Total Syntheses of Anguinomycins C \& D, Synthetic Studies on Sporolides and Preparation of Eudistomin Derivatives: Biological Evaluation Against Cancer and Malaria

A dissertation submitted to the SWISS FEDERAL INSTITUTE OF TECHNOLOGY ETH ZURICH

for the degree of Doctor of Sciences

Presented by

Simone Bonazzi

Master of Science MSc en Chimie Moléculaire et Biologique, EPFL Born July 1, 1982

Citizen of Tenero-Contra (TI)

Accepted on the recommendation of

Prof. Dr. Erick M. Carreira, examiner
Prof. Dr. Karl Gademann, co-examiner
Prof. Dr. Karl-Heinz Altmann, co-examiner

Acknowledgements

I am grateful to Prof. Dr. Karl Gademann for the possibility to work under his supervision during my PhD . I would like to thank him for his confidence and the freedom let to me during my research as well as for his enthusiasm, help, advice and efforts whenever I need him. I really appreciated the interesting discussions during theses years and I have to thank him also for teaching me that in chemistry patience and perseverance are fundamentals, especially when the chemistry failed. I am thankful for the interesting discussion during the group meeting and for the learning experience during his lectures.

I am thankful to Prof. Dr. Erick M. Carreira for having given me the possibility to join his group and benefit of the very enriching discussions during the group seminars. I would like to thank him for his help and advice whenever I need him.

I would like to thank Prof. Dr. Karl-Heinz Altmann for accepting the co-examination of my thesis.

Prof. Dr. Karl Gademann, Prof. Dr. Erick M. Carreira, Prof. Dr. Karl-Heinz Altmann, Dr. Tom Woods and Jean-Yves Wach are acknowledged for critically proofreading and thereby substantially improving this manuscript.

A special thanks to Dr. Corey Stephenson, Christian Defieber, Dr. Thomas Fessard, Damien Barbaras, Florian Kleinbeck, Dr. Jose Carlos Gonzalez-Gomez, Stefan Reber and Dr. Isabelle Lyothier at the ETHZ as well as to Jean-Yves Wach, Massimo Binaghi, Adrien Lawrence, Cyril Portmann, Dr. Tom Woods, Dr. Henning Jessen, Dr. Joanna Kobylinska, Cindy Fellay, Filippo De Simone, Prof. Dr. Jerôme Waser, Prof. Dr. Pierre Vogel at the EPFL for the useful discussions on chemistry problems.

I would like to thanks Jean-Yves Wach, Massimo Binaghi and Cindy Fellay as team co-workers for their contribution to the progress of the sporolides project.

Special thanks for nice moments at the ETHZ to Dr. Corey Stephenson, Christian Defieber, Dr. Thomas Fessard, Damien Barbaras, Dr. Jose-Carlos Gonzalez-Gomez, Dr. Andrew Waltman, Dr. Shinji Fujimori, Florian Kleinbeck, Dr. Yann Bethuel and Stefan Reber and a big thanks to all Carreira's group members for the friendship.

Special thanks for nice moments at the EPFL to Massimo Binaghi, Filippo De Simone, Damien Barbaras, Jean-Yves Wach, Adrien Lawrence, Cyril Portmann, Dr. Tom Woods, Dr. Henning Jessen, Dr. Joanna Kobylinska, Cindy Fellay, Dr. Chandan Kumar Jana, Prof. Dr. Jerôme Waser, Davinia Fernandez-Gonzalez, Riccardo Torosantucci and a big thanks to all Gademann's and Waser's group members for the friendship.

I am thankful to Prof. Dr. Ulrike Kutay, Dr. Stephan Güttinger and Ivo Zemp for biological evaluation of anguinomycins and derivatives and to Prof. Dr. Reto Brun, Dr. Marcel Kaiser for biological evaluation of nostocarboline and derivatives.

For the administrative help as well as other helpful advices I would like to thank Franziska Peyer, Brown Vida and Monique Borcard.

Many thanks go also to the collaborators of the technical staff at the ETHZ and the EPFL for their services and precious contribution in the analyses.

Ringrazio parenti, amici e tutti coloro che mi hanno aiutato durante questi anni. Un ringraziamento speciale a Vanessa per il sostegno, l'incoraggiamento e per i momenti di felicità trascorsi assieme.

Infine, ringrazio soprattutto i miei genitori e le mie sorelle, Katia e Diana, per aver condiviso con me bei momenti, come per avermi sostenuto e incoraggiato durante quelli più difficili. Vi ringrazio per il vostro aiuto e per aver sempre creduto in me.

Alla mia famiglia con affetto e gratitudine

Publications \& Presentations

Publications

1) Z. Grote, S. Bonazzi, R. Scopelliti and K. Severin

Bridged Dihydroxypyridine Ligands for the Synthesis of Expanded Helicates
J. Am. Chem. Soc. 2006, 128, 10382-10383.
2) K. Gademann and S. Bonazzi

Total Synthesis of Complex Cyanobacterial Alkaloids Without Using Protecting Groups
Angew. Chem. Int. Ed. 2007, 46, 5656-5658; Angew. Chem. 2007, 119, 5754-5756.
3) S. Bonazzi, S. Güttinger, I. Zemp, U. Kutay and K. Gademann

Total Synthesis, Configuration, and Biological Evaluation of Anguinomycin C Angew. Chem. Int. Ed. 2007, 46, 8707-8710; Angew. Chem. 2007, 119, 8862-8865.
4) J.-Y. Wach, S. Bonazzi and K. Gademann

Antimicrobial Surfaces Through Natural Product Hybrids
Angew. Chem. Int. Ed. 2008, 47, 7123-7126; Angew. Chem. 2008, 120, 7232-7235.
5) J.-Y. Wach, B. Malisova, S. Bonazzi, S. Tosatti, M. Textor, S. Zürcher and K. Gademann
Protein-Resistant Surfaces Through Mild Dopamine Surface Functionalization Chem. Eur. J. 2008, 14, 10579-10584.
6) K. Gademann, D. Barbaras, S. Bonazzi, L. Patiny, R. Scopelliti, P. Schneider, S. T. Cole, M. Kaiser and R. Brun
Antimalarial and Antitubercular Nostocarboline Derivatives: Synthesis, in vitro and in vivo Biological Evaluation
Chem. Med. Chem. 2009, submitted.
7) S. Bonazzi, R. Scopelliti, M. Kaiser, R. Brun and K. Gademann

Antimalarial Eudistomin Derivatives: Synthesis, in vitro and in vivo Biological Evaluation
Chem. Med. Chem. 2009, in preparation.
8) S. Bonazzi, J.-Y. Wach, S. Güttinger, I. Zemp, U. Kutay and K. Gademann Anguinomycins C \& D and Derivatives: Total Syntheses and Biological Evaluation on CRM1-Mediated Nucleocytoplasmic Transport J. Am. Chem. Soc. 2009, in preparation.
9) S. Bonazzi, M. Binaghi, J.-Y. Wach, C. Fellay and K. Gademann Synthetic Studies on the Sporolides: Exploration of the Enediyne Route Synthesis 2009, in preparation.

Conference Proceeding

J.-Y. Wach, S. Bonazzi and K. Gademann

Combining Devices and Drugs by Synthetic Natural Product Hybrids
European Cells \& Materials Journal 2007, 14, 127.

Oral Presentations

First Total Synthesis of Anguinomycin C: a Tumor-Selective Polyketide
S. Bonazzi and K. Gademann.

CUSO Summer school - Target Synthesis: Challenges, Strategies and Methods, September $2^{\text {nd }}-6^{\text {th }} 2007$, Villars.

Total Synthesis, Configuration and Biological Evaluation of Anguinomycin C
S. Bonazzi, S. Güttinger, U. Kutay, I. Zemp and K. Gademann.

SCS Fall Meeting, September $11^{\text {th }} 2008$, Zurich.

Poster Presentations

Synthetic Studies on Anguinomycin C: a Tumor-Selective Polyketide
S. Bonazzi, S. Güttinger, U. Kutay, I. Zemp and K. Gademann

SCS Fall Meeting 2006, October $13^{\text {th }}$, Zurich.
First Total Synthesis of Anguinomycin C: a Tumor-Selective Polyketide
S. Bonazzi and K. Gademann

1st Japanese-Swiss symposium on chemical biology, June $25^{\text {th }}-26^{\text {th }} 2007$, Lausanne.
First Total Synthesis of Anguinomycin C: a Tumor-Selective Polyketide
S. Bonazzi and K. Gademann
$8^{\text {th }}$ Tetrahedron symposium - Challenges in Organic Chemistry ($50^{\text {th }}$ anniversary of Tetrahedron), June $26^{\text {th }}-29^{\text {th }}$ 2007, Berlin.

Combining Devices and Drugs by Synthetic Natural Product Hybrids
J.-Y. Wach, S. Bonazzi and K. Gademann

BIOSURF VII - Functional Interfaces for Directing Biological Response, August $28^{\text {th }}$ $-31^{\text {th }} 2007$, Zurich.

First Total Synthesis of Anguinomycin C: a Tumor-Selective Polyketide
S. Bonazzi and K. Gademann

CUSO Summer school - Target Synthesis: Challenges, Strategies and Methods, September $2^{\text {nd }}-6^{\text {th }} 2007$, Villars.

First Total Synthesis of Anguinomycin C: a Tumor-Selective Polyketide
S. Bonazzi, S. Güttinger, U. Kutay, I. Zemp and K. Gademann

SCS Fall Meeting 2007, September 12 ${ }^{\text {th }}$, Lausanne.

Table of Contents

Table of Contents i
Abstract v
Riassunto ix
List of Abbreviations, Acronyms and Symbols xiii

1. Introduction: Natural Products and Drug Discovery 1
2. Total Syntheses and Biological Evaluation of Anguinomycins C \& D 3
2.1. Natural Products and Cancer Treatment 3
2.2. The Leptomycin Family 5
2.2.1. Overview 5
2.2.2. Biological Activity and Mode of Action 7
2.2.3. Total Syntheses and Synthetic Studies 12
2.2.3.1. The Syntheses of Callystatin 12
2.2.3.2. The Synthesis of Leptomycin B 33
2.2.3.3. The Syntheses of (+)- and (-)-Ratjadone 34
2.2.3.4. The Synthesis of (-)-Kazusamycin A 38
2.2.3.5. The Synthesis of Leptofuranin D 40
2.2.3.6. The Synthesis of Leptostatin 41
2.2.4. Conclusion 42
2.3. Anguinomycins A-D: Isolation and First Biological Evaluation 45
2.4. Total Synthesis of Angunomycins C \& D 46
2.4.1. Retrosynthetic Analysis and Strategy Considerations 46
2.4.2. Synthesis of the Dihydropyran Fragment 49
2.4.3. The Tandem Hydrozirconation-Negishi Cross Coupling 50
2.4.4. The Pd-Catalyzed Negishi Cross-Coupling with Stereoinversion 56
2.4.5. Synthesis of the Polyketidic Chain 63
2.4.6. The Suzuki $\mathrm{sp}^{3}-\mathrm{sp}^{2}$ Cross Coupling and Completion of the Synthesis 69
2.4.7. Physical Data of Anguinomycins C \& D 73
2.4.8. Synthesis of Anguinomycin Derivatives 75
2.4.9. Biological Evaluation 76
2.5 . Conclusion 83
3. Synthetic Studies on Sporolides 86
3.1. Isolation, Structure Elucidation and Biological Activity 86
3.2. Biosynthetic Considerations 87
3.3. Enediyne Natural Products as Antitumor Agents 88
3.3.1. History, Mode of Action, Activity and Stability of Enediynes 88
3.3.2. Nine-Membered Ring Natural Endiynes 91
3.3.2.1. The Neocarzinostatin Chromophore 91
3.3.2.2. The C-1027 Chromophore 93
3.3.2.3. The Maduropeptin Chromophore 94
3.3.2.4. The Kedarcidin Chromophore 95
3.3.2.5. The N1999A2 Enediyne Antibiotic 96
3.4. Total Synthesis and Synthetic Studies on Sporolides 97
3.5. Toward the Total Synthesis of the Sporolides 102
3.5.1. Strategy 1 - Synthesis of the Nine-Membered Core via the Enediyne 102
3.5.1.1. Retrosynthetic Analysis and Strategy Considerations 102
3.5.1.2. The Vinyl Triflate and the Vinyl Iodide Fragments 105
3.5.1.3. The Enediyne Fragment 108
3.5.1.4. The Nine-Membered Ring Enediyne Formation - The Dead End 110
3.5.2. Strategy 2 - Synthesis of the Nine-Membered Core via a Diyne 111
3.5.2.1. Revision of the Retrosynthetic Analysis 111
3.5.2.2. Toward the 9 -Membered Diyne Core 112
3.5.2.3. The Nine-Membered Ring from the Allene - The Dead End 115
3.5.3. Comments and Perspectives 119
3.6. Conclusion 120
4. Nostocarboline and Eudistomin N Derivatives as Potential Antimalarial Agents 121
4.1. Introduction 121
4.2. Nostocarboline and Malaria 121
4.3. Preparation of Nostocarboline and Eudistomin N Derivatives 125
4.4. Biological Evaluation 129
4.5. Conclusion 133
5. Conclusion 134
6. Experimental Section 137
6.1. General Methods and Materials 137
6.2. Total Syntheses of Anguinomycins C \& D 139
6.2.1. Synthesis of the $C(1)-C(7)$ Fragment 139
6.2.2. Synthesis of the $\mathrm{C}(8)-\mathrm{C}(11)$ Fragment 142
6.2.3. Synthesis of the Alkyl Iodides Fragments 147
6.2.4. Synthesis of the Polyketidic Chain 154
6.2.5. The Suzuki $\mathrm{sp}^{3}-\mathrm{sp}^{2}$ Cross Coupling and Synthesis Completion 169
6.2.6. Synthesis of Anguinomycin Derivatives 176
6.2.7. Biological Evaluations 178
6.3. Synthetic Studies on Sporolides 179
6.3.1. Synthesis of the Vinyl Triflate Fragment 179
6.3.2. Synthesis of the Enediyne Fragment 182
6.3.3. Toward the 9-Membered Ring from the Allene 190
6.4. Preparation of Nostocarboline and Eudistomin Derivatives 199
6.4.1. Six-Chloronorharmane Derivatives 199
6.4.2. Six-Bromonorharmane Derivatives 204
6.4.3. Eight-Bromonorharmane Derivatives 211
6.4.4. Biological Evaluation 215
6.5. Spectra 216
6.5.1. Spectra from the Anguinomycins C \& D Project 216
6.5.2. Spectra from the Sporolides Project 292
6.5.3. Spectra from the Nostocarboline and Eudistomin Derivatives Project 329
6.6. Crystallographic Data 368
Curriculum Vitae 411

Abstract

Natural products continue to play a central role in drug discovery and synthetic organic chemists inspire themselves from nature for the development of new strategies and for the preparation of highly complex biologically active structures for treating human diseases. Anguinomycins C and D are antitumor antibiotics belonging to the leptomycin family that were isolated from Streptomyces microorganisms in 1995. These compounds selectively target retinoblastoma tumor suppressor protein (pRb) inactivated cancer cells and induce only growth arrest on normal cells. The absolute configuration of these compounds was previously unknown. In this thesis the first total syntheses of anguinomycins C and D is presented as well as the preparation of their derivatives and their biological evaluation. The preparation of the lactone moiety was characterized by Cr-catalyzed hetero-Diels-Alder reaction. The central part deriving from the Roche ester was coupled to the lactone fragment via a tandem hydrozirconation-Negishi cross-coupling reaction and the residue (R) installed using the Negishi cross-coupling reactions with stereoinversion. The polyketide chain was characterized by alkylation and aldol reactions using the Seebach modification of the Evans auxiliary. Wittig reaction and Takai olefination afforded the polyketide fragment, which was coupled via $\mathrm{sp}^{3}-\mathrm{sp}^{2}$ Suzuki cross-coupling to give the skeleton of the two targets. Final modification furnished anguinomycins C and D in 29 steps (longest linear sequence 19 steps) with overall yields of 6.7 and 6.0% respectively.

Anguinomycins C and D were submitted to biological evaluation as CRM1mediated nucleocytoplasmic transport inhibitor and both compounds confirmed their high activity inducing inhibition at 10 and 5 nM respectively. In addition, derivatives were prepared in order to investigate the mode of action and the structure-activity
relationship. New analogs, which displayed high activity, were identified forming the basis for the development of more powerful and selective nucleocytoplasmic transport inhibitors for cancer treatment.

Sporolides A and B, which are proposed to derive from the Bergmann cyclization of an endiyne precursor, are complex marine natural products isolated from Salinospora tropica in 2005. These compounds did not show interesting biological activity, probably because the active substrate is the enediyne precursor prior to cyclization. Their unusual architecture displaying 22 out of 24 carbons sp^{2} hybridized or oxygenated, 7 rings and 10 stereogenic centers makes them challenging targets for total synthesis.

Synthetic studies for the development of a biomimetic approach to the chlorinated cyclopenta $[a]$ indene ring are presented. Preparation of the 9 -membered enediyne ring from both an enediyne and a diyne precursor was investigated. The chemistry was characterized by Morita-Baylis-Hillman reaction, Sharpless asymmetric dihydroxylation, enediyne formation via Wittig reaction and $\mathrm{CeCl}_{3} \bullet 2 \mathrm{LiCl}-$ mediated acetylide addition. Although preliminary attempts to form the 9 -membered enediyne core structure were unsuccessful, investigation are ongoing.

Malaria remains a huge problem in developing countries and its parasite affects 300-500 million people causing 1-3 million of deaths each year. In 2005 Gademann and co-workers isolated nostocarboline from freshwater cyanobacterium Nostoc 7812A. This β-carbolinium ion displayed antimalarial activity against Plasmodium falciparum with an IC_{50} of 194 nM and good selectivity being more than 600 times less toxic against L6 rat myoblast cell line. It was decided to prepare beta-carbolinium ion derivatives of nostocarboline and eudistomin N for biological evaluation against malaria. The compounds were prepared following a straightforward procedure based on halogenation and N-alkylation of the common starting material norharmane.

Nostocarboline

Eudistomin N

In vitro biological evaluation against Plasmodium falciparum identified five compounds with interesting activity and selectivity. Between them two new 6-bromo9 H -carbolinium ion displaying IC_{50} of 18 and 32 nM with a selectivity against L 6 rat myoblast cell line of 4783 and 2443 respectively. The five products were selected for biological evaluation in vivo in a P. berghei mouse model and biological assays are currently ongoing.

Riassunto

I prodotti naturali continuano a ricoprire un ruolo fondamentale nella scoperta di nuovi farmaci. Il chimico organico s'ispira costantemente alla natura per progettare e sintetizzare complesse strutture d'interesse biologico. Le anguinomicine C e D, la cui configurazione assoluta era finora sconosciuta, sono antibiotici antitumorali appartenenti alla famiglia delle leptomicine e sono state isolate nel 1995 da microorganismi del genere Streptomyces. Queste molecole hanno dimostrato un'attività selettiva verso le cellule neoplastiche nelle quali la proteina del retinoblastoma (pRb), un soppressore tumorale, è disattivata. Le cellule sane subiscono al contempo solamente un arresto temporaneo della crescita. In questa tesi saranno presentate le prime sintesi totali delle anguinomicine Ce D , la sintesi di derivati e la loro valutazione biologica. Il lattone è stato sintetizzato utilizzando una reazione etero-Diels-Alder catalizzata dal cromo. Il frammento centrale, derivante dall'estere di Roche, è stato condensato con l'intermediario lattonico tramite una sequenza d'idrozirconazione seguita da Negishi cross-coupling. Il sostituente (R) è stato introdotto attraverso un Negishi cross-coupling con stereoinversione della configurazione. La sintesi della catena polichetidica è caratterizzata da un'alchilazione seguita da due condesazioni aldoliche utilizzando la variante di Seebach dell'ausiliare chirale di Evans. Una successiva reazione di Wittig seguita da un olefinazione di Takai ha fornito la catena polichetidica, la qual è stata condensata mediante $\mathrm{sp}^{3}-\mathrm{sp}^{2}$ Suzuki cross-coupling formando lo scheletro delle due molecole target. Quattro ulteriori passaggi hanno permesso di ottenere le angiunomicine C e D in un numero complessivo di 29 tappe (sequenza lineare più lunga 19 tappe) e una resa globale rispettivamente di 6.7 e 6.0%.

I risultati biologici hanno dimostrato che le anguinomicine C e D agiscono come inibitori del trasporto nucleocitoplasmatico mediato dalla proteina CRM1 a concentrazioni rispettivamente di 10 e 5 nM . Sono stati inoltre sintetizzati alcuni derivati al fine di indagare sul meccanismo d'azione e sulla correlazione strutturaattività. Alcuni derivati hanno mostrato un'elevata attività biologica, fornendo le basi per lo sviluppo di più potenti e selettivi inibitori del trasporto nucleocitplasmatico per la cura del cancro.

Gli sporolidi A e B sono dei complessi prodotti naturali di origine marina isolati nel 2005 dalla Salinospora tropica e sembrerebbero derivare dalla ciclizzazione di Bergman di un precursore enediinico. Entrambe le strutture non hanno mostrato alcun'attività biologica, probabilmente perchè la molecola attiva era il loro precursore enediinico. L'inusuale architettura di questi due prodotti che mostrano 22 dei 24 atomi di carbonio ibridati sp^{2} o ossigenati, 7 cicli e 10 centri stereogenici li rendono degli obbiettivi stimolanti per la sintesi totale.

Sporolide A: R=CI, R' = H
Sporolide B: R $=\mathrm{H}, \mathrm{R}^{\prime}=\mathrm{Cl}$

Presporolide

In questo lavoro sono presentati degli studi sintetici mirati allo sviluppo di un approccio biomimetico dell'anello clorato ciclopenta $[a]$ indene. È stata investigata la preparazione dell'anello enediinico a 9 termini sia a partire da un precursore enediinico che da uno diinico. La strategia è caratterizzata dalla reazione di Morita-Baylis-Hillman, da una diidrossilazione di Sharpless, dalla formazione dell'endiino tramite reazione di Wittig e da un'addizione d'actilide mediata da $\mathrm{CeCl}_{3} \bullet 2 \mathrm{LiCl}$. Sebbene i primi tentativi non abbiano portato alla formazione del ciclo a 9 termini, ulteriori studi sono tutt'ora in corso.

La malaria rappresenta tutt'oggi una piaga per i paesi in via di sviluppo e il suo parassita infetta 300-500 milioni di persone causandone la morte di 1-3 milioni ogni anno. Nel 2005, Gademann e collaboratori hanno isolato la nostocarbolina dal cianobatterio d'acqua dolce Nostoc 78-12A. La nostocarbolina ha mostrato attività antimalariche contro il Plasmodium falciparum con un IC_{50} di 194 nM e un'elevata selettività, risultando 600 volte meno tossica nei confronti delle cellule mioblastiche di ratto L6. In questo progetto si è deciso di preparare ioni β-carbolinici derivati dalla nostocarbolina e dall'eudistomina N per sottoporli a test biologici. I prodotti sono stati preparati seguendo una rapida sequenza basata sull'alogenazione e la N-alchilazione del norharmane.

Nostocarboline

Eudistomin N

I test biologici hanno identificato cinque composti con un'interessante attività e selettività contro il Plasmodium falciparum. Due di questi ioni 6-bromo-9Hcarbolinio hanno mostrato una IC_{50} di 18 e 32 nM risultando rispettivamente 4783 e 2443 volte meno tossici nei confronti delle cellule mioblastiche di ratto L6. I cinque prodotti sono stati selezionati per test biologici in vivo sui topi infetti da P. berghei e gli esami sono tuttora in corso.

List of Abbreviations, Acronyms and Symbols

$[\alpha]^{T}{ }_{D}$	specific rotation at temperature T at the sodium D line
Ac	acetyl
aq	aqueous
br	broad
Bu	butyl
${ }^{\circ} \mathrm{C}$	degrees centigrade
c	concentration
calcd	calculated
cat.	catalytic
CAM	ceric ammonium molybdate
Cp	cyclopentadienyl
CRM1	chromosome maintenance region 1 or exportin 1
CSA	camphorsulfonic acid
δ	NMR chemical shift in ppm downfield from standard TMS
d	doublet
DBU	1,8-diazabicyclo[5.4.0]undec-7-ene
DCC	Dicyclohexylcarbodiimide
DDQ	2,3-dichloro-5,6-dicyano-1,4-benzoquinone
DIBAL-H	diisobutylaluminium hydride
DMAP	4-N,N-dimethylaminopyridine
DMF	N, N-dimethylformamide
DMP	Dess-Martin periodinane
DMSO	dimethyl sulfoxide
d.r.	diastereomeric ratio
e.e.	enantiomeric excess
EI	electron impact ionization
eq.	equation
equiv	equivalent(s)
Et	ethyl
EtOAc	ethyl acetate
FC	flash chromatography

g	gram
GC	gas chromatography
h	hour(s)
Hz	hertz (s^{-1})
i	iso
J	coupling constant
KHMDS	potassium bis(trimetylsilyl)amide
L	liter
LDA	lithium diisopropylamide
LHMDS	lithium bis(trimetylsilyl)amide
LMB	leptomycin B
LR	low resolution
m	multiplet
M	molarity (mol.L ${ }^{-1}$)
Me	methyl
MeOH	methanol
mg	milligram
min	minute(s)
mL	milliliter
$\mu \mathrm{L}$	microliter
mmol	millimol
MS	mass spectroscopy
v	frequency (cm^{-1})
n.d.	not determined
NES	nuclear export signal
NMR	nuclear magnetic resonance
p	para
PCC	pyridinium chlorochromate
PDC	pyridinium dichromate
Ph	phenyl
PIFA	phenyliodine(III) bis(trifluoroacetate)
PMB	4-methoxybenzyl
ppm	parts per million
PPTS	pyridinium 4-toluenesulfonate

Pr	propyl
pRb	protein retinoblastoma
q	quartet
quint.	quintet
quant.	quantitative
R_{f}	retention factor
RT	room temperature
s	singlet
sext.	sextet
sept.	septet
t	triplet
T	temperature
TBAF	tetra- n-butylammonium fluoride
TBDPS	tert-butyldiphenylsilyl
TBS	tert-buthyldimethylsilyl
TES	triethylsilyl
THF	tetrahydrofuran
TIPS	triisopropylsilyl
TLC	thin layer chromatography
TMS	trimethylsilyl

1. Introduction: Natural Products and Drug Discovery

The adaptation of life to different environments over time and the biodiversity among ecosystems has resulted in the generation of a vast array of natural compounds and consequently, an almost endless source of inspiration for synthetic organic chemists. Nature has followed an evolutionary selection process for millions of years and the structure of natural products is well selected in such a way to give a desired biological activity. ${ }^{1}$ The investigation of natural sources forms the basis for the discovery of new biologically active compounds and recent reports have shown that pharmaceuticals of natural origin or derivatives represent more than 50% of the drugs on the market. ${ }^{2}$ Natural products are found everywhere and their research is not only limited to terrestrial organisms; seventy percent of the earth's surface is covered in water and the marine ecosystem also represent an important and interesting resource of new chemical structures. ${ }^{3}$

Natural products and their sources have for a long time been recognized and employed by man to treat human diseases. The earliest records of the use of plants and herbs in medicine originated in Egypt and Mesopotamia and dated from 2900 BC and from 2600 BC respectively. ${ }^{4}$ Today, natural products remain an important source for the discovery and development of biologically active compounds with therapeutic effects. Although, in recent years the investigation of natural products as a source of chemotherapeutic agents has declined in favor of new drug discovery approaches such as combinatorial chemistry or computer based molecular modeling. ${ }^{5}$ However, 25 years of drug research using combinatorial chemistry resulted in only one new chemical entity being discovered and approved for drug use using this method. ${ }^{2 b}$ The failure of this modern approach shows how difficult it is to randomly generate potent and selective compounds and this method has been commented on by Danishefsky: " a small collection of smart compounds may be more valuable than a much larger

[^0]hodgepodge collection mindlessly assembled". ${ }^{6}$ Although natural products remain fundamental to drug development, there are also some limitations due to the amount of compounds that can be isolated. Often, the amount of isolated material is extremely low and not sufficient for complete characterization or for biological studies. Organic synthesis is a powerful method allowing the exploration of underinvestigated compounds and synthetic organic chemists, inspired by nature, have developed methods and strategies in order to recreate the target molecules in laboratory. The synthetic preparation of compounds allows the elucidation of structures and further biological investigations in order to understand targets, metabolism and mode of action of the selected compounds. Once the target and the active part of the molecule are identified, it is possible to prepare derivatives or simplify the structure and study their activity. This forms the basis of what will be presented in this thesis, with the synthesis and biological studies of bioactive compounds against cancer and malaria.

[^1]
2. Total Syntheses and Biological Evaluation of Anguinomycins C \& D

2.1. Natural Products for Cancer Treatment

Cancer remains a major disease worldwide and for many of its forms there is no definitive treatment available. The development of effective new drugs to treat cancers is currently a challenging goal in drug discovery and clinical therapy and the search for new, potent and selective pharmaceuticals has proven to be particularly difficult. ${ }^{7}$ The development of new anticancer agents relies heavily on natural products; in fact 60% of the antitumoral compounds on the market today have natural origin. ${ }^{2 b}$ Among the anticancer agents currently in use there are the paclitaxels (Taxol® (I) and Taxotere®), the vinca alkaloids (II) and camptothecin (III) (Figure 1). ${ }^{8}$ Recently, other classes of compounds such as the epothilones ${ }^{9}$ have shown promise in the battle against cancer and one of its derivatives (Ixempra ${ }^{\circledR}$ (IV) or ixabepilone) was approved in 2007 by the FDA for the treatment of breast cancer. ${ }^{10}$ Anther compound, the hybrid antibody-calicheamicin conjugate (Mylotarg®) (V) has been also approved for the treatment of acute myeloid leukemia (Figure 1). ${ }^{11}$ In addition to natural product research, organic synthesis has also made important contribution to the discovery of new anticancer agents by allowing the preparation of small molecule natural products in the laboratory. ${ }^{12}$

[^2]

Paclitaxel (Taxol ${ }^{\circledR}$) (I)

Camptothecin (III)

Vinca alkaloid (II)

Ixabepilone (Ixempra ${ }^{\circledR}$) (IV)

hP67.6 Antibody-calicheamicin conjugate (Mylotarg ${ }^{\circledR}$) (V)

Figure 1: Antitumoral compounds from natural origin on the market.

Interesting molecule targets for cancer research that are based on natural compounds are small molecules that can interfere in the cell cycle. The cell cycle regulates cellular proliferation, and malfunctioning during the cell cycle is the basis for cancer development. ${ }^{13}$ Cells possess a control system that repairs mistakes that occur during cell replication and in the case of irreparable problems cell apoptosis is induced. ${ }^{14}$ Studies have confirmed that a major problem common to several cancers is

[^3]that during cancer cell proliferation the control systems are often deactivated or modified and uncontrolled replication starts. ${ }^{15}$ At this point, bioactive agents able to interact in the cell cycle to stop this uncontrolled replication are required. The cell cycle is divided in four phases and many anticancer agents can selectively act in one of them following specific modes of action. ${ }^{13}$ Examples of some different compounds, which display anticancer properties, will be treated in more detail in the following sections.

2.2. The Leptomycin Family

2.2.1. Overview

The leptomycin family is a class of polyketides, which display potent anticancer activity. ${ }^{16}$ The first members discovered were leptomycin A and B (LMB) (VI) (Figure 2), which were isolated from a Streptomyces strain in 1983. ${ }^{17}$ After a first classification as antifungal compounds, ${ }^{18}$ their potent antitumoral activity was elucidated. ${ }^{19}$ Over the following years other compounds belonging to the leptomycin family were isolated and classified, including callystatin ${ }^{20}$ (VII), leptolstatin ${ }^{21}$ (VIIIa), ratjadone ${ }^{22}$ (IX), kazusamycins ${ }^{23}$ (X), leptofuranins ${ }^{24}$ (XI-XIV) and anguinomycins ${ }^{25}$ (XV-XVIII) (Figure 2). A biosynthetic pathway for the leptomycins

[^4]has also been reported. ${ }^{26}$ All compounds belonging to the leptomycin family display an α, β-unsaturated lactone and two diene systems separated by two sp^{3}-hybridized carbons, suggesting that these structural motifs are important for biological target recognition and activity.

Figure 2: The leptomycin family.

[^5]Following their discovery, several biological investigations on these compounds were carried out and LMB (VI) (Figure 2) itself was found to be a strong inhibitor of the nucleocytoplasmic transport of proteins. ${ }^{27}$ The mode of action is unknown, but results suggest that a covalent addition between a protein involved in the nucleocytoplasmic transport and LMB takes place. ${ }^{28}$ Although LMB has been evaluated in clinical trials and finally abandoned due to its toxicity, ${ }^{29}$ its use is frequently reported as a tool compound in cell biology. Recent publications reported the possibility of synergic therapy by administration of different anticancer agents combined with LMB. ${ }^{30}$ Earlier this year, Mutka and co-workers reported astonishing results, during their search for new nuclear export inhibitors, their LMB derivatives were shown to have the same potency than LMB, but up to 16 -fold better tolerated in vivo. ${ }^{31}$ Moreover, new compounds were found to be selective between normal and cancer cells. These promising results encourage chemists to find less toxic nucleocytoplasmic transport inhibitors in order to develop a new therapy against cancer. We decided to develop a synthesis for the anguinomycins C (XVII) and D (XVII) (Figure 2), which, as reported in literature, ${ }^{25 b}$ display selectivity between normal and tumoral cells. In this project a series of analogs will also be prepared and submitted for biological evaluation in order to understand the mode of action, the target and the selectivity of these compounds.

2.2.2. Biological Activity and Mode of Action

The most investigated member of the leptomycin family has been LMB (VI) (Figure 2). After the discovery of its potent cytotoxicity ($10 \mathrm{ng} / \mathrm{mL}$ on rat 3 Y 1 fibroblasts), ${ }^{18}$ further biological investigations on this compound were performed. LMB causes cell-cycle arrest in the G1 and G2 phases in eukaryotic cells ${ }^{32}$ and

[^6]selectively targets the chromosome maintenance region 1 (CRM1 or exportin 1), ${ }^{33} \mathrm{a}$ protein involved in nucleocytoplasmic transport. ${ }^{34}$ The evolutionary conserved nature of CRM1 highlights its importance as a receptor for leucine-rich nuclear export signal (NES) and its central role for NES-dependent nuclear export of protein complexes in eukaryotic cells. ${ }^{35}$ In order to perform transport from the nucleus to the cytoplasm, CRM1 has to recognize the nuclear export signal (NES) present on the cargo and form the complex CRM1/NES-cargo/RanGTP. The complex is consequently shuttled out of the nucleus, the cargo and the RanGDP, are then released and CRM1 transported back to the nucleus.

Figure 3: CRM-1 mediated NES protein export.

In the human body, there are so-called tumor-suppressor proteins, ${ }^{14,36}$ such as the retinoblastoma protein $(\mathrm{pRb})^{37}$ and the p 53 protein, ${ }^{38}$ that prevent the proliferation of cancerous cells. During cell replication, there are checkpoints controlling the process that allows the transition to the next phase if no problem is detected. Conversely, if damage to the genetic material has occurred, tumor suppressor proteins are charged to

[^7]stop the cell cycle and repair the damages or induce apoptosis. This is the case for pRb that can stop the cell cycle at the phase G1 if problems are detected. ${ }^{39}$ Directly related to pRb there is p 53 , also an oncosuppressive protein that leads to apoptosis when accumulated in the nucleus. ${ }^{40}$ However, the way in which these two proteins really function and interact is highly complex and not yet clear. Investigations show that they can regulate each other through a complex network of interactions and the fate of the cell is dependent upon them (Figure 4). ${ }^{41}$ Tumor-suppressors play a central role in mammalian cell cycles and their deactivation leads to uncontrolled proliferation. This process is common during the development of a wide variety of human cancers and is a key factor in tumorigenesis. ${ }^{42}$ When the anti-apoptotic function of pRb is interrupted, the cell is subjected to a p 53 -mediated apoptosis allowing the elimination of cells in which the pRb pathway is deregulated. ${ }^{43}$ If p 53 is also mutated or deactivated, the cell loses the ability to defend itself and uncontrolled tumoral cell proliferation starts. The localization of wild-type p53 in the nucleus is fundamental if it is to perform its tumor-suppressor function, ${ }^{44}$ whereas p 53 mutants are translocated into the cytoplasm. ${ }^{45}$ Some tumors have a common mechanism to deactivate p53 and therefore abrogating its functionality. For reasons that remain unclear, the wild-type p53 is sequestered in the cytoplasm compromising its tumorsuppressor ability. ${ }^{46}$

[^8]a)

b)

Figure 4: pRb and p 53 interaction. a) When $\mathrm{pRb}^{+/+}$is functional, cell cycle arrest and survival of the cell is induced. b) When $\mathrm{pRb}^{-/-}$is inactive, p 53 will induce apoptosis.

In normal cells, the concentration of p53 is regulated by CRM1. The NES on p53 is recognized by CRM1, which then transports the cargo out of the nucleus. If the interaction between CRM1 and p53 is blocked, the tumor suppressor is accumulated leading to apoptosis. ${ }^{47}$ Biological studies show that LMB inhibits this transport by a probable Michael-type addition of the thiol group of the cysteine residue in position 529 in CRM1 to the LMB (Figure 5). ${ }^{35 \mathrm{~b}}$

Figure 5: Postulated mechanism of action of LMB (VI) against CRM-1.

These results are supported by the fact that functionalization at the β position of the α, β-unsaturated lactone are not tolerated and a complete loss of the CRM1 inhibition is observed. ${ }^{27}$ The same results were also reported for ratjadone (IX). ${ }^{48}$ Further investigations have been performed with different nucleocytoplasmic

[^9]inhibitors, confirming the addition of Cys-529 of CRM1. The inhibitory effects are comparable to those observed for LMB and suggest that the same binding site on CRM1 is shared. ${ }^{49}$ The binding of LMB to CRM1 inhibits the recognition of leucine rich NES since they share the same binding site. ${ }^{50}$ However, it is still unclear whether the addition of Cys-529 to LMB induces a conformational change in exportin1 or just sterically blocks the approach of the NES. ${ }^{50}$ In addition, it appears that Cys-529 is not fundamental for CRM1 functionality as replacing the cysteine by another amino acid did not affect the nucleocytoplasmic transport. ${ }^{51}$ However, the presence of a Michael acceptor on the inhibiting agent has been demonstrated to play a fundamental role for activity, but there was not sufficient information to fully elucidate the mode of action. A more complex mechanism than the 1,4 -addition on the α, β-unsaturation is probably involved. ${ }^{52}$ The results reported by Mutka and co-workers ${ }^{31}$ also revealed the importance of the linear chain for tuning the selectivity of the inhibitor. Their new derivative was able to selectively kill cancer cells whilst only inducing cell cycle arrest in normal lung fibroblast cells. The treatment of cancer cells with the derivative leads to a rapid and continuous block of the nucleocytoplasmic transport, with an increment of the apoptosis due to the overexpression of p53. Normal cells were not subjected to apoptosis and the cell cycle was just arrested with consequent decreasing of cells proliferation; p53 was not overexpressed. Even with a persistent halt of the cell cycle, the normal lung fibroblast cells remained viable and at the end of the treatment they could regain normal proliferation. ${ }^{31}$ The aimed relocalization of p53 protein is a promising technique to regulate cell proliferation and selective apoptosis.

Another protein directly related to CRM1 is the human immunodeficiency virus type 1 (HIV-1) regulatory protein Rev; the NES of Rev is recognized by the exportin 1 and translocated out of the nucleus. HIV-1 Rev protein plays a fundamental role in the regulation of the HIV-1 mRNA which promotes the export of unspliced and partially spliced mRNA. Rev export is a necessary condition for Rev function. ${ }^{53}$

[^10]Biological results show that inhibition of CRM1 results in the arrest of Rev translocation ${ }^{54}$ and can be considered a potential approach for anti-HIV therapy. ${ }^{55}$

2.2.3. Total Syntheses and Synthetic Studies

2.2.3.1. The Syntheses of Callystatin

The leptomycin family has been widely investigated and several total syntheses of its members have been reported. Callystatin is the most commonly synthesized compound with ten total syntheses published. ${ }^{56}$ The retrosynthetic approaches adopted by the different groups are shown in figure 6 .

Figure 6: Retrosynthetic approach for the syntheses of (-)-callystatin A (VII).

Although the strategies outlined above are all different, careful analysis reveals several common intermediates. This is the case for the synthesis of Kobayashi, Crimmins, Kalesse, Enders, Lautens and Dias and co-workers where a common aldehyde intermediate XXIII was obtained. Kobayashi and co-workers started the

[^11]synthesis with the TBDPS protected (S)-glycidol (XIX), which undergoes epoxide ring opening by the attack of deprotonated 3-phenylsulphonylorthopropionate ($\mathbf{X X}$) to afford the orthoester XXI. Treatment with DBU induced lactonization and elimination of the phenylsulfinic acid gave the α, β-unsaturated lactone XXII. Additional transformations afforded aldehyde XXIII in nine steps from commercially available (S)-glycidol (XIX) (Scheme 1, eq. 1). Crimmins and co-workers also started the synthesis from the TBDPS protected (S)-glycidol XIX and obtained the common aldehyde XXIII in six steps using ring closing metathesis to form the unsaturated lactone (Scheme 1, eq. 2). A different approach was adopted by Kalesse and coworkers who prepared the six-membered ring via a hetero Diels-Alder (HDA) reaction. Commercially available ethyl glyoxylate (XXIV) and 1-methoxy-1,3butadiene (XXV) were reacted in solvent free conditions catalyzed by $\mathrm{BINOL} / \mathrm{Ti}(\mathrm{OiPr})_{4}$. The product was obtained in 65% yield, 98% e.e. at $\mathrm{C}(5)$ and $1: 10$ d.r. ($\mathrm{C}(1): \mathrm{C}(5)$ anti:syn). ${ }^{57} \mathrm{~A}$ further three transformations afforded aldehyde XXIII (Scheme 1, eq. 3). Enders and co-workers adopted an enzymatic reduction approach initially developed by Müller and co-workers. ${ }^{58}$ Reduction of 3,5-dioxocarboxylate ${ }^{59}$ XXVI by baker's yeast gave the hydroxyketoester XXVII in 50% yield and 94% e.e.. The product XXVII was subsequently converted to aldehyde XXIII using standard chemistry (Scheme 1, eq. 4). This procedure required eight steps from 3,5dioxocarboxylate XXVI, which was prepared in one step from commercially available tert-butyl acetoacetate and methyl chloroacetate. Lautens and co-workers started their synthesis by treatment of the THP protected propargylic alcohol XXVIII with $n \mathrm{BuLi}$, the generated anion then attacks the epoxide ring of the TBDPS protected (S)-glycidol (XIX) affording homo propargylic alcohol XXIX. The product was transformed to aldehyde XXIII using standard reactions in six steps from (S)-glycidol (XIX) (Scheme 1, eq. 5). Dias and co-workers began with diol $\mathbf{X X X}{ }^{60}$ derived from the selective reduction of the diethyl (S)-malate and in a nine step sequence also achieved the aldehyde intermediate XXIII (Scheme 1, eq. 6).

[^12]

Scheme 1: a) XX, $n \mathrm{BuLi}$, DMPU, THF, $-20^{\circ} \mathrm{C} \rightarrow-5^{\circ} \mathrm{C}$; b) $\mathrm{H}_{2} \mathrm{SO}_{4}$ (3 M)-THF (3:1); c) $p \mathrm{TsOH}, 4 \AA \mathrm{MS}, \mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}, 70^{\circ} \mathrm{C}$; d) $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DBU}, \mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl},-10^{\circ} \mathrm{C}, 82 \%$ (4 steps); e) DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$; f) $i \mathrm{PrOH}$, PPTS, benzene, 82% (2 steps); g) TBAF, THF; h) Swern oxidation, 99% (2 steps); i) vinyl magnesium bromide, CuI, 85%; j) acroleine diisopropyl acetal, PPTS; k) $\mathrm{Cl}_{2}\left(\mathrm{Cy}_{3} \mathrm{P}\right)_{2} \mathrm{Ru}=\mathrm{CHPh}, 71 \%$ (2 steps); 1) TBAF; m) Swern oxidation, $90 \%(2$ steps $) ; n) \mathrm{Ti}(i \operatorname{PrO})_{4},(+)-\mathrm{BINOL}, 4 \AA \mathrm{MS}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 65 \%$, 98% e.e., $1: 10$ d.r.; o) $\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C} ;$ p) iPrOH, PPTS; q) Swern oxidation, 77% (3 steps); r) baker's yeast, 50%, 94% e.e.; s) $\mathrm{NaBH}_{4}, \mathrm{EtOH}, 0^{\circ} \mathrm{C}$; t) $p \mathrm{TsOH}$ (cat.), toluene, reflux, 78% (2 steps); u) DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-7 \mathrm{a}^{\circ} \mathrm{C}$; v) $i \operatorname{PrOH}$, PPTS, benzene, $60^{\circ} \mathrm{C}, 79 \%(2$ steps); w) TBAA, NMP, $85{ }^{\circ} \mathrm{C}$; x) $\mathrm{K}_{2} \mathrm{CO}_{3}$, MeOH, RT, 86% (2 steps); y) Swern oxidation, 95%; z) $n \mathrm{BuLi}$, THF, $-78{ }^{\circ} \mathrm{C}$; then $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$; then XIX, 78%; aa) PPTS, EtOH, $50{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}, 99 \%$; bb) Lindlar cat., toluene, $\mathrm{H}_{2}(1 \mathrm{~atm}), 20^{\circ} \mathrm{C}, 3 \mathrm{~h}, 99 \%$; cc) $\mathrm{MnO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}, 13 \mathrm{~h}, 75 \%$ (based on conversion); dd) $i \operatorname{PrOH}, \mathrm{PPTS}, 20^{\circ} \mathrm{C}, 45 \mathrm{~min}, 93 \%$; ee) TBAF; ff) Swern oxidation; gg) TBSCl, imidazole, DMF, RT, $2 \mathrm{~h}, 95 \%$; hh) DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$; ii) ethyl 2-((bis(o-tolyloxy))phosphoryl)acetate, NaH, THF, $-78{ }^{\circ} \mathrm{C}, 75 \%$ (2 steps); jj) Dowex, $\mathrm{MeOH}, \mathrm{RT}, 72 \mathrm{~h}, 95 \%$; kk) TBSOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, RT, 91%; ll) DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $-23^{\circ} \mathrm{C}, 90 \%$; mm) PrOH, PPTS, RT, $1 \mathrm{~h}, 87 \%$; nn) TBAF, THF, RT, $15 \mathrm{~h}, 99 \%$; oo) Swern oxidation, $-78{ }^{\circ} \mathrm{C}, 95 \%$.

A different intermediate was achieved by Smith and co-workers who prepared sulfone XXXII, for a Julia-Kocienski olefination, ${ }^{61}$ via a [4+2] cycloaddition between 1-methoxy-1,3-butadiene (XXV) and Oppolzer sultam XXXI in five steps (Scheme 2, eq. 1). ${ }^{62}$ The sultam XXXI was prepared in two steps from commercially available (2S)-bornane-10,2-sultam. ${ }^{63}$ Marshall and co-workers opened the PMB protected (S)glycidol XXXIV by addition of the lithium acetylide XXXIII affording alcohol XXXV which, was transformed in a three steps sequence to aldehyde XXXVI (Scheme 2, eq. 2). Panek and co-workers started their synthesis with the addition of allylmagnesium bromide to aldehyde XXXVII. ${ }^{64}$ Enantioselective kinetic resolution of the racemic alcohol XXXVIII with lipase Pseudomonas AK produced the desired (R)-enantiomer XXXIX in 46% yield and more than 95% e.e.. The unreacted (S) enantiomer (-)-XXXVIII was separated and converted to the (R)-enantiomer XXXIX via a Mitsunobu reaction. ${ }^{65}$ Ring closing metathesis and protecting group manipulations gave terminal alkyne $\mathbf{X L}$ in six steps (seven to convert the unreacted (S)-enantiomer (-)-XXXVIII) from aldehyde XXXVII (Scheme 2, eq. 3). The most recent synthesis was reported by Micalizio and co-workers who referenced our paper for the formation of the terminal alkyne XL (Scheme 2, eq. 4). ${ }^{66}$ Subsequently hydrozirconation using Schwartz reagent ${ }^{67}$ furnished the vinyl iodide compound XLII in 86% yield. The details of our approach will be presented in chapter 2.4 which are concerned with the total synthesis of the anguinomycins C and D . All the syntheses so far have required a large number of steps to obtain the six-member ring of callystatin (VII). The most straightforward way was the Diels-Alder approach adopted by Kalesse and co-workers allowing the formation of aldehyde XXIII in four steps (Scheme 1, eq. 3). ${ }^{57}$

[^13]

Scheme 2: a) $\mathrm{Eu}(\mathrm{fod})_{3}(2 \mathrm{~mol} \%)$ or without catalyst, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1 \mathrm{~atm}, 20^{\circ} \mathrm{C}, 20 \mathrm{~h}$; b) PPTS, $\mathrm{MeOH}, \mathrm{RT}, 15 \mathrm{~h}$, c) $\mathrm{LiAlH}_{4}, \mathrm{THF}, 90 \%$; d) 1 -phenyl-1 H-tetrazole- 5 -thiol, DEAD/ $\mathrm{Ph}_{3} \mathrm{P}$, THF, $0{ }^{\circ} \mathrm{C} \rightarrow$ RT, 99%; e) $\mathrm{H}_{2} \mathrm{O}_{2} / \mathrm{EtOH} / \mathrm{H}_{2} \mathrm{O},\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24} \bullet 4 \mathrm{H}_{2} \mathrm{O}, 69 \%$; f) $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, 91 \%$; g) $\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{BaSO}_{4}$, quinoline, benzene, 99%; h) $\mathrm{DDQ}, 88 \%$; i) Swern oxidation, 82%; j) allylmagnesium bromide, THF, $-20^{\circ} \mathrm{C}, 99 \%$; k) vinyl acrylate, lipase AK, hexanes, 7 days, RT, 44% (-)-XXXVIII, 46% XXXIX, e.e. $>95 \%$; 1) DIAD, acrylic acid, PPh_{3}, THF, $0{ }^{\circ} \mathrm{C}$ \rightarrow RT, 86%; m) Grubbs I, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 40^{\circ} \mathrm{C}, 83 \%$; n) DIBAL-H, $-78{ }^{\circ} \mathrm{C}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; o) $i \operatorname{PrOH}$, PPTS, benzene, $80^{\circ} \mathrm{C}, 82 \%$ (2 steps); p) 1.3:1 AcOH/TBAF, THF, RT, 91%; q) [ref. 66]; q) $\mathrm{Cp}_{2} \mathrm{ZrHCl}, \mathrm{THF}$, then $\mathrm{I}_{2}, 86 \%$.

The strategies adopted for the preparation of the polyketide chain and the two diene systems were principally based on aldol reactions, metal catalyzed crosscouplings, Wittig reactions and Still-Gennari olefinations. ${ }^{68}$ For the synthesis of the C(13)-C(22) fragment, Kobayashi and co-workers and Crimmins and co-workers adopted basically the same strategy. The synthesis was characterized by two syn-aldol reactions starting from (S)-2-methylbutanal XLIII. ${ }^{69}$ Kobayashi and co-workers

[^14]employed the acylated Evans auxiliary ${ }^{70}$ XLIV for both aldol reactions. The first aldol adduct was obtained in 98% yield and a 9:1 diastereomeric ratio, while the second one as a single isomer in 85% yield. Crimmins and co-workers opted for the propyonyloxazolidinethione auxiliary XLV furnishing the two aldol products in 83% and 81% yield respectively in a diastereomeric ratio greater than 98:2. In the first aldol reaction the use of the propyonyloxazolidinethione auxiliary XLV gave better stereocontrol when compared to the Evans auxiliary, which furnished the product in a 9:1 diastereomeric ratio. Aldehyde XLVI was obtained by Kobayashi and co-workers in seven steps, while Crimmins and co-workers generated aldehyde XLVII in eight steps. Both groups reacted their aldehydes with commercially available (carbethoxyethylidene)triphenylphosphorane (XLVIII) via a Wittig reaction. The products were converted to the phosphonium salt IL for Kobayashi and \mathbf{L} for Crimmins in three further steps (Scheme 3). Interestingly, Kobayashi noticed problems during the synthesis when trying to protect the hydroxy group on $\mathrm{C}(17)$, probably due to steric reasons and decided to keep it as the free hydroxy. In contrast, Crimmins protected it with a TMS group in high yield.

Scheme 3: a) XLIV, $n \mathrm{Bu}_{2} \mathrm{BOTf}^{2} \mathrm{Et}_{3} \mathrm{~N},-78{ }^{\circ} \mathrm{C} \rightarrow 0{ }^{\circ} \mathrm{C}, 98 \%$, d.r. $=9: 1$; b) AlMe_{3}, MeONHMe $\cdot \mathrm{HCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C} \rightarrow 0{ }^{\circ} \mathrm{C}, 95 \%$; c) TBSOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}$, 100%; d) DIBAL-H, THF, $-78{ }^{\circ} \mathrm{C}, 76 \%$; e) XLIV, $n \mathrm{Bu}_{2} \mathrm{BOTf}, \mathrm{Et}_{3} \mathrm{~N},-78{ }^{\circ} \mathrm{C} \rightarrow 0^{\circ} \mathrm{C}, 85 \%$; f) $\mathrm{AlMe}_{3}, \mathrm{MeONHMe} \bullet \mathrm{HCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C} \rightarrow 0{ }^{\circ} \mathrm{C}, 92 \%$; g) $\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}, 96 \%$; h) XLV, TiCl_{4}, (-)-sparteine, 83%, d.r. > 98:2; i) TBSOTf; j) LiBH_{4}; k) Swern oxidation, 83% (3 steps); 1) XLV, TiCl 4 , (-)-sparteine, 81%, d.r. $>98: 2 ;$ m) TMSOTf; n) LiBH_{4}; o) Swern oxidation, 71% (3 steps); p) XLVIII, toluene, 94%; q) DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 100 \%$; r) $\mathrm{CBr}_{4}, \mathrm{Ph}_{3} \mathrm{P}, 2,6-$ lutidine, $\mathrm{CH}_{3} \mathrm{CN}, 99 \%$; s) Bu $\mathrm{P}^{2}, \mathrm{CH}_{3} \mathrm{CN}, 100 \%$; t) XLVIII, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 40^{\circ} \mathrm{C}$, $93 \% ;$ u) DIBAL-H; v) $\mathrm{CBr}_{4}, \mathrm{Ph}_{3} \mathrm{P}$; w) $\mathrm{Bu}_{3} \mathrm{P}, 82 \%$ (3 steps).

The remaining $\mathrm{C}(7)-\mathrm{C}(12)$ fragment was prepared by Kobayashi and co-workers from commercially available methyl (S)-(+)-3-hydroxyisobutyrate (LI) and readily

[^15]transformed to aldehyde LIII in an eight step sequence. The same aldehyde LIV, but with a different protecting group was obtained by Crimmins and co-workers in four steps, starting from olefin LII, prepared in three steps from allyl iodide. ${ }^{71}$ Both groups reacted the aldehyde itself in a Still-Gennari olefination; for Crimmins a Z/E ratio of 8:1 was observed, Kobayashi did not reported a selectivity. Formation of the phosphonium salt LV (resp. LVI) was then achieved by both groups following the same three step procedure. Subsequent Wittig reaction with aldehyde XXIII gave selectively only the (E)-coupled $\mathrm{C}(1)-\mathrm{C}(12)$ fragment which, after deprotection and oxidation afforded the common intermediate LVII. Aldehyde LVII was reacted with phosphonium salt IL (resp. L) via a Wittig reaction with exclusive formation of the E product and final modifications converted the coupled product to (-)-callystatin A (VII) (Scheme 4). Starting from commercially available materials, the synthesis of Kobayashi and co-workers required 39 steps (longest linear sequence 18 steps) and that reported by Crimmins and co-workers 37 steps (longest linear sequence 18 steps).

Scheme 4: a) TBDPSCl, imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; b) LiBH_{4}, THF, reflux, 95% (2 steps); c) $(\mathrm{COCl})_{2}$, DMSO, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$; d) $\mathrm{BrPh}_{3} \mathrm{PCH}_{3}, n \mathrm{BuLi}$, THF, $0{ }^{\circ} \mathrm{C}$; e) $\mathrm{BH}_{3} \cdot \mathrm{OEt}_{2}$, $\mathrm{H}_{2} \mathrm{O}_{2}, 90 \%$ (3 steps); f) PMBBr, NaH, THF, 96%; g) TBAF, THF, 97%; h) Swern oxidation; i) $\mathrm{O}_{3}, \mathrm{NaBH}_{4} ;$ j) TBDPSCl, imidazole, 80% (2 steps); k) DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$; l) Swern oxidation, 88% (2 steps); m) $\mathrm{EtO}_{2} \mathrm{CCH}(\mathrm{Et}) \mathrm{PO}\left(\mathrm{OCH}_{2} \mathrm{CF}_{3}\right)_{2}$, KHMDS, 18-crown-6, THF, $-78{ }^{\circ} \mathrm{C} \rightarrow 0{ }^{\circ} \mathrm{C}$, 92% (2 steps); n) DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$; o) $\mathrm{CBr}_{4}, \mathrm{Ph}_{3} \mathrm{P}, 2,6-$ lutidine, $\mathrm{CH}_{3} \mathrm{CN}$; p) $\mathrm{Bu}_{3} \mathrm{P}, \mathrm{CH}_{3} \mathrm{CN}, 92 \%$ (3 steps); q) $\mathrm{EtO}_{2} \mathrm{CCH}(\mathrm{Et}) \mathrm{PO}\left(\mathrm{OCH}_{2} \mathrm{CF}_{3}\right)_{2}$, KHMDS, 18 -crown- 6, THF, $-78{ }^{\circ} \mathrm{C} \rightarrow 0{ }^{\circ} \mathrm{C}, \mathrm{Z}: E=8: 1$; r) DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$, 88%, (2 steps); s) $\mathrm{CBr}_{4}, \mathrm{Ph}_{3} \mathrm{P}, 2,6-l u t i d i n e, \mathrm{CH}_{3} \mathrm{CN} ; \mathrm{t}$) $\mathrm{Bu}_{3} \mathrm{P}, \mathrm{CH}_{3} \mathrm{CN}, 94 \%$ (2 steps); u) $\mathrm{LiCH}_{2} \mathrm{~S}(\mathrm{O}) \mathrm{CH}_{3}$, toluene, then XXIII, $-78{ }^{\circ} \mathrm{C} \rightarrow 0{ }^{\circ} \mathrm{C}$; v) $\mathrm{DDQ}, \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{NaHCO}_{3}(0.5 \%)$ (9:1); w) Swern oxidation, 82% (3 steps); x) $t \mathrm{BuOK}$, then XXIII, 80%; y) TBAF; z) Swern

[^16]oxidation, 91% (2steps); aa) IL, $\mathrm{LiCH}_{2} \mathrm{~S}(\mathrm{O}) \mathrm{CH}_{3}$, then LVII, toluene, $-78{ }^{\circ} \mathrm{C} \rightarrow \mathrm{RT}, 72 \%$; bb) PCC, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 80 \%$; cc) HF•pyridine, 74%; dd) L, $t \mathrm{BuOK}$, then LVII, 90%; ee) $\mathrm{H}_{2} \mathrm{O}$, PPTS, acetone; ff) TPAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; gg) HF•pyridine, THF, 43% (3 steps).

In Smith's approach, the major disconnections are maintained, but the partner functionalities are reversed. The phosphonium salt \mathbf{L} (Scheme 3) obtained by Crimmins and co-workers for the Wittig reaction was functionalized as an aldehyde in Smith's synthesis. The β-ketoamide LIX was prepared in three steps from acylated oxazolidinone LVIII using Evans strategy (Scheme 5). ${ }^{2}$ The first aldol reaction occurred with complete diastereoselectivity in 88% yield, while for the second one a mixture syn/anti $4: 1$ in 65% yield was obtained due to mismatch problems. DIBAL-H reduction generated the cyclic hemiacetal $\mathbf{L X}$ which undergoes a Wittig reaction with (carbetoxyethylidene)triphenylphosporane (XLVIII) in a E / Z selectivity of 10:1. Selective TBS protection of diol LXI gave a poor yield (45\%) and regioselectivity (10:1). A three step sequence furnished aldehyde LXII.

Scheme 5: a) $\mathrm{Bu}_{2} \mathrm{BOTf}, \mathrm{Et}_{3} \mathrm{~N}$, propionaldehyde, 88%; b) $\mathrm{SO}_{3} \bullet$ pyridine, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{DMSO}, 85 \%$; c) XLIII, $i \mathrm{Pr}_{2} \mathrm{EtN}, \mathrm{TiCl}_{4}, 65 \%$; d) DIBAL-H, $-78^{\circ} \mathrm{C} \rightarrow-40^{\circ} \mathrm{C}, 65 \%$; e) XLVIII, $96 \%, E / Z$ 10:1; f) CSA, $\mathrm{CHCl}_{3}, 92 \%$; g) TBSOTf, 2,6-lutidine, $45 \%, 10: 1$; h) TMSOTf, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78$ ${ }^{\circ} \mathrm{C}, 90 \%$; i) DIBAL-H, 87%; j) $\mathrm{MnO}_{2}, 79 \%$.

Aldehyde LXIII was prepared in five steps from commercially available $(R)-3-$ hydroxy isobutyric (ent-LI) acid via a Still-Gennari olefination affording a mixture of Z/E (8:1). Julia-Kocienski olefination between aldehyde LXIII and sulfone XXXII gave exclusively the E coupled product LXIV, but in poor yield (35\%). Intermediate LXIV was deprotected and transformed into a phenyl sulfone derivative $\mathbf{L X V}$, which was deprotonated with $n \mathrm{BuLi}$ and added to the aldehyde LXII (Scheme 6). The resulting alkoxy anion was trapped by the addition of $\mathrm{Ac}_{2} \mathrm{O}$ to prepare the

[^17]intermediate for elimination. The mixture of acetates was treated with a sodium amalgam to furnish the product as a E / Z 3.5:1 mixture of olefins. Final modifications afforded (-)-callystatin A (VII) (Scheme 6). The reported strategy required 32 steps (longest linear sequence 15 steps). Some problems were encountered during the synthesis, like the poor yield in the Julia-Kocienski olefination as well as the scarce selectivity in the final coupling between the phenyl sulfone derivative LXV and the aldehyde LXII. Once again, the Still-Gennari coupling was found not to be completely selective and a Z/E 8:1 mixture was obtained.

Scheme 6: a) TESCl, imidazole, DMAP, 99\%; b) DIBAL-H, 86\%; c) $\mathrm{MeO}_{2} \mathrm{CCH}(\mathrm{Et}) \mathrm{PO}\left(\mathrm{OCH}_{2} \mathrm{CF}_{3}\right)_{2}$, 18 -crown-6, KHMDS, THF, $0{ }^{\circ} \mathrm{C}, 79 \%, \mathrm{Z} / E 8: 1$; d) DIBAL$\mathrm{H}, 88 \%$; e) $\mathrm{MnO}_{2}, 88 \%$; f) XXXII, NaHMDS, HMPA, DME, $-78{ }^{\circ} \mathrm{C}, 35 \%$; g) PPTS, $\mathrm{MeOH}, 99 \%$; h) $\mathrm{Ph}_{3} \mathrm{P}$, DEAD, MeI, 92%; i) $\mathrm{PhSO}_{2} \mathrm{Me}, n \mathrm{BuLi}$, THF, toluene, HMPA, 65%; j) LXV, $n \mathrm{BuLi},-78{ }^{\circ} \mathrm{C}$, LXII, then $\mathrm{Ac}_{2} \mathrm{O}, 76 \%, E / Z 3.5: 1$; k) $\mathrm{Na}(\mathrm{Hg}), \mathrm{K}_{2} \mathrm{HPO}_{4}$, THF$\mathrm{MeOH}, 92 \%, E / Z 3.5: 1$; 1) HOAc, THF, $\mathrm{H}_{2} \mathrm{O}, 72 \%$; m) PCC, HOAc, 72%; n) HF•pyridine, 79%.

The Kalesse synthesis was set up in a way to avoid protecting group problems in the final steps. The synthesis started from aldehyde LXVI, which is readily available from $(R)-(-)$-3-hydroxyisobutyrate (ent-LI). ${ }^{73}$ After five steps, the formation of the (E)-vinyl iodide compound LXVII via hydrozirconation showed problems of selectivity and a $3: 1$ mixture of regioisomers was obtained. Isolation of the (E)-vinyl iodide LXVII product and Heck coupling with alcohol LXVIII, itself prepared in two steps using Evans procedure, ${ }^{71 \mathrm{~b}}$ afforded the coupled product LXIX in 65% yield. The alcohol LXIX was subsequently transformed into the Wittig reagent LXX in five steps, once more via a Still-Gennari olefination affording the Z/E 8:1 mixture. The phosphonium salt LXX was reacted with the aldehyde XXIII via a Wittig reaction

[^18]and the product deprotected and oxidized to afford the ethyl ketone LXXI. Aldol reaction between ethyl ketone LXXI and (S)-2-methylbutanal XLIII gave a mixture of syn/anti in a 2:1 ratio. Finally, formation of the lactol and oxidation with MnO_{2} afforded (-)-callystatin A (VII) (Scheme 7). A synthesis of 28 steps was reported (longest linear sequence 21 steps). Some problems of selectivity were encountered during the synthesis, especially in the last aldol reaction, which gave a syn/anti $2: 1$ mixture of diastereoisomers and for the preparation of the (E)-vinyl iodide compound LXVII. Finally, the Still-Gennari olefination afforded a Z/E 8:1 mixture.

Scheme 7: a) EtMgBr, $\mathrm{Et}_{2} \mathrm{O}$; b) TBSOTf, 2,6-lutidine; c) CSA, acetone/ $\mathrm{H}_{2} \mathrm{O}, 72 \%$ (3 steps); d) Dess-Martin periodinane; e) $\mathrm{CBr}_{4}, \mathrm{Ph}_{3} \mathrm{P}$ then $n \mathrm{BuLi}$, MeI, 80% (2 steps); f) $\mathrm{Cp}_{2} \mathrm{ZrCl}(\mathrm{H}$), $\mathrm{I}_{2}, 60 \%, 3: 1$ d.r.; g) LXVIII, $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{Ag}(\mathrm{OAc})$, DMF, 65%; h) Dess-Martin periodinane; i) $\mathrm{EtO}_{2} \mathrm{CCH}(\mathrm{Et}) \mathrm{PO}\left(\mathrm{OCH}_{2} \mathrm{CF}_{3}\right)_{2}, 18$-crown-6, KHMDS, THF, $0{ }^{\circ} \mathrm{C}, 65 \%$ (2 steps), $\mathrm{Z} / E 8: 1 ; \mathrm{j}$) DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 96 \%$; k) $\mathrm{CBr}_{4}, \mathrm{Ph}_{3} \mathrm{P}, \mathrm{CH}_{3} \mathrm{CN}$; 1) $\mathrm{Bu}_{3} \mathrm{P}, \mathrm{CH}_{3} \mathrm{CN}$; m) $t \mathrm{BuOK}$, XXIII, toluene, $0^{\circ} \mathrm{C}$, 72% (3 steps); n) TBAF, THF; o) Swern oxidation, 73% (2 steps); p) LiHMDS, THF, $-78{ }^{\circ} \mathrm{C}$ then aldehyde XLIII, 63%, $2: 1$ d.r.; q) PPTS, acetone $/ \mathrm{H}_{2} \mathrm{O} 3: 1$; r) $\mathrm{MnO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, pyridine, 81% (2 steps).

The Enders synthesis is characterized by the SAMP/RAMP methodology. ${ }^{74}$ The synthesis of the $\mathrm{C}(13)-\mathrm{C}(22)$ fragment started with the methylation of the RAMP hydrazone of butanal LXXII and following ozonolysis afforded (S)-2-methylbutanal XLIII. In a similar way, the RAMP hydrazone of 3-pentanone LXXIII was alkylated with benzyloxymethyl chloride (BOMCl), followed by ozonolysis giving the chiral ketone LXXIV in 85% yield and 96% e.e.. Subsequent $\mathrm{Sn}(\mathrm{OTf})_{2}$ mediated aldol

[^19]reaction between aldehyde XLIII and chiral ketone LXXIV afforded the hydroxyketone LXXV in 87% yield and 94% e.e.. A further eight step sequence, including a diastereoselective reduction with DIBAL-H in 81% yield and $91: 9$ d.r., gave the phosphonium salt IL (Scheme 8) already encountered in the Kobayashi synthesis (Scheme 3).

Scheme 8: a) LDA, THF, $0^{\circ} \mathrm{C}$, MeI, THF, $-100{ }^{\circ} \mathrm{C}$; b) $\mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 72 \%$ (2 steps); c) LDA, $\mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C}$, $\mathrm{BOMCl}, \mathrm{THF},-100{ }^{\circ} \mathrm{C}$; d) $\mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 85 \%$ (2 steps), 96% e.e.; e) $\mathrm{Sn}(\mathrm{OTf})_{2}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ then XLIII, $-78{ }^{\circ} \mathrm{C}, 87 \%$, 94% e.e.; f) TBSOTf, 2,6lutidine; g) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$; h) DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 81 \%$ (3 steps), $91: 9$ d.r.; i) Swern oxidation; j) XLVIII, 77% (2 steps); k) DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$; 1) $\mathrm{CBr}_{4}, \mathrm{Ph}_{3} \mathrm{P}, 2,6-$ lutidine, $\mathrm{CH}_{3} \mathrm{CN}, \mathrm{RT}, 77 \%$ (2 steps); m) $\mathrm{Bu}_{3} \mathrm{P}, \mathrm{CH}_{3} \mathrm{CN}$.

The synthesis of the $\mathrm{C}(7)-\mathrm{C}(12)$ subunit started with the conversion of the aldehyde LXXVI to the corresponding SAMP hydrazone LXXVII. Deprotonation and methylation gave the alkylated product in excellent yield and in greater than 95:5 d.r.; which was converted to the corresponding aldehyde LIV via ozonolysis. Horner-Wadsworth-Emmons olefination with phosphonate LXXVIII afforded the product LXXIX in 91% yield and a Z / E ratio of 34:1. The remaining nine steps furnishing (-)callystatin A (VII) (Scheme 9) followed a similar procedure to the Crimmins strategy (Scheme 4). This synthesis is quite long requiring 40 steps (longest linear sequence 16 steps), but no problems of selectivity were encountered.

Scheme 9: a) SAMP, 95%, d.r. $>95: 5$; b) LDA, THF, $0{ }^{\circ} \mathrm{C}$, MeI, THF, $-100{ }^{\circ} \mathrm{C}$; c) O_{3}, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 73 \%$ (2 steps); d) LXXVIII, NaH, THF, RT, 91%, Z/E 34:1; e) DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; f) $\mathrm{CBr}_{4}, \mathrm{Ph}_{3} \mathrm{P}, \mathrm{CH}_{3} \mathrm{CN}, 92 \%$ (2 steps); g) $\mathrm{Bu}_{3} \mathrm{P}, \mathrm{CH}_{3} \mathrm{CN}$; h) $t \mathrm{BuOK}$, toluene, $0^{\circ} \mathrm{C}$, then XXIII, 86%; i) TBAF, THF, j) Swern oxidation, 91% (2 steps); k) IL, $\mathrm{LiCH}_{2} \mathrm{~S}(\mathrm{O}) \mathrm{CH}_{3}$, toluene, $-78{ }^{\circ} \mathrm{C}, 71 \%$ (2 steps), l) PCC, HOAc, benzene; m) HF•pyridine, THF, 72% (2 steps).

The Marshall synthesis was characterized by the chiral allenylstannane methodology developed in the same group. ${ }^{75}$ The synthesis of the $\mathrm{C}(12)-\mathrm{C}(22)$ fragment started by the addition of allenylstannane $\mathbf{L X X X}{ }^{76}$ to the aldehyde $\mathbf{L X X X I}$, itself readily available from $(R)-(-)-3$-hydroxyisobutyrate (ent-LI), affording alcohol LXXXII in a syn fashion. A three step sequence using standard transformations afforded the aldehyde LXXXIII, which was reacted with allenylzinc reagent LXXXIV to give alcohol LXXXV, ${ }^{76}$ this time in anti orientation and as a single diasteroisomer. Subsequently, with a standard six step procedure, aldehyde LXXXVI was obtained and after protection of the secondary alcohol, Seyferth-Gilbert homologation ${ }^{77}$ afforded terminal alkyne LXXXVII in 91% yield. The TMS group was removed and the vinyl iodide product LXXXVIII obtained via vinyl tin intermediate (Scheme 10).

[^20]

Scheme 10: a) LXXX, $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, 82 \%$; b) TBSOTf, 2,6-lutidine, 88%; c) $\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{C}, \mathrm{EtOH}$, 80%; d) Swern oxidation, 99%; e) LXXXIV, 72%; f) $\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{BaSO}_{4}$, quinoline, toluene, 99%; g) $\mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{Ph}_{3} \mathrm{P}, 82 \%$; h) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{C}(\mathrm{Me}) \mathrm{CO}_{2} \mathrm{Et}, 99 \%$; i) DIBAL-H, 87%; j) MnO_{2}, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; k) TMSCl, $\mathrm{Et}_{3} \mathrm{~N}$, DMAP, 82% (2 steps); 1) (MeO) ${ }_{2} \mathrm{P}(\mathrm{O}) \mathrm{CHN}_{2}, t \mathrm{BuOK}, \mathrm{THF},-78{ }^{\circ} \mathrm{C}$ $\left.\rightarrow-30{ }^{\circ} \mathrm{C}, 91 \% ; \mathrm{m}\right)$ PPTS, $\mathrm{MeOH}, 88 \%$; n) $\mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{PdCl}_{2} \bullet\left(\mathrm{Ph}_{3} \mathrm{P}\right)_{2}$, THF; o) $\mathrm{I}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, 83% (2 steps).

The phosphonium salt XC was obtained following similar procedure as reported by Kobayashi, ${ }^{56 \mathrm{a}}$ but starting from aldehyde LXXXIX derived from (R)-(-)-3hydroxyisobutyrate (ent-LI). Wittig reaction between phosphonium salt XC and aldehyde XXXVI afforded the condensed product in good yield. Selective deprotection of the TES group and transformation of the primary alcohol into the iodide gave the alkyl iodide compound XCI. Palladium-catalyzed $\mathrm{sp}^{3}-\mathrm{sp}^{2}$ Suzuki coupling between the vinyl iodide compound LXXXVIII and the alkyl iodide XCI using Johnson's protocol ${ }^{78}$ afforded the coupled product XCII in 73% yield. Final modifications concluded the synthesis of (-)-callystatin A (VII) (Scheme 11). This synthesis required 39 steps (longest linear sequence 18 steps) and highlighted the efficiency of the allenyl-metal additions and of the $\mathrm{sp}^{3}-\mathrm{sp}^{2}$ Suzuki coupling.

[^21]

Scheme 11: a) $\left(\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{O}\right)_{2} \mathrm{P}(\mathrm{O}) \mathrm{CH}(\mathrm{Et}) \mathrm{CO}_{2} \mathrm{Et}$, $n \mathrm{BuLi}$, 15-crown-5, 84\%, 6-8:1 d.r.; b) DIBAL-H, 92%; c) $\mathrm{CBr}_{4}, \mathrm{Ph}_{3} \mathrm{P}, \mathrm{NEt}(\mathrm{iPr})_{2}, 93 \%$; d) $\mathrm{Bu}_{3} \mathrm{P}, \mathrm{MeCN}$; e) $t \mathrm{BuOK}, 88 \%$ (2 steps); f) PPTS, MeOH-THF $9: 1,0^{\circ} \mathrm{C}, 81 \%$; g) $\mathrm{I}_{2}, \mathrm{Ph}_{3} \mathrm{P}$, imidazole, benzene- $\mathrm{Et}_{2} \mathrm{O}, 89 \%$; h) XCI, $t \mathrm{BuLi}, 9-\mathrm{MeO}-9-\mathrm{BBN}$ then LXXXVIII, Pd(dppf) $\mathrm{Cl}_{2}, \mathrm{AsPh}_{3}, \mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{DMF}-\mathrm{H}_{2} \mathrm{O}, 73 \%$; i) Dess-Martin periodinane, 70%; j) $\mathrm{HF} \cdot \mathrm{Et}_{3} \mathrm{~N}, 70 \%$; (k) $\mathrm{MnO}_{2}, 66 \%$.

The Lautens strategy was characterized by the use of [3.2.1]oxabicycle for the formation of polypropionates. The synthesis of the polyketidic chain started from the enantiomerically pure [3.2.1] oxabicycle XCIII obtained by a [4+3] cycloaddition ${ }^{79}$ between 2,4-dibromo-3-pentanone and the 2-furylmethanol derivative. ${ }^{80}$ Subsequent selective reduction of the ketone, TIPS protection of the alcohol and treatment with MeLi in presence of CeCl_{3} afforded the cycloheptene XCIV. The ring was oxidatively opened via ozonolysis and the resulting aldehyde reduced with an oxidative work-up. The selective protection of the bis-diol was problematic and the protected diol XCV was formed in poor yield (52\%). Diol cleavage under Criegee conditions ${ }^{81}$ and further standard transformations afforded compound XCVI. Selective reduction of the ketone was achieved after screening several sets of conditions in 68% yield and more than 10:1 d.r.. The phosphonium salt XCVII, similar to IL in Kobayashi's synthesis, was obtained in seven additional steps using standard reactions (Scheme 12).

[^22]

Scheme 12: a) LiBH_{4}, THF, $0{ }^{\circ} \mathrm{C} \rightarrow \mathrm{RT}, 4 \mathrm{~h}, 87 \%$; b) TIPSOTf, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, 2,6-lutidine, $0{ }^{\circ} \mathrm{C}$, 90%; c) MeLi, CeCl_{3}, THF-Et $\mathrm{O},-78 \rightarrow-15{ }^{\circ} \mathrm{C}, 85 \%$; d) $\mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}-\mathrm{MeOH},-78{ }^{\circ} \mathrm{C}$, then $\mathrm{NaBH}_{4}, 69 \mathrm{~h}, 20^{\circ} \mathrm{C}, 91 \%$; e) 4-methoxybenzylidene, CSA ($3 \mathrm{~mol} \%$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.7 \mathrm{M}), 20$ ${ }^{\circ} \mathrm{C}$; f) $\mathrm{Pb}(\mathrm{OAc})_{4}$, benzene- $\mathrm{MeOH}, 0{ }^{\circ} \mathrm{C}, 0.5 \mathrm{~h}, 97 \%$; g) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CH}_{2}, \mathrm{THF},-15{ }^{\circ} \mathrm{C} \rightarrow \mathrm{RT}, 18$ h, 95%; h) $10 \% \mathrm{Pd} / \mathrm{C}, \mathrm{EtOAc}, \mathrm{H}_{2}, 0.5 \mathrm{~h}, \mathrm{RT}, 99 \%$; i) TBAF, THF, RT, $66 \mathrm{~h}, 99 \%$; j) TPAP, NMO, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2.5 \mathrm{~h}, 97 \%$; k) L-Selectride, toluene, $20^{\circ} \mathrm{C}, 68 \%$, d.r. > 10:1; l) TBSOTf, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2,6$-lutidine, $-15^{\circ} \mathrm{C}, 2 \mathrm{~h}, 88 \%$; m) $\mathrm{Pd}(\mathrm{OH})_{2} / \mathrm{C}, \mathrm{H}_{2}(1 \mathrm{~atm}), i \operatorname{PrOH}, 20^{\circ} \mathrm{C}, 1 \mathrm{~h}, 97 \%$; n) $(\mathrm{COCl})_{2}$, DMSO, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, \mathrm{Et}_{3} \mathrm{~N}, 95 \%$; o) $(\mathrm{Me})\left(\mathrm{Ph}_{3} \mathrm{P}=\right) \mathrm{CCO}_{2} \mathrm{Et}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, reflux, $13.5 \mathrm{~h}, 78 \%$; p) DIBAL-H, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 10 \mathrm{~min}, 96 \% ; q\right) \mathrm{Ph}_{3} \mathrm{P}, \mathrm{CBr}_{4}, \mathrm{MeCN}, 2,6-$ lutidine, RT, $5 \mathrm{~min}, 79 \%$; r) $\mathrm{Bu}_{3} \mathrm{P}, \mathrm{MeCN}, 24^{\circ} \mathrm{C}, 1 \mathrm{~h}$.

The $\mathrm{C}(7)-\mathrm{C}(12)$ fragment in Lautens strategy was identical to the one previously synthesized by Crimmins and co-workers (Scheme 4). Lautens and co-workers started from commercially available (R)- α-methylsuccinic acid XCVIII and obtained phosphonium salt LVI in seven steps. Aldehyde LVII was formed in an identical fashion to Crimmins via a Wittig reaction between phosphonium salt LVI and the aldehyde XXIII (Scheme 13).

Scheme 13: a) $\mathrm{LiAlH}_{4}, \mathrm{THF}, 0^{\circ} \mathrm{C} \rightarrow 24^{\circ} \mathrm{C}, 17.5 \mathrm{~h}, 87 \%$; b) TBDPSCI, DBU, DMF, -50 ${ }^{\circ} \mathrm{C}, \quad 0.5 \mathrm{~h}, \quad 61 \%$; c) DMSO, $\mathrm{CH}_{2} \mathrm{Cl}_{2},\left(\mathrm{COCl}_{2}, \quad-78{ }^{\circ} \mathrm{C}, \mathrm{Et}_{3} \mathrm{~N}, \quad 99 \%\right.$; d) $\mathrm{EtO}_{2} \mathrm{CCH}(\mathrm{Et}) \mathrm{PO}\left(\mathrm{OCH}_{2} \mathrm{CF}_{3}\right)_{2}, \mathrm{KHMDS}, 16$-crown-6; e) DIBAL-H; f) $\mathrm{PPh}_{3}, \mathrm{CBr}_{4} ;$ g) $\mathrm{PBu}_{3} ;$ h) LVI, $t \mathrm{BuOK}$, then XXIII, 82% (5 steps); i) TBAF; j) Swern oxidation.

The final Wittig reaction between aldehyde LVII and phosphonium salt IC proved problematic with no E / Z selectivity and formation of an inseparable mixture of isomers. In their analogous reaction Crimmins and co-workers ${ }^{56 b}$ reported a complete E selectivity and the problem was explained by Lautens in the stereochemistry of
$\mathrm{C}(17)$ of the employed phosphonium salt IC (Scheme 14). The problem was solved by protecting the free hydroxy group and using the modified phosphonium salt \mathbf{C}, which afforded product CI in high yield (94\%) and a E / Z selectivity greater than 19:1. Hydrolysis of the $i \mathrm{PrO}$-lactol proved to be challenging and in initial trials lactone ring opening affording the corresponding α, β-unsaturated aldehyde was observed. After optimization of the hydrolysis conditions to furnish the lactol, (-)-callystatin A (VII) was obtained in three further steps (Scheme 14). The target was achieved, but the synthesis was long and needed 45 steps (longest linear sequence 27 steps). Another weakness was the poor selectivity during the protection of the bis-diol where half of an advanced intermediate was lost. However, the [3.2.1]oxabycycle methodology enabled the 1,3,5-syn,syn-trimethyl arrangement required in the polyketidic chain to be obtained.

Scheme 14: a) IC, $t \mathrm{BuOK}$, toluene-THF, $0^{\circ} \mathrm{C}$, then LVII, $92 \%, E / Z=1: 1.3$; b) $\mathbf{C}, t \mathrm{BuOK}$, toluene-THF, $0^{\circ} \mathrm{C}$, then LVII, 94%, $\mathrm{E} / \mathrm{Z}>19: 1$; c) HOAc, THF- $\mathrm{H}_{2} \mathrm{O}, 20^{\circ} \mathrm{C}$; d) MnO_{2}, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}$; e) Dess-Martin periodinane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 20^{\circ} \mathrm{C}$; f) HF•pyridine, pyridine, THF, $0^{\circ} \mathrm{C} \rightarrow 20^{\circ} \mathrm{C}$.

The Panek approach to the $\mathrm{C}(14)-\mathrm{C}(22)$ fragment started from (S)-2methylbutanal XLIII which, was treated with allylsilane $\mathbf{C I I}{ }^{82}$ in presence of TiCl_{4} to afford homoallylic alcohol CIII in 84% yield and 10:1 d.r. Protection of the hydroxy group and subsequent ozonolysis gave aldehyde CIV which, was reacted with allylsilane CII in presence of TiCl_{4} to give homoallylic alcohol $\mathbf{C V}$ in 20:1 d.r.

[^23]Subsequent standard transformations furnished the dibromo olefin CVI in five steps (Scheme 15).

Scheme 15: a) CII, $\mathrm{TiCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-30{ }^{\circ} \mathrm{C}, 84 \%, 10: 1$ d.r. (crude); b) $\mathrm{Ac}_{2} \mathrm{O}$, pyridine, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{RT}, 99 \%$; c) O_{3}, pyridine, $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$, then $\mathrm{Me}_{2} \mathrm{~S}$; d) CII, $\mathrm{TiCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-30{ }^{\circ} \mathrm{C}, 68 \%$ (two steps), $20: 1$ d.r. (crude); e) O_{3}, pyr, $\mathrm{MeOH} / \mathrm{CH}_{2} \mathrm{Cl}_{2},-78$ ${ }^{\circ} \mathrm{C}$, then $\mathrm{Me}_{2} \mathrm{~S}$; f) $\mathrm{CBr}_{4}, \mathrm{PPh}_{3}$, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C} \rightarrow \mathrm{RT}, 82 \%$ (two steps); g) $\mathrm{K}_{2} \mathrm{CO}_{3}$, $\mathrm{MeOH}, \mathrm{RT}, 99 \%$; h) TIPSOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 90 \%$; i) PCC, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, RT, 85%.

The synthesis of the $\mathrm{C}(8)-\mathrm{C}(13)$ subunit began with aldehyde CVII, prepared following Myers procedure. ${ }^{83}$ Corey-Fuchs reaction, Fritsch-Buttenberg-Wiechell rearrangement and TMS protection afforded the protected alkyne, which was treated with Schwartz reagent. The organozirconocene intermediate was then trapped with iodine to afford the vinyl iodide product CVIII in more than 20:1 d.r.. Palladiumcatalyzed Negishi cross coupling installed the ethyl group at the $\mathrm{C}(8)$ position. Further transformations and final vinylstannylation afforded the E-vinyl stannane CIX in 68% yield and in $E / Z 20: 1$ selectivity. Palladium-catalyzed Stille coupling between vinyl stannane CIX and dibromo olefin CVI afforded the trans coupled product in 92% yield and as a single isomer. Treatment of the coupled product with N iodosuccinimide added the iodide at the $\mathrm{C}(8)$ position with retention of the stereochemistry to afford product CX. Subsequently, Negishi cross coupling in the presence of $\mathrm{Me}_{2} \mathrm{Zn}$ occurred in modest yield (51\%) and with a surprising selectivity for the bromide over the iodide. The vinyl iodide compound CXI, was coupled via Negishi cross coupling to the organozinc partner formed in situ by treatment of the terminal alkyne XL with Schwartz reagent and transmetallation to zinc. Final modifications gave (-)-callystatin A (VII) (Scheme 16). The target was achieved in

[^24]37 steps overall (longest linear sequence 18 steps), highlighting the use of chiral allylsilanes in total synthesis.

Scheme 16: a) $\mathrm{CBr}_{4}, \mathrm{PPh}_{3}, 2,6$-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C} \rightarrow \mathrm{RT}, 96 \%$; b) $n \mathrm{BuLi}, \mathrm{THF},-78{ }^{\circ} \mathrm{C}$, then TMSCl, $-78{ }^{\circ} \mathrm{C} \rightarrow \mathrm{RT}, 98 \%$; c) $\mathrm{Cp}_{2} \mathrm{ZrHCl}, \mathrm{THF}, 50^{\circ} \mathrm{C}, 1 \mathrm{~h}$, then $\mathrm{I}_{2}, \mathrm{THF}, \mathrm{RT}, 89 \%$, d.r. > 20:1 (crude); d) $\mathrm{ZnCl}_{2}, \mathrm{EtZnBr}, \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{THF}, \mathrm{RT}, 96 \%$; e) DDQ, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}, \mathrm{RT}$, 83%; f) $(\mathrm{COCl})_{2}, \mathrm{DMSO}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C} ; 92 \%$; g) $\mathrm{CrCl}_{2}, \mathrm{Bu}_{3} \mathrm{SnCHI}_{2}, \mathrm{DMF}, 0^{\circ} \mathrm{C} \rightarrow$ RT, $68 \%, E / Z>20: 1$; h) CVI, $\mathrm{Pd}_{2} \mathrm{dba}_{3}, \mathrm{P}(2 \text {-furyl })_{3}$, toluene, $100^{\circ} \mathrm{C}, 92 \%$; i) NIS, EtCN, 84%; j) $\mathrm{Me}_{2} \mathrm{Zn}, \operatorname{Pd}\left(t \mathrm{Bu}_{3} \mathrm{P}\right)_{2}$, THF, $0^{\circ} \mathrm{C}, 93 \%$; k) i. XL, $\mathrm{Cp}_{2} \mathrm{ZrHCl}, \mathrm{THF}, \mathrm{RT}$, ii. ZnCl_{2}, THF, iii. CXI, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{RT}, 51 \%$; 1) AcOH , wet THF, RT; m) $\mathrm{PDC}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{RT}, 74 \%$ (two steps); n) HF• pyridine, THF, RT, 88%.

The Dias approach to the $\mathrm{C}(7)-\mathrm{C}(11)$ fragment was identical to the protocol adopted by Marshall, ${ }^{56 f}$ but with a TBDPS protection instead of the TES group on the aldehyde CXII. In this case the Still-Gennari olefination gave better selectivity than in the previously discussed synthesis with a diastereomeric ratio greater than 93:7. The phosphonium salt CXIII was reacted with aldehyde XXIII via a Wittig reaction in good yield and more than 95:5 d.r.. The product was deprotected with TBAF and the hydroxy group replaced with iodide to afford the alkyl iodide product CXIV (Scheme 17).

Scheme 17: a) $\mathrm{EtO}_{2} \mathrm{CCH}(\mathrm{Et}) \mathrm{PO}\left(\mathrm{OCH}_{2} \mathrm{CF}_{3}\right)_{2}$, NaH , THF, $0^{\circ} \mathrm{C}, 90 \%, \mathrm{Z} / E>93: 7$; b) DIBAL$\mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-23^{\circ} \mathrm{C}, 90 \%$; c) $\mathrm{CBr}_{4}, \mathrm{PPh}_{3}, \mathrm{CH}_{3} \mathrm{CN}, \mathrm{RT}, 1 \mathrm{~h}, 95 \%$; d) $\mathrm{PBu}_{3}, \mathrm{CH}_{3} \mathrm{CN}, \mathrm{RT}, 96 \%$; e) $\mathrm{LiCH}_{2} \mathrm{~S}(\mathrm{O}) \mathrm{CH}_{3}$, toluene, then XXIII, $-78^{\circ} \mathrm{C}, 1 \mathrm{~h}, 82 \%, E / Z>95: 5$; f) TBAF, THF, RT, $16 \mathrm{~h} ; \mathrm{g}$) $\mathrm{I}_{2}, \mathrm{PPh}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, imidazole, RT, $1 \mathrm{~h}, 90 \%$ (2 steps).

Concerning the $\mathbf{C}(12)-\mathrm{C}(22)$ fragment, the aldehyde CXV was obtained following the strategy already adopted by Kobayashi (Scheme 3), based on Evans aldol reactions. The aldehyde CXV subsequently subjected to Horner-Wadsworth-Emmons olefination, DIBAL-H reduction and m CPBA-mediated epoxidation afforded alcohol CXVI in more than 95:5 d.r.. The product was then modified with an eight step sequence to the (E)-vinyl iodide compound LXXXVIII, including Wittig and Takai reaction in a E / Z ratio greater than 95:5. The vinyl iodide compound LXXXVIII, also an intermediate in the Marshall synthesis, undergoes palladium-catalyzed $\mathrm{sp}^{3}-\mathrm{sp}^{2}$ Suzuki cross coupling with the alkyl iodide CXIV to afford the coupled product CXVII. In addition to vinyl iodide LXXXVIII, the analogous fragment with the alcohol at $\mathrm{C}(17)$ protected with a TMS group was also prepared. However, crosscoupling with this bis-protected fragment resulted in a $34: 66$ mixture of protected/deprotected products due to loss of the TMS group under the reaction conditions. As reported by Lautens and co-workers, ${ }^{56 \mathrm{~g}}$ hydrolysis of the $i \operatorname{PrO}$-lactol gave problems and the same α, β-unsaturated aldehyde was observed. After lactol formation an additional three steps gave (-)-callystatin A (VII) (Scheme 18). The target was obtained in 39 steps (longest linear sequence 20 steps). This synthesis did not present a new strategy, but highlights the utility of the $\mathrm{sp}^{3}-\mathrm{sp}^{2}$ Suzuki cross coupling. A second point to note is that the (R) configuration of $\mathrm{C}(17)$ gave problems during the $i \mathrm{PrO}$-lactol hydrolysis affording the formation of side products. It appears that the distance between the hydroxy group at $\mathrm{C}(17)$ and the $i \operatorname{PrO}$ group at $\mathrm{C}(1)$ is too large to justify a possible influence between them. However, no groups have so far given an explanation for this result and it remains an experimental observation.

Scheme 18: a) (EtO) ${ }_{2} \mathrm{POCH}_{2} \mathrm{CO}_{2} \mathrm{Me}, \mathrm{NaH}$, THF, RT, $12 \mathrm{~h}, 90 \%$; b) DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-23$ ${ }^{\circ} \mathrm{C}, 2 \mathrm{~h}, 90 \%$; c) $m \mathrm{CPBA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 1 \mathrm{~h}, 96 \%$, d.r. $>95: 5$; d) $\mathrm{Me}_{2} \mathrm{CNLi}_{2}, \mathrm{THF},-20^{\circ} \mathrm{C}$, $20 \mathrm{~h}, ~ 90 \%$; e) Swern oxidation; f) (carbethoxyethylidine)triphenylphosphorane, $\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}, 15 \mathrm{~h}, 89 \%$ (2 steps); g) DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-23{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$; h) $\mathrm{MnO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, RT, 2 h ; i) TMSCl, $\mathrm{Et}_{3} \mathrm{~N}$, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}$; j) $\mathrm{CHI}_{3}, \mathrm{CrCl}_{2}, \mathrm{THF}, \mathrm{RT}, 1 \mathrm{~h}, 45 \%$ (4
steps), $E / Z>95: 5$; k) CSA (cat.), EtOH, RT, $12 \mathrm{~h}, 96 \%$; 1) CXIV, $t \mathrm{BuLi}, 9-\mathrm{MeO}-9-\mathrm{BBN}$ then LXXXVIII, Pd(dppf) $\mathrm{Cl}_{2}, \mathrm{AsPh}_{3}, \mathrm{Cs}_{2} \mathrm{CO}_{3}$, DMF- $\mathrm{H}_{2} \mathrm{O}, \mathrm{RT}, 15 \mathrm{~h}, 67 \%$; m) AcOH, THF, $\left.\mathrm{H}_{2} \mathrm{O}, \mathrm{RT} ; \mathrm{n}\right) \mathrm{MnO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{RT}, 20 \mathrm{~h}, 72 \%$; o) Dess-Martin periodinane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, RT, 1 h , 81%; p) HF•pyridine, pyridine, $0^{\circ} \mathrm{C} \rightarrow \mathrm{RT}, 72 \mathrm{~h}, 77 \%$.

The Micalizio synthesis of the $\mathrm{C}(8)-\mathrm{C}(13)$ fragment started from TMS protected propargyl bromide CXVIII that was converted to alcohol CXIX via alkylation of the Evans auxiliary and reduction. ${ }^{84}$ Oxidation of CXIX and subsequent reaction with the phosphor ylide $\mathbf{C X X},{ }^{85}$ in situ prepared from commercially available n propyltriphenyl phosphonium bromide, afforded the (Z)-vinyl iodide CXXI in poor yield (45%) and E / Z selectivity (1.7/1.0 in favor of the undesired isomer). The isomeric vinyl iodides mixture required a separation by HPLC methods to isolate the Z isomer. The (Z)-vinyl iodide CXXI was subjected to Negishi cross-coupling with vinyl iodide XLII and the coupled product deprotected furnishing terminal alkyne CXXII (Scheme 19).

Scheme 19: a) (4S)-(+)-4-benzyl-3-propionyl-2-oxazolidinone, NaHMDS, $-78{ }^{\circ} \mathrm{C}$; then CXVIII, 75%; b) $\mathrm{LiBH}_{4}, \mathrm{Et}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{O}, 91 \%$; c) $(\mathrm{COCl})_{2}, \mathrm{DMSO}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; d) i. $\mathrm{Ph}_{3} \mathrm{P}(\mathrm{Pr}) \mathrm{Br}, n \mathrm{BuLi}$, THF, ii. I ${ }_{2}$, THF, iii. NaHMDS, iv. aldehyde addition, 45\%, E/Z 1.7:1; e) CXXI, $\mathrm{ZnCl}_{2}, t \mathrm{BuLi}, \mathrm{Et}_{2} \mathrm{O}$; then XLII, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, 72 \%$; f) TBAF, THF, 83%.

Preparation of the $\mathrm{C}(14)-\mathrm{C}(22)$ fragment began from the commercially available (S)-(-)-2-methyl-1-butanol (CXXIII) which was converted in three steps following the Kobayashi strategy ${ }^{56 a}$ to the Weinreb amide CXXIV. Further transformations and reaction with allenylsilane $\mathbf{C X X V}^{86}$ afforded alcohol CXXVI in 7:1 d.r.. Titaniummediated reductive cross-coupling between terminal alkyne CXXII and alcohol

[^25]CXXVI furnished the coupled product CXXVII in poor yield (45\%) and selectivity (3:1 d.r.). Better results were obtained by protecting the hydroxy group of CXXVI; the cross-coupling gave the coupled product CXXVIII in 75% yield and 5:1 d.r. Final transformations furnished synthetic (-)-callystatin A (VII) (Scheme 20). The reported synthesis required 25 steps (longest linear sequence 11 steps) and highlighted the titanium-mediated reductive alkyne-alkyne cross-coupling. This strategy was the most straightforward, but suffered from poor selectivity in some steps. The preparation of the (Z)-vinyl iodide was achieved in 45% yield and a 1.7/1.0 E/Z ratio in favor of the undesired isomer and required HPLC separation. Moreover, the key step afforded in the best case a 5:1 mixture of isomers at an advanced point of the synthesis that also had to be separated by HPLC.

