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Abstract

This thesis provides a summary of reconstruction algorithms for compressive sensing.

In addition, we present a new algorithm (the Modified Frame Reconstruction or MFR algo-
rithm) for signal reconstruction in compressive sensing. This algorithm generalises previous
iterative hard thresholding algorithms. We prove conditions for successful reconstruction of
the original data signal. In addition we show that by overestimating the sparsity of the data
signal for our new algorithm, the success rate of the algorithm can be increased.

We also give two modifications to this algorithm: the incorporation of a least squares step and
an adaptive method for choosing the step-length. We prove that both algorithms converge to
the correct solution under conditions similar original un-modified algorithm. Empirical evi-
dence shows that these modifications dramatically increases both the success rate and the rate
of convergence of the modified algorithms in comparison to the un-modified algorithm. Fur-
ther the improvement is large, up to two orders of magnitude faster. Simulations show that
in some cases the modified algorithm outperforms existing compressed sensing reconstruction
methods.
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Notation

In this document, unless otherwise said, we will denote scalars in lower case, e.g. x, vectors x
in bold font and matrices X in capitals. We will use R to represent the real numbers and C to
represent the complex numbers. When we write X ∈ Rm×n we will take this to mean that X is
an m× n matrix with entries from the real numbers. Similarly X ∈ Cm×n means X is a complex
valued m× n matrix. We will use ·T and ·∗ to represent real and complex conjugate transpose
for a matrix. A complete listing of the notation used can be seen in Table 1.

We now present a few basic properties of matrices, norms and distributions.

0.1 Matrices & Vectors

Recall the following facts about matrices, eigenvalues and singular values. Let A ∈ Cm×n be
a matrix with singular values σ1, . . . , σt, ordered so that 0 6 |σ1| 6 |σ2| 6 · · · 6 |σt| where
t = min{m, n}. Now let λ1, . . . , λn be the ordered eigenvalues of ATA, then these eigenvalues
satisfy λi = |σi|2, for i = 1, . . . , t. Similarly for the eigenvalues of AAT. Let B ∈ Cn×n be a
square matrix. Then the Rayleigh quotient

ρB(x) ,
xTBx
xTx

, (1)

is bounded by the maximum and minimum eigenvalues of B, i.e. λmin(B) 6 ρB(x) 6 λmax(B)
for all x ∈ Cn.

We will also frequently refer to the Moore-Penrose pseudo-inverse A† of a matrix A ∈ Cn×n.
This is defined to be

A† , (A∗A)−1 A∗, (2)

but if this does not exist, for instance if neither the rows nor columns are linearly independent,

9
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it can be defined via the limiting process

A† , lim
δ→0

(A∗A + δI)−1 A∗, (3)

which exists, even if the inverse of A∗A does not. The pseudo-inverse is of interest because it
gives the solution to the least-squares minimisation problem

x̂ = arg min
x∈Cn
‖y− Ax‖2 , (4)

given y ∈ Cm and A ∈ Cm×n. The solution, x̂, is given by x̂ = A† A∗y.

For a vector x ∈ Rn we will write xs to denote the best s-sparse approximation to x, given by
the s-largest (in magnitude) components. We will show later that this is a minimiser of

‖x− xs‖p (5)

for any 1 6 p < ∞. The `p norm is defined in the next section.

Now let Λ ⊂ {1, 2, . . . , n} be a set of indices and let k = |Λ|. Let x ∈ Rn be a vector. Then
we write xΛ ∈ Rn to denote the vector that agrees with x on the components given by Λ and 0
elsewhere, i.e.

xΛ ,


(xΛ)i = xi if i ∈ Λ

(xΛ)i = 0 otherwise.

. (6)

For a matrix X ∈ Rm×n or X ∈ Cm×n we take XΛ to mean the m × k matrix with columns
specified by Λ.

0.2 Norms

Throughout this thesis we will make use of a number of norms on Hilbert spaces.

Definition 0.1. A Hilbert space H is a real or complex inner product space that is complete under the
norm defined by the inner product. For any x ∈H , we write

‖x‖H , 〈x, x〉H , (7)

where 〈·, ·〉H : H ×H −→ R is the inner product.

If it is clear from the context we will occasionally drop the subscript. Examples of Hilbert spaces
include Rn with the Euclidean norm.

Throughout this thesis we will talk about `p norms which give rise to Hilbert spaces over the
real and complex numbers. For x, y ∈ Rn or x, y ∈ Cn

〈x, y〉p ,

(
n

∑
i=1
|xiyi|p

) 1
p

, (8)
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defines an inner product which gives rise to the norm

‖x‖p ,

(
n

∑
i=1
|xi|p

) 1
p

. (9)

on Rn or Cn respectively. The space Rn or Cn is complete in this norm and hence a Hilbert
space. We are particular interested by the case where p = 2, which is the standard Euclidean
norm and the case p = 1. We will also use the `0 quasi-norm given by

‖x‖0 , |{xi 6= 0 : i = 1, . . . , n}| , (10)

which is the number of non-zero components. This is a quasi-norm as it fails to obey the tri-
angle inequality. We are also interested in the `∞ norm which is defined to be the maximum
component in magnitude, i.e.

‖x‖∞ , max
i=1,...,n

|xi| . (11)

From these we can define the induced or operator norm on the space of real or complex matrices
Fm×n for F = R or F = C. For a matrix A ∈ Fm×n we define the p-norm ‖·‖p : Fm×n → R, for
1 6 p < ∞ to be

‖A‖p , max
x∈Rn : ‖x‖p=1

‖Ax‖p . (12)

For the special case of p = 2 this gives the spectral norm, equal to the largest singular value of A.

0.3 Distributions and Probabilities

We will use N (µ, σ2) to represent the Gaussian or Normal distribution with mean µ and vari-
ance σ2. We write χ2(k) to denote the χ2-distribution with k degrees of freedom, which has
mean k and variance 2k.

If Xi are independent N (0, 1) random variables, then

Q =
m

∑
i=1

X2
i , (13)

is distributed according to the χ2 distribution with m degrees of freedom.
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TYPE SYMBOL DESCRIPTION

Spaces
R, C The set of real and complex numbers.

F Any field.

H A Hilbert space.

Vectors

x ∈ F A scalar in the field F.

x ∈ Fn A column vector with n entries in F.

xi The ith entry of the vector x.

0, 1 The vectors of all zeroes and all ones, respectively.

supp(x) The support of x which is the position of the non-zero components of x.

xs The best s-sparse approximation to x.

xΛ ∈ Rn For x ∈ Rn the vector that agrees with x on Λ and 0 elsewhere.

x(k) The k-th iterate of the vector x in some algorithm.

ΣΓ ⊂ Rn The set of all vectors x ∈ Rn with support contained in Γ.

Matrices

A ∈ Fm×n An m× n matrix with entries from F.

Aij The (i, j)-th entry of the matrix A.

A∗, AT, A† Complex conjugate, real transpose and Moore-Penrose pseudo-inverse of A.

AΛ The matrix formed by taking the columns of A specified by Λ.

ker(A) The kernel or null-space of the matrix A, x ∈ ker(A) ⇐⇒ Ax = 0.

σ(A), σi(A) Singular values of A and the i-th largest singular value.

λ(A), λi(A) Eigenvalues of A and the i-th largest eigenvalue.

I The n× n identity matrix.

‖A‖2 The induced `2 norm of a matrix: ‖A‖2 , maxx∈Rn : ‖x‖2=1 ‖Ax‖2 = σmax(A).

Norms

|S| The number of elements in the set S .

‖x‖0 `0 “norm”: ‖x‖0 , |{xi 6= 0}|
‖x‖1 `1 norm: ‖x‖1 , ∑n

i=1 |xi|
‖x‖2 `2 norm: ‖x‖2 ,

√
∑n

i=1 x2
i

‖x‖p `p norm: ‖x‖p ,
(
∑n

i=1 |xi|p
)1/p

‖x‖∞ `∞ norm: ‖x‖∞ , maxi=1,...,n |xi|

Distributions

P[E ] The probability of the event E .

E[X], V[X] Expected value and variance of the random variable X.

N (µ, σ2) The normal/Gaussian distribution with mean µ and variance σ2.

χ2(m) The χ2 distribution with m degrees of freedom.

Table 1: Notation and symbols used.
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1

Introduction

Compressive sensing is a radical new way of sampling signals at a sub-Nyquist rate. The Shan-
non/Nyquist sampling theorem states that an analogue signal can be reconstructed perfectly
from its samples, if it was sampled at a rate at least twice the highest frequency present in the
signal (Nyquist 1928; Shannon 1949). This rate is known as the Nyquist or Shannon rate of that
signal, and for many signals, such as audio or images, the Nyquist rate can be very high. This
may result in acquiring a very large number of samples, which must be compressed in order to
store or transmit them, as well as placing a high requirement on the equipment needed to sam-
ple the signal. Compressive Sensing (also referred to as compressed sensing or CS) is a recently
introduced method that can reduce the number of measurements required; in some ways it can
be regarded as automatically compressing the signal. Compressive sensing is a technique that
enables us to fully reconstruct particular classes of signals if the original signal is sampled at a
rate well below the Nyquist rate.

In particular, compressive sensing works with sparse signals. In many applications the signal of
interest is primarily zero, that is, the signal has a representation in some pre-determined basis in
which most of the coefficients are 0. Traditionally measurement techniques heavily over sample
the signal. Consider the scenario where we randomly draw samples from a sparse signal, so the
probability of sampling at an “interesting” data point is equal to the sparsity fraction. Compres-
sive sensing avoids excessive oversampling by using linear sampling operators – a combination
of sampling and compression, giving rise to its name.

One of the original breakthroughs in compressive sensing by Candès, Romberg, Tao in (Candès,
Romberg, and Tao 2006a; Candès, Romberg, and Tao 2006b; Candès and Tao 2006; Candès and
Tao 2005) and Donoho in (Donoho 2006) was to show that linear programming methods can be
used to efficiently reconstruct the data signal with high accuracy. Since then many alternative
methods have been proposed as a faster or superior (terms of reconstruction rate) alternative
to these linear programming algorithms. One approach is to use matching pursuit techniques,
originally proposed in (Mallat and Zhang 1993), variations have been proposed such as OMP
or orthogonal matching pursuit (Tropp and Gilbert 2007), Stagewise orthogonal matching pur-

13



14 CHAPTER 1. INTRODUCTION

suit (StOMP) (Donoho, Tsaig, Drori, and Starck 2007), Compressive sampling matching pursuit
(CoSaMP) (Needell and Tropp 2008) and gradient pursuit algorithms (Blumensath and Davies
2008; Blumensath and Davies 2008a; Blumensath and Davies 2008b). Also proposed has been a
suite of thresholding based algorithms, either hard thresholding (Blumensath and Davies 2008)
or soft thresholding (Daubechies, Defrise, and Mol 2004).

In this thesis we propose a combination of these two techniques, combining hard thresholding
with matching pursuit.

In addition to this, work has also been done on model based compressive sensing in (Baraniuk,
Cevher, Duarte, and Hegde 2008), which can be applied to many of the algorithms above. Most
of the aforementioned algorithms make use of a pruning step which takes a solution and forces
it to be sparse, by removing all but the s-largest (in magnitude) components (where s is the
sparsity of the signal), which is the best s sparse approximation under any `p norm for 1 6 p <

∞. Model-based compressive sensing proposes using a model based algorithm to perform this;
that is to choose the sparse signal that is not necessarily best under an `p norm, but that best fits
the signal model. Such a modification would also be applicable to our algorithm.

We refer to our algorithm as the “Modified Frame Reconstruction algorithm” or MFR since it
is from the frame reconstruction algorithm that we drew our inspiration. It is however also a
generalisation of the iterative hard thresholding (IHT) algorithm first mentioned in (Blumensath
and Davies 2008) and could also be correctly referred to as such. However throughout this
paper we will use MFR to refer to our algorithm and IHT to refer to the original iterative hard
thresholding algorithm.

1.1 Contribution

We make the following contributions with this thesis.

t We present a new algorithm that generalises the IHT algorithm.

t We prove convergence results for this new algorithm.

t We demonstrate two modifications to this algorithm, that increases its performance and
prove convergence for both of these cases.

v We show that adding a least squares minimisation step increases the convergence
rate and reconstruction rate.

v We investigate a way of choosing an adaptive step-length that also increases the rate
of convergence and rate of success.

t We give new results showing what happens when we do not correctly estimate the spar-
sity of the signal we are trying to reconstruct.

t We give empirical evidence that the algorithm can perform better if we underestimate the
sparsity, that is, we think the signal we are trying to reconstruct is less sparse than it really
is.

These results are currently being written up for publication.
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1.2 Organisation

In this thesis we will present the original compressive sensing method and we will also develop
and explore a number of other techniques for restoring the original signal, known as reconstruc-
tion techniques.

The work in Chapters 6-8 is based on my research and, unless otherwise stated, is my own.
Also, unless otherwise stated, if a lemma or theorem is cited and the proof provided, the proof
provided is heavily based on the proof in the original paper.

In Chapter 2 we present a background to the theory required. In particular we give a sum-
mary of the original compressive sensing theory using `1 minimisation as the reconstruction
algorithm. This is followed by a chapter on the restricted isometry property, including a num-
ber of lemmas that we use later. Chapter 4 gives a background to frames, which served as the
inspiration to out algorithm.

The following chapter, Chapter 5, has a discussion of alternatives to solving the `1 minimisation
problem for compressive sensing. We give a number of options ranging from greedy algorithms
to gradient pursuit algorithms.

In Chapter 6 we present our own reconstruction algorithm for compressive sensing, including
an analysis of its performance. We show both theoretically and empirically via simulations
how the algorithm performs. We also give two modifications to the algorithm that provide both
faster convergence and superior reconstruction performance. For these two modifications we
again proved convergence under similar conditions to that of the original algorithm. We then
compare the algorithm to previous algorithms, highlighting some of the important differences.

The final two chapters, Chapters 7 and 8, we compare the algorithms discussed, including some
simulated performance comparisons and a discussion on the Restricted Isometry Property, how
this applies to the theorems we use and a means of estimating the RIP for a given matrix.

1.3 Acknowledgements

I would like to thank my supervisor, Professor Helmut Bölcskei, for introducing me to this area
and supervising me during my Masters.
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CHAPTER

2

Compressed Sensing

2.1 Goal of Compressed Sensing

Let f (t) be a signal with bandwidth B > 0. Then the Shannon-Nyquist sampling theorem says
that to perfectly reconstruct this signal from its samples we need to sample it at the Nyquist
rate, equal to twice the bandwidth of the signal, i.e. 2B, (Shannon 1949; Nyquist 1928). We will
show that by using compressed sensing techniques we can use a significantly lower sampling
rate, but still effect perfect reconstruction for a large class of signals.

Consider a real valued, finite length, one-dimensional, discrete time signal x ∈ Rn (which we
regard as an n× 1 column vector). A higher dimensional signal, such as an image, we treat as a
one dimensional vector, by writing down its elements in some order. The claim of compressive
sensing is that from m measurements where m � n, we can often perfectly reconstruct the
original signal x where the measurements are not chosen in an adaptive manner.

Now let {ψi}n
i=1 be a set of n orthonormal basis vectors for the space Rn. Let Ψ ∈ Rn×n be an

orthonormal matrix where the i-th column is the i-th basis vector ψi. Then we can express any
signal x ∈ Rn as a linear combination of these basis vectors by

x =
n

∑
i=1

ziψi or x = Ψz, (2.1)

where z ∈ Rn is the vector of inner products zi = 〈x, ψi〉. The two vectors x and z are equivalent
representations of the same signal. Typically we say that x is in the time domain (if it is a time
dependent signal, such as audio) or in the spatial domain if it is a spatially dependent signal,
such as an image and we say that z is in the Ψ domain.

We measure the signal x by sampling it with respect to a a measurement matrix Φ ∈ Rm×n. Let Φ
have rows φi for 1 6 i 6 m. Each observation yi corresponds to the inner product yi = 〈φi, x〉.
Writing this in matrix-vector notation we get y = Φx. It is clear that if m > n and the rows
of Φ span Rn we can perfectly reconstruct (up to numerical precision) the vector x from its

19
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observations y. Substituting x = Ψz into Equation (2.1) we get

y = Φx = ΦΨz = Θz, (2.2)

where Θ = ΦΨ.

Compressive sensing asks, what can we do if m� n? How well can we reconstruct the signal x
(or z)? What assumptions do we require on the the data or the matrix Φ for good reconstruction?

In general we assume that z is sparse, that is, it is a linear combination of only k � n basis
vectors. We say that a vector z is k-sparse with respect to the basis Ψ, or simply that z is k-sparse,
if it is clear with what basis this is with respect to. Note that solving Equation (2.2) for z is
equivalent to solving for x as Ψ is a known pre-determined basis.

The goal of compressive sensing is to design the matrix Φ and a reconstruction algorithm so that
for k-sparse signals we require only a “small” number of measurements, i.e. m ≈ k or slightly
larger.

This does not violate the Shannon-Nyquist sampling theorem as we are not able to reconstruct
all signals, only sparse signals.

2.2 Measurement Matrix

We first explain how to design the matrix Φ. The ultimate goal is to have some matrix Φ which
does not destroy any information contained in the original signal x. However since Φ ∈ Rm×n

and m < n this is not possible in general as Equation (2.2) is under-determined, making the
problem of solving for z or x ill-posed.

By restricting ourselves to k-sparse signals we can do significantly better. If the position of the k
non-zero entries of z were known a priori, i.e. if we were given Λ = {i|zi 6= 0}, we could form
the m× k matrix ΘΛ where m > k and solve the least squares problem restricted to the non-zero
positions of x. A necessary and sufficient condition for this m× k system of equations to be well
conditioned is that for any k-sparse vector v ∈ Rn we have

1− ε 6
‖Θv‖2
‖v‖2

6 1 + ε, (2.3)

for some ε > 0, that is the matrix Θ must almost preserve the lengths of these k-sparse vectors.
It is unlikely that the positions of the non-zero elements are known a priori, but one can show
that a sufficient condition for a stable inverse for k-sparse signals is for Θ to satisfy Equation
(2.3) and the restricted isometry property of order 3k to hold (Candès, Romberg, and Tao 2006a).
We define the restricted isometry property now.

Definition 2.1. For each integer k = 1, 2, . . . define the isometry constant δk > 0 of a matrix Φ as the
smallest number such that

1− δk 6
‖Φx‖2

2

‖x‖2
2

6 1 + δk, (2.4)

holds for all k-sparse vectors x. We say that a matrix Φ has the restricted isometry property (RIP) of
order k if δk is not too close to 1.
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The restricted isometry constants give a measure of how much they can change the length of a
k-sparse vector. They also relate to the kernel of the matrix: suppose for instance that δk < 1 for
some integer k. This implies that that there are no k-sparse vectors in the kernel of Φ. Assume
for instance that x is k-sparse and we have Φx = 0, this implies ‖Φx‖2

2 = 0 and hence δk > 1,
which is a contradiction.

Because of the similarities with eigenvalues we will sometimes refer to the values δk as the sparse
eigenvalues. Although not strictly eigenvalues, they inspire the following definition.

Definition 2.2. Let Φ ∈ Rm×n be a matrix and k 6 min{m, n} be an integer. Then the upper and
lower k-sparse singular values σk

min and σk
max are given by

σk
min , min

x

‖Φx‖2
‖x‖2

(2.5a)

σk
max , max

x

‖Φx‖2
‖x‖2

, (2.5b)

where x is k-sparse. And the upper and lower k-sparse eigenvalues values λk
min and λk

max are given by

λk
min , min

x

∥∥∥xTΦTΦx
∥∥∥

2∥∥xTx
∥∥

2
=
∣∣∣σk

min

∣∣∣2 (2.6a)

λk
max , max

x

∥∥∥xTΦTΦx
∥∥∥

2∥∥xTx
∥∥

2
=
∣∣∣σk

max

∣∣∣2 , (2.6b)

where x is k-sparse.

These definitions are inspired by the fact that these values are given by the maximum and
minimum singular/eigen-values over all submatrices with k columns, for example we have

λk
max = max

Γ : |Γ|6k
λmax

(
ΦT

Γ ΦΓ

)
, (2.7)

where Γ is an index set of k columns. We have the following relationship between the RIP
constants and the sparse eigenvalues

δk = max
{

1− λk
min, λk

max − 1
}

. (2.8)

We also define a weaker version of the restricted isometry property, the null space property, which
we will use later.

Definition 2.3. A matrix Φ ∈ Rm×n obeys the null space property (NSP) of order k for γ > 0 if

‖nΛ‖1 6 γ ‖nΛc‖1 , (2.9)

for all index sets Λ of cardinality less than or equal to k, and for all n ∈ ker(Φ).

The RIP and NSP are closely linked, as shown in (Cohen, Dahmen, and DeVore 2008).

The important question is how can one create a matrix Φ, given the basis Ψ, so that Φ has
the RIP of high order? Verifying that any given matrix has this property is computationally
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intensive and involves checking all (n
k) submatrices with k columns of Θ. In Chapter 8 we shall

give a Monte Carlo method for obtaining a lower bound for the RIP constants.

One approach to obtaining a matrix Φ with the RIP of high order is to use random matrices.
The m× n matrices generated according to the following rules:

t form Φ by sampling n column vectors uniformly on the unit sphere in Rm,

t let the entries of Φ be i.i.d. normal with mean 0 and variance 1
m , or

t let the entries Φ by i.i.d. symmetric Bernoulli distributed, e.g. Φij = ± 1√
m with equal

probability, or any other subgaussian distribution,

all obey the restricted isometry property of order k provided that

m > C · k log
(n

k

)
, (2.10)

for some constant C. The proofs that these matrices satisfy the RIP of high order can be
found in (Baraniuk, Davenport, DeVore, and Wakin 2007) and (Mendelson, Pajor, and Tomczak-
Jaegermann 2006). In Section 3.2 we will prove the result for matrices with Gaussian entries.

One can also ensure stability of the measurement matrix by requiring a high degree of incoher-
ence between the measurement matrix Φ and the basis matrix Ψ.

Definition 2.4. The coherence between the sensing basis Φ and the representation basis Ψ is defined
to be

µ (Φ, Ψ) ,
√

n · max
16j,k6n

∣∣〈ϕk, ψj
〉∣∣ . (2.11)

For orthonormal Φ and Ψ it follows that 1 6 µ (Φ, Ψ) 6
√

n for any pairs of matrices Φ and Ψ.
The coherence effectively measures the largest correlation between any two elements of Φ and
Ψ. A small coherence says that the basis vectors cannot sparsely represent the vectors in Φ and
vice-versa, (Candès, Romberg, and Tao 2006a; Donoho 2006).

We also make the following definition of restricted orthogonality constants from (Candès and Tao
2005).

Definition 2.5. Let Φ ∈ Rm×n be a matrix. Then define the s, s′-restricted orthogonality constant
θs,s′ > 0 for s + s′ = S to be the smallest quantity such that

∣∣〈Φx, Φx′
〉∣∣ 6 θs,s′ · ‖x‖2 ·

∥∥x′
∥∥

2 , (2.12)

for all vectors x, x′ with disjoint support, where x is s-sparse and x′ is s′-sparse.

We then have the following lemma relating the restricted orthogonality constants and restricted
isometry constants.

Lemma 2.6 ((Candès and Tao 2005)). Let Φ ∈ Rm×n be a matrix with restricted orthogonality and
restricted isometry constants θs,s′ and δS, respectively, and where S = s + s′. Then

θs,s′ 6 δS 6 θs,s′ + max {δs, δs′} . (2.13)



2.3 Classical Reconstruction Algorithm 23

2.3 Classical Reconstruction Algorithm

The previous section gave us requirements for the measurement matrices Φ, so that x can be
fully recovered given the measurements y = Φx = ΦΨz. As z, x ∈ Rn and y ∈ Rm for
m < n there are infinitely many solutions to this equation, all lying on a translated copy of the
hyperplane

ker(ΦΨ) = {z ∈ Rn : ΦΨz = 0}, (2.14)

that is, the kernel of ΦΨ.

For simplicity, from this point forth we will consider only the problem y = Φx where x is sparse.
Since Ψ is a known basis, knowledge of x is equivalent to knowledge of z.

Classically one solves this type of inverse problem by finding the least squares solution to y =
Φx, i.e. solving the problem

x̃ = arg min ‖x̂‖2 subject to Φx̂ = y. (2.15)

Although this equation has a convenient closed form solution given by x̃ =
(

ΦΦT
)−1

ΦTy, the
solution is almost never sparse.

Since the `2 or least squares minimisation problem does not usually return a sparse vector,
alternatives have been sought. One is to directly enforce a sparsity constraint on the solution,
that is to solve the minimisation problem

x̂ = arg min ‖x̂‖0 subject to Φx̂ = y. (2.16)

Lemma 2.7 shows that under certain conditions the solution to this `0 minimisation problem
returns the solution x where x is s-sparse and y = Φx.

Lemma 2.7 (Lemma 1.2 of (Candès and Tao 2005)). Let Φ ∈ Rm×n be a matrix with RIP constant
δ2s < 1 and let Γ be an index set with |Γ| 6 s. Let x ∈ Rn be a vector with support Γ and set y = Φx.
Then x is the unique solution to

arg min
x̂∈Rn

‖x̂‖0 subject to y = Φx̂, (2.17)

and hence x can be reconstructed exactly from y.

The proof is simple and we include it here, based on the proof in (Candès and Tao 2005).

Proof. We show that there is a unique vector x with support of size less than or equal to s and
such that y = Φx. Suppose, by way of contradiction, that there exists a second sparse vector
z ∈ Rn, z 6= x with y = Φx = Φz, where z has support Λ, |Λ| 6 s. This gives Φ(z− x) = 0.
But supp (z− x) = Λ ∪ Γ and |Λ ∪ Γ| 6 2s. Hence trivially ‖Φ(z− x)‖2

2 = 0. But by the RIP
property we have

0 < (1− δ2s) ‖z− x‖2
2 6 ‖Φ(z− x)‖2

2 = 0, (2.18)

which implies that ‖z− x‖2 = 0 and hence z = x, which is a contradiction as δ2s < 1.

In fact this bound can be shown to be tight. Assume that there exists a 2s-sparse vector v ∈ Rn
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such that v lies in the kernel of Φ, then we have

1− δ2s 6 ‖Φv‖2 = 0, (2.19)

and hence δ2s > 1. Now choose a set Γ ⊂ {1, 2, . . . , n} of size s so that Γ ⊂ supp(v) and set
x = −vΓ so that x is s-sparse and is the negative of v on s components. Then

y = Φx = Φx + Φv = Φ(x + v) = Φu, (2.20)

where u = x + v is s-sparse and u 6= x. Hence there is no unique minimiser to ‖x̂‖0 subject to
y = Φx̂ and no algorithm will be able to return the correct solution 100% of the time.

The problem is that solving the `0 minimisation programme is an NP-complete problem and
hence extremely computationally intensive. Although this gives the desired solution, in practice
it is not feasible to solve this equation. The crux of compressive sensing is to show that there
exist significantly faster algorithms, that with very high probability, solve this problem.

Much of the work in compressed sensing relates to using the `1 norm as a substitute in the `0

minimisation problem above. It has been shown in (Candès and Romberg 2007), here Theorem
2.11, that if x is k-sparse and if the number of measurements m satisfies

m > C · k · log
(n

δ

)
, (2.21)

then with probability exceeding 1− δ the solution to the problem

x̃ = arg min ‖x̂‖1 subject to Φx̂ = y, (2.22)

is x̃ = x. Or in the case where there is noise, subject to ‖Φx̂− y‖2 6 ε, where ε is a tolerance
parameter. The `1 minimisation problem can be solved by rewriting it as a convex optimisation
problem

(P1) arg min
x̂∈Rn

‖y−Φx̂‖1 , (2.23)

by Theorem 2.9 from (Candès, Rudelson, Tao, and Vershynin 2005). This reduces to a linear
programme

(P′1) min 1Tt subject to − t 6 y−Φx̂ 6 t, (2.24)

known as basis pursuit, which has computational complexity O(n3), which is much easier to
solve than the `0 programme, (Candès, Rudelson, Tao, and Vershynin 2005; Boyd and Vanden-
berghe 2004; Rockafellar 1970).

A similar minimisation problems that occurs commonly in the literature is to minimise the
function

Fτ(x) , ‖Φx− y‖2
2 + 2τ ‖x‖1 , (2.25)

for some τ > 0 which is a convex unconstrained optimisation problem. Problems of this form
can be seen as a maximum a posteriori criterion for estimating x from the observations y =
Φx + n where n is white Gaussian noise and the prior on x is Laplacian, (Alliney and Ruzinsky
1994). It can be shown that a solution to Equation (2.22) is a minimiser of Equation (2.25) for
τ = ‖x‖1, see (Boyd and Vandenberghe 2004; Rockafellar 1970). This is used as the basis of
some algorithms, such as iterative soft-thresholding in (Daubechies, Fornasier, and Loris 2007)
which we discuss further in Section 5.2.2.
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2.4 Reconstruction Results for `1 Minimisation

In the literature there are several different theorems saying how well `1 minimisation works as
a way of solving y = Φx for x.

The main result of (Candès, Rudelson, Tao, and Vershynin 2005) is the following theorem about
the (P1) and (P′1) optimisation programs in Equation (2.23) and (2.24). Consider the scenario
where there are corrupted measurements y = Φx + e where e is an error vector and Φ ∈ Rm×n.
Then let Υ ∈ R(m−n)×n be a matrix that annihilates Φ from the left, that is ΥΦ = 0. Then
y = Φx + e implies that

Υ(Φx + e) = Υe. (2.26)

Theorem 2.8 (Theorem 1.1 of (Candès, Rudelson, Tao, and Vershynin 2005)). Let Φ ∈ Rm×n be a
matrix with RIP constants δ3s and δ4s such that

δ3s + 3δ4s < 2, (2.27)

and let e be an arbitrary vector with support of size less than or equal to s, then the solution to

arg min
ê∈Rn

‖ê‖1 , subject to Υê = Υe, (2.28)

is unique and equal to e.

It is sufficient then to have δ4s < 0.5 to guarantee convergence. As a consequence we have the
following theorem.

