
Direct Noise Computation of 
High Reynolds Number 
Subsonic Jet Flow using LES

Felix Keiderling

Dissertation ETH No. 17955





Visualization taken from a large-eddy simulation (LES) of a Mach 0.9
jet at a Reynolds number of Re = 4.5 · 105. Vortical structures of the
jet shear layers are shown by contours of |ω|. The directly computed
acoustic near-field is visualized by pressure fluctuations.

A digital version of this thesis can be downloaded from ETH e-collection:
http://e-collection.ethbib.ethz.ch/

This thesis was typeset using the pdfLATEX and the hyperref package.

http://e-collection.ethbib.ethz.ch/




Diss. ETH No. 17955

Direct Noise Computation of High Reynolds
Number Subsonic Jet Flow Using LES

A dissertation submitted to
ETH ZURICH

for the degree of
Doctor of Technical Sciences

presented by

Felix Keiderling

Dipl.-Ing. Luft- und Raumfahrttechnik, Universität Stuttgart
M.Sc. Aerospace Engineering, University of Arizona

born on July 8, 1975
citizen of Germany

accepted on the recommendation of

Prof. Dr. L. Kleiser
Dr. habil. (HDR) C. Bogey (EC Lyon)

2008





Abstract

The effect of nonlinear interaction of instability eigenmodes on jet flow
transition and its noise for a round jet at a Mach number of Ma = 0.9
and a Reynolds number of Re = 4.5 · 105 based on jet exit conditions
is investigated by large-eddy simulations. At the inflow, helical pertur-
bations determined from linear stability theory are superimposed on a
laminar base flow in order to initiate transition to turbulence. Two dif-
ferent ranges of azimuthal wavenumbers n are excited. The first type
of simulations excites modes |n| = 1, . . . , 8 while the second excludes
|n| < 3 from the inflow forcing. For both modal compositions we inves-
tigate the effect of the disturbance amplitude and vary it in the range
from 1.5%, 3.0% to 4.5% of the jet inlet velocity. Thereby, we aim to
characterize sources of noise generation and, in particular, underlying
mode interactions.

For the first type of excitation the changes in forcing amplitude
mostly affect the streamwise position of the transition process which
is shifted upstream for larger excitation levels. The transition process
is similar for the three amplitudes and is characterized by strong vortex
pairings that directly place an imprint on the emitted noise. The sim-
ulation results are in fair agreement with experimental and numerical
reference data.

For the second type of excitation we observe changes in the tran-
sition of the jet with increasing forcing amplitude. As the shear layer
roll up, pronounced vortex pairings are more and more weakened and
vortex rings are distorted to form three-dimensional structures. This
change in transitional behavior affects the acoustic near field which ex-
hibits features of both, natural and tonally-excited jets. In particular for
high forcing amplitudes, a tonal component outside the initially excited
frequency range is observed. This tone can be linked to fluid-dynamic
events in the early transitional region as well as at the end of the po-
tential core. Furthermore, its frequency can be explained by a weakly
nonlinear interaction of initially excited eigenmodes.

To substantiate the soundness of the predictions, insensitivity against
the choice of certain numerical parameters is demonstrated. The
relaxation-term coefficient of the ADM subgrid-scale model is reduced
and effects are found to be small. Subgrid-scale model effects are further
investigated by simulating a baseline configuration using approximately
deconvolved information. Finally, we address the effect of the azimuthal
resolution on our simulation results.



Kurzfassung

Die vorliegende Dissertation befasst sich mit dem Einfluss der nichtli-
nearen Interaktion von Instabilitätsmoden auf den laminar-turbulenten
Übergang eines runden Freistrahls bei einer Machzahl von 0.9 und ei-
ner Reynoldszahl von Re = 4.5 · 105 gebildet mit Grössen am Eintritt
des Freistrahls. Hierzu wird eine Reihe von Grobstruktursimulationen
(LES) durchgeführt. Am Einströmrand des numerisch Rechengebietes
werden dreidimensionale Störungen gemäss linearer Stabilitätstheorie
mit einer laminaren Grundströmung überlagert, um den Umschlag ein-
zuleiten. Hierbei werden zwei unterschiedliche Zusammensetzungen der
Einströmstörungen untersucht: Beim ersten Typ werden Umfangswellen-
zahlen |n| = 1, . . . , 8 angeregt, im zweiten nur Wellenzahlen 4 < |n| < 8.
Für die jeweiligen Zusammensetzungen der modalen Anregung wird der
Einfluss der Störamplitude im Bereich von 1.5% bis 4.5% (bezogen auf
die Eintrittsgeschwindigkeit des Freistrahls) untersucht.

Bei der Anregung der Eigenmoden |n| = 1, . . . , 8 beschränkt sich
der Einfluss der Störamplitude hauptsächlich auf den Ort des Um-
schlags. Das Transitionsverhalten für unterschiedliche Amplituden ist
relativ ähnlich und geprägt von Wirbelpaarungen, die auch den direkt
berechneten Schall dominieren. Strömungs- wie auch Schallergebnisse
stimmen qualitativ mit Referenzdaten überein und sind deutlich vom
Transitionsverhalten geprägt.

Für den zweiten Typ der Anregung wird bei Vergrösserung
der Störamplitude eine Veränderung des Transitionsverhaltens festge-
stellt, welches von gelegentlich auftretenden Wirbelpaarungen zu ei-
nem Umschlag mit dreidimensionalen Wirbelstrukturen wechselt. Die-
se Veränderung im Transitionsgeschehen beeinflusst das dadurch gene-
rierte akustische Nahfeld. Die Ergebnisse im Strömungsbereich sind in
sehr guter Übereinstimmung mit experimentellen und anderen numeri-
schen Resultaten. Das direkt berechnete akustische Nahfeld hat Eigen-
schaften von sowohl natürlichen als auch tonal angeregten Freihstrahlen,
die zum einen mit Vorgängen im Transitionsbereich der Scherschicht
und zum anderen mit Ereignissen am Ende des Potentialströmungskerns
in Zusammenhang gebracht werden können. Die besonders für gros-
se Störamplituden auftretende tonalen Komponente, welche ausserhalb
des angeregten Frequenzbandes liegt, lässt sich mit Hilfe schwach nicht-
linearer Theorie als Interaktion angeregter Moden erklären.

Um die Sensitivität des Simulationsverfahrens zu untersuchen, und
somit auch die Zuverlässigkeit der Vorhersagen zu demonstrieren, werden



bestimmte numerische Parameter verändert. Zuerst wird der Relaxati-
onskoeffizient des Feinstrukturmodells verändert, dessen Einfluss auf die
Ergebnisse sich als gering erweist. Der Einfluss des gewählten Feinstruk-
turmodells wird anhand einer Simulation untersucht, die approximativ
entfilterte Feldgrössen verwendet. Abschliessend wird der Einfluss der
numerischen Auflösung in Umfangsrichtung untersucht.
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Roman symbols
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g
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Atotal,LST total disturbance amplitude
A amplitude
A,B,C,E coefficient matrices in linear stability problem
Dj jet diameter
D differential operator matrix
E total energy
E(n) turbulent kinetic energy (TKE) of wavenumber n
f ′ first derivative of f in section 2.4.2
fs sampling rate
fN Nyquist frequency
G filter operator
I identity operator
J Jacobian matrix
k thermal conductivity
L computational domain length
Ma Mach number
n azimuthal wavenumber
|n| = ±n right- and left-turning wavenumber n
Nr, Nθ, Nz grid points in radial, azimuthal and axial direction
Nr
θ number of retained modes in context of

mode-clipping outlined in section 2.4.2
O order
p pressure
Pr Prandtl number
qi molecular heat flux vector
Q vector of conservative variables
QN deconvolution operator
r̃ mapped radial coordinate in section 2.4.1
r0 jet radius (r0 = Dj/2)
r1/2 jet half-width
rndi random number with i = 1, 2
(r, θ, z) cylindrical coordinates
(R, θ, φ) spherical polar coordinates
R specific gas constant
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R auto-correlation coefficient in azimuthal direction
Re Reynolds number
S Sutherland constant
Sij strain rate tensor
St Strouhal number based on jet

diameter St = ωDj/(2πUj)
Stg Strouhal number representable on grid
StN Strouhal number based on Nyquist frequency fN
Stθ Strouhal number based on initial momentum

thickness Stθ = ωθ0/(2πUj)
t time
T temperature
Tsim simulation time
u1, u2, u3 Cartesian velocities corresponding to X
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Uj jet exit velocity
wc mean axial velocity on jet centerline
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z0 virtual origin
zc length of potential core

Greek symbols
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total resolved energy equation (2.7c)
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filtered momentum equations (2.7b)
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following Jeong & Hussain (1995)
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Φ dissipation
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infl inflow
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out outflow
r radial direction
ref reference state
spg sponge quantity
∞ ambient or reference condition
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Chapter 1

Introduction

1.1 Motivation

The noise produced by air flows is an issue in a wide range of techni-
cal applications in our everyday life, ranging from trains, automobiles
and the cooling fans of electronic devices to aircraft jet exhausts. Over
the past years, the sensitivity to noise and its effects on human health
has been rising steadily. As a consequence, for instance, airlines face
severe noise regulations by the authorities and also noise-dependent air-
port landing fees, which prompted an increased interest of the aircraft
industry in research on jet-noise reduction. In particular for aircraft-
associated noise the expected development of the airliner market adds
fuel to the problem: In the period 2007 to 2026 a leading aircraft manu-
facturer expects an increase in world passenger traffic of approximately
4.9% per annum (p.a.) and a growth in freight traffic of 5.8% p.a. (see
Global Market Forecast, Airbus S.A.S., 2007). In the context of this ex-
pected growth, the acceptance – especially in the vicinity of residential
areas – will be tied inevitably to noise reduction.

Prediction tools that can a priori determine the acoustic emission
of a particular design are therefore needed by the industry. In addi-
tion, insight into the underlying mechanisms of sound generation has to
be gained in order to influence the flow and hopefully achieve a reduc-
tion of perceived noise. The field of computational aeroacoustics (CAA)
is a promising approach that can significantly contribute toward the
goal of noise prediction and noise reduction as it closes the gap between
well-established methods of computational fluid dynamics (CFD) and
aeroacoustics. Because of the very high Reynolds numbers of realistic
jet engines (on the order of 107 based on the nozzle diameter and cen-
terline velocity) the flow in the jet plume is considered fully turbulent.
This requires numerical simulations which feature a reliable modeling of
turbulence. Since the inherent source of sound is the unsteadiness of the
flow, it is widely agreed upon that time-dependent simulation methods
are to be used in aeroacoustic research.

The motivation of this study is to enhance the understanding of jet
noise generation mechanisms in the high subsonic regime. Because of
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the high Reynolds number of practical configurations our numerical ap-
proach relies on large-eddy simulations (LES). The sound together with
its fluid dynamic source field is computed in a single domain by solving
the compressible Navier-Stokes equations. Thereby, we intend also to
contribute to research in the field of direct noise computation (DNC)
and to assess the predictive quality of LES for high Reynolds number
jet-noise problems.

1.2 Background

Since the beginning of the jet engine age more than 60 years ago, drastic
reductions in jet noise have been accomplished. The beginning of jet-
noise research is intrinsically tied to Sir James Lighthill and his two-part
publication entitled “On sound generated aerodynamically” (Lighthill,
1952, 1954). In order to advance the understanding of noise generation
mechanisms it was most natural to search for sources of sound con-
tained in the flow field. Through his acoustic analogy, which is based on
the rearrangement of the full compressible conservation equations into
wave-equation form, the flow is separated into a wave propagation part
(wave equation in a homogeneous medium at rest) and an inhomogeneous
source consisting of the remaining terms. One important finding is that
in the subsonic regime the emitted sound power scales with the eighth
power of the jet exit velocity. Therefore, these jet-noise reductions were
mostly achieved by increasing the by-pass ratio of the turbofan engines
which reduces the jet exit velocity and shields the high-speed core of the
jet. There is, however, a technical upper limit for the by-pass ratio, and
it has become clear that further progress can only be achieved by more
subtle modifications of the jet flow.

In subsequent years modifications to the acoustic analogy were pro-
posed in order to take into account effects that were already pointed
out by Lighthill such as source convection (and thus a directivity pat-
tern with dominance in the downstream direction and a Doppler shift of
the radiated frequencies (Ffowcs Williams, 1963)) as well as mean flow
refraction effects (Lilley, 1974). Nevertheless, the ambiguity of the sepa-
ration between acoustics and the interaction of acoustic waves with the
generating flow field remains unresolved in these approaches. Important
theoretical contributions by Powell, Howe and Möhring that rely on a
vorticity formulation of the source term of the wave equation are not fur-
ther addressed here; rather we refer to the review articles by Goldstein
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(1984), Lilley (1995), Tam (1998) and Jordan & Gervais (2007).
Turbulence research and thereby also aeroacoustic research noticed

the importance of scale separation when Crow & Champagne (1971) pro-
vided experimental evidence for the existence of large coherent structures
within turbulent flow fields and, more importantly, in the noise produc-
ing region of the investigated jet. They showed that surging excitation
of the jet raises the latent order of large coherent structures above back-
ground turbulence and linked it to instability waves. About the same
time, several researchers suggested that instability waves might be the
major source of sound in the supersonic regime. Because of very promi-
nent radiation patterns emitted from supersonic jet flows (see Fig. 1.1),
a lot of work was devoted to clarify this and a successful theory of noise
generated by instability waves was proposed by Tam (1971). As the

Figure 1.1: Directional sound waves radiated from the shear layers of a super-
sonic jet of helium. This photograph is copyright Cambridge University Press,
Tam (J. Fluid Mech. 1971), plate 1. Reprinted with permission.

present work focuses on subsonic jet noise we refer to the review articles
by Tam (1995a,b) for further details concerning the characteristics of
supersonic jet noise (such as turbulent mixing noise, broadband shock-
associated noise and screech tones) and the developed theories.

The work of Winant & Browand (1974) showed that the vortex pair-
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ing in a mixing layer is initiated by instability waves (either naturally
occurring or mechanically excited). They also pointed out the strong
similarities to the dynamics of the coherent structures in the round jet
experiments by Crow & Champagne (1971). Because of these similari-
ties Winant & Browand proposed to consider vortex pairing as an im-
portant source of sound even for high Reynolds number jet flow. Brown
& Roshko (1974) experimentally demonstrated the presence of such co-
herent structures in a high Reynolds numbers (Re = 0.5 · 106) mixing
layer and found the Reynolds number effect to be restricted to the range
and size of the small scales. The large-scale picture exhibited virtually
no influence. Against the background of supersonic jet noise and with
respect to these experimental findings, a theory similar to the super-
sonic regime was sought which could uniquely explain the underlying
noise generation mechanisms. As the efficiency of Mach wave radiation
is significantly reduced for subsonic jets the question remains whether
its noise is dominated by large coherent structures or small and more
isotropic eddies. Also, the effect of large-scale structures on the sub-
sonic jet noise remains unclear as for example pointed out in the review
articles by Goldstein (1984) and Tam (1995b).

Very early, the effect of modifications of the jet – either upstream
or right at its exit – on the emitted noise was investigated by various
experimental groups. Bechert & Pfizenmaier (1975), for example, found
an amplification of broad band noise in a subsonic cold jet by pure
tonal excitation. In contrast to this, other investigators, such as Kibens,
noticed a reduced broadband response, as pointed out in the compre-
hensive review article by Crighton (1981). According to him these op-
posing observations were related to the difference in Reynolds number
of the experiments: There seemed to exist a critical Reynolds number
of Re ≈ 105 below and above which excitation resulted in a reduction
and amplification of turbulence and broadband emitted noise. Zaman
& Hussain (1981) investigated the turbulence suppression effect for a
variety of excitations. Subsequently Hussain & Hasan (1985) demon-
strated that this could effectively reduce the far-field jet noise. These
experiments did not only confirm the Reynolds number barrier proposed
by Crighton but also render comparisons between low-Reynolds number
jets and practical jets questionable at least to some extent. Hussain &
Hasan (1985) identified an additional constraint for the noise suppres-
sion/amplification: the state of the oncoming boundary layer within the
nozzle. For noise reduction the boundary layer needs to be initially lam-
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inar, which was subsequently verified in experiments by Zaman (1985).
Motivated by these experimental findings modifications to the nozzle

of jet engines have shown that altering the flow at the nozzle exit (e.g.,
by chevrons, tabs, air injection) can reduce the noise by enhanced mixing
of the high- and low-speed streams (we refer to Castelain (2006) for an
overview of noise reduction approaches). However, research on effective
noise reduction methods has largely been based on trial-and-error exper-
iments. Without exception the proposed measures result in a reduced
engine efficiency and loss of thrust and, therefore, are not attractive for
the industry. The application of micro-jets to alter the jet flow with a
relatively small mass-flux are hence attractive and are investigated by
Arakeri et al. (2003) and Castelain (2006). Nevertheless, the underlying
noise generation mechanisms (in the subsonic regime prevalent during
aircraft take-off) are not yet understood and no predictive tool for the
design process is available for complex jet nozzle modifications. There-
fore, it is strongly desirable to further enhance our understanding of the
noise generation mechanisms by examining the connection between flow
features and the radiated noise.

Full-scale engine tests are infeasible because of the enormous com-
plexity of the underlying problem. Regardless of the chosen approach
(analytical, experimental or numerical) to tackle this problem, several
approximations and simplifications have to be made. In the field of jet-
noise research a model problem is set up which focuses solely on the noise
generated by the turbulent jet exhaust plume, which represents the ma-
jor noise source during take-off of a civil airplane. Of course this is only
a crude model compared to flow behind a jet engine. However, as long
as the major mechanisms are captured, this idealized model can serve as
test-bed to shed light on fundamental physics of jet-noise generation.

1.3 Classification of noise prediction approaches

The prediction methods employed in the field of computational aeroa-
coustics can be grouped into so-called “hybrid” and “direct” methods.
When taking the hybrid approach the domain is divided into a noise
generating region associated with the turbulent sources and a region in
which the generated noise propagates into the far field. In contrast,
when performing a direct noise computation the discretized domain is
extended and the compressible Navier-Stokes equations are solved in the
fluid dynamic region as well as in the contiguous acoustic field. Thereby,
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this approach circumvents the problem of truncating and coupling two
domains and also the problem that the definition of the acoustic source
terms is not unique. In particular in the case of high subsonic Mach
numbers, the lack of a clear scale separation mentioned above makes the
distinction between source terms and propagating medium (employed in
hybrid approaches) ambiguous and remains a subject of ongoing discus-
sions (Wang et al., 2006; Jordan & Gervais, 2007). On the other hand,
the direct computation approach is computationally more expensive be-
cause of the continuous discretization into the acoustic field. Therefore,
DNC contain only a part of the acoustic field, which is referred to as the
acoustic near field. Clearly, the advantage is that all possible interaction
effects between sound waves and the fluid flow are inherently captured
by this approach. Thus, as long as the employed numerical methods es-
tablish the correct physical model, the directly calculated acoustic field
is a priori exact.

1.4 Numerical methods for noise prediction

No matter whether a hybrid or a direct noise computation approach
is taken, there is an ultimate requirement for accurate numerical tech-
niques because of the huge disparity of length and time scales between
the hydrodynamic region and the acoustic field. Only a minute frac-
tion of the flow’s kinetic energy transfers to sound waves which then
propagate over large distances without significant viscous damping. It
is important to point out that we focus on a high subsonic jet in which
scales cannot be clearly separated. This poses additional problems that
will be addressed below. The review article by Colonius & Lele (2004)
gives a detailed introduction to the field of computational aeroacoustics
and also addresses issues concerning appropriate numerical methods.

For the hybrid approach various methods have been used successfully
in the literature to propagate the sound to the acoustic far field. The
methods that exist range from acoustic analogies and Kirchhoff surface-
methods (Lighthill, 1952; Ffowcs Williams & Hawkings, 1969) to solving
the linearized Euler equations. These approaches are not addressed. In-
stead, we refer to the reviews by Lele (1997) and Wang et al. (2006) and
note that noise prediction methods used in today’s industrial design pro-
cess of jet engine nozzles largely rely on the Reynolds-averaged Navier-
Stokes equations (RANS) combined with acoustic analogies. These
methods are well established for specific geometries, however, they re-
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main at best semi-empirical and need tuning of coefficients to particular
cases in order to obtain reliable turbulence predictions and, hence, its
noise.

In contrast to this, current aeroacoustic research focuses on time-
dependent simulation methods since the flow unsteadiness is the inher-
ent source of sound. Direct Numerical Simulations (DNS) were used
for relatively low Reynolds number flows such as the investigation of the
sound generation in a two-dimensional low Mach number mixing layer by
Colonius et al. (1997). In an overlap-region results of the DNS were com-
pared to predictions using the previously mentioned modified acoustic
analogy of Lilley (1974) and it was found that the vortex-pairing dom-
inated noise was not accurately described. Freund (2001) successfully
performed a DNS of compressible high subsonic jet flow at a Reynolds
number of Re = 3.6 · 103 (based on the jet diameter). He found very
good agreement with the experimental results of a jet at the same jet
operating conditions reported by Stromberg et al. (1980). Far-reaching
conclusions can be drawn from such simulations concerning, for exam-
ple, mechanisms of sound generation and the structure of noise sources.
They also demonstrated the applicability of DNC, i.e. calculating di-
rectly the aerodynamically generated sound together with the flow in a
unified approach using highly accurate numerical schemes (such as the
compact schemes presented by Lele, 1992). However, because of the
high computational cost, DNS is restricted to flows in the low Reynolds
number regime.

At higher Reynolds numbers, as in the present work, LES can be em-
ployed in which only the large scales are fully resolved while the effects of
subgrid-scales (SGS) are modeled. The first LES providing parts of the
acoustic near-field was presented by Boersma & Lele (1999), however, no
details of the emitted acoustic field or near-field pressure spectra were
reported. Subsequently, Bogey, Bailly & Juvé (2003) provided the first
extensive results on the directly computed acoustic near-field of a Mach
0.9 round jet at an intermediate Reynolds number of Re = 65 · 103. In
the following years, a lot of effort was devoted to this field and investiga-
tions focused on different aspects such as the influence of inflow forcing
parameters, heating of the jet flow, viscous effects, SGS-model effect and
the turbulent energy budget. The works of Bodony & Lele (2004, 2005),
Uzun et al. (2004), Andersson et al. (2005b) and Bogey & Bailly (2006c,
2007), among others, demonstrated that it is possible to directly com-
pute the generated noise using LES and helped to obtain a more detailed



8 Introduction

picture of the underlying physics. These very active years of research
contributed to a change of the current understanding of the subsonic
jet noise generating mechanism in favor of early experimental findings
of Mollo-Christensen et al. (1964). They explained the observed spec-
tral characteristics as a combination of two different sources of sound:
Large-scale structures dominating the downstream region (including ef-
fects of convection and refraction and thus a low-frequency dominance)
and a more isotropic broad-banded noise with similar characteristics for
all observer positions associated with turbulence generated noise. Tam
et al. (2003, 2005) refer to this explanation in the context of their self-
similar pressure spectra. The experiments by Viswanathan (2004a,b)
also support this explanation for even more complex nozzle geometries.
Similarly, the LES results by Bogey & Bailly (2006b) assist in explain-
ing the observed near-field noise of a subsonic jet as the result of two
different coexistent noise generating mechanisms.

All flow computation approaches share the problem of suitable
boundary conditions at the edges of the computational domain. In the
context of aeroacoustics this becomes even more important: as in all
transitional/turbulent numerical flow simulations either turbulent inflow
conditions are to be prescribed or disturbances have to be introduced to
a laminar flow to initiate transition to turbulence. In the first case, the
definition of a turbulent inflow often relies on a precursor simulation,
which becomes computationally expensive for higher Reynolds numbers,
or on the inclusion of parts of the jet nozzle in the simulation domain
(see e.g. Shur et al., 2006; Barré et al., 2006). In the latter case, care
has to be taken when transition is triggered artificially as this numer-
ical noise may overwhelm the physical one. The disturbances can be
either artificial or, as in the present work, based on eigenmodes of some
underlying base-flow jet profile.

The pronounced sensitivity of jets to variations of the inflow condi-
tion has been demonstrated experimentally (Brown, 2005; Zaman, 1985)
as well as numerically (Stanley & Sarkar, 2000; Bogey & Bailly, 2005b).
Hence, investigating the sensitivity of the simulations to changes in dis-
turbance amplitudes seems appropriate. As pointed out by Wang et al.
(2006) it is tempting to target the development of computational meth-
ods toward the aeroacoustic prediction of realistic systems. However,
fundamental studies of generic problems can help in highlighting the
physics of the sound generation and bring technical issues forward that
must be addressed to achieve satisfactory modeling and prediction of the
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mechanisms.

The particularity of the present work lies in the nature of the distur-
bances introduced at the inflow. The nonlinear development of eigen-
modes is believed to play an important role in the sound generation pro-
cess of forced jets (Laufer & Yen, 1983). For example, Sandham et al.
(2006) found qualitative agreement for a model consisting of nonlinear
mode interaction of a convected vortex packet with full Navier-Stokes
simulation data. They reason that the wavenumber difference of dis-
turbances and their nonlinear interaction dominate the subsonic sound
radiation from eigenmodes. In contrast, Cheung and coworkers (Cheung
et al., 2007; Cheung & Lele, 2007) focus on nonlinear parabolized sta-
bility equations (PSE) and demonstrate that this approach accurately
captures the acoustic near field of subsonic jet flow (and when combined
with an acoustic analogy also the far-field noise). Only recently, Sand-
ham & Salgado (2008) investigated nonlinear mode-by-mode interactions
using linear PSE. Employing these modes to drive a source term of an
acoustic analogy they found good agreement with experimental refer-
ence data. The latter two approaches may remain restricted to lower
Reynolds numbers because the rapid amplitude growth of modes may
result in convergence problems or even divergence as well as in an ax-
ially fast developing flow, which contradicts the underlying assumption
in the derivation of the PSE (Cheung & Lele, 2007). The findings of
Sandham & Salgado and Cheung et al. , regardless of the relatively low
Reynolds number, are however important as there is experimental evi-
dence by Suzuki & Colonius (2006) that instability waves are present in
fully turbulent jets at high Reynolds number. In the present study we
therefore investigate inflow conditions based on linearly unstable eigen-
modes. We attempt to clarify effects of the inflow forcing amplitude
and the modal composition of the imposed disturbances on the tran-
sitional behavior of the jet. From changes in transition and resulting
variations of the aerodynamic properties we aim at inferring the domi-
nant modes and structures in the breakdown process of the jet. Possibly,
in the combination with the directly computed acoustic near-field noise,
conclusions might be drawn about the underlying mechanisms of noise
generation focusing, in particular, on the early nonlinear mode inter-
actions. The quality of the predictions and the system stability of the
computational setup is assessed by demonstrating insensitivity against
changes of important numerical parameters.
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1.5 Objectives and outline

In the present work, the nonlinear development of linearly unstable eigen-
modes of a high subsonic jet flow at high Reynolds number is investi-
gated. The effects of the nonlinear disturbance development on the jet
flow and its emitted noise is analyzed using large-eddy simulations that
provide the full spatio-temporal information. This information serves as
a data base to investigate the spectral properties of the directly com-
puted near-field noise. Important inflow conditions of the jet flow are
modified and subsequently their effect on the flow and on its noise is to
be investigated. In order to accomplish this goal the following objectives
need to be achieved:

• Development of a highly accurate and efficient solver of the time-
dependent three-dimensional compressible Navier-Stokes equations
expressed in cylindrical coordinates allowing for the direct noise
computation of high Reynolds number high Mach number jet flow
in a simplified model configuration using LES.

• Development of a numerical code that accurately solves the eigen-
value problem established by the linearized viscous disturbance
equations of the cylindrical Navier-Stokes equations.

• Investigation of the spatial stability properties of an analytically
defined base-flow profile.

• Investigation of the nonlinear interaction of the previously deter-
mined unstable eigenmodes using the developed LES code.

• Identification and explanation of noise generation mechanisms ex-
cited by the forcing of instability waves.

• Assessment of the predictive capabilities and investigation of the
sensitivity of the setup to changes in numerical parameters.

The thesis is organized as follows: In chapter 2 the governing equa-
tions together with the employed numerical methods are given. This
chapter also comprises the description of the SGS closure, boundary
conditions, inflow treatment and the spatial stability investigation of
the inflow profile. The results for the flow field and the generated noise
are reported in chapter 3 which starts with the specification of the pa-
rameters of the eleven investigated cases. First, the effect of physical
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parameters (disturbance amplitude and modal composition of excita-
tion) is investigated. Thereafter, computational parameters (SGS coef-
ficient, SGS model, resolution) are discussed. Each LES result section
is grouped into a representation of instantaneous data, mean flow and
turbulence results and the directly computed jet noise. Characteristics
of the acoustic near-field are linked subsequently to events in the fluid
dynamic region. Finally, the findings are summarized and conclusions
are drawn in chapter 4.





Chapter 2

Mathematical model and numerical methods

The mathematical model of fluid dynamics is given by the set of conserva-
tion equations of mass, momentum and energy, put forth independently
by Navier and Stokes in the early 1800’s (Darrigol, 2002). The momen-
tum equations are often referred to as Navier-Stokes equations, whereas
conservation of mass is also called the continuity equation. In the field
of computational fluid dynamics, however, the whole set of non-linear,
coupled, partial differential equations is commonly referred to as Navier-
Stokes equations (NSE) (Tannehill et al., 1997) and this nomenclature
will be employed in the following.

The numerical solution of the unsteady Navier-Stokes equations re-
quires that all relevant scales in space and time are resolved sufficiently.
For turbulent flows where scales may span several orders of magnitude
this resolution requirement becomes computationally very expensive.
This scale disparity is even increased when computing the aerodynam-
ically generated noise by means of direct noise computations and, as
mentioned before, the time-dependence inherently ties these noise com-
putations to turbulent flow simulations. To handle the huge scale dispar-
ity in space and time large-eddy simulation is the appropriate approach
for high Reynolds number flows. The underlying basis for LES is the
separation of spatial scales with respect to some reference length, typ-
ically related to the grid spacing ∆, i.e. the assumption that scales in
the flow can be separated into large-scale eddies and small-scale tur-
bulence. By using this length scale ∆ the structures in the flow are
divided into resolved ones which have spatial extent larger than ∆ and
unresolved ones. The unresolved small scales are often referred to as
subgrid-scales. The large, energy containing structures are usually char-
acterized by anisotropy whereas the smaller scales are generally more
homogeneous and isotropic and thus are suitable to a priori modeling
approaches. The scale separation for the Navier-Stokes equations is done
by performing a low-pass filtering in wavenumber space. It will be de-
scribed in more detail in the derivation of the governing equations.
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2.1 Governing equations for compressible LES

The governing equations for the current LES code are the filtered com-
pressible Navier-Stokes equations in nondimensional, conservative form
for a generalized coordinate system. In order to arrive at the nondi-
mensionalized form, dimensional reference scales are introduced which
results in the following dimensionless parameters

Re=
ρ∗∞u

∗
∞L
∗
∞

µ∗∞
(2.1a)

Ma=
u∗∞
a∗∞

(2.1b)

Pr=
c∗pµ
∗
∞

k∗∞
, (2.1c)

known as the Reynolds, Mach and Prandtl number, respectively. For a
more detailed description of the reference scales we refer to appendix A.
Here, we note only that the governing equations are nondimensionalized
by the jet radius r0 = Dj/2, jet exit velocity Uj , jet density ρj , the
dynamic viscosity µj and jet temperature Tj (all taken at the nozzle exit
on the jet centerline). The Prandtl number is set to Pr = 0.71. To
close the system of equations the fluid is assumed to be a perfect gas,
p = ρT/(γMa2).

For the derivation of the governing equations we introduce a spatial
low-pass filtering operation for any flow quantity f that separates scales
into a filtered or large-scale part f̄ and a small-scale part f ′, i.e., f =
f̄ + f ′. The filtered part of f is obtained according to the convolution
of G and f

f̄(x, t) = G ∗ f =
∫

Ω

G(x− x′, t− t′)f(x′, t′) dt′dx′ , (2.2)

where G is the filter kernel and Ω denotes the computational domain.
The mass-weighted Favre filtering procedure

f̃ =
ρf

ρ̄
(2.3)

is beneficial in the compressible regime due to the resulting compact-
ness of the governing equations. The Favre fluctuations are given by
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f ′′ = f − f̃ and this decomposition is employed for the velocity com-
ponents and the temperature. Applying the filtering procedure (equa-
tions (2.2) and (2.3)) to the conservation laws a similar form of the
governing equations to those given by Vreman (1995) is obtained. Here,
we employ generalized coordinates ξ = (ξ, η, ζ)T and perform the filter-
ing in the equidistant computational space. The generalized coordinates
of the computational space are given by a cube of unit side length and
are related to the physical coordinates X = (x1, x2, x3)T through the
mapping relations

x1 = x1(ξ, ζ) (2.4a)
x2 = x2(η) (2.4b)
x3 = x3(ξ, ζ) . (2.4c)

The Cartesian velocities corresponding to X are given by u1, u2, u3. As
will become evident below we have to distinguish strictly between the
Cartesian velocities and the cylindrical ones to be introduced later. Be-
cause the Cartesian coordinate x2 depends only on η the Jacobian of the
coordinate transformation simplifies to

J = det
(
∂ξi
∂Xi

)
=

∂ξ

∂x1

∂ζ

∂x3
− ∂ξ

∂x3

∂ζ

∂x1
. (2.5)

As pointed out before, the filter function G is independent of the equidis-
tant computational coordinate ξ and prevents additional errors from
appearing (errors that would be due to a variable filter width in com-
putational space). Using this outlined approach we obtain equations for
the resolved conservative variables Q = (ρ, ρũ1, ρũ2, ρũ3, Ě)T , where ˇ
denotes a resolved quantity that is computed using filtered variables,
e.g., the total resolved energy

Ě =
p

γ − 1
+

1
2
ρui ρui

ρ
. (2.6)

Using the Einstein summation convention (i = 1, 2, 3) and ∂q as a short-
hand for a partial derivative with respect to q we arrive at

J−1∂t (ρ) + ∂ξi
(
J−1ξi,jρũj

)
= 0 (2.7a)

∂t
(
J−1ρũi

)
+ ∂ξk

(
J−1ξk,j (ρũiũj + pδij)

)
(2.7b)

−∂ξk
(
J−1ξk,j τ̌ij

)
= −∂ξk

(
J−1ξk,jρσij

)
+ βi

∂t
(
J−1Ě

)
+ ∂ξk

(
J−1ξk,j

(
(Ě + p)ũj − τ̌ij ũi + q̌j

))
= −α , (2.7c)
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where the metric coefficients are abbreviated by ξi,j ≡ ∂ξi/∂xj and
δij denotes the Kronecker delta. In the following, this notation is also
employed for the velocity gradients in the computational space, i.e.,
ũi,j ≡ ∂ũi/∂ξj . Note that the index j of the summation convention
is not to be mistaken with the subscript for jet exit quantities. On the
right-hand side of the governing equations, we find only subgrid-scale
terms that need modeling. Commutation errors between filtering and
differentiation operation are neglected (Stolz, 2000). The viscous stress
tensor in equation (2.7b) is given by

τ̌ij =
µ̌(Ť )
Re

Šij , (2.8)

with the strain rate tensor

Šij = ξk,j ũi,k + ξk,iũj,k − 2/3 ξk,lũl,kδij , (2.9)

and the temperature-dependent viscosity µ̌ determined according to
Sutherland’s law (Schlichting, 1979)

µ̌(Ť ) = T̃ 3/2 +
1 + S

T̃ + S
(2.10)

with the Sutherland constant set to S = 0.404 for air. The subgrid-scale
terms of the momentum equations (2.7b) are the subgrid-scale stress
tensor σij

ρσij = ρ (ũiuj − ũiũj) (2.11)

which originates from the nonlinearity in the convective terms. Addi-
tional contributions βi in equation (2.7b) are of the form

βi = ∂ξk
(
J−1(τ ij − τ̌ij)ξk,j

)
(2.12)

and arise from the nonlinearity of the viscous stress tensor due to the
temperature-dependent viscosity. The resolved heat flux vector within
the filtered energy equation (2.7c) is given by

q̌j =
µ̌(T̃ )

(γ − 1)RePrMa2 ξk,j
∂T̃

∂xj
. (2.13)

In equation (2.7c) the variable α combines six additional subgrid-scale
terms which are neglected. Their physical interpretation can be found
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in the work of Vreman (1995) or Stolz (2000). For details concerning
the decomposition of the subgrid-scale tensor (in the so-called Leonard
tensor, the cross-stress tensor and the Reynolds subgrid tensor) we refer
to Sagaut (2001). In the remainder, we will restrict ourselves to simu-
lations for which no a priori analysis of different subgrid-scale terms is
possible. Therefore, in the following section we will focus on the mod-
eling approach for the unknown subgrid-stress tensor σij (as introduced
in equation (2.11)).

2.2 Subgrid-scale closure: ADM and regularization
based model

The approximate deconvolution model (ADM) as proposed by Stolz et al.
(see, e.g. Stolz & Adams, 1999; Stolz et al., 2001a,b), is based on the
ansatz that closure for the unknown nonlinear subgrid-scale terms can
be obtained using an approximation of the unfiltered field. These de-
convolved quantities are obtained by repeated application of a filter.
Following the established nomenclature a regularized inverse operator
QN can be obtained by truncating an infinite geometric series at some
arbitrarily chosen N , obtaining a regularized approximation of G−1, i.e.,

QN =
N∑
ν=0

(I −G)ν ≈ G−1 , (2.14)

where I is the identity operator. The approximately deconvolved quan-
tity is determined by convolution of the operator QN with the filtered
quantity f

f? = QN ∗ f . (2.15)

Using this deconvolution approach alleviates the closure problem and
has the advantage that no physical model is necessary. Nevertheless,
the effect of non-represented scales on the accurately resolved scales of
the discretized governing equations needs to be accounted for. In or-
der to model the energy transfer to the non-represented scales, a re-
laxation term is subtracted from the right-hand side of the governing
equations (2.7a)–(2.7c) which acts only on a band of the smallest re-
solved scales. Following the nomenclature of Stolz et al. (2001b) the
deconvolution operator QN applied to the primary filter G describes the
form of this explicit secondary filter. In Fig. 2.1 the transfer functions of



18 Mathematical model and numerical methods

1.0

0.8

0.6

0.4

0.2

0.0
π3π/4π/2π/40

 1

 2

 3

 4

 5

 6

Ĝ
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Figure 2.1: Transfer functions: explicit primary filter Ĝ, approxi-
mate inverse Q̂N , secondary filter Q̂N · Ĝ for N = 5. The filter transfer
function Ĝ corresponds to equation (2.20).

the primary and secondary filter, Ĝ and Q̂N ·Ĝ, are shown along with the
transfer function of the approximate inverse Q̂N for the deconvolution
order of N = 5 employed throughout the present work.

