
ETH Library

Origo Mylyn plug-in and advanced
issue management

Master Thesis

Author(s):
Stämpfli, Michael

Publication date:
2009

Permanent link:
https://doi.org/10.3929/ethz-a-005763275

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-005763275
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Origo Mylyn Plug-In
and

Advanced Issue Management

Michael Stämpfli

02-910-867
Master Thesis

August 2008 - February 2009

Chair of Software Engineering
Department of Computer Science

ETH Zürich

Dr. Till G. Bay
Prof. Bertrand Meyer

Abstract

The Origo issue tracker is a small but powerful tool to keep track of
outstanding bugs in project.

Using the issue API, a seamlessly integrated issue editing plug-in
has been implemented for the Eclipse IDE.

With this thesis, we try to improve the usability of the issue
tracker itself and the Eclipse plug-in by performing an extensive re-
design of the issue tracker.

ii

Acknowledgments

I would like to thank my supervisor Till Bay for his guidance and
support in design decisions. I would also like to thank Dennis Ri-
etmann for his support in Mylyn and Origo. My thanks also belong
to Dominique Schneider, who always gave me valuable information
about implementation details, Patrick Ruckstuhl for support with the
Origo back-end and Julian Tschannen for an introduction in Drupal.

iv

Contents

1 Introduction 1
1.1 Goals . 1
1.2 Overview . 1

2 Origo 2
2.1 General . 2
2.2 Back-end . 2

2.2.1 Nodes . 3
2.3 Front-end . 3

3 Issue Tracker Redesign 5
3.1 Overview . 5
3.2 Improvements . 6

3.2.1 Additional attributes . 6
3.2.2 Search and filter options 6
3.2.3 Issue Notification . 8

4 Mylyn 10
4.1 Overview . 10
4.2 Existing Work . 11
4.3 Data model . 12
4.4 Attachments . 13

5 Other work on Origo 14
5.1 Project creation with project owner 14
5.2 Project removal . 14
5.3 FTP race condition . 15

6 Conclusion 16
6.1 Difficulties . 16
6.2 Future Work . 16

vi

Chapter 1

Introduction

1.1 Goals

The Origo issue tracker allows developers to keep track of outstanding issues in
their projects. It is often the case, that a project has more than thousand registered
issues (open and closed ones). To operate efficiently with such a large amount of
data, it is very essential, that the issue tracker provides appropriate features. Due
to user input and our own experience with issue trackers, we identified several
flaws. The first goal of this master thesis is to correct the detected flaws.

The second part of this master thesis discusses a plug-in to Eclipse [5] called
Mylyn [9]. It allows users to locally edit issues. This plug-in is closely related to
the issue tracker, since it uses the Origo API to retrieve and update issues. If the
issue tracker changes, then the plug-in needs to be adapted to the changes as well.
The second goal of this master thesis is to make the plug-in compatible with the
redesigned issue tracker.

1.2 Overview

To build some basic knowledge about Origo, Chapter 2 gives a short introduction
in the Origo system. Chapter 3 presents the implemented redesign of the issue
tracker. Chapter 4 discusses the integration of the Origo issue tracker with Mylyn.
Some additional work on Origo is explained in Chapter 5. The paper concludes
with the results and some ideas for future work in chapter 6.

1

Chapter 2

Origo

2.1 General

Origo [12] is a distributed development platform. It is open, modular, extensible
and integrates various tools. It consists of a back-end and a front-end which are
separated. The back-end is responsible for controlling and managing data, the
front-end is responsible for displaying data and information retrieved from the
back-end. The interaction between front-end and back-end is done using API
calls which are implemented using XMLRPC [20].

An important feature of Origo is the notion of a work item. Work items can
be used by any Origo user to keep track of progress in own projects as well as in
bookmarked projects.

2.2 Back-end

The back-end of Origo is a middleware architecture and control infrastructure for
the Origo platform. The back-end contains programmed use cases that direct the
interaction with the different services. The main target was a very good scalability
and extensibility. For more detailed information about the back-end cf. [14].

2

2.2.1 Nodes

The back-end consists of nodes of different types, each having a different role
and function. Nodes work in a P2P environment which makes it easy to add and
remove nodes dynamically to and from the network. The inter-node communi-
cation uses a reliable message passing layer implemented as a JXTA service [8]
using VamPeer [16].

For each node type, it is possible to have multiple actual nodes running. This
allows good scalability and redundancy. Nodes can be addressed directly using
their name.

• Core node: Message bus and controller of the back-end. It controls the other
nodes according to user defined use cases by sending control instructions.

