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Abstract
After deploying a wireless sensor network (WSN) developers often find that their
application does not meet the requirements, even though it worked flawlessly when
deployed on a testbed. This gap between the laboratory and real-world settings is
caused by the changed environmental influences that might improve the communi-
cation between two nodes or prevent it altogether. Software engineers often find it
hard to trace an observed malfunction back to the underlying causes. Techniques
usually applied in other fields to track down errors in computer software fail in the
context of WSN. Due to resource constraints, it is hard to inspect the internal state
of a single node of the network and errors are often caused by multiple nodes, whose
collective state leads to the encountered malfunction.
This thesis proposes PES, a system that aims to make debugging of wireless
sensor networks easier by monitoring the application and checking its health using
developer-provided distributed assertions. PES needs no wired connection to the
nodes in the network and is therefore applicable for testing in a lab as well as for
inspecting a WSN in the field.

Zusammenfassung1

Nach der Ausbringung von drahtlosen Sensornetzwerken (DSN) stellen Entwickler
häufig fest, dass eine Anwendung, welche noch in der Testumgebung tadellos funk-
tioniert hat, nicht mehr zufriedenstellend arbeitet. Diese Diskrepanz zwischen Labor
und Realität ist auf die unterschiedlichen äusseren Einflüsse zurückzuführen, welche
die Kommunikation zwischen einzelnen Knoten mal verbessern, sie jedoch in anderen
Fällen komplett verhindern. Den Entwicklern fällt es oft schwer ein beobachtetes
Fehlverhalten auf die zu Grunde liegenden Ursachen zurückzuführen. Techniken,
welche von Ingeneuren in anderen Gebieten der Software-Entwicklung üblicherweise
verwendet werden, versagen im Zusammenhang mit DSN. Dies weil sich der Zustand
einzelner Sensorknoten wegen derer beschränkten Ressourcen nur mit Mühe auslesen
lässt und Fehler häufig durch Wechselwirkung mehrerer Knoten verursacht werden.
Das in dieser Masterarbeit vorgestellte System PES verfolgt das Ziel, die Fehler-
suche in drahtlosen Sensornetzwerken zu erleichtern, indem es die Ausführung der
Anwendung überwacht und verteilte Zusicherungen (engl. assertions) überprüft, um
fehlerhafte Netzwerkzustände zu erkennen. Das Ganze geschieht ohne Verkabelung
der Knoten, damit PES auch nach der Ausbringung des Netzes eingesetzt werden
kann um Funktionsstörungen zu untersuchen oder die Ausführung der Applikation zu
überwachen.

1ETH regulations require the abstract to be given in a national language.
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Overview 1
A wireless sensor network is composed of a large number of autonomous devices,
also called nodes, that communicate among each other using a radio transceiver. The
nodes in such a network are typically limited in both energy and computing power, and
thus have to be programmed and configured in a way that enables them to carry out
their aim in an efficient manner. To allow nodes to monitor their surroundings, they
are equipped with sensors that enable them to measure a wide variety of environment
parameters and thus gather the necessary information to fulfill their function. Even
though nodes are usually deployed for a single purpose, their hardware is designed to
allow their utilization in various scenarios and their software needs to be adapted for
every application to yield the best possible results.

1.1 Problem Description

The challenges involved in writing software for a wireless sensor network (WNS) are
twofold. A node in a sensor network is an embedded system, without a large mem-
ory or a fast processor. These limited resources restrict an application programmer
when writing the application as well as during the process of debugging. The limited
bandwidth that is available to connect the node to a PC makes it difficult to inter-
actively debug the code as it is accustomed to applications targeting a more potent
architecture. It is also not possible to record the execution and later transfer the
application trace to a computer for offline analysis since there is not enough memory
for a long trace. Additionally, the insertion of code that facilitates debugging, always
comes at the risk of changing the runtime behavior of the application and therefore
introducing new or hiding present bugs. Although debug code might introduce bugs
on any system, this is particularly the case when a considerable part of the CPU time
is spent executing debug code, which more easily is the case with slow processors.

The other difficult aspect is the distributed nature of a WSN. To keep track of the
state of the application, it is not sufficient to monitor a single node, as it is only a
part of the network and therefore only holds part of the information on the state of
the application. An external observer wanting to keep track of the application needs
to monitor all nodes and merge the knowledge about the single nodes into a global
picture. The distribution also entails various disadvantages to the single nodes. To be
able to perform the collective goal, the nodes need to interact and coordinate using
wireless communication. But this communication is not reliable as external factors
significantly influence the propagation of radio signals and thus can render communi-
cation between two nodes impossible.

When a newly developed application proves to work satisfactorily in a lab testbed,
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2 1.2. PDA EVALUATION SYSTEM

it is deployed in the target environment. But the change of environment often in-
troduces new problems that lead to reduced performance or complete failure of the
sensor network. If such a situation arises, a developer needs some clues to identify
the cause of the observed behavior, in order to be able to fix the problem or at least
reduce its impact. Unfortunately, gathering information about the network is even
tougher in the field, as the nodes run on battery and cannot be easily attached to a
monitoring device.