Scheme 20: a) TBSOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 82 \%$; b) DIBAL-H, THF, $-78{ }^{\circ} \mathrm{C}$; c) CXXV, $\mathrm{TiCl}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 65 \%$ (2 steps), $7: 1$ d.r.; d) CXXVI, $n \mathrm{BuLi}, \mathrm{ClTi}(\mathrm{OiPr})_{3}, c-$ $\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{MgCl}$, toluene, $-78{ }^{\circ} \mathrm{C} \rightarrow-30^{\circ} \mathrm{C}$, then CXXII, $-78{ }^{\circ} \mathrm{C} \rightarrow-30^{\circ} \mathrm{C}$, then $\mathrm{NH}_{4} \mathrm{Cl}(\mathrm{aq}$.$) ,$ 43%, 3:1 d.r.; e) TMSOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 89 \%$; f) alkyne, $\mathrm{ClTi}(\mathrm{OiPr})_{3}, c-\mathrm{C}_{5} \mathrm{H}_{9} \mathrm{MgCl}$, toluene, $-78{ }^{\circ} \mathrm{C} \rightarrow-30{ }^{\circ} \mathrm{C}$); then CXXII, $-78^{\circ} \mathrm{C} \rightarrow-30{ }^{\circ} \mathrm{C}$, then $\mathrm{NH}_{4} \mathrm{Cl}$ (aq.), 75%, 5:1 d.r.; g) PPTS, $\mathrm{H}_{2} \mathrm{O}$, acetone, 71%; h) PCC, $\mathrm{AcOH}, 3 \AA \mathrm{MS}$, benzene, 83%; i) HF•pyridine, pyridine, THF, 41%.

2.2.3.2. The Synthesis of Leptomycin B

Despite the popularity of leptomycin B as a tool in chemical biology, only a single total synthesis has been reported. ${ }^{87}$ In this, Kobayashi and co-workers adopted the same strategy they used for the synthesis of callystatin (Scheme 1, 3 and 4). ${ }^{56 \mathrm{a}}$ The same disconnections are maintained and the fragments adapted to the leptomycin structure. Leptomycin B differs from callystatin by the methyl group at $\mathrm{C}(4)$ and the α, β-unsaturated carboxylic acid at the end of the polyketide chain. The synthesis of the lactone fragment started from commercially available (E)-crotyl alcohol (CXXIX). Epoxidation using Sharpless methodology, ${ }^{88}$ protection of the hydroxy group and selective epoxide ring opening afforded alcohol CXXX. The product was converted to the aldehyde CXXXI using standard chemistry. Wittig reaction between aldehyde CXXXII and phosphonim salt LV, already used in the synthesis of callystatin (Scheme 4), afforded the $\mathrm{C}(1)-\mathrm{C}(12)$ fragment in modest yield, which was transformed to aldehyde CXXXII in five further steps (Scheme 21).

Scheme 21: a) (+)-DIPT, $\mathrm{Ti}(i \operatorname{PrO})_{4}, \mathrm{TBHP}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}, 75 \%, 96 \%$ e.e.; b) $\mathrm{BnBr}, \mathrm{NaH}$, TBAI, THF, 97%; c) Li-acetylide•EDA complex, HMPA, 66%; d) LDA, $\mathrm{CO}_{2}, \mathrm{THF},-78{ }^{\circ} \mathrm{C}$ $\rightarrow-65^{\circ} \mathrm{C}$; e) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{BaSO}_{4}$, quinoline, EtOH ; f) benzene, reflux, 70% (3 steps); g) DIBAL$\mathrm{H}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$; h) PrOH , PPTS, benzene, 55% (2 steps); i) Lithium di-tertbutylbiphenyl, THF, $-78{ }^{\circ} \mathrm{C}, 89 \%$; j) Swern oxidation, 99%; k) $\mathbf{L V}, \mathrm{LiCH}_{2} \mathrm{~S}(\mathrm{O}) \mathrm{CH}_{3}$, toluene, $-78{ }^{\circ} \mathrm{C} \rightarrow 5{ }^{\circ} \mathrm{C}, 59 \%$; 1) Dowex HCR-W2, acetone- $\mathrm{H}_{2} \mathrm{O}, 40^{\circ} \mathrm{C}$; m) $\mathrm{Ag}_{2} \mathrm{CO}_{3}$-Celite, benzene, $50^{\circ} \mathrm{C}, 94 \%$ (2 steps); n) DDQ, $\mathrm{CH}_{2} \mathrm{Cl}_{2}-t \mathrm{BuOH}$-buffer 90:1:9, 89%; o) Dess-Martin periodinane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 99 \%$.

The synthesis of the polyketidic chain started with carboxylic acid CXXXIII, which was obtained by ozonolysis of geraniol. Condensation of compound CXXXIII with lithium (S)-(-)-4-isopropyl-2-oxazolidinone (CXXXIV) and subsequent methylation gave product CXXXV in 11:1 d.r.. The synthesis of the phosphonium salt CXXXVI was carried out following a similar procedure to that employed by the same group in their synthesis of callystatin (Scheme 3). Wittig reaction between aldehyde CXXXII (Scheme 21) and phosphonium salt CXXXVI afforded the condensed (E)-product as a sole isomer, which after final transformations afforded

[^26]leptomycin B (VI) (Scheme 22). LMB was synthesized in 40 steps (longest linear sequence 25 steps) and is comparable to the (-)-callystatin synthesis in terms of both length and strategy.

Scheme 22: a) PivCl, $\mathrm{Et}_{3} \mathrm{~N}, 76 \%$; b) CXXXIV, LiHMDS, THF, $-78{ }^{\circ} \mathrm{C}$, then MeI, $-78{ }^{\circ} \mathrm{C}$ $\rightarrow 0{ }^{\circ} \mathrm{C}, 80 \%$, $11: 1$ d.r.; c) $\mathrm{Me}_{3} \mathrm{Al}$, MeONHMe $\cdot \mathrm{HCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C} \rightarrow 0{ }^{\circ} \mathrm{C}, 98 \%$; d) DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 98 \%$; e) n BuBOTf, $\mathrm{Et}_{3} \mathrm{~N}$, THF, $-78^{\circ} \mathrm{C} \rightarrow 0{ }^{\circ} \mathrm{C}, 82 \%$; f) $\mathrm{Me}_{3} \mathrm{Al}$, MeONHMe $\cdot \mathrm{HCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C} \rightarrow 0{ }^{\circ} \mathrm{C}, 95 \%$; g) TBSOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C}$, 85%; h) DIBAL-H, THF, $-78{ }^{\circ} \mathrm{C}, 85 \%$; i) n BuBOTf, Et N , THF, $-78{ }^{\circ} \mathrm{C} \rightarrow 0{ }^{\circ} \mathrm{C}, 94 \%$; j) $\mathrm{Me}_{3} \mathrm{Al}$, MeONHMe• $\mathrm{HCl}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-20{ }^{\circ} \mathrm{C} \rightarrow \mathrm{RT}, 99 \%$; k) $\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O}, 0{ }^{\circ} \mathrm{C}, 90 \%$; 1) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Et}$, toluene, 83%; m) DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$, quant.; n) $\mathrm{CBr}_{4}, \mathrm{Ph}_{3} \mathrm{P}, 2,6-$ lutidine, MeCN , quant.; o) $\mathrm{Me}_{2} \mathrm{BBr}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 98 \%$; p) TBSCl, imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, quant.; $\mathrm{Bu}_{3} \mathrm{P}, \mathrm{MeCN}, 93 \%$; q) $\mathrm{LiCH}_{2} \mathrm{~S}(\mathrm{O}) \mathrm{CH}_{3},-78{ }^{\circ} \mathrm{C} \rightarrow 5{ }^{\circ} \mathrm{C}, 90 \%$; r) Dess-Martin periodinane, 71%; s) $\mathrm{HF} \bullet$ pyridine, pyridine; t) MnO_{2}, benzene; u) $\mathrm{NaClO}_{2}, \mathrm{NaH}_{2} \mathrm{PO}_{4}, \mathrm{H}_{2} \mathrm{O}_{2}$, MeCN, 73\% (2 steps).

2.2.3.3. The Syntheses of (+)- and (-)-Ratjadone

Two total syntheses of ratjadone have been reported. In their synthesis of (+)ratjadone, ${ }^{89}$ Kalesse and co-workers maintained the same principal disconnection as in the synthesis of callystatin. The $\mathrm{C}(7)-\mathrm{C}(13)$ fragment started from alcohol CXXXVII, which was prepared in six steps from $(R)-(-)-3$-hydroxyisobutyrate (entLI)..90 Formation of the vinyl iodide via a Negishi carbometalation procedure, ${ }^{91}$ followed by standard transformations using the same procedure adopted in the callystatin synthesis afforded phosphonium salt CXXXVIII. Wittig reaction between phosphonium salt CXXXVIII and the aldehyde XXIII already used in the callystatin synthesis (Scheme 7) afforded the vinyl iodide fragment CXXIX as a single isomer (Scheme 23).

[^27]

Scheme 23: a) $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}, \mathrm{AlMe}_{3}, \mathrm{I}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, THF $-15^{\circ} \mathrm{C} \rightarrow 25^{\circ} \mathrm{C}, 83 \%$; b) Dess-Martin periodinane, 81%; c) $\left(\mathrm{CF}_{3} \mathrm{CH}_{2} \mathrm{O}\right)_{2} \mathrm{P}(\mathrm{O}) \mathrm{CHMeCO}_{2} \mathrm{Et}$, KHMDS, 18 -crown-6, THF, $-78{ }^{\circ} \mathrm{C}$, 85%; d) DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 77 \%$; e) $\mathrm{CBr}_{4}, \mathrm{Ph}_{3} \mathrm{P}, \mathrm{MeCN}$; f) $\mathrm{Bu}_{3} \mathrm{P}, \mathrm{MeCN}, 87 \%$ (2 steps); v) XXIII, $t \mathrm{BuOK}$, toluene, $0^{\circ} \mathrm{C}, 89 \%$.

The tetrahydropyranyl moiety was synthesized from the known aldol product CXL. ${ }^{92}$ Conversion to the aldehyde CXLI and reaction with the ketene acetal CXLII ${ }^{93}$ via vinylogous Mukaiyama aldol reaction ${ }^{94}$ afforded alcohol CXLIII in 80\% yield and 19:1 d.r.. Compound CXLIII was cyclized to give aldehyde CXLIV, which was converted by Tebbe olefination to the tetrahydropyrane moiety CXLV. Palladium-catalyzed Heck coupling between vinyl iodide CXXXIX and tetrahydropyrane moiety CXLV followed by standard transformations afforded (+)ratjadone (IX) (Scheme 24). The target was achieved in 36 steps (longest linear sequence 19 steps) without any remarkable problems during the synthesis.

Scheme 24: a) MeONHMe $\cdot \mathrm{HCl}, \mathrm{Me}_{3} \mathrm{Al}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-20^{\circ} \mathrm{C} \rightarrow \mathrm{RT}$; b) TBSOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$; c) DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 83 \%$ (3 steps); d) CXLII, B $\left(\mathrm{C}_{6} \mathrm{~F}_{5}\right)_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ -

[^28]```
Et2O 9:1, -78 '}\mp@subsup{}{}{\circ}\textrm{C}\mathrm{ , d.r. > 19:1, 80%; e) DIBAL-H, THF, -78 '}\textrm{C}\mathrm{ ; f) mCPBA, NaHCO
CH2Cl , 0 }\mp@subsup{}{}{\circ}\textrm{C},85% (2 steps); g) TBAF, THF, 88%; h) amberlyst-15, THF, 93%; i) TBSOTf
2,6-lutidine, }\mp@subsup{\textrm{CH}}{2}{}\mp@subsup{\textrm{Cl}}{2}{},-78\mp@subsup{}{}{\circ}\textrm{C},87%;\mathrm{ j) CHCl }\mp@subsup{}{3}{}\bullet\textrm{HCl},97%; k) Dess-Martin periodinane, 92%; l)
```



```
80%; n) PPTS, H2O, acetone, 83%; o) TBSOTf, 2,6-lutidine, }\mp@subsup{\textrm{CH}}{2}{}\mp@subsup{\textrm{Cl}}{2}{},0\mp@subsup{}{}{\circ}\textrm{C},83%; p) MnO-,
CH2Cl
```

In the Williams and co-workers synthesis of (-)-ratjadone ${ }^{95}$ the formation of the lactone was left until the end. The preparation of the $\mathrm{C}(3)-\mathrm{C}(14)$ fragment started from the imide CXLVI. ${ }^{87,96}$ Alkylation via Evans protocol ${ }^{97}$ and standard transformations afforded aldehyde CXLVII, which was subjected to Still-Gennari olefination and transformed to ketone CXLVIII in six further steps. The ketone CXLVIII was reduced under Terashima conditions ${ }^{98}$ employing ( - )- N methylephedrine, resulting in a 5:1 mixture of diastereoisomeric alcohols. The major product was then converted to the bromide CIL in five steps (Scheme 25). The bromide CIL $(\mathrm{X}=\mathrm{Br})$ was obtained as a 2.5:1 mixture with the allylic chloride $(\mathrm{X}=$ $\mathrm{Cl})$ due to the presence of chlorine from the previous step, in which the compound was not purified.


Scheme 25: a) [ref. 87]; b) $\mathrm{LiBH}_{4}, \mathrm{MeOH}, \mathrm{Et}_{2} \mathrm{O}, 87 \%$; c) Swern oxidation, $94 \%$; d) StillGennari olefination, $99 \%$; e) DIBAL-H, $98 \%$; f) Swern oxidation; g) $\mathrm{CBr}_{4}, \mathrm{Ph}_{3} \mathrm{P}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; h) $n \mathrm{BuLi}$, THF, $-78{ }^{\circ} \mathrm{C}, 85 \%$ ( 3 steps); i) $\mathrm{Cp}_{2} \mathrm{Zr}(\mathrm{H}) \mathrm{Cl}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 23^{\circ} \mathrm{C}$, then $\mathrm{Me}_{2} \mathrm{Zn},-65^{\circ} \mathrm{C}$, then 3-(phenylthio)propanal, $-65^{\circ} \mathrm{C} \rightarrow 0{ }^{\circ} \mathrm{C}, 92 \%$; j) Dess-Martin periodinane, $64 \%$; k) $\mathrm{LiAlH}_{4}$, (-)- $N$-methylephedrine, EtNHPh, $\mathrm{Et}_{2} \mathrm{O},-78{ }^{\circ} \mathrm{C}, 98 \%, 5: 1$ d.r.; 1) $\left(\mathrm{NH}_{4}\right)_{6} \mathrm{Mo}_{7} \mathrm{O}_{24}, \mathrm{H}_{2} \mathrm{O}_{2}$, EtOH (aq.), $0{ }^{\circ} \mathrm{C}, 90 \%$; m) PivCl, pyridine, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 100 \%$; n) TBAF, THF, $100 \%$; o) collidine, methanesulfonyl chloride, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 3 \mathrm{~h} ; \mathrm{p}\right) \mathrm{LiBr}, \mathrm{THF}, \mathrm{RT}, 15 \mathrm{~min}, 82 \%$, mixture 2.5:1 bromide/chloride.

[^29]The synthesis of the tetrahydropyranyl fragment by Williams and co-workers followed a similar procedure to that of Kalesse and co-workers and also started from the known aldol product ent-CL. The major difference was the use of allyl $\mathrm{Ipc}_{2} \mathrm{~B}$ (allyl)borane instead of the vinylougous Mukayama aldol reaction to afford compound CLI in good yield and 94:6 d.r.. Aldehyde ent-CLII was obtained in further twelve steps using standard transformations. The bromide CIL was transformed in situ into the phosphonium salt and reacted with aldehyde ent-CLII to afford the coupled product in $72 \%$ yield and in $E / Z$ 16:1 ratio. Further transformations and Ley oxidation ${ }^{99}$ of alcohol CLIII gave the saturated lactone, which after elimination and removal of the protecting group afforded (-)-ratjadone (ent-IX) (Scheme 26). The target was achieved in 48 steps (longest linear sequence 30 steps), a longer sequence when compared with the Kalesse synthesis of (+)-ratjadone. ${ }^{89}$ The large difference in the number of steps is principally due to the long protocol adopted for the formation of the lactone cycle that in the Kalesse synthesis was obtained in only four steps via a Diels-Alder reaction.


Scheme 26: a) TBDPSCl, imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; b) $\mathrm{LiBH}_{4}, \mathrm{Et}_{2} \mathrm{O}, \mathrm{H}_{2} \mathrm{O},-20^{\circ} \mathrm{C} \rightarrow 5^{\circ} \mathrm{C}, 87 \%(2$ steps); c) Swern oxidation, $98 \%$; d) $B$-allyldiisocamphenylborane, $\mathrm{Et}_{2} \mathrm{O},-78{ }^{\circ} \mathrm{C}, 91 \%, 94: 6$ d.r.; e) PMB trichloroacetimidate, $\mathrm{CSA}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 67 \%$; f) AD-mix- $\alpha, t \mathrm{BuOH}, \mathrm{H}_{2} \mathrm{O}$, then $\mathrm{NaIO}_{4}$, THF (aq.), quant.; g) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CHCO}_{2} \mathrm{Me}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 88 \%$; h) DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$, $96 \%$; i) (+)-DET, $\mathrm{Ti}(i \operatorname{PrO})_{4}, 4 \AA \mathrm{MS}, \mathrm{TBHP}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 98 \%$; j) PivCl, pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 95 \%$; k) TBAF, THF, $40{ }^{\circ} \mathrm{C}, 82 \%$; 1) CSA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 90 \%$; m) CAN, MeCN, $\mathrm{H}_{2} \mathrm{O}$, quant.; n) TBSCl, imidazole, DMAP, DMF, $91 \%$; o) DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}, 99 \%$; p) Dess-Martin periodinane, $93 \%$; q) CIL, $\mathrm{PBu}_{3}, 48 \mathrm{~h}$, then ent-CLII, toluene, $0{ }^{\circ} \mathrm{C}$, then $t \mathrm{BuOK}$, THF, $72 \%$, E/Z 16:1; r) DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 89 \%$; s) TESCl, pyridine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 94 \%$; t) $n \mathrm{BuLi}, \mathrm{THF}, \mathrm{HMPA}$, then ethylene oxide, $78 \%$; u) Dess-Martin periodinane; v) PPTS, $\mathrm{EtOH}, 0{ }^{\circ} \mathrm{C}$; w) TPAP, NMO, $4 \AA \mathrm{MS}, 86 \%$ (3 steps); x) DBU, toluene, $87 \%$; y) HF•pyridine, pyridine, THF, $76 \%$.

[^30]
### 2.2.3.4. The Synthesis of (-)-Kazusamycin A

The only synthesis of (-)-kazusamycin A was reported by Kuwajima and coworkers. ${ }^{100}$ The synthesis of the polyketide chain started with the palladium catalyzed cross coupling between zinc homoenolate CLV, derived from cyclopropane CLIV, ${ }^{101}$ and vinyl bromide CLVI. ${ }^{102}$ The coupled product was obtained in more than $99 \%$ e.e. and converted into aldehyde CLVII, which underwent Sn -mediated aldol reaction with ketone CLVIII ${ }^{103}$ to afford alcohol CLIX in $93: 7$ d.r. The product was converted into bromide CLX in an additional thirteen steps employing standard chemistry (Scheme 27).


Scheme 27: a) $\mathrm{ZnCl}_{2}, \mathrm{Et}_{2} \mathrm{O}$; b) $\mathrm{PdCl}_{2}\left[\mathrm{P}(o-\mathrm{Tol})_{3}\right]_{2}(2 \mathrm{~mol} \%)$, CLVI, THF, $68 \%$, e.e. $>99 \%$; c) DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78 \rightarrow 45{ }^{\circ} \mathrm{C}, 96 \%$; d) Dess-Martin periodinane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, quant.; e) CLVII, $\mathrm{Sn}(\mathrm{OTf})_{2}, \mathrm{Et}_{2} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$, then CLVII, $77 \%$, $93 \%$ d.r.; f) $\mathrm{Et}_{2} \mathrm{BOMe}, \mathrm{NaBH}_{4}$, THF-MeOH, $-78{ }^{\circ} \mathrm{C}, 78 \%$; g) TBAF, THF, $92 \%$; h) $\mathrm{Me}_{2} \mathrm{C}(\mathrm{OMe})_{2}$, PPTS, acetone, $86 \%$; i) TBSOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 94 \%$; j) DDQ, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 68 \%$; k) Dess-Martin periodinane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; 1) $\mathrm{Ph}_{3} \mathrm{P}=\mathrm{CMeCO}_{2} \mathrm{Et}, 69 \%$ (two steps); m) DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$, $89 \%$; n) TIPSCl, imidazole, DMF, $96 \%$; o) Na, liq. $\mathrm{NH}_{3}-\mathrm{THF},-78^{\circ} \mathrm{C}$, quant.; p) AllocCl, pyridine, THF, $96 \%$; q) TBAF, THF, $98 \%$; r) $\mathrm{Ph}_{3} \mathrm{P}, \mathrm{CBr}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 94 \%$.

The preparation of the lactone moiety started from the acylated Evans auxiliary ent-LVIII. The unsaturated ester CLXI was obtained in seven steps via standard transformations and then deprotected with acidic resin, cyclized to gave $\alpha, \beta$ unsaturated lactone and converted into aldehyde CLXII. This aldehyde was also an

[^31]intermediate in the LMB synthesis of Kobayashi and co-workers (Scheme 21). ${ }^{87}$ Wittig reaction between aldehyde CLXII and phosphonium salt LVI ${ }^{104}$ afforded the coupled product in $E / Z$ 7:1 ratio, the protected alcohol present in this intermediate was converted to the aldehyde CLXIII. A second Wittig reaction, between aldehyde CLXIII and phosphonium salt CLX, and final modifications afforded (-)kazusamycin A (X) (Scheme 28). The target was achieved in 56 steps (longest linear sequence 33 steps). The synthesis wanted to showcase the efficiency of the Paterson's aldol methodology, ${ }^{105}$ unfortunately preparation of ketone CLVIII required ten steps increasing the synthesis length. Moreover, preparation of the $i$ PrO-lactol fragment CLXIII was also long requiring a thirteen step sequence.

ent-LVIII
CLXI
CLXII


Scheme 28: a) $\mathrm{Bu}_{2} \mathrm{BOTf}^{2} \mathrm{Et}_{3} \mathrm{~N}, \mathrm{BnOCH}_{2} \mathrm{CHO}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C} \rightarrow 0^{\circ} \mathrm{C}, 96 \%$, d.r. $>99: 1$; b) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}, \mathrm{PPTS}, \mathrm{Me}_{2} \mathrm{C}(\mathrm{OMe})_{2}$, acetone, $90 \%$; c) $\mathrm{LiBH}_{4}, \mathrm{MeOH}, 0^{\circ} \mathrm{C}, 95 \%$; d) Dess-Martin periodinane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; e) $\mathrm{Ph}_{3} \mathrm{P}, \mathrm{CBr}_{4}, \mathrm{Zn}^{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 60 \%$ (2 steps); f) $n \mathrm{BuLi}, \mathrm{ClCO}_{2} \mathrm{Me}$, THF, $78{ }^{\circ} \mathrm{C} \rightarrow \mathrm{RT}, 93 \%$; g) $\mathrm{H}_{2}$, Lindlar catalyst, MeOH, $96 \%$; h) Dowex $50 \mathrm{WX8}$, MeOH, then Amberlyst 15, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; i) TBDPSCl, imidazole, DMF, $57 \%$ (2 steps); j) DIBAL-H, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, $-78{ }^{\circ} \mathrm{C}, 82 \%$; k) PPTS, iPrOH, benzene, $85 \%$; l) TBAF, THF, $85 \%$; m) (COCl) $)_{2}$, DMSO, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$, then $\mathrm{Et}_{3} \mathrm{~N},-78{ }^{\circ} \mathrm{C} \rightarrow \mathrm{RT}, 98 \%$; n) LVI, Bu ${ }_{3} \mathrm{P}, \mathrm{CH}_{3} \mathrm{CN}$, then CLXII, ${ }^{t} \mathrm{BuOK}$, toluene-THF, $0{ }^{\circ} \mathrm{C}, 91 \%$, E/Z 7:1; o) TBAF, THF, $99 \%$; p) (COCl) $)_{2}$, DMSO, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$, then $\mathrm{Et}_{3} \mathrm{~N},-78{ }^{\circ} \mathrm{C} \rightarrow \mathrm{RT}, 92 \%$; q) CLX, $\mathrm{Bu}_{3} \mathrm{P}, \mathrm{CH}_{3} \mathrm{CN}$, then CLXIII, tBuOK, $83 \%$; r) PPTS, MeOH, $84 \%$ ( 3 cycles); s) TIPSCl, imidazole, DMF, $95 \%$; t) DessMartin periodinane, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 95 \%$; u) PPTS, acetone (aq.), $91 \%$ (3 cycles); v) $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, dimedone, THF, $96 \%$; w) $\mathrm{MnO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 49 \%$; x) $\mathrm{NaClO}_{2}, 2$-methyl-2-butene, $t \mathrm{BuOH}$ (aq.), $80 \%$; y) HF•pyridine, pyridine, THF, $74 \%$.

[^32]
### 2.2.3.5. The Synthesis of Leptofuranin D

Marshall and co-workers published the only synthesis of leptofuranin D. ${ }^{106}$ Having already synthesized callystatin, their synthesis contains a similar sequence of reactions and intermediates. The synthesis of the polyketide chain began from alkyne CLXIV ${ }^{107}$ that was hydroborated and treated with the Ohira reagent ${ }^{108}$ to afford alkyne CLXV. Water-accelerated carboalumination of the alkyne using Wipf conditions, ${ }^{109}$ followed by standard transformations and a palladium catalyzed coupling of the allenylzinc reagent (generated from ( $S$ )-propargylic mesylate CLXVI ${ }^{76}$ ) gave the anti adduct CLXVII as a 9:1 mixture of diastereoisomers. A subsequent ten step procedure furnished the vinyl iodide compound CLXVIII (Scheme 29).


Scheme 29: a) $\mathrm{Cy}_{2} \mathrm{BH}$, then $\mathrm{NaOH}, \mathrm{H}_{2} \mathrm{O}_{2}, 95 \%$; b) $\mathrm{MeCOC}\left(\mathrm{N}_{2}\right) \mathrm{PO}(\mathrm{OMe})_{2}, \mathrm{~K}_{2} \mathrm{CO}_{3}, 75 \%$ (2 steps); c) $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}, \mathrm{AlMe}_{3}, \mathrm{H}_{2} \mathrm{O}$, then $\mathrm{ClCO}_{2} \mathrm{Me}, 64 \%$; d) PPTS, $\mathrm{MeOH}, 91 \%$; e) Swern oxidation, $97 \%$; f) CLXVI, $\mathrm{Pd}(\mathrm{OAc})_{2}, \mathrm{PPh}_{3}, \mathrm{Et}_{2} \mathrm{Zn}, 72 \%, 9: 1$ d.r.; g) $\mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{THF}$, $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2} ;$ h) $\mathrm{I}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 82 \%$ (2 steps); i) $\left.\mathrm{TMSC} \equiv \mathrm{CH}, \operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}, \mathrm{CuI}, \mathrm{Et}_{3} \mathrm{~N}, 87 \% ; \mathrm{j}\right)$ $\mathrm{NaOH}, \mathrm{MeOH}-\mathrm{THF}, 90 \%$; k) MsCl, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$; l) LiBr, 2-butanone; m) $\mathrm{LiBEt}_{3} \mathrm{H}$, THF, $78 \%$ (3 steps); n) TBSCl, imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 82 \%$; o) $\mathrm{Bu}_{3} \mathrm{SnH}, \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{2} \mathrm{Cl}_{2}$, THF; p) $\mathrm{I}_{2}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 82 \%$ (2 steps).

The synthesis of the $\mathrm{C}(1)-\mathrm{C}(11)$ fragment started from monoprotected ethylene glycol CLXIX. Oxidation and addition of a chiral allenylstannane $\mathbf{L X X X}{ }^{56 f}$ gave alcohol CLXX as a syn/anti 83:17 mixture of diastereoisomers. This intermediate was transformed to alkyl iodide CLXXI and coupled with vinyl iodide compound CLXVIII following the same protocol adopted during the synthesis of callystatin to afford leptofuranin $D$ as a mixture $1: 1$ of inseparable isomers at $\mathrm{C}(22)$ (Scheme 30).

[^33]The target was achieved in 39 steps (longest linear sequence 25 steps) and similarly to their synthesis of callystatin, the use of chiral allenyl-metal reagents was highlighted. The absolute stereochemistry of all the stereogenic centers were elucidated except that at $C(22)$, which remains unknown.


Scheme 30: a) Swern oxidation, $70 \%$; b) LXXX, $\mathrm{MgBr}_{2}, 85 \%$, $83: 17$ d.r.; c) $n \mathrm{BuLi}$, $\left(\mathrm{CH}_{2} \mathrm{O}\right)_{n}$, THF; d) TBSOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 83 \%$ (2 steps); e) $\mathrm{H}_{2} / \mathrm{Pd}-\mathrm{BaSO}_{4}$ (5\%), quinoline, toluene, $90 \%$; f) DDQ, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{pH}=7,91 \%$; g) Swern oxidation, $98 \%$; h) XC, $t \mathrm{BuOK}$, toluene, $85 \%$; i) PPTS, MeOH-THF, $74 \%$; j) $\mathrm{I}_{2}, \mathrm{PPh}_{3}$, imidazole, $94 \%$; k) CLXXI, $t \mathrm{BuLi}, \mathrm{Et}_{2} \mathrm{O}, 9-\mathrm{MeO}-9-\mathrm{BBN}$, then CLXVIII, Pd(dppf) $\mathrm{Cl}_{2}, \mathrm{AsPh}_{3}, \mathrm{Cs}_{2} \mathrm{CO}_{3}$, DMF- $\mathrm{H}_{2} \mathrm{O}, 82 \%$; 1) Dess-Martin periodinane, $71 \%$; m) $\mathrm{HF} \cdot \mathrm{Et}_{3} \mathrm{~N}, 74 \%$; n) $\mathrm{MnO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 43 \%, 1: 1$ d.r..

### 2.2.3.6. The Synthesis of Leptostatin

Marshall and co-workers reported the synthesis of leptostatin (VIIIb) together with three diastereoisomers at $\mathrm{C}(4)$ and $\mathrm{C}(5) .{ }^{110}$ The adopted strategy required no new chemistry and simply combined a fragment from the synthesis of callystatin (LXXXVIII, Scheme 10) with a fragment from the synthesis of leptostatin (CLXXI, Scheme 30). The only major change in the procedure was the use of the pivaloyl protected chiral allenylstannane CLXXIII instead of the chiral allenylstannane LXXX (Scheme 10). ${ }^{76}$ The alcohol CLXXIV was obtained as a $3: 1$ mixture of syn/anti diastereoisomers. After standard modifications, the polyketide chain LXXXVIII of callystatin and the alkyl iodide fragment CLXXI of leptofuranin were combined via $\mathrm{sp}^{3}-\mathrm{sp}^{2}$ Suzuki cross coupling affording leptostatin (VIIIb) (Scheme 31). This synthesis required 43 steps (longest linear sequence 22 steps) and is similar in length and strategy to the synthesis of callystatin by the same group.

[^34]

Scheme 31: a) CLXXIII, $\mathrm{MgBr}_{2}, 89 \%$, 3:1 d.r.; b) DIBAL-H; c) TBSOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 85-87 \%$; $\mathrm{H}_{2} /$ Lindlar cat., $93-99 \%$; d) DDQ, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 82-85 \%$; e) Swern oxidation, $93-96 \%$; f) XC, $t \mathrm{BuOK}$, toluene, $72-84 \%$; g) PPTS, $\mathrm{MeOH}, 71-75 \%$; h) $\mathrm{I}_{2}, \mathrm{PPh}_{3}$, imidazole, $87-94 \%$; i) CLXXI, $t \mathrm{BuLi}, \mathrm{Et}_{2} \mathrm{O}, 9-\mathrm{MeO}-9-\mathrm{BBN}$, then LXXXVIII, $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2}, \mathrm{~K}_{3} \mathrm{PO}_{4}$, DMF, $86-98 \%$; j) Dess-Martin periodinane, $71-86 \%$; k) $\mathrm{HF} \cdot \mathrm{Et}_{3} \mathrm{~N}, 72-80 \%$; l) $\mathrm{Ag}_{2} \mathrm{CO}_{3} /$ Celite, benzene, 75\%.

### 2.2.4. Conclusion

The first part of the introduction regarding the leptomycin family discussed the biological studies, the use as biological tools and the most recent promising results as potential therapeutic agents of these compounds. The different synthetic strategies were then presented comparing the methods adopted by the different groups. Several times, the syntheses started from non-commercially available or advanced intermediates meaning that more steps have to be taken in account to evaluate the adopted strategies. Here, the total number of steps for each synthesis with the longest linear sequence beginning from commercially available starting materials is reported (Table 1).

Table 1: Resume of the synthesized members of the leptomycin family.

| Compound | Group | Year | Steps <br> (total) | Steps longest linear sequence (starting material) |
| :---: | :---: | :---: | :---: | :---: |
| Callystatin | Kobayashi | 1998 | 39 | 18 (Roche ester LI) |
|  | Crimmins | 1998 | 37 | 18 (allyl iodide) |
|  | Smith | 2001 | 32 | 15 (oxazolidinone LVIII) |
|  | Kalesse | 2001 | 28 | 21 (Roche ester ent-LI) |
|  | Enders | 2002 | 40 | 15 (RAMP) |
|  | Marshall | 2002 | 39 | 18 (Roche ester ent-LI) |
|  | Lautens | 2002 | 45 | 27 (cyclohexanal) |
|  | Panek | 2004 | 37 | 18 (pseudoephedrine) |
|  | Dias | 2005 | 39 | 20 ((S)-2-methyl-1-butanal) |
|  | Micalizio | 2008 | 25 | 11 ((S)-2-methyl-1-butanal) |
| Leptomycin B | Kobayashi | 1998 | 40 | 25 (geraniol) |
| (+)-Ratjadone | Kalesse | 2000 | 36 | 19 (Roche ester ent-LII) |
| (-)-Ratjadone | Williams | 2001 | 48 | 30 (geraniol) |
| (-)-Kazusamycin A | Kuwajima | 2004 | 56 | 33 (diethylethoxymetylenemalonate) |
| Leptofuranin D | Marshall | 2003 | 39 | 25 (Roche ester ent-LI) |
| Leptostatin | Marshall | 2006 | 43 | 25 (Roche ester ent-LII) |

Following analysis of all the strategies we realized that some problems were common to several syntheses. Before planning our synthesis, some considerations had to be taken into account in order to avoid problematic steps. Firstly, it is evident that the most efficient method to form the lactone fragment is via a Diels-Alder reaction, as demonstrated by Kalesse and co-workers in their synthesis of callystatin. ${ }^{56 \mathrm{~d}}$ Another potential problem is related to the stereochemistry of the hydroxy group at $\mathrm{C}(17)$. As observed in the synthesis of Lautens and co-workers and Dias and coworkers, the anti configuration of $\mathrm{C}(17)$ gave unexpected problems. In the case of Lautens, the Wittig reaction for the formation of the $\mathrm{C}(12)-\mathrm{C}(13)$ bond in the presence of the free hydroxy group afforded a $E / Z$ 1:1.3 mixture of inseparable isomers (Scheme 14). Protection with TMS solved the problem to afford the coupled products
as a $E / Z$ 19:1 mixture. The anti configuration in the polyketide chain also caused problems to Dias and co-worker. The formation of the $\mathrm{C}(11)-\mathrm{C}(12)$ bond via a Suzuki cross-coupling with the TMS protected alcohol at $\mathrm{C}(17)$ afforded a protected/deprotected $34: 66$ mixture of products. ${ }^{56 i}$ In this case the problem was overcome by leaving the hydroxy group at $\mathrm{C}(17)$ unprotected (Scheme 18). Another problem encountered by both groups was the formation of $\alpha, \beta$-unsaturated aldehyde derived from the lactol ring opening during the hydrolysis step. Among all the syntheses this problem was observed only when the anti configuration in the polyketide chain was present. Until now, for the all-syn configuration nobody has reported any problems related to the hydrolysis step. Therefore, it will be our configuration of choice during the synthesis. Concerning the final oxidation of the lactol to the lactone and the formation of the ketone at $\mathrm{C}(17)$, almost all the groups opted for PCC or the two step $\mathrm{MnO}_{2} /$ DMP sequence. More interesting was the final deprotection, where several groups encountered degradation problems of the starting material, especially in the synthesis of callystatin. Although Kobayashi, Crimmins, Smith, Enders and Panek and co-workers could obtain the target product using commercially available $\mathrm{HF} \bullet$ pyridine solution (Schemes 4, 6, 9, 16), but other groups i.e. Marshall and Lautens and co-workers could not reproduce these results and obtained predominantly decomposition of the starting material (Schemes 11, 14). The acid-induced decomposition of the substrate using commercially available HF•pyridine was also observed by Kalesse and Boger and co-workers in their syntheses of ratjadone ${ }^{89}$ (Scheme 24) and fostriecin ${ }^{111}$ respectively. Both groups solved this problem by buffering the $\mathrm{HF} \bullet$ pyridine solution with an additional portion of pyridine. The same solution was chosen by Lautens, Dias and Micalizio and coworkers in their synthesis of callystatin (Schemes 14, 18, 20), whereas Marshall and co-worker opted for the $\mathrm{HF} \bullet \mathrm{Et}_{3} \mathrm{~N}$ solution (Scheme 11).

[^35]
### 2.3. Anguinomycins A-D: Isolation and First Biological Evaluation

Anguinomycins A and B were isolated in 1985 and anguinomycins C and D in 1995 (Figure 7) from a strain belonging to Streptomyces microorganisms, during the research of new antitumor antibiotics using pRb-inactivated cells. ${ }^{25}$ To date, no total syntheses of these compounds have been reported and their absolute and relative configuration remain unknown. In common with the other members of the leptomycin family, anguinomycins contains the electrophilic $\alpha, \beta$-unsaturated lactone thought to be responsible for biological activity.


Figure 7: Anguinomycins A-D

The first biological studies highlighted the remarkable biological profile of these polyketides, which display very potent activity and high cytotoxicity to murine P388 leukemia cells $\left(\mathrm{IC}_{50}=0.1-0.2 \mathrm{ng} / \mathrm{mL}\right)$ and potent antitumor activity in mice. A more significant discovery is that the anguinomycins display selectivity between normal and transformed tumoral cells, inducing cell-cycle arrest in normal cells but apoptosis in pRb -inactivated cells in picomolar concentrations. The cytotoxicity and selectivity test were performed on rat glia cells and transformed glia cells where pRb was inactivated by viral oncoproteins (Figure 8 and 9). ${ }^{25}$


Figure 8: Anguinomycins A-D growth effects on normal and transformed rat glia cells. ${ }^{25 b}$


Figure 9: Anguinomycins C morphology effects on normal and transformed rat glia cells after 72 hours. ${ }^{25 b}$

Flow cytometry analysis revealed that anguinomycins C and D induce cell growth arrest in the G1 phase, ${ }^{25 b}$ known to be a consequence of the p53 accumulation in the nuclei. ${ }^{44}$ Surprisingly, apoptosis is also observed in p53-inactivated cells, leaving open the possibility that anguinomycins activate different signal pathways. These promising results encouraged us to prepare anguinomycins C and D in synthetic form and investigate their biological activity profile in the context of new antitumoral compounds.

### 2.4. Total Synthesis of Angunomycin C \& D

### 2.4.1. Retrosynthetic Analysis and Strategy Considerations

To date, no total syntheses of the anguinomycins have been reported. Since anguinomycins C and D belong to the leptomycin family, we decided to plan our strategy in such a way to end the synthesis with the same configuration as found in LMB (VI, Figure 2). The strategic plan is characterized by metal-catalyzed reactions and aldol chemistry. We decided to disconnect the molecule between $\mathrm{C}(11)$ and $\mathrm{C}(12)$ giving two main fragments $\mathbf{3 0}$ (resp. 31) and 52 that can be coupled via $\mathrm{sp}^{3}-\mathrm{sp}^{2}$ boron alkyl Suzuki-Miyaura cross-coupling (Scheme 32). ${ }^{56 f}$ This approach will circumvent possible problems related to the standard Wittig reaction between $\mathrm{C}(12)$ and $\mathrm{C}(13)$,
which, as observed previously (Chapter 2.2.3), sometimes gives rise to poor $E / Z$
 synthesis to avoid problems due to the presence of the Michael acceptor and the ketone at $\mathrm{C}(17)$ that will be formed in the final steps, again to avoid unwanted side reactions.


Scheme 32: Retrosynthetic analysis. C(11)-C(12) disconnection.

The alkyl iodide fragments $\mathbf{3 0}$ and $\mathbf{3 1}$ will be constructed from the alkyne $\mathbf{8}$ and the dibromoolefin 20 via a tandem hydrozirconation/Negishi cross coupling and Negishi cross coupling with stereoinversion (Scheme 33). ${ }^{112}$ The terminal alkyne 8 will be subjected to hydrozirconation ${ }^{56 \mathrm{~h}, 67,113}$ and transmetallation to the vinyl Zn species. The organozinc intermediate will be used directly in the first Negishi crosscoupling ${ }^{56 h, 114}$ that has to occur with trans selectivity. The second cross-coupling requires an inversion of the configuration in order to obtain the cis configuration at $\mathrm{C}(8)-\mathrm{C}(9)$ and we propose to use the protocol developed by Negishi. ${ }^{115}$ The dibromoolefin 20 is readily prepared from $(R)-(-)$-3-hydroxyisobutyrate (9) using standard chemistry. The hetero-Diels-Alder reaction using $\mathrm{Cr}(\mathrm{III})$-catalyst developed by Jacobsen ${ }^{116}$ is our method of choice for the facile preparation of the iPrO-lactol $\mathbf{8}$ from the aldehyde 2 and the commercially available 1-methoxy-1,3-butadiene (3) (Scheme 33). As discussed before, other approaches would be more time consuming and offer no real advantage in terms of selectivity and yield.

[^36]

Scheme 33: Retrosynthetic analysis of the C(1)-C(11) fragment.
The polyketide chain synthesis is characterized by enolate alkylation and aldol reactions using the Seebach modification ${ }^{117}$ of the Evans auxiliary ${ }^{70}$ and starting from commercially available tiglic acid (33) (Scheme 34). The presence of two phenyl groups on the 4-isopropyl-2-oxazolidinone increases the stability of the auxiliary against nucleophilic attack, increases the selectivity of the reactions and the tendency of the obtained products to crystallize. As previously discussed, we opted for an allsyn configuration keeping the hydroxy group at $\mathrm{C}(17)$ unprotected in order to avoid problems during the $\mathrm{sp}^{3}-\mathrm{sp}^{2}$ boron alkyl Suzuki-Miyaura cross-coupling and the hydrolysis of the $i \mathrm{PrO}$-lactol ether. The trans double bond between $\mathrm{C}(15)$ and $\mathrm{C}(16)$ will be installed via a Wittig-Horner reaction. Takai reaction for the formation of the $(E)$-vinyl iodide fragment 52 was expected to be problematic because of the bad $E / Z$ selectivity, usually observed with $\alpha, \beta$-unsaturated aldehydes. ${ }^{118}$


Scheme 34: Retrosynthetic analysis of the $\mathrm{C}(12)-\mathrm{C}(24)$ fragment.

[^37]
### 2.4.2. Synthesis of the Dihydropyran Fragment

The synthesis of anguinomycins C and D started with the preparation of 3triethylsilylpropynal (2) ${ }^{119}$ by treatment of triethylsilylacetylene (1) with ethylmagnesium bromide followed by quenching with DMF. ${ }^{120}$ The dihydropyran 5 was obtained via a hetero Diels-Alder reaction between aldehyde $\mathbf{2}$ and commercially available 1-methoxy-1,3-butadiene (3) (Scheme 35). The reaction was catalyzed by the Cr (III) catalyst (4) developed by Jacobsen and co-workers ${ }^{121}$ under solvent-free conditions and in presence of $4 \AA$ molecular sieves. ${ }^{116}$ The work-up used in the preparation of the $\mathrm{Cr}(\mathrm{III})$ catalyst was demonstrated to affect its properties as well as its reactivity during the reaction. ${ }^{122}$ We opted for a neutral aqueous work-up in order to obtain the dimeric species of the catalyst. The product 5 of the hetero Diels-Alder reaction was obtained in high yield ( $86 \%$ ) and enantioselectivity ( $96 \%$ e.e.) and as a 5:1 diastereomeric mixture due to epimerization at the anomeric center under the reaction conditions. Attempts to use directly the MeO-protected lactol 5 for the continuation of the synthesis proved to problematic. The diastereoisomers could be easily separated by chromatography, but after deprotection of the silyl group with TBAF, the resulting terminal alkyne $\mathbf{6}$ was volatile and difficult to handle. We opted to treat the diastereomeric mixture obtained in the Diels-Alder reaction under acidic conditions in $i \mathrm{PrOH}$ to afford the $i \mathrm{PrO}$-protected lactol 7 as a single diastereoisomer in the more thermodynamically stable configuration. Final deprotection with TBAF and purification on silicagel afforded the deprotected alkyne $\mathbf{8}$ as a colorless oil, which even if less volatile than alkyne 6, was carefully concentrated (Scheme 35).

[^38]

Scheme 35: a) EtMgBr, then DMF, $67 \%$; b) $\mathbf{3}, \mathbf{4}$ ( $2.3 \mathrm{~mol} \%$ ), $4 \AA$ MS, RT, $86 \%$; d.r. $=5: 1$, $96 \%$ e.e.; c) TBAF, THF, $0{ }^{\circ} \mathrm{C} \rightarrow$ RT; d) PTSA, $i \operatorname{PrOH}, \mathrm{RT}, 86 \%$; e) TBAF ( 1 M in THF), THF, $0^{\circ} \mathrm{C} \rightarrow \mathrm{RT}, 95 \%$.

The adopted Diels-Alder approach allowed the preparation of the dihydropyran fragment $\mathbf{8}$ in only three steps from commercially available 3-triethylsilylpropynal (2). The Cr (III) catalyst (4) developed by Jacobsen and co-workers proved to be a good choice for the hetero-Diels-Alder reaction furnishing the product in high yield and enantioselectivity. Compared with other approaches reported in literature (Scheme 1 and 2), this route was the most straightforward, giving quick access to the target intermediate $\mathbf{8}$ and being amenable to scale up.

### 2.4.3. The Tandem Hydrozirconation-Negishi Cross Coupling

The coupling partner for the Negishi cross coupling was prepared from (R)-(-)-3hydroxyisobutyrate (9), which was protected by treatment with TBSCl and imidazole. The resulting ester $\mathbf{1 0}$ was reduced in quantitative yield to the alcohol 11, which was oxidized to afford 12 via a Parikh-Doering oxidation. ${ }^{123}$ The aldehyde 12 was

[^39]converted to the dibromoolefin $13^{113 a}$ in $85 \%$ yield using the Corey-Fuchs reaction (Scheme 36). ${ }^{124}$


Scheme 36: a) TBSCl, imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2 \mathrm{~h}$; b) DIBAL-H (1.0 M in hexane), $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78$ ${ }^{\circ} \mathrm{C} \rightarrow$ RT, 1 h 15 min ; c) pyridine $\bullet \mathrm{SO}_{3}, \mathrm{Et}_{3} \mathrm{~N}$, DMSO, RT, $\left.3 \mathrm{~h} ; \mathrm{d}\right) \mathrm{PPh}_{3}, \mathrm{CBr}_{4}, \mathrm{Zn}$ powder, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 2$ days, then $\mathbf{1 2}, 1$ day, $85 \%$ (4 steps).

Before to attempting the planned hydrozirconation-Negishi cross coupling reaction with the previously synthesized fragments, it was decided to attempt to insert the methyl group in a trans-selective fashion on the dibromolefin 13. Both, Negishi ${ }^{114}$ and Suzuki ${ }^{125}$ cross coupling failed to give the desired methyl-substituted product $\mathbf{1 4}$ and it was decided to revert to the planned procedure without spending more time in further investigations (Scheme 37).


Scheme 37: a) $\mathrm{Me}_{2} \mathrm{Zn}, \operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, 45{ }^{\circ} \mathrm{C}$; b) $\mathrm{MeB}(\mathrm{OH})_{2}, \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$, then TlOEt, RT.

The tandem hydrozirconation-Negishi cross coupling reaction started with the preparation of the Schwartz reagent $\left(\mathrm{Cp}_{2} \mathrm{ZrHCl}\right)$ by treatment of commercially available $\mathrm{Cp}_{2} \mathrm{ZrCl}_{2}$ with $\mathrm{LiAlH}_{4} .{ }^{126}$ The terminal alkyne $\mathbf{8}$ was treated with Schwartz reagent at $0^{\circ} \mathrm{C}$ and then allowed to return to RT to afford the $E$-alkenyl zirconocene intermediate $\mathbf{1 5}$ via stereospecific syn hydrometallation. In situ transmetallation to the organozinc intermediate 16 was achieved by addition of a solution of dried $\mathrm{ZnCl}_{2}$ in THF. ${ }^{127}$ A solution of dibromoolefin 13 in the presence of $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~mol} \%)$ in THF was added and the resulting solution transferred into the vinylzinc solution. After 16 hours at $45{ }^{\circ} \mathrm{C}$ the reaction was quenched (Scheme 38). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ indicated

[^40]partial formation of the coupled product 17, but the TBS protecting group did not survive the reaction condition. Moreover non-identifiable side products were formed.



Scheme 38: a) $\mathrm{Cp}_{2} \mathrm{ZrHCl}, \mathrm{THF}$; b) $\mathrm{ZnCl}_{2}$, THF; c) $\mathbf{1 3}, \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%), 4{ }^{\circ} \mathrm{C}$.

In order to overcome this problem it was decided to use the Stille cross coupling reaction. After formation of the organozirconocene intermediate 15, transmetallation to the organotin species $\mathbf{1 8}$ was achieved by addition of $\mathrm{Bu}_{3} \mathrm{SnOMe} .{ }^{128}$ After 22 hours at $40{ }^{\circ} \mathrm{C}$, the solution of dibromoolefin $\mathbf{1 3}$ in presence of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~mol} \%)$ in THF was added and the resulting solution transferred into the vinyltin solution. The reaction was stirred for 2.5 days at $45^{\circ} \mathrm{C}$, but again the formation of a mixture of side products accompanied by the loss of the TBS protecting group was observed (Scheme 39).


Scheme 39: a) $\mathrm{Cp}_{2} \mathrm{ZrHCl}, \mathrm{THF}$; b) $\mathrm{Bu}_{3} \mathrm{SnMeO}, \mathrm{THF}$; c) 13, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%), 4{ }^{\circ} \mathrm{C}$.

At this point it was decided that changing of the TBS group with a TIPS group could make the substrate more stable toward the reaction conditions. Dibromoolefin 13 was deprotected with TBAF to give alcohol 19, which was protected again by

[^41]treatment with TIPSCl to afford the dibromoolefin $\mathbf{2 0}^{129}$ in good yield (Scheme 40, eq. 1). The same dibromoolefin could also be obtained in four steps from $(R)-(-)-3-$ hydroxyisobutyrate (9) following the same protocol adopted for the preparation of dibromoolefin 13. Protection of the $(R)-(-)$-3-hydroxyisobutyrate (9) in the first step with TIPSCl afforded ester 21, which was reduced to alcohol 22 by treatment with DIBAL-H. Parikh-Doering oxidation gave the aldehyde 23, which was transformed to the dibromoolefin 20 via a Corey-Fuchs reaction (Scheme 40, eq. 2).



Scheme 40: a) TBAF (1.0 M in THF), THF, $0^{\circ} \mathrm{C} \rightarrow$ RT, $3 \mathrm{~h}, 47 \%$; b) TIPSCl, imidazole, DMAP (cat.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, overnight, $93 \%$; c) TIPSCl, imidazole, DMAP (cat.), $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, overnight, quant.; d) DIBAL-H ( 1.0 M in hexane), $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C} \rightarrow-15{ }^{\circ} \mathrm{C}, 1.5 \mathrm{~h}$; e) pyridine $\bullet \mathrm{SO}_{3}, \mathrm{Et}_{3} \mathrm{~N}$, DMSO, RT, 1.5 h , quant. (2 steps); f) $\mathrm{PPh}_{3}, \mathrm{CBr}_{4}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 2.5 \mathrm{~h}$, 64\%.

At this point the tandem hydrozirconation-Negishi cross coupling reaction was tried again. A yellow solution of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%)$ in THF was treated with a solution of DIBAL-H ( $10 \mathrm{~mol} \%$ ) to give a dark red solution. After 30 minutes, the new dibromoolefin 20 in THF was added and the resulting mixture transferred into the separately prepared vinylzinc solution 16, in situ prepared from terminal alkyne 8. The mixture was stirred 10 hours at $40^{\circ} \mathrm{C}$ and after work up and purification, the coupled ( $E$ )-product 24 was obtained in $81 \%$ yield as a single diastereoisomer (Scheme 41). Even if $\operatorname{Pd}(0)$ was employed in this reaction and a reduction of the metal not required, the use of a small amount of DIBAL-H resulted in an increase of the yield.

[^42]

Scheme 41: a) $\mathrm{Cp}_{2} \mathrm{ZrHCl}, 0{ }^{\circ} \mathrm{C} \rightarrow \mathrm{RT}$, THF, 1 h ; b) $\mathrm{ZnCl}_{2}$, THF, RT, 30 min ; c) 20, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%)$, DIBAL-H ( 1.0 M in hexane), $\mathrm{RT} \rightarrow 40^{\circ} \mathrm{C}, 13 \mathrm{~h}, 81 \%$.
${ }^{1} \mathrm{H}$-NMR spectroscopic analysis of product 24 confirmed that the reaction had occurred in a completely selective fashion giving the $(6 E, 8 Z)$ isomer. Moreover NOE measurement with irradiation of $\mathrm{H}-\mathrm{C}(7), \mathrm{H}-\mathrm{C}(9)$ and $\mathrm{H}-\mathrm{C}(6)$ clearly demonstrated the spatial interaction between these two protons possible only for the trans configuration ${ }^{130}$ (Figure 10-14).


Figure 10: NOE effects for compound 24.


Figure 11: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum for compound 24.

[^43]

Figure 12: NOE spectrum for compound 24: H-C(7) irradiation.


Figure 13: NOE spectrum for compound 24: H-C(8) irradiation.


Figure 14: NOE spectrum for compound 24: H-C(6) irradiation.

### 2.4.4. The Pd-Catalyzed Negishi Cross-Coupling with Stereoinversion

The first Negishi cross-coupling between alkyne $\mathbf{8}$ and dibromoolefin 20 afforded the coupled trans product $\mathbf{2 4}$, but for the preparation of anguinomycins C and D a cis configuration at $\mathrm{C}(8)$ was required. To achieve this it was decided to apply the procedure developed by Negishi and co-workers ${ }^{115}$ allowing the installation of the missing residue at $\mathrm{C}(8)$ with inversion of the double bond configuration at the same center. The nature of the catalyst employed in the Pd-catalyzed alkenylation of alkenyl halide influences the selectivity of the resulting product. ${ }^{115}$ This reaction can occur with retention or inversion of the configuration depending on the ligands on the palladium. Since in the first Negishi cross coupling we obtained the trans product 24, we now needed the alkylation to occur with inversion of the configuration affording the cis product $(6 E, 8 Z)$ present in the anguinomycins structure. With this reaction it would be possible to prepare both the intermediate for the synthesis of anguinomycin C , with a methyl group at $\mathrm{C}(8)$ and the intermediate for anguinomycin D , with an ethyl group at $\mathrm{C}(8)$. We started with the preparation of the intermediate for the synthesis of anguinomycin C adding $\mathrm{Me}_{2} \mathrm{Zn}(2 \mathrm{M}$ in toluene) to a solution of
alkenylhalide 24 and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~mol} \%)$ in THF under argon atmosphere. The resulting orange-colored solution was stirred for 24 hours at $45^{\circ} \mathrm{C}$, then a second addition of $\mathrm{Me}_{2} \mathrm{Zn}$ was added and complete conversion of the starting material was achieved after an additional 14 hours. As expected, the use of $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ afforded to the cis product $\mathbf{2 5}$ as a single isomer in $68 \%$ yield.


Scheme 42: $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~mol} \%), \mathrm{Me}_{2} \mathrm{Zn}\left(2.0 \mathrm{M}\right.$ in toluene), THF, $45{ }^{\circ} \mathrm{C}, 38 \mathrm{~h}, 68 \%$, cis/trans > 97:3.
${ }^{1}$ H-NMR, HSQC and COSY spectroscopic analysis of product $\mathbf{2 5}$ confirmed that the reaction had occurred in a completely selective fashion furnishing only the cis product as a single isomer. Moreover, NOE measurement confirmed the desired cis configuration. Irradiation of $\mathrm{H}-\mathrm{C}(9)$ showed a NOE effect on the protons of the inserted $\mathrm{Me}-\mathrm{C}(8)$, the same effect was also observed for $\mathrm{H}-\mathrm{C}(6)$ and $\mathrm{H}-\mathrm{C}(9)$ when protons of $\mathrm{Me}-\mathrm{C}(8)$ were irradiated and for $\mathrm{H}-\mathrm{C}(10)$ when irradiation on $\mathrm{H}-\mathrm{C}(7)$ was performed. These interactions confirmed the spatial proximity of the irradiated protons possible only for the cis isomer (Figure 15-19).


Figure 15: NOE effects for compound 25.


Figure 16: ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum for compound 25.


Figure 17: NOE spectrum for compound 25: H-C(9) irradiation.


Figure 18: NOE spectrum for compound 25: H-C(8) irradiation.


Figure 19: NOE spectrum for compound 25: H-C(7) irradiation.

The same Negishi cross coupling with stereoinversion reaction was adopted for the synthesis of the fragment for anguinomycin D . In this case we used $\mathrm{Et}_{2} \mathrm{Zn}(1.5 \mathrm{M}$ in toluene), which was added to a solution of alkenylhalide 24 and $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(10 \mathrm{~mol}$ \%) in THF. However, following work-up we obtained a mixture of unreacted starting material, and the cis and trans products. Separation of the two isomers by chromatography on $\mathrm{SiO}_{2}$ was unsuccessful; the similar polarity of the cis and trans isomer did not allow the isolation of the pure desired isomer. Attempts to force the reaction by adding more $\mathrm{Et}_{2} \mathrm{Zn}$ were unsuccessful and promoted formation of the undesired trans isomer. Optimizations of the reaction conditions were attempted, but without success. Moreover the results revealed to be irreproducible when using the same conditions a different ratio of cis and trans products was obtained. In order to understand the problem we tried to repeat the reaction with $\mathrm{Me}_{2} \mathrm{Zn}$ to achieve the previously obtained cis product $\mathbf{2 5}$, but this time unsuccessfully. The reproducibility issues led us to think that the problem may be due to the presence of oxygen in the solvent. To investigate this problem it was decided to degas the solvent prior to use using three freeze/pump/thaw cycles. Better results were obtained with the cis product as the major isomer, but conversion of the starting material was not complete and formation of the trans compound was still present. At this point we chose to screen
several different palladium catalysts for the reaction (Figure $20 \&$ Table 2). The reactions were run adding $\mathrm{Et}_{2} \mathrm{Zn}$ (2.0 equiv) to a solution of alkenylhalide $\mathbf{2 4}$ and the catalyst ( $5-10 \mathrm{~mol} \%$ ) in THF under an argon atmosphere. After addition the tube was sealed and the reaction mixture stirred at $50{ }^{\circ} \mathrm{C}$. The screened catalysts were $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}, \mathrm{PdCl}_{2}(\mathrm{dppf}), \mathrm{Pd}\left({\left.\left.\mathrm{P} t \mathrm{Bu}_{3}\right)_{2}, \mathrm{PdCl}_{2}(\mathrm{DPEphos}), \text { trans-di( } \mu \text {-acetato }\right) \text { bis[o-(tolyl- }}\right.$ phosphino)benzyl] dipalladium (II) and allyl[1,3-bis(mesityl)imidazol-2-ylidene] palladium chloride.

$\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$

$\mathrm{PdCl}_{2}(\mathrm{dppf})$

$\mathrm{Pd}(\mathrm{PtBu})_{2}$

$\mathrm{PdCl}_{2}$ (DPEphos)

trans-di(-acetato)bis[o-(tolylphosphino)benzyl] dipalladium (II)

allyl[1,3-bis(mesityl)imidazol-2-ylidene] palladium chloride

Figure 20: Evaluated Pd catalysts for the Negishi cross coupling with inversion/retention of the configuration.

Table 2: Screening different catalysts for the transformation of $\mathbf{2 4}$ to $\mathbf{2 6}$ (Scheme 43).

| Catalyst | Equivalents (mol \%) | Concentration $(\mathrm{M} \text { vs } \mathbf{2 4})$ | Reaction time (h) | Ratio ${ }^{\text {e }}$ | Yield (\%) |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ | 5 | 0.06 | 24 | 0.14/1.00/0.38 ${ }^{\text {a }}$ | n.d. |
| $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ | 10 | 0.1 | 28 | 0.16/1.00/0.17 ${ }^{\text {a }}$ | n.d. |
| $\mathrm{PdCl}_{2}$ (dppf) | 10 | 0.05 | 20 | 1.00/1.08/0.66 | n.d. |
| $\mathrm{Pd}(\mathrm{PtBu})_{2}{ }^{\text {b }}$ | 10 | 0.05 | 3.5 | 0/0/1.00 | 75\% |
| $\mathrm{PdCl}_{2}$ (DPEphos) ${ }^{\text {c }}$ | 5 | 0.08 | 14 | 0/1.00/0 | 84\% |
| $\mathrm{PdCl}_{2}$ (DPEphos) ${ }^{\text {c }}$ | 10 | 0.08 | 14 | 0/1.00/0 | 84\% |
| trans-di( $\mu$-acetato) bis[o-(tolyl-phosphino)benzyl] dipalladium (II) ${ }^{\text {d }}$ | 10 | 0.05 | 20 | 0/0/1.00 | 65\% |
| allyl[1,3-bis(mesityl) imidazol-2-ylidene] palladium chloride ${ }^{\text {b }}$ | 10 | 0.05 | 20 | 0/0/1.00 | 77\% |

${ }^{\text {a) }}$ The results for $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ are not reproducible, using same conditions a different ratio starting material/cis/trans could be obtained. ${ }^{\text {b) }}$ During the addition of $\mathrm{Et}_{2} \mathrm{Zn}$ the solution turns immediately to dark-brown colored. ${ }^{\text {c) }}$ During all the reaction the solution maintained an orange-red color. ${ }^{\text {d) }}$ At ca. $35^{\circ} \mathrm{C}$, the solution turn to dark-brown colored. ${ }^{\text {c) }}$ The ratio is reported as 24/26/27.

In agreement with data reported by Negishi and co-workers, ${ }^{15 \mathrm{a}} \mathrm{PdCl}_{2}$ (DPEphos) revealed to be the best catalyst to achieve alkenylation with inversion of configuration. The cis adduct 26, the intermediate for the synthesis of anguinomycin D, was obtained in $84 \%$ yield as a single isomer (Scheme 43, eq. 1). The reaction proved to be extremely clean, without traces of remaining starting material or the undesired trans isomer. It is probably the higher thermal stability of $\mathrm{PdCl}_{2}$ (DPEphos) compared to $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ that made the catalyst efficient over a longer time without any decomposition. The percentage of the employed catalyst ( $5 \mathrm{~mol} \%$ or $10 \mathrm{~mol} \%$ ) did not influence the yield and selectivity of the reaction, affording in both cases only the cis isomer. Concerning $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ and $\mathrm{PdCl}_{2}$ (dppf) the results were not the same. As mentioned earlier, $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ gave a mixture of products and the same was observed for $\mathrm{PdCl}_{2}$ (dppf), opposite to that reported by Negishi and co-workers. ${ }^{115 \mathrm{a}}$ In addition to the previously reported $\operatorname{Pd}\left(\mathrm{P}_{\mathrm{B}} \mathrm{Bu}_{3}\right)_{2}$, the trans-di( $\mu$-acetato)bis[o-(tolylphosphino)benzyl] dipalladium (II) and the allyl[1,3-bis(mesityl)imidazol-2-ylidene] palladium chloride also afforded exclusively the trans adduct 27, via retention of configuration. The yields were $75 \%$ (Scheme 43 , eq. 2), $65 \%$ and $77 \%$ respectively.


Scheme 43: a) $\mathrm{PdCl}_{2}$ (DPEphos) ( $5 \mathrm{~mol} \%$ ), $\mathrm{Et}_{2} \mathrm{Zn}$ ( 1.5 M in toluene), THF, $50{ }^{\circ} \mathrm{C}, 14 \mathrm{~h}$, $84 \%$, cis/trans > 97:3; b) $\operatorname{Pd}\left(\mathrm{PtBu}_{3}\right)_{2}(10 \mathrm{~mol} \%), \mathrm{Et}_{2} \mathrm{Zn}\left(1.5 \mathrm{M}\right.$ in toluene), THF, $50^{\circ} \mathrm{C}, 3.5$ h, $75 \%$, trans/cis > 97:3.

The mechanism of the stereoinversion remains unclear and the inversion was observed only for dienylpalladium intermediates generated via oxidative addition. Initial explanations from Negishi were based on thermodynamic stabilities of the involved $\pi$-allylpalladium intermediates involved and on sterics between the substituents (Figure 21, eq. 1). ${ }^{115}$ The widely accepted $\pi-\sigma-\pi$ rearrangement for the stereoisomerization of allylpalladium species can not be effective in this case as a
double inversion of configuration would be observed. ${ }^{131}$ To date the only proposed mechanism for the observed stereoinversion was reported by Negishi himself in $2005,{ }^{132}$ but not demonstrated (Figure 21, eq. 2).


Figure 21: Postulated mechanisms for the Negishi cross coupling with inversion of the configuration.

At this point for both products $\mathbf{2 5}$ and $\mathbf{2 6}$ the silyl group was removed by treatment with TBAF in THF affording the deprotected products 28 and 29 respectively in $99 \%$ and $98 \%$ yield. Subsequently, the alcohols $\mathbf{2 8}$ and $\mathbf{2 9}$ were treated with $\mathrm{I}_{2}, \mathrm{PPh}_{3}$ and imidazole in toluene to get the alkyl iodide products $\mathbf{3 0}$ and $\mathbf{3 1}$ in high yields (Scheme 44).

[^44]


Scheme 44: a) TBAF ( 1.0 M in THF), THF, $0^{\circ} \mathrm{C} \rightarrow \mathrm{RT}, 2 \mathrm{~h}, 99 \%$; b) $\mathrm{PPh}_{3}$, imidazole, $\mathrm{I}_{2}$, toluene $/ \mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C} \rightarrow \mathrm{RT}, 2 \mathrm{~h}, 75 \%$; c) TBAF ( 1.0 M in THF), THF, $0{ }^{\circ} \mathrm{C} \rightarrow \mathrm{RT}, 1.5 \mathrm{~h}$, $98 \%$; d) $\mathrm{PPh}_{3}$, imidazole, $\mathrm{I}_{2}$, toluene $/ \mathrm{Et}_{2} \mathrm{O}, 0{ }^{\circ} \mathrm{C}, 45 \mathrm{~min}, 89 \%$.

The alkyl iodide fragments $\mathbf{3 0}$ and $\mathbf{3 1}$ for the synthesis of anguinomycins C and D were obtained in 7 steps from commercially available 3-triethylsilylpropynal (2) in an overall yield of $29 \%$ and $42 \%$ respectively. In synthesis reported in this chapter, the Negishi cross coupling with stereoinversion was found to be of great use. After optimization of the conditions, high yield and selectivity as well as reproducibility of the results could be achieved. This reaction also allowed target fragments $\mathbf{3 0}$ and $\mathbf{3 1}$ to be obtained from the common intermediate 24, minimizing the number of steps where the same chemistry would have to be done twice for the synthesis of similar fragments.

### 2.4.5. Synthesis of the Polyketidic Chain

As previously discussed, the synthesis of the polyketide chain would be based on Evans aldol strategy, ${ }^{70}$ but using the DIOZ auxiliary (4-isopropyl-5,5-diphenyloxazolidin-2-one) ( $\mathbf{3 2}$ and ent-32) developed by Seebach and co-workers (Scheme 45). ${ }^{117}$ The additional phenyl groups on the auxiliary increases its stability against nucleophilic attack allowing the formation of the lithiated oxazolidinone using $n \mathrm{BuLi}$ at $0{ }^{\circ} \mathrm{C}$, instead of $-78{ }^{\circ} \mathrm{C}$. Moreover, the presence of the two Ph groups increases the selectivity of the reactions as well as the crystallinity of the obtained intermediates. This auxiliary has already demonstrated its utility in total synthesis when being used by chemists at Novartis for the synthesis of discodermolide. ${ }^{133}$ As

[^45]previously discussed we opted for an all-syn configuration of the polyketide chain and the hydroxy group at $\mathrm{C}(17)$ would be kept free for the entire synthesis. Moreover, anguinomycin C and D displayed the same side chain allowing a unique synthesis of the polyketide chain for both targets. The synthesis of the polyketide chain started from commercially available tiglic acid (33), which was sequentially reduced by $\mathrm{LiAlH}_{4}$ to alcohol 34 and then transformed to allylic bromide 35 in good yield. The acylated auxiliary 36 was prepared in $95 \%$ yield by deprotonation of the $(R)$-4-isopropyl-5,5-diphenyloxazolidin-2-one (32) with $n \mathrm{BuLi}$ at $0^{\circ} \mathrm{C}$ and then addition of propionyl chloride. Treatment of the acylated chiral auxiliary $\mathbf{3 6}$ with LDA generated the lithium enolate, which reacted with allylic bromide 35 via enantioselective alkylation to give the adduct $\mathbf{3 7}$ in high yield ( $92 \%$ ) and excellent selectivity (d.r. > 97:3) as a crystalline white solid. The auxiliary was removed with $\mathrm{LiAlH}_{4}$ furnishing alcohol 38 in quantitative yield and allowing the recycling of the cleaved $(R)-4-$ isopropyl-5,5-diphenyloxazolidin-2-one (32). Swern oxidation afforded aldehyde 39, which was reacted with the boron enolate generated by treatment of ent-36 with $\mathrm{Bu}_{2} \mathrm{BOTf}$ to give the syn-aldol 40. The product was obtained in $77 \%$ yield and a diastereomeric ratio of 87:13 (Scheme 45). Although not optimal, this selectivity is comparable to the best selectivities achieved by other groups using similar substrates e.g., Kobayashi and co-workers (Scheme 3). ${ }^{56 a}$



Scheme 45: a) $\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C} \rightarrow \mathrm{RT}, 4 \mathrm{~h}, 86 \%$; b) $\mathrm{PBr}_{3}, \mathrm{Et}_{2} \mathrm{O}, 0^{\circ} \mathrm{C} \rightarrow \mathrm{RT}, 3.5 \mathrm{~h}, 73 \%$; c) $n \mathrm{BuLi}\left(1.6 \mathrm{M}\right.$ in hexane), $0^{\circ} \mathrm{C}$, then propionyl chloride, RT, overnight, $95 \%$; d) $\mathbf{3 6}$, LDA, $-78{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}$, then 35 , THF, $-78{ }^{\circ} \mathrm{C} \rightarrow-10^{\circ} \mathrm{C}, 26 \mathrm{~h}, 92 \%$, d.r. > 97:3; e) $\mathrm{LiAlH}_{4}, \mathrm{Et}_{2} \mathrm{O}, 0$ ${ }^{\circ} \mathrm{C} \rightarrow$ RT, 3.5 h , quant.; f) oxalyl chloride, DMSO, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}$, then $\mathbf{3 8}, 15 \mathrm{~min}$, then


