s =

K∑
k=1

bkr(Q
k).

Accordingly, the convex hull operation can be interpreted as
scheduling between K transmit strategies, with scheduling
coefficients b1, . . . , bK . Moreover, the convex hull of a com-
prehensive set is comprehensive, hence C is comprehensive.
In the following, let Q′ denote a vector of transmit strategies,
Q′ = (Q1, . . . ,QK), and let b = (b1, . . . , bK).1

III. INTERFERENCE MANAGEMENT

In general, transmission to MS k causes interference at all
MS q with q 	= k. On the other hand, reducing the interference
caused at MS q reduces the achievable rate for MS k. The goal
of interference management is to adapt the system parameters
in such a way that overall system performance is maximized.
In this work, it is assumed that overall system performance
is measured by a utility function u that maps a rate vector
s ∈ RK

+ into a scalar utility value u(s). The utility function u
is assumed to be continuous and increasing. Commonly used
utility models are

uWSR(s) = λTs (weighted sum-rate),

uMM(s) = min
k

sk (max-min fairness),

uPF(s) =
∑
k

ln(sk) (proportional fairness).

Without scheduling, interference management corresponds
to determining a feasible transmit strategy Q such that
u(r(Q)) is maximized:

max
Q

u(r(Q)) s.t. Q ∈ Q. (1)

Due to the nonconcavity of the rate map r, problem (1)
is generally a nonconvex optimization problem, regardless
of the properties of u. Moreover, problem (1) offers no

1By adapting the results from [6] and [7], it can be shown that beamforming
is optimal, i.e., it is sufficient to consider covariance matrices of rank 1. Based
on this result, the problem can also be formulated using beamforming vectors
instead of covariance matrices, cf. [7].
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further structure with respect to the parameters Q. Including
scheduling makes the interference management problem even
harder: Instead of finding a single transmit strategy Q, it is
now necessary to find a vector Q′ of K feasible transmit
strategies and a scheduling vector b such that the resulting
rate vector maximizes utility.

Interference management is optimal if the globally optimal
solution is found. However, finding a globally optimal solution
of problem (1) directly by operating in the space of transmit
strategies is practically impossible, due to the fact that problem
(1) is nonconvex and the dimension of the search space is
prohibitively high for global methods.2 With scheduling, the
dimension of the search space is further increased.

The key to finding globally optimal solutions is a rate space
approach [4], which basically corresponds to a change of
the optimization domain. Without scheduling, the rate space
problem is given by

max
s

u(s) s.t. s ∈ R. (2)

Clearly, if s∗ is a global maximizer of (2), then there exists Q∗

such that s∗ = r(Q∗) and Q∗ is a global maximizer of (1).
The rate space approach provides two major advantages: First,
the rate region R is comprehensive, while the utility function
u is increasing. Hence, the rate space problem is a monotonic
optimization problem [9], and can be solved by using a generic
algorithm for monotonic optimization. Second, the dimension
of the search space is reduced to K , the number of MS, and
is independent of M .

The rate space problem for the case that scheduling is
included is obtained by replacing R by C in (2):

max
s

u(s) s.t. s ∈ C. (3)

Due to the fact that C is also comprehensive, the resulting rate
space problem is again a monotonic optimization problem. If
the utility function u is concave, the rate space problem with
rate region C is a convex problem.

IV. SOLVING THE RATE SPACE PROBLEM

A general framework for solving rate space problems in
the form of (2) and (3) is provided in [4]. The framework is
based on the polyblock algorithm [9], a deterministic global
optimization algorithm for solving monotonic optimization
problems. As a global method that uses a black-box model of
objective function and feasible set, the worst case computa-
tional complexity of the polyblock algorithm increases at least
exponentially in K [10]. In practice, it can be observed that
computing the globally optimal solutions is practically feasible
for a small to moderate number of users only (K ≤ 10).
Moreover, the computational complexity of the polyblock
algorithm limits the applicability of the framework to off-
line computation. Nevertheless, by using global methods it
is possible to compute the ultimate performance bounds for a
given system configuration and a corresponding interference

2Clearly, there exist special cases that result in a sufficiently low problem
dimension, such as M = 1 and K small.

management strategy which is guaranteed to be globally op-
timal. The only prerequisite for applying the framework from
[4] is the availability of a membership test for the rate region
R. In [4], the single-cell case is considered. For the multi-cell
case, a membership test can be formulated as follows: A rate
vector s is element of R if and only if there exists Q in Q
such that

sk = rk(Q), ∀k. (4)

Re-arranging (4) yields the condition

hH
k,kQkhk,k − βk

∑
q �=k

hH
q,kQqhq,k = βkσ

2, ∀k,

with βk = 2sk − 1. The following feasibility test is obtained:

find (Q1, . . . ,QK)

s.t. Qk � 0, ∀k,∑
k∈Kb

tr(Qk) ≤ P, ∀b,

hH
k,kQkhk,k − βk

∑
q �=k

hH
q,kQqhq,k = βkσ

2, ∀k.

