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Abstract

The study presented here makes use of Stated Preference (SP) data on
mode choice collected as part of a recent survey on long distance travel un-
dertaken in three European countries. The purpose of this article is twofold.
It aims at exploring the impacts of the choice of probability distributions
while accounting for unobserved taste heterogeneity and it aims at focusing
on the derived estimation of the distributions of values of travel time savings
(VTTS).

We compare ten distributions, each having particular properties in terms
of domain, location, scale, and shape. Due to the repetitive nature of the
SP experiments and the inherent heterogeneity in the distribution of the
characteristics of the respondents as well as trip purposes, we make use of
mixed Multinomial Logit (MNL) random utility models for panel data in
the additional presence of agent effects to model likely persistent unobserved
effects from one choice situation to another.

It is found that the distributions that fit data the best differ from one
country to another, hence VTTS distributions, thereby suggesting existence
of European disparities as it regards long distance mode choice. It is also
found that long-distance travellers pay a lot more attention to access time
to the main mode as compared to in-vehicle time.
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1 INTRODUCTION1

The study presented in this paper makes use of Stated Preference2

(SP) data on mode choice collected as part of a recent survey on long3

distance travel undertaken in three European countries. We discuss4

some of the issues that arise with the estimation and the computation5

of the implied distribution of the value of travel-time savings in the6

case of discrete choice models that allow for unobserved taste hetero-7

geneity.8

The choice of distribution for the specification of unobserved taste9

heterogeneity is one of the key issues in the formulation of a discrete10

choice model as it models not only the prior beliefs of the econometri-11

cian but also the resulting outputs that can be produced, especially12

as it regards willingness-to-pay measures such as the value of travel13

time savings. Those a priori assumptions may be based on theoretical14

or empirical knowledge. However, it does not mean that the choice of15

a specific distribution (bounded or not, skewed or not, etc.) between16

several competing ones is the most relevant. Train (2003), Hess et al.17

(2006a), Hess et al. (2006b), Fosgerau (2006) discussed in detail this18

issue and concluded that the best empirical strategy is to test the per-19

formance of several ones and not to limit to the conventional Normal20

or logNormal distributions. By crossing the results of their different21

applications, one would accept that it is a very sensible way of deal-22

ing with the problem as their results concluded in favour of different23

distributions to model unobserved taste heterogeneity. In the present24

paper, we compare the relative performance of 10 distributions (in-25

cluding the degenerate one).26

As already highlighted by Wardman (1997), Mackie et al. (2001),27

Lapparent et al. (2002), Mackie et al. (2003), Brownstone et al. (2003),28

Hensher (2006), Fosgerau (2006), Hess et al. (2008), Axhausen et al.29

(2008), but also many other authors, reliable measures of the valuation30

of travel time savings (VTTS) are key values to assess the costs and31

benefits of transport planning policies and/or transport investments.32

In the presence of unobserved taste heterogeneity, VTTS is modelled33

as a distribution that is based on the assumptions as it regards the dis-34

tributions of tastes. Furthermore, thanks to the collected data, we are35

capable to distinguish two time dimensions in the present approach:36

in-vehicle and access+egress travel times. We compute these VTTS37

distributions for each of the three countries and each of the 10 models38

we develop. The range of obtained VTTS values may be useful to plan39

policy that favours intermodal transport.40

The rest of the article is organized as follows. Section 2 presents41

the random utility model that is used for our analysis. It discusses the42
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specification of the utility function, the selected modeling approaches1

that pertain to unobserved taste heterogeneity, the implied distribu-2

tions of the values of travel time savings, and identification and esti-3

mation of the parameters of interest. Section 3 presents the SP data4

used for the empirical application. It discusses the formation of the5

three samples we use and it reports associated descriptive statistics6

on the choice experiments the decision makers were faced with. Sec-7

tion 4 reports the estimates of the 30 models we implemented within8

our proposed framework of analysis. It is compared their relative per-9

formance and the implied distributions of the values of travel time10

savings they produce. The last section concludes by elaborating on11

further research tracks.12

2 MODEL13

2.1 Utility specification14

A decision maker i chooses among M main modes of transport15

each time he/she takes a long distance trip. The utility U that he/she16

would obtain from alternative m in choice situation t is defined as17

Ui,t,m (xi,t,m, ηi,m, ǫi,t,m;αi,β) = cm +
αi,1costi,t,m +
αi,2ivtimei,t,m +
αi,3acctimei,t,m +
αi,4changei,t,m +
ωmηi,m +
ǫi,t,m.

(1)

where β = (c1, ω1, · · · , cM , ωM ), where the observed attributes are18

collected into xi,t,m :=
(

costi,t,m, ivtimei,t,m, acctimei,t,m, changei,t,m

)

,19

and where the corresponding weights are collected into a vector αi =20

(αi,1, αi,2, αi,3, αi,4). ”cost” models the trip cost. ”ivtime” models in-21

vehicle time. ”acctime” is defined as the sum of access and egress22

times. Finally, ”change” models the number of connexions needed to23

carry out the trip.24

cm is an intercept term. αi,j, j = 1, · · · , 4, are often referred to25

as taste parameters. They vary over decision makers but not over26

time for each decision maker. As already highlighted by Train (1998),27

tastes of a decision maker may change over time, and in particular28

may change in response to previous trip experiences. In the context of29

SP experiment, due to virtuality and promptness of successive choice30

situations, we assume that there are neither state dependence nor31

serial correlation.32
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Anyway, in situations with repeated choices over time, whatever1

is the length of the period in between two consecutive of the latter,2

one would expect that there are persistent unobserved factors that3

may play a role on the behavior of the decision maker. These factors4

may also change from one alternative to another. Such an assump-5

tion is modeled for each choice alternative m by an agent effect ηi,m6

(Walker et al. (2007)). ωm is the associated coefficient. It models the7

scale of the agent effect that enters the m-th alternative.8

Finally, ǫi,t,m are generic unobserved random terms that are inde-9

pendently and identically distributed type 1 extreme value. Collecting10

appropriately these random terms into a vector ǫi and defining a vec-11

tor of values ai ∈ R
MT , it is assumed that their joint cumulative12

density function may be written as13

Fǫi;κ (ai) =
∏T

t=1

∏M
m=1 exp (− exp (−κai,t,m)) . (2)

κ models the scale of the distribution.14

There is no prior theoretical argument to bound the distribution15

of the random agent effects. In the present approach, for convenience16

purpose only, we postulate that they are independently and identically17

distributed standard normal:18

ηi,m
iid→ N (0, 1) . (3)

2.2 VTTS distributions19

The VTTS function is defined as the marginal rate of substitution20

between travel time and travel cost. Generally speaking, it models the21

price the decision maker is willing to pay to save one unit of travel22

time such as to maintain his/her level of utility. Due to linearity of23

the utility function that is presented in equation 1 and due to distinc-24

tion between in-vehicle travel time and out-of-vehicle (access+egress)25

travel time, we have actually two VTTS measures that appear to be26

defined as the ratios between the corresponding coefficients of travel27

time and the coefficient of travel cost.28

The researcher does not observe αi. As statistical inference is29

based on only observed data, the target quantities are therefore the30

expectations of these ratios with respect to the joint distribution that31

is assumed for the random tastes of the decision maker:32

πivtime =

∫

R4

αi,2

αi,1
h2 (αi|θ) dαi, πacctime =

∫

R4

αi,3

αi,1
h2 (αi|θ) dαi (4)

h2 is defined as a distribution that is parametrized by θ and which33

specification will be developed in a later subsection. What can be34
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stated from now is that it is defined as the product of univariate dis-1

