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Dr. Matthias Rösslein, co-examiner

Prof. Dr. Bertrand Meyer, co-examiner

2009



© 2009 Marco Wolf. All rights reserved.
ISBN 978-1-4452-1512-9



In memory of my father
Günther Wolf



Zusammenfassung

Die Berechnung der Messunsicherheit ist notwendig, um die Zuverlässigkeit
und Genauigkeit einer Messung zusammen mit dem Messwert festlegen zu können.
Nur so kann das Resultat auch für weitere Messungen oder für Vergleiche mit
anderen Messungen herangezogen werden. Das Ziel dieser Arbeit ist es, Spezi-
alisten aus dem Gebiet der Metrologie ein Simulationssystem zur Verfügung zu
stellen, mit dessen Hilfe die Messunsicherheit für sehr detaillierte Messszenarien
berechnet werden kann. Eine klare Sprachdefinition, die gebräuchliche Terme
aus dem wissenschaftlichen Gebiet verwendet, unterstützt strukturiertes und or-
ganisiertes Modellieren von unterschiedlichsten Messszenarien. Dabei wurde die
Möglichkeit einer grafischen Benutzeroberfläche von Beginn an berücksichtigt.
Außerdem werden unterschiedliche Ansätze zur Optimierung von Messszenarien
diskutiert. Eine Methode befasst sich mit der Suche nach guten Sequenzen in
Messserien, wobei die Anzahl benötigter Referenzmessungen – und somit auch
der Aufwand – minimiert werden soll. Eine zweite Methode extrahiert die wich-
tigsten Einflussgrößen einer Messung mit Hilfe der Sensitivitätsanalyse. Diverse
praktische Beispiele aus Physik und Chemie werden verwendet, um Modellie-
rungskonzepte zu erklären und konkrete Anwendungen des Systems zu veran-
schaulichen.



Abstract

The evaluation of measurement uncertainty is necessary to report the accuracy
of a measurement together with the value of a measurement. Only then the result
can be used in further measurements or compared to other measurements. Goal
of this project is to provide a simulation framework for specialists in the field of
metrology to evaluate the measurement uncertainty for very detailed real-life mea-
surements. A clear language definition using common terms of the scientific field
supports structured and organized modeling of measurement scenarios. The pos-
sibility of a graphical user interface is considered from the beginning. Besides,
different techniques to optimize measurement scenarios are introduces and dis-
cussed. One method is concerned with finding good sequences for series of mea-
surements reducing the number of reference measurements and hence, the effort
to a minimum. A second method extracts the most important influence quantities
to a measurement applying sensitivity analysis. Various practical examples from
the fields of physics and chemistry are used to explain modeling concepts and to
discuss concrete applications of the system.
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CHAPTER 1

Introduction

Maybe the best reason to design a new language is because of fun.
Designing is fun. But it is also an important discipline for thought.
J.R.R. Tolkien, the author of The Lord of the Rings, in his profes-
sional youth as a philologist undertook to design a language he called
“High Elvish”. He designed the whole language, the lexicon, the
syntax, the semantics, the whole bit. Somebody asked him, “Why go
through a really vacuous kind of exercise of making up a natural lan-
guage, High Elvish?” He said, “One doesn’t really understand the
bones of language until one has tried to design one.”

— Language Design as Design, Frederick P. Brooks, Jr. —

Measurements serve as a basis for decision making. These decisions affect
us in professional as well as in private life. Hence, the question of the reliability
and accuracy of measurement results is of great importance. Influences on the
result of a measurement cannot be determined arbitrarily exactly due to physical
and also financial reasons. Unfortunately, such sources of uncertainties can have a
considerable impact on the result of a measurement. Thus, it is necessary to have
a generalized method to express the confidence in the result. Only if all potential
uncertainty sources are considered and quantified a comparison of different results
and further use of the current results are reasonable.

Uncountable examples of various measurement techniques appear in many
different scientific fields like chemistry, biology, and physics. To start with, I
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will give a few arbitrarily chosen examples of measurements with an estimated
accuracy and possible consequences of deviations in the measurements.

• Current devices for radar speed checks on highways have an accuracy of
better than ±3 %. Law takes this into account to the advantage of the driver
and instructs to reduce the measured speed by 3 km/h below 100 km/h or
3 % above 100 km/h. Besides, the tachometer in a car is never allowed to
show less velocity than the car actually has. In Germany the upper limit is
defined as 10 % + 4 km/h.

• Common kitchen scales have uncertainties between 0.1 g and 1 g, whereas
high precision balances in chemical laboratories have accuracies to 0.01 mg;
slight changes in temperature or electrostatics can influence such measure-
ments.

• A common alcohol breath tester that measures alcohol consumption has an
accuracy of 5 % for 1 per-mil. For blood alcohol analysis a security margin
of 1 per-mil is applied to the advantage of the accused, which is usually
twice or three times the expected uncertainty of the measurement.

• At the gas station the indicated amount of gasoline is subject to an uncer-
tainty of about ±1 %. Fluctuations in this range are allowed by the law;
the idea is that it averages over all the gas stations and customers. A truck
has a reservoir of about 400 liters and more. So if you assume a price of
1.2 Euros/liter you will pay between 475.20 Euros and 484.80 Euros for a
400 liter reservoir.

• The global positioning system (GPS) was developed by the United States
Department of Defense and is capable of accuracies up to about 15 meters.
The accuracy of devices is constantly improved to get to accuracies of just
a few meters, so that navigation devices can not only be used in airplanes,
ships and cars, but also for bicycles, hikers and pedestrians. The planned
European Galileo system should reach an accuracy of 1 to 3 meters. More
expensive GPS devices using for example Differential-GPS for land survey
have an accuracy from 5 m down to 0.01 m.

• Devices to measure the consumption of electricity in private houses must
have an uncertainty of less than 2 % by law. If you assume that a four-person
household uses 4500 kWh per year with a price of 15 Cent/kWh, it would
cost 675 Euros. The 2 % result in a maximum difference of 13.50 Euros.
The customer is lucky if the device shows 2 % less than it should.
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• There are of course more sensitive fields of measurements, where results do
not only affect the wallet, but have direct consequences on a person’s life.
An example is the proof of drug consumption or doping in sports. It requires
very accurate and reliable detection of infinitesimal amounts of substances
in blood, as the result can decide about the life of people as well as millions
of Euros. On 22th of July 2006 Floyd Landis, an American cyclist, finished
stage 17 of the Tour the France with an outstanding performance. He won
the Tour de France that year. Unfortunately, he was accused of doping as the
French national anti doping laboratory found testosterone from an external
source in his urine in two separate A and B samples. Doping tests from the
earlier 16 stages of the tour were negative. Landis went to court, but lost his
case. One of the publicly criticized points among others was that the report
of the laboratory did not consider the measurement uncertainty in a proper
way. Hence, a very important criterion for the quality of the measurement
results is missing.

The selection of examples should give a feeling for the appearance and impor-
tance of measurements in various situations. Interesting questions concerning the
confidence of measurement results arise from these examples.

• How can the uncertainty of a measurement be described adequately, and is
there a – preferably standardized – way to quantify it?

• Can uncertainties of different measurements be compared adequately?

• What are the most important influences on a measurement and its uncer-
tainty?

• Can influences be adjusted or corrected to improve the uncertainty?

• How do measurements behave that are performed over a longer time period
in respect to repeatability and measurement uncertainty?

The scientific field to find answers to the questions regarding measurement uncer-
tainty is metrology. The International Bureau of Weights and Measures (Bureau
International des Poids et Mesures, BIPM) was founded to have a basis for a sin-
gle and coherent system of measurements throughout the world, traceable to the
International System of Units (SI). The BIPM defines the field of metrology as
follows:

Metrology is the science of measurement, embracing both exper-
imental and theoretical determinations at any level of uncertainty in
any field of science and technology.
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The Joint Committee for Guides of Metrology (Comité commun pour les guid-
es en métrologie, JCGM) is a working group of the BIPM that elaborated a docu-
ment on measurement uncertainty evaluation, which answers at least some of our
initial questions. The so-called Guide to the expression of uncertainty in measure-
ments (GUM) [37] is an internationally accepted and widespread ISO document
that describes an evaluation method – the so-called GUM Uncertainty Framework
(GUF) – to estimate the uncertainty of the result of a measurement. It recom-
mends to identify influences that affect the measurement uncertainty initially and
quantify them afterwards in a statistical sense by assigning proper probability den-
sity functions (PDF) with suitable parameter settings to describe the uncertainty
about the quantity. The functional relationship of the influence quantities are ex-
pressed using mathematical equations, the so-called equation of the measurand.
GUF is appropriate for application for a limited set of measurement scenarios, but
actually they appear very often in practice. The method is subject to some major
restrictions. One shortcoming is that information about probability distributions
used to describe influence quantities is rigorously reduced in only using the first
two moments – mean value and standard deviation – of the distributions for evalu-
ation. Another major restriction is that the measurement model has to be linear or
must be linearized for evaluation. A consequence is that the measurement model
is kept as simple as possible. Hence, it is recommended to use only the five or six
most important influences for measurement uncertainty evaluation. Therefore, the
decision with regard to which influence quantities can be neglected and which are
important is no trivial task.

Because of the limitations for cases in which the classical GUM method could
not be applied properly, the authors of the GUM were looking for an alternative
evaluation method that could be used for a broader range of measurement scenar-
ios. The result is a Monte Carlo approach and is nowadays the recommended way
for calculating the measurement uncertainty for complex measurement scenarios
in cases where the GUF method is not applicable or there is doubt with regard to
the premises for applying GUF. The document Supplement 1 to the “Guide to the
expression of uncertainty in measurement” – Propagation of distributions using a
Monte Carlo method (GS1) [22] of JCGM has a long history with several drafts
and intensive discussion over several years. Ultimately, it was released in its final
version in mid-2008. It is not meant to replace the classical GUF approach, but
should be applied for measurement uncertainty evaluation, where the use of GUF
is limited by its restrictions. It is also recommended to compare and validate re-
sults from classical measurement uncertainty evaluation with the new approach in
case of doubt.

Nowadays even normal desktop computers are capable of evaluating the mea-
surement uncertainty for complex measurement scenarios with the Monte Carlo
method in acceptable time. Moreover, uncertainty evaluation can go a step further
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to build more realistic, real-world measurement scenarios. The new capabilities
of the new evaluation method of GS1 can only be handled by the use of an ap-
propriate simulation framework. Therefore, the goal of this project is to create a
simulation framework building up on an efficient core for calculating Monte Carlo
simulations and providing a sophisticated modeling language that is easy to learn
and understand and is capable of supporting experts from metrology in translating
measurement models for uncertainty evaluation in a structured and organized way.
Analyzing the importance of individual influence quantities to the measurement
uncertainty is a major task as the number of influence quantities is very big for
more realistic measurement scenarios. The system should be able to support deci-
sion making where to invest more time, money and effort to enhance the results of
measurements and improving the quality of the results. Another interesting topic
is simulation of different scenarios. This allows to analyze the consequences of
a reduction of repeated measurements to get to an appropriate result with a small
uncertainty, but still with low effort.

Goals of this thesis
In this section I want to summarize the goals of this thesis. The project goes
in many points beyond the scope of existing measurement uncertainty evaluation
concepts.

Real-world, high-resoluted modeling Using an advanced evaluation method,
i.e. a Monte Carlo simulation system, non-linearities in the model need not be
considered as a problem. The equation of the measurand can be used as is. The
second advantage is that the full information provided for input quantities can be
used for the measurement uncertainty evaluation.

Human-readable modeling language for hierarchical models The advanced
models that result from the first point require proper organizing and structuring
of the modeling process and models themselves. As we will see later on mea-
surements can be seen as hierarchical structured models in principle. I made use
of this concept in defining a domain-specific language which allows a step-by-
step development for describing measurement models. The defined modeling lan-
guage allows structured and well-organized modeling even for complex models
with many influence quantities.

Uncertainty analysis with variation of parameter settings The modeling of
varying influences should be possible; worsening or improvements with respect
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to the measurement uncertainty can be detected by the variation of input quanti-
ties. Variations of more than one input quantity at a time is possible. Uncertainty
analysis is the first step in investigating the measurement in great detail.

Support for optimizing series of measurements In repeated measurements not
only the result and measurement uncertainty of one measurement is taken into ac-
count, but a set of many individual measurements in sequential or parallel order,
where some influence quantities may contribute to different measurements, is an-
alyzed. Also, the number of necessary reference measurements in respect to a
stable result and small measurement uncertainty should be analyzed.

Sensitivity analysis to find important influence quantities Different methods
exist to extract influence quantities that contribute strongly to the measurement
uncertainty. I will present different approaches to analyze the system behavior for
individual influence quantities comparing screening factor methods with local and
global sensitivity analysis methods.

Framework-related issues To be applicable in practice, a simulation frame-
work for measurement uncertainty evaluation has to provide a possibility to vali-
date the results of the calculation core. Hence, some kind of validation module is
necessary that checks the basic functionality. Besides, a graphical user interface
is of vital interest as people tend to avoid learning completely new programming
languages. Nevertheless, the interface is no direct goal of the work, but should
always be in mind during the definition of the system.

I want to stress once more the very interesting, but also very demanding, inter-
disciplinary approach of this thesis. It uses concepts of various scientific fields,
starting naturally from metrology as science of measurements and its applications,
which include chemistry, physics, biology and more, to statistics with differences
in frequentist and Bayes approaches. Further on, computational and numerical
aspects of Monte Carlo simulation and proper handling and analyzing of simu-
lation data is necessary as well as programming expertise and knowledge about
software engineering with concepts for domain-specific language definition and
project planning.



CHAPTER 2

Measurement uncertainty
evaluation

The objective of a measurement is to determine the value of the
measurand, that is, the value of the particular quantity to be mea-
sured. A measurement therefore begins with an appropriate specifi-
cation of the measurand, the method of measurement, and the mea-
surement procedure.

— GUM, 1993, Section 3.1.1 —

Before we start a theoretical survey into the world of measurements and mea-
surement uncertainties, I want to give a very practical understanding for what we
understand as a measurement in the field of metrology and how we get to values
for a measurand of interest. The principle of a single measurement is the com-
parison of attributes of a sample to a well-known reference to get a value for the
measurand as visualized in Figure 2.1. If, for example, the length of a woodblock
(sample) is of interest to an accuracy of one millimeter, we can use a measur-
ing tape (measurement instrument) and compare the marks on the tape with the
beginning and end of the woodblock to get the length (measurand). The mea-
surement procedure is in this case the comparison of the marks on the tape with
the woodblock. Of course the measuring tape, which we use as reference, must
have a well-known length. Therefore, it is calibrated using a transfer standard,
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Compare
Sample

Reference

Result

Figure 2.1: Generally speaking, in a measurement we assign a value to an at-
tribute of a sample in comparing the sample with a reference.

Woodblock

Calibrated
measuring tape

Length
Compare

Measuring 
tape

Meter
prototype

Calibrated
measuring
tape

a) b)

Compare

Figure 2.2: a) reference measurement: the marks on the measuring tape are com-
pared to a prototype or transfer standard of well-known length; b) sample mea-
surement: the measuring tape can then be used to determine the length of a wood-
block.

a prototype for the meter, of known length. Figure 2.2 visualizes this concept.
Another length-measuring device for verifying the length of the meter may be a
caliper with a higher precision than the tape itself, where the caliper is used for
comparison with another transfer standard and so on. If we follow the measuring
chain for the references all the way up to the top, we would end at the etalon1

for one or more of the seven SI base units2, defined by the International System
of Units (SI) [10]. All other physical units can be derived from the SI base units
from Table 2.1. The hierarchical concept, summarized in Figure 2.3, is the ba-
sis for modeling advanced measurement scenarios for measurement uncertainty
evaluation in this work and will help to understand arguments for the modeling
language definition and constructs later on. In this figure, the measuring tape
as reference for determining the length of a woodblock would be in the lower-
most part. The company producing the tape would have calibrated it using own
working and reference standards. Their standards are calibrated using secondary
standards, secondary with primary standards of a National Metrology Laboratory
(NML) and finally the primary standards of the NMLs are used for comparison

1An etalon is the physical realization of a prototype for a measuring unit, like the standard
meter.

2Actually, all SI base units are defined using natural constants, except for the mass, which
uses a platinum-iridium alloy block as standard reference seated near Paris. There exist six sister
copies and official copies of this block for different countries. Currently intensive research [17] is
in progress to replace the definition using also natural constants.



9

Physical quantity Symbol Name Measure
Length l meter m
Mass m kilogram kg
Time t second s
Electric current I ampere A
Thermodynamic temperature T kelvin K
Amount of substance n mole mol
Luminous intensity Iv candela cd

Table 2.1: List of the seven SI base units; all other physical units can be derived
from the SI base units.

SI
units

Primary
standards

Secondary
standards

Reference standards

Working standards

Legal units

NML

Accredited calibration
laboratories, state legal
metrology laboratories

End user in trade,
industry, or testing

laboratoryTesting and measuring equipment

Figure 2.3: Hierarchy of standards and measuring equipment [42]

with the standards of other NMLs in a so-called key comparison procedure.
Figure 2.4 shows a more advanced measurement scenario with n different sam-

ple measurements. To keep up with the length measurement, in a real-life scenario
this could for example be different saw mills producing wooden bars. Each saw
mill has its own working standard of a measuring tape. The bars are used in fur-
niture industry for manufacturing and must have the same length within a given
tolerance. In this case a comparison of different measurement results is of interest.

It is very important to see that in general measurements cannot and do not take
place at the same location at the same time, thus with strongly varying environ-
mental conditions. This means that we should consider sources, e.g., temperature,
pressure, humidity, etc., that vary from measurement to measurement and can af-
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Sample 1

Working
standard 1

Sample 2

Working
standard 2

Sample n

Working
standard n

Reference standard

... ... ...

...

...

Figure 2.4: n measurements in a measurement series using different working stan-
dards; at a certain level – in this case the reference standard – the measurements
have to rely on the same standard for comparison.

fect the outcome of individual measurements. These effects have to be corrected
where possible if they are significant. Nevertheless, there will always remain a
variation in the result, because of environmental conditions that are not under full
control or because they can only be quantified to a certain precision. One has to
be aware of these uncertainty sources and take them into account, state them to-
gether with the result of a measurement explicitly and consider them in preceding
measurements. This is exactly the idea of the evaluation of measurement uncer-
tainty. The definition of measurement uncertainty is given in the Appendix C, but
as the concept is so central for this work, I quote it here once more taken from the
International Vocabulary of Metrology [23, Section 2.26].

measurement uncertainty non-negative parameter characteriz-
ing the dispersion of the quantity values being attributed to a measur-
and, based on the information used.

After we have seen the concepts of measurements and gotten an idea of mea-
surement chains for reference standards using a very practical and simple exam-
ple, I will introduce in the following section a procedure for measurement uncer-
tainty evaluation following the ISO guidelines.

2.1 Concept of uncertainty evaluation

The fundamental basis of this thesis is an ISO document, the first supplement to
the GUM [22]. In combination with the classical GUM document [37] it explains
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in detail an approach how to quantify measurement uncertainty, and how to cal-
culate it for a given measurement scenario. I want to give a first overview of
the concept of measurement uncertainty evaluation according to GS1 [22, Section
5.1.1] and go into more detail in the subsequent sections. There are three main
stages, whereas the stages are refined:

1. Formulation

(a) define the output quantity, the quantity intended to be measured (the
measurand);

(b) determine the input quantities upon which the output quantity depends;

(c) develop a model relating the output quantity to these input quantities;

(d) on the basis of available knowledge assign probability density func-
tions (PDFs) – Gaussian (normal), rectangular (uniform), etc. – to the
input quantities. Assign instead a joint PDF to those input quantities
that are not independent;

2. Propagation
propagate the PDFs for the input quantities through the model to obtain the
PDF for the output quantity;

3. Summarizing
use the PDF for the output quantity to obtain

(a) the expectation of that quantity, taken as an estimate of the quantity,

(b) the standard deviation of that quantity, taken as the standard uncer-
tainty associated with the estimate, and

(c) a coverage interval containing the output quantity with a specified
probability (the coverage probability).

This project mainly concentrates on the first stage, the formulation, to help ex-
perts of metrology to model and structure complex measurement scenarios. The
second stage deals with the evaluation of the model and is encapsulated in the cal-
culation core. Summarizing in the third step can be supported again by a modeling
language as we will see.

2.2 First Stage: Formulation
The formulation phase is where the metrologist in the laboratory has to collect and
organize all information related to the measurement and measurement uncertainty.
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The first thing to do in 1.(a) is to define the quantity that should be measured and
is of interest, the measurand. The next step 1.(b) requires a detailed analysis of the
environment and specifies all the influence quantities that contribute to the uncer-
tainty of the measurement. In general, a measurement follows given measurement
protocols and/or specifications. This can be used as a basis, but in general pro-
tocols only describe the concept of a measurement. Environmental conditions
have to be adapted and considered for measurement uncertainty evaluation from
measurement to measurement. It is important that the model for measurement
uncertainty evaluation is validated and that the measurement is under statistical
control.

I will now introduce a nice and simple graphical tool to get an organized and
structured overview of the possible sources of uncertainty in a first step, the so-
called cause-and-effect diagrams. This concept of modeling is not explicitly men-
tioned in the ISO documents, but used, for example, in the EURACHEM/CITAC
Guide [19] for the quantification of measurement uncertainty in analytical chem-
istry.

2.2.1 Visualizing dependencies of influence quantities
Uncertainty sources to measurements can be visualized using so-called cause-and-
effect diagrams3 (CED). CEDs are a common and compact way to show hierar-
chical dependencies between influence quantities and give information about the
structure of measurement scenarios.

The concept is to start with a horizontal arrow, the main bone. Direct influence
quantities to the main bone are represented using new arrows pointing to the main
bone and labeled with a name or description. This process can then be recursively
iterated, adding new arrows or bones and refining the model as far as needed. A
practical example from chemistry [19, Section D.4] is shown in Figure 2.5. There
a direct determination of the density d(EtOH) of ethanol by weighing a known
volume V in a suitable volumetric vessel of tare weight mtare and gross weight
including ethanol mgross is shown. In this example the measurand, and therefore
the quantity of interest, is used as main bone. The interpretation would be that the
three influence quantities affect the outcome of the measurand directly. The shape
of a fish is used in this case to visualize the fishbone structure and will be omitted
in later examples.

In a second example in Figure 2.6 from physics [32] an alternative view and
interpretation of CEDs is given. The measurement is depicted to a measurement

3Cause and effect diagrams are also called Ishikawa diagrams or fishbone diagrams, the latter
because of their similarity to the shape of a fish skeleton. They have been introduced by Kaoru
Ishikawa [36] for management processes and adapted in many different fields to show the causes
of a certain event.
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d(EtOH)

m(tare)
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temperature

precision

calibration

linearity

bias

precision

calibration
temperature

precision

calibration

linearity

bias

Figure 2.5: Example of a cause and effect diagram from chemistry; it explains
the direct determination of the density d(EtOH) of ethanol by weighing a known
volume V in a suitable volumetric vessel of tare weight mtare and gross weight
including ethanol mgross.

chain visualized by the help of a block diagram. The measurand ∆pINST R itself is
embedded in the structure of the diagram. This approach leads to the inverse prob-
lem, where the resulting equation has to be converted to extract the measurand.
It also shows an iterative refinement of the measurement scenario from a coarse
model to a more detailed model.

Although CEDs are practical for modeling measurement scenarios, they suf-
fer from some limitations. The actual importance of influence quantities for the
measurement uncertainty is not obvious from the diagrams, and the effect of the
structured visualization diminishes with more depth and higher-resolution mod-
els. Furthermore, there are some issues if one influence quantity affects more
than one other parental influence quantity, which can lead to double counting of
certain influence quantities. Some of the limitations can be overcome by using
colored diagrams or by storing additional information in the length and thickness
of arrows.

In general, CEDs are a good starting point to model measurement scenar-
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Manometer Pressure sensor Voltmeter
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a) Overview using simple CED structure

b) Complete graphical model

Figure 2.6: Example of a block diagram for a measurement scenario from
physics [32]; the measurand ∆pINST R is embedded in the diagram. In a) the basic
structure of the measurement is visualized, whereas b) shows the refined depen-
dencies of influences quantities including the mathematical description.

ios from scratch and to get an understanding for the possible uncertainty sources
of a measurement. The resolution of CEDs should be as detailed as possible; a
stepwise structuring using separate CEDs for different influence quantities seems
appropriate. Talking of the importance of uncertainty sources to the measurement,
it is not clear in advance if an influence quantity contributes significantly to the
measurement uncertainty. Also, the importance may change if parameters or other
influence quantities on the measurement vary. This is usually one of the interest-
ing points to analyze in sensitivity analysis, so we encourage metrologists to put
as much information into the uncertainty calculation as possible.

I will use CEDs in this work to visualize and clarify the hierarchical structure
of measurement scenarios later on where appropriate for modeling and to explain
some aspects of the modeling language definition.

2.2.2 Relation of uncertainty sources and measurand
The next step 1.(c) is to develop a mathematical model that describes the func-
tional relationships of all the input quantities to the measurand, the quantity of
interest. The result of a measurement is a number of values that can be attributed
to the measurand. These values are just an estimations for the real values of the
measurand, because uncertainty sources affect the result of every measurement.
It is essential to attribute every measurement result with its expected uncertainty.
The interaction of the result of a measurement and the uncertainty sources are
modeled mathematically by functional relationships that describe the dependen-
cies between the uncertainty sources, i.e. influence quantities, and the measurand.
It is the job of metrologists to develop the model equations for the measurand that
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consider all uncertainty sources and represent the measurement scenario properly.
GUM and GS1 require a single (scalar) measurand Y to be described using the

equation of the measurand,

Y = f (X1, . . . ,XN) = f (X), (2.2.1)

where the functional relationship f explains the mathematical dependencies of
the distinct input quantities X = (X1, . . . ,XN). Each of the input quantities may be
affected by an uncertainty and contributes to the measurement uncertainty of the
specific measurement. The input quantities X1, . . . ,XN can depend again on other
influence quantities described with an additional functional relationship.

2.2.3 Describing uncertainties for input quantities
In the final step 1.(d) of the formulation phase the input quantities should be an-
alyzed in detail to describe their individual measurement uncertainty. The fun-
damental principle of GUM and GS1 is the representation of the input quantities
X1, . . . ,XN as random variables. Each random variable has an associated proba-
bility distribution that describes the knowledge of the uncertainty of an influence
quantity. Additionally, the GUM uncertainty framework, the classical approach of
GUM to evaluate the measurement uncertainty, makes a distinction between two
types of input quantities:

Type A The probability distribution of values for input quantities of this type
is quantified using repeated observations, i.e. repeated measurements. So the
probability distribution used for such influence quantities is derived from observed
frequency distributions.

Type B Often it is not possible to perform additional measurements to estimate
the uncertainty of input quantities explicitly. In this case the probability distri-
bution for the input quantity has to be estimated using prior knowledge or expe-
rience, measurement data from earlier observations, information provided by the
manufacturer, data provided by calibration, certificates, or handbooks.

The selection of proper probability distributions for input quantities relies on
metrologists as additional measurements are necessary, or otherwise a substantial
knowledge about the measurement procedure is required and essential to justify
the selection of a specific probability distribution to describe an influence quantity.
If the equation of the measurand and a quantification of assigning proper probabil-
ity distributions to the input quantities with well-selected parameters are provided
in the formulation phase, the evaluation of the measurement uncertainty can take
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a) PDFs for input 
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b) PDF for output
    quantity YX1

X2
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c) Equation of 
    the measurand

Y= f(X)

Formulation phase
(metrological decisions)
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Y

Figure 2.7: The probability density functions (PDF) in a), which describe the
uncertainty of influence quantities, are propagated through the equation of the
measurand b) and result in a PDF for the measurand c). This visualization is very
common for explaining the concept of the measurement uncertainty evaluation
according to GUM and GS1 and appears in several publications [15,55,71,84] in
very similar forms.

place in the calculation phase. Figure 2.7 summarizes their concept and visual-
izes graphically the flow of information from the input quantities described using
probability density functions (PDF) to the result for the measurand by propagating
the information of the influence quantities through the equation of the measurand.

At this moment we have all the necessary input from the metrologist to start
an evaluation for the measurement uncertainty of a specific measurement. In the
next section we will examine how the measurement uncertainty of the measurand
can be expressed and after that, how the information can be used to derive and
calculate the measurement uncertainty.

2.2.4 Standard uncertainty

There are different methods to evaluate the measurement uncertainty using the
equation of the measurand and the quantification of the input quantities with prop-
erly assigned probability distributions as a basis. Each method comes with its own
advantages and limitations [53]. The fundamental issue is that the measurand Y
cannot be described by a scalar as we have already seen, but is itself a random
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variable that has to be described by a distribution function

GY (η) =

η∫
−∞

gY (z)dz.

The probability density function (PDF) gY (η) for Y is given as

gY (η) =

∞∫
−∞

. . .

∞∫
−∞

gX(ξ1, . . . ,ξN)δ (η− f (ξ1, . . . ,ξN))dξN . . .dξ1, (2.2.2)

where δ is the Dirac delta function and ξ1, . . . ,ξN represent possible values for the
input quantities X1, . . . ,XN .

Definition The standard uncertainty4 u(y) is defined as the estimated standard
deviation for values that could reasonably be attributed to the measurand Y .

The direct and exact way to evaluate the measurement uncertainty would be to
compute the integral 2.2.2 analytically. The problem is that this is only possible
in a limited number of cases. So, the evaluation methods presented in this work
approximate the measurement uncertainty for the measurand Y in an appropriate
way.

Example We use a small example from Best Practice Guide No. 6 [15, Sec-
tion 9.2], where the analytical solution of measurement uncertainty evaluation is
provided and compared with other approaches. The equation of the measurand

Y = f (X1) = ln(X1) (2.2.3)

depends on a single influence quantity X1 ∼ R(0.1,1.1) using a uniform distribu-
tion. The PDF of X1 is defined as

gX1(η) =

{
1/(b−a), a≤ η ≤ b
0 otherwise.

4In this document we use the notation of the standard uncertainty as u(y) for a measurand
Y from GS1, which differs from the classical GUM, because there it is defined as uc(y). GUM
tries to express that the standard uncertainty results from a combination (c) of influence quantities
X1, . . . ,XN . GS1 argues that the subscript c is superfluous, and may even be inappropriate if the
result of one measurement uncertainty evaluation is used as input for another evaluation.
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We have a single input quantity and our model function f (X1) = ln(X1) is differ-
entiable and strictly monotonic. Hence, we can use

gY (η) = gX( f−1(η))|d( f−1(η))/dη | (2.2.4)

to calculate the PDF gY (η) for Y according to [64, page 58 ff]. The inverse of our
model function is f−1(η) = eη . The first term of Equation 2.2.4 uses the PDF of
X1 with the inverse model function as argument. This leads to

gX1( f−1(η)) = gX1(e
η) =

{
1/(b−a) a≤ eη ≤ b
0 otherwise.

The derivation for the second term of Equation 2.2.4 is d( f−1(η))/dη = eη .
Putting all things together, the PDF for Y is given as

gY (η) =

{
eη/(b−a) ln(a)≤ η ≤ ln(b)
0 otherwise.

We can calculate the expectation value y of Y as

y =
∫ ln(b)

ln(a)

ηeη

b−a
dη =

b(ln(b)−1)−a(ln(a)−1)
b−a

and the standard uncertainty u(y) as

u2(y) =
∫ ln(b)

ln(a)

(η− y)2eη

b−a
dη =

b(ln(b)− y−1)2−a(ln(a)− y−1)2

b−a
+1.

If we apply the settings a = 0.1 and b = 1.1 we obtain an expectation value of
y =−0.665 and a standard uncertainty of u(y) = 0.606. A plot of the result is
given in Figure 2.8 on page 27 in comparison with two methods that will be intro-
duced in the next sections as approximations for the standard uncertainty.

Definition The expanded uncertainty U is obtained by multiplying the standard
uncertainty u(y) by a coverage factor k. The rationale is to obtain a coverage
or uncertainty interval that should contain a large fraction of the values that can
reasonably be attributed to the measurand. Usually the coverage factor k lies
between 2 and 3. It has to be reported together with the expanded uncertainty.

I want to point out that the interpretation of the standard deviation as standard
uncertainty and a corresponding expanded uncertainty were selected, because in
practice it is necessary to express the uncertainty in a compact and convenient
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form, say in one or two numbers. Having the expectation value and the standard
deviation for the measurand, it is obvious to interpret it as parameters of a normal
distribution. There exist many examples, where this assumption is not appropriate
as we will see in later examples and, therefore, the standard uncertainty should be
accompanied with more information about the uncertainty evaluation of the mea-
surand in such cases. This is the case, for example, in highly non-linear scenarios
or in all cases, where the result cannot be properly approximated by a normal or
Student’s t-distribution.

2.2.5 Summarizing words to formulation

The formulation phase is essential for a proper measurement uncertainty evalua-
tion. Hence, one major target of the project is to provide support for a structured
and organized way of modeling. The developed modeling language allows metrol-
ogists from laboratories to develop complex, real-life models in a step-by-step ap-
proach, where they start in the beginning with a heap of mathematical equations,
experience and expert knowledge, certificates, protocols, specifications, hand-
books and observation data, and end up with valid and proper models that can
be reused and understood by other metrologists.

The next phase for the measurement uncertainty evaluation is the propagation
phase, which defines how calculation should be performed. We have already seen
the analytical approach of evaluation of the measurement uncertainty, but unfor-
tunately this is only possible in very simple and rare cases. Hence, we will have a
closer look at the advantages and disadvantages of the two recommended methods
in the guides and especially at the Monte Carlo method that is implemented in the
simulation core for this project.

2.3 Second Stage: Propagation

From this point on the metrologists have provided all the required information
and they now have to decide on an evaluation technique. For an overview and
comparison of different evaluation methods I want to refer to the PhD thesis of
Martin Müller [53]. I will present and summarize the two alternative methods
of GUM and GS1 here. The first approach from the classical guide is the GUM
uncertainty framework, that relies on an approximated linear model and input
quantities that can be properly described using normal distributions. The second
approach is a Monte Carlo method introduced in GS1, that does not have the
restrictions to a linear model and normal distributed influence quantities, but needs
a lot of computational power for the evaluation.
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2.3.1 GUM Uncertainty Framework

In 1993 the Joint Committee for Guides of Metrology (Comité commun pour les
guides en métrologie, JCGM) of the Bureau International des Poids et Mesures
(BIPM) agreed in the GUM [37] on the GUM Uncertainty Framework. It presents
a method to approximate the measurement uncertainty for a measurement function
Y = f (X1, . . . ,XN) and calculate the standard uncertainty using a Taylor series
expansion. We can calculate the best estimate of the output quantity Y defined
as y = f (x1, . . . ,xN) with N best estimates x1,x2, . . . ,xN for the input quantities
X1, . . . ,XN that are described with appropriate probability distributions. We will
have a look now on small deviations of Y about the estimate y in terms of small
deviations of Xi about the expectation values xi, say

Y − y =
N

∑
i=1

∂ f
∂Xi

(Xi− xi).

We assume that higher-order terms are negligible for the current case. The square
of the deviation Y − y is given as

(Y − y)2 =

[
N

∑
i=1

∂ f
∂Xi

(Xi− xi)

]2

=
N

∑
i=1

[
∂ f
∂Xi

]2

(Xi− xi)
2 +2

N−1

∑
i=1

N

∑
j=i+1

∂ f
∂Xi

∂ f
∂X j

(Xi− xi)(X j− x j).

The expectation of the squared deviation (Y −y)2 is the variance σ2
Y = E[(Y −y)2]

of Y . The same holds for the quantities Xi, so that σ2
i = E[(Xi− xi)

2].
To apply the procedure for measurement uncertainty evaluation, we have to

estimate the variances σ2
i for influence quantities Xi and plug in the correspond-

ing estimates u2(xi). Additionally, we develop the partial derivates ci = ∂ f/∂Xi
using the best estimate xi of influence quantities Xi and call them the sensitivity
coefficients5. If we put everything together, we obtain formula

u2(y) =
N

∑
i=1

c2
i u2(xi)+2

N−1

∑
i=1

N

∑
j=i+1

cic ju(xi,x j) (2.3.1)

for the squared standard uncertainty u2(y), which estimates the variance σ2
Y of

output quantity Y . The term u(xi,x j) is the estimated covariance associated with
two influence quantitites Xi and X j. If the influence quantities are not correlated

5The GUM uses the notation ∂ f/∂xi = ∂ f/∂Xi evaluated at the expectations of Xi.
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the term u(xi,x j) is zero; in such cases, the formula reduces to

u2(y) =
N

∑
i=1

c2
i u2(xi) =

N

∑
i=1

u2
i (y), (2.3.2)

where we set u2
i (y) = c2

i u2(xi), respectively ui(y) = |ci|u(xi). The method based
on first-order Taylor series approximation is called the law of propagation of un-
certainty in GUM [37, Section 5.1.2]. It relies on an information reduction of the
probability distributions of influence quantities to its parameters expectation value
and standard deviation. Hence, it is not appropriate for arbitrary probability dis-
tributions and, therefore, reduces the number of applicable cases of the approach
to evaluate the measurement uncertainty considerably. The second shortcoming
is that the model has to behave linear in the range of interest if the uncertainty
propagation should be applied. So a lot of initial information about the influ-
ence quantities is ignored or lost if applying the law of propagation of uncertainty.
For measurement scenarios, where significant non-linearities appear, the guide
recommends adding higher-order terms of the Taylor series expansion, like the
next-highest-order terms for Equation 2.3.1

N

∑
i=1

N

∑
j=1

[
1
2

(
∂ 2 f

∂xi∂x j

)2

+
∂ f
∂xi

∂ 3 f
∂xi∂x2

j

]
u2(xi)u2(x j).

This leads to further implications and more complex evaluations of the equation
of the measurand. Furthermore, the quantification for higher order terms is very
complicated and sometimes even not possible in practice.

Besides, if using the GUF approach, it is necessary to estimate the so-called
degrees of freedom to get an approximation for an uncertainty interval of confi-
dence p for the measurand Y . The interval Y = y±Up uses the expanded uncer-
tainty Up = kpu(y), where the expansion factor kp = tp(νe f f ) is taken from exist-
ing tables for t-distributions with νe f f degrees of freedom. The method of GUM
to quantify the degrees of freedom is a rough estimation applying the Welch-
Satterthwaite formula [69]

νe f f =
u4(y)
N
∑

i=1

u4
i (y)
νi

,

using the estimated variances u2(y) of Y and u2
i (y) = |ci|u(xi) of influence quan-

tities Xi. The formula was originally thought for influence quantities of Type A,
where we have explicitly ni independent observations for analysis of an quantity
Xi and, hence, the degrees of freedom νi = ni− 1 for a quantity Xi are well de-
fined. However, it is not always obvious how to determine or estimate the degrees
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of freedom for Type B influence quantities, describing, for example, experience or
expert knowledge. The guide [37, Section G.4.2] explicitly states the following:

[...] for a Type B evaluation of standard uncertainty it is a subjec-
tive quantity whose value is obtained by scientific judgment based on
the pool of available information.

Since the release of the guide the approach to handle influence quantities of Type B
with the Welch-Satterthwaite formula is under discussion [40]. The need to esti-
mate degrees of freedom underlines once again that the classical GUM uncer-
tainty framework expects the result to be approximately normal distributed as this
estimation is based only on the standard deviation of input quantities and their
corresponding degrees of freedom.

Another problem with the classical guide is that there is no explanation of how
to quantify the validity of the measurement uncertainty evaluation using the GUM
uncertainty framework. This drawback is mentioned in the first supplement [22,
Section 8.1], where it is recommended applying a second evaluation method for
the evaluation of the measurement uncertainty to prove the results right. I will
continue presenting this second evaluation method after a small example.

Example We use the same example [15, Section 9.2] as for the analytical so-
lution using Equation 2.2.3 to evaluate the measurement uncertainty according
to the GUF. The measurand Y is given as Y = ln(X1). The influence quantity
X1 ∼ R(0.1,1.1) is described using a rectangular distribution. Hence, we have to
convert it to a normal distribution to apply the GUF approach. The expectation
of X1 is x1 = (a+b)/2, the standard deviation is u(x1) = (b− a)/

√
12 accord-

ing to [37, Section 4.3.7]. The expectation y of Y can be calculated using the
expectation x1 of X1 as

y = ln(x1) = ln((a+b)/2) =−0.511.

Finally, the sensitivity coefficient is c1 = ∂ ln(X1)/∂X1 evaluated again at x1 =
(b− a)/2, so that c1 = 1/x1 = 2/(a+ b). Applying the law of propagation of
uncertainty from Equation 2.3.2 we get

u2(y) =
1

∑
i=1

u2
i (y) =

1

∑
i=1

c2
i u2(xi)

= c2
1u2(x1) =

[
2

a+b

]2[b−a√
12

]2

= 0.2315.
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Hence, if we take the root we get the standard uncertainty u(y) =
√

0.2315 =
0.4811. The result is plotted in Figure 2.8 on page 27 in comparison with the
other methods.

2.3.2 Monte Carlo method
The first supplement to the GUM has introduced a new approach for the evalua-
tion of the measurement uncertainty. The final version of the document has been
published in summer of 2008 after a lot of discussion, changes and two drafts in
2004 and 2006. Taking into account the increasing computational power of per-
sonal computers and multi-core processor machines as well as distributed com-
puting frameworks the possibility of simulating measurement scenarios, a Monte
Carlo technique seems to be a good method to tackle the problem of the mea-
surement uncertainty evaluation. The Monte Carlo method is a straightforward
approach to calculate a discrete approximation G for the density function GY (η)
for the Equation 2.2.1 of the measurand Y with input quantities X1, . . . ,XN ∈X that
contribute to the uncertainty of the measurand. Each input quantity is randomly
varied according to the distribution function in M trials evaluating the equation of
the measurand, so that with a large number of evaluations we get a large amount
of possible values that can be attributed to the measurand Y according to the un-
derlying model.

