
ETH Library

Different extracellular domains
of neural cell adhesion molecule
(N-CAM) are involved in different
functions

Journal Article

Author(s):
Frei, Thomas; von Bohlen und Halbach, Friedrich; Wille, Wolfgang; Schachner, Melitta

Publication date:
1992-07-01

Permanent link:
https://doi.org/10.3929/ethz-a-005799445

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
The Journal of Cell Biology 118(1), https://doi.org/10.1083/jcb.118.1.177

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-005799445
http://rightsstatements.org/page/InC-NC/1.0/
https://doi.org/10.1083/jcb.118.1.177
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


Different Extracellular Domains of the Neural Cell Adhesion Molecule 
(N-CAM) Are Involved in Different Functions 
T h o m a s  Frei,  Fr iedr ich von Bohlen  und  Halbach ,  Wolfgang Wflle,* and  Melit ta Schachner  

Department of Neurobiology, Swiss Federal Institute of Technology, Hfnggerberg, 8093 Zfirich, Switzerland; and * Institute for 
Genetics, University of Cologne, 5000 Cologne, Germany 

Abstract. The neural cell adhesion molecule 
(N-CAM) engages in diverse functional roles in neural 
cell interactions. Its extracellular part consists of five 
Ig-like domains and two fibronectin type III homolo- 
gous (type III) repeats. To investigate the functional 
properties of the different structural domains of the 
molecule in cell interactions and signal transduction to 
the cell interior, we have synthesized, in a bacterial 
expression system, the individual domains and tandem 
sets of individual domains as protein fragments. These 
protein fragments were tested for their capacity to 
influence adhesion and spreading of neuronal cell bod- 
ies, promote neurite outgrowth, and influence cellular 
migration patterns from cerebellar microexplants in 
vitro. Ig-like domains I and II and the combined type 
III repeats I-II were most efficient for adhesion of 
neuronal cell bodies, when coated as substrates. Neu- 
rite outgrowth was best on the substrate-coated com- 
bined type III repeats I-II, followed by the combined 
Ig-like domains I-V and Ig-like domain I. Spreading of 
neuronal cell bodies was best on substrate-coated com- 

bined type III repeats I-II, followed by Ig-like domain 
I and the combined Ig-like domains I-V. The cellular 
migration pattern from cerebellar microexplant cul- 
tures plated on a mixture of laminin and poly-L-lysine 
was modified by Ig-like domains I, III, and IV, while 
Ig-like domains II and V and the combined type III 
repeats I-II did not show significant modifications, 
when added as soluble fragments. Outgrowth of astro- 
cytic processes from the explant core was influenced 
only by Ig-like domain I. Metabolism of inositol phos- 
phates was strongly increased by Ig-like domain I and 
less by the Ig-like domains II, III, IV, and V, and not 
influenced by the combined type HI repeats I-II. Intra- 
cellular concentrations of Ca 2§ and pH values were in- 
creased only by the Ig-like domains I and II. Intracel- 
lular levels of cAMP and GMP were not influenced by 
any protein fragment. These experiments indicate that 
different domains of N-CAM subserve different func- 
tional roles in cell recognition and signal transduction, 
and are functionally competent without nervous sys- 
tem-derived carbohydrate structures. 

C 
ELL recognition plays an important role during the 
formation, maintenance, and regeneration of the 
nervous system. Several recognition molecules have 

been discovered to mediate cell-to-cell and cell-to-substratum 
interactions (for reviews see Edelman et al., 1990; Edelman 
and Crossin, 1991; Schachner, 1991). Among these, the neu- 
ral cell adhesion molecule (N-CAM) ~ has been implicated 
in several types of neural cell interactions (Cunningham et 
al., 1987). N-CAM is involved in neuron-to-neuron and 
neuron-to-glia interactions in short-term adhesion assays 
(Keilhauer et al., 1985). It allows neurites to fasciculate 
(Rutishauser and Edelman, 1980; Fischer et al., 1986) and 
to interact with their muscle targets in the periphery (Grumet 
et al., 1982; Covault and Sanes, 1986; Covault et al., 1986). 
Formation of the retinal and tectal cytoarchitecture has also 
been attributed, at least in part, to N-CAM (Buskirk et al., 
1980; Fraser et al., 1984). N-CAM is expressed early during 

1. Abbreviation used in this paper: N-CAM, neural cell adhesion molecule. 

neural development at the time of neurulation (Crossin et al., 
1985). Its functional role in this process, in particular neural 
induction, has, however, remained obscure (Jacobson and 
Rutishauser, 1986). It remains expressed by the majority of 
cell types of neuroectodermal origin during later stages of 
nervous system development and appears to subserve yet un- 
known functions in the adult nervous system, where it con- 
tinues to be expressed, although at lower levels than at early 
developmental stages. N-CAM is expressed on neural crest 
cells before migration, ceases to be detectable during migra- 
tion, and reappears once these cells have arrived at their final 
position (Thiery et al., 1982). After peripheral nerve tran- 
section, the temporal and spatial sequence of N-CAM ex- 
pression is the same as during development, suggesting that 
N-CAM also plays a role in regeneration (Nieke and Schach- 
ner, 1985; Martini and Schachner, 1988). 

N-CAM is a recognition molecule that belongs to the im- 
munoglobulin superfamily, carries one more and one less 
conserved fibronectin type Ill homologous repeat (Barthels 
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et al., 1987) and expresses the L2/HNK-1 carbohydrate 
(Kruse et al., 1984), which is itself functionally involved in 
cell interactions (Kfinemund et al., 1988), in common with 
other adhesion molecules (Kruse et al., 1985). N-CAM con- 
sists of several isoforms which derive from alternative splic- 
ing of one gene (Owens et al., 1986; Barbas et al., 1988; 
Santoni et al., 1989). The three major forms coveting mo- 
lecular masses of 180, 140, and 120 kD are identical in their 
extracellular part and differ from each other in the disposi- 
tion of their cytoplasmic domains. The 120-kD form is an- 
chored into the membrane via phosphatidylinositol (He et 
al., 1986; Sadoul et al., 1986), whereas the 140- and 180-kD 
forms are integral membrane glycoproteins, with the 180-kD 
component (N-CAM 180) having the largest cytoplasmic do- 
main. Several other isoforms derived by alternative splicing 
of the extracellular part have been recognized in the mouse, 
with an additional lr-exon in the fourth Ig-like domain and 
an a-exon within the fibronectin type HI homologous repeats 
(Santoni et al., 1989). The lower molecular weight isoforms 
appear to be preferentially expressed by glial cells (Keil- 
hauer et al., 1985; Seilheimer and Schachner, 1988), 
whereas the larger isoforms are predominantly, but not ex- 
clusively, expressed by neurons (Keilhauer et al., 1985; He 
et al., 1986; Sadoul et al., 1986). N-CAM 180 tends to be 
expressed at later developmental stages in the mouse nervous 
system and is concentrated at sites of cell contact (Pollerberg 
et al., 1985). This isoform has a reduced lateral mobility 
within the plasma membrane of neuronal cells and appears 
to be stabilized at sites of cell contact by interaction with the 
membrane cytoskeleton linker protein brain spectrin (fo- 
drin) (Pollerberg et al., 1986, 1987). N-CAM 180 is accu- 
mulated in the postsynaptic densities of some, but not all syn- 
apses in hippocampus and cerebellum, where it has been 
suggested to play a role in modulating synaptic efficacy (Per- 
sohn et al., 1989). Accumulation of N-CAM 180 at sites of 
contact with partner ligands can be induced by beads coated 
with extracellular matrix molecules (Pollerberg et al., 
1990a). L1 shows a similar, although not as distinct, local- 
ization at sites of cell contact, a similar reduced lateral mo- 
bility, and a similar accumulation at the contact sites be- 
tween cells and between coated beads and cells (Pollerberg 
et al., 1990a,b). A molecular association between N-CAM 
and L1 within the plasma membrane of neurons could indeed 
be demonstrated by chemical crosslinking (Simon et al., 
1991), underscoring the possibility that N-CAM and L1 are 
able to function by a mechanism termed assisted homophilic 
binding (Kadmon et al., 1990a). Association of N-CAM and 
L1 within the plasma membrane appears to be dependent on 
particular carbohydrates (Kadmon et al., 1990b), with the 
structure of such carbohydrate moieties having yet to be de- 
termined. Whether the highly sialylated, so-called em- 
bryonic and less adhesive form of N-CAM (Hoffman and 
Edelman, 1983; Sadoul et al., 1983) or heparin which has 
been found to bind to N-CAM (Cole and Akeson, 1989; 
Cole and Glaser, 1986), play a role in the interaction be- 
tween L1 and N-CAM remains to be seen. 