In the present investigation two subgrid-scale modeling approaches
are taken. In order to reduce the computational cost all but one sim-
ulation are performed without relying on deconvolved quantities, i.e.
the effect of unresolved scales is modeled using only the previously de-
scribed relaxation term. The influence of the original ADM formulation
is addressed separately (see section 3.6). As has been pointed out by
Stolz (2000) the relaxation term can also be interpreted as applying a
secondary filter to f every 1/(χ∆t) time steps where ∆t is the computa-
tional time step and χ is the relaxation coefficient to be determined. Note
that the transfer function of the relaxation term is similar to the one of
an explicit filter employed in a series of investigations by Bailly & Bogey
(2006) and Bogey & Bailly (2006c, 2007) which will serve as reference
data. Thus, the first approach can be interpreted as taking the primary
filtered quantities f as grid-filtered quantities. The deconvolution oper-
ator QN is employed only in order to determine the functional form of
the relaxation term, however, no deconvolved quantities are used. This
approach has successfully been applied to incompressible channel flow
(Schlatter et al., 2004). We will refer to this model as ADM-RT since
only the relaxation term of ADM is employed. The set of governing
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equations for ADM-RT thus simplifies to

J−1∂t (ρ) + ∂ξi
(
J−1ξi,jρuj

)
= −χC (I −QN ∗G) ∗ ρ (2.16a)

∂t
(
J−1ρui

)
+ ∂ξk

(
J−1ξk,j (ρuiuj + pδij − τij)

)
(2.16b)

= −χM (I −QN ∗G) ∗ ρui
∂t
(
J−1E

)
+ ∂ξk

(
J−1ξk,j ((E + p)uj − τijui + qj)

)
(2.16c)

= −χE (I −QN ∗G) ∗ E .

Here, the Favre-filtered velocities (as defined by equation (2.3)) are not
denoted by a tilde for clarity. When the deconvolution of the convective
terms is employed, a similar system of governing equations for ADM as
given by Stolz (2000) is obtained. This set of equations is repeated here
for completeness:

J−1∂t (ρ) + ∂ξi (J−1ξi,j(ρuj)?) = −χC (I −QN ∗G) ∗ ρ (2.17a)

∂t
(
J−1ρui

)
+ ∂ξk

(
J−1ξk,j

(
(ρui)?(ρuj)?/ρ? + p̌?δij − τ̌?ij

))
(2.17b)

= −χM (I −QN ∗G) ∗ ρui
∂t
(
J−1E

)
+ (2.17c)

∂ξk
(
J−1ξk,j

(
(E? + p̌?)(ρuj)?/ρ? − τ̌?ij(ρui)?/ρ? + q̌?j

))
= −χE (I −QN ∗G) ∗ E .

What remains is a specification of the relaxation coefficients χi, where
the index i = C,M,E denotes the coefficients for the continuity, momen-
tum and energy equations, respectively. Stolz et al. (2001b) describe a
procedure how to determine the relaxation coefficient dynamically de-
pending on the amount of kinetic energy contained in the wavenumber
range above the filter cutoff. To further reduce the number of com-
putational operations and thereby the computational cost, the relax-
ation coefficient is set equal to a constant value in the present work.
This procedure has shown to give reliable results for high Reynolds
number jet flow and its directly computed aeroacoustic noise (Keider-
ling & Kleiser, 2007) using the originally proposed upper bound of
χ = χC = χM = χE = 1/∆t (∆t is again the computational time step).
These findings are supported by results of Müller (2007) who compared
LES data using ADM for different but constant values χ to DNS data.
For a swirling jet flow he found only minor changes in the vicinity of the



20 Mathematical model and numerical methods

centerline when changing χ. In the following, we refer to the vector of
resolved conservative variables as Q for both SGS modeling approaches,
i.e., Q = (ρ, ρu1, ρu2, ρu3, E)T in the case of the relaxation term model
is used equivalently to Q = (ρ, ρũ1, ρũ2, ρũ3, Ě)T in the case of ADM.

The focus of this work is not on modeling approaches for the SGS
terms. However, we note that the chosen SGS closure may have an effect
not only on the flow field but also on the aerodynamically generated
acoustic field. This effect was investigated, for example, by Seror et al.
(2001) for forced isotropic turbulence or by Andersson et al. (2005a) and
Bogey & Bailly (2005a) for subsonic jet noise.

2.3 Description of employed filter

The functional form of the employed filter G as introduced in equa-
tion (2.2) is now specified. The three-dimensional filtering operation is
realized by the successive application of one-dimensional filter operations
in each spatial direction. For details concerning its construction as well
as a comparison to various other approaches reported in literature we
refer to the work of Stolz (2000). In particular the determination of the
filter coefficients αj and the treatment of near-boundary grid points by
asymmetric stencils is reported in his appendix B and not repeated here.
We only give the one-dimensional filter employed in the interior of the
domain.

As will be shown shortly, the most appropriate coordinate system
are cylindrical coordinates. This choice results in two inhomogeneous
coordinate directions, the radial (r) and the streamwise or axial (z)
direction, and the homogeneous azimuthal direction (θ). In the interior
of the domain, the inhomogeneous axial and radial direction are filtered
using an explicit five-point stencil. The discrete filtered function values
are thus given by

f̄i = (G ∗ f)|i =
2∑

j=−2

αjfi+j . (2.18)

Its transfer function follows as

Ĝ(ω) =
2∑

j=−2

αj exp(i ωj) . (2.19)
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The filter coefficients αj can be determined for non-equidistant grids
along curved lines without loss of generality using the constraints out-
lined in Stolz (2000). For an equidistant grid equation (2.19) is real and
given by

Ĝ(ω) =
5
8

+
1
2

cos(ω)− 1
8

cos(2ω) , (2.20)

which is also employed in Fig. 2.1. We note that as a result of the con-
struction procedure the cutoff wavenumber ωc of the explicit filter Ĝ is
approximately ωc ≈ 0.63π. Here, the cutoff wavenumber ωc separates
resolved wavenumbers ω < ωc from inaccurately represented wavenum-
ber ωc < ω < ωN , where ωN is the Nyquist wavenumber ωN = π (with a
wavelength twice the constant grid spacing in the computational space).

In the homogeneous azimuthal direction θ the filtering is performed
directly in wavenumber space by multiplying each Fourier coefficient by
Ĝ.

2.4 Simulation method

Following the method of lines, the system of time-dependent partial
differential equations is treated separately, i.e., the spatial problem is
solved independently of the temporal problem. As pointed out before,
the most natural choice for a coordinate system to simulate round jet
flow is a cylindrical coordinate system established by the spatial coor-
dinates (r, θ, z). This leads to two inhomogeneous coordinate directions
(r and z) and the homogeneous azimuthal direction (θ). In addition,
simply because of the transformation from Cartesian to cylindrical coor-
dinates (i) the inverse of the radial coordinate r appears in the governing
equations which thus become singular at r = 0 and (ii) additional force
terms arise (centrifugal and Coriolis force) which necessitate a specific
numerical treatment. The first problem is dealt with in the next section,
whereas the latter can be avoided by using the previously introduced
generalized coordinates ξ.

In order to solve the governing equations expressed in generalized co-
ordinates (ξ, η, ζ) an appropriate mapping is used which connects the two
coordinate systems. Anderson et al. (1968) and Vinokur (1974) present
a conservative formulation of the Navier-Stokes equations in cylindrical
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coordinates by defining the generalized coordinates ξ = (ξ, η, ζ)T as

ξ = θ/(2π) = arctan(x3/x1)/(2π) (2.21a)
η = z/Lz = x2/Lz (2.21b)

ζ = r/Lr =
√
x2

1 + x2
3/Lr , (2.21c)

where parameters Lr and Lz are the length of the computational domain
in radial and streamwise direction. Figure 2.2 shows a sketch of the re-
lation between the cylindrical grid represented by Cartesian coordinates
(x1, x2, x3) and the cylindrical coordinates (r, θ, z). Also the correspond-
ing generalized computational space coordinates (ξ, η, ζ) are illustrated.
On the right-hand side of equations (2.21a)–(2.21c) the relation between
cylindrical coordinates and Cartesian coordinates (as introduced in equa-
tions (2.4a)–(2.4c)) is given. The velocity components in the cylindrical
coordinates system are denoted by (u, v, w) and correspond to the radial,
azimuthal and axial velocity. These velocity components can be deter-
mined from the Cartesian velocity components ((u1, u2, u3) as employed
in the numerical code) using the rotation matrix u

v
w

 =

 cos θ 0 − sin θ
− sin θ 0 − cos θ

0 1 0

 u1

u2

u3

 . (2.22)

Before we turn to the description of the discretization schemes in space
and time the treatment of the singular line r = 0 of the cylindrical
coordinate system is addressed.

2.4.1 Cylindrical coordinate singularity treatment

Various methods dealing with the cylindrical coordinate singularity have
been proposed in literature and were successfully employed for sub- as
well as supersonic jet flow investigation. For a concise overview of differ-
ent approaches we refer to Freund et al. (1997). In their work derivatives
at r = 0 are determined in a Cartesian coordinate system and the radial
and azimuthal velocities are transformed into Cartesian velocities. They
note that it is possible to construct a finite difference grid with no grid
point at r = 0 and to employ difference stencils that span the centerline
without evaluations at the pole. However, because of smoothness re-
quirements for the grid stretching and the cost of coordinate transforms
for the flux evaluations they render this approach undesirable. On the
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Figure 2.2: Sketch of (a) cylindrical grid in Cartesian coordinate system
(x1, x2, x3) (b) partial view of cylindrical grid with cylindrical coordinates
(r, θ, z) and (c) computational space in generalized coordinates (ξ, η, ζ).
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other hand, Mohseni & Colonius (2000) employ exactly this approach by
using a shifted grid in the radial direction and thereby avoid a change
of the numerical scheme or the application of boundary schemes in the
vicinity of the pole. More recently, Constantinescu & Lele (2003) pro-
posed a set of governing equations valid at the pole based on a series
expansion near r = 0.

In order to retain the conservative formulation of the governing equa-
tions, the approach of Mohseni & Colonius (2000) is followed here. In
their approach, the radial coordinate is mapped from r to r̃ as indicated
by the arrow, yielding the domain [0, R] × [0, 2π] 7→ [−R,R] × [0, π].
Figure 2.3 shows a sketch of the domain in the r − θ as well as in the
mapped r̃ − θ plane. It should be pointed out that radial derivatives

(a) (b)

r

θ

r̃

R

r

θ

R
r̃

−R
π 2π

0
π 2π

Figure 2.3: Sketch of (a) physical domain in r–θ-plane and (b) mapped com-
putational domain during evaluation of radial derivatives.

are evaluated with respect to the mapped coordinate r̃, which avoids a
boundary scheme close to the pole. Thereby, a change of the numerical
scheme is alleviated within the region of interest and differentiation can
be performed across the centerline without any boundary scheme. This
approach restricts the choice of the azimuthal resolution Nθ to be even.
Note that in the discrete computational space the mapped domains are
defined as (0, R]× [0, 2π) 7→ [−R,R]\{0} × [0, π).

Barré (2006) compares the approaches by Mohseni & Colonius (2000)
and Constantinescu & Lele (2003). Because of the more stringent time-
step restriction in the latter approach (the first radial grid cell is of size
∆r/2 and thus the azimuthal stencil size rk∆θ is smaller) he prefers the
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first one. For computational schemes which discretize the homogeneous
direction by using a Fourier spectral method, this restriction can be
easily alleviated by artificially reducing the number of retained modes
as done by Freund et al. (1997) and also documented by Canuto et al.
(1988). The mode reduction employed here is described below in the
context of the discretization in the azimuthal direction.

2.4.2 Spatial discretization

First, the discretization scheme for the radial and streamwise direction
will be described followed by the description of the schemes employed
in the periodic azimuthal direction. For completeness we point out
that the governing equations are discretized as described in section 2.2,
i.e., we evaluate the convective and the diffusive terms and then
determine the corresponding flux derivatives by successive application
of first-derivative operators.

Radial and axial discretization
To achieve a high order of convergence and not having to use overly wide
stencils that would cause problems at the computational boundaries the
discrete differential operators are approximated by compact finite differ-
ences of tenth order (Lele, 1992). On equidistant grid points with spacing
∆ in the computational space the first derivative of a function f at grid
point j, denoted in this section by f ′j , can be implicitly approximated
by

1
20
f ′j−2 +

1
2
f ′j−1 + f ′j +

1
2
f ′j+1 +

1
20
f ′j+2 = (2.23)

17
24
fj+1 − fj−1

∆
+

101
600

fj+2 − fj−2

∆
+

1
600

fj+3 − fj−3

∆
.

For the treatment of the inhomogeneous boundaries the explicit seven-
point difference stencil requires the closure at three boundary nodes.
For brevity, we report only the order of employed approximations: the
schemes at the boundaries (j = 1, N) and at the next-to-boundary nodes
(j = 2, N − 1) are third-order and fifth-order accurate, both being com-
pact and asymmetric. At the second next-to-boundary nodes the scheme
is of sixth order, compact and symmetric. For details concerning the co-
efficients of the respective schemes and the choice of boundary closure
we refer to Lele (1992). The approximation of the first derivative of the
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employed schemes is illustrated in Fig. 2.4 where the modified wavenum-
ber ω̃ is plotted versus the wavenumber ω. The solid line corresponds
to exact differentiation. For the tenth-order differentiation scheme em-
ployed in the present LES the modified wavenumber ω̃ is close to the
exact wavenumber for ω . 3π/4. Equation (2.23) results in a band-
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Figure 2.4: (a) Modified wavenumber ω̃ vs. wavenumber ω for central schemes
of different order: 10; 6; 4. (b) Real and imaginary part of
modified wavenumber ω̃ vs. wavenumber ω for asymmetric boundary schemes
of order 5 (< , = ) and 3 (< , −= ). For comparison
the modified wavenumber ω̃ of the central scheme of tenth order is replotted
( ).

structured matrix with an implicit stencil width of five points and an
explicit side of width seven. This penta-diagonal system is solved by
performing one LU-decomposition of the constant coefficient matrices
and storing the results. Subsequently, forward-backward substitution is
employed to calculate the derivatives (Adams, 1993).

The tenth-order compact scheme in the interior is favored over other,
say lower order schemes or schemes optimized with respect to their
dispersion properties, for two reasons: First, a highly efficient imple-
mentation of solvers for penta- as well as tri-diagonal band-structured
matrices is at our disposal and therefore the increase in order of accuracy
does only insignificantly increase the computational cost. Second, the
compact schemes are well established and tested, whereas the question
if optimized schemes (in combination with explicit time-integration
schemes used in practice) maintain their order in applications with
artificial boundary conditions and large wave-propagation distances is
subject of ongoing discussions (Pirozzoli & Bernardini, 2007).
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Azimuthal discretization
The derivatives in the homogeneous azimuthal direction are computed
using a Fourier pseudo-spectral method. For evaluation of the derivatives
the physical space quantities are transformed into wavenumber space.
The discrete Fourier transform for the Fourier coefficient f̂ for azimuthal
wavenumber n is given by

f̂n =
1
Nθ

Nθ−1∑
j=0

fje
−i(nθj) , (2.24)

where Nθ is the number of azimuthal grid points, n is given by −Nθ/2+
1 < n < Nθ/2− 1, fj = f(θj) is the function value at grid point j and
θj = 2πj/Nθ with j = 0, . . . , Nθ − 1. The inverse transform is

fj =
Nθ/2−1∑

n=−Nθ/2+1

f̂ne
i(nθj) . (2.25)

Differentiation can be performed in Fourier space by multiplying each
Fourier coefficient by the imaginary unit times the corresponding
wavenumber according to

f ′j =
Nθ/2−1∑

n=−Nθ/2+1

inf̂nei(nθj) . (2.26)

Note that in the present implementation an additional factor of 2π ap-
pears due to the transformation from computational space of length one
to physical space coordinate θ with a 2π-periodicity. As pointed out pre-
viously (section 2.4.1) steps are taken to alleviate the time-step restric-
tion which stems from the azimuthal grid spacing becoming excessively
fine as r → 0. A simple yet effective method is to artificially reduce the
number of retained Fourier modes as described by Freund et al. (1997).
We truncate the summation in equation (2.26) as a function of radial lo-
cation, i.e., the number of modes Nθ is replaced by a number of retained
modes Nr

θ

f ′j =
Nrθ /2−1∑

n=−Nrθ /2+1

inf̂nei(nθj) (2.27)

with
Nr
θ = Nr

θ (rk) = min(2 + 4 · k,Nθ) , (2.28)
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k = 1 at the first radial grid line and k = Nr at the outer radial bound-
ary. The radial dependence of the number of retained Fourier modes is
visualized in Fig. 2.5.
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Figure 2.5: Visualization of linear dependence (in the interior) of the number
of retained Fourier modes Nr

θ on the discrete radial coordinate rk marked by
.

2.4.3 Temporal discretization

In CFD, commonly used integration schemes are explicit third- and
fourth-order accurate Runge-Kutta methods because of their relatively
large stability regions. To reduce the size of memory that needs to
be addressed the integration steps are often rearranged to allow for a
low-storage formulation as described by Williamson (1980) which re-
quires only two additional memory arrays per variable. In computational
aeroacoustics the choice of time-integration scheme is not purely driven
by the formal order of accuracy but also by the fact that wave prop-
agation needs to be time-accurate for relatively long integration times.
Therefore, Hu et al. (1996) propose to employ multi-stage schemes but
to optimize the dispersion and dissipation properties at a certain order
rather than obtaining the maximum possible formal order of accuracy.
Based on accuracy test performed by Müller (2007) we choose to use a re-
cently proposed explicit low-storage fourth-order accurate Runge-Kutta
method by Berland et al. (2006). It is based on a six-stage scheme
where two coefficients are employed to optimize the scheme’s dispersion
and dissipation properties. Note that Müller (2007) compared several
integration schemes and found that this scheme offers very good sta-
bility properties. More importantly, it maintains the order of accuracy
for non-autonomous problems, i.e., a time-dependent integrand, which is
essential for the kind of inflow forcing we employ. For details concerning
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convergence tests and implementation details such as the coefficients of
the particular scheme we refer to the literature (Berland et al., 2006)
and the work of Müller.

In order to determine an estimate for the admissible time-step a
model equation containing advection and diffusion properties is solved
(Adams, 1993; Müller, 2007). This time-step limit depends on the com-
bination of spatial and temporal discretization and their respective sta-
bility limits at each grid point. Following the derivation given by Müller
(2007) the following CFL condition is obtained

∆t <
CFL
A

, (2.29)

with A given by

A = π

(
|u|+√T/Ma

∆r
+

(|v|+√T/Ma)Nr
θ (rk)

Nθr∆θ
(2.30)

+
|w|+√T/Ma

∆z

+ πdmax

(
1

∆r2
+

(Nr
θ (rk))2

N2
θ r

2∆θ2
+

1
∆z2

))
,

and

dmax = max
(

µ

ρRe
,

µ

ρ(γ − 1)Ma2PrRe

)
. (2.31)

As introduced in the context of mode-clipping in the azimuthal direction
(see section 2.4.2), Nr

θ denotes the number of retained Fourier modes and
rk the discrete radial coordinate r at radial grid line with index k. In
equation (2.29) CFL is given by the convective and diffusive stability
limits of the time-integration scheme. As can be seen from the denom-
inator of dmax the heat conduction and viscous effect will not restrict
the time-step due to the high Reynolds number of the current jet flow.
We can expect the stability of the time integration to depend on the
convective term. For purely convective problems the CFL number of the
employed scheme is CFL ≈ 3.8. Recall that the CFL number defined
in equation (2.30) is formulated in wavenumber space and thus is larger
by a factor of π for the convective limit compared to the effective CFL
number (for details such as the stability diagrams for the employed low-
dispersion and dissipation scheme we again refer to Müller (2007) and
Berland et al. (2006)).
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As mentioned before the employed grid, in particular in the azimuthal
direction, is very fine and thus necessitates very small time steps. This
small time step in combination with the long integration times (necessary
to converge low-frequency near-field noise) rendered such simulations
infeasible from a computational cost point of view. Therefore, we decided
to only monitor the above criterion and determine empirically a time step
that yielded stable time integration. Partially this approach is motivated
by the SGS model which positively influences the stability properties but
is not accounted for in the model equation determining the admissible
time step. Using equation (2.29) as time-step criterion yields a CFL
number of CFL ≈ 6.5 at the first radial grid line and CFL ≈ 5.0 at the
second radial grid line. At the radial position of r(k = 12), where the
mode-clipping is inactive, we find CFL ≈ 4.5. Within the shear-layer,
i.e. at the radial location with k = 19 the criterion further relaxes to
CFL ≈ 4.0 and has proven to yield stable long-time simulations.

2.5 Boundary treatment

As pointed out before, the definition of suitable boundary conditions is
crucial, particularly in the context of aeroacoustics. Even minute dis-
crepancies with Navier-Stokes dynamics result in the generation of arti-
ficial fluctuations that can overwhelm the physical noise. The physical
modeling of a – at least theoretically – infinite domain poses additional
problems for the simulation of free jet flows. In contrast to flows which
have a well-defined co-flow the entrainment velocities cannot be known
in advance. The surrounding fluid is entrained by the vortex interaction
within the jet shear layer and the resulting velocity field is thereby merely
a consequence of it. Experimental investigations that could provide data
for the definition of suitable boundary conditions are rare and often the
three-dimensional velocity field is determined by measuring two velocity
components and analytically calculating the third one. In the litera-
ture, various approaches have been proposed to mimic numerically the
infinite domain. These range from characteristics-based boundary con-
ditions (so-called nonreflecting boundary conditions) to damping zones
(so-called sponge-layers, buffer-domains or fringe-regions) or a combina-
tion of both. For a review see the article by Colonius (2004).

Initial tests relied on a combination of Dirichlet inflow boundary
conditions supplemented by an inflow sponge to prevent spurious oscil-
lations generated by upstream-traveling sound waves hitting the fixed
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inflow boundary. This approach did not yield satisfactory results: First,
the inflow sponge region had to be relatively large to allow the sound
waves to decrease sufficiently in amplitude. Second, the strongly im-
posed Dirichlet boundary condition (with zero velocity on the side of
the jet) prevented the physically correct entrainment of fluid from up-
stream. Therefore, we take a similar approach as Bogey & Bailly (2006a)
consisting of only weakly enforced boundary conditions and nonreflect-
ing boundary conditions. Figure 2.6 shows a sketch of the computational
domain and the imposed boundary conditions. The respective details are
described briefly in the following subsections.

z/r0

r/r0

r0

Nonreflecting b.c. Sponge for ρ∞, p∞

Sponge for inflow profile and disturbances

Grid stretching
& sponge for
mean outflow

Figure 2.6: Sketch of computational domain, boundary conditions and sim-
ulation set-up. Shaded areas mark sponge layers and the grid-stretching
area/sponge layer in the outflow region.

2.5.1 Nonreflecting boundary conditions

As illustrated in Fig. 2.6 all boundaries of the computational domain
employ nonreflecting boundary conditions (Thompson, 1987). It proved
necessary to take the conservative formulation expressed in curvilinear
coordinates at the radial boundary into account by adapting the charac-
teristics. Otherwise disturbances were generated at the outer boundary
that eventually led to numerical instability. For brevity, we do not out-
line the derivation of the characteristic variables and their adaptation
but refer to the work of Kim & Lee (2000).
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2.5.2 Sponge-layer technique

As described before, the nonreflecting boundary conditions are supple-
mented by sponge layers (Israeli & Orszag, 1981; Bodony, 2006) which
define the inflow condition and the lateral and outflow boundary condi-
tions of the computational domain. In this sponge zone an artificial term
is added to the right-hand side of the Navier-Stokes equations according
to the general form

∂Q
∂t

= RHS(Q)− σ(Q−Qref) . (2.32)

Here, Q denotes again the unknown conservative state vector, RHS
represents all flux terms of the Navier-Stokes equations written on the
right-hand side and Qref denotes a reference state to be defined. If the
sponge coefficient σ (that may vary in space) is greater than zero in
equation (2.32), the vector Q is driven to the known vector Qref.

In the present work, the sponge regions shown in Fig. 2.6 are treated
as follows. In the inflow-sponge region, disturbances equivalent to am-
plified eigenmodes predicted by linear stability theory (LST) are super-
imposed on a hyperbolic-tangent inflow profile in a similar fashion as
done by Lui & Lele (2003) and Bodony & Lele (2004). For an example
of instability-wave excitation in jet-noise investigations we refer to the
work of Bodony & Lele (2005) and Bodony (2006), where, in particular,
the latter addresses technical issues of the sponge technique in this con-
text. Implementation details of the disturbance triggering can be found
in appendix B.

Close to the jet inflow a sponge surrounding the computational do-
main in the radial and upstream directions is employed to prevent a
mean pressure drift reported for example by Colonius et al. (1997).
This thin sponge layer exclusively acts on density and pressure, i.e.
Qref = (ρ∞, 0, 0, 0, ((γ − 1)γMa2)−1)T , which maintains their ambient-
state values. With this approach no reference solution needs to be im-
posed, such as results of a precursor Reynolds-averaged Navier-Stokes
simulation as done, for example, by Bodony & Lele (2004, 2005). In the
following, we refer to this sponge region as the ambient sponge described
in more detail in appendix B.2.

At the outflow, the instantaneous flow field is relaxed to a spatially
varying axisymmetric mean flow to prevent spurious acoustic reflections
generated by passing vortices that violate the 1D nonreflecting boundary
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conditions. This outflow sponge reference solution is based on a sepa-
rate three-dimensional simulation using the same set-up averaged over
25 flow-through times Lz/Uj and in the azimuthal direction, however
without an outflow sponge. The same outflow reference solution is em-
ployed for all simulations. Further details can be found in section 2.8
and in appendix B.2.

2.5.3 Inflow treatment

The treatment of the inflow boundary and thereby the definition of the
inflow condition is very important. Gutmark & Ho (1983) for example,
tabulated various jet flow experiments and observed a huge variation of
self-similar quantities such as the jet spreading rate. They linked this
phenomenon to spatially coherent structures inherently present in the
various testing facilities to which the jet flow reacted very sensitively.
Researchers attempt to exploit this sensitivity in the context of jet-noise
suppression (as pointed out in the introductory section 1.2). In par-
ticular for numerical simulations this sensitivity becomes an important
issue: as pointed out before all jet-noise simulations have in common that
either turbulent inflow conditions are to be prescribed or disturbances
have to be introduced into an initially laminar flow to initiate transition
to turbulence. No matter which approach is favored it is challenging to
distinguish between physical effects and numerical artifacts (which stem
from the interaction of the natural sensitivity and the artificial inflow
definition) unless a parametric study of inflow parameters shows consis-
tent trends. The studies by Stanley & Sarkar (2000) or Bogey & Bailly
(2005b) are examples for the numerically investigated sensitivity of jets.

2.5.4 Linear stability investigation

As outlined in section 1.4, we intend to investigate the nonlinear interac-
tion of unstable modes and their role in the noise generation mechanism.
Therefore, transition to turbulence is triggered by superimposing a num-
ber of unstable modes onto the base flow. To determine these modes, a
classical wave ansatz for the disturbances is introduced to the linearized
compressible Navier-Stokes equations in cylindrical coordinates. The
resulting eigenvalue problem is then solved using a Chebyshev colloca-
tion method (Müller et al., 2004; Müller & Kleiser, 2008). The detailed
derivation of the linearized governing equations as well as the numerical
methods for solving them can be found in appendix A. In this subsection,
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the results of the linear stability investigation of the base-flow profile are
described. At the inflow a hyperbolic-tangent base-flow profile represen-
tative for jet flow profiles close to the jet nozzle exit (Michalke, 1984),

wb
Uj

=
1
2

[
1 + tanh

{
r0

2θ0

(
1− r

r0

)}]
, (2.33)

is imposed where the initial momentum thickness is set to θ0/r0 = 1/20.
This value is chosen such that the steep gradients within the velocity
profile can adequately be resolved by the used grid. In numerical studies
and in LES, in particular, the choice of the initial momentum thickness
is driven by computational cost constraints. Experimentally observed
initial momentum thicknesses can be smaller by at least an order of
magnitude. Zaman (1985), for example, reports θ0/r0 ≈ 1/250 for jets at
Reynolds numbers of Re & 2.5·105. Correspondingly, a jet exit boundary
layer with the currently investigated initial momentum thickness would
be laminar and at Reynolds numbers below 105, as also supported by
the data of Zaman.

The spatial stability properties of the base-flow profile given by equa-
tion (2.33) are analyzed using the previously mentioned Chebyshev col-
location method. Different azimuthal wavenumbers n are investigated
with respect to their linear spatial stability properties. Note that at the
inflow plane two length scales are appropriate for the jet flow, the ini-
tial momentum thickness θ0 and the jet diameter Dj . Here, we rely on
a scaling of the frequency ω based on the diameter Dj because we are
interested in the downstream development where the thickness becomes
comparable to Dj and hence, curvature effects become important. For
stability investigations of profiles with varying initial momentum thick-
ness the relevant length scale becomes θ0, as will be shown below.

The growth rates as well as phase speeds associated with the viscous
instabilities of the inflow profile (equation (2.33)) are shown in Fig. 2.7
as a function of the Strouhal number St = ωDj/(2πUj). In Fig. 2.7(a)
the growth rate is indicated by the imaginary part of the streamwise
wavenumber αi. Figure 2.7(b) shows the phase speed of the distur-
bances which is the ratio of the angular frequency to the real part of the
streamwise wavenumber, ω/αr. In agreement with results reported by
Michalke (1984) we find the axisymmetric or varicose mode n = 0 to be
least stable reaching maximum amplification around St = 0.676. This
corresponds to Stθ = ωθ0/(2πUj) = 0.0169 which is in good agreement
with the inviscid theoretical value of Stθ = 0.0165 (Michalke, 1984). At
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Figure 2.7: a) Growth rate −αi vs. St and b) phase speed ω/αr vs. St for
different azimuthal wavenumbers n.
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Figure 2.8: (a) Growth rate −αi vs. St and (b) phase speed ω/αr vs. St for
different values of initial momentum thickness θ0.

low frequencies ω, the growth rates −αi for mode n = 0 are no longer
dominant and for St . 0.42 the helical mode n = 1 is least stable. In
Fig. 2.7(b) one finds that all disturbances with St > 0.8 propagate with
similar phase speed ω/αr.

The dependence of the stability properties on the initial momentum
thickness θ0 is shown in Fig. 2.8 for the helical mode n = 1. On the left of
Fig. 2.8 the growth rate is plotted versus the Strouhal number and on the
right the corresponding phase speed is given. The solid bold line denotes
θ0 = 0.050 which is employed for the LES inflow profile. With an increase
in the initial momentum thickness, i.e., when the steepness of the velocity
profile increases, the growth rates increase and the locations of maximum
amplification shift to higher Strouhal numbers. Also, for St ≤ 0.5 the
phase velocity increases with larger initial momentum thickness. For
higher Strouhal numbers this trend is inverted and profiles with lower
θ0 exhibit higher phase speeds.

The same data is shown again in Fig. 2.9 using the initial momentum
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Ĝ, Q̂N · Ĝ
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Figure 2.9: (a) Growth rate −αi vs. ω and (b) phase speed ω/αr vs. ω for
different values of initial momentum thickness θ0.

thickness θ0 as relevant length to scale ω. Now, we observe a perfect
alignment of the growth rates −αi with increasing initial momentum
thickness. The locus below and above which the phase speed is increased
or decreased for larger θ0 shifts to ωθ0/Uj . 0.08 because of the different
scaling of the frequency.

2.5.5 Inflow disturbance seeding

As pointed out before, transition is triggered by a collection of flow
instabilities that are superimposed onto the base flow. To this end, az-
imuthal wavenumbers |n| = nmin, . . . , nmax (i.e., right- and left-turning
modes ±n) are excited at those frequencies which give the maximum
growth rate (fundamental frequencies). The parameter nmax is set to 8
which is the highest unstable azimuthal wavenumber. Depending on the
type of modal composition that is investigated nmin is chosen differently:
First, we excite all unstable helical modes, i.e., nmin is set to unity. In
the second set of LES, we exclude modes n < 3 and set nmin = 4. The
motivation for this ad-hoc exclusion of low-order modes n < 3 from the
forcing is twofold: First, Bodony & Lele (2002) report an over-prediction
of sound pressure levels (SPL) and link it to the dominant axisymmetric
mode when disturbing with LST modes n = 0,±1,±2 in their study.
Second, Bogey & Bailly (2005b) report a delayed streamwise develop-
ment of the jet flow and observe a reduction of SPL when excluding
modes n = 0 through n = 3 from their ring-vortex forcing method. Note
that the numerical reference data (Bogey & Bailly, 2005b) employs a
total of sixteen azimuthal modes |n| < 15 for the inflow excitation.
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The linear superposition of the eigenmodes is given by

Qinfl(r, θ, z, t) = Qb(r) +
nmax∑
|n|=nmin

Q′n(r, θ, z, t) (2.34)

with

nmax∑
|n|=nmin

Q′n = Atotal,LST

∑
|n|An<

(
Q̂n(r)ei(αnz+nθ−ωnt+φn)

)
∑
|n|An

, (2.35)

conservative state vector Q at the inflow. In equation (2.34) Qb denotes
the base-flow state. The complex eigenfunction Q̂ in equation (2.35) is
normalized by setting max |ŵ| = 1. Because the eigenfunctions are de-
termined in primitive variables the conservative variables of Q̂ need to
be determined (the derivation is given in appendix A.3). The laminar
base flow Qb(r) is derived from equation (2.33), employing the Crocco-
Busemann relation for an isothermal jet flow (see e.g. Schlichting, 1979)
as well as the linearized equation of state. The eigenmodes are mod-
ulated in amplitude An and phase φn in a random-walk fashion (see
appendix B.1 for details) in order to prevent phase-locking (Bodony &
Lele, 2004). The superposition of instability waves is scaled with the sum
of amplitudes An to obtain the total disturbance amplitude Atotal,LST

which will be varied parametrically.
The disturbed inflow profile Qinfl is imposed only weakly in order

to prevent reflections at the inflow as well as to allow for entrainment
of surrounding fluid toward the jet shear layers. The reference state is
defined by equation (2.34), i.e. by a spatially and temporally varying
superposition of linearly unstable modes onto a laminar velocity profile.
The influence of the disturbance amplitude Atotal,LST and the effect of
exclusion of low azimuthal wavenumbers on the flow field and its associ-
ated noise is investigated. Because of the dominant role of eigenmodes
in plane mixing-layer flow (see section 1.4), their role in the transition
process and the noise generation of a jet is to be assessed. The LST
disturbances allow specific effects of the nonlinear development of eigen-
modes to be investigated.

2.6 Computational grid

The discretized set of governing equations is solved on a cylindrical grid
using Nr × Nθ × Nz grid points. As described in section 2.4.2, we rely



38 Mathematical model and numerical methods

on a Fourier spectral method to evaluate azimuthal derivatives in the
homogeneous direction θ and, therefore, use a uniform grid. The grid
in the radial and axial directions is stretched in order to adequately
resolve regions with steep gradients. For the particular application of
the direct jet-noise computation the large disparity of length scales
(ranging from small-scale eddies in the turbulent plume of the jet to
low-wavenumber waves in the acoustic near-field) necessitate well-tuned
grids in the radial and axial directions as also a too rapid grid stretching
be a parasitic source of sound (Colonius & Lele, 2004).

Radial grid
The mapping between equidistant computational and physical space
obeys the symmetry constraint with respect to the pole (see the
singularity treatment outlined in section 2.4.1). Therefore, the radial
grid stretching is based on a mapping which was originally proposed
to enhance the accuracy of pseudo-spectral approximations (Bayliss
et al., 1995). Details of the implementation and the evaluation of
the corresponding metrics can be found in the work of Müller (2007).
Here, we restrict ourselves to document the relevant parameters. The
parameter αg (in Müller’s equation (3.99)) which specifies the intensity
of the grid refinement is set to αg = 2.749. The location of the grid
refinement is controlled by the parameter βg representing the ratio of
the radial position rc where the grid is refined and the radial extent of
the computational domain Lr. The symmetrically located refinements
have a strong influence and thus, instead of choosing βg = 1/20, it
is increased to βg = 0.2137 in order to shift the location of increased
resolution slightly outwards. The chosen combination of αg and βg

guarantees the smallest radial grid spacing ∆r = 0.05r0 right at the jet
lip line r = r0.

Axial grid
The axial mapping is based on hyperbolic-tangent functions and follows
a formulation that has been employed for LES of various jets and their
noise (Bodony, 2004; Bodony & Lele, 2005). This mapping allows to
specify two locations where the grid is to be refined or coarsened. Be-
cause of the sensitivity of noise computations to rapid changes in the
grid, we dispense with a grid refinement in the entrance region of the
jet flow and only employ a grid stretching in the outflow region. More-
over, an equidistant grid over the whole physically relevant region of
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the computational domain is wanted to minimize the degradation of the
truncation error (Colonius & Lele, 2004). For the documentation of the
functional form of the mapping we refer to Müller (2007) or Bodony
(2004). The employed parameters are agi , f

g
i , rgi and dgi which control

the location and the inverse of the intensity of the grid stretching as
well as the minimum and initial grid spacing, respectively. Index i = 1
denotes the inflow, i = 2 the outflow. The parameters are documented
in Tab. 2.1.

Table 2.1: Parameters for axial grid refinement.

inflow 1 outflow 2

agi 0.0 1.03
fgi 10 20
rgi 0.05 1.8
dgi 1.0 0.02

2.7 Validation

In the course of the development of the numerical code different vali-
dation tests have been performed. First, the convergence behavior of
the spatial discretization operators were tested and reported by Müller
(2007). In his work, a boundary-layer solution for the flow field is em-
ployed to analytically evaluate all individual flux terms of the Navier-
Stokes equations using the algebraic software MAPLE. The same terms
were subsequently determined using the present numerical code and the
difference between the exact and the numerically computed values is
quantified using the L2-norm. The observed convergence rates match
the theoretically expected values very well. Second, as documented in
the work of Keiderling et al. (2004), the temporal evolution and forma-
tion of a tripolar vortex has been simulated in two dimensions using
both a Cartesian version of the code (Adams, 2000) and the cylindrical
version. Very good agreement between the results was found. For details
we refer to Keiderling et al. (2004). Finally, the temporal growth of flow
instabilities were investigated and compared to predictions from linear
stability theory. This part of the validation is documented here in more
detail.