Theorem 2.9 (Theorem 1.2 of (Candès, Rudelson, Tao, and Vershynin 2005)). Let y ∈ Rm be the
corrupted measurement signal of x, i.e. y = Φx + e where Φ ∈ Rm×n and let s > 1 be a number
satisfying the hypothesis of Theorem 2.8. Then if e also obeys the hypothesis of Theorem 2.8, the solution
to

arg min
x̂∈Rn

‖y−Φx̂‖1 , (2.29)

is unique and equal to x.

Simply, Theorem 2.9 equates the solution of the two problems

arg min
y=Φx̂

‖x̂‖1 and arg min
x̂∈Rn

‖y−Φx̂‖1 , (2.30)

under the condition that δ3s + 3δ4s < 2. A different version of this result is given in (Candès
and Tao 2005).

Unfortunately Lemma 2.7 only proves the existence of a unique solution and does not give any
way of finding it, beyond a brute force search which is of order O (ns) for an s-sparse vector
x ∈ Rn and m � n. The main theorem of (Candès and Tao 2005) gives stronger conditions
on the RIP constants so that we can recover the solution via a much faster `1 minimisation
procedure.

Theorem 2.10 (Theorem 1.3 of (Candès and Tao 2005)). Let s be a positive integer. Suppose Φ ∈
Rm×n has RIP constants such that

δs + θs,s + θs,2s < 1, (2.31)
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and let x ∈ Rn be a vector with support Γ, |Γ| 6 s and set y = Φx. Then x is the unique minimiser of

min
x̂∈Rn

‖x̂‖1 subject to y = Φx̂. (2.32)

It follows from Lemma 2.6 that if Equation (2.31) holds, then δ2s < 1.

There is yet another condition for convergence in (Candès and Romberg 2007) which tightens
bounds in earlier work, such as (Candès, Romberg, and Tao 2006a; Donoho 2006).

Theorem 2.11 (Theorem 1.1 of (Candès and Romberg 2007)). Let U be an n× n orthogonal matrix
and let Φ ∈ Rm×n be a matrix formed by taking m different rows of U. Choose a signal x ∈ Rn with
support Γ of size s and a sign sequence z on Γ uniformly at random. Suppose that

m > C0 · s · µ2(U) · log
(n

δ

)
, (2.33)

and
m > C1 · log2

(n
δ

)
, (2.34)

for some fixed numerical constants C0 and C1 and let µ(U) = maxk,j

∣∣∣Uk,j

∣∣∣ be the largest entry of
U. Then with probability exceeding 1− δ every signal x̂ supported on Γ with signs matching z can be
recovered from y = Φx by solving

arg min
x̃∈Rn

‖x̃‖1 subject to Φx̂ = Φx̃. (2.35)

In effect this gives a lower bound on the number of measurements required to reconstruct a
sparse signal x from its measurements y = Φx.

Finally we have two results from (Candès and Tao 2006) that say it is possible to reconstruct
compressible signals, that is, signals that decay rapidly but are not strictly sparse. Compressible
signals are discussed further in Section 2.6, but briefly, we say that a signal x ∈ Rn is compress-
ible if the components decay according to a power law, i.e. if the k-th largest component of x,
say xI(k), satisfies ∣∣∣xI(k)

∣∣∣ 6 C · k−
1
p , (2.36)

for some constants C, p and for all k.

Theorem 2.12 (Theorem 1.1 of (Candès and Tao 2006)). Let x ∈ Rn be a compressible signal accord-
ing to Equation (2.36) for some fixed 0 < p < 1 or ‖x‖1 6 R for p = 1, and let α > 0 be a sufficiently
small number (less than an absolute constant). Assume that Φ ∈ Rm×n is a matrix whose rows are
orthonormal, chosen uniformly at random and that we are given y = Φx. Then with probability 1 the
minimiser x̂ to

min
z∈Rn

‖z‖1 subject to y = Φz, (2.37)

is unique. Furthermore, with probability at least 1−O
(

n−ρ/α
)

, we have the approximation

‖x− x̂‖2 6 Cp,α · R ·
(

m
log n

)−r
, r =

1
p
− 1

2
. (2.38)

Here Cp,α is a fixed constant depending on p and α but not on anything else. The implicit constant in

O
(

n−ρ/α
)

is allowed to depend on α.
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What this results says, is that if we make O(m log n) random measurements of a signal x, and
then reconstruct an approximation in a way which makes no use of any assumptions on the sig-
nal, beyond the fact that it decays according to a power law (of perhaps unknown parameters),
we can still obtain an approximation that is equally as good by knowing everything about x and
selecting the m largest components of the vector x. Indeed the amount of “oversampling” re-
quired in doing this is only a multiplicative factor of O(log n). As such, one cannot, in general,
design a set of m measurements that will give a better approximation, by any method.

Theorem 2.13 (Theorem 1.2 of (Candès and Tao 2006)). Let Φ ∈ Rm×n be a measurement process
such that the UUP and ERP hold (see Section 3.4.1) with oversampling factors λ1 and λ2 respectively.
Set λ = max{λ1, λ2} and assume K > λ. Suppose that x ∈ Rn is a compressible signal according to
(2.36) for some fixed 0 < p < 1 or ‖x‖1 6 R for p = 1 and set r = 1

p −
1
2 . Then for any sufficiently

small α, any minimiser x̂ to

min
z∈Rn

‖z‖1 subject to Φx = Φz, (2.39)

will obey

‖x− x̂‖2 6 Cρ,α · R ·
(

K
λ

)−r
, (2.40)

with probability at least 1−O
(

n−ρ/α
)

In Section 3.4.1 we define the UUP and ERP. Many of the matrices that satisfy the RIP condition
of high order also satisfy the UUP and ERP.

2.5 Interpretation

Looking at the two-dimensional case, R2 we can see that solving the `1 problem in place of the
`2 problem is much more likely to return a sparse solution. If n = 2 we necessarily have m = 1,
so the set of solutions to y = Φx is a line. Assume that the solution we are after is 1-sparse, that
is, x lies on one of the two axes. Then minimising ‖x̂‖2 subject to y = Φx̂ returns the solution
that is closest to the origin and the only way for this to lie on one of the axes is if the line of
solutions is horizontal or vertical, which happens if and only if one of the entries of Φ is 0.

However if we see where the line of solutions touches the smallest `1 ball, it is highly likely that
it will touch at a corner of the `1 ball giving a sparse solution. Indeed the line of solutions will
necessarily touch at a corner, although it is possible that the line touches an entire side of the `1

ball, which happens if Φ = (±λ ± λ) ∈ R1×2. This is illustrated in Figure 2.1.

We can easily extend this idea to higher dimensions. It is highly unlikely that the hyper-plane
of solutions will intersect an `2 ball on an axis, but since an `1 ball is “pointy”, it will always
intersect the `1 ball at an axis, but this may not be unique. Hence at least one component will
be 0, but likely significantly more components.
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Figure 2.1: Solving the `1 and `2 minimisation problem in R2. Notice how the `1 ball intersects
the line of solutions to give the sparsest solution but the `2 ball does not.

2.6 Compressible Signals

Many signals occurring both naturally and man-made are not strictly sparse, but can be ap-
proximated as such. A signal x ∈ Rn whose coefficients xi decrease in magnitude according to
a power law ∣∣∣xI(k)

∣∣∣ 6 C · k−
1
r , k = 1, . . . , n (2.41)

where I(k) is the k-th largest component of x sorted by magnitude from largest to smallest, we
call compressible. Due to the rapid decay of such signals, these signals can be well approximated
by s-sparse signals, keeping just the s largest coefficients of x.

The following lemma states that the best s-term approximation to a vector x under any `p norm
is the one given by selecting the s largest (in magnitude) components of x.

Lemma 2.14. Let x ∈ Rn be a signal and let Λs the indices of the s largest components, sorted lexico-
graphically if necessary.. Then for any `p norm, 1 6 p < ∞ the best s-sparse approximation xs is given
by

xs = xΛs =


xi if i ∈ Λs

0 else.

(2.42)

That is
xs = arg min

x̂∈Σs
‖x− x̂‖p . (2.43)

Proof. Without loss of generality assume that x ∈ Rn is such that |xi| > |xi+1| for 1 6 i < n.
Fix p and let x∗ be a solution to Equation (2.43). Then for any x∗i 6= 0 we must have x∗i = xi.
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By assumption the indices of the j-largest components (ties broken lexicographically) are Λj =
{1, . . . , j} and as shorthand we will write xj = xΛj .

Assume that the lemma is false and let k ∈ N be the smallest k such that for all best k-sparse
approximation, x̂, to x under the `p-norm, we have supp(x̂) 6= Λk. Let x∗ be such a k-sparse
minimiser of (2.43) with support Γ and with the indices smallest, i.e. if x∗i = x∗i−1 then i ∈ Γ
implies that (i− 1) ∈ Γ. This implies that there exists t > k such that t ∈ Γ and |x∗t | <

∣∣x∗k ∣∣ (note
the strict inequality), since we assume that the support of x∗ is not equal to the first k elements.

So by assumption we have

‖x− x∗‖p 6 ‖x− x̂‖p ∀ x̂ ∈ Σk (2.44a)

and
∥∥∥x− xj

∥∥∥
p

6 ‖x− x̂‖p ∀ x̂ ∈ Σj, j < k. (2.44b)

In particular

‖x− x∗‖p
p = ∑

γ∈Γc
|xγ|p 6

n

∑
i=k+1

|xi|p =
∥∥∥x− xk

∥∥∥p

p
(2.45a)

⇒ ∑
γ∈Γc
|xγ|p + |xt|p 6

n

∑
i=k+1

|xi|p + |xt|p . (2.45b)

Set Γ′ = Γ \ {t} then xΓ′ is a (k− 1)-sparse approximation to x, giving us

∥∥∥x− xk−1
∥∥∥p

p
6 ‖x− xΓ′‖p

p = ∑
γ∈Γc
|xγ|p + |xt|p 6

n

∑
i=k+1

|xi|p + |xt|p , (2.46)

where xk−1 is the best (k − 1)-sparse approximation to x and supp(xk−1) = {1, . . . , k − 1}.
Hence

n

∑
i=k
|xi|p 6

n

∑
i=k+1

|xi|p + |xt|p , (2.47)

which is true only if |xk| = |xt|, but by assumption this is not true, therefore no such k exists,
which is a contradiction.

If we let σs(x)p denote the error in using the best s-term approximation to x under the `p norm,
i.e. σs(x)p , minx̂ ‖x− x̂‖p we have that

σs(x)p 6 C(rt)−
1
p s−t, (2.48)

where t = 1
r −

1
p and C is the constant from Equation (2.41).

Such approximations form the basis of transform coding algorithms, for example the JPEG and
JPEG2000 algorithms (Mallat 1999). Such algorithms are not necessarily the most efficient in
terms of data collected. To perform transform coding on a signal x ∈ Rn, using the transform
Ψ ∈ Rm×n to get y = Ψx, requires acquiring a large number of samples, m, even if the number
of samples to keep, s, is significantly smaller than m, which involves discarding m − s of the
calculated terms. Compressive sensing asks and answers the question: is there a way of directly
acquiring the compressed samples y, that is, so after the acquisition process, we do not discard
any data?
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CHAPTER

3

Restricted Isometry Property

In this chapter we will take a closer look at the Restricted Isometry Property. We will give a
condition on a random matrix so that with very high probability it will obey the RIP of some
given order. We will then use this to prove that matrices drawn from the Gaussian distribution
obey the RIP with high probability.

We will also present a number of lemmas and propositions that make use of the RIP constants,
which we will use later in Chapters 5 and 6 when proving results on the convergence of various
reconstruction algorithms. Finally we will discuss a number of alternatives to the Restricted
Isometry Property that also appear in the literature.

3.1 Proving the Restricted Isometry Property

One of the earliest results of compressed sensing was to show that various randomly generated
matrices do in fact obey the RIP of various orders. The results of (Baraniuk, Davenport, DeVore,
and Wakin 2007) attempt to give a sufficient condition for various random matrices to obey the
RIP.

Let (Ω, ρ) be a probability space and let r be a random variable on Ω. Then given m, n ∈ Z we
generate random matrices Φ ∈ Rm×n by choosing the entries Φij as independent realisations of
r, resulting in the random matrices Φ(ω), ω ∈ Ωmn.

Lemma 3.1 (Lemma 5.1 of (Baraniuk, Davenport, DeVore, and Wakin 2007)). Let (Ω, ρ) be a
probability space and let r be a random variable on Ω. Assume that the random matrix Φ(ω) ∈ Rm×n

satisfies
P
[∣∣∣‖Φ(ω)x‖2

2 − ‖x‖
2
2

∣∣∣ > ε ‖x‖2
2

]
6 2e−mc0(ε), 0 < ε < 1, (3.1)

for all x ∈ Rn, where P is the induced probability and c0(ε) > 0 is a constant depending only on ε. Fix

31
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k < n, then for any set of indices Γ such that |Γ| = k < n and any 0 < δ < 1, we have

1− δ 6
‖Φ(ω)x‖2
‖x‖2

6 1 + δ, (3.2)

for all x ∈ Rn with support Γ, with probability at least

1− 2
(

12
δ

)k
e−mc0( δ

2 ). (3.3)

Proof. As Φ is linear we need only consider the cases where ‖x‖2 = 1. Let ΣΓ ⊂ Rn be the set of
all vectors in Rn with support Γ. Fix δ and let Ξ ⊂ ΣΓ be a δ/4 covering set of unit vectors for
the unit vectors in ΣΓ, that is, for all x ∈ ΣΓ where ‖x‖2 = 1 we have

min
v∈Ξ
‖x− v‖2 6

δ

4
, (3.4)

and ‖v‖2 = 1 for all v ∈ Ξ. It can be shown that such a set Ξ exists with size at most (12/δ)k,
(Lorentz, Golitschek, and Makovoz 1996, Ch. 13). By application of the union bound, we get
that every point in Ξ obeys Equation (3.1) for ε = δ/2 with probability

(
12
δ

)k
2e−mc0δ/2. (3.5)

Rearranging the terms in the probability in Equation (3.1), we have

1− δ

2
6
‖Φv‖2
‖v‖2

6 1 +
δ

2
, (3.6)

with probability exceeding

1− 2
(

12
δ

)k
e−mc0δ/2, (3.7)

for all v ∈ Ξ. Now define α to be the smallest number such that ‖Φx‖2 6 (1 + α) ‖x‖2 for all
x ∈ ΣΓ. We will show that α 6 δ. As Ξ is a δ/4 covering set for the unit vectors in ΣΓ, for any
unit vector x ∈ ΣΓ we have that there exists v ∈ Ξ such that ‖x− v‖2 6 δ/4. So for all x ∈ ΣΓ

with ‖x‖2 = 1, let vx be a vector such that ‖x− vx‖2 6 δ/4. Then

‖Φx‖2 6 ‖Φvx‖2 + ‖Φ(x− vx)‖2 (3.8a)

6 1 +
δ

2
+ (1 + α)

δ

4
. (3.8b)

As α is the smallest number such that ‖Φx‖2 6 (1 + α) ‖x‖2 for all x ∈ ΣΓ, we must have

α 6
δ

2
+ (1 + α)

δ

4
⇒ α 6

3δ

4− δ
6 δ, (3.9)

hence proving
‖Φ(ω)x‖2
‖x‖2

6 1 + δ ∀x ∈ ΣΓ. (3.10)
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To show the lower inequality, observe the following

‖x‖2 > ‖Φvx‖2 − ‖Φ(x− vx)‖2 (3.11a)

> 1− δ

2
− (1 + δ)

δ

4
(3.11b)

> 1− δ, (3.11c)

completing the proof.

The following theorem says that if a random matrix obeys the concentration inequality of the
previous lemma, it will have the RIP of order s with high probability.

Theorem 3.2 (Theorem 5.2 of (Baraniuk, Davenport, DeVore, and Wakin 2007)). Suppose that
m, n and 0 < δ < 1 are given. Let Φ satisfy the conditions of Lemma 3.1. Then there exist constants
c1, c2 > 0 depending only on δ such that the restricted isometry property holds for Φ(ω) with the
prescribed δ and any k 6 c1n

log(n/k) with probability at least 1− e−c2m.

Proof. From Lemma 3.1 we know that for any index set Γ of size k, the matrix Φ(ω) will fail to
satisfy the concentration inequality with probability at most

2
(

12
δ

)k
e−mc0( δ

2 ). (3.12)

As there are (n
k) 6

( en
k
)k such index sets, Equation (3.2) will fail to hold with probability at most

2
( en

k

)k
(

12
δ

)k
e−mc0( δ

2 ) = 2 exp
{
−mc0

(
δ

2

)
+ k log

( en
k

)
+ k log

(
12
δ

)}
. (3.13)

Hence if k 6 c1m
log(n/k) for each fixed c1 > 0, the exponent above is less than c2 ·m provided that

c2 6 c0 ·
δ

2
− c1 ·

1 +
1 + log

(
12
δ

)
log
( n

k
)

 . (3.14)

Therefore we can always choose c1 > 0 sufficiently small ensuring that c2 > 0. So with prob-
ability 1− e−mc2 the matrix Φ(ω) will satisfy the concentration inequality of Equation (3.1) for
each k-sparse x.

3.2 Gaussian Measurement Matrix

We can use Theorem 3.2 to prove that a matrix with entries from a Gaussian distribution satisfies
the RIP criteria with high probability. Let Φ be an m × n matrix, m < n, with i.i.d. entries
Φij ∼ N

(
0, 1

m

)
. Let φi for 1 6 i 6 m be the rows of Φ. To apply the theorem we need to show

that for arbitrary x ∈ Rn, ‖Φx‖2
2 is strongly concentrated about ‖x‖2

2, that is

P
(∣∣∣‖Φx‖2

2 − ‖x‖
2
2

∣∣∣ > ε ‖x‖2
2

)
6 2e−mc0(ε). (3.15)
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Define Zi to be the random variable

Zi , φix =
n

∑
j=1

φijxj, (3.16)

which has distribution ‖x‖2 × N
(

0, 1
m

)
. For convenience, we consider x where ‖x‖2 = 1,

hence Zi ∼ N
(

0, 1
m

)
. Then let Y be the random variable drawn from the χ2 distribution with

m degrees of freedom, i.e. Y ∼ χ2(m). Observe that

Y
m

= ‖Φx‖2
2 =

m

∑
i=1

(φix)2 =
m

∑
i=1

Z2
i , (3.17)

since the sum of m squared i.i.d. normal random variables is distributed according to the χ2

distribution. So we need an upper bound for

P
(∣∣∣‖Φx‖2

2 − ‖x‖2

∣∣∣ > ε ‖x‖2
2

)
= P

(∣∣∣∣Y
m
− 1
∣∣∣∣ > ε

)
(3.18a)

= P
({

Y > m(1 + ε)
}
∪
{

Y 6 m(1− ε)
})

(3.18b)

= P
(

Y > m(1 + ε)
)

+ P
(

Y 6 m(1− ε)
)

. (3.18c)

Applying Markov’s inequality to the first of the two probability terms we get

P
(

Y > m(1 + ε)
)

= P
(

ehY > ehm(1+ε)
)

(3.19a)

6
E
[
ehY
]

ehm(1+ε)
. (3.19b)

Now E
[
ehY
]

is simply the moment generating function for χ2(m). Using standard tables we
can find that

E
[
ehY
]

=
1

(1− 2h)m/2 for h <
1
2

. (3.20)

This gives us

P
(

Y > m(1 + ε)
)

6
1

(1− 2h)m/2 e−hm(1+ε) for h <
1
2

. (3.21)

Differentiating with respect to h to find the maximum value of the right hand side equation, we
find that this occurs when

h =
ε

2(1 + ε)
<

1
2

. (3.22)

Substituting this value of h into Equation (3.21) we get

P
(

Y > m(1 + ε)
)

6
1

(1− 2h)m/2 e−hm(1+ε) for h <
1
2

(3.23a)

6
(
(1 + ε)e−ε

)m/2 (3.23b)

6 exp
{
−m

(
ε2

4
− ε3

6

)}
, (3.23c)

where we go from Equation (3.23b) to Equation (3.23b) using a Taylor series expansion about
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ε = 0,

(
(1 + ε)e−ε

)m/2 = 1− mε2

4
+

mε3

6
+

1
32

(m2 − 4m)ε4 +
(

m
10
− m2

24

)
ε5 +O(ε6) (3.24a)

6 exp
{
−m

(
ε2

4
− ε3

6

)} (
since 1− x 6 e−x, 0 6 x 6 1

)
(3.24b)

= 1− mε2

4
+

mε3

6
+

m2ε4

32
− m2ε5

24
+O(ε6). (3.24c)

It now remains to show a similar result for the other probability term

P
(

Y 6 m(1− ε)
)

= P
(

e−hY > e−hm(1−ε)
)

(3.25a)

6 E
[
e−hY

]
· ehm(1−ε) (3.25b)

=
1

(1 + 2h)m/2 · e
hm(1−ε), (3.25c)

using the fact that

E
[
e−hY

]
=

1
(1 + 2h)m/2 , (3.26)

for all h > 0. Again setting h = ε
2(1+ε) gives us

P
(

Y 6 m(1− ε)
)

=
(

1 + ε

1 + 2ε

)m/2
exp

{
mε(ε− 1)
2(ε + 1)

}
. (3.27)

Calculating the Taylor expansion about ε = 0 we find that

P
(

Y 6 m(1− ε)
)

= 1− mε2

4
− mε3

6
+O(ε4) (3.28a)

6 1− mε2

4
− mε3

6
(3.28b)

6 exp
{
−m

(
ε2

4
− ε3

6

)}
, (3.28c)

which is the same bound as for the upper tail. Putting these two tail bounds together then we
get that

P
(∣∣∣‖Φx‖2

2 − ‖x‖2

∣∣∣ > ε ‖x‖2
2

)
= P

(∣∣∣∣Y
m
− 1
∣∣∣∣ > ε

)
(3.29a)

= P
(

Y > m(1 + ε)
)

+ P
(

Y 6 m(1− ε)
)

(3.29b)

6 2 exp
{
−m

(
ε2

4
− ε3

6

)}
. (3.29c)

Setting c0(ε) = ε2

4 −
ε3

6 we find that this bound satisfies Equation (3.2) and hence meets the

requirements of Theorem 3.2. Therefore the matrix Φ ∈ Rm×n with i.i.d. entries Φij ∼ N
(

0, 1
m

)
satisfies the restricted isometry property with probability at least 1− e−cm, for some constant c.
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3.3 Usage of the Restricted Isometry Property

In this section we will present a number of lemmas and propositions that relate to the restricted
isometry property. These will be used in later chapters.

Lemma 3.3. Suppose that Φ ∈ Rm×n obeys the restricted isometry property of order s with value
δs. Then for any set of indices Γ such that |Γ| 6 s the singular values of ΦΓ lie in the range
[
√

1− δs,
√

1 + δs]. Furthermore the eigenvalues of ΦT
Γ ΦΓ − I lie in the interval [−δs, δs].

Proof. Recall that the RIP says that for all vectors x ∈ Rt for t 6 s

1− δs 6
‖ΦΓx‖2

2

‖x‖2
2

6 1 + δs. (3.30)

Furthermore we know that the Rayleigh quotient for a matrix A, ρA(x) is bounded by the mini-
mum and maximum eigenvalues of A, i.e. λmin(A) 6 ρA(x) 6 λmax(A) for all x. Set A = ΦT

Γ ΦΓ,
then the eigenvalues of A are the square of the singular values of ΦΓ. As the eigenvalues for A
are bounded by 1± δs we have the corresponding bound for the singular values of ΦΓ, namely
σ(ΦΓ) ∈ [

√
1− δs,

√
1 + δs].

Let λ be an eigenvalue of A with eigenvector v, then Av = λv. Then λ− 1 is an eigenvalue of
A− I since

(A− I)v = Av− Iv = λv− v = (λ− 1)v. (3.31)

Hence the eigenvalues of ΦT
Γ ΦΓ − I lie in the interval [−δs, δs].

Proposition 3.4 (Proposition 3.1 of (Needell and Tropp 2008)). Suppose that Φ ∈ Rm×n has re-
stricted isometry constant δs. Let Γ be a set of indices of columns of Φ such that |Γ| 6 s. Then for all
vectors y ∈ Rm

∥∥∥ΦT
Γ y
∥∥∥

2
6
√

1 + δs ‖y‖2 , (3.32a)∥∥∥Φ†
Γy
∥∥∥

2
6

1√
1− δs

‖y‖2 , (3.32b)

and x ∈ Rs

(1− δs) ‖x‖2 6
∥∥∥ΦT

Γ ΦΓx
∥∥∥

2
6 (1 + δs) ‖x‖2 , (3.33a)

1
1− δs

6

∥∥∥∥(ΦT
Γ ΦΓ

)−1
x
∥∥∥∥

2
6

1
1 + δs

. (3.33b)

Proof. From Lemma 3.3 the singular values of ΦΓ lie in the range (
√

1− δs,
√

1 + δs). The
bounds follow by the standard properties of singular values of matrices.

Proposition 3.5 (Approximate Orthogonality, Proposition 3.2 of (Needell and Tropp 2008)). Sup-
pose that Φ has restricted isometry constant δs and let Γ, Λ be two disjoint sets of indices such that
|Γ ∪Λ| 6 s, then ∥∥∥ΦT

ΛΦΓ

∥∥∥ 6 δs. (3.34)

Proof. Let Ω = Λ ∪ Γ. Since Λ and Γ are disjoint, ΦT
ΛΦΓ is a submatrix of ΦT

ΩΦΩ − I. As the
singular values of a submatrix cannot exceed the maximum singular value of the full matrix we
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have ∥∥∥ΦT
ΛΦΓ

∥∥∥ 6
∥∥∥ΦT

ΩΦΩ − I
∥∥∥ 6 δs, (3.35)

by Lemma 3.3.

Corollary 3.6 (Corollary 3.3 of (Needell and Tropp 2008)). Suppose that Φ ∈ Rm×n has restricted
isometry constant δs and let Γ be a set of column indices of Φ and x ∈ Rn. Then if s > |Γ ∪ supp(x)|,∥∥∥ΦT

Γ ΦxΓc

∥∥∥
2

6 δs ‖xΓc‖2 . (3.36)

Proof. Define Λ = supp(x) \ Γ and as Γ, Λ are disjoint we have xΛ = xΓc . Then by Proposition
3.5 ∥∥∥ΦT

Γ ΦxΓc

∥∥∥
2

6
∥∥∥ΦT

Γ ΦxΛ

∥∥∥
2

6
∥∥∥ΦT

Γ ΦΛx
∥∥∥

2
6
∥∥∥ΦT

Γ ΦΛ

∥∥∥
2
· ‖x‖2 6 δs ‖x‖2 . (3.37)

Lemma 3.7 (Energy Bound, Proposition 3.5 of (Needell and Tropp 2008)). Suppose that Φ ∈
Rm×n obeys the upper inequality of the RIP, i.e. that ‖Φv‖2

2 6 (1 + δs) ‖v‖2
2 for all s-sparse vectors v.

Then, for every signal x,

‖Φx‖2 6
√

1 + δs

(
‖x‖2 +

1√
s
‖x‖1

)
. (3.38)

Proof. We can convert the statement of this theorem into a statement about the induced norm
of the operator Φ between Banach spaces. For two sets K and S we have the operator norms

‖Φ‖K→2 , max
x∈K
‖Φx‖2 and ‖Φ‖S→2 , max

x∈S
‖Φx‖2 . (3.39)

Let I ⊂ {1, 2, . . . , n} then write B I
`2

for the `2 unit ball restricted to the components of Rn in I.
Define the convex body

S , conv

 ⋃
|I|6s

B I
`2

 , (3.40)

which is the convex hull of all s-sparse `2 balls in Rn.

Any v ∈ S can be written in the form v = ∑i=1 λixi such that ∑i |λi| 6 1 where xi is the unique
vector in the i-th ball and ‖x‖2 = 1, that is, we write v as the convex sum of s-sparse unit
vectors. Then

‖Φv‖2
2 =

∥∥∥∥∥Φ

(
∑

i
λixi

)∥∥∥∥∥
2

2

(3.41a)

6 ∑
i
|λi| ‖Φxi‖2

2 (3.41b)

6 ∑
i
|λi| (1 + δs) ‖xi‖2

2 (3.41c)

6 ∑
i
|λi| (1 + δs) (3.41d)

6 1 + δs. (3.41e)

Hence by the hypothesis we have ‖Φ‖S→2 6
√

1 + δs. Define a second convex body

K ,
{

x : ‖x‖2 +
1√

s
‖x‖1 6 1

}
. (3.42)
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The statement of the lemma then becomes

‖Φ‖K→2 6 ‖Φ‖S→2 , (3.43)

and it suffices to check the condition that K ⊂ S. To this end, assume that x ∈ K. Partition the
support of x into sets Ij of size s such that I0 is the set of the largest s components of x, I1 is the
set of the next largest s components, and so on. Any ties should be broken deterministically, e.g.
lexicographically. Let IJ be the final block which may have fewer than s entries. Then we can
decompose x over these sets Ii

x = xI0 +
J

∑
j=1

xIj = λ0y0 +
J

∑
j=1

λjyj, (3.44)

where
λj =

∥∥∥xIj

∥∥∥
2

and yj =
xIj∥∥∥xIj

∥∥∥
2

. (3.45)

Observe that each yj is s-sparse and has unit `2 norm. We will show that x can be written as a
convex combination of vectors from S, namely that ∑J

j=0 λj 6 1.

Now fix j ∈ Z where 1 6 j 6 J, then Ij has at most s elements and Ij−1 has exactly s elements.