N-CAM not only engages in cell recognition, but is also 
capable of transducing recognition events into intracellular 
consequences. In different cell types, N-CAM stimulates 
changes in second messenger systems, such as inositol phos- 
phates, Ca 2+ and pH, independently of and interdepen- 
dently with LI (Schuch et al., 1989; von Bohlen und Hal- 

bach, E,  J. Taylor, and M. Schachner, manuscript submitted 
for publication). Furthermore, L1 and N-CAM have been 
shown to reduce tyrosine phosphorylation of o~ and/~ tubulin 
in growth cone membranes, thus, increasing the state of 
tubulin polymerization (Atashi et al., 1992). 

The fact that N-CAM engages in diverse functional roles 
raises the question as to the functional roles of the different 
structural domains of the molecule. In other words, are par- 
ticular domains specialized for certain functions, are some 
domains functionally active and others inactive, or are the 
same functional domains of N-CAM involved in the total set 
of diverse functional roles. To investigate these structure- 
function relationships, we have synthesized protein frag- 
ments from the extracellular domains of N-CAM from a 
eDNA clone which does not contain the r-  or a-exons (San- 
toni et al., 1989) and used these fragments in several assay 
systems, including the triggering of intraceUular second 
messengers. Here, we report that the different domains of the 
molecule subserve different functional roles in cell adhesion, 
neurite outgrowth, fasciculation of neurites, and orientation 
of inhibitory GABAergic interneurons in the cerebeUar cor- 
tex. Furthermore, we present evidence that different do- 
mains of N-CAM are specialized to trigger different second 
messenger systems. 

Materials and Methods 

Analytical Procedures 
Bacterial lysates and renatured protein fragments were separated by SDS- 
PAGE on 12% slab gels (Laemmli, 1970) either under reducing or non- 
reducing conditions. Gels were stained with Coomassie blue, or transferred 
to nitrocellulose filters (type HAHY 001310; MiUipore, Bedford, MA) for 
immunoblot analysis according to Faissner et al. (1985). Polyclonai and 
monoclonal antibodies to N-CAM were used at dilutions of 1:200 and 1:50, 
respectively. Protein determinations were performed as described (Brad- 
ford, 1976) or by comparing staining intensities of protein bands with pro- 
tein marker standards after SDS-PAGE and staining with Coomassie blue. 

Production of Protein Fragments of N-CAM in a 
Prokaryotic Expression System 
Nine different constructs were derived from the mouse N-CAM eDNA 
clone DW3 LE which encodes the five Ig-like domains (Barthels et at., 
1987) and the pM1.3 clone which encodes the two fibronectin type HI do- 
mains (Goridis et al., 1985). The different eDNA fragments were excised 
from the two clones with appropriate restriction enzymes (see Fig. 1), blunt 
ended by T4 DNA polymerase, and subcloned into the blunt ended BamHI 
restriction site of the pET vector system (Rosenberg et ai., 1987) according 
to standard procedures (Maniatis et al., 1982). Alt protein fragments ex- 
pressed by the pET vector system contain 11 amino acids contributed by 
the translation initiation site and 3-10 amino acids contributed by the trans- 
lation stop site of the vector. Thus, the proteins carrying the individual do- 
mains have larger apparent molecular weights than the protein encompass- 
in_g all Ig-like domains. Recombinant clones with correct orientation were 
identified by restriction analysis of recombinant plasmid DNA. Expression 
of the nine recombinant eDNA constructs and a control construct of a plas- 
mid without an inserted eDNA fragment in E. coli strain BL21(DE3) 
(Studier and Moffatt, 1986) was carded out as described (Rosenberg et ai., 
1987). A crude bacterial iysate contained 6-8 mg recombinant protein per 
200 ml as determined by SDS-PAGE. 

Purification and Renaturation of Protein Fragments 
Recombinant plasmid containing E. coli cells were treated with 0.4 mM 
isopropylthio-/~-~galactoside (IPTG) for 4, h to induce transcription of 
recombinant mRNA. Cells were then collected by centrifugation at 4~ and 
4,000 g for 15 rain and the viscous pellet was sonicated (Branson sonifier 
1315) in PBS saline, pH 7.3, at maximum intensity for 3 rain on ice without 
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interruption. Inclusion bodies resulting from all constructs including that 
without a cDNA insert were collected from the lysate by centrifugation at 
9,000 g for 30 rain at 4oc. The pellet was stored in PBS at -20~ Denatu- 
ration and renaturation of protein fragments contained in the inclusion bod- 
ies were carried out as described (Buchner and Rudolphe, 1991). Briefly, 
the pellet was solubllized by incubation at room temperature for 2 h in 300 
mM dithioerythrol (DTE), 6 M urea, 2 mM EDTA, 100 mM Tris-HC1, 
pH 8.0, and reoxidized for 36 h in 10 mM oxidized glutathione, 0.3 M 
L-arginine in 100-fold excess volume to allow refolding of the molecules 
at 4~ The protein solution was then concentrated by filtration through 
Antic, on filters (YM 10) or filtration through centricon 10 microconcentra- 
tor tubes (catalog no. 4205; Amicon, Beverly, MA) and dialyzed against 
50 mM Tris-HCl, pH 8.5. The concentrated samples contained 1-3 mg/ml 
of protein as determined according to Bradford (1976). The purity of frag- 
ments in the inclusion bodies was 90% for Ig I, 88% for Ig lI, 85% for Ig 
IH, 72% for Ig IV, 86% for Ig V, 91% for lg I-V, 88% for FN I, 85% for 
FN II, and 89 % for FN I-H as determined by SDS-PAGE. The insoluble 
pellet from the bacterial iysate containing the control construct was dena- 
tured and renatured as the other protein fragments. The supernatant from 
the bacterial lysate containing this construct was not further treated. 

Further purification of the first Ig-like domain of N-CAM solubilized 
from the inclusion bodies was achieved by chromatography on a Sephadex 
G-50 fine column (Pbarmacla LKB) (1.5 x 100 cm) under denaturing con- 
ditions (4 M urea in PBS), yielding a major peak with an approximate mo- 
lecular mass of 13 kD which contained the protein fragment clearly sepa- 
rated from protein contaminants at higher molecular weights. The peak 
fraction was reuatured and concentrated as described in the previous para- 
graph and had a purity of 96% as determined by SDS-PAGE (see Fig. 2). 

Adhesion Molecules 
N-CAM and L1 were immunoaffinity purified from detergent extracts of 
crude membrane fractions from adult mouse brain using monoclonal anti- 
body columns (Him et al., 1983; Falssner et al., 1984; Rathjen and Schach- 
her, 1984). Laminin from murine EHS sarcoma and fibronecfin from hu- 
man serum were obtained from Beehringer Mannheim Biochemicals 
(Indianapolis, IN). 