40 Mathematical model and numerical methods

For the validation two base flows are investigated with respect to their
temporal stability, i.e., the previously mentioned solver for the linearized
stability problem (see section 2.5.4) is employed to determine eigenvalues
and eigenfunctions of disturbances that grow temporally (for details of
the solver see appendix A). These linearly unstable eigenmodes are sub-
sequently employed to initialize the Navier-Stokes solver together with
the same base flow. The disturbance amplitude is set to 10−5 for the
superposition onto the base flow and the solver is run without any SGS
model contributions. After one time step the growth rate based on the
total modal energy is calculated (following Hanifi et al. (1996)) and com-
pared with the predicted values. The two base flows are the following:
Validation case A is based on an inflow profile that corresponds to the
initial mixing region of a jet, whereas the second one has been employed
by Freund (2001) in his DNS and corresponds to the developed annular-
mixing region (Michalke, 1984). The initial momentum thicknesses of
the analytically defined profiles are scaled differently, hence, they are
compared best visually, as done in Fig. 2.10. Based on the steepness of
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Figure 2.10: Axial velocity component of different base flows: validation
case A, validation case B, employed LES base-flow profile (equa-
tion (2.33)).

the three velocity profiles shown in Fig. 2.10 we expect validation case
B to pose highest resolution requirements for both, the Navier-Stokes
code and the eigenvalue solver. As pointed out before, compared to ex-
perimental observations the initial momentum thickness employed for
the current LES is artificially increased such that the shear layer can be
resolved accurately by the grid.

Table 2.2 shows the dimensionless parameters for the validation cases
along with the wavenumber of the disturbance in azimuthal and axial
direction, n and αr0, respectively. The radial grid-mapping parame-
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ters of the Chebyshev collocation method are given in Tab. A.1 (see
appendix A.2). The grid parameters for the Navier-Stokes code are as
follows: The stretching parameters for the radial grid (as defined in sec-
tion 2.6) are αg = 4.0 and βg = 0.05 for case A and αg = 8.0 and
βg = 0.2 for case B. The streamwise length of the periodic domain con-
tains the fundamental wavelength 2π/α and is resolved by Nz = 16 and
Nz = 64 grid points for A and B, respectively. For all validation cases
the azimuthal direction employs Nθ = 4.

Table 2.2: Base-flow parameters for validation cases A and B.

Validation case Ma Pr Re n αr0

A 0.8 0.7 104 1 0.40
B 0.9 0.7 3.6 · 103 0 9.35

Figure 2.11 shows typical complex eigenfunctions (cylindrical veloci-
ties u, v, w, pressure p and temperature T ) for validation case A for the
azimuthal wavenumber n = 1 and the axial wavenumber α = 0.40/r0.
Again, all eigenfunctions are normalized by setting max |ŵ| = 1. From
the eigenfunctions we find that at r = r0 (within the shear layer) very
steep gradients occur which need to be resolved by the collocation points.
For validation case B these gradients are even higher since the initial mo-
mentum thickness of the base-flow profile is significantly smaller than in
case A (see Fig. 2.10).

The growth-rate error for various radial resolutions Nr is determined.
The details of this validation are presented in Tab. 2.3. With increasing
radial grid density we find convergence of the growth rates of the Navier-
Stokes code to the values predicted by LST (for which the number of
grid points corresponds to the Chebyshev collocation points). Table 2.3
also lists the absolute error ∆ωi and the relative error ε of the predicted
growth rates compared to the LST results. Overall, when the steep
gradients of the shear layer are adequately resolved the relative errors
are on the order of ε ≈ 10−4. Note that the determination of the growth
rate is difficult as the base-flow profile itself tends to zero just at the
outside edge of the shear layer.
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Figure 2.11: Eigenfunctions of validation case A: magnitude |q̂|, real
part <(q̂) and imaginary part =(q̂).

2.8 Initial conditions and statistical analysis

All simulations are started from exactly the same initial flow field. There-
fore, one simulation is performed to reach this initial state: It starts out
with an initial condition based on the analytically defined hyperbolic-
tangent profile which is extruded in streamwise direction (for the descrip-
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Table 2.3: Convergence of temporal growth rates with radial grid refinement for
validation cases A and B. LST denotes growth rate according to linear stability
theory. ∆ωi is the absolute error and ε the relative error.

Case Nr ωi ∆ωi ε
A 40 0.131518 1.990e−03 1.536e−02

80 0.129544 1.627e−05 1.256e−04
120 0.129526 −1.322e−06 −1.020e−05
160 0.129524 −3.955e−06 −3.054e−05

LST 150 0.129528
B 40 1.493221 −1.037e−01 −6.497e−02

80 1.591635 −5.338e−03 −3.342e−03
120 1.595965 −1.009e−03 −6.415e−04
160 1.596555 −4.187e−04 −2.622e−04
200 1.596688 −2.853e−04 −1.787e−04

LST 350 1.596974

tion of the profile see section 2.5.4, equation (2.33)). The forcing param-
eters correspond to case Med-m (to be defined below in section 3.1.1).
This set-up is run for Tsim = 120ro/Uj time units (corresponding to three
flow-through times of the domain based on the jet inlet velocity) in or-
der to allow the initial disturbances to leave the computational domain.
After this point in time the simulation is run for an additional 25 flow-
through times (Tsim = 1000r0/Uj) without imposing an outflow sponge
reference solution. Nevertheless, in order to establish a reference solu-
tion for the outflow sponge the statistics are collected over this time span
and subsequently used as reference field within the outflow sponge region
(see section 2.5.2). The final time step of this simulation is employed
as the initial condition for all simulations, regardless of the changes in
forcing amplitude or modal composition as the initial transient effect
due to these changes is considered small compared to the long integra-
tion times. We would like to point out that the setup without outflow
damping yielded stable simulation results, however, in the animations
of the acoustic near-field small spurious acoustic disturbances were vis-
ible. This spurious noise could be linked to vortical structures hitting
the one-dimensional nonreflecting boundary condition (see section 2.5.1)
and is prevented by using this outflow sponge.

The simulation time for all cases presented here is Tsim = 1000r0/Uj
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which corresponds to a minimal Strouhal number of St = Dj/(TsimUj) =
2 × 10−3. The time step for all simulations is set to ∆t = 0.02r0/Uj .
Again, we note that this time step has been determined empirically
and violates the CFL criterion of the model problem described in sec-
tion 2.4.3. Nevertheless, it is not the stability limit of the admissible
maximum time step (simulations remained stable up to a time step of
∆t = 0.026r0/Uj). Every fifth time step is analyzed for the flow statistics
(10′000 samples) and every tenth step is stored on disk for the acous-
tic analysis and post-processing (5′000 samples). All mean values, un-
less stated otherwise, are evaluated using all azimuthal grid points (Nθ)
which further increases the sample size.

The initial conditions for cases with coarsened or refined azimuthal
resolution are obtained by spectrally interpolating the initial condition
with Nθ = 50. All azimuthal data is incorporated in the statistics,
i.e., the averages are determined over all azimuthal grid points available
and this effect of difference in sample size on the results is considered
negligible.

2.9 Spectral signal processing of time series

In the following, we report the details of the digital signal processing
employed in the spectral analysis of different time series. All spectra
presented in the following are obtained in a post-processing step and are
based on 5000 samples acquired over Tsim = 1000r0/Uj . The sampling
rate of the digitally stored data corresponds to fs = 5r0/Uj . To reduce
the variance of the velocity and the pressure spectra the sampling in-
terval is divided into overlapping subintervals and all data in azimuthal
direction is employed, i.e., the spectra are averaged over the number of
subintervals and the number of azimuthal grid points Nθ. The effects
of employing finite-time intervals are reduced by applying a Hann win-
dow to each subinterval before performing a discrete Fourier transform
in time. Consecutive segments overlap each other by fifty percent. We
would like to stress at this point that neither filtering of the time signals
nor a spectral smoothing is applied additionally. The interval length for
the velocity spectra corresponds to a minimal resolved Strouhal number
of St = 0.04 (250 samples per segment, 38 segments), whereas we follow
Bogey & Bailly (2007) for the pressure spectra and resolve a minimal
Strouhal number of St = 0.1 (100 samples per segment, 98 segments).

At the higher frequencies, the velocity and the acoustic spectra have
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restrictions because of the frequency limit of the underlying data. The
limiting factors are the previously mentioned sampling rate and the
underlying computational grid which effectively acts as a filter on the
propagating waves. The first factor, as described above, is the discrete
sampling rate of fs = 5r0/Uj with the Nyquist frequency fN = fs/2
(StN = 5). The second factor is the resolution of the grid in combi-
nation with the employed discretization schemes which determines the
maximum frequency that can be represented. This frequency, some-
times referred to as grid cutoff frequency or in dimensionless terms as
grid Strouhal number Stg (Bodony & Lele, 2005) can be determined ap-
proximately for waves that are perfectly aligned with the grid. Let the
grid spacing in (r, θ, z) direction at some point Po be (∆r, r0∆θ,∆z).
For perfectly aligned plane waves with wave vector k pointing in prop-
agation direction we have a wavelength of λ = 2π/|k|, which now needs
to be accurately resolved by the numerical scheme in the respective di-
rections. In the homogeneous azimuthal direction, we find that Nθ = 2
is sufficient to resolve a wave of wavelength λ. From the wavenumber
diagram presented in Fig. 2.4 we find that in the interior of the domain
wavenumbers up to 3π/4 are accurately resolved in the two inhomoge-
neous directions. Thus, Nr = Nz = 3 is sufficient to resolve an aligned
wave correctly. From the relation between the wave vector and the fre-
quency, |ω|2 = |k|a2

∞, we obtain an estimate for the frequency and thus
a Strouhal number which depends on the local grid spacing (and also
the azimuthal wavenumber n). In the part of the computational domain
where acoustic near-field data will be provided, the current grid cutoff is
Stg ≈ 5 at the downstream observer location for downstream propagat-
ing waves and, due to the radially stretched grid, Stg ≈ 3 for the sideline
observer location for radially propagating waves. Note that the effective
cutoff depends on the phase speed anisotropy and on the propagation
direction due to the grid anisotropy. This aspect is addressed briefly in
appendix C.

For the directly computed jet noise it should be verified that hy-
drodynamic effects are separated from the acoustic regime in the near
field. We follow Arndt et al. (1997) and choose an ad-hoc threshold for
k · rs < 2 where rs is the perpendicular distance from the jet center-
line and k the wavenumber given by k = ω/a∞. This value has proven
to be a reliable estimate (Tinney & Jordan, 2008) and an approximate
Strouhal number can readily be determined. The closest and most crit-
ical radial location to be analyzed in the following is rs = 9r0, for which
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St = k · rsr0/(πMajrs) < 0.079. For all radial locations, the estimated
Strouhal numbers are therefore below St = 0.1 and the near-field pres-
sure signals represent acoustic data.



Chapter 3

LES results for flow and acoustic field

The model problem of jet mixing noise described in section 1.2 is now
addressed using the numerical approach outlined in chapter 2. The in-
vestigation consists of several simulations focusing on different physical
parameters as well as on essential elements of the SGS-modeling ap-
proach. The results are grouped according to their respective objec-
tives. First, the influence of the disturbance amplitude employed at the
inflow plane is to be investigated for two types of modal excitation in
sections 3.2 and 3.3, respectively. In section 3.4, effects of the differ-
ent types of the modal composition are directly compared. Following
these physical inflow parameters the effect of the underlying modeling
is studied, first, by attenuating the subgrid-scale relaxation coefficient
of ADM-RT (presented in section 3.5), and second, by employing the
originally postulated approach of ADM (section 3.6). Finally, we ad-
dress the effect of the azimuthal resolution on our simulation results.
Following the causality principle, the results of each investigation are
grouped into the instantaneous data, mean flow and turbulence data in
the aerodynamic region and, thereafter, the aerodynamically generated
noise as perceived in the near field.

3.1 Introduction

3.1.1 Parametrization

Jet flow parameters
The subject of this study is an isothermal round jet, i.e. the jet-to-
ambient temperature ratio is Tj/T∞ = 1. The jet Mach number is
Ma = 0.9. The Prandtl number is set to Pr = 0.71. The governing
equations are nondimensionalized using the jet radius r0 = Dj/2,
velocity Uj , jet density ρj , the dynamic viscosity µj and jet tem-
perature Tj (all taken at the nozzle exit on the jet centerline). The
Reynolds number of Re = 4.5 · 105 is between the reference cases at
Re = 1.0 · 106 and Re = 5.0 · 105 (experiments by Lau et al. (1979)
and Arakeri et al. (2003), respectively) and at Re = 4.0 · 105 (LES by
Bogey & Bailly (2006c, 2005b)). The differences in the viscous effects
associated with the different Reynolds number are here considered
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negligible (Viswanathan, 2004a).

Computational grid and simulation parameters
The cylindrical computational domain with dimensions Lr/r0 = 20 and
Lz/r0 = 40 is discretized usingNr×Nθ×Nz = 237×50×349 (≈ 4.1×106)
grid points. A cut through the computational grid in two planes is shown
in Fig. 3.1. In the radial direction the grid is refined in the vicinity of
the shear layers and has a minimum radial spacing of ∆r/r0 = 0.05 at
r/r0 = 1. It is then stretched toward the boundary and reaches a max-
imum spacing of ∆r/r0 = 0.28 at the radial boundary. The stretching
parameters of the radial grid are chosen such that the maximum grid-
to-grid stretching ratio is below 3%. In the streamwise direction, the
grid spacing is of constant size ∆z/r0 = 0.1 up to Lz/r0 ≈ 30 and con-
tinuously increased beyond. The maximum grid spacing ∆z/r0 = 0.6
is reached at the outflow boundary Lz/r0 = 40. Only a small fraction
of the radial domain is covered by the ambient sponge, and because
of the low sponge amplitude the physical region of the domain covers
Lr/r0 = 19.4 and Lz/r0 = 32.

(a)

-
r/r0
















θ

(b)
-
z/r00 32 40

6

r/r0

0

20

Figure 3.1: Computational grid in (a) the r-θ plane and (b) the r-z half-
plane. In the azimuthal direction only every second grid line is shown of a grid
corresponding to Nθ = 48 points. Only every fourth grid line is shown in the
radial and axial directions. The vertical line ( ) marks the beginning of
the outflow sponge zone.

Investigated parameters
The simulations can be grouped in three blocks. The important pa-
rameters of all simulations are reported in Tab. 3.1 together with the
nomenclature.

First, the effect of a modification of the total disturbance ampli-



3.1 Introduction 49

Table 3.1: Nomenclature, inflow forcing parameters, SGS-model and azimuthal
resolution of investigated simulations.

Case Atotal,LST modes |n| SGS-model χ Nθ
Low 0.015 1, . . . , 8 RT 50 50
Med 0.030 1, . . . , 8 RT 50 50
High 0.045 1, . . . , 8 RT 50 50

Low-m 0.015 4, . . . , 8 RT 50 50
Med-m 0.030 4, . . . , 8 RT 50 50
High-m 0.045 4, . . . , 8 RT 50 50

L-χ 0.030 4, . . . , 8 RT 35.0 50
M-χ 0.030 4, . . . , 8 RT 42.5 50
ADM 0.030 4, . . . , 8 ADM 50 50
LR 0.030 4, . . . , 8 RT 50 32
HR 0.030 4, . . . , 8 RT 50 78

tude Atotal,LST is investigated. Thereby, the sensitivity of transitional
jet simulation results to changes of the inflow condition that has been
reported previously (see section 1.4) is to be further clarified. Using
disturbances following linear stability theory, the effect of the nonlin-
ear development of eigenmodes and their role in the transition process
and the resulting noise can be assessed. Three simulations with forc-
ing amplitudes that range from 1.5% (case Low) to 3.0% (case Med) to
4.5% (case High) of the jet exit velocity Uj are performed where unsta-
ble eigenmodes n = 1, . . . , 8 are forced. Section 3.3 then deals with the
effects of changing the modal composition of disturbances provided to
the flow: Azimuthal wavenumbers |n| < 3 are excluded from the forc-
ing and the excitation amplitude is varied in the same fashion as before
(corresponding to cases Low-m, Med-m and High-m) which, in addition,
allows to search for consistent effects of the excitation amplitude. In
the subsequent section 3.4, a brief overview of the direct comparison of
cases Med and Med-m follows which allows to assess the modal excitation
effect more quantitatively.

Among the six investigated jets case Med-m is chosen as baseline con-
figuration because of the very good agreement with the reference data.
Model effects are assessed from this case by varying the relaxation coeffi-
cient. As described in section 2.2, the relaxation coefficient χ is set to the
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default value given by the upper bound of the dynamic procedure and
successively decreased to χ = 0.85/∆t (case M-χ) and χ = 0.7/∆t (case
L-χ). The second part of the investigation of the SGS-model effects fo-
cuses on the deconvolution approach described in section 2.2. The same
setup with a disturbance level of 3% is used, however, the nonlinear con-
vective terms are now calculated following the deconvolution approach
(case ADM).

This study is completed by an investigation of effects of the azimuthal
resolution. The computational grid for the baseline configuration con-
tains Nr×Nθ×Nz = 237×50×349 points and is compared to simulations
with coarse (Nθ = 32, case LR) and fine azimuthal resolution (Nθ = 78,
case HR.

3.2 Influence of the disturbance amplitude

In this section, the effect of changes of excitation levels is investigated by
changing the disturbance amplitude Atotal,LST. Eigenmodes from linear
stability theory with azimuthal wavenumbers n = 1 through n = 8 are
excited at the inflow. The presentation of the results is grouped into
instantaneous data presented in section 3.2.1. Thereafter, the effect of
the disturbance amplitude on the statistics of the jet flow is reported fol-
lowed by the acoustic data in section 3.2.3. Section 3.2.4 addresses possi-
ble connections between the hydrodynamic source field and the acoustic
near field.

3.2.1 Instantaneous data

Figure 3.2 shows snapshots of the vorticity magnitude |ω| for the three
excitation levels in the developing region of the shear layers. The jet
shear layer development is similar for all cases with an asymmetric align-
ment of structures at opposite sides of the shear layer. The development
seems not to be influenced by the increase of forcing amplitude besides
the shift in upstream direction. As the shear layers roll up (marked by
¬), we observe a large dominant structure. For increased amplitudes
(cases Med and High), the developing vortex in the shear layer contains
two separate vortex cores marked by a higher concentration of vorticity.
For the investigated range of disturbances (1.5%, 3.0% and 4.5%), con-
secutive structures are spatially separated in the axial direction. Down-
stream of z/r0 ≈ 6, the structures start to merge and interact. As these
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Figure 3.2: Visualization of vortical structures by |ω| in the r − z plane at
θ = 0 for cases (a) Low, (b) Med and (c) High. The gray contour levels from
light to dark are within 0 < |ω| < 13. ¬ dominant structure during roll-up of
shear layer;  interaction of large-scale structures; ® gray frame is the zoomed
region of Fig. 3.3.
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stable structures are convected downstream the breakdown proceeds and
smaller and smaller scales are generated leading to several vortex cores
(see encircled area ). The spatial extent in which the breakdown into
smaller scales takes place is shorter for case Low compared to a spatially
elongated process for the higher amplitude cases. The gray box in each
graph (®) shows the extent of the transitional region (to be focused on
in Fig. 3.3). As a side remark we note that the veil that emanates from
the inflow region (at the radial position r/z0 ≈ 2) is an artifact of the
interaction of the two sponge layers that overlap each other there: The
inflow sponge relaxes the inflow profile to a fluid at rest whereas entrain-
ment of surrounding fluid is enabled by the ambient sponge. This mild
reduction of entrainment results in a spatially confined area of wake-like
flow which locally increases the vorticity magnitude in the graphs.

The flow animations help to identify stable large-scale coherent struc-
tures. These interactions range from vortex-pairings, over partial pair-
ings to pure tearing of vortices. The roll-up is localized in space re-
gardless of the excitation amplitude, i.e. almost no spatial deviation of
the roll-up location can be observed. However, at opposite sides of the
shear layer it dominantly occurs in asymmetric (helical) and only rarely
in axisymmetric (varicose) fashion. Further downstream, a frequent in-
teraction of a train of vortices can be observed in which leading vortices
tend to entrain the trailing vortices. These entrained vortices can also be
shed violently through the potential core flow. As just noted, at opposite
sides of the shear layer structures seem to order in a spiral manner for all
cases. This qualitative observation of helical alignment is to be substan-
tiated in the following by determining the azimuthal one-dimensional
turbulent kinetic energy spectrum in the shear layer. In Fig. 3.3, the
vortical structures in the transition region of the three jets are visual-
ized using the λ2 vortex identification criterion (Jeong & Hussain, 1995).
Isosurfaces of λ2 = −1 are shown in a side view. The streamwise shift
of the transition process is well observable by the emergence of the az-
imuthally coherent two-dimensional structures that dominate the roll-up
process. During their interaction subsequent vortices engulf each other
in a leap-frog fashion, i.e. the inner part of the trailing vortex is ahead
of the outer part of the leading vortex, thereby tearing apart the ring
vortices and forming a helically-shaped structure. The differences in
spatial extent of the structures becomes more evident using the λ2 cri-
terion. For case Low, large, two-dimensional structures dominate the
roll-up and are stable as they are convected downstream. In contrast,
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(a)

(b)

(c)

Figure 3.3: Visualization of vortical structures by isosurfaces λ2 = −1 in the
region −3 < r/r0 < 3 and 4 < z/r0 < 10 for cases (a) Low, (b) Med and
(c) High in a side view. The dimensions of the shown graph corresponds to
the gray frame in Fig. 3.2. The isosurface is (color) coded by the local Mach
number 0 < Ma < 1.4 from dark gray (blue) to light gray (red) .
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during the leap-frog interaction of vortices for case Med and High more
three-dimensional and streamwise elongated small vortex filaments are
generated which, in addition, tend to distort the purely helical orienta-
tion of large structures. The azimuthal correlation of the vortex heads
emerging in the radial direction is significantly reduced for increased dis-
turbance levels. Overall, the transitional behavior is similar for all cases,
however, initiated at larger distances from the inflow and dominated by
stable two-dimensional structures using the low excitation level. For the
three forcing amplitudes, we observe that the structures that dominate
the early transition process seem to align in an asymmetric fashion with
respect to the jet centerline.

In order to obtain an impression of the instantaneous near-field noise
of the jet flow, the same data is visualized again in Fig. 3.4 together with
the pressure fluctuations p′ in the outer part of the domain. We only
present case Med since the differences in the visualizations of the instan-
taneous near-field pressure data are minute for the three disturbance
amplitudes. For all simulated cases, sound waves are emitted slightly
upstream of where the instantaneous shear layers merge. At the radial
and upstream boundaries, all pressure waves leave the domain without
generating any spurious noise or artificial reflections. This demonstrates
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Figure 3.4: Visualization of vortical structures by contours of |ω| in the near
field r/r0 < 5 (gray contour levels from light to dark within 0 < |ω| < 13) and
corresponding pressure fluctuations in the acoustic near field r/r0 > 5 (gray
contour levels from dark to light within −5 · 10−4 < p′ < 5 · 10−4) for case
Med: (a) in the r − z plane at θ = 0 and (b) in the r − θ plane at z/r0 = 12.
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the appropriateness of the chosen combination of nonreflecting boundary
conditions supplemented by sponge-layers.

3.2.2 Mean flow and turbulence results

The influence of the forcing amplitudes on the mean flow and on the
jet development is now investigated. The axial mean flow and its
mean streamlines for case Med are visualized in Fig. 3.5. The cur-
rent setup clearly enables the entrainment of surrounding fluid from
the free-stream boundaries. There are no noticeable differences in the
streamline patterns for the three excitation levels. The length of the po-
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Figure 3.5: Visualization of mean flow streamlines for case Med. Lines denote
〈w〉 = 0.95Uj, 〈w〉 = 0.5Uj and 〈w〉 = 0.05Uj.

tential core zc (here defined by the mean axial velocity on the centerline
wc(z = zc) = 0.95Uj) is zc/r0 ≈ 10.84. The dot-dashed line corre-
sponds to the mean flow value 〈w〉 = 0.95Uj , whereas the dashed line
denotes 〈w〉 = 0.05Uj and exhibits a rather linear spreading of the jet
downstream of around five jet diameters. As noted before, we find a re-
gion in the vicinity of the jet entrance region where reduced entrainment
velocities are found as a side-effect of the interaction of the two overlap-
ping sponge layers. The solid line marks half the jet exit velocity and
demonstrates the slow decay of axial momentum which necessitates large
computational domains. The potential core lengths zc vary slightly with
forcing amplitude and are listed in Tab. 3.2. With an increased forcing
amplitude, we find reduced potential core lengths as expected. In the
same table other data characterizing the jet development can be found
such as the growth rate of the jet half-width, the virtual origin and the
growth rate of the vorticity thickness.

The previously described vortex interaction results in a change of
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Table 3.2: Potential core lengths zc/r0, growth rates of the jet half-widths
d(r1/2/r0)/dz (determined by linear fits in the range 15 < z/r0 < 30), virtual
origins z0/r0 and growth rates of the vorticity thicknesses d(δω/r0)/dz (de-
termined by linear fits in the range 8 < z/r0 < 12) for cases Low, Med and
High.

Case zc/r0 d(r1/2/r0)/dz z0/r0 d(δω/r0)/dz
Low 11.09 0.085 −1.50 0.247
Med 10.84 0.085 −1.36 0.251
High 10.62 0.072 −4.51 0.252

the mean pressure in a region surrounding the closing of the potential
core: Slightly upstream of the closing a region of higher pressure is
found, whereas a reduced mean pressure region is established starting
in the shear layer and ranging to the collapse of the potential core.
This is exemplified by the mean pressure distribution of case Med in the
transitional region (Fig. 3.6). This low pressure region entrains fluid the
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Figure 3.6: Visualization of mean pressure distribution for case Med. Lines
denote ambient pressure: 〈p〉 = p∞, decreased pressure: 〈p〉 =
0.98 p∞, 〈p〉 = 0.96 p∞ and increased pressure: 〈p〉 = 1.01 p∞.

surrounding fluid which is initially at rest. Depending on the magnitude
of the pressure gradient, entrained fluid from far downstream is directed
upstream, with a velocity magnitude on the order of only one percent of
the jet exit velocity. As the fluid approaches the widened jet, it becomes
accelerated in the downstream direction again.

The streamwise development of the mean axial velocity at the center-
line wc and the jet half-width r1/2 (defined by 〈w(r = r1/2)〉 = 0.5wc) are
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shown in Fig. 3.7. Since the forcing consists of Kelvin-Helmholtz type
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Figure 3.7: (a) Mean axial velocity along the jet centerline wc and (b) jet half-
width r1/2: Low, Med, High, Bogey & Bailly (2005b), ◦
Lau et al. (1979), Arakeri et al. (2003).
instabilities (that reach their maxima in the shear layer) one can expect
that upstream of the potential core collapse the differences along the jet
centerline are only small. With increasing forcing amplitude the onset of
the decay of the centerline velocity moves slightly upstream. Also a pro-
nounced velocity defect followed by a rebound to values approximately
equal to the jet exit velocity can be observed. This velocity distribution
along the jet centerline can be explained by the increase in mean pres-
sure with a subsequent pressure drop further downstream (as shown in
Fig. 3.6) which first decelerates the fluid and then accelerates it again.
The decay itself evolves rather unchanged for all cases, only case High
shows a small kink in the mean flow development at late streamwise po-
sitions. Compared to the experimental results by Lau et al. (1979) and
Arakeri et al. (2003) we observe a strongly delayed onset of the decay of
the centerline velocity. Downstream of z/r0 ≈ 15, qualitative agreement
with the experimental work of Lau et al. is found. The numerical data
by Bogey & Bailly (2005b) lies between the results. Note that the LES
data of Bogey & Bailly is shifted in axial direction by z0/r0 = −2 in all
graphs to account for the differences in potential core length. We do not
collapse all the data at the potential core but rather shift the data to
achieve best fit with the mean centerline velocity and higher moments
to be looked at later. The experimental data denoted by symbols is
shifted as follows: that of Arakeri and coworkers by z0/r0 = −9, that
of Lau et al. by z0/r0 = −8. The relation among the reference data re-
mains constant throughout this work. The computational results share
the delayed but stronger decay of the centerline velocity which might
be related to the aforementioned artificially increased initial momentum
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thicknesses and the difference in oncoming disturbance levels.
The axial profiles for the jet half-width shown in Fig. 3.7(b) do not

vary significantly for the range of investigated inflow-forcing amplitudes.
After the onset of the jet spreading, we observe a strong lateral contrac-
tion of the flow (related to the reduced mean pressure mentioned above)
around a streamwise location of z/r0 ≈ 6 followed by a fairly linear devel-
opment. Since the streamwise extent of the computational domain is too
short to contain large parts of the self-similar region, the spreading rates
of the jet flow have not been determined. Nevertheless, the growth rates
of the jet half-width for all simulations (determined by a linear fit in the
range 15 < z/r0 < 30) are given in Tab. 3.2. The cases where azimuthal
wavenumbers n = 1 through n = 8 are disturbed have growth rates from
d(r1/2/r0)/dz ≈ 0.072 . . . 0.085 depending on the disturbance level. The
mildly excited flow reaches a value that is close to the experimentally
determined value of 0.096 reported by Panchapakesan & Lumley (1993)
(which is determined in the self-similar region of the jet). Similar values
as ours, i.e. smaller values than in experiments, were found by Bogey &
Bailly (2006a), who, when simulating in a box with twice the stream-
wise extent, observed an increase in the streamwise direction towards
asymptotic values in accordance with the literature. This suggests that
the growth rates might increase towards the the self-similar region which
is not captured by our numerical domain.

The root-mean-square (RMS) of the axial and radial velocity fluctu-
ations along the jet centerline r/r0 = 0 are given in Fig. 3.8. Overall,
the streamwise evolution of rise and subsequent fall of RMS intensities
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Figure 3.8: RMS of (a) axial velocity fluctuations 〈w′′2c 〉1/2 and (b) radial
velocity fluctuations 〈u′′2c 〉1/2 along the jet centerline: Low, Med,

High, Bogey & Bailly (2005b), ◦ Lau et al. (1979), Arakeri
et al. (2003).
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is similar for all cases. The axial RMS velocities (Fig. 3.8(a)) satu-
rate close to the inflow at levels of 〈w′′2c 〉1/2/Uj ≈ 0.01. Six jet-nozzle
radii downstream of the inflow the values rise significantly and reach
their maxima around the streamwise location of z/r0 = 13 . . . 14. With
increasing forcing amplitude Atotal,LST, the streamwise development is
slightly shifted upstream whereas the peaks are reduced in amplitude.
After the collapse of the potential core, the three investigated cases agree
reasonably well with the experimental data by Lau et al. (downstream
of z/r0 = 10). In particular, case High reaches a similar RMS peak value
of 〈w′′2c 〉1/2/Uj = 0.153. Note that Lau et al. (1979) report the highest
experimental RMS fluctuations, however, this is attributed to the analy-
sis procedure and lower values - similar to the Arakeri et al. data - were
reported in (Lau, 1981). The initial development upstream of the peak
location, however, is fundamentally different from the reference data:
We observe a minute rise in RMS, whereas the LES data by Bogey &
Bailly (2005b) (after a short initial region) exhibits similar growth as
observed in the experiments. Their RMS peak value of 0.131 and also
the streamwise distribution is in fair agreement with the more recent ex-
periments by Arakeri et al. (2003). The RMS distribution with the very
rapid increase in RMS substantiates the findings from the instantaneous
data that mostly two-dimensional structures dominate the roll-up of the
shear layers followed by the sudden emergence of small-scale vortices
(see, e.g. the visualization of λ2 isosurfaces in Fig. 3.3).

In Fig. 3.8(b) the radial RMS velocities along the centerline are shown
together with the reference LES. As for the axial fluctuations, consid-
erably higher values are found (25% up to 33%) compared to the data
of Bogey & Bailly (2005b). In addition, we observe a localized attenu-
ation in the rise of the RMS around a streamwise location of z/r0 ≈ 7.
In comparison to the currently employed eigenmode excitation, the ring
forcing method used by Bogey & Bailly seems to allow for a smoother
transition process with lower RMS peaks along the centerline. Although
not shown in Fig. 3.8(b), we would like to point out that the peak level
of the radial RMS velocity reported by Bogey et al. (2005b) are in fair
agreement with the experimental data.

In the following, the effect of changes in forcing amplitude on the
early shear layer development is investigated. As mentioned in sec-
tion 3.2.1, the observations made in the transitional region are to be
supported quantitatively by calculating the one-dimensional azimuthal
turbulent kinetic energy spectra (Fig. 3.9). We define the spectrum at



60 LES results for flow and acoustic field

location (r, z) as
E(n) = 〈ûiû∗i 〉 , (3.1)

where E(n) is the turbulent kinetic energy (TKE) contained in azimuthal
mode n, ûi denotes the one-dimensional Fourier transform of velocity
component ui and the asterisk the complex conjugate. Note that we
use 〈·〉 in equation (3.1) to denote a time average only. Five equidistant
downstream locations in the transitional region along the nozzle lip-line
(r = r0) are evaluated and shown in Fig. 3.9. For clarity, the groups of
spectra at the different downstream positions are shifted by one order
of magnitude. Also, the most energetic wavenumber n = 0 is excluded
from the graphs to assess the effects of the forcing amplitude on the
excited modes (TKE of n = 0 is larger by roughly four order of mag-
nitude). At the inflow we find a difference of more than two orders of
magnitude between the turbulent kinetic energy contained in the per-
turbed modes (i.e. the excited azimuthal wavenumbers n = 1 through
8) and the higher wavenumbers. The change in disturbance amplitude
is reflected by the different TKE levels. Based on the growth rates pre-
dicted by linear theory, one might expect the amount of energy among
the wavenumbers to be ordered accordingly. However, this is not exactly
the case. The slightly lower energy contained in the wavenumbers n = 1
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Figure 3.9: One-dimensional turbulence energy spectra E in θ-direction along
the nozzle lip line at streamwise positions z/r0 = i·3 (i = 0, . . . , 4, from bottom
to top): Low, Med, High. The groups of spectra are shifted by
an order of magnitude for clarity.
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and n = 2 might be related to the linear interaction of the right- and
left-turning modes with the initially unexcited varicose mode n = 0 as
well as an effect of the weakly-enforced inflow condition. At the stream-
wise position z/r0 = 3, all modes, regardless if initially excited or not,
have higher levels of energy. A considerable TKE increase is observed in
particular for the wavenumbers n = 1 as well as n = 3 which dominate
the spectra for all forcing amplitudes. Further downstream (at z/r0 = 6)
the dominance of the wavenumber n = 1 is consolidated. For case Low
this is the most energetic helical mode which confirms the findings from
the instantaneous data of the vorticity magnitude, in particular, the he-
lically shaped dominant structure in Fig. 3.3(a). As a side remark, we
note that the TKE increase in the lower wavenumbers is accompanied
by a reduction in higher wavenumbers. With increasing distance from
the inflow the spectra are almost indistinguishable from each other. At
z/r0 = 9, they are characterized by a broad-banded energy distribution.
Because of the double-logarithmic representation of the spectra the over-
all dominance of the even wavenumber n = 2 at this location is disguised.
It is interesting to note that in the short streamwise distance between
these two locations a distinct transfer of turbulent kinetic energy takes
place from the asymmetric modes n = 1 and n = 3 to the symmet-
ric mode n = 2 (symmetric and asymmetric here refers to a pointwise
symmetry or asymmetry with respect to the pole r = 0 and thereby,
a symmetry or asymmetry with respect to the downstream axis for all
helical modes during their downstream development). Because of the
disturbance levels achieved at this streamwise position, linear but also
nonlinear interaction of eigenmodes may feed this transfer mechanism.
For case Low, slightly elevated turbulent kinetic energy is also found in
the wavenumber range from five to eight. All excitation levels exhibit a
sharp drop-off for n > 16 of about one order of magnitude, which is re-
lated to effects of the relaxation regularization (to be addressed in more
detail in sections 3.5.1 and 3.7.1). At the last investigated axial position,
we observe a more or less broad-banded energy distribution for modes
with n < 15, but again, we note that the most energetic wavenumber is
n = 2.

As could be seen from the comparison of the centerline profiles, the
effect of the eigenmode-based forcing of modes |n| = 1, . . . , 8 on the
simulation results seems to be strong compared to the reference data.
To better compare the absolute values as well as the streamwise distri-
butions of various quantities, we will not employ an axial shift of the
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reference data for the rest of this subsection. In the following, we focus
on the development along the nozzle lip line r/r0 = 1 and present the
axial and radial velocity fluctuations versus the downstream coordinate
(Fig. 3.10). As noted above, the eigenfunctions employed in the forcing
reach their maxima in the shear layer of the base-flow profile. Thus,
the amplitude effects might be more pronounced in the quantities along
the jet nozzle lip line. As expected, the axial RMS velocities greatly
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Figure 3.10: RMS of (a) axial velocity fluctuations 〈w′′2〉1/2 and (b) radial
velocity fluctuations 〈u′′2〉1/2 along the nozzle lip line: Low, Med,

High, Bogey & Bailly (2005b).

vary for the different excitation levels. First, similar to the centerline
distributions, an increase in excitation level shifts the streamwise devel-
opment upstream, i.e. with an increased forcing amplitude Atotal,LST the
RMS rises at shorter distances from the inflow. Second, and more strik-
ingly, the streamwise evolution of the RMS exhibits a strong dual-peak
shape. Only the very early development is found to behave similarly
as reported by Bogey & Bailly (2005b). However, their results show
a smoother course of growth, saturation and subsequent decay. For
the current simulations we observe that after rising for a downstream
distance of approximately four up to five radii the values saturate at
〈w′′2〉1/2/Uj ≈ 0.2, decay for a short distance and rise again afterwards.
Around z/r0 ≈ 8 . . . 9, the secondary peaks are reached which are all on
the order of 0.25. Most likely, this dual-peak distribution is a result of
the very pronounced vortex pairings taking place at this location (see
section 3.2.1). The structures that are involved in this vortex interac-
tion are very stable and are initially dominated by odd wavenumbers of
low order (n = 1, 3). The sudden rise of the even wavenumber n = 2
between the streamwise positions z/r0 = 6 and z/r0 = 9 combined with
the reduced relevance of n = 1, 3 seem to contribute to this stepwise in-
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crease of RMS. As the computation of the mean quantities also involves
an azimuthal average, a helical alignment tends to smear out gradients
whereas an axisymmetric arrangement tends to amplify the dual-peak
structure. Since the dominance of the helical mode n = 1 is confined to
a very short streamwise region, the rise of the double-helical mode n = 2
(which in contrast to n = 1 is symmetrically aligned to the downstream
axis) enhances the dual-peak structure. Similar variations of centerline
longitudinal fluctuation intensity can for example be found in the ex-
perimental data reported by Crow & Champagne (1971) (their figure
13, p. 564) or in much more detail by Zaman & Hussain (1980) where
profiles exhibit strong dual-peak distributions (see their figures 3 (a) and
27, p. 455 and 483). There, vortex pairing in an axisymmetric jet flow
under excitation has been investigated. For an excitation frequency cor-
responding to St = 0.3 a similar dual-peak distribution is established
characterized by a trough region with reduced fluctuations located at
the nozzle lip-line which extends toward the jet centerline.