For the evaluation of the measurement uncertainty using Monte Carlo simula-
tion according to GS1 the following steps [22, Section 5.9.6] are necessary.

1. Select number M of Monte Carlo trials to be made.

2. Generate M vectors x1, . . . ,xM, by sampling from the assigned PDFs, as
realization of the N input quantities X1, . . . ,XN .

3. For each such vector xi, from the corresponding model value of Y , yielding
M model values yi = f (xi), i = 1, . . . ,M.

4. Calculate

ỹ =
1
M

M

∑
r=1

yr

as an estimate for y of Y and estimate the standard uncertainty u(y) associ-
ated with y using

u2(ỹ) =
1

M−1

M

∑
r=1

(yr− ỹ)2.

5. Sort the model values y1, . . . ,ym to form an appropriate coverage interval
for Y, for a stipulated coverage probability p.
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The procedure presented here differs a little from the original one in GS1,
as we try to avoid sorting all simulation data. This will be explained in the next
section, when we concentrate on computational issues of Monte Carlo simulations
for measurement uncertainty evaluation.

The number of trials M for a simulation, that has to be provided in the first
step of the procedure, depends on the selected probability distributions for the
input quantities and the complexity of the equation of the measurand. Hence,
in daily life it may be hard before starting the simulation to decide on a number
of trials that is computable in acceptable time, but still guarantees an appropri-
ate approximation. GS1 includes a description of an adaptive Monte Carlo ap-
proach [22, Section 7.9], where the evaluation continues until the results for the
estimated expectation value, standard deviation and a 100p % uncertainty inter-
val get stable in a statistical sense. The algorithm analyzes and sorts blocks of
data6, calculates the statistical parameters, averages them and observes if twice
the standard deviation of the estimates is within a predefined numerical tolerance.

GS1 mentions the following points as conditions to apply the Monte Carlo
method properly [22, Section 5.10].

1. The equation f of the measurand is continuous with respect to the ele-
ments X1, . . . ,XN of X in the neighborhood of the best estimates xi of the
Xi, i = 1, . . . ,N;

2. the distribution function GY (η) for Y is continuous and strictly increasing;

3. the PDF for Y is

(a) continuous over the interval for which this PDF is strictly positive,

(b) unimodal (single-peaked), and

(c) strictly increasing (or zero) to the left of the mode and strictly decreas-
ing (or zero) to the right of the mode;

4. The estimate E(Y ) and the variance V (Y ) exist;

5. a sufficiently large value of M is used.

The requirement for the PDF of the output quantity Y in point 3 is necessary
for uniqueness of the shortest coverage interval only. It is not necessary if just the
shape of the distribution of the measurand Y is of interest.

6The guide recommends 104 or more trials for one block.
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Computational issues

The principle of the Monte Carlo method is easy to understand and (at least at
a first glance) straightforward to implement. Nevertheless, there are some very
important issues to consider. One has to take care of efficient code and memory
usage, as Monte Carlo simulation needs a lot of computational power for the eval-
uation of the measurement uncertainty. A suitable memory allocation behavior
is required as well as a smart way of handling the huge amount of data gener-
ated during simulation. There are algorithms to calculate the arithmetic mean and
standard deviation as well as some other statistical parameters iteratively during
simulation. However, if simulation data should be saved for analysis after running
the simulation, e.g., to calculate coverage intervals or to reproduce the results later
on, one has to take care about how data is stored as writing huge amounts of data
to a storage volume is a very slow task during simulation. In developing the cal-
culation core used for this project [55, 57] we concentrated on constant memory
usage during simulation, linear time-behavior and disk-space usage.

Block evaluation Because of computational reasons it is not satisfying to gen-
erate all M vectors xi of random numbers for the input quantities X1, . . . ,XN in the
beginning of a simulation. It would be too memory extensive with a large number
of trials for simulation together with a large number of influence quantities. On
the other hand, parsing and evaluating all equations for evaluation in M single iter-
ations would be very slow and inefficient. The solution is to divide the calculation
into blocks of a defined size7 10n. Then the evaluation of a block of 10n values for
each input quantity takes place simultaneously. Here a good trade-off is necessary
in order not to exceed the available physical memory as swapping from memory
to hard disk and back is a very costly operation.

Another advantage of the block evaluation is that for the calculation of statis-
tical parameters blocks of smaller size can be analyzed, where the overall parame-
ters are approximated afterwards. Mean and standard deviation can be calculated
iteratively for all simulation data. Hence, there is no need for an approximated
block evaluation for these two parameters. But to extract a coverage interval with
coverage probability p it is necessary in principle to sort all M simulation values
for the measurand Y and look for suitable values for the limits of the interval. De-
tails of the applied algorithm follow in the next chapter. As sorting is a slow task8,
an alternative as approximation to the coverage interval can be calculated. The ap-
proach only requires sorting blocks of size 10n values and extracts the coverage
interval with coverage probability p. Then we can iteratively calculate mean and

7Values of n = 4 or n = 5 have been found suitable in practice.
8Good behavior of a typical sorting algorithm is in O(n logn) to sort n elements; well-known

sorting algorithms are quicksort [46] or introsort [58].
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standard deviation for the limit values of the coverage interval of these blocks.
The convergence of this approach has been investigated in Martin Müller’s and
Christian Rink’s article [54].

2.3.3 Advantages of the Monte Carlo approach
The Monte Carlo approach circumvents the limitations of the classical GUM un-
certainty framework in many respects:

• There is no restriction to linear behavior for the model. The equation of the
measurand can be used as is, whereas the application of the classical GUM
uncertainty framework needs a linearization of the model equations.

• All information provided as probability distributions for influence quanti-
ties of the measurement is used for the evaluation of the measurement un-
certainty.

• The standard uncertainty can be approximated from the simulation data di-
rectly as the square root of the variance, the standard deviation, of the re-
sulting simulation data.

• Coverage intervals, e.g., the 95 % interval, can be estimated from the result.
Therefore, there is no need for determining degrees of freedom to calculate
a coverage factor for an expanded standard uncertainty.

• A big advantage is also that dependencies and correlations of uncertainty
sources to the measurement can be modeled by redefining the model by
using additional influence quantities in different parts of the equations. This
is already mentioned in the classical guide, but using arbitrary probability
distributions opens up new possibilities.

• Finally, the Monte Carlo method allows a validation if applying the classical
GUF approach and comparing the results of the two methods.

Example We have already calculated the measurement uncertainty for the ex-
ample Y = ln(X1) of Best Practice Guide No. 6 [15, Section 9.2] analytically and
with the law of propagation of uncertainties from GUF; the example uses only a
single influence quantity X1 ∼ R(0.1,1.1). Performing a Monte Carlo simulation
with 107 trials results in the same values as we have got analytically, a mean value
of y =−0.665 and a standard uncertainty of u(y) = 0.606. Figure 2.8 shows very
clearly the differences and advantages of the Monte Carlo method compared to
the GUF method, which delivers an unsatisfying result in this case. The Monte
Carlo method approximates the analytical solution almost perfectly.
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Figure 2.8: Comparison of different methods evaluating measurement uncertainty
applied to the very simple example Y = ln(X1), where we assume X1 to be rect-
angular distributed in the range from 0.1 to 1.1. The result of the Monte Carlo
simulation with 107 trials approximates very well the analytical solution, whereas
the interpretation of the result of the GUF approach assuming a normal distribu-
tion is very misleading.

As the Monte Carlo method is currently the most promising and accepted ap-
proach [9, 16, 71] in the community of metrologists, the simulation core of the
software project presented in this thesis provides an efficient implementation of
a Monte Carlo simulation system to evaluate measurement uncertainty for high-
resolution and real-life models. The simulation framework is called MUSE [55],
which is an abbreviation for Measurement Uncertainty Simulation and Evalua-
tion.

2.4 Third Stage: Summarizing
In the third and last step to evaluate the measurement uncertainty according to GS1
we have to summarize the collected information about the measurand to a few rep-
resentative numbers. The expectation value of the quantity is the estimated value
for the measurand. As already mentioned before, the standard uncertainty of the
measurand is defined as the standard deviation of the resulting data. Additionally,
symmetric or shortest coverage or uncertainty intervals are computed usually with
coverage probabilities p ∈ {0.95,0.99,0.999}.

Also in this stage we can analyze the outcome of the simulation with respect to
the importance and influence of individual uncertainty sources to the measurement
uncertainty of the measurand. The GUM just mentions that so called uncertainty
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budgets can be reported, stating the expectation value and the standard uncertainty
of each uncertainty source. We will go a step further in a later chapter to analyze
non-linear models using different approaches to estimate the importance of single
influence quantities.

We also want to lay an eye on measurement scenarios where not only one
measurement takes place, but sequences of measurements. Such repeated mea-
surements consist of alternating reference and sample measurements. Reference
measurements are necessary for controlling environmental conditions and to allow
a comparison of sample measurements, e.g., performed in different laboratories.
In such cases, where we have more than one output quantity, it is also of interest to
analyze the interdependencies of the different results. This goes beyond the scope
of the guide and its supplement, but will play an important role in the definition
of the modeling language.

Relying on the Monte Carlo method the result of the simulation are one or
more huge data files containing possible values for the measurand. A lot of effort
was invested to analyze these files properly and extract the most common statis-
tical parameters, like mean value, standard deviation, coverage intervals as well
as information for the visualization, like box plots and histograms for a single
measurement in an efficient way. We also provide support for fundamental sen-
sitivity and uncertainty analysis of measurement scenarios. As the requirements
for analysis depend very strongly on current situations, data files can be stored
for additional analysis in third party software, like R [63] or MATLAB®9. We
decided to implement an analyzing module evaluating the most important statis-
tical parameters and additional summarizing information for visualization after
we found limitations of such software packages because of the extensive memory
consumption, when analyzing large amounts of simulation data.

2.4.1 Mean and standard deviation

The (arithmetic) mean is defined as the average of the sum of all values

x̄ =
1
N

N

∑
i=1

xi.

The standard deviation is then defined as

s =

√
1

N−1

N

∑
i=1

(xi− x̄)2.

9MATLAB®, 2008a, The Mathworks, Cambridge MA.
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Algorithm 1 Calculation of mean and standard deviation in a single run; input:
array data with data values

n← 0
mean← 0
S← 0
for all x in data do

n← n+1
delta← x−mean
mean← mean+delta/n
S← S+delta∗ (x−mean)

end for
variance← S/(n−1)
return mean and variance

A straightforward and direct implementation of the equations as-is would lead to
an algorithm with two loops, calculating first the mean value and afterwards the
standard deviation.

As MUSE usually works on blocks of data, we decided on an efficient al-
gorithm [45, page 232] to calculate the mean value and the standard deviation
iteratively within one loop. It is given in pseudo code in Algorithm 1. The idea is
to update mean and standard deviation in each step according to

x̄new =
nx̄old + xnew

n+1
= x̄old +

xnew− x̄old

n+1

and

s2
n−1,new =

(n−1)s2
n−1,old +(xnew− x̄new)(xnew− x̄old)

n
,

where n is the number of elements before the current iteration, xnew the new data
value, x̄old and x̄new the old and new mean value.

2.4.2 Uncertainty intervals

Using the Monte Carlo approach, we can distinguish between symmetric and
shortest coverage intervals with coverage probability p. For symmetric intervals
the probability for a quantity to be below the lower limit must be equal to the
probability to be bigger than the upper limit. The shortest interval requires that
the upper limit minus the lower limit is minimal for all possible coverage intervals
with the same coverage probability p. The shortest and the symmetric coverage
intervals are equal for unimodal, symmetric probability distributions. Figure 2.9
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Distribution Cov. int. 95 % 99 % 99.9 %

Exponential
symmetric [0.025,3.690] [0.005,5.309] [0.001,7.707]
shortest [0.000,2.992] [0.000,4.597] [0.000,6.857]

Beta
symmetric [0.057,0.543] [0.023,0.649] [0.005,0.771]
shortest [0.001,0.733] [0.007,0.609] [0.037,0.509]

Table 2.2: Values for the coverage intervals for the example of Figure 2.9

shows the comparison of resulting coverage intervals for two non-symmetric prob-
ability distributions, a beta and an exponential distribution. Table 2.2 presents the
corresponding values.

To estimate a 100p % coverage interval [ylow,yhigh] the supplement requires
sorting all data. Let then q = pM if pM is an integer; otherwise q is the integer
part of pM + 1/2 and r = 1, . . . ,M− q. A coverage interval is then defined as
ylow = y(r) and yhigh = y(r+q). Two of these coverage intervals are of interest.

• The probabilistic symmetric 100p % coverage interval can be estimated by
taking r = (M− q)/2 if the term is an integer, otherwise r should be the
integer part of (M−q+1)/2.

• The shortest 100p % coverage interval can be estimated by shifting a frame
of size q iterating over all r looking for an r∗ as a minimum, so that

yr∗+q− yr∗ ≤ yr+q− yr.

This procedure leads to an approximation of the statistical parameters of in-
terest. To prevent sorting all data after simulation, which is in general a very slow
task on computers for large data sets, the analyzing module uses the following
approach: it calculates statistical parameters again for blocks10 of simulation data
and uses the arithmetic mean as an approximation. In calculating a correspond-
ing standard deviation we gain additional information about the parameters. The
convergence of the estimators for this approach is shown in [54].

2.4.3 Histograms
A histogram summarizes information about large data sets. The range from the
minimal to the maximal value is equidistantly segmented in k bins. Then each data
point falls in one of the bins. The histogram plot shows bars with the height of
number of values in each bin. We have already seen histograms, e.g., in Figure 2.8

10As this approximation should represent the overall result of the simulation a minimum of 105

values are used for evaluation.
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Figure 2.9: The left column shows plots of an exponential distribution with pa-
rameter λ = 1; the right column plots of a beta distribution with parameters a = 2
and b = 5. In the first and second row there are histograms with symmetric, re-
spectively shortest, uncertainty intervals plotted as dashed lines. The last row uses
uncertainty plots for direct comparison. It can clearly be seen that there is a sig-
nificant difference between the symmetric and shortest coverage intervals. The
Monte Carlo simulations were performed with 107 trials each.
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and 2.9, to visualize the results of Monte Carlo simulations. On the left side of
Figure 2.10 the results of three simulations are shown as histograms.

To extract histogram data from data files the number k of bins has to be
provided. Then, in an initial run the minimum value xmin and maximum value
xmax of a simulation are examined. The width wbin of one bin is calculated as
wbin = (xmax − xmin)/k and the range subdivided in the number k of bins. As
blocks of values are sorted for the determination of a p coverage interval, the as-
signment to a bin can use this additional information about partial order of data
and can take place simply in the second run. A two-pass algorithm11 is given in
Algorithm 2.

2.4.4 Box plots

A box plot summarizes information about the simulation data, too. An advan-
tage is that drawing is much more compact and comparing more than one result
is easier than with histograms. Of course it relies on information reduction; the
summarized data contains less information, e.g., details about the shape of the
distribution are lost. Figure 2.10 shows a comparison of three simulations with
histograms and box plots. The example is taken from GS1 [22, Section 9.2], the
complete model definition is given in Appendix B.1. Instead of the arithmetic
mean, the median is used to describe the quantity in a box plot. The box itself
defines the lower quartile χ.25 and upper quartile χ.75, each containing exactly 25
% of the values next to the median on the corresponding side. The whiskers indi-
cate the extreme values, the largest and smallest value of the data. If the smallest,
respectively largest, value is inside of a range of 1.5IQR, where the interquartile
range (IQR) is defined as IQR = χ.75− χ.25, the smallest, respectively largest,
value is taken as lower, respectively upper, whisker. If the value is outside of
this range, the values below, respectively above, are interpreted as outliers and the
range value itself is taken for the whisker. Outliers are usually visualized marked
as dots or with an ‘x’ in the plot.

In Monte Carlo simulation very large data files result from simulation12. As
the number of simulation data is very large, there is a good chance of having
many outliers, which would distract from the actual information of the box plots.
Therefore, in the current implementation of the analyzing module the outliers are
not indicated explicitly as dots, but only counted and annotated below/above the
lower/upper limit.

11MUSE always performs two passes over simulation data to extract the most important statis-
tical parameters; in the end, all the analyzing algorithms presented in this chapter are interwoven
in these two passes.

12For simulation of examples in this thesis usually 107 trials were performed, but at least 106.
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Figure 2.10: Result of three simulations with 106 trials each and the equation
Y = X1 +X2 +X3 +X4 of the measurand; on the left side are the histograms in
comparison, on the right side the corresponding box plot for the same example. In
model 1 the quantities X1, . . . ,X4 are normal distributed N(0,1), in models 2 and
3 they are rectangular distributed with different parameter settings. The annotated
numbers at the upper and lower limits of the whiskers are the average number of
outliers of analyzed blocks of size 105.
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Algorithm 2 Two-pass algorithm for determining histogram data. Function
intarray(m,v) generates an array of size m initialized with values v. Input: ar-
ray data with simulation data; block size n; number k of bins

for all values x in data do
if x < xmin then

xmin← x
end if
if x > xmax then

xmax← x
end if

end for
bins← intarray(k,0)
size← (xmax− xmin)/k
for all blocks b of size n in data do

cur← 0
limit← xmin + size
b← sort(b)
for i from 0 to n-1 do

if b[i]≥ limit then
limit← limit + size
cur← cur+1

end if
bins[cur]← bins[cur]+1

end for
end for
return bins

As we avoid sorting the whole data we apply a block-wise evaluation, too,
extracting the parameters for each block and averaging afterwards over the set of
parameters. Therefore, also the number of outliers does not represent the actual
number of outliers of the whole dataset, but only the average number of outliers
for the block size used for analyzing.

2.4.5 Standard uncertainty plot

Besides box plots, we will also see the standard uncertainty plot or mean-and-
standard-deviation plot in this work. Instead of median and quantiles the statistical
parameters mean value (dot) and the difference of the mean value to the standard
deviation on both sides (horizontal lines) is plotted. This visualization is more
appropriate for classical measurement uncertainty analysis as the same statistical
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Figure 2.11: Standard uncertainty plot visualizing statistical parameters mean
and standard deviation of the same example and simulation data as in Figure 2.10;
additionally, the symmetrical uncertainty intervals are plotted.

parameters are used, but is limited as it only shows the symmetrical parameter
standard deviation in its basic form. To get a better idea about the resulting distri-
bution, the coverage intervals can be plotted additionally. Figure 2.11 shows such
a plot with the same simulation data as the box plots in the last Figure 2.10. For
analysis also the 95 %, 99 % and 99.9 % uncertainty intervals are plotted as ‘x’
marks.

2.5 Summarizing uncertainty evaluation
Figure 2.12 summarizes the necessary steps for the measurement uncertainty eval-
uation using the Monte Carlo method graphically for a measurement with a single
measurand Y .

The formulation stage is the part where uncertainty evaluation software can
support experts to model measurement scenarios in a structured way. Metrologists
in laboratories have to determine the output quantities, quantify input quantities
properly and they also have to provide the mathematical equations that define the
functional relationship between the influence quantities of the measurement – the
input quantities – and the measurand – the output quantity. It is vital to work in an
organized and structured way to get an appropriate and valid model for real-life
applications.

After the formulating phase, the propagation phase defines how calculation
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Figure 2.12: The necessary steps to evaluate the measurement uncertainty ac-
cording to the first supplement to the GUM
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Figure 2.13: Real-life measurement scenario, where the result and measurement
uncertainty of one measurement may depend on one or more preceding measure-
ments; environmental conditions change over time and may have a direct influence
on the result of measurements.

should be performed. In this chapter I introduced the GUM uncertainty frame-
work as the first possibility to approximate the standard uncertainty. Due to its
limitations because of the need of a linear model and the information reduction
of probability distributions for influence quantities to their first two moments –
expectation value and standard deviation – the Monte Carlo approach of GS1 is
more appropriate for application for a larger class of measurement scenarios.

Finally, summarizing simulation data in the third phase is necessary to extract
the most important information. Besides the basic statistical parameters, like mean
value, standard deviation and symmetric/shortest coverage intervals, information
about the shape of the probability distributions, e.g., skewness, or summarized
data for histograms and box plots are of interest.

Figure 2.13 shows an advanced measurement scenario, where not the mea-
surement uncertainty of a single independent outcome of a measurement is of in-
terest, but rather the measurement uncertainty of a number of different subsequent
measurements that depend on time-varying environmental conditions. This can al-
ready appear in very simple scenarios, where the result is the comparison of one or
more reference measurements to one or more sample measurements. Current ap-
proaches only allow for the definition of a single measurement using conservative
estimations to cover a lot of scenarios with the same model and parameter settings.
This is sufficient in a lot of cases. Nevertheless, we try to support metrologists in
modeling real-life measurements with individual parameter settings. This allows
a deeper insight into the measurement system and an analysis of time behavior
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and is, for example, essential for experts of national and international metrology
institutes, as they develop and apply the most accurate measurement standards.

Hence, one major target of the project is to provide a structured way to de-
fine the process of modeling. It guides metrologists from laboratories step by step
from scratch, where they have a heap of mathematical equations, experience and
expert knowledge, specifications, protocols, certificates, handbooks and observa-
tion data, to valid and proper models that can also be reused and understood by
other metrologists. It is not the goal of this thesis to provide a graphical user inter-
face, but to develop a modeling language that can then be used as the basis for an
appropriate interface. I will present a fully functional prototype in a later chapter
that allows the definition of simple measurement scenarios and the evaluation of
the measurement uncertainty according to GS1.

Before we concentrate on the main part of this thesis in the next chapter, the
modeling language of MUSE, we will first take a closer look at the advantages and
disadvantages of some of the currently available software solutions for measure-
ment uncertainty evaluation.

Difference to existing software solutions There is a lot of professional soft-
ware [39, 78] using the classical GUM uncertainty framework relying on Taylor
series expansion for the evaluation of measurement uncertainty. Of course, there
the limitations of the classical GUM approach apply.

Current solutions often rely on spreadsheet applications [8] for the evaluation
of measurement uncertainty for simple measurement scenarios. That may be suf-
ficient for cases with a limited number of input quantities, where measurement
equipment as influence quantities to the measurement uncertainty are modeled
using a limited selection of probability distributions, but are not further specified.
The re-usage factor limits itself more or less to copy-paste operations. If measure-
ment devices and equipment should be refined, parts of spreadsheets have to be
copied to a new sheet for new evaluations. As the distinction of user and developer
diminishes in such cases, the user must have good knowledge and experience with
computers and software development. It does not seem appropriate and satisfying
that metrologists from laboratories need to be able to master complex implemen-
tation tasks. A major point is also that these all-in-one packages provide solutions
that are applicable in many cases, but it has to be considered if these black-box
solutions really are valid and suffice for an actual situation.

Besides, Erwin Achermann developed in his PhD thesis [4] a framework called
MUSAC with the definition language M and a calculation core using the classical
GUF approach with uncertainty propagation for the evaluation of the measure-
ment uncertainty. The software was also capable to perform Monte Carlo sim-
ulation, but only with a limited number of trials. An extensive graphical user
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interface [26] was implemented for MUSAC in another project supporting dif-
ferent measurement techniques from analytical chemistry and providing a large
database of different measurement items and devices and is a good example for
direct support of metrologists not only relying on spreadsheets, but using a more
elaborated interface.

As the Monte Carlo method is straightforward and, as already mentioned, a
simulation system seems at first glance not to be too complex to implement, it is
quite common for metrologists in laboratories to start building their own software
solutions. Of course, a lot of problems arise with such individual solutions as
requirements get more demanding and functionality is enhanced iteratively over
time. If fix coded static models are used in the background, each minor change
in the model can generate to a lot of necessary adaptions. Also, issues, as saving
large data files efficiently, generating correlated and uncorrelated random num-
bers and so on, are very important for a proper implementation of a Monte Carlo
simulation system.

Often the problem of scaling of simulation systems is underestimated. While
coding some software that is only tested with simple scenarios with small numbers
of trials, it can lead to problems when one tries to simulate more complex, refined
real-world problems afterwards with an appropriate number of trials. Therefore,
the goal of this work was to implement a flexible and easy-to-use system that
scales well and is optimized for a good trade-off of memory usage and speed. Al-
though parallel computation of simulations is not supported currently, enhancing
the simulation system should be straightforward as this was one point we consid-
ered from the start of implementing the simulation core as well as for the internal
representation of the model.

Beside this project, special Monte Carlo simulation software packages exist.
There is, for example, the software UNCSAM [34] written in Fortran that concen-
trates on the evaluation of simulation results. The software provides more than
twenty different methods for sensitivity and uncertainty analysis, most of them
assuming linear behavior of the model. As one of the key features of the Monte
Carlo method is the handling of nonlinear models, I will concentrate more on the
analysis not requiring linearities in a later chapter of this thesis.

Another project is EUROMETROS [7], a library of functions, again in Fortran,
provided by the National Physics Laboratory (NPL), the UK’s national metrol-
ogy laboratory, and EUROMET. The user has to put together functions in Fortran
himself, so there is no direct support of the modeling process, but users have to
compile self-written source code.

And just to mention another of the many commercial software packages avail-
able and giving an example for the broad range of solutions, there is the Microsoft
Excel plug-in Oracle Crystal Ball [60]. Originally it was designed as a predic-
tive modeling software, but was found suitable also for Monte Carlo simulation
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for measurement uncertainty evaluation. It allows a lot of different methods for
analyzing simulation data. Most of the commercial products come with advanced
user interfaces, but usually they are using spreadsheet layouts as their basis. Many
are designed for other areas of interest, like risk assessment and are just adapted
for measurement uncertainty evaluation, because of similarities, mainly the Monte
Carlo simulation part.

The problem is that for more advanced, high-resolution measurement scenar-
ios with a lot of different equipment, like measurement devices, the flat structure
of spreadsheet applications is very limiting. In this project and in the software
package MUSE, we aim for a concept of a hierarchical, structured model design
for advanced and high-resolution measurement scenarios. Concentrating explic-
itly on problems of metrology allows a more direct approach to assist metrologists
in building models for measurement uncertainty evaluation using the common vo-
cabulary in this field. Defining a modeling language does not limit the ability to
adapt to given problems, but gives a flexible and improvable structure. More than
that, the well-defined language definition used for MUSE allows building appro-
priate graphical user interfaces for parts or the whole functionality of the modeling
language and simulation core.

In the next chapter I will first give a short overview of programming and model-
ing languages and present all the necessary prerequisites for a modeling language
to define arbitrarily complex measurement scenarios. Afterwards modeling con-
cepts are introduced step by step with the help of a common real-life measurement
from analytical chemistry.



CHAPTER 3

Modeling fundamentals

Derive (if not already available) a model relating a set of output
quantities to (input) quantities (raw measurements, suppliers’ spec-
ifications, etc.) that influence them. Establish distributions for the
values of these input quantities. Calculate (in a sense required by
context) estimates of the values of the output quantities and evaluate
the uncertainty associated with these estimates.

— SSFM Best Practice Guide No. 6, 2004, Page 12 —

A major goal in developing the software project MUSE is that the modeling
language to describe the measurement scenarios is intuitive and human readable.
For a measurement uncertainty evaluation, metrologists have to provide the func-
tional relationships between the influence quantities and the statistical probability
distributions with proper parameters to describe the influence quantities, as we
already have seen in the last chapter. It is a big advantage for advanced, real-life
measurement scenarios, if there is a clear, structured and modular format right
from the start as well as a properly defined vocabulary for modeling that is com-
mon to people in the laboratories. It should not be necessary for application to
learn a complex new programming language. To a certain level this requirement
seems – and is indeed – paradox as the simulation system needs all kinds of infor-
mation from different scientific fields like biology, physics and chemistry mixed
with statistical and mathematical information in a structured form, which requires
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nothing less than a programming or modeling language. Nevertheless, the chosen
keywords and the structuring should be intuitive and adequate for the purposes
of someone working in a laboratory involved in the evaluation of measurement
uncertainties. The modeling language encapsulates the calculation core in a way
that there is no direct need for an algorithmic description. Hence, we have cho-
sen a declarative approach. As the modeling language has been designed very
specifically for the evaluation of measurement uncertainty in metrology and does
not need to support all the structures, like loops and arbitrarily complex condi-
tional statements, of general-purpose programming languages we prefer and use
the term domain-specific language or synonymously modeling language as a sub-
set of general-purpose programming languages, like C++, Java, Eiffel etc., hence-
forth.

Another goal of the project is to always keep in mind that a graphical user
interface (GUI) is of vital interest in daily-life applications. It is not possible
to demand the input of large model and simulation definition files by hand. This
means that the domain-specific language should be well-defined and clearly struc-
tured using a properly defined grammar, so that a generation of files for simulation
is straightforward for other programs. A good example for such a simulation en-
vironment is Modelica [61], a non-proprietary, object-oriented, equation based
language to conveniently model complex physical systems; there exist various
commercial and non-commercial approaches to provide graphical user interfaces
for the framework. I use in this project a declarative approach, where metrologists
provide all information in a well-defined format. The information is then inter-
preted and transcoded to an internal data structure and finally, the calculation core
can start simulating and evaluating the measurement uncertainty. I will show in
a later chapter that the modeling language of MUSE allows a direct approach to
develop a GUI and present a very basic, but already fully functional prototype of
a GUI to describe simple measurement scenarios.

In the PhD thesis [4] of Erwin Achermann a domain-specific language called
M was developed in combination with a calculation core. It supports evaluation
of measurement uncertainty in the daily work of bench chemists in the field of
analytical chemistry. The thesis is based on the classical GUM document and
hence, the calculation core uses the GUM uncertainty framework to evaluate the
model. The project focused mainly on computational issues and strongly used
concepts from computer science and procedural programming for the definition
of its modeling language M. Additionally, a basic Monte Carlo approach has been
implemented, but the program has strong limitations with regard to the number
of trials for simulation because of memory management and consumption. More-
over, the modeling language does not support all features needed to apply Monte
Carlo for arbitrary measurement scenarios, so that the software does not satisfy all
the requirements to apply the Monte Carlo method of GUM supplement 1 prop-
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erly to more advanced measurement scenarios. For example, the language does
only allow defining probability distributions of influence quantities with exactly
two input parameters, e.g., for a normal distribution the expectation value and a
standard deviation, for a rectangular distribution the mean value and a one-sided
width. The following small code fragment in the language M defines the sum
c = a+ b of two influence quantities, where a ∼ R(3,0.7) is described using a
rectangular (r) and b∼ N(2,0.5) a normal or Gaussian distribution (g).

a = <3 :r 0.7>;

b = <2 :g 0.5>;

c = a + b;

This approach is proper and sufficient for applying the GUM uncertainty frame-
work, but restricts the definition of probability distributions too much for the new
Monte Carlo approach, which allows using nearly arbitrarily complex functional
relationships and probability distributions to describe the behavior of influence
quantities for measurement scenarios.

Now, I will continue introducing some ideas concerning the domain-specific
language definition and efficiency issues and build up the basis to explain the con-
structs of the new modeling language afterwards. To show that the language is
adequate for our purpose and that it fulfills the requirements for intuitive model-
ing of complex measurement scenarios, an example from the field of analytical
chemistry accompanies the language definition in the subsequent chapters.

3.1 Domain-specific languages
Before we start with the definition of the modeling language for MUSE, let us have
a short survey and overview of programming language categories. Programming
languages can roughly be categorized as follows [51]:

• First-generation language (1GL) is a machine-level programming language
with no need for an interpreter or compiler.

• Second-generation language (2GL) is symbolic assembly language, or in
short assembler. It is strongly related to the hardware of the computer.

• Third-generation language (3GL) is a “high-level” programming language,
such as C, C++, Eiffel or Java. A 3GL is in principle hardware independent,
although in praxis portability to different systems is often problematic.

• Fourth-generation language (4GL) is designed to be closer to natural lan-
guage than a 3GL language; an example is the standard query language
(SQL) that is used for database queries.
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• Fifth-generation language (5GL) encodes complex knowledge so that a ma-
chine may draw inferences from it. Fields of applications are knowledge-
based systems, expert systems, inference engines, etc. An example is the
language PROLOG.

In the following we will have a closer look on 4GL. The idea for this class
of languages evolved in the late seventies and the beginning of the eighties as
application-oriented, specialized task-specific or simply application languages.
The important point for this class is what should be accomplished by the pro-
gram and not how it should be accomplished. In the 1980s the term 4th Gener-
ation Language was introduced by James Martin [50]. 4GL is used to describe
high-level programming languages close to natural language, often in the field
of database applications. The idea is to provide problem oriented languages for
faster and cheaper development of software applications. Programs should be
more readable and more transparent to common users with no or only little pro-
gramming experience. The language should abstract as much as possible from the
underlying hardware, software and also algorithmic concepts that are necessary
to accomplish the tasks. In the eighties it was an issue that the computational
power was rather limited when using 4GL, as the system has to perform com-
plex and advanced tasks to process requests from the user. This is a reason why
fourth-generation languages tended to cover only small fields where they could
be applied. The probably best-known example for a 4GL application language is
the Standard Query Language (SQL) [6], where one can build somewhat human-
readable English sentences to query relational databases. The language was and
still is the standard language for database-related software. A simple example of
an SQL query follows to show the clear concept of SQL and its readability:

SELECT surname,lastname,address FROM contacts

WHERE surname LIKE ’Jo%’ AND age BETWEEN 23 AND 35

ORDER BY lastname ASCENDING;

This command returns a dataset containing data for the fields surname, lastname
and address from table contacts of the current database fulfilling the given criteria
that the surname starts with the letters ’Jo’, like John or Joe and the person is
between 23 and 35 years old. The resulting data set is ordered ascending according
to the set of returned last names. The command can nearly be read like a common
English sentence. This makes it very easy to formulate and understand (at least
simple) commands. The language is declarative as programmers just define what
they expect as the result, in this case a list of contacts, and provide the information
to perform this task. One does not have to care about algorithmic issues in the
background, how data is stored or how to get data from the database, where the
database itself is an interpretation of one or more files on some storage device. So,
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4GLs rely on available functionality and libraries that abstract arbitrarily complex
tasks to a simple-to-use interface.

Later the concept of domain-specific languages (DSL) appeared with a very
similar approach to 4GL. Usually the term 4GL is used in connection with data-
base-related application languages, whereas the idea of DSLs is to provide human-
readable programming languages with proper vocabulary for very specific do-
mains, as the name implies. A good overview of concepts of DSLs and literature
is given in [52]. Domain-specific languages are strongly problem driven as al-
ready mentioned. Well-known DSLs are, for example, included in MATLAB®,
used for computation with vectors and matrices, and the statistical software pack-
age R [63] for statistical applications. Also, HTML used for the description of
web pages and the language of TEX/LATEX as typesetting system can be seen as
domain specific languages. There is a lot of discussion [21, 52, 75] about if and
when it is appropriate to develop an own domain-specific language and when to
use a general-purpose programming language (GPL). Some of the advantages are
that a DSL does not have to be Turing-complete and hence, can reduce its func-
tionality to really necessary domain-specific notations and constructs. The use of
a DSL can offer the possibility of analysis, verification, optimization, paralleliza-
tion, and transformation in terms of DSL constructs. A disadvantage is that the
development is challenging in that it requires both extensive domain and language
development expertise. It is also a very important question, if a new language is
acceptable to the community, requiring support, standardization and maintenance.
This is the reason to design the language with very close interaction with people
from the community1.

We decided to develop a new language for the field of metrology, because we
think that the need for a well structured way of modeling measurement scenar-
ios for measurement uncertainty evaluation is essential. Measurement uncertainty
evaluation is a relatively new field, the first version of the GUM appeared in 1993,
the final version of the first supplement has just recently been released in 2008
after two drafts in 2004 and again in 2006. It requires extensive knowledge of the
measurement setup and statistical modeling of uncertainty sources. In the begin-
ning, when applying the classical GUM uncertainty framework, only very simple
measurements scenarios were of interest, limiting the number of influence quan-
tities to five or six, which were expected as the most important ones. Linearity
of the functional relationships was required and interdependencies of influence
quantities were omitted where possible. Nowadays, with the new evaluation ap-
proach of GS1 a lot of new and additional information can be taken into account
in the measurement uncertainty evaluation and a proper refinement of measure-

1I want to thank all the people involved in this project very much for a lot of very rich discus-
sions and for spending so much time helping me.
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ment models is possible. Hence, the need for a structured and modular modeling
concept is bigger than ever.

In this project we introduce a declarative, domain-specific language that al-
lows the definition of equations for the measurand and in more advanced exam-
ples multiple measurands. Influence quantities and variables can be defined using
a hierarchical concept. The language also provides constructs for analyzing data,
a special type of loop for testing different measurement scenarios, and in special
cases conditional expressions. The modeling language has to represent the infor-
mation provided by the user in an adequate form for the simulation core of the
system. The language is developed essentially for measurement uncertainty eval-
uation2 and only provides structures and constructs of vital interest in application
to measurement uncertainty evaluation and the analysis of the results. This allows
keeping the language as clean and simple as possible.

Before we start to define the language for the evaluation of measurement un-
certainty, we have to take a look at how a computer can process high-level instruc-
tions of a DSL in an efficient way. First, I will present XML as a meta-language
to define DSLs and afterwards introduce some fundamental design concepts that
are necessary to model measurement scenarios.

3.2 XML: Extensible Markup Language

To be able to evaluate measurement uncertainties for arbitrary measurement sce-
narios with the help of a simulation system, the information about the measure-
ment model and simulation parameters has to be available in computer-readable
form. The simulation framework MUSE uses documents in a well-defined for-
mat corresponding to a given grammar as source. The modeling language is
based on eXtensible Markup Language (XML). The XML specification [11, 27]
is a widespread and accepted open standard of the World Wide Web Consortium
(W3C). The first recommendation is from February 10, 1998. XML is a simplified
subset of Standard Generalized Markup Language (SGML), where SGML itself
is defined in ISO document 8879 from 1986 [28], a meta-language to describe
other markup languages. The application of SGML is mainly for describing doc-
uments, where the goal is to separate information and structure from the layout,
the way how to display and present the information. A very popular application
of SGML using this concept is HyperText Markup Language (HTML) that is used
in the World Wide Web since the early 1990s to structure and describe the con-
tent of web pages and is interpreted by web browsers. Textual information is

2I do not like to exclude the application in other areas in general, but I really want to point out
that the language was created for this specific domain of metrology.
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provided, information about the structure of the document is embedded using so-
called markup elements. There is a relatively new standard from 2000 that tries to
replace HTML, XHTML. It is a translated version of HTML to the XML standard
and syntax.

XML can be used as a meta-language to define domain-specific languages [13,
52,79]. The XML format allows building up a tree of elements and attributes. This
structure fits very well to the concept of measurements, where influence quantities
can be interpreted as a hierarchical system of other influence quantities as we will
see exhaustively in the subsequent chapters. An XML document interpreted as
a source file of our DSL contains all information necessary to build the internal
data structure required for evaluation of the measurement uncertainty. An initial
step before starting to build up an internal representation of the information is to
check the correctness according to the XML syntax of the source document and
to verify additional rules. There are two levels to prove the correctness of XML
documents [27, 30].

• Well-formed documents follow the syntactical rules of XML.

• Valid documents follow additional rules of a grammar that is defined in a
separate document or is directly included in an XML document. There ex-
ist two different standards for grammar definitions, XML schema definition
(XSD) or the older document type definition (DTD) that is inherited from
SGML.

When an XML parser opens an XML document, it will first check for the
well-formedness of the document and – if additional DTD or XSD information is
provided – the validity according to the grammar will be checked. That means,
the usage of existing XML parser solutions, e.g., as for the project MUSE from
the open source projects Xalan [24] and Xerces [25] of the Apache Software Foun-
dation3, saves implementation and verification time for own complex parsers for
domain-specific languages.

I will not provide a complete description of the XML syntax here4, but de-
scribe only the most important parts in the next section and project-relevant parts
in context, where needed. Now we will examine the differences of the two prin-
ciples of correctness and see how an XML-based domain-specific language looks
like and can be defined.

3More information about the Apache Software Foundation, that supports a lot of open source
projects, can be found on their web page http://www.apache.org/foundation/.

4The complete grammar for the syntax of XML 1.0 is given, for example, in [30, page 318] in
extended Backus-Naur form.
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3.2.1 XML syntax and well-formed documents

In general, an XML document describes a hierarchical tree structure of elements.
A well-formed XML document needs exactly one root element. An element has
a descriptive name and uses as markup an opening tag and a closing tag. Tags are
enclosed between opening (<) and closing (>) angle brackets. Closing tags have
an additional slash (/) after the initial opening angle bracket. In the following first
example of an XML document, flask is the root element of the document and
the parent element of its child elements volume, temperature and age. Each el-
ement can have child elements, like flask, and/or textual information as content.

1 <flask>

2 <volume>100ml</volume>

3 <temperature>15°C</temperature>
4 <age>1.2 years</age>

5 </flask>

Another way to annotate textual content to elements in XML syntax is to use
so-called attributes as in the following example.

1 <flask volume="100ml" temperature="15°C" age="1.2 years"/>

Attributes always accompany an opening tag of an element. They consist of a
name followed by an equal sign and a value in pair-wise single or double quota-
tion marks. In the example we additionally use an abbreviation for an “empty”
element: if an element does not have any content (textual or child elements), the
closing tag can be omitted and the starting tag has to end with an additional slash
before the closing angle bracket.

XML documents are case sensitive. This means that the element <flask> is
not equal to the elements <Flask> or <FLASK>.

There is a lot of discussion about when to use elements and when attributes [18,
Section 5.10]. Major restrictions to attributes are that they can only store textual
content and can have no more subsequent elements. Hence, it is not possible to
structure information with attributes. The following XML document fragment
takes the previous example, and separates information about values and units.

1 <flask>

2 <volume>

3 <value>100</value>

4 <unit>ml</unit>

5 </volume>

6 <temperature>

7 <value>15</value>

8 <unit>°C</unit>
9 </temperature>

10 <age>
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11 <value>1.2</value>

12 <unit>years</unit>

13 </age>

14 </flask>

In an application this separation is very convenient as the document structures
information in a way so that the values can be directly interpreted as numbers
without the need to parse additionally a sequence of characters for value and unit.
A disadvantage is, of course, that this format is somewhat lengthy with extra ele-
ments and redundant strings that are introduced with additional opening and clos-
ing tags.