Antibodies 
Polyclonal rabbit antibodies to murine N-CAM and L1 (Falssner et al., 
1984; Rathjen and Scbachner, 1984; Gennarini et al., 1984) and monoclo- 
nal rat antibody to murine N-CAM (H28.123) (Goridis et al., 1983; Him 
et ai., 1981) have been described. The polyclonal antibodies were purified 
using a protein A-Sepharose column (Pharmacia LKB), according to Ey 
et ai. (1978). The polyclonai antibodies to murine N-CAM recognized only 
some epitopes on the N-CAM molecule as revealed by Western blot analy- 
sis. The mAb H28.123 was purified using a protein Q-Sepharose 4B column 
(Pharnmcia LKB, Piscataway, NJ) according to Akerst6m et al. (1985). 
Folyclonal rabbit antibodies to glial fibritlary acidic protein from bovine 
brain were purchased from Dakopatts (Denmark). FITC-conjugated goat 
anti-rabbit Ig antibodies were obtained from The Jackson Laboratory (West 
Grove, PA). 

Indirect Immunofluorescence 
Immunolabeling for gUal fibrillary acidic protein, a marker for mature as- 
trocytes (Biguami et al., 1972), was performed as described (Schnitzer and 
Schachner, 1981) with some modifications. Briefly, microexplant cultures 
were fixed with 4% paraformaidehyde in PBS for 30 rain at room tempera- 
ture and unsaturated binding sims were blocked with 10% horse serum and 
1% BSA in PBS. Cells were then permeabilized with the same buffer con- 
taining 0.3 % Triton X-100 and washed three times with PBS. Cultures were 
incubated for I h at room temperature with antibodies to GFAP at a dilution 
of 1:250, followed by FITC-conjugated secondary antibodies for I h at room 
temperature at a dilution of 1:100. Cultures were examined with an Ax- 
iophot fluorescence microscope (Carl Zeiss, Inc., Thomwood, NY). 

Cell Adhesion Test 
The adhesion test was carried out according to Bachmann et ai. (Bachmann, 
M., J. E Conscience, R. Prob0tmeier, S. Carbonetto, and M. Scbachner, 
manuscript submitted for publication). In brief, 96-multiwell plates (cata- 
log no. 1-43761 A; Nuncion Delta, Denmark) were coated with adhesion 
molecules or protein fragments at equimolar concentrations (50 riM) in 100 
/~1 PBS for 3 h at 37"C, except for laminin which was coated overnight at 

370C and 20 ~g/rni in basal medium Eagle's. Concentrations of proteins 
were determined by comparing staining intensities of protein bands with 
protein marker standards after SDS-PAGE. For the N.CAM peptides, the 
protein content was estimated for the major band containing the peptide. 
For the bacterial proteins, molar concentrations were calculated based on 
the average molecular mass of 60 kD. Coating etliciencies were measured 
by protein determination using a modification of the Bradford assay (Fahrig 
et al., 1987) and found to be between 55 and 65 % of the input for all pro- 
reins and protein concentrations used. Unsaturated binding sites seen at all 
protein concentrations were blocked with heat-inaodvated (5 rain at 700C) 
fatty acid-free BSA (Boehringer Maanheim Biochemicals) for 1 h at room 
temperature, single cell suspensions of small cerebellar neurons from 6-7-d- 
old ICR mice (Keilhaner et al., 1985) were seeded in 100/~1 serum.free 
neuron culture medium (Fischer, 1982) at a density of 3 • 10 s cells per 
well. Single cell suspension of cereheLlar neurons was obtained by dissocia- 
tion in the presence of 0.1% trypsin, resulting in neurons expressing N-CAM 
at the cell surface as shown by Faissner et al. (1984). After incubation for 
3 h at 37~ in a CO2 incubator, cells were treated with 2.5% glutaralde- 
hyde in PBS for 30 rain. Cells were stained with crystal violet (0.5 % crystal 
violet [Merck] in t0% ethanol, 3 % formaldehyde, 0.15 % NaCI) for 10 rain 
at room temperature and washed with PBS. The optical density associated 
with the adherent cells was measured at 595 nm with an ELISA-reeder 
(Titertek multiskan plus; Flow Laboratories, Inc., McLean, VA). The data 
from four independent experiments carried out in duplicates were analyzed 
for statistical significance by using the t test. 

Determination of Neurite Outgrowth 
and Cell Spreading 
Neurite outgrowth of small cerebellar neurons was determined according 
to Conscience et al. (Conscience, J. F., F. Appel, A. Falssner, E van Boh- 
len und Halbach, J. Holm, and M. Schachner, manuscript in preparation). 
In brief, glass coverslips (1.1 cm in diameter) were coated overnight at 37~ 
with poly-L-lysine (200/~g/ml; Sigma Chemical Co., St. Louis, MO) in 150 
mM Na-borate, pH 8.4, and washed three times with 100/zl PBS. Purified 
N-CAM and protein fragments (0.5/zM) in PBS were then added and in- 
cubated for 3 h at 37~ Laminin (20/zg/ml) was incubated overnight at 
370C. Single cell suspensions of small cerebellar neurons from &7-d-old 
ICR mice (KeLlhauer et al., 1985) were seeded at a density of I • 105 cells 
per glass coverslip and maintained for 20 h at 37~ in a CO2 incubator. 

Cells were then treated with 2.5 % glutaraldehyde in PBS and stained 
with crystal violet for 5 rain as outlined under Cell Adhesion Test. Neurons 
with processes were analyzed by evaluating the lengths of neurites per cell 
and the surface area of the cell body by using an Ai Teetron (VIDS IV soft- 
ware) image analysis system (Seilheimer et al., 1989). Neurites were evalu- 
ated only when they did not contact other cells or neurites and when their 
length was longer than the diameter of the ceil body (Lemmon et ai., 1989). 
Approximately 50 neurites were measured for each value. The Mann- 
Whimey U rank test was used to determine whether different substmtes pro- 
duced a significantly different extent of neurite outgrowth and cell spread- 
ing, with a P value of <0.05 being considered significant. 

Microexplant Cultures 
CerebeLlar microexplant cultures were prepared as described ~ischer et ai., 
1986; Hekmat et ai., 1989). Briefly, cerebella from 6-d-old ICR mice were 
freed of meninges, white matter, and deep cerebellar nuclei, pressed 
through a Nitrex net with a pore diameter of 300/~m, and cultured in serum- 
free neuron culture medium (Fischer et al., 1982) on poly-L-lysine- and 
laminin-coated glass coverslips. After incubation for 4 h at 37~ in a CO2 
incubator, purified N-CAM or protein fragments (1 ~M) were added, Cul- 
tures were taken for staining with crystal violet for 5 min as outlined under 
Cell Adhesion Test or for indirect immunofluorescence after different times 
of maintenance in culture (72-96 h). The data are from four independent 
experiments carried out in duplicates and are blinded. 