The evolution of the radial RMS velocities presented in Fig. 3.10(b)
is similar to the findings of the axial velocity component. Compared
to the results of Bogey & Bailly, we observe a delayed onset even for
case High, the case for which transition is initiated closest to the inflow.
Thus, it seems that the transition is slowed down when triggered by the
eigenmode excitation of wavenumbers one through eight is slowed down.
In addition, the more abrupt breakdown results in an over-prediction of
the RMS by almost 13%. The general distribution, however, is similar
to the reference data. From this, we conclude that the effects of the par-
ticular excitation mechanism seems to emerge mostly in the early shear
layer development and most significantly in the axial velocity fluctuations
along the nozzle lip line. Experimental data is not shown, however, we
note that the reported values are significantly lower (i.e. on the order of
0.12 . . . 0.14) which might be an effect of the artificially increased shear
layer thickness (simulation results with comparable inflow profile share
this characteristic (Bogey & Bailly, 2005b)).

The effect of the forcing on the development of the vorticity thickness
δω, which is determined according to

δω =
Uj

max
r

∣∣∣∂〈w〉∂r

∣∣∣ , (3.2)

is now investigated. In Fig. 3.11 the vorticity thickness evolution is
shown for the three cases. The development of the initially laminar
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Figure 3.11: Streamwise development of vorticity thickness δω: Low,
Med, High, Bogey & Bailly (2005b).

shear layers depends on the amplitude of the disturbances. With in-
creasing forcing amplitude the location where the shear layers thickness
is increased moves upstream – which is consistent with our observa-
tions for all other quantities so far. The streamwise evolution is almost
linear once the spreading started. Yet, at a downstream position of
z/r0 ≈ 6 . . . 7, the spreading is suddenly strongly diminished and – a
little later – increased again. After this second increase the vorticity
thickness grows again in a fairly linear fashion. The location matches
the position of the dual-peak structure described previously as well as
the region where the redistribution of turbulent kinetic energy between
n = 1 and n = 2 is observed (see Figures 3.9 and 3.10(a)). Because
of this discontinuous development of the vorticity thickness, the deter-
mination of the corresponding growth rates is difficult and ambiguous.
Therefore, we decide to determine the growth rates of δω by a linear
fit in the range 8 < z/r0 < 12 and report the values in Tab. 3.2. The
values of d(δω/r0)/dz ≈ 0.25 are higher than observed experimentally
(see the summary of experiments by Gutmark & Ho (1983) which range
from 0.112 to 0.218), but in close agreement with the study by Bogey
& Bailly (2005b) (note again that growth rates are determined in the
self-similar region not captured by our domain).

The delay of the shear layer development also affects the turbulent
stresses. This is exemplified by looking at the radial normal Reynolds
stress as well as the shear stress (Fig. 3.12). The profiles are taken at
equidistant streamwise locations z/r0 = 3, 6 and 9 and are shifted by
the marked amount. Between the first and the second location the val-
ues rise rapidly, saturate within this distance and reach their maxima
around z/r0 ≈ 6. Approaching the potential-core collapse the Reynolds
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Figure 3.12: Streamwise development of radial Reynolds stress profiles at
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stresses decay again. Corresponding to the previously noted upstream
shift for higher disturbance amplitudes (see section 3.2.1) we find larger
peak values of the axial stress component at z/r0 = 3 for higher forc-
ing amplitudes. For all other measuring points a reversed alignment is
found: Case Low (that has the largest delay in streamwise development)
reaches largest overall Reynolds stress values and its extent is confined
to thinner radial extents. In particular, the very rapid development of
〈ρw′′w′′〉/ρjU2

j in Fig. 3.12(a) for case Low observed between z/r0 = 3
and 6 confirms the impression from the snapshots of instantaneous pro-
cesses (see Fig. 3.2 and 3.3) that the transition occurs in a spatially more
confined area and is more abrupt. It might be the case that this process
can be linked to the previously described transfer of energy between the
azimuthal modes n = 1 and n = 2 (see Fig. 3.9) associated with the
breakdown of the dominant, azimuthally coherent structure.

This section is concluded by investigating the spectral composition
of the axial velocity fluctuations along the jet centerline and the nozzle
lip line. For details concerning the post-processing of the recorded ve-
locity signals we refer to section 2.9 and repeat at this point only that
the interval length is chosen to resolve a nondimensional frequency of
St = 0.04. We focus on the transitional region of the jet flow and show
the axial velocity spectra at the streamwise positions z/r0 = i · 3 with
index i ranging from zero to four (Fig. 3.13). As the disturbances are
highest in the shear layer of the inflow profile, one finds more than two
orders of magnitude lower peak values along the jet centerline compared
to the nozzle lip line (Fig. 3.13(a) vs. Fig. 3.13(b)). The lip-line profiles
of the spectral amplitude line up according to the imposed disturbance
amplitudes. In agreement with the literature (Huerre & Monkewitz,
1990) the flow is most receptive to disturbances in a Strouhal number
range around St ≈ 0.4, which corresponds to the column mode frequency
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Figure 3.13: Axial velocity spectra at streamwise positions z/r0 = i · 3
(i = 0, . . . , 4 from bottom to top) along: (a) jet centerline, (b) jet lip line:

Low, Med, High. The groups of spectra are shifted by an order
of magnitude for clarity.

(also referred to as preferred mode (Crow & Champagne, 1971; Zaman
& Hussain, 1980)) although a broader frequency band is excited at the
inflow (recall the disturbed eigenmodes and the nondimensional fun-
damental frequencies: (n, St) = (1, 0.68), (2, 0.67), (3, 0.65), (4, 0.63),
(5, 0.61), (6, 0.57), (7, 0.51) and (8, 0.43)). At the second downstream
position the velocity spectra are characterized by broad but well-defined
peaks. For the lip line we observe three peaks at Strouhal numbers of
St ≈ 0.46, 0.92 and 1.38, which could correspond to the fundamental
frequency and its first and second higher harmonic. Again, the forcing
amplitude manifests itself in the intensity of these peaks. In the case
of a weakly disturbed flow (case Low) the peak at St ≈ 1.38 is buried
in broad-banded noise, whereas around St ≈ 0.68, an additional domi-
nant frequency is found. Besides the same dominant Strouhal numbers
of St ≈ 0.46 and St ≈ 0.92, the centerline spectra show no pronounced
effect of the changes in forcing amplitude at the corresponding stream-
wise position. At z/r0 = 6, the upstream generated triad of frequencies
remains dominant along the lip line where the vortex-pairings are ob-



3.2 Influence of the disturbance amplitude 67

served. The lower frequencies also appear along the centerline as can be
seen in Fig. 3.13(a). Also note that in the case of a low forcing amplitude,
there is now a pronounced local maximum at St ≈ 0.68, the frequency
that was dominant further upstream. Together with the previously dis-
cussed spectrum of turbulent kinetic energy (Fig. 3.9) this could be an
effect of the helical mode n = 1 emerging at this streamwise location.
Further, qualitative support is found by the helical alignment of the
vortical structure (see section 3.2.1). This conjecture is in very good
agreement with linear stability theory (Michalke, 1984; Michalke & Her-
mann, 1982), according to which azimuthal wavenumbers n = 0, 1 reach
their highest growth rates at the fundamental frequency of St = 0.67
and St = 0.68, respectively. But clearly, this effect is only very weak
compared to the dominant harmonics. At the second to last position,
i.e. at z/r0 = 9, the persistent and dominant existence of the column
mode frequency St ≈ 0.46 remains unchanged for the lip-line spectra,
whereas the centerline spectra maintain peaks at the fundamental fre-
quency and its subharmonic. Again, case Low exhibits less pronounced
peaks, but a brief streamwise appearance of a frequency corresponding
to St ≈ 0.23 is captured at this location – which could mark the sub-
harmonic of St ≈ 0.46 and hence randomly occurring vortex-pairings of
the column mode. At the location at which the potential core collapses
we find no overall dominant frequency in the velocity spectra.

3.2.3 Acoustic results

The DNC approach taken in this work provides the complete time-space
information not only in the fluid dynamic region but also in the acous-
tic near-field. Thereby, the effect on the acoustic emission caused by
changes in the forcing amplitudes on various quantities, such as the
spectral content of the pressure distribution, the sound pressure levels
and azimuthal two-point auto-correlations, can be investigated without
any additional modeling approaches or assumptions of far-field analogies.
From changes in transition and the resulting variations in the acoustic
near-field conclusions might be drawn about the underlying noise gener-
ation mechanisms.

First, the pressure spectra for cases Low, Med and High at different
observer locations are investigated. The end of the potential core of case
Med is selected as the origin of a spherical coordinate system (R, θ, φ).
The near-field spectra are now investigated with respect to the polar
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Table 3.3: Observer locations of spectra measurements and polar distances R
and angles φexact for cases Low, Med and High.

φ r/r0 z/r0 R/r0 φexact

Low Med High Low Med High
30◦ 9 27 18.3 18.5 18.7 29.5◦ 29.1◦ 28.8◦

60◦ 15 21 18.0 18.1 18.2 56.5◦ 55.9◦ 55.3◦

90◦ 18 12 18.0 18.0 18.0 87.1◦ 86.3◦ 85.6◦

angle 0◦ < φ < 180◦ measured from the positive jet axis r = 0. The
cylindrical coordinates (polar distances R and polar angles φ, for each
case based on the corresponding potential core length) for all observer lo-
cations are reported in Tab. 3.3. Technical details of the post-processing
are reported in section 2.9. Recall that no additional filtering or spec-
tral smoothing is applied. The cutoff frequencies of the grid are repeated
here: Stg ≈ 5 at the downstream observer location for downstream prop-
agating waves and, Stg ≈ 3 for the sideline observer location for radially
propagating waves.The data are scaled using standard atmospheric pres-
sure (patm = 982hPa) and a reference pressure of p0 = 2 × 10−5Pa to
obtain sound pressure level (SPL, given in dB).

Experimental data (shown by solid square symbols) is taken from a
measurement campaign focusing on the spectral properties of noise in the
acoustic near field as well as the acoustic far field (Bogey et al., 2007b) of
a high-subsonic jet at a Reynolds number of Re = 7.8×105. Dotted lines
represent LES data of Bogey & Bailly (2005b). As tabulated in Table 3.4,
the reference data are measured at slightly different polar angles and,
more importantly, at different polar distances R from the previously
defined origin. Assuming a 1/R-decay for the pressure levels, a correction
∆SPL is determined with respect to the common polar distance R∗ =
18r0 and accounted for in all graphs. Note that the largest correction is
∆SPL = 1.3 dB for the reference data and that the small differences in
polar distances of cases Low, Med and High are not accounted for. The
acoustic data of the following sections 3.3– 3.7 will be provided at the
same observer locations, and hence, the corrections are the same for all
cases.

The three measurement points with similar polar distances and polar
angles that correspond to φ ≈ 30◦, 60◦ and 90◦ are analyzed in Fig. 3.14.
The spectra in Fig. 3.14 exhibit a strong dependence on the observation



3.2 Influence of the disturbance amplitude 69

Table 3.4: Observer locations of spectra measurements and polar distances
R and angles φexact for reference data together with polar-distance correction
∆SPL with respect to the common polar distance R∗ = 18r0. Reference data:
(I): Experiments by Bogey, Barré, Fleury, Bailly & Juvé (2007b); (II): LES
by Bogey & Bailly (2006b).

φ Ref. r/r0 z/r0 R/r0 φexact R/R∗ ∆SPL/dB
30◦ I 15 30 23.3 40.1◦ 0.74 +1.3

II 12 29 20.7 35.5◦ 0.83 +0.7
60◦ I 15 20 16.9 62.4◦ 1.03 −0.1
90◦ I 15 10 15.2 98.2◦ 1.18 −0.7

II 15 11 15.0 94.5◦ 1.20 −0.8

angle φ, whereas the differences in disturbance amplitude are reflected
only in the low frequency band. For small polar angles, as presented
in Figures 3.14 (a) and (d), the spectra are dominated by a frequency
band below St = 0.4. The spectral shape of all cases is in fair agreement
with the reference data and we find a strongly enhanced low-frequency
band for lower forcing amplitudes. In particular, case High follows nicely
the reference data and its peak frequency at St ≈ 0.3, is slightly shifted
to higher frequencies compared to the experiments but in very good
agreement with the reference LES (St ≈ 0.3). At higher Strouhal num-
bers a second local peak is observed for the large-amplitude cases. In
Fig. 3.14(d) a peak at St ≈ 0.9 starts to appear for cases Med and High.
Because of the relatively coarse spectral resolution, the locally dominant
Strouhal numbers of St ≈ 0.5 and 0.9 are most likely related to the
dominant frequencies observed in the axial velocity spectra along the jet
lip line, i.e. St ≈ 0.46 and 0.92, respectively.

For the intermediate observer location the spectra are characterized
by a peak at St = 0.5. Its strength correlates with the excitation level, as
can be seen in the close-up in Fig. 3.14 (e). Under an angle of φ ≈ 60◦

to the jet axis, only qualitative agreement of the spectral shape with
the reference data is found above St ≈ 0.2. The acoustic noise is over-
predicted by more than 5 dB over a broad range of frequencies.

The near-field spectra of the reference data is broad banded for ob-
server locations perpendicular to the jet axis (see Fig. 3.14 (c) and (f)).
The LES lack noise contributions of frequencies below St ≈ 0.4 when
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Figure 3.14: Near-field pressure spectra in dB at (a) φ = 30◦, (b) φ = 60◦

and (c) φ = 90◦: Low, Med, High; Bogey et al. (2007b) at
(a) r = 15r0, z = 30r0, (b) r = 15r0, z = 20r0, (c) r = 15r0, z = 10r0;

Bogey & Bailly (2005b) at (a) r = 12r0, z = 29r0, (c) r = 15r0,
z = 11r0. Graphs (d), (e) and (f) show close-up of Strouhal 0.4 < St < 1.2.

comparing the spectral shapes only (as also found under intermediate
observation angles). We note that experimental studies for various jet
flow parameters show a slight decrease of sound pressure for these low
frequencies (e.g. Tanna, 1977a,b; Viswanathan, 2004a,b). Nevertheless,
the pressure levels are significantly over-predicted by up 9 dB in the
sideline direction.
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Figure 3.15: Axial distribution of overall sound pressure levels (OASPL in
dB) along r/r0 = 15: Low, Med, High, Bogey & Bailly
(2006a).

Overall, the main trends of the spectra provided by the simulations
are in accordance with the reference data, i.e. the shift of the dom-
inant frequency band from low-frequencies under small angles φ to a
broad-band character in the sideline direction. However, the eigenmode
based forcing changes the transition process and thereby triggers a very
stable and strong vortex pairing which contributes to tonal components
in the pressure spectra. The frequencies found in the axial velocity
spectra (in particular, for medium to high disturbance amplitudes, see
Fig. 3.13) correspond very well to the observed tonal components. The
sound pressure level around the excited tones is amplified with increased
disturbance amplitude while elsewhere a broad-band reduction is found.
This effect of turbulence and noise amplification or suppression through
excitation is investigated in a series of experiments by Zaman (1985) and
Zaman & Hussain (1981, 1980). Quantitatively, the sideline pressure lev-
els are significantly over-predicted and might be related naturally to the
increased radial RMS velocities (Bogey & Bailly, 2005b, 2006b; Bodony
& Lele, 2008)).

The overall sound pressure levels (OASPL in dB) along the line
r/r0 = 15 for the three disturbance amplitudes are shown in Fig. 3.32.
Again we compare it to the data presented in the work of Bogey & Bailly
(2006a) which is shifted in amplitude to match the level of case Med at
z/r0 = 0 (the shift is −4.7 dB). The overall axial distribution of the
OASPL is in very good agreement with the reference LES up to a down-
stream location of z/r0 = 17 from where on the data completely sepa-
rate: Further downstream, Bogey & Bailly observe approximately 2 dB
higher sound pressure levels compared to the eigenmode excited LES
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results. The three investigated cases group nicely. Only downstream of
z/r0 = 21, we observe a drop of the SPL which is larger for increased
disturbance levels. The overall sound pressure levels are reduced in the
downstream direction as a result of the induced tonal components. This
is again in agreement with the previously mentioned experimental work
(Zaman & Hussain, 1981) in which it was speculated that turbulence
suppression could result in a overall noise reduction and which has been
subsequently demonstrated by Hussain (1986).

This section is concluded by a comparison of the azimuthal (circum-
ferential) correlation properties of recorded pressure signals at two loca-
tions corresponding to angles of φ = 30◦ and φ = 90◦. The coefficient is
determined according to

Rpp(∆θ) =
〈p′(r, θ0, z, t)p′(r, θ0 + ∆θ, z, t)〉

〈p′2(r, θ0, z, t)〉1/2〈p′2(r, θ0 + ∆θ, z, t)〉1/2 , (3.3)

using 5000 samples in time. ∆θ denotes the angular separation between
the two-point measurements. Under shallow angles to the jet axis, i.e.
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Figure 3.16: Azimuthal correlation coefficient Rpp for pressure signals: (a) at
(r = 12r0; z = 30r0) and (b) at (r = 12r0; z = 12r0). Low, Med,

High, Bogey & Bailly (2006b) (taken at (a) (r = 12r0; z = 29r0)
and (b) (r = 15r0; z = 11r0)), far-field measurement N Maestrello (1976)
(φ = 30◦: Re = 5.2 · 104,Ma = 0.88 and φ = 90◦: Re = 4.4 · 104,Ma = 0.74).

at φ = 30◦ (Fig. 3.16(a)), the correlations of the pressure fluctuations
deviate from the reference data even for a very small differences in az-
imuthal angle ∆θ. The experiments conducted by Maestrello (1976) are
found in very good agreement with the LES results by Bogey & Bailly
(2006b). The eigenmodes-based forcing seems to result in azimuthally
less correlated pressure at shallow angles. The correlations of cases Med
and High decrease even further to Rpp(180◦) ≈ 0.20, values that are
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clearly below the reference data. Only for the weakly excited flow (case
Low), we find a comparable distribution for small separation angles ∆θ,
but also lower correlations (by approximately 50%) at ∆θ = 180◦. The
correlation in this sector is enhanced by the dominant emergence of the
mode n = 1 during the early stage of the transition (see one-dimensional
turbulence spectra, Fig. 3.9, for case Low compared to cases Med and
High). Overall, the results for φ = 30◦ suggest a systematic lack of
axisymmetric scales.

Figure 3.16(b) shows the correlation coefficient for the polar an-
gles φ = 90◦. There, the correlations are virtually indistinguishable.
With increasing angle ∆θ, the signals quickly loose correlation and for
∆ > 45◦ they are almost uncorrelated, which is in agreement with the
LES results by Bogey & Bailly(2006b) and with the far-field measure-
ments by Maestrello(1976) (performed at a slightly lower Mach number
of Ma = 0.74). For exactly opposite azimuthal positions of the micro-
phones, the experiments show a small rebound of correlation whereas
the numerical results remain almost uncorrelated. The eigenmode-based
inflow forcing strongly breaks symmetrical dominance in the acoustic
near-field. This effect is mostly detectable in the downstream direction
and seems to be related to the redistribution of modal energy between
odd modes n = 1, 3 within a relatively short streamwise distance to the
even mode n = 2. Note that the even wavenumber n = 2 (double helix,
point symmetric with respect to the downstream axis) cannot contribute
to the (varicose) correlation level at ∆θ = 180◦.

3.2.4 Relevant noise generation mechanism: Link between in-
duced vortex pairing and tonal near-field character

In the last part of this section the previously established links between
the flow and characteristics of the noise received in the near-field are
given. The pressure spectra at small angles show dominant frequencies
below St ≈ 0.4 which is in good agreement with data from the litera-
ture. We link this frequency band to the formation of large dominant
structures and their subsequent interaction taking place in the early
streamwise development of the initially laminar shear layers. The re-
sulting interaction, which is in the form of random vortex pairings and
tearings, contributes significantly to the noise emission characteristics.
The most significant difference between case Low on the one hand and
cases Med and High on the other hand are structures with wavenum-
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ber n = 1. These structures that are dominant in the one-dimensional
turbulent kinetic energy spectra (see Fig. 3.9) and also in the velocity
spectra along the nozzle lip line (see Fig. 3.13(b), appearance of fun-
damental frequency) are generated during the roll-up process upstream
of the collapse of the potential core. This formation of structures (note
that downstream, at z/r0 = 9 and 12, the velocity spectra of case Low
reach their maxima in the excited frequency range of St ≈ 0.43) causes
the overall dominance of the low-frequency band in the pressure spectra
of case Low. The azimuthal correlation coefficient (see Fig. 3.16(a)) sup-
ports this, since case Low has higher correlations for angles ∆θ = 180◦.
This low-azimuthal wavenumber dominance in the downstream direc-
tion is in agreement with experimental observations (Michalke & Fuchs,
1975; Maestrello, 1976; Juvé et al., 1979). The stable vortex pairings
contribute to the noise observed at φ = 60◦ and φ = 90◦. Additional
tonal contributions emerge which correspond exactly to harmonics de-
tected in the velocity spectra in the jet shear layer. Hence, the perceived
near-field noise is a combination of sound emitted by vortex pairings
combined with the noise associated with the turbulent mixing process
of the jet. The azimuthal auto-correlation coefficients are show that
the mixing noise dominates over the tonal contributions, as the pressure
is uncorrelated (see Fig. 3.16). Although the strength of the excited
vortex pairings and the resulting tonal components are directly linked
to the excitation levels we find the overall sound pressure levels in the
downstream direction to be slightly reduced by large amplitude forcing.

3.3 Influence of the modal composition of distur-
bances

In this section, the effect of changes of the modal composition of the exci-
tation is investigated. Therefore, we exclude lower azimuthal wavenum-
bers n = 1 through 3 from the excitation and disturb only the eigen-
modes n = 4 through 8 at the inflow. The forcing amplitude Atotal,LST

is varied again in the same range to assess its effect and look for similar-
ities between the two groups of excited modes. The presentation of the
results follows the pattern of the previous section.
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3.3.1 Instantaneous data

Figure 3.17 shows snapshots of the vorticity magnitude |ω| for the three
cases Low-m, Med-m and High-m in the developing region of the shear
layers. At first sight, the jet shear layer development seems similar for all
cases. However, the specific details of the transitional behavior are differ-
ent. With increasing disturbance amplitude the roll-up process is shifted
in the upstream direction. As the shear layers roll up (marked by ¬),
we observe large dominant structures for case Low-m. In contrast, when
enforcing larger disturbance amplitudes, as done in cases Med-m and
High-m, the developing shear layer roll up into smaller vortical struc-
tures. For low-amplitude forcing consecutive structures are spatially
separated and start to interact downstream of z/r0 ≈ 7, whereas the
structures merge and interact more quickly for larger disturbance am-
plitude. As these structures are convected downstream, the breakdown
process continues and smaller and smaller scales are generated leading
to several vortex cores marked by a high concentration of vorticity (see
encircled area ). Clearly, the spatial extent in which the breakdown
into smaller scales takes place is much shorter for case Low-m compared
to a more moderate and spatially elongated process for the higher ampli-
tude cases. As before, the gray box in each graph (®) shows the extent
of the transitional region to be looked at in more detail in Fig. 3.18.

The flow animations of these cases also help to identify vortex pair-
ings of the large-scale structures. Compared to a tonally excited jet flow
or mixing layer these pairings are less pronounced and occur only oc-
casionally. The occurrence is disguised by the random roll-up process
which introduces a variation of the spatial location as well as a jitter
of the scales. To some extent, this randomness is reduced by increasing
the forcing amplitude, as we can see from the ordering of the vortices:
they are ordered in a helical manner at opposite sides of the shear layer
for case Low-m, whereas the mechanism for case High-m seems to be
dominated by an axisymmetric component.

As in the previous section vortical structures in the transition region
of the three jets are visualized using the λ2 vortex identification crite-
rion in Fig. 3.18 (isosurfaces of λ2 = −1 are shown in a side view). One
finds again the shifted transition process. For case Low-m, large two-
dimensional structures dominate the roll-up, whereas three-dimensional
and streamwise elongated small vortex filaments or vortex tubes initiate
the breakdown process for higher disturbance levels. As the differences
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Figure 3.17: Visualization of vortical structures by |ω| in the r − z plane at
θ = 0 for cases (a) Low-m, (b) Med-m and (c) High-m. The gray contour levels
from light to dark are within 0 < |ω| < 13. ¬ dominant structure during roll-
up of shear layer;  interaction of large-scale structures; ® gray frame is the
zoomed region of Fig. 3.18.



3.3 Influence of the modal composition of disturbances 77

(a)

(b)

(c)

Figure 3.18: Visualization of vortical structures by isosurfaces λ2 = −1 in the
region −3 < r/r0 < 3 and 4 < z/r0 < 10 for cases (a) Low-m, (b) Med-m and
(c) High-m in a side view. The dimensions of the shown graph corresponds to
the gray frame in Fig. 3.17. The isosurface is (color) coded by the local Mach
number 0 < Ma < 1.4 from dark gray (blue) to light gray (red) .
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(A)

(B)

(C)

(a) (b) (c)

Figure 3.19: Visualization of vortical structures by isosurfaces of λ2 = −1 in
the region −1.725 < r/r0 < 1.725 and 4 < z/r0 < 7.5. (a) Low-m, (b) Med-m
and (c) High-m in a (A) side view, (B) front view and (C) three-dimensional
front-side view. The isosurface is (color) coded by the local Mach number
0 < Ma < 1.4 from dark gray (blue) to light gray (red) .

among the three cases are more pronounced compared to the first type of
modal excitation we here provide additional graphs in which the quality
of the isosurface visualizations is enhanced by spectrally interpolating the
data onto Nθ = 300. The isosurfaces λ2 = −1 in Fig. 3.19 show the same
data, however, the λ2 criterion is determined on a finer azimuthal mesh.
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The differences in spatial extent of the structures become more evident,
as can be seen in the side view given in row (A). For case Low-m, large
azimuthally correlated structures dominate the roll-up whereas three-
dimensional and streamwise-elongated small vortex filaments or vortex
tubes initiate the breakdown process for higher disturbance levels. The
front views in row (B) show that the hairpin vortices emerging in the ra-
dial direction have significantly smaller azimuthal spacing but increased
radial extent for larger forcing amplitude. In the three-dimensional view
presented in row (C) the strong azimuthal coherence and the interaction
of the structures for case Low-m can be seen, whereas cases Med-m and
High-m show significantly distorted toroidal structures which disintegrate
into small structures. In summary, the transitional development is ini-
tiated at larger distances from the inflow and is more rapid when using
the low excitation level. Thereby, larger, clearly separated structures are
generated in the shear layer. However, the position of interacting struc-
tures itself is localized with increasing forcing amplitude and occurs in
a more axisymmetric fashion. To support these observations quantita-
tively, the one-dimensional azimuthal turbulent kinetic energy spectra
will be investigated in the following section.

In summary, the transitional behavior is initiated at larger distances
from the inflow and is more rapid when using the low excitation level.
Thereby, larger, clearly separated structures develop in the shear layer.
However, the roll-up and downstream positions of subsequent vortex in-
teractions is localized with increase in forcing amplitude and occurs in
a more axisymmetric fashion. To quantitatively support these observa-
tions, the one-dimensional azimuthal turbulent kinetic energy spectra in
the transitional region will be investigated in the following section.

Since the differences in the visualizations of the instantaneous near-
field pressure data are minute for the cases with the modified modal
composition, we only present case Med-m in Fig. 3.20. Very similar to
the previously addressed cases, we observe that the sound waves seem
to be emitted slightly further upstream of the position where the instan-
taneous shear layers merge. As pointed out before, the quality of the
chosen combination of nonreflecting boundary conditions supplemented
by sponge-layers is demonstrated by the waves that leave the computa-
tional domain without causing any artificial reflections.
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Figure 3.20: Visualization of vortical structures by contours of |ω| in the near
field r/r0 < 5 (gray contour levels from light to dark within 0 < |ω| < 13) and
corresponding pressure fluctuations in the acoustic near field r/r0 > 5 (gray
contour levels from dark to light within −5 · 10−4 < p′ < 5 · 10−4) for case
Med-m: (a) in the r−z plane at θ = 0 and (b) in the r−θ plane at z/r0 = 12.
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Figure 3.21: Visualization of mean flow streamlines for case Med-m. Lines
denote 〈w〉 = 0.95Uj, 〈w〉 = 0.5Uj and 〈w〉 = 0.05Uj.

3.3.2 Mean flow and turbulence results

For the modified collection of excited instabilities, we investigate again
the influence of the forcing amplitude on the jet mean flow and the tur-
bulence. The entrainment of surrounding fluid can be seen in Fig. 3.21
where the mean flow is visualized. There are no noticeable differences
among the streamline patterns of the three different excitation levels.
The length of the potential core zc is zc/r0 ≈ 12.17. The dot-dashed line
corresponds to the mean flow value 〈w〉 = 0.95Uj , whereas the dashed
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line denotes 〈w〉 = 0.05Uj and exhibits a rather linear spreading of the
jet downstream of around five jet diameters. The solid line marks again
50% of the jet exit velocity and demonstrates the slow decay of axial mo-
mentum. Compared to case Med, we notice a slightly less pronounced
entrainment for case Med-m: in the first case, one could see streamlines
directed upstream at the end of the domain. The potential core lengths
zc vary slightly with forcing amplitude and are listed in Tab. 3.5. For
an increasing forcing amplitude, we find again reduced potential core
lengths, as expected. As before, other data characterizing the jet de-
velopment can be found in the same table (the growth rate of the jet
half-width, the virtual origin and the growth rate of the vorticity thick-
ness).

Table 3.5: Potential core lengths zc/r0, growth rates of the jet half-widths
d(r1/2/r0)/dz (determined by linear fits in the range 15 < z/r0 < 30), virtual
origins z0/r0 and growth rates of the vorticity thicknesses d(δω/r0)/dz (deter-
mined by linear fits in the range 6 < z/r0 < 10) for case Low-m, Med-m and
High-m.

Case zc/r0 d(r1/2/r0)/dz z0/r0 d(δω/r0)/dz
Low-m 12.63 0.062 −5.23 0.249
Med-m 12.17 0.056 −8.00 0.251
High-m 11.99 0.053 −9.78 0.246

The streamwise development of the mean axial velocity at the cen-
terline wc and the jet half-width r1/2 are shown in Fig. 3.22. As said
before, we expect the differences along the jet centerline to remains
small upstream of the potential core collapse since the forcing excites
Kelvin-Helmholtz type instabilities. With increased forcing amplitude,
the centerline velocity starts to decay slightly further upstream, while
the decay itself remains almost unaffected. The results now compare
favorably with the experimental reference data by Lau et al. (1979) and
Arakeri et al. (2003) as well as with numerical data by Bogey & Bailly
(2005b). Note that in this section the LES data of Bogey & Bailly is
shifted in streamwise direction by z0/r0 = 2 to match the different core
lengths. The experimental data (denoted by symbols) is shifted as fol-
lows: that of Arakeri and coworkers by z0/r0 = −5, that of Lau et al.
by z0/r0 = −4. The data form two groups: the numerical results exhibit
a delayed but in itself a slightly more abrupt onset of velocity decay.
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Figure 3.22: (a) Mean axial velocity along the jet centerline wc and (b) jet
half-width r1/2: Low-m, Med-m, High-m, Bogey & Bailly
(2005b), ◦ Lau et al. (1979), Arakeri et al. (2003). , , denote the
linear fit to the half-width development for case Low-m, Med-m and High-m.

In the experiments of Lau et al., a faster decay of the mean centerline
velocity is observed leading to the lowest mean flow velocities in the in-
vestigated domain. Without the axial shift the experimental data show
a delayed collapse of the potential core compared to the numerical data.
This delayed but more prompt onset of decay for the computational
results might again be related to the differences in initial momentum
thicknesses and in oncoming disturbance levels and has been similarly
reported in other investigations (Bodony & Lele, 2004; Bogey & Bailly,
2005b; Bodony & Lele, 2008). This disturbance-level effect, although
very small, is best observed for case Low-m, where the delayed onset
combined with an enhanced decay eventually causes the distribution to
cut across the medium-amplitude case.

As before, the jet half-widths (Fig. 3.22(b)) do not vary significantly.
Again, the jet spreading sets in around z/r0 ≈ 5, but it is not before
the end of the potential core that it is significantly increased and the jet
widens linearly in the streamwise direction. As explained in the previous
section, we determine the growth rates of the jet half-width by a linear
fit in the range 15 < z/r0 < 30 (Tab. 3.5). The cases with the modified
modal excitation have growth rates from d(r1/2/r0)/dz ≈ 0.052 . . . 0.062
and thus are significantly reduced compared to the excitation that trig-
gers all unstable modes. Please recall that similar values are reported by
Bogey & Bailly (2006a), who, when doubling the streamwise extent of
computational domain observe an increase towards asymptotic values of
experiments carried out in the self-similar region (see also section 3.2.2).

The RMS of the axial and radial velocity along the jet centerline
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Figure 3.23: RMS of (a) axial velocity fluctuations 〈w′′2c 〉1/2 and (b) radial
velocity fluctuations 〈u′′2c 〉1/2 along the jet centerline: Low-m, Med-m,

High-m, Bogey & Bailly (2005b), ◦ Lau et al. (1979), Arakeri
et al. (2003).

are shown in Fig. 3.23. As for the three previously investigated cases,
the axial profiles of the RMS are similar. In particular, cases Med-m
and High-m are almost indistinguishable. The axial velocity fluctuations
(Fig. 3.23(a)) saturate close to the inflow at levels of 〈w′′2c 〉1/2/Uj ≈ 0.01.
In the transition region the values rise significantly until they reach their
maxima around z/r0 = 15 . . . 17. With increasing forcing amplitude,
the streamwise development is shifted slightly upstream and the cor-
responding peaks also occur at shorter distances from the inflow. The
agreement between cases Med-m and High-m with the recent experiments
of Arakeri et al. (2003) is very good with respect to the peak values and
the streamwise evolution. Both simulations reach RMS peak values of
〈w′′2c 〉1/2/Uj = 0.124. The development of case Low-m is slightly delayed
and reaches a peak value of 〈w′′2c 〉1/2/Uj = 0.133 which is in good agree-
ment with observations by Bogey & Bailly (2005b). They report a peak
value of 0.131, however, they find a slightly faster decay of intensities
with streamwise distance. For completeness we repeat that Lau (1981)
pointed out that the over-prediction of the RMS of their data (Lau et al.,
1979) is attributed to the analysis procedure (see also section 3.2.2).

In Fig. 3.23(b) the radial velocity RMS fluctuations are shown
along with the reference LES. For all forcing amplitudes very simi-
lar profiles are found. Again, case Low-m reaches highest peak values
〈u′′2〉1/2/Uj = 0.120 and its evolution up to the peak location is in very
good agreement with the results by Bogey & Bailly. In the streamwise
direction we observe a less pronounced decay of all RMS distributions
compared to their results. Note again that the simulations use fun-
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Figure 3.24: One-dimensional turbulence kinetic energy of (a) varicose mode
n = 0 in linear scales and (b) first helical mode n = 1 in logarithmic scales
determined along the nozzle lip line at streamwise positions z/r0 = i · 3 (i =
0, . . . , 5) normalized by the kinetic energy of case Med-m at z = 0: E(n =
0, z = 0) = 3.73 · 102U2

j . ◦ Low-m, Med-m, • High-m.

damentally different numerical codes, and more importantly, different
inflow-forcing methods. From this, one can clearly deduce that the em-
ployed collection of instabilities employed in the forcing has a similar
effect on the jet development along the centerline as, for example, the
ring-vortex method by Bogey & Bailly (2005b).

In the following, the effect of changes in forcing amplitude on the
early shear layer development is investigated for this second type of
modal composition. Again we analyze the one-dimensional azimuthal
turbulent kinetic energy spectra (computed according to equation (3.1)),
however, due to the differences in the instantaneous vortical structures
for the three forcing amplitudes, the TKE of the axisymmetric mode
and the first helical mode are determined at five downstream positions
along the nozzle lip line (r = r0) and are shown in Figs. 3.24(a) and (b).
The energy is normalized by the energy of case Med-m at the jet inflow
plane z = 0 contained in mode n = 0. As could be seen in the instan-
taneous snapshots, the vortical structures caused by instability waves
alter the flow significantly at z/r0 ≈ 6. At this location, enhanced TKE
levels are observed and the alignment for the three cases follows their ini-
tial forcing amplitudes. The modal energy has grown by approximately
16%, 28% and 40% for cases Low-m, Med-m and High-m, respectively.
At z/r0 = 9, we find that the roles are inverted: case Low-m exhibits
the largest amount of energy, which also corresponds to the global max-
imum for the analyzed positions and all excitation amplitudes. Com-
pared to the inflow level, mode n = 0 of case Low-m has a 60% TKE
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increase. Further downstream, the differences between the three cases
are reduced. However, even at z/r0 = 15 the low-amplitude excitation
results in higher energy in mode n = 0 than the higher amplitude cases.

The helical mode n = 1, which seems to dominate the instantaneous
roll-up process for case Low-m, is analyzed in Fig. 3.24(b). Its down-
stream evolution is characterized by very small initial amplitudes. A
similar inversion of the alignment for the three amplitudes is observed
slightly closer to the inflow region compared to n = 0. Case Low-m
has, for instance, a TKE increase of more than four orders of magnitude
within a short streamwise distance of three nozzle diameters and exceeds
the two other cases. Further downstream, this difference in mode n = 1
for the three cases becomes gradually smaller and the results are almost
indistinguishable downstream of z/r0 = 12.

We now turn to the downstream development of the higher azimuthal
wavenumbers, focusing on the excited modes n = 4, . . . , 8. Figure 3.25)
shows five equidistant downstream locations along the nozzle lip line.
At the inflow, we see the effect of the introduced disturbances, i.e. the
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Figure 3.25: One-dimensional turbulence energy spectra E in θ-direction along
the nozzle lip line at streamwise positions z/r0 = i ·3 (i = 0, . . . , 4 from bottom
to top): Low-m, Med-m, High-m. The groups of spectra are
shifted by a factor of 10 for clarity.