tributions as we assume that the tastes are independently distributed.2

Estimation of the distributions in equation 4 will be performed by3

using Monte-Carlo integration techniques (see later in the paper).4

Of course, we notice the reader that there is a considerable stream5

of literature in favor of nonlinearities in the valuation of travel time, see6

for instance Lapparent et al. (2002), Mackie et al. (2003), Hess et al.7

(2008), Axhausen et al. (2008), to cite a few. This work is left aside8

and will be subject of further research. The purpose of this paper is9

rather to pursue with a standard linear utility function and to deepen10

the analysis of unobserved taste heterogeneity by widening the range11

of probability distributions that may be used in the context of mode12

choice analysis and estimation of values of travel time savings for long13

distance travel.14

2.3 Choice probabilities15

Random utility maximization implies that the respondent chooses16

the mode of transport that provides the greater level of utility in each17

choice situation. Let di,t ∈ {1, · · · ,M} denote the i-th respondent’s18

chosen alternative in experiment t, and let di = (di,1, · · · , di,T ) denote19

the respondent’s sequence of choices. Since the error terms in ǫi are20

identically and independently distributed type 1 extreme value, the21

choice probability conditional on αi,ηi = (ηi,m, · · · , ηi,M ), and xi, that22

the decision maker i chooses the m-th mode in situation t is a MNL23

choice probability (McFadden, 1974). Furthermore, still because the24

error terms in ǫi are independent over choice experiments, the joint25

conditional probability of the decision maker’s sequence of choices is26

the product of these MNL marginal choice probabilities:27

Pr (di|xi,ηi;αi,β, κ) =
∏T

t=1

∏M
m=1

[

exp(κVi,t,m(xi,t,m,ηi,m;αi,β))
PM

k=1 exp(κVi,t,k(xi,t,k,ηi,k;αi,β))

]yi,t,m (5)

where Vi,t,m (xi,t,m, ηi,m;αi,β) = Ui,t,m (xi,t,m, ηi,m, ǫi,t,m;αi,β)−ǫi,t,m,28

and where yi,t,m = 1 if m is chosen or 0 otherwise.29

Here again, the researcher does not observe αi and ηi. As al-30

ready stated, as statistical inference is based on only observed data,31

the target quantity is therefore the expectation of the choice proba-32

bilities presented in equation 5 with respect to the joint distribution33

of the unobserved terms. These conditional choice probabilities are34

integrated over all possible values of αi and ηi using the latter’s prob-35

ability density function, here modelled by h1 and h2. h1 is defined36

as the product of univariate standard normal distributions and, as al-37
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ready stated, h2 is defined as a distribution that is parametrized by θ1

and will be defined in a later subsection:2

Pr (di|xi;θ,β, κ) =
∫

R4+M Pr (di|xi,ηi;αi,β, κ) h1 (ηi) h2 (αi|θ) dηidαi
(6)

2.4 Log-likelihood function3

We carry out estimation of the parameters of interest by maximiz-4

ing the likelihood function. Equivalently, the log-likelihood function5

that one would like to maximize is defined as the sum of the logarithms6

of the probabilities of the observed sequences of choices. It may be7

written as:8

ℓ =
∑n

i=1 ln (Pr (di|xi;θ,β, κ)) . (7)

One important point that pertains to estimation is identification9

of the parameters of interest. Because the utility function models10

preference orderings up to a monotone increasing transformation and11

because what determines choice are the differences between utility lev-12

els (see for instance the books of Ben-Akiva and Lerman (1985), Train13

(2003)), one must define additional exclusion constraints to ensure a14

one-to-one mapping between the log-likelihood function and the set15

of parameters of interest. Along with our specification of the util-16

ity function, one must select an alternative of reference from which17

is excluded the intercept term. Due to the panel dimension of our18

model, Walker et al. (2007) showed that we do not need to exlude the19

agent effect from this alternative of reference. In addition, the scale20

parameter κ is fixed to 1.21

Note also that the integral in the probability that is presented22

in equation 5 does not have a closed form. We make therefore use23

of Monte-Carlo integration techniques: the multivariate integral is24

approximated through simulation. In particular, for each decision25

maker i, and given values of θ and β, R draws of αi,�,ηi are taken26

from the probability density functions h1 and h2. For each draw, the27

joint probability in equation 5 is then calculated and the results are28

averaged over draws. The objective is then to maximize the simulated29

log-likelihood function over θ and β. This function is defined as30

ℓR =
∑n

i=1 ln
(

1
R

∑R
r=1 Pr (di|xi,η

r
i ;α

r
i ,β, κ)

)

, (8)

where ηr
i ;α

r
i denotes the r-th draw from h1 and h2 given θ.31

As already stated by Gouriéroux and Monfort (1996), Train (2003),32

if each draw is independent each from the others and from the prob-33

ability in equation 5, then the simulated probability converges al-34

most surely to the ”true” probability, with variance inversely pro-35

portional to R. In maximum simulated likelihood (MSL) estimation,36
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if R rises faster than the square root of the number of observation,1

then the effects of simulation disappear asymptotically, and MSL is2

equivalent to maximum likelihood with exact probabilities (see, e.g.,3

Hajivassiliou and Ruud (1994); Hajivassiliou (1997), Lee (1995)). Un-4

der these regularity conditions (and some more), the MSL estimator5

is asymptotically unbiased, consistent, normal and efficient.6

However, given a number of replications R, simulation bias and7

variance stays inherent to estimation. Furthermore, Pakes and Pollard8

(1989) suggest to use the same draws at each evaluation of the simu-9

lated log-likelihood function while estimating the parameters of inter-10

est (the population parameters in θ and β). In our application, we use11

Halton draws for the simulation (Train (2000)). This quasi-random12

number generation technique has been found to provide greater accu-13

racy than standard pseudo-random number draws in simulation-based14

estimation of discrete choice models. Of course, as also stated in Bhat15

(2003), Hess et al. (2006c), it is not the only way to generate appro-16

priate draws.17

We turn now to distributional assumptions that pertain to taste18

heterogeneity.19

2.5 Taste heterogeneity: distributional assump-20

tions21

A brief review of the literature shows that most of actual modeling22

analyzes rely almost exclusively on the use of either the normal distri-23

bution or the logormal distribution. Few attention has been paid to al-24

ternative distributions, although the notable exceptions of Hess et al.25

(2006b), Fosgerau (2006), Fosgerau and Hess (2008), from which we26

inspire to buid up our empirical analysis. Anyway, there is sill a need27

for further research on that topic as it would be profitable to make28

a systematical use of a wider range of distributions when modeling29

unobserved taste heterogeneity.30

In our approach, we implement 10 distributions. All of them are31

parametric continuous distributions. We present now briefly these dis-32

tributions. We refer the reader to Evans et al. (2000), Johnson et al.33

(1994), for a more detailed discussion of the presented probability34

distributions.35

2.5.1 Degenerate distribution36

The most simple ”distribution” is obtained by assuming that there37

is no unobserved taste heterogeneity. Such an assumption means that38
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the parameters do not vary accross the population of decision makers:1

∀i = 1, · · · , n,∀j = 1, · · · ,M,αi,j = µj (9)

µj models the location of the parameter αi,j . This point has a proba-2

bility mass that is equal to 1.3

2.5.2 Normal distribution4

Another distribution we postulate to be likely is the Normal distri-5

bution. It is a symmetric and unbounded distribution whose domain6

of definition is R. Assuming that the taste parameters are indepen-7

dently distributed, the distribution is driven for all j = 1, 2, 3, 4, by8

two parameters: location µj and scale σj , the latter being equal to9

variance when squared. The associated probability density function is10

defined as11

ϕαi,j
(ai,j|µj , σj) =

1

σj

√
2π

exp

(

−(ai,j − µj)
2

2σ2
j

)

, ai,j ∈ R (10)

and the corresponding cumulative density function is defined as12

Φαi,j
(ai,j|µj , σj) =

∫ ai,j

−∞

ϕαi,j
(bi,j|µj , σj) dbi,j (11)

Given a standard Normal random variables Xi,j → N (0, 1)1, drawing13

an outcome αi,j from the Normal distribution with location µj and14

scale σj is obtained by applying15

αi,j = µj + σjXi,j . (12)