Determination of lnositol Phosphates, Cyclic 
Nucleotides, IntraceUular Ca ~, and pH 
Intracellular levels of inositol phosphates, cyclic nucleotides, Ca 2+, and 
pH were determined in small cerebeUar neurons from 6-7-d-old ICR mice 
CKeihaner et al., 1985) maintained in culture on laminin. Measurements 
were performed as originally described by Schuch et al. (1989) as modified 
for cerehellar neurons by yon Bohlen und Halbach, E, J. Taylor, and M. 
Scbachner (manuscript submitted for pubh'cation): For IP turnover mea- 
surements, the extraction of ceLls was not done with chloroform/methanol 
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igi  

Ig H 
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Ig IV 

Ig V 

F N  I 

F N  H 

Ig I-V 

F N  I-I I  

Figure 1. Schematic representa- 
tion of the extracellular domain 
of mouse N-CAM at the eDNA 
and protein levels and deriva- 
tion of eDNA clones for expres- 
sion of protein fragments. The 
nine eDNA clones encode the 
following protein fragments: 
Ig I, first Ig-like domain (bp 
223-487); Ig II, second Ig-like 
domain (bp 487-733); Ig Ill, 
third Ig-like domain (bp 733- 
1092); Ig IV, fourth Ig-like do- 
main (bp 1102-1347); Ig V, fifth 
Ig-like domain (bp 1347-1622); 
FN I, first fibronectin type III 
homologous domain (bp 1622- 
1957); FN II, second fibronec- 
tin type II homologous domain 
(bp 1957-2217). Ig I-V, all five 
Ig-like domains (223-1622), 
FN I-II, the two fibronectin 
type III domains (1622-2217). 
The eDNA fragments were sub- 
cloned into the pET expression 
vector after digestion with the 
appropriate restriction enzymes 
as indicated by arrows. The 
numbering of base pairs corre- 
sponds to that used by Barthels 
et al., (1987), where number 1 
refers to the transcription initia- 
tion site. 

as originally described (Schuch et ai., 1989) but instead with 20 % TCA and 
the probes were separated on an automated Pharmacia FPLC-system 
equipped with an anion exchange column (Mono Q HR 5/5; Pharmacia Fine 
Chemicals) using a step gradient from O to 1.5 M ammonium acetate, pH 
6.4. 1-ml fractions were collected, mixed with 4 ml scintillation cocktail 

(Ultima-Gold XR, Canberra Packard), and counted for 1 min in a beta scin- 
tillation counter (Packard 1900 TR). To measure the influence of N-CAM 
and LI from adult mouse brain, fibronectin, and N-CAM fragments on sec- 
ond messengers, the proteins were added in PBS to the cultures to give a 
concentration of 0.8 #M. The IgG fractions of polyclonal antibodies to 
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Figure 2. Analysis of molecu- 
lar weights and protein con- 
taminants of the N-CAM pro- 
tein fragments synthesized in 
the pET expression system. 
Inclusion bodies containing 
the proteins (Ig I through Ig V, 
Ig I-V, FN I, FN lI, FN I-II, 
Ig I-V + FN I-II, for abbre- 
viations see legend to Fig. 
1) were solubilized and rena- 
tured. Ig I G-50 is Ig I from 
inclusion bodies further puri- 
fied by gel filtration over a 
Sephadex G-50 column. Pro- 
teins (10 /~g per lane) were 
separated by SDS-PAGE and 
visualized by Coomassie blue 
staining. The bromophenol 
blue front is seen at the bot- 
tom of each lane. Molecular 
mass markers are indicated in 
kilodaltons (kD) at the left 
margin. 

N-CAM and L1 were added to give a final concentration of  500 gg/ml.  
Li thium was added to prevent the degradation of  inositol phosphate to inosi- 
tol and monophosphate by inhibition of the IPl-phosphatase (Berridge et al . ,  
1982). Thus, IP1 is the final product of the inositol phosphate turnover path- 
way and thereby an indicator  for the observed stimulation, The data from 
three independent experiments were analyzed for statistical significance by 
using the t test. 

Results 

To assess the functional roles of the different domains of 
N-CAM, we chose to synthesize, in a bacterial expression 
system, the five Ig-like domains and the two fibronectin type 
III homologous (FN) repeats individually and as sets of do- 
mains, consisting of Ig-like domains I to V (Ig I-V) and type 
III domains I to II (FN I-II) (Fig. 1). In the pET vector ex- 
pression system, proteins were collected as inclusion bodies, 
which were solubilized in urea under reducing conditions 
and slowly oxidized under controlled oxygen tension using 
a protocol designed for the renaturation of bacterially pro- 
duced immunoglobulins into a functionally active state 
(Buchncr and Rudolphe, 1991). Using this protocol, protein 
fragments remained soluble in PBS. The protein fragments 
thus obtained and their protein contaminants arc shown in 

Fig. 2 under reducing conditions. The protein fragments 
showed the expected apparent molecular masses of 13 kD for 
Ig, I, 14 kD for Ig II, 14 kD for Ig RI, 12 kD for Ig IV, 13 
kD for Ig V, 52 kD for Ig I-V, 14 kD for FN I, 12 kD for 
FN II, and 26 kD for FN I-II. Under nonreducing condi- 
tions, all protein fragments, except for the fragment contain- 
ing the total set of It-like domains I-V, gave one band (not 
shown), thus, underscoring that a single configuration is at- 
tained. The Ig I-V fragment was seen as several distinct 
bands under nonreducing conditions, probably representing 
the different conformations of the partially renatured mole- 
cule. The protein fragment of Ig I was further purified by gel 
filtration using a Sephadex G-50 column to remove the high 
molecular weight protein contaminants. 

The functional activity of these protein fragments was 
tested in several assay systems. First, the adhesion of small 
cerebellar neurons to the substrate-coated fragments was 
tested. Then, neurite outgrowth and spreading of cell bodies 
of small cerebellar neurons was tested on these fragments ad- 
sorbed onto poly-L-lysine-coated substrates. The ability of 
soluble protein fragments to affect cellular migration pat- 
terns was tested in cerebellar microexplant cultures plated 
onto a mixed laminin/poly-L-lysine substrate. Finally, the 

Table L Summary of the Functional Properties of N-CAM Protein Fragments in Cell Culture 

Celt adhesion 
Neurite Cell Neurite 

BSA PLL outgrowth spreading fasciculation IP Ca 2+ pH 
cAMP 
cGMP 

Ig  I + + +  + + +  + + + +  dec rease  + + +  + + +  + + +  
I g I I  + +  + +  - + - + +  + + +  + + +  

Ig HI + - - - i nc rease  + - - 

Ig  IV + - - - i nc rease  + - - 
I g V  + . . . .  + - - 
Ig  I -V + - 4 4  + +  - 4 + +  + + +  + + 4  
F N  I-II  + + + + +  + + +  . . . .  
b r a in  N - C A M  + - + + +  + +  N D  + + +  + + +  , + + +  w 

The efficacy with which a fragment induces the functional effects is schematically represented as + + + ,  maximal effect; + + ,  intermediate effect; + ,  small effect; 
- ,  no effect. Cell adhesion, neuritr outgrowth, and spreading were tested with substrate-coa~l fragments. The values for cell adhesion are based both on BSA 
or PLL as control. The values for neurite outgrowth and cell spreading are based on poly-L-lysine as control. All other tests were carried out with soluble fragments 
added to the cultures. ND, not determined, since brain N-CAM contains 0.I  % deoxycholate which damages the explant cultures. 
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Figure 3. Adhesion of small 
cerebeUar neurons to substrate- 
coated N-CAM protein flag- 
ments as a function of the 
coated protein concentration. 
Adhesion of neurons to pro- 
tein fragments Ig I, Ig If, Ig HI, 
FN I-If, bacterial pellet, lam- 
inin, and to BSA (for abbrevi- 
ations see legends to Figs. l 
and 2) was evaluated after 3 h 
of maintenance on the sub- 
strate and staining with crys- 
tal violet as determined by 
measuring the optical density 
at 595 rim. Mean values + SD 
are from four independent 
experiments carried out in 
duplicate. 

ability of the protein fragments to modulate intracellular 
messenger systems in small cerebellar neurons was moni- 
tored. Inositol phosphates, cyclic nucleotides, and intracel- 
lular levels of Ca 2+ and pH were determined. Table I sum- 
marizes the effects of N-CAM protein fragments in these 
different assays. 