TKE in azimuthal wavenumbers n = 4 through 8 is higher, at least by
an order of magnitude compared to the unexcited modes. Also, the ef-
fect of the amplitude at the inflow is reflected by the different energy
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levels of the three cases. Further downstream, the energy increases in
all modes, i.e. the initially undisturbed modes also rise. In particu-
lar, n = 4 outweighs the other excited modes. The other forced modes
exhibit less TKE increase and undisturbed modes, e.g. n = 1, reach
comparable values. At the third streamwise position z/r0 = 6, case
Low-m exhibits the previously noticed sudden rise of n = 1 which sub-
stantiates the previously made observation of helical structures during
its transition process. As pointed out before, this rise of mode one is
accompanied by a downstream-delayed rise of TKE in the all-dominant
axisymmetric mode. Significantly enhanced TKE also occurs in the even
mode n = 4 for all cases and the differences in initial amplitude further
diminish. Cases Med-m and High-m are not only characterized by n = 4,
but also by higher harmonics thereof. In particular, a pronounced rise in
the azimuthal wavenumber n = 8 can be observed which seems to allow
for further interactions of a weakly developed higher-harmonic n = 12.
In contrast, case Low-m with its prominent increase of mode n = 1, ex-
hibits only small changes in the higher wavenumbers n = 9 and 12 and,
more importantly, no distinct peak at n = 8. A redistribution of TKE
between the dominant modes might be the reason for the reduction in
dominance of n = 4 together with the rise of n = 8, or the onset of sec-
ondary instabilities and nonlinear interactions of modes as appreciable
disturbance level are attained at this downstream location. Following
Hussain (1986), this interaction could be related to a breakdown process
of structures termed ‘cut-and-connect’, which describes the connection
of two adjoining vortices. The occurrence of vortex heads in circumfer-
ential direction visualized by the λ2 representation in Fig. 3.19 for cases
Med-m and High-m compares favorably with the sketch of an idealized
breakdown process (see Hussain, 1986, figure 14, p. 339). Further down-
stream, the amplitude of the asymmetric mode for case Low-m decays
and n = 4 is found to contain most energy at z/r0 = 9 for all cases. At
the last investigated axial position, we observe a broad-banded energy
distribution and for wavenumbers n > 16 a drop-off of about two orders
of magnitude.

In the following, we turn to the development along the nozzle lip line.
Recall that the amplitude effects are expected to be most pronounced
along this line due to the nature of the triggered eigenmodes. The axial
and radial velocity fluctuations versus downstream coordinate are given
in Fig. 3.26. Consistent with the expectations the axial RMS velocities
greatly vary and again exhibit the dual-peak distribution described in



3.3 Influence of the modal composition of disturbances 87

(a)

 0

 0.1

 0.2

 0  3  6  9  12

z/r0

〈w
′′2

〉1/
2
/U

j

(b)

 0

 0.1

 0.2

 0  3  6  9  12

z/r0

〈u
′′2

〉1/
2
/U

j

Figure 3.26: RMS of (a) axial velocity fluctuations 〈w′′2〉1/2 and (b) radial ve-
locity fluctuations 〈u′′2〉1/2 along the nozzle lip line: Low-m, Med-m,

High-m, Bogey & Bailly (2005b).

detail in section 3.2.2. Even for a small disturbance amplitude, such as
1.5% in case Low-m, the axial distribution of 〈w′′2〉1/2/Uj starts to rise
at the inflow plane and reaches a local maximum three nozzle diameters
downstream, before attaining the global maximum at z/r0 ≈ 8, i.e. up-
stream of the end of the potential core. As before, increasing the forcing
amplitude shifts the transition process upstream and amplifies the dual-
peak structure for which the global maximum now occurs at the first
streamwise position. This dual-peak distribution is most likely a result
of the localization of vortex pairings (Zaman & Hussain, 1980) at this
particular axial position. This assumption is further supported by the
following arguments: As could be observed in various quantities so far,
an increased forcing amplitude shifts the development of the shear layer
upstream but also significantly reduces the streamwise jitter of the shear-
layer roll-up. As the computation of the mean quantities also involves an
azimuthal average, the dual peaks are more pronounced for cases Med-m
and High-m compared to case Low-m. Azimuthal averaging over a helical
alignment tends to smear out gradients, whereas an axisymmetric orien-
tation due to the localization tends to amplify the dual-peak structure.
The overall streamwise evolution of simulation Low-m is closest to results
by Bogey & Bailly (2005b), however, because of the differences in the
inflow forcing procedure their result does not exhibit a second peak re-
lated to the localized vortex pairings. Note again that similar variations
of the centerline longitudinal fluctuation intensity can, for example, be
found in the experimental work of Zaman & Hussain (1980) where pro-
files exhibit strong dual-peak distributions (see, e.g. their figures 3(a) or
27, p. 455 and 483; for further details see also section 3.2.2).



88 LES results for flow and acoustic field

In contrast to the axial velocity, the development of the radial RMS
fluctuations remains almost unaffected by the changes of the inflow forc-
ing. This is also in agreement with experimental results (Zaman &
Hussain, 1980) which document that radial RMS fluctuations of a jet
with controlled vortex pairing exhibit less variation compared to the ax-
ial component. Again, a reduction of amplitude seems to slow down the
streamwise evolution. Best agreement with the results by Bogey & Bailly
is found again for simulation Low-m. For completeness, we point out,
however, that the axial profiles for the radial velocity RMS are higher
than observed experimentally (overestimated by ∼ 40%, see Bogey &
Bailly (2005b)), which is also related to the artificially increased initial
momentum thickness addressed before.

Following the pattern from the previous section, the effect of the forc-
ing on the development of the vorticity thickness is now investigated.
Figure 3.27 shows the axial development of the vorticity thickness (as
determined by equation (3.2)) for the three cases. The initially laminar
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Figure 3.27: Streamwise development of vorticity thickness δω: Low-m,
Med-m, High-m, Bogey & Bailly (2005b).

shear layer thicken further upstream when increasing the disturbance
amplitude. In contrast to the cases which excite all unstable helical
wavenumbers, the streamwise growth is almost linear once the spreading
has started. The growth rates of the vorticity thickness given in Table 3.5
have been determined by a linear fit to the data within 6 < z/r0 < 10.
The predicted values of d(δω/r0)/dz ≈ 0.25 are higher than those ob-
served experimentally (see again the summary of experimental values
reported by Gutmark & Ho (1983) which are in the range from 0.112
to 0.218), but are again in agreement with the study by Bogey & Bailly
(2005b). Also note that case High-m has a stepwise increase of the vor-
ticity thickness with a discontinuity around the location where the local
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minimum in the dual-peak distribution of the lip line RMS is observed.
The radial Reynolds normal stress and the shear stress are presented

in Fig. 3.28. We focus again on the profiles at equidistant streamwise
locations z/r0 = 3, 6 and 9 which are shifted by the marked amount.
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Figure 3.28: Streamwise development of radial Reynolds stress profiles at
streamwise positions z/r0 = i · 3 (i = 1, . . . , 3 from left to right): (a)
〈ρw′′w′′〉/ρjU2

j , (b) 〈ρu′′w′′〉/ρjU2
j : Low-m, Med-m, High-m.

Far upstream of the closing of the potential core the values rise rapidly,
saturate within a distance of three radii, reach their maxima in the range
z/r0 ≈ 5−6 and decay in the streamwise direction. Corresponding to the
previously noted occurrence of streamwise-elongated vortical structures
further upstream for larger disturbance amplitudes (see section 3.3.1),
the peaks are higher at corresponding streamwise locations for higher
forcing amplitudes. Downstream of z/r0 = 6, which corresponds to the
second profile in Fig. 3.28, the orientation changes and we now find case
Low-m, whose streamwise development is delayed the strongest, to reach
the largest Reynolds stress values. This very rapid development for case
Low-m compared to the higher amplitude cases confirms the impression
from the snapshots of instantaneous processes (see Fig. 3.17 – Fig. 3.19)
that transition occurs in a spatially more confined area and is more
rapid. Also, as noted before, the process can be linked to the dominance
of azimuthal wavenumbers n = 0 and n = 1 in this streamwise region
as, for example, found in the one-dimensional turbulence kinetic energy
spectra presented in Figs. 3.24 and 3.25.

Finally, the axial velocity spectra along the jet centerline and the
nozzle lip line in the transition region are investigated. As pointed out
before, the interval length during the post-processing is chosen such that
the nondimensional frequency St = 0.04 is resolved (see section 2.9 for
further details). The axial velocity spectra at five streamwise positions
z/r0 = i · 3 with i = 0, . . . , 4 are shown in Fig. 3.29. The spectra at the
inflow plane are as expected, i.e. the peak values along the jet centerline
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Figure 3.29: Axial velocity spectra at streamwise positions z/r0 = i · 3
(i = 0, . . . , 4 from bottom to top) along: (a) jet centerline, (b) jet lip line:

Low-m, Med-m, High-m. The groups of spectra are shifted by a
factor of 10 for clarity. SH denotes the occurrence of subharmonics. F denotes
the advent of the fundamental frequency for case Low-m.

and the nozzle lip differ by two orders of magnitude (Figs. 3.29(a) vs.
(b)). Highest peaks occur along the lip line where the magnitude of the
axial velocity eigenfunction reaches its maximum and the alignment of
the spectral amplitude follows the enforced disturbance amplitudes. As
for the first type of modal excitation, the flow is found to be most recep-
tive to disturbances in a Strouhal number range around St ≈ 0.4, which
corresponds to the column mode frequency (Zaman & Hussain, 1980)
(also referred to as preferred mode (Crow & Champagne, 1971; Huerre
& Monkewitz, 1990)). Overall, we observe a persistent and dominant
existence of structures with this Strouhal number that are present along
the centerline and the lip line. In combination with the TKE spectra
shown in Figs. 3.24 and 3.25, we note that the eigenmode-based forcing
does excite modes n = 4 through n = 8 at the inflow, however, further
downstream this interaction results in most-amplified structures with
wavenumbers n = 0 and n = 4 at the frequency of St = 0.43. This
Strouhal number corresponds to the excitation frequency of the mode
n = 8. A second dominant frequency, St ≈ 0.88, emerges at z/r0 = 3
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along the lip line presented in Fig. 3.29(b). There, the three cases order
according to their excitation amplitude. This frequency persists further
downstream and at z/r0 = 6 it appears at the jet centerline at z/r0 = 6,
9. It is important to note that at the centerline this peak at St ≈ 0.88
is observed only for cases Med-m and High-m and is not contained in the
velocity signals of case Low-m.

At z/r0 = 6 a pronounced subharmonic at St ≈ 0.2 emerges along the
lip line, most obviously for the weakly disturbed flow. This subharmonic
is marked by the symbol ‘SH’ in Fig. 3.29(b). Its appearance is smeared
out because the occurrence of the pairings with the fundamental fre-
quency St ≈ 0.43 is random as pointed out before. For case Med-m, this
subharmonic is less pronounced and decays much faster in the stream-
wise direction and in case High-m it appears only weakly. This supports
the previously made observation that low-amplitude forcing results in a
random but detectable vortex pairing and a persistent dominance of low
frequencies (St < 0.5) downstream of z/r0 = 6, whereas for case High-m
a broader range of scales interact.

At z/r0 = 6 case Low-m shows a distinct rise of a frequency around
St ≈ 0.7 which is denoted by the symbol ‘F’ in Fig. 3.29(b). This
peak corresponds to the fundamental frequency of the asymmetric least
stable mode n = 1 that plays a dominant role in the transition process
although it is initially unexcited (instantaneous data as well as TKE
spectra, cf. section 3.3.1). This frequency is in very good agreement
with the linear stability theory (Michalke, 1984; Michalke & Hermann,
1982), according to which the azimuthal wavenumbers n = 0, 1 reach
their highest growth rates at the fundamental frequency of St = 0.67
and St = 0.68, respectively. Furthermore, with increasing distance from
the orifice the ratio of the initial momentum thickness θ0 to jet radius r0

increases and, hence, linear theory predicts a dominance of the helical
wavenumber n = 1 over the axisymmetric mode n = 0.

In order to clarify the roles of the axisymmetric and the first heli-
cal shear-layer instability modes during the onset of transition of case
Low-m, the downstream development of the azimuthal Fourier amplitude
ŵ(n) is determined for two frequencies. The investigated fundamental
frequencies of the modes n = 0 and n = 1 correspond to the Strouhal
numbers Stn=0

0 = 0.676 and Stn=1
0 = 0.681. According to LST the

growth rates are −αn=0
i r0 = 1.60 and −αn=1

i r0 = 1.55, respectively.
As the frequency difference between these two modes is very small the
corresponding changes in growth rates are less than two decimal places.
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|ŵ
(n

)|〉
}

r

z/r0

10-2

10-3

10-4

10-5

10-6

 0  3  6  9  12  15

10-3

10-5

8642

m
a
x
{〈

|ŵ
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Figure 3.30: Downstream development of Fourier modal amplitude ŵ(n) of
azimuthal wavenumbers n = 0 and n = 1 for (a) Stn=0

0 = 0.676
and (b) Stn=1

0 = 0.681. Inlay shows zoomed axial region 2 < z/r0 < 8 together
with straight lines denoting growth rates according to linear stability theory.

Figure 3.30 shows the downstream development of the modal amplitudes
beyond the point of the closing of the potential core. For both frequen-
cies, the modal amplitudes of the helical mode are significantly larger
than the amplitude of the axisymmetric mode, in particular around the
relevant streamwise position z/r0 ≈ 6. Thereby it is substantiated that
the occurrence of the fundamental frequency can be linked to the helical
azimuthal wavenumber n = 1. As a side remark, we note that a very
good agreement of the downstream development with the prediction of
LST is observed for both modes shortly downstream of the inflow region,
as can be seen in the inlays of Figs. 3.30(a) and (b).

3.3.3 Acoustic results

The directly computed near-field information of the three LES (employ-
ing the modified modal excitation at the inflow) are now analyzed in the
same way as for the first type of excitation presented in section 3.2.3.

In Fig. 3.31, the pressure spectra received under the same observer
angles as before are shown. Now, the end of the potential core of case
Med-m is selected as the origin of a spherical coordinate system (R, θ, φ)
which affects the exact coordinates reported in Table 3.6 only minutely
(cylindrical and polar coordinates for the three observer locations). Note
that the spectra are evaluated at exactly the same fixed computational
grid points as before. For details of the post-processing employed in the
determination of the spectra, we refer to section 2.9 and repeat here only
that neither an additional filtering of the LES time signals nor a spectral
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Table 3.6: Observer locations of spectra measurements and polar distances R
and angles φexact for cases Low-m, Med-m and High-m.

φ r/r0 z/r0 R/r0 φexact

Low Med High Low Med High
30◦ 9 27 17.0 17.3 17.5 32.1◦ 31.3◦ 30.9◦

60◦ 15 21 17.2 17.4 17.5 60.8◦ 59.5◦ 59.0◦

90◦ 18 12 18.0 18.0 18.0 92.0◦ 90.5◦ 90.0◦

smoothing is applied. Also note that the difference in polar distances R
between the reference data and the current results has been accounted
for by assuming a 1/R-decay (see Tab. 3.4, page 69).

As for the first type of modal excitation, three measurement points,
with similar polar distances R and polar angles φ ≈ 30◦, 60◦ and 90◦ are
analyzed in Figs 3.31(a)-(c). A close-up view of the range 0.6 < St < 1.2
can be found in graphs (d)-(f). The recent experimental data by Bogey
et al. (2007b) (high-subsonic jet at a Reynolds number of Re = 7.8×105)
is again shown by solid square symbols. The dotted lines indicate the
data from the work of Bogey & Bailly (2005b).

The spectral shapes in Fig. 3.31 exhibit a strong dependence on the
observation angle φ, whereas the effect of the difference in disturbance
amplitude is noticeable most dominantly under intermediate observer
angles and for low frequencies. The spectra in Fig. 3.31 exhibit a strong
dependence on the observation angle φ, whereas the effect of the distur-
bance amplitude is noticed most dominantly at low frequencies and at
intermediate observer angles. For small polar angles (Figs. 3.31(a) and
(d)), the spectra are found in very good agreement, i.e. the spectral
shape and also the peak of 125 dB is closely reproduced by our results
which reach peak values between 124 dB and 127 dB depending on forc-
ing amplitude. Our LES spectra are dominated by a frequency band
below St = 0.4, which is the peak frequency for all cases. However, the
experimentally determined peak of the spectra is around St ≈ 0.2 and
the reference LES peak appears at a slightly higher Strouhal number,
St ≈ 0.3. The spectrum for case Low-m exhibits more contributions at
lower frequencies compared to the cases with higher excitation ampli-
tudes. This enhanced low frequency band is related to the randomly
occurring vortex pairings with helical wavenumber n = 1 (see prominent
rise of helical mode n = 1 in Figs. 3.24, 3.25 and 3.30) whose fundamen-
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Figure 3.31: Near-field pressure spectra in dB at (a) φ = 30◦, (b) φ = 60◦ and
(c) φ = 90◦: Low-m, Med-m, High-m; Bogey et al. (2007b)
at (a) r = 15r0, z = 30r0, (b) r = 15r0, z = 20r0, (c) r = 15r0, z = 10r0;

Bogey & Bailly (2005b) at (a) r = 12r0, z = 29r0, (c) r = 15r0,
z = 11r0. Graphs (d), (e) and (f) show close-up of Strouhal 0.6 < St < 1.2.

tal frequency is halved to St ≈ 0.35 during the pairing. This kind of
vortex pairings is known to efficiently contribute to noise emissions, in
particular, in the downstream directions (Colonius et al., 1997; Mitchell
et al., 1999; Bogey et al., 2000). Overall, case Low-m compares favor-
able with the reference LES. With increasing disturbance amplitude we
observe less low-frequency noise, however, a tonal component around
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St ≈ 0.9 starts to appear which is most noticeable in the close-up pro-
vided in Fig. 3.31(d). The strength of the tonal peak is tied to less noise
in the high-frequency range and, thus, the SPL drop-off sets in at lower
frequencies for larger excitation levels.

At an increased observation angle, the overall dominance of the low
frequencies is significantly reduced. In Figs. 3.31(b) and (e), at φ ≈
60◦, we find generally lower sound pressure levels for frequencies below
St = 0.4, but again the induced large two-dimensional structures for case
Low-m result in the highest amplitudes among the three investigated
cases. For higher frequencies the experimental data are reproduced only
qualitatively up to St ≈ 2. In the band 0.5 < St < 2 a large over
prediction by approximately 5 dB is observed, whereas experiments yield
120 dB. Again, case Med-m and High-m exhibit a tonal component which
is also the global maximum and, as before, its strength is positively
correlated to the excitation level. The SPL peak of case High-m is very
strong, 7 dB larger than the experimentally determined broad-banded
spectrum, and still 3 dB larger than case Low-m. It is interesting to note
that these peaks around St = 0.9 are outside of the range of initially
excited frequencies but can equally be observed in the axial velocity
spectra at the jet centerline and at the nozzle lip line (see Fig. 3.29).

In agreement with experimental as well as LES data, we find that at
right angles to the jet axis the emitted noise is characterized by a broad-
band spectrum with no dominant frequencies, as can be seen for φ = 90◦

in Figs. 3.31(c) and (f). Again, we find significantly over-predicted sound
pressure levels, i.e. the current simulations have a peak of 120 dB which
is 6 dB higher compared to the experiments (Bogey et al., 2007b). For
case Low-m a similar spectrum as in the reference LES is found but, as
before, with a 2 dB enhancement in the low frequencies St < 0.3. All
numerical results predict a slight shift of the peaks to higher Strouhal
numbers, St ≈ 0.8 compared to St ≈ 0.6 in the experiments. As pointed
out before, the significantly overestimated pressure levels (in particular
in the sideline direction) might be related naturally to the increased
radial RMS fluctuations observed before (Bogey & Bailly, 2005b, 2006b;
Bodony & Lele, 2008).

Overall, the main trends of the spectra provided by the simulations
are in accordance with the reference data with a shift from a dominant
low-frequency band at small angles from the jet axis to a broad-band
character in the sideline direction. However, the differences in the dis-
turbance amplitude, and the associated changes in the transition process,
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generate a tonal peak around a Strouhal number of St ≈ 0.9 which is out-
side the band of excited frequencies. Nonlinear interaction of excited and
initially unexcited eigenmodes, in connection with the preferred mode,
might lead to the dominance of this frequency. This aspect, together
with possible explanations, will be addressed in the subsequent section.

The overall sound pressure level (OASPL in dB) level along the line
r/r0 = 15 for the three configurations are shown in Fig. 3.32. Again,
we compared to the reference data by Bogey & Bailly (2006a) which is
shifted to match the levels at z/r0 = 0. The axial distribution with a
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Figure 3.32: Axial distribution of overall sound pressure levels (OASPL in
dB) along r/r0 = 15: Low-m, Med-m, High-m, Bogey &
Bailly (2006a).

peak around z/r0 = 20 is in good agreement. Again, case Low-m is closet
to the results from the literature. Downstream of z/r0 = 21, we find a
drop of the SPL for the cases with increased disturbance levels. The
overall sound pressure level reductions in the downstream direction are
a result of the induced tonal components that were found in the pressure
spectra. As given in more detail above, this is in agreement with the
experimental work of Zaman & Hussain (1981) (for more details with
respect to this noise reduction see section 3.2.3, or the work of Hussain
(1986)).

The acoustic section is concluded by comparing the azimuthal corre-
lation of the pressure given by equation (3.3) is investigated at the same
locations as before (which correspond to φ = 30◦ and φ = 90◦). Under
small angles to the jet axis, i.e. at φ = 30◦ (Fig. 3.33(a)), the pressure
fluctuations are correlated similarly for all cases up to ∆θ < 90◦. The
agreement with the computation by Bogey & Bailly and the experiments
by Maestrello is very good for angular separations ∆θ < 60◦. For larger
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Figure 3.33: Azimuthal correlation coefficient Rpp for pressure signals: (a) at
(r = 12r0; z = 30r0) and (b) at (r = 12r0; z = 12r0). Low-m, Med-m,

High-m, Bogey & Bailly (2006b) (taken at (a) (r = 12r0; z = 29r0)
and (b) (r = 15r0; z = 11r0)), far-field measurement N Maestrello (1976)
(φ = 30◦: Re = 5.2 · 104,Ma = 0.88 and φ = 90◦: Re = 4.4 · 104,Ma = 0.74).

azimuthal angles ∆θ, the correlations of cases Med-m and High-m de-
crease further to Rpp(180◦) ≈ 0.2 and Rpp(180◦) ≈ 0.25, values that are
below the reference data (the correlations improved compared to the first
type of modal excitation, see section 3.2.3). The correlation in this sector
is enhanced when reducing the forcing amplitude in case Low-m leading
to correlation levels of 0.3. Overall, the results for φ = 30◦ suggest a
systematic lack of axisymmetric scales in the signal and that the natu-
rally dominant helical mode occurring during the early stages of transi-
tion in case Low-m (see one-dimensional turbulence spectra, Fig. 3.25)
contributes significantly to the correlation levels. We also note that
the order of the correlation coefficients for the investigated cases corre-
sponds to the amount of turbulent kinetic energy contained in the low
azimuthal wavenumbers n = 1 and n = 2, showing the effectiveness of
these structures to contribute to the pressure disturbances in the down-
stream direction. With respect to the lowered azimuthal coherence we
note that Juvé and coworkers (Juvé et al., 1979; Juvé & Sunyach, 1981)
report correlation values for unexcited jets that are in very good agree-
ment with ours (Rpp(180◦) = 0.25). They also observe an increase to
values in the range of the reference data when exciting the flow tonally
at St = 0.68 (jet at Re = 1.8 ·105, Ma = 0.4, Rpp(180◦) ≈ 0.54). The re-
ported data is decomposed into its frequency components and, therefore,
not shown for comparison.

The correlations of the pressure fluctuations in the azimuthal direc-
tion for polar angles of φ = 90◦ are shown in Fig. 3.33(b). At this
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location the correlation is similar for all cases. For angles ∆θ > 45◦

the signals are almost uncorrelated which is in agreement with the
LES results by Bogey & Bailly(2006b) and with the far-field measure-
ments by Maestrello(1976). The azimuthal correlations suggest that the
eigenmode-based disturbances (which artificially excludes low azimuthal
wavenumbers) tend to break the symmetry with respect to the down-
stream axis, especially at small angles to the jet axis. Note that the
dominance of helical wavenumber n = 4 exhibits a axisymmetric align-
ment of structures during the transition process but does not contribute
to the correlation level at ∆θ = 180◦. The reason for this loss of az-
imuthal coherence might be related to transition process which is charac-
terized by the eigenmode interaction and the exclusion of low azimuthal
wavenumbers from the inflow forcing while exactly these wavenumbers
are believed to constitute major sound sources in the downstream direc-
tion (Michalke & Fuchs, 1975; Maestrello, 1976; Juvé et al., 1979; Bogey
& Bailly, 2006b).

Following Juvé et al. (1979) we employ an azimuthal Fourier expan-
sion to obtain a more detailed picture of the different contributions of
wavenumbers n to the spatial correlation coefficient Rpp in the form of

Rpp(∆θ) =
Nθ/2∑
n=0

an cos(n ·∆θ) , (3.4)

where the sum of the coefficients an is normalized to unity. The Fourier
components an of mode n with a contribution to the acoustic energy
of more than one percent are reported in Tab. 3.7 for both observation
angles φ.
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Table 3.7: Contributions to the acoustic field in downstream direction (φ = 30◦) and sideline direction (φ = 90◦) for
case Low-m, Med-m and High-m.

φ Case n = 0 n = 1 n = 2 n = 3 n = 4 n = 5 n = 6 n = 7
30◦ Low-m 0.56 0.31 0.08 0.03

Med-m 0.52 0.35 0.08 0.03
High-m 0.53 0.33 0.09 0.03

90◦ Low-m 0.14 0.34 0.18 0.14 0.09 0.05 0.02 0.01
Med-m 0.15 0.32 0.19 0.16 0.09 0.05 0.02 0.01
High-m 0.14 0.30 0.20 0.17 0.09 0.05 0.02 0.01
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As can be deduced from the presented correlations in the downstream
direction, there is a reduced dominance of the axisymmetric mode n = 0,
but a significantly enhanced contribution from the helical wavenumber
n = 1 compared to the data reported by Bogey & Bailly (2006b) (n = 0,
1: an = 0.67, 0.23). Again, we note that similar values to ours were
measured by Juvé & Sunyach (1981) and it is shown there that excitation
increases the azimuthal correlation levels and accordingly the Fourier
component n = 0 at small angles. In the sideline direction, the Fourier
coefficients are similarly reported in the literature (again, see the work of
Bogey & Bailly: n = 0, . . . , 3, : an = 0.15, 0.29, 0.23 and 0.19). However,
the eigenmode forcing and the increased forcing amplitude seem to result
in a transfer of energy from modes n = 2, 3, which are less energetic, to
a broader range of wavenumbers n > 5.

3.3.4 Relevant noise generation mechanism: Link between
“cut-and-connect” process and unexcited tonal compo-
nent supported by weakly nonlinear theory

In the remaining part, we try to establish possible connections between
the directly computed near-field pressure spectra and the flow field. One
point is the dominance of a low-frequency band at small angles from the
jet axis. Also, an attempt is made to clarify the origin of the tonal con-
tribution in the near-field spectra observed for medium and high forcing
amplitudes, in particular, under intermediate observer angles.

The pressure spectra under φ = 30◦ show a pronounced frequency
band below St ≈ 0.4. We link this dominance to the formation of struc-
tures and subsequent interactions in the form of vortex pairings. The
difference between case Low-m on the one hand and cases Med-m and
High-m on the other are structures with azimuthal wavenumber n = 1.
This wavenumber has a pronounced TKE increase (see Fig. 3.25) and
evidence for its dominance is found in the velocity spectra along the
nozzle lip line (see Fig. 3.29(b), appearance of fundamental frequency)
as well as the analysis of the Fourier mode (see Fig. 3.30) at a location
where the shear layers roll up. In addition, vortex pairings are indicated
by distinct subharmonics that appear in the velocity spectra. The for-
mation of structures causes the overall dominance in the low-frequency
range of the pressure spectra for case Low-m. This dominance translates
into the azimuthal correlation coefficient (see Fig. 3.33(a)) where case
Low-m has higher correlations for angles ∆θ = 180◦. This dominance of
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low-azimuthal wavenumber in downstream direction is, as said before,
in agreement with experimental observations (Michalke & Fuchs, 1975;
Maestrello, 1976; Juvé et al., 1979).

In the remaining part, a connection between the flow transition and
the tonal component observed in the near-field spectra is established.
The signal analysis is repeated with an enlarged subinterval length in
order to determine the precise frequency of the tonal component to be
St ≈ 0.876. As pointed out before, the strength of the tone increases with
disturbance amplitude and at the same time reduces the pressure levels
over all other frequencies. This effect of turbulence and noise amplifica-
tion as well as suppression is similar to effects investigated in a series of
experiments by Zaman (1985) and coworkers (Zaman & Hussain, 1981,
1980). The tonal component could result from the breakdown process of
structures that develop during the roll-up of the initially laminar shear-
layers. The TKE analysis shows that the azimuthal wavenumber n = 4
has direct relevance to the roll-up and as this process proceeds its az-
imuthal higher harmonic n = 8 absorbs significant amounts of turbulent
kinetic energy. This can indicate a nonlinear interaction of structures de-
scribed by the ‘cut-and-connect’ process. The roles of interacting modes
can further be clarified by analyzing their Fourier mode amplitudes ŵ(n)
at particular frequencies. We investigate the tone frequency St = 0.876
and its harmonics. Because of the dominance of St ≈ 0.43 in the axial ve-
locity spectra we refer to this frequency as the fundamental Stp0 = 0.438,
and thus its first harmonic frequency, Stp1 = 2 · Stp0, corresponds to the
peak in the near-field spectra. For clarity, we restrict the presentation
to these two relevant frequencies and the modes that prevail during the
transition process, i.e. modes n = 0, 1, 4 and 8. Regardless of the excita-
tion amplitude, shown in rows (a)-(c) of Fig. 3.34 for cases Low-m, Med-m
and High-m, similar downstream developments of the modal amplitudes
ŵ(n) are observed for the fundamental frequency Stp0 shown in column
(A) and the first harmonic frequency Stp1 presented in column (B). Over-
all, the largest Fourier amplitudes occur at the fundamental frequency
Stp0 = 0.438 for the wavenumber n = 4, as can be seen in Figs. 3.34(A).
Mode n = 4 surmounts the complete transitional region with a peak
around z/r0 ≈ 5, followed by a slow downstream decay that lasts up to
the potential-core collapse. Consistent with our previous observations,
the peak location shifts slightly upstream with increasing forcing ampli-
tude. The varicose mode n = 0 shortly rises close to the inflow and then
saturates at a Fourier amplitude which is lower by one order of magni-
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Figure 3.34: Downstream development of Fourier mode amplitude ŵ(n) of az-
imuthal wavenumbers n = 0, n = 1, n = 4, n = 8: (a)
Low-m, (b) Med-m and (c) High-m for (A) fundamental frequency Stp0 and (B)
peak frequency corresponding to higher harmonic Stp1. Growth rates denoted by
straight lines according to (A) linear theory and (B) weakly nonlinear theory.

tude. As shown in Figs. 3.34(B), the analysis for Stp1 = 0.876 indicates
that there are two relevant modes, n = 0 and n = 8, which shape the
breakdown process. Their modal amplitudes are lower compared to the
fundamental frequency and right from the inflow the axisymmetric mode
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plays a prominent role and rises almost linearly downstream of z/r0 ≈ 2.
Its importance is slightly reduced around z/r0 ≈ 6, as can be seen from
a small dip in ŵ which enlarges with amplitude. This location, where
n = 8 has reached appreciable amplitude levels, coincides with the po-
sition where the dominant mode n = 4 at Stp0 = 0.438 saturates. Thus,
mode n = 4 saturates and its azimuthal higher harmonic n = 8, together
with n = 0, rapidly rises at the first harmonic frequency. Exactly at the
same downstream location the Reynolds stresses, presented in Fig. 3.28,
saturate as well. Particularly for high forcing levels, the modal am-
plitude ŵ(n = 8) at Stp1 = 0.876 surpasses the axisymmetric mode at
z/r0 ≈ 5.5. Further downstream, the amplitude of n = 8 is quickly re-
duced and the axisymmetric mode reassumes its dominance. The other
azimuthal wavenumbers are found not to contribute to the overall pro-
cess in a significant manner and behave similarly as mode n = 1, i.e. at
the two presented frequencies all other modes rise in a region between
2 . z/r0 . 5 and then saturate at levels which are almost one order of
magnitude below the relevant modes.

The interaction conditions (Cohen & Wygnanski, 1987), according
to which waves are prone to subharmonic excitation when similar phase
speeds occur, are not satisfied as instability waves n = 4 and n = 8 have
drastically different phase speeds at St ≈ 0.43 (see Fig. 2.7). However,
weakly nonlinear theory, as successfully applied by Sandham & Salgado
(2008), can explain this mode interaction. The frequency of the preferred
mode seems to be St ≈ 0.43 in our case, because we force n = 8 at
exactly this frequency (n = ±8 are excited at St = 0.43). Therefore,
mode n = 4 that initially is excited at St = 0.63 also picks up this
particular frequency and grows. According to linear stability theory,
mode n = 4 has larger growth rates compared to its azimuthal harmonic
n = 8 which explains the dominance of n = 4 at Stp0 = 0.438. The
nonlinear interaction of two waves with wavenumber n = 4 and frequency
Stp1 = 0.438 generates azimuthal wavenumbers n = 0 and n = 8 at the
tone frequency Stp1. The growth rate of mode n = 4 according to LST
is −αn=4

i r0 = 0.889 and the nonlinearly excited modes n = 0 and n = 4
are found to grow at exactly twice this rate, i.e. −αir0 ≈ 1.778, which is
included in the graphs for comparison. From our analysis of the Fourier
modes we conclude that nonlinear interactions of wavenumbers n = 0, 4
and n = 8 support the ‘cut-and-connect’ process of toroidal structures.

The approach by Sandham & Salgado (2008), which showed that
driving an acoustic analogy with PSE-based mode-by-mode interactions
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can successfully model subsonic jet noise generation mechanisms, has
been adapted or simplified to our framework. Here, we apply the concept
of weakly nonlinear mode-by-mode interaction to a high Reynolds num-
ber jet using eigenmodes determined from linear stability theory. These
eigenmodes are determined assuming a parallel base flow and therefore
neither the downstream development of the jet nor the interaction of
the instabilities with the base flow are taken into account as done in the
cases of linear/nonlinear PSE (Sandham & Salgado, 2008; Cheung et al.,
2007). Nevertheless, the agreement between the growth rate determined
using mode-by-mode interactions and the nonlinear simulation is strik-
ing and could help explaining an important subsonic noise generation
mechanism observed in high Reynolds number jet flow. Further research
in this area is necessary, as in the current study this nonlinear theory is
employed only in order to clarify the origin of this tonal component in
the near-field pressure spectra of the jet. To gain further insight into the
particular transition mechanism and especially into the interaction of
eigenmodes in the early nonlinear stages, a more detailed investigation
of Fourier amplitudes in combination with PSE might be of interest.

3.4 Direct comparison of modal composition effects

In this section, we only briefly compare some quantities (mean flow and
near-field acoustics) for the two cases with different modal compositions.
In order to allow a quantitative comparison, we now collapse the data
along the jet centerline to account for differences in the potential core
lengths. For brevity as well as clarity, we restrict ourselves to cases Med
and Med-m.

3.4.1 Flow results

The streamwise development of the mean axial velocity at the centerline
wc and its RMS are shown in Fig. 3.35. Again, we the reference data by
Lau et al. (1979), Arakeri et al. (2003) and by Bogey & Bailly (2005b)
are included. As before, the LES data of Bogey & Bailly is shifted by
z0/r0 = 2. In contrast to the previous section, we use a different shift for
the experimental data, i.e. the data of Arakeri and coworkers is shifted
by z0/r0 = −3.1, that of Lau et al. by z0/r0 = −2.4. We find that the
exclusion of lower dominant azimuthal modes significantly enhances the
overall agreement with the experimental observations. From the point
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where the data is matched, we find the centerline velocity of case Med
to decay the strongest. This abrupt decay is related to the previously
described vortex pairing that is excited by the eigenmode forcing of
low azimuthal wavenumbers. Accordingly, the RMS intensities have a
delayed onset of growth. However, once appreciable values are attained
a very steep and abrupt increase is observed. As said before, the results
for case Med-m are found in very good agreement with the reference
data. Note that the experimental data has been shifted by z0/r0 = −5.1
(Arakeri et al. ) and by z0/r0 = −4.4 (Lau et al. ) to allow a better
comparison of the streamwise evolution.

The effects of the modal composition on the TKE is shown in Fig. 3.36
for both cases. We provide graphs for the streamwise positions z/r0 =
0, 3, 6 in Figure 3.36(a) and for the positions z/r0 = 9, 12 and 15 in
Fig. 3.36(b). At the inflow, we see that the integral disturbance energy of
the two cases is kept constant. Case Med which is excited over a broader
range of wavenumbers attains lower values of turbulent kinetic energy,
whereas case Med-m has increased levels over the excited modes n = 4
through n = 8. With increasing difference from the inflow plane, the
effect of the different eigenmode excitation persists: the triggering of case
Med results in a broad-banded distribution of energy of all wavenumbers
whereas case Med-m exhibits strong peaks in the dominant axisymmetric
mode n = 4.

Figure 3.37 shows the relation between the two different types of
modal compositions for the lip-line profile of the axial and radial RMS.
As described above, the eigenmode based forcing with appreciable am-
plitudes localizes the roll-up process of the shear layers and subsequent
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Figure 3.35: (a) Mean axial velocity wc and (b) RMS of axial velocity fluctua-
tions 〈w′′2〉1/2 along the jet centerline: Med, Med-m, Bogey
& Bailly (2005b), ◦ Lau et al. (1979), Arakeri et al. (2003).



106 LES results for flow and acoustic field

(a)

10-2

10-4

10-6

10-8

16841
n

E
(n

)/
U

2 j

(b)

102

100

16841
n

E
(n

)/
U

2 j
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the nozzle lip line at streamwise positions z/r0 = i · 3 (from bottom to top) (a)
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vortex pairings. Because of the strong vortex pairings that occur when
exciting also the low azimuthal wavenumbers, the dual-peak structure
emerges strongest for case Med, as can be seen in Fig. 3.37(a). The
exclusion of the modes results in this noticeable shift of the dominant
peak in the upstream direction combined with a pronounced smoothing
of the evolution. In addition, the low helical wavenumbers n = 1, 2, 3
also seem to enhance significantly the radial RMS shown in Fig. 3.37(b).
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Figure 3.37: RMS of axial velocity fluctuations 〈w′′2〉1/2 (a) and of radial
velocity fluctuations 〈u′′2〉1/2 along the nozzle lip line: Med, Med-m
and Bogey & Bailly (2005b).
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In the following, the effects on the turbulent stresses is addressed.
Again, the radial Reynolds normal stress and the shear stress are shown,
but in Fig. 3.38 only the two cases are plotted at the equidistant stream-
wise locations z/r0 = 3, 6 and 9. In this direct comparison between the
different modal compositions, we see the more abrupt transition when
exciting low azimuthal wavenumbers in case Med. In particular, the
Reynolds normal stress component 〈ρw′′w′′〉/ρjU2

j in Fig. 3.38(a) shows
that case Med increases significantly in magnitude between the first and
second streamwise position compared to case Med-m. From z/r0 = 6 on
downstream, this fast increase results in higher overall values compared
to case Med-m in both stress components. In addition, we note that the
radial profiles are much wider when exciting the wavenumber n = 1, 2, 3
as well.