• API node: Provides an XMLRPC interface for Origo using Goanna [6].
For each incoming XMLRPC, a specific message is constructed and sent to
the Core node. An API node can be started in a normal mode and in an
internal mode. The internal mode provides special services that should only
be available for the front-end.

• Config node: Used to execute configuration scripts and generate configura-
tion and access control files directly on the server. This is used e.g. for the
FTP and Subversion access rights management.

• Storage node: Responsible for managing all Origo related data. Internally a
MySQL database [11] is used to store data persistently.

• Mail node: Allows sending of mails to Origo users. It can use a local or
remote mail server to deliver mails.

• Build node: Starts a compilation of a given project. Not used at the moment.

2.3 Front-end

The front-end of Origo is based on the Drupal content management system [4]. It
provides all necessary functionality to manage a project in Origo using the back-
end. Drupal has a flexible extension system to include own themes and modules.
Own modules use hooks to interact with the Drupal core and internal processes
(see Drupal API [3]). Each Origo project is a separate Drupal site which theoreti-
cally could have its own special modules and themes. Also each Origo project has

3

an own Drupal database which allows to scale. An important feature is a single
sign-on mechanism which allows a user to browse every project without having
to log in every time. This is necessary because each project has its own Drupal
site and therefore its own database and user table. The single sign-on mechanism
uses two cookies to store a Drupal session in one cookie and an Origo user name
together with the encrypted password in the other cookie. The main page is Origo
Home where work items of owned and bookmarked projects are displayed. This
page is independent of the currently browsed project and retrieves its data directly
from the back-end using API calls.

4

Chapter 3

Issue Tracker Redesign

3.1 Overview

The Origo issue tracker is a small but powerful mechanism for keeping track of
outstanding bugs in a project. It allows users to report irregular behavior of a
project. The goal of the reported issue is to provide enough information, so that
programmers are able to resolve the observed problem.

The information that a reported issue provides can be categorized as follows:

• An issue has a title which tells in very few word, what the issue is all about.

• A description which should contains all necessary information to under-
stand the observed problem. Such information could be the steps to repro-
duce the problem, the expected and the observed behavior and information
about the environment, in which the problem occurred.

• An issue is either public or private. Private issues will only be visible to
project owners and members, public issues are visible to everyone.

• An issue is either open or closed. If an issue is closed, then the reported
problem has been fixed.

• An issue can be assigned to a person, who is responsible to solve the prob-
lem.

• Additional tags to categorize the issue.

5

• Issues can also be commented by any other user, if they for example observe
similar behavior.

As soon as someone adds, edits or comments an issue, the notification mechanism
will be triggered. All users, who are subscribed to the issue workitem [9], will
receive an email with the changed content.

3.2 Improvements

Over time, the issue tracker revealed more and more features that were incomplete
or missing. Using the input of the Origo users and our experience with other issue
trackers such as Bugzilla [2] and Trac [19], we created a redesign of the Origo
issue tracker. The redesign consists of three different steps, which we discuss in
the following.

3.2.1 Additional attributes

Currently the state of issues can only be expressed by the status attribute, which
is either “open” or “closed”. This is too little information to represent all possible
states. What to do about duplicates? There is no official way to mark an issue
as a duplicate of another. With the redesign we introduced a new attribute called
resolution. The resolution is either “Open”, “Fixed”, “Won’t fix”, “Duplicate” or
“Works for me”. It is internally saved as a special tag resolution::value where
value is replaced by one of the resolution options.

The redesign also demands to add issue planning attributes. The first new
attribute is the deadline, which defines the last possible date at which the issue has
to be fixed. The second new attribute is the estimated amount of work that will be
necessary to fix the issue.

3.2.2 Search and filter options

The issue tracker uses the Taxonomy Module [17] to categorize issues by tags.
With Taxonomy comes a query language called Taxonomy Query Language (TQL)
[18]. In general, TQL is query language to search for Drupal nodes that contain
the tags entered in the query. Since issues are also Drupal nodes, the result of such
a query will also contain issues.

6

TQL as the search engine for the issue tracker would have several disadvan-
tages. TQL can only search for tags. It is not possible the query to title or the
reporter of an issue. This missing feature is a heavy drawback. Also, TQL re-
quires users to know its syntax to perform a query. This is not that bad, because
TQL is quite easy and intuitive. But it would be more comfortable and efficient to
search issues with a single mouse click instead of entering a query in a text field.
Hence TQL is not well suited for an efficient issue search engine.