Adhesion of  Neurons to Substrate-coated 
Protein Fragments 

Small cerebellar neurons were allowed to adhere for 3 h to 
the protein fragments which had been coated onto the plastic 
surface of wells of plastic microtiter plates at equimolar con- 
centrations. In dose-response curves, maximal effects were 
reached, when proteins were coated at 50 nM concentrations 
(Fig. 3). Attachment of cell bodies was best on laminin (2.1- 
fold compared to poly-L-lysine and 3.0-fold compared to 
BSA), followed by Ig I (1.9-fold compared to poly-L-lysine 
and 2.7-fold compared to BSA), Ig II (1.7-fold compared to 
poly-L-lysine and 2.4-fold compared to BSA), and FN I-II 
(1.5-fold compared to poly-L-lysine and 2.2-fold compared 
to BSA) (Fig. 4). The adhesion of neurons to Ig II, but not 
to other fragments was reduced in the presence of heparin 

(not shown). The other protein fragments fig m, IV, v, Ig 
I-V, and FN I and II) were not significantly different in 
stimulating adhesion when compared to poly-L-lysine (rang- 
ing from 1.0 to 1.3-fold for the Ig domains and 1.3-1.8-fold 
for the FN domains). When compared to adhesion of neu- 
rons to BSA, adhesion to these protein fragments was 
significantly increased (ranging from 1.3- to 2.7-fold for the 
Ig domains and 1.6- to 2.2-fold for the FN domains). Both 
N-CAM isolated from adult mouse brain by immunoaffinity 
chromatography and the mixture of Ig I-V and FN I-II 
showed some enhancement of neuronal adhesion, when 
compared to poly-L-lysine (ranging from 1.2- to 1.3-fold) but 
this was not significant. Thus, the individual Ig I and Ig II 
fragments were more effective in promoting neuronal attach- 
ment than the protein fragment encompassing all five Ig-like 
domains and N-CAM from brain. Similarly, FN I-II was a 
more effective substrate for neuronal adhesion than N-CAM 
from brain. In contrast, the two FN domains contained to- 
gether in one fragment were better adhesive substrates than 
the single FN domains. 

When Ig I purified by gel filtration was taken as a substrate 
and compared to Ig I taken directly from the inclusion bodies 
(see Fig. 2), no differences in the efficiency of cell adhesion 
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Figure 4. Adhesion of small cerebellar neurons to substrate-coated 
N-CAM protein fragments at 50 nM concentrations. Adhesion of 
neurons to protein fragments Ig I to Ig V, Ig I-V, FN I, FN II, 
FN I-II, and Ig I-V + FN l-II (for abbreviations see legends to 
Figs. 1 and 2), brain N-CAM, immunoaflinity purified from adult 
mouse brain (N-CAM), laminin, poly-L-lysine (PLL), BSA, and 
bacterial proteins from the insoluble pellet which were denatured 
and renatured as described (bacterial pellet) and from the superna- 
tant (bacterial supernatant) was evaluated after 3 h of maintenance 
on the substrate and staining with crystal violet as determined by 
measuring optical density at 595 nm. Mean values • SD are from 
four independent experiments carried out in duplicate. Bars marked 
by * are significantly different (P < 0.001) from the control in which 
PLL was used as a substrate. 

were observed, when the protein concentrations of the Ig I 
fragments were estimated from the intensity of the protein 
bands in polyacrylamide gels. To evaluate the contribution 
of the bacterial protein contaminants, proteins from the in- 
clusion bodies and supernatants of bacterial lysates from the 
control clone were used as substrates. There was no sig- 
nificant difference in adhesion to these proteins when com- 
pared to BSA. 

Neurite Length and Cell Body Spreading of Neurons 
on Substrate-coated Protein Fragments 

To determine the influence of the molecular domains on neu- 
rite length and the spreading of cell bodies, protein frag- 
ments, N-CAM from brain, and laminin, were adsorbed 
onto poly-L-lysine that had been coated onto glass cover- 
slips. Small eerebellar neurons were maintained on the sub- 
strates for 20 h and neurite length and cell body area moni- 
tored by semi-automated image analysis. Titration of protein 

80 

E 

,E 
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40 
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Figure 5. Determination of neurite length of small cerebeUar neu- 
rons maintained on N-CAM protein fragments. Cells were main- 
tained on protein fragments lg I to Ig V, Ig IV, FN I, FN II, and 
Ig I-V + FN I-II (for abbreviations see legends to Figs. 1 and 2), 
brain N-CAM, immtmoattinity purified from adult mouse brain 
(N-CAM), and laminin adsorbed to poly-L-lysine-coated glass cov- 
erslips for 20 h, fixed and stained with crystal violet. Lengths of 
neurites were determined per cell. Mean values • SD are from 
'~50 neurons from two independent experiments carried out in 
duplicate. Bars marked by * are significantly different (P < 0.05) 
from the control (PLL alone as a substrate). 

concentrations for substrate coating revealed that 0.5 #M 
was required for coating in order to see a maximal effect on 
neurite outgrowth and neuronal cell body spreading (not 
shown). In the following, all comparisons are based on these 
maximal effects. 

Neurite length was highest on laminin (98.7 #m per neuron 
and 3.4-fold higher than on poly-L-lysine alone, on which 
neurites were only 28.8 #m long; Fig. 5). Of the N-CAM 
protein fragments, FN I-II caused highest increase in neurite 
outgrowth when compared to poly-L-lysine alone (67.3 ~m 
and 2.3-fold), followed by Ig I-V (53.6/~m and 1.8-fold), 
FN I (49.5/~m and 1.7-fold), and Ig I (46.4/~m and 1.6-fold). 
The other protein fragments (Ig II, III, IV, and V and FN 
II) did not give significantly different values than those ob- 
tained on poly-L-lysine alone (ranging from 1.0- to 1.3-fold). 
N-CAM from brain or the substrate mixture of Ig I-V and 
FN I-II also gave enhanced neurite outgrowth when com- 
pared to poly-L-lysine alone (2.1-fold for both), and were al- 
most as potent as the FN I-II. Thus, the protein fragments 
encompassing the total extraceUular domains and N-CAM 
from brain were almost as efficient in promoting neurite out- 
growth as the most potent protein fragments. 
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Figure 6. Determination of spreading of cell bodies of small cere- 
bellar neurons maintained on N-CAM protein fragments. Cells 
were maintained on the protein fragments Ig I to Ig V, Ig I-V, FN I, 
FN II, Ig I-V + FN I-II (for abbreviations see legends to 
Fig. 1), brain N-CAM, immunoaifinity purified from adult mouse 
brain (N-CAM), and laminin adsorbed to poly-L-lysine-coated 
coverslips for 20 h, fixed, and stained with crystal violet. The area 
covered by one neuronal cell body was determined. Mean values 
+ SD are from '~,50 neurons from two independent experiments 
carried out in duplicate. Bars marked by * are significantly different 
(P < 0.05) from the control (PLL alone as a substrate). 

The spreading of cell bodies of small cerebellar neurons 
as estimated by the area covered by the cell body was mea- 
sured in the same experiments that were performed to deter- 
mine neurite length (Fig. 6). FN I-II were best in inducing 
cell body spreading followed by Ig I, and Ig I-V, FN I, Ig 
II, and FN II. Ig III, IV, and V, and laminin did not 
significantly differ from the poly-L-lysine substrate alone. 
N-CAM from brain and the substrate mixture of Ig I-V and 
FN I-II were almost as efficient in promoting spreading of 
cell bodies as FN I-II and Ig I. 

The percentage of neuronal cell bodies extending neurites 
was not quantitated because it was not strikingly different for 
any of the domains of N-CAM. 

Cellular Outgrowth Patterns from 
Cerebellar Microexplants in the Presence of 
Soluble Protein Fragments 
The outward migration pattern of neuronal and astrocytic 
cell bodies and processes from microexplants taken from 
early postnatal mouse cerebellum was taken as another sen- 
sitive assay parameter to monitor the impact of N-CAM pro- 
tein fragments on cellular behavior. In this assay system, 

small tissue pieces of cerebellum are plated onto a mixture 
of laminin and poly-L-lysine as substrates and the protein 
fragments are added in soluble form after the explants have 
attached to the substrate. Titration of protein concentrations, 
as determined by comparing staining intensities of protein 
bands after SDS-PAGE revealed that 1 tzM was required to 
induce a maximal, visible effect. The outgrowth pattern was 
observed 72 or 96 h after plating the explants and the effects 
were essentially the same at these two time points. 