The peak (mode) of the distribution is location is at the mean µj (the16

mode is equal to the mean) and the distribution is unbounded on both17

sides.18

2.5.3 LogNormal distribution19

The LogNormal distribution is bounded from the left, i.e. defined20

on R
⋆
+. It is an asymmetric distribution that is skewed to the right.21

It is driven by two parameters: location µ and scale σ. Actually,22

the logarithm of a LogNormal random variable is a Normal random23

variable. ∀i = 1, · · · , n, j = 1, · · · ,M , let Yi,j be an independent24

1Almost all statistical softwares implement such a distribution.
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LogNormal random variable. Its probability density function may be1

written as2

ϕYi,j
(ai,j|µj , σj) =

1
ai,jσj

√
2π

exp

(

− (ln(ai,j )−µj)
2

2σ2
j

)

, ai,j ∈ R
⋆
+

(13)

and its cumulative density function may then be written as3

ΦYi,j
(ai,j|µj , σj) =

∫ ai,j

−∞

ϕYi,j
(bi,j |µj, σj) dbi,j (14)

A draw from this distribution is obtained by applying the following4

formulae:5

Yi,j = exp (µj + σjXi,j) ,Xi,j → N (0, 1) (15)

As one expects the signs of the time, cost, and change coefficients to be6

negative, one obtains a draw from a reversed LogNormal distribution7

by applying for all j = 1, 2, 3, 4,,8

αi,j = −Yi,j (16)

Even though the LogNormal distribution appears attractive for several9

reasons (bounded from one side and uniquely signed), it exhibits a long10

tail on its unbounded side, meaning that the probability of a very large11

(or a very low) number has a non null probability.12

2.5.4 Uniform distribution13

The (two sided) Uniform distribution has the advantage of being14

bounded on both side but at the cost of the same probability of oc-15

curence of any outcome on the interval on which it is defined. It is16

assumed that17

αi,j
iid→ U]µj−sj ,µj+sj [ (17)

As presently formulated, the distribution is driven by two parameters:18

location and spread. Its probability density function may be written19

as20

ϕαi,j
(ai,j |µj, sj) =

1

2sj

, ai,j ∈ ]µj − sj, µj + sj[ (18)

and its cumulative density function may be written as21

Φαi,j
(ai,j|µj , sj) =

ai,j − (µj − sj)

2sj

(19)

Assuming that it is possible to draw easily an outcome of a random22

variable Ui,j that is distributed U]−1,1[, drawing an outcome from the23

U]µj−sj ,µj+sj [ distribution is obtained by computing24

αi,j = µj + sjUi,j (20)
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2.5.5 Symmetric Triangular distribution1

Given two independently and identically uniform distributed ran-2

dom variables, the sum of them defines a random variable that is3

symmetric Triangular distributed.4

∀i = 1, · · · , n, j = 1, · · · ,M , let Ui,j and Zi,j be two independently5

and identically Uniform distributed random variables on the interval6

]µj − sj, µj + sj[. Then αi,j = Ui,j + Zi,j is symmetric Triangular7

distributed on the interval ]2µj − 2sj, 2µj + 2sj[. The distribution is8

bounded on both sides with a peak (mode) at 2µj. Its probability9

density function may be written as10

ϕαi,j
(ai,j|µj , sj) =

ai,j−2(µj−sj)
4sj

I (ai,j ≤ 2µj) +
2(µj−sj)−ai,j

4sj
I (ai,j ≥ 2µj)

(21)

and its cumulative density function may be written as11

Φαi,j
(θi,j|µj, sj) =

(ai,j−2(µj−sj))
2

8sj
I (ai,j ≤ 2µj) +

(

1 − (2(µj−sj)−ai,j)
2

8sj

)

I (ai,j ≥ 2µj) .

(22)

Simulating outcomes of this Symmetric Triangular distribution is rather12

easy. Given values of µj and σj , and given draws from two Uniform13

U]−1,1[ random variables, we just need to compute14

αi,j = 2µj + sj (Wi,j + Ti,j) ,Wi,j
iid→ U]−1,1[, Ti,j

iid→ U]−1,1[. (23)

2.5.6 Exponential distribution15

The Exponential distribution is defined for strictly positive out-16

comes. It is completely specified by one parameter that may take any17

strictly positive value. ∀i = 1, · · · , n, j = 1, · · · ,M , let Yi,j be an in-18

dependent random variable that is distributed Exponential with rate19

parameter λj . Its probability density function may be written as20

ϕYi,j
(ai,j|λj) = λj exp (−λjai,j) , ai,j ∈ R

⋆
+, λj ∈ R

⋆
+. (24)

The shape of the probability density function is the same whatever21

is the value of λ. It is decreasing with respect to Y and its curve22

is convex. However, the speed at which it decreases, the degree of23

convexity, and the thickness of the (right) tail of the distribution, are24

driven by λ. The larger λ, the larger the decreasing speed, the larger25

the degree of convexity, and the larger the thinness of the tail.26
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Its cumulative density function may be written as1

ΦYi,j
(ai,j|λj) = 1 − exp (−λjai,j) (25)

Drawing an outcome from the Exponential distribution is easily ob-2

tained by computing3

Yi,j = − 1

λj

ln

(

1

2
− 1

2
Ui,j

)

, Ui,j
iid→ U]−1,1[. (26)

As one expects the signs of the time, cost, and change coefficients to4

be negative, a draw of the parameter αi,j is then obtained by taking5

the negative of the latter:6

αi,j = −Yi,j. (27)

2.5.7 Pareto distribution7

The Pareto distribution is also defined for strictly positive out-8

comes. It has the same properties as the Exponential distribution9

with the exception that it introduces an additional location parame-10

ter that manages a right translation of the distribution in the domain11

of strictly positive numbers. This distribution can be obtained as a12

mixture distribution from the exponential distribution using a gamma13

mixing distribution. ∀i = 1, · · · , n, j = 1, · · · ,M , let Yi,j be an inde-14

pendent Pareto distributed random variable with location parameter15

µj and shape parameter λj . Its probability density function is defined16

as17

ϕYi,j
(ai,j|µj , λj) =

λj

ai,j

(

µj

ai,j

)λj

, ai,j ≥ µj, µj ∈ R
⋆
+, λj ∈ R

⋆
+ (28)

and its cumulative density function is defined as18

ΦYi,j
(ai,j|µj, λj) = 1 −

(

µj

ai,j

)λj

. (29)

A draw from this distribution may be obtained by computind the19

associated quantile function20

Yi,j = exp

(

ln (µj) −
1

λj

ln

(

1

2
− 1

2
Ui,j

))

, Ui,j
iid→ U]−1,1[. (30)

Here again, as one expects the signs of the time, cost, and change co-21

efficients to be negative, a draw of the parameter αi,j is then obtained22

by taking the negative of the latter:23

αi,j = −Yi,j (31)
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2.5.8 Extreme Value type 1 distribution1

The Extreme Value type 1 distribution is defined for a random2

variable whose domain of definition is R. Even though the theoretical3

range of the variable is R, it is classed in practice as a thin tailed4

distribution. The distribution is asymmetric and, as presented here, it5

is skewed to the right. The distribution is driven by two parameters:6

location µ (mode of the distribution) and scale σ. The profile of7

the probability density function is independent of the mode and scale8

factor, thus skewness and kurtosis are constants9

∀i = 1, · · · , n, j = 1, · · · ,M , let αi,j be an independent Extreme10

Value type 1 distributed random variable with location parameter µj11

and scale parameter σj. Its probability density function is defined as12

ϕαi,j
(ai,j|µj , σj) =

exp
(

−ai,j−µj

σj

)

exp
(

− exp
(

−ai,j−µj

σj

))