Then
∥∥∥xIj

∥∥∥
2

6
√

s ·
∥∥∥xIj

∥∥∥
∞

and
∥∥∥xIj−1

∥∥∥
1

> r ·
∥∥∥xIj

∥∥∥
∞

since each of the r components of xIj−1 is as
least as large as the largest component of xIj . Thus

λj =
∥∥∥xIj

∥∥∥
2

6
√

s
∥∥∥xIj

∥∥∥
∞

6
1√

s

∥∥∥xIj−1

∥∥∥
1

. (3.46)

Summing these terms over j we get

J

∑
j=1

λj 6
1√

s

J

∑
j=1

∥∥∥xIj−1

∥∥∥
1

=
1√

s

∥∥∥∥x⋃J−1
j=0 Ij

∥∥∥∥
1

6
1√

s
‖x‖1 . (3.47)

Since λ0 =
∥∥xI0

∥∥
2 6 ‖x‖2 and x ∈ K implies that ‖x‖2 + 1√

s ‖x‖1 6 1 we have

J

∑
j=0

λj 6 ‖x‖2 +
1√

s
‖x‖1 6 1, (3.48)

so we have written x as a convex combination of s-sparse unit vectors, hence x ∈ S.

Lemma 3.8 (Reduction to sparse case, Lemma 6.1 of (Needell and Tropp 2008)). Let x be a vector
from Rn and assume that Φ obeys the RIP of order s with δs 6 0.1, then the sample vector y = Φx + e
can also be written as y = Φxs + ẽ where

‖ẽ‖2 6 1.05
(
‖x− xs‖2 +

1√
s
‖x− xs‖1

)
+ ‖e‖2 . (3.49)

Proof. Writing x = xs + (x − xs) we get y = Φxs + ẽ where ẽ = Φ(x − xs) + e. Then from
Lemma 3.7 we get

‖ẽ‖2 6
√

1 + δs

(
‖x− xs‖2 +

1√
s
‖x− xs‖1

)
+ ‖e‖2 . (3.50)
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Then we use the fact that δs 6 0.1 to get
√

1 + δs 6 1.05.

For the following two lemmas, Lemmas 3.10 and 3.11 we need the modified restricted isometry
property , which is used in section 5.2.1.

Definition 3.9. Let Φ̂ be a matrix satisfying the restricted isometry property for δs and let Φ = Φ̂
1+δs

,
then

(1− βs) ‖x‖2
2 6 ‖Φx‖2

2 6 ‖x‖2 , (3.51)

for all s-sparse x, where

βs = 1− 1− δs

1 + δs
< 1, (3.52)

and we say that Φ obeys the modified restricted isometry property of order s.

Lemma 3.10. For all index sets Γ and all measurement matrices Φ for which the RIP holds with s = |Γ|∥∥∥(I−ΦT
Γ ΦΓ

)
xΓ

∥∥∥
2

6 δs ‖xΓ‖2 . (3.53)

and furthermore ∥∥∥(I− γΦT
Γ ΦΓ

)
xΓ

∥∥∥
2

6 [1− γ(1− δs)] ‖xΓ‖2 . (3.54)

Or if Φ obeys the modified RIP we have∥∥∥(I−ΦT
Γ ΦΓ

)
xΓ

∥∥∥
2

6 βs ‖xΓ‖2 . (3.55)

and ∥∥∥(I− γΦT
Γ ΦΓ

)
xΓ

∥∥∥
2

6 [1− γ(1− βs)] ‖xΓ‖2 . (3.56)

Proof. The RIP guarantees us that the eigenvalues of ΦT
Γ ΦΓ lie in the range 1 − δs to 1 + δs.

Hence the matrix I−ΦT
Γ ΦΓ has eigenvalues in [−δs, δs]. For the second result we proceed sim-

ilarly. Clearly γΦT
Γ ΦΓ has eigenvalues in the range [γ(1− δs), γ(1 + δs)], hence the maximum

eigenvalue of I− γΦT
Γ ΦΓ is less than or equal to 1− γ(1− δs). Then for each fixed Γ we have∥∥∥(I− γΦT

Γ ΦΓ

)
xΓ

∥∥∥
2

6
∥∥∥(I− γΦT

Γ ΦΓ

)∥∥∥
2
· ‖xΓ‖2 (3.57a)

6 max
Λ : |Λ|=s

∥∥∥(I− γΦT
ΛΦΛ

)∥∥∥
2
· ‖xΓ‖2 (3.57b)

6 (1− γ(1− δs)) ‖xΓ‖2 , (3.57c)

and Equation (3.53) follows by setting γ = 1. The results for the modified RIP follow analo-
gously, completing the proof.

Lemma 3.11 (Lemma 2 of (Blumensath and Davies 2008)). Let Γ and Λ be two disjoint index sets
for the matrix Φ. Then for all Φ for which the RIP holds with s = |Γ ∪Λ|∥∥∥ΦT

Γ ΦΛxΛ

∥∥∥
2

6 δs ‖xΛ‖2 . (3.58)

Or if Φ obeys the modified RIP we have∥∥∥ΦT
Γ ΦΛxΛ

∥∥∥
2

6 βs ‖xΛ‖2 . (3.59)
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Proof. Set Ω = Γ ∪ Λ. Since Γ and Λ are disjoint, the matrix
(
−ΦT

Γ ΦΛ

)
is a submatrix of the

matrix I − ΦT
ΩΦΩ. Since the largest singular value of a submatrix is bounded above by the

largest singular value of the full matrix, we have∥∥∥ΦT
Γ ΦΛ

∥∥∥
2

6
∥∥∥I−ΦT

ΩΦΩ

∥∥∥
2

6 δs (3.60)

since by Lemma 3.3 we know that the eigenvalues of I−ΦT
ΩΦΩ are bounded above by δs. The

statement for the modified RIP follows similarly, completing the lemma.

Although not making use of the restricted isometry property, we nonetheless include the fol-
lowing as we require it later in the proof relating to the CoSaMP algorithm. This lemma says
that the `2 norm of the tail of a signal is much smaller than the `1 norm of the entire signal.

Lemma 3.12 (Lemma 7 of (Gilbert, Strauss, Tropp, and Vershynin 2007)). Let x ∈ Rn be a signal
and denote the best t-term approximation by xt. Then it holds that

∥∥x− xt∥∥
2 6

1
2
√

t
‖x‖1 . (3.61)

Proof. Observe that for any vector z ∈ Rn we have ‖z‖2 6
√
‖z‖1 · ‖z‖∞ and ‖z‖1 =

∥∥zt
∥∥

1 +∥∥z− zt
∥∥

1. Now let µ denote the magnitude of the (t + 1)-th largest component of x. If µ = 0
then

∥∥x− xt
∥∥

2 = 0 and we are done. Hence assume that µ > 0 and we perform the following
calculations ∥∥x− xt

∥∥
2

‖x‖1
6

√
‖x− xt‖1 · ‖x− xt‖∞
‖xt‖1 + ‖x− xt‖1

(3.62a)

6

√
µ ‖x− xt‖1

tµ + ‖x− xt‖1
. (3.62b)

Define the function f (x) ,
√

bx
c+x which has maximum at x = c, namely f (c) =

√
b

2
√

c . Set c = tµ
and b = µ so the above equation becomes f (x) where x =

∥∥x− xt
∥∥

1. Thus we get∥∥x− xt
∥∥

2
‖x‖1

6

√
µ ‖x− xt‖1

tµ + ‖x− xt‖1
(3.63a)

6

√
tµ2

2
√

tµ
(3.63b)

=
1

2
√

t
, (3.63c)

completing the proof of the lemma.

3.4 Alternatives to the Restricted Isometry Property

There are a number of properties similar to the restricted isometry property for matrices which
are used in some papers. Here we will present a brief overview of some of these other properties
of matrices.
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3.4.1 Uniform Uncertainty Principle

The Uniform Uncertainty Principle or UUP is a statement about the minimum and maximum
eigenvalues of the matrix ΦTΦ and is similar, in principle, to results such as the Johnson-
Lindenstrauss lemma (Johnson and Lindenstrauss 1984) regarding the preservation of distances
between a finite number of points randomly projected onto a lower dimensional space.

Definition 3.13 (Uniform Uncertainty Principle, (Candès and Tao 2006)). For a measurement ma-
trix Φ ∈ Rm×n, we say that Φ obeys the uniform uncertainty principle or UUP with oversampling
factor λ if for every sufficiently small α > 0, the following statement is true with probability at least
1−O(n−ρ/α) for some fixed positive constant ρ > 0; for all subsets Γ such that

|Γ| 6 α · m
λ

, (3.64)

the matrix ΦΓ obeys the bounds

m
2n

6 λmin

(
ΦT

Γ ΦΓ

)
6 λmax

(
ΦT

Γ ΦΓ

)
6

3m
2n

. (3.65)

Note that Equation (3.65) is equivalent to

m
2n

6
‖ΦΓx‖2

2

‖x‖2
2

6
3m
2n

, (3.66)

holding for all signals x with support size less than or equal to αm/λ. This in turn is is equiva-
lent to the RIP setting

δ = max
{

m
2n

,
3m
2n
− 1
}

. (3.67)

The authors of (Candès and Tao 2006) make the point that in fact the constants in Equation
(3.65) can be something other than 1/2 and 3/2. In fact any two values a and b would suffice
provided that 0 < a, b < ∞. The values of 1/2 and 3/2 are selected only for concreteness.
The name “uniform uncertainty principle” comes from the case when Φ is a Fourier matrix.
Consider a sparse signal f such that |supp( f )| 6 αm/λ with discrete Fourier transform f̂ , from
Parseval’s theorem we have that

∥∥∥ f̂
∥∥∥

2
= ‖ f ‖2. From Equation (3.65) we then get

∥∥∥ f̂
∥∥∥

2
6

√
3m
2n
‖ f ‖2 , (3.68)

which says that f cannot be concentrated in frequency unless m is comparable to n.

3.4.2 Exact Reconstruction Principle

Definition 3.14 (Exact Reconstruction Principle, (Candès and Tao 2006) ). We say that a measure-
ment matrix Φ ∈ Rm×n obeys the exact reconstruction principle (ERP) with oversampling factor λ if
for all sufficiently small α > 0, each fixed subset Γ obeying

|Γ| 6 α · m
λ

, (3.69)



42 CHAPTER 3. RESTRICTED ISOMETRY PROPERTY

and each sign sequence σ defined on Γ, there exists with overwhelmingly large probability a vector x ∈ Rn

with the following properties:

(a) xΓ has the same sign sequence as σ;

(b) x is a linear combination of the rows of Φ, i.e. x = Φz for some z;

(c) ‖xΓc‖∞ 6 1
2 .

By “overwhelmingly large” we mean that the probability be at least 1− O
(

n−ρ/α
)

for some
fixed positive constant ρ > 0. The ERP is primarily used to check that the vector obtained by `1

minimisation is close to the sparse approximation to the original signal in the `1-norm, for more
details see (Candès and Tao 2006).

These two definitions are used primarily in the hypothesis of Theorem 2.13. It is shown in
(Candès and Tao 2006) that matrices drawn from the Fourier ensemble or with i.i.d. Gaussian
or binary random entries satisfy the ERP and UUP. It can also be shown that under some con-
ditions, the UUP implies the ERP.
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4

Frames

Frames are a generalisation of a basis for Hilbert spaces. For a Hilbert space H a frame may be
loosely regarded as a set of elements {xi}, xi ∈ H where the xi span the space H . Since we
used frames as the inspiration for our reconstruction algorithm we will present a background
to frames in this chapter.

4.1 Definition

Definition 4.1. A sequence {xn} in a Hilbert space H is a frame if there exist numbers A, B > 0 such
that for all x ∈H we have

A ‖x‖2 6 ∑
n
|〈x, xn〉|2 6 B ‖x‖2 . (4.1)

The numbers A and B are called the frame bounds and the frame is said to be tight if A = B. The frame
is exact if it ceases to be a frame whenever any single element is deleted from the sequence.

It follows that every orthonormal sequence is a tight exact frame with A = B = 1. Furthermore
as the summand above is a series of positive real numbers, if it converges, it converges abso-
lutely and hence unconditionally. That is, any rearrangement of the terms will also converge
and to the same value.

Let {xn} be a frame for a Hilbert space H . Then any x ∈H can be written as

x = ∑ cnxn. (4.2)

Unlike for a basis, this representation is not necessarily unique, as the xn are not required to be
linearly independent. We give an example of a frame for R2 in Example 4.2.
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Example 4.2. The set of vectors

F =


0

1

 ,

√3

−1

 ,

−√3

−1


 , (4.3)

span R2 and hence form a frame for R2. Forming the matrix ΦF with the elements of F as columns
gives

ΦF =

0
√

3 −
√

3

1 −1 −1

 , (4.4)

and maximum and minimum eigenvalues of ΦFΦ∗F , give the frame bounds, A = 3 and B = 6.

We make the following definitions about an operators between Hilbert spaces. (Heil and Walnut
1989)

Definition 4.3. Let H and G be Hilbert spaces with norms ‖·‖H and ‖·‖G and inner products 〈·, ·〉H
and 〈·, ·〉G defined respectively. Let S : H −→ G .

(a) S is linear if S(ax + by) = aS(x) + bS(y) for all x, y ∈H and a, b ∈ C.

(b) S is one-to-one or injective if Sx 6= Sy whenever x 6= y and x, y ∈H .

(c) The range or image of S is Im(S) , {Sx | x ∈H }.

(d) S is onto or surjective if Im(S) = G .

(e) The norm of S is ‖S‖ , sup
{
‖Sx‖G

∣∣ x ∈H , ‖x‖H = 1
}

.

(f) S is continuous if xn −→ x implies Sxn −→ Sx.

(g) S is bounded if ‖S‖ < ∞. A linear operator is bounded if and only if it is continuous.

(h) The adjoint of S is the unique operator S∗ : G −→ H such that 〈Sx, y〉G = 〈x, S∗y〉H for all
x ∈H and y ∈ G . Furthermore ‖S∗‖ = ‖S‖.

(i) If S is bijective then it has inverse S−1 : G −→H defined by S−1y , x if y = Sx.

(j) S is invertible if S is linear, bijective, continuous and S−1 is continuous. It follows then that∥∥∥S−1
∥∥∥−1
‖x‖H 6 ‖Sx‖G 6 ‖S‖ ‖x‖H

for all x ∈H .

(k) S is an isometry or norm-preserving if ‖Sx‖G = ‖x‖H for all x ∈ H . If S is linear then it is
an isometry if and only if 〈Sx, Sy〉G = 〈x, y〉H for all x, y ∈H .

(l) S is unitary if it is a linear bijective isometry.

In the special case where G = H , that is S : H −→H we have the following.

(a) S is self-adjoint if S = S∗, that is, 〈Sx, y〉H = 〈x, Sy〉H for all x, y ∈H .

(b) S is positive, written S > 0, if 〈Sx, x〉H > 0 for all x ∈ H . If S is positive then it is also
self-adjoint.
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4.2 Properties

We will now demonstrate several properties of frames, in particular, relating to the frame
bounds. Let us define the function S : H →H , called the frame operator, by

S f , ∑
j

〈
f , xj

〉
xj,

where the {xj} form a frame for H . We are now in a position to state the following theorem.

Theorem 4.4. Given a sequence {xn} in a Hilbert space H , the following two statements are equivalent:

(a) {xn} is a frame with bounds A, B.

(b) The frame operator Sx = ∑ 〈x, xn〉 xn is a bounded linear operator with

AI 6 S 6 BI,

where I is the identity operator.

Proof. We first show that (b) implies (a). If (b) holds, then for all x ∈H

〈AIx, x〉 = A 〈x, x〉 6 〈Sx, x〉 6 〈BIx, x〉 = B 〈x, x〉 . (4.5)

But 〈Sx, x〉 = ∑ |〈x, xn〉| and 〈x, x〉 = ‖x‖2, hence (a) is true.

We now show that (a) implies (b). Fix an element x ∈H and let sN be the partial frame operator
for x, that is

sN =
N

∑
n=−N

〈x, xn〉 xn. (4.6)

Then for M 6 N and by the Cauchy-Schwarz inequality for series, we have that

‖sN − sM‖2 = sup
‖y‖=1

|〈sN − sM, y〉|2 (4.7a)

= sup
‖y‖=1

∣∣∣∣∣∣ ∑
M<|n|<N

〈x, xn〉 〈xn, y〉

∣∣∣∣∣∣
2

(4.7b)

6 sup
‖y‖=1

 ∑
M<|n|<N

|〈x, xn〉|2
 ∑

M<|n|<N
|〈xn, y〉|2

 (4.7c)

6 sup
‖y‖=1

 ∑
M<|n|<N

|〈x, xn〉|2
 B ‖y‖2 (4.7d)

= B ∑
M<|n|<N

|〈x, xn〉|2 (4.7e)

−→ 0 as M, N −→ ∞. (4.7f)

Hence the sequence {sN} forms a Cauchy sequence in H and thus must converge. Therefore
Sx is a well-defined element of H as it is the limit of this sequence. Repeating the process above
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we show that the operator S is bounded

‖Sx‖2 = sup
‖y‖=1

|〈Sx, y〉|2 (4.8a)

= sup
‖y‖=1

∣∣∣∣∣
〈

∑
n
〈x, xn〉 xn, y

〉∣∣∣∣∣
2

(4.8b)

6 sup
‖y‖=1

∣∣∣∣∣∑n
〈x, xn〉 〈xn, y〉

∣∣∣∣∣
2

(4.8c)

6 sup
‖y‖=1

(
∑
n
|〈x, xn〉|2

)(
∑
n
|〈xn, y〉|2

)
(4.8d)

6 sup
‖y‖=1

‖x‖2 · B · ‖y‖2 (4.8e)

= B ‖x‖2 , (4.8f)

hence S is bounded by B. Then (b) follows from the definition of the frame bounds.

Corollary 4.5. Under the hypothesis of Theorem 4.4 we have:

(a) S is invertible and B−1 I 6 S−1 6 A−1 I.

(b) {S−1xn} is a frame with frame bounds B−1 6 A−1 and is called the dual frame of {xn}.

(c) Every x ∈H can be written

x = ∑
〈

x, S−1xn

〉
xn = ∑ 〈x, xn〉 S−1xn. (4.9)

4.3 Frame Reconstruction Algorithm

Assume that {xn}n forms a frame for the Hilbert space H with frame bounds 0 < A 6 B < ∞.
Then every f ∈ H is uniquely determined by the sequence {〈 f , xn〉}n. Then the following,
Algorithm 4.1, is a reconstruction algorithm for f ∈ H given the sequence {〈 f , xn〉}n. Unfor-
tunately we cannot just project back onto the frame elements as we can for a basis, i.e.

f 6= ∑
n

xn 〈 f , xn〉 , (4.10)

in general, as we show in Example 4.6.

Example 4.6. Consider the Hilbert space H = R2 with frame elements {e1, e1, e2} where ei is the
canonical basis element, that is ei is a vector of zeroes except in the i-th component where it is equal to 1.
Then any vector f ∈ H with components x and y gives the sequence of inner products {x, x, y}. If we
reconstruct using Equation (4.10) we get the vector (2x y)T 6= f .
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Algorithm 4.1 Frame Reconstruction Algorithm
Input: The sequence of inner products {〈 f , xn〉}j.
Output: The function f ∈H

1: f (0) ← 0
2: for j = 1, . . . do
3: f (j) ← f (j−1) + 2

A+B S
(

f − f (j−1)
)

4: end for
5: return f (∞)

Lemma 4.7. Let {xn} be a frame for the Hilbert space H with frame bounds 0 < A 6 B < ∞. Then
Algorithm 4.1 reconstructs every f ∈ H from the inner products {〈 f , xn〉}. Furthermore we have the
error estimate ∥∥∥ f − f (j)

∥∥∥
2

6
(

B− A
B + A

)j
‖ f ‖2 . (4.11)

Proof. Firstly observe that for all f ∈H

〈S f , f 〉 =

〈
∑
n
〈 f , xn〉 xn, f

〉
(4.12a)

= ∑
n
〈〈 f , xn〉 xn, f 〉 (4.12b)

= ∑
n
〈 f , xn〉 〈 f , xn〉 (4.12c)

= ∑
n
|〈 f , xn〉|2 . (4.12d)

Therefore by the frame bounds we have

A ‖ f ‖2 6 ∑
n
|〈 f , xn〉|2 6 B ‖ f ‖2 , (4.13)

for all f ∈H . Consider the operator
(
1− 2

A+B S
)
, then〈(

1− 2
A + B

S
)

f , f
〉

= 〈 f , f 〉 − 2
A + B

〈S f , f 〉 (4.14a)

> ‖ f ‖2
2 −

2
A + B

B ‖ f ‖2
2 (4.14b)

=
A− B
A + B

‖ f ‖2
2 . (4.14c)

Similarly we calculate an upper bound to get

−B− A
B + A

‖ f ‖2
2 6

〈(
1− 2

A + B
S
)

f , f
〉

6
B− A
B + A

‖ f ‖2
2 . (4.15)

Therefore we have the operator norm∥∥∥∥1− 2
A + B

S
∥∥∥∥ 6

B− A
B + A

< 1. (4.16)
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From the update step of the algorithm we have

f − f (n) = f − f (n−1) − 2
A + B

S
(

f − f (n−1)
)

(4.17a)

=
(

1− 2
A + B

S
)(

f − f (n−1)
)

, (4.17b)

and hence

f − f (n) =
(

1− 2
A + B

S
)n (

f − f (0)
)

. (4.18)

But by the bound on the operator we have

∥∥∥ f − f (n)
∥∥∥

2
6

∥∥∥∥1− 2
A + B

S
∥∥∥∥n ∥∥∥ f − f (0)

∥∥∥
2

(4.19a)

6
(

B− A
B + A

)n
‖ f ‖2 , (4.19b)

as f (0) ≡ 0.

Furthermore this algorithm will converge to f for any starting vector f (0). Algorithms that
converge faster are known to exist as in (Gröchenig 1993), but all follow this basic idea.

Assume that we are dealing with the Hilbert space H = Rn for some n and let {xj} be a frame
for H . Necessarily there are s > n of the xj. Let Θ ∈ Rs×n be the matrix formed by taking the
xj as rows. Then we can rewrite the frame operator for a vector y ∈ Rn in matrix notation as

Sy =
s

∑
j=1

〈
y, xj

〉
xj = ΘTΘy. (4.20)

Then the update step of the frame reconstruction algorithm becomes

y(i) ← y(i−1) +
2

A + B
ΘTΘ

(
y− y(i−1)

)
. (4.21)

Since y is not known, but the measurements
{〈

y, xj
〉}

j = Θy are, this can in fact be calculated.
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Reconstruction Algorithms
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Reconstruction Algorithms

Originally compressive sensing relied on the assumption that the solution to the `1 minimisa-
tion problem provides the correct solution and is computationally feasible. However work has
been done to find alternative algorithms that are faster or give superior reconstruction perfor-
mance.

In this chapter we will present an overview of existing algorithms to reconstruct the signal x
from the measured signal y = Φx(+e) (for some error vector e). Many of the algorithms we
present fall in two main categories: variations on matching pursuit techniques and thresholding
algorithms – although it can be said that there is a large overlap between these classes. We will
also give a number of other algorithms that solve a slightly different problem.

5.1 Matching Pursuit

Matching pursuit is a class of iterative algorithms that decomposes a signal into a linear expan-
sion of functions that form a dictionary. Matching pursuit was first introduced in (Mallat and
Zhang 1993) and is closely related to Projection Pursuit Regression as in (Friedman and Stuetzle
1981). At each iteration of the algorithm, matching pursuit chooses dictionary elements in a
greedy fashion that best approximate the signal.

We will now describe in more detail the matching pursuit process. Let H be a Hilbert space
and let D = {gγ}γ∈Γ be a family of vectors where ‖gγ‖ = 1. We say that D is a dictionary.
Let V be the closed linear span of the dictionary and note that the finite linear combinations of
dictionary elements are dense in V. We say that the dictionary is complete if and only if V = H .

Let f ∈ H , then we compute a linear expansion of f over the dictionary D by successive
approximation. For any vector g ∈ D we can decompose f by writing

f = 〈 f , g〉 g + r(g), (5.1)
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where r(g) is the residual after approximating f by g. As the residual is orthogonal to f we have

‖ f ‖2 = |〈 f , g〉|2 +
∥∥∥r(g)

∥∥∥2
. (5.2)

For the “best” approximation we want to minimise the norm of the residual, hence we want
|〈 f , g〉|2 maximal. As it is not always possible to choose such a vector (in the case of infinite
dimensionality), it suffices to take a dictionary element that is “almost best” in the sense that

|〈 f , g〉|2 > α sup
γ∈Γ
|〈 f , gγ〉| , (5.3)

for some α that satisfies 0 < α 6 1, which is guaranteed to exist by the Axiom of Choice (Zer-
melo 1904). Fortunately however, we are only interested in finite dimensional Hilbert spaces
and dictionaries, so we do not need to be concerned by this.

At each iteration of the matching pursuit algorithm we choose the almost best approximation
for the current residual from the dictionary. Suppose that we have carried out n iterations so
we have the n-th order residual r(n). We then choose the function g(n+1) from D that is almost
best in the sense of Equation (5.3), thus decomposing r(n) into

r(n) =
〈

r(n), g(n)
〉

g(n) + r(n+1). (5.4)

Expanding this decomposition up until the original function f we get

f =
n

∑
i=0

〈
r(i), g(i)

〉
g(i) + r(n+1). (5.5)

As the residual r(i+1) is always orthogonal to r(i) we get the energy conservation result

‖ f ‖2 =
n

∑
i=0

∣∣∣〈 f , g(i)
〉∣∣∣2 +

∥∥∥r(n+1)
∥∥∥2

. (5.6)

It can be shown that matching pursuit completely recovers the components of f that are ex-
plained by the dictionary elements (Mallat and Zhang 1993).

5.1.1 Orthogonal Matching Pursuit

Orthogonal matching pursuit (OMP) is an improvement on matching pursuit. The principle is
the same, at every iteration an element is picked from the dictionary that best approximates the
residual. However rather than simply taking the scalar product of the residual and the new
dictionary element to get the coefficient weight, we fit the original function to all the already
selected dictionary elements via least squares or projecting the function orthogonally onto all
selected dictionary atoms, hence the term orthogonal matching pursuit. (Pati, Rezaiifar, and
Krishnaprasad 1993; Mallat, Davis, and Zhang 1994; Davis, Mallat, and Avellaneda 1997)

Orthogonal matching pursuit has been successfully used for signal recovery, however many
complaints appeared concerning its performance in compressive sensing, such as (DeVore and
Temlyakov 1996). More recent work though in (Tropp and Gilbert 2007) suggests that OMP can
indeed perform well in the compressive sensing arena. The recent paper (Tropp and Gilbert
2007) contains two main theorems concerning the application of orthogonal matching pursuit
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(see Algorithm 5.1) to compressed sensing. Consider the task of finding the k sparse signal
x ∈ Rn given the measurements y = Φx and the measurement matrix Φ ∈ Rm×n.

Theorem 5.1 (Theorem 2 of (Tropp and Gilbert 2007)). Fix δ ∈ (0, 0.36) and choose m >

C k log
( n

δ

)
. Assume that x ∈ Rn is k-sparse and let Φ ∈ Rm×n have i.i.d. entries from the Gaussian

distributionN
(

0, 1
m

)
. Then, given the data y = Φx, orthogonal matching pursuit (Algorithm 5.1) can

reconstruct the signal x with probability exceeding 1− 2δ where the constant C satisfies C 6 20. For
large k it can be shown that C ≈ 4.

Theorem 5.2 (Theorem 6 of (Tropp and Gilbert 2007)). Fix δ ∈ (0, 0.36) and choose m >

C k log
( n

δ

)
and suppose that x ∈ Rn is a k-sparse signal. Let Φ be an admissible measurement matrix.

Then, given the data y = Φx, orthogonal matching pursuit can reconstruct the signal with probability
exceeding 1− δ.

For Theorem 5.2 to make sense we need to define what an admissible measurement matrix is.

Definition 5.3. An admissible measurement matrix Φ ∈ Rm×n for recovering k-sparse signals is a
matrix with the following properties.

(a) Independence: The columns of Φ are statistically independent.

(b) Normalisation: E
[
φj
]

= 1 for j = 1, . . . , n, where the φj are the columns of Φ.

(c) Joint Correlation: For k vectors {ui} such that ‖ui‖2 6 1 and for every column φj of Φ,

P

[
max

i

∣∣〈φj, ui
〉∣∣ 6 ε

]
> 1− 2ke−cε2m.

(d) Smallest Singular Value: For any submatrix Φ′ of Φ with Φ′ ∈ Rm×k the smallest singular
value σk(Φ′) satisfies

P

[
σk(Φ′) >

1
2

]
> 1− e−cm.

The running time of the OMP algorithm is dominated by step 4 of Algorithm 5.1, finding the
maximally correlated column of Φ with the residual. By maintaining a QR factorisation of Φ(i)

the total running time for this algorithm is O (kmn), (Tropp and Gilbert 2007).

We can now prove Theorem 5.2.

Proof of Theorem 5.2. Without loss of generality, assume that the data vector x ∈ Rn is k-sparse
and that the first k components of x are the non-zero components. Then the observation vector
y ∈ Rm is a linear combination of the first k columns of Φ. To this end partition Φ into two
matrices Φ =

[
Φopt |Φ0

]
where Φopt has k columns.

We are interested in the event that the algorithm correctly identifies x after i iterations, so let
Esuccess denote this event. Furthermore let Eσ denote the event that smallest singular value of
Φopt is at least equal to 1

2 , i.e.

Eσ ,
{

σmin(Φopt) >
1
2

}
. (5.7)

We then have
P [Esuccess] > P [Esuccess ∩ Eσ] = P

[
Esuccess

∣∣Eσ

]
·P [Eσ] . (5.8)
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Algorithm 5.1 Orthogonal Matching Pursuit
Input:

t A measurement matrix Φ ∈ Rm×n.
t Observation vector y ∈ Rm.
t Sparsity level k of the ideal signal x ∈ Rn.

Output:

t An estimate x̂ ∈ Rn of the ideal signal x.
t A set Λk containing the positions of the non-zero elements of x̂.
t An approximation to the measurements y by ak.
t The residual r = y− ak.