The normal outgrowth pattern of these microexplants has 
been described (Hekmat et al., 1989). In particular, cells are 
observed with an orientation of processes largely perpendic- 
ular (Figs. 7 A, 8 A, and 9 A) to the direction of the fas- 
ciculating neurites of granule cells extending radially away 
from the explant core. These cells first have a bipolar mor- 
phology and then elaborate a rich dendritic arbor-like struc- 
ture distal from a long, thin axon-like process. As these cells 
take up GABA, have small cell bodies, and amount to 10% 
of all small cerebellar neurons, they represent the small in- 
hibitory interneurons of the cerebellum, the stellate, and 
basket cells. 

In the presence of Ig I, the pattern of neurite outgrowth and 
cell body migration was significantly different from that in 
control cultures (Figs. 7 B, 8 B, and 9 B). Neurites were less 
fasciculated and outward migration and clustering of cell 
bodies less pronounced than in the control cultures (Figs. 7 
A, 8 A, and 9 A). Of the few cell bodies that migrated beyond 
the area occupied by GFAP positive astrocytes (Fig. 10 B), 
the inhibitory interneurons were clearly distinguishable, al- 
though less frequent than in the control, by the perpendicular 
orientation of their neurites. The outgrowth of GFAP posi- 
tive astrocytic processes was reduced by Ig I. These effects 
could be reversed when 60 h after plating the Ig I was re- 
moved by replacing the culture medium. 72 h afterwards the 
inhibitory effect was completely reversible and the culture 
looked healthy and not damaged. The Ig III and IV (Figs. 7 
D, 8 D, 9/9, and Figs. 7 E, 8 E, and 9 E, respectively) also 
produced an outgrowth pattern different from the control cul- 
tures (Figs. 7 A, 8 A, and 9 A). Neurites were more fascicu- 
lated and clusters of cell bodies tended to be larger than in 
the control cultures and only a few, misaligned perpendicular 
cells were seen, The outgrowth of astrocytic processes from 
the explant core was not affected by Ig III and IV (Fig. 10, 
D and E). No differences in outgrowth patterns were seen 
for Ig II, V, and FN I-II, when compared to the untreated 
controls. To evaluate the contribution of the bacterial protein 
contaminants, proteins from the inclusion bodies and super- 
natants of bacterial lysates from the control clone were used. 
There was no significant difference in the outward migration 
pattern of these proteins when compared to the untreated 
control (not shown). 

Second Messenger Systems of Neurons in the Presence 
of Soluble Protein Fragments 
The influence of the different protein fragments on intracel- 
lular second messenger systems was investigated using small 
cerebellar neurons maintained on laminin and by addition of 
the soluble fragments. In dose-response curves, maximal 
effects were reached when proteins were added at 0.8 #M 
concentrations. Levels of inositol phosphates (IP1, IP2, and 
IP3) were determined after incubation of small cerebellar 
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Figure 7. Determination of the cell migration pattern from cerebel- 
lax microexplant cultures maintained in the absence (A) or presence 
(B-G) of N-CAM protein fragments. Cultures were maintained on 
poly-L-lysine- and laminin-coated glass coverslips for 96 h, fixed, 
and stained with crystal violet. Protein fragments were added 4 h 
after plating the microexplants. (B) Ig I; (C) Ig II; (D) Ig HI; (E) 
Ig IV; (F) Ig V; (G) FN I-If. For abbreviations, see legend to Fig. 
I. Bar in G represents I00/zm (for A-G). 
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Figure 8. Determination of cell migration pattern from cerebellar 
microexplant cultures maintained in the absence (.4) or presence 
(B-G) of N-CAM protein fragments (detail from the explant near 
the explant core in the astrocytic outgrowth zone from the e~-peri- 
ment shown in Fig. 6). (B) Ig I; (C) Ig II; (D) Ig TIT; (E) Ig IV; 
(F) Ig V; (O) FN I-II. For abbreviations, see legend to Fig. L Bar 
in G represents 50 ~m (for A-G). 
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Figure 9. Determination of cell migration pattern from cerebellar 
microexplant cultures maintained in the absence (A) or presence 
(B-G) of N-CAM protein fragments (detail from the explant out- 
side the astrocytic outgrowth zone near the explant core from the 
experiment shown in Fig. 6). (B) Ig I; (C) Ig 1I; (D) Ig HI; (E) 
Ig IV; (F) Ig V; (G) FN I-II.  For abbreviations, see legend to Fig. 
1. Bar in G represents 50 ~m (for A-G). 
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Figure 10. Determination of the migration and process outgrowth 
pattern of astrocytes from cerebellar microexplant cultures main- 
rained in the absence (,4) or presence (B-G) of N-CAM protein 
fragments. GFAP-positive astrocytes were visualized by indirect 
immunofluorescence. (B) Ig I; (C) Ig II; (D) Ig HI; (E) Ig IV; (F) 
Ig V; (G) FN I-II. For abbreviations, see legend to Fig. 1. Bar in 
G represents 100 ~m (for A-G). 
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Figure 11. Effect of adhesion molecules, protein fragments and anti- 
bodies on intracellular IP1 levels of cultured small cerebellar neu- 
rons. After labeling with [3H]inositol, small cerebellar neurons 
maintained on laminin were incubated for 20 min in the presence 
of 10 mM Li + with adhesion molecules, protein fragments, bac- 
terial pellet (for abbreviations see legends to Figs. 1, 2, and 4), 
N-CAM and LI isolated from mouse brain (brain N-CAM and 
brain L1, respectively) and the mixture of polyclonal antibodies to 
LI and N-CAM (pLI/pN-CAM). Bars show the percentage increase 
of [3H]inositol incorporation into IP1 in cells treated with antigens 
and antibodies compared with control cells and represent mean 
values • SD from three independent experiments. Bars marked by 
* are significantly different (P < 0.05) from the control (fibro- 
nectin). 

neurons with the different protein fragments in the presence 
of Li +, allowing the determination of changes in inositol 
phosphate metabolism with changes in IPI as an indicator 
of such changes (yon Bohlen und Halbach, E ,  J. Taylor, and 
M. Schachner, manuscript submitted for publication). Ig I 
was the most potent stimulator of inositol phosphate turn- 
over, in that it caused stimulation of IP1 accumulation by 
,o60% over control values in the absence of protein frag- 
ments (Fig. 11). Ig I-V, N-CAM from brain and the mixture 
of the polyclonai antibodies to L1 and N-CAM gave a similar 
stimulation when added to the cultures. The highest stimula- 
tion was seen with L1 from brain which amounted to "o110% 
when compared to the untreated control. Smaller stimula- 
tory values were seen with Ig II, m ,  IV, and V which 
amounted to ,o25 % stimulation over control values. Interest- 
ingly, FN I-II showed no stimulation over control values. 
The mixture of Ig I-V and FN I-II was less than additive 
when compared to the effects caused by the two fragments 

separately, suggesting that the FN I-II may even be inhibi- 
tory in combination with stimulatory fragments. To evaluate 
the contribution of the bacterial protein contaminants, pro- 
teins from the inclusion bodies and supernatants of bacterial 
lysates from the control clone were used. There was no 
significant stimulation in IP1 turnover by these proteins. 