σj

(32)

where ai,j ∈ R, µj ∈ R, σj ∈ R
⋆
+. Its cumulative density function is13

defined as14

Φαi,j
(θi,j|µj, σj) = exp

(

− exp

(

−ai,j − µj

σj

))

(33)

Random number generation for an Extreme Value type 1 distribu-15

tion can be performed by transforming a continuous uniform variable16

U]−1,1[ with the distribution’s inverse probability function17

αi,j = µj − σj ln

(

− ln

(

1

2
+

1

2
Ui,j

))

, Ui,j
iid→ U]−1,1[ (34)

We will not set any strict positivity constraint on σj while estimating18

the parameters of the distribution. Indeed, if the sign that precedes19

the estimate of σj is negative, then the Extreme Value type 1 distri-20

bution is reversed, with the same location and scale but skewed to the21

left.22

2.5.9 Logistic distribution23

Another distribution in the same vein of the latter is the Logistic24

distribution, which probability density function may be written as25

ϕαi,j
(ai,j|µj, σj) =

exp
(

−ai,j−µj

σj

)

σj

(

1 + exp
(

−ai,j−µj

σj

)) , (35)
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where ai,j ∈ R, µj ∈ R, σj ∈ R
⋆
+. The distribution is driven by two1

parameters: location µ (mode of the distribution) and scale σ. Its2

cumulative density function is defined as3

Φαi,j
(ai,j|µj , σj) =

1

1 + exp
(

−ai,j−µj

σj

) . (36)

The distribution is asymmetric and, as presented here, it is skewed4

to the right. A draw from it is generated by computing the quantile5

function:6

αi,j = µj − σj ln

((

1
1
2 + 1

2Ui,j

)

− 1

)

, Ui,j
iid→ U]−1,1[. (37)

Here again, we will not set any strict positivity constraint on σj while7

estimating the parameters of the distribution: if the sign that precedes8

the estimate of σj is negative, then the Logistic distribution is reversed,9

with the same location and scale but skewed to the left.10

2.5.10 Johnson Sb distribution11

A very interesting distribution is the Johnson’s asymmetric Sb12

distribution as it gives the possibility to deal simultaneously with a13

bounded distribution, with an asymmetric distribution, and possibly14

with a multimodal distribution. We refer the reader to Hess et al.15

(2006a), and Hess et al. (2006b) for a discussion on this distribution.16

Four parameters drive the distribution: location (lower bound)17

µ ∈ R, spread s ∈ R
⋆
+, skewness m ∈ R, and shape τ ∈ R

⋆
+.18

The probability density function of a Sb distributed variable αi,j19

may be written as20

ϕαi,j
(ai,j|µj , sj,mj , τj) =

τjsj exp

 

− 1
2

„

mj+τj ln

„

ai,j−µj
µj+sj−ai,j

««2
!

(ai,j−µj)(µj+sj−ai,j)
√

2π

(38)

where ai,j ∈ ]µj , µj + sj[, and the associated cumulative distribution21

function may then be written as22

Φαi,j
(ai,j|µj , sj,mj , τj) =

∫ ai,j

−∞

ϕαi,j
(bi,j|µj, σj ,mj , τj) dbi,j. (39)

Random number generation for Johnson Sb distribution can be per-23

formed by transforming a standard normal variable N (0, 1) as follows:24

25

αi,j = µj + sj
1

1 + exp
(

−Xi,j−mj

τj

) ,Xi,j
iid→ N (0, 1) . (40)
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Here again, we will not set any strict positivity constraint on sj while1

estimating the parameters of the distribution: if the sign that pre-2

cedes the estimate of the range sj is negative, then the distribution is3

reversed: the lower bound becomes the upper bound and vice-versa.4

3 DATA5

One of the work package of the European KITE research project6

(http://www.kite-project.eu/) pertained to propose and to test a suit-7

able survey methodology that intends to close remaining information8

gaps about long-distance travel behaviour by means of pilot surveys.9

These pilot surveys were carried out in three countries: the Czech Re-10

public, Switzerland, and Portugal, by means of a computer assisted11

telephone interview (CATI) for the two latter and by means of face-12

to-face interviews for the former. One of the purposes of these pilot13

surveys was to test whether it would be possible to implement a com-14

mon methodology in different countries in Europe and then to assess15

the quality of information that can be obtained through data collec-16

tion. In particular, computation of figures to characterise demand for17

long distance travel and comparison with existing data sources were18

made to get a better idea of the promise of the used methodology.19

Parallel to this approach, 2 stated preference (SP) surveys were20

designed to gather information about market potentials and user re-21

quirements. They focused on long distance main mode choice and22

long distance route choice given the main mode of transport. The SP23

surveys were built up on sampling individuals in the main survey (a24

revealed preference survey, i.e. RP survey) and using their answers to25

customise choice experiments to which they had to answer. Actually,26

based on the answers in the first part of the survey, the SP surveys27

were sent to self-identified respondents. Those respondents which had28

undertaken a longdistance journey during the last 8 weeks, which was29

not a regular journey2, were asked if they were willing to participate30

in a written survey based on this telephone interview. Generation of31

hypothetical choice situations for these written self-completion stated32

preference surveys were based on one of the reported long distance33

journeys from the telephone interview.34

The main target in these SP surveys is to discover and to analyse35

the preferences of the travellers who undertake long distance jour-36

neys. These preferences show the requirements of the users and their37

requirements towards a more sustainable use of transport means, e.g.38

2A regular journey was defined as: at least once per week or journeys with the same
destination during the last 8 weeks

http://www.kite-project.eu/
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under which circumstances they would change the transport mean and1

use public transport instead of car. The use of a transport mode is of2

course dependent on the available infrastructure in the different coun-3

tries and regions etc.. It is not analyzed in this survey, but the results4

give key parameters which indicate under what kind of infrastructure5

change the population would accept to change their transport mode or6

their route choice. In the present article, we focus only on the choice7

of a main mode of transport.8

The software Ngene (e.g. Rose and Scarpa (2007)) was used to9

generate the experimental design for the SP questionnaires. This soft-10

ware makes it possible to generate efficient experimental designs and11

therefore have small numbers of experiments by interviewee without12

losing goodness of fit in the models estimated with the data. Based on13

one of the reported journeys, the journeys’ characteristics for the dif-14

ferent modes were drawn and calculated using different data souces.15

Travel times and number of changes were drawn from the IVT Air16

Network, the IVT Road Network and the IVT TransEuropean Train17

Model. Travel cost were generated by implementing automatic in-18

ternet requests that were manually corrected when necessary. With19

these observed/imputed values and the given characteristics from the20

experimental design, the different choice situations for the SP ques-21

tionnaires were finally produced.22

In the present approach, we focus on the SP survey that regards23

the choice of a main mode of transport for long-distance travel. Table24

1 reports the descriptive statistics of the attributes of the proposed25

choice experiments and the observed choices that were made by the26

decision-makers.27

Table 1 about here

4 RESULTS28

All models were estimated using BIOGEME (Bierlaire (2006)).29

500 Halton draws were used to approximate the choice probabilities30

at stake. The ”car” mode of transport was chosen as the reference31

for identification of the intercept terms. The Johnson Sb distribution32

was the most difficult to implement. Actually, the skewness and the33

shape parameters m and τ are fixed respectively to 0 and 1 to obtain34

the presented results3. The MSL estimates are reported in tables 2,35

3, 4, 5, 6, 7.36

Tables 2, 3, 4, 5, 6, 7 about here

3We notice the reader that the MSL estimator converged rather easily with 4-
parameters distributions when assuming no panel effects and/or assuming that unobserved
taste heterogeneity is random accross decision-makers and choice experiments
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4.1 Estimates1