1: r(0) ← y . Initialise the residual
2: Λ(0) ← ∅ . Initialise the indices
3: for i = 1, . . . , k do
4: λ(i) ← arg maxj=1,...,n

∣∣∣〈r(i−1), φj

〉∣∣∣ . The column of Φ that is most correlated with ri−1

5: Λ(i) ← Λ(i−1) ∪ λ(i)

6: Φ(i) ←
[
Φ(i−1) φλ(i)

]
7: x(i) ← arg minx̂

∥∥∥y−Φ(i)x̂
∥∥∥

2
. Solve the Least Squares for new signal estimate

8: a(i) ← Φ(i)x(i) . New data approximation
9: r(i) ← y− a(i) . New residual

10: end for
11: x̂← x(k)

12: return x̂, Λ(k), a(k), r(k)

By the definition of an admissible measurement matrix we know that P [Eσ] > 1 − e−cm. It
suffices to check that the algorithm correctly identifies the support of x, as the condition on the
singular values of Φopt ensures that this matrix is invertible and hence solving the least squares
problem on this support will return the correct values.

Define the greedy selection ratio, ρ(r), which was studied in (Tropp 2004)

ρ(r) ,

∥∥∥ΦT
0 r
∥∥∥

∞∥∥∥ΦT
optr
∥∥∥

∞

=
maxψ |〈ψ, r〉|∥∥∥ΦT

optr
∥∥∥

∞

, (5.9)

where the maximisation runs over the columns of Φ. If r is the residual appearing in the OMP
algorithm then a value of ρ(r) < 1 means that the algorithm selects a column from Φopt. If
ρ(r) = 1 a column from Φopt and Φ0 both achieve the maximum correlation with the residual
and it is not clear which column the algorithm will then pick.

Consider the scenario now, where we know the support of x and we then run the OMP algo-
rithm with the restricted measurement matrix Φopt, producing a series of residuals q(k) and
column indices ω(k). We will compare this to the actual invocation of the algorithm producing
the residuals r(k) and selected columns λ(k). We will show that if the imaginary execution at
iteration k has ρ(q(k)) < 1 then we must have ρ(r(k)) < 1.

Initially we have r(0) = y and q(0) = y, hence in the base case if ρ(q(0)) < 1 we have ρ(r(0)) < 1
and thus the algorithm must select the same columns λ(0) = ω(0). We complete the proof of
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this property by induction. Assume then that for the first k iterations the two invocations of the
algorithm produce the same set of column indices λ(i) = ω(i) for 0 6 i 6 k and hence the same
residuals, in particular q(k) = r(k). Therefore if ρ(q(k+1)) < 1 we have ρ(r(k+1)) < 1 and thus
the algorithms again select the same column, i.e. λ(k+1) = ω(k+1). Note that the residuals q(i)

lie in the column span of Φopt and as such are statistically independent from the matrix Φ0 as
the columns of the full matrix Φ are independent. Therefore we conclude that

P
[
Esuccess

∣∣Eσ

]
> P

[
max

i=1,...,s
ρ
(

q(i)
)

< 1
∣∣∣Eσ

]
. (5.10)

Assume then that the smallest singular value of Φopt is at least 1
2 , i.e. that the event Eσ occurs.

Observe that for all s-sparse vectors x̂ we have ‖x̂‖2 6
√

s ‖x̂‖∞. Therefore at each iteration i of
the algorithm we have

ρ
(

q(i)
)

=
maxφ

∣∣∣〈ψ, q(i)
〉∣∣∣∥∥∥ΦT

optq(i)
∥∥∥

∞

(5.11a)

6

√
s maxφ

∣∣∣〈ψ, q(i)
〉∣∣∣∥∥∥ΦT

optq(i)
∥∥∥

2

, (5.11b)

For convenience define the vector

u(i) ,
q(i)

2
∥∥∥ΦT

optq(i)
∥∥∥

2

. (5.12)

Since the Rayleigh quotient of a matrix is bounded by the square root of the maximum and
minimum singular values we have∥∥∥ΦT

optq
(i)
∥∥∥

2∥∥q(i)
∥∥

2

> σs
(
Φopt

)
>

1
2

. (5.13)

This gives us
ρ
(

q(i)
)

6 2
√

s max
φ

∣∣∣〈φ, u(i)
〉∣∣∣ . (5.14)

We can use this to create a lower bound for the probability that all the ρ(q(i)) are less than 1

P

[
max

i=1,...,s
ρ
(

q(i)
)

< 1
∣∣∣Eσ

]
> P

[
max

i
max

φ

∣∣∣〈φ, u(i)
〉∣∣∣ <

1
2
√

s

∣∣∣∣∣Eσ

]
(5.15a)

> ∏
φ

P

[
max

i

∣∣∣〈φ, u(i)
〉∣∣∣ <

1
2
√

s

∣∣∣∣∣Eσ

]
, (5.15b)

by swapping the two max terms and by independence of the columns of Φ0. Then by the joint
correlation property of admissible measurement matrices and the fact that u(i) is independent
of the columns of Φ0, we have a lower bound on each of the product terms appearing above

P

[
max

j

∣∣∣〈ϕ, u(i)
〉∣∣∣ 6 ε

]
> 1− 2se−cε2m, (5.16)
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which implies that

P

[
max

i=1,...,s
ρ
(

q(i)
)

< 1
∣∣∣Eσ

]
>
(

1− 2se−cm/4s
)n−s

, (5.17)

as there are n− s columns in Φ0. Combining this with the previous property that the singular
values of Φopt are lower bounded we now can write

P [Esuccess] >
(

1− 2se−cm/4s
)n−s (

1− e−cm) (5.18a)

> 1− 2s(n− s)e−cm/4s − e−cm, (5.18b)

where we use the Taylor expansion (1− x)k > 1− kx for x 6 1 and k > 1. As the sparsity s is
less than n/2 we have s(n− s) 6 n2/4, so we can rewrite the above equation to get

P [Esuccess] > 1− n2e−c̃m/s. (5.19)

If we ensure that m > C · s log(n/δ), then the probability of failure is less than δ. The require-
ment that δ < 0.36 ensures that the logarithm term is always larger than 1.

5.1.2 Stagewise Orthogonal Matching Pursuit

Stagewise orthogonal matching pursuit or StOMP, introduced in (Donoho, Tsaig, Drori, and
Starck 2007), is an improvement on the OMP algorithm presented in the previous section. In
contrast to OMP it allows multiple coefficients to be added to the model in a single iteration
and runs for a fixed number of iterations. We list StOMP as Algorithm 5.2.

Algorithm 5.2 StOMP
Input:

t Number of iterations S to perform
t Threshold value ts
t y ∈ Rm and the measurement matrix Φ ∈ Rm×n

Output:

t x̂ ∈ Rn such that x̂ is s-sparse and y = Φx̂

1: x(0) ← 0
2: Λ(0) ← ∅
3: for i = 1, . . . , S do
4: r(i) ← y−Φx(i−1) . Residual
5: v(i) ← ΦTr(i) . Matched filter
6: Γ(i) ←

{
j :
∣∣∣v(i)

j

∣∣∣ > ts

}
. Select components larger than the threshold ts

7: Λ(i) ← Λ(i−1) ∪ Γ(i)

8: x(i) ← Φ†
Λ(i) y . Projection

9: end for
10: return x̂← x(S)

The choice of the thresholding parameter ts is inspired Gaussian noise removal, such as arising
in digital communications, known as Multiple Access Interference or MAI (Verdú 1998). In this
problem the MAI typically has Gaussian behaviour, in particular if the measurement matrix
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Φ ∈ Rm×n has columns sampled from the unit sphere and m, n are large, then the entries z =
ΦTy− x = ΦTΦx− x has a histogram which is nearly Gaussian and has standard deviation

σ ≈ ‖x‖2√
m

. (5.20)

For the justification of this, see (Donoho, Tsaig, Drori, and Starck 2007).

Let Γ be the support of x and let ΓS be the support of x̂ = xS, the output of Algorithm 5.2. The
components of ΓS we call discoveries and the components in ΓS \ Γ are called false discoveries.
Then if a component appears in Γ but not in ΓS, we call this a missed detection. If a component
occurs in ΓS but not in Γ, we call this a false alarm. Observe that a false alarm is a false discovery,
but we distinguish between them when calculating the rate at which these occur. The false
discovery rate is the fraction of false discoveries in ΓS and the false alarm rate is the number of
false alarms over the number of components not in Γ.

The process for choosing the threshold parameter is then governed by one of two strategies:

(a) False Alarm Control. We attempt to guarantee that the number of false alarms, occurring
across all iterations does not exceed m− s. The threshold is chosen so the false alarm rate
does not exceed a specific per-iteration amount.

(b) False Discovery Control. The threshold is chosen so as not to exceed a certain fraction of
the total number of components added across all iterations.

These two strategies are discussed further in (Abramovich, Benjamini, Donoho, and Johnstone
2000). Software implementing this algorithm can be found in the SparseLab MATLAB software
package (Donoho, Drori, Stodden, Tsaig, and Shahram 2007).

5.1.3 Gradient Pursuit

Gradient pursuit (GP) is yet another variation of matching pursuit. Instead of taking the update
to simply be the scalar-product of the residual and dictionary element, the update occurs in
a particular direction (Blumensath and Davies 2008). Once again consider our usual scenario,
given the matrix Φ ∈ Rm×n where m < n and given the observations y = Φx for some unknown
but sparse vector x ∈ Rn we wish to reconstruct the vector x. In gradient pursuit, at iteration k,
the following update to x(k−1) occurs

x(k) = x(k−1) + a(k)d(k), (5.21)

where d(k) is the update direction. Once a direction has been selected, the optimal step-size a(n)

(in terms of minimising the squared error
∥∥∥y−Φx(k)

∥∥∥2

2
), is shown in (Golub and Loan 1996, pp.

521) to be

a(k) =

〈
r(k), ΦΓ(k) d(k)

〉
∥∥ΦΓ(k) d(k)

∥∥2
2

, (5.22)

In matching pursuit and orthogonal matching pursuit, the update direction is taken to be in
the direction of the element in the dictionary D that has largest inner product with the current
residual, r(k). In OMP, once added, an atom will not be selected again as the process of or-
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thogonalisation ensures that all future residuals will remain orthogonal to all currently selected
atoms. In MP and GP however, orthogonality is not ensured. For this reason we allow the GP
algorithm to use an update direction that may have already been used.

Algorithm 5.3 Gradient Pursuit
Input:

t y ∈ Rm and the measurement matrix Φ ∈ Rm×n

Output:

t x̂ ∈ Rn such that x̂ is sparse and y = Φx̂

1: x(0) ← 0
2: r(0) ← y
3: Γ← ∅
4: k← 0
5: while Halting condition false do
6: k← k + 1
7: g(k) ← ΦTr(k−1)

8: λ(k) ← arg maxj

∣∣∣g(k)
j

∣∣∣ . Select largest component of g(k)

9: Γ(k) ← Γ(k−1) ∪ λ(k)

10: if Gradient Pursuit then . Calculate update direction d(k)

11: d(k) ← ΦT
Γ(k)

(
y−ΦΓ(k) x

(k−1)
Γ(k)

)
12: else if Conjugate Gradient Pursuit then
13: g(k) ← ΦT

Γ(k)

(
y−ΦΓ(k) x

(k−1)
Γ(k)

)
14: b← −

((
D(k−1)

)T
GD(k−1)

)−1 ((
D(k−1)

)T
Gg(k−1)

)
15: d(k) ← g(k) + D(k−1)b,
16: else if Approximate Conjugate Gradient Pursuit then
17: g(k) ← ΦT

Γ(k)

(
y−ΦΓ(k) x

(k−1)
Γ(k)

)
18: b← −

〈(
Φ

Γ(k) d(k−1)
)

,
(

Φ
Γ(k) g(k)

)〉
∥∥∥Φ

Γ(k) d(k−1)
∥∥∥2

2

19: d(k) ← g(k) + d(k−1)b
20: end if

21: a(k) ←
〈

r(k),Φ
Γ(k) d(k)

〉
∥∥∥Φ

Γ(k) d(k)
∥∥∥2

2

22: x(k)
Γ(k) ← x(k−1)

Γ(k−1) + a(k)d(k)

23: r(k) ← r(k−1) − a(k)ΦΓ(k) d(k)

24: end while
25: x̂← x(k)

26: return x̂

We will discuss three different methods for calculating the update direction in step 10 of Algo-
rithm 5.3.

(a) Gradient Pursuit The first option is to use the direction that minimises
∥∥∥y−Φx(k−1)

∥∥∥
2
.

Hence the update direction is simply

d(k) = ΦT
Γ(k)

(
y−ΦΓ(k) x

(k−1)
Γ(k)

)
, (5.23)
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which is the same as the classical matching pursuit algorithm. The authors of (Blumensath
and Davies 2008) simply call this the “Gradient Pursuit method”.

(b) Conjugate Gradient Pursuit Another popular update method for iteratively solving
equations is the conjugate gradient method (Golub and Loan 1996, §10.2). Briefly, if
ϕ(x) = 1

2 xTGx− bTx is the cost function to be minimised (which is equivalent to solving
Gx = b for x), then the conjugate gradient method chooses a directional update d(k) that
is G-conjugate to all the previous directions, in other words

d(k)Gd(i) = 0, ∀i < k. (5.24)

In our case we take G = ΦT
Γ(k) ΦΓ(k) , which means we are minimising the expression

∥∥∥y−ΦΓ(k) x
(k)
Γ(k)

∥∥∥2

2
. (5.25)

Let D(i) be the matrix whose columns are the update directions for the first i iterations
and let g(i) be the gradient of the the cost function in iteration i. Then the new update
direction in iteration k is given by

d(k) = g(k) + D(k−1)b, (5.26a)

where b = −
((

D(k−1)
)T

GD(k−1)
)−1 ((

D(k−1)
)T

Gg(k−1)
)

. (5.26b)

For more details and an efficient implementation for the matrix arithmetic, we refer you
to (Blumensath and Davies 2008, pp. 3-5). Note that this method is similar to OMP .
The difference is that OMP uses a full conjugate gradient solver at every iteration but for
this proposed method, only a single update occurs for every new added element. In (Pati,
Rezaiifar, and Krishnaprasad 1993) an OMP implementation is proposed using directional
updates, but this requires matrix inversions. In contrast, the matrix “inversion” in Equa-

tion (5.26b) does not requires a full matrix inversion as
((

D(k−1)
)T

GD(k−1)
)

is in fact

diagonal, a consequence of the G-conjugacy.
(c) Approximate Conjugate Gradient Pursuit Instead of calculating the exact conjugate gra-

dient direction, here we simply approximate it, resulting in an approximation to the OMP
algorithm. The advantage in this is speed and storage requirements. The approximation
occurs in that we calculate a new direction that is conjugate to only a subset of all the previ-
ous update directions. Here we consider only a direction that is conjugate to the previous
direction, but this can be extended to a larger number directions. This gives us

d(k) = g(k) + d(k−1)b. (5.27)

Then G-conjugacy implies that〈(
Gd(k−1)

)
,
(

g(k) + bd(k−1)
)〉

= 0, (5.28)

which gives us

b = −

〈(
ΦΓ(k) d(k−1)

)
,
(

ΦΓ(k) g(k)
)〉

∥∥ΦΓ(k) d(k−1)
∥∥2

2

. (5.29)

These methods appear very similar to some other algorithms discussed in this thesis, in par-
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ticular IHT (§5.2.1) and our MFR algorithm (Chapter 6). All of these algorithms have the same
update direction, but the big difference is in how the sparsity constraint is enforced. For the gra-
dient pursuit algorithms, a new dictionary element is added at every iteration, and once added,
cannot be removed. In contrast, IHT and MFR make use of a pruning step, so at every iteration
we keep only the most important (decided by the largest magnitude) dictionary elements, thus
elements can be both added and removed.

5.1.4 CoSaMP

An extension to orthogonal matching pursuit algorithms is the CoSaMP (COmpressive SAm-
pling Matching Pursuit) algorithm published in (Needell and Tropp 2008). The basis of the
algorithm is OMP but CoSaMP, Algorithm 5.4, can be shown to have tighter bounds on its con-
vergence and performance, as in Theorem 5.4.

Theorem 5.4 (CoSaMP, Theorem A in (Needell and Tropp 2008)). Let Φ ∈ Rm×n be a measurement
matrix that obeys the restricted isometry property of order 2s obeying δ2s 6 c. Let y = Φx + e be a
measurement of the signal x ∈ Rn with error e ∈ Rn of arbitrary noise. Then for a given precision
parameter η, the CoSaMP algorithm, Algorithm 5.4, produces an s-sparse vector x̂ that satisfies

‖x− x̂‖2 6 C ·max
{

η,
1√

s

∥∥∥x− xs/2
∥∥∥

1
+ ‖e‖2

}
, (5.30)

where xs/2 is a best s/2-sparse approximation to x. Furthermore the algorithm has running time
O
(
L · log

(
‖x‖2

η

))
where L is the cost of a matrix multiply with Φ or ΦT.

Algorithm 5.4 CoSaMP

Input:

t s the sparsity of x
t y ∈ Rm and the measurement matrix Φ ∈ Rm×n

Output:

t x̂ ∈ Rn such that x̂ is s-sparse and y = Φx̂

1: x(0) ← 0
2: v← y
3: k← 0
4: while Halting condition false do
5: k← k + 1
6: z← ΦTv . Signal proxy
7: Ω← supp

(
z2s) . Support of best 2s-sparse approximation “Identification”

8: Γ← Ω ∪ supp
(

x(k−1)
)

. Merge supports
9: x̄← arg minx̃:supp(x̃)=Γ ‖Φx̃− y‖2 . Solve Least Squares

10: x(k) ← x̄s . Prune: best s-sparse approximation
11: v← y−Φx(k) . Update current sample
12: end while
13: x̂← x(k)

14: return x̂

The CoSaMP consists of five main steps, each of which will be covered by a lemma analysing its
performance.



5.1 Matching Pursuit 61

(a) Identification: Finds the largest 2s components of the signal proxy as in line 7 of Algo-
rithm 5.4, covered in Lemma 5.7.

(b) Support Merge: Merges the support of the signal proxy with the support of the solution
from the previous iteration, line 8 of Algorithm 5.4, see Lemma 5.8.

(c) Estimation: Estimates a solution via least squares with the constraint that the solution lies
on a particular support, line 9 of Algorithm 5.4, see Lemma 5.9.

(d) Pruning: Takes the solution estimate and compresses it to the required support, line 10 of
Algorithm 5.4, see Lemma 5.10.

(e) Sample Update: Updates the “sample”, namely the residual in Φ-space, line 11 of Algo-
rithm 5.4.

To analyse the CoSaMP algorithm we first need to define the unrecoverable energy of a signal. Let

ν , ‖x− xs‖2 +
1√

s
‖x− xs‖1 + ‖e‖2 , (5.31)

where y = Φx + e and xs is a best s-sparse approximation to x. This reflects the baseline error
in the approximation x̂ because of the noise in the signals and the fact that x is not necessarily
sparse. We then have the following theorems.

Theorem 5.5 (Iteration Invariant, Theorem 2.1 of (Needell and Tropp 2008)). For each k the signal
approximation x(k) is s-sparse and∥∥∥x− x(k+1)

∥∥∥
2

6
1
2

∥∥∥x− x(k)
∥∥∥

2
+ 10ν. (5.32)

In particular ∥∥∥x− x(k)
∥∥∥

2
6 2−k ‖x‖2 + 20ν. (5.33)

Theorem 5.6 (Iteration Invariant: Sparse Case, Theorem 4.1 of (Needell and Tropp 2008)). As-
sume that x is s-sparse, then for each k > 0, the signal approximation x(k) is s-sparse and∥∥∥x− x(k+1)

∥∥∥
2

6
1
2

∥∥∥x− x(k)
∥∥∥

2
+

15
2

ν. (5.34)

In particular ∥∥∥x− x(k)
∥∥∥

2
6 2−k ‖x‖2 + 15ν. (5.35)

Following the proof in (Needell and Tropp 2008) we will first prove Theorem 5.6 and then
remove the assumption of sparsity, proving Theorem 5.5. Let us define the residual in iteration
k in the usual manner; r(k) , x − x(k). Recall that under the hypothesis of Theorem 5.6, x is
s-sparse and the approximation is also s-sparse, hence r(k) has at most 2s non-zero entries. The
vector v from the algorithm of updated samples can be expressed in terms of the residual and
an error e

v(k) = y−Φx = Φ
(

x− x(k)
)

+ e = Φr(k) + e. (5.36)

Lemma 5.7 (Identification, Lemma 4.2 of (Needell and Tropp 2008)). The set Ω = supp(z2s),
where z = ΦTv, contains at most 2s elements and∥∥∥r(k)

Ωc

∥∥∥
2

6 0.2223
∥∥∥r(k)

∥∥∥
2
+ 2.34 ‖e‖2 . (5.37)
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Proof. Let Γ = supp(r(k)) which has size at most 2s. As Ω is the support of the largest 2s
elements in z we have ‖zΓ‖2 6 ‖zΩ‖2. Removing the components in Γ ∩Ω we get

∥∥∥zΓ\Ω

∥∥∥
2

6∥∥∥zΩ\Γ

∥∥∥
2
. These vectors have small support (less than 2s) so we can apply the RIP constants.

Then ∥∥∥zΩ\Γ

∥∥∥
2

=
∥∥∥ΦT

Ω\Γv
∥∥∥

2
(5.38a)

=
∥∥∥ΦT

Ω\Γ

(
Φr(k) + e

)∥∥∥
2

(5.38b)

6
∥∥∥ΦT

Ω\ΓΦr(k)
∥∥∥

2
+
∥∥∥ΦT

Ω\Γe
∥∥∥

2
(5.38c)

6 δ4s

∥∥∥r(k)
∥∥∥

2
+
√

1 + δ2s ‖e‖2 , (5.38d)

where
∥∥∥ΦT

Ω\ΓΦr(k)
∥∥∥

2
6 δ4s

∥∥∥r(k)
∥∥∥

2
follows from Corollary 3.6 and

∥∥∥ΦT
Ω\Γe

∥∥∥
2

6
√

1 + δ2s ‖e‖2

follows from Proposition 3.4.

We apply a similar strategy to the term
∥∥∥zΓ\Ω

∥∥∥
2
, again using Corollary 3.6 and Proposition 3.4

giving ∥∥∥zΓ\Ω

∥∥∥
2

=
∥∥∥ΦT

Γ\Ωv
∥∥∥

2
(5.39a)

=
∥∥∥ΦT

Γ\Ω

(
Φr(k) + e

)∥∥∥
2

(5.39b)

>
∥∥∥ΦT

Γ\ΩΦr(k)
Γ\Ω

∥∥∥
2
−
∥∥∥ΦT

Γ\ΩΦr(k)
Ω

∥∥∥
2
−
∥∥∥ΦT

Γ\Ωe
∥∥∥

2
(5.39c)

> (1− δ2s)
∥∥∥r(k)

Γ\Ω

∥∥∥
2
− δ2s ‖r‖2 −

√
1 + δ2s ‖e‖2 . (5.39d)

The fact that the residual is supported on Γ means that we can write r(k)
Γ\Ω = r(k)

Ωc . Combining
this, Equation (5.38d) and Equation (5.39d) we get

(1− δ2s)
∥∥∥r(k)

Ωc

∥∥∥
2
− δ2s

∥∥∥r(k)
∥∥∥

2
−
√

1 + δ2s ‖e‖2 6 δ4s

∥∥∥r(k)
∥∥∥

2
+
√

1 + δ2s ‖e‖2 (5.40a)

⇐⇒
∥∥∥r(k)

Ωc

∥∥∥
2

6
(δ2s + δ4s)

∥∥∥r(k)
∥∥∥

2
+ 2
√

1 + δ2s ‖e‖2

1− δ2s
. (5.40b)

As δ2s 6 δ4s 6 0.1 we get

‖rΩc‖2 6
0.2
∥∥∥r(k)

∥∥∥
2
+ 2
√

1.1 ‖e‖2

0.9
6 0.2223

∥∥∥r(k)
∥∥∥

2
+ 2.34 ‖e‖2 , (5.41)

which is the desired result.

Lemma 5.8 (Support Merge, Lemma 4.3 of (Needell and Tropp 2008)). Let Ω be a set of at most 2s
indices, then the set Γ = Ω ∪ supp(x(k−1)) contains at most 3s elements and

‖xΓc‖2 6 ‖rΩc‖2 . (5.42)

Proof. As supp(x(k−1)) ⊂ Γ and as Γc ⊂ Ωc we have

‖xΓc‖2 =
∥∥∥(x− x(k−1))Γc

∥∥∥
2

= ‖rΓc‖2 6 ‖rΩc‖2 , (5.43)

since x(k−1)
Γc ≡ 0, completing the proof of the lemma.
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Lemma 5.9 (Least Squares Estimation, Lemma 4.4 of (Needell and Tropp 2008)). Let Γ be a set of
at most 3s indices and define x̄ to be the solution to the least squares problem

arg min ‖Φx̂− y‖2 such that supp(x̂) = Γ, (5.44)

with solution given by x̄Γ = Φ†
Γy where y = Φx + e. Then

‖x− x̄‖2 6 1.112 ‖xΓc‖2 + 1.06 ‖e‖2 . (5.45)

Proof. Using the triangle inequality we have that

‖x− x̄‖2 6 ‖xΓ − x̄Γ‖2 + ‖xΓc − x̄Γc‖2 = ‖xΓ‖2 + ‖xΓc − x̄Γc‖2 . (5.46)

Then we have

‖xΓ − x̄Γ‖2 =
∥∥∥xΓ −Φ†

Γ (ΦxΓ + ΦxΓc + e)
∥∥∥

2
(5.47a)

=
∥∥∥Φ†

Γ (ΦxΓc + e)
∥∥∥

2
(5.47b)

6

∥∥∥∥(ΦT
Γ ΦΓ

)−1
ΦT

Γ ΦxΓc

∥∥∥∥
2
+
∥∥∥Φ†

Γe
∥∥∥

2
(5.47c)

6
1

1− δ3s

∥∥∥ΦT
Γ ΦxΓc

∥∥∥
2
+

1√
1− δ3s

‖e‖2 (5.47d)

6
δ4s

1− δ3s
‖xΓc‖2 +

1√
1− δ3s

‖e‖2 , (5.47e)

using Corollary 3.6 and Proposition 3.4. Then since δ3s 6 δ4s 6 0.1 we get

‖x− x̄‖2 6
(

1 +
δ4s

1− δ3s

)
‖xΓc‖2 +

1√
1− δ3s

‖e‖2 (5.48a)

6 1.112 ‖xΓc‖2 + 1.06 ‖e‖2 , (5.48b)

proving the lemma.

Lemma 5.10 (Pruning, Lemma 4.5 of (Needell and Tropp 2008)). The pruned approximation x(k) =
Prune(x̄) where x̄ is the solution to the least squares problem arg minx̂:supp(x̂)=Γ ‖Φx̂− y‖2 satisfies∥∥∥x− x(k)

∥∥∥
2

6 2 ‖x− x̄‖2 . (5.49)

Proof. We have ∥∥∥x− x(k)
∥∥∥

2
6 ‖x− x̄‖2 +

∥∥∥x(k) − x̄
∥∥∥

2
6 2 ‖x− x̄‖2 , (5.50)

as x(k) is the best s-sparse approximation to x̄ and as x is also s-sparse, it must be further away
from x̄ under the `2 norm.

Proof of Theorem 5.6. We now complete the proof of the error bounds of Theorem 5.6, recall that
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this is for the case when x is s-sparse. Using the above lemmas we get∥∥∥x− x(k)
∥∥∥

2
= 2 ‖x− x̄‖2 (by Lemma 5.10) (5.51a)

6 2 (1.112 ‖xΓc‖2 + 1.06 ‖e‖2) (by Lemma 5.9) (5.51b)

6 2.224 ‖rΩc‖2 + 2.12 ‖e‖2 (by Lemma 5.8) (5.51c)

6 2.224 (0.2223 ‖r‖2 + 2.34 ‖e‖2) + 2.12 ‖e‖2 (by Lemma 5.7) (5.51d)

6
1
2
‖r‖2 +

15
2
‖e‖2 (5.51e)

=
1
2

∥∥∥x− x(k)
∥∥∥

2
+

15
2
‖e‖2 . (5.51f)

The second bound of the theorem follows by solving this recursion (see Lemma 6.3).

The case where x in y = Φx + e is not sparse, as in Theorem 5.5, can be covered by assuming that
we view the measurements y as coming from the sparse scenario, but with an additional error
component. Recall Lemma 3.8 which states that if y = Φx + e then we can write y = Φxs + ẽ
where

‖ẽ‖2 6 1.05
(
‖x− xs‖2 +

1√
s
‖x− xs‖1

)
+ ‖e‖2 . (5.52)

Proof of Theorem 5.5. Suppose we have the measurements y = Φx + e for Φ ∈ Rm×n, x, e ∈ Rn

and y ∈ Rm. Then we can use Lemma 3.8 to write y = Φxs + ẽ where xs is s-sparse. Then from
Theorem 5.6 we have ∥∥∥xs − x(k+1)

∥∥∥
2

6
1
2

∥∥∥xs − x(k)
∥∥∥

2
+

15
2
‖ẽ‖2 . (5.53)

Writing x− x(k+1) = x− xs + xs − x(k+1) we obtain∥∥∥x− x(k+1)
∥∥∥

2
6 ‖x− xs‖2 +

∥∥∥xs − x(k+1)
∥∥∥

2
(5.54a)

6
3
2
‖x− xs‖2 +

1
2

∥∥∥xs − x(k)
∥∥∥

2
+

15
2
‖ẽ‖2 (5.54b)

6
1
2

∥∥∥xs − x(k)
∥∥∥

2
+ 9.375 ‖x− xs‖2 +

7.875√
s
‖x− xs‖1 +

15
2
‖e‖2 (by Lemma 3.8)

(5.54c)

6
1
2

∥∥∥xs − x(k)
∥∥∥

2
+ 10ν, (5.54d)

where ν is the unrecoverable energy as in Equation (5.31), namely ν = ‖x− xs‖2 +
1√

s ‖x− xs‖1 + ‖e‖2. Again the second bound follows by solving the recursion.

Note that in Equation (5.54b) the 3
2 term is taken from the original paper (Needell and Tropp

2008). There appears to be no reason why we this extra half term is needed, however the only
effect is to lower the final bound to 9ν instead of 10ν.

The final step is to prove Theorem 5.4.