Measurements of intracellular concentrations of Ca ~§ 
([Ca:+]~) and intracellular pH (pH0 revealed strikingly par- 
allel effects after addition of soluble protein fragments (Fig. 
12). The most prominent increase in [Ca2§ and pH~ was 
seen after addition of Ig I and II, amounting to an increase 
in [Ca2+]~ by a factor of almost three. This increase was 
similar to that evoked by Ig I-V, the mixture of Ig I-V and 
FN I-II, N-CAM from brain, and the mixture of polyclonal 
antibodies to L1 and N-CAM. Only L1 from brain caused 
a slightly higher increase in [Ca2+]~. Interestingly, Ig III, IV, 
and V and FN I-II did not trigger an increase in [Ca2+]i or 
pHi. Evaluation of the kinetics of the response in [Ca2+]~ 
and pH~ showed that the maximal rise in [Ca2§ induced by 
addition of the protein fragments or antibodies, occurred 
within the first 15 min after addition of the fragments and 
was followed by a reduction to lower levels with time of incu- 
bation (Fig. 13). This decrease was more pronounced with 
L1 from brain and the mixture of polyclonal antibodies to L1 
and N-CAM and less extensive with Ig I and II and the other 
stimulatory protein fragments. As observed previously for 
some cell types (von Bohlen und Halbach, E ,  J. Taylor, and 
M. Schachner, manuscript submitted for publication), the 
increase in pH~ followed the rise in [Ca2+]~ and desensitized 
less effectively with time of incubation than the response in 
[Ca~§ 

None of the protein fragments or antibodies evoked any 
changes in intracellular levels of cAMP or GMP (not shown). 

Discussion 

In this study we have shown that in different functional assay 
systems, the different domains of the extracellular part of 
N-CAM are implicated in different functions. The results ob- 
tained in this study are applicable to the investigated isoform 
of N-CAM and it might well be that other alternatively 
spliced isoforms of N-CAM exert different functions. As 
substrate-coated molecules, the Ig-like domains I and II are 
most prominently involved in promoting cell adhesion. This 
is in agreement with a previous observation that the 25-kD 
fragment of the aminoterminal region of N-CAM, which 
contains these domains, is involved in cell adhesion (Cole 
and Glaser, 1986; Frelinger and Rutishauser, 1986). The 
fibronectin type III homologous repeats are most predomi- 
nant in promoting neurite outgrowth and cell spreading. 
When added as soluble fragments into the culture medium, 
where they may act either as agonists or competitors, It-like 
domain I reduces neurite fasciculation and migration of neu- 
ronal cell bodies, while Ig-like domains III and IV enhance 
neurite fasciculation and clustering of cell bodies and reduce 
the perpendicular orientation of inhibitory interneurons, 
The triggering of intracellular messenger systems is also 
more dependent on some domains than others. For example, 
the turnover of inositol phosphates is increased by Ig-like do- 
main I more so than by the other Ig-like domains, whereas 
the type HI repeats are not stimulatory. Furthermore, intra- 
cellular concentrations of Ca 2+ and pH levels are increased 
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Figure 12. Influence of adhesion molecules, protein fragments, and antibodies on [Ca2+]i and pHi of cultured small cerebellar neurons. 
Small cerebellar neurons were maintained on laminin and incubated without protein fragments (control), with adhesion molecules, protein 
fragments, and antibodies. Bars show the maximum values observed after addition of proteins within a time period of 60 rain and represent 
mean values :t: SD from three independent experiments. Bars marked by * are significantly different (P < 0.05) from the control (fibronec- 
tin). For abbreviations see legends to Figs. 1 and 11. 

only by Ig-like domains I and II, whereas Ig-like domains HI, 
IV, and V and type III domains I-II are completely 
ineffective. 

Two observations argue against the possibility that the ob- 
served effects are due to bacterial contaminations which 
might block the functions of the expressed peptides. First, 
the fact that all the expressed peptides were active in at least 
one functional assay indicates that bacterial contaminations 
are not general blocking agents. Since these peptides are 
quite small, the contaminating proteins would cover the 
whole peptide and all possible functional sites would be 
blocked, hence the peptide could not be active in any of the 
performed test systems. Second, if a contamination interacts 
specifically with one peptide, then this contamination must 
also interact with the construct containing all five Ig-like do- 
mains or with the mixture of all Ig-like domains with all 
fibronectin type HI repeats, representing the complete ex- 
tracellular region of N-CAM. However, this is not the case: 
The adhesion given by this mixture is as strong as that given 
by N-CAM from brain which does not contain bacterial con- 
taminations. Another consideration is noteworthy in that the 
bacterially expressed peptides are capable of assuming their 
proper configuration, since only one band under nonreduc- 
ing condition is seen, except for the construct containing all 
five Ig-like domains. It should be noted that even in the case 
that several configurations are attained, as seen for all five 

Ig-like domains, the expressed peptide is functionally active 
when compared to the peptides encompassing the individual 
domains and to N-CAM from brain. 

In addition, our study has shown that individual domains 
can subserve distinct functions without the natural decora- 
tion by nervous system-derived carbohydrate structures. 
However, it is likely that the protein backbone may be even 
more finely tuned to perform its task when modified by at- 
tached carbohydrate structures such as the L2/HNK-1 carbo- 
hydrate (Kruse et ai., 1984; Kfinemund et ai., 1988) which 
has been localized to the Ig-like domains of N-CAM (Cole 
and Schachner, 1987). It is interesting in this respect that the 
Ig-like domain V is least active in all functional tests used 
in this study and it is therefore conceivable that this particu- 
lar protein backbone needs its particular carbohydrate struc- 
ture which could be polysiaiic acid in the less adhesive, so- 
called embryonic form of N-CAM (I-Ioffman and Edelman, 
1983; Sadoul et ai., 1983; Crossin et al., 1984). It is thus 
tempting to speculate that certain immunoglobulin-like do- 
mains may exert their functions mainly as presenters of func- 
tionally important carbohydrate structures. 

In general, the implication of the individual domains in 
certain functions is not all or none in the sense that the other 
domains are rarely completely silent in a particular func- 
tional task. However, the predominant effects of certain do- 
mains over others is easily seen. It is noteworthy that in sev- 
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Figure 13. Changes in [Ca2+]i and pHi of cultured small cerebellar neurons maintained on laminin as a function of incubation time with 
adhesion molecules, protein fragments, and antibodies. Small cerebellar neurons were maintained on lamimn and incubated with adhesion 
molecules, protein fragments, and antibodies (pLI/N-CAM). Values recorded after addition of antibodies show changes in [Ca2+]i and phi 
and are means + SD from three independent experiments. For abbreviations see legends to Figs. 1 and 11. 

eral assay systems, individual domains were more effective 
in evoking a biological response than N-CAM isolated from 
adult mouse brain or the combination of the Ig-like domains 
I-V either alone or in combination with type III repeats I-II. 
This phenomenon could be explained by the assumption that 
in the whole molecule the individual domains are not as ex- 
posed and thus not as accessible to the corresponding recep- 
tor as in the individual fragments. Indeed, the proteolytic 
fragment containing the Ig-like domain II has been found to 
bind to heparin more avidly than the whole molecule (Cole 
and Akeson, 1989). Another example illustrating that a frag- 
ment is more active than the whole molecule is parathyroid 
hormone, where the fragment shows a greater effect in Ca :+ 
excretion than the whole molecule (Rabbani et al., 1990). 
On the other hand, N-CAM from brain may have been dena- 
tured during the isolation procedure and the five Ig-like do- 
mains containing five cystine bridges may not have com- 
pletely regained their functional conformation during the 
renaturation process, whereas the proportion of molecules 
with correct conformation may be higher in the preparation 
of the individual domains. Thus, we have been able to recon- 
struct the functional features of N-CAM that promote neurite 
outgrowth which have previously been observed when 
N-CAM transfected fibroblasts have been used as cellular 
substrates (Doherty et al., 1989, 1990, 1991), but less so and 
not as reproducibly when N-CAM isolated from brain was 
substrate coated (Lagenaur and Lemmon, 1987). Tandem 
presentation of domains, however, can have advantages over 
their individual presentation as is the case for the type m 
repeats I and II which, when contained in one protein frag- 
ment, are more effective in promotion of neuronal adhesion, 
neurite outgrowth, and cell body spreading than the in- 
dividual domains. Thus, the type III repeats, but to a lesser 
extent the Ig-like domains, may be susceptible to some con- 
formational reinforcement as repetitive units. 