For completeness, we show in Fig. 3.39 the velocity spectra (along the
jet centerline and the lip line) at the same five downstream positions as
in Figs. 3.13 and 3.29. As discussed in some detail in sections 3.2.2 and
3.3.2, the exclusion of azimuthal wavenumbers n = 1, 2, 3 from the inflow
forcing results in velocity spectra that prevent the emergence of higher
harmonics of the forcing frequency. This can be seen best in Fig. 3.39(b)
(second downstream position) where case Med has well defined higher
harmonics of St ≈ 0.5 and the spectra of case Med-m decays for fre-
quencies higher than St ≈ 0.5. With increasing downstream distance,
we see the different transitional behavior and its effect on the velocity
spectra: for case Med-m a tonal component around St ≈ 0.9 is gener-
ated. As explained above, this frequency seems to be tightly coupled to
the “cut-and-connect” process and the weakly nonlinear interaction of
eigenmodes in a streamwise region 6 < z/r0 < 9.

To shed more light on the differences in the early transition process of
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Figure 3.39: Axial velocity spectra at streamwise positions z/r0 = i · 3 (i =
0, . . . , 4 from bottom to top) along: (a) jet centerline, (b) jet lip line: Med
and Med-m. The spectra are shifted by a factor of 10 for clarity.

the two set-ups, the azimuthal correlation of the radial and axial veloc-
ity component are determined and shown in Fig. 3.40. The velocities of
case Med (Fig. 3.40(a) and (b)) are weakly correlated at the inflow. With
increasing downstream distance, the correlations increase for large angu-
lar separations ∆θ ≈ 180◦ corresponding to the azimuthal wavenumber
n = 1. But downstream of the third position, i.e. z/r0 > 6, the signals
are completely uncorrelated. The axial velocities exhibit less correlation
overall. Only at z/r0 a negative loop between 30◦ < ∆θ < 120◦ is found.

In contrast to this, we observe a wave-like pattern of azimuthal cor-
relation when the modal composition is changed (case Med-m). This
pattern corresponds to the mode n = 4 which is also dominant in the
TKE spectrum (see section 3.2.2). Both velocity components behave
similarly. In accordance with the rising kinetic energy, we also note that
the correlations for case Med-m even increase around z/r0 = 3. Further
downstream, the strong correlation is gradually lost and for z/r0 > 9 the
distributions show uncorrelated fluctuations for ∆θ = 30◦. At z/r0 = 12
(see Fig. 3.40(b)), the axial fluctuations of case Med-m are less corre-
lated than case Med with lower levels of Rww for ∆θ > 45◦. This is
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Figure 3.40: Azimuthal correlation coefficient at streamwise positions z/r0 =
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Ruu and (b) for axial velocity Rww along jet lip line r = r0. Med and

Med-m.

most likely related to smaller structures which are generated during the
breakdown when removing lower wavenumbers from the excitation and
which results in azimuthally less correlated signals.

To complete this section, we investigate briefly the azimuthal struc-
ture of the pressure in the immediate vicinity of the jet. In a radial
region from approximately r ≈ 6r0 to r ≈ 10r0, the pressure field is
most likely a superposition of the hydrodynamic pressure and the acous-
tic field (see section 2.9 for a separation criteria between hydrodynamic
effects and acoustic effects). Figure 3.41 shows the azimuthal correla-
tion coefficient for the pressure signals along two lines of constant radial
distance (Fig. 3.41(a) for r = r0 and in Fig. 3.41(b) for r = 9r0). In the
vicinity of the jet, the pressure distributions (Fig. 3.41(a)) show the di-
rect influence of the hydrodynamic field. In particular at the streamwise
position of z/r0 = 6 where in particular case Med exhibits strong vortex-
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Figure 3.41: Azimuthal correlation coefficient Rpp at streamwise positions
z/r0 = i · 3 (i = 0, . . . , 4 from bottom to top in each figure): (a) along jet
lip line r = r0, (b) along r/r0 = 9. Med and Med-m.

pairings we find a negative correlation for opposite measuring locations.
Approaching the closing of the potential core, the two different excita-
tions result in similar pressure distributions. However, case Med-m has
clearly enhanced correlation levels and a less pronounced drop-off with
increasing angular separation. The pressure distribution for the second
radial position (Fig. 3.41(b), corresponding to r/r0 = 9) shows only
minor differences in the azimuthal correlation. The modification of the
modal excitation strongly alters the transition process and the azimuthal
structure of the velocity and pressure fields. Compared to this, the effect
on the aerodynamically generated noise seems to be less pronounced in
the forward arc compared to the aft arc.

3.4.2 Acoustic results

This subsection compares the data in the acoustic near field for the two
different ranges of excited eigenmodes with the medium amplitude (cases
Med and Med-m). For completeness, we point out that the difference in
polar distances R between the reference data and the current results has
been accounted for in Fig. 3.42 (assuming a 1/R-decay; see Tab. 3.4,
page 69). Here, we focus only on the differences of the two cases. For
details regarding the physical effect, we refer to sections 3.2.3 and 3.3.3.
Overall, we find higher sound pressure levels for larger polar angles φ
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Figure 3.42: Near-field pressure spectra in dB at (a) φ = 30◦, (b) φ = 60◦

and (c) φ = 90◦: Med and Med-m; Bogey et al. (2007b) at
(a) r = 15r0, z = 30r0, (b) r = 15r0, z = 20r0, (c) r = 15r0, z = 10r0;

Bogey & Bailly (2005b) at (a) r = 12r0, z = 29r0, (c) r = 15r0,
z = 11r0. Graphs (d), (e) and (f) show close-up of Strouhal 0.4 < St < 1.2.

when disturbing low azimuthal wavenumbers. This could be expected
from the generally higher RMS values found, in particular, along the
nozzle lip line. For example, as shown in Fig. 3.37(b) case Med has RMS
values of the radial velocity fluctuations which are approximately 14%
higher than case Med-m due to its strong vortex pairing. These radial
velocity fluctuations seem to be directly connected to the sideline noise
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(Bogey & Bailly, 2005b).

The Fourier coefficients of the azimuthal auto-correlation coefficient
Rpp(∆θ) reported before (see section 3.3.3) shows the dominance of
low wavenumbers, in particular, in the downstream direction (see sec-
tion 3.3.3). The corresponding data of Tab. 3.7 is visualized in Fig. 3.43
along with the Fourier coefficients for the cases with the first type of ex-
citation (modes |n| = 1, . . . , 8). From these two graphs we find that the
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Figure 3.43: Fourier coefficients of correlation coefficient Rpp for pressure
signals: (a) at r = 12r0, z = 30r0 and (b) at r = 12r0, z = 12r0. Cross-
hatched Med, parallel hatching Med-m.

excitation of a larger number of eigenmodes results in a broader range
of wavenumbers that contribute to the acoustic field in the downstream
direction. The Fourier coefficients of the first ten modes are larger than
one percent for case Med, whereas only wavenumbers n < 4 have signif-
icant contributions for case Med-m. In the sideline direction, regardless
of the modal excitation, less Fourier coefficients are larger than one per-
cent. However, the magnitude of the coefficients is larger which further
supports the previous observation that noise in the sideline direction is
mostly connected with small turbulent scales, whereas large-scale struc-
tures seem to be most effective in radiating in downstream direction. As
mentioned before the data compares favorably with experimental mea-
surements for the unexcited jet studied by Juvé & Sunyach(1981).

From the findings presented in the two previous sections, we decide
to choose case Med-m as the baseline configuration. From this flow case,
we intend to round off the work by investigating SGS-model effects and
the influence of the azimuthal resolution on the results.
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3.5 Influence of the relaxation coefficient χ

In this section, we compare important quantities (mean flow and near-
field acoustics) obtained for three different values of the relaxation co-
efficient χ, as introduced in the context of the relaxation regularization
(see section 2.2). In the baseline configuration, the relaxation coefficient
is set equal to the upper bound of the dynamic determination procedure
(outlined for example in section III, of Stolz, Adams & Kleiser (2001b)).
A more detailed description of the dynamic determination of the relax-
ation coefficient is given by Stolz (2000). This dynamic determination
is based on the constraint that no kinetic energy should accumulate in
the wavenumber range ωc < ω < ωN (i.e. above the cutoff wavenumber
ωc of the filter and below the resolved Nyquist wavenumber ωN ) during
the time integration. In order to ensure stability of the time integration,
the upper bound is set to the inverse of the time step. In our case, this
results in a relaxation coefficient of χ = 50. Two cases with reduced
relaxation coefficients of χ = 42.5 and χ = 30 are investigated which
correspond to χ = 0.85/∆t and χ = 0.7/∆t, respectively.

3.5.1 Effect on the flow field

Figure 3.44 shows the streamwise development of the mean axial veloc-
ity at the centerline wc and its RMS for the three different values of the
relaxation coefficient χ. Note that the reference data is shifted as de-
scribed at the beginning of section 3.4.1. The downstream development
of the jet centerline velocity is almost unaffected by the changes of the
relaxation coefficient as the profiles in Fig. 3.44 nearly collapse. Only
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Figure 3.44: (a) Mean axial velocity wc and (b) RMS of axial velocity fluctu-
ations 〈w′′2〉1/2 along the jet centerline: L-χ, M-χ, Med-m and

Arakeri et al. (2003).
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downstream of z/r0 ≈ 18 they deviate slightly from the baseline config-
uration. Again, the results are in very good agreement with the exper-
imental reference data Arakeri et al. (2003). Case Med-m, the baseline
configuration with the largest value of χ decays the strongest, whereas
slightly higher axial velocities are observed with reduced values of the
relaxation coefficient. But clearly, these differences are minute. The
length of the potential core varies only little, i.e., with decreasing relax-
ation coefficient the length increases from z/r0 = 12.17, to z/r0 = 12.23
and z/r0 = 12.30, respectively. The axial RMS velocities show almost no
difference for the reduction to χ = 42.5 (case M-χ). Close to the inflow
case L-χ saturates at slightly lower values. The subsequent rise of RMS
intensities during transition is similar for all cases, only downstream of
the breakdown of the jet case L-χ has a reduced peak of 〈w′′2〉1/2 = 0.113
at z/r0 = 15.8. In addition, we note that for the strongly reduced relax-
ation coefficient the profiles are more spiky, in particular far downstream.
There, the mean flow convection is small and thus results converge only
slowly. For brevity the results for the RMS of the radial velocity along
the jet centerline are not shown here since its distribution is similar to
the axial velocity: Almost no differences are visible up to the closing of
the potential core for all cases. Further downstream case M-χ remains
almost indistinguishable from case Med-m, only for the large reduction
of 30% we find again slightly reduced values. Overall, the large changes
of χ seem not to have strong effects on the flow simulation, and therefore
can be considered to be rather independent of the choice of χ as long as
it stays within certain bounds.

Similar effects of the development can be observed along the nozzle
lip line when altering the relaxation coefficient χ. The RMS of the axial
and radial velocity versus downstream coordinate are given in Fig. 3.45.
Consistent with the previous observation of the lower saturation levels,
we find again reduced RMS intensities for both velocity components of
case L-χ. The delayed onset of transition reported by Bogey & Bailly
(2005b) might be related to the lower excitation level employed in their
study. As noted before, we find better agreement with their data for the
low amplitude case Low-m (see section 3.3.2 for details on the effect of the
disturbance amplitude in combination with the removal of low azimuthal
wavenumbers from the inflow forcing). Because of the strong correlation
between the fluctuations along the lip line and the observed noise the
reduced turbulent intensities might indicate also a reduced overall sound
pressure level for case L-χ.
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Figure 3.45: RMS of (a) axial velocity fluctuations 〈w′′2〉1/2 and (b) radial
velocity fluctuations 〈u′′2〉1/2 along the nozzle lip line: L-χ, M-χ,

Med-m and Bogey & Bailly (2005b).
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Figure 3.46: Streamwise development of (a) jet half-width r1/2 and (b) vorticity
thickness δω: L-χ, M-χ and Med-m. In (a) also Bogey
& Bailly (2005b) for comparison.

The jet half-width and thereby the jet’s spreading is one of the key
parameters investigated in the self-similar region. As noted before, the
computational domain does not cover large parts of it, however, conclu-
sion from the development of the jet half-width as well as the vorticity
thickness help in assessing the sensitivity of the flow development when
changing χ. The jet half-width in Fig. 3.46(a) shows that results scatter
only slightly in a short region. Case L-χ exhibits the smallest spreading,
whereas the baseline configuration spreads the most in a region down-
stream of z/r0 ≈ 18.

For the vorticity thickness shown in Fig. 3.46(b) we find an almost
perfect match of the data. For the investigated range of changes to
the relaxation coefficients the effect on the vorticity thickness shown in
Fig. 3.46(b) seems to be small – besides the attenuation of RMS velocities
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for significantly reduced relaxation coefficients.
The turbulent kinetic energy spectra (see equation (3.1)) allow a

detailed view on the effect of the relaxation coefficient on the different
azimuthal wavenumbers. Here, we provide graphs for the streamwise
positions z/r0 = 0, 3, 6 in Fig. 3.47(a) and for the positions z/r0 =
9, 12 and 15 in Fig. 3.47(b). At the inflow all excited modes contain
the same amount of disturbance energy. Only mild deviations can be
observed in the other, initially unexcited, wavenumbers. This picture
remains almost unchanged at the second downstream position z/r0 =
3. At the last position in Fig. 3.47(a), low azimuthal wavenumbers n
contain less energy when using large relaxation coefficients, however,
differences are minute in this double-logarithmic representation. Further
downstream (at z/r0 = 9, 12, 15 shown in Fig. 3.47(b)), the distributions
remain similar, only the upstream differences seem to alter transition
and thereby, to redistribute the energy differently between the azimuthal
wavenumbers.

In order to clarify the reason for the earlier saturation of RMS inten-
sities for case L-χ (see Figures 3.44, 3.45), low and high wavenumbers are
separated in the TKE representation of Fig. 3.48. As mentioned before,
we find indistinguishable TKE distributions in the excited wavenum-
ber range n = 4, . . . , 8 in Fig. 3.48(a). Only slightly higher levels are
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Figure 3.47: One-dimensional turbulence energy spectra E in θ-direction along
the nozzle lip line at streamwise positions z/r0 = i · 3 (from bottom to top) (a)
i = 0, 1, 2, (b) i = 3, 4, 5: L-χ, M-χ and Med-m. The groups of
spectra are shifted by a factor of 10 for clarity.
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observed for cases L-χ and M-χ compared to Med-m, however, their
alignment does not necessarily correspond to relaxation coefficient χ. In
contrast, higher wavenumbers exhibit a correlation between the relax-
ation coefficient χ and the TKE. As can be expected from the functional
form of the relaxation regularization, the lower the relaxation coefficient,
the less energy we drain from the system which leads to an TKE increase
at high wavenumbers. The energy sink models dissipating scales not re-
solved by the coarse LES grid, and its effect can be seen in Fig. 3.48(b).
For wavenumbers n > 17, the TKE aligns inversely to χ, i.e., the re-
laxation term acts as an energy sink on the high wavenumbers as in-
tended. As we artificially reduce the coefficient χ, less energy in the
high wavenumber range is dissipated which results in the higher energy
levels. These small but noticeable differences caused at the inflow lead
to different saturation levels upstream of z/r0 < 6. The downstream dif-
ferences, in particular between the baseline configuration (case Med-m)
and case L-χ , are thus linked to the sensitivity of the jet flow which has
been described in some detail in sections 1.2 and 2.5.3.

As said before, the observed changes are only very small taking into
account that χ is reduced by 15% and 30%, respectively. Therefore,
results in the flow field can be considered independent of the choice
of χ. A reliable estimate for χ is the upper bound of the dynamic
procedure (Stolz, Adams & Kleiser, 2001a,b).
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Figure 3.48: One-dimensional turbulence energy spectra E in θ-direction along
the nozzle lip line at streamwise positions z/r0 = 0 (a) n = 1, . . . , 16, (b)
n = 17, . . . , 24: L-χ, M-χ and Med-m.
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3.5.2 Effect on the acoustic field

Within this subsection we briefly compare the results within the acoustic
near field for the cases L-χ, M-χ and Med-m. As could be seen in the
previous section, a 15% reduction of χ does not have any noticeable effect
on the flow, however, reducing it by 30% alters the transition process
such that the RMS along the jet centerline and along the lip line are
slightly reduced.

Following the previous sequence, the acoustic pressure spectra in the
near field are now compared. The same observation locations as before
are presented in Fig. 3.49(a)–(f) (the difference in polar distances R be-
tween the reference data and the current results has been accounted for
by assuming a 1/R-decay, see Tab. 3.4, page 69). For all observer loca-
tions we find almost perfect agreement among the three different cases.
Only within the frequency range 0.5 < St < 1.2 differences can be ob-
served - most noticeable around the peak location of St = 0.9 (which
is connected to the previously described “cut-and-connect” process, see
section 3.3.4 for details). The differences in magnitude are well below
1 dB. The sampling times are not sufficient to adequately resolve low-
frequency noise. This prevents any additional conclusions to be drawn
(e.g., consistency of low-frequency data in the acoustic near field). Nev-
ertheless, the effect of large changes of the relaxation coefficient χ on the
noise is only small.

To conclude this sensitivity study, the overall sound pressure level for
the three relaxation coefficients are plotted in Fig. 3.50. As could be ex-
pected from the distribution of the radial velocity fluctuations we find the
lowest OASPL for case L-χ. The medium-valued case M-χ with χ = 42.5,
is virtually identical with the baseline configuration. All axial distribu-
tions are similar in shape, only the magnitude for case L-χ is approxi-
mately 2 dB lower. In Fig. 3.50(b) we also plot the difference in overall
sound pressure level compared to the reference case. Around z/r0 = 6,
the smallest difference between case Med-m and L-χ of 1.5 dB occurs.
With increasing distance the difference increases to roughly 2.2 dB as
the pressure levels for L-χ further reduce.

3.5.3 Summary on the effects of the relaxation coefficient

From the previous comparison we find the simulation results of case
Med-m to remain SGS-model independent in the sense that a reduction
of the relaxation coefficient does not affect the results tremendously.
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For an intentionally strong suppression of the energy drain in the inac-
curately resolved wavenumber range above ωc, a slight modification of
the transition process is observed. This also has an effect on the directly
computed acoustic field. For a reduction of 15% we find virtually no
difference of the results and, hence, the independence of the results from
the relaxation coefficient χ is concluded.
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Figure 3.49: Near-field pressure spectra in dB at (a) φ = 30◦, (b) φ = 60◦

and (c) φ = 90◦: L-χ, M-χ and Med-m. Bogey et al. (2007b)
at (a) r = 15r0, z = 30r0, (b) r = 15r0, z = 20r0, (c) r = 15r0, z = 10r0.

Bogey & Bailly (2005b) at (a) r = 12r0, z = 29r0, (c) r = 15r0,
z = 11r0.Graphs (d), (e) and (f) show close-up of Strouhal 0.6 < St < 1.2.
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Figure 3.50: Axial distribution of (a) overall sound pressure levels and (b) the
differences to the baseline configuration Med-m (OASPL in dB) along r/r0 =
15: L-χ, M-χ, Med-m, (a) only Bogey & Bailly (2006a).

3.6 Effect of the deconvolution operator

The focus of this section is on the effect of the deconvolution operator on
the simulation results. As in the previous section we restrict ourselves
to some flow quantities and data in the acoustic near-field. The results
are compared to the previously established baseline configuration, case
Med-m. For case ADM we employ the same relaxation coefficient χ as
in case Med-m. The only difference is now that during the evaluation of
the nonlinear convective terms we do employ approximately deconvolved
quantities. For details we refer to section 2.2 and in particular to the set
of governing equations that are given by equations (2.17a) – (2.17c).

3.6.1 Effect on the flow field

The impact of the deconvolved nonlinear term on the mean axial ve-
locity along the jet centerline is found to be small, as can be seen in
Fig. 3.58(a). The results coincide almost completely with the baseline
configuration Med-m. Only downstream of z/r0 ≈ 12 and within a length
of roughly seven jet diameters the centerline distributions slightly devi-
ate from each other. In this region we find that case ADM exhibits a
slightly less pronounced decay compared to case Med-m. In both fig-
ures we provide again the experimental reference data (as described in
more detail in section 3.4.1). The corresponding axial RMS velocities
are given in Fig. 3.51(b). As observed previously, the decelerated de-
cay of wc comes along with reduced RMS intensities, i.e., we observe
that downstream of the location where the potential core closes (ADM:
zc = 12.23r0; compared to Med-m: zc = 12.17r0) the RMS of case



3.6 Effect of the deconvolution operator 121

(a)

 0.4

 0.6

 0.8

 1

 0  10  20  30

z/r0

w
c
/U

j

(b)

 0

 0.05

 0.1

 0.15

 0  10  20  30

z/r0

〈w
′′ c
2
〉1/

2
/U

j

Figure 3.51: (a) Mean axial velocity wc and (b) RMS of axial velocity fluctua-
tions 〈w′′2〉1/2 along the jet centerline: ADM, Med-m and Arakeri
et al. (2003).

ADM saturates at a lower peak levels and then stays almost constant in
downstream direction. The same does also hold for the radial velocity
fluctuations along the jet centerline which are not shown here. Thus,
the mean quantities seem to be only weakly affected by the approximate
deconvolution model.

This first impression is further substantiated by the results for the
jet half-width and the vorticity thickness shown in Fig. 3.52. Similar
to the mean-velocity decay, only minute differences between the half-
widths for the two cases are noticed (Fig. 3.52(a)). Hence, their growth
rates d(r1/2/r0)/dz equal 0.056 (determined again by the linear fit in
the range 15 < z/r0 < 30). Figure 3.52(b) shows the almost identical
distributions of the vorticity thickness for the two cases. Up to the
streamwise position of z/r0 ≈ 8 the distributions are identical, further
downstream minute differences can be observed.
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Figure 3.52: Streamwise development of (a) jet half-width r1/2 and (b) vorticity
thickness δω: ADM and Med-m.
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For completeness, the axial and radial RMS along the jet lip line
are shown in Fig. 3.53(a) and (b). In general, we observe a similar
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Figure 3.53: RMS of (a) axial velocity fluctuations 〈w′′2〉1/2 and (b) ra-
dial velocity fluctuations 〈u′′2〉1/2 along the nozzle lip line: ADM and

Med-m.

trend as for the RMS along the jet centerline only more pronounced:
The application of the deconvolution operator on the velocity field and
successive calculation of the convective term results in reduced RMS
intensities. The radial velocity component 〈u′′2〉1/2 is stronger affected
and clearly reduced compared to case Med-m. Qualitatively, the axial
evolution seems to be almost unaffected by the deconvolution approach.

The TKE spectra along the nozzle lip line from the inflow plane to
z/r0 = 6, shown in in Fig. 3.54(a), and from z/r0 = 9 to z/r0 = 15 in
Fig. 3.54(b). In the early transitional region, i.e. between z/r0 = 0 and
z/r0 = 6, we observe no significant difference in the energy-containing
low-order modes. Nevertheless, deconvolution (which is also applied to
the imposed inflow sponge) has a more dissipative character compared
to the baseline configuration Med-m at the inflow. Wavenumbers n =
4, . . . , 8 of case ADM have a slightly reduced turbulent kinetic energy. In
this particular wavenumber range the differences are diminishing in the
downstream direction, however, we clearly see the dissipative character
of the deconvolution approach reflected by reduced energy in the high
wavenumber range n > 9. In the region of strongest vortex interaction,
i.e. between the streamwise locations z/r0 = 6 and z/r0 = 9 (top spectra
in Fig. 3.54(a) and bottom spectra in Fig. 3.54(b)), differences between
the cases ADM and Med-m start to appear also in the dominant large-
scale wavenumber range n < 8. As noted before, this is a combined
effect of SGS-model differences on the one hand and also of the jet’s
sensitivity to inflow modifications on the other.
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The axial velocity spectra along the jet centerline and the lip line
are given in Figures 3.55(a) and (b), respectively. For the physical inter-
pretation of the findings we refer to sections 3.3.2 and 3.3.4 and at this
point limit the discussion to the effects of ADM. For both radial locations
we observe no striking difference between the relaxation term regulariza-
tion used for case Med-m and the deconvolution employed for case ADM.
The results, in particular for the dominant Strouhal numbers, are virtu-
ally identical. We observe no frequency shift due to ADM, but slightly
smoother spectral shapes. The less spiky spectra in the velocity field
are related to the previously noticed increase in dissipation when using
ADM. For example this more dissipative character resulted in reduced
turbulent kinetic energy levels for high wavenumbers which are associ-
ated with high frequency contributions to the spectra (see Fig. 3.54).

For completeness, we compare the Reynolds stresses for case ADM
to the baseline configuration in Fig. 3.56. Here, we employ a different
representation allowing for a more complete picture of the development
within the whole LES domain. In Fig. 3.56 the radial profiles for the
normal stress components and the shear stress component 〈ρu′′w′′〉 are
given (at ten equidistant streamwise locations ranging from the inflow at
z/r0 = 0 up to z/r0 = 27; from left bottom to right top in each subplot).
The radial extent of the profiles is from r/r0 ≈ 0 to r/r0 = 6. Overall,
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Figure 3.54: One-dimensional turbulence energy spectra E in θ-direction along
the nozzle lip line at streamwise positions z/r0 = i · 3 (from bottom to top) (a)
i = 0, 1, 2, (b) i = 3, 4, 5: ADM and Med-m. The spectra are shifted
by a factor of 10 for clarity.
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ŵ
∗ )

1
/
2
/U

2 j
r 0

Figure 3.55: Axial velocity spectra at streamwise positions z/r0 = i · 3 (i =
0, . . . , 4 from bottom to top) along: (a) jet centerline, (b) jet lip line: ADM
and Med-m. The spectra are shifted by a factor of 10 for clarity.

we find similarly shaped profiles for all measurement locations. But
consistent with the reduced turbulent fluctuations, reduced turbulent
stresses for case ADM compared to Med-m are found. This difference
is most noticeable in the region where strong vortex pairing and vortex
interaction has been observed, i.e., around the streamwise location of
z/r0 = 9.

In summary, the ADM approach shows to be effective in the high
wavenumber range only and not to alter energy-containing scales that
are accurately represented on the employed grid. Compared to case
Med we observe a slightly more dissipative character and thereby notice
decreased levels of turbulent intensities.

3.6.2 Effect on the acoustic field

As could be seen before, ADM has a rather small influence on the flow
results, and hence, large differences in the acoustic near field are not to be
expected. Figure 3.57 shows again the previously investigated observer
locations that correspond to angles of 30◦, 60◦ and 90◦ measured from
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Figure 3.56: Spatial development of Reynolds stress profiles at streamwise po-
sitions z/r0 = i · 3 with i = 0, . . . , 9 (from left bottom to right top): ADM
and Med-m. (a) 〈ρu′′u′′〉 (b) 〈ρv′′v′′〉 (c) 〈ρw′′w′′〉 (d) 〈ρu′′w′′〉.

the downstream jet axis. Note again that the reference data has been
shifted in amplitude assuming a 1/R-decay of the SPL (see Tab. 3.4,
page 69). The differences between case Med-m and case ADM are very
small. The lines almost collapse and only within the peak region of the
spectra (St ≈ 0.9) we observe smallest deviations. The sound pressure
levels for case ADM are reduced for broad frequency bands compared to
the baseline configuration except around the peaks shown in Fig. 3.57(d)
and (f), which are amplified. We also notice that the spectra are slightly
smoother when employing the deconvolution procedure. The smoother
spectra are most likely a result of the slightly increased dissipation in
the high wavenumber regime (observed in the previous section), which
tends to damp high frequency noise. However, one has to mention that
the overall sampling time and thereby the spectral resolution should be
increased to obtain a more detailed picture of the effects.

Finally, the integral sound pressure contributions of all frequencies is
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Figure 3.57: Near-field pressure spectra in dB at (a) φ = 30◦, (b) φ = 60◦

and (c) φ = 90◦: ADM, and Med-m. Bogey et al. (2007b) at
(a) r = 15r0, z = 30r0, (b) r = 15r0, z = 20r0, (c) r = 15r0, z = 10r0.

Bogey & Bailly (2005b) at (a) r = 12r0, z = 29r0, (c) r = 15r0,
z = 11r0. Graphs (d), (e) and (f) show close-up of Strouhal 0.6 < St < 1.2.

again determined and shown along a line of constant radius r/r0 = 15 in
Fig. 3.58(a). Figure 3.58(b) shows the actual difference to the baseline
configuration. The overall sound pressure levels are nearly identical up to
the streamwise location z/r0 ≈ 15. Further downstream, we find slightly
lower levels for case ADM which are linked to the reduced turbulent
intensities (RMS velocities and velocity spectra). The differences are
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Figure 3.58: Axial distribution of (a) overall sound pressure levels and (b) the
differences to the baseline configuration Med-m (OASPL in dB) along r/r0 =
15: ADM and Med-m.

minute, as shown in Fig. 3.58(b), and remains smaller than 0.25 dB at
all times.

3.6.3 Summary on the effects of the deconvolution approach

The effect of ADM is restricted to the high-wavenumber regime and thus,
no pronounced influence of the choice of the SGS model on the predic-
tion results could be found (ADM-RT vs. ADM). Because the observed
differences of the flow quantities in the transition region are minute the
acoustic results are almost identical to the baseline configuration. For
the current setup, predictions that use the relaxation regularization only
show to provide accurate results at lower computational cost.

3.7 Resolution effects on the simulation results

As mentioned before, this relatively high Reynolds numbers come into
reach only when using high-order schemes, optimized time-integration
methods and effective subgrid-scale models. These simulations are still
very costly and therefore grid-independence studies are rarely found
in the literature. Rare exceptions, but again only for relatively low
Reynolds numbers, are often simulations for which results from direct
numerical simulations are available (such as the temporal mixing layer
by Vreman et al. (1996), the turbulent channel flow investigation of Gull-
brand & Chow (2003) or the case of decaying incompressible isotropic
turbulence by Meyers et al. (2003)) such that informative conclusions
can be drawn.

In contrast to the exceptions cited above, the results for the current
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LES study are more complicated to compare because of the unavoidable
lack of reference DNS data. In addition, one has to be aware that grid
refinement may have different effects depending on the functional form
of the filter definition in the governing equations. One has to distinguish
between changes in resolution that only affect the discretization error or
those which also affect the filter width ∆ (introduced as length-scale pa-
rameter in the context of scale separation at the beginning of chapter 2).
If the filter width is affected by the changes in resolution the effect of the
discretization error of the numerical schemes and the SGS model con-
tributions (and associated errors) are combined. For example, when the
filter width ∆ is kept constant and the computational resolution is suc-
cessively refined we would expect convergence toward a solution of the
filtered governing equations, i.e., effects of the subgrid-scale model can
be assessed. In the limit of vanishing grid spacing, the solution converges
to the grid-independent filtered solution of the governing equations and
only the SGS errors remain. In contrast to this, when refining the grid
and simultaneously shifting the filter cutoff to higher wavenumbers, one
approaches a direct numerical simulation, i.e., an unfiltered solution of
the governing equations. With the present SGS modeling approaches,
namely ADM and the relaxation regularization of ADM (ADM-RT), we
have to distinguish between these cases: For the deconvolution approach
the additionally employed explicit filter (in the sense of explicitly ap-
plied in contrast to implicitly filtered by the grid) further decreases the
discretization error in the high (represented but not accurately resolved)
wavenumber range and thus SGS model effects could be separated. How-
ever, all simulations reported herein, except for case ADM, rely on the
relaxation regularization only and thus the quantities are grid-filtered
quantities. Consequently, when using the relaxation term and refining
the resolution, the results eventually converge toward the unfiltered DNS
result.

During this work the question arose whether the currently employed
number of Fourier modes in the azimuthal direction is sufficient. Based
on various jet-noise studies in the literature we considered Nθ = 50 as
sufficient for all LES (see, e.g., similar studies for slightly different jet
flow parameters by Bodony (Nθ = 32: Bodony, 2004; Bodony & Lele,
2005) or Barré (Nθ = 48: Barré et al., 2006; Barré, 2006). However, a
reduction to Nθ = 32 during tests showed effects on the mean flow field
that were strikingly similar to exciting low azimuthal wavenumbers in
the forcing procedure (see section 3.2 for details of this study), calling
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for a more detailed investigation of the resolution effect.
In addition to the effect of grid refinement in combination with LES,

a crucial point has to be kept in mind concerning the sensitivity of the jet
flow: As we have seen from the previous findings (see sections 3.2 and 3.3)
and also in the referenced literature jets are very sensitive to changes at
the entrance region and thus to the physical inflow condition. In the case
of a numerical investigation, this inflow conditions is inevitably coupled
to the resolution employed through the disturbance triggering. Ideally,
the effects of changing resolution should be investigated separately to
distinguish inflow effects from resolution effects. However, this would
have necessitated the costly time- and space-dependent interpolation of
the reference solution during the whole simulation time which was con-
sidered infeasible. Instead, the spatial resolution in azimuthal direction
was changed, accepting that this has several closely coupled but unfor-
tunately inseparable effects. One effect is certainly the previously de-
scribed mode-clipping. As this artificial truncation of the Fourier modes
corresponds to a spectral cutoff filter different amounts of energy are
extracted from the system. In addition, there is an effect of the change
in effectiveness of the way of introducing the disturbances to the flow:
With increasing resolution the sponge technique allows for smoother rep-
resentations of the time-dependent reference solutions. Thereby, the in-
flow disturbances are more effectively imposed for a higher resolution
although the overall amplitude is kept constant. And last, there is at
least a mild effect by the shift of the filter transfer function to higher
wavenumbers. Therefore, we cannot expect a grid-independent solution
from this current setup. Rather, we hope to deduce further implications
about the certainty of the predictive quality and thereby hope to obtain
better confidence in the results and the observed mechanisms. From
our point of view these different arguments render such an investigation
appropriate.

In Fig. 3.59 we first show the number of the retained Fourier modes
(determined according to equation (2.28), section 2.4.2) that correspond
to the three different azimuthal resolutions. We see that the interior
region r/r0 < 0.33 is unaffected by the number of azimuthal grid points
due to the artificial clipping of modes. For cases LR and Med-m the whole
shear layer region is covered by the chosen resolution, i.e. Nθ = 32 for
case LR compared to the standard number of Nθ = 50 employed in case
Med-m. The highly resolved case HR further increases the number of
retained modes and reaches the maximum number at k = 19 or r19 ≈
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Figure 3.59: Visualization of linear dependence of number of retained Fourier
modes Nr

θ on discrete radial coordinate rk for different azimuthal resolution
Nθ: ◦ LR, Med-m and • HR.

0.93r0.
Because of the sensitivity of the jet flow to changes in the shear layer

mentioned previously we compare the computational grid employed by
Bogey & Bailly (2005b) to the grid of the present LES in the close vicin-
ity of the nozzle lip line, i.e. at r/r0 ≈ 1. Bogey & Bailly (2005b) employ
a Cartesian grid of Nx × Ny × Nz = 255 × 221 × 221 grid points. The
discretization in the y and z directions are identical and thus symmetric
about the jet centerline. The transverse mesh spacing is uniform for
y < 2r0 with ∆y0 = r0/15, and then increases at a rate of 2% to reach
∆y = 0.4r0 well outside the jet flow. The axial mesh spacing is constant
from the inflow for almost the whole domain, i.e. for 0 < x < 25r0

the spacing is ∆x = 2∆y0. Further downstream it is stretched to form
a sponge zone. The comparison of cylindrical coordinates to Cartesian
ones has two limiting cases in azimuthal direction: The first, with the
smallest radial spacing ∆r and thus also with azimuthal spacing r0∆θ,
is perfectly aligned with y- and z-direction and equal to ∆y0 = r0/15.
The second, with the most disadvantageous grid spacing is found along
the bisecting line, i.e. under 45◦ to one of the coordinate axis y or z. Be-
cause of the Cartesian formulation a factor of

√
2 enters the grid spacing,

resulting in ∆r = r0∆̃θ =
√

2r0/15. In summary, the current cylindrical
grid (described in more detail in section 3.1.1), has the following prop-
erties: The radial spacing in the shear layer is ∆r = 0.05r0, whereas the
azimuthal spacing corresponding to the standard resolution of Nθ = 50
is given by r0∆θ = r0(2π)/Nθ = 0.126r0. The streamwise grid is almost
constant with ∆z/r0 ≈ 0.10 between 0 < z/r0 < 32 (where the com-
bined grid stretching and outflow sponge region sets in). Thus, compared
to the grid employed in the numerical reference data (Bogey & Bailly,
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2005b), the radial grid size around the lip line correspond to roughly 75%
of the spacing in the highest resolved direction and to 53% in the worst
case. Because our streamwise grid spacing is similarly related to the
radial grid as the one by Bogey (∆z ≈ 2∆r), we find a smaller spacing
corresponding to 75%. For a better comparison, the azimuthal spacings
are given in Tab. 3.8.

Table 3.8: Comparison of grid spacings for different azimuthal resolutions Nθ
for case LR, Med-m and HR. Reference data by Bogey & Bailly (2005b) for

the aligned spacing ∆y and the bisecting spacing r0 f∆θ .