Proof of Theorem 5.4. Let η be some precision parameter, then setting k ∼ O
(

log‖x‖2
η

)
and using

Theorem 5.5, CoSaMP produces a solution x̂ after k iterations that satisfies

‖x− x̂‖2 6 C(η + ν), (5.55)
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where ν is the unrecoverable energy and C is a constant. Using Lemma 7 from (Gilbert, Strauss,
Tropp, and Vershynin 2007) which states that

ν 6
1.71√

s

∥∥∥x− xs/2
∥∥∥

2
+ ‖e‖2 (5.56)

we get the desired result, namely that

‖x− x̂‖2 6 C max
{

η,
1√

s

∥∥∥x− xs/2
∥∥∥

1
+ ‖e‖2

}
. (5.57)

We will not show show the running time, but the result follows by maintaining a QR-
decomposition of ΦΓ when running the algorithm.

What is of concern however, is that the in proving the lemmas required for this theorem, the
assumption was made that δ4s 6 0.1, whereas the hypothesis of the theorem only requires that
δ2s 6 c for some constant c. It should be noted that the authors claim that this is covered by
their Corollary 3.4 of (Needell and Tropp 2008).

5.2 Iterative Thresholding Algorithms

Thresholding algorithms are a class of algorithms that perform some thresholding function on
each iteration. A typical iteration would like something like

x(i) = Tτ

(
f (x(i−1))

)
, (5.58)

where Tτ is a thresholding function with parameters τ, and f is some function that acts on the
output of the previous iterate. We distinguish between hard thresholding and soft thresholding. In
the former case we will often write Hs for the thresholding function where s is the number of
components that are non-zero and for soft thresholding we will often use Sτ .

In section 5.2.1 we will demonstrate an iterative hard thresholding algorithm and in section 5.2.2
we will show an iterative soft thresholding algorithm. In Chapter 6 we will present another it-
erative hard thresholding algorithm, although similar to the other hard thresholding algorithm,
it has some significantly different properties.

5.2.1 Hard Thresholding

Hard thresholding makes use of a thresholding function Hs : Rn → Rn that sets all but the s-
largest component (in magnitude) of a vector z ∈ Rn to 0 and leaves the remaining components
untouched, that is, if ξ is the s-largest component of x, then

Hs(x) =


xi if |xi| > |ξ|

0 otherwise.

(5.59)
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We may regard Hs(z) as the best s-sparse approximation to z, that is, ‖z−Hs(z)‖1 is minimal,
which was shown in Lemma 2.14. If there is no unique such vector, i.e. there is no unique s-
largest component, the tie can be broken deterministically (e.g. by lexicographical ordering) or
randomly.

The full algorithm can be seen in Algorithm 5.5 but the critical update step is

x(i) = Hs

(
x(i−1) + ΦT

(
y−Φx(i−1)

))
. (5.60)

This algorithm is very similar to the frame reconstruction algorithm, Algorithm 4.1, but we will
discuss some of the differences in Chapter 6.

Algorithm 5.5 Iterative Hard Thresholding
Input:

t s the sparsity of x
t y ∈ Rm and the measurement matrix Φ ∈ Rm×n

Output:

t x̂ ∈ Rn such that x̂ is s sparse and y = Φx̂

1: x(0) ← 0
2: for i = 1, . . . do
3: x(i) ←Hs

(
x(i−1) + ΦT

(
y−Φx(i−1)

))
4: end for
5: x̂← x(i)

6: return x̂

The main theorem of (Blumensath and Davies 2008, Theorem 1), quantifies the performance of
Algorithm 5.5. The analysis of this algorithm requires the modified restricted isometry property
(modified-RIP), defined earlier.

Theorem 5.11. Given a noisy observation y = Φx + e where x, e ∈ Rn, y ∈ Rm and Φ ∈ Rm×n, then
let xs ∈ Rn be an s-sparse approximation to x such that ‖x− xs‖2 is minimal. If Φ obeys the modified-
RIP with β3s < 1/

√
32, then at iteration k, the iterative hard thresholding algorithm will recover an

approximation x(k) satisfying ∥∥∥x− x(k)
∥∥∥

2
6 2−k ‖xs‖2 + 5ε̃s, (5.61)

where
ε̃s = ‖x− xs‖2 +

1√
s
‖x− xs‖1 + ‖e‖2 , (5.62)

is the unrecoverable energy.

Furthermore after at most

k? =
⌈

log2

(
‖xs‖2

ε̃s

)⌉
, (5.63)

iterations the algorithm estimates x with accuracy

∥∥∥x− x(k?)
∥∥∥

2
6 6

(
‖x− xs‖2 +

1√
s
‖x− xs‖1 + ‖e‖2

)
= 6ε̃s. (5.64)

For signals x that are s-sparse we have the following corollary.
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Corollary 5.12. Given a noisy observation y = Φx + e where x ∈ Rn is s-sparse and if Φ has the
modified-RIP with β3s < 1/

√
32, then, at iteration k, Algorithm 5.5 will recover an approximation x(k)

satisfying ∥∥∥x− x(k)
∥∥∥

2
6 2−k ‖x‖2 + 4 ‖e‖2 . (5.65)

Furthermore after at most

k? =
⌈

log2

(
‖xs‖2
‖e‖2

)⌉
, (5.66)

iterations the algorithm estimates x with accuracy∥∥∥x− x(k?)
∥∥∥

2
6 5 ‖e‖2 (5.67)

We will now prove Theorem 5.11 and Corollary 5.12, following the proof of (Blumensath and
Davies 2008). Let us recall and make the following definitions:

r(i) , xs − x(i), (5.68a)

a(i) , x(i−1) + ΦT(y−Φx(i−1)), (5.68b)

x(i) , Hs(a(i)), (5.68c)

Γ? , supp(xs), (5.68d)

Γ(i) , supp(x(i)), (5.68e)

B(i) , Γ? ∪ Γ(i), (5.68f)

x̂ = xΓ , {x̂i = xi if i ∈ Γ, else x̂i = 0}. (5.68g)

As a consequence we have |Γ?| 6 s and
∣∣∣Γ(i)

∣∣∣ 6 s.

Proof. Consider the error
∥∥∥xs − x(i+1)

∥∥∥
2
. Applying the triangle inequality to this we get

∥∥∥xs − x(i+1)
∥∥∥

2
6
∥∥∥xs

B(i+1) − a(i+1)
B(i+1)

∥∥∥
2
+
∥∥∥x(i+1)

B(i+1) − a(i+1)
B(i+1)

∥∥∥
2

(5.69)

as xs − x(i+1) is supported on the set B(i+1). As x(i+1) is the thresholded version of a(i+1) it is
the best s-term approximation to a(i+1), in particular it is better than xs. Hence∥∥∥x(i+1) − a(i+1)

B(i+1)

∥∥∥
2

6
∥∥∥xs − a(i+1)

B(i+1)

∥∥∥
2

, (5.70)

and thus Equation (5.69) becomes∥∥∥xs − x(i+1)
∥∥∥

2
6 2

∥∥∥xs
B(i+1) − a(i+1)

B(i+1)

∥∥∥
2

. (5.71)

Using the fact that y = Φxs + e and r(i) = xs − x(i) we get

a(i+1)
B(i+1) = x(i)

B(i+1) + ΦT
B(i+1)

(
y−Φx(i)

B(i+1)

)
(5.72a)

= x(i)
B(i+1) + ΦT

B(i+1) Φr(i) + ΦT
B(i+1) e, (5.72b)
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hence∥∥∥xs − x(i+1)
∥∥∥

2
(5.73a)

6 2

∥∥∥∥∥∥∥∥∥∥
xs

B(i+1) − x(i)
B(i+1)︸ ︷︷ ︸

r(i)

B(i+1)

−ΦT
B(i+1) Φr(i) −ΦT

B(i+1) e

∥∥∥∥∥∥∥∥∥∥
2

(5.73b)

6 2
∥∥∥r(i)

B(i+1) −ΦT
B(i+1) Φr(i)

∥∥∥
2
+ 2

∥∥∥ΦT
B(i+1) e

∥∥∥
2

(5.73c)

= 2
∥∥∥(I−ΦT

B(i+1) ΦB(i+1)

)
r(i)

B(i+1) −ΦT
B(i+1) ΦB(i)\B(i+1) r

(i)
B(i)\B(i+1)

∥∥∥
2
+ 2

∥∥∥ΦT
B(i+1) e

∥∥∥
2

(5.73d)

6 2
∥∥∥(I−ΦT

B(i+1) ΦB(i+1)

)
r(i)

B(i+1)

∥∥∥
2
+ 2

∥∥∥ΦT
B(i+1) ΦB(i)\B(i+1) r

(i)
B(i)\B(i+1)

∥∥∥
2
+ 2

∥∥∥ΦT
B(i+1) e

∥∥∥
2

, (5.73e)

by repeated application of the triangle inequality. Then∣∣∣B(i) ∪ B(i+1)
∣∣∣ =

∣∣∣Γ? ∪ Γ(i) ∪ Γ(i+1)
∣∣∣ 6 3s, (5.74)

as each set Γ(·) has only s entries. Recall from the modified RIP and Lemmas 3.10 and 3.11 we
have ∥∥∥ΦT

Λx
∥∥∥

2
6 ‖x‖2 , (5.75a)∥∥∥(I−ΦT

ΛΦΛ

)
xΛ

∥∥∥
2

6 βs ‖xΛ‖2 , (5.75b)∥∥∥ΦT
ΛΦΛ′xΛ′

∥∥∥
2

6 βs ‖xΛ‖2 , (5.75c)

for all matrices Φ which obey the RIP and disjoint sets Λ, Λ′ of size s. We also have β2s 6 β3s.
Therefore we can write Equation (5.73e) as∥∥∥r(i+1)

∥∥∥
2

(5.76a)

6 2
∥∥∥(I−ΦT

B(i+1) ΦB(i+1)

)
r(i)

B(i+1)

∥∥∥
2︸ ︷︷ ︸

(5.75b)

+2
∥∥∥ΦT

B(i+1) ΦB(i)\B(i+1) r
(i)
B(i)\B(i+1)

∥∥∥
2︸ ︷︷ ︸

(5.75c)

+2
∥∥∥ΦT

B(i+1) e
∥∥∥

2︸ ︷︷ ︸
(5.75a)

, (5.76b)

6 2β2s

∥∥∥r(i)
B(i+1)

∥∥∥
2
+ 2β3s

∥∥∥r(i)
B(i)\B(i+1)

∥∥∥
2
+ 2 ‖e‖2 (5.76c)

6 2β3s

(∥∥∥r(i)
B(i+1)

∥∥∥
2
+
∥∥∥r(i)

B(i)\B(i+1)

∥∥∥
2

)
+ 2 ‖e‖2 (5.76d)

6 2
√

2β3s

∥∥∥r(i)
∥∥∥

2
+ 2 ‖e‖2 , (5.76e)

where the last step follows since r(i)
B(i+1) and r(i)

B(i)\B(i+1) are orthogonal and for any two orthogonal
vectors u and v we have

‖u‖2 + ‖v‖2 6
√

2 ‖u + v‖2 . (5.77)

If β3s < 1√
32

we get ∥∥∥r(i+1)
∥∥∥

2
6

∥∥∥r(i)
∥∥∥

2
2

+ 2 ‖e‖2 . (5.78)

Expanding this using Lemma 6.3 and using the fact that we start with x(0) = 0 we get on the
k-th iteration ∥∥∥r(k)

∥∥∥
2

< 2−k ‖xs‖2 + 4 ‖e‖2 , (5.79)
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proving Corollary 5.12.

To prove the main theorem we require a lemma from (Needell and Tropp 2008), Lemma 3.8. We
repeat the statements from these lemmas here for convenience. For a matrix Φ ∈ Rm×n that
satisfies the RIP of order s and if xs is the best s-term approximation to x where y = Φx + e,
then we have the following bound on the error ẽ where y = Φxs + ẽ,

‖ẽ‖2 6 ‖x− xs‖2 +
1√
2
‖x− xs‖1 + ‖e‖2 . (5.80)

To bound the error
∥∥∥x− x(i)

∥∥∥
2

we use the triangle inequality and add some extra terms

∥∥∥x− x(i)
∥∥∥

2
6
∥∥∥r(i)

∥∥∥
2
+ ‖x− xs‖2 (5.81a)

6
∥∥∥r(i)

∥∥∥
2
+ ‖x− xs‖2 +

1√
2
‖x− xs‖1 + ‖e‖2 (5.81b)

=
∥∥∥r(i)

∥∥∥
2
+ ε̃s, (5.81c)

where ε̃s = ‖x− xs‖2 + 1√
2
‖x− xs‖1 + ‖e‖2. From Corollary 5.12 we have

∥∥∥r(i)
∥∥∥

2
6 2−i ‖xs‖2 + 4 ‖ẽ‖2 . (5.82)

From Lemma 3.8 we have that

‖ẽ‖2 6 ‖x− xs‖2 +
1√
2
‖x− xs‖1 + ‖e‖2 = ε̃s (5.83)

so ∥∥∥r(i)
∥∥∥

2
6 2−i ‖xs‖2 + 4ε̃s, (5.84)

and hence ∥∥∥x− x(i)
∥∥∥

2
6 2−i ‖xs‖2 + 5ε̃s. (5.85)

It remains only to show the bound on the iteration count. To recover x with an error of less than
6ε̃s we require that

2−i ‖xs‖2 6 ε̃s ⇐⇒ 2k >
‖xs‖2

ε̃s
, (5.86)

which implies that

k > log2

(
‖xs‖2

ε̃s

)
, (5.87)

and the second part of the theorem follows immediately.

5.2.2 Soft Thresholding

Soft thresholding algorithms bear great similarity to hard thresholding algorithms. Soft thresh-
olding can be used to minimise equations of the form

Fτ(x) , ‖Φx− y‖2
2 + 2τ ‖x‖1 . (5.88)
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It was shown in (Daubechies, Defrise, and Mol 2004) that the solution to this equation is given
by the limit of the sequence

x(k+1) = Sτ

(
x(k) + ΦTy−ΦTΦx(k)

)
, (5.89)

where Sτ(x)j = Sτ(xj) is the soft thresholding function

Sτ(x) ,


x− τ if x > τ

0 if |x| 6 τ

x + τ if x < −τ,

(5.90)

applied component-wise to each element of the input vector.

The iterative step in Equation (5.89) is known as the Landweber iteration. More recent work
in (Daubechies, Fornasier, and Loris 2007) suggests a slightly different form of this equation,
which they call the projected Landweber iteration. Let us make the following definitions first.
Define BR ⊂ Rn to be the `1 ball

BR , {x ∈ Rn : ‖x‖1 6 R} , (5.91)

of radius R. Then let PC : Rn → Rn be the projection of a point x ∈ Rn to the closest point
(under the `2 norm) onto the convex set C. As in (Daubechies, Fornasier, and Loris 2007) we
will abuse notation and write PR when we mean PBR . Then the projected Landweber iteration
is given by

x(k+1) = PR

(
x(k) + ΦTy−ΦTΦx(k)

)
. (5.92)

The following lemma from (Daubechies, Fornasier, and Loris 2007) shows how this can be effi-
ciently implemented.

Lemma 5.13 (Lemma 2 from (Daubechies, Fornasier, and Loris 2007)). Let x ∈ Rn and let R ∈ R

be a positive constant. If ‖x‖1 > R, then the `2 projection of x on the `1 ball with radius R is given by
PR(x) = Sµ(x) where µ (depending on x and R) is chosen such that

∥∥Sµ(x)
∥∥

1 = R. If ‖x‖1 6 R then
PR(x) = S0(x) = x.

In Algorithm 5.6 we give an implementation to calculate PR(x) for arbitrary x based on this
lemma. Using the terms from the algorithm, the output of the algorithm y has the following
property

‖y‖1 =
∥∥Sµ(x)

∥∥
1 (5.93a)

=
n

∑
i=1

max {|xi| − µ, 0} (5.93b)

=
k

∑
i=1

(x̂i − µ) (5.93c)

=
k−1

∑
i=1

(x̂i − x̂k) (5.93d)

=
∥∥Sx̂k (x)

∥∥
1 + kν (5.93e)

= R. (5.93f)
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Algorithm 5.6 `2 projection onto `1 ball
Input:

t A vector x ∈ Rn.
t A radius R > 0.

Output:

t A vector y ∈ Rn so that y is the closest point (under Euclidean or `2 distance) in the `1
ball of radius R to x.

1: if ‖x‖1 6 R then
2: return y← x
3: end if
4: Sort the components of x by magnitude to get the vector x̂ where |x̂1| > |x̂2| > · · · > |x̂n|.
5: Find k such that

∥∥Sx̂k (x)
∥∥

1 =
k−1

∑
i=1

(x̂i − x̂k) 6 R <
k

∑
i=1

(x̂i − x̂k+1) =
∥∥Sx̂k+1(x)

∥∥
1 . (5.94)

6: ν← 1
k
(

R−
∥∥Sx̂k (x)

∥∥
1

)
7: µ← x̂k + ν
8: y← Sµ(x)
9: return y

One can also include an adaptive descent parameter β(k) > 0 in each iteration, giving the itera-
tive step

x(k+1) = PR

(
x(k) + β(k)ΦT

(
y−Φx(k)

))
. (5.95)

The main theorem of (Daubechies, Fornasier, and Loris 2007) says that the projected Landweber
iterative step with an adaptive descent parameter will converge to the minimiser x̂ in the `1 ball
BR of

D(x) , ‖Ax− y‖2 , (5.96)

for all matrices A ∈ Rm×n and y ∈ Rm, that is, it solves the problem

arg min
x̂∈BR

‖Ax− y‖2 . (5.97)

Theorem 5.14 (Theorem 1 of (Daubechies, Fornasier, and Loris 2007)). The sequence
{

x(k)
}

k∈N
given by

x(k+1) = PR

[
x(k) + β(k)ΦT

(
y−Φx(k)

)]
, (5.98)

where the step length β(k) satisfies

(a) β̄ , sup
{

β(n) : ∈N
}

< ∞ and inf
{

β(n) : ∈N
}

> 1, and

(b) if there exists n0 ∈N such that

β(n)
∥∥∥Φ
(

x(n+1) − x(n)
)∥∥∥2

2
6 r

∥∥∥x(n+1) − x(n)
∥∥∥

2
∀n > n0, (5.99)

where the constant r is given by r , ‖Φ∗Φ‖`2→`2
< 1,

converges in norm to a minimiser of ‖Φx− y‖2 on BR.



72 CHAPTER 5. RECONSTRUCTION ALGORITHMS

Algorithm 5.7 Soft Thresholding
Input:

t A vector y ∈ Rm of observations.
t A matrix Φ ∈ Rm×n with eigenvalues less than 1.
t A radius R.

Output:

t A vector xR ∈ Rn that is the minimiser in BR of D(x) = ‖Φx− y‖2.

1: x(0) ← 0
2: for k = 1, . . . , ∞ do
3: Select β(k) satisfying the conditions of Theorem 5.14.
4: x(k) ← PR

[
x(k−1) + β(k)ΦT

(
y−Φx(k−1)

)]
. Implemented via soft-thresholding

5: end for
6: xR ← x(k)

Note that the second condition on the β(k) requires that all the eigenvalues of Φ are strictly less
than 1.

We can use the result of Theorem 5.14 to form an algorithm to find the sparsest solution of
y = Φx + e, which we list as Algorithm 5.7. Ideally we would set the radius equal to ‖x‖1, but
this is unknown. In practice one runs the algorithm for several values of R generating a set of
vectors xR.

There are two simple ways of choosing the values of β(k):

t Set β(k) = 1 for all k which trivially satisfies the conditions of the theorem.

t Use a greedy strategy to select β(k), for example

β(k) =

∥∥∥ΦT
(

y−Φx(k)
)∥∥∥2

2∥∥ΦΦT
(
y−Φx(k)

)∥∥2
2

. (5.100)

More details can be found in (Figueiredo, Nowak, and Wright 2007).

Because of the condition on the eigenvalues of Φ, this does not work for the same matrices that
we typically use for compressive sensing.

5.3 Model Based

Model based compressive sensing is a way of adding extra rules to the reconstruction process
typically used for compressive sensing. The principle is that the reconstruction process can be
improved by imposing extra guidelines, in particular, in assuming that the sparse coefficients
have some extra underlying structure. What we have discussed so far in compressive sensing
assumes nothing about the positions of the non-zero or large coefficients of the signal, but in
many real world examples there is a strong structure present in the data which we can take
advantage of to improve the reconstruction.
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For instance when performing wavelet based compression on piecewise smooth signals, the
large wavelet coefficients form a connected tree structure (Crouse, Nowak, and Baraniuk 1998).
It is also not uncommon for the signals to exhibit block sparsity such as in DNA microarrays (Sto-
jnic, Parvaresh, and Hassibi 2008), magnetoencephalography (Eldar and Mishali 2008), sensory
networks (Baron, Duarte, Sarvotham, Wakin, and Baraniuk 2006) or MIMO communications
(Wakin, Sarvotham, Duarte, Baron, and Baraniuk 2005).

Although there has been some work in taking advantage of the structure of the large coefficients,
such as in (Blumensath and Davies 2007; Lu and Do 2008) this work has been only on looking
at signals coming from the unions of particular subspaces and does not offer feasible recovery
algorithms. The main claim of the recent work (Baraniuk, Cevher, Duarte, and Hegde 2008) is
that it offers a general framework for model based recovery, independent of the model used, as
well as generalising the RIP to a model based version, which they call the restricted amplification
property (RAmP). Certainly the idea of using model information to improve such algorithms
is not new, having been proposed for algorithms such as Bootstrap, leading to model-based
bootstrap (Efron 1979; Efron 1981).

The work in (Baraniuk, Cevher, Duarte, and Hegde 2008) offers a way of incorporating model
based compressive sensing into two existing algorithms, CoSaMP (Needell and Tropp 2008) and
iterative hard thresholding (Blumensath and Davies 2008). Both of these algorithms feature a
pruning or thresholding step in which the current best solution is forced to conform to the
sparsity constraints. The idea of model based CS is to perform this prune using information
from the model, rather than simply the positions of the largest coefficients.

To make sense of the theorems in (Baraniuk, Cevher, Duarte, and Hegde 2008) we need the
following definitions. Unless otherwise stated the following theorems and definitions are from
(Baraniuk, Cevher, Duarte, and Hegde 2008).

Definition 5.15. A signal modelMK is defined as the union of mK canonical K-dimensional subspaces

MK ,
mK⋃

m=1

Xm such that Xm , {x ∈ Rn : supp(x) = Ωm}. (5.101)

A signal model MK can be characterised by the set of supports {Ωm} for m = 1, . . . , mK and
contains all the signals with these supports.

Definition 5.16. The B-Minkowski sumMN
K for the setMK, B > 1 is defined as

MB
K ,

{
x =

B

∑
b=1

x(b) : x(b) ∈ MK

}
. (5.102)

Then MB(x, K) is an algorithm that finds the best approximation to x contained in the union of subspaces
MB

K, i.e.
MB(x, K) , arg min

x̂∈MB
K

‖x− x̂‖2 . (5.103)

We will write M(x, K) when we mean M1(x, K).

Note that generally we haveMB
K ⊂MBK, hence M(x, BK) will often produce a better approxi-

mation than MB(x, K).

Rather than use the RIP as before, we are now interested in matrices Φ that are near length
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preserving for all vectors inMB
K, rather than all K-sparse vectors, we call this theMK-RIP. The

following theorem from (Blumensath and Davies 2007) quantifies the probability that a matrix
Φ generated from a subgaussian distribution obeys this newMK-RIP.

Theorem 5.17 ((Blumensath and Davies 2007)). LetMK be the union of mK subspaces of dimension
K in Rn. Then for any t > 0 and any

m >
2

cδs
MK

(
log(2mK) + K log

12
δMK

+ t
)

, (5.104)

any matrix Φ ∈ Rm×n drawn from a subgaussian distribution obeys theMK-RIP with constant δMK -
RIP with probability at least 1− e−t.

Similar to before, we define σMK to be the smallest difference between the signal x and the best
model-based approximation x̂ ∈ MK, i.e.

σMK , inf
x̂∈MK

‖x− x̂‖2 = ‖x−M(x, K)‖2 . (5.105)

If this approximation error decays according to a power law (in the model size) we class this as
a model compressible signal.

Definition 5.18. The set of s-model compressible signals is defined to be

Ms ,
{

x ∈ Rn : σMk (x) 6 SK−1/s, 1 6 K 6 n, S < ∞
}

. (5.106)

Any signal x in this set we say is s-model compressible under the signal modelMK. Define |x|MS
as the

smallest value of S for which this condition holds for x and s.

The class of signals that are model compressible is much larger than the associated class of
sparse signals. In conventional compressive sensing we have the same sufficient condition on
the measurement matrix Φ for the stable recovery of both sparse and compressible signals.
But because of the extra size of model compressible signals, we require further conditions to
ensure the stable recovery of signals for model based compressive sensing. In particular we are
interested in models that generate nested approximations, i.e. they obey the nested approximation
property.

Definition 5.19. A modelM = {M1,M2, . . .} obeys the nested approximation property or NAP
if the approximations of different size it produces are nested, that is, if

supp(M(x, K)) ⊂ supp(M(x, K′)) for all K < K′, x ∈ Rn. (5.107)

For models obeying the NAP we can define the residual in going from one model size to a larger
model size. LetRj,K(M) be the j-th set of residual subspaces given by

Rj,K(M) =
{

u ∈ Rn : u = M(x, jK)−M
(

x, (j− 1)K
)

, x ∈ Rn
}

. (5.108)

Finally we can introduce the generalisation of the RIP, the restricted amplification property.
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Definition 5.20. A matrix Φ ∈ Rm×n has the (δK, r)-restricted amplification property or RAmP
for the residual subspacesRj,K of modelM if

‖Φu‖2
2 6 (1 + δK)j2r ‖u‖2

2 , (5.109)

for any u ∈ Rj,K for each 1 6 j 6 dn/Ke.

Similar to the RIP we can say how large we require m, the number of measurements to be, for a
matrix Φ ∈ Rm×n to obey the RAmP.

Theorem 5.21 (Theorem 2 of (Baraniuk, Cevher, Duarte, and Hegde 2008)). Let Φ ∈ Rm×n be
generated from a subgaussian distribution and let the set of residual subspacesRj,K of modelM contain
Rj subspaces of dimension K for each 1 6 j 6 dn/Ke. Then, if

m > max
16j6dn/Ke

2K + 4 log
Rjn
K + 2t(

jr
√

1 + δK − 1
)2 , (5.110)

the matrix Φ has the (δK, r)-RAmP with probability at least 1− e−t.

Using the restricted amplification property we can then show how well model based CS allows
us to reconstruct s-model compressible signals.

Theorem 5.22 (Theorem 3 of (Baraniuk, Cevher, Duarte, and Hegde 2008)). Let x ∈ Ms be an
s-model compressible signal under the modelM that obeys the NAP. Furthermore let Φ ∈ Rm×n have
the (δK, r)-restricted amplification property for r = s− 1. Then we have

‖Φx−ΦM(x, K)‖2 6 K−s
√

1 + δK log
⌈ n

K

⌉
|x|Ms

. (5.111)

Observe that Theorem 5.22 provides a bound on the difference in Φ-space of a compressible
signal and its best model based approximation.

In sections 5.3.1 and 5.3.2 we will show how we can modify the existing CoSaMP and IHT
algorithms to perform model based compressive sensing.

5.3.1 Model based CoSaMP

Modifying the CoSaMP algorithm to perform model based compressive sensing is relatively
easy. Essentially it involves two modifications to Algorithm 5.4 in steps 7 and 10. Instead of
taking the best s and 2s sparse approximations, we simply take the best model based approxi-
mations at these steps, which can be seen in Algorithm 5.8.

In Figure 5.1 we graphically illustrate the relative performance of model based and non-model
based CoSaMP, taken from (Baraniuk, Cevher, Duarte, and Hegde 2008).

We can now illustrate the performance of the new model based CoSaMPalgorithm. Theorem
5.23 upper bounds the error when dealing with model sparse signals and Theorem 5.24 upper
bounds the error for model compressible signals.

Theorem 5.23 (Theorem 4 of (Baraniuk, Cevher, Duarte, and Hegde 2008)). Let x ∈ Ms and
let y = Φx + e where x, e ∈ Rn, y ∈ Rm and Φ ∈ Rm×n be a set of noisy compressive sensing
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Figure 5.1: Example performance of model based and standard CoSaMP recovery. From left to
right, the original image with n = 128× 128 = 16, 384 pixels and the images recovered using
m = 5, 000 measurements from the standard CoSaMP algorithm (middle) and the model based
recovery (right). Taken from (Baraniuk, Cevher, Duarte, and Hegde 2008, Fig. 5).

measurements. Then if Φ has anM4
s -RIP constant of δM4

s
6 0.1, then the signal estimate x(k) obtained

at iteration k of the model based CoSaMP algorithm satisfies∥∥∥x− x(k)
∥∥∥

2
6 2−k ‖x‖2 + 15 ‖e‖2 . (5.112)

Theorem 5.24 (Theorem 5 of (Baraniuk, Cevher, Duarte, and Hegde 2008)). Let x ∈ MS be an
S-model compressible signal from a modelM that obeys the NAP and let y = Φx + e where x, e ∈ Rn,
y ∈ Rm and Φ ∈ Rm×n be a set of noisy compressive sensing measurements. Then if Φ has anM4

s -RIP
constant of δM4

s
6 0.1 and the (δs, r)-RAmP with δs 6 0.1 and r = S− 1, then the signal estimate x(k)

at the k-th iteration of the model based CoSaMP algorithm satisfies∥∥∥x− x(k)
∥∥∥

2
6 2−k ‖x‖2 + 35

(
‖e‖2 + |x|MS

s−S
(

1 + log
⌈n

s

⌉))
. (5.113)

Another important question is what happens in the case of a model mismatch, that is, when
the measurements obtained do not exactly conform to the model being used to reconstruct the
data? As in the original paper, let us first consider the scenario where we are using a model that
is “close” to the true model. Assume that out signal x is not s-model sparse but rather s + ς-
model sparse for some small integer ς. Then if the matrix Φ ∈ Rm×n has the (δs, r)-RAmP then
it follows that

‖Φ(x− xs)‖2 6 2r
√

1 + δs ‖x− xs‖2 . (5.114)

Using this and Theorem 5.23 we get the following bound∥∥∥x− x(k)
∥∥∥

2
6 2−k ‖x‖2 + 16 · 2r

√
1 + δs ‖x− xs‖2 + 15 ‖e‖2 . (5.115)

This is larger only by the amount 16 · 2r√1 + δs ‖x− xs‖2 than in Theorem 5.23, and if the s-
sparse approximation is good, this term will be small.