The results obtained in this study justify the strategy in 
which the structural features of a molecule are dissected into 
individual motifs or "cassettes," because they appear to be 

functional entities in themselves. The choice of bacteria as 
the manufacturers of these cassettes has served the purpose 
that the function of the protein backbone without the possi- 
bly modifying influences of nervous system-derived carbo- 
hydrates can be determined. The advantages of our ex- 
perimental approach are several fold. First, the use of 
molecular fragments avoids functional tests with ceils that 
have been made to express individual molecular domains at 
the cell surface by transfection. Such cells are not devoid of 
recognition molecules, and these endogenous molecules may 
undergo unknown functional associations with the trans- 
fected molecules. Thus, a convincing demonstration of fig- 
hal transduction triggered by different domains depends on 
the cleanness of the inducing signal, which is rarely achieved 
in the context of other cell surface molecules. In addition, 
the use of isolated protein fragments is much more versatile 
than cell transfection, since soluble molecules can be readily 
used in a variety of functional assays that are not practical 
with cell-bound molecules because of the inability of cells 
to effect subtle changes in complex cell interactions, such as 
neuron-gila and nerve-muscle interactions, synaptogenesis, 
choice of particular substrates, and perpendicular orienta- 
tion of inhibitory interneurons. Thus, soluble protein frag- 
ments can be used to monitor cell interactions in their natu- 
ral, sophisticated environment in which different cell types 
possess their original machinery to transduce recognition 
events at the cell surface into sensible intracellular conse- 
quences. Furthermore, protein fragments can be made as 
cassettes in increasingly smaller sizes to determine the func- 
tionally relevant amino acid sequences which are best tested 
as soluble competitors (Pierschbacher and Ruoslahti, 1984; 
Yamada and Kennedy, 1984). These can be used with ease, 
because of their facilitated penetration through the intact tis- 
sue, possibly even in the living animal (Boucaut et al., 
1984). 

Having demonstrated that particular domains subserve 
certain functions, the question arises as to how these do- 
mains induce their particular cellular effects. The N-CAM 
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fragments may modulate ligand-receptor relationships be- 
tween the cell surface of neighboring cells, which may be 
homophilic (Hoffman and Edelman, 1983) or heterophitic 
(Werz and Schachner, 1988), requiring self or nonself recep- 
tors at the cell surface of the recipient cell, respectively. The 
fragments may also interfere with the molecular association 
of L1 and N-CAM within the surface membrane of one and 
the same cell (Kadmon et al., 1990a,b). An indirect action 
of the fragments may lie in the modulation of substrate- 
associated molecules which then exert different effects on 
their partner cells. 

A comparison of structure-function relationships between 
molecules of the immunoglobulin superfamily (Williams and 
Barclay, 1988) or molecules of the fibronectin type III family 
appears warranted. As for the immunoglobulin superfamily, 
CIM exhibits receptor activity for the gpl20 glycoprotein of 
HIV and MHC II molecules in its first and second Ig-like do- 
mains (Fleury et al., 1991). Furthermore, it was shown that 
the interaction between CD4 and gpl20 is independent of 
glycosylation on both partner molecules (Fenouillet et al., 
1989). MHC I molecules interact with their first two Ig-like 
domains with the respective antigens of antigen presenting 
accessory cells (Bjorkman et al., 1987). ICAM-1 was shown 
to bind to the integrin Mac-1 (CDllb/CD18) with its third 
Ig-like domain, whereas it binds to the rhinovirus by the first 
and second Ig-like domains (Staunton et al., 1990) and to 
the integrin LFA-1 with its first Ig-like domain (Diamond et 
al., 1991). The third Ig-like domain of the MHC I molecule 
(c~3) is recognized by the Ig-like domain of the CD8 u-chain 
(Salter et al., 1990). The interaction of the Ig-like domains 
of CD2 with the Ig-like domains of its receptor LFA-3 (Seed, 
1987) is particularly interesting, since both partner mole- 
cules have Ig-like domains of the C2-type as do most recog- 
nition molecules in the nervous system. Furthermore it has 
been shown that the binding sites for mAbs against CD2 fall 
in three discrete regions: antibodies that stimulate IL-2 re- 
lease and block erythrocyte adhesion bind to the first region; 
antibodies that block adhesion bind to the second region; and 
antibodies that stimulate IL-2 release but do not block adhe- 
sion bind to the third region (Peterson and Seed, 1987). 
Thus, messenger activation and adhesive properties of CD2 
seem to be separated as in N-CAM. 

However, such specializations of Ig-like domains may not 
always be implemented, since the neural adhesion molecule 
P0, the major cell surface glycoprotein of myelin in periph- 
eral nerves which contains only one V-type domain, has 
been shown to mediate both homophilic glia-glia and bet- 
erophilic neuron-glia recognition (Schneider-Schaulies et 
al., 1990), It can presently not be assessed whether a partic- 
ular conformation, either of the V-type as in CD4, CD8 and 
Po, or the C2-type as in CD2, LFA-3, N-CAM, the myelin 
associated glycoprotein, and L1, may subserve different 
ranges of functional properties. As shown in the present 
study, the Ig-like domains of N-CAM are not the most effec- 
tive neurite outgrowth promoters, although they do support 
neurite outgrowth, as do P0 (Schneider-Schaulies et al., 
1990) and myelin-associated glycoprotein (Johnson et al., 
1989). The fibronectin type HI homologous repeats are more 
active promoters of neurite outgrowth and are thus reminis- 
cent of the neurite outgrowth promoting properties of tenas- 
cin which localize to the fibronectin type HI homologous 
repeats 10 and 11 in the mouse (Lochter et al., 1991). The 

fibronectin type IH repeats of fibronectin have also been im- 
plicated in neurite outgrowth of peripheral nervous system 
neurons (Humphries et al., 1988). It is therefore tempting to 
speculate that the neural recognition molecules carrying a 
greater number and more highly conserved tandem fibronec- 
tin type III repeats than N-CAM, such as L1 (Moos et al., 
1988), TAG-1 (Fudey et al., 1990), F3/F11/contactin (Gen- 
narini et al., 1989; Briimmendorf et al., 1989; Ranscht, 
1988), Ng-CAM (Burgoon et al., 1991), and Nr-CAM (Gru- 
met et al., 1991), may be endowed with neurite outgrowth 
promoting activities proportional to the number of their type 
III repeats. 

The neurite outgrowth promoting activities of the type III 
repeats do not appear to be mediated by the second mes- 
senger systems investigated in this study, since these domains 
did not evoke any changes in inositol phosphate turnover, in- 
tracellular levels of Ca 2+ and pH, or cAMP, and GMP. 
However, it is possible that Ig-like domains I and II, which 
are the most prominent domains in promoting cell adhesion 
and cell spreading, may trigger and sustain neurite out- 
growth via increasing inositol phosphate turnover and intra- 
cellular concentrations of Ca 2+ which then may act in con- 
cert with yet unknown signalling systems induced by the 
fibronectin type III repeats, It is also possible that the experi- 
ments in which neurite outgrowth and second messengers 
systems have been measured cannot be strictly compared, 
since in the frst case protein fragments were substrate 
coated, while in the second case they were added as soluble 
compounds. It remains to be seen which structural features 
are common to the different recognition molecules in spe- 
cialization for certain functions and how the individual mo- 
lecular domains exert their functional roles by a combination 
of recognition at the cell surface and signal transduction 
from the cell surface to the cell interior. 
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