```
h, then -78 '}\textrm{C},\mathbf{39, CH2 Cl },-78\mp@subsup{}{}{\circ}\textrm{C}->0\mp@subsup{}{}{\circ}\textrm{C},2\textrm{h},77%,\mathrm{ d.r. > 87:13.
```

For this aldol reaction we had a match case with the $R e$ face of the enolate attacking the Si face of the aldehyde. The transition state TS1 afforded the syn-aldol 40 (Figure 22). The undesired diastereoisomer was not characterized, but based on literature precedent, ${ }^{117}$ it is thought that a $\pi-\pi$ interaction between a phenyl group on the auxiliary and the exocyclic double bond could stabilize TS2 affording the antialdol $41 .{ }^{134}$ In this case the $S i$ face of the enolate attacks the $S i$ face of the aldehyde. The two diastereoisomers displayed similar $\mathrm{R}_{f}$ values, but separation by repeated flash chromatography on $\mathrm{SiO}_{2}$ was possible affording pure syn-aldol 40.


TS1
Re face enolate \& Si face aldehyde



TS2
Si face enolate \& Si face aldehyde


Figure 22: Transition states of the B-mediated aldol reaction. Si face attack of the aldehyde by the $R e$ face of the enolate afforded to the syn-aldol 40. Si face attack of the aldehyde by the Si face of the enolate afforded to the syn-aldol 40.

The syn-aldol 40 was transformed to the Weinreb amide 42 in good yield ( $86 \%$ ) using N,O-dimethylhydroxylamine hydrochloride and $\mathrm{AlMe}_{3}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Amide 42 could be crystallized in hexane and the all-syn configuration confirmed by X-ray crystallographic analysis (Figure 23, a). Protection of the alcohol with TBS afforded product 43, which was transformed to the aldehyde 44 by treatment with DIBAL-H in excellent yield. A second B-mediated aldol reaction using the same auxiliary, ent-36 and aldehyde $\mathbf{4 4}$ afforded the syn-aldol adduct $\mathbf{4 5}$ in excellent diastereoselectivity (d.r.

[^46]> 97:3) and $61 \%$ yield. As for the first boron-mediated aldol reaction, we had a matched case with the Re face of the enolate attacking the Si face of the aldehyde. The transition state TS1 (Figure 22) is the same as before and afforded the syn-aldol 45. In this case, no formation of the anti-aldol was observed, maybe because the longer chain on aldehyde $\mathbf{4 4}$ does not allow the interaction between its terminal double bond and the Ph group of the auxiliary ent- $\mathbf{3 6}$ as was observed in the formation of antialdol 41 (Figure 22). Attempts to convert syn-aldol 45 to the Weinreb amide 46 proved to be difficult and even under forcing reaction conditions, the product 46 was obtained in poor $41 \%$ yield. Analyzing other approaches in the literature, we ascertained that Kobayashi and co-workers using the same conditions could convert a similar aldol, but with the Evans auxiliary, in good yield. ${ }^{56 a}$ We thought that the constraint came from the hindrance of the phenyl groups on the auxiliary and it was decided to remove it using $\mathrm{LiAlH}_{4}$. Surprisingly, after optimization of the conditions ( $\mathrm{LiAlH}_{4}$ in toluene), the syn-aldol $\mathbf{4 5}$ could be converted directly to the aldehyde 47, probably due to steric reasons. Wittig reaction between aldehyde 47 and (carbethoxyethylidene) triphenylphosphorane (48) afforded the $\alpha, \beta$-unsaturated ester 49 in excellent yield (99\%) and as a single isomer. Reduction with DIBAL-H afforded alcohol 50 and following $\mathrm{MnO}_{2}$ oxidation gave the $\alpha, \beta$-unsaturated aldehyde 51 in $80 \%$ yield over two steps. Aldehyde 51 (M.p. $=75-77^{\circ} \mathrm{C}$ ) could be crystallized in hexane and X-ray crystallographic analysis guaranteed the unambiguous determination of the all-syn relative configuration of the polyketide chain (Figure 23, b). The transformation of the aldehyde $\mathbf{5 1}$ to the vinyl iodide $\mathbf{5 2}$ via a Takai reaction was expected to be problematic due to selectivity issues of this reaction when using $\alpha, \beta$-unsaturated aldehyde. ${ }^{118}$ In our case, no problems were encountered and the vinyl iodide 52 was achieved in excellent yield and selectivity (d.r. > 97:3) (Scheme 46).


Scheme 46: a) MeONHMe• $\mathrm{HCl}, \mathrm{AlMe}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C} \rightarrow \mathrm{RT}$, then $\mathbf{4 0}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C} \rightarrow \mathrm{RT}$, $15 \mathrm{~h}, 86 \%$; b) TBSOTf, 2,6-lutidine, $-20{ }^{\circ} \mathrm{C} \rightarrow 0{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 99 \%$; c) DIBAL-H ( 1 M in hexane), THF, $-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$, quant.; d) ent-36, $\mathrm{Bu}_{2} \mathrm{BOTf}\left(1 \mathrm{M}\right.$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ), $\mathrm{NEt}_{3},-5{ }^{\circ} \mathrm{C}, 45$ $\min$, then $-78{ }^{\circ} \mathrm{C}, \mathbf{3 9}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C} \rightarrow 0{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}, 61 \%$, d.r. $>97: 3$; e) MeONHMe• HCl , $\mathrm{AlMe}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C} \rightarrow \mathrm{RT}$, then 45, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C} \rightarrow \mathrm{RT}, 68 \mathrm{~h}, 41 \%$; f) $\mathrm{LiAlH}_{4}(1 \mathrm{M}$ in $\mathrm{Et}_{2} \mathrm{O}$ ), toluene, $-17^{\circ} \mathrm{C}, 20 \mathrm{~min}, 83 \%$; g) 47, toluene, then $\mathbf{4 8}$, RT $\rightarrow 35^{\circ} \mathrm{C}, 5 \mathrm{~h}, 99 \%$, d.r. $>$ 97:3; h) DIBAL-H ( 1.0 M in hexane), THF, $-78{ }^{\circ} \mathrm{C} \rightarrow-10{ }^{\circ} \mathrm{C}$, $1.5 \mathrm{~h}, 93 \%$; i) $\mathrm{MnO}_{2}$, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, RT, $2.5 \mathrm{~h}, 86 \%$; j) $\mathrm{CrCl}_{2}, \mathrm{CHI}_{3}$, THF, $0^{\circ} \mathrm{C}, 2 \mathrm{~h}$, quant., d.r. $>97: 3$.


Figure 23: X-ray crystallographic analysis: a) amide 42; b) aldehyde 51.

At the same time we also prepared a small fraction of polyketide chain with the hydroxy group at $\mathrm{C}(17)$ TMS protected in order to evaluate the difference in the $\mathrm{sp}^{3}$ $\mathrm{sp}^{2}$ Suzuki cross coupling. The $\alpha, \beta$-unsaturated ester 49 was protected with TMSCl in $77 \%$ yield affording product 53. Following reduction of this substrate with DIBAL-H gave alcohol 54, which was oxidized using Swern conditions to afford aldehyde 55 in quantitative yield. Takai reaction afforded the all-protected vinyl iodide 56 in 88\% yield and in a $E / Z$ ratio of $95: 5$ (Scheme 47 ).


Scheme 47: a) TMSCl, DMAP, $\mathrm{NEt}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 77 \%$; b) DIBAL-H ( 1.0 M in hexane), $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$, quant.; c) $\mathrm{MnO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{RT}, 3.5 \mathrm{~h}$, quant.; d) $\mathrm{CrCl}_{2}, \mathrm{CHI}_{3}$, THF, $0^{\circ} \mathrm{C}, 2.5 \mathrm{~h}, 88 \%$, d.r. $>95: 5$.

The vinyl iodide fragment 52 was prepared in 15 steps from commercially available tiglic acid (33) in an overall yield of $15 \%$. In this part we highlighted the strength of the Evans aldol chemistry ${ }^{70}$ and in this case using the Seebach modification ${ }^{117}$ of the Evans auxiliary for the synthesis of polyketides. Moreover, we also saw the usefulness of the Takai reaction for the synthesis of vinyl iodides.

### 2.4.6. The Suzuki $\mathrm{sp}^{3}-\mathrm{sp}^{2}$ Cross Coupling and Completion of the Synthesis

Having all the fragments in hand we attempted the $\mathrm{sp}^{3}-\mathrm{sp}^{2}$ Suzuki cross coupling following Johnson's conditions ${ }^{78}$ previously used by Marshall and co-workers in the synthesis of callystatin. ${ }^{56 f}$ The alkyl iodide 30 was reacted with $9-\mathrm{MeO}-9-\mathrm{BBN}$ and $t \mathrm{BuLi}$ at $-78^{\circ} \mathrm{C}$ forming the boronate intermediate 57 , to which a solution containing vinyl iodide 52, $\mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{AsPh}_{3}$ and $\mathrm{PdCl}_{2}(\mathrm{dppf})$ in a mixture of $\mathrm{DMF} /$ water was added. The reaction proceeded smoothly and the coupled product 58a featuring the complete skeleton of anguinomycin C was isolated in $80 \%$ yield (Scheme 48). ${ }^{135}$ The same procedure was applied to the fully protected vinyl iodide $\mathbf{5 6}$ and boronate intermediate 57. However, this time the reaction did not give a good result and the desired coupled product, 58b, was obtained in poor yield (Scheme 48). Having confirmed the superiority, in terms of yield, of the vinyl iodide $\mathbf{5 2}$ with the free hydroxy group at $\mathrm{C}(17)$ in the $\mathrm{sp}^{3}-\mathrm{sp}^{2}$ Suzuki cross coupling we performed the reaction with compound $\mathbf{3 1}$ for the preparation of the anguinomycin D skeleton. Alkyl iodide 31 was reacted with $9-\mathrm{MeO}-9-\mathrm{BBN}$ and $t \mathrm{BuLi}$ at $-78^{\circ} \mathrm{C}$ forming the boronate intermediate 59, to which a solution containing vinyl iodide 52, $\mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{AsPh}_{3}$ and $\mathrm{PdCl}_{2}(\mathrm{dppf})$ in a mixture of $\mathrm{DMF} /$ water was added. As expected the reaction proceeded smoothly, but during purification on $\mathrm{SiO}_{2}$ the appearance of a side product was observed. Two fractions were collected, one containing the pure coupled product 60 in $48 \%$ yield and the second in the same amount containing a mixture of product 60 and a side compound that we did not characterize, but supposed to be the product due to epimerization at $C(17)$ (Scheme 48). It was decided to use the mixed fraction in the next steps without further purification.

[^47]

52: $\mathrm{R}^{2}=\mathrm{H}$
56: $R^{2}=T M S$


Scheme 48: a) 30 (resp. 31), $9-\mathrm{MeO}-9-\mathrm{BBN}$ ( 1.0 M in hexane), $t \mathrm{BuLi}$ ( 1.5 M in pentane), $\mathrm{Et}_{2} \mathrm{O}$, then THF, $-78{ }^{\circ} \mathrm{C} \rightarrow \mathrm{RT}, 1 \mathrm{~h}$; b) 52 (resp. 56), $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mol} \%), \mathrm{AsPh}_{3}$ ( $15 \mathrm{~mol} \%$ ), $\mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{H}_{2} \mathrm{O}$, DMF, then 57, RT, overnight, $80 \%$ (resp. $34 \%$ ); c) 52, $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mol} \%), \mathrm{AsPh}_{3}(15 \mathrm{~mol} \%), \mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{H}_{2} \mathrm{O}, \mathrm{DMF}$, then 59, RT, 20 h , $48 \%$.

Final steps for completion of the total syntheses were then performed. Thus, treatment of product 58a under acidic conditions (PPTS) in a mixture of acetone/water cleaved the acetal in $95 \%$ yield to give lactol 61. Surprisingly, attempted Dess-Martin oxidation of the lactol only oxidized the alcohol on the polyketide chain and did not form the lactone from the starting lactol. A further oxidation step using $\mathrm{MnO}_{2}$ was then required to furnish lactone $\mathbf{6 2}$ in modest yield ( $47 \%$ over two steps). Finally, the TBS was removed using HF•pyridine buffered with pyridine. Quenching of the excess HF by buffering with pyridine proved to be crucial in avoiding degradation of the product. After work-up the crude material was directly purified by semipreparative HPLC to afford anguinomycin C (63) in $82 \%$ yield (Scheme 49).


Scheme 49: a) PPTS, acetone/water (3:1), RT, $22 \mathrm{~h}, 95 \%$; b) i. DMP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, RT, 4 h ; ii. $\mathrm{MnO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, RT, $14 \mathrm{~h}, 47 \%$; c) HF•pyridine, pyridine, RT, 4.5 days, $82 \%$.

A similar procedure was adopted for the final transformation of intermediate $\mathbf{6 0}$ to anguinomycin D. Acid-catalyzed cleavage of the acetal in product $\mathbf{6 0}$ afforded lactol 64 in good yield. Due to the poor yield obtained during the two step oxidation of compound 61 ( DMP and $\mathrm{MnO}_{2}$ ) in the synthesis of anguinomycin $\mathrm{C}(63)$ we chose to use PCC for the oxidation of both the alcohol at $\mathrm{C}(17)$ and the lactol in compound 64 . The oxidation was successful and afforded lactone $\mathbf{6 5}$, which was directly treated with $\mathrm{HF} \bullet$ pyridine solution buffered with pyridine for the final deprotection. This time, in order to avoid the aqueous work-up, we cooled the reaction to $0{ }^{\circ} \mathrm{C}$ and added some $\mathrm{SiO}_{2}$ to the reaction to quench the excess of $\mathrm{HF} \bullet$ pyridine. The resulting mixture was then loaded directly on to a column of $\mathrm{SiO}_{2}$ and chromatographed affording anguinomycin D (66) in $60 \%$ yield (over two steps) (Scheme 50).


Scheme 50: a) PPTS, acetone/water (5/1), RT, $22 \mathrm{~h}, 91 \%$; b) PCC, $4 \AA \mathrm{MS}, \mathrm{AcOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$, RT, 1.5 h ; c) HF•pyridine, pyridine, RT, 4.5 days, $60 \%$ ( 2 steps).

A second reaction batch containing a mixture of product $\mathbf{6 0}$ and the by product thought to be due to the epimerization at $\mathrm{C}(17)$ was subjected to the same sequence. Thus, acid-promoted cleavage of the acetal, oxidation using PCC and final removal of the silyl protecting group afforded a mixture of products that were purified by chromatography on $\mathrm{SiO}_{2}$. Three compounds were isolated, anguinomycin $\mathrm{D}(66)$, the $\alpha, \beta$-unsaturated aldehyde 67 and trace amounts of compound 68 . Aldehyde 67 results from opening of the lactol ring, a problem also encountered by Lautens and coworkers in their synthesis of callystatin (Scheme 14). ${ }^{56 \mathrm{~g}}$ Whilst compound 68 probably derives from degradation of the boronate intermediate in the Suzuki reaction (Scheme 51).


Scheme 51: Products generated when using a mixture of diastereoisomers at $\mathrm{C}(17)$.
In this section we highlighted the strength of the $\mathrm{sp}^{3}-\mathrm{sp}^{2}$ Suzuki cross coupling. The reaction was performed using advanced fragments furnishing the skeleton of the target molecules. After the cross-coupling only minor modifications were required to achieve synthetic samples of the anguinomycins $\mathrm{C}(63)$ and $\mathrm{D}(66)$, minimizing the risk of working with complex compounds that could be easily degraded. The total syntheses of anguinomycins C and D were obtained in a total of 29 steps (longest linear sequence 18 steps from diphenyloxazolidinone (32)). In addition two other products, the $\alpha, \beta$-unsaturated aldehyde 67 and compound 68, were isolated and submitted with anguinomycin C (63) and D (66) for biological evaluation (See chapter 2.4.9).

### 2.4.7. Physical Data of Anguinomycin C \& D

Both anguinomycin $\mathrm{C}(\mathbf{6 3})$ and $\mathrm{D}(\mathbf{6 6})$ appeared as a colorless oil. Optical rotation values, the UV traces and IR spectra of the synthetic products matches with those reported in the literature and the high resolution ESI confirmed the correct masses (Table 3). The spectroscopic data of synthetic anguinomycins C and D were identical to those reported in literature (Figure $24 \mathrm{a} \& \mathrm{~b}$ ). ${ }^{25}$ For anguinomycin C, the hydroxy group at $\mathrm{C}(17)$ which is not present in the natural compound spectrum is visible on ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of the synthetic sample at 2.40 ppm . Anguinomycins C (63) and D (66) have reduced stability because epimerization can take place in the polyketide chain. Moreover, they are good Micheal acceptors, which increases their reactivity towards nucleophilic attack. Anguinomycin C could be stored at $-20^{\circ} \mathrm{C}$ for more than one year without decomposition. Moreover, anguinomycins C and D are soluble in EtOH and could be stored as a solution at $-20{ }^{\circ} \mathrm{C}$ for several days without degradation. ${ }^{136}$

Table 3: Physico-chemical properties of anguinomycins $C$ and $D$.

|  | Anguinomycin C | Anguinomycin D |
| :---: | :---: | :---: |
| Formula | $\mathrm{C}_{31} \mathrm{H}_{46} \mathrm{O}_{4}$ | $\mathrm{C}_{32} \mathrm{H}_{48} \mathrm{O}_{4}$ |
| $[\alpha]^{22.5}{ }_{\mathrm{D}}$ | $-101.2^{\circ}(c 0.0064, \mathrm{MeOH})$ | $-112.0^{\circ}(c 0.014, \mathrm{MeOH})$ |
| HRMS-ESI (calcd. $)$ | $505.3281[\mathrm{M}+\mathrm{Na}]^{+}(505.3294)$ | $519.3429[\mathrm{M}+\mathrm{Na}]^{+}(519.3450)$ |
| UV $\lambda_{\text {max }}$ | 241 nm in MeOH | 242 nm in MeOH |
| IR $v_{\text {max }}$ | $3440,2927,1709$ | n.d. |

[^48]

Synthetic


Figure 24a: Comparison of ${ }^{1} \mathrm{H}$-NMR spectrum of natural and synthetic anguinomycin C .


Figure 24b: Comparison of ${ }^{1} \mathrm{H}-\mathrm{NMR}$ spectrum of natural and synthetic anguinomycin D.

### 2.4.8. Synthesis of Anguinomycin Derivatives

In order to investigate the mode of action and structure-activity relationships (SAR) for anguinomycins, we prepared several derivatives that were submitted for biological evaluation. The first derivatives synthesized displayed modifications at the lactone moiety and in the side chain to gain an understanding of which part of the molecule was important for the activity. The first results indicated that the lactone functionality was fundamental for the activity. Consequently, a second batch of derivatives were prepared in order to check if a modulation of the potency could be possible by modifying the side chain. However, these results will be not presented in this thesis because part of the PhD work of Jean-Yves Wach at the EPFL.

Derivative 69 was prepared from alkenylhalide 24 by removal of the acetal and then oxidation with $\mathrm{MnO}_{2}$ (Scheme 52). This derivative conserved the lactone moiety. The chain was removed and in addition to the presence of a bromine at $\mathrm{C}(8)$, the diene system displayed $E, E$ configuration and not the $E, Z$ of the natural product. Compound 70 was prepared from alcohol 28 by reaction with allyl bromide and then following the same procedure as for derivative 69 (Scheme 52). The chain was substituted by a short residue, but the lactone moiety was maintained as well as the diene system in the $E, Z$ configuration with the methyl group at $\mathrm{C}(8)$ as in anguinomycin C . In addition to these derivatives, intermediates 24 and $\mathbf{2 5}$, both with the lactone masked as $i \operatorname{PrO}-$ lactol and for 24 displaying the wrong $E, E$ configuration, were submitted for biological evaluation. In addition, we also submitted the $\alpha, \beta$-unsaturated aldehyde 67 and compound 68 (Scheme 52), which were isolated during the synthesis of anguinomycin D. Interestingly, compound 67 displays the same side chain as the natural compound but the $\alpha, \beta$-unsaturated lactone is replaced by an $\alpha, \beta$-unsaturated aldehyde. Product 68, which lacks the polyketide chain, is a truncated version of the natural compound.


28

25


68


Scheme 52: a) PPTS, acetone/water (3/1), RT, 2 h ; b) $\mathrm{MnO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ pyridine (1:0.025), 1.5 $\mathrm{h}, 31 \%$ (2 steps); c) $\mathrm{NaH}, \mathrm{DMF},-20^{\circ} \mathrm{C}, 25 \mathrm{~min}$, then allyl bromide, $-20^{\circ} \mathrm{C} \rightarrow \mathrm{RT}, 8 \mathrm{~h}$, $60 \%$; d) PPTS, acetone/water (3/1), RT, 2 h ; e) $\mathrm{MnO}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2} /$ pyridine (1:0.025), $3 \mathrm{~h}, 29 \%$ (2 steps).

### 2.4.9. Biological Evaluation

Compounds such LMB selectively inhibit the CRM1-mediated nucleocytoplasmic transport by blocking the interaction between CRM1 and the NES signal of the cargo. ${ }^{27,28}$ In order to test if anguinomycins C and D and the prepared derivatives could also inhibit this process, we analyzed how treatment of cells with these products influenced the intramolecular localization of the human protein Rio2. This protein is a cytoplasmic protein kinase this is exported from the nucleus to the cytoplasm by CRM1. ${ }^{137}$ Inhibition of CRM1-mediated transport would result in an accumulation of the Rio2 protein in the nucleus. HeLa cells were incubated with different concentrations of anguinomycin C , anguinomycin D and derivatives for 90 minutes and then fixed with paraformaldehyde. LMB was used as a standard reference. After treatment, the localization of the Rio2 protein was determined by indirect immunofluorescence using specific antibodies, which target human Rio2.

[^49]Both anguinomycins C and D caused a strong accumulation of the Rio2 protein in the nucleus and displayed similar activity to the standard reference LMB, whereas in untreated control cells the Rio2 protein was localized in the cytoplasm. The results confirmed that both anguinomycins C and D are potent inhibitors of CRM1-mediated nucleocytoplasmic transport. Anguinomycin D displayed full inhibition at 5 nM , while anguinomycin C showed a weak inhibition at the same concentration and reaching full inhibition at 10 nM . These values can be compared with that of LMB, which fully inhibits nucleocytoplasmic transport at 1 nM . (Figure 25a \& b).


Figure 25a: Anguinomycin $C$ inhibition of CRM1-dependent nuclear export of Rio2 in HeLa cells.


Figure 25b: Anguinomycin D inhibition of CRM1-dependent nuclear export of Rio2 in HeLa cells. Compound $\mathbf{6 0}$ was used as negative control.

Derivatives 24 and 25 (Scheme 52), which are structurally very different to anguinomycin, were then tested against the same target and did not show activity at concentrations below $100 \mu \mathrm{M}$. For derivative 69 it was not clear from the image if even weak inhibition was achieved at $100 \mu \mathrm{M}$. However, activity at $10 \mu \mathrm{M}$ was observed for derivative 70 which contains the same $C(1)-C(11)$ fragment as formed in
natural anguinomycin $C$ (Figure 26). These initial results indicate that the activity is derived mainly from the lactone moiety, which therefore must play a crucial role in the mode of action while the side chain was probably involved in the molecular recognition.


Figure 26: Compounds $\mathbf{2 4}$ and 25, 69, 70 inhibition of CRM1-dependent nuclear export of Rio2 in HeLa cells.

Very interesting results were obtained for the $\alpha, \beta$-unsaturated aldehyde 67 and lactone 68. The results show that at 50 nM , aldehyde 67 shows weak inhibition and at 100 nM full inhibition is observed (Figure 27). This compound displays the same side chain as in natural anguinomycins C and D , but the Micheal acceptor has been replaced by the $\alpha, \beta$-unsaturated aldehyde resulting in a 10 -fold loss in activity. Although ten times less active than the parent compound, at 50 nM it can be considered highly active. More surprising was the high activity displayed by product 68, which lacks the polyketide chain. The compound caused a small accumulation of the Rio2 protein in the nucleus at 10 nM and full inhibition was observed at 50 nM (Figure 27). This result highlights the fundamental role of the $\alpha, \beta$-unsaturated lactone in the inhibition of CRM1-mediated nucleocytoplasmic transport, supporting the thesis that the side chain plays a role in the molecular recognition and modulation of the activity. Even though compound $\mathbf{6 8}$ was a drastic simplification of the natural anguinomycins C and D , the activity decreased by less than one order of magnitude. From the synthetic point of view, lactone $\mathbf{6 8}$ would be much easier to prepare than the natural compounds resulting in a gain of time and resources.


Figure 27: Compounds 67 and 68 inhibition of CRM1-dependent nuclear export of Rio2 in HeLa cells.

The biological results obtained in this work have to be compared with the SAR investigation of other groups on related compounds. Kobayashi and co-workers reported biological investigations on callystatin (Figure 2) and its derivatives, ${ }^{138}$ proving the fundamental importance of the lactone fragment for the activity. The same studies showed that modifications of the polyketide chain cause a loss in activity of about one order of magnitude compared with the natural callystatin. In addition, inversion of configuration at $\mathrm{C}(5)$ causes a 350 -fold loss in activity. Kalesse and coworkers performed similar investigations on ratjadone (Figure 2), ${ }^{139}$ showing again

[^50]that the lactone was crucial for activity. However, for this compound inversion of configuration at $\mathrm{C}(10)$ resulted in a complete loss of activity. Recently, Mutka and coworkers reported new derivatives of LMB displaying the same potency as the parent compound, but with a higher selectivity towards normal and cancer cells. ${ }^{31}$ Structureactivity relationship studies performed on anguinomycins C and D and their derivatives were in agreement with the literature. Derivatives $\mathbf{2 4}$ and $\mathbf{2 5}$ clearly proved that the absence of the lactone resulted in a complete loss on the activity. Compound 70 displayed a loss in activity of three orders of magnitude compared to the parent compound, which is in agreement with results obtained by Kobayashi and co-workers for callystatin derivatives. The high activity of compound $\mathbf{6 8}\left(\mathrm{IC}_{50}=50\right.$ $\mathrm{nM})$ can be explained by the fact that this derivative is a shortened version of the parent compound, which lacks the polyketide chain but still contains the important lactone moiety. It is possible that modifications in the polyketide chain cause the molecule to change conformation, inducing steric constraints, which reduce its binding affinity for CRM1. These promising results prompt further investigation on derivatives of anguinomycins C and D , which are currently ongoing.

### 2.5. Conclusion

This chapter was dedicated to the leptomycin family, a class of compounds giving promising results in the domain of cancer research targeting the nucleocytoplasmic transport. We started with a discussion of the biology of these natural products that presently is not fully understood and requires broader investigations. In the second part we analyzed the reported chemistry and especially the efforts concerning callystatin. The need to find more selective inhibitors of nucleocytoplasmic transport and the unveiled structure of anguinomycins C and D prompted us to develop a synthesis for these natural products. With its six unknown stereogenic centers, the lactone ring, the two diene systems and the polyketide chain, anguinomycins present a good target for total synthesis. During the planning of our synthesis we tried to avoid all steps that, as reported for similar compounds, could present problems and compromise the whole synthesis. The chosen disconnections allowed us to get fragments of similar complexity resulting in a highly convergent synthesis and noteworthy steps include the Cr (III) catalyzed hetero Diels-Alder gave straightforward access to the dihydropyrane ring in high yield and selectivity. The Negishi cross-coupling under stereoinversion furnished the cis product for both anguinomycins C and D from a common starting material. Moreover, to date the use of this reaction in total synthesis has not been reported and we have demonstrated its applicability in the domain. Once more, the Evans aldol reaction and in this case using the Seebach modification of the auxiliary (DIOZ) proved to be of great use for the synthesis of the polyketide chain. The total synthesis also definitively establishes the absolute configuration of anguinomycins C and D as $5 R, 10 R, 16 R, 18 S, 19 R, 20 S$, which as proposed earlier, matches that of LMB. The total syntheses of anguinomycins C and D were achieved in 29 steps with a longest linear sequence of 18 steps from ( $R$ )-4-isopropyl-5,5-diphenyloxazolidin-2-one (32) and with an overall yield of $6.7 \%$ and $6.0 \%$ respectively. To date no other total syntheses of anguinomycins C and D have been reported in literature and we can only compare our work with the routes proposed by other groups for the preparation of related compounds. Almost all the reported syntheses of compounds belonging to the leptomycin family required a major number of steps. This is valid also for callystatin, even though it displays a shorter polyketide chain compared to the anguinomycins. Unfortunately, for several syntheses the overall yield of the longest linear sequence
could not be calculated because advanced starting materials were employed. Here we report a resume of the number of steps required for all the reported syntheses of members of the leptomycin family (Table 4).

Table 4: Resume of the synthesized members of the leptomycin family

| Compound | Group | Year | Steps <br> (total) | Steps longest linear sequence <br> (starting material) |
| :---: | :---: | :---: | :---: | :---: |
| Callystatin | Kobayashi | 1998 | 39 | 18 (Roche ester LI) |
|  | Crimmins | 1998 | 37 | 18 (allyl iodide) |
|  | Smith | 2001 | 32 | 15 (oxazolidinone LVIII) |
|  | Kalesse | 2001 | 28 | 21 (Roche ester ent-LI) |
|  | Enders | 2002 | 40 | 15 (RAMP) |
|  | Marshall | 2002 | 39 | 18 (Roche ester ent-LII) |
|  | Lautens | 2002 | 45 | 27 (cyclohexanal) |
|  | Panek | 2004 | 37 | 18 (pseudoephedrine) |
|  | Dias | 2005 | 39 | 20 ((S)-2-methyl-1-butanal) |
|  | Micalizio | 2008 | 25 | 11 ((S)-2-methyl-1-butanal) |
| Leptomycin B | Kobayashi | 1998 | 40 | 25 (geraniol) |
| (+)-Ratjadone | Kalesse | 2000 | 36 | 19 (Roche ester ent-LII) |
| (-)-Ratjadone | Williams | 2001 | 48 | 30 (geraniol) |
| (-)-Kazusamycin A | Kuwajima | 2004 | 56 | 33 (diethylethoxymetylenemalonate) |
| Leptofuranin D | Marshall | 2003 | 39 | 25 (Roche ester ent-LII) |
| Leptostatin | Marshall | 2006 | 43 | 25 (Roche ester ent-LII) |
| Anguinomycin C | This work | 2007 | 29 | 18 (diphenyloxazolidinone 32) |
| Anguinomycin D | This work | 2008 | 29 | 18 (diphenyloxazolidinone 32) |

Following the total syntheses of the two natural compounds we investigated the biology of these products and more precisely the mode of action and the structureactivity relationships. Several derivatives were prepared and submitted for biological evaluation. The results confirmed the crucial importance of the lactone ring for the activity and also that the activity can be modulated by changing the side chain, which
mainly plays a role in the molecular recognition. Both anguinomycins C and D displayed a strong inhibition of the CRM1-mediated nucleocytoplasmic transport at 5 nm , confirming their powerful activity. Moreover, a new compound 68 that caused accumulation of the Rio2 protein in the nucleus at less than 50 nm was identified. This compound was a simplification of the parent natural products and it maintained strong activity. In terms of time and economy, the synthesis of this compound would be a gain compared to the preparation of the natural anguinomycins C and D and its application as a tool in chemical biology or eventually as a drug candidate could be envisaged. These results prompt further research of new strong nucleocytoplasmic transport inhibitors and evaluation of derivatives of anguinomycin C and D are currently under investigation. It is hoped that the work outlined in this chapter will help to better understand the relationship between CRM1 and the leptomycin family and maybe contribute to the search for more powerful and selective nucleocytoplasmic transport inhibitors for cancer treatment.

## 3. Synthetic Studies on Sporolides

### 3.1. Isolation, Structure Elucidation and Biological Activity

Sporolides A (CLXXV) and B (CLXXVI) are complex marine macrolides isolated from the culture broth CNB-392, then assigned as Salinospora tropica (Figure 28). ${ }^{140}$ The strain was isolated in 1989 from marine sediments ( -1 m ) near to Chaub Cay, Bahamas and cultivation of this group of actinomycetes required seawater for growth. The actinomycetes genus Salinospora is an impressive source of compounds and culture extracts have shown that more than $80 \%$ of the produced structures inhibited in vitro growth of human colon carcinoma HCT-116 and 35\% displayed antibacterial properties. ${ }^{141}$ Among the molecules produced by the genus Salinospora, which displayed interesting biological properties were salinosporamide A (CLXXVII) (Figure 28), rifamycin, staurosporine, saliniketal and cyclomarin A. ${ }^{142}$ Salinosporamide A with its unusual fused $\gamma$-lactam- $\beta$-lactone ring structure was the first compound isolated from the strain Salinospora tropica. ${ }^{143}$ The potent biological activity as a proteasome inhibitor of this compound led it, in 2005, to enter into clinical trials for cancer treatment. ${ }^{144}$ Further investigation of this strain resulted in the isolation of the two new metabolites, sporolides A and B. These compounds display an interesting architectural structure, featuring 22 out of 24 carbons that are either $\mathrm{sp}^{2}$ hybridized or oxygenated, 7 rings and 10 stereogenic centers. This molecular complexity makes these structures challenging targets for total synthesis. These molecules are basically formed from two main fragments; a chlorinated cyclopenta $[a]$ indene ring and a cyclohexanone fragment. In the first biological assays sporolides A and B did not show activity against human colon carcinoma HCT-116, methicillin-resistant Staphylococcus aureus or vancomycin-resistant Enterococcus faecium. ${ }^{140}$

[^51]

Sporolide A: R=CI, R' = H (CLXXV)
Sporolide B: R = H, R' = CI (CLXXVI)


Salinosporamide A (CLXXVII)

Figure 28: Sporolides A (CLXXV) \& B (CLXXVI) and salinosporamide A (CLXXVII).

### 3.2. Biosynthetic Considerations

The unusual structure of sporolides A (CLXXV) and B (CLXXVI) encouraged chemists to investigate its biosynthesis. The aromatic moiety of sporolides was hypothesized by Fenical and co-workers to derive from an unstable nine-membered ring enediyne precursor, which can undergo a Bergmann cyclization ${ }^{145}$ with trapping of the biradical by a chlorine source. ${ }^{146}$ Sequencing of the Salinospora tropica genome by Moore and co-workers demonstrated the validity of the hypothesis. ${ }^{147}$ In this strain, a very high percentage ( $9.9 \%$ ) of the genome devoted to natural product assembly was observed. In the genome there were clusters recognized involved in the biosynthesis of enediyne polyketides. In particular, genes encoding the postulated biosynthesis via a nine-membered ring enediyne as well as those encoding the coupling with the cyclohexanone subunit derived from tyrosine were identified (Scheme 53). ${ }^{148}$ An interesting point to note was that between 15 type I polyketide synthase-associated modules (PKS) recognized, none contained the whole sequence which would lead to the complete reduction of the carbonyl groups to saturated methylene carbons, in agreement with the highly oxygenated structure of sporolides. ${ }^{147}$

[^52]

Scheme 53: Biosynthetic pathway for sporolides A (CLXXV) \& B (CLXXVI) proposed by Moore and co-workers based on Salinospora tropica genome sequencing. ${ }^{148}$

### 3.3. Enediyne Natural Products as Antitumor Agents

### 3.3.1. History, Mode of Action, Activity and Stability of Enediynes

The enediyne antitumor antibiotics are a class of compounds discovered in the mid 1980s with the isolation of neocarzinostatin (CLXXIX), ${ }^{149}$ calicheamicin (CLXXX), ${ }^{150}$ esperamicins (CLXXXI) ${ }^{151}$ and dynemycin (CLXXXII) ${ }^{152}$ (Figure 29). The unprecedented molecular structure of these compounds as well as their exceptional biological activity engendered great interest in the chemistry community. The popularity of the enediyne increased quickly, resulting in hundreds of studies and

[^53]synthesis papers. Today, compounds presenting an enediyne core are considered extremely potent antitumor antibiotics and activity in the femtomolar range has been reported. ${ }^{153}$ Encouraging results from this class of compounds have been reported, e.g. the antibody-calicheamicin conjugate $\left(\operatorname{Mylotarg}{ }^{\circledR}\right)(\mathbf{V}$, Figure 1), which is used to treat acute myelogenous leukemia. ${ }^{154}$


(+)-Neocarzinostatin (CLXXIX)

Dynemicin A (CLXXXII)

Figure 29: First enediynes antitumor antibiotics discovered: (+)-neocarzinostatin (CLXXIX), calicheamicin $\gamma^{1}$ (CLXXX), esperamicin (CLXXXI) and dynemicin A (CLXXXII).

The impressive biological activity of the enediyne antitumor antibiotics is directly derived from their ability to generate a diradical species via Bergman cyclization ${ }^{145}$ and induce DNA strand cleavage. Bergman reported in 1972 the thermal cyclization

[^54]of (Z)-3-ene-1,5-diyne species via the benzene-1,4-diyl radical, but elevated temperature were required. Several investigations were reported understanding the factors that influence the cycloaromatization process in natural enediynes. There are two important factors, proximity of the carbons atoms forming the new C-C bond, which has to be between $3.4 \AA$ and $2.9 \AA$ for a spontaneous cyclization at room temperature and the ring strain. ${ }^{155}$ In natural enediynes the cycloaromatization occurs spontaneously at physiological temperature generating the diradical species, which induces DNA breaking (Scheme 54). ${ }^{156}$ The DNA double-helix cleavage can be summarized in four steps: a) recognition of specific structural feature attached to the enediyne and binding to DNA; b) activation of the enediyne; c) diradical formation via Bergman cyclization; d) abstraction of a proton of deoxyribose in DNA inducing strain cleavage. ${ }^{157}$ Depending on the endiyne natural product, proton abstraction can be preferentially initiated at different positions of the deoxyribose, generally $5^{\prime}, 4$, or 1,. ${ }^{158}$


Scheme 54: DNA strand clevage initiated at C5' by proton abstraction. The same mechanism applies for initiation at $\mathrm{C} 4^{\prime}$ and $\mathrm{C} 1^{\prime} . \mathrm{B}=$ nucleobase, $\mathrm{Ar}{ }^{\circ}=$ radical generated by Bergmann cycloaromatization.

Nicolaou and co-workers recognized at least three important functional domains characterizing these classes of natural products: a) the "warhead" which is responsible for the activity by generating the DNA damaging fragment; b) the "delivery system" that carries the warhead to the target; and c) the "triggering device" that when activated initiates the cascade reaction forming the active diradical. ${ }^{158}$ Natural enediynes are labile molecules and they can be divided into two classes, the 9- and the 10 -membered ring unit. The latter are more stable than the related 9 -membered rings,

[^55]which need a stabilizing protein to avoid undergoing cycloaromatization. ${ }^{159}$ The 9membered ring enediynes are usually isolated as a non-covalently bound complex with their respective apoprotein, which prevents the cycloaromatization of the chromophore. ${ }^{160}$ However, the protein cannot fully stabilize the highly reactive chromophore, which decomposes upon aging. A second goal of the chromoprotein is also to act as a shuttle to deliver the active enediyne to the target, the DNA. ${ }^{159}$ The challenge for organic chemists is to prepare enediyne system having a "decent halflife" (10-36 hours at biological temperature, $37^{\circ} \mathrm{C}$ ) or stable precursors that can be activated to induce cycloaromatization. ${ }^{155}$ Today, the enediyne antitumor antibiotics and their derivatives remain lead candidates in the battle against cancer. ${ }^{161}$ The research in this field continues and efforts to find new potent and selective compounds have given encouraging results, e.g. the hybrid antibody-calicheamicin conjugate (Mylotarg®) (V, Figure 1) and neocarzinostatin (CLXXIX, Figure 29) which are used in cancer therapy, ${ }^{154}$ or dynemicin prodrugs which can selectively be activated in the tumor cells. ${ }^{162}$

### 3.3.2. Nine-Membered Ring Natural Endiynes

### 3.3.2.1. The Neocarzinostatin Chromophore

Neocarzinostatin (NCS) was isolated in 1965 from Streptomyces carzinostaticus Var. F41, ${ }^{163}$ but its structure was not elucidated until twenty years later. ${ }^{149}$ The chromophore (CLXXIX) was isolated as a 1:1 complex with its apoprotein composed of a 113 amino acid polypeptide chain. ${ }^{164}$ Several synthetic studies have been reported on this compound, but only two total syntheses of the NCS aglycon ${ }^{165}$ and one of the

[^56]entire chromophore have been published. ${ }^{166}$ The NCS chromophore displays potent antitumor and antibacterial activity via oxygen-mediated DNA cleavage. ${ }^{167}$ In 1987 Myers proposed the mode of action of the chromophore; in which the nucleophilic attack of a thiol group at $\mathrm{C}(12)$ induced the Bergmann cycloaromatization via a cumulene intermediate (Scheme 55). ${ }^{168}$ The naphtoate residue of the NCS chromophore intercalates into the DNA positioning the enediyne for the DNA cleavage. ${ }^{169}$ Moreover, several studies to elucidate the details of the DNA cleavage were reported, supporting other mechanisms than the proton abstraction at the 4'position of deoxyribose in DNA. ${ }^{170}$ The clinical applications of NCS were initially limited due to its extreme toxicity. The problem was later overcome by conjugation of the chromophore with a biocompatible polymer. The poly(styrene-co-maleic acid)NCS conjugate (SMANCS) displays high biological activity and high tumor-targeting efficiency and has been approved in Japan for the treatment of liver cancer. ${ }^{171}$

[^57]


Scheme 55: Mode of action of the NCS chromophore (CLXXIX) proposed by Myers and co-workers. Thiol attack at $\mathrm{C}(12)$ induces Bergmann cycloaromatization via a cumulene intermediate.

### 3.3.2.2. The C-1027 Chromophore

The chromoprotein enediyne natural product C-1027 was isolated in 1988 from Streptomyces globisporus C-1027 ${ }^{172}$ as a $1: 1$ complex of the chromophore (CLXXXIII) (Figure 30) with its apoprotein composed of 110 amino acid. ${ }^{173}$ The free chromophore is highly labile and cycloaromatization spontaneously occurrs in ethanol at $25^{\circ} \mathrm{C}$ with a half-life of 50 minutes. Even though the synthesis of advanced intermediates of the C-1027 chromophore have been published, ${ }^{174}$ no total synthesis has been reported. This antibiotic displays an extremely potent anticancer activity towards several tumors. Its cytotoxicity is higher than that of the previously discussed NCS chromophore and the cycloaromatization via p-benzene diradical spontaneously

[^58]occurs without presence of the thiol group. ${ }^{175}$ To date no clinical use of C-1027 has been reported, but investigations are under way. ${ }^{176}$


Figure 30: The C-1027 chromophore (CLXXXIII).

### 3.3.2.3. The Maduropeptin Chromophore

The maduropeptin chromophore (CLXXXIV) was isolated in 1991 from Nomadura madurae as a 1:1 complex with its acidic, water-soluble apoprotein of 32 $\mathrm{kDa} .{ }^{177}$ Several synthetic studies have been reported, but only a single total synthesis of the aglycon chromophore has been published. ${ }^{178}$ This 9 -membered ring enedyine displayed potent antitumoral and antibacterial properties ${ }^{177}$ resulting in a mixture of single- and double-strand cleavage of DNA. ${ }^{179}$ The labile chromophore can be dissociated from the carrier protein by treatment with methanol, forming the corresponding methanol adduct (CLXXXV) (Scheme 56). The methanol adduct represent a stable prodrug of the labile enedyine chromophore and a mechanism of action starting from this stabilized adduct has been postulated. ${ }^{180}$ To date no clinical application of this compound has been reported.

[^59]

Maduropeptin chromophore (CLXXXIV)


Methanol adduct (CLXXXV)

Scheme 56: The maduropeptin chromophore (CLXXXIV) and its corresponding methanol adduct (CLXXXV).

### 3.3.2.4. The Kedarcidin Chromophore

The chromoprotein antitumor antibiotic kedarcidin was isolated in 1991 from a culture of actinomycete strain L585-6. ${ }^{181}$ The structure of the chromophore (CLXXXVI) was elucidated one year later (Figure 31). ${ }^{182}$ Due to the high instability of the chromophore, its structure has been characterized through a series of revisions of the configuration. The first one in 1997 by Hirama and co-workers ${ }^{183}$ and the second one in 2007 by Myers and co-workers. ${ }^{184}$ In between, Myers and co-workers reported the first synthesis of the originally proposed aglycon chromophore, ${ }^{185}$ which was then corrected with the right configuration in the second synthesis in $2007{ }^{184} \mathrm{~A}$ second synthesis of the kedarcidin aglycon chromophore was recently reported by Hirama and co-workers. ${ }^{186}$ Similarly to the previously presented 9 -membered ring enediynes, the kedarcidin chromophore also displays strong activity against several

[^60]tumors with an $\mathrm{IC}_{50}$ of 1 nM for HCT116 colon carcinoma cell lines. This enediyne induces single strand cleavage of DNA in a selective way recognizing the TCCT sequence. ${ }^{187}$


Figure 31: The kedarcidin chromophore (CLXXXVI).

### 3.3.2.5. The N1999A2 Enediyne Antibiotic

The N1999A2 antibiotic (CLXXXVII) was isolated in 1998 from Streptomyces sp. AJ9493 (Figure 32). ${ }^{188}$ This 9-membered enediyne ring differs from the previously discussed compounds, as it can be isolated and is stable in the absence of a carrier protein. Structurally, the compound is similar to the neocarzinostatin chromophore, but lacks the presence of the amino sugar. In 2006 Myers and co-workers reported the enantioselective synthesis of N1999A2. ${ }^{189}$ The N1999A2 antitumor antibiotic displays potent inhibition of various tumor cell lines growth, with in vivo $\mathrm{IC}_{50}$ values from pico- to nano-molar range. Similarly to the NCS chromophore, N1999A2 also has the naphtoate residue, which can intercalate into the DNA base pairs and the strain cleavage occurs by preferential attack on the thymine base. ${ }^{190}$

[^61]

N1999A2 chromophore (CLXXXVII)

Figure 32: The N1999A2 chromophore (CLXXXVII).

### 3.4. Total Synthesis and Synthetic Studies on Sporolides

The first synthetic study on sporolides was published by O'Connor and coworkers in 2007. The study demonstrated the possibility of trapping the $p$-benzyne diradical formed via Bergman cyclization with a nucleophilic addition of a chlorine anion in the presence of a weak acid (Scheme 57). ${ }^{191}$ The result provided an explanation to how the halogen could be incorporated and also why sporolides A and B were isolated as $1: 1$ mixture (Figure 28).


Scheme 57: Proposed mechanism for the generation of haloaromatic compounds via halide addition to a $p$-benzene diradical derived from an enediyne.

In 2008, Nicolaou and co-workers reported the first synthesis of a model system of sporolide B with an intramolecular [4+2] cycloaddition as a key step (Scheme 58). ${ }^{192}$ For this study the chlorinated cyclopenta $[a]$ indene ring was simplified removing all the substituents and the fragment (CLXXXIX) prepared in ten steps from commercially available 3-iodo-4-methylbenzoic acid (CLXXXVIII). ${ }^{193}$ The building block (XCCI) was synthesized in seven steps as a racemic mixture from the phenol derivative (XCC), which was itself prepared in three steps following a known procedure. ${ }^{194}$ The two fragments were coupled and the catechol deprotected to give compound (XCCII). Treatment with $\mathrm{AgO}_{2}$ allowed the in situ generation of the $o$ -

[^62]quinone intermediate (XCCIII), which directly undergoes a Diels-Alder reaction to afford the macrocycle (XCCIV) in $60 \%$ yield. No details on the selectivity were reported; further modifications afforded the model system (XCCV).


Scheme 58: a) XCCI (1.25 equiv), CLXXXIX (1.0 equiv), DCC (1.3 equiv), DMAP ( 0.2 equiv), $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}, 84 \%$; b) $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH}, 25^{\circ} \mathrm{C}, 24 \mathrm{~h}, 98 \%$; c) $\mathrm{Ag}_{2} \mathrm{O}(2.0$ equiv), toluene ( 0.005 M ), $120^{\circ} \mathrm{C}, 1 \mathrm{~h}, 60 \%$.

Recently, Nicolaou and co-workers reported the first total synthesis of sporolide B (CLXXVI). ${ }^{195}$ For the synthesis they did not opt for a biosynthetic approach based one enediyne intermediate, but on intramolecular cycloadditions. The chlorobenzenoid indane motif was synthesized via a ruthenium-catalyzed intermolecular $[2+2+2]$ cycloaddition and the macrocycle furnishing the sporolide B skeleton via the previously presented Diels-Alder reaction. The synthesis of the chlorinated cyclopenta $[a]$ indene ring fragment started from iodoenone (XCCVII), which was synthesized in nine steps from furfuryl alcohol (XCCVI).78. ${ }^{196}$ Iodoenone (XCCVII) was transformed to aldehyde (XCCVIII) in thirteen steps using standard chemistry. The product was subsequently treated with a solution of

[^63]lithiochloroacetylene in situ prepared from cis-1,2-dichloroethylene to afford the alcohol product with the undesired stereochemistry at $\mathrm{C}(11)$. The problem was solved using an oxidation and reduction sequence to afford alcohol (ICC). Two additional steps of protecting group manipulation gave the acetoxy chloroacetylene fragment (CC) (Scheme 59).


Scheme 59: a) $\mathrm{NaBH}_{4}, \mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH},-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$; b) NaH , THF, $0{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}$; then $\mathrm{BnBr}, \mathrm{TBAI}, \mathrm{THF}, 0 \rightarrow 25{ }^{\circ} \mathrm{C}, 16 \mathrm{~h}, 95 \%$ ( 2 steps); c) $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ ( 0.05 equiv), $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CO}$ (balloon pressure), $\mathrm{MeOH}, 70^{\circ} \mathrm{C}, 3 \mathrm{~h}, 95 \%$; d) DIBAL-H ( 1.0 M toluene), toluene, $-78 \rightarrow$ $10^{\circ} \mathrm{C}, 1 \mathrm{~h}, 95 \%$; e) DHP ( 1.5 equiv), $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}$; f) TBAF ( 1.0 M THF), THF, $25^{\circ} \mathrm{C}, 3 \mathrm{~h}$; g) DMP, $\mathrm{NaHCO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 30 \mathrm{~min}, 83 \%$ (3 steps); h) I , $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ pyridine ( $1: 1$ ), $25{ }^{\circ} \mathrm{C}, 15 \mathrm{~h}, 80 \%$; i) $\mathrm{NaBH}_{4}, \mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}, \mathrm{MeOH},-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$; j) TBSCl, imidazole, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}, 94 \%$ (2 steps); k) TMS-acetylene, $\mathrm{PdCl}_{2}\left(\mathrm{PPh}_{3}\right)_{2}$ ( 0.02 equiv), CuI ( 0.04 equiv), $\mathrm{Et}_{2} \mathrm{NH}, 25^{\circ} \mathrm{C}, 16 \mathrm{~h}, 98 \%$; 1) $\mathrm{Et}_{2} \mathrm{AlCl}(1.8 \mathrm{M}$ toluene), $\mathrm{CH}_{2} \mathrm{Cl}_{2},-25 \rightarrow 25^{\circ} \mathrm{C}, 2 \mathrm{~h}, 99 \%$; m) DMP, $\mathrm{NaHCO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 1 \mathrm{~h}, 79 \%$; n) cis-1,2-dichloroethylene, $\mathrm{MeLi}\left(1.6 \mathrm{M} \mathrm{Et}_{2} \mathrm{O}\right), \mathrm{Et}_{2} \mathrm{O}, 0{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}$, then XCCVIII, $\mathrm{Et}_{2} \mathrm{O}, 0$ ${ }^{\circ} \mathrm{C}, 10 \mathrm{~min}$; o) $\mathrm{DMP}, \mathrm{NaHCO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 93 \%$ (2 steps); p) DIBAL-H ( 1.0 M toluene), toluene, $-78{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}, 81 \%$; q) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, 25^{\circ} \mathrm{C}, 1 \mathrm{~h}, 99 \%$; r) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}$, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 30 \mathrm{~min}, 98 \%$.

The second building block, featuring the cyclohexanone subunit, started from aldehyde (CCII), which was prepared in four steps from commercially available piperonal (CCI) following a known procedure. ${ }^{197}$ Following Wittig reaction and Sharpless asymmetric dihydroxylation using AD-mix- $\beta$ afforded diol (CCIII) in $98 \%$ $e e$. The product was converted to the carboxylic acid (CCIV) in five additional steps and then coupled with the acetylinic alcohol (CCV) to afford hydroxy ester (CCVI) in $73 \%$ yield. The acetylinic alcohol (CCV) was prepared in four steps from

[^64]commercially available (+)-2,3-O-isopropylidene-L-threitol ${ }^{198}$ or in two more additional steps from commercially available L-diethyl tartrate. ${ }^{199}$ Treatment of hydroxy ester (CCVI) with $\mathrm{Pb}(\mathrm{OAc})_{4}$ afforded the target compound (CCVII) in $89 \%$ yield as a 8:1 mixture of diastereoisomers (Scheme 60).


Scheme 60: a) $\mathrm{MePPh}_{3} \mathrm{Br}$, $\mathrm{KHMDS}\left(1.0 \mathrm{M}\right.$ toluene), THF, $0{ }^{\circ} \mathrm{C}$, 30 min , then CCII, THF, $78{ }^{\circ} \mathrm{C} \rightarrow 0{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}, 98 \%$; b) AD-mix- $\beta, t \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(1: 1), 25^{\circ} \mathrm{C}, 8 \mathrm{~h}, 96 \%$; c) TBSCl, $\mathrm{Et}_{3} \mathrm{~N}$, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 8 \mathrm{~h}, 99 \%$; d) $t \mathrm{BuOK}$, MeI, MeCN, $0 \rightarrow 25^{\circ} \mathrm{C}, 16 \mathrm{~h}, 95 \%$; e) TBAF ( 1.0 M THF), THF, $25^{\circ} \mathrm{C}, 16 \mathrm{~h}, 99 \%$; f) DMP, $\mathrm{NaHCO}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 1 \mathrm{~h}, 78 \%$; g) $\mathrm{NaClO}_{2}, \mathrm{NaH}_{2} \mathrm{PO}_{4} \bullet 2 \mathrm{H}_{2} \mathrm{O}$, 2-methyl-2-butene, $t \mathrm{BuOH} / \mathrm{H}_{2} \mathrm{O}(1: 1), 25^{\circ} \mathrm{C}, 30 \mathrm{~min}, 96 \%$; h) 20, EDCI, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 3 \mathrm{~h}, 73 \%$; i) $\mathrm{Pb}(\mathrm{OAc})_{4}$, benzene, $75^{\circ} \mathrm{C}, 1 \mathrm{~h}, 89 \%$.

The $[2+2+2]$ cycloaddition between acetylene fragment (CC) and the terminal alkyne (CCVII), catalyzed by $[\mathrm{Cp} * \mathrm{RuCl}(\operatorname{cod})]$ proceeded smoothly to afford compound (CCXI) in $87 \%$ yield. The product was obtained as a single regioisomer and a proposition of the mechanism is proposed in scheme 61.

[^65]





CCIX


Scheme 61: CC (1.0 equiv), CCVII (1.1 eq.), $\mathrm{Cp} * \mathrm{RuCl}(\operatorname{cod})\left(0.07\right.$ equiv), $\mathrm{DCE}, 25^{\circ} \mathrm{C}, 30$ $\min , 87 \%$.

Two additional protecting group manipulations and an oxidation of the catechol to the o-quinone gave compound (CCXII). The key Diels-Alder reaction, which was previously explored in the model system (Scheme 58), ${ }^{192}$ was attempted by heating (CCXII) in toluene and afforded the desired product (CCXIII) in $21 \%$ yield (50\% recovered starting material). The reaction took place with remarkable diasteroselectivity, probably due to sterics reasons induced by the substituents on the dienophile. Two more steps of protecting group modification followed by treatment with $\mathrm{PhI}\left(\mathrm{OCOCF}_{3}\right)_{2}$ in presence of PMBOH gave the $p$-ketal quinone (CCXIV) in $75 \%$ yield. Five additional steps furnished deoxysporolide (CCXV), which was subjected to the final epoxidation with $t \mathrm{BuOOH}$ and DBU to afford sporolide B (CLXXVI) in $63 \%$ yield (Scheme 62). To date this remains the only reported total synthesis of sporolide B and it required 58 steps from commercially available starting materials (longest linear sequence of 41 steps from furfuryl alcohol (XCCVI)).


Scheme 62: a) $\mathrm{Ac}_{2} \mathrm{O}, \mathrm{Et}_{3} \mathrm{~N}$, DMAP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}, 92 \%$; b) HF ( $48 \%$ aqueous solution), $\mathrm{MeCN}, 25^{\circ} \mathrm{C}, 30 \mathrm{~min}$, then $\mathrm{MeOH}, 25^{\circ} \mathrm{C}, 3 \mathrm{~h}, 74 \%$; c) $\mathrm{Ag}_{2} \mathrm{O}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 25^{\circ} \mathrm{C}, 30$ $\min , 94 \%$; d) toluene, $110^{\circ} \mathrm{C}, 1.5 \mathrm{~h}, 21 \%$; e) TESOTf, $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 30 \mathrm{~min}, 95 \%$; f) $\mathrm{H}_{2}, \mathrm{Pd}(\mathrm{OH})_{2}\left(10 \%\right.$ on carbon), EtOAc, $25^{\circ} \mathrm{C}, 4 \mathrm{~h}, 92 \%$; g) PIFA, PMBOH, $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeCN}$, $0{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}, 75 \%$; h) DMP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 25{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}, 90 \%$; i) HF ( $48 \%$ aqueous solution), $\mathrm{MeCN}, 25{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}, 85 \%$; j) $\mathrm{Me}_{4} \mathrm{NBH}(\mathrm{OAc})_{3}$, $\mathrm{MeCN} / \mathrm{AcOH}(10: 1), 25{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}, 85 \%$; k) DDQ, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{H}_{2} \mathrm{O}(10: 1), 25^{\circ} \mathrm{C}, 5 \mathrm{~h}, 70 \%$; 1) DBU, $\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH}(3: 1), 40^{\circ} \mathrm{C}, 4 \mathrm{~h}, 78 \%$; m) $t \mathrm{BuOOH}, \mathrm{DBU}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, 40^{\circ} \mathrm{C}, 3 \mathrm{~h}, 63 \%$.

### 3.5. Towards the Total Synthesis of the Sporolides

### 3.5.1. Strategy 1 - Synthesis of the 9-Membered Core via the Enediyne

### 3.5.1.1. Retrosynthetic Analysis and Strategy Considerations

Our synthesis of sporolides A and B had been planned in order to follow a biomimetic approach for the formation of the chlorinated cyclopenta $[a]$ indene ring. We proposed to pass through an enediyne system and a Bergmann cyclization, trapping the resulting diradical by a chloride source. This approach would allow the preparation of both fragments for the synthesis of sporolides A and B. Moreover, this pathway would give the possibility of investigating possible precursors for both
sporolides and potentially discovering new potent anticancer drugs. As already discussed, these compounds did not display interesting activity, this because the isolated sporolides are already the results of the Bergmann cycloaromatization. Probably, the reactive enediyne precursor was the biosynthetic main product of the Salinospora tropica. This is also supported by the fact that sporolides were isolated without an apoprotein that in most cases stabilize the 9 -membered enediyne system. To date there are no reports concerning the existence of a carrier protein stabilizing a potential precursor of sporolides A and B, even though biosynthetic studies support the enediyne pathway for their formation. ${ }^{147}$

Sporolides A (125) and B (126) can be split into two fragments, 123 and 124, by disconnecting at the ester and the acetal/vinylogous ester (Scheme 63). This thesis will concentrate on the preparation of fragment 124, because subunit $\mathbf{1 2 3}$ is part of the PhD work of Jean-Yves Wach at the EPFL. As discussed above, fragment 124 will derive from a Bergmann cycloaromatization of enediyne 122a with subsequent trapping of the newly formed diradical by a chloride source. The stability of the 9membered ring enediyne 122a will be evaluated during the synthesis. There is the possibility that intermediate 122a cannot be isolated as it might spontaneously undergo cycloaromatization when the 9-membered ring is formed. We planned to prepare the enediyne by intramolecular acetylide addition to the aldehyde in compound 97 , as reported in literature for similar substrates. ${ }^{165 a}$ Compound 97 will result from the Sonogashira coupling ${ }^{200}$ of the enediyne subunit $\mathbf{9 4}^{201}$ and the vinyl triflate 77. Fragment 94 will be prepared following similar procedure to that reported by Myers and co-workers in the synthesis of the neocarzinostatin chromophore starting from L-(S)-glyceraldehyde acetonide (85). ${ }^{165 a}$ The aldehyde will be itself synthesized according to the procedure developed at Hoffmann-La Roche starting from L-ascorbic acid (82). ${ }^{202}$ Fragment 77 derives from cyclopentenone (71) and is characterized by a Sharpless asymmetric dihydroxylation. ${ }^{203}$ A second approach

[^66]towards enediyne subunit 97 was also envisaged starting from enediyne subunit 94 and compound 81, which was obtained from cyclopentenone 71 via enantioselective kinetic resolution using Pig Liver Esterase (PLE). ${ }^{204}$


Scheme 63: Retrosynthetic analysis of sporolides A (125) and B (126).

[^67]
### 3.5.1.2. The Vinyl Triflate and the Vinyl Iodide Fragments

The synthesis of sporolides started from commercially available cyclopentenone (71). ${ }^{205}$ Morita-Baylis-Hillman reaction ${ }^{206}$ using aqueous formaldehyde in a mixture methanol/chloroform and in the presence of $\mathrm{PPhMe}_{2}$ as catalyst gave rapid access to the alcohol 72 in excellent yield ( $97 \%$ ) (Scheme 64). The reaction time had not to exceed one hour or degradation of the product was observed. Moreover, isolation of the product proved to be challenging because removal of the solvent resulted in degradation of the product. To overcome the problem, after one hour stirring the reaction mixture was dried by addition of $\mathrm{MgSO}_{4}$ and directly loaded on to a column of silica to afford alcohol 72. The product was subsequently protected with a TBS group to afford enone 73 in $99 \%$ yield.


Scheme 64: a) $\mathrm{HCHO}\left(37 \%\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}\right), \mathrm{PPhMe}_{2}(6 \mathrm{~mol} \%), \mathrm{CHCl}_{3}, \mathrm{MeOH}, \mathrm{RT}, 1 \mathrm{~h}, 97 \%$; b) TBSCl, imidazole, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, RT, overnight, $99 \%$.

Sharpless asymmetric dihydroxylation88 of compound 73 proved extremely difficult due to the electron deficient alkene and several sets of conditions were screened. From the literature it is known that electron poor olefins are less reactive than electron neutral or rich olefins towards osmium tetroxide and usually the problem is overcome by increasing the catalyst concentration. ${ }^{203 c, 207}$ Moreover, $\mathrm{MeSO}_{2} \mathrm{NH}_{2}$ (1-2 equiv) can be added to the reaction in order to accelerate the hydrolysis of the $\mathrm{Os}(\mathrm{IV})$ glycolate intermediate in the catalytic cycle. ${ }^{203 \mathrm{~b}}$ This faster hydrolysis is usually required for hindered olefins or for reaction at low temperatures. ${ }^{208}$ First attempts to afford the dihydroxylated product 74 were carried out using standard AD-mix- $\beta$ enriched with $\mathrm{K}_{2} \mathrm{OsO}_{2}(\mathrm{OH})_{2}(2 \mathrm{~mol} \%)$ in several solvents. The reactions did not proceed smoothly and even when the starting material

[^68]was completely consumed, the product $\mathbf{7 4}$ was isolated only in poor yields ( $20-28 \%$ ) (Table 5, entries 1-4). It was suspected that the diol product 74 was unstable toward the basic conditions and therefore, it was decided to change the reaction conditions and use N -methylmorpholine N -oxide (NMO) as oxidant. The reaction was performed using $\mathrm{K}_{2} \mathrm{OsO}_{2}(\mathrm{OH})_{2}(2 \mathrm{~mol} \%)$, (DHQD) $)_{2}$-PHAL ( $3 \mathrm{~mol} \%$ ), NMO and $\mathrm{MeSO}_{2} \mathrm{NH}_{2}$ ( 1 equiv) in a monophasic mixture water/acetone (1:3) at $0{ }^{\circ} \mathrm{C}$. After 6 hours the product 74 was obtained in $89 \%$ yield, but the optical rotation $\left([\alpha]^{23.5}{ }_{D}=-21.8^{\circ}(c\right.$ $0.78, \mathrm{CHCl}_{3}$ )) (Table 5 , entry 5 ) was slightly lower than the previously obtained (Table 5, entry 3). Faster conversion was obtained adopting the same conditions at RT to afford diol 74 in $95 \%$ yield in 45 minutes (Table 5, entry 6). In literature is reported that using NMO as cooxidant a second catalytic cycle affording bis-glycolate complex 75 is acting. ${ }^{203 c}$ The formation of a bis-glycolate complex 75 would result in a decrease of the enantiomeric excess, but this can avoid by slow addition of the olefin. We performed the reaction using $\mathrm{K}_{2} \mathrm{OsO}_{2}(\mathrm{OH})_{2}(1.5 \mathrm{~mol} \%)$, ( DHQD$)_{2}$ - PHAL ( 3 mol $\%$ ), NMO and $\mathrm{MeSO}_{2} \mathrm{NH}_{2}$ (1.5 equiv) in a monophasic mixture water/acetone (1:3) at RT and adding a solution of the olefin at a rate of $0.06 \mathrm{mmol} / \mathrm{min}$ (over 2.5 hours). After addition the reaction was stirred for additional 30 minutes and the product 74 was isolated in $92 \%$ yield (Scheme 65). An increase in the optical rotation was observed $\left([\alpha]^{22.9}{ }_{\mathrm{D}}=-28.9^{\circ}\left(c 0.99, \mathrm{CHCl}_{3}\right)\right)\left(\right.$ Table 5, entry 7). ${ }^{209}$ Attempts to assess the enantioselectivity via chiral stationary phases on HPLC revealed to be unsuccessful and also by injecting a racemic mixture of 74, only a single peak was observed. We decided to continue the synthesis without measuring the enantiomeric excess and check if diastereoisomers would appear after the coupling with the enediyne subunit.


Scheme 65: a) $\mathrm{K}_{2} \mathrm{OsO}_{2}(\mathrm{OH})_{2}(1.5 \mathrm{~mol} \%)$, ( DHQD$)_{2}$-PHAL ( $3.0 \mathrm{~mol} \%$ ), NMO, $\mathrm{MeSO}_{2} \mathrm{NH}_{2}$, water/acetone (1:3), then $73(0.06 \mathrm{mmol} / \mathrm{min})$, RT, $3 \mathrm{~h}, 92 \%$.

[^69]Table 5: Screened conditions for the preparation of the dihydroxylated compound (74).

| Entry | Conditions | Reaction time | Yield | Optical rotation | Comments |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 1 | $\begin{gathered} \mathrm{AD}-\text { mix }-\beta, \mathrm{K}_{2} \mathrm{OsO}_{2}(\mathrm{OH})_{4} \\ \quad(2 \mathrm{~mol} \%), \mathrm{MeSO}_{2} \mathrm{NH}_{2}, \\ \mathrm{H}_{2} \mathrm{O} / t \mathrm{BuOH}(1: 1), 0^{\circ} \mathrm{C} \rightarrow \mathrm{RT} \end{gathered}$ | 48 h | 20\% | n.d. | Side product formed and no starting material recovered |
| 2 | Entry $1+\mathrm{NaHCO}_{3}$ buffering | 48 h | 20\% | n.d. | Side product formed and no starting material recovered |
| 3 | $\begin{gathered} \text { AD-mix- } \beta, \mathrm{K}_{2} \mathrm{OsO}_{2}(\mathrm{OH})_{4} \\ (2 \mathrm{~mol} \%), \mathrm{MeSO}_{2} \mathrm{NH}_{2}, \\ \mathrm{H}_{2} \mathrm{O} / \mathrm{AcOEt}(1: 1), \mathrm{RT} \end{gathered}$ | 40 h | 24\% | $-24.5{ }^{\circ}$ | Starting material recovered |
| 4 | $\mathrm{AD}-\operatorname{mix}-\beta, \mathrm{K}_{2} \mathrm{OsO}_{2}(\mathrm{OH})_{4}$ <br> ( $2 \mathrm{~mol} \%$ ), $\mathrm{MeSO}_{2} \mathrm{NH}_{2}, \mathrm{H}_{2} \mathrm{O} /$ $t \mathrm{BuOH} / \mathrm{AcOEt}(8: 9: 9), \mathrm{RT}$ | 18 h | 28\% | n.d. | Side product formed and no starting material recovered |
| 5 | $\mathrm{K}_{2} \mathrm{OsO}_{2}(\mathrm{OH})_{4}(2 \mathrm{~mol} \%)$, ( DHQD$)_{2}$-PHAL ( $3 \mathrm{~mol} \%$ ) $\mathrm{NMO}, \mathrm{MeSO}_{2} \mathrm{NH}_{2}, \mathrm{H}_{2} \mathrm{O} /$ acetone (1:3), $0^{\circ} \mathrm{C}$ | 6 h | 89\% | $-21.8^{\circ}$ | - |
| 6 | $\mathrm{K}_{2} \mathrm{OsO}_{2}(\mathrm{OH})_{4}(2 \mathrm{~mol} \%)$, (DHQD) ${ }_{2}$-PHAL ( $3 \mathrm{~mol} \%$ ) $\mathrm{NMO}, \mathrm{MeSO}_{2} \mathrm{NH}_{2}, \mathrm{H}_{2} \mathrm{O} /$ acetone (1:3), RT | 45 min | 95\% | n.d. | - |
| 7 | $\mathrm{K}_{2} \mathrm{OsO}_{2}(\mathrm{OH})_{4}(1.5 \mathrm{~mol} \%)$, (DHQD) $)_{2}$-PHAL ( $3 \mathrm{~mol} \%$ ) $\mathrm{NMO}, \mathrm{MeSO}_{2} \mathrm{NH}_{2}, \mathrm{H}_{2} \mathrm{O} /$ acetone (1:3), RT | 2.5 h | 92\% | $-28.9^{\circ}$ | Slow addition of the olefin ( $0.06 \mathrm{mmol} / \mathrm{min}$ ) |

Dihydroxylated compound 74 was protected using 2,2-dimethoxypropane under acidic catalysis in a mixture DMF/acetone to afford the acetonide 76 in $83 \%$ yield. The product was then treated with lithium diisopropyl amide (LDA) and the enolate trapped with $\mathrm{N}\left(\mathrm{PhTf}_{2}\right)$ to give the target vinyl triflate 77 in $85 \%$ yield (Scheme 66).


Scheme 66: a) 2,2-dimethoxypropane, PPTS, DMF/acetone (3:1), $0^{\circ} \mathrm{C} \rightarrow$ RT, $84 \%$; b)
LDA, 76, THF, $-10^{\circ} \mathrm{C}, 20 \mathrm{~min}$, then $\mathrm{PhNTf}_{2},-10^{\circ} \mathrm{C} \rightarrow \mathrm{RT}, 15 \mathrm{~h}, 85 \%$.

In addition to the vinyl triflate 77, the synthesis of the analogous vinyl iodide $\mathbf{8 1}$ was investigated (Scheme 67). As reported in literature, ${ }^{210}$ treatment of freshly distilled cyclopentenone with $\mathrm{Mn}(\mathrm{OAc})_{3}$ resulted in the formation of the $\alpha$ -

[^70]acetoxylated cyclic ketone 79. In contrast to that reported in the literature, the reaction gave a poor yield $(16 \%)$ with considerable formation of unwanted by products. Despite the poor yield product 79 was submitted to an enantioselective kinetic resolution using Pig Liver Esterase (PLE). Unfortunately, we could not reproduce the reported results and only partial resolution was achieved. Therefore, it was decided to abandon this way and concentrate on the vinyl triflate compound 77.


Scheme 67: a) $\mathrm{Mn}(\mathrm{OAc})_{3}$, benzene, $16 \%$; b) PLE, buffer phosphate ( pH 7 ), $20^{\circ} \mathrm{C}, 16 \mathrm{~h}$.

### 3.5.1.3. The Enediyne Fragment

The synthesis of the enediyne fragment started from commercially available Lascorbic acid (82) (Scheme 68). ${ }^{211}$ Hydrogenation of the starting material 82 using a thick-membrane 2L-ballon filled with hydrogen and $10 \% \mathrm{Pd} / \mathrm{C}$ as catalyst in water ${ }^{212}$ at $65{ }^{\circ} \mathrm{C}$ afforded L-gulono-1,4-lactone (83) in $77 \%$ yield after 72 hours. Selective protection of one of the diols was performed using 2-methoxypropane in DMF to give $5,6-O$-isopropylidene-L-gulono-1,4-lactone (84) in $99 \%$ yield. Treatment of $\mathbf{8 4}$ with sodium periodate afforded L-(S)-glyceraldehyde acetonide (85), which as reported in literature cannot be completely extracted from the aqueous phase resulting in the loss of up to $30 \%$ of the product. ${ }^{213}$ Due to its reduced stability the product $\mathbf{8 5}$ was maintained as a solution in THF and directly used in the next step. Thus, ethynyltrimethylsilane was deprotonated at $-78{ }^{\circ} \mathrm{C}$ using LHMDS and added to a solution of L-(S)-glyceraldehyde acetonide (85) in THF to afford a diastereomeric mixture (1.3:1) of alcohols 86 in $28 \%$ yield. The poor yield was probably due to the extraction and stability problems of the starting material 85. The diastereoisomeric mixture of alcohol 86 was oxidized to the ketone 87 using PDC and after work-up the instable product $\mathbf{8 7}$ was kept in solution and directly used in the next step.

[^71]

Scheme 68: a) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C} 10 \%, \mathrm{H}_{2} \mathrm{O}, 60^{\circ} \mathrm{C}, 72 \mathrm{~h}, 77 \%$; b) PTSA $\cdot \mathrm{H}_{2} \mathrm{O}, 2$-methoxypropene, DMF, RT, 2.5 days, $99 \%$; c) $\mathrm{NaIO}_{4}, \mathrm{NaOH}(3 \mathrm{M}), \mathrm{H}_{2} \mathrm{O},<7{ }^{\circ} \mathrm{C}, \mathrm{pH} 4-6$, then $\mathbf{8 4}, 25^{\circ} \mathrm{C}, 1.5$ h ; d) ethynyltrimethylsilane, LHMDS, THF, $-78^{\circ} \mathrm{C}, 30 \mathrm{~min}$, then $\mathbf{8 5}$, THF, $-78{ }^{\circ} \mathrm{C}, 1 \mathrm{~h}$, $28 \%$ (2 steps); e) $3 \AA \mathrm{MS}, \mathrm{PDC}, \mathrm{AcOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{RT}, 1 \mathrm{~h}$.

The propargylic phosphonium salt $\mathbf{9 2}$ for the Wittig reaction was prepared starting from commercially available propargyl alcohol (88). Protection of the starting material with dihydropyran (DHP) under acidic conditions afforded the protected compound 89 in $98 \%$ yield. ${ }^{214}$ Subsequent protection of the terminal alkyne with a TBS protecting group gave compound $\mathbf{9 0}$ in $99 \%$ yield. Direct transformation of $\mathbf{9 0}$ to the propargylic bromide compound 91 was achieved using a mixture of triphenylphosphine and bromine at $-15^{\circ} \mathrm{C}$. The product 91 was directly used without further purification and treated with triphenylphosphine in toluene to afford the phosphonium salt 92 in $77 \%$ yield over two steps (Scheme 69).


Scheme 69: a) PTSA $\cdot \mathrm{H}_{2} \mathrm{O}, \mathrm{DHP}, 65{ }^{\circ} \mathrm{C}, 3 \mathrm{~h}, 98 \%$; b) $n \mathrm{BuLi}$ ( 1.6 M in hexane), TBSCl , THF, $-18{ }^{\circ} \mathrm{C}, 45 \mathrm{~min}, 99 \%$; c) $\mathrm{PPh}_{3}, \mathrm{Br}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-15{ }^{\circ} \mathrm{C}, 30 \mathrm{~min}$, then 90 , RT, 8 h ; d) $\mathrm{PPh}_{3}$, toluene, RT, $42 \mathrm{~h}, 77 \%$ ( 2 steps).

The phosphonium salt 92 was dissolved in THF, cooled to $-78{ }^{\circ} \mathrm{C}$ and treated with KHMDS to generate the corresponding ylide. Addition of ketone 87 afforded the enediyne 93 as a $3: 1$ mixture of $E / Z$ products (Scheme 70). Purification by chromatography on $\mathrm{SiO}_{2}$ allowed isolation of the $E$ product in $39 \%$ yield, together

[^72]with other fractions containing a mixture of the two isomers. Treatment of the TMSprotected alkyne with $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeOH at $0{ }^{\circ} \mathrm{C}$ gave the deprotected alkyne $\mathbf{9 4}$ in $\mathbf{9 7 \%}$ yield. The terminal alkyne 94 was coupled with the vinyl triflate 77 via Sonogashira coupling in the presence of CuI and catalyzed by $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ to afford compound 95 in $65 \%$ yield. ${ }^{200}$ Subsequent deprotection of both TBS protecting groups using TBAF gave alcohol 96, which was oxidized to the aldeyde 97 via Swern oxidation. ${ }^{215}$


Scheme 70: a) $\mathbf{9 2}$, KHMDS ( 0.5 M in toluene), THF, $-78{ }^{\circ} \mathrm{C} \rightarrow-40{ }^{\circ} \mathrm{C}$, then $\mathbf{8 7},-15^{\circ} \mathrm{C}$, $1.5 \mathrm{~h}, 34 \%$, d.r. $=2.7: 1$; b) $\mathrm{K}_{2} \mathrm{CO}_{3}$, $\mathrm{MeOH}, 0^{\circ} \mathrm{C}, 45 \mathrm{~min}, 97 \%$; c) DIPEA, 2,6-lutidine, CuI ( $30 \mathrm{~mol} \%$ ), $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5 \mathrm{~mol} \%)$, DMF, RT, $1 \mathrm{~h} 15 \mathrm{~min}, 65 \%$; d) TBAF ( 1.0 M in THF), THF, $-20^{\circ} \mathrm{C} \rightarrow 0{ }^{\circ} \mathrm{C}, 1 \mathrm{~h} 45 \mathrm{~min}, 86 \%$; e) oxalyl chloride, DMSO, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 20 \mathrm{~min}$, then 96, 30 min , then DIPEA, $-78^{\circ} \mathrm{C} \rightarrow 0^{\circ} \mathrm{C}, 50 \mathrm{~min}, 86 \%$.

### 3.5.1.4. The Nine-Membered Ring Enediyne Formation - The Dead End

With aldehyde 97 in hand we tried the cyclization for the formation of the 9 memberd ring. It was decided to adopt the conditions already used by Myers and coworkers in the synthesis of the NCS chromophore (CLXXIX, Scheme 55). ${ }^{166 \mathrm{~b}}$ Aldehyde $\mathbf{9 7}$ was added to a mixture of $\mathrm{CeCl}_{3}$ and LiCl in THF, followed by addition of lithium bis(dimethylphenylsilyl)azide ${ }^{216}$ at $-78{ }^{\circ} \mathrm{C}$ (Scheme 71). At this temperature no formation of new products was observed and the reaction was allowed to warm to $0^{\circ} \mathrm{C}$. The reaction was monitored by TLC at intervals between $-78^{\circ} \mathrm{C}$ and

[^73]$0^{\circ} \mathrm{C}$ but no formation of product was observed. All attempts to form the 9 -membered ring enediyne or directly the cycloaromatized compound failed and under more forcing reaction conditions only formation of uncharacterized side products was observed. These results are in agreement with those reported by Hirama and coworkers during their study on 9-membered ring enediyne. ${ }^{217}$ An explanation could be in the rigidity of the enediyne structure, in which the two $\mathrm{sp}^{2}$ hybridized centers block the flexibility of the molecule and as a consequence the attack of the acetylide. It is possible that the formation of the 9 -membered ring requires more energy and could take place at higher temperatures, but in our case side reactions take place first. At this point we encountered a dead end and we had to revise our synthetic approach to the chlorinated cyclopenta $[a]$ indene ring.


Scheme 71: Failed attempts to form the 9-membered ring $\mathbf{9 8}$ or directly the cycloaromatized product 99 using $\mathrm{CeCl}_{3}, \mathrm{LiCl}$, lithium bis(dimethylphenylsilyl)azide, THF, $-78{ }^{\circ} \mathrm{C} \rightarrow 0^{\circ} \mathrm{C}$.

### 3.5.2. Strategy 2 - Synthesis of the Nine-Membered Core via a Diyne

### 3.5.2.1. Revision of the Retrosynthetic Analysis

Due to the problems encountered in the formation of the 9 -membered enediyne core we proposed an approach allowing the formation of a 9-membered ring diyne core without the two $\mathrm{sp}^{2}$ centers of the enediyne at $\mathrm{C}(3)$ and $\mathrm{C}(14)$ (Scheme 72). We planned to obtain the chlorinated cyclopenta[a]indene ring 124 from the 9 -membered diyne ring core 122b. The absence of the two $\mathrm{sp}^{2}$ centers would give the molecule more flexibility and hopefully a better possibility of forming the 9 -membered core. Moreover, the presence of the hydroxy group at $\mathrm{C}(3)$ would not only increase the stability of the core by preventing the cycloaromatization, but also act as a switch for the Bergmann cyclization upon its elimination. As in the previous approach, the cyclic core would be formed by intramolecular addition of the acetylide to the

[^74]aldehyde in compound $\mathbf{1 2 7}$. Compound 127 will derive from the addition of alkyne 100 to ketone 103. The alkyne fragment can be prepared by a Sonogashira coupling between commercially available trimethylsilylacetylene and the vinyl triflate 77 used in the first approach. The ketone $\mathbf{1 0 3}$ will be prepared by addition of propargyl magnesium bromide to the L-(S)-glyceraldehyde acetonide $\mathbf{8 5}$ followed by an oxidation. With this new approach we will also avoid problems related to the Wittig reaction for the formation of the enediyne system that as previously discussed gave a 3:1 mixture of $E / Z$ isomers.


Scheme 72: Revised retrosynthetic analysis of sporolides A and B based on the diyne intermediate 127.

### 3.5.2.2. Toward the 9-Membered Diyne Core

Vinyl triflate 77 was reacted with commercially available trimethylsilylacetylene via a palladium catalyzed Sonogashira coupling to afford adduct $\mathbf{1 0 0}$ in quantitative yield (Scheme 73). The product was then deprotected using $\mathrm{K}_{2} \mathrm{CO}_{3}$ in MeOH to give the target terminal alkyne 101. The preparation of the ketone 103 was started with the preparation of a solution of L-( $S$ )-glyceraldehyde acetonide $\mathbf{8 5}$ in THF using the same method adopted previously (Scheme 68). Separately, propargyl magnesium bromide was prepared by dropwise addition of a solution of propargyl bromide to a mixture of

Mg (turning) and $\mathrm{HgCl}_{2}$ (cat.) in $\mathrm{Et}_{2} \mathrm{O}$. The cooled Grignard reagent was subsequently added to the precooled $\left(-20^{\circ} \mathrm{C}\right)$ solution of L-(S)-glyceraldehyde acetonide $\mathbf{8 5}$ and the resulting solution allowed to return to RT. The alcohol adduct $\mathbf{1 0 2}$ was obtained in $43 \%$ yield over two steps as a mixture 1.0:0.6 of diastereoisomers. Problems were encountered when we tried to oxidize the diastereoisomeric mixture to the ketone 103. All the conditions employed, comprising PDC and PCC, TPAP/NMO ${ }^{218}$ and Oppenauer oxidation ${ }^{219}$ failed to generate the desired product 103 and only starting material was recovered. We then tried Dess-Martin periodinane oxidation and with relief the formation of a new product on TLC was observed. The reaction proceeded smoothly, but surprisingly the product was not the expected alkyne 103, but the corresponding allene 104. Allenes are known to undergo isomerization to alkynes when treated with strong bases, as in the Zipper reaction. ${ }^{220}$ With this in mind the synthesis was continued with allene 104.



Scheme 73: a) trimethylsilylacetylene, DIPEA, 2,6-lutidine, $\mathrm{CuI}(30 \mathrm{~mol} \%), \mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(5$ mol \%), DMF, RT, 1.5 h, quant.; b) $\mathrm{K}_{2} \mathrm{CO}_{3}, \mathrm{MeOH}, 0^{\circ} \mathrm{C}, 3.5 \mathrm{~h}$, quant.; c) Mg (turning), $\mathrm{HgCl}_{2}$ (cat.), $\mathrm{I}_{2}$ (cat.), propargyl bromide ( $80 \%$ in toluene), $\mathrm{Et}_{2} \mathrm{O}$, reflux, 1 h , then $\mathbf{8 5},-20^{\circ} \mathrm{C}$ $\rightarrow$ RT, $2 \mathrm{~h}, 43 \%$, d. $r$. $=1.00: 0.06$ ( 2 steps ); d) DMP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{RT}, 4 \mathrm{~h}, 87 \%$.

With both fragments in hand we investigated the alkyne $\mathbf{1 0 1}$ addition to the keto allene 104 (Scheme 74). The terminal alkyne 101 was deprotonated with $n \mathrm{BuLi}$ and

[^75]transferred into a cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of keto allene $\mathbf{1 0 4}$ in THF. The reaction was allowed to warm up slowly and followed at regular intervals by TLC, but no formation of the desired adduct $\mathbf{1 0 5}$ was observed even at RT. After work-up only the starting terminal alkyne $\mathbf{1 0 1}$ was recovered, while the keto allene $\mathbf{1 0 4}$ had degraded. We tried to run the reaction using the same conditions, but this time adding HMPA in order to avoid possible aggregates interfering with the reaction, but this was also unsuccessful. At this point we decided to activate the acceptor using a Lewis acid and opted for a solution of $\mathrm{CeCl}_{3} \bullet 2 \mathrm{LiCl}^{221}$ in THF. As in the previous protocol, the acetylide, formed by treatment of the terminal alkyne 101 with $n \mathrm{BuLi}$, was transferred into a cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of keto allene $\mathbf{1 0 4}$ activated by $\mathrm{CeCl}_{3} \bullet 2 \mathrm{LiCl}$. The resulting mixture was heated to $-40^{\circ} \mathrm{C}$ and allowed to return to $0^{\circ} \mathrm{C}$ over two hours. After optimization of the reaction conditions the alcohol 105 was obtained in $75 \%$ yield in a diastereoisomeric ratio of 94:6. Based on literature precedent on similar systems, ${ }^{222}$ we expected to obtain diastereoisomer 105 with the stereochemistry as reported in scheme 74. As reported by Hirama and co-workers, the configuration of centers $\mathrm{C}(2), \mathrm{C}(3)$ and $\mathrm{C}(10)$ influence the outcome of the configuration at $\mathrm{C}(11)$ in the 9 -membered ring forming step. ${ }^{222}$ Based on this precedent, the configuration at $\mathrm{C}(3)$ shown in compound $\mathbf{1 0 7}$ would lead exclusively to the desired diastereoisomer. It was decided not to spend any more time confirming the configuration, as at this point we were more interested in exploring whether the formation of the 9 -membered ring would be possible. Moreover, the hydroxy group at $\mathrm{C}(11)$ would be removed later in the synthesis to allow cycloaromatization. The synthesis continued by removal of the TBS protecting group to afford the deprotected product $\mathbf{1 0 6}$ in quantitative yield. The primary alcohol was subsequently oxidized using DMP furnishing the corresponding aldehyde 107 in $88 \%$ yield.

[^76]

Scheme 74: a) 101, $n \mathrm{BuLi}\left(1.6 \mathrm{M}\right.$ in hexane), $-78^{\circ} \mathrm{C}, 30 \mathrm{~min}$, then $\mathbf{1 0 4}, \mathrm{CeCl}_{3} \bullet 2 \mathrm{LiCl}(0.2$ M in THF), $-40^{\circ} \mathrm{C} \rightarrow 0{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}, 75 \%$, d.r. $=94: 6$; b) TBAF (1.0 M in THF), THF, $0{ }^{\circ} \mathrm{C} \rightarrow$ RT, 3.5 h , quant.; c) DMP, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 88 \%$.

### 3.5.2.3. The Nine-Membered Ring from the Allene - The Dead End

Before trying the isomerization of the allene using standard methods, ${ }^{220 a, b}$ we wanted to investigate if it was possible to form the 9 -membered ring directly from the allene $\mathbf{1 0 7}$ (Scheme 75). Strong bases are known to induce the isomerization of allenes to terminal alkynes. ${ }^{223}$ Moreover, following isomerization, the acetylide would be generated in situ and add directly to the aldehyde to afford the 9 -membered ring 108. We screened several reaction conditions trying different Lewis acids, bases, reaction temperatures and times (Table 6). All reactions failed without providing the desired product 108. In general the starting material 107 was stable until ca. $-30^{\circ} \mathrm{C}$ when treated with $\mathrm{LiN}\left(\mathrm{Me}_{2} \mathrm{Ph}\right)_{2}$ or LHMDS, but more forcing reaction conditions only caused degradation of the starting material 107.