Instead we implemented a separate search mechanism specifically for issues.
The main idea is to make users able to search issues with a few mouse clicks. We
used the a plug-in for Mozilla Thunderbird called Seek Plug-in for Thunderbird
[15] as a guideline. For each attribute of an issue the issue tracker search engine
shows a list box. The list boxes are filled as follows:

• Status list box: possible values are “open” and “closed”

• Resolution list box: possible values are “Fixed”, “Won’t fix”, “Duplicate”
and “Works for me”

• Tags list box: possible values are all tags of all project issues

• Visibility list box: possible values are “Public” and “Private”

• Reporter list box: possible values are all users who reported an issue

• Assigned to list box: possible values are all users to whom an issue is as-
signed to

Figure 3.1 shows how it looks like. Clicking a item of a list box will active the
filter and show only issue whose attributes match the selected value. Additionally
we provide a text field to search for a specific text in the title or the description of
an issue.

Figure 3.1: The layout of the issue filter.

As soon as the filter changes an AJAX [1] request is sent to the Origo front-
end, where the actual filtering takes place. As long as the client didn’t receive

7

a response from the server, it replaces the old issue table with a progress bar.
The Origo front-end searches all issues, that match the selected filter values, and
generates a new issue table in HTML. Then it sends the issue table back to the
client, which replaces the progress bar with the new issue table. This guarantees
a fast and comfortable way to filter issues even without reloading the whole page.

To improve usability even further, the issue tracker allows filters to be saved
under a name. You can for example save a filter to select all open issues, that
are assigned to you under the name “My issues”. A button “My issues” will then
appear in the “Personal filters” section (see Figure 3.2). Clicking this button will
then instantly set the filter such that it shows all open issues, that are assigned to
you.

Figure 3.2: Personal filters are shown above the filter section.

3.2.3 Issue Notification

The issue notification is a tool that notifies users about changes on issues. All
users who marked the issue workitem subscription will receive an email for every
change. Unfortunately this leads to an unnecessary email flood, since most users
would only like to be informed about few issues and not all of them. Besides it is
very troublesome for the users if they receive a lot of issue notifications of which
90% is garbage.

For these reasons we refined the mechanism to provide a more fine grained
subscription. Beside the issue workitem subscription, it is now possible to sub-
scribe single issues. So users can subscribe themselves to the issue in which they
are interested.

The implementation of the issue subscription is very simple. Every user, who
wants to subscribe to an issue, can add the tag subscribed::user-name to the issue,
where user-name will be replaced with the name of the subscribing user. The issue
view provides buttons to subscribe or unsubscribe issues.

As soon as an issue changes, the back-end collects all email addresses of the
users, who are subscribed to the issue workitem, and all email addresses of the

8

Figure 3.3: A button is shown in the issue view to subscribe or unsubscribe the
current issue

users, who are subscribed to the changed issue. Since a user can be subscribed in
two ways, the back-end has to guarantee that no user receives two emails about
the same change. The easiest way to do this, is by computing the union of the two
address sets. Then the back-end send a notification email to the addresses of the
united set.

9

Chapter 4

Mylyn

4.1 Overview

Mylyn [9] is a task management plug-in for Eclipse [5]. The developers describe
it as follows:

Mylyn is a task-focused interface for Eclipse that reduces information
overload and makes multi-tasking easy. It does this by making tasks
a first class part of Eclipse, and integrating rich and offline editing for
repositories such as Bugzilla, Trac, and JIRA. Once your tasks are in-
tegrated, Mylyn monitors your work activity to identify information
relevant to the task-at-hand, and uses this task context to focus the
Eclipse UI on the interesting information, hide the uninteresting, and
automatically find what’s related. This puts the information you need
to get work done at your fingertips and improves productivity by re-
ducing searching, scrolling, and navigation. By making task context
explicit Mylyn also facilitates multitasking, planning, reusing past ef-
forts, and sharing expertise.

Mylyn has a generic interface that makes it easy to integrate any repository into
Eclipse. The plug-in, that connects a repository with Mylyn, is called a connec-
tor. Each repository, like Bugzilla, Trac or JIRA, has its own connector. Dennis
Rietmann created in his master thesis a connector for the Origo issue tracker [13],
which makes it possible to locally edit Origo issues.

The Origo connectors is based on Mylyn 2. Recently Mylyn advanced to the
major version 3. The developers made the API more consistent and thus it changed

10

a lot. As a consequence, the existing Origo connector doesn’t work with Mylyn
3. In the following, we present the Origo connector version 2 based on Mylyn 3.