In the end it is a subjective decision as to when to use elements and when at-
tributes. In this project I follow a very pragmatic way and use attributes mainly for
switches, e.g., on/off or true/false, annotations and settings, e.g., number of his-
togram bars, type of random number generator, upper and lower limits for values,
etc., where appropriate. The following XML document uses, for example, a mix-
ture of attributes and elements and shows how this approach keeps the document
easy to read and parse.

1 <flask>

2 <volume unit="ml">100</volume>

3 <temperature unit="°C">15</temperature>
4 <age unit="years">1.2</age>

5 </flask>

Summarizing, we can say that each XML document that suffices the syntacti-
cal rules of the XML syntax is well-formed. The following list shows the funda-
mental syntactical rules of XML.

• An XML document has exactly one root element.

• Empty elements have no content (child elements or textual content); the
opening tag of empty elements ends with /> or has a closing tag.

• Non-empty elements have an opening and a closing tag.

• Opening and closing tags do not cross.

• All attribute values are quoted with single or double quotes.

• An element cannot have two attributes with the same name.

• Comments always start and end with the character sequences <!-- and -->.

In the first step of parsing XML documents the document is always checked
for proper XML syntax. The next (optional) step is then to validate the document
according to additional syntactical rules provided as a grammar that describe the
allowed structure of an XML document as we will see in the next section.
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3.2.2 Valid documents
To specify a user-defined language, the XML standard provides two different ways
to describe additional syntactic rules in a grammar to specify the structure of an
XML document. The first way is the so-called Document Type Definition (DTD),
inherited from the former SGML meta-language standard. A DTD mainly con-
sists of definitions for elements and attributes and explains, which elements and
attributes are allowed in which context.

XML Schema Definition (XSD) is the second possibility to define rules. This
standard is somewhat more complex to read and write, but has big advantages.
Besides the definition of elements and attributes, it supports additionally data type
declarations. XSD uses 19 different predefined primitive data types, e.g., integers,
floating point numbers, Booleans, and strings, and allows deriving more complex
data types using restrictions or combinations of the primitive ones. This allows
more advanced validity checks for specific textual content of attributes and ele-
ments.

Document Type Definition A DTD consists of element and attribute defini-
tions. An element definition is given as

<!ELEMENT elementname (contentmodel)>

The content model defines if textual content is allowed and/or which child ele-
ments are allowed. An excerpt of fundamental rules for the content model fol-
lows.

• Required sequence of content models:
(contentmodel1,...,contentmodeln)

• Choice of a content model:
(contentmodel1|...|contentmodeln)

• None or arbitrary many repetitions of content model:
(contentmodel)*

• None or one content model:
(contentmodel)?

• One or arbitrary many repetitions of content model:
(contentmodel)+

• Allowing textual content for element:
(#PCDATA)
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Sets of attributes for an element are defined in a single block as follows:

<!ATTLIST elementname attributename1 type default

attributename2 type default

...

attributenamen type default

>

We use mainly the type CDATA in this project for attributes. It allows arbitrary tex-
tual content for an attribute. Another type is a predefined list of possible values,
e.g., for a switch an attribute mode with possible values (on|off). Valid defini-
tions for default are #IMPLIED for optional attributes, #REQUIRED for manda-
tory attributes or a given default value surrounded by quotation marks. Hence, the
attribute mode for an element switch with default mode off can be defined as:

<!ATTLIST switch mode (on|off) "off">

A well-defined XML document is given next, which describes a statistical
normal distribution with two parameters, the expectation value µ and the standard
deviation σ = 0.2.

1 <gauss>

2 <mu parameter="#mu"/>

3 <sigma>0.2</sigma>

4 </gauss>

The following excerpt of a DTD represents the grammar for the example. It
defines an element gauss with two mandatory child elements mu and sigma de-
fined as content model. The child elements have an optional – defined by the
annotation #IMPLIED – attribute parameter. The child elements can have textual
content, defined by the content model (#PCDATA).

<!ELEMENT gauss (mu,sigma)>

<!ELEMENT mu (#PCDATA)>

<!ATTLIST mu parameter CDATA #IMPLIED>

<!ELEMENT sigma (#PCDATA)>

<!ATTLIST sigma parameter CDATA #IMPLIED>

One problem of DTDs is that element definitions have global scope in the
current DTD document and, therefore, element names can only be used once for
definition. In the simulation system this is a problem in the definition of proba-
bility distributions, as there is, for example, a so-called beta distribution. So the
keyword beta is used for the definition of such a distribution. But there are also
other probability distributions, where the usage of beta as parameter is common.
Usually such ambiguities should be circumvented. In the given case the different
meanings of the same keyword should be clear from the context in practice.
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XML Schema Definition DTDs use proprietary syntax, whereas XML schema
definition uses valid XML syntax. With XSD it is possible not only to define
the structure of an XML document, but also data type definitions are possible for
textual content of attributes and elements. For the last example of a document
describing a normal distribution a XSD grammar can be defined as follows.

<element name="gauss" type="gauss"/>

<complexType name="gauss">

<sequence>

<element name="mu" type="attparameter"/>

<element name="sigma" type="attparameter"/>

</sequence>

</complexType>

<complexType name="attparameter">

<simpleContent>

<extension base="normalizedString">

<attribute name="parameter" type="string"/>

</extension>

</simpleContent>

</complexType>

In the example the element gauss is defined using a self-defined complex type
also named gauss. The following type definition contains a sequence with two
child elements mu and sigma of type attparameter. The attparameter itself is
also a complex type definition allowing textual content of the predefined data type
normalizedString and an attribute named parameter of the predefined data
type string. The complete description of XML Schema can be found in [20].
I only give here in short the corresponding concepts of definitions from the list
above for DTD rules.

• Required sequence of content models
<sequence>

contentmodel1

...

contentmodeln

</sequence>

• Choice of a content model
<choice>

contentmodel1
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...

contentmodeln

</choice>

• None or arbitrary many repetitions of a content model:
attributes minOccurs="0" and maxOccurs="unbounded"

• None or one content model:
attributes minOccurs="0" and maxOccurs="1"

• One or arbitrary many repetitions of a content model:
attributes minOccurs="1" and maxOccurs="unbounded"

The problem of DTDs with global element definitions does not occur in XSDs
as element definitions are only local. Hence, different definitions using the same
keyword are possible.

Some people criticize DTDs as the syntax of DTDs is not directly XML based,
e.g., the element definitions <!ELEMENT> do not have corresponding closing tags.
Also some limitations occur for the definition of XML-based languages using
DTDs, e.g., no data type can be defined for the content of elements or attributes.
XSD overcomes some of the shortcomings of DTDs, but is somewhat more com-
plicated to read and understand not only because of its lengthy definitions, but
also because the definition can go into much more detail. For the software project
MUSE we provide DTDs as well as XSDs. I prefer to use the more advanced
XSDs as the data type concept prevents more invalid XML documents right from
the start of parsing than if using DTDs.

3.2.3 Navigation in XML documents
XML documents describe hierarchical structures of elements and attributes. Using
existing parsers reduces the implementation time and prevents failures in an own
implementation of a parser. There is also a very sophisticated way to traverse
through XML documents, the XML Path Language or in short XPath. There is no
need for an exhaustive explanation at this point; I just want to show the nice and
simple concept of walking down the tree of elements. Let’s have a look at a simple
example again and assume first, that there is a single flask named f1 defined in an
XML document.

1 <flask name="f1">

2 <volume>

3 <value>100</value>

4 <unit>ml</unit>

5 </volume>

6 <temperature>
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7 <value>15</value>

8 <unit>C</unit>

9 </temperature>

10 <age>

11 <value>1.2</value>

12 <unit>years</unit>

13 </age>

14 </flask>

For a traversal of the flask device to the value of the temperature, we can use the
path /flask/volume/value. The first slash (/) tells the system that we want to
start with the root element. Then the tags are used for further traversal, separating
with the slash again until we reach the element of interest. Now suppose there
would be another flask with attribute name set to f2 defined in the same document.
Traversal of the path would now lead to two elements in an element list containing
both child elements for the volume from both flasks. Because of that reason it is
possible to check for specific attribute values in XPath. Assuming that the names
of the flask devices in the document are unique, the path to the value of flask f1 is
then given as /flask[@name=’f1’]/volume/value. The constraint in brackets
says that the textual content of the attribute (@) named name must be equal to the
string f1.

This short overview just scratches the surface of the very powerful and com-
plex XML Path Language. For example, also backward traversal in the tree of
elements is possible, and there are a lot of built-in functions to test for specific
properties of attributes and elements. The introduction of the basic concepts in
this section shows that it is straightforward to analyze and traverse the hierarchi-
cal tree structure of documents. This is just another argument for using XML to
define our modeling language.

3.3 Concepts for modeling measurements
One of the main goals of the project is to define a domain-specific language that
contains all structures to handle the evaluation of measurement uncertainty, even
for complex measurement setups. It should also be as close as possible to people
who work in laboratories doing measurements, bringing the fields of metrologists,
physicist, chemists, biologists and statisticians together. Hence, the modeling
language is developed in close interaction with people from metrology.

An important question regarding modeling measurement scenarios is how deep
the analysis should go and how detailed the model should be. In [47, Section 5.2]
the authors discuss coarse models and advantages of refinement as well as val-
idation of modeling software. The main point for the level of model detail is
that it should be consistent with the information and type of data available. They
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also propagate the idea to start with coarse models, apply sensitivity analysis to
identify the most important influences and redefine the model based on this infor-
mation. I completely agree with this approach and the project provides the tools
for metrologists to analyze and refine the model where needed. Robinson [66]
also shows that the level of detail is very situation dependent. The conclusion is
to keep the model as simple as possible and iteratively refine where necessary and
possible. Time required to build an over-complex simulation cannot be reclaimed,
but further detail can always be added.

In [73, 74] there is a broad discussion about how to model measurement sce-
narios from scratch for measurement uncertainty evaluation according to the clas-
sical GUM uncertainty framework. The authors suggest an approach, describing
how to get from an actual measurement scenario to the mathematical formulation
and the expression of dependencies between influence quantities that affect the
measurement. They start with an adapted version of cause-and-effect diagrams,
as we have seen in Figure 2.6, to identify all uncertainty sources Xi assuming that
the measurand itself is embedded in the system of influence quantities. Equations
of the form

X1 = h(Y,X2, . . . ,Xn)

are extracted and transformed to get the measurand Y explicitly

Y = f (X1,X2, . . . ,Xn)

if possible. This part of modeling is highly relevant for finding and arguing con-
cepts regarding the modeling language of this project. We start at the point, where
a model is given with an explicit expression of the measurand Y , fully according
to the GUM and GS1 approach.

Another influence on this thesis and the modeling language is the paper of
Dieter Kind [43], where a measurement is split into individual parts. It applies
an alternative idea to cause-and-effect diagrams and visualizes the dependencies
of more or less independent parts of the measurement. The premise that the
individual parts have to be independent is necessary for his approach. For our
modeling language we do not make this claim as we will see later on. Heinrich
Schwenke [70] examined in his PhD thesis the possibilities to split the measure-
ment process in separate parts, trying to build up a database with basic devices
and parts of the equation of the measurand in the background. He already has
implemented a Monte Carlo simulation system in the year 1999, five years before
the first draft of GS1 was published in 2004. We even want to go a step further
than this work in additional stronger structuring of measurement scenarios and not
only observing a single measurement, but measurement series. This means that
not a single measurement takes place, but we work with various reference and
sample measurements and try to analyze dependencies and effects.
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From analyzing and comparing various measurement scenarios, we have ob-
tained an idea of structured modeling by using hierarchical models and this is
the reason, why I think that XML is a very appropriate tool for the definition of
the modeling language of MUSE. This is also discussed in article [80]. The key
to this idea is that we can depict measurement scenarios into activities and static
items as persons, equipment, substances, samples etc. This leads to a hierarchical
system of influence quantities and functional relationships. The equation of the
measurand can be interpreted as a directed graph of nested influence quantities
and processes. Static items are then described in an abstract way and can be used
in context as individual instances and parameter settings. In the definition of ac-
tivities the instances are used for evaluation of the measurement uncertainty for
an actual measurement scenario.

Having these concepts in mind, we can now define the very basic fundamen-
tals of the modeling language. Using this basis, I will then start to explain the
more advanced concepts by the help of a real-world example first at a coarse
modeling level, refining it step-by-step by introducing new modeling concepts
and constructs. We have just seen how to parse and traverse complex hierarchical
structures using XML and have gotten a basic idea of the hierarchical model-
ing of measurement scenarios. But for measurement uncertainty evaluation it is
also essential to be able to parse mathematical equations efficiently as the depen-
dencies of influence quantities to a measurement are described using functional
relationships defined as equations. Another concept introduced in the next section
is the modeling of influence quantities with uncertainties using probability distri-
butions. With this prerequisites and the definition of identifiers and numbers in the
following paragraph, we can concentrate afterwards on more advanced modeling
techniques and structures.

3.3.1 Identifiers and real numbers
Throughout the project description we will assume identifiers provided as names
or IDs, concatenated identifiers and real numbers in equations or as parameters to
have the format given in extended Backus-Naur Form (EBNF) [1]:

con_ident = {identifier "."},identifier;

identifier = (letter|spec_char),{letter|spec_char|digit};

real = [sign],{digit},["."],digit,{digit},[exponent];

exponent = ("e"|"E"),[sign],digit,{digit};

sign = "+"|"-";

digit = "0"|"1"|"2"|"3"|"4"|"5"|"6"|"7"|"8"|"9";

spec_char = "@"|"#"|"_";

letter = "a"|"b"|"c"|"d"|"e"|"f"|"g"|"h"|"i"|"j"|
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"k"|"l"|"m"|"n"|"o"|"p"|"q"|"r"|"s"|"t"|

"u"|"v"|"w"|"x"|"y"|"z"|

"A"|"B"|"C"|"D"|"E"|"F"|"G"|"H"|"I"|"J"|

"K"|"L"|"M"|"N"|"O"|"P"|"Q"|"R"|"S"|"T"|

"U"|"V"|"W"|"X"|"Y"|"Z";

Hence, identifiers are allowed to use the special characters @, # or an underscore
_ and leading letters as first character, followed by an arbitrary order of digits,
letters and the special characters defined as spec_char. The name con_ident

is an abbreviation for concatenated identifier and is used for nested models in
more complex measurement scenarios. Real numbers can be provided in common
scientific format. According to the EBNF-definition, for example, the following
numbers are valid numbers:

-425

.23

-0.84

174.18e-2

The modeling language of MUSE is (like XML) case-sensitive, so, for example,
the identifiers flask1 and Flask1 are not considered as equal.

3.3.2 Parsing formulas
It is important to see that the equation of the measurand – maybe divided in sub-
sequent equations – is a central part in evaluating the measurement uncertainty
independent of the evaluation method. The dependencies of influence quantities
in a measurement are always described using functional relationships. In principle
it would be possible to also use an XML-based representation of formulas. But
we think of equations as the central point in modeling that should be provided
in infix notation as-is to be better readable and get a better recognition factor for
parts of models. Another advantage is that structural changes in the functional
relationship can be more easily applied than if the structure of an XML document
per se has to be changed.

While the definition of formulas can be provided in the common infix notation,
internally we use postfix notation5 for the evaluation of the equations because
of computational reasons. It allows us to use a simple stack data structure for
parsing equations without the need of taking operator precedence or parentheses
into account. Let’s use a small example to explain this important issue and show
the advantages of postfix notation to the common infix notation.

5Postfix notation is also called reversed polish notation and is a modification of the prefix
notation or polish notation, invented in the 1920s by Jan Lukasiewicz.
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Figure 3.1: Parsing of the formula a+ b · c, and as example 2+ 5 · 7, in postfix
form. The result is always the first element in the stack.

If a formula in infix notation like

a+b · c

should be evaluated, a computer has to first build a parse tree internally to see
what operation to apply first. It stores the a, reads the plus and continues reading
the b. At this point the system has to decide if the operation can be carried out
immediately or if it has to parse further on, because of operator precedence. It has
to read the multiplication operator and the c to know that it first has to compute the
multiplication. This means in practice that before any operation can take place,
the system has to parse the whole formula and construct a complete parse tree to
derive a sequence how to compute the formula.

In postfix notation the formula from above is

abc ·+

Figure 3.1 visualizes the parsing process, the reading operations and the applica-
tion of operators. The big advantage is that for parsing a single stack structure
and a pointer to the last element of the stack suffice. The parsing process in the
example starts with reading the a and pushing it on the stack. It continues with
pushing b and c on the stack. Now the multiplication operator follows. As we
have postfix notation we know that the last two elements of the stack have to be
used as arguments for the operator. These elements are popped from the stack; the
result of the multiplication is then pushed on the top of the stack again. Reading
the plus sign afterwards, the operation can also be performed immediately; the
last two elements on the stack are popped and used as parameters and the result
is finally pushed on the stack. So, the result of an evaluation is always the last
element on the stack. If more than one element remains on the stack, something
went wrong and the simulation system has to act accordingly.
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The postfix notation allows a straightforward evaluation internally for the for-
mula parser with a simple stack data structure. A big disadvantage is that for-
mulating equations in the postfix format directly is very inconvenient as it is not
that common in practical use6. Therefore, a preparser to the simulation system
has been developed in the first part of a semester work7 to convert familiar infix
notation to formulas in postfix format for computation. In the work not only the
conversion itself was of interest, but also some optimization issues like comput-
ing constant expression immediately, elimination of dispensable characters, e.g.,
tabulators, spaces, line breaks, and keeping the stack size small. For the last task
operations should be computed as soon as possible. For example, the suboptimal
formula

abcde++++

needs to store five stack elements before it starts to perform the summing opera-
tions. Fortunately, it can be converted to

ab+ c+d + e+

and after conversion it only needs two stack elements. Adding operations are
carried out in the latter form as soon as possible.

An important role for efficient evaluation of formulas provided in a character
string format is played by a preprocessing routine, replacing multi-character iden-
tifiers to identifiers of minimal length. This allows more efficient and faster pars-
ing. Another approach to a faster simulation system is to calculate block wise, per-
forming multiple calculations in one run. Here, parsing the formula once returns
a set of results at once. This is implemented and was already explained, when
introducing the Monte Carlo simulation approach in the last chapter. Of course,
the evaluation of formulas can be further improved in translating the structure in
an internal formula tree without the need of repeating string matching operations.

In the rest of the work we will use the more common infix notation for exam-
ples, but keep in mind that these formulas are converted, stored and computed in
the postfix notation internally for computational reasons.

3.3.3 Probability distributions
Besides mathematical equations and formulas the quantification of uncertainty
sources using probability distributions is essential for evaluating the measurement
uncertainty. The classical GUM uncertainty framework has major restrictions for

6Actually, Hewlett Packard provides a number of different pocket calculators that understand
postfix notation, e.g., the HP 50g. New versions support both, postfix and infix notation, as input.

7I want to thank Hasan Kaharan at this point once more for his excellent contribution to the
project.
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the statistical modeling of input quantities, as already mentioned in Section 2.2.4.
One limitation is that information about probability distributions that describe the
influence quantities is reduced rigorously to the first two moments, expectation
value and standard deviation, for the evaluation of the measurement uncertainty.
Hence, modeling languages that apply the classical GUF approach – for example,
the system MUSAC [4] with its language M – have a plausible argument to reduce
the number of parameters for probability distributions to two.

With the introduction of GS1 and Monte Carlo simulation this limitation is not
applicable and appropriate anymore. This means that the modeling language has
to be more flexible as arbitrary probability distributions can have varying num-
bers of parameters. Appendix A.1 presents the XML schema definition for the
supported probability distributions of the software package MUSE at the time of
writing. GUM supplement 1 gives detailed instructions for generating random
numbers for some of the most common continuous probability distributions in
section 6.4 and additionally in annex C. Figure 3.2 shows histograms resulting
from Monte Carlo simulation with 107 trials each and the corresponding XML
code fragments for the definition of the probability distributions in the modeling
language. Additionally, the common beta distribution has been added to the list of
continuous probability distributions. The second Figure 3.3 shows discrete proba-
bility distributions supported by MUSE. The algorithms used to generate random
numbers for probability distributions not mentioned in GS1 are provided, for ex-
ample, in [67, Section 2.4].

Example Student’s t-distribution To show the capabilities and flexibility of the
modeling language of MUSE, we use a fragment of an XML document that de-
fines a Student’s t-distribution with parameters mean x̄ = 2.88, standard deviation
s = 0.41 and 9 degrees of freedom.

1 <distribution>

2 <studentt>

3 <xbar>2.88</xbar>

4 <std>0.41</std>

5 <dgf>9</dgf>

6 </studentt>

7 </distribution>

Probability distribution definitions are encapsulated as the content of an element
distribution. Afterwards the element definition for the actual probability distri-
bution follows with the according elements to describe the parameters as content.
We use full words as names for the elements (as for the probability distributions)
in most cases. Abbreviations are only used where very long words appear, e.g.,
std for standard deviation and dgf for degrees of freedom, and would decrease
readability or the abbreviation is very common in the community, e.g., for the
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Figure 3.2: Supported continuous probability distributions given in GS1 and addi-
tionally the beta distribution; the histograms result from Monte Carlo simulations
with 107 trials each.
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Figure 3.3: Supported discrete probability distributions; the histograms result
from Monte Carlo simulations with 107 trials each.

parameters of the probability distributions. This enhances the readability of large
models as well.

The t-distribution is a good example at this point to show the flexibility of
the modeling language, as there is a second and even a third possibility for def-
inition of this distribution. The following XML code fragment defines the same
t-distribution as in the last example, but it states the number n of measurements
explicitly instead of using the parameter dgf for the degrees of freedom.

1 <distribution>

2 <studentt>

3 <xbar>2.88</xbar>

4 <std>0.41</std>

5 <n>10</n>

6 </studentt>

7 </distribution>

Finally, it is possible for the Student’s t-distribution to be defined using a list of
measured values explicitly. The values can, for example, result from an actual
measurement.
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1 <distribution>

2 <studentt>

3 <values>

4 <value>2.3</value>

5 <value>3.2</value>

6 <value>1.9</value>

7 <value>3.1</value>

8 <value>2.7</value>

9 <value>2.6</value>

10 <value>3.7</value>

11 <value>3.1</value>

12 <value>2.3</value>

13 <value>3.9</value>

14 </values>

15 </studentt>

16 </distribution>

Here, the parameters for the mean value x̄, the standard deviation s and the degrees
of freedom from the first example are calculated after parsing the probability dis-
tribution to the internal structure and reading the provided values. The conversion
from a specific representation to another one is a trivial task in the case of the Stu-
dent’s t-distribution, but it already saves time when defining models in practice as
all of the representations appear in daily life.

Both language definition concepts – DTD and XML schema – give us the nec-
essary flexibility to provide different ways for parameter settings, whereas read-
ability remains very good. Another advantage is that users in laboratories do not
have to convert probability distribution parameters from one representation to the
other, but just provide present information as is.

Figure 3.4 shows an excerpt of the class diagram of the internal representa-
tion of probability distributions. There is one main class distribution, handling
requests to generate new probability distributions in a static method createDis-
tribution and defining the basic interface that has to be implemented for derived
classes for specific probability distributions.

Correlated normal distribution A central point in modeling is how to define
causal dependencies between different uncertainty sources. The guide recom-
mends [37, Section 5.2.4] to identify the source of the dependency itself and to
refine the model by introducing a new uncertainty source that resolves the im-
plicit dependency. Another common way to describe the linear relationship of
two or more influence quantities is with an n-dimensional multivariate normal
distribution X = (X1, . . . ,Xn)

T . The definition requires a vector x = (x1, . . . ,xn)
T

containing the best estimates for each normal distributed random variable Xi and
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+getRandomnumbers()

Gauss

-mu

-sigma

+getRandomnumbers()

Rectangle

-lower

-upper

+getRandomnumbers()

Triangle
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-upper

+createDistribution(ein xmlelement)

+getRandomnumbers()

-name

Distribution

Figure 3.4: Class diagram for rectangular, triangular and normal distributions;
for the sake of simplicity, only some of the most important member variables,
methods and parameters for methods are shown.

an uncertainty (or covariance8) matrix Ux that contains the covariance coefficients

cov(Xi,X j) = E[XiX j]−E[Xi]E[X j] = E[(Xi−E[Xi])(X j−E[X j])]

in the corresponding elements of the matrix. For the diagonal this is the squared
standard uncertainty, the variance σ2

Xi
= u2(xi) of the corresponding normal dis-

tribution of random variable Xi.
GS1 [22, Section C5] and also [67, Section 2.5.2] explain in detail how to draw

random numbers from such multivariate normal distributions. The algorithm uses
the property of the uncertainty matrix to be strictly positive definite and hence, an
existing Cholesky decomposition.

The XML code fragment below describes a two-dimensional correlated nor-
mal distribution with estimated expectation values x =

(
2.0 3.0

)T and a co-
variance matrix

Ux =

(
2.0 1.9
1.9 2.0

)
.

1 <distribution>

2 <correlated id="d1" slot="1">

3 <muvector length="2">

4 <element>2.0</element>

5 <element>3.0</element>

6 </muvector>

7 <uncertaintymatrix size="2">

8GS1 introduces in section 3.11 and the corresponding note 3 the expression uncertainty matrix
for the covariance matrix. The modeling language allows both expressions uncertaintymatrix
and covariancematrix for the definition of a covariance matrix.
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8 <row>

9 <cell>2.0</cell>

10 <cell>1.9</cell>

11 </row>

12 <row>

13 <cell>1.9</cell>

14 <cell>2.0</cell>

15 </row>

16 </uncertaintymatrix>

17 </correlated>

18 </distribution>

For larger uncertainty matrices it is possible to define cells using cell indices in-
dependently to utilize the symmetry of the matrix. Index index1 has to be always
greater than index2; otherwise the system will generate a warning. This prevents
redundant definitions of cells. Elements that are not explicitly provided are as-
sumed to be zero. The analogous matrix definition would be as in the following
code fragment.

7 <uncertaintymatrix size="2">

8 <cell index1="1" index2="1">2.0</cell>

9 <cell index1="1" index2="2">1.9</cell>

10 <cell index1="2" index2="2">2.0</cell>

11 </uncertaintymatrix>

As the multivariate normal distribution is used for the evaluation of different
uncertainty sources in different parts of the model, it has a unique identifier. The
attribute slot is set here to one and defines that the first probability distribution
X1 ∼ N(2,2) should be used from the correlated distribution definition.

The following XML fragment builds on the last one and defines a probability
distribution referring to the second probability distribution X2 ∼ N(3,2) from the
definition above by setting the attribute slot to two.

1 <distribution>

2 <correlated equals="d1" slot="2"/>

3 </distribution>

Figure 3.5 shows the two resulting histograms again with 107 trials per simu-
lation with the multivariate normal distributions and a corresponding scatter plot
with the first 1000 paired data points of the result.

The internal class structure of this scenario is visualized in Figure 3.6 showing
again only exemplarily methods and member variables of interest. A helper class
correlation generating random numbers for different instances of the correlated
class containing all relevant information is introduced.
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Figure 3.5: The figure shows on the left-hand side the two histograms for the
normal distributed quantities X1 ∼ N(2,2) and X2 ∼ N(3,2) with a covariance
cov(X1,X2) = 1.9 in a simulation of 107 trials each. The right-hand side shows
the corresponding scatter plot using the first 1000 simulation values of the two
correlated distributions.

+createDistribution(ein element)

+getRandomnumbers()

-name

Distribution

+getRandomnumbers()

-correlation : corr:Correlation

-slot : int

corr1:Correlated

+getRandomnumbers()

-correlation : corr:Correlation

-slot : int

corr2:Correlated

+getRandomnumbers(ein slot)

-meanvalues

-uncertaintymatrix

corr:Correlation

Figure 3.6: Class diagram visualizing the classes and necessary dependencies
between them to generate random numbers for a correlated distribution
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Parameterizing distributions

If we define complex and higher-resoluted models in later examples it is important
that parameters of probability distributions can be set at a global level. The user
in a laboratory eventually doesn’t have to know exactly where some demanded
parameter is used in the model equations or as probability distribution parameter
explicitly, but just using predefined models as black boxes. A description of the
parameter value should then be sufficient for applying a model for measurement
uncertainty evaluation.

The modeling language of MUSE provides two distinct approaches to set val-
ues for parameters of probability distributions not only to fixed values as in the
examples above, but to values defined in another subtree of the model, maybe
even in another context.

Explicit parameterization The first way is to parameterize the probability dis-
tribution parameters themselves. To accomplish this, a parameter of a probability
distribution is annotated with an attribute parameter defining an identifier. If
during simulation this identifier appears in an internal list of parameter settings,
this value is used for the parameter of the probability distribution. The identi-
fiers need not be unique, because two probability distribution parameters using
the same identifier will get the same setting or value.

1 <distribution>

2 <gauss>

3 <mu parameter="#mu"/>

4 <sigma parameter="#sigma">0.1</sigma>

5 </gauss>

6 </distribution>

It is also possible to set default parameters, e.g., parameter #sigma9 uses the value
0.1 in the example if the provided identifier of the parameter is not found in the
list of parameters.

Using variables as parameters The second way is to use variables in the textual
content definition of the parameters of the probability distribution. Each probabil-
ity distribution parameter in MUSE cannot only be set to a constant value, but it
can also be defined as a formula. The advantage of this form of parameterizing is
that variables can be used in formula strings as shown in the next example, where
the standard deviation given as a variable gsigma is reduced to 70 %. Additionally,
variables can consist of more complex structures as we will see later on.

9The leading # character of the parameter name is not mandatory, but only recommended; it
allows distinguishing between identifiers of parameters and variable, influence and instance names
as we will see in later examples.
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1 <distribution>

2 <gauss>

3 <mu>2</mu>

4 <sigma>gsigma * 0.7</sigma>

5 </gauss>

6 </distribution>

The disadvantage, as always with global variables also in other programming lan-
guages, is that one has to know where these variables appear and are used in the
model structure and equations. Besides, if two distinct submodels use the same
identifier for a global variable and both submodels are used in the same mea-
surement uncertainty evaluation, special care has to be taken if different values
should be applied. This can get difficult to manage very quickly even for simple
measurement scenarios. Another disadvantage is that the evaluation will fail if
the variable is not defined. It is not possible to set default values when variables
are used. Hence, we strongly recommend the usage of parameterized probability
distribution parameters.

Now we have all the fundamentals to describe measurement scenarios for the
evaluation of the measurement uncertainty. Using an XML-based domain-specific
language, a practical way of defining functional relationships together with an ef-
ficient method to parse the equation of the measurand and the possibility to define
arbitrary probability distributions allows an implementation of a simulation sys-
tem for complex, real-life measurement scenarios with an uncertainty evaluation
according to GS1. In the next chapter we will develop a model for a measure-
ment scenario from scratch based on different examples taken from the field of
analytical chemistry to introduce the concepts of the modeling language one after
another.



CHAPTER 4

Modeling a measurement

Although this Guide provides a framework for assessing uncer-
tainty, it cannot substitute for critical thinking, intellectual honesty,
and professional skill. The evaluation of uncertainty is neither a
routine task nor a purely mathematical one; it depends on detailed
knowledge of the nature of the measurand and of the measurement.
The quality and utility of the uncertainty quoted for the result of a
measurement therefore ultimately depend on the understanding, crit-
ical analysis, and integrity of those who contribute to the assignment
of its value.

— GUM, 1993, Section 3.4.8 —

Now we have all the prerequisites – possibility to express hierarchical systems
in an XML-based domain-specific language, efficient parsing of mathematical ex-
pressions and definition of probability distributions to describe influence quanti-
ties – to model measurement scenarios for measurement uncertainty evaluation.
In the following chapters an actual measurement scenario is built up from scratch,
where we apply the preceding concepts. After explaining the principle of the mea-
surement technique, we will start with the most basic elements that are necessary
for the evaluation of the measurement uncertainty. With the help of the example
it is easy to explain the capabilities of the domain-specific language of MUSE. I
will explain XML code fragments in detail where necessary and appropriate.
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4.1 Basics of a titration measurement
Titration is one of the oldest measurement techniques in analytical chemistry. It
is a very common and highly accurate measurement. The articles [29, 65] used
for teaching bench chemists from Metrohm1, the leading manufacturer of titration
devices, give a detailed explanation of the titration measurement technique. Ex-
ample A3 in EURACHEM/CITAC Guide – Quantifying Uncertainty in Analytical
Measurement [19] shows how to quantify the measurement uncertainty for a titra-
tion measurement using the classical GUM uncertainty framework. Our example
will be based on this knowledge. Titration is a very precise, cheap, and economic
technique to determine the amount of a sample substance in a solution. Therefore,
it is widely used in the chemical industry. Some well-known examples for the
application of titration measurements are determining the amount

• of calcium and magnesium to specify hardness of water,

• of salt in sea water,

• of vitamin C (ascorbic acid) in medicine and food,

• of calcium in milk, or

• of sulfur in crude oil.

Figure 4.1 explains the concept of an experimental setup for such a titration mea-
surement, Figure 4.2 shows two titration devices from the manufacturer Metrohm
that are nowadays used in laboratories. The principle is that titrant solution drops
from a burette into a beaker with a solution of a sample or reference material. The
solution in the beaker is stirred continuously to mix the drops and the solution. In
a concrete example of an acid/base titration the formula for the chemical reaction
is

RCOOH +Na+OH− −→ RCOO−Na++H2O,

where RCOOH is a carboxylic acid, Na+OH− is sodium hydroxide and the result
is an R-acetate RCOO−Na+ and water H2O. By replacing R for example with
CH3 the chemical reaction [29, Section II.1.7] changes to

CH3COOH +Na+OH− −→CH3COO−Na++H2O

and describes the reaction of acetic acid found in vinegar with sodium hydroxide
to form sodium acetate and water.

1Metrohm AG, Oberdorfstrasse 68, 9101 Herisau, Switzerland
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Figure 4.1: Measurement setup for an acid/base titration measurement; the result
is a titration curve, where the equivalence point should be determined.

The electric potential and the pH-value of the solution change continuously,
while the chemical reaction proceeds during a titration measurement. A detecting
electrode measures the potential of the solution as the measurement takes place,
until the so-called equivalence point for the potential is reached. This means that
the solutions have been mixed in exactly the right proportions.

The solution of a sample substance for titration consists of a specific amount of
sample material together with solvent, e.g., highly pure water. The amount of in-
teresting particles, e.g., benzoic acid molecules, in solution of a sample substance
can be determined if we know the amount of sample solution from the burette
used to get to the endpoint and the result of a second titration measurement with
the solution of a reference substance where we know the number of molecules ex-
actly. Hence, the solution of a reference substance consists of reference material
with a well-known purity and the same solvent as used for the sample.

We have to know the characteristics of the parameters used to describe the
measurement to determine the purity of the substance. The quantities are given in
the cause-and-effect diagram in Figure 4.3. They are in detail

• the concentration cTit as a well-known concentration of the titrant in the
burette in (mol/ml),

• the mass m of the substance in solution in (g),

• the molar mass M as a constant ratio of atoms to mass in (g/mol), and

• the volume VTit of the titrant as the amount of titrant used from the burette
in (ml).
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Figure 4.2: State-of-the-art titration devices from the manufacturer Metrohm

The next step is to define the functional relationship of the quantities and the
purity of the substance. For the example of a titration measurement the purity is
given as

pur =
cTit ·M ·VTit

m
. (4.1.1)

To determine the actual purity pursam of the sample substance, we additionally
need a reference measurement for comparison with the sample measurement. So,
we again use the concept of comparing a well-known attribute of the reference
to determine the same unknown attribute of a sample, as was already explained
at the beginning of Chapter 2. We know that the concentration of the titrant in
the burette is theoretically2 the same in both measurements. Hence, we can con-
vert Equation 4.1.1 correspondingly and obtain two equations, one for the sample
measurement

cTit,sam =
msam · pursam

Msam ·VTit,sam

and one for the reference measurement

cTit,re f =
mre f · purre f

Mre f ·VTit,re f
.

2As already explained in earlier chapters, two measurements can practically never take place at
the same time with the same environmental conditions. Nevertheless, in practice this is assumed
to simplify the measurement. We try to stress this fact in this project and look at the effects of
taking this variation into account in later examples.
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Figure 4.3: Cause and effect diagram showing the influence quantities of a titra-
tion measurement.

We assume in a first approximation that the equality cTit,sam = cTit,re f of the con-
centrations holds and get

msam · pursam

Msam ·VTit,sam
=

mre f · purre f

Mre f ·VTit,re f
.

As we are looking for the same substance in sample and reference measurements
in the current example, the molar mass is the same on both sides. Thus, we sim-
plify and continue to extract the interesting quantity, the purity pursam, and get to
the measurement model

pursam =
mre f · purre f

VTit,re f ·msam
·VTit,sam. (4.1.2)

Preparing solutions for sample and reference measurements require measure-
ments themselves, e.g., weighing material on a balance. To evaluate the measure-
ment uncertainty for a titration measurement, the uncertainty of this processes in
the preparation of samples and references have to be taken into account, too. Each
quantity in the measurement model contributes to the measurement uncertainty
of the titration. To determine a more accurate and reliable result, the titration
is repeated several times for the sample. The reference measurement should be
repeated periodically for comparison and verification, too, as visualized in Fig-
ure 4.4. Although, in practice the number of reference measurements is usually
kept as small as possible, e.g., once every one or two weeks, as one such titra-
tion measurement takes between 20 minutes and up to 2 hours and costs money,
of course. Thus, we will not end up with a single measurement, but a whole se-
quence of measurements. It is one goal of this work to be able to model even
such advanced series of measurements in an organized and structured fashion.
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Figure 4.4: To prepare solutions for sample/reference measurements some ma-
terial from the sample/reference is put into a beaker and then filled with solvent,
e.g., highly pure water.

But this is just an outlook to more advanced scenarios, because before we can
start to model series of measurements, we have first to concentrate on the proper
modeling of a single measurement.

In the following sections we start to model a single titration measurement for
measurement uncertainty evaluation introducing necessary basic structures and
aspects of the modeling language and enhance as the model gets refined and the
resolution is increased. Besides, we show how the concepts of the domain-specific
language are then mapped to the internal structure of the simulation system for a
straight-forward evaluation of the model.

4.2 Basic influence quantities
To evaluate the measurement uncertainty according to GUM and GS1 the equa-
tion of the measurand has to be evaluated, where influence quantities defined as
random variables contribute to the measurement uncertainty. The random vari-
ables themselves are described using probability distributions. We show in the
next section how to depict the measurement model – the equation of the measur-
and – into separate definitions of measurement items, like measurement devices,
substances, etc., and build a hierarchical system of influence quantities for each
item individually. This allows a modular and stepwise modeling approach. The
system remains manageable and a higher-resolution can be applied to models by
incremental refinements.

Please note that the measurement models and assigned values used in the pre-
sented examples result mainly from personal communication with experts3 from

3I want to thank here explicitly Matthias Rösslein for his patience, for answering all the ap-
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the field of analytical chemistry and therefore, represent real expert knowledge
used for uncertainty evaluation in practice. We will start now with the most ba-
sic influence quantity from the example, where its uncertainty contribution to the
measurement can be described by only a single probability distribution.

4.2.1 Purity of a substance

After describing the concepts and the mathematical fundamentals that are nec-
essary for a titration measurement, the influence quantities should be modeled
for uncertainty evaluation. We start with the simplest form of models, influence
quantities that can be described directly using a common statistical probability
distribution. Hence, in the following example we define the model for a stan-
dard reference material that can be ordered for example from the National In-
stitute for Standards and Technology (NIST)4, which consists of highly purified
benzoic acid. Figure 4.5 shows the relevant part of the certificate for measure-
ment uncertainty evaluation describing the product. The certificate is available
online [59] and reports the purity (mass fraction) of the substance as 99.9978 %
with an expanded uncertainty of 0.0044 % and a coverage factor k = 1.96 for a
95 % coverage interval. Additionally, it declares the effective degrees of freedom
νe f f > 1000. We assume that a normal distribution is adequate in this case, be-
cause the t-distribution is practically equal to a normal distribution if we consider
the degrees of freedom. As a widely accepted rule of thumb starting at about 30
degrees of freedom the Student’s t-distribution can be adequately approximated
by a normal distribution.

We will start now with the very basic structure for each model and simula-
tion in MUSE. A definition file for the simulation is the basis, starting with the
root element simulation in the hierarchy. It encapsulates at least an element
calculation. The calculation section contains parameters relevant to simulation
and analysis. It has to contain at least an element measurand that defines the
output quantity or quantities. The following code fragment evaluates the simple
formula 2+5 in each trial of the simulation.

1 <simulation>

2 <calculation>

3 <measurand> 2 + 5 </measurand>

4 </calculation>

5 </simulation>

pearing questions, and the extensive support during my work.
4Measurement Services Division, National Institute of Standards and Technology, 100 Bureau

Drive, Stop 2320 Gaithersburg, MD 20899-2320, USA.
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National Institute of Standards & Technology 
 

Certificate of Analysis 

 

Standard Reference Material® 350b 
 

Benzoic Acid (Acidimetric) 
 
 C6H5COOH 
 
This Standard Reference Material (SRM) consists of highly purified benzoic acid (C6H5COOH).  SRM 350b is 
intended for use in acidimetric standardization and is supplied in a unit of 30 g. 
 
Certified Values and Uncertainties:  The certified values, reported in Table 1 as a mass fraction (wC6H5COOH) and 
amount-of-substance content of H+ ion (QH+), are based on coulometric assays of the dried material (see “Drying 
Instructions”) including the effects of air buoyancy.  The certified values are based on the results of determinations 
from 12 randomly selected bottles from the entire lot of SRM 350b.  Each determination was obtained by 
coulometric acidimetric titration [1] to the inflection point (pH ca. 8.15). 
  