Whatever is the postulated distribution that models unobserved2

heterogeneity of tastes, the estimated parameters are on average neg-3

atively signed for time and cost variables. Whatever is the chosen dis-4

tribution that allow for possibly positive values of these coefficients,5

their probability to be positively signed is low, with very few excep-6

tions. However, we take care of the fact that the time coefficients may7

appear as positively signed for long distance travel. We also observe8

that the coefficient that is associated to the variable that models the9

number of interchanges (an indirect measure of connecting and waiting10

times) is likely to be often positively signed. Not only as the result of11

a statistical artefact, we suggest that the travellers may produce and12

consume utility-making annex activities that compensate the time ex-13

penditure to long-distance travel as a simple intermediary production14

service.15

We point out the fact that many distributions performs at least as16

well if not strictly better than the Normal or the logNormal distribu-17

tions, whatever are their domains of definition. We notice also that18

the distribution of tastes that produce the best results is not the same19

accross countries. Heterogeneity is not distributed the same accross20

countries. It suggests that, given every decision-makers are utility21

maximizers, the underlying behaviours that determine tastes, hence22

the observed choices, rely also on individual- and country-specific de-23

terminants. Regional identity seems to play a role on the distribution24

of taste heterogeneity accross its population of inhabitants. Using25

either the log-likelihood or the pseudo ρ2 as a criterion for model se-26

lection, we observe that:27

- the Uniform distribution fits the observed data the best for Por-28

tuguese travellers, closely followed by the Normal distribution, the29

Logistic distribution, and the Triangular distribution;30

- the Logistic distribution fits the observed data the best for Swiss31

travellers, closely followed by the symmetric Sb distribution;32

- the Logistic distribution fits the observed data the best for Czech33

travellers, closely followed by the Normal distribution and the logNor-34

mal distribution.35

Anyway, many distributions give pretty much the same results in36

terms of statistical performance. One remark that can be made is37

that, whatever is the country the decision-maker is sampled from, the38

model based on the Exponential distribution seems to produce poor39

results. Even though the parameters are significant and the specifica-40

tion forces negatively signed coefficients, the goodness-of-fit statistics41

make the impression that this distribution is inappropriate. It appears42

also to be the only specification that produce really unrealistic VTTS43
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distributions.1

Another result that is common to the three considered countries2

is that the decision-makers are, on average, always more sensitive to3

access+egress travel time than to in-vehicle travel time. This is an4

important result when the purpose is to incent people to shift to inter-5

modality. As it regards the cost variable, the results show that tastes6

are almost systematically significantly distributed accross the popula-7

tion of Czech travellers although it is not really the case for Swiss and8

Portuguese travellers. This result is not verified when considering the9

time variables: the tastes associated to the latter are almost system-10

atically significantly distributed accross the populations of travellers11

of the three countries.12

The presence of individual random effects (i.e. agent effects) adds13

explanatory power to our models. These effects appear significant in14

almost all our specifications, although not necessarily for each consid-15

ered mode of transport. It suggests however that, for each of the three16

countries, the distributions of socioeconomic and demographic char-17

acteristics accross the populations of travellers may play different but18

significant roles in determining the choice probabilities independently19

of the distributions of their tastes.20

4.2 VTTS computation21

The results present also the mean and the 95% confidence interval22

of the implied VTTS distributions for each model and each time di-23

mension (in-vehicle and out-of-vehicle). Following Hess et al. (2006a),24

these distributions were computed by a simple Monte-Carlo simulation25

process, using the MSL estimates of the parameters of the appropri-26

ate distributions and 100 000 random draws for each of the latter to27

approximate the expressions in equation 4.28

The average in-vehicle VTTS lies in betwen 43.64AC and 58.84AC per29

hour for Portuguese travellers (excluding the results of the Exponen-30

tial distribution). Their average out-of-vehicle VTTS lies in between31

98.18AC and 128.60AC per hour.32

The average in-vehicle VTTS lies in betwen 40.20AC and 71.33AC33

per hour for Swiss travellers (excluding the results of the Exponen-34

tial distribution). Their average out-of-vehicle VTTS lies in between35

69.05AC and 115.20AC per hour.36

The average in-vehicle VTTS lies in betwen 27.43AC and 33.00AC37

per hour for Czech travellers (excluding the results of the Exponen-38

tial distribution). Their average out-of-vehicle VTTS lies in between39

40.38AC and 150.60AC (78.00AC if we exclude the result associated to the40

Sb distribution) per hour.41



de Lapparent, Axhausen, Frei 17

The fact that travellers are willing to pay larger amounts of money1

to save access+egress times from the main mode of transport is an im-2

portant signal for policy plans that would favour intermodality. Asso-3

ciated to the fact that the results show that the number of interchanges4

(an indirect measure of connecting and waiting times) may not always5

be considered as a penalty in long distance travel, it suggests that a6

better integration of transport modes and a better provision of infor-7

mation and services all along the trip will make people to organize8

better to either avoid/decrease interchange and waiting times or use9

the latter to consume utility-making annex activities, hence to increase10

both their whole satisfaction and their probability to choose modes of11

transport other than car.12

Given a distribution of unobserved taste heterogeneity, the range13

of the 95% confidence interval differ from one country to another but14

there is no major trend to conclude about a larger heterogeneity of15

the values of travel time savings in one country as compared to the16

others.17

In order to give the reader a better representation of the VTTS18

distributions, figures 1 to 6 depict their estimated distributions under19

the different distributional assumptions as it regards unobserved taste20

heterogeneity.21

Tables 1, 2, 3, 4, 5, 6 about here

5 CONCLUDING REMARKS22

In this paper, we have discussed the issue of the choice of distribu-23

tion in mixed MNL discrete choice models. The results show that the24

choice of distributional assumption can have a significant impact on25

estimation results. All Mixed MNL models lead to significant improve-26

ments in log-likelihood over the MNL model, signalling the existence27

of significant levels of taste variation across decision-makers and/or28

the significant impact of unmeasured variables. Moreover, The best29

fit of the data have been obtained when assumed distributions were30

not Normal or logNormal. This suggests that modellers should in-31

creasingly look into the use of alternatives to these distributions for32

the representation of random taste heterogeneity.33

There are several ways for further research. For instance, it would34

be of great interest to develop an approach with nonlinear utility func-35

tions as it has been shown through the existing literature that the36

willingness to pay for saving travel time does not stay constant with37

respect to the levels of trip attributes.38

Also, in the present approach, the distribution of the generic error39

terms leads to a MNL discrete choice model although it is likely that40
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there exist unobserved attributes that may create unobserved corre-1

lation between the choice alternatives. The approach may therefore2

be extended to a more general specification where the vector of the3

generic error terms leads to nested Logit or cross-nested Logit speci-4

fications.5

Finally, we do not have introduced any sociodemographic and eco-6

nomic variables to model, at least partly, the potential impacts of7

the characteristics of the decision makers on their choice behaviors,8

thereby capturing observed sources of heterogeneity that define their9

preferences, hence their tastes. These characteristics may affect either10

directly the levels of utility or indirectly by defining through addi-11

tional functional forms the parameters of the probability distributions12

we have studied in the present approach.13
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TABLE 1: Data description, SP sample

Czech Republic Switzerland Portugal
#a of obs.b = 2044 # of obs. = 916 # of obs. = 148
# of DM.c = 511 # of DM. = 229 # of DM. = 37

Label mean std.dev.d freq. mean std.dev. freq. mean std.dev. freq.
SP variablese

Choice: car mode 1488 528 112
IV.f time, car, in mn.g, car 341.59 201.17 458.49 157.75 467.34 176.50
Cost in ACh, car 43.69 25.56 151.90 51.08 159.20 59.18
Choice: train mode 216 252 12
IV time, train 374.15 224.19 497.83 171.65 499.21 198.93
Acc.i time in mn, train 9.16 4.05 8.88 3.98 8.65 3.98
Cost, train 27.12 16.30 138.87 48.58 141.98 56.87
# of interchanges, train 0.89 0.85 0.87 0.84 0.82 0.88
Choice: air mode 44 104 12
IV time, air 86.06 51.30 114.25 39.77 116.53 45.40
Acc. time, air 119.97 25.83 119.38 25.99 120.41 26.88
Cost, air 318.49 55.42 310.31 52.91 317.03 56.40
# of interchanges, air 1.00 0.86 0.97 0.85 1.01 0.90
Choice: coach mode 268 28 12
IV time, coach 325.83 196.20 423.17 146.73 433.33 172.65
Acc. time, coach 58.30 24.78 57.35 24.65 57.57 25.11
Cost, coach 20.84 12.46 159.55 24.91 164.49 26.32
# of interchanges, coach 1.00 0.86 1.03 0.88 0.99 0.88