Scheme 75: Failed 9-membered ring 108 formation from compound 107.

[^77]Table 6: Screened condition for the 9-membered ring 108 formation from aldehyde 107.

| Lewis acid (equiv) | Base (equiv) | Reaction temperature | Reaction time |
| :---: | :---: | :---: | :---: |
| $\mathrm{CeCl}_{3} \cdot 2 \mathrm{LiCl}$ (3) | $\mathrm{LiN}\left(\mathrm{Me}_{2} \mathrm{Ph}\right)_{2}(5)$ | $-78{ }^{\circ} \mathrm{C} \rightarrow-40^{\circ} \mathrm{C}$ | 3 h |
| $\mathrm{CeCl}_{3} \cdot 2 \mathrm{LiCl}$ (4) | $\mathrm{LiN}\left(\mathrm{Me}_{2} \mathrm{Ph}\right)_{2}(6)$ | $-78{ }^{\circ} \mathrm{C} \rightarrow-10^{\circ} \mathrm{C}$ | 3 h |
| $\mathrm{CeCl}_{3} \cdot 2 \mathrm{LiCl}$ (8) | $\mathrm{LiN}\left(\mathrm{Me}_{2} \mathrm{Ph}\right)_{2}$ (12) | $-78^{\circ} \mathrm{C} \rightarrow$ RT | 3 h 30 min |
| $\mathrm{CeCl}_{3} \cdot 2 \mathrm{LiCl}$ (1) | $\mathrm{LiN}\left(\mathrm{Me}_{2} \mathrm{Ph}\right)_{2}(5)$ | $-45^{\circ} \mathrm{C} \rightarrow-20^{\circ} \mathrm{C}$ | 4 h |
| $\mathrm{CeCl}_{3} \cdot 2 \mathrm{LiCl}(10)$ | $\mathrm{LiN}\left(\mathrm{Me}_{2} \mathrm{Ph}\right)_{2}(9)$ | $-78{ }^{\circ} \mathrm{C} \rightarrow-15^{\circ} \mathrm{C}$ | 17 h |
| $\mathrm{CeCl}_{3} \cdot 2 \mathrm{LiCl}$ (3) | KHMDS (3) | $-78{ }^{\circ} \mathrm{C} \rightarrow-30^{\circ} \mathrm{C}$ | 3 h 10 min |
| $\mathrm{CeCl}_{3} \cdot 2 \mathrm{LiCl}$ (3) | $n \mathrm{BuLi}$ (5) | $-78{ }^{\circ} \mathrm{C} \rightarrow 0{ }^{\circ} \mathrm{C}$ | 3 h 20 min |
| $\mathrm{CeCl}_{3}$ (3) | $\mathrm{LiN}\left(\mathrm{Me}_{2} \mathrm{Ph}\right)_{2}(5)$ | $-78{ }^{\circ} \mathrm{C} \rightarrow-40^{\circ} \mathrm{C}$ | 3 h |
| $\mathrm{CeCl}_{3}(10)$ | $\mathrm{LiN}\left(\mathrm{Me}_{2} \mathrm{Ph}\right)_{2}(9)$ | $-45^{\circ} \mathrm{C} \rightarrow-20^{\circ} \mathrm{C}$ | 1 h 30 min |
| $\mathrm{CeCl}_{3}$ (3) | LHMDS (15) | $-78{ }^{\circ} \mathrm{C} \rightarrow-15^{\circ} \mathrm{C}$ | 2 h 15 min |
| $\mathrm{CeCl}_{3}(20)$ | LHMDS (15) | $-40^{\circ} \mathrm{C} \rightarrow-15^{\circ} \mathrm{C}$ | 22 h |
| $\mathrm{LiCl}(50)$ | LHMDS (15) | $-78{ }^{\circ} \mathrm{C} \rightarrow-15^{\circ} \mathrm{C}$ | 2 h 15 min |
| $\mathrm{Yb}(\mathrm{OTf})_{3}(3)$ | $\mathrm{LiN}\left(\mathrm{Me}_{2} \mathrm{Ph}\right)_{2}(6)$ | $-45^{\circ} \mathrm{C} \rightarrow-10^{\circ} \mathrm{C}$ | 4 h 15 min |

We decided to repeat the reaction, but this time with the hydroxy group at $\mathrm{C}(3)$ protected in order to avoid the formation of a the negative charge on the alkoxy group that could interfere with the reaction. We protected the hydroxy group in two different ways; in compound $\mathbf{1 0 9}$ with a TMS group and in product $\mathbf{1 1 1}$ with a methyl group (Scheme 76). This approach was risky because protecting the hydroxy group at $\mathrm{C}(3)$ makes its elimination easier with respect to the unprotected hydroxy group, which was stabilized by in situ formation of the alkoxy group. The TMS protected product $\mathbf{1 0 9}$ was prepared in $67 \%$ yield by treatment of compound $\mathbf{1 0 7}$ with TMSOTf at -78 ${ }^{\circ} \mathrm{C}$. Compound 113 was synthesized from the tertiary alcohol 105 in three steps. Treatment of $\mathbf{1 0 5}$ with Meerwein salt ${ }^{224}$ in presence of $4 \AA$ MS and proton sponges furnished the methylated product $\mathbf{1 1 1}$ in $83 \%$ yield. Subsequent removal of the TBS protecting group using TBAF gave the primary alcohol 112 in excellent yield. Final Swern oxidation furnished the aldehyde 113, which was directly used in the next step without further purification. As for compound 107, we screened different conditions using compounds 109 and 113 (Scheme 76 and Table 7). Also in this case the results were unsuccessful and forcing reaction conditions caused only degradation of the starting material.

[^78]


Scheme 76: a) TMSOTf, 2,6 -lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 1.5 \mathrm{~h}, 67 \%$; b) $\mathrm{Me}_{3} \mathrm{OBF}_{4}, 4 \AA \mathrm{MS}$, proton sponge, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C} \rightarrow \mathrm{RT}, 20 \mathrm{~h}, 83 \%$; c) TBAF ( 1.0 M in THF), THF, $0^{\circ} \mathrm{C} \rightarrow \mathrm{RT}$, $45 \mathrm{~min}, 98 \%$; d) oxalyl chloride, DMSO, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78{ }^{\circ} \mathrm{C}, 20 \mathrm{~min}$, then $112,30 \mathrm{~min}$, then DIPEA, $-78^{\circ} \mathrm{C} \rightarrow 0{ }^{\circ} \mathrm{C}, 2 \mathrm{~h} 10 \mathrm{~min}$.

Table 7: Screened condition for the 9-membered ring formation from aldehydes $\mathbf{1 0 9}$ and 113.

| Compound | Lewis acid (equiv) | Base (equiv) | Reaction temperature | Reaction time |
| :---: | :---: | :---: | :---: | :---: |
| 109 | $\mathrm{CeCl}_{3} \bullet 2 \mathrm{LiCl}$ (4) | $\mathrm{LiN}\left(\mathrm{Me}_{2} \mathrm{Ph}\right)_{2}(9)$ | $-78{ }^{\circ} \mathrm{C} \rightarrow \mathrm{RT}$ | 2 h |
| 109 | $\mathrm{CeCl}_{3} \bullet 2 \mathrm{LiCl}$ (3) | LHMDS (8) | $-78{ }^{\circ} \mathrm{C} \rightarrow$ RT | 3 h |
| 109 | $\mathrm{CeCl}_{3} \cdot 2 \mathrm{LiCl}$ (3) | LDA (8) | $-78{ }^{\circ} \mathrm{C} \rightarrow$ RT | 3 h |
| 109 | $\mathrm{CeCl}_{3}$ (3) | $\mathrm{LiN}\left(\mathrm{Me}_{2} \mathrm{Ph}\right)_{2}(9)$ | $-78{ }^{\circ} \mathrm{C} \rightarrow$ RT | 2 h |
| 109 | $\mathrm{CeCl}_{3}$ (3) | KHMDS (4) | $-78{ }^{\circ} \mathrm{C} \rightarrow 0{ }^{\circ} \mathrm{C}$ | 3 h |
| 109 | LiCl (50) | $\mathrm{LiN}\left(\mathrm{Me}_{2} \mathrm{Ph}\right)_{2}(9)$ | $-78{ }^{\circ} \mathrm{C} \rightarrow$ RT | 2 h |
| 113 | $\mathrm{CeCl}_{3} \bullet 2 \mathrm{LiCl}$ (13) | $\mathrm{LiN}\left(\mathrm{Me}_{2} \mathrm{Ph}\right)_{2}(9)$ | $-40{ }^{\circ} \mathrm{C} \rightarrow-20^{\circ} \mathrm{C}$ | 3 h |
| 113 | $\mathrm{CeCl}_{3} \bullet 2 \mathrm{LiCl}$ (3) | LHMDS (9) | $-40^{\circ} \mathrm{C} \rightarrow-25^{\circ} \mathrm{C}$ | 42 h |
| 113 | $\mathrm{CeCl}_{3}(10)$ | $\mathrm{LiN}\left(\mathrm{Me}_{2} \mathrm{Ph}\right)_{2}(24)$ | $-40^{\circ} \mathrm{C} \rightarrow-25^{\circ} \mathrm{C}$ | 39 h |

After the unsuccessful attempts of in situ isomerization of the allene to the terminal alkyne, we tried to do it by standard method. Potassium 3-aminopropylamide (KAPA) is the most commonly used base to induce the zip reaction, which forms the terminal alkyne very fast at $0{ }^{\circ} \mathrm{C} .{ }^{220 a, b}$ We tried the isomerization on three different substrates; compounds $\mathbf{1 0 5}$ and $\mathbf{1 1 1}$ which have already encountered and product $\mathbf{1 1 5}$ which was prepared by TBS protection of tertiary alcohol 105 (Scheme 77).


Scheme 77: TMSOTf, 2,6-lutidine, $\mathrm{CH}_{2} \mathrm{Cl}_{2},-40^{\circ} \mathrm{C} \rightarrow \mathrm{RT}, 4 \mathrm{~h}$.

Compounds 105, 111 and 115 were treated at $0{ }^{\circ} \mathrm{C}$ or RT at different concentration of KAPA ${ }^{225}$ and reaction times (Scheme 78 and Table 8). None of the reactions furnished the desired products (116-118) and usually only degradation of the starting material was observed, except for entry 1 and 2 in which all the starting material was recovered. All attempts to form the 9 -membered ring from the allene failed and once again it was achieved a dead-end where a new revision of the strategy was required.




111


117

115

118

Scheme 78: Failed attemps of allene-terminal alkyne isomerization for compounds 105, 111 and 115.

[^79]Table 8: Screened condition using KAPA for the isomerization of compounds 105, 111 and 115.

| Entry | Compound | KAPA (equiv) | Reaction conditions (T, time) |
| :---: | :---: | :---: | :---: |
| 1 | $\mathbf{1 0 5}$ | 15 | $0^{\circ} \mathrm{C}, 45 \mathrm{~min}$, then RT, 15 min |
| 2 | $\mathbf{1 1 1}$ | 1.3 | $\mathrm{RT}, 15 \mathrm{~min}$ |
| 3 | $\mathbf{1 1 1}$ | 3.2 | $0^{\circ} \mathrm{C}, 2 \mathrm{~h}$ |
| 4 | $\mathbf{1 1 1}$ | 7.4 | $0^{\circ} \mathrm{C}, 3.5 \mathrm{~h}$, then RT, 14 h |
| 5 | $\mathbf{1 1 5}$ | 5 | $0^{\circ} \mathrm{C}, 2 \mathrm{~h}$ |
| 6 | $\mathbf{1 1 5}$ | 5 | $0^{\circ} \mathrm{C}, 4 \mathrm{~h}$, then RT, 17 h |

### 3.5.3. Comments and Perspectives

In our investigation on sporolides two synthetically approaches were unsuccessfully evaluated. The first time we expected to obtain the 9 -membered enediyne ring or directly the cycloaromatized product starting from the enediyne core 97, but the cyclization failed. The second time we initially planned to obtain the 9membered ring passing through a diyne system, but problems during the oxidation of alcohol $\mathbf{1 0 2}$ were encountered leading to the formation of the keto-allene $\mathbf{1 0 4}$ and not the desired alkyne 103. It was decided to continue the synthesis with the allene, as it was hoped that isomerization to the terminal alkyne would be possible later in the synthesis. However, this attempt also led to a dead-end. The isomerization required reaction conditions that were not tolerated by our substrates and degradation of the starting material occurred first. Although several conditions for the isomerization were tried, further investigation of this reaction is required. Moreover, there are also other possible routes to test, for example, reverse the steps for the alkyne $\mathbf{1 0 1}$ addition on L-( $S$ )-glyceraldehyde acetonide $\mathbf{8 5}$. If the terminal alkyne $\mathbf{1 0 1}$ were added first, the obtained mixture of alcohols $\mathbf{1 1 9}$ could be oxidized avoiding problems of allene formation. Subsequent reaction of ketone $\mathbf{1 2 0}$ with a propargyl Grignard reagent would generate the desired product 121 (Scheme 79).


Scheme 79: Proposed route for the continuation of the synthesis.

### 3.6. Conclusion

This chapter was dedicated to the synthetic studies on sporolides A and B and allowed us to take a journey into the world of the enediyne natural products. Due to the phenomenal biological activity of the enediynes, these compounds were initially considered as powerful antitumor agents sparking great interest in chemistry, biology and medicine. Today, the enediyne antitumor antibiotics are lead candidates in the battle against cancer and several member of this family are in clinical phase trials or even used as therapeutic treatments. The research on these compounds continues and more potent and more selective compounds are in development. This drove us to start our investigation on sporolides A and B, two macrolides supposed to derive from the cycloaromatization of an enediyne precursor. The complex architectural structure of the sporolides, displaying 22 of 24 carbons $\mathrm{sp}^{2}$ hybridized or oxygenated, 7 rings and 10 stereogenic centers makes these really challenging targets for total synthesis. When we started this project, no total syntheses of sporolides had been reported. We planned our synthesis in such a way as to follow a biomimetic pathway allowing the possible biological evaluation of the sporolide enediyne precursor. Unfortunately, for the two pathways were unsuccessfully investigated. Among the interesting reactions encountered in this synthetic study we found the Morita-Baylis-Hillman reaction, Sharpless asymmetric dihydroxylation, enediyne formation via Wittig reaction and $\mathrm{CeCl}_{3} \cdot 2 \mathrm{LiCl}$-mediated acetylide addition. I think that for this project not all is lost and the synthesis can be continued using the previously prepared intermediates. As previously discussed, there are pathways still open and maybe they will prove to be a good choice to achieve the target.

## 4. Nostocarboline and Eudistomin N Derivatives as Potential Antimalarial Agents

### 4.1. Introduction

Malaria remains a huge problem in developing countries with $40 \%$ of the worldwide population living in high-risk infection areas. ${ }^{226}$ This disease affects 300500 million people and causes over 1 million deaths each year, especially among infants and children. ${ }^{227}$ The protozoal parasites of the genus Plasmodium are the origin of this disease and mosquitoes of the genus Anopheles are their vectors. Humans can be infected by four species of Plasmodium: Plasmodium malariae, $P$. Ovale, $P$. vivax and P. falciparum. The latter is the most dangerous species affording to the highest number of deaths. Controlling and preventing the spread of malaria by targeting the vector would prove difficult. Several antimalarial drugs are currently on the market including quinine and its derivatives, e.g. chloroquine. ${ }^{226}$ More recently, combination therapies also proved to be useful in the battle against this disease. However, even though therapies are available, malaria infections continue to increase and resistance of malaria parasites to the currently used drugs is becoming more and more common, making the situation alarming. ${ }^{226}$ Moreover, no vaccine is available, making parasite chemotherapy the only way to fight this disease.

### 4.2. Nostocarboline and Malaria

In 2005, Gademann and co-workers isolated an acetyl- and butyryl-cholinesterase and trypsin inhibitor nostocarboline (CCXVI) from the freshwater cyanobacterium Nostoc 78-12A (Figure 33). ${ }^{228}$ In addition, this new quaternary $\beta$-carboline alkaloid CCXVI displayed potent algicides activity inhibiting the growth of phytoplanktal organisms. ${ }^{229}$ The malaria parasite Plasmodium falciparum contains an organelle of

[^80]cyanobacterial origin, the apicoplast, ${ }^{230}$ which has been suggested to be a target for antiplasmodial agents. ${ }^{231}$


Figure 33: Nostocarboline (CCXVI).

Several natural products from cyanobacteria have been shown to possess antiplasmodial activity. Calothrixins A and B inhibited Plasmodium falciparum with an $\mathrm{IC}_{50}$ value of 60 nM and 180 nM respectively, but without selectivity for HeLa human cancer cell lines. ${ }^{232}$ Activity at $8.2 \mu \mathrm{M}$ against the same tropical parasite was observed for venturamide B with a lower cytotoxicity ( $86 \mu \mathrm{M}$ ) to green monkey Vero kidney cells. ${ }^{233}$ Symplocamide A displayed $\mathrm{IC}_{50}$ value of $0.95 \mu \mathrm{M}$ against $P$. falciparum, but also a strong cytotoxicity. ${ }^{234}$ In 2008, Gademann and co-workers isolated aerucyclamides A-D from the cyanobacterium Microcystis aeruginosa PCC 7806. ${ }^{235}$ Aerucyclamide B displayed submicromolar $\mathrm{IC}_{50}$ value against chloroquineresistant strain K1 of $P$. falciparum with large selectivity $\left(\mathrm{IC}_{50}=120 \mu \mathrm{M}\right)$ with respect to the L6 rat myoblast cell line. Low micromolar activities were measured for aerucyclamides C and D with almost no toxicity to the L 6 cell line. Studies on $\beta$ carbolinium cation derivatives have also been reported and results have shown that these compounds exhibit strong activity against malaria. ${ }^{236}$ Moreover, the presence of the positive charge on these $\pi$-delocalized lipophilic cationic (DLC) structures results

[^81]in an increase of the activity compared to their corresponding neutral carbolines. ${ }^{237}$ Several natural $\beta$-carbolinium cations displaying activity against malaria are known (Scheme 34): normelinoline F (CCXVII) displayed an $\mathrm{IC}_{50}$ value of $13.6 \mu \mathrm{M}$ and no cytotoxicity. ${ }^{238}$ Fascaplysin ${ }^{239}$ (CCXVIII), cryptolepine ${ }^{240}$ (CCXIX) and isoneocryptolepine ${ }^{241}$ (CCXX) display activity at the submicromolar scale against resistant K1 strain of P. falciparum $\left(\mathrm{IC}_{50}=0.184 \mu \mathrm{M}, 0.12 \mu \mathrm{M}\right.$ and $0.23 \mu \mathrm{M}$ respectively) but with a reduced selectivity against rat myoblast $\mathrm{L} 6\left(\mathrm{IC}_{50}=9.2 \mu \mathrm{M}\right.$, $1.12 \mu \mathrm{M}$ and $4.23 \mu \mathrm{M}$ respectively).


Nostocarboline (CCXVI)


Normelinonine F (CCXVII)


Fascaplysin (CCXVIII)


Cryptolepine (CCXIX)


Isoneocriptolepine (CCXX)

Figure 34: natural $\beta$-carbolinium cation: nostocarboline (CCXVI), normelinoline F (CCXVII), fascaplysin (CCXVIII), cryptolepine (CCXIX) and isoneocryptolepine (CCXX).

Nostocarboline (CCXVI) was prepared by Gademann and co-workers in a straightforward way from norharmane (CCXXI) ${ }^{229}$ (Figure 35) and then tested against Plasmodium falciparum. The compound CCXVI displayed strong antiplasmodial activity with an $\mathrm{IC}_{50}$ value of 194 nM , but also a large selectivity being more than 600

[^82]times less toxic against L6 rat myoblast cell line..$^{242}$ Dimers of nostocarboline were prepared in one additional step (Figure 35) and tested against malaria, displaying activity that reached 18 nM with a large selectivity >2600-fold against the L6 cell line. ${ }^{242}$ Four dimers CCXXII-CCXXV and nostocarboline (CCXVI) were selected for in vivo evaluation in a P. berghei mouse model. All the dimers displayed low activity and did not influence the survival time of mice, while nostocarboline (CCXVI) displayed almost a $50 \%$ reduction in parasitaemia and increased the survival time at a dose of $50 \mathrm{mg} / \mathrm{kg} .{ }^{243}$ After these results a search for more active and selective compound based on quaternary $\beta$-carboline alkaloids was required and it was decided to prepare derivatives of nostocarboline (CCXVI) and eudistomin $\mathrm{N}^{244}$ (CCXXVI) (Figure 35) for biological evaluation against malaria.


Norharmane (CCXXI)


Nostocarboline (CCXVI)

(CCXXII): linker = 2-Z-butene-1,4-diyl
(CCXXIII): linker = 4,4'-bis(methanyl)biphenyl
(CCXXIV): linker = bis(ethanyl)ether
(CCXXV): linker = hexan-1,6-diyl

Figure 35: norharmane (CCXXI), nostocarboline (CCXVI), dimer derivatives (CCXXIICCXXV), eudistomin N (CCXXVI).

[^83]
### 4.3. Preparation of Nostocarboline and Eudistomin N Derivatives

In this project it was decided to synthesize quaternary $\beta$-carboline alkaloids and to evaluate these compounds against the malaria parasite P. falciparum. Derivatives of nostocarboline as well as N -alkylated eudistomin N analogs were chosen as targets. The precursors, 6-chloro norharmane (130), 6-bromo norharmane (131) and 8-bromo norharmane (132), were prepared by chlorination and bromination of norharmane (129) respectively, which itself was readily accessible from tryptamine in accordance to a literature procedure. ${ }^{229,245}$ The three precursors $\mathbf{1 3 0} \mathbf{- 1 3 2}$ were then alkylated with a series of electrophiles to directly afford the desired derivatives $\mathbf{1 3 3 - 1 5 7}$ with different residues on the pyridine nitrogen. A general procedure was adopted for their preparation. A mixture of starting material $\mathbf{1 3 0}$ or $\mathbf{1 3 1}$ or $\mathbf{1 3 2}$ and the selected electrophile in $\mathrm{CH}_{3} \mathrm{CN}$ or $i \mathrm{PrOH}$ was stirred at $85^{\circ} \mathrm{C}$ in a sealed tube for between 1 to 22 hours. The reaction was concentrated and triturated or precipitated in $\mathrm{CH}_{3} \mathrm{CN}$ or in a mixture of $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{Et}_{2} \mathrm{O}$. The precipitate was then dissolved in MeOH and all insoluble residues removed by filtration. The filtrate was finally concentrated and dried under high vacuum to afford the desired derivatives 133-157 as crystalline compounds in yields between $23 \%$ to quantitative (Scheme 80 and Table 9). The derivatives 133-157 were submitted to the Swiss Tropical Institute to biological evaluation against malaria.


Scheme 80: a) $\mathbf{1 3 0}$ or $\mathbf{1 3 1}$ or $\mathbf{1 3 2}, \mathrm{R}^{3} \mathrm{X}, \mathrm{CH}_{3} \mathrm{CN}$ or $i \mathrm{PrOH}, 85^{\circ} \mathrm{C}, 1-21 \mathrm{~h}, 23-100 \%$. For $\mathrm{R}^{3}$ see Table 9.

[^84]Table 9: Derivatives prepared by alkylation of compounds 130, 131, 132.

| Compound | Time $[\mathrm{h}]$ | $\mathrm{R}^{1}$ | $\mathrm{R}^{2}$ | $\mathrm{R}^{3}$ | X | Yield [\%] |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1 3 3}$ | 4 | Cl | H | $-\mathrm{CH}_{3}$ | I | 62 |
| $\mathbf{1 3 4}$ | 18 | Cl | H | $-\mathrm{C}_{2} \mathrm{H}_{5}$ | I | 43 |
| $\mathbf{1 3 5}$ | 21 | Cl | H | allyl | Br | 45 |
| $\mathbf{1 3 6}$ | overnight | Cl | H | $-n \mathrm{Bu}$ | I | 37 |
| $\mathbf{1 3 7}$ | overnight | Cl | H | $-\left(\mathrm{CH}_{2}\right)_{3} \mathrm{COOCH}_{3}$ | Br | 24 |
| $\mathbf{1 3 8}$ | 15 | Cl | H | benzyl | Br | 58 |
| $\mathbf{1 3 9}$ | overnight | Cl | H | $p$-fluoro benzyl | Br | 96 |
| $\mathbf{1 4 0}$ | overnight | Cl | H | $p$-nitro benzyl | Br | 55 |
| $\mathbf{1 4 1}$ | overnight | Cl | H | 3 -phenyl propyl | Br | 31 |
| $\mathbf{1 4 2}$ | 18 | Br | H | $-\mathrm{CH}_{3}$ | I | 71 |
| $\mathbf{1 4 3}$ | 15 | Br | H | $-\mathrm{C}_{2} \mathrm{H}_{5}$ | I | 83 |
| $\mathbf{1 4 4}$ | 15 | Br | H | allyl | Br | 66 |
| $\mathbf{1 4 5}$ | 15 | Br | H | $-n \mathrm{Bu}$ | I | 43 |
| $\mathbf{1 4 6}$ | 15 | Br | H | $-\left(\mathrm{CH}_{2}\right)_{3} \mathrm{COOCH}_{3}$ | Br | 79 |
| $\mathbf{1 4 7}$ | 15 | Br | H | benzyl | Br | quant. |
| $\mathbf{1 4 8}$ | 1 | Br | H | $p$-fluoro benzyl | Br | 96 |
| $\mathbf{1 4 9}$ | 22 | Br | H | $m$-fluoro benzyl | Br | 44 |
| $\mathbf{1 5 0}$ | 5 | Br | H | $p$-nitro benzyl | Br | 99 |
| $\mathbf{1 5 1}$ | 15 | Br | H | 3 -phenyl propyl | Br | 94 |
| $\mathbf{1 5 2}$ | 5 | Br | H | 2 -naphtyl | Br | 82 |
| $\mathbf{1 5 3}$ | overnight | H | Br | $-\mathrm{C}_{2} \mathrm{H}_{5}$ | I | 23 |
| $\mathbf{1 5 4}$ | overnight | H | Br | allyl | Br | 24 |
| $\mathbf{1 5 5}$ | overnight | H | Br | benzyl | Br | 44 |
| $\mathbf{1 5 6}$ | overnight | H | Br | $p$-fluoro benzyl | Br | 25 |
| $\mathbf{1 5 7}$ | overnight | H | Br | 2 -naphtyl | Br | 43 |

Compounds $\mathbf{1 4 2}$ and $\mathbf{1 4 4}$ were recrystallized from MeOH and a mixture $\mathrm{Et}_{2} \mathrm{O} /$ hexane respectively and submitted to X-ray analysis (Figure 36).



Figure 36: X-ray crystallographic analysis: a) compound 142; b) compound 144. $\mathrm{Red}=\mathrm{Br}$, fuchsia $=\mathrm{I}$, blue $=\mathrm{N}$, grey $=\mathrm{C}$, white $=\mathrm{H}$.

Nostocarboline (133) was isolated as the hydroiodide salt, but under basic conditions, it is present as an anhydronium base represented by two different resonance structures 158 and 159 (Scheme 81). The anhydronium bases 158 and $\mathbf{1 6 0}$ were prepared by treatment of a mixture of nostocarboline (133) or 6-bromo nostocarboline (142) in EtOAc with a solution of NaOH that immediately generated a bright yellow solution. The products $\mathbf{1 5 8}$ and $\mathbf{1 6 0}$ were carefully isolated avoiding any contact with acidic sources. The two anhydronium bases 158 and $\mathbf{1 6 0}$ could be recrystallized from a mixture $\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O} /$ hexane and were submitted to X-ray analysis (Scheme 81 and Figure 37), confirming their stability. It is thought that in biological medium, the pH -dependent equilibrium between the anhydronium base and the corresponding salt play a crucial role for antimalarial activity.




Scheme 81: a) $\mathrm{NaOH}(1 \mathrm{M})$, EtOAc, RT, $10 \mathrm{~min}, 88 \%$; b) $\mathrm{NaOH}(3 \mathrm{M})$, EtOAc, RT, 15 min, quant.


Figure 37: X-ray crystallographic analysis: a) nostocarboline anhydronium base 158; b) bromo nostocarboline anhydronium base 160. Red $=\mathrm{Br}$, green $=\mathrm{Cl}$, blue $=\mathrm{N}$, grey $=\mathrm{C}$, white $=\mathrm{H}$.

The effect of pH on nostocarboline (133) was investigated by dissolving it in solutions between pH 8 to 12 , the emission spectra were observed and a change in color and fluorescence became visible. Nostocarboline (133) is brown and when irradiated at 366 nm it emits a blue-green fluorescence, whereas the corresponding anhydronium base $\mathbf{1 5 8}$ is yellow and emits a strong yellow fluorescence. The equivalent point was observed between pH 10 and 11 (Figure 38).


Figure 38: Nostocarboline (133) solutions at (from left) $\mathrm{pH} 8,9,10,11,12$ and irradiated at 366 nm .

The same experiment was carried out with 6-bromo nostocarboline (142), which was dissolved in solutions between pH 1 to 14 . Both 6 -bromo nostocarboline (142) and its corresponding anhydronium base $\mathbf{1 6 0}$ are yellow and when irradiated at 366 $\mathrm{nm}, \mathbf{1 4 2}$ emits green fluorescence, whereas $\mathbf{1 6 0}$ emits a yellow fluorescence. The equivalent point was observed between pH 10 and 11 (Figure 39). In addition, formation of a gel was observed when compound 142 was stored at pH 1.


Figure 39: six-bromo nostocarboline (142) solutions at (from left) $\mathrm{pH} 1,6,8,9,10,11,12$, 14 and irradiated at 366 nm .

### 4.4. Biological Evaluation

The prepared nostocarboline and eudistomin derivatives 133-157 (Scheme 80 and Table 9) were submitted for in vitro biological evaluation against four parasites: Leishmania donovani MHOM-ET-67/L82 axenic amastigotes, Trypanosoma brucei rhodesiense STIB 900, Trypanosoma cruzi Tulahuen C2C4 and Plasmodium falciparum K1 strain. ${ }^{246}$ The cytotoxicity against rat myoblast L6 cells and the selectivity index (SI) were also reported. Moreover, for nostocarboline derivatives 133-141 two additional parameters, of which total surface area $(S)^{247}$ of the molecule and the calculated $\log \mathrm{P}(\operatorname{clog} \mathrm{P})^{248}$ were reported. These parameters allow the investigation of the influence of the residue ( R ) on the antiplasmodial activity.

[^85]Biological evaluation revealed only weak activity of nostocarboline (133) and its derivatives 134-141 against Leishmania donovani, Trypanosoma brucei rhodesiense and Trypanosoma cruzi (Table 10). The strongest activity was displayed by the 3phenylpropyl substituted compound $\mathbf{1 4 1}$ with an activity of $6.2 \mu \mathrm{M}$ against $T$. brucei and roughly three times less activity against $L$. donovani and $T$. cruzi. In contrast, the same compounds 133-141 exhibit stronger activity against Plasmodium falciparum with activity between single digit micromolar and submicromolar scale (Table 10). The most active compound was nostocarboline (133) with an $\mathrm{IC}_{50}$ of 194 nM and a low cytotoxicity of $120.9 \mu \mathrm{M}$ resulting in a SI value of 634 . The correlation study between the total surface area of the molecule and the antiplasmodial activity reveals interesting results (Figure 40). Increasing the total area by replacing the residue (R) with a larger group resulted in a loss of the antiplasmodial activity and an augmentation of the cytotoxicity of the compound. The same behaviour was reflected in the selectivity index, which dropped from 634 to 9 when increasing the size of the residue from a methyl to a benzyl group.

Table 10: Antiparasitic in vitro activities of the nostocarboline derivatives 133-141. All results are reported as $\mathrm{IC}_{50}$ values in $\mu \mathrm{M}$.

| Comp. | R | L.d. $^{[\mathrm{a}]}$ | T.b. $^{[\mathrm{b}]}$ | T.c. $^{[\mathrm{cc}]}$ | P.f. ${ }^{[\mathrm{d}]}$ | Cytotox. $^{[\mathrm{e}]}$ | $\mathrm{SI}^{[\mathrm{f}]}$ | $\mathrm{SA}^{[\mathrm{g}]}$ | clogP $^{[\mathrm{h}]}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1 3 3}$ | $-\mathrm{CH}_{3}$ | 34.3 | 70.5 | $>87.1$ | 0.194 | 120.9 | 634 | 204.97 | 2.83 |
| $\mathbf{1 3 4}$ | $-\mathrm{C}_{2} \mathrm{H}_{5}$ | 251.0 | 36.8 | 100.2 | 0.452 | 113.0 | 250 | 222.48 | 3.16 |
| $\mathbf{1 3 5}$ | allyl | 196.1 | 33.5 | 57.8 | 0.831 | 126.5 | 152 | 235.23 | 3.33 |
| $\mathbf{1 3 6}$ | $-n \mathrm{Bu}$ | 112.1 | 11.6 | 103.8 | 1.616 | 74.0 | 46 | 254.52 | 4.09 |
| $\mathbf{1 3 7}$ | $-\left(\mathrm{CH}_{2}\right)_{3} \mathrm{COOCH}_{3}$ | 116.6 | 105.6 | 114.6 | 3.143 | 207.1 | 66 | 300.72 | 3.65 |
| $\mathbf{1 3 8}$ | benzyl | 112.6 | 6.2 | 24.6 | 2.997 | 27.0 | 9 | 276.2 | 4.38 |
| $\mathbf{1 3 9}$ | $p$-fluoro benzyl | 110.5 | 18.1 | 87.7 | 4.672 | 111.3 | 24 | 285.7 | 4.44 |
| $\mathbf{1 4 0}$ | $p$-nitro benzyl | 145.6 | 21.3 | 32.8 | 2.209 | 42.2 | 19 | 307.03 | 4.25 |
| $\mathbf{1 4 1}$ | 3-phenyl propyl | 18.6 | 6.2 | 20.9 | 1.608 | 71.3 | 44 | n.d. | n.d. |

${ }^{\text {a) }}$ Leishmania donovani MHOM-ET-67/L82. Standard reference: miltefosine: $\mathrm{IC}_{50}=0.54 \mu \mathrm{M}$.
${ }^{\text {b) }}$ Trypanosoma brucei rhodesiense STIB 900. Standard reference: melarsoprol: $\mathrm{IC}_{50}=10 \mathrm{nM}$.
${ }^{\text {c) }}$ Trypanosoma cruzi Tulahuen C2C4. Standard reference: benznidazole: $\mathrm{IC}_{50}=1.637 \mu \mathrm{M}$.
${ }^{\text {d) }}$ Plasmodium falciparum K1. Standard reference: chloroquine: $\mathrm{IC}_{50}=181 \mathrm{nM}$. ${ }^{\text {e) }}$ Cytotoxicity against rat myoblast L6 cells. ${ }^{\mathrm{f}}$ ) The selectivity index is calculated by $\mathrm{IC}_{50}(\mathrm{~L} 6) / \mathrm{IC}_{50}\left(\right.$ (P.f.). ${ }^{\mathrm{g})}$ Total surface area occupied by the molecule $\left[\AA^{2}\right] .{ }^{\text {h }}$ cLogP was calculated using Osiris Property Explorer.


Figure 40: Antiplasmodial activity ( $\mathbf{\bullet}$ ) and cytotoxicity ( $\bullet$ ) of nostocarboline ( $\mathbf{1 3 3}$ ) and derivatives 134-141 reported as $\mathrm{IC}_{50}$ values plotted against the total surface area. Increasing in the total area results in decreased activity and increased cytotoxicity of the compounds.

For the eudistomin derivatives 142-157 (Scheme 80 and Table 9) biological evaluation also revealed only weak activity against Leishmania donovani, Trypanosoma brucei rhodesiense and Trypanosoma cruzi (Table 11). From the 6bromo derivatives 142-152, the strongest activity was displayed by the 2 -naphtyl substituted compound 152 with activities of $17.7 \mu \mathrm{M}, 4.1 \mu \mathrm{M}$ and $7.5 \mu \mathrm{M}$ against $L$. donovani, T. brucei and T. cruzi respectively. Similar results were obtained for the 8bromo derivatives 153-157, with the 2-naphtyl substituted compound 157 displaying the strongest activities of $46.4 \mu \mathrm{M}, 4.4 \mu \mathrm{M}$ and $7.9 \mu \mathrm{M}$ against the same three parasites. In contrast, stronger activities against Plasmodium falciparum were observed with $\mathrm{IC}_{50}$ values reaching 18 nM and 32 nM for the 6-bromo derivatives $\mathbf{1 4 2}$ and $\mathbf{1 4 3}$ respectively with the methyl and the ethyl groups as substituents. In addition, these two compounds exhibit a low cytotoxicity of $86.1 \mu \mathrm{M}$ and $78.8 \mu \mathrm{M}$, resulting in a very high selectivity index of 4783 and 2443 respectively (Table 11). Moreover, for both the 6 -bromo derivatives 142-152 and 8-bromo derivatives 153-157 it was evident that increasing the size of the residue on the pyridine nitrogen caused a loss of activity and an increase in cytotoxicity. This trend directly influenced also the SI value that for the 6-bromo derivatives 142-152 drastically passed from 4783 for the methyl derivative $\mathbf{1 4 2}$ to 11 for the 2-naphtyl derivative 152. Interesting was also to compare the compound 143 and 153 ; both compounds had the ethyl group as $N$-substituent, but differed in the position of the Br on the carboline ring. Compound 143 with the bromine at $\mathrm{C}(6)$ displayed an $\mathrm{IC}_{50}$ value of 32 nM , while compound 153 with the bromine at $\mathrm{C}(8)$ displayed an $\mathrm{IC}_{50}$ value of $6.6 \mu \mathrm{M}$, resulting in a loss of activity of
more than 200 -fold. This difference in activity disappeared when a large substituent was present in the 6 - and 8 -bromo series.

Table 11: Antiparasitic in vitro activities of the eudistomin derivatives 142-157. All results are reported as $\mathrm{IC}_{50}$ values in $\mu \mathrm{M}$.

| Comp. | R | L.d. $^{[\mathrm{ad]}}$ | T.b. $^{[\mathrm{b}]}$ | ${\text { T.c. } .^{[\mathrm{cc}]}}^{\text {P.f. } .^{[\mathrm{d}]}}$ | Cytotox. $^{[\mathrm{ec}]}$ | $\mathrm{SI}^{[\mathrm{f}]}$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathbf{1 4 2}$ | $-\mathrm{CH}_{3}$ | $>231.3$ | 47.2 | 131.9 | 0.018 | 86.1 | 4783 |
| $\mathbf{1 4 3}$ | $-\mathrm{C}_{2} \mathrm{H}_{5}$ | $>223.2$ | 26.4 | 90.5 | 0.032 | 78.8 | 2443 |
| $\mathbf{1 4 4}$ | allyl | 20.1 | 17.4 | 86.6 | 0.492 | 130.9 | 266 |
| $\mathbf{1 4 5}$ | $-n \mathrm{Bu}$ | 35.1 | 11.7 | 35.3 | 1.151 | 68.7 | 60 |
| $\mathbf{1 4 6}$ | $-\left(\mathrm{CH}_{2}\right)_{3} \mathrm{COOCH}_{3}$ | $>203.6$ | 111.0 | 64.6 | 2.330 | 162.3 | 70 |
| $\mathbf{1 4 7}$ | benzyl | 21.2 | 5.2 | 16.3 | 2.368 | 61.6 | 26 |
| $\mathbf{1 4 8}$ | p-fluoro benzyl | 16.4 | 4.7 | 13.3 | 1.761 | 22.6 | 13 |
| $\mathbf{1 4 9}$ | m-fluoro benzyl | 11.0 | 5.6 | 25.9 | 2.153 | 41.5 | 19 |
| $\mathbf{1 5 0}$ | p-nitro benzyl | 38.2 | 10.8 | 14.1 | 1.330 | 18.1 | 14 |
| $\mathbf{1 5 1}$ | 3-phenyl propyl | 20.4 | 4.5 | 12.6 | 0.459 | 27.5 | 60 |
| $\mathbf{1 5 2}$ | 2-naphtyl | 17.7 | 4.1 | 7.5 | 0.481 | 5.1 | 11 |
| $\mathbf{1 5 3}$ | -C2H | $>223.2$ | 25.0 | 169.6 | 6.624 | 153.4 | 23 |
| $\mathbf{1 5 4}$ | allyl | 123.1 | 26.2 | 153.6 | 6.738 | 112.2 | 17 |
| $\mathbf{1 5 5}$ | benzyl | 66.5 | 7.0 | 42.9 | 2.583 | 28.7 | 11 |
| $\mathbf{1 5 6}$ | $p$-fluoro benzyl | 53.4 | 3.8 | 28.7 | 3.279 | 17.5 | 5 |
| $\mathbf{1 5 7}$ | 2-naphtyl | 46.4 | 4.4 | 7.9 | 0.502 | 3.7 | 7 |

${ }^{\text {a) }}$ Leishmania donovani MHOM-ET-67/L82. Standard reference: miltefosine: $\mathrm{IC}_{50}=0.54 \mu \mathrm{M}$. ${ }^{\text {b) }}$ Trypanosoma brucei rhodesiense STIB 900. Standard reference: melarsoprol: $\mathrm{IC}_{50}=10 \mathrm{nM}$. ${ }^{\text {c) }}$ Trypanosoma cruzi Tulahuen C2C4. Standard reference: benznidazole: $\mathrm{IC}_{50}=1.637 \mu \mathrm{M}$. ${ }^{\text {d) }}$ Plasmodium falciparum K1. Standard reference: chloroquine: $\mathrm{IC}_{50}=181 \mathrm{nM}$. ${ }^{\text {e }}$ Cytotoxicity against rat myoblast L 6 cells. ${ }^{\mathrm{f})}$ The selectivity index is calculated by $\mathrm{IC}_{50}(\mathrm{~L} 6) / \mathrm{IC} 50(P . f$.$) .$

In general high cytotoxicity was observed for large substituents and in particular for phenyl or naphtyl groups, i.e. compound $\mathbf{1 3 8}\left(\mathrm{IC}_{50}=27.0 \mu \mathrm{M}\right)($ Table 10 $), 152$ $\left(\mathrm{IC}_{50}=5.1 \mu \mathrm{M}\right)$ or $\mathbf{1 5 7}\left(\mathrm{IC}_{50}=3.7 \mu \mathrm{M}\right)$ (Table 11). A possible explanation can be attributed to these lipophilic substituents making the molecule a large lipophilic cation that can act as DNA intercalator. This is observed for cryptolepine (CCXIX, Figure 34), a potent topoisomerase II inhibitor, of which the strong cytotoxicity was thought to be derived from its DNA intercalation properties. ${ }^{240 b}$ Compounds 133, 134 and 142-144, displaying potent and selective antiplasmodial activity in vitro were selected for in vivo evaluation in a $P$. berghei mouse model and biological assays are currently ongoing.

### 4.5. Conclusion

In this chapter, the preparation and biological evaluation of new quaternary $\beta$ carboline alkaloids derived from nostocarboline and eudistomin N against four parasites has been presented. All the derivatives did not show submicromolar activity against Leishmania donovani, Trypanosoma brucei, Trypanosoma cruzi, but a pronounced activity against Plasmodium falciparum was found. Among the derivatives synthesized from 6-chloro norharmane (130), the parent natural product nostocarboline (133) was demonstrated to be the most active and selective. For this natural product, in vitro evaluation gave an $\mathrm{IC}_{50}$ value of 194 nM comparable with the activity of currently used chloroquine $\left(\mathrm{IC}_{50}=181 \mathrm{nM}\right)$ against the $P$. falciparum parasite. In addition, nostocarboline (133) displayed also low cytotoxicity against rat myoblast L6 cells, resulting in a selectivity index of 634. Based on nostocarboline derivatives 133-141, a correlation between the activity and the size of the quaternary $\beta$-carboline was proposed. Increasing of the substituent size on the pyridine nitrogen of the carboline resulted in a decrease of the activity and an increase of the cytotoxicity. The trend was supposed to be derived from the aptitude of larger lipophilic cation to act as DNA intercalators.

Stronger in vitro activities were obtained for 6-bromo norharmane derivatives 142-152 and in particular for the $N$-methylated compound 142 , which displayed an excellent $\mathrm{IC}_{50}$ value against the $P$. falciparum parasite of 18 nM . Moreover this compound displayed a low cytotoxicity against rat myoblast L6 cells $\left(\mathrm{IC}_{50}=86.1\right.$ $\mu \mathrm{M})$, resulting in a selectivity index of 4783. In contrast, a reduced activity was displayed by 8 -bromo-norharmane 153-157 derivatives. A comparison between compounds 143 and 153 , both with an ethyl group on the pyridine nitrogen, but the Br groups at different position, demonstrated a loss of activity of more than 200-fold of these isomeric structures. The in vitro most active compounds 133, 134 and 142-144 are currently in in vivo evaluation in a $P$. berghei mouse model, but unfortunately results are not yet available.

The first in vitro results for these derivatives are encouraging, displaying high activity and selectivity against $P$. falciparum K1. Moreover, from a synthetic and economic point of view, nostocarboline and eudistomin derivatives boast a simple, cheap and straightforward preparation making them good candidates as potential antimalarial agents.

## 5. Conclusion

This thesis was dedicated to the synthesis and the biological evaluation of natural products and their derivatives in order to contribute to the development of new therapeutics against cancer and malaria. In the first chapter the total syntheses of anguinomycins C and D were presented. These syntheses allowed the elucidation of the configuration of both compounds and they were achieved in 29 steps with a longest linear sequence of 18 steps and an overall yield of $6.7 \%$ and $6.0 \%$ respectively. In addition, derivatives were prepared in order to study the mode of action and the structure-activity relationship.


Anguinomycins $\mathrm{C}\left(\mathrm{R}=\mathrm{CH}_{3}\right) \& \mathrm{D}\left(\mathrm{R}=\mathrm{C}_{2} \mathrm{H}_{5}\right)$


Anguinomycin D derivative

Biological evaluation of the synthesized compounds on their ability to inhibit the CRM1-mediated nucleocytoplasmic transport confirmed the high activity of anguinomycins $\mathrm{C}\left(\mathrm{IC}_{50}=10 \mathrm{nM}\right)$ and $\mathrm{D}\left(\mathrm{IC}_{50}=5 \mathrm{nM}\right)$. The most interesting derivative that was prepared, a shorter version of anguinomycin $D$, caused accumulation of the Rio2 protein in the nucleus at less than 50 nM . Structure-activity relationships characterized the lactone moiety as the key part of the molecule responsible for activity. These results prompt further investigation towards this class of compounds and biological evaluation of other derivatives is currently ongoing. This work demonstrates that novel potent inhibitors of the nucleocytoplasmic transport based on naturally occurring molecules could contribute to the development of a therapy for cancer treatment.


The second part of this work was dedicated to synthetic studies on sporolides A and $B$, two complex marine natural compounds proposed to derive from the Bergmann cyclization of an enediyne precursor. Enediynes are known to be highly cytotoxic compounds that induce DNA strand breaks. For the synthesis of sporolides A and B a biomimetic approach through an enediyne intermediate was investigated. Among the key reactions were a Morita-Baylis-Hillman, a Sharpless asymmetric dihydroxylation, an enediyne formation via Wittig reaction and a $\mathrm{CeCl}_{3} \bullet 2 \mathrm{LiCl}-$ mediated acetylide addition. Although preliminary attempts to form the 9-membered enediyne core structure were unsuccessful, further investigations are ongoing.


The last chapter was dedicated to malaria, a disease that kills over 1 million humans annually mostly in developing countries. The development of new quaternary $\beta$-carboline alkaloids derived from nostocarboline and eudistomin N against malaria parasites was reported. A straightforward synthesis allowed the preparation of these derivatives, which were submitted to biological evaluation against four parasites. The derivatives display pronounced activity against Plasmodium falciparum. Among the 6-chloro norharmane derivatives, the parent compound nostocarboline proved to be the most active and selective with an $\mathrm{IC}_{50}$ value of 194 nM and low cytotoxicity against rat myoblast L6 cells, resulting in a selectivity index of 634. Stronger activities were measured for 6-bromo norharmane derivatives, where the N methylated analog of eudistomin N displayed an $\mathrm{IC}_{50}$ value of 18 nM and an elevated selectivity being 4783 times less toxic against L6 rat myoblast cell line. Five derivatives were selected and are currently under in vivo biological evaluation in a $P$. berghei mouse model. Structure-activity relationship analysis of the derivatives clearly shows a trend between the surface area of the compounds and its activity,
furnishing some leads for the development of new potent compounds. The simple, cheap and straightforward synthesis of these derivatives makes them interesting candidates as antiplasmodial drugs.


When considering therapeutic small molecule treatments they should be able to be constructed in an economic and efficient manner. Although natural compounds are often too complex to be considered as useful candidates in this sense, they are often a source of inspiration and motivation in the discovery process. In this work we have demonstrated the importance of nature as a source of biologically active compounds and how synthetic chemistry can contribute in the development and the discovery of therapeutics for treating human diseases. The synergy between synthetic chemistry and natural products remains fundamental and continues to play an important role in science.

## 6. Experimental Section

### 6.1. General Methods and Materials

Unless otherwise stated, chemicals were purchased from Sigma-Aldrich, ABCR, Acros or Lancaster and used without further purification. Solvents for work-up and chromatography were distilled from technical quality. Solvents used for chemical transformations were either puriss quality or dried by filtration through activated aluminium oxide under argon or nitrogen $\left(\mathrm{H}_{2} \mathrm{O}\right.$ content $<30 \mathrm{ppm}$, Karl-Fisher titration). All non-aqueous reactions were run in oven-dried or flame-dried glassware under a positive pressure of argon or nitrogen. Concentration under reduced pressure was performed by rotary evaporation at $40{ }^{\circ} \mathrm{C}$ (unless otherwise specified). Yields refer to purified, dried and spectroscopically pure compound. Analytical thin layer chromatography (TLC) was performed on Merck silica gel $60 \mathrm{~F}_{254}$ plates $(0.25 \mathrm{~mm}$ thickness) precoated with fluorescent indicator. The developed plates were examined under UV light and stained with ceric ammonium molybdate followed by heating. Flash chromatography was performed using silica gel 60 (230-240 mesh) from Fluka using a forced flow eluant at $0.3-0.5$ bar pressure. Kugelrohr distillations were performed with a Büchi Glass Oven B-585. All ${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR spectra were recorded using either Varian Gemini $300 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$ or $75 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$, Varian Mercury $300 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$ or $75 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$, Bruker DRX $500 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$ or $125 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$, Bruker DPX $400 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$ or $100 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$, Bruker DRX $600 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$ or 150 $\mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$, Bruker Advance $800 \mathrm{MHz}\left({ }^{1} \mathrm{H}\right)$ or $200 \mathrm{MHz}\left({ }^{13} \mathrm{C}\right)$ FT spectrometers at room temperature. Chemical shifts $\delta$ are reported in ppm, multiplicity is reported as follows: $\mathrm{s}=$ singlet, $\mathrm{d}=$ doublet, $\mathrm{t}=$ triplet, $\mathrm{q}=$ quartet, quint. $=$ quintet, sext. $=$ sextet, sept. $=$ septet, $\mathrm{m}=$ multiplet or unresolved and coupling constant $J$ in Hz. Analytical gas chromatography (GC) was performed on Hewelett Packard, HP6810. Column: supelco $\beta$ dex 120, $30 \mathrm{mx} 0.25 \mathrm{~mm} \times 0.25 \mu \mathrm{~m}$. Carrier gas: $\mathrm{H}_{2}$. Temperature: $120^{\circ} \mathrm{C}$ isothermal. Flow: $2 \mathrm{~mL} / \mathrm{min}$. Split ratio: 40:1. Detector: FID. Analytical highperformance liquid chromatography (HPLC) was performed on a Dionex Chromatography System (Interface Chromeleon, ASI-100 automated sample injector, UV detector 170 U or PDA-100 photodiode array detector, pump P680, TCC thermostated column compartment, degaser, MSQ-ESI mass spectrometric detector).

The flow rate was $1 \mathrm{~mL} / \mathrm{min}$. Column: Phenomenex Gemini ( $5 \mu \mathrm{~m}$ ) (C18 (150 x 4.6 $\mathrm{mm})$ ), solvent $\mathrm{A}: \mathrm{H}_{2} \mathrm{O}$, solvent $\mathrm{B}: \mathrm{MeOH}$ ). Semi-preparative reversed-phase highperformance liquid chromatography (SP-HPLC) was performed on a Dionex Chromatography System (Interface Chromeleon, UV detector 170U or PDA-100 photodiode array detector, pump P680, TCC thermostated column compartment, degaser). The flow rate was $5 \mathrm{~mL} / \mathrm{min}$. Column: Phenomenex Gemini ( $5 \mu \mathrm{~m}$ ) (C18 110A ( $150 \times 10 \mathrm{~mm})$ ), solvent $\mathrm{A}: \mathrm{H}_{2} \mathrm{O}$, solvent $\mathrm{B}: \mathrm{MeOH}$ ). All separations were performed at ambient temperature. IR spectra were recorded using a Varian 2000 FTIR ATR Spectrometer or Varian 800 FT-IR ATR Spectrometer. The absorptions are reported in $\mathrm{cm}^{-1}$ and the IR bands were assigned as $s$ (strong), $m$ (medium) or $w$ (weak). Optical rotations $[\alpha]^{T}{ }_{D}$ were measured at the sodium $D$ line using a 1 mL cell with a 1 dm path length on a Jasco DIP 1000 digital polarimeter, Jasco P-1020 digital polarimeter, Jasco P-2000 digital polarimeter and the concentration $c$ is given in $\mathrm{g} / 100 \mathrm{~mL}$ and the used solvent is $\mathrm{CHCl}_{3}$, MeOH or $\mathrm{H}_{2} \mathrm{O}$. Elemental analyses were performed by Mikroanalyse Labor of the Laboratorium für Organische Chemie der ETH Zürich or by Dr. Euro Solari in the Laboratory of Supramolecular Chemistry at the EPF Lausanne. All masses spectra were recorded by the Mass spectroscopy Service of Laboratorium für Organische Chemie der ETH Zürich on VG-TRIBRID (EI-MS) spectrometer and spectra measured at 70 eV , on TSQ 7000 ESI or by the Mass spectroscopy Service of EPF Lausanne on MICROMASS (ESI) Q-TOF Ultima API. Fragment ions are given in $m / z$ with relative intensities (\%) in parentheses. X-ray analyses were performed by Dr. B. Schweizer at the ETH Zürich or Dr. R. Scopelliti at the EPF Lausanne. UV spectra were measured on a Varian Cary 1 Bio UV-Visible spectrophotometer in a Starna quartz cell ( 10 mm path length). Lyophilisations were performed using a Christ Freeze Dryer Alpha 1-2 LD plus. Melting points (M.p.) were determined using a Büchi B-545 apparatus in open capillaries and are uncorrected.

### 6.2. Total Syntheses of Anguinomycins C \& D

### 6.2.1. Synthesis of the $C(1)-C(7)$ Fragment

## 3-(triethylsilyl)propionaldehyde (2)



To a suspension of $\mathrm{Mg}(0.50 \mathrm{~g}, 20.0 \mathrm{mmol}, 1.00$ equiv) in dry THF $(80 \mathrm{~mL})$ was added $\mathrm{EtBr}(1.50 \mathrm{~mL}, 20.0 \mathrm{mmol}, 1.00$ equiv) and the mixture was stirred at RT until all Mg was consumed. The resultant solution was added dropwise to a solution of trimethylsilylacetylene (1) ( 3.58 mL , $20.0 \mathrm{mmol}, 1.00$ equiv). The mixture was heated at reflux for 5 minutes and slowly added via canula to a solution of DMF ( $9.52 \mathrm{~mL}, 122 \mathrm{mmol}, 6.10$ equiv) in THF ( 80 mL ) forming a white precipitate. The reaction was heated at reflux for 5 minutes, acidified to $\mathrm{pH} \approx 7$ with dilute HCl solution, diluted with water $(200 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3 x 100 mL ). The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered, and concentrated. The residue was diluted in $\mathrm{Et}_{2} \mathrm{O}$ and washed with dilute $\mathrm{CuSO}_{4}$ solution $(\mathrm{pH} \approx 5)$ and saturated $\mathrm{NaHCO}_{3}$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. The residue was purified by flash chromatography on $\mathrm{SiO}_{2}$ (cyclohexane/AcOEt 100:0 $\rightarrow$ 98:2) to give aldehyde $2(2.98 \mathrm{~g}, 13.5 \mathrm{mmol}, 67 \%)$ as a pale yellow oil. $\mathrm{R}_{f}=0.46$ (cyclohexane/AcOEt 9.5:0.5). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 9.18(\mathrm{~s}, 1 \mathrm{H}), 1.01(\mathrm{t}, J=7.8 \mathrm{~Hz}, 9 \mathrm{H}), 0.68(\mathrm{q}, J=7.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 176.4,103.4,101.3,7.3,3.8$. FTIR $v 2959 m, 2915 w, 2879 m, 2175 w$, $1689 s, 1670 s, 1461 w, 1405 w, 1262 m, 1236 m, 1002 m, 913 w \mathrm{~cm}^{-1}$.

## Triethyl(((2R,6S)-6-methoxy-3,6-dihydro-2H-pyran-2-yl)ethynyl)silane (5)



In a 10 mL flask under Ar was added $4 \AA$ molecular sieves ( 1.26 g), $4(0.30 \mathrm{~g}, 0.29 \mathrm{mmol}, 0.02$ equiv, $2.3 \mathrm{~mol} \%)$, aldehyde $2(2.12$ $\mathrm{g}, 12.6 \mathrm{mmol}, 1.00$ equiv) and 1-methoxy-1,3-butadiene ( 1.28 mL , $12.6 \mathrm{mmol}, 1.00$ equiv) and the mixture was stirred at RT for 18 hours. The reaction was diluted with pentane, filtered through Celite and concentrated. The residue was purified by chromatography on $\mathrm{SiO}_{2}$ (pentane/Et $\mathrm{E}_{2} \mathrm{O}$ $100: 0 \rightarrow 98: 2)$ to afford $5(2.73 \mathrm{~g}, 10.8 \mathrm{mmol}, 86 \%$, e.e. $=96.2)$ as a colorless oil. $\mathrm{R}_{f}$ $=0.37$ (pentane/Et $2 \mathrm{O} 9.5: 0.5$ ). Optical rotation $[\alpha]^{27.9}{ }_{\mathrm{D}}\left(c 0.92, \mathrm{CHCl}_{3}\right)=+105.8^{\circ} .{ }^{1} \mathrm{H}-$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 5.96-5.90(\mathrm{~m}, 1 \mathrm{H}), 5.66\left(\mathrm{dq}, J_{1}=10.3 \mathrm{~Hz}, J_{2}=1.9 \mathrm{~Hz}, 1\right.$
H), $5.01-4.98(\mathrm{~m}, 1 \mathrm{H}), 4.54\left(\mathrm{dd}, J_{1}=7.3 \mathrm{~Hz}, J_{2}=4.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.46(\mathrm{~s}, 3 \mathrm{H}), 2.42-$ $2.20(\mathrm{~m}, 2 \mathrm{H}), 0,96(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 0.56(\mathrm{q}, J=7.9 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 127.5,126.6,105.5,97.2,86.1,61.5,55.2,31.3,7.5,4.3$. GC ( $\beta$-dex chiral column) $\left(\mathrm{T}=120^{\circ} \mathrm{C}\right): \mathrm{t}_{\mathrm{R} 1 \text { (minor) }}=42.08$ minutes, $\mathrm{t}_{\mathrm{R} 2 \text { (major) }}=43.00$ minutes and e.e. $=$ 96.2. Elemental analysis calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{O}_{2} \mathrm{Si}$ : [C] $66.61 \%$, [H] $9.58 \%$, [O] $12.68 \%$, [Si] 11.13 \%; found [C] $66.61 \%$, [H] 9.67 \%. LRMS-ESI 275.3 (100, $\left.[\mathrm{M}+\mathrm{Na}]^{+}\right)$. FTIR $v 2956 m, 2879 m, 1982 w, 1735 w, 1336 w, 1036 m, 763 s, 740 s \mathrm{~cm}^{-1}$.

## (2R,6S)-2-ethynyl-6-methoxy-3,6-dihydro-2H-pyran (6)



To a solution of $5(200 \mathrm{mg}, 0.79 \mathrm{mmol}, 1.00$ equiv) in THF ( 6.30 mL ) at $0^{\circ} \mathrm{C}$ was dropwise added TBAF ( 1 M in THF) ( $3.16 \mathrm{~mL}, 3.16$ $\mathrm{mmol}, 4.00$ equiv). The reaction was stirred for 15 min , warmed to RT, stirred for 1 h and quenched with water ( 20 mL ). The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$ and the combined organic layers were washed with brine ( $1 \times 30 \mathrm{~mL}$ ), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and carefully concentrated in vacuo at $0{ }^{\circ} \mathrm{C}$. The deprotected alkyne $\mathbf{6}$ was dried over molecular sieves and used directly in the next step without further purification. $\mathrm{R}_{f}=0.27$ (pentane/Et $\mathrm{t}_{2} \mathrm{O} 9: 1$ ). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.00\left(\mathrm{dtd}, J_{1}=10.3 \mathrm{~Hz}, J_{2}=4.0 \mathrm{~Hz}, J_{3}=1.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.74\left(\mathrm{qd}, J_{1}=\right.$ $\left.10.3 \mathrm{~Hz}, J_{2}=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.01-4.99(\mathrm{~m}, 1 \mathrm{H}), 4.62\left(\mathrm{dt}, J_{1}=5.7 \mathrm{~Hz}, J_{2}=2.3 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $3.50(\mathrm{~s}, 3 \mathrm{H}), 2.40(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.37\left(\mathrm{ddd}, J_{1}=7.8 \mathrm{~Hz}, J_{2}=4.1 \mathrm{~Hz}, J_{3}=2.1\right.$ $\mathrm{Hz}, 2 \mathrm{H})$.

## Triethyl(((2R,6R)-6-isopropoxy-3,6-dihydro-2H-pyran-2-yl)ethynyl)silane (7)



To a solution of $p \mathrm{TsOH}(76.0 \mathrm{mg}, 0.40 \mathrm{mmol}, 1.00$ equiv) in $i \mathrm{PrOH}(0.4 \mathrm{M})(1.00 \mathrm{~mL})$ was added $5(100 \mathrm{mg}, 0.40 \mathrm{mmol}, 1.00$ equiv) and the solution was stirred at RT for 2 hours. The reaction was quenched with dilute $\mathrm{NaHCO}_{3}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$ ( 3 x $20 \mathrm{~mL})$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated to afford 7 ( $96.0 \mathrm{mg}, 0.34 \mathrm{mmol}, 86 \%$ ) as a colorless oil, which was used without further purification. Optical rotation $[\alpha]^{28.7}{ }_{\mathrm{D}}\left(c 0.795, \mathrm{CHCl}_{3}\right)=+33.7^{\circ}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 5.96\left(\mathrm{dd}, J_{1}=10.0 \mathrm{~Hz}, J_{2}=5.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.71\left(\mathrm{dd}, J_{1}=10.1 \mathrm{~Hz}, J_{2}=1.1 \mathrm{~Hz}\right.$,

1 H ), 5.14 (br. s, 1 H ), 4.71 (dd, $\left.J_{1}=11.1 \mathrm{~Hz}, J_{2}=3.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.07$ (sept., $J=6.2$ $\mathrm{Hz}, 1 \mathrm{H}), 2.41\left(\mathrm{dd}, J_{1}=17.7 \mathrm{~Hz}, J_{2}=11.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.23\left(\mathrm{dd}, J_{1}=17.7 \mathrm{~Hz}, J_{2}=4.1\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 1.29(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.19(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{t}, J=7.8 \mathrm{~Hz}, 9 \mathrm{H})$, $0.63(\mathrm{q}, J=7.8 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 128.2,126.3,106.1,93.4$, 87.0, 70.3, 58.0, 32.1, 24.2, 24.4, 7.8, 4.7. LRMS-ESI 303.2 (100, [M+Na] ${ }^{+}$). FTIR $v$ 2957m, 2012m, 2877m, 2186w, 1697w, 1461w, 1380w, 1317w, 1182w, 1098w, $1059 w, 1024 s, 1000 s, 799 w, 726 s \mathrm{~cm}^{-1}$.
(2R,6R)-2-ethynyl-6-isopropoxy-3,6-dihydro-2H-pyran (8)


To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $7(2.97 \mathrm{~g}, 10.6 \mathrm{mmol}, 1.00$ equiv) in THF ( 26.0 mL ) was added TBAF ( 1 M in THF) ( $10.6 \mathrm{~mL}, 10.6$ $\mathrm{mmol}, 1.0$ equiv). The reaction was stirred for 15 minutes, warmed to RT, stirred for 1 hour and quenched with water ( 50 mL ). The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 40 \mathrm{~mL})$ and the combined organic layers were washed with brine ( $1 \times 60 \mathrm{~mL}$ ), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and carefully concentrated in vacuo at $0{ }^{\circ} \mathrm{C}$. The residue was purified by chromatography on $\mathrm{SiO}_{2}$ (pentane/ $\mathrm{Et}_{2} \mathrm{O}$ 100:0 $\rightarrow$ 95:5) to give the deprotected alkyne $\mathbf{8}(1.68 \mathrm{~g}, 10.1 \mathrm{mmol}, 95 \%)$ as a colorless volatile oil. $\mathrm{R}_{f}=0.45$ (cyclohexane/AcOEt 9:1). Optical rotation $[\alpha]^{26.9}\left(c 0.58, \mathrm{CHCl}_{3}\right)=$ $+80.6^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.93\left(\mathrm{dd}, J_{1}=10.1 \mathrm{~Hz}, J_{2}=5.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.68$ $\left(\mathrm{ddd}, J_{1}=10.2 \mathrm{~Hz}, J_{2}=2.9 \mathrm{~Hz}, J_{3}=1.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.10($ br. s, 1 H$), 4.67\left(\mathrm{dddd}, J_{1}=\right.$ $\left.11.2 \mathrm{~Hz}, J_{2}=3.7 \mathrm{~Hz}, J_{3}=2.2 \mathrm{~Hz}, J_{4}=0.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.03($ sept., $J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.44$ $(\mathrm{d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.37\left(\mathrm{dddd}, J_{1}=11.2 \mathrm{~Hz}, J_{2}=4.3 \mathrm{~Hz}, J_{3}=2.1 \mathrm{~Hz}, J_{4}=0.6 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 2.19$ (dddd, $\left.J_{1}=17.8 \mathrm{~Hz}, J_{2}=5.2 \mathrm{~Hz}, J_{3}=3.8 \mathrm{~Hz}, J_{4}=1.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.25(\mathrm{~d}, J=$ $6.2 \mathrm{~Hz}, 3 \mathrm{H}$ ), $1.16(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 128.0,126.4$, 93.3, 83.2, 73.1, 70.3, 57.3, 32.4, 24.2, 22.4. FTIR v 3306m, 2971m, 2928m, 2053w, $1736 w, 1380 w, 1184 w, 1023 m, 1002 w, 784 s \mathrm{~cm}^{-1}$.
6.2.2. Synthesis of the $\mathrm{C}(8)-\mathrm{C}(11)$ Fragment

## (R)-methyl 3-(tert-butyldimethylsilyloxy)-2-methylpropanoate (10)



To a cooled $\left(0{ }^{\circ} \mathrm{C}\right)$ solution of $(R)$-methyl-3-hydroxy-2-methyl propionate (9) ( $5.00 \mathrm{~mL}, 39.7 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$ was added TBSCl ( $8.38 \mathrm{~g}, 55.6 \mathrm{mmol}, 1.40$ equiv) and imidazole ( $5.95 \mathrm{~g}, 87.3 \mathrm{mmol}$, 2.20 equiv) and the reaction was warmed to RT and stirred for 2 hours. The mixture was filtered through Celite, washed with $\mathrm{HCl}(0.1 \mathrm{M})(100 \mathrm{~mL}), \mathrm{H}_{2} \mathrm{O}(3 \times 100 \mathrm{~mL})$ and brine ( $1 \times 100 \mathrm{~mL}$ ), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated to afford $\mathbf{1 0}(9.23 \mathrm{~g}$, 39.7 mmol, quant.) which was used without further purification. $\mathrm{R}_{f}=0.60$ (cyclohexane/AcOEt 8:2). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.76\left(\mathrm{dd}, J_{1}=9.7 \mathrm{~Hz}, J_{2}=\right.$ $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.63\left(\mathrm{dd}, J_{1}=9.7 \mathrm{~Hz}, J_{2}=6.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.64(\mathrm{sext} ., J=7.0$ $\mathrm{Hz}, 1 \mathrm{H}), 1.12(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.85(\mathrm{~s}, 9 \mathrm{H}), 0.02(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 6 \mathrm{H})$.

## (S)-3-(tert-butyldimethylsilyloxy)-2-methylpropan-1-ol (11)


mmol, 1.00 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 190 mL ) was dropwise added DIBAL-H ( 1 M in hexanes) ( $78.0 \mathrm{~mL}, 78.0 \mathrm{mmol}, 2.00$ equiv). The mixture was stirred for 15 minutes at $-78{ }^{\circ} \mathrm{C}$, warmed to RT and stirred for 1 hour. The mixture was cooled at $-78{ }^{\circ} \mathrm{C}$, quenched with $\mathrm{NaH}_{2} \mathrm{PO}_{4} / \mathrm{Na}_{2} \mathrm{HPO}_{4}$ buffer solution $(\mathrm{pH}=7.2)(94.0 \mathrm{~mL})$ and allowed to return at RT over 1.5 hours. The solution was filtered through Celite and the organic layer was washed with water ( $2 \times 150 \mathrm{~mL}$ ) and brine ( $1 \times 150 \mathrm{~mL}$ ). The filter cake was washed with EtOAc ( $2 \times 100 \mathrm{~mL}$ ) and the aqueous layers were extracted a second time with EtOAc ( $2 \times 100 \mathrm{~mL}$ ). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated to afford the alcohol 11 ( $7.97 \mathrm{~g}, 39.0 \mathrm{mmol}$, quant.), which was used without further purification. $\mathrm{R}_{f}=0.28$ (cyclohexane/AcOEt 8:2). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.72\left(\mathrm{dd}, J_{1}=9.8 \mathrm{~Hz}, J_{2}=4.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.61(\mathrm{~s}, 1$ H), $3.55\left(\mathrm{dd}, J_{1}=16.6 \mathrm{~Hz}, J_{2}=8.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.46\left(\mathrm{dd}, J_{1}=14.1 \mathrm{~Hz}, J_{2}=7.1 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $2.90(\mathrm{~s}, 1 \mathrm{H}), 1.98-1.85(\mathrm{~m}, 1 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.82(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 69.0,68.6,37.2,26.0,18.4,13.2,-5.4,-5.4$.

## (R)-3-(tert-butyldimethylsilyloxy)-2-methylpropanal (12)



To a cooled $\left(10^{\circ} \mathrm{C}\right)$ solution of alcohol $11(5.00 \mathrm{~g}, 24.5 \mathrm{mmol}, 1.00$ 2.40 equiv) and pyridine sulfur trioxide ( $7.80 \mathrm{~g}, 49.0 \mathrm{mmol}, 2.00$ equiv). The solution was stirred at RT for 3 hours, cooled to $10{ }^{\circ} \mathrm{C}$, quenched with $\mathrm{H}_{2} \mathrm{O}(60 \mathrm{~mL})$ and extracted with cyclohexane ( $3 \times 80 \mathrm{~mL}$ ). The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated to obtain aldehyde $\mathbf{1 2}(4.95 \mathrm{~g}, 24.5 \mathrm{mmol}$, quant.) as a pale yellow oil which was used without further purification. $\mathrm{R}_{f}=0.60$ (cyclohexane/AcOEt 8:2). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.73$ (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}$ ), $3.74\left(\mathrm{ddd}, J_{1}=15.6 \mathrm{~Hz}, J_{2}=9.8 \mathrm{~Hz}, J_{3}=6.4 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.71-2.60(\mathrm{~m}, 1 \mathrm{H}), 1.17(\mathrm{~d}, J=$ $7.1 \mathrm{~Hz}, 3 \mathrm{H}$ ), $0.88(\mathrm{~s}, 9 \mathrm{H}), 0.06(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 180.0,64.8$, 42.0, 25.7, 18.1, 13.0, -5.6.

## (S)-tert-butyl(4,4-dibromo-2-methylbut-3-enyloxy)dimethylsilane (13)



To a suspension of $\mathrm{Zn}\left(2.41 \mathrm{~g}, 36.8 \mathrm{mmol}, 3.00\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 210 mL ) were added $\mathrm{PPh}_{3}(9.65 \mathrm{~g}, 36.8 \mathrm{mmol}, 3.00$ equiv) and $\mathrm{CBr}_{4}(12.2 \mathrm{~g}, 36.8 \mathrm{mmol}, 3.00$ equiv). The mixture was stirred at RT for 2 days, treated with aldehyde $12(2.48 \mathrm{~g}, 12.3 \mathrm{mmol}, 1.00$ equiv) and stirred for 1 day. The mixture was diluted with cyclohexane and the $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was removed in vacuo. The residue was triturated with cyclohexane, filtered, washed with cyclohexane and concentrated to obtain dibromo olefin 13 ( $3.74 \mathrm{~g}, 10.4 \mathrm{mmol}, 85 \%$ ) as a pale yellow oil. An analytical sample was purified by flash chromatography on $\mathrm{SiO}_{2}$ (cyclohexane $100 \%$ ). $\mathrm{R}_{f}=0.36$ (cyclohexane $100 \%$ ). Optical rotation $[\alpha]^{29.0}{ }_{\mathrm{D}}(c$ $\left.0.89, \mathrm{CHCl}_{3}\right)=+4.6^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.27(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.51$ $\left(\mathrm{dd}, J_{1}=5.8 \mathrm{~Hz}, J_{2}=0.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.70-2.56(\mathrm{~m}, 1 \mathrm{H}), 1.02(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$, $0.90(\mathrm{~s}, 9 \mathrm{H}), \quad 0.05(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 141.3,88.4,66.0,41.1$, 27.0, 18.4, 15.6, -5.2. HRMS-EI calcd for $\mathrm{C}_{7} \mathrm{H}_{13} \mathrm{Br}_{2} \mathrm{OSi}$ : $\left[\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}\right]^{+}$298.9097; found 298.9097.

## (S)-4,4-dibromo-2-methylbut-3-en-1-ol (19)



To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of dibromo olefin $18(3.00 \mathrm{~g}, 8.37 \mathrm{mmol}$, 1.00 equiv) in THF ( 21.0 mL ) was added TBAF ( 1 M in THF) ( 0.87 $\mathrm{mL}, 8.37 \mathrm{mmol}, 1.00$ equiv). The solution was stirred 5 minutes at 0 ${ }^{\circ} \mathrm{C}$, warmed to RT, stirred for 3 hours and quenched with water. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \times 40 \mathrm{~mL})$ and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. The residue was purified by chromatography on $\mathrm{SiO}_{2}$ (cyclohexane/EtOAc 99:1 $\rightarrow$ 98:2) to afford alcohol $19(0.95 \mathrm{~g}, 3.90 \mathrm{mmol}$, $47 \%$ ) as a colorless oil. $\mathrm{R}_{f}=0.41$ (cyclohexane/AcOEt 7:3). Optical rotation $[\alpha]^{27.3} \mathrm{D}$ $\left(c \quad 0.68, \mathrm{CHCl}_{3}\right)=+0.6^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.28(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H})$, 3.53 (d, $J=5.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.75-2.61(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{~m}, 1 \mathrm{H}), 1.04(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 140.6,89.5,66.1,41.1,15.4$. HRMS-EI calcd for $\mathrm{C}_{5} \mathrm{H}_{8} \mathrm{Br}_{2} \mathrm{O}:[\mathrm{M}]^{+}$241.8937; found 241.8936. FTIR $v 3332 s, 2965 m, 2930 m, 2872 m$, $1616 w, 1454 w, 1380 w, 1261 w, 1252 w, 1036 m, 989 w, 784 s \mathrm{~cm}^{-1}$.
(S)-(4,4-dibromo-2-methylbut-3-enyloxy)triisopropylsilane (20)


To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of alcohol $19(915 \mathrm{mg}, 3.75 \mathrm{mmol}$, 1.00 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.75 \mathrm{~mL}$ ) were added imidazole ( 511 mg , 7.50 mmol 2.00 equiv), $\operatorname{TIPSCl}(1.21 \mathrm{~mL}, 5.63 \mathrm{mmol}, 1.50$ equiv) and DMAP (cat.). After addition the solution was allowed to return to RT and stirred overnight. The reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with dilute HCl , water ( 3 x $30 \mathrm{~mL})$ and brine ( $1 \times 30 \mathrm{~mL}$ ), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. The residue was purified by chromatography on $\mathrm{SiO}_{2}$ (cyclohexane/EtOAc 100:0 $\rightarrow$ 99:1) to give product $20(1.40 \mathrm{~g}, 3.49 \mathrm{mmol}, 93 \%)$ as a colorless oil. $\mathrm{R}_{f}=0.47$ (hexane $100 \%$ ). Optical rotation $[\alpha]^{27.6}\left(c 0.90, \mathrm{CHCl}_{3}\right)=+12.9^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.31$ (d, $J=9.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), $3.62(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.60(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.73-2.58(\mathrm{~m}$, $1 \mathrm{H})$, 1.08-1.05 (m, 24 H ). Elemental analysis calcd for $\mathrm{C}_{14} \mathrm{H}_{28} \mathrm{Br}_{2} \mathrm{OSi}$ : [C] $42.01 \%$, [H] $7.05 \%$, [O] $4.00 \%$, [Si] $7.02 \%$, [Br] $39.93 \%$; found [C] $42.06 \%$, [H] $7.07 \%$, [Br] $40.02 \%$. HRMS-EI calcd for $\mathrm{C}_{11} \mathrm{H}_{21} \mathrm{Br}_{2} \mathrm{OSi}$ : $\left[\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{7}\right]^{+}$354.9723; found 354.9720. FTIR v 2944m, 2866m, 1463w, 1215m, 1109w, 755s, $670 s \mathrm{~cm}^{-1}$.

## (R)-methyl 2-methyl-3-(triisopropylsilyloxy)propanoate (21)



To a cooled $\left(0{ }^{\circ} \mathrm{C}\right)$ solution of $(R)$-methyl-3-hydroxy-2-methyl propionate (9) ( $1.50 \mathrm{~mL}, 13.6 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 13.6 mL ) were added imidazole ( $2.04 \mathrm{~g}, 30.0 \mathrm{mmol}, 2.20$ equiv), $\operatorname{TIPSCl}(4.10 \mathrm{~mL}, 19.0$ mmol, 1.40 equiv), DMAP (cat.). The reaction was allowed to return to RT and stirred overnight. The reaction was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, washed with diluted $\mathrm{HCl}(\mathrm{pH}=3)$ (3x), $\mathrm{H}_{2} \mathrm{O}(2 \mathrm{x})$, dried $\left(\mathrm{MgSO}_{4}\right)$. Purification by flash chromatography on $\mathrm{SiO}_{2}$ (cyclohexane/EtOAc 9.5:0.5) afforded product 21 ( $3.73 \mathrm{~g}, 13.6 \mathrm{mmol}$, quant.) as a colorless oil. $\mathrm{R}_{f}=0.53$ (cyclohexane/AcOEt 9:1). Optical rotation $[\alpha]^{24.1}{ }_{\mathrm{D}}(c 1.00$, $\left.\mathrm{CHCl}_{3}\right)=-19.6^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.85\left(\mathrm{dd}, J_{1}=9.4 \mathrm{~Hz}, J_{2}=6.7 \mathrm{~Hz}, 1\right.$ H), $3.75\left(\mathrm{dd}, J_{1}=9.4 \mathrm{~Hz}, J_{2}=6.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.66(\mathrm{~s}, 3 \mathrm{H}), 2.72-2.60(\mathrm{~m}, 1 \mathrm{H}), 1.15(\mathrm{~d}$, $J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.05-1.00(\mathrm{~m}, 21 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 175.7,65.8$, $51.6,42.8,18.1,13.6,12.1$. Elemental analysis calcd for $\mathrm{C}_{14} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{Si}$ : [C] $61.26 \%$, [H] 11.02 \%, [O] 17.49 \%, [Si] $10.23 \%$; found [C] $61.53 \%$, [H] 10.78 \%. HRMS-EI calcd for $\mathrm{C}_{11} \mathrm{H}_{23} \mathrm{O}_{3} \mathrm{Si}:\left[\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{7}\right]^{+}$231.1411; found 231.1410. FTIR $v 2943 s$, 2867s, $1743 s, 1463 m, 1435 w, 1389 w, 1250 m, 1198 m, 1176 m, 1105 s, 1068 m, 1027 w, 882 m$, $797 w, 682 \mathrm{~m} \mathrm{~cm}^{-1}$.
(S)-2-methyl-3-(triisopropylsilyloxy)propan-1-ol (22)
$\mathrm{HO} \quad$ To a cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $21(12.4 \mathrm{~g}, 45.0 \mathrm{mmol}, 1.00$
OTIPS equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 230 mL ), DIBAL-H ( 1 M in hexane) ( 78.0 mL , $78.0 \mathrm{mmol}, 2.00$ equiv) was added dropwise. The mixture was stirred for 1 hour at $78{ }^{\circ} \mathrm{C}$, then between $-20^{\circ} \mathrm{C}$ and $-15^{\circ} \mathrm{C}$ for 30 minutes. The reaction was quenched by addition of MeOH and saturated Rochelle's salt. The mixture was vigorously stirred at RT for 1 hour. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3x) and the combined organic layers washed with brine (1x), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Purification by chromatography on $\mathrm{SiO}_{2}$ (cyclohexane/EtOAc 9.5:0.5 $\rightarrow 7: 3$ ) afforded alcohol $22(9.30 \mathrm{~g}, 37.7 \mathrm{mmol}, 84 \%)$ and aldehyde $23(1.78 \mathrm{~g}, 7.3 \mathrm{mmol}, 16 \%)$ as a colorless oil. $\mathrm{R}_{f}=0.56$ (hexane/AcOEt 8:2). Optical rotation $[\alpha]^{25.0}{ }_{\mathrm{D}}\left(c 0.25, \mathrm{CHCl}_{3}\right)$ $=-6.8^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 3.87\left(\mathrm{dd}, J_{1}=9.7 \mathrm{~Hz}, J_{2}=4.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.69-$ 3.62 (m, 3 H ), 3.03 (br. s, 1 H ), 2.07-1.96 (m, 1 H ), 1.17-1.03 (m, 21 H ), 0.86 (d, $J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 69.9,69.0,37.5,18.3$, 13.4, 12.1.

Elemental analysis calcd for $\mathrm{C}_{13} \mathrm{H}_{30} \mathrm{O}_{2} \mathrm{Si}$ : [C] $63.35 \%$, [H] $12.27 \%$, [O] $12.98 \%,[\mathrm{Si}]$ $11.40 \%$; found [C] $63.55 \%$, [H] $12.13 \%$. HRMS-EI calcd for $\mathrm{C}_{10} \mathrm{H}_{23} \mathrm{O}_{2} \mathrm{Si}$ : [M$\left.\mathrm{C}_{3} \mathrm{H}_{7}\right]^{+}$203.1462; found 203.1464. FTIR v 3368m, 2943s, 2866s, 1463m, 1384w, $1247 w, 1096 s, 1035 s, 995 m, 881 s, 791 m, 680 s, 668 s, 659 m \mathrm{~cm}^{-1}$.

## (R)-2-methyl-3-(triisopropylsilyloxy)propanal (23)



To a cooled $\left(15{ }^{\circ} \mathrm{C}\right)$ solution of alcohol $22(10.1 \mathrm{~g}, 40.9 \mathrm{mmol}, 1.00$ equiv) in DMSO ( 225 mL ) was sequentially added $\mathrm{Et}_{3} \mathrm{~N}(13.7 \mathrm{~mL}$, $98.2 \mathrm{mmol}, 2.40$ equiv) and pyridine sulfur trioxide ( $13.0 \mathrm{~g}, 81.8 \mathrm{mmol}, 2.00$ equiv). The solution was stirred for 5 minutes at $15{ }^{\circ} \mathrm{C}$, then allowed to return to RT and stirred for 1.5 hours. The solution was cooled with an ice bath, quenched by addition of water ( 300 mL ), diluted with hexane ( 750 mL ) and stirred for 2 hours at RT. The aqueous layer was extracted with hexane (3x) and the combined organic layer washed with water ( 1 x ) and brine ( 1 x ), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Purification by chromatography on $\mathrm{SiO}_{2}$ (cyclohexane/EtOAc 97:3) afforded aldehyde 23 (10.0 g, 40.9 mmol, quant.) as a colorless oil. $\mathrm{R}_{f}=0.83$ (hexane/AcOEt 8:2). Optical rotation $[\alpha]^{25.0}{ }_{\mathrm{D}}\left(c 0.45, \mathrm{CHCl}_{3}\right)=-35.6^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.80(\mathrm{~d}, J=1.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.00\left(\mathrm{dd}, J_{1}=10.0 \mathrm{~Hz}, J_{2}=5.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.92\left(\mathrm{dd}, J_{1}=9.9 \mathrm{~Hz}, J_{2}=6.4 \mathrm{~Hz}, 1\right.$ H), 2.61-2.53 (m, 1 H ), $1.13(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.10-1.05(\mathrm{~m}, 21 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 205.2,64.4,49.5,18.4,12.3,10.7$. HRMS-EI calcd for $\mathrm{C}_{13} \mathrm{H}_{28} \mathrm{O}_{2} \mathrm{NaSi}:[\mathrm{M}-\mathrm{Na}]^{+}$267.1756; found 267.1762. FTIR $\vee 2961 \mathrm{~m}, 2930 \mathrm{~m}, 2858 \mathrm{~m}$, $1782 m, 1696 m, 1461 w, 1384 m, 1251 w, 1204 m, 1100 w, 1054 w, 835 w, 773 w \mathrm{~cm}^{-1}$.
(S)-(4,4-dibromo-2-methylbut-3-enyloxy)triisopropylsilane (20)


To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathrm{CBr}_{4}(16.0 \mathrm{~g}, 48.2 \mathrm{mmol}, 2.20$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 87 mL ), $\mathrm{PPh}_{3}(25.3 \mathrm{~g}, 96.3 \mathrm{mmol}, 4.40$ equiv) was added in portion over 2 minutes. The solution turned from clear to brown and after 15 minutes at $0^{\circ} \mathrm{C}$, a solution of aldehyde $23(5.35 \mathrm{~g}, 21.9$ mmol, 1.00 equiv) and 2,6-lutidine ( 5.61 mL , 48.2 mmol , 2.20 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 87 mL ) was added by canula over 20 minutes. The resulting dark-brown mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 2.5 hours. The reaction was quenched by addition of saturated
$\mathrm{NH}_{4} \mathrm{Cl}$ and stirred for 30 minutes at RT. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2x) and the combined organic layer washed with saturated $\mathrm{NaHCO}_{3}(1 \mathrm{x})$ and brine $(1 \mathrm{x})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was triturated in hexane and the filtered concentrated. Purification by chromatography on $\mathrm{SiO}_{2}$ (hexane 100\%) afforded dibromo olefin $\mathbf{2 0}(5.58 \mathrm{~g}, 14.0 \mathrm{mmol}, 64 \%)$ as a colorless oil. Analytical data matched those previously reported for the preparation of the same compound $\mathbf{2 0}$.

### 6.2.3. Synthesis of the Alkyl Iodides Fragments

((S,3Z,5E)-4-bromo-6-((2R,6R)-6-isopropoxy-3,6-dihydro-2H-pyran-2-yl)-2-met-

## hylhexa-3,5-dienyloxy)triisopropylsilane (24)



To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of alkyne $8(312 \mathrm{mg}$, $1.87 \mathrm{mmol}, 1.00$ equiv) in THF ( $9.40 \mathrm{~mL}, 0.2 \mathrm{M}$ vs 8 ) was added $\mathrm{Cp}_{2} \mathrm{ZrHCl}(374 \mathrm{mg}, 1.44 \mathrm{mmol}$, 1.20 equiv). The flask was covered with an aluminium foil, stirred for 5 min at $0^{\circ} \mathrm{C}$ and 1 hour at RT. In a separate flask $\mathrm{ZnCl}_{2}(357 \mathrm{mg}, 2.62 \mathrm{mmol}, 1.40$ equiv) was fused and dissolved in THF ( 11.2 mL ). The solution was added to the solution of alkenylzirconocene at RT and the reaction stirred at RT for 30 minutes. In a separate flask, to a mixture of $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(109 \mathrm{mg}, 0.09 \mathrm{mmol}, 0.05$ equiv, $5 \mathrm{~mol} \%)$ in THF ( $9.40 \mathrm{~mL}, 0.2 \mathrm{M} v v^{20}$ ) was added DIBAL-H ( $10 \%$ in hexane) ( $187 \mu \mathrm{~L}, 0.19 \mathrm{mmol}$, 0.10 equiv, $10 \%$ ) and the mixture was stirred 20 minutes at RT and then dibromo olefin $20(750 \mathrm{mg}, 1.87 \mathrm{mmol}, 1.00$ equiv) was added. The dibromoolefin solution was stirred for 5 minutes at RT and then was added to the organozinc solution. The mixture was stirred 5 minutes at RT and then 13 hours at $40^{\circ} \mathrm{C}$. The reaction was quenched with water ( 30 mL ) and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 40 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. The residue was purified by chromatography on $\mathrm{SiO}_{2}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ cyclohexane $\left.7: 3\right)$ to give the coupled product $24(756 \mathrm{mg}, 1.55 \mathrm{mmol}, 83 \%)$ as a pale yellow oil. $\mathrm{R}_{f}=0.39$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ cyclohexane 7:3). Optical rotation $[\alpha]^{25.0}\left(c \quad 0.97, \mathrm{CHCl}_{3}\right)=+50.0^{\circ} .{ }^{1} \mathrm{H}-$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 6.28\left(\mathrm{dd}, J_{1}=14.8 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right.$ ), $6.07\left(\mathrm{dd}, J_{1}=\right.$ $\left.14.8 \mathrm{~Hz}, J_{2}=5.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.02-5.97(\mathrm{~m}, 1 \mathrm{H}), 5.88(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.72\left(\mathrm{ddd}, J_{1}\right.$ $\left.=10.0 \mathrm{~Hz}, J_{2}=4.3 \mathrm{~Hz}, J_{3}=2.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.12(\mathrm{~d}, J=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.58-4.51(\mathrm{~m}, 1$ H), 4.00 (sept., $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.61 (ddd, $J_{1}=15.8 \mathrm{~Hz}, J_{2}=9.4 \mathrm{~Hz}, J_{3}=5.8 \mathrm{~Hz}, 2$
H), 2.99-2.86 (m, 1 H$), 2.10-2.05(\mathrm{~m}, 2 \mathrm{H}), 1.22(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.17$ (d, $J=6.1$ $\mathrm{Hz}, 3 \mathrm{H}), 1.05(\mathrm{~s}, 24 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 137.3,133.4,129.3,128.2$, 126.0, 124.0, 93.1, 69.6, 66.8, 65.7, 39.5, 30.9, 24.0, 22.1, 18.1, 16.2, 12.1. HRMS-EI calcd for $\mathrm{C}_{44} \mathrm{H}_{43} \mathrm{BrO}_{3} \mathrm{Si}:\left[\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{7}\right]^{+}$443.1612; found 443.1610. FTIR $\vee 2942 m$, $2893 m, 2866 m, 1463 w, 1383 w, 1180 w, 1102 m, 1028 s, 1000 m, 952 w, 883 w, 787 m$, $684 \mathrm{~m} \mathrm{~cm}^{-1}$.

## ((S,3Z,5E)-6-((2R,6R)-6-isopropoxy-3,6-dihydro-2H-pyran-2-yl)-2,4-dimethyl-

## hexa-3,5-dienyloxy)triisopropylsilane (25)



To a solution of $24(100 \mathrm{mg}, 0.23 \mathrm{mmol}, 1.00$ equiv) in THF ( $1.00 \mathrm{~mL}, 0.23 \mathrm{M}$ vs $\mathbf{2 4}$ ) was added $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(24.0 \mathrm{mg}, 0.02 \mathrm{mmol}, 0.10$ equiv). The solution was stirred for 10 minutes at RT , treated with $\mathrm{Me}_{2} \mathrm{Zn}$ ( 2.0 M in toluene) ( 0.21 $\mathrm{mL}, 0.42 \mathrm{mmol}, 2.00$ equiv) and the reaction was stirred at $45{ }^{\circ} \mathrm{C}$ for 24 hours. An additional portion of $\mathrm{Me}_{2} \mathrm{Zn}(0.10 \mathrm{~mL}, 0.21 \mathrm{mmol}, 1.00$ equiv) was added and the solution was stirred at $45{ }^{\circ} \mathrm{C}$ for 14 hours. The reaction was quenched with dilute $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$ ( $3 \times 15 \mathrm{~mL}$ ). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. The residue was purified by chromatography on $\mathrm{SiO}_{2}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ cyclohexane 7:3) to afford product $25(66.3 \mathrm{mg}, 0.16 \mathrm{mmol}, 68 \%$, d.r. $>97: 3)$ as a colorless oil. $\mathrm{R}_{f}=0.21\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ cyclohexane 7:3). Optical rotation $[\alpha]^{28.2}{ }_{\mathrm{D}}$ $\left(c 0.62, \mathrm{CHCl}_{3}\right)=+37.9^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.69(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H})$, $6.01\left(\right.$ dddd, $\left.J_{1}=7.7 \mathrm{~Hz}, J_{2}=5.3 \mathrm{~Hz}, J_{3}=1.9 \mathrm{~Hz}, J_{4}=0.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.77-5.67(\mathrm{~m}, 2 \mathrm{H})$, 5.19 (d, $J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.13-5.12(\mathrm{~m}, 1 \mathrm{H}), 4.54-5.47(\mathrm{~m}, 1 \mathrm{H}), 4.02$ (sept., $J=6.2$ $\mathrm{Hz}, 1 \mathrm{H}), 3.50\left(\mathrm{ddd}, J_{1}=16.9 \mathrm{~Hz}, J_{2}=9.4 \mathrm{~Hz}, J_{3}=6.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.87-2.74(\mathrm{~m}, 1 \mathrm{H})$, 2.20-2.00 (m, 2 H ), 1.82 (d, $J=1.2 \mathrm{~Hz}, 3 \mathrm{H}$ ), 1.24 (d, $J=6.2 \mathrm{~Hz}, 3 \mathrm{H}$ ), 1.18 (d, $J=$ $6.1 \mathrm{~Hz}, 3 \mathrm{H}$ ), 1.05-1.04 (m, 24 H ). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 134.2,131.3,129.3$, 128.4, 128.1, 126.0, 93.0, 69.4, 68.0, 66.9, 34.9, 30.7, 23.8, 21.9, 20.4, 17.9, 17.5, 11.9. Elemental analysis calcd for $\mathrm{C}_{25} \mathrm{H}_{46} \mathrm{O}_{3}$ Si: [C] 71.03, [H] 10.97, [O] 11.35, [Si] 6.64; found [C] 71.11, [H] 10.99. HRMS-EI calcd for $\mathrm{C}_{25} \mathrm{H}_{46} \mathrm{O}_{3} \mathrm{Si}$ : $[\mathrm{M}]^{+} 422,3211$; found 422.3219. FTIR $v 2942 m, 2867 m, 1462 w, 1382 w, 1182 w, 1122 w, 1101 w$, $1029 m, 1000 w, 780 s, 683 m \mathrm{~cm}^{-1}$.

## Preparation of $\mathrm{Cl}_{2} \mathbf{P d}$ (DPEphos)

A mixture of $\mathrm{PdCl}_{2}(200 \mathrm{mg}, 1.12 \mathrm{mmol}, 1.00$ equiv) and $\mathrm{LiCl}(94.0 \mathrm{mg}, 2.24 \mathrm{mmol}$, 2.00 equiv) in $\mathrm{MeOH}(2 \mathrm{~mL})$ was heated to $50^{\circ} \mathrm{C}$ for 10 minutes. DPE(phos) ( 638 $\mathrm{mg}, 1.18 \mathrm{mmol}, 1.05$ equiv) was added and the resulting mixture stirred at $50^{\circ} \mathrm{C}$ for 8.5 hours, then cooled to RT, filtered, washed with MeOH and dried under high vacuum overnight affording $\mathrm{Cl}_{2} \operatorname{Pd}(\mathrm{DPEphos})(755 \mathrm{mg}, 1.05 \mathrm{mmol}, 94 \%)$ as a yellow powder.
((S,3Z,5E)-4-ethyl-6-((2R,6R)-6-isopropoxy-3,6-dihydro-2H-pyran-2-yl)-2-met-

## hylhexa-3,5-dienyloxy)triisopropylsilane (26)



In a 5 mL flask containing $\mathrm{Cl}_{2} \mathrm{Pd}$ (DPEphos) (2.20 $\mathrm{mg}, 0.003 \mathrm{mmol}, 0.05$ equiv) was added a solution of 24 ( $30.0 \mathrm{mg}, 0.06 \mathrm{mmol}, 1.00$ equiv) in degassed ${ }^{249}$ THF ( 0.75 mL ). To the yellow mixture was slowly added $\mathrm{Et}_{2} \mathrm{Zn}(1.5 \mathrm{M}$ in toluene) ( $80 \mu \mathrm{~L}, 0.12 \mathrm{mmol}, 2.00$ equiv) and a pale yellow solution was obtained. The tube was sealed and stirred at $50^{\circ} \mathrm{C}$ for 14 hours. The red-brown colored solution was quenched by slow addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3x). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. The residue was purified by chromatography on $\mathrm{SiO}_{2}$ (hexane/acetone 99:1) to give product $26(22.8 \mathrm{mg}, 0.05 \mathrm{mmol}, 84 \%$, d.r. $>97: 3)$ as a colorless oil. $\mathrm{R}_{f}=0.65$ (hexane/acetone 99.5:0.5). Optical rotation $[\alpha]^{26.4}{ }_{\mathrm{D}}\left(c \quad 0.28, \mathrm{CHCl}_{3}\right)=+38.5^{\circ} .{ }^{1} \mathrm{H}-$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 6.61(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.04-5.99(\mathrm{~m}, 1 \mathrm{H}), 5.74\left(\mathrm{dd}, J_{1}\right.$ $\left.=15.8 \mathrm{~Hz}, J_{2}=6.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.75-5.69(\mathrm{~m}, 2 \mathrm{H}), 5.19(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.13-5.12$ (m, 1 H), 4.54-4.47 (m, 1 H), 4.02 (sept., $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.51 (ddd, $J_{1}=16.6 \mathrm{~Hz}, J_{2}$ $\left.=9.4 \mathrm{~Hz}, J_{3}=6.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.79\left(\mathrm{dq}, J_{1}=9.3 \mathrm{~Hz}, J_{2}=6.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.20\left(\mathrm{qd}, J_{1}=7.4\right.$ $\left.\mathrm{Hz}, J_{2}=0.9 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.14-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.24(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.18(\mathrm{~d}, J=6.2$ $\mathrm{Hz}, 3 \mathrm{H}), 1.05-1.04(\mathrm{~m}, 27 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.9,132.1,128.6$, $128.4,127.2,126.0,93.1,69.5,68.2,67.1,34.9,30.9,26.4,23.9,22.2,18.1,17.8$, 17.7, 17.6, 13.3, 12.1, 12.0. Elemental analysis calcd for $\mathrm{C}_{25} \mathrm{H}_{46} \mathrm{O}_{3} \mathrm{Si}$ : [C] 71.50, [H] 11.08, [O] 10.99, [Si] 6.43; found [C] 71.73, [H] 10.93. HRMS-EI calcd for

[^86]$\mathrm{C}_{22} \mathrm{H}_{39} \mathrm{O}_{3} \mathrm{Si}:\left[\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{7}\right]^{+}$393.2820; found 393.2830. FTIR $v 2961 m, 2867 m, 1463 w$, $1381 w, 1181 w, 1100 m, 1029 m, 1002 m, 882 w, 785 s, 683 m \mathrm{~cm}^{-1}$.
((S,3E,5E)-4-ethyl-6-((2R,6R)-6-isopropoxy-3,6-dihydro-2H-pyran-2-yl)-2-met-