Table 1.  Certified Values for SRM 350b Benzoic Acid 
 
 wC6H5COOH  99.9978 %  r  0.0044 % 

� QH+ 8.188 40 mol kg-1  r  0.000 26 mol kg-1

 
The uncertainties in Table 1 are expanded uncertainties, U, calculated as U = kuc, where k is a coverage factor that 
governs the confidence level of U and uc is the combined standard uncertainty calculated according to the ISO and 
NIST Guides [2].   The quantity uc represents, at the level of one standard deviation, the potential combined effects 
of the uncertainty arising from instrumental sources, chemical interferences, and uncertainties in fundamental 
constants, and possible material inhomogeneity.  The value of k is calculated from the effective degrees of freedom, 
Qeff.  The value k = 1.96, corresponding to Qeff > 1000, was used to obtain the cited value for U for wC6H5COOH.  The 
value k = 1.97, corresponding to Qeff = 437, was used to obtain the certified value of U for QH+.  The coverage factors 
were each chosen to obtain an approximate 95 % level of confidence. 
 
Expiration of Certification:  The certification of this SRM is valid until 01 July 2015, within the measurement Figure 4.5: First page of a certificate [59] from NIST for highly purified benzoic

acid with a purity of 99.9978 % and a corresponding expanded uncertainty of
0.0044 %, coverage factor k = 1.96 and effective degrees of freedom νe f f > 1000
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Let’s return to the example of the benzoic acid substance and model the probabil-
ity distribution from the certificate. We can simply sample from a normal distri-
bution with the reported parameters. The following code fragment accomplishes
this task and additionally introduces the analyzing module.

1 <simulation>

2 <calculation>

3 <analyze mode="on" histbars="40"/>

4

5 <variable name="pur" unit="g/g">

6 <distribution>

7 <gauss>

8 <mu>0.999978 </mu>

9 <sigma>2.2e-3</sigma>

10 </gauss>

11 </distribution>

12 </variable>

13

14 <measurand>

15 <formula>pur</formula>

16 </measurand>

17 </calculation>

18 </simulation>

We still have the very basic structure of the simulation definition starting with the
section simulation that contains a child element calculation. The new ele-
ment analyze in line 3 inside of the calculation section turns on the analyzing
module. The system evaluates the resulting data file(s) immediately after simu-
lation and extracts the most common statistical parameters, like arithmetic mean,
standard deviation and coverage intervals, as well as information for visualization
if turned on. Details of the computation have been discussed in a previous chap-
ter in Section 2.4. Due to this option, there is no immediate need for additional
statistical software after simulation, unless if further investigations or additional
statistical parameters or tests have to be considered. The attribute histbars tells
the analyzing module to combine simulation values into 40 histogram bars.

In line 5 the definition of a variable named pur as abbreviation for purity is in-
troduced to model the purity of the substance. Variables in the calculation section
have global scope, which will be of importance for later constructs, and can be
defined using constant values or contain a probability distribution as in the current
case. The variable uses a normal distribution N(0.999978,2.22×10−3) with the
corresponding expectation value from the certificate. The standard deviation for
the purity is determined from the certificate, too, as the expanded measurement
uncertainty U is defined as U = kuc, where uc =U/k = 2.2×10−3 is nothing else
than the combined standard uncertainty, say the standard deviation.

Figure 4.6 shows the internal representation of the model. The simulation



78 Chapter 4. Modeling a measurement

:Simulation

  -variablelist
  -measurandlist

:Gauss
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name distribution
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Figure 4.6: Definition of a variable pur for influence quantity concentration;
variables in calculation section have global scope.

object contains lists of dynamic length for different elements. In the example we
introduce two of them. The first one, the variable list, contains identifiers for
global variables, a corresponding value or, as in the current case for the variable
pur, a pointer to an instance of a probability distribution. The second list is the
list of formulas for measurands. We will use this list extensively in later examples,
where not only one output quantity is of interest, but a list of them. When parsing
the formula provided for the evaluation of a measurand, the system compares
identifiers with the elements in the list of variables and returns the corresponding
values if found.

To visualize the result of a simulation with 107 trials, Figure 4.7 shows the
corresponding histogram. It appears that the substance can result in a purity above
100 %, which seems impossible at first glance. Actually, in this example it does
make sense. The reason is that impurities cannot be excluded in detection of the
molecules of the substance. As the measurement does not distinguish between
molecules of impurities and wanted molecules, there is a realistic chance to detect
a purity with more than 100 % concentration corresponding to the substance. But
there are indeed examples, where measurement uncertainty evaluation can lead to
doubtful results if influence quantities near physical limits are to be investigated.
We will return to this point in a later chapter.

4.2.2 Basic models
It would be a tedious task to manage large models for complex measurement un-
certainty evaluations with many influence quantities if every influence quantity
had to be defined as a variable in the calculation section of the simulation def-
inition. A large list of influence quantities would not represent the structure of
a measurement and dependencies of influence quantities properly. Besides, the
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Figure 4.7: Histogram of simulation with 107 trials for purity of reference mate-
rial from NIST; note that values above 100 % for the concentration are allowed in
this case.

definition of the equation of the measurand would get lengthy and difficult to read
and interpret.

Hence, we introduce so-called basic models. Each basic model is defined in a
separate XML document. Basic models encapsulate abstractly defined uncertainty
sources like measurement items and equipment, e.g., devices and substances. This
allows an individual modeling of distinct logical parts of a measurement. The idea
is to have a library of such properly designed basic models. Then arbitrarily many
independent instances of basic models can be used for a simulation afterwards.
Therefore, basic models are also an efficient way to reduce redundant definitions
of measurement models or parts of models.

1 <model name="purity" targetname="pur">

2 <influence name="pur" comment="purity" unit="g/g">

3 <distribution>

4 <gauss>

5 <mu>0.999978 </mu>

6 <sigma>2.2e-3</sigma>

7 </gauss>

8 </distribution>

9 </influence>

10 </model>

The XML code for modeling the benzoic acid standard reference material as a ba-
sic model consists of an element model with an annotated attribute name, which
corresponds to the file name of the basic model. The second mandatory attribute
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is the attribute targetname. It identifies an influence quantity as the root ele-
ment and starting point for parsing. The element model in this example contains
a single element influence. An influence quantity can then define a probability
distribution for evaluation in the same way as we have already seen for variables in
the calculation section. An influence quantity has always at least the two attributes
name and comment, which are used to identify and describe the influence quan-
tity. The name has to be unique within a basic model. Furthermore, an influence
quantity can be annotated additionally with an attribute for the unit definition.

The mandatory simulation document using an instance of the new basic model
now includes a section instances. In the example the new section contains the
definition of an instance of the basic model purity with the identifier pur in line
3. This instance replaces the variable definition from the calculation section that
defined our purity in the earlier example.

1 <simulation>

2 <instances>

3 <instance name="pur" model="purity"/>

4 </instances>

5

6 <calculation>

7 <analyze mode="on" histbars="40"/>

8 <measurand>pur</measurand>

9 </calculation>

10 </simulation>

The identifier of an instance, in the example pur, is used for the evaluation of
the equation of the measurand just like a variable. An instance is an independent
realization of the model structure defined in a basic model with its own scope.
The identifier for an instance is visible for each part in the simulation definition,
so that the instance can be used for evaluation.

Figure 4.8 shows the internal representation of this scenario. Besides the list
of variables, there is now a second object, the model box, containing information
about instances of basic models. When evaluating the equation of the measurand,
the list of instances of the model box is checked first for suitable identifiers. If
the look-up fails the list of variables from the calculation section is checked for a
match in a second run.

This modular structure allows the definition of complex and high-resolution
models without losing the overview and thus, keeping the models manageable.
Basic models avoid redundant modeling, as instances of basic models use the same
model definition. We proceed in modeling a more complex influence quantity
contributing to the measurement uncertainty of the titration measurement. In the
following section we will see that each instance has its own scope and parameter
settings, and that hierarchical model structures can be encapsulated in basic model
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Figure 4.8: Modeling the purity substance for a titration measurement as basic
model; basic models keep the definition of measurement scenarios better manage-
able and prevent redundant definitions.

files.

4.3 Advanced influence quantities
The purity substance from the last section is described using a single probability
distribution defined by fixed parameters. In general, influence quantities consist of
arbitrarily complex and nested structures, where different probability distributions
are combined using functional relationships to describe the dependencies. Hence,
advanced influence quantities contain a formula and a list of subsequent influence
quantities.

4.3.1 Measurement device balance

We continue with our titration example, where we start to model more advanced
influence quantities. The first one is the balance, which is used to measure the
amount of substance for a solution. The concept of weighing with a modern
balance is described in Figure 4.9. Figure 4.10 shows the corresponding cause-
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Figure 4.9: If a sample is put on the balance, the power source is regulated until
the laser spots to the hole in the mask via the mirror again. This indicates that the
electromagnetic force is equilibrated with the gravitational force of the mass.
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Figure 4.10: The cause-and-effect diagram shows that the influence quantities
calibration, temperature and repeatability contribute to the measurement uncer-
tainty of the mass of a sample on the balance.

and-effect diagram with the influence quantities contributing to the measurement
uncertainty. We start with this definition and explain the different influence quan-
tities and refine the structure of the model for the balance in the next section.
The functional relationship of the influence quantities is additive in this case and
defined as

m = mcal +mrep +mtemp, (4.3.1)

where each influence quantity contributes to the measurement uncertainty. All
values used to describe the influence quantities for the balance are provided in
grams or milligrams as they contribute to the mass m. The quantity mcal is an
uncertainty source from calibration of the balance, where the calibration curve is
usually provided by the manufacturer. The concept of the calibration is shown in
Figure 4.11. The quantity mrep describes, how the system behaves on repeated
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Figure 4.11: Two measurements are necessary to determine the mass of a sample.
First the beaker is measured as tare weight; afterwards the beaker including the
sample is measured. The difference of the two measurements is the actual mass
of the sample.
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Figure 4.12: Left: to determine the repeatability of the balance a gauge block of
well-known mass is measured 10 times; right: expansion and contraction of parts
of the balance caused by variation of ambient temperature have to be taken into
account.

measurements, whereas mtemp expresses the uncertainty related to changes of the
ambient temperature. Modern balances have a built-in automatic calibration mod-
ule. Hence, only an uncertainty source considering this module has to be taken
into account. The concepts of this two influence quantities are visualized in Fig-
ure 4.12. We encapsulate the balance right from the start in a basic model. The
XML code for a first basic model of a balance follows and will be discussed in
detail afterwards.

1 <model name="balance" targetname="m">

2 <influence comment="balance" name="m" unit="g">

3 <formula>mcal + mrep + mtemp</formula>

4 <influences>

5 <!-- Definition influence quantity calibration -->

6 <influence comment="calibration" name="mcal" unit="g">

7 <distribution>
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8 <gauss>

9 <mu>0.200</mu>

10 <sigma>2.4E-05</sigma>

11 </gauss>

12 <distribution>

13 </influence>

14

15 <!-- Definition influence quantity repeatability -->

16 <influence comment="repeatab." name="mrep" unit="g">

17 <distribution>

18 <gauss>

19 <mu>0</mu>

20 <sigma>5.4E-06</sigma>

21 </gauss>

22 </distribution>

23 </influence>

24

25 <!-- Definition influence quantity temperature -->

26 <influence comment="temperature" name="mtemp" unit="g">

27 <distribution>

28 <gauss>

29 <mu>0</mu>

30 <sigma>8.1E-08</sigma>

31 </gauss>

32 </distribution>

33 </influence>

34 </influences>

35 </influence>

36 </model>

This is a first example of the definition of an influence quantity depending on other
influence quantities. We use Equation 4.3.1 for the balance in an initial element
formula in line 3. Afterwards, the influence quantities for the evaluation of the
formula are described. For the example we have the definition of three subse-
quent influence quantities starting at lines 6, 16, and 26 embedded in the section
influences. All of them are in a first step assumed to be properly represented by
normal distributions with suitable parameters for a specific balance device, e.g.,
an AT200 model from the manufacturer Mettler-Toledo5. As we have a very spe-
cific device, many of the used values for parameter settings remain the same for
all instances of this type of device and can be set to default values. They may be
used as-is and there is no need to adapt them for different measurements scenarios.
Nevertheless, one parameter will differ in almost any case from measurement to
measurement; it is the amount of material on the balance. We apply the method to
parametrize the probability distribution parameters in the basic model as has been

5Mettler-Toledo GmbH, Laboratory & Weighing Technologies, Greifensee, Switzerland
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already explained in Section 3.3.3. So we parametrize the according distribution
parameter and replace line 9

9 <mu>0.200</mu>

with

9 <mu parameter="#gross">0.200 </mu>

This means that we can now set the parameter when instantiating the basic model
in the instances section of the simulation definition. If no parameter is provided,
the value 0.200 g will be used as default value. The following simulation defini-
tion sets the parameter of an instance m for a balance to 115 mg. We introduce
a new section parameters in the instance definition of the balance. Parameters
are used individually for the current instance as each instance has its own scope.
They are applied while building the internal structure of the basic model.

1 <simulation>

2 <instances>

3 <instance name="m" model="balance" unit="g">

4 <parameters>

5 <parameter name="#gross">0.115</parameter>

6 </parameters>

7 </instance>

8 </instances>

9

10 <calculation>

11 <measurand>m</measurand>

12 </calculation>

13 </simulation>

It is also possible to provide a character string interpreted as a formula instead
of a constant value for a parameter. Then, identifiers of other instances as well
as global variables can be used in the definition of a parameter. The graphical
concept of the internal representation of the simulation definition and the instance
of the balance is shown in Figure 4.13. We have an instance m of a basic model that
uses three subsequent influence quantities to describe the main influence quantity
for the evaluation of its formula. Figure 4.14 shows the histogram of a Monte
Carlo simulation with 107 trials for the evaluation of this measurement scenario
when weighing 115 mg.

4.3.2 Shared influence quantities

We can now continue with refining the basic model of the balance. Influence
quantities are modeled in a recursive manner, so that the concept that we used for
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Figure 4.13: Concept of the internal representation of an instance for a model of
a balance and a simple corresponding simulation definition.

the model of the balance can be applied directly to the next steps. To begin with,
the influence quantity mcal can be subdivided into two distinct uncertainty sources

mcal = mgross−mtare. (4.3.2)

The influence quantity mgross results from calibration where metallic gauge blocks
of well-known masses are used for calibration. The quantity mtare describes the
uncertainty of calibrating the balance to the zero point without any mass. The
uncertainty source mrep of the repeatability is subdivided into

mrep = mrep1 +mrep2,

where mrep1 corresponds to an uncertainty source for repeated measurements of
the same mass and mrep2 represents an uncertainty source for temperature differ-
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Figure 4.14: The histogram shows the result of a simulation using the basic model
for the balance with 107 trials.

ences of calibration and sample weighing. In a next step we want to refine the
influence quantity temperature of the balance to discuss a special issue. The influ-
ence quantities for tare and gross of the balance are uncertainty sources for more
than one influence quantity in the same basic model of the balance, so we have to
introduce an additional construct for modeling these.

Modeling measurement scenarios leads to a hierarchical structure of influence
quantities as we have already seen. Often it seems that at least some of the influ-
ence quantities are not independent, but rely on other influence quantities of the
measurement. One tries to avoid such causal dependencies and correlations wher-
ever possible as the quantification and analysis of dependencies is a non-trivial
task in daily work. We will see different levels of dependencies while developing
measurement scenario models. A first possibility for direct dependencies is when
an influence quantity is used not only at one point in an uncertainty evaluation but
in different functional relationships. This is the case for the influence quantities
mgross and mtare in a higher-resolution model of the balance. They are used for the
definition of the uncertainty source of calibration as can be seen in Equation 4.3.2,
but are also used for the redefinition of the influence quantity mtemp to consider
uncertainty regarding the temperature. It uses the equation

mtemp = (mgross−mtare) · tempR · tempDC,

where tempR describes the valid range for the temperature and tempDC is a tem-
perature drift coefficient.

Figure 4.15 shows the enhanced cause-and-effect diagram with the final struc-



88 Chapter 4. Modeling a measurement

Mass

Calibration

Temperature

Repeatability

mB mT

tempR tempDC

mrep1 mrep2

mB mT

Figure 4.15: The cause-and-effect diagram for a balance with refinements for
influence quantities calibration, temperature and repeatability

ture for the basic model representing the balance. The influence quantities for
gross and tare appear twice, but it is not clear from the figure if only the identifiers
are the same or if the influence quantities are equal. This is one shortcoming of
the visualization using cause-and-effect diagrams. To overcome this problem and
clarify it, unique identifiers may be assumed and enforced, and/or colors can be
used in the CED.

It is not appropriate to define the influence quantities twice in the basic model
of the balance, because that would lead to misunderstandings and hence, not re-
flect the intended dependency. To create a proper model we introduce a construct
to tell the system that an influence quantity equals another. The following basic
model uses this concept. We discuss the model and its behavior after the listing of
the refined model of the balance.

1 <model name="balance" targetname="m">

2 <influence comment="balance" name="m" unit="g">

3 <formula>mcal + mrep + mtemp </formula>

4 <influences>

5 <!-- Definition influence calibration -->

6 <influence comment="calibration" name="mcal" unit="g">

7 <formula>mB - mT</formula>

8 <influences>

9 <influence comment="mass gross" name="mB" unit="g">

10 <distribution>

11 <rectangle>

12 <mean parameter="#gross">55.13175 </mean>

13 <width>3e-05</width>

14 </rectangle>

15 </distribution>

16 </influence>

17 <influence comment="mass tare" name="mT" unit="g">
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18 <distribution>

19 <rectangle>

20 <mean>55.01675 </mean>

21 <width>3e-05</width>

22 </rectangle>

23 </distribution>

24 </influence>

25 </influences>

26 </influence>

27

28 <!-- Definition influence repeatability -->

29 <influence comment="repeatability" name="mrep"

30 unit="g">

31 <formula>mrep1 + mrep2</formula>

32 <influences>

33 <influence comment="repeatability of balance"

34 name="mrep1" unit="g">

35 <distribution>

36 <gauss>

37 <mu>0</mu>

38 <sigma>0.5e-05</sigma>

39 </gauss>

40 </distribution>

41 </influence>

42 <influence comment="repeatability of sample"

43 name="mrep2" unit="g">

44 <distribution>

45 <rectangle>

46 <mean>0</mean>

47 <width>0.7e-08</width>

48 </rectangle>

49 </distribution>

50 </influence>

51 </influences>

52 </influence>

53

54 <!-- Definition influence temperature -->

55 <influence comment="temperature" name="mtemp" unit="g">

56 <formula>(mB - mT) * tempR * tempDC </formula>

57 <influences>

58 <!-- Influences mB and mT already defined -->

59 <influence comment="mass gross" equals="mB"

60 unit="g"/>

61 <influence comment="mass tare" equals="mT"

62 unit="g"/>

63

64 <influence name="temperature range" name="tempR"

unit="°C">
65 <distribution>
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66 <rectangle>

67 <mean>0</mean>

68 <width>2</width>

69 </rectangle>

70 </distribution>

71 </influence>

72 <influence comment="drift coeff." name="tempDC"

unit="1/°C">
73 <distribution>

74 <triangle>

75 <mean>0</mean>

76 <width>1.5e-06</width>

77 </triangle>

78 </distribution>

79 </influence>

80 </influences>

81 </influence>

82 </influences>

83 </influence>

84 </model>

In the example the influence quantities gross mB in line 9 and tare mT in line 17
are defined for the calculation of the influence quantity mcal for calibration in
line 7. But the same influence quantities are used again for the calculation of
the temperature mtemp in line 55. The influence quantities gross mB and tare mT

are said to be equal in structure and parameters to the ones defined first in the
example of the balance. There is a convenient way to model this dependency
in the modeling language of MUSE using the attribute equals for an element
influence.

59 <influence comment="mass of gross" equals="mB"

60 unit="g"/>

61 <influence comment="mass of tare" equals="mT"

62 unit="g"/>

During simulation the same influence quantities of the current basic model are
used for evaluation of the measurement uncertainty in both equations and, there-
fore, the same model structure and parameter settings are used for calculation.
Despite this equality, it is very important to note that on each call from an in-
fluence quantity new random values are drawn for this influence quantity for its
current evaluation of the equation, if a Monte Carlo simulation is performed. In-
fluence quantities sharing the same model are only set as equal in values if they
appear within the same formula or if they are explicitly marked as equal in value.
Otherwise, only structural equality is assumed. In the next section I will show a
model for the burette device that delivers exactly the same random value for some
equal influence quantities in one trial additionally to the structural equality.
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Figure 4.16: Concept of internal structure of a basic model with two influence
quantities gross mB and tare mT that are used from other influence quantities

Figure 4.16 shows the internal representation of the advanced basic model for
the balance excluding the simulation definition as it remains the same. There
is now a direct link from the influence quantities gross mB and tare mT of the
temperature to the same influence quantities of the calibration.

The histogram of a simulation with 107 trials and the higher-resolution ba-
sic model again weighing 115 mg is shown in Figure 4.17. The comparison of
the histograms of the simple and the higher-resolution balance shows some dif-
ferences in the shape of the resulting distributions. The behavior of the balance
with the simple model can be properly approximated using a normal distribution,
whereas the shape of the higher-resolution distribution can be better described by
a triangular distribution. The uncertainty intervals are slightly larger using the
simple model as can be seen in Table 4.16. In this case the additional information

6The standard uncertainty is usually reported with 2 or 3 significant digits; coverage intervals
are also reported with 2 or 3 digits considering the mean value; in this case, standard uncertainty
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Figure 4.17: The shape of the resulting distribution of the simulation with 107 tri-
als using the enhanced model for a balance is approximately triangularly shaped.

about the higher-resolution influence quantities seems to improve the knowledge
about the measurement uncertainty, the quality and reliability of the result, only
by a little. One reason for this similarity of the results is the selection of proper
parameter settings in a first example, where both models describe the properties of
the balance accurately. The more advanced model in this example allows a deeper
insight into the behavior and structure of the measurement system and a far more
detailed analysis, as the shapes of the two resulting distributions differ signifi-
cantly. So, if more detailed information is already available – this is the case for
the presented balance here – higher-resolution models can help in understanding
how the measurement uncertainty changes under varying conditions. This point
will be of interest at the end of the chapter when we start to compare the results
of simulations with different parameter settings.

At this point, we can say that measurement equipment and other uncertainty
sources can be implemented in a structured and hierarchical way using a com-
bination of basic models and composed influence quantities. Complex functional
relationships can be divided into logical parts to describe parts of the measurement
individually where possible and appropriate.

4.3.3 Measurement device burette
The balance device just introduced uses a relatively simple, mainly additive mea-
surement model. Nevertheless, we already have seen differences in the shape of

and coverage intervals are reported with 2 digits.
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Device balance
Simple model Advanced model

Mean value 0.11500 0.11500
Standard deviation 2.5×10−5 2.5×10−5

Coverage
interval

95 % [0.11495,0.11505] [0.11495,0.11505]
99 % [0.11494,0.11506] [0.11494,0.11506]

99.9 % [0.11492,0.11508] [0.11494,0.11506]

Table 4.1: Resulting values for simple and advanced basic model of balance de-
vice in direct comparison; simulation with 107 trials each; all values are given in
(g).

the resulting distribution between a simple and a more refined model because of
the parameters chosen for the probability distributions of the influence quantities.
The next device to be modeled for the evaluation of the measurement uncertainty
for a titration measurement is the burette device Vbur. It uses an additive model

Vbur =Vcal +Vrep +Vtemp +Vdi f f +Vage

in a first step, too, where

• Vcal describes an uncertainty contribution of the calibration for the device.
The information is provided by the manufacturer and should be defined us-
ing a triangular probability distribution for our example.

• Vrep describes the dilution behavior for repeated measurements. It is de-
termined for example in 10 repeated measurements of 10 ml diluting. A
normal distribution is estimated for modeling.

• Vdi f f describes if there is diffusion7 between the titrant at the tip of the bu-
rette and the solution in the beaker. It is modeled as a curvilinear trapezoidal
probability distribution.

• Vage represents an uncertainty source because of aging. It is necessary as
the glass of the burette may be affected by aggressive substances over time.
It uses the sub-model

Vage = fage ·age ·Vcal (4.3.3)

for measurement uncertainty evaluation.

7Earlier in the chapter I have described the principle of a classical titration measurement, where
the solution of the burette, which is placed above the beaker, drips into the solution in the beaker;
however, modern titration devices place the tip of the burette directly in the solution in the beaker,
because it allows more exact results.
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• Vtemp describes a factor concerning the temperature difference in the labo-
ratory between the calibration of the device and the actual usage. It uses the
sub-model

Vtemp = γ ·Vcal ·δT. (4.3.4)

For further investigation of the influence quantity of the current tempera-
ture in the laboratory during measuring, we define a curvilinear trapezoidal
distributed temperature difference from usage and calibration in a range of
−2.0 °C and 7.0 °C. Supposing that the laboratory is not temperature con-
trolled, we make the very conservative assumption that the calibration took
place approximately at 20 °C and the ambient temperature is between 18 °C
and 27 °C for the actual sample measurement.

A new and interesting aspect of the burette model is that the influence quantity
Vcal for the calibration appears in two formulas of the uncertainty source for the
age Vage in Equation 4.3.3 and the temperature Vtemp in Equation 4.3.4, similar
to the influence quantities gross mB and tare mT of the balance in the previous
section. The difference is that for multiple usages of the device the calibration
should use the same values for evaluation. We will get to this topic after showing
the complete XML document of the burette device.

1 <model name="burette" targetname="vb">

2 <!-- Influence quantity calibration -->

3 <influence comment="calibration" name="vcal" unit="ml"

mode="static">

4 <distribution>

5 <triangle>

6 <mean parameter="#cal">19</mean>

7 <width>3e-3</width>

8 </triangle>

9 </distribution>

10 </influence>

11

12 <!-- Start the definition of burette -->

13 <influence comment="burette" name="vb" unit="ml">

14 <formula>vcal+vrep+vtemp+vdiff+vage</formula>

15

16 <influences>

17 <!-- Influence quantity calibration -->

18 <influence comment="calib." equals="vcal" unit="ml"/>

19

20 <!-- Influence quantity repeatability -->

21 <influence comment="repeatab." name="vrep" unit="ml">

22 <distribution>

23 <gauss>

24 <mu>0</mu>

25 <sigma>7e-04</sigma>
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26 </gauss>

27 </distribution>

28 </influence>

29

30 <!-- Influence quantity temperature -->

31 <influence comment="temp." name="vtemp" unit="ml">

32 <formula>gamma*vcal*deltaT </formula>

33 <influences>

34 <!-- Definition influence quantity calibration -->

35 <influence comment="cal." equals="vcal" unit="ml"/>

36 <influence comment="temp.r." name="deltaT"unit="°C">
37 <distribution>

38 <cltrapez>

39 <lower> -2.0</lower>

40 <upper>7.0</upper>

41 <inexactness>1.0</inexactness>

42 </cltrapez>

43 </distribution>

44 </influence>

45 <influence comment="expansion coef." name="gamma"

unit="1/°C">
46 <distribution>

47 <cltrapez>

48 <lower>2.40055e-04</lower>

49 <upper>2.29402e-04</upper>

50 <inexactness>1.05e-06</inexactness>

51 </cltrapez>

52 </distribution>

53 </influence>

54 </influences>

55 </influence>

56

57 <!-- Influence quantity diffusion -->

58 <influence comment="diffusion" name="vdiff" unit="ml">

59 <distribution>

60 <cltrapez>

61 <lower> -4.6875e-4</lower>

62 <upper>4.6875e-4</upper>

63 <inexactness>1.875e-4</inexactness>

64 </cltrapez>

65 </distribution>

66 </influence>

67

68 <!-- Influence quantity aging -->

69 <influence comment="aging" name="vage" mode="static"

unit="ml">

70 <formula>ca*age*vcal</formula>

71 <influences>
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72 <influence comment="calibration" equals="vcal"

unit="ml"/>

73 <influence comment="age" name="age" unit="years">

74 <distribution>

75 <rectangle>

76 <mean>1</mean>

77 <width>0.3</width>

78 </rectangle>

79 </distribution>

80 </influence>

81 <influence comment="age factor" name="ca"

82 unit="1/ years" lower="0">

83 <distribution>

84 <cltrapez>

85 <lower> -1.0e-04</lower>

86 <upper> 3.8e-04</upper>

87 <inexactness>2e-05</inexactness>

88 </cltrapez>

89 </distribution>

90 </influence>

91 </influences>

92 </influence>

93 </influences>

94 </influence>

95 </model>

In the listing the influence quantity vcal is defined in line 3 and then reused in
lines 18 and 35. In this case, not only the model structure and parameter settings
should be the same, but also the same random numbers should be used for an
evaluation of the two referring sub-formulas during the Monte Carlo simulation.
Therefore, we introduce a new attribute mode, which has to be set to static for
the influence quantity vcal to accomplish this requirement. To explain the distinct
behavior, assume a model containing only one influence quantity X ∼N(0,1) with
assigned standard normal distribution.

1 <model name="static" targetname="Y">

2 <influence comment="Normal dist." name="X" mode="static">

3 <distribution>

4 <gauss>

5 <mu>0</mu>

6 <sigma>1</sigma>

7 </gauss>

8 </distribution>

9 </influence>

10

11 <influence comment="difference" name="Y">

12 <formula> X1 - X2 </formula>

13 <influences>
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14 <influence comment="Reference 1" name="X1">

15 <formula>X</formula>

16 <influences>

17 <influence comment="Normal dist." equals="X"/>

18 </influences>

19 </influence>

20 <influence comment="Reference 2" name="X2">

21 <formula>X</formula>

22 <influences>

23 <influence comment="Normal dist." equals="X"/>

24 </influences>

25 </influence>

26 </influences>

27 </influence>

28 </model>

At a first sight, two equally defined quantities should be canceled out by subtrac-
tion. This is true, of course, for classical calculus with constant values. But as
we are working with uncertain influence quantities and apply a Monte Carlo sim-
ulation to the evaluation of the measurement uncertainty, the result depends on
the model, in this case on the modeling of the influence quantity X. If we subtract
X1 from X2 in line 12, where both quantities are set equal to the quantity X, but
without setting the attribute mode to static, the function to generate random values
for X is called twice for two distinct formulas. Hence, after the first call from X1

new values are generated in the second call for the quantity X2 independently of
the first draw. In the example the resulting distribution would be a mean value of
practically zero, and a non-zero uncertainty of about u(y) = 1.409. The keyword
static of the attribute mode annotated to the element definition of the influence
quantity X tells the simulation system in the example that the value of the quantity
has to remain the same for all calls in the current evaluation of the model. The
function to draw random numbers for the quantity will then only be called once
and the result will be exactly zero with a standard deviation of zero. Hence, the
behavior and multiple usage of the influence quantity vcal of the burette device
are properly modeled in the last listing.

Finally, let’s have a look at the influence quantity describing aging of the bu-
rette device. The following line defines an influence quantity ca.

81 <influence comment="Age factor" name="ca" unit="1/ years"

lower="0">

In principle, the probability distribution is a curvilinear trapezoidal distribution.
The special issue in this case is that the age cannot become negative. Values below
zero do not make any sense for the age. This is no problem for the influence quan-
tities age and cal as their current definition and parameter settings allow only
positive values. But for the quantity ca the range of possible values for the influ-
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Figure 4.18: Histogram with 107 trials of the basic model for the burette device

ence quantities has to be restricted using the attribute lower with a limiting value.
The same would be possible, of course, for upper limits using the attribute upper.
For further discussion about measurements near physical limits and measurement
uncertainty evaluation considering cut distributions I want to refer to Section 8.1.

Figure 4.18 shows the result of a simulation again with 107 trials. It seems
that the resulting histogram has a broad flat top, where the flanks gradually de-
crease. Also interesting is the slight shift of the mean value from 19.00 ml to about
19.015 ml due to the model and parameter settings and a rather large standard un-
certainty with 0.012 ml. One reason is that only an estimation based on very little
information about the ambient temperature is taken into account, a rough interval
of 9 °C around the temperature of calibration.

4.3.4 Enhanced temperature model for burette
We want to investigate the behavior of a burette further and refine the model for
the device. The current model is sufficient for daily work in laboratories to report
an estimation of the measurement uncertainty with the measurement results. Let’s
suppose now that the influence of the ambient temperature in the laboratory to
the measurement uncertainty of the titration should be determined, because air-
conditioning the laboratory seems to be a good and rather inexpensive investment
to get more accurate measurement results.

Until now, the influence quantity deltaT describes the uncertainty source of
the temperature difference from usage and production summarized in one influ-
ence quantity, where we used a conservative estimation. For our investigation we
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redefine this quantity and divide it into an influence quantity for the temperature
during calibration and one for the temperature during usage in an actual measure-
ment. This allows a more detailed analysis and simulations using different local
ambient temperature settings in the laboratory. The model equation in line 32 is
replaced by

32 <formula>(Tpro -Tuse)*gamma*vcal</formula>

and the influence quantity deltaT is replaced by the following code fragment that
introduces two new influence quantities Tpro for the temperature during produc-
tion and Tuse for the temperature at usage.

36 <influence comment="Temp. production" name="Tpro" unit="°C">
37 <distribution>

38 <cltrapez>

39 <lower parameter="#Tplower">20.5</lower>

40 <upper parameter="#Tpupper">21.0</upper>

41 <inexactness>0.1</inexactness>

42 </cltrapez>

43 </distribution>

44 </influence>

45 <influence comment="Temp. usage" name="Tuse" unit="°C">
46 <distribution>

47 <cltrapez>

48 <lower parameter="#Tulower">22.0</lower>

49 <upper parameter="#Tuupper">22.5</upper>

50 <inexactness>0.1</inexactness>

51 </cltrapez>

52 </distribution>

53 </influence>

This enhanced model takes the uncertainty of the two distinct temperatures explic-
itly into account and allows an independent selection of probability distributions.
The resulting histogram of a simulation with 107 trials is shown in Figure 4.19.
The example uses a difference in temperature of about 2 °C as the temperature
during calibration is about 20.75 °C and during usage about 22.25 °C. This sce-
nario is very realistic even nowadays as not all laboratories are temperature con-
trolled. Besides, the difference of temperatures is rather moderate in this case, and
the calibration of the device with a reference measurement can take place in cool
morning hours, whereas the sample measurements themselves take place during
the day as an example.

In this case the higher-resolution model results in an approximately normal-
shaped distribution. The standard uncertainty decreases significantly as more
precise information is used for the evaluation as can be seen in Table 4.2. It is
interesting to note the shift of the expectation value. The shift is much more
moderate, as not the whole range of possible temperatures has to be taken into
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Figure 4.19: Histogram with 107 trials of the high-resolution burette model; am-
bient temperatures of usage and calibration are defined separately.

Device burette
Simple model Advanced model

Mean value 19.0147 18.9974
Standard deviation 1.19×10−2 0.27×10−2

Coverage
interval

95 % [18.9938,19.0356] [18.9922,19.0028]
99 % [18.9906,19.0390] [18.9910,19.0043]

99.9 % [18.9879,19.0420] [18.9899,19.0058]

Table 4.2: Results of simple and advanced basic model for the burette device in
direct comparison; simulation with 107 trials each; all values are given in (ml).

account. Before we can examine the behavior of the measurement system with
different temperature settings, the volume of the titration measurement has to be
introduced based on the burette device. Afterwards we will see if the investment
in an air-conditioning system would pay off in the given scenario.

4.3.5 Volume for titration measurement

As we have now the model of the burette device, we can start to describe the model
of the influence quantity Vtit describing the volume of titrant needed for titration.
The quantity is defined as

Vtit =Vdet +Vbur, (4.3.5)
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where Vbur is the titrimetric volume device – the burette from the last section in
our case. The quantity Vdet is an uncertainty source introduced by detection of the
volume. It uses a simple model, where it is described using a normal distribution
with an expectation value of zero and a standard deviation of 5×10−4. This for-
mula and the definition of the burette in the previous section allow us to introduce
a new concept for modeling, nested basic models. The following code suffices for
the definition of the influence quantity Vtit .

1 <model name="vtitration" targetname="vtit">

2 <influence name="vtit" comment="volume titration">

3 <formula>vdet + vbur</formula>

4 <influencelist>

5 <influence name="vdet" comment="detection">

6 <distribution>

7 <gauss>

8 <mu>0.0</mu>

9 <sigma>5e-4</sigma>

10 </gauss>

11 </distribution>

12 </influence>

13 <influence name="vbur" model="burette"/>

14 </influencelist>

15 </influence>

16 </model>

In line 13 of the model document we include the model definition of the burette
device. The concept of nested models requires additional syntax definitions for
identifiers, as we need to be able to set parameters of the model burette from
the simulation definition. Unique identifiers for parameters in arbitrary complex
nested models would be a strong limitation and too complicated to handle. There-
fore, the path to a specific influence quantity is used in the parameter setting,
where the identifiers of nested influence quantities are separated using a point (.).
Let’s have a look at a short fragment8 of code from the definition to set the cali-
bration parameter of the burette using the volume model of the titration.

1 <simulation>

2 <instances>

3 <instance name="v" model="vtit">

4 <parameters>

5 <!-- Amount of titrant used in ml -->

6 <parameter name="vbur.#cal">19</parameter>

7 </parameters>

8 </instance>

9 </instances>

8Three points (...) will be used from now on to shorten equal or repetitive code fragments in
the XML code examples.
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10 ...

11 </simulation>

In line 6 the calibration parameter is set to a value of 19 ml using the path
vbur.#cal, where vbur is the name of the influence quantity using the nested
basic model of the burette and #cal the name of the parameter in this model
definition of the burette. The concept of nested models allows very structured
modeling and sharing of the same model fragments for different models. Besides,
a refinement of such nested models applies immediately to all referencing model
definitions without the need of updating each model individually.

4.4 Defining the equation for the measurand
Until now we have defined all devices for the evaluation of the measurement un-
certainty for a titration measurement. We proceed by putting all things together
using Equation 4.1.2 for the measurand pursam and obtain the complete measure-
ment model. The corresponding simulation document follows.

1 <simulation>

2 <instances>

3 <!-- Devices for reference measurement -->

4 <instance name="purref" model="purity"/>

5 <instance name="mref" model="balance">

6 <parameters>

7 <parameter name="#gross">0.115</parameter>

8 </parameters>

9 </instance>

10 <instance name="vref" model="vtitration">

11 <parameters>

12 <parameter name="vbur.#cal">19</parameter>

13 </parameters>

14 </instance>

15

16 <!-- Devices for sample measurement -->

17 <instance name="msam" model="balance">

18 <parameters>

19 <parameter name="#gross">0.115</parameter>

20 </parameters>

21 </instance>

22 <instance name="vsam" model="vtitration">

23 <parameters>

24 <parameter name="vbur.#cal">19</parameter>

25 </parameters>

26 </instance>

27 </instances>

28
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Figure 4.20: Histograms of the simulation of a single titration measurement using
the simple model for the burette device and in comparison with the model for the
advanced burette device; both simulations were performed with 107 trials.

29 <calculation>

30 <measurand>(mref*purref)/(vref*msam) * vsam</measurand>

31 </calculation>

32 </simulation>

The result of the simulation is shown in Figure 4.20. We get a purity of about
0.99955 g/g with a standard uncertainty of 2.1× 10−4 g/g with the given set of
parameters for the titration measurement. For comparison also a simulation with
the simple model of the burette device has been performed. The mean value then
is 0.99998 g/g with a standard uncertainty of 8.9×10−4 g/g. This shows that even
conservative estimations for environmental conditions, as in this example for the
ambient temperature, result in a larger uncertainty.

We assume now that the advanced model describes the measurement properly
for our interests. A single simulation cannot answer the question of wether an in-
vestment in an air-conditioning system for the laboratory would have an effect on
the result and measurement uncertainty of the measurement. A direct approach to
test different scenarios would be to change the ambient temperature of the model
definition by hand. As this would be a tedious, repetitive and time-consuming
task, the next section presents some language features that make life easier and al-
low testing different parameter settings for measurement scenarios automatically.
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4.5 Variation of variables
This is a good moment to introduce a new type of variable in the calculation sec-
tion of the simulation definition that allows analyzing measurement scenarios in
more detail. It is also a first step to a what-if machine that can help experts from
the field of metrology to optimize measurements with the goal of a small measure-
ment uncertainty. Simulation of measurement scenarios with different parameter
settings is a very cheap and easy way to look for important influences to the mea-
surement if a proper model is available, whereas a lot of time and effort has to
be spent to identify and quantify such influences in the laboratory. We have al-
ready seen the simple definition of a variable in the calculation section for the
initial model of the purity substance of NIST. Instead of defining a single value
or a probability distribution for a variable, we now want to define an interval of
values, which are used as parameter settings for simulation subsequently. The
so-called variation variable allows exactly this behavior and is suitable to test a
given measurement scenario with different parameter settings. As an example we
want to have a look at expected changes of the result of the titration measurement
if the ambient temperature in the laboratory increases from 18 °C to 28 °C in
steps of 0.5 °C. This range of temperatures is realistic when performing a titra-
tion measurement, as there still exist a lot of chemical laboratories that are not
temperature-controlled.

Variation variables The first new kind of variable is only allowed in the cal-
culation section of the simulation definition. Variables in the calculation section
have global scope as already mentioned. This means they can be used everywhere
for the definition of the model for the simulation, but also instances of basic mod-
els can access them for evaluation of the measurement uncertainty. The definition
of a variation variable is straightforward and similar to usual for-loops of common
programming languages, except that there is no body for the loop, because only
the value of the variable – in the example Tlab – is updated and applied in each
iteration.