Socioeconomic variablesj

Dist.k of ref.l trip in km.m 258.05 145.47 344.03 104.41 347.99 120.48

a#: number
bobs.: observations
cDM.: decision makers, i.e. individuals
dstd.dev.: standard deviation
eDescriptive statistics based on the number of observations
fIV.: in-vehicle
gmn.: minutes
h
AC: Euro

iAcc.: access
jDescriptive statistics based on the number of individuals
kDist.: distance of baseline trip used to generate SP experiments
lref.: reference

mkm.: kilometres



TABLE 2: MSL estimates, 500 Halton draws, Portugal
Deg. w/o AEa Deg. with AE U (µ, s) T (µ, s) N (µ, σ) lnN (µ, σ)

int.b car 0 (ref.) 0 (ref.) 0 (ref.) 0 (ref.) 0 (ref.) 0 (ref.)
int. train 0.759 (2.73) -0.578 (-0.75) 1.230 (1.46) 1.380 (1.22) 0.878 (1.19) 3.360 (1.62)
int. air 2.500 (2.10) 4.95 (2.29) 7.340 (3.19) 7.020 (2.47) 6.950 (2.08) 8.760 (2.08)
int. coach -2.580 (-2.33) -3.89 (-2.75) -8.250 (-2.68) -3.860 (-3.20) -3.420 (-2.21) -6.980 (-3.17)
AE car 0.661 (1.09) 0.0126 (0.10) 0.003 (0.01) 0.199 (1.51) 0.036 (0.09)
AE train 4.87 (1.60) 5.280 (2.96) 3.500 (1.94) 5.610 (1.91) 6.800 (2.20)
AE air 2.45 (3.75) 0.197 (0.49) 1.180 (1.62) 0.313 (0.89) 0.459 (2.14)
AE coach 1.84 (2.61) 4.820 (3.53) 1.100 (1.72) 1.130 (1.12) 0.016 (0.01)
IV. time +c + + + + −

µ -0.008 (-2.96) -0.0152 (-2.11) -0.032 (-2.62) -0.016 (-2.23) -0.035 (-1.95) -3.230 (-6.41)
σ 0.018 (1.86) 0.616 (7.19)
s 0.026 (3.14) 0.020 (2.25)
Acc. time + + + + + −

µ -0.018 (-2.02) -0.0404 (-2.32) -0.068 (-2.71) -0.033 (-2.32) -0.073 (-2.05) -2.380 (-4.27)
σ 0.004 (1.75) 0.014 (0.35)
s 0.004 (0.69) 0.006 (0.35)
cost + + + + + −

µ -0.011 (-3.33) -0.0191 (-2.59) -0.037 (-3.10) -0.018 (-2.31) -0.038 (-1.75) -3.020 (-9.50)
σ 0.002 (0.50) 0.021 (0.49)
s 0.001 (0.45) 0.008 (1.73)
# of interchanges + + + + + −

µ -0.344 (-2.01) -0.661 (-2.34) -1.04 (-1.99) -0.464 (-2.30) -0.850 (-2.10) -0.407 (-0.38)
σ 1.080 (1.23) 1.890 (3.61)
s 0.974 (0.88) 0.821 (0.74)

Hourly values of travel time savings in AC: mean and 95% confidence interval
IV. time 43.64 47.75 51.92 [11.83;92.02] 55.25 [1.58;121.14] 56.81 [-0.52;114.18] 58.84 [14.46;163.29]
Acc. time 98.18 126.91 110.30 [102.90;117.93] 113.90 [78.32;170.74] 110.40 [96.56;124.61] 113.80 [108.26;119.53]

Goodness-of-Fit statistics
# of par. 7 11 15 15 15 15

ln ℓ0
d -205.172 -205.172 -205.172 -205.172 -205.172 -205.172

ln ℓint
e -160.930 -160.930 -160.930 -160.930 -160.930 -160.930

ln ℓmax
f -116.450 -93.401 -82.870 -84.878 -83.775 -86.663

adj. ρ2g 0.398 0.491 0.523 0.513 0.519 0.504

LR stat.h 177.442 223.541 244.604 240.587 242.792 237.018

a
Deg.: degenerate; w/o: without; AE: agent effect

b
int.: intercept

c
the + sign means that the coefficient is distributed along with the definition of the probability density function of the associated distribution. The − sign means that the distribution is reversed, i.e.

the lower bound becomes the upper bound and vice-versa

d
ln ℓ0: value of the log-likelihood when parameters are all equal to 0

e
ln ℓint: value of the log-likelihood when estimating model with intercept only

f
ln ℓmax: value of the log-likelihood at point of convergence

g
adj. ρ2: adjusted pseudo rho-square

h
LR stat.: Likelihood ratio statistic



TABLE 3: MSL estimates, 500 Halton draws, Portugal, cont’d
E (λ) P (µ, λ) L (µ, σ) EV1 (µ, σ) Sb (µ, s, m, τ)

int. car 0 (ref.) 0 (ref.) 0 (ref.) 0 (ref.) 0 (ref.)
int. train 1.680 (1.73) 1.400 (1.54) 1.960 (1.42) 1.810 (1.47) 1.910 (2.42)
int. air 7.750 (1.33) 5.810 (2.21) 7.610 (2.18) 7.400 (1.91) 8.270 (1.43)
int. coach -4.980 (-0.94) -3.900 (-3.95) -4.630 (-2.09) -3.760 (-1.31) -4.330 (-0.67)
AE car 1.540 (1.01) 1.320 (2.07) 2.410 (2.00) 2.210 (1.41) 2.470 (2.61)
AE train 6.210 (0.97) 3.530 (2.44) 2.200 (2.11) 3.180 (1.60) 3.340 (2.94)
AE air 3.390 (1.20) 1.860 (4.48) 0.781 (1.33) 0.110 (1.60) 0.239 (0.11)
AE coach 2.010 (0.22) 0.239 (1.02) 2.670 (1.88) 0.072 (6.47) 2.060 (0.17)
IV. time − − − − −

µ 0.015 (1.80) -0.030 (-2.48) -0.024 (-1.65) 0.009 (1.31)
σ 0.009 (2.76) 0.017 (1.41)
s 0.087 (3.45)
λ 21.758 (1.18) 3.387 (3.48)
m 0 (fixed)
τ 1 (fixed)
Acc. time − − − + +
µ 0.041 (2.16) -0.067 (-2.23) -0.073 (-2.12) -0.108 (-2.69)
σ 0.004 (1.66) 0.007 (1.41)
s 0.072 (1.52)
λ 9.583 (1.22) 3.935 (3.25)
m 0 (fixed)
τ 1 (fixed)
cost − − − − +
µ 0.025 (2.72) -0.037 (-2.35) -0.038 (-1.90) -0.047 (-1.74)
σ 3.65e-04 (0.38) 7.13e-05 (0.01)
s 0.008 (0.27)
λ 35.517 (1.18) 43.816 (0.21)
m 0 (fixed)
τ 1 (fixed)
# of interchanges − − − − −

µ 0.177 (0.75) -1.050 (-2.45) -0.533 (-1.06) 1.960 (1.59)
σ 0.587 (2.31) 1.220 (1.49)
s 6.270 (-2.82)
λ 0.568 (0.71) 0.882 (1.41)
m 0 (fixed)
τ 1 (fixed)