(5)

Problem (5) is a semidefinite program (SDP), i.e., a convex
problem and efficiently solvable.3

V. NUMERICAL RESULTS

In order to illustrate the impact of optimal interference
management, the optimal transmit strategies are computed for
an exemplary channel realization. A system with B = 2
base station and K = 4 mobile stations is considered, with
K1 = {1, 2} and K2 = {3, 4}. Each base station has M = 2
transmit antennas and a transmit power budget of P = 101.5.
The noise variance at each receiver is σ2 = 1. As a reference
strategy, we consider the case where Qk is chosen such that
it perfectly matches its channel and transmit power is divided
equally among all associated MS:

Qk = 0.5P hk,kh
H
k,k/ tr

(
hk,kh

H
k,k

)
, ∀k.

This case is denoted as no coordination, as it considers neither
intra- nor inter-cell interference. Figure 1 shows the path gains
hH
q Qkhq in case of no coordination. The diagonal entries in

Figure 1 correspond to the signal paths to the four MS. It
can be observed that the channels to MS 2 and 4 are best,
while MS 3 has the weakest channel. The off-diagonal entries
in Figure 1 correspond to interference. As an example, the
signal to MS 4 causes significant interference at MS 1.

Figure 2 shows the path gains resulting from a choice of
covariance matrices that maximizes the sum of rates. MS 1
and MS 3 are allocated zero transmit power – it is optimal to
switch them off. Moreover, it can be observed that the signals
to the active MS only cause interference at the inactive MS.

In Figure 3, the transmit strategy is chosen such that the
resulting rate vector is max-min fair in R (i.e., no scheduling).
For max-min fairness, no MS can be switched-off. The result is

3Based on the optimality of beamforming, the feasibility test can also be
formulated as a second order cone program (SOCP), cf. [7].
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Fig. 1. Path gains hH
q Qkhq , no coordination.
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Fig. 2. Path gains hH
q Qkhq , sum-rate maximization.

a significant amount of interference, due to insufficient degrees
of freedom. Moreover, comparing Figure 3 to Figure 1 shows
that it is optimal for BS 1 to transmit with a total power less
than P .

Table I shows the optimal rate vectors and corresponding
utility values for different performance objectives. The first
row corresponds to the rate vector resulting from no cooper-
ation. In the second row, the transmit strategy maximizes the
sum of the users’ rates. For sum-rate maximization, scheduling
is not needed. Rows 3 and 4 correspond to a transmit strategy
that is optimal under the max-min and proportional fairness
objective, respectively. For the results in rows 3 and 4,
optimization is over R (no scheduling). Whereas sum-rate
maximization can achieve a significant gain over the no coop-
eration case, the benefit of cooperation is significantly lower in
case of max-min and proportional fairness. This result is due
to the fact that max-min and proportional fairness enforce non-
zero rate for all users. Without scheduling, this implies that all
users have to be active at the same time. However, there are
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Fig. 3. Path gains hH
q Qkhq , max-min fairness.

r1 r2 r3 r4 uSR uMM uPF
NoCo 1.14 2.21 0.85 1.47 5.68 0.85 1.15

SR 0.00 5.96 0.00 6.81 12.77 0.00 -Inf
MM 1.40 1.40 1.40 1.40 5.61 1.40 1.35
PF 1.63 1.81 0.96 1.43 5.83 0.96 1.39

MM-S 2.96 2.96 2.96 2.96 11.84 2.96 4.34
PF-S 2.97 2.98 2.72 3.41 12.08 2.72 4.41

TABLE I

RATES AND UTILITY VALUES FOR DIFFERENT STRATEGIES

k r1 r2 r3 r4 bk
1 0.00 5.96 0.00 6.81 0.43
2 5.95 0.00 5.44 0.00 0.50
3 0.00 5.42 3.75 0.00 0.05
4 0.00 5.58 3.65 0.00 0.02

TABLE II

OPTIMAL SCHEDULE FOR MAX-MIN FAIRNESS

only two spatial degrees of freedom available, hence it is not
possible to properly separate users. Rows 5 and 6 show the
optimal rates for the case that jointly optimal scheduling and
beamforming is performed. The gains of optimal scheduling
are significant – in case of max-min, the minimal rate more
than doubles by including scheduling.

Table II shows the optimal rate vectors and scheduling
coefficients for max-min fairness. It can be observed that it is
optimal to have only two users active at a given time. While
this result can be expected (as M = 2), it is not a priori clear
which two users are grouped together.
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