## hylhexa-3,5-dienyloxy)triisopropylsilane (27)



In a 5 mL flask containing $\mathrm{Pd}\left({ }^{\mathrm{t}} \mathrm{Bu}_{3} \mathrm{P}\right)_{2}(0.60 \mathrm{mg}$, $0.001 \mathrm{mmol}, 0.10$ equiv) was added a solution of $24(5.00 \mathrm{mg}, 0.01 \mathrm{mmol}, 1.00$ equiv) in degassed THF ( 0.2 mL ). To the mixture was slowly added $\mathrm{Et}_{2} \mathrm{Zn}(1.5 \mathrm{M}$ in toluene) ( $13 \mu \mathrm{~L}, 0.02 \mathrm{mmol}, 2.00$ equiv) and a pale yellow solution was obtained. The tube was sealed and stirred at $50^{\circ} \mathrm{C}$ for 3.5 hours. The dark brown solution was quenched by addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3x). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. The residue was purified by chromatography on $\mathrm{SiO}_{2}$ (hexane/acetone 99:1 $\rightarrow$ 99:5) to give product 27 ( $3.25 \mathrm{mg}, 0.008 \mathrm{mmol}, 75 \%$, d.r. $>97: 3$ ) as a colorless oil. $\mathrm{R}_{f}=0.65$ (hexane/acetone 99.5:0.5). Optical rotation $[\alpha]^{22.4}{ }_{\mathrm{D}}\left(c \quad 0.47, \mathrm{CHCl}_{3}\right)=+21.0^{\circ}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 6.17(\mathrm{~d}, J=15.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.05-6.02(\mathrm{~m}, 1 \mathrm{H}), 5.77-5.74(\mathrm{~m}, 1 \mathrm{H}), 5.67(\mathrm{dd}$, $\left.J_{1}=15.9 \mathrm{~Hz}, \mathrm{~J}_{2}=6.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.27(\mathrm{~d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.15-5.14(\mathrm{~m}, 1 \mathrm{H}), 4.52-$ $4.48(\mathrm{~m}, 1 \mathrm{H}), 4.06$ (sept., $J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.61\left(\mathrm{dd}, J_{1}=9.5 \mathrm{~Hz}, \mathrm{~J}_{2}=5.6 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $3.48\left(\mathrm{dd}, J_{l}=9.5 \mathrm{~Hz}, \mathrm{~J}_{2}=7.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.73-2.67(\mathrm{~m}, 1 \mathrm{H}), 2.34-2.25(\mathrm{~m}, 2 \mathrm{H}), 2.19-$ $2.03(\mathrm{~m}, 2 \mathrm{H}), 1.28(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.10-1.07(\mathrm{~m}, 24$ H), $1.05(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.3,135.6,134.4$, 128.6, 126.4, 126.1, 93.1, 69.4, 68.2, 67.0, 35.9, 31.0, 23.9, 22.1, 20.2, 18.1, 17.5, 14.2, 12.0. HRMS-ESI calcd for $\mathrm{C}_{26} \mathrm{H}_{48} \mathrm{O}_{3} \mathrm{SiNa}$ : $[\mathrm{M}+\mathrm{Na}]^{+} 459.3271$; found 459.3282 . FTIR v 2963m, 2943m, 2916m, 2866m, 1462w, 1381w, 1180w, 1099w, 1030s, 999m, $883 w, 779 s, 683 m \mathrm{~cm}^{-1}$.
(S,3Z,5E)-6-((2R,6R)-6-isopropoxy-3,6-dihydro-2H-pyran-2-yl)-2,4-dimethyl-hexa-3,5-dien-1-ol (28)


To a cooled $\left(0{ }^{\circ} \mathrm{C}\right)$ solution of $25(13.8 \mathrm{mg}, 0.03$ mmol, 1.00 equiv) in THF ( $160 \mu \mathrm{~L}$ ) was added TBAF ( 1 M in THF) ( $64 \mu \mathrm{~L}, 0.06 \mathrm{mmol}, 2.00$ equiv). The reaction was stirred 1 hour at $0{ }^{\circ} \mathrm{C}$ and then 1 hour at RT. The reaction was quenched with water and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3x). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. The residue was purified by chromatography on $\mathrm{SiO}_{2}$ (hexane/AcOEt 8:2) to give alcohol $28(8.4 \mathrm{mg}, 0.03 \mathrm{mmol}, 99 \%)$ as a colorless oil. $\mathrm{R}_{f}=0.19\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{AcOEt} 9: 1\right)$. Optical rotation $[\alpha]^{28.9}\left(c 0.49, \mathrm{CHCl}_{3}\right)=+29.2^{\circ}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.69(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.01\left(\mathrm{ddd}, J_{1}=10.0 \mathrm{~Hz}, J_{2}=\right.$ $\left.4.7 \mathrm{~Hz}, J_{3}=2.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.77\left(\mathrm{dd}, J_{1}=15.8 \mathrm{~Hz}, J_{2}=6.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.76-5.70(\mathrm{~m}, 1$ H), $5.17-5.12(\mathrm{~m}, 2 \mathrm{H}), 4.52\left(\mathrm{dt}, J_{1}=10.3 \mathrm{~Hz}, J_{2}=5.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.01$ (sept., $J=6.2$ $\mathrm{Hz}, 1 \mathrm{H})$, 3.54-3.35 (m, 2 H ), 2.94-2.79 (m, 1 H$), 2.19-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.86(\mathrm{~s}, 3 \mathrm{H})$, $1.24(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.18(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-$ NMR ( $75 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 133.6,130.5,128.5,127.9,127.8,126.3,93.3,69.8,67.9$, 66.9, 34.9, 30.9, 24.0, 22.2, 20.8, 17.3. HRMS-EI calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{O}_{3}:[\mathrm{M}]^{+}$266.1877; found 266.1869. FTIR $\vee$ 3416m, 2970m, 2925m, 1455w, 1379w, 1317w, 1126w, $1100 m, 1027 s, 999 s, 774 m, 670 \mathrm{mcm}^{-1}$.
(S,3Z,5E)-4-ethyl-6-((2R,6R)-6-isopropoxy-3,6-dihydro-2H-pyran-2-yl)-2-methyl-hexa-3,5-dien-1-ol (29)


To a cooled $\left(0{ }^{\circ} \mathrm{C}\right)$ solution of $26(200 \mathrm{mg}, 0.46$ mmol, 1.00 equiv) in THF ( 3.0 mL ) was added TBAF ( 1 M in THF) ( $970 \mu \mathrm{~L}, 0.97 \mathrm{mmol}, 2.10$ equiv). The reaction was stirred 5 minutes at $0^{\circ} \mathrm{C}$ and then 1.5 hour at RT. The reaction was cooled to $0^{\circ} \mathrm{C}$, quenched with water and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3x). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. The residue was purified by chromatography on $\mathrm{SiO}_{2}$ (hexane/AcOEt $8: 2 \rightarrow 7: 3$ ) to give alcohol 29 ( $126 \mathrm{mg}, 0.45 \mathrm{mmol}, 98 \%$ ) as a colorless oil. $\mathrm{R}_{f}=0.25$ (hexane/AcOEt 8:2). Optical rotation $[\alpha]^{22.7}{ }_{\mathrm{D}}\left(c 0.19, \mathrm{CHCl}_{3}\right)=+21.2^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.62(\mathrm{~d}, J=$
$16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.03-5.99(\mathrm{~m}, 1 \mathrm{H}), 5.80\left(\mathrm{dd}, J_{1}=16.0 \mathrm{~Hz}, J_{2}=6.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.75-5.71$ (m, 1 H ), 5.14-5.12 (m, 2 H ), $4.52(\mathrm{~m}, 1 \mathrm{H}), 4.02$ (sept., $J=6.1 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.53-3.47 $(\mathrm{m}, 1 \mathrm{H}), 3.41-3.36(\mathrm{~m}, 1 \mathrm{H}), 2.91-2.80(\mathrm{~m}, 1 \mathrm{H}), 2.25(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.17-2.02$ $(\mathrm{m}, 2 \mathrm{H}), 1.35\left(\mathrm{dd}, J_{1}=8.0, J_{2}=4.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.25(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.18(\mathrm{~d}, J=$ $6.1 \mathrm{~Hz}, 3 \mathrm{H}$ ), $1.08(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}){ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ ) $\delta 139.7,131.7,130.2,128.9,127.2,126.6,93.7,70.1,68.4,67.4,35.1,31.2$, 26.9, 24.3, 22.6, 17.7, 13.8. HRMS-ESI calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{O}_{3} \mathrm{Na}:[\mathrm{M}+\mathrm{Na}]^{+} 303.1931$; found 303.1934. FTIR $v 3426 m, 2967 m, 2924 m, 2874 m, 1462 w, 1381 w, 1315 w$, $1261 w, 1180 w, 1099 m, 1030 s, 1003 m, 799 w, 718 w \mathrm{~cm}^{-1}$.

## (2R,6R)-2-((S,1E,3Z)-6-iodo-3,5-dimethylhexa-1,3-dienyl)-6-isopropoxy-3,6-dihy-

 dro-2H-pyran (30)

To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of alcohol $28(4.00 \mathrm{mg}$, $0.015 \mathrm{mmol}, 1.00$ equiv) in a mixture toluene $/ \mathrm{Et}_{2} \mathrm{O}(375$ $\mu \mathrm{L} / 100 \mu \mathrm{~L}$ ) were added imidazole ( $14.4 \mathrm{mg}, 0.21 \mathrm{mmol}$, 14.1 equiv) and $\mathrm{PPh}_{3}$ ( $21.2 \mathrm{mg}, 0.08 \mathrm{mmol}, 5.4$ equiv) and the resulting mixture stirred at $0{ }^{\circ} \mathrm{C}$ for 15 minutes. A solution of $\mathrm{I}_{2}(19.8 \mathrm{mg}, 0.078 \mathrm{mmol}, 5.2$ equiv) in $\mathrm{Et}_{2} \mathrm{O}(375 \mu \mathrm{~L})$ was added dropwise and the resulting mixture covered by an aluminium foil, stirred for 10 minutes at $0{ }^{\circ} \mathrm{C}$ and then 2 hours at RT. The mixture was directly filtered over cotton and concentrated. The residue was diluted in pentane, the precipitate filtered and the filtrated concentrated. Purification by chromatography on $\mathrm{SiO}_{2}$ (hexane/EtOAc 100:0 $\rightarrow$ 99:1) afforded alkyl iodide $\mathbf{3 0}(4.2 \mathrm{mg}, 0.011 \mathrm{mmol}$, $75 \%$ ) as a colorless oil. $\mathrm{R}_{f}=0.48$ (hexane/AcOEt 8.5:1.5). Optical rotation $[\alpha]^{25.0}{ }_{\mathrm{D}}(c$ $\left.0.11, \mathrm{CHCl}_{3}\right)=+6.4^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.64(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.05-$ $6.02(\mathrm{~m}, 1 \mathrm{H}), 5.80\left(\mathrm{dd}, \mathrm{J}_{l}=15.7 \mathrm{~Hz}, J_{2}=5.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.77-5.75(\mathrm{~m}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J$ $=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.16(\mathrm{~s}, 1 \mathrm{H}), 4.58-4.53(\mathrm{~m}, 1 \mathrm{H}), 4.05$ (sept., $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.17$ $\left(\mathrm{dd}, J_{1}=9.4 \mathrm{~Hz}, J_{2}=5.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.09\left(\mathrm{dd}, J_{1}=9.4 \mathrm{~Hz}, J_{2}=7.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.92-2.82$ $(\mathrm{m}, 1 \mathrm{H}), 2.20-2.03(\mathrm{~m}, 2 \mathrm{H}), 1.87(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.22(\mathrm{~d}, J=6.1$ $\mathrm{Hz}, 3 \mathrm{H}), 1.13(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 134.3,132.7$, 131.1, 128.6, 128.0, 126.7, 93.7, 70.1, 67.2, 34.4, 31.2, 24.3, 22.5, 21.9, 20.7, 15.2. HRMS-EI calcd for $\mathrm{C}_{16} \mathrm{H}_{25} \mathrm{O}_{2} \mathrm{NaI}$ : $[\mathrm{M}+\mathrm{Na}]^{+}$399.0797; found 399.0801. FTIR $v$
$3322 w, 2968 w, 2924 w, 1659 w, 1377 w, 1454 w, 1377 w, 1180 w, 1099 w, 1028 m$, $1000 \mathrm{~m}, 785 \mathrm{~s} \mathrm{~cm}^{-1}$.

## (2R,6R)-2-((S,1E,3Z)-3-ethyl-6-iodo-5-methylhexa-1,3-dienyl)-6-isopropoxy-3,6-

## dihydro-2H-pyran (31)



To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of alcohol $29(125 \mathrm{mg}, 0.45$ mmol, 1.00 equiv) in a mixture toluene/ $\mathrm{Et}_{2} \mathrm{O}$ (2:1) (20 mL ), imidazole ( $425 \mathrm{mg}, 6.24 \mathrm{mmol}$, 14. equiv) and $\mathrm{PPh}_{3}$ ( $643 \mathrm{mg}, 2.45 \mathrm{mmol}, 5.5$ equiv) were added and the resulting mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 minutes. A solution of $\mathrm{I}_{2}\left(599 \mathrm{mg}, 2.36 \mathrm{mmol}, 5.3\right.$ equiv) in $\mathrm{Et}_{2} \mathrm{O}$ $(6 \mathrm{~mL})$ was added dropwise over a period of 15 minutes. The resulting mixture was covered by an aluminium foil and stirred $0{ }^{\circ} \mathrm{C}$ for 45 minutes. The mixture was filtered and the precipitate washed with $\mathrm{Et}_{2} \mathrm{O}$. The precipitate was triturated in EtOAc and filtered. The combined organic phase was concentrated and the residue diluted in a mixture hexane/EtOAc 7:3 and filtered over a pad of silica and concentrated. Purification by chromatography on $\mathrm{SiO}_{2}$ (hexane/EtOAc 99.5:0.5 $\rightarrow$ 98:2) afforded alkyl iodide 31 ( $156 \mathrm{mg}, 0.40 \mathrm{mmol}, 89 \%$ ) as a colorless oil. $\mathrm{R}_{f}=0.52$ (hexane/AcOEt 9.5:0.5). Optical rotation $[\alpha]^{22.7}{ }_{\mathrm{D}}\left(c \quad 1.00, \mathrm{CHCl}_{3}\right)=-2.8^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.53(\mathrm{~d}, J=16.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.03-6.00(\mathrm{~m}, 1 \mathrm{H}), 5.80\left(\mathrm{dd}, J_{1}=\right.$ $\left.15.7 \mathrm{~Hz}, J_{2}=6.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.75-5.72(\mathrm{~m}, 1 \mathrm{H}), 5.14-5.12(\mathrm{~m}, 2 \mathrm{H}), 4.54-4.49(\mathrm{~m}, 1$ H), 4.03 (sept., $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), $3.14\left(\mathrm{dd}, J_{1}=9.3 \mathrm{~Hz}, J_{2}=5.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.07\left(\mathrm{dd}, J_{1}\right.$ $\left.=9.3 \mathrm{~Hz}, J_{2}=7.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.88-2.79(\mathrm{~m}, 1 \mathrm{H}), 2.22(\mathrm{q}, J=7.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.14-2.02$ ( $\mathrm{m}, 2 \mathrm{H}$ ), $1.27(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.19(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.11(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$, $1.07(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.5,132.5,130.3,128.9$, 127.2, 126.6, 93.7, 70.2, 67.4, 34.4, 31.2, 26.7, 24.4, 22.6, 22.0, 15.7, 13.7. HRMSESI calcd for $\mathrm{C}_{17} \mathrm{H}_{27} \mathrm{O}_{2} \mathrm{NaI}$ : $[\mathrm{M}+\mathrm{Na}]^{+} 413.0953$; found 413.0941. FTIR $v 2967 m$, 2928m, 2878w, 1454w, 1377w, 1315w, 1180w, 1126w, 1099w, 1030s, 1003m, 964w, $718 w \mathrm{~cm}^{-1}$.

### 6.2.4. Synthesis of the Polyketidic Chain

## ( E)-2-methylbut-2-en-1-ol (34)



In a 1 L three-necked round bottom flask equipped with a condenser, a suspension of $\mathrm{LiAlH}_{4}\left(19.2 \mathrm{~g}, 510 \mathrm{mmol}, 2.05\right.$ equiv) in $\mathrm{Et}_{2} \mathrm{O}$ (100 mL ) was cooled to $0{ }^{\circ} \mathrm{C}$ and a solution of tiglic acid (33) (24.7 g, $246 \mathrm{mmol}, 1.00$ equiv) was slowly added over a period of 1 hours. The resulting solution was stirred for 15 minutes at $0{ }^{\circ} \mathrm{C}$ and then 3 hours at RT. The reaction was cooled to $0{ }^{\circ} \mathrm{C}$ and quenched by careful addition of $\mathrm{H}_{2} \mathrm{O}(18 \mathrm{~mL}), \mathrm{NaOH}(15 \%)(18 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(54$ $\mathrm{mL})$. The white granular aluminium salts were filtered over Celite and washed with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x})$. The combined organic layers were washed with $\mathrm{HCl}(1 \mathrm{~N})(1 \mathrm{x})$, saturated $\mathrm{NaHCO}_{3}$ solution (1x) and brine (1x), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to afford alcohol 34 ( $18.2 \mathrm{~g}, 211 \mathrm{mmol}, 86 \%$ ) as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 5.51-5.44 (m, 1 H), 3.98 (m, 2 H), 1.65 (s, 3 H), 1.62-1.59 (m, 3 H). FTIR v 3335s, $2919 m, 2863 m, 1674 w, 1447 w, 1381 w, 1003 s, 829 w, 774 w, 668 m \mathrm{~cm}^{-1}$.

## ( E)-1-bromo-2-methylbut-2-ene (35)



A solution of alcohol $34\left(1.00 \mathrm{~g}, 11.6 \mathrm{mmol}, 1.00\right.$ equiv) in $\mathrm{Et}_{2} \mathrm{O}$ (23.0 $\mathrm{mL}, 0.5 \mathrm{M}$ ) was cooled to $0{ }^{\circ} \mathrm{C}$ and $\mathrm{PBr}_{3}(0.55 \mathrm{~mL}, 5.80 \mathrm{mmol}, 0.50$ equiv) was added dropwise. The resulting solution was stirred at $0^{\circ} \mathrm{C}$ for 30 minutes and then at RT for 3 hours. The reaction was quenched and washed with an aqueous $\mathrm{K}_{2} \mathrm{CO}_{3}$ solution (1x) and brine (1x), dried $\left(\mathrm{MgSO}_{4}\right)$ and carefully concentrated under reduced pressure to afford ( $E$ )-1-bromo-2-methylbut-2-ene ( $\mathbf{3 5}$ ) $(1.25 \mathrm{~g}, 8.41 \mathrm{mmol}$, $73 \%$ ) as a colorless oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.73-5.65(\mathrm{~m}, 1 \mathrm{H}), 3.98(\mathrm{~m}, 2$ H), 1.76-1.75 (m, 3 H), $1.63\left(\mathrm{ddd}, J_{l}=6.8 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, J_{3}=0.8 \mathrm{~Hz}, 3 \mathrm{H}\right)$.

## (R)-4-isopropyl-5,5-diphenyl-3-propionyloxazolidin-2-one (36)



To a cooled ( $0 \quad{ }^{\circ} \mathrm{C}$ ) suspension of ( $R$ )-4-isopropyl-5,5-diphenyloxazolidin-2-one ( $\mathbf{3 2 )}$ ( $41.2 \mathrm{~g}, 0.15 \mathrm{mmol}, 1.00$ equiv) in THF ( 580 mL ), $n \mathrm{BuLi}(1.6 \mathrm{M}$ in hexane) ( $96.0 \mathrm{~mL}, 0.15 \mathrm{mmol}$, 1.05 equiv) was added dropwise. Propionyl chloride ( 15.2 mL , $0.18 \mathrm{mmol}, 1.20$ equiv) was added and the resulting solution stirred 5 minutes at $0^{\circ} \mathrm{C}$ and then at RT overnight. The reaction was poured in saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3x). The combined organic layers were washed with $\mathrm{HCl}(1 \mathrm{M})$ solution (2x), $\mathrm{NaOH}(1 \mathrm{M})$ solution (2x) and brine (1x), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The crude was recrystallized in a mixture $\mathrm{Et}_{2} \mathrm{O} /$ pentane to afford $(R)-4-$ isopropyl-5,5-diphenyl-3-propionyloxazolidin-2-one (36) ( $46.7 \mathrm{~g}, 0.14 \mathrm{mmol}, 95 \%$ ) as a white crystalline solid. Optical rotation $[\alpha]^{27.8}\left(c \quad 1.00, \mathrm{CHCl}_{3}\right)=+224.2^{\circ} .{ }^{1} \mathrm{H}-$ NMR ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.50-7.46(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.25(\mathrm{~m}, 8 \mathrm{H}), 5.38(\mathrm{~d}, J=3.3$ $\mathrm{Hz}, 1 \mathrm{H}$ ), 2.99-2.89 (m, 1 H$), 2.80-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.02-1.92(\mathrm{~m}, 1 \mathrm{H}), 1.09(\mathrm{t}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 0.88(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 0.76(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H})$. The same procedure was adopted for the preparation of ent-36 obtained in $94 \%$ yield. Optical rotation $[\alpha]^{27.8} \mathrm{D}$ $\left(c 1.00, \mathrm{CHCl}_{3}\right)=-228.8^{\circ}$.

## (R)-3-((S,E)-2,4-dimethylhex-4-enoyl)-4-isopropyl-5,5-diphenyloxazolidin-2-one

(37)


In a 1 L double-necked round bottom flask, a solution of DIPA ( $11.7 \mathrm{~mL}, 89.0 \mathrm{mmol}, 1.25$ equiv) in THF ( 200 mL ) was cooled to $0{ }^{\circ} \mathrm{C}$ and $n \mathrm{BuLi}(1.6 \mathrm{M}$ in hexane) $(55.7 \mathrm{~mL}$, $89.0 \mathrm{mmol}, 1.25$ equiv) was slowly added. The resulting solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 30 minutes and then cooled to $-78{ }^{\circ} \mathrm{C}$. A precooled solution of 36 ( $24.0 \mathrm{~g}, 71.0 \mathrm{mmol}, 1.00$ equiv) in THF ( 130 mL ) was slowly added and the resulting mixture stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 minutes followed by the slow addition of a precooled solution of ( $E$ )-1-bromo-2-methylbut-2-ene (35) ( $22.2 \mathrm{~g}, 149$ mmol, 2.10 equiv) in THF ( 60 mL ). The reaction was stirred at $-78{ }^{\circ} \mathrm{C}$ for 5 minutes and then allowed to warm up to $-10^{\circ} \mathrm{C}$ while stirring was continued for 26 hours. The reaction was quenched by addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The
crude pale yellow solid was washed with a small amount of ice-cold pentane to afford product $37(26.4 \mathrm{~g}, 65.0 \mathrm{mmol}, 92 \%$, d.r. $>97: 3)$ as a white crystalline solid. $\mathrm{R}_{f}=$ 0.50 (cyclohexane/EtOAc 9:1). M.p. $=101-103{ }^{\circ} \mathrm{C}$. Optical rotation $[\alpha]^{28.3}{ }_{\mathrm{D}}(c 1.00$, $\mathrm{CHCl}_{3}$ ) $=+177.0^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.48-7.44(\mathrm{~m}, 2 \mathrm{H}), 7.42-7.26(\mathrm{~m}, 8$ H), $5.40(\mathrm{~d}, J=3.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.30-5.22(\mathrm{~m}, 1 \mathrm{H}), 3.90$ (sext., $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.54$ $\left(\mathrm{dd}, J_{l}=13.4 \mathrm{~Hz}, J_{l}=7.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.01-1.89(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.64(\mathrm{~m}, 3 \mathrm{H}), 1.55(\mathrm{dd}$, $\left.J_{1}=6.7 \mathrm{~Hz}, J_{2}=1.0 \mathrm{~Hz}, 3 \mathrm{H}\right), 0.85(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.79(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H})$, $0.74(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.7,152.7,142.2,138.0$, $132.8,128.6,128.4,128.2,127.7,125.7,125.5,120.9,89.0,64.2,43.6,35.3,29.6$, 21.5, 16.1, 16.0, 15.3, 13.2. Elemental analysis calcd for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{NO}_{3}$ : [C] $77.01 \%$, [H] $7.70 \%,[\mathrm{~N}] 3.45 \%$; found [C] $76.79 \%,[\mathrm{H}] 7.67 \%,[\mathrm{~N}] 3.52 \%$. HRMS-EI calcd for $\mathrm{C}_{26} \mathrm{H}_{31} \mathrm{NO}_{3}:[\mathrm{M}]^{+}$405.2299; found 405.2301. FTIR $\vee$ 2968w, 2934w, 2888w, $1776 s, 1698 s, 1495 w, 1450 m, 1385 m, 1371 m, 1348 m, 1312 m, 1246 m, 1207 s, 1174 s$, $1149 m, 1123 m, 1094 m, 1056 m, 1035 s, 986 s, 949 m, 764 s, 750 s, 703 s, 694 s, 668 s$, $636 \mathrm{~m} \mathrm{~cm}^{-1}$.

## (S, $\boldsymbol{E}$ )-2,4-dimethylhex-4-en-1-ol (38)

To a cooled $\left(0^{\circ} \mathrm{C}\right)$ suspension of $\mathrm{LiAlH}_{4}(1.56 \mathrm{~g}, 41.2 \mathrm{mmol}$, 8.00 equiv) in $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was slowly added a solution of $\mathbf{3 7}$ ( $2.09 \mathrm{~g}, 5.15 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{Et}_{2} \mathrm{O}(48 \mathrm{~mL})$. The resulting solution was stirred for 30 minutes at $0{ }^{\circ} \mathrm{C}$ and then 3 hours at RT. The reaction was cooled to $0{ }^{\circ} \mathrm{C}$ and quenched by addition of $\mathrm{H}_{2} \mathrm{O}(3 \mathrm{~mL}), \mathrm{NaOH}(15 \%)(3 \mathrm{~mL})$ and $\mathrm{H}_{2} \mathrm{O}(9 \mathrm{~mL})$. The white granular aluminium salts were filtered over Celite and washed with $\mathrm{Et}_{2} \mathrm{O}$ (3x). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated to afford alcohol $38(0.66 \mathrm{~g}, 5.15 \mathrm{mmol}, 100 \%)$ as a colorless oil. $\mathrm{R}_{f}=0.19$ (cyclohexane/EtOAc 8.5:1.5). Optical rotation $[\alpha]^{24.6}\left(c \quad 0.55, \mathrm{CHCl}_{3}\right)=-4.7^{\circ}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 5.24\left(\mathrm{qd}, J_{1}=6.6 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.52-3.39(\mathrm{~m}, 2 \mathrm{H}), 2.11-2.02(\mathrm{~m}, 1$ H), 1.89-1.77 (m, 2 H ), 1.61-1.57 (m, 6 H ), $0.86(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 134.3,120.1,68.5,44.3,33.7,16.8,15.7,13.5$. FTIR v 3320 m , $2917 m, 1456 w, 1037 m, 786 s, 668 w \mathrm{~cm}^{-1}$.

## (S, $\boldsymbol{E}$ )-2,4-dimethylhex-4-enal (39)



To a cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of oxalyl chloride ( $867 \mu \mathrm{~L}, 9.94$ mmol, 2.00 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10.5 \mathrm{~mL})$ was added dropwise a solution of DMSO ( $1.41 \mathrm{~mL}, 20.0 \mathrm{mmol}, 4.00$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 10.5 mL ). After 5 minutes a solution of alcohol $\mathbf{3 8}(637 \mathrm{mg}, 4.97 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10.0 \mathrm{~mL})$ was slowly added. Stirring at $-78{ }^{\circ} \mathrm{C}$ was continued for 15 minutes, followed by addition of a solution of $\mathrm{NEt}_{3}(4.16 \mathrm{~mL}, 29.8 \mathrm{mmol}, 6$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10.5 \mathrm{~mL})$. The resulting solution was stirred at $-78^{\circ} \mathrm{C}$ for 20 minutes and then at $0{ }^{\circ} \mathrm{C}$ for 30 minutes. The reaction was quenched by addition of buffer phosphate $(\mathrm{pH}=7)(32 \mathrm{~mL})$ and the solution stirred at RT for 15 minutes. The organic phase was separated and the aqueous phase extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3x). The combined organic layers were washed with water (2x) and brine (1x), dried ( $\mathrm{MgSO}_{4}$ ) and concentrated. Purification by chromatography on $\mathrm{SiO}_{2}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ cyclohexane 7:3) afforded aldehyde 39 ( $619 \mathrm{mg}, 4.91 \mathrm{mmol}, 99 \%$ ) as a colorless oil. $\mathrm{R}_{f}=0.42$ (pentane $/ \mathrm{Et}_{2} \mathrm{O}$ 9.5:0.5). Optical rotation $[\alpha]^{22.0}{ }_{\mathrm{D}}\left(c 0.93, \mathrm{CHCl}_{3}\right)=+9.9^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ ( $300 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 9.61(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H}$ ), $5.29-5.23(\mathrm{~m}, 1 \mathrm{H}), 2.57-2.45(\mathrm{~m}, 1$ H), $2.41\left(\mathrm{dd}, J_{1}=13.4 \mathrm{~Hz}, J_{2}=6.6, \mathrm{~Hz}, 1 \mathrm{H}\right), 1.98\left(\mathrm{dd}, J_{1}=13.7 \mathrm{~Hz}, J_{2}=7.7 \mathrm{~Hz}, 1\right.$ H), $1.59(\mathrm{~s}, 3 \mathrm{H}), 1.58(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.03(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 205.5,132.2,121.6,44.5,40.9,15.7,13.5,13.3$. FTIR v 2922m, $1708 w, 1442 w, 1378 w, 777 s \mathrm{~cm}^{-1}$.
(S)-3-((2S,3R,4S,E)-3-hydroxy-2,4,6-trimethyloct-6-enoyl)-4-isopropyl-5,5-diphe-nyloxazolidin-2-one (40)


To a cooled $\left(-5^{\circ} \mathrm{C}\right)$ solution of ent-36 $(84.4 \mathrm{mg}, 0.25$ mmol, 1.00 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.30 \mathrm{~mL}), \mathrm{Bu}_{2} \operatorname{BOTf}(1$ M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ) ( $263 \mu \mathrm{~L}, 0.26 \mathrm{mmol}, 1.05$ equiv) was slowly added and the solution turns from colorless to pale green. $\mathrm{NEt}_{3}(42 \mu \mathrm{~L}, 0.30 \mathrm{mmol}, 1.20$ equiv) was slowly added over a period of 5 minutes and the solution turned to pale yellow. Stirring at $0^{\circ} \mathrm{C}$ was continued for 1 hour. The resulting solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and aldehyde 39 ( $63 \mathrm{mg}, 0.50$ mmol, 2.00 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.20 \mathrm{~mL})$ was slowly added and the mixture stirred for 1 hour at $-78^{\circ} \mathrm{C}$ and finally for 1 hour at $0^{\circ} \mathrm{C}$. The reaction was quenched at $0^{\circ} \mathrm{C}$ by
sequentially addition of buffer phosphate $(\mathrm{pH}=7)(0.3 \mathrm{~mL}), \mathrm{MeOH}(0.9 \mathrm{~mL})$ and $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}_{2}(2: 1)(0.9 \mathrm{~mL})$. The mixture was stirred for 1.5 hours at RT before dilution with $\mathrm{Et}_{2} \mathrm{O}$, washed with $\mathrm{HCl}(0.5 \mathrm{M})(1 \mathrm{x})$, saturated $\mathrm{NaHCO}_{3}$ solution (1x) and brine (1x), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was purified by chromatography on $\mathrm{SiO}_{2}\left(\mathrm{Et}_{2} \mathrm{O} /\right.$ pentane $\left.8: 2\right)$ to afford product $40(89.2 \mathrm{mg}, 0.19$ $\mathrm{mmol}, 77 \%$, d.r. $>87: 13$ ) as a white crystalline solid. $\mathrm{R}_{f}=0.33$ (pentane/Et $\mathrm{E}_{2} \mathrm{O} 7: 3$ ). M.p. $=98-99{ }^{\circ} \mathrm{C}$. Optical rotation $[\alpha]^{24.5}{ }_{\mathrm{D}}\left(\mathrm{c} 1.00, \mathrm{CHCl}_{3}\right)=-103.6^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.53-7.50(\mathrm{~m}, 2 \mathrm{H}), 7.43-7.28(\mathrm{~m}, 8 \mathrm{H}), 5.37(\mathrm{~d}, J=3.6 \mathrm{~Hz}, 1 \mathrm{H})$, $5.18-5.11(\mathrm{~m}, 1 \mathrm{H}), 3.83-3.74(\mathrm{~m}, 1 \mathrm{H}), 3.43\left(\mathrm{td}, J_{l}=6.7 \mathrm{~Hz}, J_{2}=4.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.06-$ $1.90(\mathrm{~m}, 2 \mathrm{H}), 1.86(\mathrm{~d}, J=5.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.66-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.56(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$, $1.51(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.86(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.78(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, 3 H ), 0.41 (d, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}$ ). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 176.1,152.4,142.2$, 137.6, 133.6, 128.7, 128.4, 128.3, 127.8, 125.6, 125.2, 120.3, 89.4, 64.6, 44.0, 40.4, $33.0,29.8,21.7,16.5,15.4,13.9,13.5,13.4$. Elemental analysis calcd for $\mathrm{C}_{29} \mathrm{H}_{37} \mathrm{NO}_{4}$ : [C] $74.57 \%,[\mathrm{H}] 8.19 \%,[\mathrm{~N}] 2.91 \%$; found [C] $74.68 \%$, [H] $8.03 \%,[\mathrm{~N}] 2.91 \%$. HRMS-EI calcd for $\mathrm{C}_{29} \mathrm{H}_{35} \mathrm{NO}_{3}$ : $\left[\mathrm{M}-\mathrm{H}_{2} \mathrm{O}\right]^{+}$445.2611; found 445.2611. FTIR $v$ $3475 m, 2965 m, 2931 m, 1781 s, 1697 m, 1494 w, 1450 m, 1374 m$, 1316w, 1254w, 1208s, $1176 s, 1050 m, 987 m, 954 w, 760 m, 704 m, 668 m \mathrm{~cm}^{-1}$.

## (2S,3R,4S,E)-3-hydroxy- $N$-methoxy-N,2,4,6-tetramethyloct-6-enamide (42)



To a cooled $\left(0^{\circ} \mathrm{C}\right)$ suspension of $\mathrm{MeONHMe} \cdot \mathrm{HCl}(503$ $\mathrm{mg}, 5.16 \mathrm{mmol}, 6.00$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.2 \mathrm{~mL})$ was added $\mathrm{AlMe}_{3}$ ( 2 M in toluene) ( $2.10 \mathrm{~mL}, 5.16 \mathrm{mmol}$, 6.00 equiv). The resulting solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 5 minutes, then at RT for 1 hour. The clear solution was cooled to $0^{\circ} \mathrm{C}$ and $\mathbf{4 0}$ ( $400 \mathrm{mg}, 0.86 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.0 \mathrm{~mL})$ was added by canula. Stirring at $0{ }^{\circ} \mathrm{C}$ was continued for 5 minutes, then at RT for 15 hours. The reaction mixture was slowly transferred in a diluted HCl solution $(0.5 \mathrm{M})(27.0 \mathrm{~mL})$, diluted with more $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and stirred at RT for 1 hour. The aqueous layer was separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3x). The combined organic phases were washed with saturated $\mathrm{NaHCO}_{3}$ (1x) and brine (1x), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was diluted in ice-cold $\mathrm{Et}_{2} \mathrm{O}$, the precipitated cleaved auxiliary was filtered and the filtrate was concentrated.

Purification by chromatography on $\mathrm{SiO}_{2}$ (pentane/ $\mathrm{Et}_{2} \mathrm{O} 4: 6$ ) afforded product 42 (179 $\mathrm{mg}, 0.74 \mathrm{mmol}, 86 \%$ ) as white crystalline solid. An analytical sample was recrystallized (hexane) for X-ray analysis (crystallographic data are given at the end of the experimental part). $\mathrm{R}_{f}=0.21$ (pentane/Et $\mathrm{t}_{2} \mathrm{O} 4: 6$ ). M.p. $=54-55{ }^{\circ} \mathrm{C}$. Optical rotation $[\alpha]^{22.4}{ }_{\mathrm{D}}\left(c 0.50, \mathrm{CHCl}_{3}\right)=+6.7^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.23(\mathrm{q}, J=$ $6.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.57-3.53(\mathrm{~m}, 1 \mathrm{H}), 3.33(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{~s}, 3$ H), 3.12 (br. s, 1 H ), $2.08(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.82-1.68(\mathrm{~m}, 2 \mathrm{H}), 1.60-1.58(\mathrm{~m}, 6 \mathrm{H})$, $1.19(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.90(\mathrm{~d}, J=6.3 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $178.0,133.8,120.4,75.3,61.4,43.7,36.3,33.0,31.9,15.2,14.7,13.2,11.2$. Elemental analysis calcd for $\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{NO}_{3}$ : [C] $64.17 \%$, [H] $10.35 \%$, [ N$] 5.76 \%$, [O] 19.72 \%; found: [C] $64.23 \%$, [H] $10.46 \%$, [N] 5.67 \%. LRMS-ESI $266.2(100,[M+$ $\mathrm{Na}]^{+}$). FTIR $v 3452 m, 2965 s, 2934 s, 1640 s, 1513 w, 1457 s, 1382 s, 1300 m, 1249 m$, $1176 m, 1122 m, 993 s, 826 w \mathrm{~cm}^{-1}$.
(2S,3R,4S,E)-3-(tert-butyldimethylsilyloxy)-N-methoxy-N,2,4,6-tetramethyloct-6enamide (43)


To a cooled $\left(-20{ }^{\circ} \mathrm{C}\right)$ solution of $42(467 \mathrm{mg}, 1.92$ mmol, 1.00 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 4.0 mL ) were sequentially added 2,6-lutidine ( $257 \mu \mathrm{~L}, 2.21 \mathrm{mmol}, 1.15$ equiv) and TBSOTf ( $354 \mu \mathrm{~L}, 2.02 \mathrm{mmol}, 1.05$ equiv). The resulting solution was stirred for 15 $\min$ at $-20^{\circ} \mathrm{C}$; then at $0^{\circ} \mathrm{C}$ for 45 min . The reaction mixture was diluted in more $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with diluted citric acid $(\mathrm{pH}=4)(1 \mathrm{x})$, saturated $\mathrm{NaHCO}_{3}(1 \mathrm{x})$, brine (1x), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Purification by chromatography on $\mathrm{SiO}_{2}$ (pentane/ $\mathrm{Et}_{2} \mathrm{O} 9: 1$ ) afforded $43(680 \mathrm{mg}, 1.90 \mathrm{mmol}, 99 \%)$ as a clear oil. $\mathrm{R}_{f}=0.38$ (hexane/EtOAc 9:1). Optical rotation $[\alpha]^{24.3}{ }_{\mathrm{D}}\left(c 1.00, \mathrm{CHCl}_{3}\right)=+6.8^{\circ}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}(300$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.17(\mathrm{q}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.85\left(\mathrm{dd}, J_{1}=8.5 \mathrm{~Hz}, J_{2}=2.3 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $3.69(\mathrm{~s}, 3 \mathrm{H}), 3.16(\mathrm{~s}, 3 \mathrm{H}), 3.06$ (br. s, 1 H ), $2.14(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.86-1.78(\mathrm{~m}$, $1 \mathrm{H}), 1.71-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.56(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.73(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(75 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 176.9,134.3,119.7,77.3,61.4,44.2,39.0,35.9,32.4,26.3,18.6,15.9,15.4$, 13.4, 13.3, $-3.4,-3.5$. Elemental analysis calcd for $\mathrm{C}_{19} \mathrm{H}_{39} \mathrm{NO}_{3} \mathrm{Si}$ : [C] $63.82 \%$, [H] $10.99 \%,[\mathrm{~N}] 3.92 \%,[\mathrm{O}] 13.42 \%$, [Si] $7.85 \%$; found [C] $63.79 \%$, [H] $11.00 \%$, [N]
4.10 \%. LRMS-ESI $380.2\left(100,[\mathrm{M}+\mathrm{Na}]^{+}\right)$. FTIR v 3369 s , 2959m, 2931m, $2857 m$, $1662 s, 1461 m, 1382 m, 1252 m, 1176 w, 1108 m, 1049 s, 997 s, 869 m, 833 s, 773 s \mathrm{~cm}^{-1}$.
(2S,3R,4S,E)-3-(tert-butyldimethylsilyloxy)-2,4,6-trimethyloct-6-enal (44)


To a cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $43(663 \mathrm{mg}, 1.85 \mathrm{mmol}$, 1.00 equiv) in THF ( 13.2 mL ) was added DIBAL-H ( 1 M in hexane) ( $3.60 \mathrm{~mL}, 3.60 \mathrm{mmol}, 2.00$ equiv). The resulting solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 hour; then quenched by addition of saturated Rochelle's salt, diluted in $\mathrm{Et}_{2} \mathrm{O}$ and vigorously stirred at RT for 1 hour. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x})$ and the combined organic phase dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated (bath $\mathrm{T}<20^{\circ} \mathrm{C}$ ). Purification by chromatography on $\mathrm{SiO}_{2}$ (hexane/EtOAc 9.5:0.5) afforded aldehyde $44(551 \mathrm{mg}, 1.85 \mathrm{mmol}, 100 \%)$ as a colorless oil. $\mathrm{R}_{f}=0.70$ (cyclohexane/EtOAc 9:1). Optical rotation $[\alpha]^{25.0}{ }_{\mathrm{D}}(c 0.20$, $\left.\mathrm{CHCl}_{3}\right)=+53.5^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.85(\mathrm{~s}, 1 \mathrm{H}), 5.22(\mathrm{q}, J=6.5 \mathrm{~Hz}, 1$ H), 4.00-3.98 (m, 1 H$), 2.59-2.53(\mathrm{~m}, 1 \mathrm{H}), 2.16-2.09(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.78(\mathrm{~m}, 2 \mathrm{H})$, $1.60(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.10(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 0.78$ (d, $J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 205.7, 134.2, 120.9, 75.9, 51.4, 44.7, 35.1, 26.3, 18.7, 15.8, 14.7, 13.7, 9.7, -3.5, -3.7. HRMS-ESI calcd for $\mathrm{C}_{17} \mathrm{H}_{35} \mathrm{O}_{2} \mathrm{Si}:[\mathrm{M}+\mathrm{H}]^{+}$299.2406, found 299.2419.
(S)-3-((2S,3R,4R,5R,6S,E)-5-(tert-butyldimethylsilyloxy)-3-hydroxy-2,4,6,8-tetra-methyldec-8-enoyl)-4-isopropyl-5,5-diphenyloxazolidin-2-one (45)


To a cooled $\left(-5^{\circ} \mathrm{C}\right)$ solution of ent-36 $(81.0 \mathrm{mg}$, $0.24 \mathrm{mmol}, 1.20$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.48 \mathrm{~mL})$ were sequentially added $\mathrm{Bu}_{2} \mathrm{BOTf}(1 \mathrm{M}$ in $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)(240 \mu \mathrm{~L}, 0.24 \mathrm{mmol}, 1.20$ equiv) and
$\mathrm{NEt}_{3}$ ( $39 \mu \mathrm{~L}, 0.28 \mathrm{mmol}, 1.40$ equiv). Stirring at $0^{\circ} \mathrm{C}$ was continued for 45 minutes; then the resulting solution was cooled to $-78^{\circ} \mathrm{C}$ and aldehyde $44(59 \mathrm{mg}, 0.20 \mathrm{mmol}$, 1.00 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.45 \mathrm{~mL})$ was slowly added by canula. The reaction was stirred for 45 minutes at $-78{ }^{\circ} \mathrm{C}$, then allowed to return to $0{ }^{\circ} \mathrm{C}$ over 3 hours. The reaction was quenched at $0{ }^{\circ} \mathrm{C}$ by sequentially addition of buffer phosphate $(\mathrm{pH}=7)$
$(0.24 \mathrm{~mL}), \mathrm{MeOH}(0.72 \mathrm{~mL})$ and $\mathrm{MeOH} / \mathrm{H}_{2} \mathrm{O}_{2}(2: 1)(0.72 \mathrm{~mL})$. The mixture was stirred at RT for 30 minutes before dilution with $\mathrm{Et}_{2} \mathrm{O}$, washed with $\mathrm{HCl}(0.5 \mathrm{M})(1 \mathrm{x})$, saturated $\mathrm{NaHCO}_{3}(1 \mathrm{x})$ and brine $(1 \mathrm{x})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The residue was purified by chromatography on $\mathrm{SiO}_{2}$ (hexane/EtOAc 9.5:0.5) to afford 45 (77.0 $\mathrm{mg}, 0.12 \mathrm{mmol}, 61 \%$, d.r. $>97: 3$ ) as a white crystalline solid. $\mathrm{R}_{f}=0.60$ (pentane $/ \mathrm{Et}_{2} \mathrm{O}$ 7:3). M.p. $=105-107^{\circ} \mathrm{C}$. Optical rotation $[\alpha]^{25.0} \mathrm{D}\left(c 0.29, \mathrm{CHCl}_{3}\right)=-118.6^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.52-7.51$ (m, 2 H ), 7.43-7.41 (m, 2 H ), 7.37-7.26 (m, 6 H), 5.44 (d, $J=3.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), $5.24(\mathrm{q}, ~ J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.79-3.78(\mathrm{~m}, 2 \mathrm{H}), 3.50(\mathrm{t}, J=3.8 \mathrm{~Hz}$, 1 H ), 2.49 (br. s, 1 H ), 2.12 (d, $J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.05-1.98(\mathrm{~m}, 1 \mathrm{H}), 1.82-1.76(\mathrm{~m}, 1$ H), 1.73-1.68 (m, 1 H$), 1.62(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.58(\mathrm{~s}, 3 \mathrm{H}), 1.53-1.49(\mathrm{~m}, 1 \mathrm{H})$, $1.36(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.89(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.87(\mathrm{~s}, 9 \mathrm{H}), 0.80(\mathrm{~d}, J=6.8 \mathrm{~Hz}$, $3 \mathrm{H}), 0.76(\mathrm{~d}, ~ J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.67(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.01(\mathrm{~s}, 3 \mathrm{H}),-0.24(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 177.3,152.7,142.6,138.3,134.8,129.3,129.0,128.8$, $128.4,126.2,125.8,120.4,89.7,77.1,74.0,64.3,44.2,40.9,38.4,35.9,30.3,26.5$, $22.1,18.8,16.7,15.9,15.3,13.9,13.8,9.4,-3.0,-3.9$. HRMS-ESI calcd for $\mathrm{C}_{38} \mathrm{H}_{57} \mathrm{NO}_{5} \mathrm{NaSi}:[\mathrm{M}+\mathrm{Na}]^{+} 658.3904$, found 658.3911. FTIR $\vee 3360 \mathrm{w}, 2928 \mathrm{~m}$, $2857 m, 1786 m, 1693 w, 1458 w, 1374 w, 1253 w, 1210 w, 1044 w, 892 w, 766 w, 689 w$ $\mathrm{cm}^{-1}$.

## (2S,3R,4R,5R,6S,E)-5-(tert-butyldimethylsilyloxy)-3-hydroxy-N-methoxy-N,2,4,-

## 6,8-pentamethyldec-8-enamide (46)



To a cooled $\left(0^{\circ} \mathrm{C}\right)$ suspension of $\mathrm{MeONHMe} \cdot \mathrm{HCl}$ ( $28.0 \mathrm{mg}, 0.28 \mathrm{mmol}, 6.00$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 140 $\mu \mathrm{L}$ ) was added $\mathrm{AlMe}_{3}(2 \mathrm{M}$ in toluene) $(142 \mu \mathrm{~L}$, $0.28 \mathrm{mmol}, 6.00$ equiv). The resulting solution was stirred at $0{ }^{\circ} \mathrm{C}$ for 5 minutes, then at RT for 45 minutes. The clear solution was cooled to $0{ }^{\circ} \mathrm{C}$ and $45(30.0 \mathrm{mg}, 0.05$ mmol, 1.00 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mu \mathrm{~L})$ was added. Stirring at $0{ }^{\circ} \mathrm{C}$ was continued for 5 minutes, then at RT for 68 hours. The reaction was quenched by slow addition of diluted HCl solution $(0.5 \mathrm{M})$ and stirred at RT for 1hour. The aqueous layer was separated and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x})$. The combined organic phases were washed with saturated $\mathrm{NaHCO}_{3}$ (1x) and brine (1x), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Purification by chromatography on $\mathrm{SiO}_{2}$ (pentane/ $\mathrm{Et}_{2} \mathrm{O}$ 6:4) afforded product 46 (8.1
$\mathrm{mg}, 0.02 \mathrm{mmol}, 41 \%) . \mathrm{R}_{f}=0.19$ (pentane $/ \mathrm{Et}_{2} \mathrm{O} 1: 1$ ). Optical rotation $[\alpha]^{25.0}{ }_{\mathrm{D}}(c 0.12$, $\left.\mathrm{CHCl}_{3}\right)=-7.5^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.19(\mathrm{q}, J=6.21 \mathrm{~Hz}, 1 \mathrm{H}), 3.83-3.79$ $(\mathrm{m}, 1 \mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.54(\mathrm{t}, J=3.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 3.14$ (br s, 1 H$), 2.15(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.85-1.70(\mathrm{~m}, 3 \mathrm{H}), 1.57(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H})$, $1.55(\mathrm{~s}, 3 \mathrm{H}), 1.19(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 0.78$ $(\mathrm{d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $178.4,134.8,120.5,78.6,74.5,62.0,44.6,39.2,38.1,35.9,26.6,18.9,15.9,15.6$, 13.8, 12.6, 10.7, $-3.1,-3.5$. HRMS-ESI calcd for $\mathrm{C}_{22} \mathrm{H}_{45} \mathrm{NO}_{4} \mathrm{SiNa}:[\mathrm{M}+\mathrm{Na}]^{+}$ 438.3016, found 338.3010. FTIR $\vee 3456 w, 2959 m, 2931 m, 2858 w, 1642 w, 1462 w$, $1384 w, 1254 w, 1095 w, 1041 m, 1001 m, 834 m, 776 s, 677 m, 630 m \mathrm{~cm}^{-1}$.

## (2S,3R,4R,5R,6S,E)-5-(tert-butyldimethylsilyloxy)-3-hydroxy-2,4,6,8-tetramethyl-

 dec-8-enal (47)

To a cooled $\left(-17{ }^{\circ} \mathrm{C}\right)$ solution of $45(320 \mathrm{mg}, 0.50$ $\mathrm{mmol}, 1.00$ equiv) in toluene ( 10 mL ) was slowly added a solution of $\mathrm{LiAlH}_{4}\left(1 \mathrm{M}\right.$ in $\left.\mathrm{Et}_{2} \mathrm{O}\right)(1.00 \mathrm{~mL}, 1.00$ $\mathrm{mmol}, 2.00$ equiv). The resulting solution was stirred for 20 minutes, then quenched at $-17^{\circ} \mathrm{C}$ by dropwise addition of saturated Rochelle's salt and diluted in $\mathrm{Et}_{2} \mathrm{O}$. The mixture was vigorously stirred at RT for 2 hours, then extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3x) and the combined organic phase dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated (bath $\mathrm{T}<20^{\circ} \mathrm{C}$ ). The residue was diluted in $\mathrm{Et}_{2} \mathrm{O}$ and the precipitated cleaved auxiliary recovered. The filtered was concentrated and the residue purified by chromatography on $\mathrm{SiO}_{2}$ (pentane/ $\mathrm{Et}_{2} \mathrm{O} 9: 1$ ) to afford aldehyde 47 ( $149 \mathrm{mg}, 0.42 \mathrm{mmol}, 83 \%$ ) as a colorless oil. $\mathrm{R}_{f}=0.28$ (pentane $/ \mathrm{Et}_{2} \mathrm{O} 7: 3$ ). Optical rotation $[\alpha]^{25.0}{ }_{\mathrm{D}}\left(c 0.08, \mathrm{CHCl}_{3}\right)=-23.8^{\circ} .{ }^{1} \mathrm{H}-$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 9.73(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{q}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.03$ $(\mathrm{q}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.58\left(\mathrm{dd}, J_{l}=4.2 \mathrm{~Hz}, J_{2}=2.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.68-2.62(\mathrm{~m}, 1 \mathrm{H}), 2.20$ (d, $J=12.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.97 (d, $J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.89-1.77(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.67(\mathrm{~m}, 1$ H), $1.60(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~d}, J=6.9$ $\mathrm{Hz}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 0.81(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 204.8,134.5,120.7,78.2,73.2,50.1,44.3,39.3,36.1$, $26.5,18.8,15.8,13.7,10.0,8.8,-2.8,-3.5$. HRMS-ESI calcd for $\mathrm{C}_{20} \mathrm{H}_{40} \mathrm{O}_{3} \mathrm{SiNa}:[\mathrm{M}+$
$\mathrm{Na}]^{+}$379.2644, found 379.2639. FTIR $v 2957 m, 2931 m, 2859 m, 1727 w, 1462 w$, $1384 w, 1255 w, 1096 w, 1032 w, 837 w, 775 w \mathrm{~cm}^{-1}$.
( $2 E, 4 R, 5 S, 6 R, 7 R, 8 S, 10 E$ )-ethyl 7-(tert-butyldimethylsilyloxy)-5-hydroxy-2,4,6,8,-

## 10-pentamethyldodeca-2,10-dienoate (49)



To a solution of aldehyde $47(61.1 \mathrm{mg}, 0.17 \mathrm{mmol}$, 1.00 equiv) in toluene ( 1.7 mL ) was added 1 carbethoxyethylidentriphenylphosphorane (123.2 $\mathrm{mg}, 0.34 \mathrm{mmol}, 2.00$ equiv) and the mixture was stirred at $35^{\circ} \mathrm{C}$ for 5 hours. The reaction was diluted in pentane, filtered over cotton and concentrated. The residue was purified by chromatography on $\mathrm{SiO}_{2}$ (pentane/ $\mathrm{Et}_{2} \mathrm{O} 9: 1$ ) to afford 49 ( 73.8 mg , $0.17 \mathrm{mmol}, 99 \%$, d.r. > 97:3). $\mathrm{R}_{f}=0.39$ (pentane/Et $\mathrm{t}_{2} \mathrm{O}$ 8:2). Optical rotation $[\alpha]^{25.0}{ }_{\mathrm{D}}(c$ $\left.0.09, \mathrm{CHCl}_{3}\right)=+24.7^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.53\left(\mathrm{dd}, J_{1}=10.5 \mathrm{~Hz}, J_{2}=\right.$ $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.21(\mathrm{q}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.27-4.15(\mathrm{~m}, 2 \mathrm{H}), 3.65(\mathrm{t}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H})$, 3.53-3.49 (m, 1 H), 2.70-2.60 (m, 1 H$), 2.17(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{~d}, J=4.3$ $\mathrm{Hz}, 1 \mathrm{H}), 1.89(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.87-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.66$ $(\mathrm{m}, 1 \mathrm{H}), 1.59(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.10(\mathrm{~d}, J$ $=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.77(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.12$ $(\mathrm{s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 168.5,144.0,134.7,127.7$, $120.5,79.9,78.6,60.9,44.1,39.0,38.0,35.7,26.5,18.7,16.9,15.9,15.0,14.6,13.7$, 13.0, 8.8, -2.8, -3.7. HRMS-ESI calcd for $\mathrm{C}_{25} \mathrm{H}_{49} \mathrm{O}_{4} \mathrm{Si}:[\mathrm{M}+\mathrm{H}]^{+} 441.3400$, found 441.3404. FTIR $v 3519 w, 2959 m, 2923 m, 2858 m, 1712 m, 1650 w, 1462 w, 1369 w$, $1252 m, 1094 m, 1038 m, 835 m, 773 m, 675 \mathrm{~m}_{\mathrm{cm}^{-1}}$.

## (2E,4R,5S,6R,7R,8S,10E)-7-(tert-butyldimethylsilyloxy)-2,4,6,8,10-pentamethyl-

 dodeca-2,10-diene-1,5-diol (50)

To a cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $49(67.0 \mathrm{mg}$, $0.15 \mathrm{mmol}, 1.00$ equiv) in THF ( 1.6 mL ) was slowly added DIBAL-H ( 1 M in hexane) $(800 \mu \mathrm{~L}$, $0.80 \mathrm{mmol}, 5.30$ equiv). The resulting solution was allowed to return to- $15{ }^{\circ} \mathrm{C}$ and stirred from $-15{ }^{\circ} \mathrm{C}$ to $-5^{\circ} \mathrm{C}$ over 1.5 hours. The reaction was quenched by addition of MeOH , diluted in saturated Rochelle's salt and $\mathrm{Et}_{2} \mathrm{O}$ and vigorously stirred at RT for 1 hour. The aqueous layer was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x})$ and the combined organic phase dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated (bath $\mathrm{T}<25{ }^{\circ} \mathrm{C}$ ). Purification by chromatography on $\mathrm{SiO}_{2}$ (pentane/Et2 $\mathrm{O} 9: 1 \rightarrow 7: 3$ ) afforded diol $50(56.3 \mathrm{mg}, 0.14$ $\mathrm{mmol}, 93 \%$ ) as a colorless oil. $\mathrm{R}_{f}=0.15$ (pentane/Et $\mathrm{t}_{2} \mathrm{O} 7: 3$ ). Optical rotation $[\alpha]^{22.5}{ }_{\mathrm{D}}$ $\left(c \quad 0.41, \mathrm{CHCl}_{3}\right)=-1.0^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.23-5.17(\mathrm{~m}, 2 \mathrm{H}), 4.01(\mathrm{~s}, 2$ H), 3.63-3.60 (m, 1 H ), $3.39(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.59-2.49(\mathrm{~m}, 1 \mathrm{H}), 2.16(\mathrm{~d}, J=$ $12.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.91-1.75(\mathrm{~m}, 4 \mathrm{H}), 1.71(\mathrm{~d}, J=0.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.59(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, $1.57(\mathrm{~s}, 3 \mathrm{H}), 1.04(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.88(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.76$ $(\mathrm{d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $135.0,134.8,129.1,120.4,79.9,78.9,69.2,44.3,38.5,36.8,35.6,26.5,18.8,17.8$, 15.9, 14.9, 14.3, 13.8, 9.0, -2.8, -3.6. HRMS-ESI calcd for $\mathrm{C}_{23} \mathrm{H}_{46} \mathrm{O}_{3} \mathrm{NaSi}:[\mathrm{M}+\mathrm{Na}]^{+}$ 421.3114, found 421.3116. FTIR $\vee 3349 m, 2956 m, 2930 m, 2860 m, 1459 w, 1383 w$, $1253 m, 1070 m, 1035 m, 1011 m, 836 m, 775 m, 676 m \mathrm{~cm}^{-1}$.

## (2E,4R,5S,6R,7R,8S,10E)-7-(tert-butyldimethylsilyloxy)-5-hydroxy-2,4,6,8,10-

pentamethyldodeca-2,10-dienal (51)


To a solution of diol $50(121 \mathrm{mg}, 0.30 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.0 \mathrm{~mL}), \mathrm{MnO}_{2}(396 \mathrm{mg}, 4.50$ mmol, 15.0 equiv) was added. The mixture was stirred at RT for 2.5 hours, then filtered over Celite, rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and concentrated (bath $\mathrm{T}<25^{\circ} \mathrm{C}$ ). The $\alpha, \beta$-unsaturated aldehyde 51 ( $103 \mathrm{mg}, 0.26 \mathrm{mmol}$, 86\%) crystallized under high vacuum. An analytical sample was recrystallized (hexane) for X-ray analysis and the rest directly used in the next step without further
purification (crystallographic data are given at the end of the experimental part). $\mathrm{R}_{f}=$ 0.37 (pentane $/ \mathrm{Et}_{2} \mathrm{O} 7: 3$ ). M.p. $=75-77^{\circ} \mathrm{C}$. Optical rotation $[\alpha]^{22.5}{ }_{\mathrm{D}}\left(c 0.82, \mathrm{CHCl}_{3}\right)=-$ $10.9^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.42(\mathrm{~s}, 1 \mathrm{H}), 6.27\left(\mathrm{dd}, J_{1}=10.3 \mathrm{~Hz}, J_{2}=1.0\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 5.21(\mathrm{q}, J=6.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.65(\mathrm{t}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.59-3.56(\mathrm{~m}, 1 \mathrm{H})$, 2.92-2.82 (m, 1 H$), 2.18(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.00(\mathrm{~d}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.92-1.83$ $(\mathrm{m}, 1 \mathrm{H}), 1.81(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.79-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.60(\mathrm{~d}, J$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.16(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 0.90(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}$ ), 0.77 (d, $J=6.8 \mathrm{~Hz}, 3 \mathrm{H}$ ), $0.13(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 195.6,156.4,139.1,134.5,120.6,79.8,78.1,44.1,39.3,38.3,35.7,26.5$, 18.7, 16.7, 15.9, 15.2, 13.8, 9.9, 8.9, -2.8, -3.7. HRMS-ESI calcd for $\mathrm{C}_{23} \mathrm{H}_{44} \mathrm{O}_{3} \mathrm{SiNa}$ : $[\mathrm{M}+\mathrm{Na}]^{+} 419.2957$, found 419.2960. FTIR $\vee 3520 w, 2961 m, 2928 m, 2889 m, 2885 m$, $1667 m, 1635 w, 1459 w, 1378 w, 1251 w, 1096 w, 1073 w, 1040 w, 1011 m, 974 w, 883 m$, $772 m, 681 m \mathrm{~cm}^{-1}$.
( $1 E, 3 E, 5 R, 6 S, 7 R, 8 R, 9 S, 11 E)$-8-(tert-butyldimethylsilyloxy)-1-iodo-3,5,7,9,11-
pentamethyltrideca-1,3,11-trien-6-ol (52)


To a cooled $\left(-5{ }^{\circ} \mathrm{C}\right)$ suspension of $\mathrm{CrCl}_{2}(446$ $\mathrm{mg}, 3.63 \mathrm{mmol}, 24.00$ equiv) in dry THF ( 4.4 mL ) was slowly added a solution of $\alpha, \beta$ unsaturated aldehyde 51 ( $60.0 \mathrm{mg}, 0.15 \mathrm{mmol}, 1.00$ equiv) and $\mathrm{CHI}_{3}(358 \mathrm{mg}, 0.91$ mmol, 6.00 equiv) in THF ( 4.4 mL ). The dark brown mixture was covered with an aluminium foil and stirred between -5 and $0{ }^{\circ} \mathrm{C}$ for 2.5 hours. The mixture was quenched by addition of water and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3x). The combined organic layers were washed with saturated sodium thiosulfate (1x), water (1x), dried ( $\mathrm{MgSO}_{4}$ ) and concentrated (bath $\mathrm{T}<20{ }^{\circ} \mathrm{C}$ ). Purification by chromatography on $\mathrm{SiO}_{2}$ (pentane/ $\mathrm{Et}_{2} \mathrm{O} 9: 1$ ) afforded vinyl iodide $52(78.4 \mathrm{mg}, 0.15 \mathrm{mmol}$, quant., d.r. $\mathbf{~} \mathbf{5 9 7 : 3 )}$ as a colorless oil. $\mathrm{R}_{f}=0.68$ (pentane/ $\mathrm{Et}_{2} \mathrm{O} 7: 3$ ). Optical rotation $[\alpha]^{22.4}{ }_{\mathrm{D}}(c 0.60$, $\left.\mathrm{CHCl}_{3}\right)=+25.4^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.04(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.20(\mathrm{~d}, J$ $=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.24-5.19(\mathrm{~m}, 2 \mathrm{H}), 3.63(\mathrm{t}, J=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.43-3.40(\mathrm{~m}, 1 \mathrm{H})$, 2.65-2.56 (m, 1 H ), $2.17(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.87(\mathrm{~d}, J=4.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.86-1.82$ (m, 1 H ), 1.77 (d, $J=0.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.76-1.70(\mathrm{~m}, 2 \mathrm{H}), 1.60(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 1.58$ (s, 3 H ), $1.06(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.77(\mathrm{~d}, J=$
$6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.11(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.0,137.0$, $134.7,134.3,120.5,80.0,78.8,74.1,44.2,38.8,37.4,35.7,26.5,18.8,17.6,15.9$, 15.0, 13.8, 12.6, 8.8, $-2.7,-3.6$. HRMS-ESI calcd for $\mathrm{C}_{24} \mathrm{H}_{45} \mathrm{O}_{2} \mathrm{SiINa}:[\mathrm{M}+\mathrm{Na}]^{+}$ 543.2131, found 543.2133. FTIR $\vee 3482 w, 2958 m, 2929 m, 2858 m, 1461 w, 1387 w$, $1254 w, 1091 w, 1039 w, 980 w, 950 w, 836 w, 774 w, 678 w \mathrm{~cm}^{-1}$.

## (2E,4R,5S,6S,7R,8S,10E)-ethyl 7-(tert-butyldimethylsilyloxy)-2,4,6,8,10-penta-

 methyl-5-(trimethylsilyloxy)dodeca-2,10-dienoate (53)

To a cooled $\left(-5{ }^{\circ} \mathrm{C}\right)$ solution of $49(7.6 \mathrm{mg}, 0.017$ mmol, 1.00 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(170 \mu \mathrm{~L})$ were sequentially added DMAP ( $2.0 \mathrm{mg}, 0.017 \mathrm{mmol}$, 1.00 equiv), $\mathrm{NEt}_{3}(14 \mu \mathrm{~L}, 0.102 \mathrm{mmol}, 6.00$ equiv) and $\mathrm{TMSCl}(6.6 \mu \mathrm{~L}, 0.052 \mathrm{mmol}$, 3.00 equiv). The resulting solution was stirred at $0^{\circ} \mathrm{C}$ for 1 hour; then quenched by addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3x). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Purification by chromatography on $\mathrm{SiO}_{2}$ (pentane/ $\mathrm{Et}_{2} \mathrm{O} 9.75: 0.25$ ) afforded the $\alpha, \beta$-unsaturated ester $53(6.7 \mathrm{mg}, 0.13 \mathrm{mmol}$, $77 \%$ ). $\mathrm{R}_{f}=0.76$ (pentane/Et ${ }_{2} \mathrm{O}$ 9:1). Optical rotation $[\alpha]^{25.0}{ }_{\mathrm{D}}\left(c 0.285, \mathrm{CHCl}_{3}\right)=$ $+14.4^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.59\left(\mathrm{dd}, J_{l}=10.4 \mathrm{~Hz}, J_{2}=1.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.20-$ $5.17(\mathrm{~m}, 1 \mathrm{H}), 4.26-4.10(\mathrm{~m}, 2 \mathrm{H}), 3.49\left(\mathrm{dd}, J_{1}=6.0 \mathrm{~Hz}, J_{2}=4.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.42(\mathrm{dd}$, $\left.J_{l}=7.0 \mathrm{~Hz}, J_{2}=2.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.73-2.64(\mathrm{~m}, 1 \mathrm{H}), 2.03(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.91(\mathrm{~d}$, $J=10.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.85(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.82-1.76(\mathrm{~s}, 1 \mathrm{H}), 1.72-1.64(\mathrm{~s}, 1 \mathrm{H})$, $1.59-1.56(\mathrm{~m}, 6 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 0.97(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H})$, 0.85 (d, $J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.70(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.15(\mathrm{~s}, 9 \mathrm{H}), 0.05(\mathrm{~s}, 3 \mathrm{H}), 0.02$ (s, 3 H ). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 168.6, 145.2, 134.6, 127.0, 120.6, 77.5, 77.4, $60.8,45.8,40.6,37.8,35.0,26.7,19.0,16.0,15.9,14.6,13.8,13.0,12.6,12.0,1.3,-$ 2.6, -2.9. HRMS-ESI calcd for $\mathrm{C}_{28} \mathrm{H}_{56} \mathrm{O}_{4} \mathrm{Si}_{2} \mathrm{Na}:[\mathrm{M}+\mathrm{Na}]^{+} 535.3615$, found 535.3610. FTIR $v 2958 m, 2932 m, 2859 w, 1714 m, 1460 w, 1384 w, 1252 m, 1096 m, 1032 m, 836 m$, $772 w, 750 w, 676 w, 631 s \mathrm{~cm}^{-1}$.
(2E,4R,5S,6S,7R,8S,10E)-7-(tert-butyldimethylsilyloxy)-2,4,6,8,10-pentamethyl-5-(trimethylsilyloxy)dodeca-2,10-dien-1-ol (54)


To a cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $\alpha, \beta$-unsaturated ester 53 ( $5.5 \mathrm{mg}, 0.01 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mu \mathrm{~L})$ was slowly added DIBAL-H (1

M in hexane) ( $20 \mu \mathrm{~L}, 0.02 \mathrm{mmol}, 2.00$ equiv). The resulting solution was stirred at $78{ }^{\circ} \mathrm{C}$ for 1 hour, then quenched by addition of $\mathrm{MeOH}(0.1 \mathrm{~mL})$, saturated Rochelle's salt ( 2 mL ), diluted in more $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and vigorously stirred at RT for 1 hour. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x})$ and the combined organic layers dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated (bath $\mathrm{T}<20^{\circ} \mathrm{C}$ ). Purification by chromatography on $\mathrm{SiO}_{2}$ (pentane/Et $\mathrm{E}_{2} \mathrm{O} 9: 1$ ) afforded alcohol $54(4.7 \mathrm{mg}, 0.01 \mathrm{mmol}, 100 \%)$ as a colorless oil. $\mathrm{R}_{f}=0.19$ (cyclohexane/EtOAc 9:1). Optical rotation $[\alpha]^{25.0}{ }_{\mathrm{D}}(c \quad 0.29$, $\left.\mathrm{CHCl}_{3}\right)=+1.7^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.23-5.21(\mathrm{~m}, 2 \mathrm{H}), 4.02(\mathrm{~d}, J=5.7$ Hz, 2 H ), $3.45-3.41$ (m, 2 H ), 2.64-2.54 ( $\mathrm{s}, 1 \mathrm{H}$ ), 2.03 (d, $J=12.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), $1.94(\mathrm{t}, J$ $=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.86-1.78(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.70(\mathrm{~s}, 3 \mathrm{H}), 1.61-1.59(\mathrm{~m}, 6$ H), $0.95(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.71(\mathrm{~d}, J=6.6$ $\mathrm{Hz}, 3 \mathrm{H}$ ), $0.16(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ 134.7, 134.3, 130.1, 120.6, 78.1, 77.8, 69.3, 46.0, 40.2, 36.8, 34.7, 26.7, 19.0, 17.5, $16.0,14.4,13.8,12.3,11.9,1.4,-2.5,-2.9$. FTIR $v 3314 w, 2958 m, 2929 m, 2858 w$, $1462 w, 1381 w, 1251 m, 1127 w, 1105 w, 1061 w, 1032 m, 866 w, 836 m, 772 w \mathrm{~cm}^{-1}$.
(2E,4R,5S,6S,7R,8S,10E)-7-(tert-butyldimethylsilyloxy)-2,4,6,8,10-pentamethyl-5-(trimethylsilyloxy)dodeca-2,10-dienal (55)


To a solution of alcohol $54(5.2 \mathrm{mg}, 0.011 \mathrm{mmol}$, 1.00 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(110 \mu \mathrm{~L})$ was added $\mathrm{MnO}_{2}$ ( $14.7 \mathrm{mg}, 0.165 \mathrm{mmol}, 15.0$ equiv). The mixture was stirred at RT for 3.5 hours, then filtered over Celite, rinsed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and concentrated (bath $\mathrm{T}<20^{\circ} \mathrm{C}$ ). The $\alpha, \beta$-unsaturated aldehyde 55 was obtained in quantitative yield and directly used in the next step without further purification. $\mathrm{R}_{f}=$ 0.60 (pentane/ $\mathrm{Et}_{2} \mathrm{O}$ 9:1). Optical rotation $[\alpha]^{25.0}{ }_{\mathrm{D}}\left(c 0.27, \mathrm{CHCl}_{3}\right)=-1.9^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 9.41(\mathrm{~s}, 1 \mathrm{H}), 6.32(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.23-5.22(\mathrm{~m}, 1 \mathrm{H})$, $3.58\left(\mathrm{dd}, J_{1}=6.5 \mathrm{~Hz}, J_{2}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.45\left(\mathrm{dd}, J_{1}=7.1 \mathrm{~Hz}, J_{2}=2.1 \mathrm{~Hz}, 1 \mathrm{H}\right)$,
2.97-2.89 (m, 1 H$), 2.05(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 1.93(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.84-1.82$ $(\mathrm{m}, 1 \mathrm{H}), 1.80(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 3 \mathrm{H}), 1.70-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.60(\mathrm{~m}, 6 \mathrm{H}), 1.06(\mathrm{~d}, J$ $=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.89(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 0.72(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.18$ (s, 9 H ), $0.09(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 195.7,157.5$, $138.5,134.5,120.8,77.5,77.0,45.8,40.9,38.3,34.9,26.7,19.0,16.1,16.0,13.8$, 12.7, 12.0, 9.9, 1.4, -2.6, -2.9. HRMS-ESI calcd for $\mathrm{C}_{26} \mathrm{H}_{53} \mathrm{O}_{3} \mathrm{Si}_{2}:[\mathrm{M}]^{+} 469.3533$, found 469.3534. FTIR $v 2959 m, 2930 m, 2858 w, 1694 m, 1471 w, 1462 w, 1381 w$, $1252 m, 1123 w, 1107 w, 1031 m, 837 m, 772 w, 631 s \mathrm{~cm}^{-1}$.
$(4 S, 5 S, 6 R)-4-((R, 3 E, 5 E)-6-i o d o-4-m e t h y l h e x a-3,5-d i e n-2-y l)-2,2,5,8,8,9,9-h e p t a-$ methyl-6-((S,E)-4-methylhex-4-en-2-yl)-3,7-dioxa-2,8-disiladecane (56)


To a cooled $\left(-5{ }^{\circ} \mathrm{C}\right)$ suspension of $\mathrm{CrCl}_{2}(11.0$ $\mathrm{mg}, 0.088 \mathrm{mmol}, 8.00$ equiv) in dry THF (300 $\mu \mathrm{L}$ ) was added a solution of $\alpha, \beta$-unsaturated aldehyde 55 ( $5.1 \mathrm{mg}, 0.011 \mathrm{mmol}, 1.00$ equiv) and $\mathrm{CHI}_{3}(9.0 \mathrm{mg}, 0.022 \mathrm{mmol}, 2.00$ equiv) in THF ( $200 \mu \mathrm{~L}$ ). The dark brown mixture was covered with an aluminium foil and stirred at $0{ }^{\circ} \mathrm{C}$ for 2.5 hours. The mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$ and water $(1.5 \mathrm{~mL})$ and the aqueous phase extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3x). The combined organic layers were washed with water (2x), saturated sodium thiosulfate solution (1x), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated (bath $\mathrm{T}<20^{\circ} \mathrm{C}$ ). Purification by chromatography on $\mathrm{SiO}_{2}$ (pentane $100 \%$ ) afforded vinyl iodide $56(5.7 \mathrm{mg}, 0.010 \mathrm{mmol}, 88 \%$, d.r. $>95: 5$ ) as a colorless oil. $\mathrm{R}_{f}=0.16$ (pentane $100 \%$ ). Optical rotation $[\alpha]^{25.0}{ }_{\mathrm{D}}\left(c 0.105, \mathrm{CHCl}_{3}\right)=$ $+24.8^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 7.02(\mathrm{~d}, J=14.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~d}, J=14.6$ $\mathrm{Hz}, 1 \mathrm{H}), 5.26(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.23\left(\mathrm{dd}, J_{1}=12.8 \mathrm{~Hz}, J_{2}=6.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.46-$ 3.43 (m, 2 H), 2.70-2.61 (m, 1 H ), 2.03 (d, $J=11.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.94 (t, $J=11.8 \mathrm{~Hz}, 1$ H), 1.83-1.78 (m, 1 H$), 1.76(\mathrm{~s}, 3 \mathrm{H}), 1.73-1.69(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.61(\mathrm{~m}, 6 \mathrm{H}), 0.96(\mathrm{~d}$, $J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.85(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 0.71(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$, $0.16(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.04(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 150.0$, $138.1,134.6,133.8,120.7,77.8,73.9,46.0,40.5,37.4,34.7,30.1,26.7,19.0,17.3$, 16.0, 13.8, 12.6, 12.4, 11.9, 1.4, -2.6, -2.8. HRMS-ESI calcd for $\mathrm{C}_{27} \mathrm{H}_{53} \mathrm{O}_{2} \mathrm{ISi}_{2} \mathrm{Na}$ : [M $+\mathrm{Na}]^{+}$615.2527, found 615.2536. FTIR $\vee 2958 m, 2928 m, 2857 w, 1461 w, 1381 w$, $1253 w, 1105 w, 1032 w, 890 w, 836 w, 772 w, 631 s \mathrm{~cm}^{-1}$.
6.2.5. The Suzuki $\mathrm{sp}^{3}-\mathrm{sp}^{2}$ Cross Coupling and Synthesis Completion
(2E,5S,6R,7R,8S,9R,10E,12E, 15R,16Z,18E)-6-(tert-butyldimethylsilyloxy)-19-
((2R,6R)-6-isopropoxy-3,6-dihydro-2H-pyran-2-yl)-3,5,7,9,11,15,17-heptamethyl-nonadeca-2,10,12,16,18-pentaen-8-ol (58a)


To a solution of alkyl iodide 30 ( $29.0 \mathrm{mg}, 0.077$ mmol, 1.30 equiv) in $\mathrm{Et}_{2} \mathrm{O}(850 \mu \mathrm{~L})$ was added
9-MeO-9-BBN ( 1 M in hexane) ( $202 \mu \mathrm{~L}, 0.202 \mathrm{mmol}, 3.42$ equiv). The resulting solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and treated with $t \mathrm{BuLi}(1.5 \mathrm{M}$ in pentane) $(118 \mu \mathrm{~L}$, $0.177 \mathrm{mmol}, 3.00$ equiv). After 5 minutes THF ( $850 \mu \mathrm{~L}$ ) was added and the solution allowed to return to RT; stirring was continued for 1 hour. Separately in another flask vinyl iodide 52 ( $30.7 \mathrm{mg}, 0.059 \mathrm{mmol}, 1.00$ equiv) was taken up in DMF ( $850 \mu \mathrm{~L}$ ) to which $\operatorname{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}\left(2.2 \mathrm{mg}, 0.003 \mathrm{mmol}, 0.05\right.$ equiv), $\mathrm{AsPh}_{3}(2.8 \mathrm{mg}, 0.009$, 0.15 equiv), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ( $77.0 \mathrm{mg}, 0.236 \mathrm{mmol}, 4.0$ equiv) and $\mathrm{H}_{2} \mathrm{O}(26 \mu \mathrm{~L}, 1.416 \mathrm{mmol}$, 24 equiv) were sequentially added. The alkyl boronate solution was transferred in the DMF solution and the resulting red-brown mixture stirred at RT overnight. The reaction was diluted with water and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3x). The combined organic layers were washed with water (1x) and brine (1x), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Purification by chromatography on $\mathrm{SiO}_{2}$ (pentane/ $\mathrm{Et}_{2} \mathrm{O}$ 92.5:7.5) afforded 58a (30.2 $\mathrm{mg}, 0.047 \mathrm{mmol}, 80 \%$ ) as a pale yellow oil. $\mathrm{R}_{f}=0.13$ (pentane $/ \mathrm{Et}_{2} \mathrm{O} 9: 1$ ). Optical rotation $[\alpha]^{22.0}{ }_{\mathrm{D}}\left(c 0.34, \mathrm{CHCl}_{3}\right)=+52.1^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.70(\mathrm{~d}, J=$ $15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.06-6.02(\mathrm{~m}, 1 \mathrm{H}), 6.02(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.77-5.70(\mathrm{~m}, 2 \mathrm{H}), 5.53$ $\left(\mathrm{dt}, J_{1}=15.5 \mathrm{~Hz}, J_{2}=7.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.24-5.18(\mathrm{~m}, 2 \mathrm{H}), 5.15(\mathrm{~s}, 1 \mathrm{H}), 5.09(\mathrm{~d}, J=9.9$ $\mathrm{Hz}, 1 \mathrm{H}$ ), 4.57-4.51 (m, 1 H ), 4.05 (sept., $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.63-3.61 (m, 1 H ), 3.39 $\left(\mathrm{dd}, J_{I}=8.86 \mathrm{~Hz}, J_{2}=2.57 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.75-2.68(\mathrm{~m}, 1 \mathrm{H}), 2.65-2.55(\mathrm{~m}, 1 \mathrm{H}), 2.20-$ 2.02 (m, 5 H$), 1.90-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}), 1.81-1.78$ (m, 3 H ), 1.75 ( $\mathrm{s}, 3 \mathrm{H}$ ), $1.59(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.27(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.21(\mathrm{~d}, J=6.1 \mathrm{~Hz}$, $3 \mathrm{H}), 1.05(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 0.86(\mathrm{~d}, J=7.0$ $\mathrm{Hz}, 3 \mathrm{H}$ ), 0.76 (d, $J=6.6 \mathrm{~Hz}, 3 \mathrm{H}$ ), 0.11 ( $\mathrm{s}, 3 \mathrm{H}$ ), $0.10(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 137.9,136.5,134.8,133.5,133.4,130.4,129.6,128.9,128.6,126.5,126.3$, $120.3,93.7,79.9,79.1,70.0,67.4,44.3,41.2,38.6,37.3,35.6,32.5,31.2,26.6,24.3$,
$22.5,20.9,20.8,18.8,18.0,15.9,14.9,13.8,13.2,8.9,-2.8,-3.6$. HRMS-ESI calcd for $\mathrm{C}_{40} \mathrm{H}_{70} \mathrm{O}_{4} \mathrm{SiNa}:[\mathrm{M}+\mathrm{Na}]^{+}$665.4941, found 665.4946. FTIR $\vee 3503 w, 2962 m$, $2928 m, 2859 m, 1459 w, 1381 w, 1317 w, 1253 w, 1181 w, 1099 m, 1029 m, 1001 m, 964 m$, $836 w, 774 w, 718 w, 678 w \mathrm{~cm}^{-1}$.

## (2E,5S,6R,7R,8S,9R,10E,12E,15R,16Z,18E)-6-(tert-butyldimethylsilyloxy)-17-

ethyl-19-((2R,6R)-6-isopropoxy-3,6-dihydro-2H-pyran-2-yl)-3,5,7,9,11,15-hexa-methylnonadeca-2,10,12,16,18-pentaen-8-ol (60)


To a solution of alkyl iodide 31 ( $49.0 \mathrm{mg}, 0.12$ mmol, 1.30 equiv) in $\mathrm{Et}_{2} \mathrm{O}(1.3 \mathrm{~mL})$ was added 9-MeO-9-BBN ( 1 M in hexane) ( $330 \mu \mathrm{~L}, 0.33 \mathrm{mmol}, 3.42$ equiv). The resulting solution was cooled to $-78{ }^{\circ} \mathrm{C}$ and treated with $t \mathrm{BuLi}(1.5 \mathrm{M}$ in pentane) ( $192 \mu \mathrm{~L}$, $0.29 \mathrm{mmol}, 3.00$ equiv). After 5 minutes THF ( 1.3 mL ) was added and the solution allowed to return to RT; stirring was continued for 1 hour. Separately in another flask vinyl iodide 52 ( $50.0 \mathrm{mg}, 0.096 \mathrm{mmol}, 1.00$ equiv) was taken up in DMF ( 1.3 mL ) to which $\mathrm{Pd}(\mathrm{dppf}) \mathrm{Cl}_{2} \cdot \mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( $4.0 \mathrm{mg}, 0.005 \mathrm{mmol}, 0.05$ equiv), $\mathrm{AsPh}_{3}(4.4 \mathrm{mg}, 0.014$, 0.15 equiv), $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ( $125 \mathrm{mg}, 0.384 \mathrm{mmol}, 4.00$ equiv) and $\mathrm{H}_{2} \mathrm{O}(41 \mu \mathrm{~L}, 2.30 \mathrm{mmol}$, 24 equiv) were sequentially added. The alkyl boronate solution was transferred in the DMF solution and the resulting red-brown mixture stirred at RT for 20 hours. The reaction was diluted with water and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x})$. The combined organic layers were washed with water ( 1 x ) and brine ( 1 x ), dried ( $\mathrm{MgSO}_{4}$ ) and concentrated. Purification by chromatography on $\mathrm{SiO}_{2}$ (pentane $/ \mathrm{Et}_{2} \mathrm{O} 98: 2$ ) afforded $\mathbf{6 0}$ ( 30.0 mg , $0.046 \mathrm{mmol}, 48 \%)$ as a pale yellow oil and a second fraction ( 41.4 mg ) containing a mixture of product and a side compound that was directly used in the next step without further purifications. $\mathrm{R}_{f}=0.71$ (hexane/EtOAc 8:2). Optical rotation $[\alpha]^{22.2}{ }_{\mathrm{D}}$ $\left(c \quad 0.30, \mathrm{CHCl}_{3}\right)=+50.5^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.59(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H})$, 6.03-6.00 (m, 1 H$), 5.99(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.76-5.70(\mathrm{~m}, 2 \mathrm{H}), 5.53-5.46(\mathrm{~m}, 1 \mathrm{H})$, 5.19-5.16 (m, 2 H ), $5.13(\mathrm{~s}, 1 \mathrm{H}), 5.06(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.53-4.48(\mathrm{~m}, 1 \mathrm{H}), 4.02$ (sept., $J=6.1 \mathrm{~Hz}, 1 \mathrm{H}$ ), $3.61-3.59(\mathrm{~m}, 1 \mathrm{H}), 3.37-3.33(\mathrm{~m}, 1 \mathrm{H}), 2.71-2.63(\mathrm{~m}, 1 \mathrm{H})$, 2.61-2.53 (m, 1 H), 2.22-2.01 (m, 7 H), 1.89-1.76 (m, 4 H), 1.72 (s, 3 H), 1.59-1.55
(m, 6 H ), $1.25(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.19(\mathrm{~d}, J=6.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{~m}, 6 \mathrm{H}), 0.97(\mathrm{~d}, J$ $=6.4 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~m}, 9 \mathrm{H}), 0.84(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.74(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}), 0.09$ $(\mathrm{s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 136.6,136.2,135.9,134.9,133.6,133.4$, $129.0,128.9,127.7,126.6,126.4,120.4,93.7,80.0,79.2,70.1,67.6,44.4,41.4,38.7$, $37.4,35.7,32.4,31.3,26.8,26.6,24.3,22.6,21.0,18.8,18.1,16.0,14.9,13.9,13.8$, 13.3, 9.00, -2.9, -3.6. HRMS-ESI calcd for $\mathrm{C}_{41} \mathrm{H}_{72} \mathrm{O}_{4} \mathrm{SiNa}:[\mathrm{M}+\mathrm{Na}]^{+}$679.5098, found 679.5063. FTIR $\vee 3503 w, 2963 m, 2928 m, 2858 w, 1458 w, 1381 w, 1323 w$, $1254 w, 1099 w, 1030 m, 1003 m, 964 w, 833 w, 775 s \mathrm{~cm}^{-1}$.
$(2 R, 6 R)-6-((1 E, 3 Z, 5 R, 7 E, 9 E, 11 R, 12 S, 13 R, 14 R, 15 S, 17 E)$-14-(tert-butyldimethyl-silyloxy)-12-hydroxy-3,5,9,11,13,15,17-heptamethylnonadeca-1,3,7,9,17-penta-enyl)-5,6-dihydro-2H-pyran-2-ol (61)


To a solution of 58a (6.8 $\mathrm{mg}, 0.011 \mathrm{mmol}, 1.00$ equiv) in a mixture acetone/water (3/1) (220
$\mu \mathrm{L})$, PPTS ( $1.3 \mathrm{mg}, 0.005 \mathrm{mmol}, 0.5$ equiv) was added and the resulting solution stirred at RT for 22 hours. The reaction was diluted with water, extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3x) and the combined organic layer dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Purification by chromatography on $\mathrm{SiO}_{2}$ (pentane $/ \mathrm{Et}_{2} \mathrm{O} 9: 1 \rightarrow 7: 3$ ) afforded alcohol $\mathbf{6 1}(6.3 \mathrm{mg}$, $0.010 \mathrm{mmol}, 95 \%$ ) as a pale yellow oil. $\mathrm{R}_{f}=0.20$ (pentane $/ \mathrm{Et}_{2} \mathrm{O} 7: 3$ ). Optical rotation $[\alpha]^{22.8}{ }_{\mathrm{D}}\left(c 0.10, \mathrm{CHCl}_{3}\right)=+53.1^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.73(\mathrm{~d}, J=15.7 \mathrm{~Hz}$, $1 \mathrm{H}), 6.11-6.07(\mathrm{~m}, 1 \mathrm{H}), 6.02(\mathrm{~d}, J=15.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.85\left(\mathrm{dd}, J_{l}=10.1 \mathrm{~Hz}, J_{2}=0.8\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 5.73\left(\mathrm{dd}, J_{l}=15.7 \mathrm{~Hz}, J_{2}=6.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.53\left(\mathrm{dt}, J_{l}=15.5 \mathrm{~Hz}, J_{2}=7.3 \mathrm{~Hz}\right.$, 1 H ), 5.48 (br. s, 1 H ), $5.24(\mathrm{~d}, J=9.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.23-5.18(\mathrm{~m}, 1 \mathrm{H}), 5.10(\mathrm{~d}, J=9.9$ $\mathrm{Hz}, 1 \mathrm{H}), 4.61-4.56(\mathrm{~m}, 1 \mathrm{H}), 3.63-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.42-3.39(\mathrm{~m}, 1 \mathrm{H}), 2.79-2.69(\mathrm{~m}, 2$ H), 2.66-2.56 (m, 1 H$), 2.21-2.01(\mathrm{~m}, 5 \mathrm{H}), 1.91-1.86(\mathrm{~m}, 1 \mathrm{H}), 1.84(\mathrm{~s}, 3 \mathrm{H}), 1.82-$ $1.78(\mathrm{~m}, 3 \mathrm{H}), 1.75(\mathrm{~s}, 3 \mathrm{H}), 1.59-1.57(\mathrm{~m}, 6 \mathrm{H}), 1.05(\mathrm{~d}, J=6.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=$ $6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 0.87(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.76(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.11(\mathrm{~s}$, $3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 138.2,136.5,134.9,133.6,133.4$, 130.2, 129.2, 129.1, 126.4, 126.3, 120.3, 89.7, 79.9, 79.1, 67.8, 44.3, 41.2, 38.6, 37.3, $35.6,32.5,31.2,26.6,21.0,20.8,18.8,17.9,15.9,14.9,13.8,13.3,9.0,-2.8,-3.6$.

HRMS-ESI calcd for $\mathrm{C}_{37} \mathrm{H}_{64} \mathrm{O}_{4} \mathrm{SiNa}:[\mathrm{M}+\mathrm{Na}]^{+}$623.4472, found 623.4475. FTIR $v$ $3396 w, 2959 m, 2928 m, 2859 w, 1684 w, 1457 w, 1382 w, 1253 w, 1094 w, 1033 w, 964 w$, $835 w, 772 w, 680 m \mathrm{~cm}^{-1}$.
(R)-6-((1E, 3Z,5R,7E,9E, 11R, $13 S, 14 R, 15 S, 17 E)$-14-(tert-butyldimethylsilyloxy)-

3,5,9,11,13,15,17-heptamethyl-12-oxononadeca-1,3,7,9,17-pentaenyl)-5,6-dihy-dro-2H-pyran-2-one (62)


To a solution of alcohol 61 $(3.2 \mathrm{mg}, 0.005 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mu \mathrm{~L})$ was added DMP ( 5.6 mg , $0.013 \mathrm{mmol}, 1.00$ equiv) and the resulting mixture stirred at RT for 4 hours. The mixture was directly loaded over a pipette column of silica and eluted with pentane $/ \mathrm{Et}_{2} \mathrm{O} 9.5 / 0.5 \rightarrow 7 / 3$. The mixture of lactol-ketone and lactone-ketone was concentrated and directly treated with $\mathrm{MnO}_{2}(7.0 \mathrm{mg}, 0.080 \mathrm{mmol}, 15.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(300 \mu \mathrm{~L})$ at RT for 14 hours. The mixture was filtered over Celite, washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and concentrated to afford $\alpha, \beta$-unsaturated lactone $\mathbf{6 2}(1.5 \mathrm{mg}, 0.003$ $\mathrm{mmol}, 47 \%$ ) as a pale yellow oil, which was directly used in the next step without further purification. $\mathrm{R}_{f}=0.19$ (pentane $/ \mathrm{Et}_{2} \mathrm{O} 7: 3$ ).
$(R)-6-((1 E, 3 Z, 5 R, 7 E, 9 E, 11 R, 13 S, 14 R, 15 S, 17 E)-14-h y d r o x y-3,5,9,11,13,15,17-$
heptamethyl-12-oxononadeca-1,3,7,9,17-pentaenyl)-5,6-dihydro-2H-pyran-2-one (anguinomycin C) (63)


In a 10 ml plastic vial under $\operatorname{Ar}, \mathrm{a}$ solution of $\alpha, \beta-$ unsaturated lactone 62 (1.4 $\mathrm{mg}, \quad 0.002 \mathrm{mmol}, \quad 1.00$ equiv) in THF ( $300 \mu \mathrm{~L}$ ) was cooled to $0{ }^{\circ} \mathrm{C}$ and treated dropwise with a solution of HF-pyridine ( $120 \mu \mathrm{~L}$ ) and pyridine ( $60 \mu \mathrm{~L}$ ) in THF ( $200 \mu \mathrm{~L}$ ). After addition the
resulting pale yellow solution was allowed to return to RT and stirred for 4.5 days. The reaction mixture was diluted in $\mathrm{Et}_{2} \mathrm{O}$ and transferred by canula in a saturated $\mathrm{NaHCO}_{3}$ solution and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3x). The combined organic layers were washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}(1 \mathrm{x})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. The crude mixture was directly purified by HPLC to afford anguinomycin C (63) ( 0.9 mg , $0.0019 \mathrm{mmol}, 82 \%)$ as a colorless oil. Optical rotation $[\alpha]^{23.1} \mathrm{D}_{\mathrm{D}}\left(c 0.012, \mathrm{CHCl}_{3}\right)=-$ $116.7^{\circ}$. Optical rotation $[\alpha]^{22.5}{ }_{\mathrm{D}}(c 0.0064, \mathrm{MeOH})=-101.2^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}(600 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 6.93\left(\mathrm{dt}, J_{I}=9.8 \mathrm{~Hz}, J_{2}=4.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.76(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.09(\mathrm{td}$, $\left.J_{l}=9.7 \mathrm{~Hz}, J_{2}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.04(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.75\left(\mathrm{dd}, J_{l}=15.6 \mathrm{~Hz}, J_{2}=\right.$ $6.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.61\left(\mathrm{dt}, J_{l}=15.5 \mathrm{~Hz}, J_{2}=7.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.30(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.22$ $\left(\mathrm{qd}, J_{1}=6.6 \mathrm{~Hz}, J_{2}=1.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.15(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.01\left(\mathrm{dt}, J_{I}=7.3 \mathrm{~Hz}, J_{2}\right.$ $=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.69\left(\mathrm{dq}, J_{1}=10.1 \mathrm{~Hz}, J_{2}=6.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.59\left(\mathrm{ddd}, J_{1}=5.5 \mathrm{~Hz}, J_{2}=\right.$ $\left.5.5 \mathrm{~Hz}, J_{3}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.88\left(\mathrm{qd}, J_{l}=7.1 \mathrm{~Hz}, J_{2}=5.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.74-2.67(\mathrm{~m}, 1 \mathrm{H})$, 2.51-2.49 (m, 2 H ), $2.40(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.15-2.06(\mathrm{~m}, 2 \mathrm{H}), 2.02\left(\mathrm{dd}, J_{l}=13.0\right.$ $\left.\mathrm{Hz}, J_{2}=6.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.85(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.84(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.74\left(\mathrm{dd}, J_{1}\right.$ $\left.=13.0 \mathrm{~Hz}, J_{2}=8.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.69-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.60\left(\mathrm{dd}, J_{l}=6.8 \mathrm{~Hz}, J_{2}=0.5 \mathrm{~Hz}, 3\right.$ H), $1.58(\mathrm{~s}, 3 \mathrm{H}), 1.17(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.16(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.99(\mathrm{~d}, J=6.7$ $\mathrm{Hz}, 3 \mathrm{H}), 0.80(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(150 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 215.4,163.7$, $144.3,138.7,135.8,135.1,133.6,130.4,129.1,128.1,127.3,125.0,121.3,120.1$, $78.3,74.0,46.1,45.3,43.7,40.4,32.8,31.9,29.7,20.3,20.0,15.8,14.9,13.8,13.0$, 12.7, 11.8. HRMS-ESI calcd for $\mathrm{C}_{31} \mathrm{H}_{46} \mathrm{O}_{4} \mathrm{Na}:[\mathrm{M}+\mathrm{Na}]^{+} 505.3294$, found 505.3281. FTIR $v$ 3440m, 2963m, 2927m, 2856w, 1709m, 1454w, 1381w, 1248w, $891 \mathrm{~m} \mathrm{~cm}^{-1}$. UV spectrum $\lambda_{\max }=241 \mathrm{~nm}$ in MeOH. Analytical HPLC $R_{\mathrm{t}}=32.35$ minutes $\left(\mathrm{C}_{18}\right.$, $60 \%-100 \%$ MeOH in 50 minutes). Semi-preparative HPLC $R_{\mathrm{t}}=38.82$ minutes $\left(\mathrm{C}_{18}\right.$, $60 \%-80 \% \mathrm{MeOH}$ in 50 minutes).

## (R)-6-(( $1 E, 3 Z, 5 R, 7 E, 9 E, 11 R, 13 S, 14 R, 15 S, 17 E)$-3-ethyl-14-hydroxy-5,9,11,13,15,-

17- hexamethyl-12-oxononadeca-1,3,7,9,17-pentaenyl)-5,6-dihydro-2H-pyran-2one (anguinomycin D) (66)


To a solution of $\mathbf{6 0}$ (27.0 $\mathrm{mg}, \quad 0.041 \mathrm{mmol}, \quad 1.00$ equiv) in a mixture acetone/water (5/1) (830
$\mu \mathrm{L}$ ) was added PPTS ( $6.0 \mathrm{mg}, 0.024 \mathrm{mmol}, 0.4$ equiv) and the resulting solution stirred at RT for 43 hours. The reaction was transferred in a saturated $\mathrm{NaHCO}_{3}$ solution, extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3x) and the combined organic layer washed with brine (1x), dried $\left(\mathrm{MgSO}_{4}\right)$ and concentrated. Purification by chromatography on $\mathrm{SiO}_{2}$ (pentane/Et $\mathrm{E}_{2} \mathrm{O} 9: 1 \rightarrow 1: 1$ ) afforded the lactol ( $23.0 \mathrm{mg}, 0.037 \mathrm{mmol}, 91 \%$ ).

To a solution of lactol ( $1.30 \mathrm{mg}, 0.002 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL}), 4 \AA \mathrm{MS}$ ( 50 mg ), PCC ( $3.00 \mathrm{mg}, 0.013 \mathrm{mmol}, 6.00$ equiv) and glacial acetic acid ( $12 \mu \mathrm{~L}, 0.21$ mmol, 100 equiv) were sequentially added and the resulting mixture stirred at RT for 1.5 hours. The mixture was directly loaded over a column of silicagel and eluted with hexane/AcOEt $8.5 / 1.5 \rightarrow 1 / 1$ to afford the ketolactone intermediate which was directly used in the last step.

In a 10 ml plastic tube a solution of the previous obtained ketolactone in THF ( 0.5 mL ) was cooled to $0{ }^{\circ} \mathrm{C}$. Pyridine ( $100 \mu \mathrm{~L}$ ) and HF-pyridine ( $100 \mu \mathrm{~L}$ ) were sequentially added and the tube sealed. After 5 minutes the solution was allowed to return to RT and stirred for 4.5 days. The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and silicagel $(100 \mathrm{mg})$ was added. After 5 minutes, the mixture was loaded on a pipette column of silicagel and eluted with hexane/EtOAc $8: 2 \rightarrow 1: 1$ affording anguinomycin $\mathrm{D}(\mathbf{6 6})$ ( $0.62 \mathrm{mg}, 0.0013 \mathrm{mmol}, 60 \%$ ) as a colorless oil. An analytical sample of anguinomycin D was purified by HPLC. $\mathrm{R}_{f}=0.17$ (hexane/EtOAc 6:4). Optical rotation $[\alpha]^{22.7}{ }_{\mathrm{D}}(c \quad 0.014, \mathrm{MeOH})=-112.0^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(800 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.90$ (dddd, $\left.J_{l}=9.7 \mathrm{~Hz}, J_{2}=4.9 \mathrm{~Hz}, J_{3}=3.6 \mathrm{~Hz}, J_{4}=0.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.63(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1$ H), $6.06\left(\mathrm{dt}, J_{l}=9.8 \mathrm{~Hz}, J_{2}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.01(\mathrm{~d}, J=15.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.76\left(\mathrm{dd}, J_{l}=\right.$ $\left.15.7 \mathrm{~Hz}, J_{2}=6.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.58\left(\mathrm{dt}, J_{1}=15.5 \mathrm{~Hz}, J_{2}=7.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.25(\mathrm{~d}, J=9.8$ $\mathrm{Hz}, 1 \mathrm{H}), 5.19\left(\mathrm{qd}, J_{l}=6.8 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.11(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.99-$ $4.96(\mathrm{~m}, 1 \mathrm{H})$ or $4.98\left(\mathrm{dtd}, J_{1}=6.9 \mathrm{~Hz}, J_{2}=7.6 \mathrm{~Hz}, J_{3}=0.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.66\left(\mathrm{dq}, J_{1}=\right.$ $\left.10.1 \mathrm{~Hz}, J_{2}=6.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.55(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.87\left(\mathrm{dt}, J_{l}=5.7 \mathrm{~Hz}, J_{2}=7.1 \mathrm{~Hz}\right.$,
$1 \mathrm{H}), 2.68-2.64(\mathrm{~m}, 1 \mathrm{H}), 2.48-2.46(\mathrm{~m}, 2 \mathrm{H}), 2.22-2.15(\mathrm{~m}, 2 \mathrm{H}), 2.08(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2$ H), $1.98\left(\mathrm{dd}, J_{l}=13.1 \mathrm{~Hz}, J_{2}=6.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.82(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.70\left(\mathrm{dd}, J_{l}=\right.$ $\left.13.1 \mathrm{~Hz}, J_{2}=8.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.65-1.61(\mathrm{~m}, 1 \mathrm{H}), 1.57\left(\mathrm{dd}, J_{1}=6.7 \mathrm{~Hz}, J_{2}=0.8 \mathrm{~Hz}, 3\right.$ H), $1.55(\mathrm{~s}, 3 \mathrm{H}), 1.14(\mathrm{~d}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.13(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.04(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 3 \mathrm{H}), 0.96(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 0.77(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(150 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 215.8,164.1,144.7,137.3,136.2,135.4,135.3,134.0,130.0,128.4,127.7$, 124.8, 121.7, 120.5, 79.9, 74.4, 46.5, 45.6, 44.1, 40.8, 33.2, 32.2, 30.1, 26.4, 20.8, 16.3, 15.3, 14.2, 13.5, 13.4, 13.1, 12.2. HRMS-ESI calcd for $\mathrm{C}_{32} \mathrm{H}_{48} \mathrm{O}_{4} \mathrm{Na}:[\mathrm{M}+\mathrm{Na}]^{+}$ 519.3450; found 519.3429. UV spectrum $\lambda_{\max }=242 \mathrm{~nm}$ in MeOH. Analytical HPLC $R_{\mathrm{t}}=32.87$ minutes ( $\mathrm{C}_{18}, 60 \% \rightarrow 100 \% \mathrm{MeOH}$ in 50 minutes).

Following the same three last steps procedure using the mixed fraction of product $\mathbf{6 0}$, in addition to anguinomycin D , the following compounds were isolated:

## $2 Z, 5 R, 6 E, 8 Z, 10 R, 12 E, 14 E, 16 R, 18 S, 19 R, 20 S, 22 E)-8$-ethyl-5,19-dihydroxy-10,14,-

## 16,18,20,22-hexamethyl-17-oxotetracosa-2,6,8,12,14,22-hexaenal (67)


$\mathrm{R}_{f}=0.11$ (hexane/EtOAc 7:3). ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 9.56(\mathrm{~d}, J=7.5$
$\mathrm{Hz}, 1 \mathrm{H}), 6.91\left(\mathrm{dt}, J_{1}=\right.$