Case Nθ ∆ = r0∆θ ∆/∆y [%] ∆/r0∆̃θ [%]
LR 32 0.196 294 208

Med-m 50 0.126 189 134
HR 78 0.080 120 85

3.7.1 Resolution effect on the flow field

In contrast to the previous sections we first draw the attention to the one-
dimensional turbulent kinetic energy spectra at the inflow plane. The
wavenumbers are represented from n = 1 to n = 9 in Fig. 3.60(a) and
from n = 9 to the maximum number given by Nθ/2− 1 in Fig. 3.60(b).
Thereby, the previously described effect of changes of inflow forcing due
to resolution changes is best visualized. In Fig. 3.60(a) we find an align-
ment of the TKE spectra according to the number of employed Fourier
modes. With increasing resolution, the spectra are shifted to higher
energy levels as if the disturbance amplitude had been increased (see be-
ginning of section 3.7). The unexcited modes n > 9 shown in Fig. 3.60(b)
have significantly less energy but also exhibit a resolution effect. For the
highly resolved case the accuracy limit of the computer is reached and
thus wiggles appear in the highest represented wavenumbers. Based on
this analysis of the energy spectra at the inflow, we point out that this
and the subsequent section show combined effects of (i) changes in the
azimuthal resolution, (ii) changes in excitation level associated with it
and (iii) a shift of the filter cutoff to higher frequencies. In the follow-
ing, we will refer to this combination as resolution effect. The effect of
the relaxation regularization can also be noticed in the spectra shown
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in Fig. 3.60(b): Depending on azimuthal resolution a discontinuity in
the spectral decay at approximately two thirds of the maximum number
Nθ occurs. This discontinuity correspond to the previously cutoff fre-
quency of the filter. The cutoff should theoretically be effective around
wavenumbers n ≈ 10 for case LR, n ≈ 16 for Med-m and n ≈ 25 for the
fine resolution in case HR (corresponding to ωc ≈ 0.63π, see section 2.3).
For LR we observe a kink around n = 12 and 13, whereas Med-m exhibits
the effect of the filter cutoff at n = 15 and 16. For the high resolved
case HR we find the cutoff to be at mode n = 24, 25. The slight shifts
between the theoretical value of 2Nθ/3 is linked to the filter definition
as we employ a graded filter without a clear spectral cutoff.

Figure 3.61 shows the resolution effect on the streamwise develop-
ment of the mean axial velocity at the centerline wc and its RMS. Again,
we like to remark that the reference data is shifted in axial direction to
account for the differences in the lengths of the potential cores. The
data of Bogey & Bailly is shifted by z0/r0 = −2 in both graphs. For the
experimental data, we chose to employ different shifts in Figures 3.61(a)
and (b) in order to compare the spatial evolution of both profiles: For the
centerline decay and the RMS the employed shifts are z0/r0 = −3.1 and
z0/r0 = −5.1 for the data of Arakeri and coworkers and z0/r0 = −2.4
and z0/r0 = −4.4 for the data of Lau et al. We observe a dependence
of the simulation results on the azimuthal resolution. For the different
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Figure 3.60: One-dimensional turbulence energy spectra E in θ-direction along
the nozzle lip line at streamwise positions z/r0 = 0 (a) n = 1, . . . , 9, (b)
n = 9, . . . , Nθ/2− 1: LR, Med-m and HR.
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Figure 3.61: (a) Mean axial velocity wc and (b) RMS of axial velocity fluc-
tuations 〈w′′2〉1/2 along the jet centerline: LR, Med-m, HR,

Bogey & Bailly (2005b), ◦ Lau et al. (1979), Arakeri et al. (2003).

resolutions two things can be noticed in Fig. 3.61(a): First, results for
the coarsely resolved case LR exhibit the strongest decay of axial velocity
whereas the results of the baseline configuration and the fine resolution
case HR are found in closer agreement. Second, the mean centerline ve-
locity of the medium resolved case Med-m and the fine azimuthal grid
of case HR differ. These deviations are, however, restricted to a region
downstream of z/r0 ≈ 15. As pointed out before, we cannot expect
the results to converge perfectly as we (in the limit of infinitely small
grid spacing) approach a DNS and not a grid independent LES result.
Similar differences at the centerline are even observed for DNS investi-
gations (Müller, 2007). Figure 3.61(b) compares the axial RMS and we
find correspondingly large values for case LR which seems similar in its
appearance to cases for which azimuthal wavenumbers n = 1 through
8 were excited (see section 3.2.2, Fig. 3.5(a)). The highly resolved case
HR shows very similar behavior compared to the baseline configuration,
and since the deviation between cases Med-m and HR compared to cases
Med-m and LR is clearly less the results seem to converge.

The development of the jet half-width and the vorticity thickness,
as shown in Fig. 3.62, depend quite strongly on the azimuthal resolu-
tion. Note that at r = r0 where these quantities are analyzed the full
azimuthal resolution is employed by the code and the mode-clipping is
inactive. The jet spreading and thus the half-width r1/2 is enhanced
for the coarsely resolved case LR. The baseline resolution is found in fair
agreement with the results by Bogey & Bailly (2006a). The fine resolved
case HR exhibits a significantly reduced spreading. The same alignment
is found for the vorticity thickness which is shown in Fig. 3.62(b). With
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Figure 3.62: Streamwise development of (a) jet half-width r1/2 and (b) vorticity
thickness δω: LR, Med-m and HR.

increasing resolution the vorticity thickness grows at earlier streamwise
positions but visually the growth rates seem similar for the initial region.

The axial and radial RMS velocities along the nozzle lip line are
shown in Fig. 3.63 together with the reference LES. Two interesting
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Figure 3.63: RMS of (a) axial velocity fluctuations 〈w′′2〉1/2 and (b) radial
velocity fluctuations 〈u′′2〉1/2 along the nozzle lip line: LR, Med-m,

HR and Bogey & Bailly (2005b).

things can be noted: First, cases Med-m and HR show similar distri-
butions indicating a trend of convergence. We note that for the fine
resolution the dual-peak structure is slightly less pronounced compared
to the baseline configuration. However, it is clearly visible and its at-
tenuation might be a combined effect of differences at the inflow. Sec-
ond, and more important, is the fact that the dual-peak development of
〈w′′2〉1/2 disappears for the coarse resolution and the intensities level out
at approximately 0.25. The onset of case LR is found in good agreement
with the data from Bogey & Bailly (again the peak value observed in
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Figure 3.64: One-dimensional turbulence energy spectra E in θ-direction along
the nozzle lip line at streamwise positions z/r0 = i · 3 (from bottom to top) (a)
i = 0, 1, 2. The spectra are shifted by a factor of 10 for clarity. (b) i = 3, 4, 5.
The groups of spectra are shifted by a factor of 1000 for clarity. LR,

Med-m and HR.

their simulation is clearly lower which is most likely linked to the kind
of disturbance generation discussed previously). For the radial direction
we find a similar alignment as before. The reference data falls between
case LR and the baseline configuration. The shapes of the distributions
are similar, however, in the case of the fine resolution (case HR) a well
defined maximum is observed, whereas the lower resolved cases exhibit
a short plateau region. Again, we note that the shift in axial position
accounts for the differences in potential core length and is directly linked
to the changes in disturbance introduced at the inflow.

To investigate more precisely the effect of the vanishing dual-peak
structure (see Fig. 3.63(a)), we determine again the one-dimensional tur-
bulent kinetic energy spectra in the azimuthal direction. Figure 3.64(a)
shows the spectra along the nozzle lip line for the first three axial po-
sitions z/r0 = 0, 3, 6 using a shifting factor of ten, whereas Fig. 3.64(b)
shows positions z/r0 = 9, 12, 15 and employs a factor of one thousand to
prevent an overlap of the spectra. The differences in disturbance energy
at the inflow (as discussed above) have the expected effect on the down-
stream spectra. This is expressed by different levels of energy among the
three cases. At z/r0 = 6 the spectra still show similar results at different
levels. Only further downstream, at z/r0 = 9, we see the effect of the
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resolution: Case LR shows a significant increase of energy in the first
helical mode n = 1, again this is in very good agreement with what was
found for low excitation amplitudes. For a detailed discussion we refer to
sections 3.2 and 3.3. This increase of energy in n = 1 is accompanied by
a significant reduction at high wavenumbers with n > 8. For the better
resolved cases, we observe very similar spectra with a dominance of n = 4
and further dominance of azimuthal harmonics n = 8 and n = 12. Thus,
it seems that the coarse resolution restricts the interaction of modes to
low wavenumbers (that are represented on the azimuthal grid). Thereby,
a transitional development is supported which is similar to a transition
dominated by the helical mode n = 1. In contrast, cases Med-m and HR
have again similar spectral contributions from the different azimuthal
wavenumbers. The differences between these two cases are restricted to
a TKE increase for case HR as well as a broader spectrum linked to the
increased number of represented wavenumbers. As observed previously,
the further development in axial direction is governed by the upstream
influence, i.e., with increasing distance from the jet inflow more and more
wavenumbers grow and thus can interact and the spectra are character-
ized by a broad-banded shape. In particular, the high resolution case
HR exhibits a linear range between 4 < n < 18. Thus, from Fig. 3.64(a)
and (b) we find that within the transitional region the same physical
results are obtained for the medium and fine resolution of Nθ = 50 and
Nθ = 78. The magnitude difference is an effect that can be linked to the
previously discussed problem of unequal excitation at the inflow. For
the coarse resolution, we observe changes in the transitional behavior,
i.e. the turbulent energy spectra are dominated by the helical mode
n = 1, and hence to disregard high azimuthal wavenumbers may result
in a numerically motivated preference of low azimuthal modes.

The azimuthal one-dimensional at the axial position z/r0 = 24, are
shown in Fig. 3.65 together with a straight line of slope −5/3. In
Fig. 3.65(a) the spectra are evaluated at r = r0 and in graph (b) the ra-
dial position corresponds to r = 3r0. From these two graphs we see that
further downstream (compared to the transitional region) the spectra de-
velop similarities to the −5/3 inertial scaling. The azimuthal wavenum-
bers n = 2, 3, 4 are found slightly dominant and more energetic. In more
detail and in particular in a narrow range of the logarithmic representa-
tion of the ordinate, we plot the spectra at a radially shifted position in
Fig. 3.65(b) and note that the overshoot for n < 4 is lost.

For completeness, we provide the axial velocity spectra at several
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Figure 3.65: One-dimensional turbulence energy spectra E in θ-direction at
streamwise position z/r0 = 24: (a) at nozzle lip line r/r0 = 1 (b) at r/r0 = 3:

LR, Med-m and HR. The dotted line correspond to slope −5/3.

downstream positions in Fig. 3.66(a) and (b). Here, we do not repeat
the physical interpretation of the results and only refer to sections 3.2
and 3.3 for details. In the vicinity of the inflow (and as could be expected
from the previously discussed energy spectra) the velocity spectra remain
uninfluenced by the azimuthal resolution besides the amplitude effect.
The spectra develop similarly along the jet centerline (see Fig. 3.66(a))
and the nozzle lip line (see Fig. 3.66(b)). Only within the high fre-
quencies, i.e. for Strouhal numbers St > 1 deviations of the results are
observed. At the third streamwise profile, corresponding to z/r0 = 6,
the most noticeable resolution effect is found to occur along the nozzle
lip line: As the helical mode n = 1 dominates the energy spectra of case
LR we also see the advent of a dominant frequency that corresponds to
the fundamental frequency of n = 1 (the peak at St ≈ 0.68 is discussed
in quite some detail in sections 3.2 and 3.3 in the context of the ve-
locity spectra for case Low and Low-m). In contrast, the results of the
higher resolved cases Med-m and HR are virtually identical for both eval-
uated radial positions. Only next to the dominant peaks in the spectra
minor deviations emerge. Further downstream, these effects from the
change in transition further consolidate and the results can be grouped
as follows: The coarse resolution of case LR modifies the transition and
artificially shifts the dominance to low azimuthal wavenumbers and fre-
quencies. The baseline configuration Med-m and the fine resolved case
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Figure 3.66: Axial velocity spectra at streamwise positions z/r0 = i · 3 (i =
0, . . . , 4 from bottom to top) along: (a) jet centerline, (b) jet lip line: LR,

Med-m and HR. The groups of spectra are shifted by a factor of 10
for clarity.

HR are found in very good agreement and the differences are restricted
to a less noisy signal for the high resolution. Recall that this better
signal-to-noise ratio can be related to the increased resolution but also
the increased number of samples used for the statistics.

From the findings within the fluid dynamic region we conclude that
the chosen resolution of Nθ = 50 seems to be sufficient to capture all
relevant physical interactions. One has to act with caution when em-
ploying only a low number of Fourier modes in the periodic direction as
this has a substantial effect on the transition process and most likely this
will also carry over to the directly computed noise which is addressed in
the following.

3.7.2 Effect on the acoustic field

The flow-field results suggest that the azimuthal resolution effect is most
significant for case LR. The spectra of case HR compared to the standard
resolution of case Med-m are not expected to deviate strongly. Because
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of the minute differences in magnitude of the axial and radial RMS (see
Fig. 3.63(a) and (b)) we expect differences in overall sound pressure level
to be directly linked to the resolution effect on the initial condition and
on the grid filter in azimuthal direction.

Figure 3.67 shows the frequency dependent pressure spectra at the
previously investigated three polar angles of φ = 30◦, 60◦ and 90◦. For
the details of the physical interpretation and the employed scaling, we
again refer to the discussion in sections 3.2.3, 3.3.3 and 3.4.2. The spectra
shown in Fig. 3.67(a) are as if different types of modal compositions were
used in the respective excitations. For small observation angles from the
downstream jet axis case LR shows a broad and dominant frequency band
below St ≈ 0.5. The peak levels are increased by approximately 5 dB
for the coarsely resolved case. This band of frequencies is most likely
directly related to the implicit grid filtering of the coarse azimuthal grid
employed in case LR. Case HR is again in close agreement to the base-
line configuration. The resolution effects on the acoustic spectra and the
resulting differences between the two groups are comparable to effects
caused by the removal of lower order modes from the forcing (which
are investigated separately, see section 3.4.2 for details). For increas-
ing angles φ we find similar results for the medium and fine resolution,
however, case LR (the case where the transition is strongly affected by
the coarse azimuthal resolution) has a broad dominant frequency band
below St < 0.8 and deviates clearly from cases Med-m and HR. Finally,
in directions perpendicular to the jet axis this trend continues and re-
sults for case LR are comparable to a different modal excitation, as for
example employed in section 3.2. The previously noticed bi-tonal dom-
inance, as for example seen in Fig. 3.42(c) is smeared out, which might
be related to the coarse grid. In passing, we note that for all observer
locations the finer resolution results in a less pronounced decay of high
frequencies compared to the baseline configuration. The presented re-
sults for the directly computed pressure spectra in the acoustic near
field suggest that the azimuthal resolution has a pronounced effect on
the predicted transition scenario and thereby on the emitted noise. For
sufficient resolution, i.e. in our case Nθ = 50, we observe almost identi-
cal results compared to a highly resolved case. The minor deviations are
a combined effect of resolution associated modifications of the jet inflow
condition and grid-filter effects on the results. The physical results are
substantiated by the fine resolved case HR.

The overall sound pressure levels are given in Fig. 3.68(a) (again along
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Figure 3.67: Near-field pressure spectra in dB at (a) φ = 30◦, (b) φ = 60◦

and (c) φ = 90◦: LR, Med-m and HR. Bogey et al. (2007b)
at (a) r = 15r0, z = 30r0, (b) r = 15r0, z = 20r0, (c) r = 15r0, z = 10r0.

Bogey & Bailly (2005b) at (a) r = 12r0, z = 29r0, (c) r = 15r0,
z = 11r0.

the line r/r0 = 15) and Fig. 3.68(b) gives the differences compared to
the standard resolution case Med-m. As mentioned previously, for the
current numerical setup the azimuthal resolution directly affects the dis-
turbance energy transferred to the flow. Therefore, the increased OASPL
for case HR are again a combined effect of a more effective excitation,
and the shift of the grid cutoff to higher frequencies for finer resolu-
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Figure 3.68: Axial distribution of (a) overall sound pressure levels and (b) the
differences to the baseline configuration Med-m (OASPL in dB) along r/r0 =
15: LR, Med-m, HR, (a) only Bogey & Bailly (2006a).

tions (as found in the TKE spectra shown in Fig. 3.60). In Fig. 3.68(b),
the data orders according to the azimuthal resolution: the coarser the
grid the lower the overall sound pressure level. The large differences
between the baseline configuration and the well resolved case HR are
counter-intuitive as flow field and near-field spectra were found in very
good agreement. However, since we found no drastic influence of the
azimuthal resolution on the pressure spectra within the frequency range
of 0.1 < St < 3.2 we link the differences between case Med-m and HR
mostly to grid-filtering effects inherently tied to the azimuthal resolution
at these radial distances.

3.7.3 Summary of azimuthal resolution effects

The study of azimuthal resolution effects shows that one has to be cau-
tious when interpreting simulation results for one single computational
setup. In this study, the azimuthal resolution is directly tied to the in-
flow forcing and thereby modifies the physically very important inflow
condition. This could partially be compensated by a separate inves-
tigation focusing on disturbance amplitude effects on the flow and its
noise. Thereby, the following conclusions most likely hold for a more
general setup: A coarse azimuthal resolution results in a jet transition
in which low azimuthal wavenumbers dominate – although modes n = 4
through n = 8 are excited. For the coarsely resolved case LR this re-
sults in a helically (n = 1) dominated transition which alters the noise
generating mechanism from the excited “cut-and-connect” process ob-
served previously to one which is dominated by stable vortex pairings.
In addition, as we approach the near-field the azimuthal grid spacing
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becomes too coarse. This effectively acts as a grid filter on short wave-
lengths associated with the smallest scales and yields a steeper decay in
the pressure spectra and a loss of spectral accuracy. The increase of res-
olution to Nθ = 78 exhibits no fundamental differences compared to the
results of the standard resolution. In general, the results of the two cases
Med-m and HR fall close together, and all three investigated resolution
cases consistently align in the same order. We conclude from this that
convergence can be expected but clearly has not yet been reached and
re-emphasize that a grid-independent result is not to be expected with
the currently employed SGS-modeling approach.



Chapter 4

Summary, conclusions and recommendations

4.1 Summary and conclusions

In order to reveal some of the physics that underlie the noise generation
of a turbulent subsonic jet a series of direct noise computations were
performed. A Mach 0.9 jet at a Reynolds number of Re = 4.5 · 105 was
investigated by means of large-eddy simulations, in which the focus was
on the effect of inflow disturbances obtained by superimposing linearly
unstable eigenmodes. By forcing unstable modes their role, the particu-
larity of their nonlinear interaction and its contribution to transition to
turbulence and thus to the noise generation mechanism was studied in
detail. First, two physical parameters, the disturbance amplitude and
the composition of the disturbances, were varied such that each set of
inflow disturbances was tested at three different excitation amplitudes.
Based on the agreement with reference data a baseline configuration was
identified among the six investigated cases (case Med-m, 3% disturbance
amplitude, excitation of wavenumbers |n| = ±4, . . . ,±8). Subsequently,
the effect of computational parameters on the flow and the noise field was
studied. This sensitivity study of the computational approach comprised
five additional simulations. Three of them focused on effects of the em-
ployed subgrid-scale model and the remaining two on effects associated
with the numerical resolution.

In order to perform the investigations mentioned above the following
steps were taken

• A highly accurate DNS/LES code solving the compressible Navier-
Stokes equations has been developed that allows to simulate round
jet flows in cylindrical geometries in a wide range of Mach and
Reynolds numbers. The spatial discretization is based on compact-
finite differences of tenth order and a Fourier spectral method.
The time integration scheme uses a six-stage Runge-Kutta scheme
(Berland et al., 2006) of fourth-order accuracy which is optimized
with respect to its dispersion and dissipation properties. The co-
ordinate singularity r = 0 of the cylindrical coordinate system is
accounted for following Mohseni & Colonius (2000).
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• Appropriate boundary conditions have been set up to physically
model a jet issuing into quiescent surrounding fluid. The combina-
tion of so-called sponge layers (Israeli & Orszag, 1981; Bodony,
2006) and nonreflecting boundary conditions (Thompson, 1987;
Kim & Lee, 2000) allows (i) to impose the inflow profile without
causing artificial noise (ii) to enable the entrainment of surround-
ing fluid into the jet stream and (iii) to truncate the computational
domain while letting the generated noise leave the domain without
causing reflections. Using this approach, the flow develops natu-
rally and surrounding fluid is entrained at a rate which depends
on the vortex interaction and not on the imposed boundary con-
ditions.

• A numerical code solving the global eigenvalue problem established
by the linearized compressible Navier-Stokes equations in cylindri-
cal coordinates has been developed. This code allows to investigate
the spatial and temporal stability properties of locally parallel base
flows.

• The spatial stability properties of a velocity profile described by
a hyperbolic-tangent function have been studied. In addition, the
effect of the initial momentum thickness on the growth rates has
been quantified. These unstable modes provide the basis for the
functional form of the inflow excitation used in the present study.

• The nonlinear disturbance evolution of two different modal com-
positions and its effect on the emitted noise has been investigated
for a high Reynolds number high subsonic jet flow using LES. The
first type consists of all helical wavenumbers that are spatially am-
plified according to linear theory. The second type of excitation
is restricted to higher azimuthal wavenumbers in order to initially
decrease the azimuthal coherence of the disturbances and to inves-
tigate its effect on the flow and on the noise. For both types of
excitation three disturbance amplitudes are investigated. The jet
flow parameters were chosen to compare with the experiments by
Maestrello (1976), Juvé et al. (1979), Lau et al. (1979), Arakeri
et al. (2003) and Bogey et al. (2007b). Also several LES investi-
gations by Bogey & Bailly focus on a jet at comparable operating
conditions (see e.g. 2005b; 2006c; 2007).

• In order to assess the predictive capabilities of the chosen SGS
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model an LES has been performed which employs an approxi-
mately deconvolved velocity field in the evaluation of the nonlinear
terms (approximate deconvolution model ADM).

• A resolution study of the azimuthal grid has been performed to
investigate its effect on the flow and noise field. Thereby, we have
pointed out the possible misinterpretation of the coarse-grid LES
results.

4.1.1 Effect of physical parameters

The sensitivity of the simulation results to the physical disturbance gen-
eration was investigated by varying first the collection of instabilities
that are excited at the inflow and second the disturbance amplitude.
Two types of modal compositions were set up: The first consisted of all
helical wavenumbers n that are spatially amplified according to linear
stability theory, i.e. unstable eigenmodes of wavenumbers |n| = 1, . . . , 8.
The second type excluded low wavenumbers |n| < 3 from the inflow exci-
tation. For both types the disturbance amplitude was varied from 1.5%
to 4.5% of the jet exit velocity. In general, the effect of the forcing am-
plitude was found to follow consistently the expectations. The effects of
changes in composition of the unstable eigenmodes on the development
of the flow field as well as on the directly computed near-field sound were
large.

When exciting all unstable helical waves (1 < |n| < 8) transition
is characterized by large dominant and stable vortical structures that
scale with the jet nozzle diameter. With increasing forcing amplitude
the transition process is initiated closer to the inflow, but the dominant
structures are only weakly affected and maintain their strong azimuthal
coherence. They are predominantly two-dimensional until their sudden
breakdown into much smaller scales. The analysis of the azimuthal tur-
bulent kinetic energy spectra reveals that in the case of a low amplitude
excitation the helical mode n = 1 is dominant slightly upstream of the
closing of the potential core. Further downstream, where effects can no
longer be considered linear the wavenumber n = 2 is dominant regardless
of the disturbance amplitude. Compared to experimental and numerical
reference data a faster decay of the axial velocity together with enhanced
RMS intensities is observed along the jet centerline. Because of strong
vortex pairings the RMS distribution of the axial velocity exhibits a
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very pronounced dual-peak structure along the jet nozzle lip line. These
distributions are similarly observed in tonally-excited jet experiments.

In particular for observer locations at polar angles of φ = 30◦ mea-
sured from the downstream axis, the near-field pressure spectra exhibit a
dominance around St ≈ 0.2 and are in good agreement with the reference
data. The previously mentioned vortex pairings leave an imprint on the
acoustic near field and tonal contributions occur in the otherwise broad-
banded spectra. With increasing angle φ the dominant low-frequency
band shifts to higher frequencies and the tonal contributions exceed the
broad-band noise by approximately 9 dB. At a shallow angle to the jet
axis, the azimuthal pressure correlations are significantly lower than re-
ported in the literature, indicating less contributions by large coherent
structures. This might be related to the exclusion of the varicose mode
n = 0 from the inflow excitation. In the sideline direction the acoustic
pressure is uncorrelated and matches the data from literature, support-
ing the established concept of noise emission associated with small-scale
turbulence.

When low azimuthal wavenumbers n < 3 are excluded from the in-
flow excitation, we observe a pronounced streamwise delay of the transi-
tion process. Also, an enhanced effect of the forcing amplitude is found.
With increasing forcing amplitude the transition process is again shifted
upstream as expected. As the forcing amplitude is increased the roll-up
process of the shear layers is modified. The analysis of the azimuthal
mode dynamics shows that the large azimuthally coherent structures
generated by low-amplitude excitation are dominated by the varicose
and first helical mode n = 0 and n = 1. In contrast, the roll-up process
for high forcing amplitudes involves distorted three-dimensional stream-
wise elongated vortices dominated by the varicose mode n = 0 and even
modes n = 4 and n = 8. On the one hand, this amplitude-dependent
modification of the roll-up leads to a significant reduction of turbulence
intensities along the jet centerline. The downstream development of
the RMS fluctuations are in good agreement with experimental as well
as numerical data reported in the literature. On the other hand, the
eigenmode forcing results in localized structures which again cause a
dual-peak RMS distributions along the jet lip line (similarly observed in
tonally forced jet experiments).

This modification of the transition process and the turbulence lev-
els directly affects the acoustic near field. As expected, the acoustic
spectra significantly depend on the observer location. With increasing
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angle from the downstream jet axis, the dominance of a low-frequency
band shifts from St ≈ 0.4 to higher frequencies around St ≈ 0.9. The
strong emissions at Strouhal numbers St < 0.4, in particular for low
(1.5%) amplitude excitation, are linked to vortices that randomly un-
dergo vortex pairings that most efficiently radiate in the downstream
direction. These parings are caused by the initially unexcited, naturally
least stable helical mode n = 1. For medium (3%) and especially for
high (4.5%) disturbance amplitudes the pressure spectra contain a tonal
component outside the initially excited frequency band. This frequency
is close to the higher harmonic of one of the forced fundamental fre-
quencies as well as the frequency of the preferred (column) mode of the
jet. The azimuthal correlation coefficient of the pressure fluctuations
at polar angles φ = 30◦ and φ = 90◦ support the established links. At
small angles from the jet axis, the observed correlations are slightly lower
than the reference data which again might be related to exclusion of the
varicose mode. However, experimental investigations of tonally excited
jets report similar distributions. At φ = 90◦, the noise is dominated by
small-scale turbulence and the uncorrelated pressure signals match the
reference data.

The analysis of Fourier mode amplitudes at the tone frequency and
harmonics thereof shows that the tone observed in the near-field spectra
can be linked to the rise, saturation and breakdown of structures that
are generated during the early transition process. As a result of the
excitation close to the preferred mode, the helical modes n = ±4 reach
appreciable disturbance levels allowing its azimuthal higher harmonic
n = 8 as well as mode n = 0 to rise with enhanced growth rates. These
modes significantly contribute to noise emitted from a location slightly
upstream of the collapse of the potential core which is perceived domi-
nantly at intermediate observer locations. Supported by weakly nonlin-
ear theory this frequency is explained as a mode interaction of initially
excited modes. The growth rates observed in the LES are found in very
good agreement with estimates based on weakly nonlinear interactions
of linearly unstable eigenmodes of the inflow profile.

4.1.2 Effect of numerical parameters

The sensitivity of the results to numerical simulations parameters was
tested by modifying details of the subgrid-scale model and changing the
azimuthal resolution.
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Starting out from the previously identified baseline configuration,
the relaxation coefficient was gradually reduced ( χ was set constant
in space and time for all LES, see section 3.5). The overall effect of
the investigated reduction is insignificant. Even for a 30% reduction
of the coefficient the LES results do not exhibit substantial differences
and only a reduction of turbulence intensities along the jet centerline
and the nozzle lip line by less than 9% are observed. This reduction
in turbulence intensity transfers to a 1.5 dB reduction of overall sound
pressure level, however, the effect of the drastic reduction is small in the
relevant frequency range. From this we conclude that using the chosen
ad-hoc value reasonable and reliable LES results are obtained (this values
corresponds to the upper limit of the determination procedure outlined
by Stolz et al. (2001b)).

The application of the approximate deconvolution to the nonlinear
terms had almost no effect on the investigated mean flow quantities.
In comparison to the baseline case the deconvolution resulted in slightly
reduced turbulent fluctuations and Reynolds stresses. From the compar-
ison of the turbulent kinetic energy spectra this reduction can be linked
to damping that comes into effect in the nonlinear development of the
flow and is restricted mostly to the high azimuthal wavenumber range.
The acoustic near-field prediction is nearly unaffected.

Resolution and inflow excitation are tightly coupled in the current
setup and hence, the results of our study of the azimuthal resolution
effect are difficult to assess. Nevertheless, the variation shows two main
trends: First, when reducing the azimuthal resolution by a factor of
approximately 3/2 (Nθ = 32) the whole transition process is delayed and
dominated by low azimuthal wavenumbers due to the reduced excitation
amplitude and the non-represented higher wavenumbers. This allows
for the naturally least stable helical mode to grow dominantly and to
alter transition to turbulence which also influences the emitted sound
field. Second, the finer-resolved case for which the number of azimuthal
grid points was increased by approximately the same factor (Nθ = 78)
showed that the differences compared to the standard resolution Nθ =
50 are small, being mostly restricted to the high-frequency range as
a result of the shift of the cutoff frequency. As expected, the highly
resolved case exhibits a less significant decay of sound pressure level in
this frequency range. Overall, the resolution of Nθ = 50 employed in all
but two cases is considered sufficient to accurately resolve the triggered
transition mechanism and the noise generated thereby.
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4.2 Recommendations

During this work certain aspects were identified that could be further
improved after the simulation environment has now been successfully
established and tested. Also recommendations for future investigations
are made. The overlap region in the vicinity of the inflow sponge causes
a small wake-like flow that has been identified for some cases. This could
be prevented easily by reducing the amplitude of the ambient sponge.
Within this investigation we preferred not to change any parameter other
than the ones mentioned.

If one abandons the option of storing the simulated data for post-
processing the computational cost could be significantly reduced. Ob-
server locations within the acoustic near-field would need to be identified
in advance. Pressure or density signals would then be analyzed during
the simulations evaluated and reduce the costly I/O (input-output) of
data. Of course this limits the possibility for post-processing of data.
Fundamental research, however, can often not know in advance what
analysis might shed light on unknown aspects and thus renders this sav-
ing measure not always feasible.

The following recommendations for future investigations can be
made. First, the effect of the inclusion of a generic nozzle into the
simulation domain should be investigated in detail. The question that
should be addressed is whether simulations need to account for details
of a nozzle (resolution of oncoming turbulent boundary layer, wake-like
region behind nozzle lip, level of oncoming turbulence contained in the
boundary layer, etc.) in order to obtain a better overall agreement with
experimental findings. The computational cost of such simulations are
significantly higher if details of the turbulent boundary layer need to
be captured accurately. By addressing this question one could clarify
if a simple model proves to be sufficient to trigger the underlying and
dominant noise mechanisms (for example, a combination of instability
modes as employed in this work, or an algebraically growing combination
of modes, see, e.g. Schmid (2007)). Thereby, the computational effort
could be devoted to the turbulence of the jet flow.

Second, several physical parameters could be investigated which
would further increase the complexity of the problem. In this work,
only isothermal jet flows are investigated. As the effect of entropy fluc-
tuations generated by a heated core flow on the emitted noise is still
subject of a controversial debate (Viswanathan, 2004a) an investigation
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of a heated core might be of interest. Also a heated jet is a more realis-
tic model of the flow behind a jet engine. Thus, among the parameters
to be investigated, temperature is definitely a key factor but numerical
issues concerning stabilization of the outflow region might occur (Bogey
et al., 2007a). Also Reynolds number effects should be investigated to
obtain a picture of the range of applicability of the current numerical
tool. The significant reduction of the initial momentum thickness to-
wards experimentally observed values could answer questions related to
the over-predicted sideline pressure spectra.

Third, if more modeling expertise has been established to successfully
simulate the problems mentioned above, physical complexity can be fur-
ther increased by turning to coaxial jet configurations. As in a realistic
flow behind a state-of-the-art jet engine a heated core flow with very
high flow velocities would be surrounded by a secondary isothermal flow
with lower velocities. The mean flow profile would exhibit two shear lay-
ers, one between the core and the by-pass flow and a second shear layer
that develops outside of the secondary flow towards the atmospheric sur-
rounding. Thereby, information of the complex flow pattern of a more
and more realistic jet model could become accessible and insight into the
underlying noise generation mechanisms might help to reach the ultimate
goal of further jet-noise reduction.



Appendix A

Linear stability theory

As pointed out in chapter 2 (section 2.5.5) we choose to trigger the
transition of the jet using linearly unstable eigenmodes. In this chap-
ter the derivation of the linearized compressible Navier-Stokes equations
is given, followed by the discretization and the numerical methods em-
ployed to solve the eigenvalue problem that results from the procedure.
Thereafter the sensitivity of an inflow profile to the initial momentum
thickness is investigated.

A.1 Linearized governing equations

A.1.1 Compressible Navier-Stokes equations in cylindrical co-
ordinates

For the linear stability investigation the governing equations are the
unsteady, three dimensional compressible Navier-Stokes equations. Here,
we use the enthalpy form of the energy equation and employ a cylindrical
coordinate system. For brevity we start out from the nondimensional
form which is obtained by normalizing the dependent variables as follows

u=
u∗

u∞

ρ=
ρ∗

ρ∞

v=
v∗

u∞

p=
p∗

ρ∞u2∞

w=
w∗

u∞

T =
c∗pT

∗

a∗2
,

(A.1)

where the superscript asterisk (·)∗ denotes a dimensional quantity and
the subscript (·)∞ denotes some reference quantity. The variables u∗,
v∗, w∗, ρ∗, p∗ and T ∗ represent the cylindrical velocity components in
(r, θ, z)-direction, density, pressure and temperature. The speed of sound
is given by a∗ and cp denotes the specific heat at constant pressure. The
independent variables in space are nondimensionalized by some reference
length L∞,

r =
r∗

L∗∞
z =

z∗

L∗∞
, (A.2)
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the angular coordinate θ is in radians, whereas time is normalized by

t =
t∗u∗

L∗∞
. (A.3)

Restricting ourselves to a Newtonian fluid and assuming Fourier’s law of
heat transfer by conduction to be valid the nondimensionalized param-
eters known as Reynolds, Mach and Prandtl number,

Re=
ρ∗∞u

∗
∞L
∗
∞

µ∗∞
(A.4a)

Ma=
u∗∞
a∗∞

(A.4b)

Pr=
c∗pµ
∗
∞

k∗∞
(A.4c)

are introduced, where µ∞ is the dynamic viscosity and k∞ the coeffi-
cient of thermal conductivity. In cylindrical coordinates the governing
equations are the continuity equation,
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the radial, azimuthal and streamwise momentum equation,
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and the energy equation,
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Please note that within the derivation Stokes hypothesis is not yet em-
ployed. All results however do rely on the relation between the dynamic
viscosity µ and the second coefficient of viscosity, i.e., λ = −2/3µ. To
close the system of equations the equation of state for an ideal gas is
assumed to be valid, i.e.

p = ρRT = ρ
1

γMa2T , (A.8)

where R is the specific gas constant. γ is the ratio of the specific heat
at constant pressure c∗p and the specific heat at constant volume c∗v

γ =
c∗p
c∗v

and is set to γ = 1.4.

The terms Si in equations (A.6a)–(A.6c) refer to the viscous fluxes
in radial, azimuthal and streamwise direction and are defined as
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with the viscous stress tensor components τij being defined as
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The divergence of u = [u, v, w]T in cylindrical coordinates is given by
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In equation (A.7) Φ is the nondimensional dissipation given as
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When compressibility effects are of importance the dependence of the
viscosity µ on the temperature T has to be taken into account. As for
the nonlinear simulations we here rely on Sutherland’s law of viscosity
(see equation (2.10)).

A.1.2 Linearization

The instantaneous values of the velocities u, v, w, the density ρ, the
pressure p and the temperature T are decomposed into a stationary mean
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or so-called base flow and a time-dependent fluctuating disturbance, i.e.,

u=U + ũ

ρ= ρ+ ρ̃

v=V + ṽ

p= p+ p̃

w=W + w̃

T =T + T̃ .

(A.13)

Please note that in the context of the linearization of flow quantities
tilde denotes a infinitesimal disturbance and should not to be mistaken
for Favre-averaged quantities (see equation (2.3) in section 2.1). Em-
ploying this decomposition and neglecting quadratic terms of fluctuating
quantities the linearized equation of state reads

p̃ = ρRT̃ + ρ̃RT =
1

γMa2

(
ρT̃ + ρ̃T

)
, (A.14)

which is employed for eliminating expressions in disturbance fluctuations
in the following. Employing Sutherland’s law the amplitude function
of the fluctuating viscosity µ̃ is represented as first order expansion in
temperature T̃ . Similarly, the second coefficient of viscosity λ̃ and the
coefficient of thermal conductivity k̃ (using Fourier’s law) are expanded
to obtain the following relations:

µ̃ =
dµ

dT
T̃ ; λ̃ =

dλ

dT
T̃ ; k̃ =

dk

dT
T̃ . (A.15)

Substituting equations (A.13)–(A.15) into the nondimensional governing
equations (A.5)–(A.7), subtracting the governing equations of the base
flow and neglecting again terms of second and higher order in fluctua-
tions yields the linearized perturbation equations given below by equa-
tions (A.16)–(A.18).
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[
U
∂U

∂r
+
V

r

∂U

∂θ
+W

∂U

∂z
− V

2

r

]
= −∂p̃

∂r
+ Slin

r

θ–momentum:

ρ

[
∂ṽ

∂t
+ U

∂ṽ

∂r
+ ũ

∂V

∂r
+
V

r

∂ṽ

∂θ
+
ṽ

r

∂V

∂θ
+W

∂ṽ

∂z
+ w̃

∂V

∂z
+
Uṽ + V ũ

r

]
(A.17b)

+ ρ̃

[
U
∂V

∂r
+
V

r

∂V

∂θ
+W

∂V

∂z
− U V

r

]
= −∂p̃

∂θ
+ Slin

θ

z–momentum:

ρ

[
∂w̃

∂t
+ U

∂w̃

∂r
+ ũ

∂W

∂r
+
V

r

∂w̃

∂θ
+
ṽ

r

∂W

∂θ
+W

∂w̃

∂z
+ w̃

∂W

∂z

]
(A.17c)

+ ρ̃

[
U
∂W

∂r
+
V

r

∂W

∂θ
+W

∂W

∂z

]
= −∂p̃

∂z
+ Slin

z
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Energy equation:

ρ

[
∂T̃

∂t
+ U

∂T̃

∂r
+ ũ

∂T

∂r
+
V

r

∂T̃

∂θ
+
ṽ

r

∂T

∂θ
+W

∂T̃

∂z
+ w̃

∂T

∂z

]
+ ρ̃

[
U
∂T

∂r
+
V

r

∂T

∂θ
+W

∂T

∂z

]
(A.18)

=
1

RePr

(
1
r

∂

∂r

(
rk
∂T̃

∂r
+ rk̃

∂T

∂r

)
+

1
r2

∂

∂θ

(
k
∂T̃

∂θ
+ k̃

∂T

∂θ

)
+

∂

∂z

(
k
∂T̃

∂z
+ k̃

∂T

∂z

))

+ (γ − 1)Ma2

(
∂p̃

∂t
+ U

∂p̃

∂r
+ ũ

∂p

∂r
+
V

r

∂p̃

∂θ
+ ṽ

∂p

∂θ
+W

∂p̃

∂z
+ w̃

∂p

∂z
+

1
Re

Φlin

)
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Within equation (A.17) Slin
i denote the linearized viscous fluxes found by linearizing equations (A.9a)–(A.9c).