1 <simulation>

2 <instances>

3 <!-- Devices for reference measurement -->

4 <instance name="purref" model="purity"/>

5 <instance name="mref" model="balance">...</instance>

6 <instance name="vref" model="vtitration">

7 <parameters>

8 <parameter name="vbur.#cal">19</parameter>

9 <!-- temperature for reference measurement is -->

10 <parameter name="vbur.# Tulower">20.75</parameter>

11 <parameter name="vbur.# Tuupper">21.25</parameter>
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12 </parameters>

13 </instance>

14

15 <!-- Devices for sample measurement -->

16 <instance name="msam" model="balance">...</instance>

17 <instance name="vsam" model="vtitration">

18 <parameters>

19 <parameter name="vbur.#cal">19</parameter>

20 <!-- temperature for reference measurement was -->

21 <parameter name="vbur.# Tplower">20.75</parameter>

22 <parameter name="vbur.# Tpupper">21.25</parameter>

23 <!-- temperature for sample measurement is --->

24 <parameter name="vbur.# Tulower">Tlab -0.25</parameter>

25 <parameter name="vbur.# Tuupper">Tlab +0.25</parameter>

26 </parameters>

27 </instance>

28 </instances>

29

30 <calculation>

31 <variation name="Tlab" from="18.0" to="28.0" step="0.5"/>

32 <measurand>(mref*purref)/(vref*msam) * vsam</measurand>

33 </calculation>

34 </simulation>

Figure 4.21 shows the behavior of the mean value and standard deviation with
107 trials per simulation graphically. Table 4.3 summarizes the results, when the
temperature rises from 18 °C to 28 °C. The mean value decreases as less solution
is used for the determination of the concentration due to the expansion of the
solution with increasing ambient temperature. Besides, the standard deviation –
and hence the standard uncertainty – first decreases slightly until about 21 °C and
then increases as the temperature rises again, because we assume the device to
be calibrated at about 21 °C. The example also underlines once more that a more
detailed view at measurements can enhance the reporting of results significantly
as more precision can be achieved and more effort can be put into the significant
influence quantities. The conclusion from the result of this concrete example is
that an investment in an air-conditioning system would pay off as the measurement
is under control in respect to the expectation value and the standard uncertainty.
But another question is then how does the temperature affect measurement results
during a usual working day. We will analyze this point in the next section.

Variation lists So called variation lists allow an explicit definition of values of
interest. The following definition of a variation list simulates the varying temper-
ature during a day in a laboratory that is not temperature-controlled. We use a step
size of 2 hours for the temperature definitions. The data may result from actual
measurements during a working-day, an average of approximately 21 °C over a
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Figure 4.21: Plot of mean value and standard deviation resulting from a simula-
tion of a titration measurement, where the ambient temperature in the laboratory
increases from 18.0 °C to 28.0 °C with a step size of 0.5 °C

Temperature Mean value Std. uncertainty 95 % cov. interval
18 °C 1.00068 2.12×10−4 [1.00026;1.00109]
19 °C 1.00046 2.11×10−4 [1.00005;1.00087]
20 °C 1.00024 2.11×10−4 [0.99983;1.00065]
21 °C 1.00003 2.11×10−4 [0.99962;1.00044]
22 °C 0.99981 2.11×10−4 [0.99940;1.00022]
23 °C 0.99959 2.11×10−4 [0.99918;1.00000]
24 °C 0.99938 2.12×10−4 [0.99897;0.99979]
25 °C 0.99916 2.13×10−4 [0.99875;0.99957]
26 °C 0.99894 2.14×10−4 [0.99853;0.99936]
27 °C 0.99873 2.15×10−4 [0.99831;0.99915]
28 °C 0.99851 2.17×10−4 [0.99809;0.99893]

Table 4.3: Excerpt of resulting statistical parameters of simulation with varying
ambient temperature for titration measurements; values for the titration measure-
ment are given in (g/g).
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day is assumed.

31 <variationlist name="Tlab">

32 <value>20.0</value> <!-- 0:00 -->

33 <value>19.1</value> <!-- 2:00 -->

34 <value>18.6</value> <!-- 4:00 -->

35 <value>18.8</value> <!-- 6:00 -->

36 <value>19.7</value> <!-- 8:00 -->

37 <value>20.9</value> <!-- 10:00 -->

38 <value>22.1</value> <!-- 12:00 -->

39 <value>23.0</value> <!-- 14:00 -->

40 <value>23.2</value> <!-- 16:00 -->

41 <value>22.8</value> <!-- 18:00 -->

42 <value>22.1</value> <!-- 20:00 -->

43 <value>20.9</value> <!-- 22:00 -->

44 </variationlist>

In this example the temperature has a range of 4.6 °C during the day. To analyze
the difference to an air-conditioned laboratory, where the temperature is under
better control, we introduce a new variable Tc in the calculation section and use it
as coefficient for the ambient temperature definition of the volume device for the
sample measurement. The instance definition changes as follows.

17 <instance name="vsam" model="vtitration">

18 <parameters>

19 <parameter name="vbur.#cal">19</parameter>

20

21 <parameter name="vbur.# Tplower">20.75</parameter>

22 <parameter name="vbur.# Tpupper">21.25</parameter>

23 <parameter name="vbur.# Tulower">

24 20.75+ Tc*(Tlab -21)

25 </parameter>

26 <parameter name="vbur.# Tuupper">

27 21.25+ Tc*(Tlab -21)

28 </parameter>

29 </parameters>

30 </instance>

The next line shows the definition of the new variable Tc in the calculation section.
We can use a variation variable for the simulation of the current situation with
an ambient temperature range of 4.6 °C and two additional steps reducing the
range of temperatures by the factors 0.6 to about 2.8 °C and 0.2 and to 0.9 °C for
comparison.

31 <variation name="Tc" from="1.0" to="0.0" step=" -0.4"/>

Figure 4.22 shows the result of the simulations. As expected, better temperature
control results in a more stable mean value as well as in a smaller standard uncer-
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tainty. So, the result underlines once more that an air-conditioning system would
pay off in a higher precision for measurements.

From the last definition follow 3× 12 = 36 simulations, as each permutation
of the variation variables is used as parameter set. This is the intention in this
case, but in general it results in large numbers of simulations, where only specific
combinations of parameter settings may be of interest. To handle such scenarios,
we introduce a last kind of variation variable.

Variation sets So called variation sets can be defined, where explicitly interest-
ing combinations of parameters have to be tested without the need of simulating
all possible permutations. Each set of such a construct consists of a given number
of variable definitions. The next example should just give an idea of the applica-
tion of this kind of variable. It defines three sets of volumes to be measured in
combination with different ambient temperatures.

32 <calculation>

33 <variationset>

34 <set>

35 <variable name="vcal">15</variable>

36 <variable name="Tlab">18.0</variable>

37 </set>

38 <set>

39 <variable name="vcal">17.5</variable>

40 <variable name="Tlab">18.0</variable>

41 </set>

42 <set>

43 <variable name="vcal">19</variable>

44 <variable name="Tlab">20.0</variable>

45 </set>

46 </variationset>

47 <measurand>(mref*purref)/(vref*msam) * vsam</measurand>

48 </calculation>

The concept of different kinds of variation variables allows an automated simu-
lation of measurement scenarios testing arbitrary combinations of parameter set-
tings. The definition is straightforward and hence, the system delivers all pre-
requisites to compare and analyze measurement models. Assuming that proper
measurement models are used for simulation, this can be used as basis for further
analysis and decision making, e.g., if an investment in better equipment would
result in more accurate measurement results. There are more advanced techniques
to search for important influence quantities that contribute to the measurement
uncertainty. We will have a look at these techniques in a later chapter.
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Figure 4.22: Uncertainty plots with varying temperature during a working day;
three different scenarios are plotted, where the difference from minimum to max-
imum temperatures are 4.6 °C, 2.8 °C and in the last line 0.9 °C; all simulations
were performed with 107 trials. The last scenario would be preferable in a labora-
tory as only a very small temperature fluctuations takes place during a day.
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In this chapter we have modeled a concrete example of the very common titra-
tion measurement from scratch introducing and discussing the fundamental as
well as some advanced concepts of the domain-specific language of MUSE. We
have also seen that the variation of variables already allows for an interesting
view on the behavior of the measurement results. It can help a lot in understand-
ing the influence of uncertainty sources to the measurement in more detail as we
have seen on the basis of a very practical example, asking if investments in an
air-conditioning system would enhance measurement results significantly.

In the following chapter we will make a step backwards again and start an-
alyzing the process of the measurement in more detail. Instead of putting the
equation of the measurand together in one piece at the end of the definition of the
simulation, we will have a look at how and in particular when the different influ-
ence quantities of a measurement interact. Thus, we will build a bridge to more
sophisticated measurement scenarios, where not only one measurement is under
investigation, but series of measurements with dependencies between influence
quantities.



CHAPTER 5

Modeling measurement processes

Most of the fundamental ideas of science are essentially simple,
and may, as a rule, be expressed in a language comprehensible to
everyone.

— The Evolution of Physics, Albert Einstein —

In the previous chapter we have built a measurement scenario from scratch.
We have modeled measurement equipment in an abstract way and then refined the
models. Afterwards we have instantiated required devices with individual parame-
ter settings and we have seen how the models are mapped to the internal structure
of the simulation system for an efficient evaluation. Finally, the measurement
model has been put together to evaluate an approximation for the probability dis-
tribution of the measurand. This is the most direct way for simple measurement
scenarios with a single measurand. For more complex measurement scenarios,
where, e.g., measurement equipment is shared between more than one measure-
ment, the definition of the measurement model currently is not flexible enough.
Another example, where the approach may not suffice, is series of measurements.
There not only one sample measurement relates to a reference measurement, but a
whole set of sample measurements. Another point concerning series of measure-
ments is that typically not a single reference measurement is performed to monitor
environmental conditions and to validate the results for the sample measurements,
but a defined number of reference measurements in (usually) periodic intervals.
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This prevents errors and helps to detect drifts and trends in sample measurements.
Thus, the approach we follow in this chapter is to split the measurement model
once more – as we have now more than one measurement – into logical parts.
We attach importance on preserving and explicitly presenting the structure and
order of actions performed during a measurement procedure. This parts can then
be put together to calculate the result and according measurement uncertainty for
the whole measurement scenario, the reference and the sample measurements of
sequences of measurements as we will see in the next chapter.

The approach of separating a measurement into distinct parts, which can be
modeled individually, is introduced in a similar form in [43], where the measure-
ment is depicted as a measurement chain. The output of one element in the chain
is used as input for the next element. The article does not go very much into
detail and assumes that the elements of the measurement chain are independent.
The GUM uncertainty framework is used for the evaluation of the measurement
model. The thesis [70] introduces a more sophisticated system for modeling mea-
surements and an approach for storing parts, mainly measurement equipment, of
models similar to basic models as presented in the last chapter. It also describes
a modular construction of the measurement model with explicitly defined models
for specific problems from the field of physics. The author describes the concepts
of the modeling process, but an explanation of how models and parameter set-
tings are stored in detail is missing. Nevertheless, I agree fully with this approach,
but we will go a step further and enhance it with a more advanced encapsulation
technique making a distinction when modeling measurement equipment using ba-
sic models or modeling actions using processes. We work with individual basic
models in separate documents, where each one describes the model of measure-
ment equipment. An explicit, well-defined domain-specific language is necessary
in practice; the reason is that the system does not rely on specific database en-
gines in the background, models and simulation projects can be exchanged from
and to laboratories and persons without any problems and are readable without
the need for specific software applications interpreting the data from a database.
The language definition also helps in adapting individually tailored graphical user
interfaces for special purposes and different scientific fields.

After we have defined the rather static structures of measurement items and
equipment with basic models, the next step is to model the interaction of these
items and uncertainty sources for more complex measurement scenarios. We stay
with the example of the titration measurement from analytical chemistry and en-
hance it in the following thereby showing that our approach is very close to real-
world measurement scenarios and that we meet the requirements of experts from
metrology in laboratories. Moreover, with the help of a simple example of dilut-
ing a solution for a reference measurement twice, I will explain the concept of
static model parts in more details and investigate the consequences. Finally, the
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concepts of the modeling language introduced so far are summarized with special
focus on the scope of variables, processes, instances, and influence quantities in a
measurement model.

5.1 Introducing processes
We continue modeling a titration measurement and start again with Equation 4.1.2
for the purity pursam of the sample of a titration measurement, but now we separate
the influence quantities of the measurement models of the reference measurement
and the sample measurement and extract the logical order

pursam =
mre f · purre f

VTit,re f ·msam
·VTit,sam =

mre f · purre f

VTit,re f︸ ︷︷ ︸
reference

·
VTit,sam

msam︸ ︷︷ ︸
sample

.

To map this structure to our simulation definition, we introduce so-called pro-
cesses in the modeling language. This allows us to define individual actions that
take place during a measurement, or to simply divide logical parts into separate
process definitions. To clarify the concept and to show the advantages, let us
assume that we have two distinct samples to be measured, both referring to the
same reference measurement. To model this scenario we introduce one process
describing the reference measurement and two separate processes, one for each
sample measurement, as shown in Figure 5.1. Processes can access instances of
basic models as well as other processes for evaluation of the measurement model.
Now we can redefine the document containing the simulation definition from Sec-
tion 4.4 and depict the measurement model for the measurand. We omit the pa-
rameter settings for the instances of the devices in the following code fragment to
save some space as they remain the same as before. We adapt the section of the in-
stances adjusting the identifiers of the instances for the first sample measurement
and introducing corresponding instances for a second sample measurement.

1 <simulation>

2 <instances>

3 <!-- Devices for reference measurement -->

4 <instance name="purref" model="purity"/>

5 <instance name="mref" model="balance">...</instance>

6 <instance name="vref" model="vtitration">...</instance>

7 <!-- Devices for first sample measurement -->

8 <instance name="msam1" model="balance">...</instance>

9 <instance name="vsam1" model="vtitration">...</instance>

10 <!-- Devices for second sample measurement -->

11 <instance name="msam2" model="balance">...</instance>

12 <instance name="vsam2" model="vtitration">...</instance>
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Instance
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Instance
vref
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purref
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Process
ref

Result
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Result
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Figure 5.1: Instances of basic models are used in the example to evaluate the
measurement models of the processes sam1, sam2 and ref; the processes are then
used to define the output quantity or – as in this case – output quantities.

13 </instances>

14

15 <processes>

16 <!-- One process for reference measurement -->

17 <process name="ref">

18 <formula>mref*purref/vref</formula>

19 </process>

20

21 <!-- Process for first sample measurement -->

22 <process name="sam1">

23 <formula>ref * vsam1/msam1</formula>

24 </process>

25

26 <!-- Process for second sample measurement -->

27 <process name="sam2">

28 <formula>ref * vsam2/msam2</formula>

29 </process>

30 </processes>

31

32 <calculation>

33 <measurand>

34 <formula name="sample 1"> sam1 </formula>

35 <formula name="sample 2"> sam2 </formula>

36 </measurand>

37 </calculation>

38 </simulation>
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Figure 5.2: Concept of internal structure with new list for processes; the list of
measurands contains two formulas in the example.

The only new part is the section processes between the instances and calculation
section. There we define three independent processes: ref for the reference mea-
surement, sam1 for the first sample measurement and sam2 for a second sample
measurement. Processes contain at least an attribute name to define an identifier
and an element formula.

Furthermore, the calculation section is extended using elements formula to
define more than one output quantity at once in the section of the measurand. Us-
ing this construct, the simulation of more than one measurand can be performed in
parallel. The equations for the measurands keep readable and manageable as more
complex parts are summarized in individual process definitions. In the example
the process ref for the reference measurement is used in the two processes sam1
and sam2 that define the sample measurements. The big advantage of the concept
of processes is the logical and intuitive separation of parts of the measurement
model; in this case dividing the measurement scenario into a reference and two
sample measurements. Processes also prevent redundant definitions of parts of the
model that appear in more than one formula. We will also see in the next chapter
that the modeling of series of measurements is now very straightforward with the
help of processes.

Figure 5.2 shows the internal representation and structure of the system. The
list of the equations of the measurands now contains two distinct entries for evalu-
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ation. Additionally, the figure explains how processes are handled. A correspond-
ing list of processes contains for each process its name, a formula for evaluation,
and a list of local variables. We will have a closer look at the list of variables after
another important issue regarding static parts of the measurement model.

5.2 Static processes, instances and influences

In the last example we had two sample measurements that refer to the same ref-
erence measurement. Therefore, we would expect that for the simulation of the
reference measurement the same values are used in the evaluation for both sam-
ple measurements. That would reduce the calculation effort considerably. As by
default new random values are drawn for each usage of an influence quantity or
process in distinct formulas during evaluation, this behavior has to be marked ex-
plicitly. To avoid the process ref to re-evaluate when called the second time,
it can be set static using the XML-attribute mode. This is the same concept as
we have seen in the last chapter for influence quantities in basic models. Values
for the quantity are sampled only once in the beginning of the current trial and
the quantity – in this case a process – keeps its value for the evaluation without
re-sampling.

19 <process name="ref" mode="static">

With this small change – setting the attribute mode to static – in line 19 we
have reduced the computational effort significantly by modeling the scenario in
an appropriate and correct way, but without changing the outcome for the two dis-
tinct measurands. The concept of static parts of the measurements can be applied
to processes, influence quantities of basic models and whole instances of basic
models.

Besides computational reasons, there exit situations, where the behavior of
static parts of the model have an essential influence on the result of the simulation.
We want to investigate this fact using a concrete example [83] that is strongly
related to titration measurements. Suppose a reference solution of some substance
has to be established with a specific concentration. The first thing to do is – as in
previous examples – to take some amount of the reference substance on a balance
and afterwards, put it into a flask and fill it with an appropriate solvent. This will
result in a so-called stock solution, which is used for further diluted solutions. We
have the equation for the concentration cstock in (g/ml) for the stock solution given
as

cstock =
m · pur
Vf ,stock

,
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Figure 5.3: Concept of preparing a solution for a reference measurement with
two dilution steps

where the mass m in (g), the purity substance pur in (g/g) and the volume device
Vf ,s – in this case a flask – in (ml) are used for the evaluation. We use the stock
solution and reduce the concentration in a second diluting step, taking a specific
amount of the solution with a pipette Vp1 in (ml) putting it in a second flask Vf ,1
again in (ml) with solvent and get for the concentration c1 the equation

c1 = cstock ·
Vp,1

Vf ,1
.

In a third dilution step we repeat the reduction of the concentration once again
using another, distinct pipette Vp,2 in (ml) and another, also distinct, flask Vf ,2 in
(ml). This leads to equation

c2 = c1 ·
Vp,2

Vf ,2

for a final concentration c2. Now we put the equation for the measurand together,
and end up with a concentration

c =
m · pur
Vf ,stock

·
Vp,1

Vf ,1
·

Vp,2

Vf ,2

Figure 5.3 shows the concept of the measurement graphically1. For the sake of
simplicity we use normal distributions for the measurement uncertainty evaluation
in this case. So, let

• mass m be N(0.1,1×10−4)-distributed,

1I want to thank the team of the UncertaintyManager® [26] and especially Roman Hedinger
for providing the pictures.
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• purity pur be N(0.99,8×10−3)-distributed,

• flasks Vf ,stock, Vf ,1, Vf ,2 be N(100,0.15)-distributed, and

• pipettes Vp,1 and Vp,2 be N(1.0,6.1×10−2)-distributed.

The following code fragment introduces three processes that are used in the mea-
surement model for the evaluation of the equation of the measurand. I omit here
the definition of the trivial basic models and explicit instantiation of the basic
models for devices as the definition is straightforward and should be obvious from
earlier examples.

1 ...

2 <processes>

3 <!-- Process definition for stock solution -->

4 <process name="cstock">

5 <formula>(m*pur)/Vfs</formula>

6 </process>

7

8 <!-- Process definition for 1st solution -->

9 <process name="c1">

10 <formula>cstock * Vp1/Vf1</formula>

11 </process>

12

13 <!-- Process definition for 2nd solution -->

14 <process name="c2">

15 <formula>c1 * Vp2/Vf2</formula>

16 </process>

17 </processes>

18

19 <calculation>

20 <measurand>

21 <formula name="c"> c2 </formula>

22 </measurand>

23 </calculation>

Our question of interest in this case is, what happens if we use the very same
pipette in the two processes c1 and c2 instead of two distinct pipettes Vp1 and
Vp2? We want to investigate if there is a significant difference in the result if we
change the model accordingly. Hence, in a second simulation we use just one
pipette Vp and we set the mode of the corresponding instance to static telling the
system to use the same random values for the device in one trial.

1 <instances>

2 ...

3 <instance name="Vp" model="pipette" mode="static"/>

4 ...

5 </instances>
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Number of
pipettes

Mean value Std. uncertainty 95 % cov. interval

1 9.9×10−8 1.2×10−8 [7.61×10−8;12.3×10−8]
2 9.9×10−8 0.9×10−8 [8.24×10−8;11.5×10−8]

Table 5.1: Resulting values of the two distinct measurements preparing solution
with two dilution steps; all values are given in (g/ml).

6

7 <processes>

8 ...

9 <!-- Process definition for 1st solution -->

10 <process name="c1">

11 <formula>cstock * Vp/Vf1</formula>

12 </process>

13

14 <!-- Process definition for 2nd solution -->

15 <process name="c2">

16 <formula>c1 * Vp/Vf2</formula>

17 </process>

18 </processes>

19 ...

The result of the two distinct simulations, each performed with 107 trials, indicates
that there is indeed a difference. Figure 5.4 shows the two histograms in one plot;
Table 5.1 gives the mean values, the standard deviation and the 95 % coverage in-
terval resulting from the simulation. The conclusion is that using distinct pipettes
results in this case in a significantly smaller standard uncertainty. The result shows
that a measurement with two distinct pipettes cancels out calibration effects of dis-
tinct pipettes for both processes of the preparation of solution, whereas using only
one pipette multiplies the contribution to the uncertainty. This simple example
already shows that one has to be very careful when modeling measurements for
uncertainty evaluation. Even the simple fact that a measurement device is used
more than once can change the result of a measurement uncertainty evaluation
considerably. In our scenario we set an instance of a basic model to static. In
higher-resolution models it has also to be investigated if only parts of basic mod-
els describing measurement equipment have to be defined as static for evaluation.

The classical GUM document and its first supplement concentrate on the mea-
surement uncertainty evaluation for a single measurement. This is possible in the
presented simulation system applying the introduced concepts of basic models
and processes. In the next chapter we will see an advanced and more sophisti-
cated approach, where not only a single measurement is treated, but sequences
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Figure 5.4: Comparison of resulting histograms using one or two pipettes in
preparation of solution for measurement

of measurements. Already the results of the simple example here show that the
dependencies of influence quantities to the later repeated measurements have to
be well considered and modeled properly in such advanced real-life measurement
scenarios.

5.3 Processes and variables
We have seen that a process encapsulates specific actions or logical parts of a mea-
surement model. To complete the picture, there is a need for defining only process
relevant variables inside a process section to realize individual settings. Hence, it
is necessary that each process has its own scope. This allows using different set-
tings, e.g., environmental conditions like ambient temperature, air pressure, or
humidity, for the evaluation of distinct processes as the measurements are not per-
formed at the same time in real life, but sequentially. The next example takes a
varying ambient temperature during the distinct reference and sample measure-
ments into account, where each measurement is defined by an individual process
as before.

17 <processes>

18 <!-- One process for reference measurement -->

19 <process name="ref">

20 <variable name="Tlab" unit="°C">18.8</variable>

21 <formula>mref*purref/vref</formula>
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22 </process>

23

24 <!-- Process for first sample measurement -->

25 <process name="sam1">

26 <variable name="Tlab" unit="°C">20.3</variable>

27 <formula>ref * vsam1/msam1</formula>

28 </process>

29

30 <!-- Process for second sample measurement -->

31 <process name="sam2">

32 <variable name="Tlab" unit="°C">20.5</variable>

33 <formula>ref * vsam2/msam2</formula>

34 </process>

35 </processes>

The current variable Tlab will be used for the evaluation of the formula of each
process; it will be propagated when evaluating the measurement models of used
processes and instances. In this case the scope of process specific variables is
of vital interest as the same name for the ambient temperature is used for the
reference process as well as for the sample processes. This aspect will be dealt
with in the next section; to anticipate it, local variables have a higher priority in
general. Hence, the given model properly describes the measurement scenario.

5.4 Scope for measurement models
We now have a very powerful simulation system with a properly defined modeling
language to model measurement scenarios with more than one output quantity for
the evaluation of the measurement uncertainty. It allows structuring and encapsu-
lating the individual measurements and parts of measurements, each with its own
scope and parameter settings. Summarized, the constructs for modeling are

• basic models to define measurement items, like measurement equipment,
devices, or substances, in a hierarchical way,

• instances of basic models as realizations of items with individual parameter
settings,

• processes that describe individual logical parts of the measurement scenario,
and last but not least

• the definition of the measurement model for one or more output quantities.

Figure 5.5 gives an overview of the modeling concept of MUSE explaining the
single parts once more in a few words each. Let’s have a look now at the priority
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Figure 5.5: Hierarchical view of the modeling concept explained graphically
from the abstraction of measurement items and equipment building a library of
basic models, in the next step the instances of basic models, the logical splitting
into individual processes and finally, the description of the equation, or in general
the equations of the measurand, respectively measurands.
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Figure 5.6: There is one global look-up table combining all the local look-up
tables. It handles requests to find influence quantities from the lists of identifiers.

of the parts for evaluation, say in which order the lists of identifiers are processed
during simulation. All lists containing identifiers are combined to a look-up table
internally. In general, we recommend using unique identifiers in the simulation
definition as it reduces the risk of misunderstandings and allows a faster adaption
of existing measurement scenarios. But for large systems, which may also grow
iteratively, this may not be appropriate or possible in any case. We have already
seen in the previous section that it might be more comfortable and intuitive to use
the same identifiers in distinct parts of the model definition. However, it is im-
portant to know in any case, which identifiers have higher priorities than others.
Figure 5.6 shows the internal order of processing. For the evaluation of measure-
ment models in the simulation definition instances have highest priority, followed
by processes and finally, global variables from the calculation section. Local vari-
ables are preferred against the global look-up tables in the definition of processes.
For the evaluation of formulas of influence quantities in the model of an instance,
first the list of sub-influences is processed, followed by the list of local variables
of calling processes. Only if an identifier is not found in these lists, the usual order
for look-up follows. As this issue is very central in performing simulations, the
system includes in its validation core explicitly defined scenarios considering and
checking this priorities.

The next chapter will continue with series of measurements that use arbitrarily
many sample and reference measurements. We will look at measurement scenar-
ios with many sample measurements and alternating reference measurements to
control and monitor measurements over time. Only lately interest has grown in
similar approaches focusing on repeated measurements and considering variations
over time due to the new possibilities provided by the usage of the Monte Carlo
method to calculate measurement uncertainties. It allows to take dependencies
into account in a very direct and intuitive way.
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CHAPTER 6

Series of measurements

An uncertainty statement may be inappropriate if it relates to a
measurement result that cannot be reproduced over time. A customer
is entitled to know the uncertainties associated with the measurement
result, regardless of the day or time of year when the measurement
was made.

— ISO/TS 21749, 2005, Page 7 —

With basic models and processes we have introduced powerful concepts of
the modeling language of MUSE that allow defining parts of measurements in-
dividually within their own context. Furthermore, we have seen how more than
one equation of the measurand can be defined for multiple outcomes of a mea-
surement uncertainty evaluation and direct comparison of results at once. In this
chapter I will introduce additional features of the language and the simulation
framework including a very compact definition of series of measurements, where
various sample measurements refer to the same reference measurement or even to
more than one reference measurement. It has been one of the main goals of the
project to keep the definition of such measurement scenarios as easy and manage-
able as possible and to reduce redundant definitions of measurement equipment
and processes to a minimum. ISO 21749:2005 [2] gives a detailed explanation
of how the standard deviation can be evaluated for repeated measurements and
nested experiments. The focus of the document lies more on the quantification
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Figure 6.1: The model for a reference measurement can consist of short-term
processes; in this case two processes r1 and r2 are used. The same holds for
repeated sample measurements using the same sample. We use three sample mea-
surements s1, s2, and s3 as well as reference measurements for the evaluation of
one sample.

of Type A influence quantities using repeated observations, where GUF is used
for the evaluation of the measurement uncertainty. I will use the concepts of the
ISO document to describe scenarios for measurement series. The document dis-
tinguishes three levels of time-dependent fluctuations in Section 5.2:

• short-term fluctuations (repeatability or instrument precision)

• intermediate fluctuations (equipment-to-equipment or operator-to-operator
or day-to-day, known as intermediate-precision)

• long-term fluctuations (run-to-run or stability [which may not be a concern
for all processes] or intermediate precision)

Short-term fluctuations can be handled using repeated reference measurements
over a period of time. It is also possible that a sample is under investigation in
more than one measurement. These two cases can be described in the modeling
language of MUSE using the previously introduced processes as Figure 6.1 details.

To clarify the concept of series of measurements and the different types of
fluctuations, I want to explain the issue using a real-life application staying with
the titration measurement. Let us take a look at the very practical example of
the production of vitamin C effervescent tablets. We are interested in the amount
of ascorbine acid in the tablets. We take some of the tablets from production as
random samples. The tablets are cut in half and used for different titration mea-
surements to reduce the variability and to check the amount of acid per tablet. For
calibration of the titration device a reference material like benzoic acid from the
last chapter is used. Reference measurements may also be repeated in a small time
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Figure 6.2: Concept of three scenarios with series of measurements, where refer-
ence measurements (r) and sample measurements (s) alternate; (a) one reference
measurement, six sample measurements; (b) two reference and five sample mea-
surements; (c) three reference and 4 sample measurements

frame to reduce short-term fluctuations. This can directly be modeled using pro-
cesses as we have seen. In the end, a sequence of measurements is defined, start-
ing with one or more reference measurements followed by a number of sample
measurements. To keep the measurements under control over larger time frames,
reference measurements have to be repeated in periodic intervals like days, weeks,
or even months. This is the intermediate or long-term fluctuation. It is not unusual
in everyday work to reduce the number of reference measurements to an absolute
minimum thereby keeping the effort and costs as low as possible.

An interesting aspect in measurements with repeated reference measurements
is how the sample measurements should refer to the reference measurements.
There exist different possibilities; Figure 6.2 shows the concept of three different
scenarios for series of titration measurements. In part (a) six sample measure-
ments take place that refer to a single reference measurement that was performed
in the beginning; in part (b) the last sample measurement is replaced by a reference
measurement to be sure that the environmental conditions are under control and
the equipment still works properly at the end of the measurement. In the first sce-
nario this may also be the case using a so called check standard, which is not used
for the calculation of the measurement result of the sample. We assume that the
check standard measurements do not contribute to the measurement uncertainty
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in our current scenario and omit them. They should merely be used to control the
environmental conditions and the proper working of the measurement equipment
beside the actual measurements. Finally, in part (c) four sample and three refer-
ence measurements take place, the third sample measurement was again replaced
by a reference measurement. The last scenario allows a more detailed investiga-
tion of environmental conditions and uncertainty sources. Of course efficiency is
reduced – assuming that the system behaves as required for proper measurements
– as now only four sample measurements are performed against six in the first
scenario. So, we are looking for an efficient trade-off of controlled sample mea-
surements with respect to a stable mean value and a small standard uncertainty to
be able to provide accurate measurement results and a minimal number of refer-
ence measurements to keep time and costs as low as possible. If we assume that
the three measurement scenarios are performed in the same time frame with equal
environmental conditions, different questions arise:

• Which scenario is optimal in the sense that the measurement is under control
and stable according to the mean value?

• Which scenario has to be preferred for an acceptable standard uncertainty
for sample measurements?

• How many reference measurements are necessary for a reasonable result?

• How should the sequence of measurements look like, in which order should
sample and reference measurements be performed?

Answering these questions helps in decision making and in setting up concrete
measurement scenarios. Of course properly defined measurement models that
reflect the outcome of measurements in real-life are necessary and we will and
have to take them for granted in the following.

We will concentrate on the intermediate and the long-term fluctuations, where
measurements are repeated over days or over runs, maybe separated over months.
To start with, I will first introduce the language constructs to model series with
a predefined order of measurements in MUSE and show different methods how
sample measurements can refer to the reference measurements. The presented
methods are applied in practice for analyzing measurement data as the example
of production of Vitamin C effervescent tablets points out. Afterwards, we will
see some approaches to the analysis of such scenarios and discuss an approach
to support metrologists in finding an optimal sequence of measurements to keep
variability of the mean value and the standard uncertainty small. I want to forestall
that the problem of optimizing the order of reference and sample measurements
with too many degrees of freedom is very challenging for a universal solution;
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results depend mainly on the actual problem. Hence, it is necessary to make some
concrete assumptions about the parameters that describe the environmental condi-
tions for concrete examples. The approaches that will be presented and discussed
in the next sections are explained using the titration measurement from the last
chapter.

6.1 Definition of measurement series
We continue enhancing the example of the titration measurement from analytical
chemistry determining the amount of some substance in a solution. Until now we
have developed a model to describe a single measurement adequately assuming
ideal environmental conditions for a measurement. We have quantified uncer-
tainty sources very conservatively, because variation of influence quantities has to
be covered by the model. This is necessary as the quotation at the beginning of
this chapter has already pointed out. Customers must obtain reliable results with
a proper measurement uncertainty statement that is valid independent of the time
or date when the measurement was performed. Nevertheless, we want to have
a look at series of measurements, where the just introduced processes are used
for the definition of alternating sample and reference measurements considering
the variation of the environmental conditions from measurement to measurement
explicitly as there are very important and interesting questions with respect to
having repeated measurement under control and understanding the behavior of
the measurement system. Figure 6.3 shows a titration device from the world mar-
ket leading manufacturer Metrohm equipped with a sample changer. It is able to
perform series of measurements fully automatically, where only the samples and
references have to be prepared and put into the sample tubes.

We use the basic models and process definitions from the previous chapters.
This allows us to focus on the simulation definition enhancing the processes sec-
tion where necessary and mainly adding functionality to the calculation section
and the definition of the measurand. Until now we have defined the processes
sam1 and sam2 for sample measurements and ref for a reference measurement
that is used in combination with the two processes for the samples in the def-
inition of the measurement models. We want to keep the example simple and
thus, concentrate only on the first of the two sample measurements sam1, renam-
ing it to sam. To describe series of measurements we introduce the new section
series in the section of the measurand in the calculation section. It contains ar-
bitrarily many sections reference that contain themselves definitions for sample
measurements. The next code fragment using the three process definitions should
clarify this concept.



130 Chapter 6. Series of measurements

Figure 6.3: Titration device of manufacturer Metrohm equipped with a fully au-
tomatic sample changer

27 <processes>

28 <!-- One process for reference measurement -->

29 <process name="ref">

30 ...

31 <formula>mref*purref/vref</formula>

32 </process>

33

34 <!-- Process sam1 renamed to sam -->

35 <process name="sam">

36 ...

37 <formula>vsam1/msam1</formula>

38 </process>

39 </processes>

40

41 <calculation>

42 <measurand>

43 <series>

44 <reference name="rtit" process="ref" number="5">

45 <sample name="stit" process="sam" number="5"

analyze="linlastref"/>

46 </reference>

47 </series>

48 </measurand>

49 </calculation>
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...r3 s3,1 s3,2 s3,3 s3,4 r4s3,5...r1 r5

Figure 6.4: Series of titration measurements with five reference measurements;
five sample measurements are performed between reference measurements.

The reference and sample measurement definitions must have an identifier and a
process used for a single evaluation. The evaluation of the example results in the
simulation of five reference measurements; between each of the reference mea-
surements five measurements according to process sam are evaluated. Figure 6.4
shows the sequence of measurements. The arrows in the figure indicate that the
sample measurements refer to the previous and the following reference measure-
ments. Different methods are applied in practice to refer sample measurements
to one or more reference measurements. Let n = 5 be the number of reference
measurements, m = 5 the number of sample measurements between two refer-
ences, i = 1, . . . ,n an index for the last reference measurement and j = 1, . . . ,m
an index for the current sample measurement. The attribute analyze of an ele-
ment sample describes how the jth sample measurement sami, j should refer to
the previous reference measurement re fi and additional reference measurements.
Currently implemented methods are

• linlastref: The sample measurement only refers to the previous refer-
ence measurement; the equation used is

si, j =
sami, j

re fi
.

• linnextref: The sample measurement only refers to the next following
reference measurement; the equation used is

si, j =
sami, j

re fi+1
.

• lin2mean: The sample measurement refers to the average of both the sur-
rounding reference measurements; the equation used is

si, j =
2

(re fi + re fi+1)
· sami, j.
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• lin4mean: The sample measurement refers to the average of the two previ-
ous and the two following reference measurements; for j > 1 the equation
used is

si, j =
4

∑
i+2
k=i−1 re fk

· sami, j.

For the sample measurements in the first and last gap of reference measure-
ments the next four closest reference measurements are used.

• linallmean: The sample measurement refers to the average of all reference
measurements; the equation used is

si, j =
nr

∑
n
k=1 re fk

· sami, j.

• fitline: This concept does not rely on the average of reference measure-
ments, but fits a line through the result of the previous and next reference
measurement and evaluates the corresponding function value for the sam-
ple; it assumes that measurements are done continuously in equidistant time
slots.

Of course more advanced techniques would be possible at this point using regres-
sion analysis and better algorithms that correct the outcome of the measurements
instead of relying on a single reference measurement or the average of a number
of reference measurements; but we focus in this example on intermediate or long-
term fluctuation scenarios. The presented methods are used and are common in
daily work in laboratories, where results of series of measurements are often an-
alyzed with minimal effort. If reference measurements are only performed once
in two weeks, referring to more than the last and the next reference measurement
seems of little use. Moreover, additional assumptions about the behavior of envi-
ronmental conditions may have to be made that are hard to justify. It also depends
strongly on the actual problem if the approaches that rely on the mean value are
sufficient. To keep close to real-life applications and to be fit for practical ap-
plications, the system currently supports the commonly used methods, but the
framework can easily be extended. So, the last simple line fitting method shows
a first approach to a slightly improved method. Hence, the system gives a deep
insight and helps comparing the different approaches.

Until now the last simulation definition is somewhat limited as the sample and
reference process definitions are the same as before. Hence, currently the same
distributions result from the evaluation of each of the evaluations for process sam.
To describe the behavior of the measurements from process to process we have
to enhance the variable definition once more, this time especially for the process
definition. First, we introduce three global variables for series of measurements.
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They are updated automatically by the simulation system. The first global variable
_ref is a counter for the current reference measurement; the second global vari-
able _sam is a counter for the current sample measurement since the last reference
measurement. Finally, the variable _cur counts iteratively from measurement to
measurement regardless if it is a reference or sample measurement. These index-
ing variables can be used in the definition of variables for processes to distinguish
between single measurements. Variable settings in processes can depend on the
value of the global variables _cur, _ref, and _sam. It allows individual settings
for measurements, e.g., performed in distinct time slots. The next code fragment
shows the concept and uses the advanced technique to define variables for pro-
cesses, where variable values depend on the values of the just introduced global
variables _ref and _sam.

1 ...

2 <processes>

3 <!-- One process for reference measurement -->

4 <process name="ref">

5 <!-- Varying temperature in laboratory -->

6 <variable name="Tlab">

7 <switch>

8 <case refindex="1">20.0</case>

9 <case refindex="2">19.1</case>

10 ...

11 <case refindex="5">20.9</case>

12 <default>21.0</default>

13 </switch>

14 <variable name="Tlab">

15

16 <formula>mref*purref/vref</formula>

17 </process>

18

19 <!-- Process for first sample measurement -->

20 <process name="sam">

21 <!-- Varying temperature in laboratory -->

22 <variable name="Tlab">

23 <switch>

24 <case refindex="1" samindex="1">19.7</case>

25 <case refindex="1" samindex="2">19.3</case>

26 <case refindex="1" samindex="3">19.1</case>

27 <case refindex="1" samindex="4">18.9</case>

28 <case refindex="1" samindex="5">19.0</case>

29 <case refindex="2" samindex="1">19.6</case>

30 ...

31 <case refindex="5" samindex="5">20.5</case>

32 <!-- 23:20 -->

33 <default>21.0</default>

34 </switch>
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35 </variable>

36 <formula>vsam1/msam1</formula>

37 </process>

38 </processes>

39 ...

A section switch allows a variable to change its value depending on the prede-
fined global variables. In the example constant values are used to define cases, but
it is also possible to provide ranges of values using the attributes reffrom, refto,
and refstep instead of the attribute refindex. The same holds for the iteration
variables for sample measurements and the global counter. Internally, the defini-
tion above would result in a system as shown in Figure 6.5. During simulation the
variables cur, ref, and sam are updated automatically and can be used to set
individual parameters in processes for the current reference or sample measure-
ment. The value setting for the two variables ref and cur define an iteration
variable each, given a starting value, step size, and terminal value separated by a
colon, respectively. The list of equations contains all equations for the evaluation
of the reference measurements, followed by a list of the corresponding sample
measurement definitions. In the example the two closest reference measurements
are used for evaluation of the current sample measurement. That would corre-
spond to a setting of attribute analyze to the value lin2mean. It is important to
see that the calculation of the final result for a sample measurement depends on the
result of one or more reference measurements. Thus, all reference measurements
are evaluated in advance, so that the necessary information can be provided when
evaluating formulas of the sample measurements. This is an issue as it requires
reference measurements to be independent from the outcome of previous sample
measurements. Nevertheless, dependencies can be modeled via instances of basic
models or additional process definitions.

Before we start now to analyze repeated measurements in more detail, I want
to describe a concrete measurement scenario considering the changes over a usual
working day in a metrological laboratory that uses NIST reference material to cer-
tify further reference material for end users. We will focus on two varying influ-
ence quantities; the first is again the influence of the ambient temperature during
measurement as we have just seen in the last code fragment, where the tempera-
ture was set individually depending on the two global variables _ref and _sam.
To shorten code and prevent lengthy definitions, I will from now on use the fol-
lowing three equations that were found suitable to represent the fluctuation of the
temperature in a laboratory for a working day, where 25 measurements take place.
The equations only depend on the value of the global variable cur= 1, . . . ,25 to
approximately calculate the temperature difference and variation for three distinct
scenarios:
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:Simulation

  -variablelist
  -processlist
  -modelbox
  -measurandlist

measurandlist

name formula

rtit1 ref

... ...

rtit5 ref

stit1,1 2*sam/(rtit1+rtit2)

stit1,2 2*sam/(rtit1+rtit2)

stit1,3 2*sam/(rtit1+rtit2)

stit1,4 2*sam/(rtit1+rtit2)

... ...

stit4,4 2*sam/(rtit4+rtit5)

stit4,5 2*sam/(rtit4+rtit5)

stit1,5 2*sam/(rtit1+rtit2)

stit2,1 2*sam/(rtit2+rtit3)

instancelist

name influence

purref

mref

vref

msam1

vsam1

modelbox : Modelbox

  -instancelist
  

Simulation definition

variablelist

name distribution

_ref

value

1:1:5

_sam 1:1:5

_cur 1:1:25

processlist

name variablelist

ref

formula

mref*purref/vref

sam vsam1/msam1

Figure 6.5: Internal concept of an explicit series of measurements definition;
there are three global variables cur, ref, and sam and an enhanced list of
equations for reference measurements and sample measurements afterwards as
they depend on the outcome of the reference measurement simulation.
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• Temperature deviation over a day without any temperature control is defined
as

dt1 =
2∗ sin(x)√
0.5x+0.2

with x = 2π ∗ ( cur−1)/25.