$\left.15.8 \mathrm{~Hz}, J_{2}=7.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.56(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.23\left(\mathrm{ddt}, J_{l}=15.8 \mathrm{~Hz}, J_{2}=7.9\right.$ $\left.\mathrm{Hz}, J_{3}=1.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.04(\mathrm{~d}, J=15.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.73\left(\mathrm{dd}, J_{l}=15.3 \mathrm{~Hz}, J_{2}=6.6 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 5.64-5.59(\mathrm{~m}, 1 \mathrm{H}), 5.24-5.20(\mathrm{~m}, 2 \mathrm{H}), 5.16(\mathrm{~d}, J=10.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{q}, J=$ $6.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.70-3.65(\mathrm{~m}, 1 \mathrm{H}), 3.60(\mathrm{t}, J=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.91-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.70-$ $2.66(\mathrm{~m}, 1 \mathrm{H}), 2.65-2.63(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.18(\mathrm{~m}, 1 \mathrm{H}), 2.11(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.01$ $\left(\mathrm{dd}, J_{l}=13.2 \mathrm{~Hz}, J_{2}=6.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.84(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.76-1.73(\mathrm{~m}, 1 \mathrm{H})$, $1.68-1.64(\mathrm{~m}, 1 \mathrm{H}), 1.61(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.58-1.57(\mathrm{~m}, 3 \mathrm{H}), 1.17(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, $3 \mathrm{H}), 1.16(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.07(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.00(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, $0.91(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.80(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 3 \mathrm{H})$. HRMS-ESI calcd for $\mathrm{C}_{32} \mathrm{H}_{50} \mathrm{O}_{4} \mathrm{Na}$ : $[\mathrm{M}+\mathrm{Na}]^{+} 521.3607$; found 521.3607. Analytical HPLC $R_{\mathrm{t}}=32.37$ minutes $\left(\mathrm{C}_{18}, 60 \%\right.$ $\rightarrow 100 \% \mathrm{MeOH}$ in 50 minutes). $\lambda_{\max }=239 \mathrm{~nm}$.
(R)-6-((1E,3Z)-3-ethyl-5-methylhexa-1,3-dienyl)-5,6-dihydro-2H-pyran-2-one
(68)
 $\mathrm{R}_{f}=0.44$ (hexane/EtOAc 7:3). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $6.93\left(\mathrm{dt}, J_{1}=9.6 \mathrm{~Hz}, J_{2}=4.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.70(\mathrm{~d}, J=15.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.09\left(\mathrm{dt}, J_{l}=9.8 \mathrm{~Hz}, J_{2}=1.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.78\left(\mathrm{dd}, J_{l}=\right.$ $\left.15.8 \mathrm{~Hz}, J_{2}=6.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.29(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.05-4.99(\mathrm{~m}, 1 \mathrm{H}), 2.81-2.72$ (m, 1 H ), 2.52-2.48 (m, 2 H ), 2.19 (q, $J=7.4 \mathrm{~Hz}, 2 \mathrm{H}$ ), 1.07 (t, $J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 1.00$ $(\mathrm{d}, J=1.5 \mathrm{~Hz}, 3 \mathrm{H}), 0.98(\mathrm{~d}, J=1.4 \mathrm{~Hz}, 3 \mathrm{H})$. HRMS-ESI calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{O}_{2}:[\mathrm{M}]^{+}$ 221.1542; found 221.1548. Analytical HPLC $R_{\mathrm{t}}=38.55$ minutes $\left(\mathrm{C}_{18}, 30 \% \rightarrow 80 \%\right.$ MeOH in 50 minutes), $\lambda_{\max }=239 \mathrm{~nm}$.
6.2.6. Synthesis of Anguinomycin Derivatives
(R)-6-((S,1E,3Z)-3-bromo-5-methyl-6-(triisopropylsilyloxy)hexa-1,3-dienyl)-5,6-dihydropyran-2-one (69)


To a solution of $24(15 \mathrm{mg}, 0.03 \mathrm{mmol}, 1.00$ equiv) in a mixture of acetone/water (3:1) ( 0.62 mL ) was added PPTS ( $7.7 \mathrm{mg}, 0.03 \mathrm{mmol}, 1.00$ equiv). The solution was stirred for 2 hours, quenched with water and extracted with $\mathrm{Et}_{2} \mathrm{O}$ ( $3 \times 15$ $\mathrm{mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated to afford the crude lactol. To a suspension of $\mathrm{MnO}_{2}(161 \mathrm{mg}, 1.86 \mathrm{mmol}, 60.0$ equiv) in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ pyridine (1:0.025) ( 0.61 mL ) was added the crude lactol. The reaction was stirred for 1.5 hours, diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, filtered through Celite and washed with water (1x). The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3x) and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. The residue was purified by chromatography on $\mathrm{SiO}_{2}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ cyclohexane $\left.8: 2\right)$ affording $\alpha, \beta$ unsaturated lactone $69(4.30 \mathrm{mg}, 0.01 \mathrm{mmol}, 31 \%)$ as a colorless oil. $\mathrm{R}_{f}=0.11$ (cyclohexane/AcOEt 9:1). Optical rotation $[\alpha]^{28.6}{ }_{\mathrm{D}}\left(c 0.355, \mathrm{CHCl}_{3}\right)=+46.1^{\circ} .{ }^{1} \mathrm{H}-$ NMR $\left(300 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta, 6.90\left(\mathrm{ddd}, J_{1}=9.8 \mathrm{~Hz}, J_{2}=5.2 \mathrm{~Hz}, J_{3}=3.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.39$ $\left(\mathrm{ddd}, J_{1}=14.8 \mathrm{~Hz}, J_{2}=1.3 \mathrm{~Hz}, J_{3}=0.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.10(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.09-6.04$ $(\mathrm{m}, 1 \mathrm{H}), 5.97(\mathrm{~d}, J=8.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.07\left(\mathrm{dtd}, J_{1}=9.9 \mathrm{~Hz}, J_{2}=5.5 \mathrm{~Hz}, J_{3}=1.2 \mathrm{~Hz}, 1\right.$ H), 3.63 (ddd, $J_{1}=21.5 \mathrm{~Hz}, J_{2}=9.5 \mathrm{~Hz}, J_{3}=5.7 \mathrm{~Hz}, 2 \mathrm{H}$ ), 3.00-2.87 (m, 1 H$), 2.51-$
$2.45(\mathrm{~m}, 2 \mathrm{H}), 1.09-1.05(\mathrm{~m}, 24 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.5,144.4$, 139.5, 132.0, 129.3, 123.0, 121.6, 76.7, 66.7, 39.6, 30.0, 18.1, 16.2, 12.1. HRMS-EI calcd for $\mathrm{C}_{21} \mathrm{H}_{35} \mathrm{BrO}_{3} \mathrm{Si}$ : $\left[\mathrm{M}-\mathrm{C}_{3} \mathrm{H}_{7}\right]^{+}$399.0986; found 399.0984. FTIR $\vee 3020 w$, $2944 w, 1721 w, 1215 m, 1112 w, 751 s \mathrm{~cm}^{-1}$.

## (R)-6-((S,1E,3Z)-6-(allyloxy)-3,5-dimethylhexa-1,3-dienyl)-5,6-dihydropyran-2-

 one (70)

To a cooled $\left(-20^{\circ} \mathrm{C}\right)$ suspension of $\mathrm{NaH}(1.00 \mathrm{mg}$, $0.04 \mathrm{mmol}, 1.00$ equiv) in DMF ( $100 \mu \mathrm{~L}$ ) was added a solution of alcohol $28(10.6 \mathrm{mg}, 0.04$ mmol, 1.00 equiv) in DMF ( $100 \mu \mathrm{~L}$ ). The mixture was stirred at $-20^{\circ} \mathrm{C}$ for 25 minutes, treated with allyl bromide ( $3.80 \mu \mathrm{~L}, 0.04 \mathrm{mmol}, 1.10$ equiv), warmed to RT and stirred for 8 hours. The reaction was quenched with water and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$ and the combined organic layers were washed with brine ( $3 \times 50$ mL ), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. The residue was purified by chromatography on $\mathrm{SiO}_{2}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} 100 \%\right)$ to give allylated product ( $7.40 \mathrm{mg}, 0.02$ $\mathrm{mmol}, 60 \%$ ) as a colorless oil. $\mathrm{R}_{f}=0.31$ (cyclohexane/AcOEt 9:1). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (300 $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.68(\mathrm{~d}, J=15.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.04-5.98(\mathrm{~m}, 1 \mathrm{H}), 5.90\left(\mathrm{ddt}, J_{3}=17.1\right.$ $\left.\mathrm{Hz}, J_{2}=10.4 \mathrm{~Hz}, J_{1}=5.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.76-5.69(\mathrm{~m}, 2 \mathrm{H}), 5.26\left(\mathrm{dq}, J_{1}=1.7 \mathrm{~Hz}, J_{2}=17.3\right.$ $\mathrm{Hz}, 1 \mathrm{H}$ ), $5.21-5.12$ (m, 3 H ), $4.55-4.48$ (m, 1 H ), 4.02 (sept., $J=6.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 3.96 (ddd, $\left.J_{1}=1.3 \mathrm{~Hz}, J_{2}=2.6 \mathrm{~Hz}, J_{3}=5.5 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.27\left(\mathrm{ddd}, J_{1}=6.8 \mathrm{~Hz}, J_{2}=9.2 \mathrm{~Hz}, J_{3}\right.$ $=16.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.00-2.86(\mathrm{~m}, 1 \mathrm{H}), 2.20-2.00(\mathrm{~m}, 2 \mathrm{H}), 1.83(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 3 \mathrm{H})$, $1.25(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.18(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.01(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H})$. HRMSEI calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{3}$ : $[\mathrm{M}]^{+}$306.2190; found 306.2191.

To a solution of allylated product ( $7.40 \mathrm{mg}, 0.02 \mathrm{mmol}, 1.00$ equiv) in a mixture of acetone/water (3/1) ( 0.48 mL ) was added PPTS ( $6.10 \mathrm{mg}, 0.02 \mathrm{mmol}, 1.00$ equiv). The reaction was stirred at RT for 2 hours, quenched with water and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15 \mathrm{~mL})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$ filtered and concentrated to afford the crude lactol. The residue was dissolved in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2} /$ pyridine $(1 / 0.025)(0.48 \mathrm{~mL})$, treated with $\mathrm{MnO}_{2}(125 \mathrm{mg}, 1.44 \mathrm{mmol}, 60.0$ equiv) and the suspension was stirred for 3 hours. The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and filtered through Celite, washed with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$.

The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. The residue was purified by chromatography on $\mathrm{SiO}_{2}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{AcOEt} 97: 3\right)$ to give $\alpha, \beta$-unsaturated lactone $70(1.70 \mathrm{mg}, 0.01 \mathrm{mmol}, 29 \%)$ as a colorless oil. $\mathrm{R}_{f}=0.34\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{AcOEt}\right.$ 97:3). Optical rotation $[\alpha]^{28.3}{ }_{\mathrm{D}}\left(c 0.160, \mathrm{CHCl}_{3}\right)=+53.4^{\circ}$. ${ }^{1} \mathrm{H}-\mathrm{NMR}(300 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 6.90\left(\mathrm{dt}, J_{1}=9.7 \mathrm{~Hz}, J_{2}=4.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.75(\mathrm{~d}, J=15.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{dt}$, $\left.J_{1}=9.7 \mathrm{~Hz}, J_{2}=1.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.96-5.83(\mathrm{~m}, 1 \mathrm{H}), 5.76\left(\mathrm{dd}, J_{1}=15.7 \mathrm{~Hz}, J_{2}=6.7 \mathrm{~Hz}\right.$, 1 H ), $5.30-5.22(\mathrm{~m}, 2 \mathrm{H}), 5.19-5.14(\mathrm{~m}, 1 \mathrm{H}), 5.01(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.96\left(\mathrm{dd}, J_{1}=\right.$ $\left.5.5 \mathrm{~Hz}, J_{2}=0.9 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.32-3.21(\mathrm{~m}, 2 \mathrm{H}), 2.91\left(\mathrm{ddd}, J_{1}=9.5 \mathrm{~Hz}, J_{2}=6.7 \mathrm{~Hz}, J_{3}=\right.$ $13.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), $2.48\left(\mathrm{ddd}, J_{1}=6.3 \mathrm{~Hz}, J_{2}=4.7 \mathrm{~Hz}, J_{3}=2.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.83(\mathrm{~s}, 3 \mathrm{H})$, $1.00(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(75 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 163.7,144.4,135.8,134.7$, $130.8,130.3,125.7,121.5,116.6,78.5,74.9,71.9,32.5,30.0,20.5,18.0$. HRMS-EI calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{3}:[\mathrm{M}]^{+}$262.1564; found 262.1564.

### 6.2.7. Biological Evaluations

## Cell culture techniques, antibodies and indirect immunofluorescence.

HeLa cells were cultured at $37{ }^{\circ} \mathrm{C}$ in Dulbecco's modified eagle's medium (DMEM), supplemented with $10 \%$ fetal calf serum, 100 units $/ \mathrm{ml}$ penicillin and $100 \mu \mathrm{~g} / \mathrm{ml}$ streptomycin. For studying the inhibition of CRM1-mediated nuclear export, HeLa cells were grown on coverslips for 24 h to about $75 \%$ confluency. Cells were then incubated with different concentrations of LMB (LC laboratories, USA) or anguinomycins C or D for 90 min at $37^{\circ} \mathrm{C}$. For detection of Rio2, cells were fixed in $4 \%$ paraformaldehyde for 15 min and permeabilized for 5 minutes in $1 \times$ detergent ( $0.1 \%$ Triton-X, $0.02 \%$ SDS in 1xPBS). Incubation with $\alpha$-Rio2 antibody (polyclonal antibody, raised against recombinant full-length human Rio2 in rabbit, affinitypurified) and fluorescently labeled secondary antibody (a-rabbit, Alexa 488-labeled, Invitrogen). Pictures were acquired using a Leica TCS NT1 laser-scanning confocal microscope.

### 6.3. Synthetic Studies on Sporolides

### 6.3.1. Synthesis of the Vinyl Triflate Fragment

## 2-(hydroxymethyl)cyclopent-2-enone (72)



To a solution of 2-cyclopenten-1-one (71) ( $1.02 \mathrm{~mL}, 12.2 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{CHCl}_{3}(15 \mathrm{~mL})$ and $\mathrm{MeOH}(10 \mathrm{~mL})$ was added formaldehyde ( $37 \%$ solution in $\mathrm{H}_{2} \mathrm{O}$ ) ( $1.5 \mathrm{~mL}, 20.2 \mathrm{mmol}, 1.5$ equiv) at RT. A solution of dimethylphenylphosphine ( $100 \mu \mathrm{~L}, 0.72 \mathrm{mmol}, 0.06$ equiv, $6 \mathrm{~mol} \%$ ) in $\mathrm{CHCl}_{3}(10$ mL ) was added to the reaction and the resulting mixture was stirred at RT for 1 h . The mixture was directly dried by addition of $\mathrm{MgSO}_{4}$ and directly purified by chromatography on $\mathrm{SiO}_{2}$ (hexane/EtOAc 1:3) afforded alcohol 72 ( $1.32 \mathrm{~g}, 11.8 \mathrm{mmol}$, $97 \%$ ) as a white crystalline solid. $\mathrm{R}_{f}=0.13$ (EtOAc/hexane 3:1). M.p. $=71{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.57-7.53(\mathrm{~m}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.67\left(\mathrm{dt}, J_{1}\right.$ $\left.=4.3 \mathrm{~Hz}, J_{2}=2.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.49-2.47(\mathrm{~m}, 2 \mathrm{H}), 2.39(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H})$.

## 2-((tert-butyldimethylsilyloxy)methyl)cyclopent-2-enone (73)



To a cooled $\left(-10^{\circ} \mathrm{C}\right)$ solution of alcohol $72(7.50 \mathrm{~g}, 66.9 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 65 mL ) were sequentially added imidazole ( 10.0 g , $147 \mathrm{mmol}, 2.20$ equiv) and $\operatorname{TBSCl}(14.1 \mathrm{~g}, 93.6 \mathrm{mmol}, 1.40$ equiv). After 5 minutes, the solution was allowed to return to RT and stirred overnight. The solution washed with a diluted citric acid solution $(\mathrm{pH} \approx 4)(50 \mathrm{~mL})$ and brine ( 70 $\mathrm{mL})$. The combined organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. Purification by chromatography on $\mathrm{SiO}_{2}$ (hexane/EtOAc 9:1) afforded enone 73 (15.1 $\mathrm{g}, 66.5 \mathrm{mmol}, 99 \%$ ) as white solid. $\mathrm{R}_{f}=0.27$ (EtOAc/hexane 1:9). M.p. $=32{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-$ NMR ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 7.57-7.54(\mathrm{~m}, 1 \mathrm{H}), 4.40-4.38(\mathrm{~m}, 2 \mathrm{H}), 2.63\left(\mathrm{dt}, J_{l}=4.4\right.$ $\left.\mathrm{Hz}, J_{2}=2.6 \mathrm{~Hz}, 2 \mathrm{H}\right), 2.48-2.45(\mathrm{~m}, 2 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100$ $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 209.0,158.4,146.8,58.7,35.8,27.2,26.3,18.7,-5.0$. FTIR v 2955w, $2930 w, 2887 w, 2857 w, 1702 m, 1643 w, 1463 w, 1396 w, 1254 m, 1194 w, 1116 m, 996 m$, $835 s, 776 s, 665 w \mathrm{~cm}^{-1}$.
(2R,3R)-2-((tert-butyldimethylsilyloxy)methyl)-2,3-dihydroxycyclopentanone (74)

<br>"OH $\mathrm{mol} \%$ ), NMO ( $1.55 \mathrm{~g}, 13.3 \mathrm{mmol}, 1.50$ equiv), methanesulfonamide $\left(1.22 \mathrm{~g}, 13.3 \mathrm{mmol}, 1.50\right.$ equiv) and $\mathrm{K}_{2} \mathrm{OsO}_{2}(\mathrm{OH})_{4}(48 \mathrm{mg}, 0.13$ $\mathrm{mmol}, 0.015$ equiv, $1.5 \mathrm{~mol} \%$ ) in a mixture of water/acetone ( $1: 3$ ) ( 100 mL ) was stirred at RT for 15 minutes. A solution of enone $73(2.00 \mathrm{~g}, 8.83 \mathrm{mmol}, 1.00$ equiv) in a mixture water/acetone (1:3) ( 24 mL ) was slowly added at RT during a period of 2.5 hours ( $\sim 0.16 \mathrm{~mL} / \mathrm{min}$ ) under vigorous stirring. After addition, the reaction was stirred for additional 30 minutes before the addition of $\mathrm{NaHSO}_{3}(4.0 \mathrm{~g})$. The resulting mixture was stirred for 1 hour; then a solution of saturated $\mathrm{NaHCO}_{3}(60 \mathrm{~mL})$ was added and the mixture stirred for 5 minutes. The precipitate was dissolved by addition of water and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 100 \mathrm{~mL})$. The combined organic layer was washed with a diluted citric acid solution ( 0.5 M ) ( 250 mL ) and brine ( 300 mL ), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated. Purification by chromatography on $\mathrm{SiO}_{2}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 1: 0 \rightarrow 10: 3\right)$ afforded the dihydroxylated compound $74(2.12 \mathrm{~g}, 8.14 \mathrm{mmol}, 92 \%)$ as colorless viscous liquid. $\mathrm{R}_{f}=0.58$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc}\right.$ 10:3). Optical rotation $[\alpha]^{22.9}{ }_{\mathrm{D}}\left(c 0.99, \mathrm{CHCl}_{3}\right)=-28.9^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.23\left(\mathrm{dd}, J_{1}=4.0 \mathrm{~Hz}, J_{2}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.68(\mathrm{~s}, 2 \mathrm{H}), 3.28(\mathrm{~s}, 1$ H), 2.74 ( $\mathrm{s}, 1 \mathrm{H}$ ), 2.53-2.44 (m, 1 H ), 2.35-2.18 (m, 2 H ), 2.12-2.05 (m, 1 H ), $0.91(\mathrm{~s}$, 9 H ), 0.06 (d, $J=4.0 \mathrm{~Hz}, 6 \mathrm{H}$ ). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 217.3,81.4,72.7$, $65.5,33.0,26.2,26.0,18.6,-5.2$. FTIR v $3430 m, 2954 m, 2931 m, 2896 w, 2858 m$, $1749 s, 1466 w, 1403 w, 1362 w, 1256 s, 1109 s, 1081 s, 961 w, 838 s, 779 s, 670 s \mathrm{~cm}^{-1}$.

## (3aR,6aR)-3a-((tert-butyldimethylsilyloxy)methyl)-2,2-dimethyldihydro-3aH-

 cyclopenta $[d][1,3]$ dioxol-4(5H)-one (76)

To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of dihydroxylated compound $74(2.20 \mathrm{mg}$, $8.50 \mathrm{mmol}, 1.00$ equiv) in a mixture of anhydrous DMF/acetone (3:1) $(53 \mathrm{~mL})$ were added 2,2-dimetoxypropane ( $15.7 \mathrm{~mL}, 126 \mathrm{mmol}, 15.0$ equiv) and PPTS ( $151 \mathrm{mg}, 0.60 \mathrm{mmol}, 0.07$ equiv, $7 \mathrm{~mol} \%$ ) and the resulting solution was stirred at RT for 16 hours. Brine ( 50 mL ) and water ( 50 mL ) were added to the reaction mixture and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3 x 100 mL ). The combined organic layers were washed with brine (1x), dried
$\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. Purification by chromatography on $\mathrm{SiO}_{2}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ $100 \%$ ) afforded $76(2.12 \mathrm{~g}, 7.06 \mathrm{mmol}, 84 \%)$ as a colorless liquid. $\mathrm{R}_{f}=0.42$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.74(\mathrm{~d}, J=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{~d}, J=9.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.70(\mathrm{~d}, J=9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.63-2.53(\mathrm{~m}, 1 \mathrm{H}), 2.26-2.16(\mathrm{~m}, 2 \mathrm{H}), 2.08-1.98$ $(\mathrm{m}, 1 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.33(\mathrm{~s}, 3 \mathrm{H}), 0.83(\mathrm{~s}, 9 \mathrm{H}), 0.03(\mathrm{~s}, 3 \mathrm{H}), 0.00(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-$ NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 217.7,111.6,85.7,82.1,63.6,34.6,27.5,26.1,24.1,18.6$, -5.2. HRMS-ESI calcd for $\mathrm{C}_{15} \mathrm{H}_{28} \mathrm{O}_{4} \mathrm{SiNa}:[\mathrm{M}+\mathrm{Na}]^{+} 323.1655$, found 323.1665. FTIR $v 2987 w, 2932 m, 2859 m, 1757 s, 1466 w, 1374 m, 1252 m, 1213 m, 1183 w, 1090 s$, $1002 m, 838 s, 779 s, 743 w, 668 s \mathrm{~cm}^{-1}$.
(3aR,6aR)-3a-((tert-butyldimethylsilyloxy)methyl)-2,2-dimethyl-6,6a-dihydro-

## 3aH-cyclopenta[d][1,3]dioxol-4-yl trifluoromethanesulfonate (77)



A cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of DIPA ( $0.82 \mathrm{~mL}, 5.80 \mathrm{mmol}, 1.20$ equiv) in anhydrous THF ( 10 mL ) was treated with $n \mathrm{BuLi}$ ( 1.6 M in hexane) ( $3.32 \mathrm{~mL}, 5.31 \mathrm{mmol}, 1.10$ equiv). The resulting solution was stirred at $0^{\circ} \mathrm{C}$ for 30 min , then cooled to $-10^{\circ} \mathrm{C}$ and a solution of $76(1.45 \mathrm{~g}$, $4.83 \mathrm{mmol}, 1.00$ equiv) in anhydrous THF ( 12 mL ) was slowly added. The yellow solution was stirred at $-10^{\circ} \mathrm{C}$ for 20 minutes before the addition of a solution of $\mathrm{PhNTf}_{2}(2.41 \mathrm{~g}, 6.76 \mathrm{mmol}, 1.40$ equiv) in anhydrous THF ( 15 mL ). The reaction was stirred for 5 min at $-10^{\circ} \mathrm{C}$, then allowed to return to RT and stirred for 15 hours. The mixture was quenched by addition of water $(50 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 50$ $\mathrm{mL})$. The combined organic layers were washed with brine ( 150 mL ), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. Purification by chromatography on SiO (hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2}$ 8:2) afforded vinyl triflate $77(1.78 \mathrm{~g}, 4.12 \mathrm{mmol}, 85 \%)$ as a colorless liquid. $\mathrm{R}_{f}=$ $0.13\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} /\right.$ hexane $\left.8: 2\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 5.76(\mathrm{~s}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=$ $5.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.59\left(\mathrm{ddd}, J_{l}=\right.$ $\left.17.3 \mathrm{~Hz}, J_{2}=5.1 \mathrm{~Hz}, J_{3}=1.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.48\left(\mathrm{dd}, J_{1}=17.3 \mathrm{~Hz}, J_{2}=2.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.46$ (s, 3 H ), $1.40(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 147.9,117.3,112.2,91.1,80.2,63.4,33.8,27.7,26.1,18.5,-5.3$. HRMSESI calcd for $\mathrm{C}_{16} \mathrm{H}_{27} \mathrm{O}_{6} \mathrm{~F}_{3} \mathrm{SSiNa}:[\mathrm{M}+\mathrm{Na}]^{+}$455.1147, found 455.1154. FTIR $v$ $2989 w, 2954 w, 2933 m, 2861 w, 1659 w, 1470 w, 1425 s, 1374 w, 1211 s, 1142 s, 1093 s$, $1060 m, 990 w, 930 w, 840 s, 779 m, 663 \mathrm{~m} \mathrm{~cm}^{-1}$.

### 6.3.2. Synthesis of the Enediyne Fragment

## L-gulono-1,4-lactone (83)



Argon was bubbled through a solution of L-ascorbic acid (82) $(10.0 \mathrm{~g}, 56.8 \mathrm{mmol}, 1.00$ equiv) in water $(80 \mathrm{~mL})$ for 30 minutes. $\mathrm{Pd} / \mathrm{C}(10 \%)$ was added to the solution and the flask put under $\mathrm{H}_{2}$ atmosphere. The reaction was heated to $65{ }^{\circ} \mathrm{C}$ and vigorously stirred for 72 hours. The reaction was allowed to return to RT and filtered over cotton. The aqueous solution was freezed and lyophilized. The crude was triturated in a mixture $\mathrm{EtOAc} / \mathrm{MeOH}$ (1:1), filtered and dried under high vacuum affording L-gulono-1,4-lactone (83) (36.8 g, $0.21 \mathrm{~mol}, 77 \%)$ as white crystals. $\mathrm{R}_{f}=$ $0.61\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 7: 4\right)$. Optical rotation $[\alpha]^{24.5}{ }_{\mathrm{D}}\left(c 0.494, \mathrm{H}_{2} \mathrm{O}\right)=+57.8^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ ( $400 \mathrm{MHz}, \mathrm{DMSO}_{6}$ ) $\delta 5.80(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}$ ), $5.34(\mathrm{~d}, J=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J$ $=5.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.43\left(\mathrm{dd}, J_{1}=7.4 \mathrm{~Hz}, J_{2}=4.5 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.22$ $\left(\mathrm{dd}, J_{l}=8.1 \mathrm{~Hz}, J_{2}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.17\left(\mathrm{dd}, J_{l}=7.0 \mathrm{~Hz}, J_{2}=4.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.73(\mathrm{dq}$, $\left.J_{1}=8.4 \mathrm{~Hz}, J_{2}=4.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.54-3.43(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}\right.$, DMSO-d $\left.\mathrm{d}_{6}\right) \delta$ 176.3, 80.9, 70.8, 70.1, 69.5, 62.0. FTIR v 3367s, 3228m, 2913w, 1778s, $1426 m$, $1349 w, 1254 m, 1181 m, 1132 s, 1080 m, 1048 s, 993 s, 958 s, 907 m, 860 m, 791 s \mathrm{~cm}^{-1}$.

## 5,6-O-isopropylidene-L-gulono-1,4-lactone (84)



To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of L-gulono-1,4-lactone (83) (7.00 g, $39.3 \mathrm{mmol}, 1.00$ equiv) in DMF ( 72 mL ) was added PTSA ( 67.7 $\mathrm{mg}, \quad 0.39 \mathrm{mmol}, 0.01$ equiv). After 10 minutes, 2methoxypropene ( $4.72 \mathrm{~mL}, 51.1 \mathrm{mmol}, 1.30$ equiv) was added dropwise to the colorless solution. The reaction was allowed to return to RT and stirred for 24 hours. A second portion of 2-methoxypropene (2.18 $\mathrm{mL}, 23.6 \mathrm{mmol}, 0.60$ equiv) was added and the solution stirred overnight. The reaction was quenched by addition of $\mathrm{NaHCO}_{3}(0.5 \mathrm{~g})$, filtered over cotton, washed with a small amount of DMF and concentrated. Addition of toluene to the orange oil and evaporation was repeated twice to give $5,6-O$-isopropylidene-L-gulono-1,4lactone (84) ( $8.50 \mathrm{~g}, 38.9 \mathrm{mmol}, 99 \%$ ) as a pale orange solid, which was used without further purification in the next step. $\mathrm{R}_{f}=0.43\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1\right)$. Optical rotation
$[\alpha]^{24.2}{ }_{\mathrm{D}}(c 0.46, \mathrm{MeOH})=+38.3^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{DMSO}-\mathrm{d}_{6}\right) \delta 5.89(\mathrm{~d}, J=7.4$ $\mathrm{Hz}, 1 \mathrm{H}), 5.45(\mathrm{~d}, J=4.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.42\left(\mathrm{dd}, J_{l}=7.3 \mathrm{~Hz}, J_{2}=4.7 \mathrm{~Hz}\right), 4.30-4.24(\mathrm{~m}$, $2 \mathrm{H}), 4.21\left(\mathrm{dd}, J_{l}=7.2 \mathrm{~Hz}, J_{2}=4.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.07\left(\mathrm{dd}, J_{l}=8.6 \mathrm{~Hz}, J_{2}=6.2 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $3.76\left(\mathrm{dd}, J_{I}=8.6 \mathrm{~Hz}, J_{2}=6.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.35(\mathrm{~s}, 3 \mathrm{H}), 1.29(\mathrm{~s}, 3 \mathrm{H})$. FTIR v 3515 w , 3455m, 2997w, 2932w, 2871w, 1758m, 1408w, 1375m, 1313w, 1297m, 1197s, $11473 s, 1074 s, 1042 m, 982 s, 933 m, 892 w, 841 m, 779 m, 684 m, 628 m \mathrm{~cm}^{-1}$.

## L-(S)-glyceraldehyde acetonide (85)



A suspension of sodium metaperiodate $(8.83 \mathrm{~g}, 41.2 \mathrm{mmol}, 2.00$ equiv) in water ( 21 mL ) was cooled to $4{ }^{\circ} \mathrm{C}$ with an ice bath. A solution of $\mathrm{NaOH}(3 \mathrm{M})(13.8 \mathrm{~mL}, 41.2 \mathrm{mmol}, 2.00$ equiv) was added dropwise at such a rate that the temperature did not exceed $7{ }^{\circ} \mathrm{C}$, in order to set the pH between 4 and 6 . The pH was finally adjusted to $6-7$. The cooling bath was removed and $5,6-O$-isopropylidene-L-gulono-1,4-lactone (84) ( $4.50 \mathrm{~g}, 20.6 \mathrm{mmol}, 1.00$ equiv) was added in one portion. Temperature was maintained between $20^{\circ} \mathrm{C}$ and $30^{\circ} \mathrm{C}$, occasional use of an ice bath was therefore required and the pH was adjusted to 5 using $\mathrm{HCl}(1 \mathrm{M})$. After 90 minutes the suspension was saturated with $\mathrm{NaCl}(2 \mathrm{~g})$, filtered through a Büchner funnel and the white solid was washed with brine. The pH of the combined aqueous layer was adjusted to 6-7 with a solution of $\mathrm{Na}_{2} \mathrm{CO}_{3}(15 \%)$ and extracted with EtOAc (8x). The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated. The crude aldehyde $\mathbf{8 5}$ was directly used in the next step without further purification. $\mathrm{R}_{f}=0.49\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 9: 1\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 9.60(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.52\left(\mathrm{ddd}, J_{l}=7.1 \mathrm{~Hz}, J_{2}=4.6 \mathrm{~Hz}, J_{3}=1.2 \mathrm{~Hz}, 1\right.$ H), 4.08-4.02 (m, 2 H ), 1.37 ( $\mathrm{s}, 3 \mathrm{H}$ ), 1.33 ( $\mathrm{s}, 3 \mathrm{H}$ ).
(S)-1-(2,2-dimethyl-1,3-dioxolan-4-yl)-3-(trimethylsilyl)prop-2-yn-1-ol (86)


To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of HMDS $(5.3 \mathrm{~mL}, 25.0 \mathrm{mmol}$, 1.21 equiv) in anhydrous THF ( 23 mL ) was added dropwise $n \mathrm{BuLi}(1.6 \mathrm{M}$ in hexane) ( $14.2 \mathrm{~mL}, 22.7 \mathrm{mmol}, 1.10$ equiv) and the resulting colorless solution was stirred for 30 minutes at $0{ }^{\circ} \mathrm{C}$. The LHMDS solution was transferred to a cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of ethynyltrimethylsilane (3.5
$\mathrm{mL}, 24.7 \mathrm{mmol}, 1.20$ equiv) in THF ( 100 mL ). After 30 minutes, a solution of aldehyde $\mathbf{8 5}$, obtained by sodium metaperiodate cleavage of $5,6-O$-isopropylidene-L-gulono-1,4-lactone ( $\mathbf{8 4}$ ) ( $8.83 \mathrm{~g}, 41.2 \mathrm{mmol}, 2.00$ equiv) and directly diluted in THF ( 31 mL ), was added dropwise to the reaction mixture. After 1 hour at $-78{ }^{\circ} \mathrm{C}$, the reaction was quenched by addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$ and the mixture volume reduced to a volume of ca. 40 mL . The mixture was extracted with EtOAc (3x) and the combined organic layers washed with water (1x) and brine (1x), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated. Purification by chromatography on $\mathrm{SiO}_{2}$ (hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} 8: 2$ ) afforded alcohol $86(1.32 \mathrm{~g}, 5.76 \mathrm{mmol}, 28 \%$ (over 2 steps)) as a mixture of diastereomers $\left(\right.$ d.r. $=1.3: 1$ ). $\mathrm{R}_{f}=0.40$ (hexane/EtOAc 8:2). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ). Major diastereomer $\delta 4.25\left(\mathrm{dt}, J_{1}=6.5 \mathrm{~Hz}, J_{2}=3.7 \mathrm{~Hz}, 1 \mathrm{H}\right.$ ), $4.17\left(\mathrm{dd}, J_{1}=12.2 \mathrm{~Hz}, J_{2}=6.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.05\left(\mathrm{dd}, J_{1}=14.8 \mathrm{~Hz}, J_{2}=7.9 \mathrm{~Hz}, 1 \mathrm{H}\right)$, 2.34 (d, J = $4.2 \mathrm{~Hz}, 1 \mathrm{H}$ ), 1.45 ( $\mathrm{s}, 3 \mathrm{H}$ ), 1.38 ( $\mathrm{s}, 3 \mathrm{H}$ ), 0.17 ( $\mathrm{s}, 9 \mathrm{H}$ ). Minor diastereomer $\delta 4.50(\mathrm{t}, J=4.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.32\left(\mathrm{dd}, J_{I}=7.2 \mathrm{~Hz}, J_{2}=4.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.90$ $\left(\mathrm{dd}, J_{l}=8.6 \mathrm{~Hz}, J_{2}=5.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.23(\mathrm{~d}, J=4.7 \mathrm{~Hz}, 1 \mathrm{H}), 1.56(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}$, $3 \mathrm{H}), 0.17$ ( $\mathrm{s}, 9 \mathrm{H}$ ). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ). Major diastereomer $\delta 110.5,102.3$, 91.5, 78.8, 66.2, 65.1, 26.8, 25.3, -0.3. Minor diastereomer $\delta 110.1,102.2,91.5,77.8$, 64.8, 62.8, 26.3, 25.3, -0.3 . HRMS-ESI calcd for $\mathrm{C}_{11} \mathrm{H}_{20} \mathrm{O}_{3} \mathrm{NaSi}:[\mathrm{M}+\mathrm{Na}]^{+}$251.1079; found 251.1085. FTIR $v 3428 m, 2987 m, 2961 m, 2900 m, 2175 w, 1374 m, 1251 s$, $1215 m, 1156 s, 1068 s, 843 s, 761 w \mathrm{~cm}^{-1}$.

## 2-(prop-2-ynyloxy)tetrahydro-2H-pyran (89)



In a three-necked flask equipped with a thermometer, a dropping funnel and a reflux condenser, dihydropyran (35.4 $\mathrm{mL}, 0.39 \mathrm{~mol}, 1.07$ equiv) was heated to $60^{\circ} \mathrm{C}$. PTSA (cat.) was added, followed by dropwise addition of propargyl alcohol (88) ( $20.8 \mathrm{~mL}, 0.36 \mathrm{~mol}, 1.00$ equiv) over a period of 45 minutes. During the addition the solution turned from dark to light yellow and the temperature was maintained at $60^{\circ} \mathrm{C}$. After addition the resulting mixture was stirred at $60-65^{\circ} \mathrm{C}$ for 3 hours. The reaction was quenched by addition of $\mathrm{NaHCO}_{3}(0.5 \mathrm{~g})$ and the mixture stirred for an additional hour. The mixture was filtered and purified by distillation under reduced pressure ( $4.2 \mathrm{mbar}, 47^{\circ} \mathrm{C}$ ) using a Vigreux column affording alkyne $89(49.4 \mathrm{~g}, 0.35 \mathrm{~mol}, 98 \%)$ as a colorless oil. $\mathrm{R}_{f}=$
0.71 (hexane/EtOAc 7:3). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.82(\mathrm{t}, J=3.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), $4.30\left(\mathrm{dd}, J_{l}=15.7 \mathrm{~Hz}, J_{2}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.23\left(\mathrm{dd}, J_{1}=15.7 \mathrm{~Hz}, J_{2}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $3.87-3.81(\mathrm{~m}, 1 \mathrm{H}), 3.55-3.52(\mathrm{~m}, 1 \mathrm{H}), 2.41(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.88-1.54(\mathrm{~m}, 6 \mathrm{H})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 96.7,79.7,73.9,61.9,53.9,30.1,25.2,18.9$.

## tert-butyldimethyl(3-(tetrahydro-2H-pyran-2-yloxy)prop-1-ynyl)silane (90)



A cooled $\left(-18{ }^{\circ} \mathrm{C}\right)$ solution of alkyne $89(5.00 \mathrm{~g}, 35.7 \mathrm{mmol}$, 1.00 equiv) in THF ( 70 mL ) was treated with dropwise addition of $n \mathrm{BuLi}$ ( 1.6 M in hexane) ( $23.4 \mathrm{~mL}, 37.5 \mathrm{mmol}, 1.05$ equiv); the solution turned to orange. After addition, the solution was stirred for 15 minutes, before addition of a $\mathrm{TBSCl}(5.64 \mathrm{~g}, 37.5 \mathrm{mmol}, 1.05$ equiv) solution in THF ( 10 mL ). The resulting mixture was stirred for 45 minutes, then quenched by addition of water ( 5 $\mathrm{mL})$. A citric acid solution $(\mathrm{pH}=4)(10 \mathrm{~mL})$ was added and the mixture extracted with EtOAc (3x). The combined organic layers were washed with saturated $\mathrm{NaHCO}_{3}$ (1x), brine (1x), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated affording $90(8.99 \mathrm{~g}, 35.3$ $\mathrm{mmol}, 99 \%$ ) as an orange liquid, which was used in the next step without further purification. $\mathrm{R}_{f}=0.60$ (hexane/EtOAc 9:1). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 4.85(\mathrm{t}, J=$ $3.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), $4.28(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.84\left(\mathrm{ddd}, J_{l}=11.2 \mathrm{~Hz}, J_{2}=8.9 \mathrm{~Hz}, J_{3}=2.7 \mathrm{~Hz}\right), 3.55-$ $3.51(\mathrm{~m}, 1 \mathrm{H}), 1.85-1.54(\mathrm{~m}, 6 \mathrm{H}), 0.93(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(100 \mathrm{MHz}$, $\left.\mathrm{CDCl}_{3}\right) \delta 102.1,96.5,89.0,61.9,54.6,30.2,26.0,25.3,19.0,16.4,-4.7$.

## (3-tert-butyldimethylsilyl)propargyltriphenylphosphonium bromide (92)

 17.7 mmol, 1.25 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(36 \mathrm{~mL})$ was added dropwise bromine ( $0.91 \mathrm{~mL}, 17.7 \mathrm{mmol}, 1.25$ equiv). After 30 minutes at $-15^{\circ} \mathrm{C}$, a solution of $90\left(3.61 \mathrm{~g}, 14.2 \mathrm{mmol}, 1.00\right.$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ was slowly added and the resulting mixture allowed to return to RT and stirred for 7 hours. The reaction mixture was diluted with water and the aqueous layer extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{x})$. The combined organic layers were washed with brine (1x), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. The crude was triturated and the precipitate abundantly washed with pentane. The filtrate was concentrated to afford protected propargyl bromide 91,
which was directly used in the next step without further purification. ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 $\mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 3.92(\mathrm{~s}, 2 \mathrm{H}), 0.94(\mathrm{~s}, 9 \mathrm{H}), 0.11(\mathrm{~s}, 6 \mathrm{H})$.

The crude 91 was diluted in toluene ( 150 mL ) and triphenylphosphine ( $31.6 \mathrm{~g}, 0.12$ mol, 1.30 equiv) was added. The mixture was covered with an aluminium foil and stirred at RT for 42 hours. The precipitate was filtered and thoroughly washed with toluene affording the phosphonium bromide salt 92 ( $35.4 \mathrm{~g}, 71.4 \mathrm{mmol}, 77 \%$ ) as a beige solid. M.p. $=210.6{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}\right.$, DMSO- $\mathrm{d}_{6}$ ) $\delta 7.96-7.93(\mathrm{~m}, 3 \mathrm{H})$, 7.85-7.79 (m, 12 H ), 5.13 (d, $J=16.6 \mathrm{~Hz}, 2 \mathrm{H}), 0.68$ (s, 9 H ,), -0.04 ( $\mathrm{s}, 6 \mathrm{H}$ ).

## ( $R, E$ )-tert-butyl(4-(2,2-dimethyl-1,3-dioxolan-4-yl)-6-(trimethylsilyl)hexa-3-en-

## 1,5-diynyl)dimethylsilane (93)



To a solution of alcohol $86(1.32 \mathrm{~g}, 5.76 \mathrm{mmol}, 1.00$ equiv) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ were sequentially added $3 \AA$ molecular sieves ( 3.9 g ), PDC ( $3.25 \mathrm{~g}, 8.65 \mathrm{mmol}, 1.50$ equiv) and glacial acetic acid ( $0.56 \mathrm{~mL}, 9.80 \mathrm{mmol}, 1.70$ equiv). The resulting dark mixture was stirred at RT for 1 hour, then Celite ( 2.7 g ) was added and the mixture stirred for additional 30 minutes. The suspension was filtered through a plug of Celite and the cake was washed with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$. Heptane ( 100 mL ) was added and the solution reduced to ca. 25 mL . A mixture pentane/ $\mathrm{Et}_{2} \mathrm{O}(2 / 1)(100 \mathrm{~mL})$ was added and the mixture filtered through a plug of $\mathrm{MgSO}_{4}$. The colorless filtrate was washed with water $(2 \mathrm{x})$ and saturated $\mathrm{NaHCO}_{3}(2 \mathrm{x})$. The organic layer was dried $\left(\mathrm{MgSO}_{4}\right)$ and filtered. The filtered was reduced to a volume of ca. 20 mL , anhydrous THF ( 30 mL ) was added and the solution reduced again to a volume of ca. 20 mL . The operation was repeated two times and the final yellow concentrate diluted in THF $(30 \mathrm{~mL})$. The solution was stored under argon atmosphere at $-20^{\circ} \mathrm{C}$ and directly used in the next step without further purification.

To a cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ suspension of phosphonium bromide salt $92(3.29 \mathrm{~g}, 6.63 \mathrm{mmol}$, 1.15 equiv) in THF ( 60 mL ), KHMDS ( 0.5 M in toluene) ( $12.7 \mathrm{~mL}, 6.34 \mathrm{mmol}, 1.10$ equiv) was slowly added over a period of 15 minutes. The resulting orange suspension was kept for 15 minutes at $-78^{\circ} \mathrm{C}$, then warmed up to $-40^{\circ} \mathrm{C}$ and stirred for 2 hours. The solution was heated to $-15^{\circ} \mathrm{C}$ and after 5 minutes, the crude propargylic ketone

87 solution was added via canula over a period of 30 minutes. After 1 hour, the reaction was quenched by addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with pentane (3x). The combined organic layers were washed with water (2x) and brine (2x), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated. A careful purification by chromatography on $\mathrm{SiO}_{2}$ (hexane/EtOAc 99:1) allowed the isolation of a pure fraction of $(E)$-bis-silyl enedyine 93 ( $814 \mathrm{mg}, 2.24 \mathrm{mmol}, 39 \%$ ), ( $Z$ )-bis-silyl enedyine ( $Z$ )-93 ( $225 \mathrm{mg}, 0.62$ $\mathrm{mmol}, 11 \%$ ) and a mixed $(E) /(Z)$ fraction ( $708 \mathrm{mg}, 1.95 \mathrm{mmol}, 34 \%$ ) from an initial mixture $(E) /(Z)(2.7: 1) . \mathrm{R}_{f}$ (propargylic ketone 87$)=0.58 ; \mathrm{R}_{f}((E)$-bis-silyl enedyine 93) $=0.76 ; \mathrm{R}_{f}((Z)$-bis-silyl enedyine $(Z)-93)=0.83$ (hexane/EtOAc 8:2). Optical rotation $[\alpha]^{22.2}{ }_{\mathrm{D}}\left(c 0.507, \mathrm{CHCl}_{3}\right)=-36.0^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(E)$-bis-silyl enedyine $\delta 6.06(\mathrm{~d}, J=1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.53\left(\mathrm{dt}, J_{1}=6.7 \mathrm{~Hz}, J_{2}=0.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.17(\mathrm{dd}$, $\left.J_{l}=8.3 \mathrm{~Hz}, J_{2}=6.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.91\left(\mathrm{dd}, J_{l}=8.3 \mathrm{~Hz}, J_{2}=7.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.45(\mathrm{~s}, 3 \mathrm{H})$, $1.40(\mathrm{~s}, 3 \mathrm{H}), 0.97(\mathrm{~s}, 9 \mathrm{H}), 0.20(\mathrm{~s}, 9 \mathrm{H}), 0.14(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 133.8,116.2,110.3,104.4,102.4,101.3,100.3,77.4,68.9,26.3,26.2,25.9,16.6,-$ 0.2, -4.6. DEPT-135 NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\mathrm{CH}_{3} \& ~ \mathrm{CH} \delta 116.7,77.8,26.7,26.6$, 26.3, 0.2, -4.2; $\mathrm{CH}_{2} \delta 69.4$. FTIR $v 2956 m, 2929 m, 2858 w, 2147 w, 1468 w, 1373 w$, $1251 m, 1218 w, 1069 m, 841 m, 775 w \mathrm{~cm}^{-1} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)(Z)$-bis-silyl enedyine $\delta 6.00(\mathrm{~s}, 1 \mathrm{H}), 5.16\left(\mathrm{dd}, J_{l}=7.7 \mathrm{~Hz}, J_{2}=6.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.16\left(\mathrm{dd}, J_{l}=8.2\right.$ $\left.\mathrm{Hz}, J_{2}=6.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.85(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 0.94(\mathrm{~s}, 9$ H), 0.19 (s, 9 H$), 0.13(\mathrm{~s}, 6 \mathrm{H})$.

## ( $\boldsymbol{R}, \boldsymbol{E}$ )-tert-butyl(4-(2,2-dimethyl-1,3-dioxolan-4-yl)hexa-3-en-1,5-diynyl)dimethyl-

silane (94)


To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of ( $E$ )-bis-silyl enedyine 93 (52.6 $\mathrm{mg}, 0.15 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{MeOH}(0.7 \mathrm{~mL})$ was added in one portion anhydrous $\mathrm{K}_{2} \mathrm{CO}_{3}(20.1 \mathrm{mg}, 0.15 \mathrm{mmol}$, 1.00 equiv). After 45 minutes, the reaction was quenched with water and the aqueous layer extracted with pentane (4x). The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated affording $94(40.8 \mathrm{mg}, 0.09 \mathrm{mmol}$, $97 \%$ ), which was directly used in next reaction without further purification. $\mathrm{R}_{f}=0.46$ (hexane/EtOAc 92:8). Optical rotation $[\alpha]^{22.2}{ }_{\mathrm{D}}\left(c 0.524, \mathrm{CHCl}_{3}\right)=-41.2^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ $\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.14(\mathrm{~s}, 1 \mathrm{H}), 4.57\left(\mathrm{dt}, J_{I}=6.7 \mathrm{~Hz}, J_{2}=1.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.19(\mathrm{dd}$,
$\left.J_{1}=8.4 \mathrm{~Hz}, J_{2}=6.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.90\left(\mathrm{dd}, J_{1}=8.4 \mathrm{~Hz}, J_{2}=6.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.37(\mathrm{~s}, 1 \mathrm{H})$, 1.46 (s, 3 H ), 1.40 (s, 3 H ), 0.97 ( $\mathrm{s}, 9 \mathrm{H}$ ), 0.14 ( $\mathrm{s}, 6 \mathrm{H}$ ). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right.$ ) § 133.1, 117.3, 110.5, 102.1, 101.7, 86.0, 79.5, 77.1, 68.9, 26.3, 26.1, 25.8, 16.6, -4.7. FTIR v 3294w, 2988w, 2955m, 2930m, 2887w, 2858m, 2361w, 2139w, 1468w, $1374 w, 1252 m, 1219 w, 1154 w, 1097 w, 1068 m, 940 w, 840 w, 630 s \mathrm{~cm}^{-1}$.
tert-butyl(((3aR,6aR)-4-((E)-6-(tert-butyldimethylsilyl)-3-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)hexa-3-en-1,5-diynyl)-2,2-dimethyl-6,6a-dihydro-3aH-cyclopenta-[d][1,3]dioxol-3a-yl)methoxy)dimethylsilane (95)


To a solution of 94 ( $70 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.00$ equiv) and vinyl triflate 77 ( $105 \mathrm{mg}, 0.24 \mathrm{mmol}, 1.00$ equiv) in DMF ( 1.2 mL ) were sequentially added DIPEA ( $160 \mu \mathrm{~L}, 0.97 \mathrm{mmol}, 4.00$ equiv), 2,6-lutidine ( $57 \mu \mathrm{~L}$, $0.49 \mathrm{mmol}, 2.00$ equiv), $\mathrm{CuI}(14 \mathrm{mg}, 0.07 \mathrm{mmol}, 0.30$ equiv, $30 \mathrm{~mol} \%$ ) and $\operatorname{Pd}\left(\mathrm{PPh}_{3}\right)_{4}$ ( $14 \mathrm{mg}, 0.01 \mathrm{mmol}, 0.05$ equiv, $5 \mathrm{~mol} \%$ ). The resulting dark red suspension was stirred at RT for 75 minutes, then quenched by addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$, extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3x). The combined organic layers were washed with water ( 1 x ) and brine ( 2 x ), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated. Purification by chromatography on $\mathrm{SiO}_{2}$ (hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} 1: 1 \rightarrow 0: 1$ ) afforded 95 ( $90.4 \mathrm{mg}, 0.16$ $\mathrm{mmol}, 65 \%$ ) as a brown oil. $\mathrm{R}_{f}=0.17$ (hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2} 2: 8$ ). ${ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ ) $\delta 6.13$ (br s, 1 H ), $6.08(\mathrm{~s}, 1 \mathrm{H}), 4.64(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.57\left(\mathrm{dt}, J_{l}=6.7\right.$ $\left.\mathrm{Hz}, J_{2}=0.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.20\left(\mathrm{dd}, J_{1}=8.3 \mathrm{~Hz}, J_{2}=6.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.91\left(\mathrm{dd}, J_{l}=8.3 \mathrm{~Hz}\right.$, $\left.J_{2}=7.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.77(\mathrm{q}, J=10.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.62\left(\mathrm{ddd}, J_{1}=18.9 \mathrm{~Hz}, J_{2}=4.6 \mathrm{~Hz}, J_{3}=\right.$ $2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.54\left(\mathrm{dd}, J_{I}=18.9 \mathrm{~Hz}, J_{2}=2.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H})$, 1.38 (s, 3 H ), 1.37 ( s, 3 H ), 0.96 ( $\mathrm{s}, 9 \mathrm{H}$ ), 0.86 ( $\mathrm{s}, 9 \mathrm{H}$ ), 0.14 ( $\mathrm{s}, 6 \mathrm{H}), 0.05$ ( $\mathrm{s}, 3 \mathrm{H}$ ), $0.03(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.1,133.9,127.2,114.9,110.6,110.4$, $102.7,101.2,95.9,93.3,88.0,80.8,77.4,69.1,64.2,38.4,27.8,27.2,26.3,26.2,25.9$, $25.8,18.2,16.7,-4.6,-5.4,-5.5$. DEPT-135 NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\mathrm{CH}_{3} \& \mathrm{CH}$ $\delta 139.1,114.9,80.8,77.4,27.8,27.2,26.3,26.2,25.9,25.8,-4.6,-5.4,-5.5 ; \mathrm{CH}_{2} \delta$ 69.1, 64.2, 38.4. FTIR $\vee 2987 w, 2953 m, 2931 m, 2958 m, 1468 w, 1371 w, 1251 m$, $1217 m, 1155 w, 1093 m, 1007 w, 940 w, 838 m, 777 m, 683 m, 631 w \mathrm{~cm}^{-1}$.
((3aR,6aR)-4-((E)-3-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)hexa-3-en-1,5-diynyl)-

## 2,2-dimethyl-6,6a-dihydro-3aH-cyclopenta[d][1,3]dioxol-3a-yl)methanol (96)



To a cooled $\left(-20^{\circ} \mathrm{C}\right)$ solution of enedyine $95(45.3$ $\mathrm{mg}, 0.08 \mathrm{mmol}, 1.00$ equiv) in THF ( 1.5 mL ) was added TBAF ( 1 M in THF) ( $174 \mu \mathrm{~L}, 0.17 \mathrm{mmol}, 2.20$ equiv). After 5 minutes at $-20^{\circ} \mathrm{C}$, the brown solution was allowed to reach $0{ }^{\circ} \mathrm{C}$ and stirred for 1 hour and 45 minutes. The reaction was quenched by addition of water and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3x). The combined organic layers were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated. Purification by chromatography on $\mathrm{SiO}_{2}$ (hexane/EtOAc 7:3) afforded alcohol 96 ( $23.4 \mathrm{mg}, 0.07$ $\mathrm{mmol}, 86 \%)$ as a clear brown oil. $\mathrm{R}_{f}=0.61\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{MeOH} 8: 2\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}(400 \mathrm{MHz}$, $\mathrm{CDCl}_{3}$ ) $\delta 6.22(\mathrm{brt}, J=1.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.06(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=4.6 \mathrm{~Hz}, 1$ H), $4.60(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.22\left(\mathrm{dd}, J_{l}=8.3 \mathrm{~Hz}, J_{2}=6.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.95-3.90(\mathrm{~m}, 1$ H), 3.91 (dd, $J_{1}=8.4 \mathrm{~Hz}, J_{2}=6.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), $3.55(\mathrm{br} \mathrm{d}, J=11.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.34(\mathrm{~d}, J=$ $2.3 \mathrm{~Hz}, 1 \mathrm{H}$ ), $2.69\left(\mathrm{ddd}, J_{l}=19.4 \mathrm{~Hz}, J_{2}=4.6 \mathrm{~Hz}, J_{3}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.61\left(\mathrm{dd}, J_{l}=\right.$ $19.3 \mathrm{~Hz}, J_{2}=2.8 \mathrm{~Hz}, 1 \mathrm{H}$ ), $1.47(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 9 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 140.3,135.4,126.8,114.9,111.4,111.0,96.6,92.8,88.5,85.2,81.2,80.0,77.5$, $69.5,62.8,38.4,28.3,27.8,26.7,26.3$. FTIR $~>3473 w, 3283 w, 2987 w, 2932 w, 2877 w$, $1457 w, 1374 m, 1245 m, 1216 m, 1155 m, 1063 s, 990 w, 961 w, 923 w, 898 w, 856 m$, $794 w, 763 w, 631 s \mathrm{~cm}^{-1}$.
(3aS,6aR)-4-((E)-3-((R)-2,2-dimethyl-1,3-dioxolan-4-yl)hexa-3-en-1,5-diynyl)-2,2-dimethyl-6,6a-dihydro-3aH-cyclopenta[d][1,3]dioxole-3a-carbaldehyde (97)


To a cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of oxalyl chloride (11.5 $\mu \mathrm{L}, 0.14 \mathrm{mmol}, 2.00$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{~mL})$ was added dropwise a solution of DMSO ( $24 \mu \mathrm{~L}, 0.34$ mmol, 5.00 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.2 \mathrm{~mL})$. The resulting clear solution was stirred for 20 minutes at $-78^{\circ} \mathrm{C}$, then a solution of alcohol 96 (23.4 $\mathrm{mg}, 0.07 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.1 \mathrm{~mL})$ was added dropwise. After 30 minutes at $-78{ }^{\circ} \mathrm{C}$ a solution of DIPEA ( $46.5 \mu \mathrm{~L}, 0.27 \mathrm{mmol}, 4.00$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(0.1 \mathrm{~mL})$ was slowly added and the resulting solution stirred at $-78^{\circ} \mathrm{C}$ for 20 minutes,
then allowed to return to $0^{\circ} \mathrm{C}$ and stirred for 30 minutes. The reaction was quenched by addition of water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x})$. The combined organic layers were washed with saturated $\mathrm{NH}_{4} \mathrm{Cl}$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated to afford aldehyde $97(20.0 \mathrm{mg}, 0.06 \mathrm{mmol}, 86 \%)$ as a brown oil. The crude was directly used in the next reaction without further purification. $\mathrm{R}_{f}=0.25$ (hexane/EtOAc 7:3). Optical rotation $[\alpha]^{23.3}{ }_{\mathrm{D}}\left(c 0.425, \mathrm{CHCl}_{3}\right)=+21.5^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta$ $9.85(\mathrm{~s}, 1 \mathrm{H}), 6.30(\mathrm{t}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.04(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.74(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.56$ $(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.18\left(\mathrm{dd}, J_{l}=8.4 \mathrm{~Hz}, J_{2}=6.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.86\left(\mathrm{dd}, J_{I}=8.3 \mathrm{~Hz}, J_{2}\right.$ $=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.78\left(\mathrm{ddd}, J_{1}=19.5 \mathrm{~Hz}, J_{2}=5.5 \mathrm{~Hz}, J_{3}=2.4\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 2.64\left(\mathrm{dd}, J_{l}=19.5 \mathrm{~Hz}, J_{2}=2.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.40$ (s, 3 H ), 1.39 (s, 3 H ). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 199.5,141.5,134.7,124.0$, $114.9,113.0,110.5,99.1,91.7,87.9,85.0,80.5,80.2,77.0,68.9,38.4,27.3,26.4$, 26.2, 25.8. DEPT-135 NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\mathrm{CH}_{3}$ \& $\mathrm{CH} \delta 200.0,142.0,115.4$, 85.5, 80.6, 77.4, 27.7, 26.8, 26.7, 26.2; $\mathrm{CH}_{2} \delta 69.4,38.8$. FTIR v $3278 w, 2987 w$, $2924 m, 2854 w, 1732 m, 1459 w, 1375 m, 1248 m, 1214 s, 1154 m, 1066 s, 984 w, 926 w$, $860 m, 736 w, 647 w \mathrm{~cm}^{-1}$.

### 6.3.3. Toward the 9-Membered Ring from the Allene

tert-butyl(((3aR,6aR)-2,2-dimethyl-4-((trimethylsilyl)ethynyl)-6,6a-dihydro-3aH-cyclopenta[d][1,3]dioxol-3a-yl)methoxy)dimethylsilane (100)


To a solution of vinyl triflate $77(1.15 \mathrm{~g}, 2.66 \mathrm{mmol}, 1.00$ equiv) in DMF ( 14 mL ) were sequentially added trimethylsilylacetylene ( $416 \mu \mathrm{~L}, 2.92 \mathrm{mmol}, 1.10$ equiv), 2,6-lutidine ( $620 \mu \mathrm{~L}, 5.32 \mathrm{mmol}, 2.00$ equiv), DIPEA ( $1.74 \mathrm{~mL}, 10.6 \mathrm{mmol}, 4.00$ equiv), $\mathrm{CuI}\left(152 \mathrm{mg}, 0.80 \mathrm{mmol}, 0.30\right.$ equiv, $30 \mathrm{~mol} \%$ ) and $\mathrm{Pd}\left(\mathrm{PPh}_{3}\right)_{4}(154 \mathrm{mg}, 0.13$ $\mathrm{mmol}, 0.05$ equiv, $5 \mathrm{~mol} \%$ ). The resulting dark-brown solution was stirred at RT for 1.5 hours, then quenched by addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3x). The combined organic layers were washed with water (2x) and brine (1x), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. Purification by chromatography on $\mathrm{SiO}_{2}$ (hexane/EtOAc 98:2 $\rightarrow$ 95:5) afforded $\mathbf{1 0 0}(1.01 \mathrm{~g}, 2.65 \mathrm{mmol}$, quant.) as a colorless oil. $\mathrm{R}_{f}=0.54$ (hexane $/ \mathrm{CH}_{2} \mathrm{Cl}_{2} 2: 8$ ). Optical rotation $[\alpha]^{21.8}{ }_{\mathrm{D}}\left(c 0.20, \mathrm{CHCl}_{3}\right)=+39.2^{\circ}$.
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.13(\mathrm{~s}, 1 \mathrm{H}), 4.65(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}, J=9.9$ $\mathrm{Hz}, 1 \mathrm{H}$ ), $3.76(\mathrm{~d}, J=9.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.59\left(\mathrm{ddd}, J_{l}=18.9 \mathrm{~Hz}, J_{2}=4.8 \mathrm{~Hz}, J_{3}=2.2 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 2.51\left(\mathrm{dd}, J_{l}=8.9 \mathrm{~Hz}, J_{2}=2.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9$ H), $0.21(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.2$, $127.9,111.1,99.9,97.6,96.1,81.4,64.6,38.7,28.2,27.5,26.2,18.6,0.42,-5.01$, 5.20. HRMS-ESI calcd for $\mathrm{C}_{20} \mathrm{H}_{36} \mathrm{O}_{3} \mathrm{Si}_{2} \mathrm{Na}$ : $[\mathrm{M}+\mathrm{Na}]^{+} 403.2101$; found 403.2100 . FTIR $v 2943 w, 2932 w, 2859 w, 2149 w, 1468 w, 1370 w, 1250 m, 1212 w, 1084 m, 992 w$, $839 s, 778 m, 665 \mathrm{mcm}^{-1}$.

## tert-butyl(((3aR,6aR)-4-ethynyl-2,2-dimethyl-6,6a-dihydro-3aH-cyclopenta[d]-

## [1,3]dioxol-3a-yl)methoxy)dimethylsilane (101)



To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathbf{1 0 0}(1.00 \mathrm{~g}, 2.63 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{MeOH}(24 \mathrm{~mL})$ was added $\mathrm{K}_{2} \mathrm{CO}_{3}(654 \mathrm{mg}, 4.73$ mmol, 1.80 equiv) and the resulting mixture stirred at $0{ }^{\circ} \mathrm{C}$ for 3.5 hours. The reaction was quenched by addition of water and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3x). The combined organic layers were washed with brine (1x), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated to afford alkyne $\mathbf{1 0 1}(810 \mathrm{mg}, 2.63 \mathrm{mmol}$, quant.) as a colorless oil. $\mathrm{R}_{f}=0.41$ (hexane/ $\mathrm{CH}_{2} \mathrm{Cl}_{2} 2: 8$ ). Optical rotation $[\alpha]^{21.5}{ }_{\mathrm{D}}\left(c 0.845, \mathrm{CHCl}_{3}\right)$ $=+39.6^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.19(\mathrm{~s}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.86$ $(\mathrm{d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.03(\mathrm{~s}, 1 \mathrm{H}), 2.62\left(\mathrm{dd}, J_{l}=18.9 \mathrm{~Hz}\right.$, $\left.J_{2}=3.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.54\left(\mathrm{dd}, J_{1}=18.6 \mathrm{~Hz}, J_{2}=2.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3$ $\mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 139.6$, $126.9,111.2,96.1,81.3,80.4,78.6,64.4,38.6,28.2,27.4,26.2,18.6,-5.1,-5.2$. HRMS-ESI calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{O}_{3} \mathrm{SiNa}:[\mathrm{M}+\mathrm{Na}]^{+}$331.1705; found 331.1713. FTIR $v$ $3314 w, 2931 m, 2859 w, 1468 w, 1370 m, 1250 m, 1214 m, 1087 s, 991 w, 838 s, 778 s$, $664 s, 629 \mathrm{~s} \mathrm{~cm}^{-1}$.

## (S)-1-(2,2-dimethyl-1,3-dioxolan-4-yl)but-3-yn-1-ol (102)



To a mixture of Mg (turning) ( $1.65 \mathrm{~g}, 68 \mathrm{mmol}, 2.00$ equiv) in $\mathrm{Et}_{2} \mathrm{O}(55 \mathrm{~mL})$ were sequentially added $\mathrm{HgCl}_{2}$ (cat.) and $\mathrm{I}_{2}$ (cat.) and the mixture refluxed for 5 minutes, before the slow addition of propargyl bromide ( $80 \%$ solution in toluene) ( $10.1 \mathrm{~g}, 68.0 \mathrm{mmol}, 2.00$ equiv). The resulting mixture was refluxed for 1 hour, then cooled to $0{ }^{\circ} \mathrm{C}$ and transferred by canula over a period of 30 minutes on a cooled $\left(-20^{\circ} \mathrm{C}\right)$ solution of aldehyde $\mathbf{8 5}$, obtained by sodium metaperiodate cleavage of $5,6-O$-isopropylidene-L-gulono-1,4-lactone (84) ( $7.42 \mathrm{~g}, 34.0 \mathrm{mmol}, 1.00$ equiv) and directly diluted in $\mathrm{Et}_{2} \mathrm{O}$ $(35 \mathrm{~mL})$. During the transfer, additional $\mathrm{Et}_{2} \mathrm{O}(20 \mathrm{~mL})$ was added to help stirring. After addition the mixture was allowed to return to RT and stirred for 2 hours. The reaction was quenched by addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}(4 \mathrm{x})$; the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. Purification by chromatography on $\mathrm{SiO}_{2}$ (hexane/EtOAc 9:1 $\rightarrow 7: 3$ ) afforded alcohol $102(2.47 \mathrm{~g}, 14.5 \mathrm{mmol}, 43 \%$ over 2 steps $)$ as a mixture of diastereoisomers $($ d.r. $=$ 1.00:0.60), which was directly used in the next step. $\mathrm{R}_{f}=0.57$ (hexane/EtOAc 1:1). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$. Mixture of diastereoisomers $\delta 4.20\left(\mathrm{dd}, J_{l}=6.4 \mathrm{~Hz}, J_{2}\right.$ $=5.1 \mathrm{~Hz}, 0.6 \mathrm{H}), 4.10-4.02(\mathrm{~m}, 1.6 \mathrm{H}), 3.99-3.94(\mathrm{~m}, 1 \mathrm{H}), 3.85\left(\mathrm{dd}, J_{1}=8.3 \mathrm{~Hz}, J_{2}=\right.$ $6.7 \mathrm{~Hz}, 0.6 \mathrm{H}), 3.77-3.75(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{t}, J=5.8 \mathrm{~Hz}, 0.6 \mathrm{H}), 2.57-2.39(\mathrm{~m}, 3.2 \mathrm{H})$, $2.09(\mathrm{t}, J=2.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{t}, J=2.6 \mathrm{~Hz}, 0.6 \mathrm{H}), 1.46(\mathrm{~s}, 1.8 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.39$ (s, 1.8 H ), $1.37(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$. Major diastereomer $\delta 109.8$, 80.3, 77.7, 71.7, 70.5, 66.3, 27.1, 25.6, 24.0. Minor diastereomer $\delta 110.0,80.4,77.8$, 71.2, 70.7, 66.4, 26.9, 25.6, 24.3.

## 1-((S)-2,2-dimethyl-[1,3]dioxolan-4-yl)-buta-2,3-dien-1-one (104)



To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of alcohol $102(177 \mathrm{mg}, 1.10$ mmol, 1.00 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ( 8 mL ) was added DMP ( 583 $\mathrm{mg}, 1.40 \mathrm{mmol}, 1.30$ equiv). After 5 minutes the resulting mixture was allowed to return to RT and stirred for 4 hours; then diluted in a mixture hexane/EtOAc (9.5:0.5), directly loaded on a column of silicagel. Purification by chromatography on $\mathrm{SiO}_{2}$ (hexane/EtOAc 9.5:0.5 $\rightarrow$ 9:1) afforded allene $104(160 \mathrm{mg}, 0.95 \mathrm{mmol}, 87 \%)$ as a pale yellow oil. $\mathrm{R}_{f}=0.52$
(hexane/EtOAc 7:3). Optical rotation $[\alpha]^{21.3}{ }_{\mathrm{D}}\left(c 1.08, \mathrm{CHCl}_{3}\right)=-71.8^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.12(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.34\left(\mathrm{dd}, J_{l}=15.4 \mathrm{~Hz}, J_{2}=6.7 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $5.29\left(\mathrm{dd}, J_{1}=13.4 \mathrm{~Hz}, J_{2}=4.5,1 \mathrm{H}\right), 4.86\left(\mathrm{dd}, J_{1}=7.7 \mathrm{~Hz}, J_{2}=6.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.27$ $\left(\mathrm{dd}, J_{l}=8.3 \mathrm{~Hz}, J_{2}=7.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.03\left(\mathrm{dd}, J_{l}=8.6 \mathrm{~Hz}, J_{2}=6.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.51(\mathrm{~s}, 3$ H), $1.44(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 217.0,197.7,111.5,93.2,80.2$, 79.0, 67.3, 26.3, 25.9. FTIR v 2889m, 2937w, 1958m, 1932m, 1763w, 1691s, 1457w, $1374 m, 1260 m, 1214 s, 1152 m, 1066 s, 964 w, 844 s \mathrm{~cm}^{-1}$.

## (R)-1-[(R)-3a-((R)-tert-butyl-dimethyl-silanyloxymethyl)-2,2-dimethyl-6,6a-dihy-

 dro-3aH-cyclopenta[1,3]dioxol-4-yl]-3-((S)-2,2-dimethyl-[1,3]dioxolan-4-yl)-hexa-4,5-dien-1-yn-3-ol (105)

To a cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of alkyne $101(810 \mathrm{mg}$, $2.63 \mathrm{mmol}, 1.10$ equiv) in THF ( 12 mL ) was added $n \mathrm{BuLi}(1.6 \mathrm{M}$ in hexane) ( $1.64 \mathrm{~mL}, 2.63 \mathrm{mmol}, 1.10$ equiv) and the resulting solution stirred at $-78^{\circ} \mathrm{C}$ for 30 minutes. Separately in another flask, to a cooled ($78{ }^{\circ} \mathrm{C}$ ) solution of allene $\mathbf{1 0 4}(407 \mathrm{mg}, 2.42 \mathrm{mmol}, 1.00$ equiv) in THF ( 9 mL ) was added a solution of $\mathrm{CeCl}_{3} \bullet 2 \mathrm{LiCl}(0.2 \mathrm{M}$ in THF) ( $13.2 \mathrm{~mL}, 2.63 \mathrm{mmol}, 1.10$ equiv). After 5 minutes, the deprotonated alkyne solution was transferred by canula and the resulting solution heated to $-40^{\circ} \mathrm{C}$ and leaved to return to $0^{\circ} \mathrm{C}$ over 2 hours. The reaction was quenched by addition of saturated $\mathrm{NH}_{4} \mathrm{Cl}$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3x). The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. Purification by chromatography on $\mathrm{SiO}_{2}$ (hexane/EtOAc 10:0 $\rightarrow$ 8:2) afforded 105 ( $860 \mathrm{mg}, 1.80 \mathrm{mmol}, 75 \%$, d.r. $=94: 6$ ) as a pale yellow oil. A fraction of unreacted alkyne 101 ( $259 \mathrm{mg}, 0.54 \mathrm{mmol}$ ) was recovered. $\mathrm{R}_{f}=0.33$ (hexane/AcOEt 8:2). Optical rotation $[\alpha]^{20.9}{ }_{\mathrm{D}}\left(c \quad 0.955, \mathrm{CHCl}_{3}\right)=+19.8^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right)$ $\delta 6.12(\mathrm{~s}, 1 \mathrm{H}), 5.40(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.63(\mathrm{~d}, J=4.5 \mathrm{~Hz}$, $1 \mathrm{H}), 4.27(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.13\left(\mathrm{dd}, J_{l}=8.6 \mathrm{~Hz}, J_{2}=6.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.07\left(\mathrm{dd}, J_{I}=\right.$ $\left.8.6 \mathrm{~Hz}, J_{2}=6.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.78(\mathrm{~s}, 2 \mathrm{H}), 2.81(\mathrm{~s}, 1 \mathrm{H}), 2.59\left(\mathrm{ddd}, J_{l}=18.6 \mathrm{~Hz}, J_{2}=4.5\right.$ $\left.\mathrm{Hz}, J_{3}=2.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.52\left(\mathrm{dd}, J_{l}=18.6 \mathrm{~Hz}, J_{2}=2.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}$, 3 H ), 1.39 ( $\mathrm{s}, 3 \mathrm{H}$ ), 1.39 ( s, 3 H ), 0.88 ( $\mathrm{s}, 9 \mathrm{H}$ ), 0.07 (s, 3 H ), 0.06 ( $\mathrm{s}, 3 \mathrm{H}$ ). ${ }^{13} \mathrm{C}-\mathrm{NMR}$
(100 MHz, $\mathrm{CDCl}_{3}$ ) $\delta 207.5,139.2,126.9,111.0,111.0,96.2,94.9,90.3,81.5,81.2$, 81.2, 80.0, 70.8, 66.6, 64.5, 38.6, 28.2, 27.6, 26.7, 26.2, 25.9, 18.6, -5.0, -5.1. HRMS-ESI calcd for $\mathrm{C}_{26} \mathrm{H}_{40} \mathrm{O}_{6} \mathrm{SiNa}:[\mathrm{M}+\mathrm{Na}]^{+}$499.2492; found 499.2478. FTIR $v$ $3429 w, 2987 w, 2932 m, 2859 w, 1960 w, 1463 w, 1372 m, 1252 s, 1215 s, 1158 m, 1077 s$, $1007 w, 930 w, 840 s, 779 m, 664 m \mathrm{~cm}^{-1}$.
$\mathrm{CeCl}_{3} \bullet 2 \mathrm{LiCl}$ solution ( 0.2 M in THF): $\mathrm{CeCl}_{3} \bullet 7 \mathrm{H}_{2} \mathrm{O}(1.12 \mathrm{~g}, 3.00 \mathrm{mmol}, 1.00$ equiv) and LiCl ( $254 \mathrm{mg}, 6.00 \mathrm{mmol}, 2.00$ equiv) were dried in a Schlenk tube under HV (< 0.1 mbar) with gradually increase of the temperature from $25^{\circ} \mathrm{C}$ to $150{ }^{\circ} \mathrm{C}$ over 3 hours and then additional 2 hours at $150{ }^{\circ} \mathrm{C}$. During the process a fluent constant stirring was required to maintain the mixture as a white homogeneous fine powder. The mixture was put under Ar, cooled to RT and THF ( 15 mL ) was added. The resulting white suspension was vigorously stirred overnight to obtain a clear solution. ${ }^{250}$ The $\mathrm{CeCl}_{3} \bullet 2 \mathrm{LiCl}$ solution can be stored under Ar in the fridge for more than one week without degradation.
(R)-3-((S)-2,2-dimethyl-[1,3]dioxolan-4-yl)-1-[(R)-3a-((R)-hydroxymethyl)-2,2-di-methyl-6,6a-dihydro-3a $H$-cyclopenta[1,3]dioxol-4-yl]-hexa-4,5-dien-1-yn-3-ol (106)


To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of allene $105(22.0 \mathrm{mg}$, $0.05 \mathrm{mmol}, 1.00$ equiv) in THF ( 2 mL ) was added TBAF ( 1.0 M in THF) ( $104 \mu \mathrm{~L}, 0.10 \mathrm{mmol}, 2.25$ equiv). The resulting solution was stirred at $0^{\circ} \mathrm{C}$ for 5 minutes, then allowed to return to RT and stirred for 3.5 hours. The reaction was transferred in a mixture water/ $\mathrm{Et}_{2} \mathrm{O}$, the organic phase separated and washed with water (1x) and brine (1x), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, filtered and concentrated. Purification by chromatography on $\mathrm{SiO}_{2}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{EtOAc} 8: 2 \rightarrow 4: 6\right)$ afforded 106 ( $16.7 \mathrm{mg}, 0.05 \mathrm{mmol}$, quant.) as a pale yellow oil. $\mathrm{R}_{f}=0.15$ $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2} / \mathrm{AcOEt} 8: 2\right) .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.18(\mathrm{~s}, 1 \mathrm{H}), 5.40(\mathrm{t}, J=6.7 \mathrm{~Hz}$, $1 \mathrm{H}), 5.04(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.65(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.26(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.13\left(\mathrm{dd}, J_{l}=8.6 \mathrm{~Hz}, J_{2}=7.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.05\left(\mathrm{dd}, J_{l}=8.6 \mathrm{~Hz}, J_{2}=6.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.90$

[^87]$\left(\mathrm{dd}, J_{1}=11.8 \mathrm{~Hz}, J_{2}=4.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.52\left(\mathrm{dd}, J_{1}=11.8 \mathrm{~Hz}, J_{2}=9.3 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.87(\mathrm{~s}$, $1 \mathrm{H}), 2.66\left(\mathrm{ddd}, J_{I}=18.9 \mathrm{~Hz}, J_{2}=4.6 \mathrm{~Hz}, J_{3}=2.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.59\left(\mathrm{dd}, J_{I}=18.6 \mathrm{~Hz}, J_{2}\right.$ $=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.94\left(\mathrm{dd}, J_{I}=9.6 \mathrm{~Hz}, J_{2}=4.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.52(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H})$, $1.42(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H})$.
(R)-4-[(R)-3-((S)-2,2-dimethyl-[1,3]dioxolan-4-yl)-3-hydroxy-hexa-4,5-dien-1-yn-yl]-2,2-dimethyl-6,6a-dihydro-cyclopenta[1,3]dioxole-3a-carbaldehyde (107)


To a solution of alcohol $106(16.0 \mathrm{mg}, 0.044 \mathrm{mmol}$, 1.00 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.7 \mathrm{~mL})$ was added DMP ( 24 $\mathrm{mg}, 0.057 \mathrm{mmol}, 1.30$ equiv) and the resulting mixture stirred at RT for 2.5 hours. The reaction was diluted in a mixture hexane/EtOAc (9.5:0.5) and directly loaded on a column of silica. Purification by chromatography on $\mathrm{SiO}_{2}$ (hexane/EtOAc 9.5:0.5 $\rightarrow 4: 6)$ afforded aldehyde $107(14.0 \mathrm{mg}, 0.039 \mathrm{mmol}, 88 \%)$ as a pale yellow oil. $\mathrm{R}_{f}=$ 0.31 (hexane/AcOEt 1:1). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.84(\mathrm{~s}, 1 \mathrm{H}), 6.28(\mathrm{t}, J=2.6$ $\mathrm{Hz}, 1 \mathrm{H}$ ), 5.36 (t, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.02(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.73(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H})$, $4.24(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.10\left(\mathrm{dd}, J_{l}=8.3 \mathrm{~Hz}, J_{2}=6.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.00\left(\mathrm{dd}, J_{I}=8.3\right.$ $\left.\mathrm{Hz}, J_{2}=6.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.84(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 2.77\left(\mathrm{ddd}, J_{1}=19.5 \mathrm{~Hz}, J_{2}=5.8 \mathrm{~Hz}, J_{3}=2.6\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 2.63\left(\mathrm{dd}, J_{l}=19.2 \mathrm{~Hz}, J_{2}=2.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.43$ (s, 3 H ), 1.40 ( $\mathrm{s}, 3 \mathrm{H}$ ).
(R)-4-[(R)-3-((S)-2,2-dimethyl-[1,3]dioxolan-4-yl)-3-trimethylsilanyloxy-hexa-4,5-dien-1-ynyl]-2,2-dimethyl-6,6a-dihydro-cyclopenta[1,3]dioxole-3a-carbaldehyde (109)


To a cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $\mathbf{1 0 7}(15.0 \mathrm{mg}, 0.04$ mmol, 1.00 equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ were sequentially added 2,6 -lutidine ( $18 \mu \mathrm{~L}, 0.15 \mathrm{mmol}$, 3.75 equiv) and TMSOTf ( $17 \mu \mathrm{~L}, 0.09 \mathrm{mmol}, 2.25$ equiv). The resulting solution was stirred at $-78^{\circ} \mathrm{C}$ for 1.5 hours, then quenched by co-addition of a saturated $\mathrm{NaHCO}_{3}$ solution and MeOH
and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x})$. The combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. Purification by chromatography on $\mathrm{SiO}_{2}$ (hexane/EtOAc 9:1 $\rightarrow 1: 1)$ afforded $\mathbf{1 0 9}(11.6 \mathrm{mg}, 0.03 \mathrm{mmol}, 67 \%)$ as a pale yellow oil. ${ }^{1} \mathrm{H}-\mathrm{NMR}(400$ $\left.\mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.85(\mathrm{~s}, 1 \mathrm{H}), 6.25(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.92$ (d, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}$ ), $4.72(\mathrm{~d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.07-3.97(\mathrm{~m}$, $2 \mathrm{H}), 2.76\left(\mathrm{ddd}, J_{l}=19.2 \mathrm{~Hz}, J_{2}=5.4 \mathrm{~Hz}, J_{3}=2.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.63\left(\mathrm{dd}, J_{1}=19.2 \mathrm{~Hz}, J_{2}\right.$ $=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 1.49(\mathrm{~s}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 0.21(\mathrm{~s}, 9 \mathrm{H})$.
tert-butyl-\{(R)-(R)-4-[(R)-3-((S)-2,2-dimethyl-[1,3]dioxolan-4-yl)-3-methoxy-hexa-4,5-dien-1-ynyl]-2,2-dimethyl-6,6a-dihydro-cyclopenta[1,3]dioxol-3a-ylmethoxy\}-
dimethyl-silane (111)


To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of allene $105(100 \mathrm{mg}$, $0.21 \mathrm{mmol}, 1.00$ equiv), $4 \AA \mathrm{MS}(400 \mathrm{mg})$ and proton sponge ( $135 \mathrm{mg}, 0.63 \mathrm{mmol}, 3.00$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(1.0 \mathrm{~mL})$ was added $\mathrm{Me}_{3} \mathrm{OBF}_{4}$ ( $63 \mathrm{mg}, 0.42 \mathrm{mmol}$, 2.00 equiv). The resulting mixture was stirred 30 minutes at $0{ }^{\circ} \mathrm{C}$, then allowed to return to RT and stirred for 2 hours. The mixture was cooled to $0^{\circ} \mathrm{C}$ and a second portion of $4 \AA$ MS ( 200 mg ), proton sponge ( $70 \mathrm{mg}, 0.32$ mmol, 1.50 equiv) and $\mathrm{Me}_{3} \mathrm{OBF}_{4}(32 \mathrm{mg}, 0.21 \mathrm{mmol}, 1.00$ equiv) were sequentially added. After 5 minutes at $0^{\circ} \mathrm{C}$ the mixture was allowed to return to RT and stirred for 1.5 hours. The mixture was cooled once more to $0{ }^{\circ} \mathrm{C}$ and a third portion $4 \AA$ MS ( 400 mg ), proton sponge ( $135 \mathrm{mg}, 0.63 \mathrm{mmol}, 3.00$ equiv) and $\mathrm{Me}_{3} \mathrm{OBF}_{4}$ ( $63 \mathrm{mg}, 0.42$ $\mathrm{mmol}, 2.00$ equiv) were sequentially added. After 5 minutes at $0^{\circ} \mathrm{C}$ the mixture was allowed to return to RT and stirred for 16 hours. The reaction was diluted in a mixture hexane/EtOAc 2:1, filtered over Celite and concentrated. Purification by chromatography on $\mathrm{SiO}_{2}$ (hexane/EtOAc 9:1 $\rightarrow 8: 2$ ) afforded 111 ( $85.0 \mathrm{mg}, 0.17$ $\mathrm{mmol}, 83 \%$ ) as a pale yellow oil. $\mathrm{R}_{f}=0.69$ (hexane/AcOEt 8:2). Optical rotation $[\alpha]^{21.8}{ }_{\mathrm{D}}\left(c 0.83, \mathrm{CHCl}_{3}\right)=-9.6^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.11(\mathrm{~s}, 1 \mathrm{H}), 5.13(\mathrm{t}$, $J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.62(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.27(\mathrm{t}, J=6.7$ Hz, 1 H ), 4.09-4.06 (m, 1 H ), 4.02-3.98 (m, 1 H ), 3.79 (s, 2 H ), 3.42 (s, 3 H ), 2.59 $\left(\mathrm{ddd}, J_{1}=18.6 \mathrm{~Hz}, J_{2}=4.5 \mathrm{~Hz}, J_{3}=2.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.51\left(\mathrm{dd}, J_{1}=18.9 \mathrm{~Hz}, J_{2}=2.9 \mathrm{~Hz}\right.$,
$1 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 6 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.05(\mathrm{~s}, 3$ H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 209.4,138.8,127.1,111.2,111.0,96.2,91.6$, 87.4, 83.7, 81.9, 81.2, 78.8, 78.6, 66.7, 64.4, 52.9, 38.5, 28.3, 27.6, 26.8, 26.3, 26.2, 18.6, -5.0, -5.1. DEPT-135 NMR ( $100 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\mathrm{CH}_{3} \& \mathrm{CH} \delta 138.8, ~ 91.6,81.9$, 81.2, 52.9, 28.3, 27.6, 26.8, 26.3, 26.2, -5.0, -5.1; $\mathrm{CH}_{2}$ ठ 78.6, 66.7, 64.4, 38.5. HRMS-ESI calcd for $\mathrm{C}_{27} \mathrm{H}_{42} \mathrm{O}_{6} \mathrm{SiNa}:[\mathrm{M}+\mathrm{Na}]^{+}$513.2648; found 513.2662. FTIR $v$ $2990 w, 2932 m, 2862 w, 1960 w, 1466 w, 1369 m, 1250 m, 1211 m, 1157 m, 1080 s, 953 w$, $837 \mathrm{~s}, 775 \mathrm{~m}, 667 \mathrm{~s} \mathrm{~cm}^{-1}$.
$\{(R)-4-[(R)-3-((S)$-2,2-dimethyl-[1,3]dioxolan-4-yl)-3-methoxy-hexa-4,5-dien-1-ynyl]-2,2-dimethyl-6,6a-dihydro-cyclopenta[1,3]dioxol-3a-yl\}-methanol (112)


To a cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of allene $111(82.0 \mathrm{mg}$, $0.17 \mathrm{mmol}, 1.00$ equiv) in THF ( 2 mL ) was added TBAF ( 1.0 M in THF) ( $335 \mu \mathrm{~L}, 0.34 \mathrm{mmol}, 2.00$ equiv). The resulting solution stirred at $0{ }^{\circ} \mathrm{C}$ for 5 minutes, then allowed to return to RT and stirred for 45 minutes. The reaction was diluted with water, extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3x) and the combined organic layers were dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. Purification by chromatography on $\mathrm{SiO}_{2}$ (hexane/EtOAc $8: 2 \rightarrow 6: 4$ ) afforded alcohol 112 (61.5 $\mathrm{mg}, 0.16 \mathrm{mmol}, 98 \%$ ) as a pale yellow oil. $\mathrm{R}_{f}=0.11$ (hexane/AcOEt 8:2). Optical rotation $[\alpha]^{21.1}{ }_{\mathrm{D}}\left(c 0.58, \mathrm{CHCl}_{3}\right)=-9.9^{\circ} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 6.17(\mathrm{~m}, 1$ H), $5.12(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.98(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.65(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.27$ $(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.08\left(\mathrm{dd}, J_{1}=8.6 \mathrm{~Hz}, J_{2}=6.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 3.98(\mathrm{~d}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, $3.92(\mathrm{~d}, J=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.53-3.48(\mathrm{~m}, 1 \mathrm{H}), 3.42(\mathrm{~s}, 3 \mathrm{H}), 2.66\left(\mathrm{ddd}, J_{I}=19.2 \mathrm{~Hz}\right.$, $\left.J_{2}=4.8 \mathrm{~Hz}, J_{3}=2.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.59\left(\mathrm{dd}, J_{1}=18.2 \mathrm{~Hz}, J_{2}=2.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.93(\mathrm{br} \mathrm{s}, 1$ H), $1.50(\mathrm{~s}, 3 \mathrm{H}), 1.43(\mathrm{~s}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 6 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 209.5$, 139.4, 126.5, 111.3, 111.2, 96.5, 91.5, 88.2, 83.2, 81.7, 79.9, 79.0, 78.6, 66.7, 62.6, 53.0, 38.1, 28.3, 27.8, 26.8, 26.2. HRMS-ESI calcd for $\mathrm{C}_{21} \mathrm{H}_{28} \mathrm{O}_{6}:[\mathrm{M}]^{+} 377.1964$; found 377.1959. FTIR $\vee 3487 m, 2982 m, 2932 m, 2824 w, 1960 w, 1454 w, 1377 m$, $1258 m, 1219 s, 1153 w, 1080 s, 1053 s, 995 w, 856 \mathrm{mcm}^{-1}$.
$(R)$-4-[(R)-3-((S)-2,2-dimethyl-[1,3]dioxolan-4-yl)-3-methoxy-hexa-4,5-dien-1-yn-yl]-2,2-dimethyl-6,6a-dihydro-cyclopenta[1,3]dioxole-3a-carbaldehyde (113)


To a cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of freshly distilled oxalyl chloride ( $18 \mu \mathrm{~L}, 0.21 \mathrm{mmol}, 8.00$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was slowly added a solution of DMSO ( $38 \mu \mathrm{~L}, 0.54 \mathrm{mmol}, 20.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5$ $\mathrm{mL})$. After 20 minutes a solution of alcohol 112 (10.0 $\mathrm{mg}, 0.03 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was added and the resulting mixture stirred at $-78{ }^{\circ} \mathrm{C}$ for 30 minutes. A solution of DIPEA ( $71 \mu \mathrm{~L}, 0.43 \mathrm{mmol}, 16.0$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ was slowly added and the clear solution stirred at $-78^{\circ} \mathrm{C}$ for 10 minutes, then allowed to return to $0{ }^{\circ} \mathrm{C}$ and stirred for 2 hours. The reaction was quenched by addition of a buffer phosphate solution ( $\mathrm{pH}=7$ ), extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3x) and the combined organic layers washed with brine (1x), dried ( $\mathrm{MgSO}_{4}$ ), filtered and concentrated. The aldehyde $\mathbf{1 1 3}$ was directly used in the next step without further purifications. $\mathrm{R}_{f}=0.73$ (hexane/AcOEt 4:6). ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 9.85(\mathrm{~s}, 1$ H), $6.27(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.09(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.96(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.73$ $(\mathrm{d}, J=5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.07\left(\mathrm{dd}, J_{1}=8.3 \mathrm{~Hz}, J_{2}=6.7 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $3.94(\mathrm{t}, J=7.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 2.77\left(\mathrm{ddd}, J_{1}=19.5 \mathrm{~Hz}, J_{2}=5.8 \mathrm{~Hz}, J_{3}=2.6\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 2.64\left(\mathrm{dd}, J_{l}=19.2 \mathrm{~Hz}, J_{2}=2.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.44$ ( $\mathrm{s}, 3 \mathrm{H}$ ), 1.41 ( $\mathrm{s}, 3 \mathrm{H}$ ).
(1R,6aR)-6-[(R)-3-(tert-butyl-dimethyl-silanyloxy)-3-((S)-2,2-dimethyl-[1,3]dioxo-
lan-4-yl)-hexa-4,5-dien-1-ynyl]-6a-(tert-butyl-dimethyl-silanyloxymethyl)-2,2-

## dimethyl-4,6a-dihydro-3a $H$-cyclopenta[1,3]dioxole (115)



To a cooled $\left(-40^{\circ} \mathrm{C}\right)$ solution of allene $\mathbf{1 0 5}(5.0 \mathrm{mg}$, $0.01 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.0 \mathrm{~mL})$ were sequentially added $2,6-$ lutidine ( $28 \mu \mathrm{~L}, 0.24 \mathrm{mmol}$, 24.0 equiv) and TBSOTf ( $41 \mu \mathrm{~L}, 0.18 \mathrm{mmol}, 18.0$ equiv). The resulting solution was allowed to return to RT and stirred for 4 hours. The reaction was quenched by addition of water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3x). The combined organic layers were washed with a
saturated $\mathrm{NH}_{4} \mathrm{Cl}$ solution (1x), brine (1x), dried $\left(\mathrm{MgSO}_{4}\right)$, filtered and concentrated. Purification by chromatography on $\mathrm{SiO}_{2}$ (hexane/EtOAc 99:1 $\rightarrow$ 95:5) afforded 115, which was directly used in the next step. $\mathrm{R}_{f}=0.33$ (hexane/AcOEt 9.5:0.5). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ ( $400 \mathrm{MHz}, \mathrm{CDCl}_{3}$ ) $\delta 6.09(\mathrm{~s}, 1 \mathrm{H}), 5.43(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.91(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H})$, $4.63(\mathrm{~d}, J=4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.21\left(\mathrm{dd}, J_{l}=7.0 \mathrm{~Hz}, J_{2}=6.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.11-4.04(\mathrm{~m}, 2 \mathrm{H})$, $3.77(\mathrm{~s}, 2 \mathrm{H}), 2.60\left(\mathrm{ddd}, J_{l}=18.6 \mathrm{~Hz}, J_{2}=4.5 \mathrm{~Hz}, J_{l}=2.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 2.52\left(\mathrm{dd}, J_{l}=\right.$ $\left.18.6 \mathrm{~Hz}, J_{2}=2.9 \mathrm{~Hz}, 1 \mathrm{H}\right), 1.59(\mathrm{~s}, 3 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H})$, 0.91 (s, 9 H$), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.23(\mathrm{~s}, 3 \mathrm{H}), 0.19(\mathrm{~s}, 3 \mathrm{H}), 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.06(\mathrm{~s}, 3 \mathrm{H})$. ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CDCl}_{3}\right) \delta 207.7,138.7,127.3,111.0,110.7,96.2,95.2,91.6$, 83.2, 82.1, 81.2, 78.7, 72.0, 66.2, 64.5, 38.5, 28.3, 27.6, 26.7, 26.3, 26.2, 25.9, 18.7, 18.6, -2.6, -2.8, -5.0, -5.1.

### 6.4. Preparation of Nostocarboline and Eudistomin Derivatives

### 6.4.1. Six-Chloronorharmane Derivatives

6-chloro-2-methyl-9H-beta-carbolin-2-ium iodide (133)


To a solution of 6-chloronorharmane (130) (100 mg, 0.49 mmol, 1.00 equiv) in $i \operatorname{PrOH}(5.0 \mathrm{~mL})$ was added methyl iodide ( $154 \mu \mathrm{~L}, 2.47 \mathrm{mmol}, 5.00$ equiv). The flask was sealed and heated at $85^{\circ} \mathrm{C}$ for 4 hours. The reaction was concentrated then the residue triturated in a mixture $\mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}$ and the precipitate collected by filtration. The product was dissolved in MeOH and any precipitate removed by filtration. The filtrated was concentrated and dried under high vacuum affording 133 ( $67.0 \mathrm{mg}, 0.31$ $\mathrm{mmol}, 62 \%)$ as a crystalline solid. M.p. $=271.0-272.0^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 9.29(\mathrm{~s}, 1 \mathrm{H}), 8.70(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.56(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.49(\mathrm{~s}, 1$ H), 7.80-7.79 (m, 2 H ), $4.90(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 142.9,136.0$, 133.2, 132.2, 132.1, 130.5, 127.3, 122.4, 120.5, 117.9, 114.1, 48.5. HRMS-ESI calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{ClN}_{2}$ : $[\mathrm{M}]^{+}$217.0533; found 217.0540. FTIR $v 3495 w, 3055 m, 3001 \mathrm{~m}$, $2307 w, 1647 m, 1574 w, 1516 m, 1493 s, 1450 m, 1385 w, 1323 m, 1285 s, 1250 m, 1219 m$, $1153 s, 1069 \mathrm{~s}, 934 w, 880 \mathrm{~m}, 833 \mathrm{~m}, 806 \mathrm{~s}, 745 \mathrm{~m} \mathrm{~cm}^{-1}$.

## 6-chloro-2-ethyl-9H-beta-carbolin-2-ium iodide (134)



To a mixture of 6-chloronorharmane (130) ( $500 \mathrm{mg}, 2.47$ mmol, 1.00 equiv) in $\mathrm{CH}_{3} \mathrm{CN}(15 \mathrm{~mL})$ was added ethyl iodide ( $490 \mu \mathrm{~L}, 6.18 \mathrm{mmol}, 2.50$ equiv). The flask was sealed and heated at $85{ }^{\circ} \mathrm{C}$ for 18 hours. The reaction was concentrated then the residue was dissolved in a minimum amount of $\mathrm{CH}_{3} \mathrm{CN}$, the product precipitated by addition on $\mathrm{Et}_{2} \mathrm{O}$, collected by filtration and washed with a mixture $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{Et}_{2} \mathrm{O}$. The product was dissolved in MeOH and any precipitate removed by filtration. The filtrated was concentrated and dried under high vacuum affording 134 ( $384 \mathrm{mg}, 1.07$ $\mathrm{mmol}, 43 \%)$ as a crystalline brown solid. M.p. $=215.0-216.0^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 9.38(\mathrm{~s}, 1 \mathrm{H}), 8.74(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.66\left(\mathrm{dd}, J_{1}=6.8 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 8.51-8.50(\mathrm{~m}, 1 \mathrm{H}), 7.81-7.80(\mathrm{~m}, 2 \mathrm{H}), 4.85(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.77(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}$-NMR ( $125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) $\delta 142.9,136.1,132.3,132.3,132.1,129.3$, 127.3, 122.4, 120.6, 118.2, 113.8, 56.9, 16.0. HRMS-ESI calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{ClN}_{2}:[\mathrm{M}]^{+}$ 231.0689; found 231.0692. FTIR $\vee 3418 w, 3098 m, 3017 m, 2288 w, 1647 m, 1570 w$, $1489 s, 1447 s, 1319 m, 1281 s, 1250 m, 1169 m, 1142 s, 1065 s, 937 w, 876 m, 806 s, 725 m$, $706 \mathrm{~m} \mathrm{~cm}^{-1}$.

## 2-allyl-6-chloro-9H-beta-carbolin-2-ium bromide (135)



To a solution of 6-chloronorharmane (130) ( 50.0 mg , $0.25 \mathrm{mmol}, 1.00$ equiv) in $i \mathrm{PrOH}(4.0 \mathrm{~mL})$ was added allyl bromide ( $43 \mu \mathrm{~L}, 0.50 \mathrm{mmol}, 2.00$ equiv). The flask was sealed and heated at $85^{\circ} \mathrm{C}$ for 21 hours. The reaction was concentrated then the residue was dissolved in a minimum amount of $\mathrm{CH}_{3} \mathrm{CN}$, the product precipitated by addition on $\mathrm{Et}_{2} \mathrm{O}$, collected by filtration and washed with a mixture $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{Et}_{2} \mathrm{O}$. The product was dissolved in MeOH and any precipitate removed by filtration. The filtrated was concentrated and dried under high vacuum affording 135 ( $36.0 \mathrm{mg}, 0.11$ $\mathrm{mmol}, 45 \%$ ) as a crystalline solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 9.33(\mathrm{~s}, 1 \mathrm{H}), 8.75$ $(\mathrm{d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.60(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.51(\mathrm{~d}, J=0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.84-7.77(\mathrm{~m}$, $2 \mathrm{H}), 6.29(\mathrm{~m}, 1 \mathrm{H}), 5.56(\mathrm{~d}, J=9.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.41(\mathrm{~d}, J=$ $6.1 \mathrm{~Hz}, 2 \mathrm{H})$. The analytical data matched those reported in literature. ${ }^{229}$