Secondly, consider the model compressible case. Let x be a signal that is not S-model compress-
ible but rather (S− ε)-model compressible. Then in the k-th iteration we obtain the bound

∥∥∥x− x(k)
∥∥∥

2
6 2−k ‖x‖2 + 35

(
‖e‖2 + |x|MS

s−S

(
1 +

⌈ n
k
⌉ε − 1
ε

))
, (5.116)

which is proved in Appendix II of (Baraniuk, Cevher, Duarte, and Hegde 2008). Observe that
as ε→ 0, this upper bound on the error approaches that of Theorem 5.24.
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Algorithm 5.8 Model based CoSaMP

Input:

t s the sparsity of x
t y ∈ Rm and the measurement matrix Φ ∈ Rm×n

t A modelMs

Output:

t x̂ ∈ Rn such that x̂ is s-sparse, conforms to the modelMs and y = Φx̂

1: x(0) ← 0
2: v← y
3: k← 0
4: while Halting condition false do
5: k← k + 1
6: z← ΦTv . Signal proxy
7: Ω← supp (M2(z, s)) . Support of model based residual approximation
8: Γ← Ω ∪ supp

(
x(k−1)

)
. Merge supports

9: x̄← arg maxx̃:supp(x̃)=Γ ‖Φx̃− y‖2 . Solve Least Squares
10: x(k) ←M(x̄, s) . Prune according to signal model
11: v← y−Φx(k) . Update current sample
12: end while
13: x̂← x(k)

14: return x̂

5.3.2 Model based IHT

Similar to the CoSaMP algorithm, to incorporate model based CS into the IHT algorithm we only
need to replace the pruning step with a model based pruning method. We present the model
based version of Algorithm 5.5, the original iterative hard thresholding algorithm as Algorithm
5.9. We can apply Theorems 5.23 and 5.24 from before with only minor modifications:

t Φ must obey theM3
K-RIP (notM4

K-RIP) with constant δM3
K

6 0.1,

t the constant in front of the e term in Theorem 5.23 changes from 15 to 4, i.e. the estimate
x(k) at the k-th iteration obeys∥∥∥x− x(k)

∥∥∥
2

6 2−k ‖x‖2 + 4 ‖e‖2 . (5.117)

t the constant factor in Theorem 5.24 changes from 35 to 10, i.e. the estimate x(k) at the k-th
iteration obeys∥∥∥x− x(k)

∥∥∥
2

6 2−k ‖x‖2 + 10
(
‖e‖2 + |x|MS

s−S
(

1 + log
⌈n

s

⌉))
. (5.118)

In Figure 5.2 we give an illustration of how model based iterative hard thresholding can out-
perform iterative hard thresholding. This example was taken from (Baraniuk, Cevher, Duarte,
and Hegde 2008, Fig. 7)
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Algorithm 5.9 Model Based Iterative Hard Thresholding
Input:

t s the sparsity of x
t y ∈ Rm and the measurement matrix Φ ∈ Rm×n

t model based pruning function M(x̂, s)

Output:

t x̂ ∈ Rn such that x̂ is s sparse and y = Φx̂

1: x(0) ← 0
2: for i = 1, . . . do
3: x(i) ←M

(
x(i−1) + ΦT

(
y−Φx(i−1)

)
, s
)

4: end for
5: x̂← x(i)

6: return x̂

Figure 5.2: Example performance of model based and standard iterative hard thresholding re-
covery. From left to right, the original piecewise smooth HeaviSine test signal with n = 1024
and the signals recovered using m = 80 from the standard recovery algorithm (middle) and the
model based recovery (right). Taken from (Baraniuk, Cevher, Duarte, and Hegde 2008, Fig. 7)

5.4 Iteratively Re-weighted Least Squares Minimisation

Iteratively Re-weighted Least Squares Minimisation or IRLS algorithms offer yet another alter-
native to directly solving the `1 minimisation problem. The basis for these algorithms stems
from the following theorem.

Theorem 5.25 ((Daubechies, DeVore, Fornasier, and Gunturk 2008)). Let x̂ ∈ Rn be the solution
to the `1 problem

x̂ = arg min ‖x‖1 subject to y = Φx, (5.119)

where y ∈ Rm and Φ ∈ Rm×n. Then if Equation (5.119) has a solution x̂ with no coordinates equal to
zero, then the unique solution xw of the weighted least squares problem

xw = arg min ‖x‖`2(w) subject to y = Φx, (5.120)

where
w ,

(
1
|x̂1|

, . . . ,
1
|x̂n|

)
∈ Rn, (5.121)

is identical to x̂.

Proof. We prove the theorem by contradiction. Assume that x̂, the solution to Equation (5.119) is
not the solution to Equation (5.120), i.e. not the `2(w) minimiser. Then there exists n ∈ ker(Φ)
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such that

‖x̂ + n‖`2(w) < ‖x̂‖`2(w) (5.122a)

⇐⇒ 1
2
‖n‖`2(w) < −

n

∑
j=1

wjnj x̂j =
n

∑
j=1

nj sign(x̂j). (5.122b)

However x̂ is an `1 minimiser, so for n ∈ ker(Φ) we must have

‖x̂‖1 6 ‖x̂ + εn‖1 , ε 6= 0, (5.123)

hence taking ε sufficiently small implies

n

∑
j=1

nj sign(x̂j) = 0, (5.124)

which is a contradiction.

There are two issues with applying this iterative approach to finding the `1 minimiser directly.
Firstly we do not know x̂ and secondly in the compressed sensing paradigm, we assume that
the original signal is sparse, invalidating the original assumption that the components of x are
non-zero.

The first issue was addressed in (Lawson 1961) by choosing starting weights w(0) and solving
Equation (5.120) for this weight. This solution is then used to create new weights w(1) and
Equation (5.120) is solved again but with the new weights, and so on. This algorithm is now
known as Lawson’s algorithm and can be extended to the solution of other `p minimisation prob-
lems. It is shown in (Osborne 1985) that for 1 < p < 3 and the appropriate IRLS algorithm,
the algorithm converges to the correct solution. For p = 1, using the weight update (at the i-th
iteration)

w(i+1)
j =

1∣∣∣x̂(i)
j

∣∣∣ , i = 1, . . . , n, (5.125)

the algorithm will converge if Equation (5.119) has a unique solution (and all components are
non-zero). Furthermore the rate of convergence is linear. Problems still occur if one of the
components of x̂ vanish as the corresponding weight will go to infinity.

The paper (Daubechies, DeVore, Fornasier, and Gunturk 2008) addresses the issue of the
weights going to zero when a component of x̂ is zero. Their algorithm can be seen in Algo-
rithm 5.10. We first need to define the function J (z, w, ε)

J (z, w, ε) ,
1
2

n

∑
j=1

(
z2

j wj + ε2wj +
1

wj

)
, (5.126)

for z, w ∈ Rn and ε > 0. Note that this function is strictly convex. Let us also define the
function r : Rn → Rn such that r(z) returns the components of z sorted in non-increasing order
by magnitude, hence r(z)j is the j-th largest component of z sorted by absolute value.

One can rewrite the solution and weight update of Algorithm 5.10 going to iteration i + 1 in
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Algorithm 5.10 Iteratively Re-weighted Least Squares Minimisation
Input:
Output:

1: w(0) ← 1
2: ε(0) ← 1
3: i← 0
4: while εi 6= 0 do
5: x(i+1) ← arg minz J

(
z, w(i), ε(i)

)
subject to y = Φz

6: ε(i+1) ← min
(

ε(i), r(xi+1)K+1
n

)
. for some K

7: w(i+1) ← arg minw>0 J
(

x(i+1), w, ε(i+1)
)

8: i← i + 1
9: end while

closed form

x(i+1) ← DiΦT
(

ΦDiΦT
)−1

y, (5.127a)

w(i+1)
j ← 1√(

x(i+1)
j

)2
+
(
ε(i+1)

)2
, for j = 1, . . . , n, (5.127b)

where Dn is the n× n diagonal matrix with the weights w(i) along the diagonal.

The main Theorem of (Daubechies, DeVore, Fornasier, and Gunturk 2008), Theorem 5.26 regards
the convergence of Algorithm 5.10. First we make the following definitions. Let Σk be the set of
all vectors in Rn that have at most k non-zero entries. Then for any z ∈ Rn define

σj(z)`1 , inf
x∈Σk
‖z− x‖1 , (5.128)

which is the smallest approximation error in approximating the vector z by a k-sparse vector.

Theorem 5.26 (Theorem 5.3 of (Daubechies, DeVore, Fornasier, and Gunturk 2008)). Let K (of
the update rule for εi in Algorithm 5.10) be chosen so that Φ satisfies the Null Space Property of order
K for some γ < 1. Then, for each y ∈ Rm, the output of Algorithm 5.10 converges to a vector x̂, with
r(x̂)K+1 = n limi→∞ εi and the following hold:

(a) If ε = limi→∞ εi, the x̂ is K-sparse; in this case there is a unique `1 minimiser x∗ and x̂ = x̂∗.
Moreover we have, for k 6 K and any z such that y = Φz

‖z− x̂‖1 6 cσk(z)`1 , with c ,
2(1 + γ)

1− γ
. (5.129)

(b) If ε = limi→∞ εi > 0 then x̂ = xε.

(c) If γ satisfies the tighter bound γ < 1− 2
K+2 then for all z such that y = Φz and any k < K− 2γ

1−γ ,
that

‖z− x̂‖1 6 c̃σk(z)`1 , with c̃ ,
2(1 + γ)

1− γ
·

K− k + 3
2

K− k− 2γ
1−γ

. (5.130)

This case does not occur if there exists a vector z where y = Φz that has sparsity k < K− 2γ
1−γ .
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5.5 Belief Propagation Decoding

A rather different algorithm to the previously mentioned ones, Belief Propagation or BP is a mes-
sage passing algorithm. This type of algorithm has commonly been used for error correction
decoding when it was demonstrated in (Gallager 1963) that they could be used for fast decod-
ing of low-density parity check (LDPC) codes. The difficult step in decoding LDPC codes is the
reconstruction of the codeword given the received message, i.e. finding the “best” x given a y
where y = Gx + e so that the error e is minimal in some sense, G ∈ Rn×k is the generating matrix
for n > k. In some ways this is the reverse of compressed sensing as we are trying to solve
an over-constrained problem, but nonetheless recent work in (Sarvotham, Baron, and Baraniuk
2006) shows that this technique can be used for compressive sensing reconstruction. The al-
gorithm presented in this paper is not a generic algorithm, it requires a specific form for the
measurement matrix Φ, namely that Φ has entries restricted to {−1, 0, 1} and is sparse. It is also
highly desirable that the matrix Φ is cycle-free or at least contains no cycles of small degree.

Because of the restrictions of this decoding algorithm, and that there are, to the best of my
knowledge, no theoretical results regarding its performance, we will not present the algorithm,
but we mention it for completeness.

5.6 Comparison of Algorithms

We will give a discussion and comparison of these reconstruction algorithms in Chapter 7, in-
cluding a simulation of some of the discussed methods.
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CHAPTER

6 Modified Frame Reconstruc-
tion Algorithm

In this chapter we will present a new reconstruction algorithm for compressive sensing. The
“Modified Frame Reconstruction algorithm” or MFR is motivated by the frame reconstruction
algorithm of Chapter 4. This work generalises previously known results, such as the iterative
hard thresholding (IHT) algorithm in (Blumensath and Davies 2008), although our work was
developed independently and without knowledge of this paper.

We give the plain version of the MFR algorithm and then show two modifications both of which
increase the rate of convergence and the success rate in finding the original sparse vector. We
will also show theoretical bounds for the convergence and give sufficient conditions for conver-
gence to occur.

6.1 Background

Let {ψi}, i = 1, . . . , t for some t > n form a frame for the n-dimensional Hilbert space H and
let the frame have frame bounds 0 < A 6 B < ∞, that is

A ‖x‖2 6
t

∑
i=1
|〈x, ψi〉|2 6 B ‖x‖2 , (6.1)

for all x ∈ H . Then given a sequence of inner-products y ∈ Rt where yi = 〈x, ψi〉, the funda-
mental part of the iterative reconstruction algorithm is the update

x(k+1) = x(k) +
2

A + B

n

∑
j=1

ψj

(
yj −

〈
ψj, x(k)

〉)
. (6.2)

83
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In particular if H is the Hilbert space Rn then we can rewrite this in matrix form, where Ψ is
the matrix that has the frame elements as rows, to get the update

x(k+1) = x(k) +
2

A + B
ΨT
(

y−Ψx(k)
)

. (6.3)

Observe that Equation (6.3) converges to the solution x̂ of the matrix equation y = Ψx̂, given
the inner-products y and the matrix Ψ. Furthermore the frame bounds are given by the largest
and smallest eigenvalues of ΨTΨ.

The key observation for MFR is the fact that we can still perform this iterative step even if
t < n, that is, the matrix Ψ no longer forms a frame for the space Rn. And that if the algorithm
converges, it can still converge to a solution x̂ of the now under-determined matrix equation
y = Ψx̂, which is exactly the problem of compressive sensing.

6.2 Algorithm

We present here the basic version of the MFR algorithm. The algorithm consists of two parts,
an update and a thresholding step.

(a) Update: Similar to the frame algorithm we perform an update

a(k+1) = x(k) + γΦT
(

y−Φx(k)
)

, (6.4)

where y is the vector of measurements, Φ is the measurement matrix and γ is a control
parameter which we refer to as the step-length.

(b) Thresholding: The second part of the algorithm is the thresholding procedure where we
generate the next “solution”

x(k+1) = Hŝ(a(k+1)). (6.5)

Here we simply threshold the output of the frame step producing an ŝ-sparse approxima-
tion.

Recall that Hŝ(z) produces the best ŝ-sparse approximation to the input z under any `p norm
for 1 6 p < ∞, shown in Lemma 2.14. These two steps are repeated until some criteria is
met for termination, typically one would stop the algorithm once “convergence” is achieved,
namely that the change from one iteration to the next is small, i.e.

∥∥∥x(k) − x(k+1)
∥∥∥

2
6 ε for some

tolerance level ε.

Formally we present the algorithm as Algorithm 6.1.

One important question is what value of γ should we use. If we take inspiration from the frame
reconstruction algorithm we should set γ = 2/(A + B) where A and B are the frame bounds.
Since we are dealing only with sparse vectors we can use tighter frame bounds, where A and B
are the frame bounds for (s + ŝ)-sparse vectors, namely the largest value A and the minimal B
such that

A ‖x‖2 6 ∑
n
|〈x, ψn〉|2 6 B ‖x‖2 , (6.6)
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Algorithm 6.1 Modified Frame Reconstruction Algorithm
Input:

t The measurement matrix Φ.
t Observation vector y.
t Estimate of sparsity ŝ of the vector x.
t Step-length γ.

Output:

t A solution x̂ to y = Φx.

1: x(0) ← 0
2: for k = 0, . . . do
3: x(k+1) ←Hŝ

(
x(k) + γΦT

(
y−Φx(k)

))
4: end for
5: return x(k+1)

for all (s + ŝ)-sparse vectors x. In particular, from the RIP we have

1− δs+ŝ 6 A 6 B 6 1 + δs+ŝ, (6.7)

with equality on at least one of the sides, i.e. A = 1− δs+ŝ or B = 1 + δs+ŝ, but not necessarily
both. This implies that we could take

γ =
2

1− δs+ŝ + 1 + δs+ŝ
= 1 ≈ 2

A + B
. (6.8)

If we borrow terminology from the world of differential equations and numerical solutions, γ

is the step-length and controls the rate of convergence. Typically increasing γ increases the rate
of convergence at the cost of possibly stopping convergence altogether. On the other hand, by
decreasing γ the algorithm is more likely to converge, but will converge more slowly. This can
be seen in Figure 6.8.

Later on in this chapter we will discuss ways to select γ, including adaptive algorithms that
produce a new “best” γ to use in every iteration. We will also discuss in Chapter 8 what happens
if the RIP condition is not met, then the sparse singular values (RIP constants) are considerably
more than 1, so using the idea from the frame algorithm we would have

γ =
1

σŝ
min + σŝ

max
� 1, (6.9)

as σŝ
max > 1.

6.3 Analysis of Performance

We now state the properties of the MFR algorithm in Theorem 6.1 and Proposition 6.2. Propo-
sition 6.2 gives sufficient convergence conditions in the scenario where we measure a sparse
signal with noise, i.e. in the model y = Φx + e where Φ ∈ Rm×n is the measurement matrix,
x ∈ Rn is the s-sparse data, e ∈ Rm is noise and y ∈ Rm is the observed signal. We will see in
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Theorem 6.1 that the MFR algorithm converges even when the signal is not sparse.

The proof of these results is similar to the one in (Blumensath and Davies 2008).

Theorem 6.1. Fix s the sparsity of the desired solution. For measurements y = Φx + e where Φ ∈
Rm×n has the RIP such that either condition (a), (b) or (c) is satisfied

(a) γ >
1

δ3s − δ2s + 1
, and γδ3s 6

1√
32

, or (6.10a)

(b) γ <
1

δ3s − δ2s + 1
, and γ(1− δ2s) > 1− 1√

32
, or (6.10b)

(c)
3

4(1− δ2s)
< γ <

1
1− δ2s

and δ2s < 1, (6.10c)

Algorithm 6.1 recovers an approximation x(k) satisfying

∥∥∥x(k) − xs
∥∥∥

2
6 2−k ‖xs‖2 + 4γ

√
1 + δ2s ‖e‖2 + 4γ

(
1 + δ2s

) (∥∥∥x− x2s
∥∥∥

2
+

1√
2s

∥∥∥x− x2s
∥∥∥

1

)
,

(6.11)
where xs is the best s-sparse approximation to x.

Observe that the term
∥∥x− x2s

∥∥
2 + 1√

2s

∥∥x− x2s
∥∥

1 is the unrecoverable energy used in (Needell
and Tropp 2008; Blumensath and Davies 2008) which we made use of earlier.

Proposition 6.2. Let x ∈ Rn be s-sparse and fix the sparsity estimate ŝ > s. For measurements
y = Φx + e where Φ ∈ Rm×n has the RIP such that either condition (a), (b) or (c) is satisfied

(a) γ >
1

δs+2ŝ − δs+ŝ + 1
, and γδs+2ŝ 6

1√
32

, or (6.12a)

(b) γ <
1

δs+2ŝ − δs+ŝ + 1
, and γ(1− δs+ŝ) > 1− 1√

32
, or (6.12b)

(c)
3

4(1− δs+ŝ)
< γ <

1
1− δs+ŝ

and δs+ŝ < 1, (6.12c)

Algorithm 6.1 recovers an approximation x(k) satisfying∥∥∥x(k) − xs
∥∥∥

2
6 2−k ‖xs‖2 + 4γ

√
1 + δs+ŝ ‖e‖2 . (6.13)

Proof. Conditions (a) and (b) come from Lemma 6.4 and condition (c) follows by setting α = 1
2

in Lemma 6.5.

We will first prove Lemmas 6.4 and 6.5, proving Proposition 6.2 and then use this to prove the
theorem. To do this we require the following little lemma regarding recursive sequences.

Lemma 6.3. Let v(k) 6 αv(k−1) + βu for u, v(k) > 0 be a recursive sequence that holds for all positive
integers k and for α such that |α| < 1. Then

v(k) 6 αkv(0) +
βu

1− α
. (6.14)
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Proof. Observe that

v(k) 6 αv(k−1) + βu (6.15a)

6 α
(

αv(k−2) + βu
)

+ βu (6.15b)

...

6 αkv(0) + βu
k

∑
i=0

αi (6.15c)

< αkv(0) + βu
1

1− α
, (6.15d)

provided |α| < 1.

Lemma 6.4. Under the conditions of Proposition 6.2 and for measurements y = Φx + e where Φ ∈
Rm×n has the RIP such that only condition (a) or condition (b) is satisfied

(a) γ >
1

δs+2ŝ − δs+ŝ + 1
, and γδs+2ŝ 6

1√
32

, or (6.16a)

(b) γ <
1

δs+2ŝ − δs+ŝ + 1
, and γ(1− δs+ŝ) 6 1− 1√

32
, (6.16b)

Algorithm 6.1 recovers an approximation x(k) satisfying∥∥∥x− x(k)
∥∥∥

2
6 2−k ‖x‖2 + 4γ

√
1 + δs+ŝ ‖e‖2 . (6.17)

Proof of Lemma 6.4. First put

r(i) , x− x(i), (6.18a)

a(i) , x(i−1) + γΦT(y−Φx(i−1)), (6.18b)

x(i) , Hŝ(a(i)), (6.18c)

Γ? , supp(x), (6.18d)

Γ(i) , supp(x(i)), (6.18e)

B(i) , Γ? ∪ Γ(i). (6.18f)

As a consequence we have |Γ?| 6 s and
∣∣∣Γ(i)

∣∣∣ 6 ŝ.

Consider the error
∥∥∥xs − x(i+1)

∥∥∥
2
. Now we have x = xs = xΓ? = xB(i) and x(i) = x(i)

Γ(i) = x(i)
B(i) .

Although x is s-sparse, we will write xs commonly to make the adaptation of this proof to the
general case more obvious. Applying the triangle inequality we get∥∥∥xs − x(i+1)

∥∥∥
2

6
∥∥∥xs

B(i+1) − a(i+1)
B(i+1)

∥∥∥
2
+
∥∥∥x(i+1)

B(i+1) − a(i+1)
B(i+1)

∥∥∥
2

. (6.19)

As x(i+1) is the thresholded version of a(i+1) it is the best s-term approximation to a(i+1), in
particular it is better than xs. Hence∥∥∥x(i+1) − a(i+1)

B(i+1)

∥∥∥
2

6
∥∥∥xs − a(i+1)

B(i+1)

∥∥∥
2

, (6.20)
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and thus Equation (6.19) becomes∥∥∥xs − x(i+1)
∥∥∥

2
6 2

∥∥∥xs
B(i+1) − a(i+1)

B(i+1)

∥∥∥
2

. (6.21)

Using the fact that y = Φxs + e and r(i) = xs − x(i) we get

a(i+1)
B(i+1) = x(i)

B(i+1) + γΦT
B(i+1)

(
y−Φx(i)

B(i+1)

)
(6.22a)

= x(i)
B(i+1) + γΦT

B(i+1) Φr(i) + γΦT
B(i+1) e, (6.22b)

hence∥∥∥xs − x(i+1)
∥∥∥

2
6 2

∥∥∥xs
B(i+1) − x(i)

B(i+1) − γΦT
B(i+1) Φr(i) − γΦT

B(i+1) e
∥∥∥

2
(6.23a)

6 2
∥∥∥r(i)

B(i+1) − γΦT
B(i+1) Φr(i)

∥∥∥
2
+ 2γ

∥∥∥ΦT
B(i+1) e

∥∥∥
2

(6.23b)

= 2
∥∥∥(I− γΦT

B(i+1) ΦB(i+1)

)
r(i)

B(i+1) − γΦT
B(i+1) ΦB(i)\B(i+1) r

(i)
B(i)\B(i+1)

∥∥∥
2
+ . . .

+ 2γ
∥∥∥ΦT

B(i+1) e
∥∥∥

2
(6.23c)

6 2
∥∥∥(I− γΦT

B(i+1) ΦB(i+1)

)
r(i)

B(i+1)

∥∥∥
2
+ 2γ

∥∥∥ΦT
B(i+1) ΦB(i)\B(i+1) r

(i)
B(i)\B(i+1)

∥∥∥
2
+ . . .

+ 2γ
∥∥∥ΦT

B(i+1) e
∥∥∥

2
, (6.23d)

by repeated application of the triangle inequality and by splitting the residual into two parts,
r(i+1) = r(i+1)

B(i+1) + r(i+1)
B(i+1)\B(i) . Then

∣∣∣B(i) ∪ B(i+1)
∣∣∣ =

∣∣∣Γ? ∪ Γ(i) ∪ Γ(i+1)
∣∣∣ 6 s + 2ŝ

as each set Γ(k) has at most ŝ entries and |Γ?| 6 s. Recall from the RIP and Lemmas 3.10 and
3.11 that ∥∥∥ΦT

Λx
∥∥∥

2
6
√

1 + δs ‖x‖2 , (6.24a)∥∥∥(I− γΦT
ΛΦΛ

)
xΛ

∥∥∥
2

6 (1− γ(1− δs)) ‖xΛ‖2 , (6.24b)∥∥∥ΦT
ΩΦΩ′xΩ′

∥∥∥
2

6 δs ‖xΩ‖2 , (6.24c)

for all matrices Φ which obey the RIP and sets Λ, Ω, Ω′, where Ω, Ω′ are disjoint, |Λ| = s and
|Ω ∪Ω′| = s. We also have δs 6 δs′ for all positive integers s 6 s′. Applying Equation (6.24b) to
the first term in Equation (6.23d), and applying Equations (6.24c) and (6.24a) to the second and
third terms respectively, we get∥∥∥r(i+1)

∥∥∥
2

6 2 (1− γ (1− δs+ŝ))
∥∥∥r(i)

B(i+1)

∥∥∥
2
+ 2γδs+2ŝ

∥∥∥r(i)
B(i)\B(i+1)

∥∥∥
2
+ 2γ

√
1 + δs+ŝ ‖e‖2 . (6.25)

The vectors r(i)
B(i+1) and r(i)

B(i)\B(i+1) are orthogonal as they have disjoint supports. Now let u, v ∈
Rn be two orthogonal vectors, then

‖u‖2 + ‖v‖2 6
√

2 ‖u + v‖2 . (6.26)

We use this to bound the sum of the two terms
∥∥∥r(i)

B(i+1)

∥∥∥
2

and
∥∥∥r(i)

B(i)\B(i+1)

∥∥∥
2
.
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We first ask how do the terms (1− γ (1− δs+ŝ)) and γδs+2ŝ compare, given that δs+ŝ 6 δs+2ŝ.
We then have either

1− γ + γδs+ŝ 6 γδs+2ŝ ⇐⇒ γ >
1

δs+2ŝ − δs+ŝ + 1
, or (6.27a)

1− γ + γδs+ŝ > γδs+2ŝ ⇐⇒ γ <
1

δs+2ŝ − δs+ŝ + 1
. (6.27b)

t Case 1 – Equation (6.27a): Equation (6.25) then becomes∥∥∥r(i+1)
∥∥∥

2
6 2
√

2γδs+2ŝ

∥∥∥r(i)
∥∥∥

2
+ 2γ

√
1 + δs+ŝ ‖e‖2 . (6.28)

Then if
2
√

2γδs+2ŝ 6
1
2
⇐⇒ γδs+2ŝ 6

1√
32

, (6.29)

we have ∥∥∥r(i+1)
∥∥∥

2
6

1
2

∥∥∥r(i)
∥∥∥

2
+ 2γ

√
1 + δs+ŝ ‖e‖2 . (6.30)

Applying the recursion using Lemma 6.3 we get∥∥∥x− x(k)
∥∥∥

2
6

1
2

∥∥∥r(k−1)
∥∥∥

2
+ 2γ

√
1 + δs+ŝ ‖e‖2 (6.31a)

6
1
2

(
1
2

∥∥∥r(k−2)
∥∥∥

2
+ 2γ

√
1 + δs+ŝ

)
+ 2γ

√
1 + δs+ŝ ‖e‖2 (6.31b)

6 2−k
∥∥∥x− x(0)

∥∥∥
2
+ 2γ

√
1 + δs+ŝ

(
k

∑
i=0

1
2i

)
‖e‖2 (6.31c)

6 2−k ‖x‖2 + 4γ
√

1 + δs+ŝ ‖e‖2 , (6.31d)

for all k > 0, since x(0) = 0 and provided that

γ >
1

δs+2ŝ − δs+ŝ + 1
, and (6.32a)

γδs+2ŝ 6
1√
32

. (6.32b)

t Case 2 – Equation (6.27b): Equation (6.25) then becomes∥∥∥r(i+1)
∥∥∥

2
6 2
√

2(1− γ(1− βs+ŝ))
∥∥∥r(i)

∥∥∥
2
+ 2γ

√
1 + δs+ŝ ‖e‖2 . (6.33)

If

2
√

2(1− γ(1− δs+ŝ)) 6
1
2
⇐⇒ γ(δs+ŝ − 1) 6 1− 1√

32
(6.34a)

⇐⇒ δs+ŝ 6 1− 1
γ

+
1

γ
√

32
=

8γ− 8 +
√

2
8γ

, (6.34b)

we again have ∥∥∥r(i+1)
∥∥∥

2
6

1
2

∥∥∥r(i)
∥∥∥

2
+ 2γ

√
1 + δs+ŝ ‖e‖2 . (6.35)

Applying the recursion using Lemma 6.3 we get∥∥∥x− x(k)
∥∥∥

2
6 2−k ‖x‖2 + 4γ

√
1 + δs+ŝ ‖e‖2 , (6.36)
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for all k > 0 provided that

γ <
1

δs+2ŝ − δs+ŝ + 1
, and (6.37a)

γ(1− δs+ŝ) > 1− 1√
32
≈ 0.82, (6.37b)

Putting these two results together we have∥∥∥r(i+1)
∥∥∥

2
6

1
2

∥∥∥r(i)
∥∥∥

2
+ 2γ

√
1 + δs+ŝ ‖e‖2 , (6.38)

if either of the following conditions (a) or (b) are met

(a) γ >
1

δs+2ŝ − δs+ŝ + 1
, and γδs+2ŝ 6

1√
32

, or (6.39a)

(b) γ <
1

δs+2ŝ − δs+ŝ + 1
, and γ(1− δs+ŝ) > 1− 1√

32
, (6.39b)

completing the proof of the lemma.