Hourly values of travel time savings in AC: mean and 95% confidence interval
IV. time 1093.00 [2.42;3749.83] 49.86 [35.14;103.92] 48.64 [-4.65;102.17] 53.37 [2.73;136.20] 48.23 [2.37;94.50]
Acc. time 2264.00 [5.87;8729.33] 128.60 [95.65;244.78] 108.70 [84.75;132.91] 121.60 [100.68;155.81] 100.60 [62.32;140.15]

Goodness-of-Fit statistics
# of par. 11 15 15 15 15
ln ℓ0 -205.172 -205.172 -205.172 -205.172 -205.172
ln ℓint -160.930 -160.930 -160.930 -160.930 -160.930
ln ℓmax -92.972 -88.270 -84.773 -86.254 -85.493

adj. ρ2 0.493 0.497 0.514 0.506 0.510
LR stat. 224.399 233.803 240.797 237.835 239.358



TABLE 4: MSL estimates, 500 Halton draws, Switzerland
Deg. w/o AE Deg. with AE U (µ, s) T (µ, s) N (µ, σ) lnN (µ, σ)

int. car 0 (ref.) 0 (ref.) 0 (ref.) 0 (ref.) 0 (ref.) 0 (ref.)
int. train 0.375 (2.88) 0.405 (0.46) 1.710 (0.76) 0.902 (1.91) 1.590 (3.80) 1.740 (2.21)
int. air 1.900 (3.97) 5.090 (1.27) 6.780 (0.59) 4.800 (3.34) 6.500 (4.92) 6.850 (4.08)
int. coach -1.350 (-5.13) -2.290 (-0.71) -6.270 (-6.98) -3.720 (-4.46) -5.860 (-5.83) -5.710 (-3.60)
AE car 3.390 (4.89) 2.610 (1.64) 3.57 (4.09) 2.770 (4.03) 3.170 (5.63)
AE train 3.580 (4.64) 2.870 (7.54) 1.68 (2.93) 2.420 (3.15) 2.900 (6.35)
AE air 4.310 (4.34) 2.650 (0.53) 3.88 (3.52) 2.350 (1.99) 1.990 (3.67)
AE coach 2.430 (0.96) 5.520 (6.85) 3.28 (3.65) 5.360 (12.37) 5.520 (5.42)
IV. time + + + + + −

µ -0.011 (-13.89) -0.027 (-4.22) -0.038 (-2.22) -0.021 (-5.90) -0.041 (-5.44) -3.350 (-28.21)
σ 0.016 (4.25) 0.114 (2.43)
s 0.019 (1.86) 0.018 (4.36)
Acc. time + + + + + −

µ -0.019 (-5.89) -0.048 (-2.49) -0.062 (-2.84) -0.032 (-5.31) -0.064 (-5.68) -3.080 (-16.44)
σ 0.022 (5.12) 0.841 (8.30)
s 0.066 (4.33) 0.014 (0.77)
cost + + + + + −

µ -0.014 (-11.06) -0.036 (-2.21) -0.054 (-2.04) -0.025 (-5.85) -0.055 (-5.79) -2.940 (-27.61)
σ 0.004 (1.05) 0.081 (2.36)
s 0.005 (0.27) 0.003 (0.33)
# of interchanges + + + + + −

µ -0.220 (-2.90) -0.273 (-1.52) -0.456 (-2.81) -0.240 (-2.46) -0.486 (-2.69) -2.900 (-2.52)
σ 0.576 (2.38) 2.130 (4.30)
s 1.060 (1.41) 1.330 (3.04)

Hourly values of travel time savings in AC: mean and 95% confidence interval
IV. time 47.14 45.00 42.34 [21.92;64.32] 50.55 [16.79;84.90] 44.92 [10.37;80.97] 40.20 [30.28;52.38]
Acc. time 81.43 80.00 69.05 [-0.75;141.46] 76.92 [50.26;104.77] 70.26 [22.70;119.70] 74.69 [10.14;274.78]

Goodness-of-Fit statistics
# of par. 7 11 15 15 15 15
ln ℓ0 -1269.846 -1269.846 -1269.846 -1269.846 -1269.846 -1269.846
ln ℓint -1035.330 -1035.330 -1035.330 -1035.330 -1035.330 -1035.330
ln ℓmax -782.668 -582.755 -575.514 -571.844 -577.737 -578.968

adj. ρ2 0.378 0.532 0.535 0.538 0.533 0.532
LR stat. 974.355 1374.182 1388.664 1396.004 1384.217 1381.754



TABLE 5: MSL estimates, 500 Halton draws, Switzerland, cont’d
E (λ) P (µ, λ) L (µ, σ) EV1 (µ, σ) Sb (µ, s, m, τ)

int. car 0 (ref.) 0 (ref.) 0 (ref.) 0 (ref.) 0 (ref.)
int. train 1.170 (2.83) 1.390 (2.59) 1.030 (2.11) 1.120 (1.64) 0.820 (0.59)
int. air 2.740 (2.03) 7.000 (4.35) 6.630 (3.18) 6.000 (3.45) 6.340 (2.09)
int. coach -3.55 (-3.76) -3.990 (-1.76) -4.200 (-3.94) -3.040 (-3.23) -3.900 (-0.70)
AE car 3.450 (5.23) 2.820 (3.00) 3.630 (5.29) 3.680 (2.81) 2.960 (2.83)
AE train 1.190 (2.30) 2.240 (2.82) 1.970 (3.55) 1.530 (2.22) 2.720 (2.47)
AE air 5.050 (5.30) 2.590 (2.15) 5.670 (4.20) 3.680 (3.47) 5.590 (6.06)
AE coach 3.210 (5.77) 4.460 (2.14) 3.590 (3.14) 2.990 (4.99) 3.160 (1.56)
IV. time − − − − +
µ 0.028 (6.41) -0.044 (-6.74) -0.031 (-6.10) -0.081 (-8.56)
σ 0.009 (6.18) 0.008 (3.62)
s 0.074 (2.20)
λ 18.541 (6.21) 7.243 (5.49)
m 0 (fixed)
τ 1 (fixed)
Acc. time − − − − −

µ 0.032 (5.18) -0.071 (-5.69) -0.040 (-4.22) -0.054 (-0.44)
σ 0.006 (2.20) 0.035 (5.43)
s 0.036 (0.17)
λ 19.492 (4.950) 1.775 (10.98)
m 0 (fixed)
τ 1 (fixed)
cost − − + + −

µ 0.047 (6.21) -0.058 (-5.35) -0.051 (-5.63) -0.042 (-0.52)
σ 4.30e-05 (0.03) 0.002 (1.50)
s 0.038 (0.26)
λ 24.288 (5.988) 34.813 (2.85)
m 0 (fixed)
τ 1 (fixed)
# of interchanges − − + − −

µ 0.244 (1.89) -0.501 (-2.65) -0.116 (-0.52) 3.000 (1.69)
σ 0.891 (3.40) 0.722 (1.91)
s 6.720 (2.00)
λ 0.923 (3.937) 3.222 (2.02)
m 0 (fixed)
τ 1 (fixed)

Hourly values of travel time savings in AC: mean and 95% confidence interval
IV. time 758.40 [2.02;3142.94] 40.31 [33.82;57.67] 71.33 [17.87;125.11] 43.07 [24.70;73.51] 44.03 [15.55;77.82]
Acc. time 678.60 [1.89;2837.63] 90.58 [40.10;317.96] 115.20 [79.45;150.82] 72.39 [-6.65;203.39] 72.10 [51.69;99.18]

Goodness-of-Fit statistics
# of par. 11 15 15 15 15
ln ℓ0 -1269.846 -1269.846 -1269.846 -1269.846 -1269.846
ln ℓint -1035.330 -1035.330 -1035.330 -1035.330 -1035.330
ln ℓmax -639.818 -583.165 -564.836 -587.269 -565.373

adj. ρ2 0.487 0.529 0.543 0.526 0.543
LR stat. 1260.055 1373.361 1410.020 1365.153 1408.944