## 2-butyl-6-chloro-9H-beta-carbolin-2-ium iodide (136)



To a solution of 6-chloronorharmane (130) ( $30.0 \mathrm{mg}, 0.15$ mmol, 1.00 equiv) in $\mathrm{CH}_{3} \mathrm{CN}(0.5 \mathrm{~mL})$ was added iodobutane ( $42 \mu \mathrm{~L}, 0.37 \mathrm{mmol}, 2.50$ equiv). The flask was sealed and heated at $85^{\circ} \mathrm{C}$ overnight. The reaction was concentrated then the residue triturated in a mixture $\mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}$ and the precipitate collected by filtration. The product was dissolved in MeOH and any precipitate removed by filtration. The filtrated was concentrated and dried under high vacuum affording $136(21.2 \mathrm{mg}$, $0.055 \mathrm{mmol}, 37 \%)$ as a crystalline solid. M.p. $=213.0-214.0{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 9.37(\mathrm{~s}, 1 \mathrm{H}), 8.73(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.64(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.51(\mathrm{~s}, 1$ H), 7.81-7.80 (m, 2 H ), $4.80(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.12$ (quint., $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$ ), 1.49 (sext., $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$ ), $1.06(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ $143.0,136.2,132.3,132.3,132.2,129.5,127.3,122.4,120.6,118.1,114.1,61.3,33.6$, 19.2, 12.5. HRMS-ESI calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{ClN}_{2}:[\mathrm{M}]^{+} 259.1002$; found 259.0999. FTIR $v 3445 w, 3032 s, 2997 s, 2959 s, 2858 m, 1651 m, 1570 w, 1516 m, 1489 s, 1450 s, 1323 m$, $1281 s, 1165 m, 1142 s, 1065 s, 903 w, 872 m, 806 s, 756 m, 725 s \mathrm{~cm}^{-1}$.

6-chloro-2-(4-methoxycarbonyl-butyl)-9H-beta-carbolin-2-ium bromide (137)
 To a solution of 6-chloronorharmane (130) (30.0 $\mathrm{mg}, 0.15 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{CH}_{3} \mathrm{CN}(0.5 \mathrm{~mL})$ was added methyl bromovalerate ( $53 \mu \mathrm{~L}, 0.37$ mmol, 2.50 equiv). The flask was sealed and heated at $85{ }^{\circ} \mathrm{C}$ overnight. The reaction was concentrated then the residue triturated in a mixture $\mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}$ and the precipitate collected by filtration. The product was dissolved in MeOH and any precipitate removed by filtration. The filtrated was concentrated and dried under high vacuum affording 137 ( $14.5 \mathrm{mg}, 0.036 \mathrm{mmol}, 24 \%$ ) as a crystalline solid. M.p. $=$ $159.0-160.0{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 9.36(\mathrm{~s}, 1 \mathrm{H}), 8.74(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1$ H), $8.64(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.53(\mathrm{~s}, 1 \mathrm{H}), 7.83(\mathrm{~s}, 2 \mathrm{H}), 4.81-4.78(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{~s}$, $3 \mathrm{H}), 2.48(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.19-2.13(\mathrm{~m}, 2 \mathrm{H}), 1.76-1.72(\mathrm{~m}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(125$ $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 173.8,143.1,136.2,132.4,132.3,129.6,127.4,122.4,120.6,118.1$, 114.1, 61.0, 50.7, 32.4, 30.8, 21.1. HRMS-ESI calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{ClN}_{2} \mathrm{O}_{2}$ : $[\mathrm{M}]^{+}$ 317.1057; found 317.1062. FTIR v 3426w, 3036w, 2994w, 2951m, 2905w, 1728s,
$1647 m, 1570 w, 1520 m, 1493 m, 1439 m, 1350 m, 1281 s, 1227 m, 1157 s, 1126 s, 1069 s$, 984s, $891 m, 810 s, 752 s \mathrm{~cm}^{-1}$.

## 2-benzyl-6-chloro-9H-beta-carbolin-2-ium bromide (138)



To a solution of 6-chloronorharmane (130) ( 50.0 mg , $0.25 \mathrm{mmol}, 1.00$ equiv) in $i \mathrm{PrOH}(8.0 \mathrm{~mL})$ was added benzyl bromide ( $60 \mu \mathrm{~L}, 0.50 \mathrm{mmol}, 2.00$ equiv). The flask was sealed and heated at $85^{\circ} \mathrm{C}$ for 15 hours. The reaction was concentrated then the residue was dissolved in a minimum amount of $\mathrm{CH}_{3} \mathrm{CN}$, the product precipitated by addition on $\mathrm{Et}_{2} \mathrm{O}$, collected by filtration and washed with a mixture $\mathrm{CH}_{3} \mathrm{CN} / \mathrm{Et}_{2} \mathrm{O}$. The product was dissolved in MeOH and any precipitate removed by filtration. The filtrated was concentrated and dried under high vacuum affording 138 ( $54.0 \mathrm{mg}, 0.14$ $\mathrm{mmol}, 58 \%$ ) as a crystalline solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 9.44(\mathrm{~s}, 1 \mathrm{H}), 8.73-$ $8.68(\mathrm{~m}, 2 \mathrm{H}), 8.48(\mathrm{~s}, 1 \mathrm{H}), 7.79(\mathrm{~s}, 2 \mathrm{H}), 7.56\left(\mathrm{dd}, J_{1}=7.8 \mathrm{~Hz}, J_{2}=1.7 \mathrm{~Hz}, 2 \mathrm{H}\right)$, 7.51-7.46 (m, 3 H$), 5.99(\mathrm{~s}, 2 \mathrm{H})$. The analytical data matched those reported in literature. ${ }^{229}$

## 6-chloro-2-(4-fluoro-benzyl)-9H-beta-carbolin-2-ium bromide (139)



To a solution of 6-chloronorharmane (130) ( 30.0 mg , $0.15 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{CH}_{3} \mathrm{CN}(0.5 \mathrm{~mL})$ was added 4-fluorobenzyl bromide ( $69 \mu \mathrm{~L}, 0.37 \mathrm{mmol}$, 2.50 equiv). The flask was sealed and heated at $85^{\circ} \mathrm{C}$ overnight. The reaction was concentrated then the residue triturated in a mixture $\mathrm{Et}_{2} \mathrm{O}$ / $\mathrm{CH}_{3} \mathrm{CN}$ and the precipitate collected by filtration. The product was dissolved in MeOH and any precipitate removed by filtration. The filtrated was concentrated and dried under high vacuum affording $139(56.3 \mathrm{mg}, 0.14 \mathrm{mmol}, 96 \%)$ as a crystalline solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 9.50(\mathrm{~s}, 1 \mathrm{H}), 8.75(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.71$ $\left(\mathrm{dd}, J_{1}=6.8 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.51(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 2 \mathrm{H})$, $7.67(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.65(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.23(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.00(\mathrm{~s}, 2$ H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 163.4(\mathrm{~d}, J=248.4 \mathrm{~Hz}), 143.1,136.1,132.6$, $132.5,132.4,130.9(\mathrm{~d}, J=9.7 \mathrm{~Hz}), 130.4(\mathrm{~d}, J=3.7 \mathrm{~Hz}), 129.6,127.4,122.5,120.5$,
118.3, $116.0(\mathrm{~d}, J=22.0 \mathrm{~Hz}), 114.2,63.2$. HRMS-ESI calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{ClFN}_{2}:[\mathrm{M}]^{+}$ 311.0751; found 311.0738. FTIR $v 3460 w, 3414 w, 3044 m, 2982 m, 2893 w, 1647 m$, $1605 m, 1570 w, 1512 m, 1489 m, 1454 m, 1350 w, 1281 m, 1223 m, 1161 s, 1119 s, 1069 s$, $883 w, 826 s, 779 m, 760 \mathrm{~m} \mathrm{~cm}^{-1}$.

## 6-chloro-2-(4-nitro-benzyl)-9H-beta-carbolin-2-ium bromide (140)



To a solution of 6-chloronorharmane (130) (30.0 $\mathrm{mg}, 0.15 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{CH}_{3} \mathrm{CN}(0.5 \mathrm{~mL})$ was added 4-nitrobenzyl bromide ( $80 \mathrm{mg}, 0.37$ $\mathrm{mmol}, 2.50$ equiv). The flask was sealed and heated at $85^{\circ} \mathrm{C}$ overnight. The reaction was concentrated then the residue triturated in a mixture $\mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}$ and the precipitate collected by filtration. The product was dissolved in MeOH and any precipitate removed by filtration. The filtrated was concentrated and dried under high vacuum affording $140(34.6 \mathrm{mg}, 0.083 \mathrm{mmol}$, $55 \%)$ as a crystalline solid. M.p. $=210.0-211.0{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ $9.55(\mathrm{~s}, 1 \mathrm{H}), 8.80(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.74(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.54(\mathrm{~s}, 1 \mathrm{H}), 8.34$ (d, $J=8.7 \mathrm{~Hz}, 2 \mathrm{H}$ ), $7.84(\mathrm{~s}, 2 \mathrm{H}), 7.76(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.17$ (s, 2 H ). ${ }^{13} \mathrm{C}-\mathrm{NMR}$ ( $125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) $\delta 144.6,143.2,141.2,136.2,132.8,132.7,132.7,130.1,129.3$, 127.6, 124.0, 122.6, 120.5, 118.5, 114.2, 62.8. HRMS-ESI calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{ClN}_{3} \mathrm{O}_{2}$ : $[\mathrm{M}]^{+} 338.0696$; found 338.0686. FTIR $\vee 3387 w, 3059 m, 3009 m, 1647 m, 1609 m$, $1574 w, 1520 s, 1493 s, 1454 m, 1342 s, 1285 s, 1161 m, 1130 m, 1069 m, 1018 w, 856 m$, $806 s, 733 s, 710 \mathrm{~m} \mathrm{~cm}^{-1}$.

6-chloro-2-(3-phenyl-propyl)-9H-beta-carbolin-2-ium bromide (141)


To a solution of 6-chloronorharmane (130) (30.0 $\mathrm{mg}, 0.15 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{CH}_{3} \mathrm{CN}(0.5 \mathrm{~mL})$ was added 1-bromo-3-phenylpropane ( $56 \mu \mathrm{~L}, 0.37$ mmol, 2.50 equiv). The flask was sealed and heated at $85^{\circ} \mathrm{C}$ overnight. The reaction was concentrated then the residue triturated in a mixture $\mathrm{Et}_{2} \mathrm{O} / \mathrm{CH}_{3} \mathrm{CN}$ and the precipitate collected by filtration. The product was dissolved in MeOH and any precipitate removed by filtration. The filtrated was
concentrated and dried under high vacuum affording 141 ( $18.7 \mathrm{mg}, 0.047 \mathrm{mmol}$, $31 \%$ ) as a crystalline solid. ${ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 9.31(\mathrm{~s}, 1 \mathrm{H}), 8.68(\mathrm{~d}, J=$ $6.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.60(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.49(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.81(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 2$ H), $7.25(\mathrm{~s}, 2 \mathrm{H}), 7.24(\mathrm{~s}, 2 \mathrm{H}), 7.13-7.09(\mathrm{~m}, 1 \mathrm{H}), 4.83(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.83(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 2 \mathrm{H}$ ), 2.51-2.45 (m, 2 H ). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ 143.2, 140.1, $136.2,132.3,132.2,129.7,128.2,128.0,127.2,125.9,122.3,120.6,118.0,114.2$, 61.2, 32.6, 32.1, 22.7. HRMS-ESI calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{ClN}_{2}$ : [M] ${ }^{+} 321.1158$; found 321.1146. FTIR $v 3418 w, 3024 m, 2990 m, 2943 m, 2905 m, 2843 w, 1643 m, 1574 s$, $1520 m, 1493 s, 1450 s, 1412 s, 1319 m, 1285 s, 1157 s, 1123 s, 1069 s, 922 m, 876 m, 826 s$, $741 \mathrm{~m} \mathrm{~cm}^{-1}$.

### 6.4.2. Six-Bromonorharmane derivatives

6-bromo-2-methyl-9H-beta-carbolin-2-ium iodide (142)


To a solution of 6-bromonorharmane (131) ( $500 \mathrm{mg}, 2.47$ mmol, 1.00 equiv) in $\mathrm{CH}_{3} \mathrm{CN}(15 \mathrm{~mL})$ was added methyl iodide ( $380 \mu \mathrm{~L}, 6.18 \mathrm{mmol}, 2.50$ equiv). The flask was sealed and heated at $85^{\circ} \mathrm{C}$ for 18 hours. The reaction was cooled with an ice-bath, the precipitate filtered, washed with $\mathrm{CH}_{3} \mathrm{CN}$ and $\mathrm{Et}_{2} \mathrm{O}$. The product was dissolved in MeOH and any precipitate removed by filtration. The filtrated was concentrated and dried under high vacuum affording 142 ( $685 \mathrm{mg}, 1.76 \mathrm{mmol}, 71 \%$ ) as a yellow solid. An analytical sample was recrystallized $(\mathrm{MeOH})$ for X-ray analysis (crystallographic data are given at the end of the experimental part). M.p. $=292.0-293.0{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ ( $500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) $\delta 9.28(\mathrm{~s}, 1 \mathrm{H}), 8.71(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.67(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1$ H), $8.57(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.94\left(\mathrm{dd}, J_{1}=8.7 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.75(\mathrm{~d}, J=9.1$ $\mathrm{Hz}, 1 \mathrm{H}), 4.58(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 143.1,135.8,134.8,133.3$, $131.9,130.4,125.6,121.1,117.9,114.4,114.4,48.5$. HRMS-ESI calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{Br}:[\mathrm{M}]^{+}$261.0027; found 261.0029. FTIR $\vee 3040 m, 1643 m, 1566 w, 1520 w$, $1485 s, 1447 s, 1323 m, 1277 s, 1254 s, 1146 m, 1123 m, 1053 m, 872 m, 810 s, 729 m, 694 m$ $\mathrm{cm}^{-1}$.

## 6-bromo-2-ethyl-9H-beta-carbolin-2-ium iodide (143)



To a solution of 6-bromonorharmane (131) ( 15.0 mg , $0.06 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{CH}_{3} \mathrm{CN}(0.5 \mathrm{~mL})$ was added ethyl iodide ( $12 \mu \mathrm{~L}, 0.15 \mathrm{mmol}, 2.50$ equiv). The flask was sealed and heated at $85{ }^{\circ} \mathrm{C}$ for 15 hours. The reaction was cooled to RT, the precipitate filtered, washed with $\mathrm{CH}_{3} \mathrm{CN}$ and pentane. The product was dissolved in MeOH and any precipitate removed by filtration. The filtrated was concentrated and dried under high vacuum affording 143 ( $20.0 \mathrm{mg}, 0.05 \mathrm{mmol}, 83 \%$ ) as a crystalline solid. M.p. $=226.5-227.5^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 9.37(\mathrm{~s}, 1 \mathrm{H}), 8.74(\mathrm{~d}, \mathrm{~J}$ $=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.68(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.65\left(\mathrm{dd}, J_{l}=6.4 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.94$ $\left(\mathrm{dd}, J_{l}=8.7 \mathrm{~Hz}, J_{2}=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.76(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H})$, $1.76(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 143.3,136.0,134.8,132.2$, 132.1, 129.3, 125.6, 121.2, 118.2, 114.4, 114.4, 56.9, 16.0. HRMS-ESI calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{Br}:[\mathrm{M}]^{+}$275.0184; found 275.0192. FTIR $\vee 3514 w, 3055 \mathrm{~s}$, 2955m, 1647s, $1612 w, 1516 m, 1493 s, 1450 s, 1319 m, 1281 s, 1250 s, 1165 m, 1142 s, 1053 s, 937 m$, $868 s, 814 s, 802 s, 725 s \mathrm{~cm}^{-1}$.

## 2-allyl-6-bromo-9H-beta-carbolin-2-ium bromide (144)



To a solution of 6-bromonorharmane (131) ( 15.0 mg , 0.06 mmol , 1.00 equiv) in $\mathrm{CH}_{3} \mathrm{CN}(0.5 \mathrm{~mL})$ was added allyl bromide ( $13 \mu \mathrm{~L}, 0.15 \mathrm{mmol}, 2.50$ equiv). The flask was sealed and heated at $85{ }^{\circ} \mathrm{C}$ for 15 hours. The reaction was cooled to RT, the precipitate filtered, washed with $\mathrm{CH}_{3} \mathrm{CN}$ and pentane. The product was dissolved in MeOH and any precipitate removed by filtration. The filtrated was concentrated and dried under high vacuum affording 144 ( $14.6 \mathrm{mg}, 0.04 \mathrm{mmol}, 66 \%$ ) as a crystalline solid. An analytical sample was recrystallized ( $\mathrm{Et}_{2} \mathrm{O} /$ hexane) for X-ray analysis (crystallographic data are given at the end of the experimental part). M.p. $=195.0-$ $196.0{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 9.35(\mathrm{~s}, 1 \mathrm{H}), 8.75(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H})$, $8.68(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.62\left(\mathrm{dd}, J_{l}=6.4 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.95\left(\mathrm{dd}, J_{l}=8.7\right.$ $\left.\mathrm{Hz}, J_{2}=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.76(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.30(\mathrm{~m}, 1 \mathrm{H}), 5.57\left(\mathrm{dd}, J_{1}=9.9, J_{2}=\right.$ $1.2 \mathrm{~Hz}), 5.56\left(\mathrm{dd}, J_{l}=15.9 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}\right), 5.43(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(125$
$\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 143.3,135.9,135.0,132.5,132.4,131.4,129.6,125.7,121.3,121.1$, 118.2, 114.5, 114.4, 63.0. HRMS-ESI calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{Br}$ : $[M]^{+}$287.0184; found 287.0179. FTIR $\vee 3024 m, 2997 m, 1643 s, 1570 w, 1512 m, 1489 s, 1450 s, 1358 w$, $1315 m, 1281 s, 1254 s, 1123 s, 1053 s, 991 m, 937 s, 833 s, 814 s, 768 s, 725 m \mathrm{~cm}^{-1}$.

## 2-butyl-6-bromo-9H-beta-carbolin-2-ium iodide (145)



To a solution of 6-bromonorharmane (131) ( $15.0 \mathrm{mg}, 0.06$ mmol, 1.00 equiv) in $\mathrm{CH}_{3} \mathrm{CN}(0.5 \mathrm{~mL})$ was added iodobutane ( $17 \mu \mathrm{~L}, 0.15 \mathrm{mmol}, 2.50$ equiv). The flask was sealed and heated at $85{ }^{\circ} \mathrm{C}$ for 15 hours. The reaction was cooled to RT, the precipitate filtered, washed with $\mathrm{CH}_{3} \mathrm{CN}$ and pentane. The product was dissolved in MeOH and any precipitate removed by filtration. The filtrated was concentrated and dried under high vacuum affording $145(11.0 \mathrm{mg}, 0.026 \mathrm{mmol}, 43 \%)$ as a crystalline solid. M.p. $=231.5-232.5^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 9.38(\mathrm{~s}, 1 \mathrm{H}), 8.73(\mathrm{~d}, J$ $=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.66(\mathrm{~d}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.65\left(\mathrm{dd}, J_{I}=6.4 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.93$ $\left(\mathrm{dd}, J_{1}=9.1 \mathrm{~Hz}, J_{2}=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.75(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, 2.12 (quint., $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$ ), 1.50 (sext., $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$ ), 1.06 (t, $J=7.5 \mathrm{~Hz}, 3 \mathrm{H}$ ). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 143.2,135.9,134.9,132.5,132.2,129.5,125.6$, 121.1, 118.1, 114.4, 114.4, 61.3, 33.6, 19.2, 12.5. HRMS-ESI calcd for $\mathrm{C}_{15} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{Br}$ : $[\mathrm{M}]^{+}$303.0497; found 303.0508. FTIR v 3028s, 2994s, 2955s, 2855m, 1647m, 1570w, $1516 m, 1489 s, 1447 s, 1319 m, 1281 s, 1254 m, 1165 m, 1138 s, 1049 s, 1022 w, 903 w$, $864 s, 802 s, 725 \mathrm{~s} \mathrm{~cm}^{-1}$.

## 6-bromo-2-(4-methoxycarbonyl-butyl)-9H-beta-carbolin-2-ium bromide (146)


$\mathrm{mmol}, 2.50$ equiv). The flask was sealed and heated at $85{ }^{\circ} \mathrm{C}$ for 15 hours. The reaction was cooled to RT, the precipitate filtered, washed with $\mathrm{CH}_{3} \mathrm{CN}$ and pentane. The product was dissolved in MeOH and any precipitate removed by filtration. The filtrated was concentrated and dried under high vacuum affording 146 ( 20.9 mg ,
$0.047 \mathrm{mmol}, 79 \%)$ as a crystalline solid. M.p. $=203.5-204.5{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 9.39(\mathrm{~s}, 1 \mathrm{H}), 8.66-8.65(\mathrm{~m}, 2 \mathrm{H}), 8.66\left(\mathrm{dd}, J_{1}=6.8 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $7.94\left(\mathrm{dd}, J_{l}=8.7 \mathrm{~Hz}, J_{2}=1.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.75(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{t}, J=7.5 \mathrm{~Hz}$, 2 H ), 3.68 ( $\mathrm{s}, 3 \mathrm{H}$ ), $2.48(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$ ), 2.17 (quint., $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$ ), 1.74 (quint., $J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$ ). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 173.8,143.2$, 135.9, 134.9, $132.5,132.2,129.6,125.7,121.1,118.1,114.4,114.4,61.0,50.8,32.4,30.8,21.1$. HRMS-ESI calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{O}_{2} \mathrm{Br}:[\mathrm{M}]^{+} 361.0552$; found 361.0555. FTIR v 3024 s , 2986s, 2947s, 2913s, 2843m, 1736s, 1643s, 1612w, 1574w, 1520m, 1489s, 1447s, $1366 m, 1285 s, 1242 s, 1200 s, 1153 s, 1126 s, 1092 m, 972 m, 922 m, 872 s, 826 s, 741 s$ $\mathrm{cm}^{-1}$.

## 2-benzyl-6-bromo-9H-beta-carbolin-2-ium bromide (147)



To a solution of 6-bromonorharmane (131) ( 15.0 mg , $0.06 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{CH}_{3} \mathrm{CN}(0.5 \mathrm{~mL})$ was added benzyl bromide ( $18 \mu \mathrm{~L}, 0.15 \mathrm{mmol}, 2.50$ equiv). The flask was sealed and heated at $85^{\circ} \mathrm{C}$ for 15 hours. The reaction was cooled to RT, the precipitate filtered, washed with $\mathrm{CH}_{3} \mathrm{CN}$ and pentane. The product was dissolved in MeOH and any precipitate removed by filtration. The filtrated was concentrated and dried under high vacuum affording $147(25.0 \mathrm{mg}, 0.06 \mathrm{mmol}$, quant.) as a crystalline solid. M.p. $=235.5-236.5^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 9.45(\mathrm{~s}, 1 \mathrm{H}), 8.73(\mathrm{~d}, \mathrm{~J}$ $=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.71\left(\mathrm{dd}, J_{1}=6.4 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.66\left(\mathrm{dd}, J_{1}=2.0 \mathrm{~Hz}, J_{2}=0.8\right.$ $\mathrm{Hz}, 1 \mathrm{H}), 7.93\left(\mathrm{dd}, J_{1}=8.7 \mathrm{~Hz}, J_{2}=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.74(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.57(\mathrm{dd}$, $\left.J_{l}=7.9 \mathrm{~Hz}, J_{2}=2.0 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.51-7.47(\mathrm{~m}, 3 \mathrm{H}), 5.99(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 143.3,135.9,135.0,134.3,132.5,132.4,129.5,129.4,129.2,128.4,125.7$, 121.1, 118.3, 114.5, 114.4, 64.1. HRMS-ESI calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{Br}$ : [M] ${ }^{+} 337.0340$; found 337.0336. FTIR $\vee 3021 m, 2986 m, 2943 m, 2889 m, 2843 m, 1647 m, 1566 w$, $1520 w, 1489 s, 1454 s, 1319 m, 1281 s, 1254 m, 1200 w, 1161 m, 1126 m, 1053 m, 1026 w$, $868 m, 814 s, 733 s, 706 s \mathrm{~cm}^{-1}$.

## 6-bromo-2-(4-fluoro-benzyl)-9H-beta-carbolin-2-ium bromide (148)



To a solution of 6-bromonorharmane (131) ( 25.0 mg , $0.10 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{CH}_{3} \mathrm{CN}(1.5 \mathrm{~mL})$ was added 4-fluorobenzylbromide ( $31 \mu \mathrm{~L}, 0.25 \mathrm{mmol}$, 2.50 equiv). The flask was sealed and heated at $85^{\circ} \mathrm{C}$ for 1 hour. The reaction was cooled to RT, the precipitate filtered, washed with $\mathrm{CH}_{3} \mathrm{CN}$ and pentane. The product was dissolved in MeOH and any precipitate removed by filtration. The filtrated was concentrated and dried under high vacuum affording 148 ( $42.2 \mathrm{mg}, 0.096 \mathrm{mmol}, 96 \%)$ as a crystalline solid. M.p. $=279.5-280.0$ ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 9.43(\mathrm{~s}, 1 \mathrm{H}), 8.73-8.66(\mathrm{~m}, 3 \mathrm{H}), 7.94\left(\mathrm{dd}, J_{1}=\right.$ $\left.8.8 \mathrm{~Hz}, J_{2}=1.7 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.75(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.62\left(\mathrm{dd}, J_{1}=8.5 \mathrm{~Hz}, J_{2}=5.4 \mathrm{~Hz}\right.$, 2 H ), $7.23(\mathrm{t}, J=8.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.97(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 163.8$ $(\mathrm{d}, J=248.0 \mathrm{~Hz}), 143.7,136.3,135.5,132.9,132.8,131.2(\mathrm{~d}, J=8.8 \mathrm{~Hz}), 130.8(\mathrm{~d}, J$ $=3.2 \mathrm{~Hz}), 129.9,126.1,121.5,118.7,116.4(\mathrm{~d}, J=22.1 \mathrm{~Hz}), 114.9,114.8,63.6$. HRMS-ESI calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{FN}_{2} \mathrm{Br}$ : [M] ${ }^{+} 355.0246$; found 355.0232. FTIR $v 3040 \mathrm{~m}$, $2982 m, 2943 m, 2886 m, 1647 m, 1605 w, 1508 s, 1489 s, 1454 s, 1350 m, 1277 s, 1250 m$, $1223 s, 1165 s, 1119 s, 1053 m, 826 s, 779 s, 698 s \mathrm{~cm}^{-1}$.

## 6-bromo-2-(3-fluoro-benzyl)-9H-beta-carbolin-2-ium bromide (149)



To a solution of 6-bromonorharmane (131) ( 25.0 mg , $0.10 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{CH}_{3} \mathrm{CN}(1.5 \mathrm{~mL})$ was added 3-fluorobenzylbromide ( $31 \mu \mathrm{~L}, 0.25 \mathrm{mmol}, 2.50$ equiv). The flask was sealed and heated at $85^{\circ} \mathrm{C}$ for 22 hours. The reaction was cooled to RT, the precipitate filtered, washed with $\mathrm{CH}_{3} \mathrm{CN}$ and pentane. The product was dissolved in MeOH and any precipitate removed by filtration. The filtrated was concentrated and dried under high vacuum affording 149 $(19.3 \mathrm{mg}, 0.044 \mathrm{mmol}, 44 \%)$ as a crystalline solid. M.p. $=237.0-238.0{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}$ ( $500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) $\delta 9.48(\mathrm{~s}, 1 \mathrm{H}), 8.74(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.72\left(\mathrm{dd}, J_{1}=6.4 \mathrm{~Hz}, J_{2}\right.$ $=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.64(\mathrm{~d}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.91\left(\mathrm{dd}, J_{1}=9.1 \mathrm{~Hz}, J_{2}=2.0 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.74$ $(\mathrm{d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.40-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.22\left(\mathrm{ddd}, J_{1}=9.1 \mathrm{~Hz}, J_{2}\right.$ $\left.=8.3 \mathrm{~Hz}, J_{3}=2.4 \mathrm{~Hz}, 1 \mathrm{H}\right), 6.02(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 165.4(\mathrm{~d}, J$ $=247.4 \mathrm{~Hz}), 145.6,138.9(\mathrm{~d}, J=8.2 \mathrm{~Hz}), 138.1,137.3,134.8,134.7,133.4(\mathrm{~d}, J=8.2$
$\mathrm{Hz}), 131.9,128.0,126.5(\mathrm{~d}, J=2.7 \mathrm{~Hz}), 123.3,120.6,118.4(\mathrm{~d}, J=21.1 \mathrm{~Hz}), 117.6$ $(\mathrm{d}, J=23.9 \mathrm{~Hz}), 116.8,116.7$, 65.5. HRMS-ESI calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{FN}_{2} \mathrm{Br}:[\mathrm{M}]^{+}$ 355.0246; found 355.0232 . FTIR $\vee 3453 w, 3040 m, 2947 m, 2893 m, 2839 m, 2696 w$, $1643 m, 1593 m, 1516 m, 1485 s, 1450 s, 1319 m, 1281 s, 1254 s, 1150 m, 1123 s, 1053 m$, $876 m, 806 s, 752 s \mathrm{~cm}^{-1}$.

## 6-bromo-2-(4-nitro-benzyl)-9H-beta-carbolin-2-ium bromide (150)



To a solution of 6-bromonorharmane (131) (15.0 $\mathrm{mg}, 0.06 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{CH}_{3} \mathrm{CN}(0.5 \mathrm{~mL})$ was added 4-nitrobenzyl bromide ( $32.4 \mathrm{mg}, 0.15$ mmol, 2.50 equiv). The flask was sealed and heated at $85^{\circ} \mathrm{C}$ for 5 hours. The reaction was cooled to RT, the precipitate filtered, washed with $\mathrm{CH}_{3} \mathrm{CN}$ and pentane. The product was dissolved in MeOH and any precipitate removed by filtration. The filtrated was concentrated and dried under high vacuum affording $150(27.6 \mathrm{mg}, 0.060 \mathrm{mmol}, 99 \%)$ as a crystalline solid. M.p. $=$ 261.0-262.0 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 9.52(\mathrm{~s}, 1 \mathrm{H}), 8.79(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1$ H), $8.74(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 8.70(\mathrm{~s}, 1 \mathrm{H}), 8.34(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.96(\mathrm{~d}, J=8.3$ $\mathrm{Hz}, 1 \mathrm{H}), 7.78-7.74(\mathrm{~m}, 3 \mathrm{H}), 6.16(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 148.5$, $143.5,141.2,136.0,135.3,132.8,132.7,130.1,129.3,125.8,124.0,121.1,118.5$, 114.7, 114.5, 62.8. HRMS-ESI calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~N}_{3} \mathrm{O}_{2} \mathrm{Br}$ : [M] ${ }^{+}$382.0191; found 382.0183. FTIR $\vee 3140 w, 3048 m, 3009 m, 2955 w, 2855 w, 1643 m, 1605 w, 1516 s$, $1489 s, 1450 m, 1339 s, 1285 s, 1258 m, 1223 m, 1161 m, 1057 w, 945 m, 856 m, 818 s, 729 s$ $\mathrm{cm}^{-1}$.

## 6-bromo-2-(3-phenyl-propyl)-9H-beta-carbolin-2-ium bromide (151)



To a solution of 6-bromonorharmane (131) (15.0 $\mathrm{mg}, 0.06 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{CH}_{3} \mathrm{CN}(0.5 \mathrm{~mL})$ was added 1-bromo-3-phenylpropane ( $23 \mu \mathrm{~L}, 0.15$ $\mathrm{mmol}, 2.50$ equiv). The flask was sealed and heated at $85^{\circ} \mathrm{C}$ for 15 hours. The reaction was cooled to RT, the precipitate filtered, washed with $\mathrm{CH}_{3} \mathrm{CN}$ and pentane. The product was dissolved in MeOH and any
precipitate removed by filtration. The filtrated was concentrated and dried under high vacuum affording 151 ( $25.2 \mathrm{mg}, 0.056 \mathrm{mmol}, 94 \%$ ) as a crystalline solid. M.p. $=$ 257.5-258.0 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 9.30(\mathrm{~s}, 1 \mathrm{H}), 8.68(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1$ H), $8.65(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.62\left(\mathrm{dd}, J_{l}=6.4 \mathrm{~Hz}, J_{2}=0.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.93\left(\mathrm{dd}, J_{l}=\right.$ $9.1 \mathrm{~Hz}, J_{2}=2.0 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.74(\mathrm{~d}, J=8.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{~s}, 2 \mathrm{H}), 7.24(\mathrm{~s}, 2 \mathrm{H}), 7.12$ (m, 1 H ), 4.83 (t, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$ ), $2.83(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$ ), 2.49 (quint, $J=7.5 \mathrm{~Hz}, 2$ H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 143.1,140.0,135.8,134.9,132.4,132.2,129.6$, 128.2, 128.0, 125.9, 125.6, 121.1, 118.1, 114.4, 114.3, 61.2, 32.6, 32.1. HRMS-ESI calcd for $\mathrm{C}_{20} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{Br}$ : $[\mathrm{M}]^{+} 365.0653$; found 365.0653. FTIR $\vee 3410 w, 3024 \mathrm{~s}$, 2986s, 2943s, 2839m, 1639s, 1609m, 1570w, 1516w, 1489s, 1450s, 1315m, 1281s, 1254s, $1157 s, 1126 s, 1049 m, 972 w, 907 w, 876 s, 826 s, 822 s, 733 s, 694 s \mathrm{~cm}^{-1}$.

## 6-bromo-2-naphthalen-2-ylmethyl-9H-beta-carbolin-2-ium bromide (152)



To a solution of 6-bromonorharmane (131) (15.0 $\mathrm{mg}, 0.06 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{CH}_{3} \mathrm{CN}(0.5 \mathrm{~mL})$ was added 2-bromomethyl naphtalene ( 33.2 mg , $0.15 \mathrm{mmol}, 2.50$ equiv). The flask was sealed and heated at $85{ }^{\circ} \mathrm{C}$ for 5 hours. The reaction was cooled to RT, the precipitate filtered, washed with $\mathrm{CH}_{3} \mathrm{CN}$ and pentane. The product was dissolved in MeOH and any precipitate removed by filtration. The filtrated was concentrated and dried under high vacuum affording $152(22.9 \mathrm{mg}, 0.049 \mathrm{mmol}, 82 \%)$ as a crystalline solid. M.p. $=$ 223.5-224.0 ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 9.49(\mathrm{~s}, 1 \mathrm{H}), 8.78-8.73(\mathrm{~m}, 2 \mathrm{H})$, 8.67 (d, $J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 8.11$ (s, 1 H ), $7.99-7.91(\mathrm{~m}, 4 \mathrm{H}), 7.75(\mathrm{~d}, J=9.1 \mathrm{~Hz}, 1 \mathrm{H})$, 7.60-7.58 (m, 3 H ), 6.15 ( $\mathrm{s}, 2 \mathrm{H}$ ). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ 143.3, 136.0, $135.1,133.6,133.4,132.6,132.5,131.5,129.6,129.3,128.3,127.9,127.5,127.0$, 126.7, 125.7, 124.9, 121.1, 118.3, 114.5, 114.4, 64.3. HRMS-ESI calcd for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{Br}:[\mathrm{M}]^{+}$387.0497; found 387.0499. FTIR $\vee 3615 w$, $3537 w$, $3368 w, 3040 m$, $2986 m, 2936 m, 2882 m, 2839 m, 2797 m, 2646 w, 1643 m, 1609 w, 1520 m, 1489 s$, $1450 m, 1319 m, 1281 s, 1157 m, 1126 s, 1053 m, 968 w, 872 m, 818 s, 775 s, 733 s, 706 m$ $\mathrm{cm}^{-1}$.

### 6.4.3. Eight-Bromonorharmane derivatives

## 8-bromo-2-ethyl-9H-beta-carbolin-2-ium iodide (153)



To a solution of 8 -bromonorharmane (132) ( $10.0 \mathrm{mg}, 0.05$ mmol, 1.00 equiv) in $\mathrm{CH}_{3} \mathrm{CN}(0.5 \mathrm{~mL})$ was added ethyl iodide ( $10 \mu \mathrm{~L}, 0.13 \mathrm{mmol}, 2.50$ equiv). The flask was sealed and heated at $85{ }^{\circ} \mathrm{C}$ overnight. The reaction was cooled to RT, the precipitate filtered, washed with $\mathrm{CH}_{3} \mathrm{CN}$ and pentane. The product was dissolved in MeOH and any precipitate removed by filtration. The filtrated was concentrated and dried under high vacuum affording $153(4.60 \mathrm{mg}, 0.011 \mathrm{mmol}$, $23 \%)$ as a crystalline solid. M.p. $=292.0-293.0^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ $9.28(\mathrm{~s}, 1 \mathrm{H}), 8.77(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.70(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.48(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 8.06(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.45(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{q}, J=7.9 \mathrm{~Hz}, 2 \mathrm{H})$, 1.77 (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}$ ). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 143.1,135.9$, 134.4, 133.7, 132.6, 129.3, 123.0, 122.4, 121.1, 118.5, 105.1, 57.0, 16.0. HRMS-ESI calcd for $\mathrm{C}_{13} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{Br}:[\mathrm{M}]^{+} 275.0184$; found 275.0182. FTIR $\vee 3356 w, 3048 m, 3009 m, 2326 w$, $1643 m, 1555 m, 1497 m, 1470 s, 1327 s, 1246 m, 1215 m, 1130 s, 1034 m, 837 s, 791 s$, $748 \mathrm{scm}{ }^{-1}$.

## 2-allyl-8-bromo-9H-beta-carbolin-2-ium bromide (154)



To a solution of 8-bromonorharmane (132) ( $10.0 \mathrm{mg}, 0.05$ mmol, 1.00 equiv) in $\mathrm{CH}_{3} \mathrm{CN}(0.5 \mathrm{~mL}$ ) was added allyl bromide ( $11 \mu \mathrm{~L}, 0.13 \mathrm{mmol}, 2.50$ equiv). The flask was sealed and heated at $85^{\circ} \mathrm{C}$ overnight. The reaction was cooled to RT, the precipitate filtered, washed with $\mathrm{CH}_{3} \mathrm{CN}$ and pentane. The product was dissolved in MeOH and any precipitate removed by filtration. The filtrated was concentrated and dried under high vacuum affording $154(4.50 \mathrm{mg}, 0.012 \mathrm{mmol}$, $24 \%$ ) as a crystalline solid. M.p. $=220.0-221.0^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ $9.25(\mathrm{~s}, 1 \mathrm{H}), 8.79(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.66\left(\mathrm{dd}, J_{1}=6.4 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.49$ $\left(\mathrm{dd}, J_{1}=7.9 \mathrm{~Hz}, J_{2}=0.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 8.07\left(\mathrm{dd}, J_{1}=7.5 \mathrm{~Hz}, J_{2}=0.8 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.46(\mathrm{t}, J$ $=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.34-6.26(\mathrm{~m}, 1 \mathrm{H}), 5.58\left(\mathrm{dd}, J_{1}=10.3 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.57(\mathrm{dd}$, $\left.J_{1}=16.7 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 5.45(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}(125 \mathrm{MHz}$,
$\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 143.2,135.8,134.5,134.0,133.0,131.4,129.5,123.1,122.4,121.4,121.0$, 118.5, 105.1, 63.1. HRMS-ESI calcd for $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{Br}$ : [M] ${ }^{+}$287.0184; found 287.0178. FTIR $v 3352 w, 3051 m, 3017 m, 2974 m, 2905 m, 2858 m, 1647 m, 1616 w$, $1558 m, 1501 m, 1470 s, 1327 s, 1300 m, 1219 m, 1138 m, 1115 m, 1034 m, 1011 m, 953 m$, $810 m, 783 s, 745 s, 683 m \mathrm{~cm}^{-1}$.

## 2-benzyl-8-bromo-9H-beta-carbolin-2-ium bromide (155)



To a solution of 8 -bromonorharmane (132) ( $10.0 \mathrm{mg}, 0.05$ mmol, 1.00 equiv) in $\mathrm{CH}_{3} \mathrm{CN}(0.5 \mathrm{~mL})$ was added benzyl bromide ( $15 \mu \mathrm{~L}, 0.13 \mathrm{mmol}, 2.50$ equiv). The flask was sealed and heated at $85{ }^{\circ} \mathrm{C}$ overnight. The reaction was cooled to RT, the precipitate filtered, washed with $\mathrm{CH}_{3} \mathrm{CN}$ and pentane. The product was dissolved in MeOH and any precipitate removed by filtration. The filtrated was concentrated and dried under high vacuum affording $155(9.10 \mathrm{mg}, 0.022 \mathrm{mmol}$, $44 \%)$ as a crystalline solid. M.p. $=235.0-236.0^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta$ $9.34(\mathrm{~s}, 1 \mathrm{H}), 8.77(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.75(\mathrm{~d}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.46(\mathrm{~d}, J=7.9 \mathrm{~Hz}$, $1 \mathrm{H}), 8.04(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.58-7.56(\mathrm{~m}, 2 \mathrm{H}), 7.53-7.48(\mathrm{~m}, 3 \mathrm{H}), 7.43(\mathrm{t}, J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}$ ), $6.02(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 143.2,135.8,134.5,134.2$, 133.9, 133.1, 129.5, 129.4, 129.3, 128.5, 123.1, 122.4, 121.0, 118.6, 105.1, 64.1. HRMS-ESI calcd for $\mathrm{C}_{18} \mathrm{H}_{14} \mathrm{~N}_{2} \mathrm{Br}$ : [M] ${ }^{+}$337.0340; found 337.0350. FTIR $v 3399 w$, $3055 m, 3017 m, 1643 m, 1562 w, 1520 m, 1497 m, 1470 s, 1454 m, 1327 s, 1254 m, 1119 m$, $1034 w, 818 m, 787 m, 748 s, 706 s \mathrm{~cm}^{-1}$.

## 8-bromo-2-(4-fluoro-benzyl)-9H-beta-carbolin-2-ium bromide (156)



To a solution of 8-bromonorharmane (132) ( $10.0 \mathrm{mg}, 0.05$ mmol, 1.00 equiv) in $\mathrm{CH}_{3} \mathrm{CN}(0.5 \mathrm{~mL})$ was added 4fluorobenzyl bromide ( $16 \mu \mathrm{~L}, 0.13 \mathrm{mmol}, 2.50$ equiv). The flask was sealed and heated at $85^{\circ} \mathrm{C}$ overnight. The reaction was cooled to RT , the precipitate filtered, washed with $\mathrm{CH}_{3} \mathrm{CN}$ and pentane. The product was dissolved in MeOH and any precipitate removed by filtration. The filtrated was concentrated and dried under high vacuum affording $156(5.50 \mathrm{mg}$,
$0.013 \mathrm{mmol}, 25 \%)$ as a crystalline solid. M.p. $=259.5-260.5{ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}(500 \mathrm{MHz}$, $\left.\mathrm{CD}_{3} \mathrm{OD}\right) \delta 9.34(\mathrm{~s}, 1 \mathrm{H}), 8.78(\mathrm{~d}, J=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 8.74\left(\mathrm{dd}, J_{1}=6.4 \mathrm{~Hz}, J_{2}=0.8 \mathrm{~Hz}\right.$, $1 \mathrm{H}), 8.47(\mathrm{~d}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 8.05(\mathrm{~d}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.64\left(\mathrm{dd}, J_{1}=8.7 \mathrm{~Hz}, J_{2}=\right.$ $5.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.44(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.25(\mathrm{t}, J=8.7 \mathrm{~Hz}, 2 \mathrm{H}), 6.01(\mathrm{~s}, 2 \mathrm{H}) .{ }^{13} \mathrm{C}-$ NMR ( $125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) $\delta 163.5(\mathrm{~d}, J=248.4 \mathrm{~Hz}$ ), 143.2, 135.8, 134.6, 134.0, $133.0,130.9$ (d, $J=8.2 \mathrm{~Hz}$ ), 130.23 (d, $J=2.7 \mathrm{~Hz}$ ), 129.4, 123.1, 122.5, 121.0, 118.7, $116.1(\mathrm{~d}, J=22.9 \mathrm{~Hz})$, 105.1, 63.2. HRMS-ESI calcd for $\mathrm{C}_{18} \mathrm{H}_{13} \mathrm{~N}_{2} \mathrm{BrF}:[\mathrm{M}]^{+}$ 355.0246; found 355.0257 . FTIR $\vee 3364 w, 3044 m, 3001 m, 2978 m, 1647 m, 1562 m$, $1512 m, 1497 m, 1470 s, 1327 s, 1250 m, 1138 m, 1115 m, 860 m, 810 m, 783 s, 748 s \mathrm{~cm}^{-1}$.

## 8-bromo-2-naphthalen-2-ylmethyl-9H-beta-carbolin-2-ium bromide (157)



To a solution of 8 -bromonorharmane (132) ( 10.0 mg , $0.05 \mathrm{mmol}, 1.00$ equiv) in $\mathrm{CH}_{3} \mathrm{CN}(0.5 \mathrm{~mL})$ was added 2-bromomethyl naphtalene ( $28 \mathrm{mg}, 0.13 \mathrm{mmol}, 2.50$ equiv). The flask was sealed and heated at $85{ }^{\circ} \mathrm{C}$ overnight. The reaction was cooled to RT, the precipitate filtered, washed with $\mathrm{CH}_{3} \mathrm{CN}$ and pentane. The product was dissolved in MeOH and any precipitate removed by filtration. The filtrated was concentrated and dried under high vacuum affording $157(10.0 \mathrm{mg}, 0.021 \mathrm{mmol}, 43 \%)$ as a crystalline solid. M.p. $=244.5-245.0$ ${ }^{\circ} \mathrm{C} .{ }^{1} \mathrm{H}-\mathrm{NMR}\left(500 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 9.40(\mathrm{~s}, 1 \mathrm{H}), 8.81\left(\mathrm{dd}, J_{1}=6.4 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 1\right.$ H), 8.77 (d, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}$ ), 8.46 (d, $J=7.9 \mathrm{~Hz}, 1 \mathrm{H}$ ), 8.12 (s, 1 H ), 8.03 (d, $J=7.5$ $\mathrm{Hz}, 1 \mathrm{H}$ ), 7.99 (d, $J=8.7 \mathrm{~Hz}, 1 \mathrm{H}$ ), $7.97\left(\mathrm{dd}, J_{1}=6.0 \mathrm{~Hz}, J_{2}=3.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.93(\mathrm{dd}$, $\left.J_{1}=6.0 \mathrm{~Hz}, J_{2}=3.6 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.61-7.58(\mathrm{~m}, 3 \mathrm{H}), 7.43(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.19(\mathrm{~s}, 2$ H). ${ }^{13} \mathrm{C}-\mathrm{NMR}\left(125 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 143.2,135.8,134.5,134.0,133.7,133.4,133.2$, $131.4,129.5,129.3,128.4,127.9,127.5,127.0,126.8,125.0,123.1,122.4,121.0$, 118.6, 105.1, 64.3. HRMS-ESI calcd for $\mathrm{C}_{22} \mathrm{H}_{16} \mathrm{~N}_{2} \mathrm{Br}$ : [M] ${ }^{+}$387.0497; found 387.0512. FTIR v $3372 m, 3051 m, 3013 m, 2928 m, 1643 m, 1562 w, 1516 m, 1474 m$, $1331 s, 1258 m, 1126 s, 1034 w, 864 m, 806 s, 783 s, 752 s \mathrm{~cm}^{-1}$.

## 6-chloro-2-methyl-2H-beta-carboline (158)



To a mixture of 6-chloro-2-methyl-9 H -beta-carbolin-2-ium iodide ( $\mathbf{1 3 3}$ ) ( $33.0 \mathrm{mg}, 0.096 \mathrm{mmol}, 1.00$ equiv) in EtOAc $(15.0 \mathrm{~mL})$ a solution of $\mathrm{NaOH}(1 \mathrm{M})(7.5 \mathrm{~mL})$ was added dropwise. The starting material immediately dissolves to generate a strong yellow mixture that was stirred at RT for 10 minutes. The mixture was extracted with EtOAc (3x) recovering carefully only the organic phases. The combined organic phases could not be dried using standard salts $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right.$ or $\left.\mathrm{MgSO}_{4}\right)$ without reprotonation of the generated base and they were directly concentrated and dried under high vacuum to afford the anhydronium base $\mathbf{1 5 8}(18.1 \mathrm{mg}, 0.084 \mathrm{mmol}, 88 \%)$ as a yellow solid. An analytical sample was recrystallized ( $\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O} /$ hexane) for X-ray analysis (crystallographic data are given at the end of the experimental part). ${ }^{1} \mathrm{H}-\mathrm{NMR}$ (400 $\left.\mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.79(\mathrm{~s}, 1 \mathrm{H}), 8.25(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.17(\mathrm{~d}, J=2.1 \mathrm{~Hz}, 1 \mathrm{H})$, $7.92\left(\mathrm{dd}, J_{1}=6.5 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.69(\mathrm{~d}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.49\left(\mathrm{dd}, J_{1}=8.8\right.$ $\left.\mathrm{Hz}, J_{2}=2.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.38(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}\left(100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 179.0,153.6$, 144.4, 131.6, 129.2, 126.3, 123.3, 121.4, 121.1, 118.2, 115.9, 46.2. HRMS-ESI calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{ClN}_{2}$ : $[\mathrm{M}+\mathrm{H}]^{+}$217.0533; found 217.0525. FTIR $\vee 3005 w, 2932 w, 2855 w$, $1570 s, 1408 s, 1335 m, 1285 m, 1246 m, 1157 m, 1092 w, 1053 m, 1015 m, 922 m, 872 w$, $806 m, 783 m, 752 m, 702 \mathrm{~m} \mathrm{~cm}^{-1}$.

## 6-bromo-2-methyl-2H-beta-carboline (160)



To a mixture of 6-bromo-2-methyl-9H-beta-carbolin-2ium iodide (142) ( $47.0 \mathrm{mg}, 0.12 \mathrm{mmol}, 1.00$ equiv) in EtOAc ( 15.0 mL ) a solution of $\mathrm{NaOH}(3 \mathrm{M})(7.5 \mathrm{~mL})$ was added dropwise. The starting material immediately dissolves to generate a strong yellow mixture that was stirred at RT for 15 minutes. The mixture was extracted with EtOAc (3x) recovering carefully only the organic phases. The combined organic phases could not be dried using standard salts $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right.$ or $\left.\mathrm{MgSO}_{4}\right)$ without reprotonation of the generated base and they were directly concentrated and dried under high vacuum to afford the anhydronium base $\mathbf{1 6 0}$ ( $31.5 \mathrm{mg}, 0.12 \mathrm{mmol}$, quant) as a yellow solid. An analytical sample was recrystallized $\left(\mathrm{MeOH} / \mathrm{Et}_{2} \mathrm{O} /\right.$ hexane $)$ for X-ray analysis (crystallographic data are given at the end of the experimental part).
${ }^{1} \mathrm{H}-\mathrm{NMR}\left(400 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}\right) \delta 8.72(\mathrm{~s}, 1 \mathrm{H}), 8.28\left(\mathrm{dd}, J_{1}=2.1 \mathrm{~Hz}, J_{2}=0.6 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $8.16(\mathrm{~d}, J=6.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.81\left(\mathrm{dd}, J_{1}=6.2 \mathrm{~Hz}, J_{2}=1.2 \mathrm{~Hz}, 1 \mathrm{H}\right), 7.63\left(\mathrm{dd}, J_{1}=9.1\right.$ $\mathrm{Hz}, J_{2}=0.6 \mathrm{~Hz}, 1 \mathrm{H}$ ), 7.57 (dd, $\left.J_{1}=9.1 \mathrm{~Hz}, J_{2}=2.1 \mathrm{~Hz}, 1 \mathrm{H}\right), 4.32(\mathrm{~s}, 3 \mathrm{H}) .{ }^{13} \mathrm{C}-\mathrm{NMR}$ ( $100 \mathrm{MHz}, \mathrm{CD}_{3} \mathrm{OD}$ ) $\delta 179.0,154.7,145.0,131.7,131.3,125.8,124.3,122.3,119.0$, 115.7, 110.2, 46.1. HRMS-ESI calcd for $\mathrm{C}_{12} \mathrm{H}_{10} \mathrm{~N}_{2} \mathrm{Br}:[\mathrm{M}+\mathrm{H}]^{+}$261.0027; found 261.0031. FTIR $v 3063 w, 3009 w, 2936 w, 1624 m, 1570 s, 1423 s, 1335 m, 1285 s$, $1246 m, 1153 m, 1123 m, 1038 m, 922 m, 880 m, 806 s, 787 m, 752 m, 687 \mathrm{~m}^{-1}$.

### 6.4.4. Biological Evaluation

Determination of antiprotozoal and cytotoxic activity. In vitro assays with $T . b$. rhodesiense STIB 900 bloodstream forms, P. falciparum K1 erythocytic stages, T. cruzi Tulahen Lac Z C4 amastigotes in L6 cells (rat skeletal myoblasts) and $L$. donovani MHOM-ET/67/L82 axenic amastigotes as well as for cytotoxicity using L6 cells were carried out as previously reported. ${ }^{251}$

Bacteria and MIC determination. Actinobacterial species used in this study were Corynebacterium glutamicum ATCC13032, Mycobacterium smegmatis $\mathrm{mc}^{2} 155$ and Mycobacterium tuberculosis H37Rv. These were grown in 7H9 medium and tested for susceptibility to nostocarboline derivatives using the resazurin-reduction method. ${ }^{252}$ The minimal inhibitory concentration (MIC99) was defined as the lowest drug concentration that prevented growth of $99 \%$ of the cells.

[^88]
### 6.5. Spectra

6.5.1. Spectra from the Anguinomycins C \& D Project












 ppm (f1)


[^89]

 ppm (f1)




[^90]














${ }_{F+\pi}$



Unl, 1 ! LI $\qquad$ A $M$





${ }_{\text {pgo }}^{1020}{ }_{20}$






























[^91]
 ppm (f1)







99.00

















[^92]

















53



[^93] ppm ( t 1 )











56


 ppm (f1)















Anguinomycin C










[^94]



6.5.2. Spectra from the Sporolides Project


2



73





 ppm (f1)



76





 ppm (f1)



83













[^95]



[^96]


[^97]















96









100









102
















107













6.5.3. Spectra from the Nostocarboline and Eudistomin Derivatives Project




134







































































### 6.6. Crystallographic Data

Crystallographic Data for (2S,3R,4S,E)-3-hydroxy- $N$-methoxy- $N, 2,4,6-$
tetramethyloct-6-enamide (42) (CCDC674800)



#### Abstract

We present the crystal and molecular structure of ( $2 S, 3 R, 4 S, E$ )-3-hydroxy- $N$-methoxy$N, 2,4,6$-tetramethyloct-6-enamide (42)


## Comment ${ }^{253}$

The study of the titled structure was undertaken to establish its three dimensional structure. Geometries are tabulated below. All diagrams and calculations were performed using maXus (Bruker Nonius, Delft \& MacScience, Japan).

## Experimental <br> Crystal data

[^98]$\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{NO}_{3}$
$\mathrm{C}_{13} \mathrm{H}_{25} \mathrm{NO}_{3}$
$\mathrm{M}_{\mathrm{r}}=243.347$
Monoclinic P2
$\mathrm{a}=8.5218$ (3) $\AA$
$\mathrm{b}=9.5856$ (4) $\AA$
c $=9.8281(4) \AA$
$\alpha=90.00^{\circ}$
$\beta=111.648$ (2) ${ }^{\circ}$
$\gamma=90.00^{\circ}$
$V=746.20(5) \AA^{3}$
$\mathrm{Z}=2$

## Data collection

KappaCCD CCD diffractometer
Absorption correction: none
3267 measured reflections
3253 independent reflections
2636 observed reflections
Criterion: >2sigma(I)

## Refinement

Refinement on $F^{2}$
fullmatrix least squares refinement
$R($ all $)=0.0658$
$R(\mathrm{gt})=0.0513$
$w R(r e f)=0.1627$
$w R(g t)=0.1464$
$\mathrm{S}(\mathrm{ref})=1.089$
3253 reflections
154 parameters
1 restraints
H positions constr
$\mathrm{D}_{\mathrm{x}}=1.083 \mathrm{Mg} \mathrm{m}^{-3}$
Density measured by: not measured fine-focus sealed tube
Mo $K \alpha$ radiation $\lambda=0.71073$
Cell parameters from 4731 refl.
$\theta=0.998-27.485^{\circ}$
$\mu=0.076 \mathrm{~mm}^{-1}$
$\mathrm{T}=298 \mathrm{~K}$
Cube
$0.7 \times 0.5 \times 0.24 \mathrm{~mm}$
Colourless
Crystal source: Seeberger laboratory

$$
\begin{aligned}
& \mathrm{R}_{\mathrm{int}}=0.031 \\
& \theta_{\max }=27.50^{\circ} \\
& \mathrm{h}=-11 \rightarrow 11 \\
& \mathrm{k}=-12 \rightarrow 12 \\
& \mathrm{l}=-12 \rightarrow 12
\end{aligned}
$$

Calculated weights $1 /\left[\sigma^{2}\left(\mathrm{I}_{\mathrm{o}}\right)+\left(\mathrm{I}_{0}+\mathrm{I}_{\mathrm{c}}\right)^{2} / 900\right]$
$\Delta / \sigma_{\text {max }}=0.001$
$\Delta \rho_{\max }=0.118 \mathrm{e} \AA^{3}$
$\Delta \rho_{\text {min }}=-0.133 \mathrm{e} \AA^{3}$
Extinction correction: none
Atomic scattering factors from International
Tables Vol C Tables 4.2.6.8 and 6.1.1.4
Flack parameter $=0.8(12)$
Flack H D (1983), Acta Cryst. A39, 876-881

Data collection: KappaCCD
Cell refinement: HKL Scalepack (Otwinowski \& Minor 1997)
Data reduction: Denzo and Scalepak (Otwinowski \& Minor, 1997)
Program(s) used to solve structure: SIR97(Cascarano al.,Acta Cryst.,1996,A52,C-79)
Program(s) used to refine structure: SHELXL-97 (Sheldrick, 1997)
Table 1. Fractional atomic coordinates and equivalent isotropic thermal parameters ( $\AA^{2}$ )
$U_{e q}=1 / 3 \Sigma_{i} \Sigma_{j} U_{i j} a_{i} * a_{j} * \boldsymbol{a}_{i} \cdot \boldsymbol{a}_{j}$.

|  | x | y | z | $\mathrm{U}_{\mathrm{eq}}$ | Occ |
| :--- | :---: | :---: | :---: | :---: | :---: |
| O15 | $0.4624(2)$ | $0.13136(19)$ | $0.09136(15)$ | $0.0734(5)$ | 1 |
| O16 | $0.5725(2)$ | $0.16592(17)$ | $0.46659(15)$ | $0.0756(5)$ | 1 |
| O17 | $0.6126(2)$ | $0.58537(14)$ | $0.35834(16)$ | $0.0644(4)$ | 1 |
| N14 | $0.5317(3)$ | $0.0979(2)$ | $0.23996(19)$ | $0.0644(5)$ | 1 |
| C1 | $0.5406(3)$ | $0.1991(2)$ | $0.3379(2)$ | $0.0555(4)$ | 1 |
| C2 | $0.5139(2)$ | $0.3488(2)$ | $0.28732(18)$ | $0.0532(4)$ | 1 |
| C3 | $0.6496(2)$ | $0.44252(19)$ | $0.39736(19)$ | $0.0504(4)$ | 1 |
| C4 | $0.8276(3)$ | $0.4111(2)$ | $0.4034(2)$ | $0.0580(5)$ | 1 |
| C5 | $0.9593(3)$ | $0.4908(3)$ | $0.5312(2)$ | $0.0719(6)$ | 1 |
| C6 | $0.9636(3)$ | $0.4592(3)$ | $0.6812(2)$ | $0.0690(5)$ | 1 |
| C7 | $0.9432(3)$ | $0.5587(3)$ | $0.7665(3)$ | $0.0785(7)$ | 1 |
| C8 | $0.9499(4)$ | $0.5465(5)$ | $0.9203(3)$ | $0.1116(12)$ | 1 |
| C9 | $0.3350(3)$ | $0.3917(3)$ | $0.2720(3)$ | $0.0742(6)$ | 1 |


| C10 | $0.8514(3)$ | $0.4454(3)$ | $0.2610(3)$ | $0.0749(6)$ | 1 |
| :---: | :---: | :---: | :---: | :---: | ---: |
| C11 | $0.9960(6)$ | $0.3108(4)$ | $0.7273(4)$ | $0.1168(14)$ | 1 |
| C12 | $0.5262(4)$ | $-0.0497(3)$ | $0.2723(3)$ | $0.0842(7)$ | 1 |
| C13 | $0.5851(4)$ | $0.1171(4)$ | $0.0259(3)$ | $0.0938(8)$ | 1 |
| H17 | 0.5523 | 0.6165 | 0.3997 | 0.097 | 1 |
| H2 | 0.5227 | 0.3564 | 0.1930 | 0.064 | 1 |
| H3 | 0.6461 | 0.4257 | 0.4925 | 0.060 | 1 |
| H4 | 0.8451 | 0.3127 | 0.4198 | 0.070 | 1 |
| H5A | 1.0703 | 0.4715 | 0.5294 | 0.086 | 1 |
| H5B | 0.9388 | 0.5900 | 0.5137 | 0.086 | 1 |
| H7 | 0.9207 | 0.6524 | 0.7302 | 0.094 | 1 |
| H8A | 0.8393 | 0.5616 | 0.9219 | 0.167 | 1 |
| H8B | 1.0263 | 0.6150 | 0.9804 | 0.167 | 1 |
| H8C | 0.9885 | 0.4549 | 0.9572 | 0.167 | 1 |
| H9A | 0.3160 | 0.4867 | 0.2392 | 0.089 | 1 |
| H9B | 0.3230 | 0.3836 | 0.3651 | 0.089 | 1 |
| H9C | 0.2540 | 0.3324 | 0.2021 | 0.089 | 1 |
| H10A | 0.9653 | 0.4244 | 0.2711 | 0.090 | 1 |
| H10B | 0.8294 | 0.5427 | 0.2391 | 0.090 | 1 |
| H10C | 0.7746 | 0.3905 | 0.1831 | 0.090 | 1 |
| H11A | 0.9955 | 0.3000 | 0.8242 | 0.140 | 1 |
| H11B | 1.1035 | 0.2823 | 0.7263 | 0.140 | 1 |
| H11C | 0.9086 | 0.2540 | 0.6603 | 0.140 | 1 |
| H12A | 0.5777 | -0.0647 | 0.3759 | 0.101 | 1 |
| H12B | 0.5852 | -0.1028 | 0.2233 | 0.101 | 1 |
| H12C | 0.4103 | -0.0790 | 0.2384 | 0.101 | 1 |
| H13A | 0.5358 | 0.1397 | -0.0763 | 0.113 | 1 |
| H13B | 0.6241 | 0.0222 | 0.0371 | 0.113 | 1 |
| H13C | 0.6785 | 0.1783 | 0.0733 | 0.113 | 1 |

Table 2. Anisotropic displacement parameters $\left(\AA^{2}\right)$

|  | $\mathrm{U}_{11}$ | $\mathrm{U}_{12}$ | $\mathrm{U}_{13}$ | $\mathrm{U}_{22}$ | $\mathrm{U}_{23}$ | $\mathrm{U}_{33}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| O15 | $0.0763(10)$ | $-0.0070(8)$ | $0.0195(6)$ | $0.0857(11)$ | $-0.0122(7)$ | $0.0543(7)$ |
| O16 | $0.1066(13)$ | $-0.0215(9)$ | $0.0340(8)$ | $0.0687(9)$ | $0.0038(6)$ | $0.0551(7)$ |
| O17 | $0.0802(9)$ | $0.0025(7)$ | $0.0364(7)$ | $0.0513(8)$ | $-0.0005(6)$ | $0.0693(8)$ |
| N14 | $0.0763(11)$ | $-0.0042(8)$ | $0.0233(8)$ | $0.0579(10)$ | $-0.0064(7)$ | $0.0579(8)$ |
| C1 | $0.0603(10)$ | $-0.0103(8)$ | $0.0258(8)$ | $0.0561(10)$ | $-0.0013(8)$ | $0.0542(9)$ |
| C2 | $0.0586(10)$ | $-0.0052(9)$ | $0.0223(8)$ | $0.0574(10)$ | $0.0007(8)$ | $0.0461(8)$ |
| C3 | $0.0572(9)$ | $-0.0021(8)$ | $0.0245(7)$ | $0.0495(9)$ | $-0.0006(7)$ | $0.0489(8)$ |
| C4 | $0.0596(11)$ | $-0.0029(8)$ | $0.0296(9)$ | $0.0542(10)$ | $-0.0047(8)$ | $0.0656(10)$ |
| C5 | $0.0577(12)$ | $-0.0091(10)$ | $0.0209(10)$ | $0.0746(15)$ | $-0.0037(11)$ | $0.0797(14)$ |
| C6 | $0.0612(11)$ | $0.0057(11)$ | $0.0102(9)$ | $0.0665(12)$ | $0.0032(10)$ | $0.0679(11)$ |
| C7 | $0.0649(13)$ | $0.0066(12)$ | $0.0091(10)$ | $0.0846(17)$ | $-0.0080(12)$ | $0.0721(13)$ |
| C8 | $0.090(2)$ | $0.015(2)$ | $0.0152(14)$ | $0.155(4)$ | $-0.0147(18)$ | $0.0768(16)$ |
| C9 | $0.0579(12)$ | $-0.0028(11)$ | $0.0171(10)$ | $0.0852(16)$ | $-0.0042(11)$ | $0.0734(13)$ |
| C10 | $0.0778(14)$ | $-0.0166(13)$ | $0.0496(11)$ | $0.0814(15)$ | $-0.0135(12)$ | $0.0826(14)$ |
| C11 | $0.166(4)$ | $0.032(2)$ | $0.023(2)$ | $0.079(2)$ | $0.0135(15)$ | $0.0860(19)$ |
| C12 | $0.0972(18)$ | $-0.0073(13)$ | $0.0340(15)$ | $0.0575(12)$ | $-0.0065(13)$ | $0.0966(17)$ |
| C13 | $0.110(2)$ | $-0.0175(17)$ | $0.0480(14)$ | $0.103(2)$ | $-0.0279(15)$ | $0.0788(15)$ |

Table 3 . Geometric parameters $\left(\AA{ }^{\circ}{ }^{\circ}\right)$

| $\mathrm{O} 15-\mathrm{N} 14$ | $1.396(2)$ | $\mathrm{N} 14-\mathrm{C} 12$ | $1.455(3)$ |
| :--- | :--- | :---: | :---: |
| $\mathrm{O} 15-\mathrm{C} 13$ | $1.422(3)$ | $\mathrm{C} 1-\mathrm{C} 2$ | $1.508(3)$ |
| $\mathrm{O} 16-\mathrm{C} 1$ | $1.233(2)$ | $\mathrm{C} 2-\mathrm{C} 9$ | $1.532(3)$ |
| $\mathrm{O} 17-\mathrm{C} 3$ | $1.426(2)$ | $\mathrm{C} 2-\mathrm{C} 3$ | $1.546(2)$ |
| $\mathrm{N} 14-\mathrm{C} 1$ | $1.349(3)$ | $\mathrm{C} 3-\mathrm{C} 4$ | $1.526(3)$ |


| C4-C10 | 1.522 (3) |
| :---: | :---: |
| $\mathrm{C} 4-\mathrm{C} 5$ | 1.544 (3) |
| C5-C6 | 1.492 (3) |
| C6-C7 | 1.323 (4) |
| C6-C11 | 1.488 (4) |
| C7-C8 | 1.495 (4) |
| O17-H17 | 0.8200 |
| C2-H2 | 0.9600 |
| C3-H3 | 0.9600 |
| $\mathrm{C} 4-\mathrm{H} 4$ | 0.9600 |
| C5-H5A | 0.9700 |
| C5-H5B | 0.9700 |
| C7-H7 | 0.9601 |
| C8-H8A | 0.9600 |
| C8-H8B | 0.9600 |
| C8-H8C | 0.9600 |
| N14-O15-C13 | 110.6 (2) |
| C1-N14-O15 | 118.18 (18) |
| C1-N14-C12 | 122.8 (2) |
| O15-N14-C12 | 114.60 (18) |
| O16-C1-N14 | 118.6 (2) |
| O16-C1-C2 | 122.23 (18) |
| N14-C1-C2 | 119.13 (16) |
| C1-C2-C9 | 108.13 (18) |
| C1-C2-C3 | 109.85 (15) |
| C9-C2-C3 | 111.87 (17) |
| O17-C3-C4 | 108.52 (16) |
| O17-C3-C2 | 109.65 (15) |
| C4-C3-C2 | 112.85 (15) |
| C10-C4-C3 | 112.94 (18) |
| C10-C4-C5 | 109.76 (18) |
| C3-C4-C5 | 110.36 (17) |
| C6-C5-C4 | 116.7 (2) |
| C7-C6-C11 | 123.3 (3) |
| C7-C6-C5 | 121.3 (2) |
| C11-C6-C5 | 115.4 (2) |
| C6-C7-C8 | 128.3 (3) |
| C3-O17-H17 | 109.5 |
| $\mathrm{C} 1-\mathrm{C} 2-\mathrm{H} 2$ | 109.6 |
| C9-C2-H2 | 108.3 |
| C3-C2-H2 | 109.1 |
| O17-C3-H3 | 109.9 |
| C4-C3-H3 | 108.5 |
| C2-C3-H3 | 107.5 |
| C10-C4-H4 | 107.6 |
| C3-C4-H4 | 106.9 |
| C5-C4-H4 | 109.2 |
| C6-C5-H5A | 108.1 |
| C4-C5-H5A | 108.1 |
| C6-C5-H5B | 108.1 |
| C4-C5-H5B | 108.1 |
| H5A-C5-H5B | 107.3 |
| C6-C7-H7 | 119.5 |
| C13-O15-N14-C1 | 116.5 (2) |
| C13-O15-N14-C12 | -86.4 (3) |
| O15-N14-C1-O16 | 167.07 (19) |
| C12-N14-C1-O16 | 12.0 (4) |
| O15-N14-C1-C2 | -13.9 (3) |


| C9—H9A | 0.9600 |
| :---: | :---: |
| C9—H9B | 0.9599 |
| C9—H9C | 0.9600 |
| C10—H10A | 0.9600 |
| C10—H10B | 0.9600 |
| C10—H10C | 0.9601 |
| C11—H11A | 0.9600 |
| C11—H11B | 0.9600 |
| C11—H11C | 0.9600 |
| C12—H12A | 0.9600 |
| C12—H12B | 0.9600 |
| C12—H12C | 0.9600 |
| C13—H13A | 0.9600 |
| C13—H13B | 0.9600 |
| C13—H13C | 0.9600 |


| C8-C7-H7 | 112.2 |
| :---: | :---: |
| C7-C8-H8A | 109.5 |
| C7-C8-H8B | 109.5 |
| H8A-C8-H8B | 109.5 |
| C7-C8-H8C | 109.5 |


| $\mathrm{H} 8 \mathrm{~A}-\mathrm{C} 8-\mathrm{H} 8 \mathrm{C}$ | 109.5 |
| :--- | :--- |
| $\mathrm{H} 8 \mathrm{~B}-\mathrm{C} 8-\mathrm{H} 8 \mathrm{C}$ | 109.5 |


| C2-C9—H9A | 109.0 |
| :---: | :--- |
| C2-C9—H9B | 109.7 |
| H9A-C9-H9B | 109.5 |

$\mathrm{C} 2-\mathrm{C} 9 — \mathrm{H} 9 \mathrm{C} \quad 109.7$
$\mathrm{H9A}-\mathrm{C} 9-\mathrm{H} 9 \mathrm{C} \quad 109.5$

| $\mathrm{H} 9 \mathrm{~B}-\mathrm{C} 9-\mathrm{H} 9 \mathrm{C}$ | 109.5 |
| :--- | :--- |
| $\mathrm{C} 4-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~A}$ | 109.4 |

$\mathrm{C} 4-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B} \quad 109.6$
$\mathrm{H} 10 \mathrm{~A}-\mathrm{C} 10-\mathrm{H} 10 \mathrm{~B} \quad 109.5$

| H10A-C10-H10C | 109.5 |
| :--- | :--- |
| H10B-C10-H10C | 109.5 |


| C6-C11-H11A | 109.7 |
| :--- | :--- |
| C6-C11—H11B | 109.8 |

$\mathrm{H} 11 \mathrm{~A}-\mathrm{C} 11-\mathrm{H} 11 \mathrm{~B} \quad 109.5$
C6-C11-H11C 108.9
$\mathrm{H} 11 \mathrm{~A}-\mathrm{C} 11-\mathrm{H} 11 \mathrm{C} \quad 109.5$

| $\mathrm{H} 11 \mathrm{~B}-\mathrm{C} 11-\mathrm{H} 11 \mathrm{C}$ | 109.5 |
| :---: | :--- |
| N14-C12—H12A | 109.8 |


| $\mathrm{N} 14-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}$ | 109.9 |
| :---: | :---: |
| $\mathrm{H} 12 \mathrm{~A}-\mathrm{C} 12-\mathrm{H} 12 \mathrm{~B}$ | 109.5 |

$\mathrm{N} 14-\mathrm{C} 12-\mathrm{H} 12 \mathrm{C} \quad 108.7$
$\mathrm{H} 12 \mathrm{~A}-\mathrm{C} 12-\mathrm{H} 12 \mathrm{C} \quad 109.5$
$\mathrm{H} 12 \mathrm{~B}-\mathrm{C} 12-\mathrm{H} 12 \mathrm{C} \quad 109.5$
$\mathrm{O} 15-\mathrm{C} 13-\mathrm{H} 13 \mathrm{~A} \quad 109.9$

| O15-C13-H13B | 108.7 |
| :---: | :--- |
| H13A-C13-H13B | 109.5 |
| O15-C13-H13C | 109.8 |
| H13A-C13-H13C | 109.5 |
| H13B-C13-H13C | 109.5 |


| C12-N14-C1-C2 | $-168.9(2)$ |
| :---: | :---: |
| O16-C1-C2-C9 | $-78.4(2)$ |
| N14-C1-C2-C9 | $102.5(2)$ |
| O16-C1-C2-C3 | $43.9(3)$ |
| N14-C1-C2-C3 | $-135.14(19)$ |


| C1-C2-C3-O17 | $-173.36(15)$ |
| :---: | :---: |
| C9-C2-C3-O17 | $-53.3(2)$ |
| C1-C2-C3-C4 | $65.5(2)$ |
| C9-C2-C3-C4 | $-174.36(18)$ |
| O17-C3-C4-C10 | $-56.1(2)$ |
| C2-C3-C4-C10 | $65.6(2)$ |
| O17-C3-C4-C5 | $67.2(2)$ |


| C2-C3-C4-C5 | $-171.09(16)$ |
| :---: | :---: |
| C10-C4-C5-C6 | $-174.7(2)$ |
| C3-C4-C5-C6 | $60.2(3)$ |
| C4-C5-C6-C7 | $-122.8(3)$ |
| C4-C5-C6-C11 | $58.6(4)$ |
| C11-C6-C7-C8 | $0.9(5)$ |
| C5-C6-C7-C8 | $-177.6(2)$ |

## Crystallographic Data for (2E,4R,5S,6R,7R,8S,10E)-7-(tert-butyldimethylsilyl

 oxy)-5-hydroxy-2,4,6,8,10-pentamethyldodeca-2,10-dienal (51) (CCDC674799)

Table 1. Crystal data and structure refinement for ( $2 E, 4 R, 5 S, 6 R, 7 R, 8 S, 10 E$ )-7-(tert-butyldimethylsilyloxy)-5-hydroxy-2,4,6,8,10-pentamethyldodeca-2,10-dienal (51).

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size

51
C23 H44 O3 Si
396.67

100(2) K
0.71073 Å

Orthorhombic
P2(1)2(1)2(1)
$a=8.404(5) \AA \quad \alpha=90^{\circ}$.
$\mathrm{b}=14.93(3) \AA \quad \beta=90^{\circ}$.
$\mathrm{c}=20.26(5) \AA \quad \gamma=90^{\circ}$.
2541(8) $\AA^{3}$
4
$1.037 \mathrm{Mg} / \mathrm{m}^{3}$
$0.110 \mathrm{~mm}^{-1}$
880
$0.42 \times 0.17 \times 0.06 \mathrm{~mm}^{3}$

Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=23.20^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on $\mathrm{F}^{2}$
Final R indices [ $\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$ ]
R indices (all data)
Absolute structure parameter
Extinction coefficient
Largest diff. peak and hole
3.31 to $23.20^{\circ}$.
$-9<=\mathrm{h}<=9,-16<=\mathrm{k}<=16,-22<=1<=22$
27234
$3591[\mathrm{R}(\mathrm{int})=0.1531]$
98.7 \%

Semi-empirical from equivalents
1.0000 and 0.1855

Full-matrix least-squares on $\mathrm{F}^{2}$
3591 / 0 / 246
1.079
$\mathrm{R} 1=0.0670, \mathrm{wR} 2=0.1138$
$R 1=0.1170, w R 2=0.1332$
0.1(3)
$0.0030(11)$
0.229 and -0.216 e. $\AA^{-3}$

Table 2. Atomic coordinates $\left(\times 10^{4}\right)$ and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for ( $2 E, 4 R, 5 S, 6 R, 7 R, 8 S, 10 E$ )-7-(tert-butyldimethylsilyloxy)-5-hydroxy-2,4,6,8,10-pentamethyldodeca-2,10-dienal (51). $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized $\mathrm{U}^{\mathrm{ij}}$ tensor.

|  |  |  |  |
| :--- | ---: | ---: | ---: | ---: |


| $\mathrm{C}(12)$ | $-1180(6)$ | $5174(4)$ | $6987(3)$ | $69(2)$ |
| :--- | ---: | :--- | :--- | :--- |
| $\mathrm{C}(13)$ | $9261(5)$ | $9957(3)$ | $5659(3)$ | $43(2)$ |
| $\mathrm{C}(14)$ | $4672(6)$ | $9637(3)$ | $4913(2)$ | $41(1)$ |
| $\mathrm{C}(15)$ | $6001(6)$ | $9461(3)$ | $7034(2)$ | $40(1)$ |
| $\mathrm{C}(16)$ | $4230(6)$ | $6615(3)$ | $6567(3)$ | $41(1)$ |
| $\mathrm{C}(17)$ | $-523(6)$ | $7125(4)$ | $6634(3)$ | $56(2)$ |
| $\mathrm{C}(18)$ | $4465(7)$ | $8915(3)$ | $8762(3)$ | $55(2)$ |
| $\mathrm{C}(19)$ | $3902(6)$ | $6921(4)$ | $8836(3)$ | $54(2)$ |
| $\mathrm{C}(20)$ | $7329(6)$ | $7586(4)$ | $8741(2)$ | $40(1)$ |
| $\mathrm{C}(21)$ | $8463(6)$ | $8300(4)$ | $8460(3)$ | $57(2)$ |
| $\mathrm{C}(22)$ | $7460(7)$ | $7618(5)$ | $9500(3)$ | $77(2)$ |
| $\mathrm{C}(23)$ | $7857(7)$ | $6664(4)$ | $8498(3)$ | $61(2)$ |
|  |  |  |  |  |

Table 3. Bond lengths $[\AA]$ and angles $\left[{ }^{\circ}\right]$ for $(2 E, 4 R, 5 S, 6 R, 7 R, 8 S, 10 E)$-7-(tert-butyldimethylsilyloxy)-5-hydroxy-2,4,6,8,10-pentamethyldodeca-2,10-dienal (51).

| $\mathrm{Si}(1)-\mathrm{O}(3)$ | $1.633(5)$ |
| :---: | :---: |
| $\mathrm{Si}(1)-\mathrm{C}(18)$ | $1.859(6)$ |
| $\mathrm{Si}(1)-\mathrm{C}(19)$ | $1.873(6)$ |
| $\mathrm{Si}(1)-\mathrm{C}(20)$ | $1.890(5)$ |
| $\mathrm{O}(1)-\mathrm{C}(1)$ | $1.221(5)$ |
| $\mathrm{O}(2)-\mathrm{C}(5)$ | $1.438(5)$ |
| $\mathrm{O}(2)-\mathrm{H}(2)$ | 0.8400 |
| $\mathrm{O}(3)-\mathrm{C}(7)$ | $1.437(5)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)$ | $1.474(7)$ |
| $\mathrm{C}(1)-\mathrm{H}(1)$ | 0.9500 |
| $\mathrm{C}(2)-\mathrm{C}(3)$ | $1.338(6)$ |
| $\mathrm{C}(2)-\mathrm{C}(13)$ | $1.513(7)$ |
| $\mathrm{C}(3)-\mathrm{C}(4)$ | $1.486(6)$ |
| $\mathrm{C}(3)-\mathrm{H}(3)$ | 0.9500 |
| $\mathrm{C}(4)-\mathrm{C}(14)$ | $1.541(7)$ |
| $\mathrm{C}(4)-\mathrm{C}(5)$ | $1.559(6)$ |
| $\mathrm{C}(4)-\mathrm{H}(4)$ | 1.0000 |
| $\mathrm{C}(5)-\mathrm{C}(6)$ | $1.524(7)$ |
| $\mathrm{C}(5)-\mathrm{H}(5)$ | 1.0000 |
| $\mathrm{C}(6)-\mathrm{C}(15)$ | $1.537(6)$ |
| $\mathrm{C}(6)-\mathrm{C}(7)$ | $1.540(6)$ |
|  |  |


| $\mathrm{C}(6)-\mathrm{H}(6)$ | 1.0000 |
| :---: | :---: |
| $\mathrm{C}(7)-\mathrm{C}(8)$ | 1.541(6) |
| $\mathrm{C}(7)-\mathrm{H}(7)$ | 1.0000 |
| $\mathrm{C}(8)-\mathrm{C}(16)$ | 1.531(6) |
| $\mathrm{C}(8)-\mathrm{C}(9)$ | 1.532(6) |
| $\mathrm{C}(8)-\mathrm{H}(8)$ | 1.0000 |
| $\mathrm{C}(9)-\mathrm{C}(10)$ | 1.495(6) |
| $\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$ | 0.9900 |
| $\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$ | 0.9900 |
| $\mathrm{C}(10)-\mathrm{C}(11)$ | 1.321(7) |
| $\mathrm{C}(10)-\mathrm{C}(17)$ | 1.511(7) |
| $\mathrm{C}(11)-\mathrm{C}(12)$ | 1.497(7) |
| $\mathrm{C}(11)-\mathrm{H}(11)$ | 0.9500 |
| $\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$ | 0.9800 |
| $\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$ | 0.9800 |
| $\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$ | 0.9800 |
| $\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$ | 0.9800 |
| $\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$ | 0.9800 |
| $\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$ | 0.9800 |
| $\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$ | 0.9800 |
| $\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$ | 0.9800 |
| $\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$ | 0.9800 |
| $\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$ | 0.9800 |
| $\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$ | 0.9800 |
| $\mathrm{C}(15)-\mathrm{H}(15 \mathrm{C})$ | 0.9800 |
| $\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$ | 0.9800 |
| $\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$ | 0.9800 |
| $\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$ | 0.9800 |
| $\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$ | 0.9800 |
| $\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$ | 0.9800 |
| $\mathrm{C}(17)-\mathrm{H}(17 \mathrm{C})$ | 0.9800 |
| C(18)-H(18A) | 0.9800 |
| $\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$ | 0.9800 |
| C(18)-H(18C) | 0.9800 |
| $\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~A})$ | 0.9800 |
| $\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$ | 0.9800 |
| $\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$ | 0.9800 |
| $\mathrm{C}(20)-\mathrm{C}(23)$ | 1.527(7) |


| $\mathrm{C}(20)-\mathrm{C}(21)$ | 1.539(7) |
| :---: | :---: |
| $\mathrm{C}(20)-\mathrm{C}(22)$ | 1.543(8) |
| $\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$ | 0.9800 |
| $\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$ | 0.9800 |
| $\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$ | 0.9800 |
| $\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$ | 0.9800 |
| $\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$ | 0.9800 |
| $\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$ | 0.9800 |
| $\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})$ | 0.9800 |
| $\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$ | 0.9800 |
| $\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$ | 0.9800 |
| $\mathrm{O}(3)-\mathrm{Si}(1)-\mathrm{C}(18)$ | 111.7(2) |
| $\mathrm{O}(3)-\mathrm{Si}(1)-\mathrm{C}(19)$ | 111.0(2) |
| $\mathrm{C}(18)-\mathrm{Si}(1)-\mathrm{C}(19)$ | 108.0(3) |
| $\mathrm{O}(3)-\mathrm{Si}(1)-\mathrm{C}(20)$ | 105.1(2) |
| $\mathrm{C}(18)-\mathrm{Si}(1)-\mathrm{C}(20)$ | 112.6(3) |
| $\mathrm{C}(19)-\mathrm{Si}(1)-\mathrm{C}(20)$ | 108.4(3) |
| $\mathrm{C}(5)-\mathrm{O}(2)-\mathrm{H}(2)$ | 109.5 |
| $\mathrm{C}(7)-\mathrm{O}(3)-\mathrm{Si}(1)$ | 133.4(3) |
| $\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)$ | 125.7(5) |
| $\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{H}(1)$ | 117.2 |
| $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1)$ | 117.2 |
| $\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(1)$ | 116.9(5) |
| $\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{C}(13)$ | 126.7(5) |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(13)$ | 116.4(4) |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$ | 129.7(5) |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{H}(3)$ | 115.1 |
| $\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{H}(3)$ | 115.1 |
| $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(14)$ | 109.4(4) |
| $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$ | 110.6(4) |
| $\mathrm{C}(14)-\mathrm{C}(4)-\mathrm{C}(5)$ | 110.4(4) |
| $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{H}(4)$ | 108.8 |
| $\mathrm{C}(14)-\mathrm{C}(4)-\mathrm{H}(4)$ | 108.8 |
| $\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{H}(4)$ | 108.8 |
| $\mathrm{O}(2)-\mathrm{C}(5)-\mathrm{C}(6)$ | 108.5(4) |
| $\mathrm{O}(2)-\mathrm{C}(5)-\mathrm{C}(4)$ | 109.9(4) |
| $\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{C}(4)$ | 113.9(4) |


| $\mathrm{O}(2)-\mathrm{C}(5)-\mathrm{H}(5)$ | 108.1 |
| :---: | :---: |
| $\mathrm{C}(6)-\mathrm{C}(5)-\mathrm{H}(5)$ | 108.1 |
| $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$ | 108.1 |
| $\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(15)$ | 111.7(4) |
| $\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$ | 113.1(4) |
| $\mathrm{C}(15)-\mathrm{C}(6)-\mathrm{C}(7)$ | 109.4(4) |
| $\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{H}(6)$ | 107.5 |
| $\mathrm{C}(15)-\mathrm{C}(6)-\mathrm{H}(6)$ | 107.5 |
| $\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{H}(6)$ | 107.5 |
| $\mathrm{O}(3)-\mathrm{C}(7)-\mathrm{C}(6)$ | 107.1(4) |
| $\mathrm{O}(3)-\mathrm{C}(7)-\mathrm{C}(8)$ | 110.9(4) |
| $\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$ | 115.9(4) |
| $\mathrm{O}(3)-\mathrm{C}(7)-\mathrm{H}(7)$ | 107.5 |
| $\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7)$ | 107.5 |
| $\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7)$ | 107.5 |
| $\mathrm{C}(16)-\mathrm{C}(8)-\mathrm{C}(9)$ | 111.8(4) |
| $\mathrm{C}(16)-\mathrm{C}(8)-\mathrm{C}(7)$ | 111.2(4) |
| $\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{C}(7)$ | 110.6(4) |
| $\mathrm{C}(16)-\mathrm{C}(8)-\mathrm{H}(8)$ | 107.7 |
| $\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{H}(8)$ | 107.7 |
| $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{H}(8)$ | 107.7 |
| $\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$ | 116.1(4) |
| $\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$ | 108.3 |
| $\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~A})$ | 108.3 |
| $\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$ | 108.3 |
| $\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$ | 108.3 |
| $\mathrm{H}(9 \mathrm{~A})-\mathrm{C}(9)-\mathrm{H}(9 \mathrm{~B})$ | 107.4 |
| $\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(9)$ | 122.2(5) |
| $\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{C}(17)$ | 122.1(5) |
| $\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(17)$ | 115.7(4) |
| $\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$ | 128.1(5) |
| $\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{H}(11)$ | 116.0 |
| $\mathrm{C}(12)-\mathrm{C}(11)-\mathrm{H}(11)$ | 116.0 |
| $\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$ | 109.5 |
| $\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$ | 109.5 |
| $\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$ | 109.5 |
| $\mathrm{C}(11)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$ | 109.5 |
| $\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$ | 109.5 |


| $\mathrm{H}(12 \mathrm{~B})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$ | 109.5 |
| :---: | :---: |
| $\mathrm{C}(2)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~A})$ | 109.5 |
| $\mathrm{C}(2)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$ | 109.5 |
| $\mathrm{H}(13 \mathrm{~A})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{~B})$ | 109.5 |
| $\mathrm{C}(2)-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$ | 109.5 |
| $\mathrm{H}(13 \mathrm{~A})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$ | 109.5 |
| $\mathrm{H}(13 \mathrm{~B})-\mathrm{C}(13)-\mathrm{H}(13 \mathrm{C})$ | 109.5 |
| $\mathrm{C}(4)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$ | 109.5 |
| $\mathrm{C}(4)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$ | 109.5 |
| $\mathrm{H}(14 \mathrm{~A})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$ | 109.5 |
| $\mathrm{C}(4)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$ | 109.5 |
| $\mathrm{H}(14 \mathrm{~A})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$ | 109.5 |
| $\mathrm{H}(14 \mathrm{~B})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{C})$ | 109.5 |
| $\mathrm{C}(6)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~A})$ | 109.5 |
| $\mathrm{C}(6)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$ | 109.5 |
| $\mathrm{H}(15 \mathrm{~A})-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{~B})$ | 109.5 |
| $\mathrm{C}(6)-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{C})$ | 109.5 |
| $\mathrm{H}(15 \mathrm{~A})-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{C})$ | 109.5 |
| $\mathrm{H}(15 \mathrm{~B})-\mathrm{C}(15)-\mathrm{H}(15 \mathrm{C})$ | 109.5 |
| $\mathrm{C}(8)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~A})$ | 109.5 |
| $\mathrm{C}(8)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$ | 109.5 |
| $\mathrm{H}(16 \mathrm{~A})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{~B})$ | 109.5 |
| $\mathrm{C}(8)-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$ | 109.5 |
| $\mathrm{H}(16 \mathrm{~A})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$ | 109.5 |
| $\mathrm{H}(16 \mathrm{~B})-\mathrm{C}(16)-\mathrm{H}(16 \mathrm{C})$ | 109.5 |
| $\mathrm{C}(10)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~A})$ | 109.5 |
| $\mathrm{C}(10)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{~B})$ | 109.5 |
| H(17A)-C(17)-H(17B) | 109.5 |
| $\mathrm{C}(10)-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{C})$ | 109.5 |
| $\mathrm{H}(17 \mathrm{~A})-\mathrm{C}(17)-\mathrm{H}(17 \mathrm{C})$ | 109.5 |
| H(17B)-C(17)-H(17C) | 109.5 |
| $\mathrm{Si}(1)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~A})$ | 109.5 |
| $\mathrm{Si}(1)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{~B})$ | 109.5 |
| H(18A)-C(18)-H(18B) | 109.5 |
| $\mathrm{Si}(1)-\mathrm{C}(18)-\mathrm{H}(18 \mathrm{C})$ | 109.5 |
| H(18A)-C(18)-H(18C) | 109.5 |
| H(18B)-C(18)-H(18C) | 109.5 |
| Si(1)-C(19)-H(19A) | 109.5 |


| $\mathrm{Si}(1)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$ | 109.5 |
| :--- | :---: |
| $\mathrm{H}(19 \mathrm{~A})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{~B})$ | 109.5 |
| $\mathrm{Si}(1)-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$ | 109.5 |
| $\mathrm{H}(19 \mathrm{~A})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$ | 109.5 |
| $\mathrm{H}(19 \mathrm{~B})-\mathrm{C}(19)-\mathrm{H}(19 \mathrm{C})$ | 109.5 |
| $\mathrm{C}(23)-\mathrm{C}(20)-\mathrm{C}(21)$ | $109.0(5)$ |
| $\mathrm{C}(23)-\mathrm{C}(20)-\mathrm{C}(22)$ | $109.1(5)$ |
| $\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{C}(22)$ | $107.7(5)$ |
| $\mathrm{C}(23)-\mathrm{C}(20)-\mathrm{Si}(1)$ | $109.9(4)$ |
| $\mathrm{C}(21)-\mathrm{C}(20)-\mathrm{Si}(1)$ | $110.8(4)$ |
| $\mathrm{C}(22)-\mathrm{C}(20)-\mathrm{Si}(1)$ | $110.3(4)$ |
| $\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~A})$ | 109.5 |
| $\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$ | 109.5 |
| $\mathrm{H}(21 \mathrm{~A})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{~B})$ | 109.5 |
| $\mathrm{C}(20)-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$ | 109.5 |
| $\mathrm{H}(21 \mathrm{~A})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$ | 109.5 |
| $\mathrm{H}(21 \mathrm{~B})-\mathrm{C}(21)-\mathrm{H}(21 \mathrm{C})$ | 109.5 |
| $\mathrm{C}(20)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~A})$ | 109.5 |
| $\mathrm{C}(20)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$ | 109.5 |
| $\mathrm{H}(22 \mathrm{~A})-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{~B})$ | 109.5 |
| $\mathrm{C}(20)-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$ | 109.5 |
| $\mathrm{H}(22 \mathrm{~A})-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$ | 109.5 |
| $\mathrm{H}(22 \mathrm{~B})-\mathrm{C}(22)-\mathrm{H}(22 \mathrm{C})$ | 109.5 |
| $\mathrm{C}(20)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~A})$ | 109.5 |
| $\mathrm{C}(20)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$ | 109.5 |
| $\mathrm{H}(23 \mathrm{~A})-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{~B})$ | 109.5 |
| $\mathrm{C}(20)-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$ | 109.5 |
| $\mathrm{H}(23 \mathrm{~A})-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$ | 109.5 |
| $\mathrm{H}(23 \mathrm{~B})-\mathrm{C}(23)-\mathrm{H}(23 \mathrm{C})$ | 109.5 |
|  |  |

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for $(2 E, 4 R, 5 S, 6 R, 7 R, 8 S, 10 E)$-7-(tert-butyldimethylsilyloxy)-5-hydroxy-2,4,6,8,10-pentamethyldodeca-2,10-dienal (51). The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*} b^{*} U^{12}\right]$

| $\mathrm{U}^{11}$ | $\mathrm{U}^{22}$ | $\mathrm{U}^{33}$ | $\mathrm{U}^{23}$ | $\mathrm{U}^{13}$ | $\mathrm{U}^{12}$ |
| :--- | :--- | :--- | :--- | :--- | :--- |


| $\mathrm{Si}(1)$ | $43(1)$ | $41(1)$ | $30(1)$ | $-3(1)$ | $0(1)$ | $2(1)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{O}(1)$ | $28(2)$ | $49(2)$ | $48(3)$ | $-6(2)$ | $2(2)$ | $4(2)$ |
| $\mathrm{O}(2)$ | $28(2)$ | $38(2)$ | $42(2)$ | $-3(2)$ | $2(2)$ | $7(2)$ |
| $\mathrm{O}(3)$ | $28(2)$ | $32(2)$ | $31(2)$ | $1(2)$ | $1(2)$ | $-1(2)$ |
| $\mathrm{C}(1)$ | $42(3)$ | $42(3)$ | $36(3)$ | $-8(3)$ | $0(3)$ | $0(3)$ |
| $\mathrm{C}(2)$ | $29(3)$ | $34(3)$ | $28(3)$ | $-4(3)$ | $-1(2)$ | $-6(2)$ |
| $\mathrm{C}(3)$ | $45(3)$ | $27(3)$ | $23(3)$ | $-3(2)$ | $-2(2)$ | $-9(3)$ |
| $\mathrm{C}(4)$ | $34(3)$ | $33(3)$ | $28(3)$ | $-4(2)$ | $2(2)$ | $1(2)$ |
| $\mathrm{C}(5)$ | $29(3)$ | $27(3)$ | $33(3)$ | $-9(2)$ | $0(2)$ | $4(2)$ |
| $\mathrm{C}(6)$ | $30(2)$ | $28(3)$ | $32(3)$ | $-2(2)$ | $0(2)$ | $-3(2)$ |
| $\mathrm{C}(7)$ | $31(3)$ | $34(3)$ | $28(3)$ | $1(2)$ | $-1(2)$ | $4(2)$ |
| $\mathrm{C}(8)$ | $34(3)$ | $36(3)$ | $28(3)$ | $-4(3)$ | $-2(2)$ | $-3(2)$ |
| $\mathrm{C}(9)$ | $40(3)$ | $35(4)$ | $45(3)$ | $1(3)$ | $3(3)$ | $-6(3)$ |
| $\mathrm{C}(10)$ | $35(3)$ | $27(3)$ | $40(3)$ | $4(3)$ | $5(3)$ | $-7(2)$ |
| $\mathrm{C}(11)$ | $35(3)$ | $45(4)$ | $71(4)$ | $0(3)$ | $-5(3)$ | $-6(3)$ |
| $\mathrm{C}(12)$ | $40(3)$ | $51(4)$ | $115(6)$ | $-9(4)$ | $16(4)$ | $-5(3)$ |
| $\mathrm{C}(13)$ | $31(3)$ | $30(3)$ | $67(4)$ | $-6(3)$ | $6(3)$ | $-3(2)$ |
| $\mathrm{C}(14)$ | $40(3)$ | $49(3)$ | $33(3)$ | $10(3)$ | $-2(3)$ | $-6(3)$ |
| $\mathrm{C}(15)$ | $46(3)$ | $38(3)$ | $36(3)$ | $5(3)$ | $-5(3)$ | $-12(3)$ |
| $\mathrm{C}(16)$ | $45(3)$ | $37(3)$ | $41(3)$ | $-2(3)$ | $-4(3)$ | $-3(3)$ |
| $\mathrm{C}(17)$ | $43(3)$ | $58(4)$ | $66(4)$ | $10(3)$ | $-4(3)$ | $-8(3)$ |
| $\mathrm{C}(18)$ | $69(4)$ | $57(4)$ | $39(3)$ | $-12(3)$ | $-3(3)$ | $16(3)$ |
| $\mathrm{C}(19)$ | $60(4)$ | $63(5)$ | $39(4)$ | $-3(3)$ | $6(3)$ | $-9(3)$ |
| $\mathrm{C}(20)$ | $47(3)$ | $42(4)$ | $30(3)$ | $0(3)$ | $0(3)$ | $5(3)$ |
| $\mathrm{C}(21)$ | $42(3)$ | $71(4)$ | $58(4)$ | $-7(4)$ | $-13(3)$ | $-6(3)$ |
| $\mathrm{C}(22)$ | $64(4)$ | $124(7)$ | $43(4)$ | $-2(4)$ | $-15(3)$ | $11(4)$ |
| $\mathrm{C}(23)$ | $59(4)$ | $60(4)$ | $62(4)$ | $14(4)$ | $3(4)$ | $13(3)$ |
|  |  |  |  |  |  |  |
|  |  |  |  | 0 |  |  |

Table 5. Hydrogen coordinates ( $\mathrm{x} 10^{4}$ ) and isotropic displacement parameters $\left(\AA^{2} \times 10{ }^{3}\right)$ for ( $2 E, 4 R, 5 S, 6 R, 7 R, 8 S, 10 E$ )-7-(tert-butyldimethylsilyloxy)-5-hydroxy-2,4,6,8,10-pentamethyldodeca-2,10-dienal (51).

| $x$ |  | $y$ | $z$ |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
| $H(2)$ | 2479 | 9360 | 5865 | 54 |
| $H(1)$ | 9309 | 7860 | 5018 | 48 |
| $H(3)$ | 6817 | 8286 | 5202 | 38 |


| H(4) | 5952 | 9972 | 5762 | 38 |
| :---: | :---: | :---: | :---: | :---: |
| H(5) | 4176 | 8308 | 5814 | 36 |
| H(6) | 6255 | 8232 | 6573 | 36 |
| H(7) | 3512 | 8555 | 7370 | 37 |
| H(8) | 2615 | 7650 | 6467 | 39 |
| H(9A) | 2516 | 6615 | 7649 | 48 |
| H(9B) | 1586 | 7545 | 7603 | 48 |
| H(11) | 997 | 5408 | 7461 | 61 |
| H(12A) | -1905 | 5554 | 6732 | 103 |
| H(12B) | -1731 | 4947 | 7380 | 103 |
| H(12C) | -830 | 4670 | 6714 | 103 |
| H(13A) | 8409 | 10402 | 5698 | 64 |
| H(13B) | 10063 | 10172 | 5345 | 64 |
| H(13C) | 9756 | 9865 | 6091 | 64 |
| H(14A) | 5394 | 9915 | 4592 | 61 |
| H(14B) | 3812 | 10056 | 5020 | 61 |
| H(14C) | 4220 | 9090 | 4723 | 61 |
| H(15A) | 5139 | 9891 | 7111 | 60 |
| H(15B) | 6822 | 9738 | 6758 | 60 |
| H(15C) | 6466 | 9283 | 7458 | 60 |
| H(16A) | 4828 | 6333 | 6927 | 61 |
| H(16B) | 4974 | 6857 | 6240 | 61 |
| H(16C) | 3543 | 6167 | 6357 | 61 |
| H(17A) | -129 | 7131 | 6179 | 83 |
| H(17B) | -544 | 7738 | 6807 | 83 |
| H(17C) | -1600 | 6873 | 6643 | 83 |
| H(18A) | 5153 | 9391 | 8590 | 82 |
| H(18B) | 4471 | 8931 | 9245 | 82 |
| H(18C) | 3376 | 9006 | 8602 | 82 |
| H(19A) | 2785 | 7068 | 8749 | 81 |
| H(19B) | 4079 | 6887 | 9313 | 81 |
| H(19C) | 4156 | 6341 | 8634 | 81 |
| H(21A) | 9551 | 8175 | 8607 | 85 |
| H(21B) | 8138 | 8893 | 8617 | 85 |
| H(21C) | 8421 | 8287 | 7976 | 85 |
| H(22A) | 6812 | 7138 | 9692 | 115 |
| H(22B) | 7077 | 8199 | 9660 | 115 |
| H(22C) | 8573 | 7537 | 9631 | 115 |


| $\mathrm{H}(23 \mathrm{~A})$ | 8956 | 6553 | 8638 | 91 |
| :--- | :--- | :--- | :--- | :--- |
| $\mathrm{H}(23 \mathrm{~B})$ | 7795 | 6644 | 8015 | 91 |
| $\mathrm{H}(23 \mathrm{C})$ | 7159 | 6204 | 8686 | 91 |

Table 6. Torsion angles [ ${ }^{\circ}$ ] for ( $2 E, 4 R, 5 S, 6 R, 7 R, 8 S, 10 E$ )-7-(tert-butyldimethylsilyloxy)-5-hydroxy-2,4,6,8,10-pentamethyldodeca-2,10-dienal (51).

| $\mathrm{C}(18)-\mathrm{Si}(1)-\mathrm{O}(3)-\mathrm{C}(7)$ | -33.9(5) |
| :---: | :---: |
| $\mathrm{C}(19)-\mathrm{Si}(1)-\mathrm{O}(3)-\mathrm{C}(7)$ | 86.7(4) |
| $\mathrm{C}(20)-\mathrm{Si}(1)-\mathrm{O}(3)-\mathrm{C}(7)$ | -156.3(4) |
| $\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | -176.3(5) |
| $\mathrm{O}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(13)$ | 4.0(8) |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$ | 179.9(5) |
| $\mathrm{C}(13)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$ | -0.4(9) |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(14)$ | 112.6(6) |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$ | -125.6(6) |
| $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(2)$ | -178.2(4) |
| $\mathrm{C}(14)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{O}(2)$ | -57.0(5) |
| $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$ | 59.8(5) |
| $\mathrm{C}(14)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)$ | -179.0(4) |
| $\mathrm{O}(2)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(15)$ | -66.8(5) |
| $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(15)$ | 55.9(5) |
| $\mathrm{O}(2)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$ | 57.1(5) |
| $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)$ | 179.8(4) |
| $\mathrm{Si}(1)-\mathrm{O}(3)-\mathrm{C}(7)-\mathrm{C}(6)$ | 125.6(4) |
| $\mathrm{Si}(1)-\mathrm{O}(3)-\mathrm{C}(7)-\mathrm{C}(8)$ | -107.1(4) |
| $\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{O}(3)$ | 166.9(4) |
| $\mathrm{C}(15)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{O}(3)$ | -67.9(5) |
| $\mathrm{C}(5)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$ | 42.5(5) |
| $\mathrm{C}(15)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$ | 167.7(4) |
| $\mathrm{O}(3)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(16)$ | -57.1(5) |
| $\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(16)$ | 65.3(5) |
| $\mathrm{O}(3)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$ | 67.8(5) |
| $\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$ | -169.8(4) |
| $\mathrm{C}(16)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$ | -75.4(5) |
| $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$ | 160.1(4) |
| $\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$ | 118.9(6) |


| $\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(17)$ | $-65.0(6)$ |
| :--- | ---: |
| $\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$ | $175.3(5)$ |
| $\mathrm{C}(17)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(12)$ | $-0.5(9)$ |
| $\mathrm{O}(3)-\mathrm{Si}(1)-\mathrm{C}(20)-\mathrm{C}(23)$ | $-59.1(4)$ |
| $\mathrm{C}(18)-\mathrm{Si}(1)-\mathrm{C}(20)-\mathrm{C}(23)$ | $179.1(4)$ |
| $\mathrm{C}(19)-\mathrm{Si}(1)-\mathrm{C}(20)-\mathrm{C}(23)$ | $59.7(4)$ |
| $\mathrm{O}(3)-\mathrm{Si}(1)-\mathrm{C}(20)-\mathrm{C}(21)$ | $61.4(4)$ |
| $\mathrm{C}(18)-\mathrm{Si}(1)-\mathrm{C}(20)-\mathrm{C}(21)$ | $-60.3(5)$ |
| $\mathrm{C}(19)-\mathrm{Si}(1)-\mathrm{C}(20)-\mathrm{C}(21)$ | $-179.7(4)$ |
| $\mathrm{O}(3)-\mathrm{Si}(1)-\mathrm{C}(20)-\mathrm{C}(22)$ | $-179.5(4)$ |
| $\mathrm{C}(18)-\mathrm{Si}(1)-\mathrm{C}(20)-\mathrm{C}(22)$ | $58.8(5)$ |
| $\mathrm{C}(19)-\mathrm{Si}(1)-\mathrm{C}(20)-\mathrm{C}(22)$ | $-60.6(5)$ |

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for ( $2 E, 4 R, 5 S, 6 R, 7 R, 8 S, 10 E$ )-7-(tert-butyldimethylsilyloxy)-5-hydroxy-2,4,6,8,10-pentamethyldodeca-2,10-dienal (51). [ $\AA$ and ${ }^{\circ}$ ].

| D-H...A | $\mathrm{d}(\mathrm{D}-\mathrm{H})$ | $\mathrm{d}(\mathrm{H} \ldots \mathrm{A})$ | $\mathrm{d}(\mathrm{D} \ldots \mathrm{A})$ | $<(\mathrm{DHA})$ |
| :--- | :---: | :---: | :---: | :---: |
| $\mathrm{O}(2)-\mathrm{H}(2) \ldots \mathrm{O}(1) \# 1$ | 0.84 | 2.15 | $2.879(6)$ | 144.6 |

Symmetry transformations used to generate equivalent atoms:

$$
\# 1 \mathrm{x}-1, \mathrm{y}, \mathrm{z}
$$

## Crystallographic Data for 6-bromo-2-methyl-9H-beta-carbolin-2-ium iodide (142)



Table 1. Crystal data and structure refinement for 6-bromo-2-methyl-9H-beta-carbolin-2-ium iodide (142).

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=26.37^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method

142
C12 H10 Br I N2
389.03

140(2) K
$0.71073 \AA$
Monoclinic
P2(1)/c
$a=10.7180(9) \AA \quad \alpha=90^{\circ}$.
$\mathrm{b}=15.5515(16) \AA \quad \beta=93.188(8)^{\circ}$.
$c=7.4595(6) \AA \quad \gamma=90^{\circ}$.
1241.42(19) $\AA^{3}$

4
$2.081 \mathrm{Mg} / \mathrm{m}^{3}$
$5.772 \mathrm{~mm}^{-1}$
736
$0.31 \times 0.21 \times 0.14 \mathrm{~mm}^{3}$
3.03 to $26.37^{\circ}$.
$-13<=\mathrm{h}<=13,-19<=\mathrm{k}<=19,-6<=1<=9$
2517
2517 [R(int) $=0.0000]$
99.3 \%

Semi-empirical from equivalents
0.446 and 0.162

Full-matrix least-squares on $\mathrm{F}^{2}$

Data / restraints / parameters
Goodness-of-fit on $\mathrm{F}^{2}$
Final R indices [ $\mathrm{I}>2 \operatorname{sigma}(\mathrm{I})$ ]
R indices (all data)