Figure 4.1: A typical overview of an issue in Mylyn

4.2 Existing Work

Documentation for the API of Mylyn 3.x barely exists. There is a porting guide
[10] to adapt a connector from Mylyn 2.x to Mylyn 3.x, but it is poorly struc-
tured and incomplete. The only reliable resources are the existing connectors for
Bugzilla, Trac and JIRA. In the development process we often considered the
source code of those connectors.

To concepts behind the Origo connector are well explained in the master thesis
of Dennis Rietmann in chapters 5-7 [13]. In the following, we will not explain
these concepts again, since they didn’t change, but rather show the differences
between the old and the new Origo connector.

11

4.3 Data model

The issues are retrieved by the Origo API in a hash map based representation.
This representation will then be mapped to the class Issue, which is the internal
representation for the Origo connector. Formerly, this class had to be a subclass
of AbstractTask for Mylyn to understand it. In Mylyn 3, Issue can be a non-
descendant class. The class Issue has then be mapped to the class TaskData. This
class is the main representation of a task in Mylyn 3. Every Origo issue or Bugzilla
bug has to be mapped to TaskData. A task is identified by a per-repository unique
id. In the case of the Origo connector, this would be the attribute “issue_id”.

Figure 4.2: Convert issues from Origo representation to Mylyn representation and
vice versa

The next important concept heavily related to tasks are task attributes. An
attribute has two functions:

1. it stores the value of a field of the class Issue like the title or the description.

2. it stores meta data about the value, such as data type, read-only and label
string, to define the presentation style in the UI plug-in.

The meta data for the attribute creation is stored in the enumeration class OrigoAt-
tribute. The mapping from Issue to TaskData happens in the function OrigoTask-
DataHandler.updateTaskData(). For each entry in OrigoAttribute, it creates an
attribute in the TaskData instance and sets its meta data. Afterwards, it sets the
values of the attributes with the values from Issue.

Instead of converting the hash map representation to the class Issue and the
class Issue to the class TaskData, one could easily implement a direct conversion

12

from the hash map representation to the class TaskData. I decided against this
solution, since the class Issue exactly represents an Origo issue and it adds an
additional degree of structure.

4.4 Attachments

A very essential feature of the Origo connector is the attachment mechanism. Is-
sue attachments can be very handy to provide additional information about issues
like screenshots or source code files.

Figure 4.3: Add attachments to provide additional information about an issue

Attachment files are managed by Drupal, the Origo front-end. Each project
has it own folder, in which attachments are saved. This means, that attached
files must be uploaded to this very folder. Because of this, the attachment upload
procedure works as follows:

1. The attachment will be uploaded via FTP to the users FTP account.

2. The Origo connector calls the functions issue.add_attachment via XML-
RPC.

3. The Origo back-end will then move the file from the users FTP account to
the project attachment folder and save the attachment meta data in the Origo
and Drupal database.

After these three steps, the attachment is accessible from the back-end using API
calls and from the front-end using the web interface.

The download of an attachment is a lot simpler. Since the attachment files are
managed by the Origo front-end, we can access all of them with a HTTP request.
The URL of the attachment file called “attached_file.jpg” on project “myproject”
looks like this: http://myproject.origo.ethz.ch/system/files/attached_file.jpg.

13

Chapter 5

Other work on Origo

This chapter gives a overview over some small tasks related to this master thesis.

5.1 Project creation with project owner

The project creation consisted of two steps:

1. The project creation

2. Adding the project owner

I adapted the API of the project creation to combine those steps into a single
one. The API call project.create now takes an optional parameter “owner”. If the
owner is not empty, the specified user will automatically be set as the owner of
the project. If the owner is empty, the project will be created without an owner.

5.2 Project removal

Since there will always be unused projects, the Origo administrators need to be
able to remove projects. For this, I implemented an API call project.remove. The
project removal consists of several steps:

1. The project and all its dependencies have to be removed from the Origo
database. Project dependencies are issues, communities, user roles for the
project, etc.

14

2. The subversion repository has to be deleted. A backup of the latest reposi-
tory dump will be saved in a zip archive.

3. The subversion access file has to be updated.

4. All project releases have to be deleted.

5. The shared jabber rooster [7] has to be removed.

6. The project has to be removed from Drupal. This is achieved by dropping
the database origo_project-name, where project-name will be replaced by
the removed project name.

5.3 FTP race condition

We continuously received complaints about newly created users, who could not
login to their FTP account. The source of this error lies in a race condition of
the messages sent by user creation use case in the Origo back-end. It may have
happened that the ftp access file has been updated before the new user was inserted
in the database. This is now fixed.