• Temperature deviation over a day with air condition, but no temperature
control1, is defined as

dt2 = 25x/10−1,

where

x =

{
sin(( cur−1)∗π/20) cur≤ 10
1.0 cur> 10

• Temperature deviation over a day with a temperature controlled air condi-
tion2

dt3 =
dt1

(1− ( cur/25))2 ,

where the denominator is used for a strong attenuation over time.

The actual temperature is then defined as a curvilinear trapezoidal distribution
with parameters a = 21.0+dti, b = 21.5+dti with a corresponding i∈ 1,2,3, and
an inexactness of beta = 0.5.

The second quantity for variation is the electrode that is used to detect the po-
tential of solution. The electrode does contribute to the measurement uncertainty
as the response time of the electrode increases over time. The electrode and its
uncertainty contribution are already included in Equation 4.3.5 as influence quan-
tity Vdet . The effect of the electrode that we will consider here is a worsening
of detection over a specific day. The behavior is represented by a continuous in-
crease of uncertainty as well as an increasing overestimation of the volume to be
measured. Figure 6.6 shows the plots of mean and standard deviation for the two
influence quantities electrode and temperature, where three different approaches
are used for the modeling of the ambient temperature in the laboratory.

In Figure 6.7 the scenario with no temperature control in the laboratory is used
to visualize the effects of the different referring methods. It can be seen that tak-
ing too much references into account using only a simple mean value over some

1We assume an air condition that just produces air of the same temperature for the laboratory
the whole day; no temperature sensors are used to adjust the actual environmental temperature that
may change because of running measurement equipment, computers or entering and leaving staff.

2Here we assume that the sensors react rather moderately in adjusting the temperature so that
no heavy over- or undershooting takes place.
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references is counterproductive, resulting in a series of results for sample mea-
surements without taking the local environmental conditions into account. Hence,
a larger standard uncertainty has to be reported. The current scenario favors the
line fitting approach with a very stable mean value.

Until now we had a concrete measurement scenario with exactly five refer-
ence measurements and five sample measurements between each two reference
measurements. In the following we want to concentrate on the question of how
many reference measurements are necessary and how they should be distributed
if we have a given well-defined measurement scenario. We will have a look on the
consequences of reducing the number of reference measurements and the behavior
of the system in such a case.

6.2 Optimizing repeated measurements

In the last section we have seen how sequences of measurements with a given
order can be defined and simulated with the help of the modeling language. This
construct allows to model real-life measurement scenarios containing not only
a single measurement, but alternating series of reference and sample measure-
ments. The sequence of sample and reference measurements and environmental
conditions for each measurement is well-defined and the simulation system can
evaluate the measurement uncertainty and other statistical parameters straightfor-
wardly using the Monte Carlo method.

In this section we go one step further and suggest an approach to look for
proper placements of reference measurements in a sequence of reference and
sample measurements with respect to stable statistical parameters like the mean
and a preferably small standard uncertainty for the sample measurements. The
cost function for such a quasi-optimization is not trivial to define and hence, we
have to make certain assumptions that hold in practice. Ultimately, we show that
the simulation system and the modeling language are able to handle such com-
plex scenarios and deliver all the necessary prerequisites for further analysis. For
more advanced analyzing techniques the resulting simulation data can be used in
other statistical packages, e.g., the freely available statistical software environ-
ment R [63].

6.2.1 Prerequisites for optimization

To be able to suggest a sequence of alternating reference and sample measure-
ments we have to make some assumptions to reduce the complexity of the prob-
lem:
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Figure 6.6: The upper plot shows the behavior of the detection electrode for a spe-
cific day; the lower part on the left-hand side describes three different scenarios
for varying temperatures over a day and on the right-hand side the corresponding
resulting concentration from a measurement scenario with 5 reference measure-
ments and 5 sample measurements in each gap; sample measurements use the
mean value of the two surrounding reference measurements.
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Figure 6.7: The plots show how results differ if different methods are applied
to referring sample to reference measurements. The upper two plots only refer
to a single reference measurement and hence, the fluctuations are rather strong;
the two plots in the middle use the mean value over two, respectively four, refer-
ence measurements and hence the fluctuations are much more moderate; using the
mean over all reference measurement does not take account of the effect to com-
pensate environmental fluctuations; the best result is obtained applying the line
fitting algorithm as the system behaves linear enough between each two reference
measurements for this scenario, resulting in a very stable mean value.
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• The beginning of the measurement is always at the same time. We can-
not expect that in a laboratory one will wait and let some time pass until
environmental conditions get better. In fact, more reference measurements
will be performed in the beginning to be sure about suitable conditions if
necessary.

• The first measurement as well as the last measurement is always a reference
measurement. This is also very intuitive as you would like to know that the
environmental conditions are suitable in the beginning as well as in the end
of the measurement.

• We assume that sample measurements as well as references measurements
can each be described with the formerly introduced processes.

• The search space is discretized to so-called time slots and as measurements
are done continuously, each subsequent time slot is used; we are looking for
a tight chain of measurements without empty time slots. In a laboratory no
one would miss two or three possible time slots for measurements to avoid
a probably local peek with higher uncertainty as time is money.

The input parameters for the routine to analyze different sequences are the
following:

• one model/process for reference measurements

• one model/process for sample measurements

• number ns of sample measurements

• definition of a method referring sample measurements to the reference mea-
surements

• flag that indicates if unnecessary reference measurements should be re-
moved from the sequence (sequence gets shorter) or if it should be replaced
with additional sample measurements (sequence keeps its length).

The maximum size of the measurement series is always 2ns +1 as the initial sce-
nario will always be a one reference by one sample measurement scenario. With
the number ns of sample measurements and the condition of at least two refer-
ence measurements, one in the beginning and one at the end of the measurements,
we have a minimum size ns + 2 of the measurement series if reference measure-
ments are removed from the series. The length of the measurement series does
not change if reference measurements are replaced with additional sample mea-
surements.
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6.2.2 Method for optimizing
There are two objectives for optimizing series of measurements and we are look-
ing for a good trade-off between these two distinct positions:

• The best scenario with respect to good statistical parameters like a stable
mean value and a small standard uncertainty for sample measurements is if
reference and sample measurements alternate one by one, starting and end-
ing with a reference measurement. This is the system of maximum control,
monitoring the environmental conditions after each sample measurement.

• The best scenario with respect to low costs and short time frames is if there
are as few reference measurements as possible in the sequence of measure-
ments. We assume that the optimal scenario according to cost and time is
achieved if only two reference measurements are to be applied, one at the
beginning and one at the end of the sample measurements.

The interesting questions are now how many and in which time slots reference
measurements should take place for proper behavior and description of the system.
We are looking for a good trade-off of these two contrary positions. To start an
investigation for important time slots for reference measurements, we begin with
an optimal scenario according to the first scenario with alternating reference and
sample measurements. We will have a look at how the system worsens if we
remove reference measurements one by one from time slots with the smallest
impact to the mean value and standard uncertainty. Hence, the process will look
as follows:

• Generate an initial one by one sequence

• While there are more than two reference measurements in the sequence do

– Calculate cost function for each subsequent triple of reference mea-
surements

– Remove/replace the reference measurement in the middle of the triple
with the smallest result according to the cost function

– Evaluate the new scenario

• Calculate parameters relevant for decision making

An interesting point in the algorithm is the vague formulation of a cost function.
Our approach – the current implementation – fits a line through the two limit-
ing reference points r1 and r3 and calculates the orthogonal distance ||d|| from
the point r2 in the middle to the line. The algorithm first calculates the vectors
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Figure 6.8: We are looking for a triple (r1,r2,r3) of reference measurements
where the orthogonal distance ||d|| from r2 to the line from r1 to r3 is minimal.

x = r2− r1 and v = r3− r2, and normalizes vector v to vector u = v
||v|| . We can

then calculate the orthogonal projection d = x−uuT x to the vector v. Two such
scenarios are shown in Figure 6.8. The elementary cost function is then used for a
decision on which reference measurement should be removed as described in the
following algorithm:

• Initialize each reference with a vote counter of 0

• For each block of – e.g., 105 – trials

– Initialize each reference with a summed distance of 0

– For each triple of references

* Calculate the distance for each set of values as described and sum
it up for the corresponding reference

– Search for the reference with the minimal summed distance and add
one vote for it

• Remove or replace reference with the highest vote.

This algorithm is the key to the optimizing system. As the evaluation method
of the simulation core is a Monte Carlo approach, we repeat the above sequence of
steps for each trial in every block. This allows us also to bring in the information
about the uncertainty of the measurement result. Hence, we do not only get one
result, but a whole set of results. To decide which reference measurement should
be removed or replaced the distances are summed up for each block, and after the
processing of a block we look for the minimal distance and add one vote for it. In
the end, the reference with the highest vote is replaced or removed. This method
gives us additional information about reference measurements, for example the
ranking for removing reference measurements or the standard deviation of the
distances.
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6.2.3 Application of the method

With all the previous definitions for the evaluation of the measurement uncertainty
for a titration measurement it is quite easy to define the scenario for optimization.
We first assume that we have an automatic sample changer for exactly 25 samples.
Hence, if we have a one by one scenario, 12 sample measurements are the maxi-
mum together with 13 reference measurements. The following code fragment of
the calculation section suffices as a starting point for the simulation.

1 <calculation>

2 <analyze mode="on" histbars="40" datafiles="delete"/>

3 <measurand>

4 <optimize reference="ref" sample="sam" samples="12"

5 mode="replace" analyze="lin2mean"/>

6 </measurand>

7 </calculation>

The new element optimize is all we need for an optimizing run. The attributes
reference and sample define the processes for reference and sample measure-
ments. Attribute samples defines the number of sample measurements for the
initial one by one scenario, in our case 12 sample measurements. The number of
sample measurements remains constant if reference measurements are removed
from the sequence, e.g., if only a constant number of samples is available. The
number increases if reference measurements are replaced by additional sample
measurements, e.g., if there are enough samples available and the maximum num-
ber of samples should be measured in one run. Both cases may occur in daily work
and can be represented by the system. Finally, the attribute analyze defines how
sample measurements should refer to the reference measurements as we already
have seen for the definition of explicit measurement scenarios and sequences us-
ing a section series for the measurand.

Before we analyze the results of such a simulation for sample measurements,
Figure 6.9 shows how one after another reference is removed from the measure-
ment sequence. Due to removal of measurements and a shorter measurement
sequence in the right column, the worsening of the electrode in respect of a larger
measurement uncertainty contributes less to later scenarios. This is an advantage
over the right scenario where the electrode fully affects the results for reference
measurements.

The algorithm to reduce reference measurements behaves as expected, keeping
extreme reference measurements in the measurement sequence as long as possi-
ble. The example was performed with 107 trials per simulation and the result
of the voting algorithm was mostly concordant. The highest discrepancies were
obtained for the first removal as well as for the first replacing.
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Figure 6.9: Comparison of progress of removal (left column) respectively replac-
ing (right column) reference measurements from a measurement sequence; only
every second step is plotted. Both ordinates are given as concentration in g/ml. It
can clearly be seen how information is lost with each removal/replacement.
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Figure 6.10: Result of an optimizing run starting with a one by one scenario in
a) removing one reference measurement in every step until only two references
are left in l). Hence, the number of overall measurements decreases. The left
ordinates for the mean values are all given as concentration in g/g as well as the
right ordinates for the standard uncertainty.
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Figure 6.11: Result of an optimizing run starting with a one by one scenario in
a), replacing a reference measurement with a sample measurement in every step
until only two references are left in l) again. The number of overall measurements
keeps constant in this case. The left ordinates for the mean values are all given as
concentration in g/g as well as the right ordinates for the standard uncertainty.
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Figures 6.10 and 6.11 show the results of an optimizing run, each scenario is
evaluated with 107 trials per simulation3. From Figure 6.10, where we remove
reference measurements, it can clearly be seen that the stability of the mean value
decreases with every removal of a reference measurement. It is interesting that
the measurement uncertainty decreases during the measurement if less reference
measurements are performed. The explanation for this observation is that more
measurements require a larger time frame. As we are working with an electrode
that worsens dramatically over the day of interest, we introduce a higher uncer-
tainty for later measurements. However, if we compare the maximal limits for the
standard uncertainties of the first (a) and the last (l) scenario in Figure 6.12, we
see that the bandwidth for the first scenario is narrower despite the fact that the
individual uncertainties are smaller in the last scenario.

In Figure 6.11 the measurement uncertainty is not reduced in later measure-
ments for exactly the same reason. In this figure the fluctuation of the temperature
can also be seen in more detail. Performing not enough reference measurements
results in an uncorrected result with a strongly varying mean value. Figure 6.12
allows comparing the three extreme cases – the one by one scenario, the short-
ened and the usual two reference scenario – as a mean and standard uncertainty
plot with the corresponding coverage intervals.

Having the resulting plots one might think about suitable parameters for de-
cision making about the number of reference measurements. It is not trivial to
formulate a suitable general cost function for all possible cases as we are inter-
ested in as less reference measurements as possible, but keeping a small standard
uncertainty and a stable mean value. I think that the information provided can
help in decision making, but a predefined cost function could lead in a wrong di-
rection. It is up to the expert utilizing the provided framework and analyzing the
requirements and priorities for the specific problem.

Finally, I want to conclude that the presented system allows a deep insight
into measurement scenarios of high complexity as they appear in real life using
an efficient Monte Carlo simulation core. The titration measurement that accom-
panied us in the previous chapters allowed me to explain and argue the struc-
ture and concepts of the domain-specific language of the simulation system. We
started with the introduction of identifiers, expressions, and probability distribu-
tions, explained the concept of building hierarchical basic models that represent
measurement equipment in an abstract way. Afterwards, processes were intro-
duced that allow a more structured modeling of concrete measurement scenarios
without changing the structure of basic models but only setting necessary param-

3For once I want to mention that the simulation of all scenarios including the calculation of
the score and analyzing the data takes about 6 Minutes for each run which leads in our case to a
running time of a little more an hour using only a single core with 1.6GHz.
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eters. The simulation definition was also extended with variables and different
ways to define measurement scenarios with more than one measurand. Using
these prerequisites we were able to describe very complex measurement scenarios
that depend on many influence quantities and consist of not only single measure-
ments but repeated measurements. In the end we have a simulation framework that
allows comparing different scenarios very conveniently. The presented approach
to reduce the number of reference measurements is new and a first suggestion; it
may not hold in this form for all cases, but for the titration measurement it already
delivers appropriate and interesting results, which could be gained in practice only
with intensive research and costly measurements. The optimizing routine is also
encapsulated in the framework in an own class, which allows easy adaptions and
enhancements of the algorithms.

We will now leave the titration example and concentrate again on a measure-
ment with a single outcome in the next chapter. We will have a look on sensitivity
analysis and the question of how much a single influence quantity contributes to
the standard uncertainty of the whole measurement in a measurement model.
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CHAPTER 7

Sensitivity analysis

Of course, the computer isn’t any of these things. These are all
things we were previously familiar with from the real world which we
have modeled in the computer, so that we can use the damn thing.
Which should tell us something interesting. The computer is actually
a modeling device. Once we see that, we ought to realize that we can
model anything in it. Not just things we are used to doing in the real
world, but the things the real world actually prevents us from doing.

— From Calculator to Typewriter, Douglas Adams, 1997 —

The first supplement to the GUM appeared recently in its final version and
people just begin to realize the capabilities of the Monte Carlo method and the
advantages of higher-resolution models. For example, in laboratories it is very
interesting to find influence quantities with a high potential for reduction of mea-
surement uncertainty. Hence, a measure for the importance of influence quantities
or parts of the model according to measurement uncertainty is of high relevance.
As the calculation core of the project MUSE is given and it implements a very ef-
ficient way to evaluate the measurement uncertainty even for very elaborate mea-
surement scenarios, it is obvious to use this ability and flexibility to examine the
measurement uncertainty in more detail. There are two related approaches, uncer-
tainty and sensitivity analysis, which are defined as in the following citation [12]:
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Generally speaking, the objective of sensitivity analysis (SA) is
to quantify the effects of parameter variations on calculated results.
Terms such as influence, importance, ranking by importance and dom-
inance are all related to sensitivity analysis. On the other hand, the
objective of uncertainty analysis is to assess the effects of parameter
uncertainties on the uncertainties in calculated results.

Uncertainty analysis analyzes the behavior of a measurement scenario in re-
spect to measurement uncertainty evaluation, where parameters of probability dis-
tributions of input quantities are varied directly to examine the effect in the result-
ing measurement uncertainty of the measurand. The necessary concepts and con-
structs are provided in the modeling language using variation variables that were
already described in Section 4.5.

In the current chapter we will focus on sensitivity analysis, examining the im-
pact or importance of an individual influence quantity or part of the model to the
combined measurement uncertainty, also in comparison to the impact of all the
other influence quantities. The most direct approach for sensitivity analysis is to
fix specific influence quantities to a representative value, e.g., mean or median, to
prevent its variation for simulation. Another method is to apply variance analy-
sis that uses properties and capabilities of the Monte Carlo approach, e.g., using
Sobol’ sensitivity indices [68, 72] as we will see in this chapter. All in all, the
goal is to take advantage of the efficient Monte Carlo simulation system and build
some kind of a what-if machine that answers interesting questions regarding the
measurement uncertainty and allows a deep insight into measurement scenarios
and the dependencies of influence quantities on the measurement uncertainty.

I will present selected approaches that show how sensitivity analysis can be
applied and what the differences between these approaches are. A good overview
and summary of sensitivity analysis methods can be found in [68]. In the article
Hitchhiker’s guide to sensitivity analysis in this book the authors make a distinc-
tion between

• factor screening to extract influential factors in systems with a large number
of input quantities,

• local sensitivity analysis to examine local (point) impact of the influence
quantities, usually using partial derivatives or analytical methods and

• global sensitivity analysis to apportion the uncertainty to the influence quan-
tities. Usually a sampling approach is used here.

Other comparisons of methods for sensitivity and uncertainty analysis can be
found in [38, 44]. In this work I decided for a combination of factor screening
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methods and the Sobol’ sensitivity indices (SI) as global sensitivity analysis ap-
proach1. The methods are very intuitive and allow getting a feeling for the behav-
ior of the measurement scenario under investigation. All presented methods rely
strongly on the Monte Carlo method and are suitable for linear as well as non-
linear models. In the next section I will introduce an example taken from GUM
with a manageable number of influence quantities that will help to understand
the concepts of sensitivity analysis. Afterwards, I will give a short insight into
the GUM uncertainty framework and its implicit local sensitivity analysis, before
starting with factor screening and global SA.

7.1 Gauge block calibration
The example of a gauge block calibration describes the measurement uncertainty
evaluation for a length measurement of a nominally 50 mm gauge block by com-
paring it with a well-known reference standard of an equal nominal length of
50 mm. The example is included in GUM [37, Section H.1]. It uses a lineariza-
tion of the equation of the measurand and limits the probability distributions of
the input quantities to normal distributions applying conversion rules for different
kinds of probability distributions. In GS1 [22, Section 9.5] as well as in the Best
Practice Guide No. 6 [15, Section 9.15] the example appears again in a slightly
different form showing differences in the results of GUF and the new Monte Carlo
approach. I decided for this example of sensitivity analysis as it is well known
and used in many publications because of the elaborate description and the docu-
mented results in the articles. Besides, the example is not too complicated with a
limited number of influence quantities, so that effects and results can be explained
more easily.

The following list includes all influence quantities with the names used in the
model definition and the type of probability distributions including its parameters:

Ls (ls), length of the reference standard in mm
t-distribution with t18(50000623,2.5×10−5)

D (dq), average length difference in nm
t-distribution with t24(215,6)

d1 (d1), random effect of comparator in nm
t-distribution with t5(0,4)

d2 (d2), systematic effect of comparator in nm
t-distribution with t8(0,7)

1The selection was inspired by private communication with Peter Harris from NPL in 2007
and a talk of Nicolas Fischer in 2008, which is summarized in article [5].
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αs (as), thermal expansion coefficient in °C−1

rectangular distribution with R(9.5×10−6,13.5×10−6)

θ0 (tq), average temperature deviation in °C
normal distribution with N(−0.1,0.2)

∆ (delta), effect of cyclic temperature deviation in °C
U-shaped distribution with U(−0.5,0.5)

δα (da), difference in expansion coefficient in °C−1

curvilinear trapezoidal distribution with
CTrap(−1.0×10−6,1.0×10−6,0.1×10−6)

δθ (dt), difference in temperatures in °C
curvilinear trapezoidal distribution with
CTrap(−5.0×10−2,5.0×10−2,2.5×10−2)

For a more detailed explanation of the example, e.g., motivations for the selected
probability distributions for the influence quantities, I want to refer to the cor-
responding documents. The example should help to clarify the concepts of the
different approaches and allow a comparison of the results. Figure 7.1 shows the
histograms for the influence quantities and the dependencies in the example as a
tree. The equation for the measurand of the output quantity, the actual length, L is
given as

L =
Ls [1+αs (θ −δθ)]+d

1+(αs +δα)θ
, (7.1.1)

where the influence quantity d (d) describes the difference in the lengths of the
gauge block being calibrated and the reference standard and is defined as

d = D+d1 +d2.

Influence quantity θ (t) is the deviation of the temperature from 20 °C of the
gauge block and is defined as

θ = θ0 +∆.

We can calculate the deviation δL (l) of quantity L from the nominal length
Lnom = 50 mm simply as

δL = L−Lnom.

To model this measurement scenario in the modeling language a single basic
model realizing equation (7.1.1) and a simple simulation definition suffice. The
complete XML definitions are provided in Appendix B.2. We will concentrate
on the simulation definition and especially the calculation section, because this
is where the sensitivity analysis can be defined. In the following different ap-
proaches to sensitivity analysis will be explained and applied to this example of a
gauge block calibration.
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Figure 7.1: Dependencies and histograms of influence quantities in example of
gauge block calibration; simulation was performed with 107 trials.

7.2 Local SA: Sensitivity coefficients of GUF
The advantage of local sensitivity analysis is that the computational effort is much
less than for factor screening or global sensitivity analysis as the method for local
SA uses analytical methods and partial derivatives. The classical GUM uncer-
tainty framework can be interpreted as such a method. It linearizes the model and
reduces input quantities to their first two moments to evaluate the measurement
uncertainty. We initially have the equation of the measurand Y defined as

Y = f (X1, . . . ,XN).

The equation for the combined uncertainty u(y) is then

u2(y) =
N

∑
i=1

c2
i u2(xi),

where the partial derivatives ci = ∂ f/∂xi are taken as sensitivity coefficients in
the GUM [37, Section 5.1.3] as we have already seen in Section 2.3.1. The co-
efficients indicate how the output estimate y varies with changes in the value of
the input estimates x1, ...,xN . To have an explicit number that describes the dif-
ference in the result because of an influence quantity, the so-called coefficient of
contribution [41] can be defined as

wi =
u2

i (xi)

u2(y)
=

c2
i u2(xi)

∑
N
j=1 c2

ju2(x j)



156 Chapter 7. Sensitivity analysis

under the assumption that the input quantities are mutually independent, which is
the case for our example. It describes the relation of an influence quantity Xi to
the measurand Y .

The first line in Figure 7.7 on page 170 shows bar plots for the gauge block
calibration example in comparison with approaches that will be introduced in the
next sections. One thing to notice is that due to linearization the influence quantity
t, the deviation of the temperature from 20 °C of the gauge block being calibrated,
has no effect on the combined measurement uncertainty.

7.3 Direct approach: factor screening
In measurement uncertainty evaluation the question arises how much effect an
influence quantity has on the combined measurement uncertainty. This allows
making a decision on which influence quantities have to be analyzed in more de-
tail or where an enhancement of measurement equipment would pay off. With the
Monte Carlo method for the evaluation of measurement uncertainty there exists
a very direct and intuitive approach for answering this question using so-called
factor screening. Instead of sampling from the probability distribution of an influ-
ence quantity, defined quantities return only a specified value, like the mean value,
median, or another suitable statistical parameter, on request. There are two ways
to apply this method to a measurement scenario. If the behavior of the probability
distribution to the model equations is of interest the one factor at a time (OAT)
approach can be applied, where only the influence quantity of interest generates
random values whereas all other values return their specified values. We call the
second approach turn one off (TOO) as all influences quantities except the one
of interest generate random values on request. A measure of the contribution of
an influence quantity to the combined standard uncertainty is the difference of
an initial simulation with the result of a simulation with constant values. In the
following we introduce and compare the two methods OAT and TOO using the
gauge block calibration example.

7.3.1 OAT - One factor at a time
A first very direct approach to determine the importance of an influence quantity
to the measurement uncertainty is to analyze how the probability distribution of
a specific influence quantity propagates through the model equation. The idea is
that only a single influence quantity generates random values for such an analysis.
All other influence quantities are turned off; say they deliver a constant value such
as the mean value or any other statistical parameter on each request. This method
is recommended in a similar form in [31, Section 5.8] and is also mentioned in
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Figure 7.2: Histograms of influence quantities for OAT approach with focus on
influence quantity delta; only this single influence quantity generates random
values for evaluation.

Annex B of GS1 as it delivers something comparable to the sensitivity coefficient
of the classical GUF approach and may even give information about the linearity
of the model if compared to the classical sensitivity coefficients of GUF.

In a first run the method calculates the measurement uncertainty for the mea-
surement scenario as usual by generating random values for all influence quan-
tities. Internally, each influence quantity updates its mean value, standard devi-
ation as well as other statistical parameters on the fly. There are algorithms to
update these parameters for new values iteratively as we have already seen in
Section 2.4.1. Starting with a new simulation for each influence quantity of inter-
est, only the current item generates random numbers whereas all other influence
quantities use their specified value for calculation. Figure 7.2 illustrates this con-
cept again in a tree-like overview for the influence quantity delta, an effect of
cyclic temperature variation. The probability distribution of the influence quan-
tity is propagated through the equations and – in this case – does even conserve
the shape of the distribution in the final result.

To define such an uncertainty analysis in the domain-specific language one
additional line in the calculation section of the simulation definition suffices.

1 <simulation>

2 ...

3 <calculation>

4 <sensitivity mode="all" type="OAT"/>

5 <measurand>length </measurand>
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6 </calculation>

7 </simulation>

The attribute mode of the new element sensitivity in the calculation section
tells the system if all influence quantities should be turned off one after another2

or if a set of explicitly defined influence quantities is provided as we will see in a
later example.

For comparison with the absolute value of “linear” sensitivity coefficients ci =
∂ f/∂xi for an influence quantity Xi the “non-linear” coefficient [15, Appendix D]

ĉi =
ûi(y)
u(xi)

can be used. The term ûi(y) is the resulting uncertainty of a Monte Carlo simula-
tion, where only the influence quantity Xi is varied while the other quantities X j,
j = 1, . . . ,N and j 6= i, are set to their best estimates. The standard uncertainty
u(xi) of influence quantity Xi can be obtained also by Monte Carlo simulation.
When ĉi is significantly different from ci, the non-linearity effect may noticeable
influence the standard uncertainty u(y).

Figure 7.3 shows the standard deviations and the relative difference to the
combined standard uncertainty if OAT is applied to the example of the gauge
block calibration. In Figure 7.7 on page 170 the second line shows the bar plots
for the OAT approach. The similarity to the GUF sensitivity coefficients is obvious
and in this example delivers practically the same result.

A major drawback of this approach is that it only shows a transformation of
the randomly drawn values of a single probability distribution according to the
equations of the measurement model. It does not preserve any dependencies of
other influence quantities, but reduces information rigorously. Thus, we recom-
mend application only for comparison with classical GUF sensitivity coefficients
or in combination with other methods for decision making. In general, it is more
interesting to analyze dependencies of influence quantities than the outcome of
one single probability distribution after propagation through the equations of the
measurand. Hence, the next approach tries to keep the simulation as similar as
possible to the original one for detection of the impact of one single influence
quantity on the uncertainty.

2Only single quantities, but no combinations of quantities, are considered. As the modeling
language provides constructs for more complex quantities, not only influence quantities are marked
for analysis, but also instances of basic models as well as processes.
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Figure 7.3: Standard deviation and relative difference to combined standard un-
certainty if OAT approach is applied for the example of a gauge block calibration.

7.3.2 TOO: Turn one off
We now want to have a look on the measurement scenario assuming that we can
optimize individual influence quantities until there is no deviation left. Hence, the
quantity can be described using a constant value. The approach reflects what one
would try to do in a laboratory reducing the deviation of an individual uncertainty
source to a minimum and investigating its importance to the combined measure-
ment uncertainty. This approach is contrary to OAT from the last section. We
do not turn off all influence quantities except for one, but we turn only this one
influence quantity of interest off. Hence, the TOO approach delivers a measure
for what happens if information about a single influence quantity is neglected. In
an initial run of the simulation system the statistical parameters to set influence
quantities to specific values are calculated. In the subsequent runs all influence
quantities generate random values on request except for the one of interest. The
definition in the language is the same as for the OAT method except that the value
of the attribute type changes to TOO.

4 <sensitivity mode="all" type="TOO"/>

Figure 7.4 visualizes the concept, again with focus on the influence quantity
delta in the upper right plot. All influence quantities draw random values from
their original distributions except for the one influence quantity delta which de-
livers the same value on each request. The approach allows us to see the effect
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Figure 7.4: Histograms of influence quantities for TOO approach with focus on
influence quantity Delta; all influence quantities except for Delta generate ran-
dom values for evaluation.

of this one influence quantity on the measurement uncertainty of the measure-
ment scenario. For example, the resulting distribution of influence quantity t is
no longer double peaked as previously in Figure 7.1 on page 155, but can better
be approximated to a normal distribution. The big advantage is that all depen-
dencies of the other influence quantities are preserved; however, the disadvantage
is, of course, that the approach requires a greater computational effort than the
OAT approach. The number of evaluations of the equations keeps the same, but
the number of random number draws is significantly higher, especially for more
complex measurement scenarios with many influence quantities. Analysis of each
single influence quantity needs a nearly complete additional simulation. How-
ever, the effort pays off as a lot of additional information can be extracted from
the result. It shows the overall effect of an influence quantity to the combined
measurement uncertainty.

Figure 7.5 shows the result if TOO is applied to the example of the gauge block
calibration. The most important influence quantities are still ls, the length of the
reference standard, and dt, the difference in temperatures of the gauge block and
the reference standard, as already found with the OAT approach, but the effect of
influence quantity t, the deviation of the temperature of the gauge block being cal-
ibrated, seems to be underestimated in the previous two approaches. Applying the
TOO approach shows that t seems to contribute about as much to the combined
standard uncertainty as influence quantities d and da.
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Figure 7.5: Resulting standard deviations of TOO approach and relative differ-
ences to the combined standard uncertainty for the example of a gauge block cal-
ibration

7.3.3 Critical examination of factor screening

The presented approaches are very straightforward and easy to understand and to
implement. As it often seems to be the case, these methods have some restrictions
and limitations. The approaches are only applicable to models where the evalua-
tion is fast enough. Let us assume we perform M Monte Carlo runs per simulation.
The equation of the measurand has to be evaluated in a first simulation M times to
get the statistical parameters needed to calculate the nominal value for n different
influence quantities for the following simulations. Then the equation of the mea-
surand has to be evaluated for each influence quantity described by a distribution
another M times in an additional simulation to obtain the new measurement un-
certainty. All in all, we have to evaluate the equations M(n+1) times, even if we
optimize the simulation system and reuse already generated random values. The
number n increases if we want to analyze partial results from the equation of the
measurand.

The second restriction is that the analysis is very local as we have currently
only talked about holding the influence quantities to one specific value. This may
be sufficient for a first and very basic understanding of the measurement scenario
or a measurement scenario that is almost linear. Important factors can be deter-
mined only to a certain level of assurance. If we take, for example, the mean value
to fix influence quantities, this may not be the most probable value for each prob-
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ability distribution under investigation. It may even appear that this value is out of
the definition range of the influence quantity. This can easily be seen if a Bernoulli
distribution delivering a 0 in 50 % of the cases and 1 for the other 50 % for an
influence quantity is assumed. The probability for the long-term mean value 0.5
is zero. A way to enhance the presented procedures would be to do the analysis
also for other statistical parameters, like median, mode or even the uncertainty
intervals. Anyhow, this would increase the number of necessary simulations and
trials and thus, the computational effort significantly.

Finally, the approach may be misleading if correlations between influence
quantities appear in the model. As correlated influence quantities may share3 a
probability distribution it is not clear how to evaluate correlated influence quanti-
ties. This shortcoming can be handled with an additional functionality that will be
introduced in the next section. It allows the definition of sets of influence quan-
tities that can then be analyzed in combination. Currently, it is the only way for
proper and intuitive handling of correlated influence quantities.

As the limitations seem to be very restrictive, the practical aspects are far
more promising. We want to analyze the behavior of the measurement scenario
corresponding to specific influence quantities of the measurement. Hence, it is
justifiable to work with – at least initially – rather small numbers M of trials for
a simulation and refine results using a bigger number of trials on specific influ-
ence quantities that are found to be of interest. The approaches are applicable to
analyze the system and extract the influence quantities with the biggest leverage
effect. Metrologist can get a feeling for the measurement scenario and observe
dependencies and the impact of influence quantities to the overall measurement
uncertainty in great detail.

7.3.4 Advanced factor screening approaches

In the last two sections the concepts of two factor screening methods for sensitivity
analysis were introduced together with the corresponding language enhancements.
The critical examination showed some limitations, but also that the approaches are
applicable in daily work. Now we will concentrate on more sophisticated aspects
that are promising, because they allow a very detailed analysis of measurement
scenarios and dependencies of influence quantities. We use the two approaches
OAT and TOO and the same example of the gauge block calibration to explain the
relevant issues.

3Sharing a distribution in the sense that generated random numbers are used to generate sub-
sequent random numbers for other influence quantities appearing at different places in the model.
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Analyzing combinations of influences To analyze the dependencies of influ-
ence quantities in the measurement uncertainty analysis it is of major importance
to be able to define not only single influence quantities, but also sets of influ-
ence quantities. This allows, for example, to analyze sets of correlated influence
quantities that have to be analyzed in combination. As Monte Carlo simulations
are in general very time consuming and the goal is to handle advanced and high-
resolution, real-world models with many influence quantities, it is not feasible
to compute all permutations of influence quantities for the analysis per default.
Therefore, we rely on information of important sets of influence quantities. So,
if sets of influence quantities should be analyzed in combination they have to be
defined in the sensitivity section explicitly.

1 <simulation>

2 ...

3 <calculation>

4 <sensitivity mode="set" type="TOO">

5 <sensitivityset>

6 <sensitivityitem influencename="da"/>

7 <sensitivityitem influencename="dt"/>

8 </sensitivityset>

9 <sensitivityset>

10 <sensitivityitem influencename="delta"/>

11 <sensitivityitem influencename="dt"/>

12 </sensitivityset>

13 </sensitivity>

14 <measurand>length </measurand>

15 </calculation>

16 </simulation>

In this code fragment of the simulation definition, the influence quantities da and
dt are analyzed together in a second simulation and afterwards the combination
of the influence quantities delta and dt. Besides, processes and instances can
be used for the definition of sensitivity sets with attributes processname and
instancename of the element sensitivityitem. Using the attributes in combi-
nation allows analyzing specific appearances of instances or influence quantities
in processes and instances.

Fade out to a certain degree In reality it is not possible to reduce the deviation
of an influence quantity arbitrarily or let it vanish completely. Hence, sensitivity
analysis of influence quantities that are turned off completely is not always satis-
fying. On the other hand, it is not clear how to reduce the deviation of an influence
quantity in general, because there is no general method for arbitrary probability
distributions or even combinations of several influence quantities. However, our
simulation system calculates the mean value and the standard deviation – say stan-
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dard uncertainty – for every input quantity in the initial run of the OAT and TOO
approach. Thus, we are able to reduce the standard uncertainty to a certain de-
gree if we approximate each influence quantity using a normal distribution. This
is an important and major restriction of this approach, because we lose informa-
tion about the shape of the distribution. To avoid drawing wrong conclusions one
should always apply a classical OAT or TOO simulation previously and compare
it to the result of reduced uncertainty in an influence quantity afterwards. Only
then can one be sure that the approximation using normal distributions can be
justified and prevent drawing wrong conclusions.

1 <simulation>

2 ...

3 <calculation>

4 <sensitivity mode="all" type="TOO" stdfactor="0.3"/>

5 <measurand>length </measurand>

6 </calculation>

7 </simulation>

In the code fragment we reduce the standard deviation of all influence quantities
one after another to 30 % of the evaluated standard deviation of the initial run.
Figure 7.6 shows a comparison of fading out the standard deviation of each in-
fluence quantity of the gauge block calibration example continuously in steps of
20 %. The factor screening method TOO is used in this case for sensitivity analy-
sis. The result shows once more the importance of the influence quantity ls to the
measurement. Nevertheless, it may pay off to investigate combinations of reduced
uncertainties for different influence quantities as it can be cheaper to reduce the
uncertainty of two devices to some lesser extent than to focus on one quantity and
invest in very expensive measurement equipment.

7.4 Global SA: a variance-based method
Besides the very direct approaches reducing influence quantities to specific values
for factor screening or looking at a linearized model with limited information as
the local sensitivity analysis does, there exist other techniques using all available
information. In our application we are especially interested in the measurement
uncertainty, which we estimate using the Monte Carlo method as the standard
deviation of the values from evaluating the equation of the measurand M times.
Therefore, we will concentrate on variance-based methods; say on methods fo-
cusing on the squared standard deviation. An example for such an approach is
the method of Sobol’ calculating sensitivity coefficients for influence quantities.
Additionally, a variation of this approach will be introduced that allows investigat-
ing the total effect of an influence quantity to the measurement uncertainty using
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Figure 7.6: Comparison of standard uncertainty reduction of measurand if stan-
dard deviation of influence quantities is reduced applying TOO approach

less computational power than the original method requires. The key idea of the
methods is quite similar to the one from the factor screening approaches as we
will see.

7.4.1 Sobol’ sensitivity index

First I want to give a short summary of the theoretical background of Sobol’ sensi-
tivity analysis, keeping close to the definitions of the three articles [35,68,72]. To
describe Sobol’ sensitivity estimate we examine the function f (x) = f (x1, . . . ,xN)
with

KN = {x|0≤ xi ≤ 1; i = 1, . . . ,N}

as an N-dimensional unit cube. The method of Sobol’ relies then on the decom-
position

f (x1, . . . ,xN) = f0 +
N

∑
i=1

fi(xi)+ ∑
1≤i< j≤N

fi j(xi,x j)+ · · ·+ f1,...,N(x1, . . . ,xN).

(7.4.1)
Equation 7.4.1 requires that f0 is constant and the integrals of every summand
over any of its own variables must be zero, i.e.

∫ 1

0
fi1,...,is(xi1, . . . ,xis)dxik = 0 with 1≤ k ≤ s.
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A consequence is that the terms fi1,...,is(xi1, . . . ,xis) are orthogonal, say∫
KN

fi1,...,is(xi1, . . . ,xis) f j1,..., jl(x j1, . . . ,x jl)dx = 0, (i1, . . . , is) 6= ( j1, . . . , jl).

(7.4.2)
Sobol’ shows in [72] that the decomposition is unique whenever f (x) is integrable
over KN .

Now we can look at the variance D of f (x1, . . . ,xN) which is defined as

D =
∫

KN
f 2(x)dx− f 2

0 .

Partial variances can be computed from each of the terms in Equation 7.4.1 as

Di1,...,is =
∫ 1

0
· · ·
∫ 1

0
f 2
i1,...,is(xi1, . . . ,xis)dxi1 . . .dxis

with 1 ≤ i1 < · · · < is ≤ N and s = 1, . . . ,N. If we square and integrate Equation
7.4.1 over KN and consider Equation 7.4.2, we obtain

D =
N

∑
i=1

Di + ∑
1≤i< j≤N

Di j + . . .+D1,...,N .

Using this concepts, the sensitivity estimates Si1,...,is are defined as

Si1,...,is =
Di1,...,is

D
.

Example To show how the decomposition into summands and the calculation
of the sensitivity estimates works, we apply the method of Sobol’ [72] to function

f (x1,x2) = c0 + c1x1 + c2x2.

For the decomposition, we are looking for a representation

f (x1,x2) = f0 + f1(x1)+ f2(x2)+ f1,2(x1,x2).

According to Sobol’, the first term f0 of the decomposition is

f0 =
∫

KN
f (x1,x2) dx =

∫ 1

0

∫ 1

0
c0 + c1x1 + c2x2 dx1dx2 = c0 +

c1

2
+

c2

2
.

Let dx∼xi be the product dx1 · · ·dxN except for dxi with 1 ≤ i ≤ N. According to
Sobol’ we can use equations

gi(xi) =
∫ 1

0
· · ·
∫ 1

0
f (x1, . . . ,xN)dx∼xi
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and
gi(xi) = fi(xi)+ f0

to calculate the one-index terms f1(x1) and f2(x2) for the example using

g1(x1) =
∫ 1

0
f (x1,x2)dx2 = c0 + c1x1 +

c2

2
and

g2(x2) =
∫ 1

0
f (x1,x2)dx1 = c0 +

c1

2
+ c2x2.

This leads to
f1(x1) = g1(x1)− f0 = c1x1−

c1

2
,

respectively
f2(x2) = g2(x2)− f0 = c2x2−

c2

2
.