Looking at our algorithm in another way shows that the MFR algorithm is capable of attaining
the bounds of Lemma 2.7. Lemma 2.7 says that given y = Φx, then the minimiser to ‖x̂‖0

subject to y = Φx̂ is unique and equal to x. Lemma 6.5 and its corollary show that the MFR
algorithm can achieve this bound.

Lemma 6.5. Under the conditions of Proposition 6.2 and for measurements y = Φx + e where Φ ∈
Rm×n has the RIP such that γ satisfies

1− α
2

1− δs+ŝ
< γ <

1
1− δs+ŝ

, (6.40)

for some constant 0 < α < 1 and ŝ > s, and

δs+ŝ < 1, (6.41)

Algorithm 6.1 produces an approximation x(k) satisfying

∥∥∥x− x(k)
∥∥∥

2
6 αk ‖x‖2 +

2γ
√

1 + δs+ŝ

1− α
‖e‖2 . (6.42)

Proof. Recall the fundamental step of the MFR algorithm

x(k+1) = Hŝ

(
x(k) + γΦT

(
y−Φx(k)

))
. (6.43)

As before, set B(k) , supp(x)∪ supp(x(k)) and a(k+1) , x(k) + γΦT
(

y−Φx(k)
)

. Then we have

a(k+1)
B(k+1) = x(k)

B(k+1) + γΦT
B(k+1)

(
y−Φx(k)

B(k+1)

)
(6.44a)

= x(k)
B(k+1) + γΦT

B(k+1) Φ(x− x(k)) + γΦT
B(k+1) e. (6.44b)
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This gives the error estimate∥∥∥x− x(k+1)
∥∥∥

2
6
∥∥∥x− a(k+1)

B(k+1)

∥∥∥
2
+
∥∥∥a(k+1)

B(k+1) − x(k+1)
∥∥∥

2
(6.45a)

6 2
∥∥∥x− a(k+1)

B(k+1)

∥∥∥
2

(6.45b)

= 2
∥∥∥x− x(k)

B(k+1) − γΦT
B(k+1) Φ

(
x− x(k)

B(k+1)

)
− γΦT

B(k+1) e
∥∥∥

2
(6.45c)

6 2
∥∥∥x− x(k)

B(k+1) − γΦT
B(k+1) Φ

(
x− x(k)

B(k+1)

)∥∥∥
2
+ 2

∥∥∥γΦTe
∥∥∥

2
(6.45d)

= 2
∥∥∥(I− γΦTΦ

) (
x− x(k)

)∥∥∥
2
+ 2γ

∥∥∥ΦT
B(k+1) e

∥∥∥
2

(6.45e)

6 2 (1− γ (1− δs+ŝ))
∥∥∥x− x(k)

∥∥∥
2
+ 2γ

√
1 + δs+ŝ ‖e‖2 , (6.45f)

by Lemmas 3.10 and 3.11. Applying Lemma 6.3 to the recursion defined by Equation (6.45f) we
get that

∥∥∥x− x(k)
∥∥∥

2
6
[
2
(

1− γ (1− δs+ŝ)
)]k
‖x‖2 +

2γ
√

1 + δs+ŝ

1− 2
(

1− γ (1− δs+ŝ)
) ‖e‖2 , (6.46)

since x(0) = 0 and if 0 < 2 (1− γ (1− δs+ŝ)) 6 α < 1. Thus, if

0 < 2(1− γ(1− δs+ŝ)) 6 α ⇐⇒ 1− α

2
6 γ(1− δs+ŝ) < 1 (6.47a)

⇐⇒
1− α

2
1− δs+ŝ

6 γ <
1

1− δs+ŝ
, (6.47b)

the algorithm will converge provided δs+ŝ < 1 producing an approximation that obeys

∥∥∥x− x(k)
∥∥∥

2
6 αk ‖x‖2 +

2γ
√

1 + δs+ŝ

1− α
‖e‖2 (6.48a)

6 αk ‖x‖2 +
2
√

2γ

1− α
‖e‖2 , (6.48b)

completing the lemma.

This lemma says that for the right value of γ and provided that δs+ŝ < 1, the algorithm will
always converge to the correct solution, at the cost of (perhaps quite significant) noise amplifi-
cation.

Corollary 6.6. Under the hypothesis of Lemma 6.5 and if we could measure the signal y exactly, i.e.
if e = 0, then for some value of γ, setting ŝ = s gives an algorithm capable of attaining the bound in
Lemma 2.7.

Proof. Setting ŝ = s in Equation (6.41) gives the condition δ2s < 1 and by choosing γ so that

1− α
2

1− δs+ŝ
6 γ <

1
1− δs+ŝ

, (6.49)

the algorithm will produce a sequence of approximations which converge to x.

What is interesting about these results, is that they rely only on the lower RIP constant, that is, it
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only requires

0 < 1− δ2s 6
‖Φx‖2

2

‖x‖2
2

, (6.50)

for all 2s-sparse vectors x. This means that the MFR algorithm will recover the correct s-sparse
solution x to y = Φx provided that there are no 2s-sparse vectors in the kernel of Φ. In fact
this is a tight theoretical bound, assume that there exists a vector v ∈ Rn that is 2s-sparse and
Φv = 0. Choose a set Γ ⊂ {1, 2, . . . , n} of size s so that Γ ⊂ supp(v) and set x = −vΓ so that x
is s-sparse. Then

y = Φx = Φx + Φv = Φ(x + v) = Φu, (6.51)

where u = x + v is s-sparse and u 6= x. Hence there is no unique minimiser to ‖x̂‖0 subject to
y = Φx̂ and no algorithm will be able to return the correct solution 100% of the time. Thus the
MFR algorithm is able to attain the bound in Lemma 2.7.

Perhaps even more surprising is that the algorithm will converge as fast as we want (but still
linearly), i.e.

∥∥∥x− x(k)
∥∥∥

2
6 αk ‖x‖2 for any 0 < α < 1, provided we can choose γ so that

1− α
2 6 γ(1− δ2s) < 1.

This seems to be an astounding result, until we realise that this requires accurate values of
δ2s and explicitly calculating δ2s for a random matrix is computationally equivalent to directly
solving the `0 minimisation problem arg min ‖x̂‖0 subject to y = Φx̂.

We now use Proposition 6.2 and Lemma 3.8 from (Needell and Tropp 2008) to prove the main
theorem.

Proof of Theorem 6.1. We set ŝ = s, then let xs be the best s-sparse approximation to x. Then
observe that ∥∥∥x− x(k)

∥∥∥
2

6 ‖x− xs‖2 +
∥∥∥x(k) − xs

∥∥∥
2

. (6.52)

We then apply the algorithm to y to recover an s-sparse approximation. From Proposition 6.2
we get the bound ∥∥∥x(k) − xs

∥∥∥
2

6 2−k ‖xs‖2 + 4γ
√

1 + δ2s ‖ê‖2 , (6.53)

where ê = y−Φxs. Using Lemma 3.8 and setting t = 2s we can write y = Φx2s + ẽ where x2s

is a best 2s-sparse approximation to x, such that

‖ẽ‖2 6
√

1 + δ2s

(∥∥∥x− x2s
∥∥∥

2
+

1√
2s

∥∥∥x− x2s
∥∥∥

1

)
+ ‖e‖2 , (6.54)

Hence combining Lemma 3.8 and Proposition 6.2 we get

∥∥∥x(k) − xs
∥∥∥

2
6 2−k ‖xs‖2 + 4γ

√
1 + δ2s ‖e‖2 + 4γ

(
1 + δ2s

) (∥∥∥x− x2s
∥∥∥

2
+

1√
2s

∥∥∥x− x2s
∥∥∥

1

)
,

(6.55)

under conditions (a), (b) or (c). This completes the proof of the theorem.

Note that in condition (a), namely Equation (6.39a), setting γ = 1/(1 + δs) and ŝ = s gives the
same conditions on convergence for the proof of the IHT algorithm in (Blumensath and Davies
2008). Our result (and algorithm) is a generalisation of this IHT algorithm. We choose to use
the RIP rather than the modified-RIP, unlike the authors of (Blumensath and Davies 2008), as it
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leads to easier implementation. To implement IHT one requires a measurement matrix scaled by
1/(1 + δs), but it is unfeasible to perform this operation exactly. Hence by avoiding this scaling
and choosing a deliberately smaller γ (which admittedly disguises some of the difficulty in this
scenario) we can much more easily use the unscaled variant.

Observe also that this theorem implies that as γ → 0, the error due to the noise component in
the model also goes to 0.

Strictly speaking, there is no real reason to require
∥∥∥r(k+1)

∥∥∥
2

6 1
2

∥∥∥r(k)
∥∥∥

2
+ 2γ

√
1 + δ2s ‖e‖2, any

value 0 6 α < 1 with
∥∥∥r(k+1)

∥∥∥
2

6 α
∥∥∥r(k)

∥∥∥
2
+ 2γ

√
1 + δ2s ‖e‖2 would suffice, but perhaps offer

significantly slower convergence. What happens to the convergence conditions if we allow a
larger α?

Assume we have
∥∥∥r(k+1)

∥∥∥
2

6 α
∥∥∥r(k)

∥∥∥
2
+ 2γ

√
1 + δ2s ‖e‖2, applying Lemma 6.3 to this recursive

sequence it follows that ∥∥∥r(k)
∥∥∥

2
6 α

∥∥∥r(k−1)
∥∥∥

2
+ 2γ

√
1 + δ2s ‖e‖2 (6.56a)

6 αk
∥∥∥r(0)

∥∥∥
2
+ 2γ

√
1 + δ2s ‖e‖2

k

∑
i=1

αi (6.56b)

< αk
∥∥∥r(0)

∥∥∥
2
+

2γ
√

1 + δ2s

1− α
‖e‖2 (6.56c)

< αk
∥∥∥r(0)

∥∥∥
2
+

2
√

2γ

1− α
‖e‖2 , (6.56d)

which unfortunately threatens significant noise amplification, especially as α gets close to 1.
Then the convergence criteria become

(a) γ >
1

δs+2ŝ − δs+ŝ + 1
, and γδs+2ŝ 6

α√
8

<
1√
8
≈ 0.35, or (6.57a)

(b) γ <
1

δs+2ŝ − δs+ŝ + 1
, and γ(1− δs+ŝ) > 1− α√

8
> 1− 1√

8
≈ 0.65, (6.57b)

which are slightly looser than before.

6.4 Convergence

If Algorithm 6.1 converges, it either converges to the correct sparse solution, or it converges to
another sparse vector, but one that is not an (approximate – to some level of tolerance) solution
to the equation y = Φx + e. If the algorithm converges to an incorrect vector, it is simple to test
this and, if necessary, rerun the algorithm with different γ or ŝ estimates.

Let x̂ ∈ Rn be a solution the MFR algorithm converges to. Let P ∈ Rn×n be a diagonal matrix
that is the matrix corresponding to the projection onto the components specified by the support
of x̂, i.e. onto the non-zero components of x̂, so P is 0 everywhere, except for the diagonal
elements Pii which are 1 if and only if x̂i 6= 0. By construction we have P2 = P = PT and



94 CHAPTER 6. MODIFIED FRAME RECONSTRUCTION ALGORITHM

Px̂ = x̂. As the algorithm has converged to x̂, we have

x̂ = P
[
x̂ + γΦTΦ (x− x̂)

]
⇒x̂ = x̂ + PγΦTΦ (x− x̂) (6.58a)

⇒PΦTΦx = PΦTΦx̂ (6.58b)

⇒PΦTΦx = PTΦTΦPx̂. (6.58c)

Recall that the Moore-Penrose pseudo-inverse of a matrix A is given by, if it exists, A† =
(A∗A)−1 A∗. Let A = ΦP, then Equation (6.58c) can be rewritten as

ATΦx = ATAx̂. (6.59)

If we can invert ATA, then x̂ is given by

x̂ = (ATA)−1 ATΦx = (ΦP)† Φx = (ΦP)† y. (6.60)

This result is not at all surprising, it merely confirms that if we knew the support of x (which is
encoded in the matrix P), then we could find the solution by solving the least squares problem
restricted to vectors that have this support.

6.5 Adaptive Choice of γ

Recall that the MFR algorithm performs the iterative step

x(k+1) = Hŝ

[
x(k) + γΦTΦ

(
x− x(k)

)]
. (6.61)

Previously we have only considered a fixed value of γ across all iterations, but there is no reason
why γ cannot vary from one iteration to the next. We then ask, what is a good way to choose γ

at each iteration?

6.5.1 Minimising the Residual

The easiest option is to consider a greedy strategy, so that at every iteration we minimise the
`2-norm of the residual, i.e.

∥∥∥x− x(k)
∥∥∥

2
. So at the iteration producing the output x(k) we want

to choose γ(k) so that
∥∥∥x− x(k)

∥∥∥
2

is minimised, namely

γ(k) = arg min
γ

∥∥∥x−Hŝ

[
x(k−1) + γΦTΦ

(
x− x(k−1)

)]∥∥∥
2

. (6.62)

Similar to before we rewrite the hard-thresholding function as a projection matrix P, so that P

is a diagonal matrix with ones along the diagonal corresponding to the ŝ largest components
of the update x(k) + γΦTΦ

(
x− x(k)

)
. Since the position of the largest components can clearly

vary from one iteration to the next and for each iteration the position of the largest components
is also dependent on γ(k) we will write P

(k)
γ to emphasise the dependence on both the iteration

and the value of γ for that iteration.
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The problem of choosing γ(k) in this manner is equivalent to solving

d
dγ

∥∥∥x− x(k)
γ

∥∥∥2

2
= 0, (6.63)

for γ where x(k)
γ , Hŝ

[
x(k−1) + γΦTΦ

(
x− x(k−1)

)]
. Using the projection matrix format for

Hŝ we get

d
dγ

∥∥∥x− x(k)
γ

∥∥∥2

2
= 0, (6.64a)

⇐⇒ d
dγ

([
x− x(k)

γ

]T [
x− x(k)

γ

])
= 0, (6.64b)

⇐⇒ d
dγ

([
x−P

(k)
γ

(
x− γΦTΦ(x− x(k))

)]T [
x−P

(k)
γ

(
x− γΦTΦ(x− x(k))

)])
= 0

(6.64c)

⇐⇒ d
dγ

(
xTx− xTP

(k)
γ x− γ(k)xTP

(k)
γ ΦTΦ(x− x(k)) + . . .

− x(k)P
(k)
γ x + x(k)TP

(k)
γ P

(k)
γ x(k) + γ(k)x(k)TP

(k)
γ P

(k)
γ ΦTΦ(x− x(k)) + · · ·

− γ(k)(x− x(k))TΦTΦP
(k)
γ x + γ(k)(x− x(k))TΦTΦP

(k)
γ

T
P

(k)
γ x(k) + · · ·

(γ(k))2(x− x(k))TΦTΦP
(k)
γ

T
P

(k)
γ ΦTΦ(x− x(k))

)
= 0 (6.64d)

⇐⇒ − xTP
(k)
γ ΦTΦ(x− x(k)) + x(k)TP

(k)
γ ΦTΦ(x− x(k))− (x− x(k))ΦTΦP

(k)
γ x + · · ·

+ (x− x(k))TΦTΦP
(k)
γ x(k) + 2γ(k)(x− x(k))ΦTΦP

(k)
γ ΦTΦ(x− x(k)) = 0 (6.64e)

⇐⇒ − (x− x(k))TP
(k)
γ ΦTΦ(x− x(k))− (x− x(k))ΦTΦP

(k)
γ (x− x(k)) + · · ·

+ 2γ(k)ΦTΦP
(k)
γ ΦTΦ(x− x(k)) = 0 (6.64f)

⇐⇒ γ(k)(x− x(k))TΦTΦP
(k)
γ ΦTΦ(x− x(k)) = (x− x(k))TΦTΦP

(k)
γ (x− x(k)). (6.64g)

Hence we have

γ(k) =

(
x− x(k)

)T
ΦTΦP

(k)
γ

(
x− x(k)

)
(
x− x(k)

)T ΦTΦP
(k)
γ ΦTΦ

(
x− x(k)

) (6.65a)

=
r(k)TΦTΦP

(k)
γ r(k)

r(k)TΦTΦP
(k)
γ ΦTΦr(k)

. (6.65b)

Thus we can write the optimal step-length in terms of the residual r(k) = x− x(k), the threshold-
ing projection matrix P

(k)
γ and the measurement matrix Φ. Unfortunately however, we cannot

calculate the numerator in Equation (6.65b) without knowing the true solution. Unsurprisingly
if we implement the MFR algorithm with knowledge of the true solution to calculate the optimal
step-length, we achieve a significantly higher reconstruction rate.

What is also interesting to look at, is a graph of γ(k) as a function of the iteration count, as in
Figure 6.1. Intuitively one might expect the step-length to converge to a constant, and perhaps
very small value, but instead, in every simulated case, we see that in the limit, γ(k) oscillates
between two fixed values. Later work could include further analysis of these values of γ(k) to
see if there is a good algorithm to estimate these values.
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Consider then the MFR algorithm where at every iteration the “optimal” value of γ is chosen
in the sense that it minimises the `2-norm of the residual. We then have the following lemma,
Lemma 6.7 regarding its performance.

(a)
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Figure 6.1: Plot of γ(k) as a function of the iteration count for two simulations with n = 400,
m = 200 and s = 100. Observe how there are two distinct tails for γ(k).

Lemma 6.7. Let Φ ∈ Rm×n be a measurement matrix that obeys the RIP of order s and let x ∈ Rn

be the s-sparse signal we are trying to reconstruct given the measurements y = Φx using the MFR
algorithm, Algorithm 6.1 where γ(k), the step-length, is chosen at every iteration so as to minimise the
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residual ∥∥∥r(k)
∥∥∥

2
=
∥∥∥x− x(k)

∥∥∥
2

=
∥∥∥x−Hŝ

[
x(k−1) + γΦT

(
y−Φx(k−1)

)]∥∥∥
2

. (6.66)

Then the `2-norm of the residual is a non-increasing function of the number of iterations.

Proof. Clearly if γ(k) = 0 then we have x(k) = x(k−1) hence
∥∥∥r(k)

∥∥∥
2

=
∥∥∥r(k−1)

∥∥∥
2
. Thus setting

γ(k) = 0 does not increase the norm of the residual, hence minimising this for γ > 0 can only
further decrease

∥∥∥r(k)
∥∥∥

2
.

6.5.2 Minimising the Residual in Φ-space

As already mentioned, without knowing the true solution x, we cannot calculate the value
of γ(k) that minimises the residual. As an alternative, we can calculate the value of γ(k) that
minimises the residual in Φ-space, that is we choose γ(k) to minimise the term

∥∥∥y−Φx(k)
∥∥∥

2
.

Proceeding as before where we write

x(k) = Hŝ

[
x(k−1) + γ(k)ΦT

(
y−Φx(k−1)

)]
= P

(k)
γ

[
x(k−1) + Γ(k)ΦT

(
y−Φx(k−1)

)]
, (6.67)

and we calculate the derivative of y−Φx(k+1) with respect to γ(k) and solve for 0. First observe
that∥∥∥y−Φx(k+1)

∥∥∥2

2
(6.68a)

=
(

y−Φx(k+1)
)T (

y−Φx(k+1)
)

(6.68b)

= yTy− 2yTΦx(k+1) − x(k+1)TΦTΦx(k+1) (6.68c)

= yTy− 2yTΦP
(k)
γ

(
x(k) + γ(k)ΦTΦ(x− x(k))

)
− · · ·

−
(

x(k) + γ(k)ΦTΦ(x− x(k))
)T

P
(k)
γ ΦTΦ

(
x(k) + γ(k)ΦTΦ(x− x(k))

)
(6.68d)

= xTΦTΦx− 2xTΦTΦP
(k)
γ x(k) − 2γ(k)xTΦTΦγ(k)ΦTΦ(x− x(k))− x(k)TP

(k)
γ ΦTΦP

(k)
γ x(k) − · · ·

− γ(k)x(k)TP
(k)
γ ΦTΦP

(k)
γ ΦTΦ(x− x(k))− γ(k)(x− x(k))TΦTΦP

(k)
γ ΦTΦP

(k)
γ x(k) − · · ·

− γ(k)2
(x− x(k))TΦTΦP

(k)
γ ΦTΦP

(k)
γ ΦTΦ(x− x(k)). (6.68e)

Then differentiating with respect to γ(k) and solving for 0 we get that

2xTΦTΦP
(k)
γ ΦTΦ(x− x(k))− x(k)TP

(k)
γ ΦTΦP

(k)
γ ΦTΦ(x− x(k))− · · ·

− (x− x(k))TΦTΦP
(k)
γ ΦTΦP

(k)
γ x(k) − · · ·

− 2γ(k)(x− x(k))TΦTΦP
(k)
γ ΦTΦP

(k)
γ ΦTΦ(x− x(k)) = 0 (6.69a)

⇐⇒ 2xTΦTΦP
(k)
γ ΦTΦ(x− x(k))− 2x(k)TP

(k)
γ ΦTΦP

(k)
γ ΦTΦ(x− x(k))− · · ·

− 2γ(k)(x− x(k))TΦTΦP
(k)
γ ΦTΦP

(k)
γ ΦTΦ(x− x(k)) = 0 (6.69b)

Hence

γ(k) =

(
x− x(k)

)
ΦTΦP

(k)
γ ΦTΦ

(
x− x(k)

)
(
x− x(k)

)T ΦTΦP
(k)
γ ΦTΦP

(k)
γ ΦTΦ

(
x− x(k)

) , (6.70)
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is the value for γ(k) which minimises
∥∥∥y−Φx(k)

∥∥∥
2
. In Figures 7.1-7.2 we graph the performance

of the decoding algorithm where we use this rule to select the value of γ used in each iteration.

Similar to lemma 6.7, we can easily show that using Equation (6.70) to select the value of γ, the
`2-distance between the measurements y and Φx(k) never increases.

Lemma 6.8. Let Φ ∈ Rm×n be a measurement matrix that obeys the RIP of order s and let x ∈ Rn

be the s-sparse signal we are trying to reconstruct given the measurements y = Φx using the MFR
algorithm, Algorithm 6.1 where γ(k), the step-length, is chosen at every iteration so as to minimise the
residual in Φ-space∥∥∥Φr(k)

∥∥∥
2

=
∥∥∥y−Φx(k)

∥∥∥
2

=
∥∥∥y−ΦHŝ

[
x(k−1) + γΦT

(
y−Φx(k−1)

)]∥∥∥
2

. (6.71)

Then the `2-norm of the residual is a non-increasing function of the number of iterations.

Proof. Clearly if γ(k) = 0 then we have x(k) = x(k−1) hence
∥∥∥Φr(k)

∥∥∥
2

=
∥∥∥Φr(k−1)

∥∥∥
2
. Thus setting

γ(k) = 0 does not increase the norm of the residual, hence minimising this for γ > 0 can only
further decrease

∥∥∥Φr(k)
∥∥∥

2
.

One of the problems though with either of the rules for γ given by Equations (6.65b) or (6.70) is
that the projection matrix P

(k)
γ depends on the value of γ(k). We suggest two alternatives to get

around this problem.

t Method 1: Use an estimate γ̂ to calculate x(k+1) from x(k) which gives a projection matrix
Pγ̂. Using this projection matrix, calculate the optimal value of γ using Equations (6.65b)
or (6.70). This results in a new estimate for γ.

Repeat this process until the value of γ calculated from Equations (6.65b) or (6.70) returns
the same projection matrix. That is, until using the value γ(k) to get x(k+1) gives the pro-
jection matrix P

(k)
γ and using Equations (6.65b) or (6.70) to get γ from P has γ = γ(k).

t Method 2: Use standard minimisation techniques to minimise the non-linear equations∥∥∥x− x(k+1)
∥∥∥

2
or

∥∥∥y−Φx(k+1)
∥∥∥

2
, (6.72)

depending on what we are optimising for.

For completeness we list the generic algorithm using a locally optimal value of γ as Algorithm
6.2.

Finally we can apply the main theorem of this thesis, Theorem 6.1 to our modified algorithm.

Corollary 6.9. Fix ŝ the sparsity of the desired solution. For measurements y = Φx + e where Φ ∈
Rm×n has the RIP such that either condition (a), (b) or (c) is satisfied at every iteration

(a) γ(k) >
1

δ3s − δ2s + 1
, and γ(k)δ3s 6

1√
32

, or (6.73a)

(b) γ(k) <
1

δ3s − δ2s + 1
, and γ(k)(1− δ2s) > 1− 1√

32
, or (6.73b)

(c)
3

4(1− δ2s)
< γ(k) <

1
1− δ2s

and δ2s < 1, (6.73c)
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Algorithm 6.2 MFR Algorithm with locally optimal γ

Input:

t Frame vectors {ei} which are the rows of Φ.
t Observation vector y.
t Estimate of sparsity ŝ of the vector x.

Output:

t A solution x̂ to y = Φx.

1: x(0) ← 0
2: for k = 0, . . . , ∞ do
3: γ(k) ← arg minγ

∥∥∥y−ΦHŝ

(
x(k) + γΦT

(
y−Φx(k)

))∥∥∥
2

4: x(k+1) ←Hŝ

(
x(k) + γΦT

(
y−Φx(k)

))
5: end for
6: return x(k)

Algorithm 6.1 recovers an approximation x(k) satisfying

∥∥∥x(k) − xs
∥∥∥

2
6 2−k ‖xs‖2 + 4γmax

√
1 + δ2s ‖e‖2 + 4γmax

(
1 + δ2s

) (∥∥∥x− x2s
∥∥∥

2
+

1√
2s

∥∥∥x− x2s
∥∥∥

1

)
,

(6.74)
where xs is the best s-sparse approximation to x and γmax = maxk γ(k), is the maximum value of γ(k)

used in the algorithm.

Proof. The corollary follows immediately from the theorem since there is no requirement on the
γ(k) to be constant in the proof of the theorem.

Although we have the same convergence bounds in both the theorem and the corollary for
different algorithms, since we are choosing an “optimal” value of γ in the second algorithm, we
would in fact expect convergence to be faster. In Figure 6.2 we compare the number of iterations
required for convergence between the vanilla algorithm and the one with locally optimal γ. This
shows that the MFR algorithm with an adaptive step-length converges significantly faster than
without.

In Chapter 7 in Figures 7.1-7.2 we show the simulated reconstruction for this algorithm and
compare it to various other algorithms.

6.5.3 Analysis of Optimal γ

Although we cannot directly calculate the optimal value of γ at each iteration so as to minimise
the future residual, perhaps there is some other way to infer this value. The point of the cal-
culations in Equations (6.64a)-(6.65b) is to see if this quantity is estimable without knowing the
residual, unfortunately this does not appear to be the case. In this section we will take a look at
the optimal values of γ, calculated in this sense, to see if we can infer a pattern to them.

For all simulated cases we see that as the calculated solution x(k) approaches the true solution
x, the “optimal” value of γ oscillates between two values, as in Figure 6.1. In Figure 6.3 we
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Figure 6.2: Histogram of the number of iterations required for convergence for the MFR algo-
rithm with a constant step-length (top) and using an adaptive step-length (bottom). The y-axis
shows the relative number of simulations that converged for that bin-width. In the top graph
we plot the number of iterations required for various sparsity estimates ranging from ŝ = s to
ŝ = s + 20.

produce a scatter plot of the upper tail versus the lower tail for three different matrix sizes.
There is a clear clustering of the points for each of the matrix sizes and sparsity levels.

It is also informative to look at a histogram of the distribution of points in the upper and lower
tails, which can be seen in Figure 6.4.
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Figure 6.3: Scatter plots of the upper tail versus the lower tail for three different matrix sizes
n = 400 and m = 50, 100 and m = 200 (top three plots). For each of these matrix sizes we plot
the upper versus lower tail for different sparsity levels. The bottom plot is the overlay of the
top three plots without the additional sparsity levels highlighted.
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Figure 6.4: Estimated distribution of points in the upper and lower tails.

6.6 Frame Reconstruction with Least Squares

In this section we will demonstrate a modification to the MFR algorithm by stealing a leaf from
the orthogonal matching pursuit class of algorithms. The basic idea behind orthogonal match-
ing pursuit algorithms is to:

(a) perform a column selection, and then

(b) solve the problem via least squares minimisation on these columns.

We can then modify our previous frame reconstruction algorithm to also incorporate least
squares. We use the frame reconstruction algorithm to provide column selection, by choos-
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Algorithm 6.3 MFR with Least Squares
Input:

t The measurement matrix Φ.
t Observation vector y
t Estimate of sparsity ŝ of the vector x.
t Step size γ.

Output:

t A solution x̂ to y = Φx.

1: x(0) ← 0
2: Γ(0) ← ∅
3: Γ← {1, . . . , n}
4: for k = 0, . . . , ∞ do
5: x̂← x(k)

6: while Γ 6= Γ(0) do . Loop until support changes
7: x̂← x(k) + γΦT (y−Φx̂)
8: Γ← supp(x̂ŝ)
9: end while

10: x(k+1) ← arg minx̃ : supp(x̃)=Γ ‖y−Φx̃‖2 . Solve LS on Γ
11: Γ(0) ← Γ
12: Γ← ∅
13: end for
14: return x(k+1)

ing the columns of Φ that correspond to the entries of x(k) that have largest magnitude and we
then solve the least squares problem on this set of columns.

Obviously given the same set of columns twice, to solve the `2 minimisation problem on, the
algorithm will return the same solution both times. Hence our idea is to keep running the
frame step until the set of columns we select changes, and then perform least squares, as in
Algorithm 6.3. Figures 7.1-7.2 illustrate the performance of the MFR algorithm incorporating a
least squares step.

Convergence of this new algorithm is significantly quicker than the plain MFR algorithm. In
Figure 6.5 we compare the number of iterations required for convergence for these two algo-
rithms. This shows that the MFR algorithm with a least squares step converges significantly
faster than without, indeed it converges about two orders of magnitude faster.

We then have the following lemma about MFR with least squares.