For brevity only the viscous term in radial direction is given here:

Slin
r =

1
Re

[
µ

(
∂2ũ

∂z2
+

∂2w̃

∂r∂z

)
+
(
∂2U

∂z2
+
∂2W

∂r∂z

)
µ̃+

dµ

dT

∂T

∂z

(
∂ũ

∂z
+
∂w̃

∂r

)
+
(
∂U

∂z
+
dW

dr

)
∂µ̃

∂z
(A.19a)

+
2µ
r

(
∂ũ

∂r
− ũ

r
− 1
r

∂ṽ

∂θ

)
+

2
r

dµ

dT

(
∂U

∂r
− U

r
− 1
r

∂V

∂θ

)
T̃ + 2µ

∂2ũ

∂r2

+ 2
dµ

dT

(
∂2U

∂r2
T̃ +

∂T

∂r

∂ũ

∂r

)
+ 2

∂U

∂r

∂µ̃

∂r
+
µ

r

(
∂2ṽ

∂r∂θ
− 1
r

∂ṽ

∂θ
+

1
r

∂2ũ

∂θ2

)
+

1
r

dµ

dT

(
∂2V

∂r∂θ
− 1
r

∂V

∂θ
+

1
r

∂2U

∂θ2

)
T̃ +

1
r

dµ

dT

∂T

∂θ

(
∂ṽ

∂r
− ṽ

r
+

1
r

∂ũ

∂θ

)
+

1
r

(
∂V

∂r
− V

r
+

1
r

∂U

∂θ

)
∂µ̃

∂θ
+ λ

(
1
r

∂ũ

∂r
− ũ

r2
+
∂2ũ

∂r2
+

1
r

∂2ṽ

∂r∂θ
− 1
r2

∂ṽ

∂θ
+

∂2w̃

∂r∂z

)
+
(

1
r

∂U

∂r
− U

r2
+
∂2U

∂r2
+

1
r

∂2V

∂r∂θ
− 1
r2

∂V

∂θ
+
∂2W

∂r∂z

)
λ̃

+
∂λ

∂r

(
ũ

r
+
∂ũ

∂r
+

1
r

∂ṽ

∂θ
+
∂w̃

∂z

)
+
(
U

r
+
∂U

∂r
+

1
r

∂V

∂θ
+
∂W

∂z

)
∂λ̃

∂r

]
.
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Similarly, the viscous terms Slin
θ and Slin

z are derived. The linearized dissipation function Φlin is

Φlin = 2µ
[

2
∂U

∂r

∂ũ

∂r
+

2
r2

∂V

∂θ

∂ṽ

∂θ
+

2
r2

∂V

∂θ
ũ+

2
r2

∂ṽ

∂θ
U +

2
r2
Uũ+ 2

∂W

∂z

∂w̃

∂z

]
(A.20)

+µ
[

2
∂V

∂r

∂ṽ

∂r
− 2
r

∂V

∂r
ṽ − 2

r

∂ṽ

∂r
V +

2
r2
V ṽ +

2
r

∂V b

∂r

∂ũ

∂θ
+

2
r

∂ṽ

∂r

∂U

∂θ
− 2
r2
ṽ
∂U

∂θ
− 2
r2
V
∂ũ

∂θ
+ 2

∂U

∂θ

∂ũ

∂θ

+2
∂W

∂z

∂w̃

∂z
+

2
r

∂W

∂θ

∂ṽ

∂z
+

2
r

∂w̃

∂θ

∂V

∂z
+ 2

∂V

∂z

∂ṽ

∂z
+ 2

∂U

∂z

∂ũ

∂z
+ 2

∂U

∂z

∂w̃

∂r
+ 2

∂ũ

∂z

∂W

∂r
+ 2

∂W

∂r

∂w̃

∂r

]
+λ
[
ũ

r

∂ũ

∂r
+

1
r

∂ṽ

∂θ
+
∂w̃

∂z

]
+2
[(

∂U

∂r

)2

+
1
r2

(
∂V

∂θ

)2

+ 2
∂V

∂θ

U

r
+
(
U

r

)2

+
(
∂W

∂z

)2
]
µ̃

+
[(

∂V

∂r

)2

− 2
r

∂V

∂r
V +

1
r2
V

2
+

2
r

∂V

∂r

∂U

∂θ
− 2
r2
V
∂U

∂θ
+

1
r2

(
∂U

∂θ

)2

+
1
r2

(
∂W

∂θ

)2

+
2
r

∂W

∂θ

∂V

∂z

+
(
∂V

∂z

)2

+
(
∂U

∂z

)2

+ 2
∂U

∂z

∂W

∂z
+
(
∂W

∂r

)2
]
µ̃

+
[
U

r

∂U

∂r
+

1
r

∂V

∂θ
+
∂W

∂z

]
λ̃
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A.1.3 Wave ansatz for disturbances

For clarity, bars from the base-flow quantities will be omitted in the
remainder. To further simplify the linearized equations we restrict our-
selves to a locally parallel flow, i.e., all base-flow quantities depend only
on the independent variable r. In addition, the disturbances are thought
of as traveling waves and thus a normal-mode ansatz for the perturba-
tions the flow variables in equation (A.13) of the form

q = q(r) + q̃(r, θ, z, t) = Q(r) + q̂(r)ei(αz+nθ−ωt) (A.21)

is made, where q or Q denote a component of the velocity vector or a
scalar quantity (disturbance or base-flow quantity), α and n denote the
axial and the azimuthal wavenumber, respectively and ω is the angular
frequency. The complex amplitudes of the eigenfunctions of q are de-
noted by hats. Under these restrictions and assumptions the following
local linear perturbation equations for a compressible, parallel flow in a
cylindrical coordinate frame of reference are obtained, where, as men-
tioned before, density fluctuations are eliminated using the linearized
equations of state for an ideal gas. In detail these are the continuity
equation

dû

dr
+
[

1
p

dp

dr
− 1
T

dT

dr
+

1
r

]
û (A.22)

+
[

in
r

]
v̂

+ [iα] ŵ

+
[
U

p

]
dp̂

dr

+
[

1
p

{
−U
T

dT

dr
+
dU

dr
+
U

r
+ i

(
αW + n

V

r
− ω

)}]
p̂

−
[
U

T

]
dT̂

dr

+
[

1
T

{
2U
T

dT

dr
− dU

dr
− U

r
− U

p

dp

dr

− i
(
αW + n

V

r
− ω

)}]
T̂ = 0 ,
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the momentum equation in radial direction

[Re−1 (2µ+ λ)
] d2û

dr2
(A.23a)

+
[
−ρU +Re−1

(
1
r

(2µ+ λ) +
dT

dr

(
2
dµ

dT
+
dλ

dT

))]
dû

dr

+
[
−ρ
(
dU

dr
+ i

(
αW + n

V

r
− ω

))
+Re−1

(
− 1
r2

(2µ+ λ)− µ
(
α2 +

n2

r2

)
+

1
r

dλ

dT

dT

dr

)]
û

+
[
iRe−1n

r
(µ+ λ)

] dv̂
dr

+
[
ρ

2V
r

+ iRe−1

(
− n
r2

(3µ+ λ) +
n

r

dλ

dT

dT

dr

)]
v̂

+
[
iRe−1α (µ+ λ)

] dŵ
dr

+
[
iRe−1α

dλ

dT

dT

dr

]
ŵ

− dp̂

dr
−
[
ρ

p

(
U
dU

dr
− V 2

r

)]
p̂

+
[
2
dU

dr

dµ

dT
+
dλ

dT

(
U

r
+
dU

dr

)]
dT̂

dr

+
[
ρ

T

(
U
dU

dr
− V 2

r

)
+Re−1

(
d2λ

dT 2

dT

dr

(
dU

dr
+
U

r

)
+
d2µ

dT 2

dT

dr

dU

dr
+ 2

dµ

dT

(
d2U

dr2
+

1
r

(
dU

dr
− U

r

))
+
dλ

dT

(
1
r

dU

dr
− U

r2
+
d2U

dr2

)
+i
dµ

dT

(
α
dW

dr
+ n

(
dV

dr
− V

r

)))]
T̂ = 0
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the momentum equation in azimuthal direction

[iRe−1n

r
(µ+ λ)

] dû
dr

(A.23b)

+
[
iRe−1

(
n

r2
(3µ+ λ) +

n

r

dµ

dT

dT

dr

)
− ρ

(
dV

dr
+
V

r

)]
û

+
[
Re−1µ

] d2v̂

dr2
+
[
Re−1

(
dµ

dT

dT

dr
+
µ

r

)
− ρU

]
dv̂

dr

+
[
Re−1

(
−n

2

r2
(2µ+ λ)− 1

r

dµ

dT

dT

dr
− µ

(
α2 +

1
r2

))
−ρ
(
U

r
+ i

(
αW + n

V

r
− ω

))]
v̂

−
[
Re−1αn

r
(µ+ λ)

]
ŵ

+
[
−ρ
p

(
U
dV

dr
+
UV

r

)
− i

n

r

]
p̂

+
[
Re−1 dµ

dT

(
dV

dr
− V

r

)]
dT̂

dr

+
[
d2µ

dT 2

dT

dr

(
dV

dr
− V

r

)
+
dµ

dT

(
d2V

dr2
− V

r2

)
+in

(
2n
r2
U
dµ

dT
+
dλ

dT

(
1
r

dU

dr
+
U

r2

))
+
ρ

T

(
U
dV

dr
+
UV

r

)]
T̂ = 0
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the momentum equation in axial direction

[iRe−1α (µ+ λ)
] dû
dr

(A.23c)

+
[
iRe−1α

(
1
r

(µ+ λ) +
dµ

dT

dT

dr

)
− ρdW

dr

]
û

+
[
−Re−1αn

r
(µ+ λ)

]
v̂

+
[
Re−1µ

] d2ŵ

dr2
+
[
Re−1

(
µ

r
+
dµ

dT

dT

dr

)
− ρU

]
dŵ

dr

−
[
Re−1

(
α2 (µ+ λ) +

µn2

r2

)
+ i ρ

(
αW + n

V

r
− ω

)]
ŵ

−
[
ρ

p
U
dW

dr
+ iα

]
p̂

+
[
Re−1 dµ

dT

dW

dr

]
dT̂

dr

+
[
Re−1

(
d2µ

dT 2

dW

dr
+
dµ

dT

(
dW

dr
+

1
r

dW

dr

)
+i
(
α
dλ

dT

(
dU

dr
+
U

r

)))
+
ρ

T
U
dW

dr

]
T̂ = 0
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and the energy equation[
−2 (γ − 1)Ma2Re−1

(
2µ
dU

dr
+
U

r

)]
dû

dr
(A.24)

+
[
− (γ − 1)Ma2Re−1

(
4µ
U

r2
+

2λ
r

(
dU

dr
+
U

r

)
+i 2µ

(
α
dW

dr
+
n

r

(
dV

dr
− V

r

)))
+ ρ

dT

dr
− (γ − 1)Ma2 dp

dr

]
û

−
[
2 (γ − 1)Ma2Re−1µ

(
dV

dr
− V

r

)]
dv̂

dr

+
[

2
r

(γ − 1)Ma2Re−1

(
µ

(
dV

dr
− V

r

)
−in

(
2µ
r
U + λ

(
dU

dr
+
U

r

)))]
v̂

−
[
2 (γ − 1)Ma2Re−1µ

dW

dr

]
dŵ

dr

−
[
i 2α (γ − 1)Ma2Re−1λ

(
dU

dr
+
U

r

)]
ŵ

− [(γ − 1)Ma2U
] dp̂
dr

+
[
ρU

p

dT

dr
− i (γ − 1)Ma2

(
αW + n

V

r
− ω

)]
p̂

−
[
(RePr)−1

k
] d2T̂

dr2
−
[
(RePr)−1

(
2
dk

dT

dT

dr
+
k

r

)
− ρU

]
dT̂

dr

+
[
−ρU
T

dT

dr
+ i ρ

(
αW + n

V

r
− ω

)
+ (RePr)−1

k

(
n2

r2
+ α2

)
− (RePr)−1

(
d2k

dT 2

(
dT

dr

)
+
dk

dT

(
d2T

dr2
+

1
r

dT

dr

))
− (γ − 1)Ma2Re−1 dµ

dT

(
2
U2

r2
+ 2

(
dU

dr

)2

+
(
dV

dr
− V

r

)2

+
(
dW

dr

)2
)
− (γ − 1)Ma2Re−1 dλ

dT

(
dU

dr
+
U

r

)2
]
T̂ = 0 .
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A.1.4 Boundary conditions

In order to solve the system of linearized equations established in equa-
tions (A.22) through (A.24) appropriate boundary conditions are to be
imposed. In order to avoid to impose artificial pressure boundary con-
ditions we rely on a staggered grid to discretize the equations. As we
will see in the following section in more detail we only impose boundary
conditions on the velocities and the temperature which are represented
on a grid employing the boundary points. The pressure boundary condi-
tion is only implicitly fulfilled through the linearized continuity equation
which is solved on a set of staggered grid points which does not include
the two boundary points.

For a well-posed problem the staggered representation of the system
of linearized equations (i.e. (A.22) through (A.24)) is subject to eight
boundary conditions. We follow Khorrami (1995) and impose decaying
disturbances at the far-field boundary. In other words, as r → ∞ all
disturbance amplitudes are required to vanish

r →∞ : û = v̂ = ŵ = T̂ = 0 . (A.25)

Due to the symmetry constraints around the pole r = 0 the boundary
conditions depend on the azimuthal wavenumber |n| (where the magni-
tude of the wavenumber denotes again the right- and left-turning mode
|n| = ±n). For n = 0 we impose

dŵ

dr
=
dT̂

dr
= 0

(A.26a)
û = v̂ = 0

for n = 1

ŵ = T̂ = 0
dû

dr
= 0 (A.26b)

û± iv̂ = 0

and for modes |n| > 1

û = v̂ = ŵ = T̂ = 0 . (A.26c)
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A.1.5 Matrix notation of equations

If the temporal stability problem is to be investigated the spatial and
azimuthal wavenumber α and n in equation (A.21) are real whereas ω is
the complex angular frequency

ω = ωr + iωi ,

which we wish to isolate. Equations (A.22) through (A.24) can be writ-
ten in the following matrix notation for the temporal problem (super-
script t) [

AtD2 + BtD + Ct
]
û = ωE tû . (A.27)

Here, D denotes the differential operator D = d
dr , D2 = d2

dr2 the second
derivative and û is given as

û =
[
û, v̂, ŵ, p̂, T̂

]T
. (A.28)

The non-zero coefficients of matrices At, Bt, Ct and Et can readily be
extracted from the above equations and for brevity is only exemplified
for the vectors of the first rows (i = 1; j = 1, . . . , 5) of the matrices (the
first rows correspond to the linearized continuity equation):

At1j = (0, 0, 0, 0, 0)

Bt1j = (1, 0, 0,
U

p
,−U

T
)

Ct11 =
1
p

dp

dr
− 1
T

dT

dr
+

1
r

Ct12 =
in
r

Ct13 = iα (A.29)

Ct14 =
1
p

{
−U
T

dT

dr
+
dU

dr
+
U

r
+ i

(
αW + n

V

r

)}
Ct15 =

1
T

{
2U
T

dT

dr
− dU

dr
− U

r
− U

p

dp

dr
− i

(
αW + n

V

r

)}
Et1j = (0, 0, 0,

i
p
,− i

T
)

In contrast to this, when investigating base flows with respect to their
spatial stability properties, the angular frequency ω and the azimuthal
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wavenumber n are real whereas the axial wavenumber is now complex

α = αr + iαi .

However, in order to arrive at a similar matrix notation of the spatial
eigenvalue problem a more elaborate way has to be taken. Due to the
viscous terms the momentum and energy equations contain quadratic
expressions of the axial wavenumber α we wish to isolate. We therefore
introduce a transformation of the form

q̄ = αq̂ , (A.30)

where q is used for the three velocities (u, v, w) and the temperature.
Note that the overbar denotes here the transformed variable and not a
base-flow quantity. For details concerning the motivation and the va-
lidity we refer to the work of Khorrami & Malik (1993). Using this
transformation we can now establish the global spatial eigenvalue prob-
lem (superscript s)

[
AsD2 + BsD + Cs

]
û = αEsû (A.31)

for the modified eigenvector

û =
[
û, v̂, ŵ, p̂, T̂ , u, v, w, T

]T
. (A.32)

The transformation given by equation (A.30) can be applied in a straight-
forward manner. Thus we again restrict this documentation to the vec-
tors of the first rows of each coefficient matrix of the spatial eigenvalue
problem, i.e., (i = 1; j = 1, . . . , 9), corresponding to the continuity
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equation for which no nonlinear wavenumber α occurs:

As1j = (0, 0, 0, 0, 0, 0, 0, 0, 0)

Bs1j = = (1, 0, 0,
U

p
,−U

T
, 0, 0, 0, 0)

Cs11 =
1
p

dp

dr
− 1
T

dT

dr
+

1
r

Cs12 =
in
r

Cs13 = 0 (A.33)

Cs14 =
1
p

{
−U
T

dT

dr
+
dU

dr
+
U

r
+ i

(
n
V

r
− ω

)}
Cs15 =

1
T

{
2U
T

dT

dr
− dU

dr
− U

r
− U

p

dp

dr
− i

(
n
V

r

)
− ω

}
Cs16 = Cs17 = Cs18 = Cs19 = 0

Es1j = (0, 0,−iα,− iαW
p

,
iαW
T

, 0, 0, 0, 0) .

Note that the same number of boundary conditions (corresponding to
equations (A.25) through (A.26c)) are sufficient to solve the spatial
eigenvalue problem.

A.2 Discretization on Gauss-Lobatto and Gauss
points

The discretization used for the solution of the linearized system of equa-
tions is based on a Chebyshev collocation method. The velocities and
the temperature are represented on Gauss-Lobatto points given by

ξj = cos
(
jπ

N

)
, j = 0, . . . , N , (A.34)

whereas pressure is defined on a staggered grid of Gauss points defined
by

ξj+1/2 = cos
(

(2j + 1)π
2N

)
, j = 0, . . . , N − 1 . (A.35)

Following Canuto et al. (1988) or Peyret (2002) the derivatives at any
Chebyshev collocation point can be represented in matrix form, how-
ever, due to the representation of the momentum and energy equations
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on Gauss-Lobatto points and the continuity equation on Gauss points
different differential operators need to be defined. In addition, interpo-
lating matrices become necessary to interpolate between the two sets of
grid points.

For a variable q at the collocation points defined by equation (A.34)
we have q(p)(ξj) = ΣjD

(p)
ij q(ξj). The coefficients of the first-order deriva-

tive matrix D(1)
ij are given by

D
(1)
ij =

ci
cj

(−1)i+j

ξi − ξj , 0 < i, j < N, i 6= j

D
(1)
ii = − ξi

2(1− ξ2
i )
, 1 < i < N − 1 (A.36)

D
(1)
00 = −D(1)

NN =
2N2 + 1

6
,

where c0 = cN = 2, ci = 1 for 1 < i < N−1. We note that Peyret (2002)
also gives an explicit expression for the second-order derivative matrix,
however, within the current work we employ the matrix multiplication
of D to obtain D

(2)
ij = ΣNk=0D

(1)
ik D

(1)
ik .

The derivatives q(p)(ξj+1/2) on the staggered Gauss points are calcu-
lated in the following manner: First the function values are interpolated
with a interpolation matrix (to be defined), successively differentiated
on the Gauss-Lobatto points by the operator defined in equation (A.36)
and afterwards extrapolated back onto the Gauss points.

As in the work of Khorrami (1991) we employ two interpolating ma-
trices to alternate between the staggered Gauss and the non-staggered
Gauss-Lobatto points which for completeness are given here. The in-
terpolation matrix from non-staggered to staggered grid the takes the
form

Mij =
(−1)i+j

(
1− ξ2

j+1/2

)1/2

N
(
ξi − ξj+1/2

) ,
i = 0, . . . , N ;
j = 0, . . . , N − 1

. (A.37)

The inverse interpolation is given by

M∗ij =
(−1)i+j+1

(
1− ξ2

i+1/2

)1/2

cjN
(
ξi+1/2 − ξj

) ,
i = 0, . . . , N − 1;
j = 0, . . . , N

, (A.38)



170 Linear stability theory

where cj is again defined as c0 = cN = 2, cj = 1 for 1 < j < N − 1. In
order for M and M∗ to be square matrices an extra row (i = N) and an
extra column (j = N) of zero elements is added.

In order to satisfy the boundary conditions at infinity a mapping
from the Chebyshev interval [−1, 1] to the physical domain [0, rmax] is
necessary. In addition, steep gradients of the base-flow profile and the
corresponding eigenfunctions are to be accurately resolved. Bayliss &
Turkel (1992) propose a two-parameter mapping which has been adapted
for the current problem

r(ξ) =
(

1− ξc − tan ((ξ − τ1) τ2)
s1

)
rmax

2
, (A.39)

where ξc = 1− 2rc/rmax and

τ1 =
τ0 − 1
τ0 + 1

τ2 =
tan−1 (s1(1− ξc))

1− τ1 (A.40)

τ0 =
tan−1 (s1(1 + ξc))
tan−1 (s1(1− ξc)) .

The parameter rc determines the radial location where the grid is to be
refined and s1 controls the degree of grid refinement.

Case N rc/r0 rmax/r0 s1

A 150 0.9 20 5.0
B 350 1.0 5 18.0

LES 292 1.0 20 45.0

Table A.1: Number of Chebyshev collocation points N and grid stretching pa-
rameters for validation cases A, B and eigenfunctions employed for all LES
cases.

A.3 Determination of disturbances in conservative
variables

The linear disturbances are given in primitive variables, i.e., the cylin-
drical velocities u, v, w, pressure p and temperature T . In contrast,
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the LES code solves for the vector of conservative variables given by
Q = (ρ, ρu1, ρu2, ρu3, E)T (in case of ADM-RT, see section 2.2). Hence,
the corresponding conservative variables need to be calculated in order
to impose these linear disturbances at the inflow.

The vector of the disturbances Q′, as introduced in equation (2.35),
is determined as follows

Q′ = (ρ̃, ρũ1 + ρ̃U1, ρũ2 + ρ̃U2, ρũ3 + ρ̃U3, Ẽ)T , (A.41)

where for clarity the notation introduced in equation (A.13) is employed.
The density perturbation is determined using the linearized equation of
state introduced in equation (A.14). Note that equation (A.41) employs
the Cartesian velocity components which are related to the cylindrical
components employed in the stability solver (for both disturbances and
base-flow components) through the rotation matrix u1

u2

u3

 =

 cos θ − sin θ 0
0 0 1

− sin θ − cos θ 0

 u
v
w

 . (A.42)

The linear disturbance of the total energy Ẽ is determined according to

Ẽ =
p̃

γ − 1
+

1
2
ρ
(
U1ũ1 + U2ũ2 + U3ũ3

)
(A.43)

+
1
2
ρ̃
(
U

2

1 + U
2

2 + U
2

3

)
.





Appendix B

Implementation details of sponge technique

For completeness, the details of the implementation of the sponge
which imposes the inflow profile together with the excited disturbances
and the sponges which maintain the quiescent surrounding of the com-
putational domain are given here.

B.1 Inflow sponge

As pointed out in section 2.5.2 (also see Fig. 2.6) the disturbances intro-
duced at the inflow are locally confined to the so-called inflow sponge.
Its spatial extent is given by a combination of an exponential decay in
radial direction combined with a Gaussian-shaped profile in downstream
direction. This local confinement enables entrainment of the surrounding
fluid. The functional form of this inflow sponge is given by

σinfl(r, z) =

{
Aspg,infl [f(r) · g(z)] : z > z0,infl

Aspg,infl [f(r) · g(z0,infl)] : 0 < z < z0,infl ,
(B.1)

where the inflow-sponge amplitude Aspg,infl = 1.0 and f(r) and g(z) are
the radial and streamwise distribution given by

f(r) =
(
1 + (exp{r2 log(rc/r0)} − 1)nr

)−1
(B.2)

g(z) = exp

{
−
(
z − zc,infl

dzinfl

)2
}
. (B.3)

In equation (B.1) we set z0,infl = 0.6r0 which shifts the starting point of
the one-sided Gaussian decay into the domain to have a short entrance
region of constant sponge amplitude. Thus, for z < z0,infl, the sponge
strength is set to σinfl(r, z) = σinfl(r, z0,infl). The parameters determin-
ing the radial decay in equation (B.2) are chosen as rc = 1.3r0 and
nr = 7.0. The parameters of the Gaussian profile in equation (B.3) are
set to zc,infl = 0.3r0 and dzinfl = 0.4r0. In Fig. B.1(a) the radial depen-
dence for this set of parameters is shown, whereas in Fig. B.1 (b) the
streamwise profile is plotted. In Fig. B.2 the sponge amplitude for the
inflow plane is visualized as a three-dimensional surface in the r–z-plane.
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Figure B.1: Inflow sponge strength distribution represented on discrete com-
putational grid: (a) σinfl(r, z = 0) in radial direction for z = 0 and (b)
σinfl(r ≈ 0, z) in streamwise direction for first radial grid line r = rmin.
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Figure B.2: Inflow sponge strength distribution represented on discrete compu-
tational grid in perspective view upstream: σinfl(r, z) within vicinity of inflow
region.

In the inflow region this sponge is active, i.e., before the time advance-
ment the conservative vector Q is driven to the reference state Qinfl.
As described before (see section 2.5.5), Qinfl is based on a collection of
instability waves that are superimposed on the laminar inflow profile
(see equation (2.35)). At each sub-step of the Runge-Kutta integration
the amplitude An and phase φn of each azimuthal modes n is modified.
We employ a similar random walk process as described by Lui (2003)
but here, in addition to the phase, also modify the forcing amplitude.
Therefore, random numbers rnd1 and rnd2 in the interval rnd ∈ (0, 1)
are determined (using the random number generator described by Press
et al. (1992), p. 272). Depending on the value of rndi, the amplitude and
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Table B.1: Description of random walk process with parameter bounds for rnd1

and rnd2.

Change by ∆ range for An range for φn
increase 0.00 < rnd1 < 0.55 0.00 < rnd2 < 0.65

no change – 0.65 < rnd2 < 0.85
decrease 0.55 < rnd1 < 1.0 0.85 < rnd2 < 1.0

Table B.2: Amount of change ∆ used for inflow randomization of amplitude
An and phase φn and lower and upper bounds of amplitude An.

Quantity ∆ per time step min max
An 0.005 0.03 0.10
φn 0.1ωn∆t – –

the phase are varied in a random walk process described in Table B.1,
i.e. increased or decreased by certain amounts ∆ which are tabulated
in Table B.2. The combination of the chosen parameters results in a
random distribution within the defined amplitude bounds, whereas the
phase relations between various modes is continuously varied and ac-
cording to the chosen values mostly increasing. Note that the amplitude
of each mode n is nonzero at all times as An ∈ [0.03; 0.10] and that the
maximum change per integration sub-step is restricted to ∆ = 0.005 (see
Table B.2). For clarity this is exemplified by looking at the azimuthal
wavenumber n = ±4 only. In Fig. B.3(a) the temporal randomization
of the disturbance amplitude An for azimuthal wavenumbers n = ±4 is
shown along with the corresponding development of the phase shift φn
in Fig. B.3(b). The amplitude values for the full Runge-Kutta time steps
(six-stage Runge-Kutta scheme) are marked by symbols. All modal exci-
tation amplitudes An are initialized using An = min(An)+∆An = 0.035
before starting the random walk process, but from thereon are indepen-
dent of each other, as can be seen in Fig. B.3(a).
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Figure B.3: Randomization of inflow disturbances: (a) disturbance amplitude
An and (b) phase shift φn for azimuthal wavenumbers n = ±4. n = 4:

and ; n = −4 and • .

B.2 Sponge preserving ambient-state and outflow
damping

As described in section 2.5.2, a drift of the mean pressure is prevented by
employing a surrounding sponge layer that we refer to as ambient sponge.
Similarly, to the inflow, the sponge drives the conservative state vector
Q to a state that corresponds to ambient fluid at rest. However, in order
not to prevent surrounding fluid from being entrained, only the density
and energy (and thereby pressure) are acted on. The spatial extent of the
sponge layer is given by a combination of two error functions described
by

σspg,amb = Aspg,amb [σr (1− σz) + σz · (1− f(r))] , (B.4)

where Aspg,amb is set to Aspg,amb = 0.25. The functions σ for the radial
and axial direction, respectively, are given by the expressions

σr =
1
2

[
1− erf

{
βr

(
−r +

(
rmax − Wr

2

))}]
(B.5)

σz =
1
2

[
1− erf

{
βz

(
z − Wz

2

)}]
. (B.6)

Here βi denote the coefficients to adapt the steepness of the profile and
Wi the corresponding spatial extents of the sponge layer, where the
subscripts r and z denote the radial and axial direction and the index
1 is used for the inflow region in z-direction. The algebraic formulation
is as proposed by Bodony et al. (Bodony & Lele, 2005; Bodony, 2006).
Similarly as the inflow sponge region is radially confined by f(r) defined
in equation (B.2), the ambient sponge sets in outside the inflow sponge
by using again f(r). The spatial distribution of the ambient sponge in
the vicinity of the inflow region can be seen in Fig. B.4. Fig. B.5 shows
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Figure B.4: Ambient sponge strength distribution in a perspective view up-
stream: σamb(r, z) in the inflow region.
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Figure B.5: Sponge amplitude distributions in vicinity of jet entrance: inflow
sponge given in black, ambient sponge given in grey.

the inflow sponge and the ambient sponge in the jet entrance region.
The outflow sponge is defined similarly to the streamwise part of the

ambient sponge:

σout =
Aspg,out

2

[
1− erf

{
βout

(
−z +

(
zmax − Wout

2

))}]
(B.7)

Here, Aspg,out = 1 and denotes the amplitude at the outflow, βout again
is the coefficient to adapt the steepness of the profile and Wout the cor-
responding spatial extent of the sponge layer. All parameters employed
within the sponges are listed in table B.3.
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Table B.3: Parameters for inflow, ambient and outflow sponge.

inflow infl ambient amb outflow out

Ai 1.0 0.25 1.0
βi βr = βz = 5.5 0.5
Wi Wr = 1.2;Wz = 1.25 8.0
rmax Lr/r0

zmax Lz/r0



Appendix C

Phase-speed and grid anisotropy effects

The effect of the phase speed anisotropy of the employed compact
schemes is briefly discussed. Also, the effect of the different mesh spac-
ings in different coordinate directions is taken into account.

The grid Strouhal numbers quoted in the section 2.9 are estimates
since the determination is based on the assumption of perfectly aligned
waves. Determining the exact obtainable frequency for the system (dis-
cretization, order-reduction due to boundary closure, effect of sponges
on propagating waves, etc) is very complex and the given values are
to serve as estimates only. Oblique waves have a less restrictive grid
Strouhal number Stg due to anisotropy. For instance, we restrict the
discussion to a r-θ plane and find in figure C.1 the polar plot of the two-
dimensional phase speed anisotropy for the first derivative approximation
using tenth-order compact finite differences (for further details see Lele,
1992). Note that the phase speed is plotted for different nondimensional
wavenumbers k∆s/π = 1/10, 2/10, . . . , 10/10 assuming equidistant mesh
spacings in radial and axial directions (r and z) and α is the angle be-
tween the propagation direction and the downstream positive z axis.
From this figure we find that small wavenumbers are well resolved and
the phase speed is very close to unity, whereas the innermost curves are
the shortest waves that are resolved on the mesh. Note in particular
that least errors are found along angles of 45 degrees.

 
 
 

8/10π
9/10π

10/10π

Figure C.1: Polar plot of phase speed anisotropy for first derivative approxima-
tion using tenth-order compact scheme (Lele, 1992). Phase speeds are plotted
for wavenumbers k∆s/π = 1/10, 2/10, . . . , 10/10.

The above arguments hold for equidistant grid spacings. As shown
in sections 2.6 and 3.1.1, we employ a grid with different spacings in
the radial and axial directions (as our azimuthal discretization employs
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a Fourier spectral method we restrict ourselves again to a r-z plane).
The unequal grid spacing in the different coordinate directions obvi-
ously influences the phase speed at propagation angles near ±π/2 (here
measured from the downstream z axis or radial r axis) and does not
affect perfectly aligned waves. The phase speed anisotropy for unequal
grid spacing (Colonius & Lele, 2004) is given by

cph,num =
cos(α)kmod(k cos(α)) + ρ sin(α)kmod(k sin(α)/ρ)

k
, (C.1)

where cph,num = cph,num(k, α, ρ) is the computed phase speed and kmod

is the modified wavenumber of the tenth-order compact finite-difference
scheme. For the moment, let ρ be the ratio of the grid spacing along the
grid line to the grid spacing in perpendicular direction. For differenti-
ation with respect to z we set ρ = ρ̃ = ∆z/∆r, for differentiation with
respect to r we set ρ = ˜̃ρ = ∆r/∆z. For grid ratios smaller than unity
(i.e. a relative increase of the perpendicular grid spacing) the anisotropy
for waves perpendicular to the grid line becomes worse.

For the three observer locations in the acoustic near-field at φ =
30◦, 60◦ and 90◦ the grid ratios are ρ̃ = 1.25, 0.59, 0.42 and ˜̃ρ =
0.8, 1.7, 2.4, respectively. Using equation (C.1) the polar plots of the
phase speed for the three observer locations are determined and shown
in figures C.2 - C.4.

(a)

 
 
 
 
 
 

(b)
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Figure C.2: Polar plot of phase speed anisotropy for first derivative ap-
proximation at observer location φ = 30◦ using tenth-order compact
scheme (Lele, 1992). Phase speeds are plotted for wavenumbers k∆s/π =
1/10, 2/10, . . . , 10/10 for a non-equidistant grid with ratio (a) ρ̃ = 1.25 and
(b) ˜̃ρ = 0.8. The isovalues k∆s/π = 8/10, 9/10, 10/10 are highlighted by sym-
bols (dashed lines of equidistant grid spacing for comparison).
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Figure C.3: Polar plot of phase speed anisotropy for first derivative ap-
proximation at observer location φ = 60◦ using tenth-order compact
scheme (Lele, 1992). Phase speeds are plotted for wavenumbers k∆s/π =
1/10, 2/10, . . . , 10/10 for a non-equidistant grid with ratio (a) ρ̃ = 0.59 and
(b) ˜̃ρ = 1.7. The isovalues k∆s/π = 8/10, 9/10, 10/10 are highlighted by sym-
bols (dashed lines of equidistant grid spacing for comparison).
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Figure C.4: Polar plot of phase speed anisotropy for first derivative ap-
proximation at observer location φ = 90◦ using tenth-order compact
scheme (Lele, 1992). Phase speeds are plotted for wavenumbers k∆s/π =
1/10, 2/10, . . . , 10/10 for a non-equidistant grid with ratio (a) ρ̃ = 0.42 and
(b) ˜̃ρ = 2.4. The isovalues k∆s/π = 8/10, 9/10, 10/10 are highlighted by sym-
bols and for comparison are given in dashed lines for a equidistant grid spacing.

From this we find three relevant locations with ρ < 1 shown in
figures C.2 (b) (∂/∂r, down-/upstream propagating) and C.3 (a) and
C.4 (a) (∂/∂z, radially propagating). Significant phase speed anisotropy
is found for the radially most distant location only (φ = 90◦, r = 18r0).
Here, (see figure C.4 (a)) waves at α = π/2 to the downstream axis
z are propagated anisotropically and only wavenumbers k∆s < 4/10π
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are propagated isotropically. Hence, the effective cutoff frequency of the
grid is lower compared to the estimate. Note that the relaxation-term
subgrid model is employed and hence the anisotropic phase propagation
of high wavenumbers is of minor relevance for the LES.
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Bogey, C., Bailly, C. & Juvé, D. 2000 Numerical simulation of
sound generated by vortex pairing in a mixing layer. AIAA J. 38 (12),
2210–2218.
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Abstract

The effect of nonlinear interaction of instability eigenmodes on jet flow 
transition and its noise for a round jet at a Mach number of Ma = 0.9 and 
a Reynolds number of Re = 4.5 · 105 based on jet exit conditions is 
investigated by large-eddy simulations. At the inflow, helical perturbations 
determined from linear stability theory are superimposed on a laminar 
base flow in order to initiate transition to turbulence. Two different ranges 
of azimuthal wavenumbers n are excited. The first type of simulations 
excites modes |n| = 1,…,8 while the second excludes |n| < 3 from the 
inflow forcing. For both modal compositions we investigate the effect of 
the disturbance amplitude and vary it in the range from 1.5% to 4.5% of 
the jet inlet velocity. Thereby, we aim to characterize sources of noise 
generation and, in particular, underlying mode interactions.

For the first type of excitation the changes in forcing amplitude mostly 
affect the streamwise position of the transition process which is shifted 
upstream for larger excitation levels. The transition process is similar for 
the three amplitudes and is characterized by strong vortex pairings that 
directly place an imprint on the emitted noise. The simulation results are 
in fair agreement with experimental and numerical reference data.

For the second type of excitation we observe changes in the 
transition of the jet with increasing forcing amplitude. As the shear layer 
roll up, pronounced vortex pairings are more and more weakened and 
vortex rings are distorted to form three-dimensional structures. This 
change in transitional behavior affects the acoustic near field which 
exhibits features of both, natural and tonally-excited jets. In particular for 
high forcing amplitudes, a tonal component outside the initially excited 
frequency range is observed. This tone can be linked to fluid-dynamic 
events in the early transitional region as well as at the end of the potential 
core. Furthermore, its frequency can be explained by a weakly nonlinear 
interaction of initially excited eigenmodes.

To substantiate the soundness of the predictions, insensitivity against 
the choice of certain numerical parameters is demonstrated. The 
relaxation-term coefficient of the ADM subgrid-scale model is reduced 
and effects are found to be small. Subgrid-scale model effects are further 
investigated by simulating a baseline configuration using approximately 
deconvolved information. Finally, we address the effect of the azimuthal 
resolution on our simulation results.
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