For the two-index term f1,2(x1,x2) we can use formula

gi, j(xi,x j) =
∫ 1

0
· · ·
∫ 1

0
f (x1, . . . ,xN)dx∼xi,x j ,

where dx∼xi,x j is the product dx1 · · ·dxN except for dxi and dx j. Further, we use

gi, j(xi,x j) = fi, j(xi,x j)−
N

∑
i=1

fi(xi)− f0.

This leads to
g1,2(x1,x2) = f (x1,x2) = c0 + c1x1 + c2x2

and allows calculating the last missing term

f1,2(x1,x2) = g1,2(x1,x2)− f1(x1)− f2(x2)− f0 = 0

Now we have all terms for the decomposition of f (x1,x2) and can calculate
the sensitivity measures. First, we have to evaluate the variance

D =
∫ 1

0

∫ 1

0
f 2(x1,x2)dx1dx2− f 2

0 =
1

12
c1 +

1
12

c2.

The one-indexed partial variances are

D1 =
∫ 1

0
f1(x1)dx1 =

1
12

c2
1 and D2 =

∫ 1

0
f2(x2)dx2 =

1
12

c2
2.

The corresponding sensitivity measures are then defined as

S1 =
D1

D
=

c2
1

c2
1 + c2

2
and S2 =

D2

D
=

c2
2

c2
1 + c2

2
.

Because f1,2(x1,x2) is zero, the two-indexed partial variance D1,2 and also its
sensitivity measure S1,2 are zero.
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Computational issues Now, in practice we use Monte Carlo simulation with M
trials to get a large population of possible values for the input quantities and we
can calculate an estimation f̂0 for f0

f̂0 =
1
M

M

∑
k=1

f (xk)

where xk is one of M random draws for all input quantities. Variance D can be
estimated as

D̂ =
1
M

M

∑
k=1

f 2(xk)− f̂ 2
0

using another M random draws xk for the input quantities. The estimators for
first-order terms D̂i are calculated using equation

D̂i =
1
M

M

∑
k=1

f (uk,xik) f (vk,xik)− f̂ 2
0 ,

where uk and vk are two independent draws for all influence quantities except
the influence quantity xi. A value xik for the quantity xi is only drawn once and
remains the same for both evaluations of the function f .

For estimating second-order terms the equation

D̂i j =
1
M

M

∑
k=1

f (rk,xik,x jk) f (sk,xik,x jk)− f̂ 2
0 − D̂i− D̂ j

is used, where rk and sk are again draws for all quantities, but this time without
the two quantities xi and x j. For xi and x j the same values xik and x jk are used
for one trial. This schema can then be extended and continued for all higher-order
terms recursively. The estimated sensitivity measures are then

Ŝi1,...,is =
D̂i1,...,is

D̂
.

The problem with this approach is that the number of simulations is 2N with
M trials each for all possible permutations considering all higher-order terms in
evaluation, where N is the number of influence quantities. So it is only applicable
for terms of limited order or with a very low number of trials per simulation. As
stated in [35], higher-order terms are often neglected in sensitivity analysis and
usually only the first-order terms are explored. Because of computational reasons
this is also true for our system; only first-order terms are evaluated. To define an
analysis using Sobol’ sensitivity indices again it is sufficient to change line 4 in
the code fragment of the factor screening scenario.
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4 <sensitivity mode="all" type="sobol"/>

Figure 7.7 shows Sobol’ first-order sensitivity indices in the fourth line. The re-
sult is very close to the GUF and OAT approach as one expects because of the
limitation to first-order dependencies.

7.4.2 Total Effect Indices
A different approach is to compute the so-called total sensitivity index (TSI) for
each influence quantity according to Homma and Saltelli [35] which is based on
the sensitivity indices of Sobol’. It varies not all influence quantities for each
evaluation of the function f , but only the one of interest. It takes all terms of the
decomposition of function f into account, where the influence quantity xi appears,
and results in equation

D̂∼i =
1
M

M

∑
k=1

f (rk,xik) f (rk,x′ik)− f̂ 2
0 ,

where rk is a single draw of random numbers for all influence quantities except
for xi in the k-th trial. The quantity xi uses now two draws of random numbers, xik
and x′ik. An estimation for the total sensitivity index is then

T̂ S(i) = 1− D̂∼i

D̂
.

This measure is a summary considering all effects of an influence quantity xi to
the total output variation. The method requires only N + 1 simulations, one for
each influence quantity and an additional simulation for the initial estimation of
f̂0. A drawback is that this method does not describe the system in detail, but
only the overall effect and contribution of each influence quantity to the result.
Nevertheless, the advantage of a significantly smaller number of trials as well as
simulations prevails. For a more detailed analysis of the importance or impact of
groups of influence quantities to the measurement uncertainty, the other presented
methods can be applied in addition.

In the simulation definition we use the abbreviation TSI to define an analysis
with total sensitivity indices.

4 <sensitivity mode="all" type="TSI"/>

Figure 7.7 shows the total sensitivity indices for the gauge block calibration ex-
ample in the fifth and last line. In comparison to the other approaches the influ-
ence quantity t seems to be significantly underestimated by the GUF and OAT
approach as well as by the first-order Sobol’ sensitivity indices.
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Figure 7.7: Comparison of the different sensitivity analysis approaches, simula-
tion was performed with 107 trials. The GUF-based coefficient of contribution,
OAT and SSI seem to underestimate influence quantity t, because if considering
all effects, as methods TOO and TSI do, quantity t is approximately as important
as d.
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7.5 Combine factor screening and global SA
The factor screening method OAT and the first-order Sobol’ sensitivity indices
are similar as only the influence quantities of interest are varied; in the same way
the TOO approach is similar to the total sensitivity index as only the influence
quantities of interest are neglected in evaluation instead of all others preserving
dependencies and effects of other combinations of influence quantities. Hence,
in combination the four methods allow a detailed analysis of the measurement
system. The factor screening methods focus on the reduction of deviation if fix-
ing influence quantities to specific values, whereas the global sensitivity analysis
methods concentrate on the contribution to the variance of individual influence
quantities.

In combination the presented methods for factor screening and global sensi-
tivity analysis are a mighty tool to analyze the model of measurement scenarios in
great detail. As an efficient Monte Carlo simulation system is provided, the meth-
ods make extensive usage of its capabilities. I think it is also of great importance
that not only a single method is available, but a set of different approaches. A sin-
gle method might be misleading in daily work if it were the one method of choice
in every case. Providing different approaches requires a deeper knowledge and
understanding in practice, but is rewarded with a lot of additional information and
a more efficient analysis as specific parts of interest get into focus. The system is
also implemented in a modular fashion so that new methods can be added if the
provided methods are not sufficient for a specific problem. The results underline
once more that the framework with the modeling language is a helpful what-if
machine that can support experts in decision making.
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CHAPTER 8

Additional modeling issues

Some examples can be regarded as typical of those that arise in
metrology. Others are more extreme, in an attempt to indicate the con-
siderations that are necessary when those of “normal circumstances”
fail to apply. Perhaps, unfortunately, such adverse circumstances
arise more frequently then would be wished, ...

— SSFM Best Practice Guide No. 6, 2004, Page 85 —

Building the exhaustive model of a titration measurement from the most sim-
ple measurement item to a complete scenario for a series of measurements showed
that the specified language is capable of modeling very complex, real-world mea-
surement scenarios. Besides, the last chapter introduced and compared different
methods to extract the most important influence quantities from a given measure-
ment scenario. This helps in decision making and optimizing the measurement
setup in respect to the measurement uncertainty. Now, in this chapter we will
concentrate on two additional, very specific issues using examples from different
sources. They will once again exemplify that the Monte Carlo method is applica-
ble to a broader range of measurement scenarios than the classical GUF approach.

In practice there often appear situations, where measurements are performed
near physical limits. Hence, the first issue will be restricting results to a feasible
range and investigating the consequences. We will see an example, where sampled
values of a probability distribution are restricted explicitly to reflect the physical
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limits. Afterwards, we will apply limited probability distributions to model a real-
world example, where items are classified and sorted in production with respect
to defined quality measures.

The second issue is implicit functional relationships, where an influence quan-
tity is embedded in the function. We will see an application in calculating the flow
rate in an open channel with uncertainties. Such scenarios require a zero-finding
algorithm for evaluation. An adaption of such an algorithm is capable of block-
wise evaluation of equations for Monte Carlo simulation.

8.1 Physical limits and feasible ranges
There is a lot of discussion on how to report measurement uncertainty for a mea-
surand near natural limits. In chemical measurements the situation often ap-
pears that the symmetrical uncertainty interval overlaps with physically impossi-
ble ranges. The EURACHEM/CITAG Guide [19] details the problem in Appendix
F and states that measurement uncertainty should be reported in any case, even
where the result implies an impossible physical situation. In article [14] of Cowen
and Ellison different approaches for reporting are analyzed and compared. One
approach is to use Bayesian statistics as also proposed by [76]; other approaches
are shifting values outside of the feasible range to the limits, truncation of the con-
fidence interval, or data censoring. This leads to further implications as statistical
parameters like mean and median are affected and shifted. Best Practice Guide
No. 6 [15, Section 9.5] of the NPL picks up the problem, too. The Monte Carlo
method is mentioned as a viable alternative for reporting measurements near nat-
ural limits as not only the symmetrical, but also the shortest coverage interval, can
be reported. This seems to be an appropriate approach for describing the results
of such measurement scenarios properly. Anyhow, currently there is no consen-
sus about reporting measurement uncertainty in such cases and the decision about
reporting has to be made by experts in the laboratory from case to case. We don’t
focus directly on the problem of reporting measurement uncertainty, but we will
investigate how a measurement uncertainty with a reported feasible region can be
modeled for further measurement uncertainty evaluations in a new measurement
scenario. This allows experts analyzing of the consequences of such a measure-
ment uncertainty statement using additional information about its feasible range
and will support decision making.

We have built a model for a highly pure substance in the example of a titra-
tion measurement in Chapter 4.2.1. There we have seen that physically senseless
random values may be drawn during evaluation of the measurement uncertainty,
reporting a purity of more than 100 %. Nevertheless, we could argue for the titra-
tion measurement to consider sampled values above the 100 % limit in that special
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case because of the possibility of impurities in the solution. Hence, no special care
was required. Another influence quantity with a physical limit for values has been
used in the definition of the burette device in Section 4.3.3, restricting the age
of the burette to a logical minimum value of zero. In this chapter we want to
investigate the consequences of such modeling in greater detail.

8.1.1 Feasible ranges for probability distributions

We start with the most direct approach. It is the restriction of the sampled val-
ues from a specific probability distribution to a predefined feasible interval. I
presented and discussed a comparison of different methods to restrict values to a
feasible range in [82]. The approach seems to be trivial for rectangular probability
distributions as the generated random values innately lay between the lower and
upper limit, but as we will see there are different ways to limit value ranges of
probability distributions; this makes a new concept necessary even for uniformly
distributed influence quantities. For other distributions it is not obvious offhand
how to limit sampled values to a feasible range. To show the consequences of
different ways to restrict sampled values we take initially a very simple example
from [14], where a normal distribution with parameters µ = 0.01 and σ = 0.01 is
defined with a natural limit of zero. It represents the result from a trace analysis to
detect impurities at a very low level. The following code fragment shows a very
simple model with a normal distribution restricted to values equal or above zero
in this case.

1 <model name="limitgauss" targetname="lg">

2 <influence name="lg" comment="limited normal distribution">

3 <distribution>

4 <gausslimit lower="0.0" limitmode="collect">

5 <mu>0.01</mu>

6 <sigma>0.01</sigma>

7 </gausslimit>

8 </distribution>

9 </influence>

10 </model>

The simulation framework includes currently the three special probability distri-
butions gausslimit, trianglelimit, and rectanglelimit with the same pa-
rameter definition as their unlimited counterparts. Other probability distributions
can be added easily using the same concepts of the language that I will present in
this section. In addition to the usual parameter definitions, the attributes lower

and upper can be used to define the feasible range as done in line 4 of the code
fragment. In the current example we only use a lower limit. The results of three
simulations with 107 trials each are compared in Figure 8.1 to show the differ-
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ences of the settings of attribute limitmode. It describes how values outside of
the valid range should be handled. The upper histogram is a usual normal dis-
tribution with no restrictions. It is clear that the coverage interval includes also
physically impossible values. The histogram in the middle uses a mode setting
cut, which means that values outside of the feasible range are resampled until
they are inside of the defined range. Finally, the lower histogram shows the result
of a mode setting collect, where values outside of the given range are mapped
to the closest limiting value. In this case, the resulting probability distribution has
a high peak at the lower limit. Table 8.1 summarizes the results.

As we do not like to enforce the usage of special kinds of probability distribu-
tions and implementing additional probability distributions is a very inconvenient
way to support experts from laboratories, there is another method to restrict sam-
pled values to a valid range. We have already seen its application in Section 4.3.3
for the influence quantity that considers aging of the burette device. There we have
defined a lower limit in the definition of an influence quantity instead of restricting
sampled values of probability distributions directly. The same attributes – lower

and upper – can be used in combination with the attribute limitmode with the
settings cut, collect and fold. The additional setting fold folds values outside
of the defined range back into the range by subtracting the limit and the value
and adding or subtracting it from the lower or upper limit. With this construct of
restricting values for influence quantities it is not only possible to limit the out-
come of drawing random numbers from single probability distributions, but also
the result of more complex model parts. With evaluation of the following model
we obtain the same results as with the previous model definition.

1 <model name="limitgauss" targetname="lg">

2 <influence name="lg" comment="limited influence"

3 lower="0.0" limitmode="collect">

4 <distribution>

5 <gauss>

6 <mu>0.01</mu>

7 <sigma>0.01</sigma>

8 </gauss>

9 </distribution>

10 </influence>

11 </model>

It is important to notice that cutting or resampling sampled values may change
the statistical parameters like mean, median and standard deviation significantly
as discussed in [14]. Thus, modeling using restricted probability distributions or
influence quantities requires a very good understanding and insight into model
structures, advanced analyzing techniques and careful parameter settings as the
parameter definition of these probability distributions still describes not the re-
stricted, but the original probability distributions.
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Figure 8.1: Histograms of simulations with 107 trials with a normal distribution
N(0.01,0.01) unrestricted, cut at limit, and collected at limit

Median Mean Std. Symmetric 95 % Shortest 95 %
Unrest. 1.00 1.00 1.00 [-0.96,2.96] [-0.96,2.95]
Cut 1.20 1.29 0.79 [ 0.08,3.03] [ 0.00,2.73]
Collect 1.00 1.08 0.87 [ 0.00,2.96] [ 0.00,2.64]

Table 8.1: Result for three independent simulations with 107 trials each with dif-
ferent behavior (unrestricted, cut, and collect) on natural limit zero of a normal
distribution N(0.01,0.01). The last two columns contain the values of the sym-
metric and shortest 95 % uncertainty intervals; all values have to be multiplied
by 10−2.
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Grade Range in Ω

A-grade [0.99,1.01]
B-grade [0.95,0.99] or [1.01,1.05]
C-grade [0.90,0.95] or [1.05,1.10]
Unclassified all others

Table 8.2: Classes and corresponding value ranges for grading 1 Ω resistors

The modeling language provides all the necessary concepts and hence, the
possibility to model and compare different modeling approaches. Most of the
current work in the community is related to the question of how to report the
measurement uncertainty in such cases, but not how this knowledge should then be
used in subsequent measurement uncertainty evaluations. As we allow influence
quantities with restricted value ranges as input quantities in measurement models,
the consequences of such measurement scenarios including feasible ranges can be
further investigated. In the next section we will see that restrictions may even be
essential for a proper modeling of specific measurement scenarios.

8.1.2 Quality grading in production
In a second example of the application of limited probability distributions we
will see how uncommonly shaped probability distributions can be modeled with
existing concepts. The following example about graded resistors is taken from the
Best Practice Guide No. 6 [15, Section 9.2]. A manufacturer produces resistors
and reports that a normal distribution with mean 1 Ω and standard deviation 0.04
Ω can be assumed for all produced resistors. The resistors are classified after the
production process into four categories A, B, C, or unclassified. We suppose that
testing of the resistors is fully under control and that uncertainties in the grading
process are negligible. Table 8.2 shows the allowed intervals of the four classes
for 1 Ω resistors and Figure 8.2 shows the normal distribution segmented to the
four classes of resistors.

We now want to analyze circuits using n C-grade resistors connected in series
with a nominal resistance of n Ω. The equation of the measurand is in this case
just the summation of the individual resistors

R = R1 + · · ·+Rn =
n

∑
i=1

Ri.

As already stated in the best practice guide modeling of this problem is straight-
forward with existing Monte Carlo software. Nevertheless, the modeling aspects
concerning our project are quite interesting for this example, as cutting the left and
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Figure 8.2: The histogram shows the distribution of 1 Ω resistors with a standard
deviation of 0.04 Ω (result of a Monte Carlo simulation with 107 trials). The four
grade classes A, B, C, and unclassified are annotated.

right side of normal distributions is not sufficient in this case. Figure 8.3 shows
the concept of the model.

1 <model name="resistor" targetname="rc">

2 <influence name="rc" comment="class C resistor">

3 <!-- Combine distribution from two normals and a

selection -->

4 <formula>s*r1 + (1-s)*r2</formula>

5

6 <influences>

7 <influence name="s" comment="Selector">

8 <distribution>

9 <bernoulli>

10 <p>0.5</p>

11 </bernoulli>

12 </distribution>

13 </influence>

14

15 <influence name="r1" comment="resistor lower range"

unit="ohm">

16 <distribution>

17 <gausslimit lower="0.90" upper="0.95" mode="cut">

18 <mu>1</mu>

19 <sigma>0.04</sigma>

20 </gausslimit>

21 </distribution>

22 </influence>
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Figure 8.3: To model a class of graded resistors we sample from two limited
normal distributions, once for the left part and once for the right part; then we flip
a fair coin (Bernoulli experiment) to decide for one of the two sides.

23

24 <influence name="r2" comment="resistor upper range"

unit="ohm">

25 <distribution>

26 <gausslimit lower="1.05" upper="1.10" mode="cut">

27 <mu>1</mu>

28 <sigma>0.04</sigma>

29 </gausslimit>

30 </distribution>

31 </influence>

32 </influences>

33 </influence>

34 </model>



8.2. Implicit relationship formulas 181

The model and main influence quantity for a resistor uses three random values for
one draw:

• Sample a value rl from lower range of normal distribution N(1,0.04).

• Sample a value ru from upper range of normal distribution N(1,0.04).

• Throw a fair coin and get s ∈ {0,1} to decide for the lower or upper value.

The decision from the last point is made using a Bernoulli experiment with pa-
rameter p = 0.5, so that in 50 % of the cases the result is 0, 1 otherwise. The
equation for decision is then defined in line 4 of the code fragment as

r = srl +(1− s)ru.

Figure 8.4 shows the result of a simulation with 107 trials each for circuits of
varying numbers of C-grade resistors connected in series. It is interesting that
with a small, uneven number n of C-graded resistors the nominal value of n Ω

has a small probability. With a rising number of resistors the distribution evolves
rapidly to approximately a normal distribution, but still with strong structure.

8.2 Implicit relationship formulas
To finish the line of examples and modeling concepts, we will have a look at a last
measurement scenario, where an influence quantity is embedded in a functional
relationship. The quantity has to be calculated implicitly. Thus, some additional
effort is necessary to evaluate the measurement model. The example of calcu-
lating the flow rate in an open channel originated from the National Engineering
Laboratory (NEL) in the UK and is again included in the Best Practice Guide
No. 61 [15, Section 9.1]; ISO document 4359-1983 [3] and the book [33] of Regi-
nald Herschy explain the concepts of liquid flow measurements in open channels
in great detail. Applications are, for example, the flow rate of water from a river
to a cooling system in industrial processes or in water and hydroelectric power
industries. We concentrate on the most common type of open channels with a
rectangular throated flume. The shape of the channel is sketched in Figure 8.5.
The quantities are defined and measured with uncertainty sources as follows:

Approach channel width defined as B = Bnom+δBcal +δBmeas with a nominal
value Bnom = 2.002 m, δBcal ∼ N(0,0.000252), and δBmeas ∼ t6−1(0,0.00252/6)

1I want to thank Peter Harris from NPL for the additional detailed information to the problem.
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Figure 8.4: The single plots show the resulting distributions of C-grade 1 Ω re-
sistors in serial connection for 1 to 6, 9, 10, 19, and 20 resistors. Even with 19
resistors in series a small dent is observed at the nominal value of 19 Ω.
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Figure 8.5: Concept and shape of an open flow channel; uncertainties in the
measurement of the shape parameters of the channel lead to an uncertainty for the
flow rate.

Throat width defined as b= bnom+δbcal +δbmeas with a nominal value bnom =
0.997 m, δbcal ∼ N(0,0.000252), and δbmeas ∼ t9−1(0,0.00222/9)

Throat length defined as L=Lnom+δLcal+δLmeas with a nominal value Lnom =
3.012 m, δLcal ∼ N(0,0.000252), and δLmeas ∼ t9−1(0,0.00172/9)

Hump height defined as p= pnom+δ pcal+δ pmeas with a nominal value pnom =
0.252 m, δBcal ∼ N(0,0.000252), and δBmeas ∼ t9−1(0,0.00192/9)

Nominal head defined as h = hnom + δhcal + δhres + δhzero + δhmeas with a
nominal value hnom = 1.0 m, δhcal ∼ N(0,0.00152), δhres ∼ R(0,0.00052/3),
δhzero ∼ N(0,0.00142/10), and δhmeas ∼ N(0,0.00252/1)

Gravitational constant defined as g= gnom+δgcal with a nominal value gnom =
9.812 m and δgcal ∼ N(0,0.000252)

Length measurements are performed with the same tape rule. So for measure-
ment uncertainty evaluation we have to use the same values for influence quan-
tities of calibration and hence, the condition δBcal = δbcal = δLcal = δ pcal has
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Figure 8.6: Cause and effect diagram for flow rate Q of an open channel

to be satisfied. The head height h of the water is measured with an ultrasonic
detector.

The measurand Q of this measurement is the flow rate

Q =

(
2
3

)3/2

g1/2CvCDbh3/2

with the acceleration g = 9.812 ms−2 due to gravity. CD is given as

CD = (1−0.006L/b)(1−0.003L/h)3/2

and Cv has to be calculated from the implicit functional relationship

4b2h2C2
v −27B2(h+ p)2(C2/3

v −1) = 0.

The modeling of this problem in the simulation framework is straightforward.
Again, a single basic model and a simple simulation definition suffice. The com-
plete XML code is provided in Appendix B.3. We want to concentrate on the
influence quantity Cv at this point. A code fragment of its definition in the basic
model follows.

110 ...

111 <influence name="Cv" comment="Cv">

112 <formula target="Cv" from="0" to="5" precision="0.00001">

113 pow(2*b*h*Cv ,2) -27*pow(B*(h+p) ,2)*(pow(Cv ,2/3) -1)

114 </formula>

115 ...

116 </influence>

117 ...
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Figure 8.7: Histogram of the simulation with 107 trials of the flow rate for an
open channel

The interesting new part is that the quantity Cv appears in the formula definition it-
self. Hence, for evaluation a zero-finding algorithm is applied. There are different
well-known algorithms available [62]; in our case a simple bisection algorithm
is already sufficient to explain the concept. The approach requires an attribute
target that defines which quantity should be approximated. The two attributes
from and to define the search range. They must have different signs, so that the
range includes a root of the function in any case. Finally, the attribute precision
defines a criterion, when the algorithm should terminate. The implementation of
the zero-finding algorithm is interesting in this context, because it is called for
each trial, say each set of values, of the Monte Carlo simulation, but also requires
new function values to proceed. As the parser evaluates formulas only block wise,
the algorithm is adapted to work block wise, too. Hence, new function values for
a specific set of parameter values are only generated if the stop criterion has not
been satisfied in the last iteration for the set. The algorithm stops when each
element of the current block has found a root with the defined precision.

The simulation delivered a flow rate of Q = 1.71 m3s−1 with a standard un-
certainty of u(Q) = 1.72× 10−5 m3s−1. Figure 8.7 shows the histogram of the
evaluation. The result can adequately be approximated by a normal distribution
as already stated in Best Practice Guide No. 6.

In this chapter two special modeling issues were presented that require special
constructs in the language definition. The first one was to restrict random draws
from probability distributions or the result of the evaluation of influence quantities
to feasible ranges. Besides, the example of graded resistors showed that this con-
cept can be used in combination to model special probability distributions. The
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second issue was about implicit functional relationships. These problems require
an extension of the language and the later one a zero-finding algorithm. All in all,
the selected examples have shown that the language definition is proper for these
special cases and that the language can quite easily be enhanced and adapted.

Until now we have seen the full language definition as well as additional ex-
tensions for special cases. In the next chapter I will present some system-relevant
issues like support for validation of the simulation framework. Besides, we will
see concepts for graphical user interfaces that realize the ideas of the modeling
language. A first prototype allows the definition of basic models. Furthermore, a
more advanced approach will be shown that uses an open-source project as basis
for an editor that supports all features of the modeling language.



CHAPTER 9

Simulation framework

In the quest for higher accuracy, it is sometimes forgotten that
a measurement system will not always be used by the expert who de-
signed it. With modern interactive software, it is possible to make the
most complex of measurement systems ’easy’ to use. However, reli-
ability can be poor unless the design ensures that operator error is
minimised.

SSFM Best Practice Guide No. 1, 2000, Page 60

The project presented in this thesis results in a simulation framework for cal-
culating measurement uncertainty for metrology according to the first supplement
of the GUM and furthermore, realizes more advanced concepts. To be applicable
in practice some fundamental issues have to be considered. The first one that I
will explicitly point out here is the validation of the framework and portability
to different operating systems. The language definition and software package in-
clude an advanced concept for validation to detect and prevent incorrect behavior
on different computers or platforms or in new versions of the package.

The second point is about the acceptance of a completely new modeling lan-
guage. In general, there is only little time for practitioners to adapt new things
in a laboratory. Hence, we put emphasis on keeping as close as possible to the
language used in daily work. Furthermore, we do not think that many people will
accept a completely new programming language to evaluate measurement uncer-
tainties as the evaluation is only a very small part of daily work. The abstraction
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from the language to a graphical user interface (GUI) is in our case fundamen-
tal. This is the reason why it has been considered right from the beginning of
the project. In a first approach presented in this chapter a small – but nevertheless
fully functional – prototype of a GUI for rather simple measurement scenarios has
been implemented in Java and shows the capability of direct translation from user
input to the domain-specific language of MUSE. A second approach uses an ex-
isting source code basis of an editor which is adapted to the specific requirements
of the simulation framework.

We start with the first issue concerning the validation concept of the software
package.

9.1 Validation of the simulation system

The presented system calculates statistical parameters from a measurement model.
It is clear that a validation concept is vital for application as for example stated in
Best Practice Guide No. 1 [77]. The software package presented in this thesis was
implemented in C/C++ and compiled and tested in parallel on different platforms
to provide portability to diverse operation systems. This stresses the need for a
validation system to be able to verify results on a specific machine. A source code
revision system is used, regular code reviews of the programmers took place, and
internal system checks – so-called component tests – as well as fix coded test
scenarios are implemented to guarantee that no new errors are introduced from
version to version. As validation is computationally expensive, the validation
module has to be turned on in the calculation section of a simulation definition
explicitly.

1 <simulation>

2 ...

3 <calculation>

4 ...

5 <validation mode="on" output="on" path="validate"/>

6 <measurand>...</measurand>

7 </calculation>

8 </simulation>

In line 5 the element validation is defined and turned on by setting attribute
mode to on. The attribute output defines if status messages should be printed
or if the validation should work in a silent mode and only inform in cases of an
error. Finally, the attribute path defines an absolute or relative path to external
validation scenarios. We will see in the following sections how the validation
system works in detail.
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9.1.1 Syntax and semantic checks
Concerning the model definition, the grammar definition of the language using
the XML formats of DTDs and XML schema as explained in Chapter 3.2 already
gives a good basis to prevent users from using wrong definitions and parameter
checking. Of course the model has still to be checked for proper settings of param-
eters. Results of evaluations have to be analyzed for consistency and plausibility.

9.1.2 Component checks
The software itself includes internal system checks for the most important com-
ponents like

• random number generators,

• probability distributions,

• combinations of data structures for basic models, processes, etc.,

• implementations of block-wise working operators, and

• the formula parser.

Internal test scenarios are applied to these components and compared to known
results. If such a test fails detailed information about the error is provided with an
option to abort the current evaluation.

9.1.3 Predefined models
The concept of the system validation can be expanded individually which allows
regression testing. Predefined models can be included in the validation process
and the statistical parameters calculated after evaluation can be compared with
predefined values or even ranges of values. This allows a transparent validation
of the system and can also be used to check for consistency with later versions of
the simulation framework. For the most important modeling concepts predefined
model scenarios are provided as listed in Table 9.1. They are evaluated one after
another during the validation process and the resulting statistical parameters from
the analysis are compared to predefined value ranges. A code fragment of such a
validation definition will explain the details.

35 ...

36 <calculation>

37 <validate name="data.bin" dimension="1">

38 <valmean>
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Name Description
valbmstatic.xml Check static instance of a basic model
valinfnonstatic.xml Check non-static influence quantity in basic model
valinfstatic.xml Check static influence quantity in basic model
valprocnonstatic.xml Check non-static process definition
valprocstatic.xml Check static process definition
valscope.xml Check scope of global variables, processes, in-

stances and influence quantities
valswitch.xml Check switch concept for processes in measure-

ment series

Table 9.1: To validate the functionality of the simulation framework on different
platforms model scenarios can be defined for consistency checks. The table shows
already included scenarios that cover validating the most important components
of the system.

39 <lower> -0.1</lower>

40 <upper>0.1</upper>

41 </valmean>

42 <valstd>

43 <lower>1.35</lower>

44 <upper>1.50</upper>

45 </valstd>

46 </validate>

47

48 <measurand>...</measurand>

49 </calculation>

Line 38 defines an element validate with an attribute name as filename with the
results of simulation. The second attribute dimension is used if multiple results
are evaluated. Hence, there may be arbitrary many elements validate if more
than one result has to be checked for validity. Each element contains an element
valmean and/or valstd defining an upper and lower limit for the mean value or,
respectively, the standard deviation for comparison. If such a range check fails
during validation of the system the system will ask to proceed or to cancel the
current simulation.

9.1.4 Reference test sets
Finally, it is very important to have a set of examples with well-known results. We
have to be consistent with the examples from the document this work relies on.
Hence, the examples from the first supplement to the GUM are used as reference
test set and are always the basis to prove correctness of the functionality of the
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simulation system. Furthermore, the gauge block calibration example [22, Sec-
tion 9.5] is used for further investigations and advanced topics presented in this
work, because of its clear structure and manageable number of influence quanti-
ties. Nevertheless, we think of it as a good practical example and it shows that
already quite simple measurement scenarios can lead to interesting insights and
results.

9.2 Support for graphical user interfaces
My experience at conferences and meetings [56, 81–83], where the simulation
system has been presented, is that many experts from laboratories are a little bit
afraid of working with a text-based simulation system. It can be quite an obstacle
to start. Modeling of real-life problems is usually no problem if one of our group
is present for active support, so the system is capable to solve such problems.
Thus, a graphical user interface is of importance for the acceptance of the whole
concept of the project and has been considered right from the start. The combina-
tion of XML and XML schema for the definition of the domain-specific language
of MUSE is well suited for the generation of graphical user interfaces with rather
low effort. The big advantage in having a clear definition of the language allows a
direct interpretation of the grammar to provide a user interface. Only minor adap-
tations are necessary, e.g., additional validity and consistency checks for values,
to get a point and click user interface.

Automated code generation One way to interpret the XML schema language
definition is to automatically generate a source code basis for graphically user
interfaces as the commercial1 solution JAXFront [48] does for Java. The resulting
code can then be adapted and completed to obtain a fully functional graphical user
interface.

Fresh implementation As a small experiment I implemented from scratch a
small prototype named MuseLite in Java to support metrologists in the definition
of basic models for measurement uncertainty evaluation. The result is a fully
functional user interface that allows defining arbitrarily complex basic models
in a hierarchical structure supporting the probability distributions from GS1 and
evaluating a single instance of such a basic model with Monte Carlo simulation.
It allows visualizing the results using the tool MuseView2. Hence, it realizes a

1Actually, the company has just recently released a freely available community version, which
shows a notification of the origin of the product in derived applications.

2The first version of the tool MuseView was developed during a semester work by Hasan Ka-
haran. It has been adapted for the requirements of the prototype of MuseLite.
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subset of the modeling language presented in this thesis. I experienced that the
implementation has been very straightforward, as the concepts of the work due
to the language definition can be easily mapped to internal class structures and
data representation. Additionally, Java provides extensive support to handle XML
files. Figure 9.1 shows a screenshot of the program with the definition of example
9.5 in GS1, the gauge block calibration. On the left of the dialog the hierarchical
tree of influence quantities shows the structure of the basic model. In the right part
of the upper screenshot there is the formula definition for an influence quantity. In
the middle there is the definition of simulation and analyzing parameters. Finally,
the third dialog shows the histogram and a table of the results after simulation in
the visualization tool MuseView.

Building on existing solutions Furthermore, there are already open source so-
lutions for XML editors that directly interpret XML schema and document type
definitions; an example is the editor of the Xerlin project [49]. It is currently
adapted for the needs of the presented simulation framework as a bachelor thesis
by the student Dominik Gabi. It supports the whole language definition and capa-
bilities for measurement uncertainty evaluation. Figure 9.2 shows a screenshot of
the editor in a rather early stage of development. In the left sub dialog the simu-
lation definition of the gauge block calibration example is open, on the right side
the corresponding model definition.

The prototype of a GUI presented in this chapter supports a restricted subset of
concepts for modeling and hence, a part of the features of the modeling language.
Nevertheless, the prototype can already be used to calculate simple examples us-
ing only a single basic model. Besides, I think of it as a basis for a model builder
of a large-scale simulation system that also realizes more advanced concepts like
parameterization and multiple instances of basic models, process definitions, and
the usage of variables. The experiment shows - as a proof of concept – that the
language definition is fit for practice and allows a straightforward approach to user
interface development. This has been one of the goals of this thesis.

The adaptation of the open source editor is a second viable approach that leads
to a graphical user interface supporting experts from metrology in measurement
uncertainty evaluation. It allows direct access to all features of the simulation
framework with relatively low effort.

Last but not least, I want to point out once more that the concept of hierarchi-
cal modeling outperforms current spreadsheet approaches as hierarchical models
reflect the structure and dependencies of the real-world far better than a sheer list
of influence quantities.
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Figure 9.1: Screenshots of MuseLite and MuseView with the definition and results
from example 9.5 in GS1, the gauge block calibration
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Figure 9.2: Screenshot of MuseEdit with the simulation definition and the basic
model of the gauge block calibration example



CHAPTER 10

Conclusion and summary

An der Akademie hielt Humboldt Vorlesungen über die Leitfähig-
keit menschlicher Nerven. Er stand dabei, als im Nieselregen auf aus-
getretenem Rasen vor der der Stadt der letzte Abschnitt des Längen-
grades gemessen wurde, der Paris mit dem Pol verband. Als es voll-
bracht war, nahmen alle die Hüte ab und schüttelten einander die
Hände: Ein Zehnmillionstel der Strecke1 würde, in Metall gefaßt, zur
Einheit aller künftigen Längenmessungen werden. Man wolle es Me-
ter nennen. Es erfüllte Humboldt stets mit Hochgefühl, wenn etwas
gemessen wurde; diesmal war er trunken vor Enthusiasmus. Die Er-
regung ließ ihn mehrere Nächte nicht schlafen.

— Die Vermessung der Welt, Daniel Kehlmann, 2005 —

It is essential to complement every result of a measurement with a statement
about its certainty respectively uncertainty. Only then measurement results can
be communicated properly, used in further measurements, and compared to other
measurement results. This is the reason why the GUM and its first supplement are

1The text is actually a little bit imprecise as the meter was defined as 10 millionth of the distance
from the pole to the equator on the meridian in 1793. This is the reason why the definition of the
meter in the text is named Kehlmann-Meter. Nevertheless, we can share the enthusiasm about the
situation and the measurement and hence, I interpret it as a little “imprecision” of the author and
artistic freedom.
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very important documents introducing a standardized method for the evaluation
of the measurement uncertainty. The approach is quite new and the two docu-
ments are still under discussion and are only recommendations, but they become
more and more accepted on a broad basis. Nevertheless, measurement uncertainty
evaluation is additional work in practice that takes time and costs a lot of money
if seriously evaluated. All the more, it is essential to support metrologists in mea-
surement uncertainty evaluation. In the end, the reward is a very detailed and
deep understanding of their measurements, which helps to improve the accuracy
of further measurements. An existing model for a measurement scenario together
with a what-if machine allows simulating various parameter settings without the
need of additional costly measurements, always assuming that the measurement
models reflect reality properly.

The result of this project is a very advanced modeling language and a simu-
lation framework that provide a way to formulate measurement scenarios using
terms and expression of the specific domain. In the beginning I was a little bit
skeptical if the XML-based approach will pay off and will be accepted by the
experts from metrology. It appeared that it is quite a hurdle to start modeling
and working with the system. Also the redundant format requiring keywords in
opening and closing tags of elements is not everyone’s cup of tea. Nevertheless,
the advantages that resulted in the end justify the approach completely. We were
able to use an existing, well-tested and established XML parser, which saved us a
lot of implementation work and syntactical checks. The hierarchical definition of
elements and attributes turned out to fit perfectly to the requirements of measure-
ment scenario modeling. Language extensions can easily be applied enhancing the
grammar in XML schema without the need of additional compilers or language
and parser generating tools. The capability of interpreting the grammar directly
into a graphical user interface is fantastic; changes and additions are reflected
in the interface immediately. Textual descriptions and explanations annotated to
elements and attributes can be provided in the grammar and interpreted as docu-
mentation. The next step for a complete measurement uncertainty evaluation tool
would be the implementation of a report generator. Actually, XML-based models
can quite easily be transformed to arbitrary document formats using the so-called
Extensible Stylesheet Language (XSL). So, this is also a very big advantage, which
will be of interest in further work.

For the introduction of the modeling concepts, we started with the very ba-
sics of measurement uncertainty evaluation presenting the different approaches in
comparison. Afterwards, fundamentals were introduced like

• how the evaluation of the equation of the measurand can be performed in an
efficient way using block-wise operations,

• how to model probability distributions, and
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• how to analyze the resulting simulation data.

The extensive example of a titration measurement from analytical chemistry was
used to develop the concepts of the modeling language step by step and to show
that the hierarchical structure fits well. An encapsulation of basic models, pro-
cesses and a calculation section were introduced. It turned out that the approach
is capable of high-resolution, real-life modeling.

Furthermore, the framework helps in actual decision making as we have seen
in the chapter about modeling series of measurement. I introduced a first approach
for an algorithm to reduce the number of necessary reference measurements in a
sequence of a measurement to a theoretical minimum. I think the approach has
high potential, but it has to be proven in practice that it lives up to its promises.

Sensitivity analysis is another way of analyzing individual measurement sce-
narios in great detail determining the impact of a single influence quantity on the
overall measurement uncertainty. Again, this approach is relatively new to mea-
surement uncertainty evaluation with the Monte Carlo approach. I compared some
ad-hoc approaches and more advanced ones using variance-based methods. It is
now necessary to analyze results of the different approaches in practice applying
more advanced real life measurement scenarios. Then it would also be interesting
to implement and compare more and different approaches.

The additional examples of restricting values of influence quantities to physi-
cal limits and feasible ranges as well as the example of the flow in an open channel
using implicit functional relationships picked up some special issues and showed
that the language can easily be enhanced for these specific applications. We ob-
tained very interesting results. Again, for further investigation it is necessary to
fine tune the system, e.g., in a first step implementing more advanced zero-finding
algorithms. Nevertheless, we could prove that the framework can be used to eval-
uate such measurement scenarios.

Finally, I discussed very practical aspects like approaches for graphical user
interfaces that provide the concepts of the modeling language and capabilities
of the simulation system. The validation of the simulation system on different
platforms was another very important point.

In the application of measurement uncertainty evaluation one gains a very
deep and detailed knowledge about the behavior and dependencies of measure-
ment systems. For me, working in the field of metrology was and still is a very in-
teresting experience. I discussed with experts from very different scientific fields
like chemistry, biology, physics, statistics and mathematics. It was as interesting
as demanding to put all information together in a single simulation framework as
a computer scientist.
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Outlook
As already mentioned, currently a first graphical user interface is under develop-
ment that provides all features and concepts of the modeling language and the
simulation framework. We hope to be able to support experts from the field of
metrology with the emerging tool as a combination of the simulation core with an
easy-to-use editor and a visualization tool in measurement uncertainty evaluation
and in understanding measurement scenarios in great detail.

Furthermore, a very interesting application is currently under investigation
concerning quality measures for DNA analysis and next-generation sequencing.
The simulation framework already realizes specific requirements for applications
like discrete probability distributions. Unfortunately, the scientific field – and
hence, the measurement procedures – are quite new and, therefore, a general and
accepted method to evaluate measurement uncertainties for such scenarios has yet
to be defined.

Besides, different fields of application opened up for the simulation frame-
work recently. In this work I concentrated on measurements from the fields of
physics, chemistry, and biology, but of course measurements take also place in
various other fields like sociology, economics, and so forth. As uncertainties ap-
pear in every measurement, considering the application of the presented method
is appropriate.

However, the simulation framework is prepared and ready for action!



APPENDIX A

XML Schema Definitions

The definition files are the central part for the language definition. The version
given in this appendix is somewhat shortened. Documentation and most of the
comments are omitted to reduce length. The full version comes with each down-
load of the software package MUSE from http://www.muse.ethz.ch.

A.1 XSD: Probability distributions
The XML schema definition for probability distributions is used for XML docu-
ments describing basic models as well as in simulation definitions. Therefore, the
schema is included in the two XSDs model.xsd and simulation.xsd.