Lemma 6.10. Let x ∈ Rn be an s-sparse signal and let Φ ∈ Rm×n be a measurement matrix with

RIP constant δ2s such that δ2s < 1. Set γ = 2 ·
(

λmin(ΦTΦ) + λmax(ΦTΦ)
)−1

, then given the

measurements y = Φx, the MFR algorithm with least squares recovers an approximation x(k) at every
iteration satisfying

∥∥∥x− x(k)
∥∥∥

2
6 2k

(
1 + δ2s

1− δ2s

)k/2 (λmax − λmin

λmax + λmin

)α ∥∥∥x− x(0)
∥∥∥

2
, (6.75)

where k is the number of times we perform the `2 minimisation and α is the number of times the frame
operation, line 7, is repeated in Algorithm 6.3.
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Furthermore, as soon as the algorithm solves the `2 problem on support of the true solution, the algorithm
will terminate with the correct solution x(k) = x.

Proof. Assume that on the k-th iteration the algorithm has produced an approximation x(k) with
support Γ(k). Set v(0) = x(k) and then the algorithm will repeat the frame step v(i+1) = v(i) +
γΦT

(
y−Φv(i)

)
until the support changes. Assume that this takes α(k) iterations before this

happens. This is identical to our analysis of the original frame reconstruction algorithm. Let
λmin and λmax be the minimum and maximum eigenvalues of ΦTΦ. Then approximation v(α(k))

obeys ∥∥∥x− v(α(k))
∥∥∥

2
6
(

λmax − λmin

λmax + λmin

)α(k) ∥∥∥x− x(k)
∥∥∥

2
. (6.76)

We use our analysis of the frame algorithm, rather than the method used in Theorem 6.1 since
the sequence v(i) are not necessarily sparse.

Now set x̂ = Hs(v(α(k))) and using the fact that x̂ is the best approximation to v(α(k)) we see
that

‖x− x̂‖2 6
∥∥∥x− v(α(k))

∥∥∥
2
+
∥∥∥v(α(k)) − x̂

∥∥∥
2

(6.77a)

6 2
∥∥∥x− v(α(k))

∥∥∥
2

. (6.77b)

Now let x(k+1) be the solution to the problem

arg min
x̃
‖y−Φx̃‖2 subject to supp(x̃) = supp(x̂), (6.78)

hence ∥∥∥y−Φx(k+1)
∥∥∥

2
6 ‖y−Φx̂‖2 6 ‖Φ‖ · ‖x− x̂‖2 6

√
1 + δ2s ‖x− x̂‖2 , (6.79)

as x− x̂ has at most 2s non-zero components. Also by the RIP we have∥∥∥y−Φx(k+1)
∥∥∥

2
>
√

1− δ2s

∥∥∥x− x(k+1)
∥∥∥

2
. (6.80)

Putting all this together, we get

∥∥∥x− x(k+1)
∥∥∥

2
6

√
1 + δ2s

1− δ2s
‖x− x̂‖2 (6.81a)

6

√
1 + δ2s

1− δ2s
· 2
∥∥∥x− v(α(k))

∥∥∥
2

(6.81b)

6

√
1 + δ2s

1− δ2s
· 2 ·

(
λmax − λmin

λmax + λmin

)α(k) ∥∥∥x− x(k)
∥∥∥

2
. (6.81c)

Set α = ∑k α(k) and we get that

∥∥∥x− x(k+1)
∥∥∥

2
6 2k

(
1 + δ2s

1− δ2s

)k/2 (λmax − λmin

λmax + λmin

)α ∥∥∥x− x(0)
∥∥∥

2
, (6.82)

as required.

As soon as the algorithm correctly identifies the support of x, least squares minimisation will
returns an s-sparse vector x′ such that ‖y−Φx′‖2 = 0. As δ2s < 1, there is a unique such
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vector and hence x′ = x, the desired solution. The algorithm will then terminate, as the correct
solution is a stable point of the frame reconstruction equation and hence convergence will have
occurred.

200 300 400 500 600 700 800 900 1000
0

5

10

15

20

25
M

FR

 

 
SE = s
SE = s+5
SE = s+10
SE = s+15
SE = s+20

4 6 8 10 12 14 16 18 20
0

5

10

15

20

M
FR

 L
S

Figure 6.5: Histogram of the number of iterations required for convergence for the plain MFR
algorithm (top) and the algorithm with a least squares step (bottom). For the MFR LS algorithm,
this is the number of times the frame step is run, i.e. line 7 in Algorithm 6.3. The y-axis shows the
relative number of simulations that converged for that bin-width. In the top graph we plot the
number of iterations required for various sparsity estimates ranging from ŝ = s to ŝ = s + 20.

6.7 Empirical Results

6.7.1 Reconstruction Rate

We include simulations of our algorithms in Chapter 7, Figures 7.1-7.2.

6.7.2 Convergence Rate

Although we have shown analytically the performance of our three algorithms is similar, the
two modified versions both exhibit a significantly faster rate of convergence. In Figure 6.6 we
plot histograms of the number of iterations required for convergence for measurement matrices
of two different sizes.

Figure 6.7 demonstrates how the rate of convergence tends to increase with the step-length, γ.
The following figure, Figure 6.8 also demonstrates how the rate of convergence increases as γ

decreases. What is interesting is that convergence appears not to be a smooth function of γ, for
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some very small regions of γ the algorithm does converge but then for slightly larger values,
does not.
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Figure 6.6: Histogram of the number of iterations required for convergence for the MFR algo-
rithm for measurement matrix sizes 100× 400 and 200× 800 for the following algorithms: MFR
(top), MFR with an adaptive step-length (middle) and MFR with least squares (bottom). For
the MFR LS algorithm, this is the number of times the frame step is run, i.e. line 7 in Algorithm
6.3. The y-axis shows the relative number of simulations that converged for that bin-width. In
the top graph we plot the number of iterations required for various sparsity estimates ranging
from ŝ = s to ŝ = s + 20.
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Figure 6.7: Convergence rate for typical scenario. Observe that the larger γ is, the faster the
convergence, as we would expect. Convergence is also clearly linear.

6.8 Comments

The various versions of the MFR algorithm we have discussed here have several elements in
common with previous algorithms, in particular the Iterative Hard Thresholding algorithm,
Algorithm 5.5 (Blumensath and Davies 2008), Gradient Pursuit in Algorithm 5.3 (Blumensath
and Davies 2008) and CoSaMP, Algorithm 5.4 (Needell and Tropp 2008), so it is important to
note the differences between these algorithms.

6.8.1 Comparison to IHT

The algorithm we have presented generalises the previous IHT algorithm. We need to be careful
in directly comparing the two algorithms as they use slightly different measurement matrix
structures. The IHT algorithm assumes a scaled matrix Φ̂, that is, let Φ ∈ Rm×n have RIP
constant δs of order s, then the algorithm reconstructs x given the measurements

y = Φ̂x =
Φ

1 + δs
x, (6.83)

whereas we operate directly with the original matrix Φ. This means that by setting γ = 1
1+δs

and ŝ = s in our algorithm, the two algorithms are equivalent.

The advantage of allowing γ to to be variable is phenomenal. We have already shown that by
allowing γ to be smaller we can dramatically improve the reconstruction rate of the algorithm
with low sparsity inputs. Alternatively with very sparse inputs we can increase the convergence
rate by choosing the value of γ to be larger. Theorem 6.1 says that, under the hypothesis of the
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Figure 6.8: Number of iterations required for convergence as a function of γ. Plots shows 3
different sparsity estimates S.E. equal to s, s + 10 and s + 20. The number in brackets is the
fraction of the γ values that it successfully converges for. The plot at the bottom shows the
regions in which the algorithm converges and the black dots mark the points where successful
convergence does not occur. One would intuitively expect successful convergence to be an
almost “continuous” function, but the fact that convergence sometimes occurs in very narrow
blocks is strange.

theorem, the error in the final signal is bounded by the term 4γ ‖e‖2 where e is the error in
measuring the signal. Hence by taking a small value for γ we can decrease the effect of the
error in the final output.

In comparison to the analysis of IHT, Theorem 6.1 offers a slightly better convergence result.
Setting ŝ = s and γ = 1

1+δs
yields the identical condition to the main Theorem of (Blumensath

and Davies 2008). But our analysis says that provided γ > 1/ (δs+2ŝ − δs+ŝ + 1), if δs+2ŝ >

1/
√

32 then we can decrease γ and still get convergence. Alternatively, if δs+2ŝ < 1/
√

32 then
we can increase γ to get faster convergence, provided we could estimate the quantities δs+ŝ and
δs+2ŝ accurately. This property is illustrated in Figure 6.6 where we show how the algorithm
converges much quicker for a larger value of γ.

Unfortunately the problem lies in knowing what value of γ to take, so that it falls in the desired
range, which requires knowing the RIP constants for a matrix. The only way to do this currently,
is to check all (n

s̃) submatrices (s̃ = s + ŝ or s̃ = s + 2ŝ as appropriate) with s̃ columns of Φ, which
is computationally unfeasible and is in fact computationally equivalent to directly solving the
original `0 problem, arg min ‖x̂‖0 subject to y = Φx̂, directly. There are however fast ways to
establish lower bounds on the β and δ parameters of a matrix which we discuss in Chapter 8.

We will discuss this further in Chapter 7, but by requiring a scaled measurement matrix, the
implementation of the IHT algorithm becomes complicated. There is no known way to generate
measurement matrices with particular RIP constants, although we can say with high probability
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they are bounded by a certain value, but to implement the IHT algorithm requires the matrix
to be scaled by 1 + δs. Hence we must either estimate δs, which is not discussed in the original
work, or calculate it explicitly, which means we might as well directly solve the `0 problem.

We also discuss what happens if we vary γ from one iteration to the next. We have shown that
doing so can dramatically decrease the error rate in reconstruction. It is ongoing work to see
if there is a good way to estimate the optimal γ in terms of minimising the residual, without
directly knowing the residual.

Another important difference to the IHT algorithm is that we discuss what happens if we thresh-
old with a value that is strictly larger than the sparsity of the signal we are trying to reconstruct.
We often see that choosing a larger thresholding value dramatically improves the success rate at
the expense of increasing the number of iterations required for convergence. One option would
be to also adaptively vary the thresholding level.

6.8.2 Comparison to Gradient Pursuit

The algorithm we propose, appears on the surface to be very similar to the Gradient Pursuit
algorithms discussed in Section 5.1.3 and (Blumensath and Davies 2008). Indeed, the directional
update in gradient pursuit is the same as for both IHT and MFR, but the big difference is in
how the sparsity constraint is enforced. For the gradient pursuit algorithms, a new dictionary
element is added at every iteration, and once added, cannot be removed. In contrast, IHT and
MFR make use of a pruning step, so at every iteration we keep only the most important (decided
by the largest magnitude) dictionary elements, thus elements can be both added and removed.

6.8.3 Comparison to CoSaMP

Incorporating a least squares step into the MFR algorithm makes it look similar to the CoSaMP

algorithm in (Needell and Tropp 2008). There are several significant differences though.

The CoSaMP algorithm solves the least squares problem over the vectors that have support size
3s where s is the sparsity of the true solution. The MFR algorithm typically considers a much
smaller support size.

Column or support selection for the CoSaMP algorithm is performed by merging the support
of the the previous iterate and the “signal proxy”, that is ΦTΦr(k) = ΦTΦ

(
x− x(k)

)
. In the

case of the MFR algorithm, the frame reconstruction algorithm is used to select the support on
which to solve the least squares problem.

As with IHT, the analysis of CoSaMP does not discuss what happens if the sparsity level is
unknown or estimated incorrectly. Our results explicitly show that overestimating the sparsity
can dramatically increase performance.
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CHAPTER

7

Overview of Algorithms

In this thesis we have discussed many different reconstruction algorithms, in this chapter we
will attempt to give a brief overview of some of their properties and how they perform.

7.1 Comparison

The first papers published in the area of compressive sensing showed how `1 minimisation
was a viable alternative to `0, and under what circumstances they would return the same an-
swer. The algorithms proposed since then offer the following improvements over `1; (a) higher
probability of returning the true solution or (b) faster runtime.

In Table 7.1 we list the algorithms we have mentioned in this thesis. This table omits model
based compressive sensing as this is a modification that can be applied to several algorithms,
such as CoSaMP, IHT and MFR.

MATCHING PURSUIT ITERATIVE THRESHOLDING MISCELLANEOUS

Matching Pursuit §5.1 IHT §5.2.1 `1 minimisation §2.4

Orthogonal MP §5.1.1 Soft Thresholding §5.2.2 IRLS §5.4

Stagewise Orthogonal MP §5.1.2 MFR §6.2 Belief Propagation §5.5

Gradient Pursuit §5.1.3 MFR Adaptive §6.5

CoSaMP §5.1.4 MFR Least Squares §6.6

Table 7.1: Categorisation of reconstruction algorithms.

What is important to remember is that not all of these algorithms are directly comparable, many
make different assumptions about the measurement matrix. Also the convergence proofs of the
reconstruction algorithms often make use of properties of the measurement matrices that are
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not easily comparable.

Matching Pursuit, StOMP and GP will work with almost any measurement matrix. CoSaMP,
MFR, OMP and `1 minimisation work with general measurement matrices that satisfy various
RIP properties. IHT will also work with a generic matrix, but requires it to be scaled by 1 + δs

which in practice is difficult to do. A listing of some of these conditions can be seen in Table 7.2.

ALGORITHM CONDITIONS

arg minx̂ : y=Φx̂ ‖x̂‖0 Success if δ2s < 1

arg minx̂ ‖y−Φx̂‖1 Success if δ3s + 3δ4s < 2

arg minx̂ : y=Φx̂ ‖x̂‖1 Success if δs + θs,s + θs,2s < 1

arg minx̂ : y=Φx̂ ‖x̂‖1
If m > C0 · s · µ2(U) · log

( n
δ

)
and m > C1 · log2 ( n

δ

)
then

P(success) > 1− δ

Matching Pursuit Recovers x if x is a linear combination of rows of Φ

Orthogonal Matching Pursuit
(OMP) I

If Φ ∼ N
(

0, 1
m

)
and m > C · s · log

( n
δ

)
then P(success)>

1− 2δ

Orthogonal Matching Pursuit
(OMP) II

If Φ admissible : λmin(ΦTΦ) > 1
4 and m > C · s · log

( n
δ

)
then P(success)> 1− δ

Stagewise Orthogonal Match-
ing Pursuit (StOMP)

Gradient Pursuit (GP)

CoSaMP If δ2s 6 c then
∥∥∥r(k)

∥∥∥
2

6 2−k ‖x‖2 + 20 ‖e‖2

Iterative Hard Thresholding
(IHT)

Scaled: Φ = Φ̂
1+δs

.

If β3s 6 1√
32

(⇒ δ3s > 0.1) then
∥∥∥r(k)

∥∥∥
2

6 2−k ‖x‖2 + 5 ‖e‖2

Soft Thresholding λmax(ΦTΦ) < 1

IRLS Φ has NSP

Belief Propagation (BP) Φ ∼ {0,±1}

Modified Frame Reconstruc-
tion (MFR)

(a) γ > 1
δs+2ŝ−δs+ŝ+1 and γδs+2ŝ 6 1√

32
(b) γ < 1

δs+2ŝ−δs+ŝ+1 and γ(1− δs+ŝ) > 1− 1√
32

or

(c) 3
4(1−δs+ŝ)

< γ < 1
1−δs+ŝ

and δs+ŝ < 1, then∥∥∥r(k)
∥∥∥

2
6 2−k ‖x‖2 + 4γ

√
1 + δs+ŝ ‖e‖2

Table 7.2: Overview of reconstruction algorithms. We consider the model y = Φx, Φ ∈ Rm×n

and x is s-sparse, in particular, we consider the model where there is no noise in the signal.

One point that should be emphasised is that all of these conditions on success are sufficient for
returning the correct solution, not necessary conditions for reconstruction. We believe that in
many cases the theorems regarding correct reconstruction severely understate the performance
of the algorithms.

For instance, the algorithms we have simulated: CoSaMP and MFR are both able to reconstruct
signals which the theoretical results do not suggest that they should be able to. It might be pos-
sible to come up with further theorems regarding their performance that give better sufficient
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conditions on convergence.

7.2 Simulated Performance

In this section we simulate the `1 minimisation, CoSaMP and MFR reconstruction algorithms
using MATLAB. For all simulations we generate 100 matrices of size m× n with i.i.d. Gaussian
entries of variance 1

m . Then for a given sparsity level s, for each matrix we generate a vector x
with s non-zero entries where the non-zero entries are generated from the distribution N (0, 1).
Thus each algorithm operates on the same data. Each algorithm then produces, if it can, a
vector x̂. If x̂ has the same support as the correct solution x, we say that the algorithm has
succeeded. Although not shown here, this has little effect on the results except in the case of the
`1 minimisation algorithm, where the performance is greatly increased.

In Figures 7.1-7.2 we plot the reconstruction for these algorithms and matrices with dimensions
given by n = 400, 800 and m

n = 1
8 , 1

4 , 3
8 and 1

2 .

Here we see that CoSaMP performs marginally better when m
n 6 1

4 , but with more measure-
ments, the MFR suite of algorithms performs significantly better than CoSaMP. The two vari-
ants of MFR, MFR with LS and adaptive step-length consistently outperform the plain version.
The least squares variant performs better than the adaptive choice of γ in the cases of more
measurements, but when there are fewer measurements, they perform similarly. It should also
be noted that the performance of the CoSaMP algorithm drops off quickly, but for MFR, the
reconstruction rate slowly drops off with increased sparsity.

As a rule of thumb we offer the following guidelines when using a measurement matrix with
Gaussian entries:

t Use CoSaMP when there is a “small” number of measurements, e.g. when m
n > 1

4 .

t Use MFR with LS when m
n ? 1

4 .
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Figure 7.1: Simulated results for several algorithms using matrix sizes with n = 400 and m =
50, 100, 150, 200.
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Figure 7.2: Simulated results for several algorithms using matrix sizes with n = 800 and m =
100, 200, 300, 400.
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CHAPTER

8 Restricted Isometry Property
and Constants

So far, almost any theorem we have introduced regarding the convergence of a reconstruction
algorithm requires the RIP constants δs or the modified versions βs to be bounded quite tightly.
The obvious questions are then:

t When do these conditions apply?

t How can we calculate the restricted isometry properties of a matrix?

We will attempt to shed some light on these questions in this chapter.

8.1 Calculating RIP Constants

Recall the definition of the RIP constants. We say that δs > 0 is the restricted isometry constant
of order s is the smallest value such that

1− δs 6
‖ΦΓx‖2

2

‖x‖2
2

6 1 + δs. (8.1)

holds for all vectors s-sparse vectors x ∈ Rn. From Lemma 3.3 we know that the restricted
isometry constants are highly related to the eigenvalues of the matrix Φ. Let λmax(ΦT

Γ ΦΓ) and
λmin(ΦT

Γ ΦΓ) be the maximum and minimum eigenvalues of the matrix ΦΓ, then we have

1− δs 6 λmin(ΦT
Γ ΦΓ) 6

‖ΦΓx‖2
2

‖x‖2
2

6 λmax(ΦT
Γ ΦΓ) 6 1 + δs, (8.2)

for all index sets Γ and vectors xΓ ∈ Rt for t 6 s. Indeed the only known way of calculating
the RIP constants is by calculating the eigenvalues of the matrices ΦT

Γ ΦΓ for all sets Γ, |Γ| = s,
of which there are O (ns) such matrices. In fact this is computationally equivalent to directly
solving the `0 minimisation problem arg minx̂ : y=Φx̂ ‖x̂‖0 which is also of order ns if the sparsest
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solution has sparsity s. Hence if we wish to accurately calculate the RIP constants for a particu-
lar matrix to tell if we can apply a theorem, we might as well directly solve the `0 minimisation
problem.

Fortunately we have several theorems telling us when the solution to `1 and `0 minimisation
problem have the same solution. One of the basic principles of compressive sensing is that if

m > C · s · log n, (8.3)

(where C is a constant depending through the coherence factor µ(Φ, Ψ) on the type of measure-
ment basis and the sparsity basis), then the solution to

min
x̂∈Rn

‖x̂‖1 subject to y = Φx̂, (8.4)

is exact with overwhelming probability. In particular the probability of success exceeds 1− ε if

m > C · s · log
(n

ε

)
, (8.5)

as in (Candès and Romberg 2007). Work in (Donoho and Tanner 2006), quoted in (Needell and
Tropp 2008) says that we can recover most sparse signals via `1 minimisation if m ≈ 2s log n, or
equivalently s ≈ m/(2 log n). See Table 8.1 for an illustration of typical m, n and maximum s
values according to this formula.

n

m 100 200 400 800 1600 3200 6400

50 5.4 4.7 4.2 3.7 3.4 3.1 2.9

100 9.4 8.3 7.5 6.8 6.2 5.7

200 16.7 15.0 13.6 12.4 11.4

400 29.9 27.1 24.8 22.8

800 54.2 49.6 45.6

1600 99.1 91.3

Table 8.1: Largest sparsity value for which we can reconstruct the original signal with over-
whelming probability using `1 minimisation.

The problem with these results though is that it does not give us the δs values which we require
for algorithms such as IHT (Theorem 5.11). Results such as Lemma 3.1 lower the bound the
probability that the RIP constants are bounded above by a particular value, which means that
we know, in general, when an algorithm is applicable. The problem however is that this bound
is not sufficiently tight and the lower bound for the probability can be too low to be meaningful
(indeed, it can degenerate to a statement of the form “the probability is at least −10100 � 0”!).

It is however possible to lower bound the RIP constants using Monte Carlo methods. If we
randomly select columns from the matrix in question and then calculate the singular values, we
know that the RIP constant must be at least as large. A complete description of the algorithm
can be seen in Algorithm 8.1. Figure 8.1 was produced using this method.
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Algorithm 8.1 Monte Carlo method for RIP Constants
Input:

t A matrix Φ ∈ Rm×n.
t A sparsity level s.

Output:

t A lower bound on the RIP constant δs of order s.

1: δs ← 0
2: for k = 0, . . . , ∞ do
3: Select a set of columns Γ of Φ uniformly at random
4: δs ← max

{
δs, λmax

(
ΦT

Γ ΦΓ

)
− 1, 1− λmin

(
ΦT

Γ ΦΓ

)}
5: end for
6: return δs

8.2 When do the theorems apply?

So what values of m, n and s are suitable for applying the convergence theorems? The figures
in Table 8.1 paint a very dismal view of when we can recover a signal via `1 minimisation and
if we compare these to our results in Figures 7.1-7.2, we see that in fact we are simulating with
significantly higher sparsity values (i.e. less sparse signals) than in the table. Yet we are able to
effect reconstruction.

Both the IHT and the CoSaMP algorithm have very similar conditions on the RIP constants for
convergence. Theorem 5.4 about CoSaMP makes use of the fact that δ4s 6 0.1 and Theorem 5.11
says that if

β3s 6
1√
32

⇐⇒ δ3s 6

√
2

16−
√

2
≈ 0.097, (8.6)

then the IHT algorithm will converge to the correct s-sparse solution. Unfortunately it is difficult
to compare these results to our theorem about MFR as we have a difference of two δ(·) terms,
something which is difficult to conceptualise.

Using our Monte Carlo method for lower bounding the RIP constants (Algorithm 8.1) we cre-
ated Figure 8.1 showing the spread of δs values for 100 random matrices of size 200 by 400 for
various sparsity levels. In fact we see that even for s = 10, m = 200 and n = 400 we get δs > 0.6,
much larger than the δ3s 6 0.1 required for IHT or even δ4s 6 0.5 which is required for `1

minimisation, to reconstruct any s-sparse signal.

So the cases we simulate have a sufficiently large s value so that they are not covered by the
theorems regarding convergence of the reconstruction algorithms. But what is interesting, is
that here we can see that our algorithm, as well as CoSaMP performs significantly better than
`1 minimisation. If we only look at the regions where `1 is guaranteed to work (albeit only with
high probability) we learn nothing interesting, as all the algorithms work.
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CHAPTER

9

Conclusion

In this thesis we have given an overview of compressive sensing and frames. We have discussed
the fundamentals of compressive sensing, from designing measurement matrices to conditions
guaranteeing successful reconstruction via `1 minimisation.

We have then explored a number of alternatives to `1 minimisation including matching pursuit
algorithms and iterative algorithms, as well as some of the more arcane methods such as belief
propagation.

On top of this we have presented a new algorithm, MFR, for which we prove some convergence
properties, as well as giving two variants on this algorithm both of which offer significant im-
provements in reconstruction and convergence. Our simulations show that the MFR algorithm
outperforms other algorithms when utilising a relatively high number of measurements.

Finally we present a brief overview of all the algorithms mentioned, as well as a discussion on
when the various convergence and reconstruction theorems can be applied.
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χ2 distribution, 11, 34
`0 minimisation, 24
`0 norm, 12
`1 minimisation, 24, 113, 114
`1 norm, 12
`2 minimisation, 23, 102
`2 norm, 12
`∞ norm, 12

Adjoint, 44
Admissible measurement matrix, 53
Approximation error

model based, 74
Axiom of Choice, 52

B-Minkowski sum, 73
Banach space, 37
Basis, 19, 43
Basis pursuit, 24
Belief Propagation, 113, 114
Belief propagation, 81
Bijective, 44
Block sparsity, 73
Bootstrap, 73
Bounded, 44
BP, see Belief propagation

Cauchy sequence, 45
Chi-squared distribution, 11, 34
Coherence, 22
Complex conjugate, 12
Complex numbers, 12
Compressible, 28
Compressible signals, 26, 28
Concentration inequality, 31
Continuous, 44
Convex hull, 37
Convex optimisation, 24

CoSaMP, 60, 109, 113, 114
algorithm, 60
Model based, 75, 77

Cost function, 59
Covering set, 32

Descent parameter, 71
Dictionary, 51

complete, 51
Differential equations, 85
Digital communications, 56
Discoveries, 57
Distribution

χ2, 11
Gaussian, 11
Normal, 11

DNA microarrays, 73

Eigenvalues, 9, 12
sparse, 21

ERP, see Exact reconstruction principle
Exact reconstruction principle, 41

False alarm, 57
control, 57

False discovery, 57
control, 57

Field, 12
Frame, 43, 83

bounds, 43, 84
exact, 43
reconstruction, 47
tight, 43

Frame operator, 45
Frame reconstruction algorithm, 46, 47

Gaussian distribution, 11, 33
Gaussian noise removal, 56
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Generating matrix, 81
GP, see Gradient pursuit
Gradient pursuit, 57, 58, 113, 114

algorithm, 58
approximate conjugate, 59
conjugate, 59

Greedy selection ratio, 54

Hilbert space, 12, 43

Identification, 61
Identity matrix, 12
IHT, see Iterative thresholding, hard
Image, 44
Incoherence, 22
Induced norm, 11
Injective, 44
Invertible, 44
IRLS, see Iteratively Re-weighted Least

Squares
Isometry, 44
Iterative hard thresholding, 83, 107, 113, 114

model based, 77
Iterative thresholding, 65

hard, 65, 66
Model Based, 78
soft, 69

Iteratively Re-weighted Least Squares, 78, 113,
114

algorithm, 80

JPEG, 29
JPEG2000, 29

Kernel, 12, 23

Landweber iteration, 70
projected, 70

Lawson’s algorithm, 79
LDPC, see Low-density parity-check codes
Least squares, 23, 52
Linear programme, 24
Low-density parity-check codes, 81

Magnetoencephalography, 73
MAI, 56
Markov’s inequality, 34
Matching Pursuit, 51, 113, 114
Matching pursuit

COmpressive SAmpling, 60
gradient, 57

Measure space, 31
Measurement matrix, 19, 20, 53

Admissible, 53
Gaussian, 33

Message passing algorithm, 81
MFR, see Modified frame reconstruction algo-

rithm
MIMO, 73
Missed detection, 57

Model based reconstruction, 72
Model compressible, 74, 76
Model compressible signals, 75
Model mismatch, 76
Model sparse, 75
Modified frame reconstruction algorithm, 83,

84, 113, 114
Adaptive, 94
Least squares, 102

Modified restricted isometry property, 39
Moment generating function, 34
Monte Carlo, 120

RIP Constants, 121
Multiple Access Interference, 56

NAP, see Nested approximation property
Nested approximation property, 74
Norm

operator, 11
spectral, 11

Norm-preserving, 44
Normal distribution, 11
NP complete, 24
NSP, see Null Space Property
Null space, 12
Null Space Property, 21
Nyquist Sampling Theorem, 19

OMP, see Orthogonal Matching Pursuit
One-to-one, 44
Onto, 44
Operator norm, 11, 37
Orthogonal Matching Pursuit, 52, 54, 57, 59,

113, 114
Stagewise, 56

Orthogonal matching pursuit, 59
Oversampling, 27
Oversampling factor, 41

Power law, 28
Projected landweber iteration, 70
Projection matrix, 94
Projection pursuit regression, 51
Prune, 61
Pseudo-inverse, 12, 94

QR decomposition, 65

RAmP, see Restricted Amplification Property
Range, 44
Rayleigh quotient, 9

definition, 9
Real numbers, 12
Real transpose, 12
Reconstruction algorithm, 51
Residual subspaces, 74
Restricted Amplification Property, 73, 74, 76
Restricted Isometry Constants, 20, 119

estimation, 121
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Restricted Isometry Property, 20, 31, 36, 40, 119
MK, 74
modified, 39

Restricted Orthogonality Constant, 22
RIP, see Restricted Isometry Property
ROC, see Restricted Orthogonality Constant

Sensory networks, 73
Shannon sampling Theorem, 19
Signal mode, 73
Singular values, 9, 12
Sparse, 20

vector, 20
Sparse eigenvalues, 21
Sparse vector

notation, 12
SparseLab, 57
Spatial domain, 19
Spectral norm, 11
Stagewise Orthogonal Matching Pursuit, 56,

113, 114
Step length, 85

adaptive, 94
StOMP, see Stagewise Orthogonal Matching

Pursuit
Support

notation, 12
Support merge, 61
Surjective, 44

Time domain, 19
Transform coding, 29
Transpose, 12

Uniform uncertainty principle, 41
Union bound, 32
Unitary, 44
Unrecoverable energy, 61, 66
UUP, see Uniform uncertainty principle

Vector
notation, 12

Wavelet, 73
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