TABLE 6: MSL estimates, 500 Halton draws, The Czech Republic
Deg. w/o AE Deg. with AE U (µ, s) T (µ, s) N (µ, σ) lnN (µ, σ)

int. car 0 (ref.) 0 (ref.) 0 (ref.) 0 (ref.) 0 (ref.) 0 (ref.)
int. train -0.601 (-8.52) -0.886 (-2.42) -1.460 (-8.76) -1.410 (-5.21) -1.540 (-4.76) -1.300 (-6.64)
int. air 3.900 (6.33) 5.11 (0.72) 9.200 (4.15) 9.820 (4.51) 10.000 (6.42) 6.970 (5.95)
int. coach -2.240 (-13.04) -3.41 (-6.54) -5.150 (-14.03) -4.720 (-9.08) -5.260 (-5.31) -4.690 (-11.85)
AE car 0.902 (4.06) 1.250 (2.35) 1.300 (3.49) 0.880 (1.29) 0.965 (2.55)
AE train 1.130 (5.09) 1.250 (3.25) 1.020 (3.72) 1.420 (5.23) 1.490 (6.42)
AE air 3.990 (4.96) 6.010 (6.72) 3.840 (5.67) 1.920 (4.19) 5.730 (5.26)
AE coach 0.801 (3.81) 0.579 (2.90) 0.337 (1.00) 0.694 (1.84) 0.806 (2.52)
IV. time + + + + + −

µ -0.010 (-14.71) -0.022 (-10.39) -0.032 (-7.72) -0.014 (-10.02) -0.031 (-6.85) -3.550 (-46.14)
σ 0.007 (5.72) 0.275 (7.77)
s 0.018 (4.02) 0.009 (5.47)
Acc. time + + + + + −

µ -0.026 (-8.32) -0.041 (-6.45) -0.051 (-3.82) -0.023 (-6.69) -0.046 (-8.23) -3.090 (-26.86)
σ 0.003 (0.27) 0.239 (3.34)
s 0.025 (0.91) 0.013 (1.24)
cost + + + + + −

µ -0.020 (-9.75) -0.040 (-1.51) -0.068 (-6.77) -0.031 (-6.04) -0.068 (-6.43) -2.910 (-28.42)
σ 0.022 (6.48) 0.082 (5.17)
s 0.017 (3.27) 0.012 (1.51)
# of interchanges + + + + + −

µ -0.164 (-3.61) -0.157 (-2.60) -0.275 (-1.75) -0.102 (-2.63) -0.242 (-1.95) -6.180 (-3.52)
σ 0.716 (2.51) 4.970 (4.35)
s 1.420 (3.25) 0.765 (3.89)

Hourly values of travel time savings in AC: mean and 95% confidence interval
IV. time 30.00 33.00 28.83 [12.35;50.26] 27.85 [13.00;46.99] 29.41 [12.70;77.45] 32.95 [18.05;55.09]
Acc. time 78.00 61.50 46.02 [22.33;77.15] 45.70 [23.67;74.78] 40.38 [24.19;109.64] 51.80 [30.55;82.31]

Goodness-of-Fit statistics
# of par. 7 11 15 15 15 15
ln ℓ0 -2833.586 -2833.586 -2833.586 -2833.586 -2833.586 -2833.586
ln ℓint -2216.996 -2216.996 -2216.996 -2216.996 -2216.996 -2216.996
ln ℓmax -1650.779 -1436.523 -1404.060 -1412.631 -1395.963 -1396.303

adj. ρ2 0.415 0.489 0.499 0.496 0.502 0.502
LR stat. 2365.613 2794.125 2859.050 2841.909 2875.246 2874.565



TABLE 7: MSL estimates, 500 Halton draws, The Czech Republic, cont’d
E (λ) P (µ, λ) L (µ, σ) EV1 (µ, σ) Sb (µ, s, m, τ)

int. car 0 (ref.) 0 (ref.) 0 (ref.) 0 (ref.) 0 (ref.)
int. train -0.968 (-5.82) -1.210 (-7.18) -1.560 (-6.47) -1.440 (-4.84) -1.100 (-0.49)
int. air 2.330 (3.72) 6.690 (4.06) 11.300 (4.79) 9.110 (3.61) 8.270 (6.21)
int. coach -5.130 (-4.83) -4.430 (-9.10) -5.400 (-8.05) -4.910 (-6.90) -3.860 (-2.16)
AE car 0.363 (1.14) 1.070 (5.49) 1.170 (6.20) 1.260 (4.92) 1.120 (1.04)
AE train 1.430 (7.81) 1.220 (5.98) 1.360 (6.26) 1.060 (3.82) 0.759 (0.11)
AE air 0.639 (2.32) 3.880 (10.06) 1.530 (3.31) 2.210 (6.14) 3.700 (2.99)
AE coach 1.180 (0.87) 1.300 (4.19) 0.497 (1.11) 0.615 (2.00) 0.025 (0.03)
IV. time − − + − +
µ 0.022 (8.70) -0.032 (-9.53) -0.026 (-10.64) -0.037 (-1.87)
σ 0.006 (7.74) 0.008 (4.06)
s 0.027 (2.48)
λ 24.779 (8.55) 19.688 (1.17)
m 0 (fixed)
τ 1 (fixed)
Acc. time − − − − +
µ 0.033 (7.87) -0.055 (-8.61) -0.043 (-8.38) -0.085 (-1.87)
σ 0.011 (5.54) 0.012 (2.71)
s 0.081 (0.46)
λ 13.874 (7.35) 4.759 (4.69)
m 0 (fixed)
τ 1 (fixed)
cost − − + − +
µ 0.038 (5.85) -0.074 (-5.97) -0.055 (-4.98) -0.063 (-1.98)
σ 0.009 (9.92) 0.016 (3.32)
s 0.025 (2.51)
λ 19.106 (6.71) 5.812 (5.05)
m 0 (fixed)
τ 1 (fixed)
# of interchanges − − + + +
µ 3.736e-07 (0.10) -0.230 (-2.95) -0.561 (-5.65) -0.832 (-0.23)
σ 0.362 (9.92) 0.578 (6.19)
s 1.280 (0.21)
λ 3.127 (3.14) 0.162 (1.55)
m 0 (fixed)
τ 1 (fixed)

Hourly values of travel time savings in AC: mean and 95% confidence interval
IV. time 630.40 [1.20;1770.61] 31.22 [19.27;38.88] 27.43 [7.70;55.95] 31.46 [11.87;67.66] 28.24 [15.38;43.23]
Acc. time 1051.00 [2.15;3217.33] 56.29 [31.78;100.24] 47.15 [11.76;98.16] 51.15 [20.32;107.93] 150.60 [105.94;204.93]

Goodness-of-Fit statistics
# of par. 11 15 15 15 15
ln ℓ0 -2833.586 -2833.586 -2833.586 -2833.586 -2833.586
ln ℓint -2216.996 -2216.996 -2216.996 -2216.996 -2216.996
ln ℓmax -1524.760 -1423.263 -1391.067 -1416.160 -1433.464

adj. ρ2 0.458 0.492 0.504 0.495 0.489
LR stat. 2617.652 2820.646 2885.037 2834.851 2800.243



FIGURE 1: In-vehicle hourly VTTS, 100000 draws, Portugal
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FIGURE 2: Access+egress hourly VTTS, 100000 draws, Portugal
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FIGURE 3: In-vehicle hourly VTTS, 100000 draws, Switzerland
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FIGURE 4: Access+egress hourly VTTS, 100000 draws, Switzerland
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FIGURE 5: In-vehicle hourly VTTS, 100000 draws, The Czech Republic
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FIGURE 6: Access+egress hourly VTTS, 100000 draws, The Czech Republic
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