<?xml version="1.0" encoding="ISO -8859 -1" ?>

<!-- ################################### -->

<!-- Definition of Distribution sub node -->

<!-- ################################### -->

<schema xmlns:xs="http: //www.w3.org /2001/

XMLSchema">

<element name="distribution" type="distribution"

/>

<complexType name="distribution">

<choice minOccurs="0">

<element name="constant" type="constant"/>

<element name="gauss" type="gauss"/>

<element name="rectangle" type="lowerupper"

/>

<element name="triangle" type="lowerupper"

/>

<element name="gamma" type="alphabeta"/>

<element name="beta" type="alphabeta"/>

<element name="exponential"

type="simplelambda"/>

<element name="trapez" type="trapez"/>

<element name="cltrapez" type="cltrapez"/>

<element name="arcsine" type="arcsine"/>

<element name="studentt" type="studentt"/>

<element name="gausslimit"

type="gausslimit"/>

<element name="rectanglelimit"

type="lowerupperlimit"/>

<element name="trianglelimit"

type="lowerupperlimit"/>

<element name="bernoulli" type="simplep"/>

<element name="binomial" type="binomial"/>

<element name="geometric" type="simplep"/>

<element name="poisson" type="simplelambda"

/>
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<element name="density" type="density"/>

<element name="complex" type="complex"/>

<element name="correlated"

type="correlated"/>

</choice>

<attribute name="name" type="string"/>

<attribute name="slot" type="string"/>

<attribute name="equals" type="string"/>

</complexType>

<complexType name="studentt">

<choice>

<sequence>

<element name="xbar" type="attparameter"

/>

<element name="std" type="attparameter"/>

<choice>

<element name="dgf" type="attparameter"

/>

<element name="n" type="attparameter"/>

</choice>

</sequence>

<element name="values">

<complexType>

<sequence>

<element name="value" type="double"

minOccurs="3" maxOccurs="unbounded

"/>

</sequence>

</complexType>

</element>

</choice>

</complexType>

<complexType name="gausslimit">

<sequence>

<element name="mu" type="attparameter"/>

<element name="sigma" type="attparameter"/>

</sequence>

<attributeGroup ref="attgrouplimit"/>

</complexType>

<complexType name="lowerupperlimit">

<complexContent>

<extension base="lowerupper">

<attributeGroup ref="attgrouplimit"/>

</extension>

</complexContent>

</complexType>

<attributeGroup name="attgrouplimit">

<attribute name="lower" type="double"/>

<attribute name="upper" type="double"/>

<attribute name="limitmode" default="cut">

<simpleType>

<restriction base="string">

<enumeration value="cut"/>

<enumeration value="collect"/>

</restriction>

</simpleType>

</attribute>

</attributeGroup>

<complexType name="constant">

<sequence>

<element name="value" type="attparameter"/>

</sequence>

</complexType>

<complexType name="gauss">

<sequence>

<element name="mu" type="attparameter"/>

<element name="sigma" type="attparameter"/>

</sequence>

</complexType>

<complexType name="lowerupper">

<choice>

<sequence>

<element name="mean" type="attparameter"/

>

<element name="width" type="attparameter"

/>

</sequence>

<sequence>

<element name="lower" type="attparameter"

/>

<element name="upper" type="attparameter"

/>

</sequence>

<sequence>

<element name="a" type="attparameter"/>

<element name="b" type="attparameter"/>

</sequence>

</choice>

</complexType>

<complexType name="alphabeta">

<sequence>

<element name="alpha" type="attparameter"/>

<element name="beta" type="attparameter"/>

</sequence>

</complexType>

<complexType name="simplep">

<sequence>

<element name="p" type="attparameter"/>

</sequence>

</complexType>

<complexType name="binomial">

<sequence>

<element name="n" type="attparameter"/>

<element name="p" type="attparameter"/>

</sequence>

</complexType>

<complexType name="simplelambda">

<sequence>

<element name="lambda" type="attparameter"/

>

</sequence>

</complexType>

<complexType name="trapez">

<sequence>

<element name="lower" type="attparameter"/>

<element name="upper" type="attparameter"/>

<element name="beta" type="attparameter"/>

</sequence>

</complexType>

<complexType name="cltrapez">

<sequence>

<element name="lower" type="attparameter"/>

<element name="upper" type="attparameter"/>

<element name="inexactness" type="

attparameter"/>

</sequence>

</complexType>

<complexType name="arcsine">

<sequence>

<element name="lower" type="attparameter"/>

<element name="upper" type="attparameter"/>

</sequence>

</complexType>

<complexType name="density">

<sequence>

<element name="filename" type="

normalizedString"/>

</sequence>

<attribute name="filetype" default="plain">

<simpleType>

<restriction base="string">

<enumeration value="plain"/>

<enumeration value="binary"/>

<enumeration value="linesep"/>

<enumeration value="openbugs"/>

</restriction>

</simpleType>

</attribute>
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<attribute name="dimension" type="int"

default="1"/>

<attribute name="startvalue" type="

nonNegativeInteger" default="0"/>

</complexType>

<complexType name="complex">

<choice>

<element name="distribution" type="

distribution"

minOccurs="2" maxOccurs="2"/>

<sequence>

<element name="realpart">

<complexType>

<sequence>

<element name="distribution" type="

distribution"/>

</sequence>

</complexType>

</element>

<element name="imaginarypart">

<complexType>

<sequence>

<element name="distribution" type="

distribution"/>

</sequence>

</complexType>

</element>

</sequence>

</choice>

</complexType>

<complexType name="correlated" mixed="true">

<choice minOccurs="0">

<element name="distlist">

<complexType>

<sequence>

<element name="distribution" type="

distribution"

maxOccurs="unbounded"/>

</sequence>

</complexType>

</element>

<element name="cholesky">

<complexType>

<sequence>

<element name="muvector">

<complexType>

<sequence>

<element name="element" type="

attparameter"

minOccurs="1" maxOccurs="

unbounded"/>

</sequence>

<attribute name="length" type="

positiveInteger"

use="required"/>

</complexType>

</element>

<choice>

<!-- Both keywords are possible for

covariance matrix -->

<element name="covariancematrix"

type="covariancematrix"/>

<element name="uncertaintymatrix"

type="covariancematrix"/>

</choice>

</sequence>

</complexType>

</element>

</choice>

<attribute name="id" type="string"/>

<attribute name="slot" type="positiveInteger"

default="1"/>

<attribute name="equals" type="string"/>

</complexType>

<complexType name="covariancematrix">

<choice>

<sequence>

<element name="cell" minOccurs="1"

maxOccurs="unbounded">

<complexType>

<simpleContent>

<extension base="attparameter">

<attribute name="index1"/>

<attribute name="index2"/>

</extension>

</simpleContent>

</complexType>

</element>

</sequence>

<sequence>

<element name="row" minOccurs="1"

maxOccurs="unbounded">

<complexType>

<sequence>

<element name="cell" type="

attparameter"

minOccurs="1" maxOccurs="

unbounded"/>

</sequence>

</complexType>

</element>

</sequence>

</choice>

<attribute name="size" type="positiveInteger"

use="required"/>

</complexType>

<complexType name="attparameter">

<simpleContent>

<extension base="normalizedString">

<attribute name="parameter" type="string"/>

</extension>

</simpleContent>

</complexType>

</schema>

A.2 XSD: External libraries
The language definition allows calling external library functions. As basic models
and simulation definitions use this concept the XML schema is included in the
two XSDs model.xsd and +simulation.xsd+.

<?xml version="1.0" encoding="ISO -8859 -1" ?>

<!-- ################################### -->

<!-- Definition of external functions -->

<!-- ################################### -->

<schema xmlns:xs="http: //www.w3.org /2001/

XMLSchema">

<complexType name="externallibrary">

<sequence>

<element name="library" minOccurs="0"

maxOccurs="unbounded">
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<complexType>

<sequence>

<element name="function" minOccurs="0

" maxOccurs="unbounded">

<complexType>

<attribute name="name" type="

normalizedString"/>

<attribute name="parameters" type

="positiveInteger"/>

</complexType>

</element>

</sequence>

<attribute name="path" type="

normalizedString"/>

</complexType>

</element>

</sequence>

</complexType>

</schema>

A.3 XSD: Basic models

<?xml version="1.0" encoding="ISO -8859 -1" ?>

<schema xmlns:xs="http: //www.w3.org /2001/

XMLSchema">

<!-- Including distributions -->

<include schemaLocation="distribution.xsd"/>

<!-- Including external libraries -->

<include schemaLocation="extern.xsd"/>

<element name="model">

<complexType>

<sequence>

<element name="extern"

type="externallibrary"

minOccurs="0" maxOccurs="1"/>

<element name="parameters"

type="parameters" minOccurs="0"/>

<element name="influence"

type="influence" minOccurs="1"

maxOccurs="unbounded"/>

</sequence>

<attribute name="name" type="ID"

use="required"/>

<attribute name="targetname"

type="normalizedString" use="required"/>

</complexType>

</element>

<!-- Define influence type -->

<complexType name="influence">

<choice>

<sequence>

<choice>

<element name="formula" minOccurs="0">

<complexType>

<simpleContent>

<extension

base="normalizedString">

<attribute name="target"

type="normalizedString"/>

<attribute name="from"

type="double"/>

<attribute name="to"

type="double"/>

<attribute name="precision"

type="double"/>

</extension>

</simpleContent>

</complexType>

</element>

</choice>

<element name="influences" minOccurs="0">

<complexType>

<sequence>

<element name="influence" type="

influence"

minOccurs="0" maxOccurs="

unbounded"/>

</sequence>

</complexType>

</element>

</sequence>

<element name="distribution" type="

distribution" minOccurs="0"/>

</choice>

<attribute name="name"

type="normalizedString" use="required"/>

<attribute name="unit"

type="normalizedString"/>

<attribute name="comment" type="string"/>

<attribute name="model"

type="normalizedString"/>

<attribute name="equals"

type="normalizedString"/>

<attribute name="lower" type="double"/>

<attribute name="upper" type="double"/>

<attribute name="limitmode" default="cut">

<simpleType>

<restriction base="string">

<enumeration value="cut"/>

<enumeration value="collect"/>

<enumeration value="fold"/>

</restriction>

</simpleType>

</attribute>

<attribute name="mode" default="normal">

<simpleType>

<restriction base="string">

<enumeration value="normal"/>

<enumeration value="static"/>

</restriction>

</simpleType>

</attribute>

<attribute name="log" type="onoff"

default="off"/>

<attribute name="logfilename"

type="normalizedString"/>

</complexType>

<simpleType name="onoff">

<restriction base="string">

<enumeration value="on"/>

<enumeration value="off"/>

</restriction>

</simpleType>

</schema>
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A.4 XSD: Simulation definition

<?xml version="1.0" encoding="ISO -8859 -1" ?>

<!-- simulation consists of three parts: -->

<!-- Initialize items -->

<!-- Define measurement process -->

<!-- Define measurand and variables -->

<schema xmlns:xs="http: //www.w3.org /2001/

XMLSchema">

<!-- Including distributions -->

<include schemaLocation="distribution.xsd"/>

<!-- Including external libraries -->

<include schemaLocation="extern.xsd"/>

<!-- Defintion of root element simulation -->

<element name="simulation">

<complexType>

<sequence>

<element name="extern"

type="externallibrary"

minOccurs="0" maxOccurs="1"/>

<element name="instances" type="instances"

minOccurs="0"/>

<element name="processes" type="processes"

minOccurs="0"/>

<element name="calculation"

type="calculation"/>

</sequence>

</complexType>

</element>

<!-- ######################### -->

<!-- Phase 1: Initialization -->

<!-- ######################### -->

<complexType name="instances">

<sequence>

<element name="instance" minOccurs="0"

maxOccurs="unbounded">

<complexType>

<sequence>

<element name="parameters"

type="instparameters"

minOccurs="0"/>

<element name="overrides"

type="instoverrides"

minOccurs="0"/>

<element name="log" type="instlog"

minOccurs="0"

maxOccurs="unbounded"/>

</sequence>

<attribute name="model"

type="normalizedString"

use="required"/>

<attribute name="name"

type="normalizedString"

use="required"/>

<attribute name="mode"

default="normal">

<simpleType>

<restriction base="string">

<enumeration value="normal"/>

<enumeration value="static"/>

</restriction>

</simpleType>

</attribute>

</complexType>

</element>

</sequence>

</complexType>

<complexType name="instparameters">

<sequence>

<element name="parameter"

maxOccurs="unbounded">

<complexType>

<attribute name="name"

type="normalizedString"

use="required"/>

</complexType>

</element>

</sequence>

</complexType>

<complexType name="instoverrides">

<sequence>

<element name="override"

maxOccurs="unbounded">

<complexType>

<attribute name="name"

type="normalizedString"

use="required"/>

<attribute name="with"

type="normalizedString"

use="required"/>

</complexType>

</element>

</sequence>

</complexType>

<complexType name="instlog">

<attribute name="filename"

type="normalizedString" use="required"/>

<attribute name="name"

type="normalizedString" use="required"/>

<attribute name="binary" default="on">

<simpleType>

<restriction base="string">

<enumeration value="on"/>

<enumeration value="off"/>

</restriction>

</simpleType>

</attribute>

</complexType>

<!-- ########################### -->

<!-- Phase 2: Process defintion -->

<!-- ########################### -->

<complexType name="processes">

<sequence>

<element name="process"

maxOccurs="unbounded">

<complexType name="process">

<sequence>

<element name="step" minOccurs="0"

maxOccurs="unbounded">

<complexType>

<sequence>

<element name="variable"

type="variable"

maxOccurs="unbounded"/>

</sequence>

<attribute name="name"

type="normalizedString"

use="required"/>

</complexType>

</element>

<element name="variable"

type="variable"

minOccurs="0"

maxOccurs="unbounded"/>

<element name="formula"

type="formula"/>

</sequence>

<attribute name="name"

type="normalizedString"

use="required"/>

<attribute name="comment"

type="string"/>

<attribute name="mode"

default="normal">
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<simpleType>

<restriction base="string">

<enumeration value="normal"/>

<enumeration value="static"/>

</restriction>

</simpleType>

</attribute>

</complexType>

</element>

</sequence>

</complexType>

<!-- ###################### -->

<!-- Phase 3: Calculation -->

<!-- ###################### -->

<complexType name="calculation">

<sequence>

<element name="sensitivity"

type="sensitivity" minOccurs="0"/>

<element name="analyze"

type="analyze" minOccurs="0"/>

<choice>

<element name="validation"

type="validation" minOccurs="0"/>

<element name="validate" type="validate"

minOccurs="0" maxOccurs="unbounded"/>

</choice>

<element name="variable" type="variable"

minOccurs="0" maxOccurs="unbounded"/>

<element name="variation" type="variation"

minOccurs="0" maxOccurs="unbounded"/>

<element name="variationlist"

type="variationlist"

minOccurs="0" maxOccurs="unbounded"/>

<element name="variationset"

type="variationset"

minOccurs="0" maxOccurs="unbounded"/>

<element name="measurand" type="measurand"/

>

</sequence>

<attribute name="calcGUF" type="onoff"

default="off"/>

<attribute name="mctrials" type="mctrials"

default="1000"/>

<attribute name="ndig" type="positiveInteger"

default="2"/>

<attribute name="covint" type="double"

default="0.95"/>

<attribute name="covtype" default="shortest">

<simpleType>

<restriction base="string">

<enumeration value="shortest"/>

<enumeration value="symmetric"/>

</restriction>

</simpleType>

</attribute>

<attribute name="deltafactor" type="double"

default="1.0"/>

<attribute name="outputdigits"

type="positiveInteger" default="10"/>

<attribute name="dimensions" type="integer"

default="1"/>

<attribute name="rngenerator" default="mt">

<simpleType>

<restriction base="string">

<enumeration value="mt"/>

<enumeration value="wh"/>

<enumeration value="dmt"/>

</restriction>

</simpleType>

</attribute>

<attribute name="staticseed" type="onoff"

default="off"/>

<attribute name="formulaformat" default="

infix">

<simpleType>

<restriction base="string">

<enumeration value="infix"/>

<enumeration value="postfix"/>

</restriction>

</simpleType>

</attribute>

</complexType>

<complexType name="sensitivity">

<choice>

<element name="sensitivityitem" type="

sensitivityitem"

maxOccurs="unbounded"/>

<element name="sensitivityset" maxOccurs="

unbounded">

<complexType>

<sequence>

<element name="sensitivityitem"

type="sensitivityitem" maxOccurs="

unbounded"/>

</sequence>

</complexType>

</element>

</choice>

<attribute name="mode" default="none">

<simpleType>

<restriction base="string">

<enumeration value="none"/>

<enumeration value="all"/>

<enumeration value="set"/>

</restriction>

</simpleType>

</attribute>

<attribute name="type" default="OAT">

<simpleType>

<restriction base="string">

<enumeration value="OAT"/>

<enumeration value="TOO"/>

<enumeration value="sobol"/>

<enumeration value="TSI"/>

</restriction>

</simpleType>

</attribute>

<attribute name="stdfactor" type="double"

default="0.0"/>

</complexType>

<complexType name="sensitivityset">

<sequence>

<element name="sensitivityitem"

type="sensitivityitem" maxOccurs="

unbounded"/>

</sequence>

</complexType>

<complexType name="sensitivityitem">

<attribute name="mode" default="influence">

<simpleType>

<restriction base="string">

<enumeration value="influence"/>

<enumeration value="instance"/>

<enumeration value="process"/>

</restriction>

</simpleType>

</attribute>

<attribute name="process"

type="normalizedString"/>

<attribute name="instance"

type="normalizedString"/>

<attribute name="influence"

type="normalizedString"/>

</complexType>

<complexType name="analyze">

<attribute name="mode" type="onoff"

default="off"/>

<attribute name="histbars"

type="positiveInteger" default="40"/>

<attribute name="datafiles" default="keep">

<simpleType>

<restriction base="string">

<enumeration value="keep"/>

<enumeration value="delete"/>

</restriction>

</simpleType>
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</attribute>

<attribute name="filename" type="string" />

<attribute name="cormatrix" type="onoff"

default="off"/>

<attribute name="covtype" default="shortest">

<simpleType>

<restriction base="string">

<enumeration value="shortest"/>

<enumeration value="symmetric"/>

</restriction>

</simpleType>

</attribute>

</complexType>

<!-- Validation used for settings for

validation -->

<complexType name="validation">

<attribute name="mode" type="onoff"

default="off"/>

<attribute name="output" type="onoff"

default="off"/>

<attribute name="continueonfail" type="onoff"

default="off"/>

<attribute name="path"

type="normalizedString" default="validate"/>

</complexType>

<simpleType name="onoff">

<restriction base="string">

<enumeration value="on"/>

<enumeration value="off"/>

</restriction>

</simpleType>

<!-- Validate used for actually validating a

simulation file -->

<complexType name="validate">

<sequence>

<element name="valmean" minOccurs="0">

<complexType>

<choice>

<element name="value" type="

attparameter"/>

<sequence>

<element name="lower" type="

attparameter"/>

<element name="upper" type="

attparameter"/>

</sequence>

</choice>

</complexType>

</element>

<element name="valstd" minOccurs="0">

<complexType>

<choice>

<element name="value"

type="attparameter"/>

<sequence>

<element name="lower"

type="attparameter"/>

<element name="upper"

type="attparameter"/>

</sequence>

</choice>

</complexType>

</element>

</sequence>

<attribute name="name"

type="normalizedString"/>

<attribute name="dimension"

type="integer" default="1"/>

</complexType>

<!-- List of formulas to evaluate -->

<complexType name="measurand" mixed="true">

<choice>

<element name="formula" type="formula"

minOccurs="0" maxOccurs="unbounded"/>

<element name="series" type="series"

minOccurs="0" maxOccurs="unbounded"/>

<element name="regions" type="regions"

minOccurs="0" maxOccurs="unbounded"/>

<element name="optimize" type="optimize"

minOccurs="1" maxOccurs="1"/>

</choice>

</complexType>

<complexType name="series">

<sequence>

<element name="reference"

maxOccurs="unbounded">

<complexType>

<sequence>

<element name="sample"

maxOccurs="unbounded">

<complexType>

<attribute name="name"

type="normalizedString"

use="required"/>

<attribute name="process"

type="normalizedString"

use="required"/>

<attribute name="number"

type="positiveInteger"

use="required"/>

<attribute name="mode"

default="local">

<simpleType>

<restriction base="string">

<enumeration

value="local"/>

<enumeration

value="continuous"/>

</restriction>

</simpleType>

</attribute>

<attribute name="analyze"

default="none">

<simpleType>

<restriction base="string">

<enumeration

value="none"/>

<enumeration

value="linlastref"/>

<enumeration

value="linnextref"/>

<enumeration

value="lin2mean"/>

<enumeration

value="lin4mean"/>

<enumeration

value="linallmean"/>

<enumeration

value="fitline"/>

</restriction>

</simpleType>

</attribute>

<attribute name="log"

type="onoff" default="on"/>

</complexType>

</element>

</sequence>

<attribute name="name"

type="normalizedString"

use="required"/>

<attribute name="process"

type="normalizedString"

use="required"/>

<attribute name="number"

type="positiveInteger"

use="required"/>

<attribute name="log"

type="onoff" default="on"/>

</complexType>

</element>

</sequence>

</complexType>

<complexType name="regions">

<sequence>

<element name="region"

maxOccurs="unbounded">

<complexType>

<attribute name="name"

type="normalizedString"
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use="required"/>

<attribute name="process"

type="normalizedString"

use="required"/>

</complexType>

</element>

</sequence>

<attribute name="from" type="double"

use="required"/>

<attribute name="to" type="double"

use="required"/>

<attribute name="step" type="double"

default="1.0"/>

</complexType>

<complexType name="optimize">

<attribute name="reference"

type="normalizedString" use="required"/>

<attribute name="sample"

type="normalizedString" use="required"/>

<attribute name="samples"

type="positiveInteger" use="required"/>

<attribute name="analyze" default="none">

<simpleType>

<restriction base="string">

<enumeration value="none"/>

<enumeration value="linlastref"/>

<enumeration value="linnextref"/>

<enumeration value="lin2mean"/>

<enumeration value="lin4mean"/>

<enumeration value="linallmean"/>

<enumeration value="fitline"/>

</restriction>

</simpleType>

</attribute>

<attribute name="logreferences" type="onoff"

default="off"/>

</complexType>

<!-- ########################### -->

<!-- Variables and variation -->

<!-- ########################### -->

<complexType name="formula">

<simpleContent>

<attribute name="name"

type="normalizedString"/>

</simpleContent>

</complexType>

<complexType name="variable" mixed="true">

<choice>

<element name="distribution"

type="distribution" minOccurs="0"/>

<element name="switch" type="switch"

minOccurs="0"/>

</choice>

<attribute name="name"

type="normalizedString" use="required"/>

<attribute name="unit"

type="normalizedString"/>

<attribute name="comment" type="string"/>

</complexType>

<complexType name="switch">

<sequence>

<element name="case" maxOccurs="unbounded">

<complexType mixed="true">

<sequence>

<element name="distribution"

type="distribution" minOccurs="0"/>

</sequence>

<!-- Depending on reference - sample

combination -->

<attribute name="samindex" default=" -1"

type="integer"/>

<attribute name="samfrom" default=" -1"

type="integer"/>

<attribute name="samto" default=" -1"

type="integer"/>

<attribute name="samstep" default=" 1"

type="positiveInteger"/>

<attribute name="refindex" default=" -1"

type="integer"/>

<attribute name="reffrom" default=" -1"

type="integer"/>

<attribute name="refto" default=" -1"

type="integer"/>

<attribute name="refstep" default="1"

type="positiveInteger"/>

<!-- Depending on current number of

measurement -->

<attribute name="curindex" default=" -1"

type="integer"/>

<attribute name="curfrom" default=" -1"

type="integer"/>

<attribute name="curto" default=" -1"

type="integer"/>

<attribute name="curstep" default=" 0"

type="integer"/>

</complexType>

</element>

<element name="default">

<complexType mixed="true">

<sequence>

<element name="distribution"

type="distribution" minOccurs="0"/>

</sequence>

</complexType>

</element>

</sequence>

</complexType>

<complexType name="variation">

<attribute name="name"

type="normalizedString" use="required"/>

<attribute name="unit"

type="normalizedString"/>

<attribute name="from" type="double"

use="required"/>

<attribute name="to" type="double"

use="required"/>

<attribute name="step" type="double"

default="1"/>

</complexType>

<complexType name="variationlist">

<sequence>

<element name="value" type="attparameter"

maxOccurs="unbounded"/>

</sequence>

<attribute name="name"

type="normalizedString" use="required"/>

<attribute name="unit"

type="normalizedString"/>

</complexType>

<complexType name="variationset">

<sequence>

<element name="set" maxOccurs="unbounded">

<complexType>

<sequence>

<element name="variable"

type="variable"

maxOccurs="unbounded"/>

</sequence>

</complexType>

</element>

</sequence>

<attribute name="name"

type="normalizedString" use="required"/>

<attribute name="unit"

type="normalizedString"/>

</complexType>

<!-- Selecting number of simulations or

adaptive MC -->

<simpleType name="mctrials">

<restriction base="string">

<pattern value="a|([0 -9]*)"/>

</restriction>

</simpleType>

</schema>
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Listings of examples

B.1 GUM supplement 1: additive models
This example is taken from GUM supplement 1 [22, Section 9.2].

Listing B.1: Basic model opengauss.xml
1 <model name="opengauss" targetname="og">

2 <influence name="og" comment="gauss">

3 <distribution>

4 <gauss>

5 <mu parameter="#mu">0</mu>

6 <sigma parameter="#sigma">1</sigma>

7 </gauss>

8 </distribution>

9 </influence>

10 </model>

Listing B.2: Basic model openrect.xml
1 <model name="openrect" targetname="or">

2 <influence name="or" comment="rectangle">

3 <distribution>

4 <rectangle>

5 <mean parameter="#mean">0</mean>

6 <width parameter="#width">1.73205080756888 </width>

7 </rectangle>
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8 </distribution>

9 </influence>

10 </model>

Listing B.3: Simulation definition sim.xml

1 <simulation>

2 <instances>

3 <!-- Normal distributions for first example -->

4 <instance name="g1" model="opengauss"/>

5 <instance name="g2" model="opengauss"/>

6 <instance name="g3" model="opengauss"/>

7 <instance name="g4" model="opengauss"/>

8

9 <!-- Rectangular distributions for second and third

example -->

10 <instance name="r1" model="openrect"/>

11 <instance name="r2" model="openrect"/>

12 <instance name="r3" model="openrect"/>

13 <instance name="r4" model="openrect"/>

14

15 <!-- Last rectangular is different for third example -->

16 <instance name="r5" model="openrect">

17 <parameters>

18 <parameter name="#width">

19 17.32050807568877

20 </parameter>

21 </parameters>

22 </instance>

23 </instances>

24

25 <calculation mcsimulations="100" >

26 <analyze mode="on" histbars="40"/>

27 <validation mode="on" output="on" path="validate"/>

28 <measurand>

29 <formula name="gauss">g1+g2+g3+g4</formula>

30 <formula name="rect1">r1+r2+r3+r4</formula>

31 <formula name="rect2">r1+r2+r3+r5</formula>

32 </measurand>

33 </calculation>

34 </simulation>

B.2 GUM supplement 1: gauge block calibration
This example is taken from GUM supplement 1 [22, Section 9.5]. Simulation
definition uses advanced settings for adaptive Monte Carlo approach [22, Section
7.9].
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Listing B.4: Basic model length.xml
1 <model name="length" targetname="l">

2 <influence name="l" comment="Length of gauge block">

3 <formula>

4 ls*(1+as*(t-dt))+d / (1+t*(as+da)) - 50e6

5 </formula>

6

7 <influences>

8 <!-- Definition of ls -->

9 <influence name="ls" comment="Calibration of reference

standard">

10 <distribution>

11 <studentt>

12 <xbar>50000623 </xbar>

13 <std>25</std>

14 <dgf>18</dgf>

15 </studentt>

16 </distribution>

17 </influence>

18

19 <!-- Definition of d -->

20 <influence name="d" comment="Length of the reference

standard">

21 <formula>dq+d1+d2</formula>

22 <influences>

23 <influence name="dq" comment="Quantity of repeated

realizations">

24 <distribution>

25 <studentt>

26 <xbar>215</xbar>

27 <std>6</std>

28 <dgf>24</dgf>

29 </studentt>

30 </distribution>

31 </influence>

32 <influence name="d1" comment="Random effects">

33 <distribution>

34 <studentt>

35 <xbar>0</xbar>

36 <std>4</std>

37 <dgf>5</dgf>

38 </studentt>

39 </distribution>

40 </influence>

41 <influence name="d2" comment="Systematic effects">

42 <distribution>

43 <studentt>

44 <xbar>0</xbar>

45 <std>7</std>
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46 <dgf>8</dgf>

47 </studentt>

48 </distribution>

49 </influence>

50 </influences>

51 </influence>

52

53 <!-- Definition of alpha_s -->

54 <influence name="as" comment="Thermal expansion

coefficient">

55 <distribution>

56 <rectangle>

57 <mean>0.0000115 </mean>

58 <width>0.000002 </width>

59 </rectangle>

60 </distribution>

61 </influence>

62

63 <!-- Definition of theta -->

64 <influence name="t" comment="Deviation of temperature">

65 <formula>tq+delta </formula>

66 <influences>

67 <influence name="tq" comment="Average temperature

deviation">

68 <distribution>

69 <gauss>

70 <mu> -0.1</mu>

71 <sigma>0.2</sigma>

72 </gauss>

73 </distribution>

74 </influence>

75 <influence name="delta" comment="Effect of cyclic

temp. variation">

76 <distribution>

77 <arcsine>

78 <lower> -0.5</lower>

79 <upper>0.5</upper>

80 </arcsine>

81 </distribution>

82 </influence>

83 </influences>

84 </influence>

85

86 <!-- Definition of delta_alpha -->

87 <influence name="da" comment="Difference in expansion

coefficient">

88 <distribution>

89 <cltrapez>

90 <lower> -0.000001</lower>
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91 <upper>0.000001 </upper>

92 <inexactness>0.0000001 </inexactness>

93 </cltrapez>

94 </distribution>

95 </influence>

96

97 <!-- Definition of delta_psi -->

98 <influence name="dt" comment="Difference in

temperatures">

99 <distribution>

100 <cltrapez>

101 <lower> -0.050</lower>

102 <upper> 0.050</upper>

103 <inexactness>0.025</inexactness>

104 </cltrapez>

105 </distribution>

106 </influence>

107 </influences>

108 </influence>

109 </model>

Listing B.5: Simulation definition sim.xml

1 <simulation>

2 <instances>

3 <instance name="l" model="length"/>

4 </instances>

5 <calculation mcsimulations="a" covint="0.99"

6 covtype="shortest" ndig="2">

7 <analyze mode="on" histbars="40"/>

8 <measurand>l</measurand>

9 </calculation>

10 </simulation>

B.3 Best Practice Guide No. 6: flow in a channel
This example is taken from SSFM Best Practice Guide No. 6 [15, Section 9.3]
and originated from the National Engineering Laboratory (NEL) in the UK. Ad-
ditional information was provided as private communication by Peter Harris from
the National Physics Laboratory (NPL) in the UK.

Listing B.6: Basic model flowrate.xml
1 <model name="flowrate" targetname="Q">

2 <!-- calibration of tape rule -->

3 <influence name="drcal" comment="calibration"

4 mode="static">
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5 <distribution>

6 <gauss>

7 <mu>0.0</mu>

8 <sigma>0.00025*0.00025 </sigma>

9 </gauss>

10 </distribution>

11 </influence>

12

13 <influence name="h" comment="nominal head" unit="m"

14 mode="static">

15 <formula>1.0 + dhcal + dhres +dhzero + dhmeas </formula>

16 <influences>

17 <influence name="dhcal" comment="calibration">

18 <distribution>

19 <gauss>

20 <mu>0.0</mu>

21 <sigma>0.0015*0.0015 </sigma>

22 </gauss>

23 </distribution>

24 </influence>

25 <influence name="dhres" comment="resolution">

26 <distribution>

27 <rectangle>

28 <mean>0.0</mean>

29 <width>0.0005*0.0005/3 </width>

30 </rectangle>

31 </distribution>

32 </influence>

33 <influence name="dhzero" comment="zero">

34 <distribution>

35 <gauss>

36 <mu>0.0</mu>

37 <sigma>0.0014*0.0014/10 </sigma>

38 </gauss>

39 </distribution>

40 </influence>

41 <influence name="dhmeas" comment="measurement">

42 <distribution>

43 <gauss>

44 <mu>0.0</mu>

45 <sigma>0.0025*0.0025 </sigma>

46 </gauss>

47 </distribution>

48 </influence>

49 </influences>

50 </influence>

51

52 <influence name="b" comment="throat width" unit="m"

53 mode="static">
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54 <formula>0.997+ drcal+dbmeas </formula>

55 <influences>

56 <influence comment="drcal" equals="drcal"/>

57 <influence name="dbmeas" comment="measurement">

58 <distribution>

59 <studentt>

60 <xbar>0.0</xbar>

61 <std>0.0022*0.0022/9 </std>

62 <dgf>8</dgf>

63 </studentt>

64 </distribution>

65 </influence>

66 </influences>

67 </influence>

68

69 <influence name="Q" comment="flow rate">

70 <formula>

71 pow (2/3 ,3/2)*sqrt(g)*Cv*Cd*b*pow(h ,3/2)

72 </formula>

73

74 <influences>

75 <influence comment="b" equals="b"/>

76 <influence comment="h" equals="h"/>

77

78 <influence name="g" comment="gravity" unit="ms^-2">

79 <formula>9.812 + dg</formula>

80 <influences>

81 <influence name="dg" comment="uncertainty">

82 <distribution>

83 <gauss>

84 <mu>0.0</mu>

85 <sigma>0.00025*0.00025 </sigma>

86 </gauss>

87 </distribution>

88 </influence>

89 </influences>

90 </influence>

91

92 <influence name="Cd" comment="Cd">

93 <formula>(1 -0.006*L/b)*pow (1 -0.003*L/h ,3/2)</formula>

94 <influences>

95 <influence comment="b" equals="b"/>

96 <influence comment="h" equals="h"/>

97 <influence name="L" comment="throat length">

98 <formula>3.012+ drcal+dLmeas </formula>

99 <influences>

100 <influence comment="drcal" equals="drcal"/>

101 <influence name="dLmeas" comment="measurement">

102 <distribution>
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103 <studentt>

104 <xbar>0.0</xbar>

105 <std>0.0017*0.0017/9 </std>

106 <dgf>8</dgf>

107 </studentt>

108 </distribution>

109 </influence>

110 </influences>

111 </influence>

112 </influences>

113 </influence>

114

115 <influence name="Cv" comment="Cv">

116 <formula target="Cv" from="0" to="5"

117 precision="0.00001">

118 pow (2*b*h*Cv ,2) -27*pow(B*(h+p) ,2)*(pow(Cv ,2/3) -1)

119 </formula>

120 <influences>

121 <influence comment="b" equals="b"/>

122 <influence comment="h" equals="h"/>

123 <influence name="B" comment="approach channel

124 width">

125 <formula>2.002+ drcal+dBmeas </formula>

126 <influences>

127 <influence comment="drcal" equals="drcal"/>

128 <influence name="dBmeas" comment="measurement">

129 <distribution>

130 <studentt>

131 <xbar>0.0</xbar>

132 <std>0.0026*0.0026/6 </std>

133 <dgf>5</dgf>

134 </studentt>

135 </distribution>

136 </influence>

137 </influences>

138 </influence>

139 <influence name="p" comment="hump height">

140 <formula>pnom+drcal+dpmeas </formula>

141 <influences>

142 <influence name="pnom" comment="Nominal value">

143 <distribution>

144 <constant>

145 <value parameter="#hh">0.252 </value>

146 </constant>

147 </distribution>

148 </influence>

149 <influence comment="drcal" equals="drcal"/>

150 <influence name="dpmeas" comment="measurement">

151 <distribution>
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152 <studentt>

153 <xbar>0.0</xbar>

154 <std>0.0019*0.0019/9 </std>

155 <dgf>8</dgf>

156 </studentt>

157 </distribution>

158 </influence>

159 </influences>

160 </influence>

161 </influences>

162 </influence>

163 </influences>

164 </influence>

165 </model>

Listing B.7: Simulation definition sim.xml

1 <simulation>

2 <instances>

3 <instance name="Q" model="flowrate"/>

4 </instances>

5

6 <calculation>

7 <analyze mode="on" histbars="60"/>

8 <measurand>

9 <formula name="Q">Q</formula>

10 </measurand>

11 </calculation>

12 </simulation>
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APPENDIX C

Definitions and terminology

This work is based on the three documents GUM [37], GS1 [22], and VIM [23].
The vocabulary is used as consistently as possible according to these documents.
Although, the work takes its liberties in the language definition in consultation
with experts. Different usage is stated on occasion explicitly if it is not clear from
context. Definitions in this chapter are annotated if they appear in the same form
in one of the documents.

C.1 Metrology
metrology science of measurement and its application (VIM)

measurement set of operations having the object of determining a value of a
quantity (GUM); process of experimentally obtaining one or more quantity values
that can reasonably be attributed to a quantity (VIM)

measurement model mathematical relation among all quantities known to be
involved in a measurement (VIM)

measurement standard realization of the definition of a given quantity, with
stated quantity value and associated measurement uncertainty, used as a reference
(VIM)
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working measurement standard, check standard, control standard mea-
surement standard that is used routinely to calibrate or verify measuring instru-
ments or measuring systems (VIM)

measurement method (method of measurement) logical sequence of opera-
tions, described generically, used in the performance of measurements (GUM);
generic description of a logical organization of operations used in a measurement
(VIM)

measurement scenario actual real-world setting of a measurement taking place
in a common, natural environment

series of measurements number of sequential or parallel measurements; alter-
nating reference measurements and sample measurements

repeated measurements number of sequential or parallel measurements with
the same sample

measurement procedure set of operations, described specifically, used in the
performance of particular measurements according to a given method (GUM);
detailed description of a measurement according to one or more measurement
principles and to a given measurement method, based on a measurement model
and including any calculation to obtain a measurement result (VIM)

measurement process and steps actual realization of a measurement including
activities and a time frame; the measurement process may be divided into several
steps

influence quantity quantity that is not the measurand but that affects the result
of the measurement (GUM)

measurand particular quantity subject to measurement (GUM); quantity in-
tended to be measured (VIM)

equation of the measurand functional relationship of the influence or input
quantities; the result is one possible value for the measurand.
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input quantity quantity that must be measured, or a quantity, the value of which
can be otherwise obtained, in order to calculate a measured quantity value of a
measurand (VIM)

influence quantity quantity that, in a direct measurement, does not affect the
quantity that is actually measured, but affects the relation between the indication
and the measurement result

output quantity quantity to be determined by evaluation of the equation of the
measurand (GUM); quantity, the measured value of which is calculated using the
values of input quantities in a measurement model (VIM)

(measurement) uncertainty parameter, associated with the result of a mea-
surement, that characterizes the dispersion of the values that could reasonably
be attributed to the measurand (GUM); non-negative parameter characterizing the
dispersion of the quantity values being attributed to a measurand, based on the
information used (VIM)

standard uncertainty measurement uncertainty expressed as a standard devia-
tion (VIM)

expanded measurement uncertainty expanded uncertainty product of a com-
bined standard measurement uncertainty and a factor larger than the number one
(VIM)

uncertainty budget statement of a measurement uncertainty, of the components
of that measurement uncertainty, and of their calculation and combination (VIM)

GUM uncertainty framework application of the law of propagation of uncer-
tainty and the characterization of the output quantity by a Gaussian distribution or
a scaled and shifted t-distribution in order to provide a coverage interval (GS1)

Monte Carlo method method for the propagation of distributions by perform-
ing random sampling from probability distributions (GS1)

C.2 Monte Carlo simulation
simulation one performance to evaluate the measurement uncertainty for a mea-
surement scenario; it consists of M trials
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trial one evaluation of the equation of the measurand with one set of sampled
random numbers for the influence quantities of the equation of the measurand

adaptive Monte Carlo procedure a basic implementation of an adaptive Monte
Carlo procedure involves carrying out an increasing number of Monte Carlo trials
until the various results of interest have stabilized in a statistical sense (GS1)

C.3 Statistics
probability distribution function giving the probability that a random variable
takes any given value or belongs to a given set of values; the probability on the
whole set of values of the random variable equals 1 (GUM)

(cumulative) distribution function (CDF) function giving, for every value ξ ,
the probability that the random variable X be less than or equal to ξ

GX(ξ ) = Pr(X ≤ ξ )

(GUM)

probability density function (PDF) derivative (when it exists) of the distribu-
tion function

gX(ξ ) = dGX(ξ )/dξ .

gX(ξ )dξ is the “probability element”

gX(ξ ) = Pr(ξ < X < ξ +dξ )

(GUM)

coverage interval, uncertainty interval interval containing the value of a quan-
tity with a stated probability, based on the information given (GS1); in this work
the term uncertainty interval is used synonymously with coverage interval

coverage probability, level of confidence probability that the value of a quan-
tity is contained within a specified coverage interval (GS1)

shortest coverage interval coverage interval for a quantity with the shortest
length (largest value minus smallest value in a coverage interval) among all cov-
erage intervals for that quantity having the same coverage probability (GS1)
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C.4 Sensitivity and uncertainty analysis
The definitions for sensitivity and uncertainty analysis are used according to [12]
and [68].

uncertainty analysis assess the effects of parameter uncertainties on the uncer-
tainties in calculated results

sensitivity analysis (SA) quantify the effects of parameter variations on cal-
culated results; terms such as influence, importance, ranking by importance and
dominance are all related to sensitivity analysis

factor screening extract influential factors in systems with a large number of
input quantities

local sensitivity analysis examine local (point) impact of the influence quanti-
ties, usually using partial derivatives or analytical methods

global sensitivity analysis apportion the uncertainty to the influence quantities;
usually a sampling approach is used
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