15

Chapter 6

Conclusion

6.1 Difficulties

The biggest difficulties occurred with the porting of the Origo connector from
Mylyn 2 to Mylyn 3. Documentation barely exists and it was thus very difficult to
understand how Mylyn 3 works. Fortunately the source code of existing connec-
tors for Bugzilla and Trac provided enough information make the Origo connector
work.

6.2 Future Work

There are some possibilities to extend the Origo issue tracker and the Origo con-
nector.

• Issue planning attributes like deadline and estimated amount of work have
already been implemented. But in this context there is at least one attribute
missing: the scheduled date, which indicates a point in time where the user
plans to fix an issue. This attribute exists per issue and user, which requires
an additional table in the database of the Origo back-end.

• Currently all issue data is stored double. The back-end stores it to provide
the API for issues. The front-end needs to store it because of the underlying
structure of web pages of Drupal. This can easily lead to inconsistencies,
between the two systems. It would be more adequate to save it only in the

16

back-end. One would have to carefully investigate the necessary changes in
the front-end.

• The configuration of the Origo connector is currently hardcoded, e.g. the
attributes of an issue, the URL of the FTP upload server, the special tags and
their possible values (resolution: normal, fixed, won’t fix, duplicate, works
for me). It would be nice, if the configuration was stored in the Origo back-
end as well. As soon as the Origo connectors starts, it would then update
its config with the server. This way the connector would be more flexible
and we wouldn’t have to release a new version of the Origo connector with
every new special tag.

17

List of Figures

3.1 The layout of the issue filter. 7

3.2 Personal filters are shown above the filter section. 8

3.3 A button is shown in the issue view to subscribe or unsubscribe
the current issue . 9

4.1 A typical overview of an issue in Mylyn 11

4.2 Convert issues from Origo representation to Mylyn representation
and vice versa . 12

4.3 Add attachments to provide additional information about an issue 13

18

Bibliography

[1] AJAX. URL http://www.w3schools.com/Ajax/Default.Asp.

[2] Bugzilla. URL http://www.bugzilla.org/.

[3] Drupal API. URL http://api.drupal.org/.

[4] Drupal Content Management System. URL http://drupal.org/.

[5] Eclipse IDE. URL http://www.eclipse.org/.

[6] Goanna project. URL http://goanna.sourceforge.net.

[7] Jabber. URL http://www.jabber.org/.

[8] JXTA Project. URL http://www.jxta.org.

[9] Mylyn Plug-in for Eclipse. URL http://www.eclipse.org/
mylyn/.

[10] Mylyn Porting Guide. URL http://wiki.eclipse.org/Mylyn/
Porting_Guide/3.0.

[11] MySQL Database. URL http://www.mysql.com/.

[12] Origo. URL http://www.origo.ethz.ch.

[13] Dennis Rietmann. Origo plug-ins - extension and maintenance. Master’s
thesis, ETH Zürich, March 2008.

[14] Patrick Ruckstuhl. Origo core - middleware and controller for origo. Mas-
ter’s thesis, ETH Zürich, July 2007.

[15] Seek Plug-in for Thunderbird. URL http://simile.mit.edu/
seek/.

19

http://www.w3schools.com/Ajax/Default.Asp
http://www.bugzilla.org/
http://api.drupal.org/
http://drupal.org/
http://www.eclipse.org/
http://goanna.sourceforge.net
http://www.jabber.org/
http://www.jxta.org
http://www.eclipse.org/mylyn/
http://www.eclipse.org/mylyn/
http://wiki.eclipse.org/Mylyn/Porting_Guide/3.0
http://wiki.eclipse.org/Mylyn/Porting_Guide/3.0
http://www.mysql.com/
http://www.origo.ethz.ch
http://simile.mit.edu/seek/
http://simile.mit.edu/seek/

[16] Beat Strasser. VamPeer - JXTA implementation for Eiffel. Master’s thesis,
ETH Zürich, March 2007. URL http://vampeer.origo.ethz.ch.

[17] Taxonomy Module. URL http://drupal.org/handbook/
modules/taxonomy.

[18] TQL - Taxonomy Query Language. URL http://drupal.org/
project/tql.

[19] Trac. URL http://trac.edgewall.org/.

[20] XML-RPC. URL http://www.xmlrpc.com/.

20

http://vampeer.origo.ethz.ch
http://drupal.org/handbook/modules/taxonomy
http://drupal.org/handbook/modules/taxonomy
http://drupal.org/project/tql
http://drupal.org/project/tql
http://trac.edgewall.org/
http://www.xmlrpc.com/