Largest diff. peak and hole

2517/0/146
1.129
$\mathrm{R} 1=0.0561, \mathrm{wR} 2=0.1504$
$\mathrm{R} 1=0.0629, \mathrm{wR} 2=0.1530$
4.346 and $-1.602 \mathrm{e} . \AA^{-3}$

Table 2. Atomic coordinates ( $\times 10^{4}$ ) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 6-bromo-2-methyl-9H-beta-carbolin-2-ium iodide (142). U(eq) is defined as one third of the trace of the orthogonalized $\mathrm{U}^{\mathrm{ij}}$ tensor.

|  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: |

Table 3. Bond lengths [ $\AA$ ] and angles [ ${ }^{\circ}$ ] for 6-bromo-2-methyl-9H-beta-carbolin-2-ium iodide (142).

| $\mathrm{Cl}(1)-\mathrm{C}(8)$ | $1.752(4)$ |
| :--- | :--- |
| $\mathrm{N}(1)-\mathrm{C}(5)$ | $1.344(4)$ |
| $\mathrm{N}(1)-\mathrm{C}(1)$ | $1.360(5)$ |
| $\mathrm{N}(1)-\mathrm{C}(12)$ | $1.481(4)$ |
| $\mathrm{N}(2)-\mathrm{C}(4)$ | $1.364(4)$ |
| $\mathrm{N}(2)-\mathrm{C}(11)$ | $1.365(4)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)$ | $1.367(5)$ |


| $\mathrm{C}(1)-\mathrm{H}(1)$ | 0.9500 |
| :---: | :---: |
| $\mathrm{C}(2)-\mathrm{C}(3)$ | 1.387(5) |
| $\mathrm{C}(2)-\mathrm{H}(2)$ | 0.9500 |
| $\mathrm{C}(3)-\mathrm{C}(6)$ | 1.424(5) |
| $\mathrm{C}(3)-\mathrm{C}(4)$ | 1.431(5) |
| $\mathrm{C}(4)-\mathrm{C}(5)$ | 1.390 (5) |
| $\mathrm{C}(5)-\mathrm{H}(5)$ | 0.9500 |
| $\mathrm{C}(6)-\mathrm{C}(7)$ | 1.403(5) |
| $\mathrm{C}(6)-\mathrm{C}(11)$ | 1.427(5) |
| $\mathrm{C}(7)-\mathrm{C}(8)$ | 1.377(5) |
| $\mathrm{C}(7)-\mathrm{H}(7)$ | 0.9500 |
| $\mathrm{C}(8)-\mathrm{C}(9)$ | 1.401(5) |
| $\mathrm{C}(9)-\mathrm{C}(10)$ | $1.368(5)$ |
| $\mathrm{C}(9)-\mathrm{H}(9)$ | 0.9500 |
| $\mathrm{C}(10)-\mathrm{C}(11)$ | 1.414(5) |
| $\mathrm{C}(10)-\mathrm{H}(10)$ | 0.9500 |
| $\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$ | 0.9800 |
| $\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$ | 0.9800 |
| $\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$ | 0.9800 |
| $\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(1)$ | 122.4(3) |
| $\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(12)$ | 118.9(3) |
| $\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(12)$ | 118.7(3) |
| $\mathrm{C}(4)-\mathrm{N}(2)-\mathrm{C}(11)$ | 103.3(3) |
| $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$ | 121.1(3) |
| $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{H}(1)$ | 119.5 |
| $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1)$ | 119.5 |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | 118.9(3) |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2)$ | 120.6 |
| $\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2)$ | 120.6 |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(6)$ | 136.4(3) |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$ | 119.5(3) |
| $\mathrm{C}(6)-\mathrm{C}(3)-\mathrm{C}(4)$ | 104.1(3) |
| $\mathrm{N}(2)-\mathrm{C}(4)-\mathrm{C}(5)$ | 127.0(3) |
| $\mathrm{N}(2)-\mathrm{C}(4)-\mathrm{C}(3)$ | 114.0(3) |
| $\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$ | 118.9(3) |
| $\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(4)$ | 119.3(3) |
| $\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{H}(5)$ | 120.4 |


| $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$ | 120.4 |
| :---: | :---: |
| $\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(3)$ | $133.8(3)$ |
| $\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(11)$ | $121.3(3)$ |
| $\mathrm{C}(3)-\mathrm{C}(6)-\mathrm{C}(11)$ | $104.9(3)$ |
| $\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$ | $117.3(3)$ |
| $\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7)$ | 121.3 |
| $\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7)$ | 121.3 |
| $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$ | $122.4(3)$ |
| $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{Cl}(1)$ | $119.6(3)$ |
| $\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{Cl}(1)$ | $118.0(3)$ |
| $\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$ | $120.9(3)$ |
| $\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9)$ | 119.5 |
| $\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9)$ | 119.5 |
| $\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$ | $119.1(3)$ |
| $\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10)$ | 120.4 |
| $\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10)$ | 120.4 |
| $\mathrm{~N}(2)-\mathrm{C}(11)-\mathrm{C}(10)$ | $127.3(3)$ |
| $\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{C}(6)$ | $113.7(3)$ |
| $\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(6)$ | $119.0(3)$ |
| $\mathrm{N}(1)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$ | 109.5 |
| $\mathrm{~N}(1)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$ | 109.5 |
| $\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$ | 109.5 |
| $\mathrm{~N}(1)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$ | 109.5 |
| $\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$ | 109.5 |
| $\mathrm{H}(12 \mathrm{~B})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$ | 109.5 |
|  |  |

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 6-bromo-2-methyl-9H-beta-carbolin-2ium iodide (142). The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots\right.$ $+2 \mathrm{hk} \mathrm{a}^{*} \mathrm{~b}^{*} \mathrm{U}^{12}$ ]

|  | $\mathrm{U}^{11}$ | $\mathrm{U}^{22}$ | $\mathrm{U}^{33}$ | $\mathrm{U}^{23}$ | $\mathrm{U}^{13}$ | $\mathrm{U}^{12}$ |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $\mathrm{Cl}(1)$ | $42(1)$ | $23(1)$ | $36(1)$ | $-8(1)$ | $8(1)$ | $-9(1)$ |
| $\mathrm{N}(1)$ | $31(2)$ | $12(2)$ | $15(2)$ | $-1(1)$ | $5(1)$ | $-5(1)$ |
| $\mathrm{N}(2)$ | $24(2)$ | $15(2)$ | $21(2)$ | $-1(1)$ | $3(1)$ | $3(1)$ |
| $\mathrm{C}(1)$ | $26(2)$ | $14(2)$ | $21(2)$ | $4(2)$ | $8(2)$ | $6(2)$ |


| $\mathrm{C}(2)$ | $18(2)$ | $18(2)$ | $16(2)$ | $0(2)$ | $1(2)$ | $-1(2)$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{C}(3)$ | $25(2)$ | $14(2)$ | $10(2)$ | $0(2)$ | $4(2)$ | $-2(2)$ |
| $\mathrm{C}(4)$ | $24(2)$ | $17(2)$ | $13(2)$ | $3(2)$ | $4(2)$ | $-2(2)$ |
| $\mathrm{C}(5)$ | $22(2)$ | $18(2)$ | $18(2)$ | $2(2)$ | $2(2)$ | $-2(2)$ |
| $\mathrm{C}(6)$ | $27(2)$ | $13(2)$ | $13(2)$ | $4(2)$ | $7(2)$ | $0(2)$ |
| $\mathrm{C}(7)$ | $22(2)$ | $18(2)$ | $17(2)$ | $4(2)$ | $6(2)$ | $0(2)$ |
| $\mathrm{C}(8)$ | $35(2)$ | $17(2)$ | $15(2)$ | $-2(2)$ | $8(2)$ | $-10(2)$ |
| $\mathrm{C}(9)$ | $36(2)$ | $11(2)$ | $24(2)$ | $1(2)$ | $13(2)$ | $1(2)$ |
| $\mathrm{C}(10)$ | $26(2)$ | $18(2)$ | $31(2)$ | $4(2)$ | $9(2)$ | $3(2)$ |
| $\mathrm{C}(11)$ | $25(2)$ | $13(2)$ | $14(2)$ | $4(2)$ | $6(2)$ | $1(2)$ |
| $\mathrm{C}(12)$ | $41(3)$ | $14(2)$ | $24(2)$ | $-3(2)$ | $9(2)$ | $-6(2)$ |

Table 5. Hydrogen coordinates ( $\times 10^{4}$ ) and isotropic displacement parameters ( $\AA^{2} \times 10{ }^{3}$ ) for 6-bromo-2-methyl-9H-beta-carbolin-2-ium iodide (142).

| $x$ |  | $y$ | $z$ | U(eq) |
| :--- | ---: | ---: | ---: | ---: |
| $H(1)$ | 2501 | 6071 | 7833 | 24 |
| $H(2)$ | 1127 | 5176 | 6548 | 22 |
| $H(5)$ | 8933 | 5484 | 9281 | 24 |
| $H(7)$ | 783 | 3960 | 5193 | 23 |
| $H(9)$ | 5402 | 2655 | 5391 | 27 |
| $H(10)$ | 8405 | 3253 | 6907 | 30 |
| $H(12 A)$ | 8182 | 6390 | 10208 | 40 |
| $H(12 B)$ | 5622 | 6549 | 10267 | 40 |
| $H(12 C)$ | 6497 | 6700 | 8420 | 40 |

Table 6. Torsion angles [ ${ }^{\circ}$ ] for 6-bromo-2-methyl-9H-beta-carbolin-2-ium iodide (142).

| $\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$ | $0.3(5)$ |
| :---: | :---: |
| $\mathrm{C}(12)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$ | $179.9(3)$ |
| $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | $-1.3(5)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(6)$ | $179.3(4)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$ | $0.9(5)$ |
| $\mathrm{C}(11)-\mathrm{N}(2)-\mathrm{C}(4)-\mathrm{C}(5)$ | $177.8(4)$ |
| $\mathrm{C}(11)-\mathrm{N}(2)-\mathrm{C}(4)-\mathrm{C}(3)$ | $0.1(4)$ |


| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(2)$ | $178.4(3)$ |
| :--- | ---: |
| $\mathrm{C}(6)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(2)$ | $-0.4(4)$ |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$ | $0.5(5)$ |
| $\mathrm{C}(6)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$ | $-178.4(3)$ |
| $\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(4)$ | $1.1(5)$ |
| $\mathrm{C}(12)-\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(4)$ | $-178.4(3)$ |
| $\mathrm{N}(2)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}(1)$ | $-179.1(3)$ |
| $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}(1)$ | $-1.5(5)$ |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(6)-\mathrm{C}(7)$ | $1.2(7)$ |
| $\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(6)-\mathrm{C}(7)$ | $179.7(4)$ |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(6)-\mathrm{C}(11)$ | $-178.0(4)$ |
| $\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(6)-\mathrm{C}(11)$ | $0.6(3)$ |
| $\mathrm{C}(3)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$ | $-179.5(4)$ |
| $\mathrm{C}(11)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$ | $-0.4(5)$ |
| $\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$ | $0.6(5)$ |
| $\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{Cl}(1)$ | $-177.6(2)$ |
| $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$ | $-0.3(6)$ |
| $\mathrm{Cl}(1)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$ | $177.9(3)$ |
| $\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$ | $-0.1(5)$ |
| $\mathrm{C}(4)-\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{C}(10)$ | $-179.6(3)$ |
| $\mathrm{C}(4)-\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{C}(6)$ | $0.3(4)$ |
| $\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{N}(2)$ | $-179.9(3)$ |
| $\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(6)$ | $0.2(5)$ |
| $\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{N}(2)$ | $-0.6(4)$ |
| $\mathrm{C}(3)-\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{N}(2)$ | $0.0(5)$ |
| $\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{C}(10)$ | $179.3(3)$ |
| $\mathrm{C}(3)-\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{C}(10)$ |  |
|  |  |

Symmetry transformations used to generate equivalent atoms:

## Crystallographic Data for 2-allyl-6-bromo-9H-beta-carbolin-2-ium bromide

(144)

(8) Br 2

Table 1. Crystal data and structure refinement for 2-allyl-6-bromo-9H-beta-carbolin-2-ium bromide (144).

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=27.50^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method

## 144

C14 H12 Br2 N2
368.08

100(2) K
0.71073 A

Monoclinic
P2(1)/c
$\mathrm{a}=8.1536(7) \AA \quad \alpha=90^{\circ}$.
$\mathrm{b}=22.969(2) \AA \quad \beta=107.832(8)^{\circ}$.
$\mathrm{c}=7.4050(6) \AA \quad \gamma=90^{\circ}$.
$1320.2(2) \AA^{3}$
4
$1.852 \mathrm{Mg} / \mathrm{m}^{3}$
$6.123 \mathrm{~mm}^{-1}$
720
$0.79 \times 0.27 \times 0.07 \mathrm{~mm}^{3}$
3.37 to $27.50^{\circ}$.
$-10<=\mathrm{h}<=10,-29<=\mathrm{k}<=29,-9<=1<=9$
51084
$3031[\mathrm{R}(\mathrm{int})=0.0461]$
99.8 \%

Semi-empirical from equivalents
0.651 and 0.289

Full-matrix least-squares on $\mathrm{F}^{2}$

Data / restraints / parameters
Goodness-of-fit on $\mathrm{F}^{2}$
Final R indices [I>2sigma(I)]
R indices (all data)
Largest diff. peak and hole

3031 / 0 / 163
1.153

$$
\begin{aligned}
& \mathrm{R} 1=0.0260, \mathrm{wR} 2=0.0602 \\
& \mathrm{R} 1=0.0306, \mathrm{wR} 2=0.0625 \\
& 0.604 \text { and }-0.660 \mathrm{e} . \AA^{-3}
\end{aligned}
$$

Table 2. Atomic coordinates ( $\times 10^{4}$ ) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 2-allyl-6-bromo-9H-beta-carbolin-2-ium bromide (144). $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized $\mathrm{U}^{\mathrm{ij}}$ tensor.


Table 3. Bond lengths [ $\AA$ ] and angles [ ${ }^{\circ}$ ] for 2-allyl-6-bromo- $9 H$-beta-carbolin-2-ium bromide (144).

| $\operatorname{Br}(1)-\mathrm{C}(8)$ | $1.915(3)$ |
| :--- | :--- |
| $\mathrm{N}(1)-\mathrm{C}(5)$ | $1.348(3)$ |
| $\mathrm{N}(1)-\mathrm{C}(1)$ | $1.368(3)$ |
| $\mathrm{N}(1)-\mathrm{C}(12)$ | $1.499(3)$ |
| $\mathrm{N}(2)-\mathrm{C}(4)$ | $1.377(3)$ |


| $\mathrm{N}(2)-\mathrm{C}(11)$ | 1.384(3) |
| :---: | :---: |
| $\mathrm{N}(2)-\mathrm{H}(2)$ | 0.8800 |
| $\mathrm{C}(1)-\mathrm{C}(2)$ | 1.380(4) |
| $\mathrm{C}(1)-\mathrm{H}(1)$ | 0.9500 |
| $\mathrm{C}(2)-\mathrm{C}(3)$ | 1.397(4) |
| $\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$ | 0.9500 |
| $\mathrm{C}(3)-\mathrm{C}(4)$ | 1.428(3) |
| $\mathrm{C}(3)-\mathrm{C}(6)$ | 1.443(3) |
| $\mathrm{C}(4)-\mathrm{C}(5)$ | 1.390(4) |
| $\mathrm{C}(5)-\mathrm{H}(5)$ | 0.9500 |
| $\mathrm{C}(6)-\mathrm{C}(7)$ | 1.409(3) |
| $\mathrm{C}(6)-\mathrm{C}(11)$ | 1.423(3) |
| $\mathrm{C}(7)-\mathrm{C}(8)$ | 1.382(4) |
| $\mathrm{C}(7)-\mathrm{H}(7)$ | 0.9500 |
| $\mathrm{C}(8)-\mathrm{C}(9)$ | 1.411(4) |
| $\mathrm{C}(9)-\mathrm{C}(10)$ | 1.385(4) |
| $\mathrm{C}(9)-\mathrm{H}(9)$ | 0.9500 |
| $\mathrm{C}(10)-\mathrm{C}(11)$ | $1.402(4)$ |
| $\mathrm{C}(10)-\mathrm{H}(10)$ | 0.9500 |
| $\mathrm{C}(12)-\mathrm{C}(13)$ | 1.501(4) |
| $\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$ | 0.9900 |
| $\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$ | 0.9900 |
| $\mathrm{C}(13)-\mathrm{C}(14)$ | 1.319(4) |
| $\mathrm{C}(13)-\mathrm{H}(13)$ | 0.9500 |
| $\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$ | 0.9500 |
| $\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$ | 0.9500 |
| $\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(1)$ | 123.3(2) |
| $\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(12)$ | 118.4(2) |
| $\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(12)$ | 118.2(2) |
| $\mathrm{C}(4)-\mathrm{N}(2)-\mathrm{C}(11)$ | 108.3(2) |
| $\mathrm{C}(4)-\mathrm{N}(2)-\mathrm{H}(2)$ | 125.9 |
| $\mathrm{C}(11)-\mathrm{N}(2)-\mathrm{H}(2)$ | 125.9 |
| $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$ | 121.0(2) |
| $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{H}(1)$ | 119.5 |
| $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1)$ | 119.5 |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | 118.3(2) |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$ | 120.8 |


| $\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2 \mathrm{~A})$ | 120.8 |
| :---: | :---: |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$ | 118.8(2) |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(6)$ | 135.2(2) |
| $\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(6)$ | 106.0(2) |
| $\mathrm{N}(2)-\mathrm{C}(4)-\mathrm{C}(5)$ | 129.1(2) |
| $\mathrm{N}(2)-\mathrm{C}(4)-\mathrm{C}(3)$ | 109.8(2) |
| $\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$ | 121.1(2) |
| $\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(4)$ | 117.4(2) |
| $\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{H}(5)$ | 121.3 |
| $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$ | 121.3 |
| $\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(11)$ | 120.9(2) |
| $\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(3)$ | 132.8(2) |
| $\mathrm{C}(11)-\mathrm{C}(6)-\mathrm{C}(3)$ | 106.3(2) |
| $\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$ | 116.8(2) |
| $\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7)$ | 121.6 |
| $\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7)$ | 121.6 |
| $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$ | 122.6(2) |
| $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{Br}(1)$ | 118.18(19) |
| $\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{Br}(1)$ | 119.18(19) |
| $\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$ | 121.0(2) |
| $\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9)$ | 119.5 |
| $\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9)$ | 119.5 |
| $\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$ | 117.7(2) |
| $\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10)$ | 121.2 |
| $\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10)$ | 121.2 |
| $\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{C}(10)$ | 129.3(2) |
| $\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{C}(6)$ | 109.6(2) |
| $\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(6)$ | 121.0(2) |
| $\mathrm{N}(1)-\mathrm{C}(12)-\mathrm{C}(13)$ | 109.7(2) |
| $\mathrm{N}(1)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$ | 109.7 |
| $\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$ | 109.7 |
| $\mathrm{N}(1)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$ | 109.7 |
| $\mathrm{C}(13)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$ | 109.7 |
| $\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$ | 108.2 |
| $\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{C}(12)$ | 123.6(2) |
| $\mathrm{C}(14)-\mathrm{C}(13)-\mathrm{H}(13)$ | 118.2 |
| $\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{H}(13)$ | 118.2 |
| $\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~A})$ | 120.0 |


| $\mathrm{C}(13)-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$ | 120.0 |
| :--- | :--- |
| $\mathrm{H}(14 \mathrm{~A})-\mathrm{C}(14)-\mathrm{H}(14 \mathrm{~B})$ | 120.0 |

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 2-allyl-6-bromo-9H-beta-carbolin-2-ium bromide (144). The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2\right.$ h k a* ${ }^{*} U^{12}$ ]

|  |  |  |  |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |

Table 5. Hydrogen coordinates ( $\times 10^{4}$ ) and isotropic displacement parameters ( $\AA^{2} \times 10^{3}$ ) for 2-allyl-6-bromo- 9 H -beta-carbolin-2-ium bromide (144).

| $x$ | $y$ | $z$ | $U(e q)$ |  |
| :---: | :---: | :---: | :---: | :---: |
| $H(2)$ | 6279 | 7814 | 4101 | 17 |
| $H(1)$ | -183 | 8192 | -1501 | 18 |


| $\mathrm{H}(2 \mathrm{~A})$ | 541 | 7213 | -885 | 16 |
| :--- | ---: | ---: | ---: | ---: |
| $\mathrm{H}(5)$ | 4184 | 8724 | 2366 | 17 |
| $\mathrm{H}(7)$ | 2279 | 6132 | 611 | 15 |
| $\mathrm{H}(9)$ | 6773 | 5719 | 4688 | 17 |
| $\mathrm{H}(10)$ | 7481 | 6704 | 5293 | 17 |
| $\mathrm{H}(12 \mathrm{~A})$ | 455 | 9175 | -1189 | 20 |
| $\mathrm{H}(12 \mathrm{~B})$ | 2310 | 9397 | 95 | 20 |
| $\mathrm{H}(13)$ | -300 | 9082 | 1814 | 17 |
| $\mathrm{H}(14 \mathrm{~A})$ | 1901 | 10041 | 2437 | 22 |
| $\mathrm{H}(14 \mathrm{~B})$ | 507 | 9887 | 3572 | 22 |

Table 6. Torsion angles [ ${ }^{\circ}$ ] for 2-allyl-6-bromo-9H-beta-carbolin-2-ium bromide (144).

| $\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$ | $0.8(4)$ |
| :---: | ---: |
| $\mathrm{C}(12)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$ | $-174.6(2)$ |
| $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | $-1.0(4)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$ | $0.3(4)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(6)$ | $179.2(3)$ |
| $\mathrm{C}(11)-\mathrm{N}(2)-\mathrm{C}(4)-\mathrm{C}(5)$ | $178.2(2)$ |
| $\mathrm{C}(11)-\mathrm{N}(2)-\mathrm{C}(4)-\mathrm{C}(3)$ | $-0.6(3)$ |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(2)$ | $179.6(2)$ |
| $\mathrm{C}(6)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(2)$ | $0.3(3)$ |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$ | $0.7(4)$ |
| $\mathrm{C}(6)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$ | $-178.6(2)$ |
| $\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(4)$ | $0.1(4)$ |
| $\mathrm{C}(12)-\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(4)$ | $175.6(2)$ |
| $\mathrm{N}(2)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}(1)$ | $-179.5(2)$ |
| $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}(1)$ | $-0.9(4)$ |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(6)-\mathrm{C}(7)$ | $0.0(5)$ |
| $\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(6)-\mathrm{C}(7)$ | $179.0(3)$ |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(6)-\mathrm{C}(11)$ | $-179.0(3)$ |
| $\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(6)-\mathrm{C}(11)$ | $0.1(3)$ |
| $\mathrm{C}(11)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$ | $0.2(4)$ |
| $\mathrm{C}(3)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$ | $-178.6(2)$ |
| $\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$ | $1.3(4)$ |
| $\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{Br}(1)$ | $179.66(17)$ |
| $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$ | $-1.3(4)$ |


| $\mathrm{Br}(1)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$ | $-179.61(19)$ |
| :---: | :---: |
| $\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$ | $-0.4(4)$ |
| $\mathrm{C}(4)-\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{C}(10)$ | $-176.8(2)$ |
| $\mathrm{C}(4)-\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{C}(6)$ | $0.6(3)$ |
| $\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{N}(2)$ | $179.1(2)$ |
| $\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(6)$ | $1.9(4)$ |
| $\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{N}(2)$ | $-179.5(2)$ |
| $\mathrm{C}(3)-\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{N}(2)$ | $-0.4(3)$ |
| $\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{C}(10)$ | $-1.8(4)$ |
| $\mathrm{C}(3)-\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{C}(10)$ | $177.3(2)$ |
| $\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(12)-\mathrm{C}(13)$ | $-79.5(3)$ |
| $\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(12)-\mathrm{C}(13)$ | $96.2(3)$ |
| $\mathrm{N}(1)-\mathrm{C}(12)-\mathrm{C}(13)-\mathrm{C}(14)$ | $127.6(3)$ |
|  |  |

Symmetry transformations used to generate equivalent atoms:

Table 7. Hydrogen bonds for 2-allyl-6-bromo-9H-beta-carbolin-2-ium bromide (144). [Å and ${ }^{\circ}$ ].

| D-H...A | d(D-H) | $d(H \ldots A)$ | $d(D \ldots A)$ | $<(D H A)$ |
| :--- | :---: | :---: | :---: | :---: |
| $N(2)-H(2) \ldots B r(2)$ | 0.88 | 2.45 | $3.260(2)$ | 153 |

Symmetry transformations used to generate equivalent atoms:

## Crystallographic Data for 6-chloro-2-methyl-2H-beta-carboline (158) (CCDC

 728844)

Table 1. Crystal data and structure refinement for 6-chloro-2-methyl-2H-beta-carboline (158).

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=26.36^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on $\mathrm{F}^{2}$

158
C12 H9 Cl N2
216.66

140(2) K
$0.71073 \AA$
Monoclinic
P2(1)/c
$\mathrm{a}=6.0420(8) \AA \quad \alpha=90^{\circ}$.
$\mathrm{b}=22.907(3) \AA$
$\beta=104.655(14)^{\circ}$.
$\mathrm{c}=7.2662(11) \AA$
$\gamma=90^{\circ}$.
973.0(2) $\AA^{3}$

4
$1.479 \mathrm{Mg} / \mathrm{m}^{3}$
$0.354 \mathrm{~mm}^{-1}$
448
$0.23 \times 0.12 \times 0.10 \mathrm{~mm}^{3}$
3.03 to $26.36^{\circ}$.
$-7<=\mathrm{h}<=7,-28<=\mathrm{k}<=27,-8<=1<=9$
8596
$1978[\mathrm{R}(\mathrm{int})=0.0795]$
99.3 \%

Semi-empirical from equivalents
1.00000 and 0.85917

Full-matrix least-squares on $\mathrm{F}^{2}$
1978/0/136
1.000

Final R indices [I>2sigma(I)]
R indices (all data)
Largest diff. peak and hole

$$
\begin{aligned}
& \mathrm{R} 1=0.0644, \mathrm{wR} 2=0.1287 \\
& \mathrm{R} 1=0.1227, \mathrm{wR} 2=0.1456 \\
& 0.400 \text { and }-0.411 \mathrm{e} . \AA^{-3}
\end{aligned}
$$

Table 2. Atomic coordinates ( $\times 10^{4}$ ) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 6-chloro-2-methyl-2H-beta-carboline (158). U(eq) is defined as one third of the trace of the orthogonalized $U^{i j}$ tensor.

|  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: |

Table 3. Bond lengths $[\AA \AA]$ and angles [ ${ }^{\circ}$ ] for 6-chloro-2-methyl-2H-beta-carboline (158).

| $\mathrm{Cl}(1)-\mathrm{C}(8)$ | $1.752(4)$ |
| :--- | :---: |
| $\mathrm{N}(1)-\mathrm{C}(5)$ | $1.344(4)$ |
| $\mathrm{N}(1)-\mathrm{C}(1)$ | $1.360(5)$ |
| $\mathrm{N}(1)-\mathrm{C}(12)$ | $1.481(4)$ |
| $\mathrm{N}(2)-\mathrm{C}(4)$ | $1.364(4)$ |
| $\mathrm{N}(2)-\mathrm{C}(11)$ | $1.365(4)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)$ | $1.367(5)$ |
| $\mathrm{C}(1)-\mathrm{H}(1)$ | 0.9500 |
| $\mathrm{C}(2)-\mathrm{C}(3)$ | $1.387(5)$ |


| $\mathrm{C}(2)-\mathrm{H}(2)$ | 0.9500 |
| :---: | :---: |
| $\mathrm{C}(3)-\mathrm{C}(6)$ | 1.424(5) |
| $\mathrm{C}(3)-\mathrm{C}(4)$ | 1.431(5) |
| $\mathrm{C}(4)-\mathrm{C}(5)$ | 1.390 (5) |
| $\mathrm{C}(5)-\mathrm{H}(5)$ | 0.9500 |
| $\mathrm{C}(6)-\mathrm{C}(7)$ | 1.403(5) |
| $\mathrm{C}(6)-\mathrm{C}(11)$ | 1.427(5) |
| $\mathrm{C}(7)-\mathrm{C}(8)$ | 1.377(5) |
| $\mathrm{C}(7)-\mathrm{H}(7)$ | 0.9500 |
| $\mathrm{C}(8)-\mathrm{C}(9)$ | 1.401(5) |
| $\mathrm{C}(9)-\mathrm{C}(10)$ | $1.368(5)$ |
| $\mathrm{C}(9)-\mathrm{H}(9)$ | 0.9500 |
| $\mathrm{C}(10)-\mathrm{C}(11)$ | 1.414(5) |
| $\mathrm{C}(10)-\mathrm{H}(10)$ | 0.9500 |
| $\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$ | 0.9800 |
| $\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$ | 0.9800 |
| $\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$ | 0.9800 |
| $\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(1)$ | 122.4(3) |
| $\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(12)$ | 118.9(3) |
| $\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(12)$ | 118.7(3) |
| $\mathrm{C}(4)-\mathrm{N}(2)-\mathrm{C}(11)$ | 103.3(3) |
| $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$ | 121.1(3) |
| $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{H}(1)$ | 119.5 |
| $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1)$ | 119.5 |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | 118.9(3) |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2)$ | 120.6 |
| $\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2)$ | 120.6 |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(6)$ | 136.4(3) |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$ | 119.5(3) |
| $\mathrm{C}(6)-\mathrm{C}(3)-\mathrm{C}(4)$ | 104.1(3) |
| $\mathrm{N}(2)-\mathrm{C}(4)-\mathrm{C}(5)$ | 127.0(3) |
| $\mathrm{N}(2)-\mathrm{C}(4)-\mathrm{C}(3)$ | 114.0(3) |
| $\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$ | 118.9(3) |
| $\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(4)$ | 119.3(3) |
| $\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{H}(5)$ | 120.4 |
| $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$ | 120.4 |
| $\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(3)$ | 133.8(3) |


| $\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(11)$ | $121.3(3)$ |
| :--- | :---: |
| $\mathrm{C}(3)-\mathrm{C}(6)-\mathrm{C}(11)$ | $104.9(3)$ |
| $\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$ | $117.3(3)$ |
| $\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7)$ | 121.3 |
| $\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7)$ | 121.3 |
| $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$ | $122.4(3)$ |
| $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{Cl}(1)$ | $119.6(3)$ |
| $\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{Cl}(1)$ | $118.0(3)$ |
| $\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$ | $120.9(3)$ |
| $\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9)$ | 119.5 |
| $\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9)$ | 119.5 |
| $\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$ | $119.1(3)$ |
| $\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10)$ | 120.4 |
| $\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10)$ | 120.4 |
| $\mathrm{~N}(2)-\mathrm{C}(11)-\mathrm{C}(10)$ | $127.3(3)$ |
| $\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{C}(6)$ | $113.7(3)$ |
| $\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(6)$ | $119.0(3)$ |
| $\mathrm{N}(1)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$ | 109.5 |
| $\mathrm{~N}(1)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$ | 109.5 |
| $\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$ | 109.5 |
| $\mathrm{~N}(1)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$ | 109.5 |
| $\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$ | 109.5 |
| $\mathrm{H}(12 \mathrm{~B})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$ | 109.5 |

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 6-chloro-2-methyl-2H-beta-carboline (158). The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*}\right.$ $b^{*} U^{12}$ ]

| $\mathrm{U}^{11}$ |  | $\mathrm{U}^{22}$ | $\mathrm{U}^{33}$ | $\mathrm{U}^{23}$ | $\mathrm{U}^{13}$ | $\mathrm{U}^{12}$ |
| :---: | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $\mathrm{Cl}(1)$ | $42(1)$ | $23(1)$ | $36(1)$ | $-8(1)$ | $8(1)$ | $-9(1)$ |
| $\mathrm{N}(1)$ | $31(2)$ | $12(2)$ | $15(2)$ | $-1(1)$ | $5(1)$ | $-5(1)$ |
| $\mathrm{N}(2)$ | $24(2)$ | $15(2)$ | $21(2)$ | $-1(1)$ | $3(1)$ | $3(1)$ |
| $\mathrm{C}(1)$ | $26(2)$ | $14(2)$ | $21(2)$ | $4(2)$ | $8(2)$ | $6(2)$ |
| $\mathrm{C}(2)$ | $18(2)$ | $18(2)$ | $16(2)$ | $0(2)$ | $1(2)$ | $-1(2)$ |
| $\mathrm{C}(3)$ | $25(2)$ | $14(2)$ | $10(2)$ | $0(2)$ | $4(2)$ | $-2(2)$ |


| $\mathrm{C}(4)$ | $24(2)$ | $17(2)$ | $13(2)$ | $3(2)$ | $4(2)$ | $-2(2)$ |
| :--- | :---: | :---: | :---: | :---: | :---: | :---: |
| $\mathrm{C}(5)$ | $22(2)$ | $18(2)$ | $18(2)$ | $2(2)$ | $2(2)$ | $-2(2)$ |
| $\mathrm{C}(6)$ | $27(2)$ | $13(2)$ | $13(2)$ | $4(2)$ | $7(2)$ | $0(2)$ |
| $\mathrm{C}(7)$ | $22(2)$ | $18(2)$ | $17(2)$ | $4(2)$ | $6(2)$ | $0(2)$ |
| $\mathrm{C}(8)$ | $35(2)$ | $17(2)$ | $15(2)$ | $-2(2)$ | $8(2)$ | $-10(2)$ |
| $\mathrm{C}(9)$ | $36(2)$ | $11(2)$ | $24(2)$ | $1(2)$ | $13(2)$ | $1(2)$ |
| $\mathrm{C}(10)$ | $26(2)$ | $18(2)$ | $31(2)$ | $4(2)$ | $9(2)$ | $3(2)$ |
| $\mathrm{C}(11)$ | $25(2)$ | $13(2)$ | $14(2)$ | $4(2)$ | $6(2)$ | $1(2)$ |
| $\mathrm{C}(12)$ | $41(3)$ | $14(2)$ | $24(2)$ | $-3(2)$ | $9(2)$ | $-6(2)$ |

Table 5. Hydrogen coordinates ( $\mathrm{x} 10^{4}$ ) and isotropic displacement parameters $\left(\AA^{2} \times 10{ }^{3}\right)$ for 6-chloro-2-methyl-2 H -beta-carboline (158).

| $x$ |  |  | $y$ | $z$ |
| :--- | ---: | ---: | ---: | ---: |

Table 6. Torsion angles [ ${ }^{\circ}$ ] for 6-chloro-2-methyl-2 H -beta-carboline ( $\mathbf{1 5 8 ) .}$

| $\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$ | $0.3(5)$ |
| :---: | :---: |
| $\mathrm{C}(12)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$ | $179.9(3)$ |
| $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | $-1.3(5)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(6)$ | $179.3(4)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$ | $0.9(5)$ |
| $\mathrm{C}(11)-\mathrm{N}(2)-\mathrm{C}(4)-\mathrm{C}(5)$ | $177.8(4)$ |
| $\mathrm{C}(11)-\mathrm{N}(2)-\mathrm{C}(4)-\mathrm{C}(3)$ | $0.1(4)$ |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(2)$ | $178.4(3)$ |
| $\mathrm{C}(6)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(2)$ | $-0.4(4)$ |


| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$ | $0.5(5)$ |
| :---: | ---: |
| $\mathrm{C}(6)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$ | $-178.4(3)$ |
| $\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(4)$ | $1.1(5)$ |
| $\mathrm{C}(12)-\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(4)$ | $-178.4(3)$ |
| $\mathrm{N}(2)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}(1)$ | $-179.1(3)$ |
| $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}(1)$ | $-1.5(5)$ |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(6)-\mathrm{C}(7)$ | $1.2(7)$ |
| $\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(6)-\mathrm{C}(7)$ | $179.7(4)$ |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(6)-\mathrm{C}(11)$ | $-178.0(4)$ |
| $\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(6)-\mathrm{C}(11)$ | $0.6(3)$ |
| $\mathrm{C}(3)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$ | $-179.5(4)$ |
| $\mathrm{C}(11)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$ | $-0.4(5)$ |
| $\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$ | $0.6(5)$ |
| $\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{Cl}(1)$ | $-177.6(2)$ |
| $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$ | $-0.3(6)$ |
| $\mathrm{Cl}(1)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$ | $177.9(3)$ |
| $\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$ | $-0.1(5)$ |
| $\mathrm{C}(4)-\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{C}(10)$ | $-179.6(3)$ |
| $\mathrm{C}(4)-\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{C}(6)$ | $0.3(4)$ |
| $\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{N}(2)$ | $-179.9(3)$ |
| $\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(6)$ | $0.2(5)$ |
| $\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{N}(2)$ | $-179.9(3)$ |
| $\mathrm{C}(3)-\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{N}(2)$ | $-0.6(4)$ |
| $\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{C}(10)$ | $0.0(5)$ |
| $\mathrm{C}(3)-\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{C}(10)$ | $179.3(3)$ |
|  |  |

Symmetry transformations used to generate equivalent atoms:

## Crystallographic Data for 6-bromo-2-methyl-2H-beta-carboline (160)



Table 1. Crystal data and structure refinement for 6-bromo-2-methyl-2H-beta-carboline (160).

Identification code
Empirical formula
Formula weight
Temperature
Wavelength
Crystal system
Space group
Unit cell dimensions

Volume
Z
Density (calculated)
Absorption coefficient
F(000)
Crystal size
Theta range for data collection
Index ranges
Reflections collected
Independent reflections
Completeness to theta $=27.51^{\circ}$
Absorption correction
Max. and min. transmission
Refinement method
Data / restraints / parameters
Goodness-of-fit on $\mathrm{F}^{2}$
Final R indices [I>2sigma(I)]
R indices (all data)

160
C12 H9 Br N2
261.12

100(2) K
0.71073 £

Monoclinic
P2(1)/c
$a=6.0749(8) \AA \quad \alpha=90^{\circ}$.
$\mathrm{b}=23.242(3) \AA$
$\beta=105.542(11)^{\circ}$.
$\mathrm{c}=7.3601(8) \AA$
$\gamma=90^{\circ}$.
1001.2(2) $\AA^{3}$

4
$1.732 \mathrm{Mg} / \mathrm{m}^{3}$
$4.068 \mathrm{~mm}^{-1}$
520
$0.39 \times 0.19 \times 0.15 \mathrm{~mm}^{3}$
3.37 to $27.51^{\circ}$.
$-7<=\mathrm{h}<=7,-30<=\mathrm{k}<=30,-9<=1<=9$
20538
$2291[\mathrm{R}(\mathrm{int})=0.0817]$
99.8 \%

Semi-empirical from equivalents
0.543 and 0.335

Full-matrix least-squares on $\mathrm{F}^{2}$
2291/0/136
1.189
$\mathrm{R} 1=0.0420, \mathrm{wR} 2=0.0698$
$\mathrm{R} 1=0.0599, \mathrm{wR} 2=0.0755$

Largest diff. peak and hole

$$
0.584 \text { and }-0.507 \mathrm{e} . \AA^{-3}
$$

Table 2. Atomic coordinates ( $\times 10^{4}$ ) and equivalent isotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 6-bromo-2-methyl-2 H -beta-carboline (160). $\mathrm{U}(\mathrm{eq})$ is defined as one third of the trace of the orthogonalized $U^{\text {ij }}$ tensor.

|  |  |  |  |  |
| :--- | ---: | ---: | ---: | ---: |

Table 3. Bond lengths $[\AA \AA]$ and angles [ ${ }^{\circ}$ ] for 6-bromo-2-methyl-2H-beta-carboline (160).

| $\operatorname{Br}(1)-\mathrm{C}(8)$ | $1.915(3)$ |
| :---: | :---: |
| $\mathrm{N}(1)-\mathrm{C}(5)$ | $1.346(4)$ |
| $\mathrm{N}(1)-\mathrm{C}(1)$ | $1.373(4)$ |
| $\mathrm{N}(1)-\mathrm{C}(12)$ | $1.481(4)$ |
| $\mathrm{N}(2)-\mathrm{C}(4)$ | $1.374(4)$ |
| $\mathrm{N}(2)-\mathrm{C}(11)$ | $1.378(4)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)$ | $1.376(5)$ |
| $\mathrm{C}(1)-\mathrm{H}(1)$ | 0.9500 |
| $\mathrm{C}(2)-\mathrm{C}(3)$ | $1.399(5)$ |
| $\mathrm{C}(2)-\mathrm{H}(2)$ | 0.9500 |
| $\mathrm{C}(3)-\mathrm{C}(6)$ | $1.435(5)$ |


| $\mathrm{C}(3)-\mathrm{C}(4)$ | $1.443(5)$ |
| :---: | :---: |
| $\mathrm{C}(4)-\mathrm{C}(5)$ | $1.395(5)$ |
| $\mathrm{C}(5)-\mathrm{H}(5)$ | 0.9500 |
| $\mathrm{C}(6)-\mathrm{C}(7)$ | 1.412(5) |
| $\mathrm{C}(6)-\mathrm{C}(11)$ | 1.434(4) |
| $\mathrm{C}(7)-\mathrm{C}(8)$ | 1.381(5) |
| $\mathrm{C}(7)-\mathrm{H}(7)$ | 0.9500 |
| $\mathrm{C}(8)-\mathrm{C}(9)$ | 1.415(5) |
| $\mathrm{C}(9)-\mathrm{C}(10)$ | 1.371(5) |
| $\mathrm{C}(9)-\mathrm{H}(9)$ | 0.9500 |
| $\mathrm{C}(10)-\mathrm{C}(11)$ | $1.413(5)$ |
| $\mathrm{C}(10)-\mathrm{H}(10)$ | 0.9500 |
| $\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$ | 0.9800 |
| $\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$ | 0.9800 |
| $\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$ | 0.9800 |
| $\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(1)$ | 122.6(3) |
| $\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(12)$ | 119.2(3) |
| $\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(12)$ | 118.1(3) |
| $\mathrm{C}(4)-\mathrm{N}(2)-\mathrm{C}(11)$ | 103.6(3) |
| $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$ | 121.0(3) |
| $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{H}(1)$ | 119.5 |
| $\mathrm{C}(2)-\mathrm{C}(1)-\mathrm{H}(1)$ | 119.5 |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | 118.6(3) |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{H}(2)$ | 120.7 |
| $\mathrm{C}(3)-\mathrm{C}(2)-\mathrm{H}(2)$ | 120.7 |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(6)$ | 136.3(3) |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$ | 119.6(3) |
| $\mathrm{C}(6)-\mathrm{C}(3)-\mathrm{C}(4)$ | 104.1(3) |
| $\mathrm{N}(2)-\mathrm{C}(4)-\mathrm{C}(5)$ | 127.3(3) |
| $\mathrm{N}(2)-\mathrm{C}(4)-\mathrm{C}(3)$ | 113.8(3) |
| $\mathrm{C}(5)-\mathrm{C}(4)-\mathrm{C}(3)$ | 118.9(3) |
| $\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(4)$ | 119.3(3) |
| $\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{H}(5)$ | 120.3 |
| $\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{H}(5)$ | 120.3 |
| $\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(11)$ | 121.0(3) |
| $\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(3)$ | 133.8(3) |
| $\mathrm{C}(11)-\mathrm{C}(6)-\mathrm{C}(3)$ | 105.2(3) |


| $\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{C}(6)$ | $117.4(3)$ |
| :--- | :---: |
| $\mathrm{C}(8)-\mathrm{C}(7)-\mathrm{H}(7)$ | 121.3 |
| $\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{H}(7)$ | 121.3 |
| $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$ | $122.3(3)$ |
| $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{Br}(1)$ | $119.6(3)$ |
| $\mathrm{C}(9)-\mathrm{C}(8)-\mathrm{Br}(1)$ | $118.0(3)$ |
| $\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{C}(8)$ | $120.5(3)$ |
| $\mathrm{C}(10)-\mathrm{C}(9)-\mathrm{H}(9)$ | 119.7 |
| $\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{H}(9)$ | 119.7 |
| $\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$ | $119.5(3)$ |
| $\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{H}(10)$ | 120.2 |
| $\mathrm{C}(11)-\mathrm{C}(10)-\mathrm{H}(10)$ | 120.2 |
| $\mathrm{~N}(2)-\mathrm{C}(11)-\mathrm{C}(10)$ | $127.4(3)$ |
| $\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{C}(6)$ | $113.3(3)$ |
| $\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(6)$ | $119.2(3)$ |
| $\mathrm{N}(1)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~A})$ | 109.5 |
| $\mathrm{~N}(1)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$ | 109.5 |
| $\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{~B})$ | 109.5 |
| $\mathrm{~N}(1)-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$ | 109.5 |
| $\mathrm{H}(12 \mathrm{~A})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$ | 109.5 |
| $\mathrm{H}(12 \mathrm{~B})-\mathrm{C}(12)-\mathrm{H}(12 \mathrm{C})$ | 109.5 |

Symmetry transformations used to generate equivalent atoms:

Table 4. Anisotropic displacement parameters $\left(\AA^{2} \times 10^{3}\right)$ for 6-bromo-2-methyl-2H-beta-carboline (160). The anisotropic displacement factor exponent takes the form: $-2 \pi^{2}\left[h^{2} a^{* 2} U^{11}+\ldots+2 h k a^{*}\right.$ $b^{*} U^{12}$ ]

|  | $\mathrm{U}^{11}$ |  | $\mathrm{U}^{22}$ | $\mathrm{U}^{33}$ | $\mathrm{U}^{23}$ | $\mathrm{U}^{13}$ | $\mathrm{U}^{12}$ |
| :--- | ---: | ---: | ---: | ---: | ---: | ---: | ---: |
| $\mathrm{Br}(1)$ | $21(1)$ | $15(1)$ | $18(1)$ | $-3(1)$ | $3(1)$ | $-4(1)$ |  |
| $\mathrm{N}(1)$ | $18(2)$ | $13(1)$ | $12(1)$ | $-1(1)$ | $3(1)$ | $-3(1)$ |  |
| $\mathrm{N}(2)$ | $15(2)$ | $15(2)$ | $18(2)$ | $-2(1)$ | $3(1)$ | $0(1)$ |  |
| $\mathrm{C}(1)$ | $18(2)$ | $17(2)$ | $15(2)$ | $2(1)$ | $5(1)$ | $4(1)$ |  |
| $\mathrm{C}(2)$ | $12(2)$ | $17(2)$ | $13(2)$ | $2(1)$ | $1(1)$ | $0(1)$ |  |
| $\mathrm{C}(3)$ | $15(2)$ | $16(2)$ | $9(2)$ | $2(1)$ | $2(1)$ | $-1(1)$ |  |
| $\mathrm{C}(4)$ | $18(2)$ | $17(2)$ | $9(2)$ | $1(1)$ | $3(1)$ | $-1(1)$ |  |
| $\mathrm{C}(5)$ | $17(2)$ | $16(2)$ | $16(2)$ | $2(1)$ | $3(1)$ | $-1(1)$ |  |


| $\mathrm{C}(6)$ | $16(2)$ | $13(2)$ | $11(2)$ | $3(1)$ | $4(1)$ | $2(1)$ |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |
| $\mathrm{C}(7)$ | $14(2)$ | $15(2)$ | $12(2)$ | $2(1)$ | $2(1)$ | $-1(1)$ |
| $\mathrm{C}(8)$ | $17(2)$ | $15(2)$ | $13(2)$ | $1(1)$ | $4(1)$ | $-3(1)$ |
| $\mathrm{C}(9)$ | $20(2)$ | $13(2)$ | $20(2)$ | $1(1)$ | $8(2)$ | $3(1)$ |
| $\mathrm{C}(10)$ | $14(2)$ | $19(2)$ | $20(2)$ | $3(1)$ | $5(1)$ | $4(1)$ |
| $\mathrm{C}(11)$ | $14(2)$ | $16(2)$ | $14(2)$ | $3(1)$ | $4(1)$ | $0(1)$ |
| $\mathrm{C}(12)$ | $24(2)$ | $17(2)$ | $17(2)$ | $-4(1)$ | $4(2)$ | $-4(2)$ |

Table 5. Hydrogen coordinates ( $\mathrm{x} 10^{4}$ ) and isotropic displacement parameters ( $\AA^{2} \times 10{ }^{3}$ ) for 6-bromo-2-methyl-2 H -beta-carboline ( $\mathbf{1 6 0 ) \text { . }}$

| $x$ |  | $y$ | $z$ | U(eq) |
| :--- | ---: | ---: | ---: | ---: |
| $H(1)$ | 2404 | 6060 | 7904 | 20 |
| $H(2)$ | 1043 | 5175 | 6589 | 17 |
| $H(5)$ | 8884 | 5504 | 9290 | 20 |
| $H(7)$ | 746 | 3975 | 5170 | 17 |
| $H(9)$ | 5439 | 2706 | 5304 | 21 |
| $H(10)$ | 8411 | 3302 | 6863 | 21 |
| $H(12 A)$ | 8126 | 6399 | 10168 | 30 |
| $H(12 B)$ | 5616 | 6520 | 10386 | 30 |
| $H(12 C)$ | 6252 | 6702 | 8492 | 30 |

Table 6. Torsion angles [ ${ }^{\circ}$ ] for 6-bromo-2-methyl-2 H -beta-carboline ( $\mathbf{1 6 0}$ ).

| $\mathrm{C}(5)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$ | $-0.1(5)$ |
| :---: | ---: |
| $\mathrm{C}(12)-\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)$ | $179.9(3)$ |
| $\mathrm{N}(1)-\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)$ | $-1.2(5)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(6)$ | $179.0(4)$ |
| $\mathrm{C}(1)-\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)$ | $1.1(5)$ |
| $\mathrm{C}(11)-\mathrm{N}(2)-\mathrm{C}(4)-\mathrm{C}(5)$ | $178.1(3)$ |
| $\mathrm{C}(11)-\mathrm{N}(2)-\mathrm{C}(4)-\mathrm{C}(3)$ | $0.4(4)$ |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(2)$ | $178.1(3)$ |
| $\mathrm{C}(6)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{N}(2)$ | $-0.4(4)$ |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$ | $0.1(5)$ |
| $\mathrm{C}(6)-\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)$ | $-178.3(3)$ |


| $\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(4)$ | $1.4(5)$ |
| :--- | ---: |
| $\mathrm{C}(12)-\mathrm{N}(1)-\mathrm{C}(5)-\mathrm{C}(4)$ | $-178.6(3)$ |
| $\mathrm{N}(2)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}(1)$ | $-179.0(3)$ |
| $\mathrm{C}(3)-\mathrm{C}(4)-\mathrm{C}(5)-\mathrm{N}(1)$ | $-1.4(5)$ |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(6)-\mathrm{C}(7)$ | $2.4(7)$ |
| $\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(6)-\mathrm{C}(7)$ | $-179.5(3)$ |
| $\mathrm{C}(2)-\mathrm{C}(3)-\mathrm{C}(6)-\mathrm{C}(11)$ | $-177.8(4)$ |
| $\mathrm{C}(4)-\mathrm{C}(3)-\mathrm{C}(6)-\mathrm{C}(11)$ | $0.2(3)$ |
| $\mathrm{C}(11)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$ | $0.1(5)$ |
| $\mathrm{C}(3)-\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)$ | $179.8(3)$ |
| $\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)$ | $0.6(5)$ |
| $\mathrm{C}(6)-\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{Br}(1)$ | $-177.1(2)$ |
| $\mathrm{C}(7)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$ | $-0.3(5)$ |
| $\mathrm{Br}(1)-\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)$ | $177.4(3)$ |
| $\mathrm{C}(8)-\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)$ | $-0.7(5)$ |
| $\mathrm{C}(4)-\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{C}(10)$ | $-179.4(3)$ |
| $\mathrm{C}(4)-\mathrm{N}(2)-\mathrm{C}(11)-\mathrm{C}(6)$ | $-0.2(4)$ |
| $\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{N}(2)$ | $-179.5(3)$ |
| $\mathrm{C}(9)-\mathrm{C}(10)-\mathrm{C}(11)-\mathrm{C}(6)$ | $1.3(5)$ |
| $\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{N}(2)$ | $179.7(3)$ |
| $\mathrm{C}(3)-\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{N}(2)$ | $0.0(4)$ |
| $\mathrm{C}(7)-\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{C}(10)$ | $-1.0(5)$ |
| $\mathrm{C}(3)-\mathrm{C}(6)-\mathrm{C}(11)-\mathrm{C}(10)$ | $179.2(3)$ |
|  |  |

Symmetry transformations used to generate equivalent atoms:

## Curriculum Vitae

Simone Bonazzi, born July $1^{\text {st }} 1982$ in Locarno, Switzerland

## Education

09.1997-06.2001 Maturità federale tipo Biologia-Chimica (BIC), Locarno High school (Liceo Cantonale Locarno), Switzerland
10.2001-06.2005 M.Sc. in molecular and biological chemistry, Swiss Federal Institute of Technology of Lausanne (EPFL), Switzerland
07.2004-09.2004 Internship: Inpharzam Ricerche SA (Zambon Group), Laboratory of Medicinal Chemistry, Taverne, Switzerland
10.2004-02.2005 Semester project in the group of Prof. Dr. S. Pitsch, Laboratory of Nucleic Acid Chemistry, Swiss Federal Institute of Technology of Lausanne (EPFL), Switzerland:
Synthesis of RNA Phosphoramidites with 2'O-Amino Linker Modification
03.2005-06.2005 Semester project in the group of Prof. Dr. K. Severin, Laboratory of Supramolecular Chemistry, Swiss Federal Institute of Technology of Lausanne (EPFL), Switzerland:
Self Assembly of Metallomacrocyclic $\pi$-Ligand/M ( $M=R h$, Ir, Ru) Complexes Using a Hexadentate Ligand
08.2005-09.2005 Research project in the group of Prof. Dr. J. K. M. Sanders and Dr. S. Otto, Department of Chemistry, University of Cambridge, England:
Synthesis of Squaramide Based Building Blocks for Dynamic Combinatorial Libraries
10.2005-03.2006 Diploma Thesis under the supervision of Prof. Dr. E. M. Carreira and Dr. K. Gademann, Laboratorium für Organische Chemie, Swiss Federal Institute of Technology of Zürich (ETHZ), Switzerland:
Synthesis of C(1)-C(11) Fragment of Anguinomycin and Derivatives as Inhibitors for Nucleocytoplasmic Transport
04.2006-05.2009 Ph.D. studies in organic chemistry under the supervision of Prof. Dr. K. Gademann and Prof. Dr. E. M. Carreira, Laboratorium für Organische Chemie, Swiss Federal Institute of Technology of Zürich (ETHZ), Switzerland and Chemical Synthesis Laboratory, Swiss Federal Institute of Technology of Lausanne (EPFL), Switzerland:
Total Syntheses of Anguinomycins C \& D, Synthetic Studies on Sporolides and Preparation of Eudistomin Derivatives: Biological Evaluation Against Cancer and Malaria

## Teaching Experience

During my Ph.D. thesis, I was responsible for the supervision and training of three diploma students, two semester students, one apprentice and one internship student. I was teaching assistant for three years in master courses (Structure and reactivity and Target synthesis) and in bachelor courses (Fonctions et réactions organiques II).


[^0]:    ${ }^{1}$ I. Paterson, E. A. Anderson, Science 2005, 310, 451-453.
    ${ }^{2}$ a) D. J. Newman, G. M. Cragg, K. M. Snader, J. Nat. Prod. 2003, 66, 1022-1037; b) D. J. Newman, G. M. Cragg, J. Nat. Prod. 2007, 70, 461-477.
    ${ }^{3}$ W. Fenical, P. R. Jensen, Nat. Chem. Biol. 2006, 2, 666-673.
    ${ }_{5}^{4}$ D. J. Newman, G. M. Cragg, K. M. Snader, Nat. Prod. Rep. 2000, 17, 215-234.
    ${ }^{5}$ G. M. Cragg, D. J. Newman, K. M. Snader, J. Nat. Prod. 1997, 60, 52-60.

[^1]:    ${ }^{6}$ S. Borman, Chem. Eng. News 2002, 80, 23-24.

[^2]:    ${ }_{8}^{7}$ A. Kamb, S. Wee, C. Lengauer, Nat. Rev. Drug Discovery 2007, 6, 115-120.
    ${ }^{8}$ F. Guéritte, J. Fahy, in Anticancer Agents from Natural Products (Eds.: G. M. Cragg, D. G. I. Kingston, D. J. Newman), Eds. Taylor \& Francis, Boca Raton London New York Singapore, 2005, pp. 123-135.
    ${ }^{9}$ K. H. Altmann, J. Gertsch, Nat. Prod. Rep. 2007, 24, 327-357.
    $10 \mathrm{http}: / / \mathrm{www} . m e d i c a l n e w s t o d a y . c o m / a r t i c l e s / 85726 . p h p$ (retrieved Feb., $3^{\text {th }}, 2009$ ).
    11 a) http://www.accessdata.fda.gov/scripts/cder/drugsatfda/index.cfm?fuseaction=Search.DrugDetails (retrieved Feb., $3^{\text {th }}, 2009$ ); b) R. V. J. Chari, Acc. Chem. Res. 2008, 41, 98-107.
    ${ }^{12}$ R. M. Wilson, S. J. Danishefsky, Chem. Soc. Rev. 2007, 36, 1207-1226.

[^3]:    13 D. T. Hung, T. F. Jamison, S. L. Schreiber, Chem. Biol. 1996, 3, 623-639.
    14 A. J. Levine, Annu. Rev. Biochem. 1993, 62, 623-651.

[^4]:    ${ }^{15}$ M. S. Greenblatt, W. P. Bennett, M. Hollstein, C. C. Harris, Cancer Res. 1994, 54, 4855-4878.
    ${ }^{16}$ Review: M. Kalesse, M. Christmann, Synthesis 2002, 981-1003.
    17 a) T. Hamamoto, S. Gunji, H. Tsuji, T. Beppu, J. Antibiot. 1983, 36, 639-645; b) T. Hamamoto, H. Seto, T. Beppu, J. Antibiot. 1983, 36, 646-650.
    ${ }^{18}$ T. Hamamoto, T. Uozumi, T. Beppu, J. Antibiot. 1985, 38, 1573-1580.
    ${ }^{19}$ K. Komiyama, K. Okada, S. Tomisaka, J. Antibiot. 1985, 38, 427-429.
    ${ }^{20}$ M. Kobayashi, K. Higuchi, N. Murakami, H. Tajima, S. Aoki, Tetrahedron Lett. 1997, 38, 2859-2862.
    21 a) K. Abe, M. Yoshida, S. Horinouchi, T. Beppu, J. Antibiot. 1993, 46, 728-734; b) K. Abe, M. Yoshida, H. Naoki, S. Horinouchi, T. Beppu, J. Antibiot. 1993, 46, 735-740.
    22 Isolation: K. Gerth, D. Schummer, G. Hofle, H. Irschik, H. Reichenbach, J. Antibiot. 1995, 48, 973-976. Biological evaluation: a) M. Kalesse, M. Christmann, U. Bhatt, M. Quitschalle, E. Claus, A. Saeed, A. Burzlaff, C. Kasper, L. O. Haustedt, E. Hofer, T. Scheper, W. Beil, ChemBioChem 2001, 2, 709-714; b) A. Burzlaff, M. Kalesse, C. Kasper, T. Scheper, Appl. Microbiol. Biotechnol. 2003, 62, 174-179.
    23 Isolation: I. Umezawa, K. Komiyama, H. Oka, J. Antibiot. 1984, 37, 706-711; K. Funaishi, K. Kawamura, Y. Sugiura, J. Antibiot. 1987, 40, 778-785. Biological evaluation: a) K. Komiyama, K. Okada, Y. Hirokawa, J. Antibiot. 1985, 38, 224-229; b) E. Yoshida, Y. Nishimuta, K. Naito, J. Antibiot. 1987, 40, 391-393; c) E. Yoshida, K. Komiyama, K. Naito, Y. Watanabe, K. Takamiya, A. Okura, K. Funaishi, K. Kawamura, S. Funayama, I. Umezawa, J. Antibiot. 1987, 40, 1596-1604; d) K. Takamiya, E. Yoshida, T. Takahashi, A. Okura, M. Okanishi, K. Komiyama, I. Umezawa, J. Antibiot. 1988, 41, 1854-1861.

    24 a) Y. Hayakawa, K. Y. Sohda, K. Furihata, T. Kuzuyama, K. Shin-ya, H. Seto, J. Antibiot. 1996, 49, 974-979; b) Y. Hayakawa, K. Y. Sohda, H. Seto, J. Antibiot. 1996, 49, 980-984.

    25 a) Y. Hayakawa, K. Adachi, N. Komeshima, J. Antibiot. 1987, 40, 1349-1352; b) Y. Hayakawa, K. Y. Sohda, K. Shin-Ya, T. Hidaka, H. Seto, J. Antibiot. 1995, 48, 954-961.

[^5]:    ${ }^{26}$ T. Hamamoto, T. Uozumi, T. Beppu, J. Antibiot. 1985, 38, 533-535.

[^6]:    ${ }^{27}$ N. Kudo, B. Wolff, T. Sekimoto, E. P. Schreiner, Y. Yoneda, M. Yanagida, S. Horinouchi, M. Yoshida, Exp. Cell Res. 1998, 242, 540-547.
    ${ }^{28}$ N. Kudo, N. Matsumori, H. Taoka, D. Fujiwara, E. P. Schreiner, B. Wolff, M. Yoshida, S. Horinouchi, Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 9112-9117.
    ${ }^{29}$ E. S. Newlands, G. J. S. Rustin, M. H. Brampton, Br. J. Cancer 1996, 74, 648-649.
    30 a) A. Aloisi, S. Di Gregorio, F. Stagno, P. Guglielmo, F. Mannino, M. P. Sormani, P. Bruzzi, C. GambacortiPasserini, G. Saglio, S. Venuta, R. Giustolisi, A. Messina, P. Vigneri, Blood 2006, 107, 1591-1598; b) R. K. Kancha, N. Von Bubnoff, C. Miething, C. Peschel, K. S. Götze, J. Duyster, Haematologica 2008, 93, 1718-1722.
    ${ }^{31}$ S. C. Mutka, W. Q. Yang, S. D. Dong, S. L. Ward, D. A. Craig, P. B. M. W. M. Timmermans, S. Murli, Cancer Res. 2009, 69, 510-517.
    ${ }^{32}$ M. Yoshida, M. Nishikawa, K. Nishi, K. Abe, S. Horinouchi, T. Beppu, Exp. Cell Res. 1990, 187, 150-156.

[^7]:    33 a) K. Nishi, M. Yoshida, D. Fujiwara, M. Nishikawa, S. Horinouchi, T. Beppu, J. Biol. Chem. 1994, 269, 63206324 ; b) K. Stade, C. S. Ford, C. Guthrie, K. Weis, Cell 1997, 90, 1041-1050; c) M. Fornerod, M. Ohno, M. Yoshida, I. W. Mattaj, Cell 1997, 90, 1051-1060.
    34 E. A. Nigg, Nature 1997, 386, 779-787.
    35 a) U. Kutay, S. Güttinger, Trends in Cell Biology 2005, 15, 121-124; b) C. Drahl, B. F. Cravatt, E. J. Sorensen, Angew. Chem., Int. Ed. 2005, 44, 5788-5809.
    36 a) R. A. Weinberg, Science 1991, 254, 1138-1146; b) R. Weinberg, Neuron 1993, 11, 191-196.
    37 a) J. Bartek, J. Bartkova, J. Lukas, Exp. Cell Res. 1997, 237, 1-6; b) S. Herwig, M. Strauss, Eur. J. Biochem. 1997, 246, 581-601.
    38 a) M. E. Perry, A. J. Levine, Current Opinion in Genetics and Development 1993, 3, 50-54; b) T. Jacks, R. A. Weinberg, Nature 1996, 381, 643-644.

[^8]:    ${ }^{39}$ R. A. Weinberg, Cell 1995, 81, 323-330.
    ${ }^{40}$ S. Laín, D. Xirodimas, D. P. Lane, Exp. Cell Res. 1999, 253, 315-324.
    ${ }^{41}$ N. Godefroy, C. Lemaire, B. Mignotte, J. L. Vayssière, Apoptosis 2006, 11, 659-661.
    42 a) B. Vogelstein, Nature 1990, 348, 681-682; b) M. B. Kastan, O. Onyekwere, D. Sidransky, B. Vogelstein, R. W. Craig, Cancer Res. 1991, 51, 6304-6311; c) C. C. Harris, M. Hollstein, N. Engl. J. Med. 1993, 329, 13181327.
    ${ }^{43}$ S. D. Morgenbesser, B. O. Williams, T. Jacks, R. A. DePinho, Nature 1994, 371, 72-74.
    ${ }^{44}$ G. Shaulsky, N. Goldfinger, A. Peled, V. Rotter, Cell Growth Differ. 1991, 2, 661-667.
    45 J. Martinez, I. Georgoff, A. J. Levine, Genes Dev. 1991, 5, 151-159.
    46 a) U. M. Moll, M. Laquaglia, J. Benard, G. Riou, Proc. Natl. Acad. Sci. U. S. A. 1995, 92, 4407-4411; b) U. M. Moll, A. G. Ostermeyer, R. Haladay, B. Winkfield, M. Frazier, G. Zambetti, Mol. Cell. Biol. 1996, 16, 11261137 ; c) A. G. Ostermeyer, E. Runko, B. Winkfield, B. Ahn, U. M. Moll, Proc. Natl. Acad. Sci. U. S. A. 1996, 93, 15190-15194.

[^9]:    ${ }^{47}$ M. Kanai, K. Hanashiro, S. H. Kim, S. Hanai, A. H. Boulares, M. Miwa, K. Fukasawa, Nat. Cell Biol. 2007, 9, 1175-1183.
    ${ }^{48}$ T. Meissner, E. Krause, U. Vinkemeier, FEBS Lett. 2004, 576, 27-30.

[^10]:    49 D. Daelemans, E. Afonina, J. Nilsson, G. Werner, J. Kjems, E. De Clercq, G. N. Pavlakis, A. M. Vandamme, Proc. Natl. Acad. Sci. U. S. A. 2002, 99, 14440-14445.
    ${ }^{50}$ X. Dong, A. Biswas, K. E. Süel, L. K. Jackson, R. Martinez, H. Gu, Y. M. Chook, Nature 2009, advanced online publication.
    ${ }^{51}$ N. Kudo, N. Matsumori, H. Taoka, D. Fujiwara, E. P. Schreiner, B. Wolff, M. Yoshida, S. Horinouchi, Proc. Natl. Acad. Sci. U. S. A. 1999, 96, 9112-9117.
    ${ }^{52}$ T. Van Neck, C. Pannecouque, E. Vanstreels, M. Stevens, W. Dehaen, D. Daelemans, Bioorg. Med. Chem. 2008, 16, 9487-9497.
    ${ }^{53}$ B. Wolff, G. Cohen, J. Hauber, D. Meshcheryakova, C. Rabeck, Exp. Cell Res. 1995, 217, 31-41.

[^11]:    54 B. Wolff, J. J. Sanglier, Y. Wang, Chem. Biol. 1997, 4, 139-147.
    ${ }^{55}$ Y. Wang, M. Ponelle, J. J. Sanglier, B. Wolff, Helv. Chim. Acta 1997, 80, 2157-2167.
    56 a) N. Murakami, W. Wang, M. Aoki, Y. Tsutsui, M. Sugimoto, M. Kobayashi, Tetrahedron Lett. 1998, 39, 2349-2352; b) M. T. Crimmins, B. W. King, J. Am. Chem. Soc. 1998, 120, 9084-9085; c) A. B. Smith III, B. M. Brandt, Org. Lett. 2001, 3, 1685-1688; d) M. Kalesse, M. Quitschalle, C. P. Khandavalli, A. Saeed, Org. Lett. 2001, 3, 3107-3109; e) J. L. Vicario, A. Job, M. Wolberg, M. Müller, D. Enders, Org. Lett. 2002, 4, 1023-1026; f) J. A. Marshall, M. P. Bourbeau, J. Org. Chem. 2002, 67, 2751-2754; g) M. Lautens, T. A. Stammers, Synthesis 2002, 1993-2012; h) N. F. Langille, J. S. Panek, Org. Lett. 2004, 6, 3203-3206; i) L. C. Dias, P. R. R. Meira, J. Org. Chem. 2005, 70, 4762-4773; j) H. A. Reichard, J. C. Rieger, G. C. Micalizio, Angew. Chem., Int. Ed. 2008, 47, 7837-7840.

[^12]:    ${ }^{57}$ M. Quitschalle, M. Christmann, U. Bhatt, M. Kalesse, Tetrahedron Lett. 2001, 42, 1263-1265.
    ${ }_{59}^{58}$ M. Wolberg, W. Hummel, C. Wandrey, M. Müller, Angew. Chem., Int. Ed. 2000, 39, 4306-4308.
    ${ }^{59}$ F. Yuste, F. K. Breña, H. Barrios, R. Sánchez-Obregón, B. Ortiz, F. Walls, Synth. Commun. 1988, 18, 735 739.
    ${ }^{60}$ S. Saito, T. Ishikawa, A. Kuroda, K. Koga, T. Moriwake, Tetrahedron 1992, 48, 4067-4086.

[^13]:    ${ }^{61}$ P. R. Blakemore, W. J. Cole, P. J. Kocienski, A. Morley, Synlett 1998, 1998, 26-28.
    62 T. Bauer, C. Chapuis, A. Jezewski, J. Kozak, J. Jurczak, Tetrahedron: Asymmetry 1996, 7, 1391-1404.
    ${ }^{63}$ T. Bauer, C. Chapuis, J. Kozak, J. Jurczak, Helv. Chim. Acta 1989, 72, 482-486.
    ${ }^{64}$ M. Journet, D. Cai, L. M. DiMichele, R. D. Larsen, Tetrahedron Lett. 1998, 39, 6427-6428.
    65 O. Mitsunobu, M. Yamada, Bull. Chem. Soc. Jpn. 1967, 40, 2380-2382.
    ${ }^{66}$ S. Bonazzi, S. Güttinger, I. Zemp, U. Kutay, K. Gademann, Angew. Chem., Int. Ed. 2007, 46, 8707-8710.
    ${ }^{67}$ D. W. Hart, J. Schwartz, J. Am. Chem. Soc. 1974, 96, 8115;

[^14]:    68 W. C. Still, C. Gennari, Tetrahedron Lett. 1983, 24, 4405-4408.
    69 J. D. White, G. L. Bolton, A. P. Dantanarayana, C. M. J. Fox, R. N. Hiner, R. W. Jackson, K. Sakuma, U. S. Warrier, J. Am. Chem. Soc. 1995, 117, 1908-1939.

[^15]:    ${ }^{70}$ D. A. Evans, J. Bartroli, T. L. Shih, J. Am. Chem. Soc. 1981, 103, 2127-2129.

[^16]:    71 a) L. E. Overman, L. A. Robinson, J. Zablocki, J. Am. Chem. Soc. 1992, 114, 368-369; b) D. A. Evans, S. L. Bender, J. Morris, J. Am. Chem. Soc. 1988, 110, 2506-2526.

[^17]:    72 a) D. A. Evans, E. Vogel, J. V. Nelson, J. Am. Chem. Soc. 1979, 101, 6120-6123; b) D. A. Evans, J. V. Nelson, E. Vogel, T. R. Taber, J. Am. Chem. Soc. 1981, 103, 3099-3111.

[^18]:    ${ }^{73}$ S. D. Burke, J. E. Cobb, K. Takeuchi, J. Org. Chem. 1990, 55, 2138-2151.

[^19]:    ${ }^{74}$ D. Enders, Asymmetric Synthesis, Vol. 3, Eds J. D. Morrison, Academic Press, Orlando, 1984.

[^20]:    75 a) J. A. Marshall, Z. H. Lu, B. A. Johns, J. Org. Chem. 1998, 63, 817-823; b) J. A. Marshall, N. D. Adams, J. Org. Chem. 1998, 63, 3812-3813.
    ${ }^{76}$ J. A. Marshall, Chem. Rev. 1996, 96, 31-47.
    ${ }^{77}$ J. C. Gilbert, U. Weorasooriya, J. Org. Chem. 1979, 44, 4997-4998.

[^21]:    ${ }^{78}$ C. R. Johnson, M. P. Braun, J. Am. Chem. Soc. 1993, 115, 11014-11015.

[^22]:    ${ }^{79}$ M. Lautens, R. Aspiotis, J. Colucci, J. Am. Chem. Soc. 1996, 118, 10930-10931.
    ${ }^{80}$ T. Kametani, M. Tsubuki, Y. Tatsuzaki, T. Honda, J. Chem. Soc., Perkin Trans. 1 1990, 639-646.
    ${ }^{81}$ R. Criegee, Ber. 1931, 64, 260-266.

[^23]:    82 R. A. Ward, G. Procter, Tetrahedron 1995, 51, 12821-12836.

[^24]:    83 A. G. Myers, B. H. Yang, H. Chen, L. McKinstry, D. J. Kopecky, J. L. Gleason, J. Am. Chem. Soc. 1997, 119, 6496-6511.

[^25]:    ${ }^{84}$ C. J. Forsyth, J. Xu, S. T. Nguyen, I. A. Samdal, L. R. Briggs, T. Rundberget, M. Sandvik, C. O. Miles, J. Am. Chem. Soc. 2006, 128, 15114-15116.
    ${ }^{85}$ H. Arimoto, M. D. Kaufman, K. Kobayashi, Y. Qiu, A. B. Smith III, Synlett 1998, 765-767.
    86 a) M. J. C. Buckle, I. Fleming, Tetrahedron Lett. 1993, 34, 2383-2386, b) A. B. Bahadoor, A. Flyer, G. C. Micalizio, J. Am. Chem. Soc. 2005, 127, 3694-3695.

[^26]:    ${ }^{87}$ M. Kobayashi, W. Wang, Y. Tsutsui, M. Sugimoto, N. Murakami, Tetrahedron Lett. 1998, 39, 8291-8294.
    ${ }^{88}$ T. Katsuki, K. B. Sharpless, J. Am. Chem. Soc. 1980, 102, 5974-5976.

[^27]:    ${ }^{89}$ M. Christmann, U. Bhatt, M. Quitschalle, E. Claus, M. Kalesse, Angew. Chem., Int. Ed. 2000, 39, 4364-4366.
    ${ }^{90}$ R. Baker, M. A. Brimble, Tetrahedron Lett. 1986, 27, 3311-3314.
    ${ }^{91}$ D. E. Van Horn, E. I. Negishi, J. Am. Chem. Soc. 1978, 100, 2252-2254.

[^28]:    92 D. A. Evans, D. L. Rieger, T. K. Jones, S. W. Kaldor, J. Org. Chem. 1990, 55, 6260-6268.
    93 R. V. Hoffman, H. O. Kim, J. Org. Chem. 1991, 56, 1014-1019.
    ${ }^{94}$ D. A. Evans, W. Cameron Black, J. Am. Chem. Soc. 1993, 115, 4497-4513.

[^29]:    95 D. R. Williams, D. C. Ihle, S. V. Plummer, Org. Lett. 2001, 3, 1383-1386.
    96 a) P. A. Plé, A. Hamon, G. Jones, Tetrahedron 1997, 53, 3395-3400.
    ${ }^{97}$ D. A. Evans, M. D. Ennis, D. J. Mathre, J. Am. Chem. Soc. 1982, 104, 1737-1739.
    98 a) S. Terashima, N. Tanno, K. Koga, J. Chem. Soc., Chem. Commun. 1980, 1026-1027; b) S. Terashima, N. Tanno, K. Koga, Chem. Lett. 1980, 981-984.

[^30]:    ${ }^{99}$ W. P. Griffith, S. V. Ley, G. P. Whitcombe, A. D. White, J. Chem. Soc., Chem. Commun. 1987, 1625-1627.

[^31]:    ${ }^{100}$ N. Arai, N. Chikaraishi, S. Omura, I. Kuwajima, Org. Lett. 2004, 6, 2845-2848.
    ${ }^{101}$ E. Nakamura, K. Sekiya, I. Kuwajima, Tetrahedron Lett. 1987, 28, 337-340.
    102 E. J. Corey, M. G. Bock, A. P. Kozikowski, Tetrahedron Lett. 1978, No. 12, 1051-1054.
    103 a) G. Egri, E. Fogassy, L. Novák, L. Poppe, Tetrahedron: Asymmetry 1997, 8, 547-557, b) S. Zhou, H. Chen, W. Liao, S. H. Chen, G. Li, R. Ando, I. Kuwajima, Tetrahedron Lett. 2005, 46, 6341-6344.

[^32]:    ${ }^{104}$ Prepared following the Kobayashi procedure in the synthesis of callystatin.
    105 I. Paterson, Pure Appl. Chem. 1992, 64, 1821-1830.

[^33]:    106 J. A. Marshall, G. M. Schaaf, J. Org. Chem. 2003, 68, 7428-7432.
    107 Prepared following the Marshall procedure in the synthesis of Callystatin.
    108 S. Ohira, Synth. Commun. 1989, 19, 561-564.
    ${ }^{109}$ P. Wipf, S. Lim, Angew. Chem., Int. Ed. 1993, 32, 1068-1071.

[^34]:    110 J. A. Marshall, A. M. Mikowski, M. P. Bourbeau, G. M. Schaaf, F. Valeriote, Bioorg. Med. Chem. Lett. 2006, 16, 320-323.

[^35]:    ${ }^{111}$ D. L. Boger, S. Ichikawa, W. Zhong, J. Am. Chem. Soc. 2001, 123, 4161-4167.

[^36]:    112 Preliminary investigations towards the preparation of compound $\mathbf{3 0}$ were undertaken during my diploma work. 113 a) F. Zeng, E.-I. Negishi, Org. Lett. 2002, 4, 703-706; b) P. Wipf, J. Heike, Tetrahedron 1996, 52, $12853-$ 12910.

    114 E. I. Negishi, A. O. King, N. Okukado, J. Org. Chem. 1977, 42, 1821-1823.
    115 a) X. Zeng, Q. Hu, M. Qian, E.-I. Negishi, J. Am. Chem. Soc. 2003, 125, 13636-13637; b) X. Zeng, Q. Hu, M. Qian, E.-I. Negishi, Angew. Chem., Int. Ed. 2004, 43, 2259-2263.
    116 a) A. G. Dossetter, T. F. Jamison, E. N. Jacobsen, Angew. Chem., Int. Ed. 1999, 38, 2398-2400; b) D. E. Chavez, E. N. Jacobsen, Angew. Chem., Int. Ed. 2001, 40, 3667-3670; c) K. Gademann, D. E. Chavez, E. N. Jacobsen, Angew. Chem., Int. Ed. 2002, 41, 3059-3061.

[^37]:    ${ }^{117}$ T. Hintermann, D. Seebach, Helv. Chim. Acta 1998, 81, 2093-2126.
    118 a) K. Takai, K. Nitta, K. Utimoto, J. Am. Chem. Soc. 1986, 108, 7408-7410; b) T. Okazoe, K. Takai, K. Utimoto, J. Am. Chem. Soc. 1987, 109, 951-953; c) B. H. Lipshutz, B. Amorelli, J. Am. Chem. Soc. 2009, 131, 1396-1397.

[^38]:    119 3-triethylsilylpropynal (2) is also commercially available from Fluorochem.
    120 M. J. Plater, S. Aiken, G. Bourhill, Tetrahedron 2002, 58, 2415-2422.
    121 D. E. Chavez, E. N. Jacobsen, Org. Synth. 2005, 82, 34-42.
    122 E. R. Jarvo, B. M. Lawrence, E. N. Jacobsen, Angew. Chem., Int. Ed. 2005, 44, 6043-6046.

[^39]:    123 a) J. R. Parikh, W. E. Von Doering, J. Am. Chem. Soc. 1967, 89, 5505-5507; b) Y. Guindon, L. Murtagh, V. Caron, S. R. Landry, G. Jung, M. Bencheqroun, A. M. Faucher, B. Guérin, J. Org. Chem. 2001, 66, 5427-5437.

[^40]:    124 E. J. Corey, P. L. Fuchs, Tetrahedron Lett. 1972, 13, 3769-3772.
    125 a) N. Miyaura, K. Yamada, A. Suzuki, Tetrahedron Lett. 1979, 20, 3437-3440; b) M. F. Jacobsen, J. E. Moses, R. M. Adlington, J. E. Baldwin, Org. Lett. 2005, 7, 2473-2476.
    ${ }^{126}$ S. L. Buchwald, S. J. LaMaire, R. B. Nielsen, B. T. Watson, S. M. King, Tetrahedron Lett. 1987, 28, 38953898.
    ${ }^{127}$ The $\mathrm{ZnCl}_{2}$ was flamed-dried under high vacuum

[^41]:    ${ }^{128}$ P. Wipf, H. Jahn, Tetrahedron 1996, 52, 12853-12910.

[^42]:    ${ }^{129}$ K. Komatsu, K. Tanino, M. Miyashita, Angew. Chem., Int. Ed. 2004, 43, 4341-4345.

[^43]:    ${ }^{130}$ In compound 24 the double bond at $C(8)$ has a cis configuration as the bromine takes priority however, when considering the Negishi cross-coupling with stereoinversion the configuration of compound $\mathbf{2 4}$ must be considered relative to the $i \mathrm{Pr}$-lactol moiety as this is conserved and the bromine is replaced with a lower priority substituent.

[^44]:    131 L. Acemoglu, J. M. J. Williams, in Handbook of Organopalladium Chemistry for Organic Synthesis (Ed.: E. I. Negishi), Wiley-Interscience, New York, 2002, pp. 1689-1705.
    ${ }^{132}$ E. I. Negishi, Q. Hu, Z. Huang, M. Qian, G. Wang, Aldrichimica Acta 2005, 38, 71-88.

[^45]:    133 a) O. Loiseleur, G. Koch, T. Wagner, Org. Process Res. Dev. 2004, 8, 597-602; b) O. Loiseleur, G. Koch, J. Cercus, F. Schürch, Org. Process Res. Dev. 2005, 9, 259-271.

[^46]:    134 The same interaction was observed by Seebach and co-workers using the same chiral auxiliary and phenylaldehyde as electrophile. T. Hintermann, D. Seebach, Helv. Chim. Acta 1998, 81, 2093-2126.

[^47]:    ${ }^{135}$ Unsuccessful results for the cross-coupling of similar substrates using $\mathrm{K}_{3} \mathrm{PO}_{3}$ instead of $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ and $\mathrm{AsPh}_{3}$ were reported by Chakraborty and co-workers. T. K. Chakraborty, R. K. Goswami, M. Sreekanth, Tetrahedron Lett. 2007, 48, 4075-4078.

[^48]:    136 Anguinomycin A is commercially available from Alexis-biochemicals or Bioaustralis and long-term storage at $-20^{\circ} \mathrm{C}$ is recommend. This compound is soluble in EtOH (recommended) or MeOH but is unstable in DMSO.

[^49]:    137 J. Rouquette, V. Choesmel, P. E. Gleizes, EMBO J. 2005, 24, 2862-2872.

[^50]:    138 N. Murakami, M. Sugimoto, M. Kobayashi, Bioorg. Med. Chem. 2001, 9, 57-67.
    139 M. Kalesse, M. Christmann, U. Bhatt, M. Quitschalle, E. Claus, A. Saeed, A. Burzlaff, C. Kasper, L. O. Haustedt, E. Hofer, T. Scheper, W. Beil, ChemBioChem 2001, 2, 709-714.

[^51]:    ${ }^{140}$ G. O. Buchanan, P. G. Williams, R. H. Feling, C. A. Kauffman, P. R. Jensen, W. Fenical, Org. Lett. 2005, 7, 2731-2734.
    141 W. Fenical, P. R. Jensen, Nat. Chem. Biol. 2006, 2, 666-673.
    142 P. R. Jensen, P. G. Williams, D. C. Oh, L. Zeigler, W. Fenical, Appl. Environ. Microbiol. 2007, 73, 11461152.

    143 R. H. Feling, G. O. Buchanan, T. J. Mincer, C. A. Kauffman, P. R. Jensen, W. Fenical, Angew. Chem., Int. Ed. 2003, 42, 355-357.
    144 W. Fenical, P. R. Jensen, M. A. Palladino, K. S. Lam, G. K. Lloyd, B. C. Potts, Bioorg. Med. Chem. 2009, 17, 2175-2180.

[^52]:    145 R. R. Jones, R. G. Bergman, J. Am. Chem. Soc. 1972, 94, 660-661.
    146 W. Fenical, P. R. Jensen, Nat. Chem. Biol. 2006, 2, 666-673.
    147 D. W. Udwary, L. Zeigler, R. N. Asolkar, V. Singan, A. Lapidus, W. Fenical, P. R. Jensen, B. S. Moore, Proc. Natl. Acad. Sci. U. S. A. 2007, 104, 10376-10381.
    ${ }^{148}$ R. P. McGlinchey, M. Nett, B. S. Moore, J. Am. Chem. Soc. 2008, 130, 2406-2407.

[^53]:    149 a) K. Edo, M. Mizugaki, Y. Koide, Tetrahedron Lett. 1985, 26, 331-334; b) A. G. Myers, P. J. Proteau, T. M. Handel, J. Am. Chem. Soc. 1988, 110, 7212-7214.

    150 a) M. D. Lee, T. S. Dunne, M. M. Siegel, C. C. Chang, G. O. Morton, D. B. Borders, J. Am. Chem. Soc. 1987, 109, 3464-3466; b) M. D. Lee, T. S. Dunne, C. C. Chang, G. A. Ellestad, M. M. Siegel, G. O. Morton, W. J. McGahren, D. B. Borders, J. Am. Chem. Soc. 1987, 109, 3466-3468.
    151 a) J. Golik, J. Clardy, G. Dubay, G. Groenewold, H. Kawaguchi, M. Konishi, B. Krishnan, H. Ohkuma, K. I. Saitoh, T. W. Doyle, J. Am. Chem. Soc. 1987, 109, 3461-3462; b) J. Golik, G. Dubay, G. Groenewold, H. Kawaguchi, M. Konishi, B. Krishnan, H. Ohkuma, K. I. Saitoh, T. W. Doyle, J. Am. Chem. Soc. 1987, 109, 3462-3464.
    152 a) M. Konishi, H. Ohkuma, K. Matsumoto, T. Tsuno, H. Kamei, T. Miyaki, T. Oki, H. Kawaguchi, G. D. VanDuyne, J. Clardy, J. Antibiot. 1989, 42, 1449-1452; b) M. Konishi, H. Ohkuma, T. Tsuno, T. Oki, G. D. VanDuyne, J. Clardy, J. Am. Chem. Soc. 1990, 112, 3715-3716.

[^54]:    153 P. R. Hamann, L. M. Hinman, I. Hollander, C. F. Beyer, D. Lindh, R. Holcomb, W. Hallett, H. R. Tsou, J. Upeslacis, D. Shochat, A. Mountain, D. A. Flowers, I. Bernstein, Bioconjugate Chem. 2002, 13, 47-58.
    154 P. R. Hamann, J. I. Upeslacis, D. B. Borders, in Anticancer Agents from Natural Products (Eds.: G. M. Cragg, D. G. I. Kingston, D. J. Newman), Eds. Taylor \& Francis, Boca Raton London New York Singapore, 2005, pp. 451-473.

[^55]:    155 M. Kar, A. Basak, Chem. Rev. 2007, 107, 2861-2890.
    156 D. M. Lopez-Larraza, K. Moore Jr, P. C. Dedon, Chem. Res. Toxicol. 2001, 14, 528-535.
    157 J. W. Grissom, G. U. Gunawardena, D. Klingberg, D. Huang, Tetrahedron 1996, 52, 6453-6518.
    158 K. C. Nicolaou, W. M. Dai, Angew. Chem., Int. Ed. 1991, 30, 1387-1416.

[^56]:    159 a) N. Zein, R. Reiss, M. Bernatowicz, M. Bolgar, Chem. Biol. 1995, 2, 451-455; b) J. Kandaswamy, P. Hariharan, T. K. S. Kumar, C. Yu, T. J. Lu, D. H. Chin, Anal. Biochem. 2008, 381, 18-26.
    ${ }^{160}$ T. Usuki, M. Inoue, M. Hirama, T. Tanaka, J. Am. Chem. Soc. 2004, 126, 3022-3023.
    161 M. Gredicak, I. Jeric, Acta Pharmaceutica 2007, 57, 133-1 50.
    162 S. C. Sinha, L. S. Li, G. P. Miller, S. Dutta, C. Rader, R. A. Lerner, Proc. Natl. Acad. Sci. U. S. A. 2004, 101, 3095-3099.
    ${ }^{163}$ N. Ishida, K. Miyazaki, K. Kumagai, M. Rikimaru, J. Antibiot. 1965, 18, 68-76.
    164 A. Teplyakov, G. Obmolova, K. Wilson, K. Kuromizu, Eur. J. Biochem. 1993, 213, 737-741.
    165 a) A. G. Myers, M. Hammond, Y. Wu, J. N. Xiang, P. M. Harrington, E. Y. Kuo, J. Am. Chem. Soc. 1996, 118, 10006-10007; b) S. Kobayashi, M. Hori, G. X. Wang, M. Hirama, J. Org. Chem. 2006, 71, 636-644.

[^57]:    166 a) A. G. Myers, J. Liang, M. Hammond, P. M. Harrington, Y. Wu, E. Y. Kuo, J. Am. Chem. Soc. 1998, 120, $5319-5320$; b) A. G. Myers, R. Glatthar, M. Hammond, P. M. Harrington, E. Y. Kuo, J. Liang, S. E. Schaus, Y. Wu, J.-N. Xiang, J. Am. Chem. Soc. 2002, 124, 5380-5401.
    167 a) L. S. Kappen, M. A. Napier, I. H. Goldberg, Proc. Natl. Acad. Sci. U. S. A. 1980, 77, 1970-1974; b) L. F. Povirk, I. H. Goldberg, Biochemistry 1984, 23, 6304-6311.

    168 A. G. Myers, Tetrahedron Lett. 1987, 28, 4493-4496.
    169 a) L. F. Povirk, N. Dattagupta, B. C. Warf, I. H. Goldberg, Biochemistry 1981, 20, 4007-4014; b) S. H. Lee, I. H. Goldberg, Biochemistry 1989, 28, 1019-1026.
    170 a) L. S. Kappen, I. H. Goldberg, Biochemistry 1983, 22, 4872-4878; b) D. H. Chin, L. S. Kappen, I. H. Goldberg, Proc. Natl. Acad. Sci. U. S. A. 1987, 84, 7070-7074; c) I. Saito, H. Kawabata, T. Fujiwara, H. Sugiyama, T. Matsuura, J. Am. Chem. Soc. 1989, 111, 8302-8303; d) B. L. Frank, L. Worth Jr, D. F. Christner, J. W. Kozarich, J. Stubbe, L. S. Kappen, I. H. Goldberg, J. Am. Chem. Soc. 1991, 113, 2271-2275; e) D. H. Chin, I. H. Goldberg, Biochemistry 1993, 32, $3611-3616$; f) L. S. Kappen, I. H. Goldberg, Science 1993, 261, 1319-1321.
    171 H. Maeda, in Enediyne Antibiotics as Antitumor Agents (Eds.: D. B. Borders, T. W. Doyle), Marcel Dekker, New York, 2005, pp. 363-382.

[^58]:    172 J. Hu, Y. C. Xue, M. Y. Xie, R. Zhang, T. Otani, Y. Minami, Y. Yamada, T. Marunaka, J. Antibiot. 1988, 41, 1575-1579.
    173 a) T. Otani, Y. Minami, T. Marunaka, R. Zhang, M. Y. Xie, J. Antibiot. 1988, 41, 1580-1585; b) T. Otani, Y. Minami, K. Sakawa, K. Yoshida, J. Antibiot. 1991, 44, 564-568; c) T. Matsumoto, Y. Okuno, Y. Sugiura, Biochem. Biophys. Res. Commun. 1993, 195, 659-666.
    174 a) M. Inoue, T. Sasaki, S. Hatano, M. Hirama, Angew. Chem., Int. Ed. 2004, 43, 6500-6505; b) M. Inoue, I. Ohashi, T. Kawaguchi, M. Hirama, Angew. Chem., Int. Ed. 2008, 47, 1777-1779.

[^59]:    ${ }^{175}$ Y. J. Xu, Y. S. Zhen, I. H. Goldberg, Biochemistry 1994, 33, 5947-5954.
    176 M. Inoue, Bull. Chem. Soc. Jpn. 2006, 79, 501-510.
    177 M. Hanada, H. Ohkuma, T. Yonemoto, K. Tomita, M. Ohbayashi, H. Kamei, T. Miyaki, M. Konishi, H. Kawaguchi, S. Forenza, J. Antibiot. 1991, 44, 403-414.
    178 K. Komano, S. Shimamura, M. Inoue, M. Hirama, J. Am. Chem. Soc. 2007, 129, 14184-14186.
    179 N. Zein, W. Solomon, K. L. Colson, D. R. Schroeder, Biochemistry 1995, 34, 11591-11597.
    180 D. R. Schroeder, K. L. Colson, S. E. Klohr, N. Zein, D. R. Langley, M. S. Lee, J. A. Matson, T. W. Doyle, J. Am. Chem. Soc. 1994, 116, 9351-9352.

[^60]:    181 a) K. S. Lam, G. A. Hesler, D. R. Gustavson, A. R. Crosswell, J. M. Veitch, S. Forenza, K. Tomita, J. Antibiot. 1991, 44, 472-478; b) S. J. Hofstead, J. A. Matson, A. R. Malacko, H. Marquardt, J. Antibiot. 1992, 45, 1250-1254.
    182 a) J. E. Leet, D. R. Schroeder, S. J. Hofstead, J. Golik, K. L. Colson, S. Huang, S. E. Klohr, T. W. Doyle, J A. Matson, J. Am. Chem. Soc. 1992, 114, 7946-7948; b) J. E. Leet, D. R. Schroeder, D. R. Langley, K. L. Colson, S. Huang, S. E. Klohr, M. S. Lee, J. Golik, S. J. Hofstead, T. W. Doyle, J. A. Matson, J. Am. Chem. Soc. 1993, 115, 8432-8443.
    ${ }^{183}$ S. Kawata, S. Ashizawa, M. Hirama, J. Am. Chem. Soc. 1997, 119, 12012-12013.
    184 F. Ren, P. C. Hogan, A. J. Anderson, A. G. Myers, J. Am. Chem. Soc. 2007, 129, 5381-5383.
    185 A. G. Myers, P. C. Hogan, A. R. Hurd, S. D. Goldberg, Angew. Chem., Int. Ed. 2002, 41, 1062-1067.
    186 K. Ogawa, Y. Koyama, I. Ohashi, I. Sato, M. Hirama, Angew. Chem., Int. Ed. 2009, 48, 1110-1113.

[^61]:    187 N. Zein, K. L. Colson, J. E. Leet, D. R. Schroeder, W. Solomon, T. W. Doyle, A. M. Casazza, Proc. Natl. Acad. Sci. U. S. A. 1993, 90, 2822-2826.
    ${ }^{188}$ T. Ando, M. Ishii, T. Kajiura, T. Kameyama, K. Miwa, Y. Sugiura, Tetrahedron Lett. 1998, 39, 6495-6498.
    189 N. Ji, H. O'Dowd, B. M. Rosen, A. G. Myers, J. Am. Chem. Soc. 2006, 128, 14825-14827.
    190 N. Miyagawa, D. Sasaki, M. Matsuoka, M. Imanishi, T. Ando, Y. Sugiura, Biochem. Biophys. Res. Commun. 2003, 306, 87-92.

[^62]:    ${ }^{191}$ C. L. Perrin, B. L. Rodgers, J. M. O'Connor, J. Am. Chem. Soc. 2007, 129, 4795-4799.
    192 K. C. Nicolaou, H. Wang, Y. Tang, Angew. Chem., Int. Ed. 2008, 47, 1432-1435.
    ${ }^{193}$ S. Shankar, G. Vaidyanathan, D. Affleck, P. C. Welsh, M. R. Zalutsky, Bioconjugate Chem. 2003, 14, 331 341.
    ${ }^{194}$ X. C. Chen, J. C. Chen, M. De Paolis, J. P. Zhu, J. Org. Chem. 2005, 70, 4397-4408.

[^63]:    195 K. C. Nicolaou, Y. Tang, J. Wang, Angew. Chem., Int. Ed. 2009, 48, 3449-3453.
    ${ }^{196}$ T. T. Curran, D. A. Hay, C. P. Koegel, J. C. Evans, Tetrahedron 1997, 53, 1983-2004.

[^64]:    197 N. Saito, K. Tashiro, Y. Maru, K. Yamaguchi, A. Kubo, J. Chem. Soc., Perkin Trans. 1 1997, 53-69.

[^65]:    198 J. S. Yadav, M. C. Chander, B. V. Joshi, Tetrahedron Lett. 1988, 29, 2737-2740.
    199 P. W. Feit, J. Med. Chem. 1964, 7, 14-17.

[^66]:    ${ }^{200}$ K. Sonogashira, Y. Tohda, N. Hagihara, Tetrahedron Lett. 1975, 16, 4467-4470.
    ${ }^{201}$ Fragment 94 was prepared following the procedure reported by Myers and co-workers for the synthesis of the neocarzinostatin chromophore. A. G. Myers, R. Glatthar, M. Hammond, P. M. Harrington, E. Y. Kuo, J. Liang, S. E. Schaus, Y. Wu, J.-N. Xiang, J. Am. Chem. Soc. 2002, 124, 5380-5401.
    ${ }^{202}$ C. Hubschwerlen, Synthesis 1986, 1986, 962-964.
    203 a) E. N. Jacobsen, I. Marko, W. S. Mungall, G. Schroeder, K. B. Sharpless, J. Am. Chem. Soc. 1988, 110, 1968-1970; b) K. B. Sharpless, W. Amberg, Y. L. Bennani, G. A. Crispino, J. Hartung, K. S. Jeong, H. L. Kwong, K. Morikawa, Z. M. Wang, J. Org. Chem. 1992, 57, 2768-2771; c) H. C. Kolb, M. S. VanNieuwenhze, K. B. Sharpless, Chem. Rev. 1994, 94, 2483-2547.

[^67]:    204 a) C. Tanyeli, E. Turkut, I. Mecidoglu Akhmedov, Tetrahedron: Asymmetry 2004, 15, 1729-1733; b) F. D. Özdemirhan, M. Celik, S. AtlI, C. Tanyeli, Tetrahedron: Asymmetry 2006, 17, 287-291.

[^68]:    ${ }^{205}$ The synthesis of the compounds 71-76 was performed by Massimo Binaghi in the context of the diploma work under my supervision at the EPFL.
    206 a) K. Morita, Z. Suzuki, H. Hirose, Bull. Chem. Soc. Jpn. 1968, 41, 2815; b) A. B. Baylis, M. E. D. Hillman, Offenlegungsschrift 2155113, US Patent 3,743,669, 1972 [Chem. Abstr. 1972, 1977, 34174q]; c) H. Ito, Y. Takenaka, S. Fukunishi, K. Iguchi, Synthesis 2005, 2005, 3035-3038.
    ${ }^{207}$ Y. L. Bennani, K. B. Sharpless, Tetrahedron Lett. 1993, 34, 2079-2082.
    ${ }^{208}$ T. Göbel, K. B. Sharpless, Angew. Chem., Int. Ed. 1993, 32, 1329-1331.

[^69]:    ${ }^{209}$ C. R. Johnson, M. R. Barbachyn, J. Am. Chem. Soc. 1984, 106, 2459-2461. Literature value: $[\alpha]^{25.0}{ }_{D}=-$ $34.7^{\circ}\left(c 1.00, \mathrm{CHCl}_{3}\right)$.

[^70]:    210 a) C. Tanyeli, E. Turkut, I. Mecidoglu Akhmedov, Tetrahedron: Asymmetry 2004, 15, 1729-1733; b) F. D. Özdemirhan, M. Celik, S. Atli, C. Tanyeli, Tetrahedron: Asymmetry 2006, 17, 287-291.

[^71]:    ${ }^{211}$ The synthesis of the compounds $\mathbf{8 2}$-94 was performed by Cindy Fellay in the context of the diploma work under my supervision at the EPFL.
    ${ }^{212}$ Before addition of $\mathrm{Pd} / \mathrm{C}$ and $\mathrm{H}_{2}$ the solution was degassed bubbling Ar for 30 minutes.
    ${ }^{213}$ C. Hubschwerlen, J. L. Specklin, J. Higelin, Org. Synth. 1995, 72, 1-5.

[^72]:    214 R. A. Earl, L. B. Townsend, Org. Synth. 1981, 60, 81-87.

[^73]:    215 K. Omura, D. Swern, Tetrahedron 1978, 34, 1651-1660.
    ${ }^{216}$ S. Masamune, J. W. Ellingboe, W. Choy, J. Am. Chem. Soc. 1982, 104, 5526-5528.

[^74]:    ${ }^{217}$ T. Mita, S. Kawata, M. Hirama, Chem. Lett. 1998, 27, 959-960.

[^75]:    218 W. P. Griffith, S. V. Ley, G. P. Whitcombe, A. D. White, J. Chem. Soc., Chem. Commun. 1987, 1625-1627.
    219 R. V. Oppenauer, Recl. Trav. Chim. Pays-Bas 1937, 56, 137-144.
    220 a) C. A. Brown, A. Yamashita, J. Am. Chem. Soc. 1975, 97, 891-892; b) C. A. Brown, A. Yamashita, J. Chem. Soc., Chem. Commun. 1976, 959-960; c) S. R. Macaulay, J. Org. Chem. 1980, 45, 734-735.

[^76]:    221 a) A. Krasovskiy, F. Kopp, P. Knochel, Angew. Chem., Int. Ed. 2006, 45, 497-500; b) B. M. Trost, J. Waser, A. Meyer, J. Am. Chem. Soc. 2007, 129, 14556-14557.
    ${ }^{222}$ I. Sato, Y. Akahori, K. I. Iida, M. Hirama, Tetrahedron Lett. 1996, 37, 5135-5138.

[^77]:    223 a) D. R. Taylor, Chem. Rev. 1967, 67, 317-359; b) H. W. Thompson, J. Org. Chem. 1967, 32, 3712-3713; c) L. Crombie, M. A. Horsham, R. J. Blade, Tetrahedron Lett. 1987, 28, 4879-4882.

[^78]:    224 a) H. Meerwein, G. Hinz, P. Hofmann, E. Kroning, E. Pfeil, J. Prakt. Chem. 1937, 147, 257-285; b) H. Meerwein, E. Battenberg, H. Gold, E. Pfeil, G. Willfang, J. Prakt. Chem. 1939, 154, 83-156.

[^79]:    ${ }^{225}$ Preparation of KAPA ( 0.25 M in 1,3-diaminopropane (DPA)): DPA ( 2.1 mL ) was added to KH ( 0.52 mmol ) at RT. The resulting mixture was stirred until complete consuming of KH to afford a clear-brown solution.

[^80]:    226 J. Wiesner, R. Ortmann, H. Jomaa, M. Schlitzer, Angew. Chem., Int. Ed. 2003, 42, 5274-5293.
    ${ }^{227}$ S. J. Gerrish, L. De Koning, R. A. Smego Jr, A. M. Croft, M. D. Beer, A. Herxheimer, J. K. Baird, N. Engl. J. Med. 2005, 353, 420-422.
    ${ }^{228}$ P. G. Becher, J. Beuchat, K. Gademann, F. Jüttner, J. Nat. Prod. 2005, 68, 1793-1795.
    229 J. F. Blom, T. Brütsch, D. Barbaras, Y. Bethuel, H. H. Locher, C. Hubschwerlen, K. Gademann, Org. Lett. 2006, 8, 737-740.

[^81]:    230 a) S. Köhler, C. F. Delwiche, P. W. Denny, L. G. Tilney, P. Webster, R. J. M. Wilson, J. D. Palmer, D. S. Roos, Science 1997, 275, 1485-1489; b) S. A. Ralph, G. G. van Dooren, R. F. Waller, M. J. Crawford, M. J. Fraunholz, B. J. Foth, C. J. Tonkin, D. S. Roos, G. I. McFadden, Nat. Rev. Microbiol. 2004, 2, 203-216.
    231 a) S. A. Ralph, M. C. D'Ombrain, G. I. McFadden, Drug Resistance Updates 2001, 4, 145-151; b) S. Sato, R. J. M. Wilson, Curr. Top. Microbiol. Immunol. 2005, 295, 251-273.
    ${ }^{232}$ R. W. Rickards, J. M. Rothschild, A. C. Willis, N. M. De Chazal, J. Kirk, K. Kirk, K. J. Saliba, G. D. Smith, Tetrahedron 1999, 55, 13513-13520.
    233 R. G. Linington, J. González, L. D. Urena, L. I. Romero, E. Ortega-Barría, W. H. Gerwick, J. Nat. Prod. 2007, 70, 397-401.
    234 R. G. Linington, D. J. Edwards, C. F. Shuman, K. L. McPhail, T. Matainaho, W. H. Gerwick, J. Nat. Prod. 2008, 71, 22-27.
    235 a) C. Portmann, J. F. Blom, K. Gademann, F. Jüttner, J. Nat. Prod. 2008, 71, 1193-1196; b) C. Portmann, J. F. Blom, M. Kaiser, R. Brun, F. Jüttner, K. Gademann, J. Nat. Prod. 2008, 71, 1891-1896.
    ${ }^{236}$ K. Takasu, T. Shimogama, C. Saiin, H. S. Kim, Y. Wataya, R. Brun, M. Ihara, Chem. Pharm. Bull. 2005, 53, 653-661.

[^82]:    ${ }^{237}$ K. Takasu, T. Shimogama, C. Saiin, H. S. Kim, Y. Wataya, M. Ihara, Bioorg. Med. Chem. Lett. 2004, 14, 1689-1692.
    ${ }^{238}$ C. W. Wright, J. D. Phillipson, S. O. Awe, G. C. Kirby, D. C. Warhurst, J. Quetin-Leclercq, L. Angenot, Phytotherapy Research 1996, 10, 361-363.
    239 a) D. M. Roll, C. M. Ireland, H. S. M. Lu, J. Clardy, J. Org. Chem. 1988, 53, 3276-3278; b) G. Kirsch, G. M. Köng, A. D. Wright, R. Kaminsky, J. Nat. Prod. 2000, 63, 825-829.

    240 a) C. W. Wright, J. Pharm. Pharmacol. 2007, 59, 899-904; b) L. Dassonneville, K. Bonjean, M. C. De Pauw-Gillet, P. Colson, C. Houssier, J. Quetin-Leclercq, L. Angenot, C. Bailly, Biochemistry 1999, 38, 7719-7726; c) C. W. Wright, J. Addae-Kyereme, A. G. Breen, J. E. Brown, M. F. Cox, S. L. Croft, Y. Gokcek, H. Kendrick, R. M. Phillips, P. L. Pollet, J. Med. Chem. 2001, 44, 3187-3194; d) S. Van Miert, T. Jonckers, K. Cimanga, L. Maes, B. Maes, G. Lemière, R. Dommisse, A. Vlietinck, L. Pieters, Experimental Parasitology 2004, 108, 163-168; e) J. Lavrado, A. Paulo, J. Gut, P. J. Rosenthal, R. Moreira, Bioorg. Med. Chem. Lett. 2008, 18, 1378-1381.
    ${ }^{241}$ S. Van Miert, S. Hostyn, B. U. W. Maes, K. Cimanga, R. Brun, M. Kaiser, P. Mátyus, R. Dommisse, G. Lemière, A. Vlietinck, L. Pieters, J. Nat. Prod. 2005, 68, 674-677.

[^83]:    242 D. Barbaras, M. Kaiser, R. Brun, K. Gademann, Bioorg. Med. Chem. Lett. 2008, 18, 4413-4415.
    243 K. Gademann, D. Barbaras, S. Bonazzi, L. Patiny, R. Scopelliti, P. Schneider, S. T. Cole, M. Kaiser, R. Brun, Chem. Med. Chem. 2009, submitted.
    ${ }^{244}$ J. Kobayashi, G. C. Harbour, J. Gilmore, K. L. Rinehart Jr, J. Am. Chem. Soc. 1984, 106, 1526-1 528.

[^84]:    245 a) B. T. Ho, K. E. Walker, Org. Synth. 1971, 51, 136-138; b) C. Portmann, C. Prestinari, T. Myers, J. Scharte, K. Gademann, ChemBioChem 2009, 10, 889-895.

[^85]:    ${ }^{246}$ Biological evaluation was performed at the Parasite Chemotherapy section of the Swiss Tropical Institute (STI) in collaboration with Prof. Dr. R. Brun and Dr. M. Kaiser.
    ${ }^{247}$ The total surface area (S) in $\AA^{2}$ was calculated using moloc (http://www.moloc.ch) by Dr. L. Patiny, Institute of Chemistry and Chemical Engineering (ISIC) at the Swiss Federal institute of Technology of Lausanne (EPFL).
    248 clogP was calculated using Osiris Property Explorer developed by Thomas Sander from Actelion (Basel). The partition coefficient $\log \mathrm{P}$ mesure the distribution of the compound between octanol and water.

[^86]:    ${ }^{249}$ The solvent was degassed using three freeze/pump/thaw cycles.

[^87]:    ${ }^{250}$ The complete solubilization of the $\mathrm{CeCl}_{3} \cdot 2 \mathrm{LiCl}$ salt can sometimes require more time.

[^88]:    ${ }^{251}$ S. Ganapaty, P. S. Thomas, G. Karagianis, P. G. Waterman, R. Brun, Phytochemistry 2006, 67, 1950-1956.
    252 J. C. Palomino, A. Martin, M. Camacho, H. Guerra, J. Swings, F. Portaels, Antimicrob. Agents Chemother. 2002, 46, 2720-2722.

[^89]:     ppm (f1)

[^90]:     ppm (f1)

[^91]:    
    
    
    
    

[^92]:     ppm (f1)

[^93]:    

[^94]:     ppm (f1)

[^95]:     ppm (f1)

[^96]:     $\begin{array}{lllllll}210 & 200 & 190 & 180 & 170 & 160 & 150\end{array}$ ppm (f1)

[^97]:     ppm (f1)

[^98]:    253 S. Mackay, C. J. Gilmore, C. Edwards, N. Stewart, K. Shankland, maXus Computer Program for the Solution and Refinement of Crystal Structures 1999. Bruker Nonius, The Netherlands, MacScience, Japan \& The University of Glasgow; C. K. Johnson, ORTEP--II. A Fortran Thermal--Ellipsoid Plot Program 1976. Report ORNL-5138. Oak Ridge National Laboratory, Oak Ridge, Tennessee, USA; Z. Otwinowski, W. Minor, In Methods in Enzymology 1997, 276, edited by C. W. Carter, Jr. \& R. M. Sweet pp. 307--326, New York:Academic Press; A. Altomare, M. C. Burla, M. Camalli, G. L. Cascarano, C. Giacovazzo, A. Guagliardi, A. G. G. Moliterni, R. Spagna, J. Appl. Cryst. 1999, 32, 115--119; G. M. Sheldrick, SHELXL97. Program for the Refinement of Crystal Structures 1997, University of Göttingen, Germany.