1.2 PDA Evaluation System

The term PDA stands for passive distributed assertion as defined in [8]. The dis-
tributed should express the ability of such an assertion to be formulated over the
distributed state of a wireless sensor network in which all nodes hold a different part
of the application state. The passive refers to the underlying technique used which
passively inspects a sensor network by capturing the messages coming from the nodes.
The PDA evaluation system, or PES for short, developed in the scope of this thesis
should help to detect erroneous behavior of a sensor network and enable a developer to
identify the underlying cause. To this end, PES allows a developer to insert the above
mentioned PDAs into the source code of the WSN application, to express the assump-
tions made about the whole network’s state. The inserted assertions are broadcast
by the node, together with information about the node’s current state. Dedicated
sniffer nodes collect these messages and forward them over a secondary, independent
network to a central computer that evaluates the assertions using the state of the
network, also collected using these sniffer nodes.
When evaluating an assertion, PES considers inherent difficulties in distributed sys-
tem, such as the lack of perfect time synchronization and the possibility of incomplete
network state information. This thesis aims to make the following contributions:

� A language, designed to be used in distributed assertions.

� An algorithm for verifying distributed assertions which takes missing state in-
formation and synchronization errors into account.

� Design, implementation and evaluation of a system that incorporates the above
mentioned contributions, including a runtime system for BTnodes and a backend
for the evaluation of distributed assertions.

1.3 Structure

In chapter 2 of this document, different solutions addressing the problems outlined
in this chapter are presented and compared to the solution provided by this thesis.
Chapter 3 describes the design of PES and how it addresses the inherent challenges
of wireless sensor networks, whereas chapter 4 focuses on the corresponding imple-
mentation. An example application that was developed to test and evaluate PES is
described in chapter 5 and the results of the conducted evaluation can be found in
chapter 6. Chapter 7 closes this thesis with a review of the achieved goals, fundamen-
tal limitations and suggestions for further improvements.



Related Work 2
This chapter discusses work related to the idea of passive distributed assertions for
sensor networks. The first part focuses on other ways of debugging sensor networks,
while the second part gives further insight into assertions used in conjunction with
distributed systems.

2.1 Debugging Sensor Setworks

There are several approaches to facilitate the debugging of wireless sensor networks
(WSN) and to allow faster detection of errors and their underlying causes. In this
section other techniques are described that were designed to ease the development
and deployment of sensor networks.

2.1.1 Wringer

In [9], published while this thesis was being written, Tavakoli et al. propose a system
that introduces predicates into the nodes of a sensor network, which serve to identify
node states of interest. The predicates list the conditions that have to hold in order to
execute an associated action, for example, sending a message to a network observer.
Wringer makes the variables of a node directly accessible by extracting all symbols of
program variables and their location in the node memory from the application source
code. These symbols can then be used to refer to a variable on the local node in
a predicate. They also mention the possibility of accessing variables on other nodes
found in the network. The developer has only to specify which variables have to be
monitored and Wringer takes care of inserting breakpoints whenever a new value is
assigned to the variable. The breakpoint then triggers the evaluation of the assigned
predicate and, if the predicate’s conditions are met, executes the associated action.

Wringer allows predicates to be added to a node during runtime by sending it a special
message that installs the predicate and the accompanying breakpoints, called watch-
points, onto the node. This frees the developer from recompiling the application and
reprogramming a node with it, just because he wants a predicate changed or devised
a new predicate to narrow down an error in the wireless sensor network.
On the other hand, assertions, as proposed by this thesis, are embedded in the source
code and have to be compiled with the application. Therefore, the introduction of
a new assertion requires reprogramming the nodes. The inclusion of assertions into
the application’s source code also has advantages, such as the comfort that the pro-
grammer can specify the assertions alongside with the application code. He does not
have to worry about the possibility that the assertion is evaluated under unforeseen
conditions, as the context that the assertion is evaluated in, is clearly defined by its
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4 2.1. DEBUGGING SENSOR SETWORKS

location in the source code. Additionally it allows the use of values in the assertion
that are not stored as global variables and are, for example, only valid for the time of
a function invocation.

Another difference concerns the communication from Wringer/PES to a central com-
puter. While Wringer uses the resources of the sensor network itself, it imposes much
more interference with the actual application compared to PES which only broadcasts
the messages used for collecting state information and assertion evaluation, which are
then forwarded using a secondary, independent deployment support network.
Wringer and PES also differ in the location where an assertion or a predicate is eval-
uated. Wringer is essentially a basic Scheme interpreter that allows the evaluation
of the predicates directly on the node and only communicates to collect variable val-
ues from other nodes and to notify a satisfied predicate. PES on the other hand
only triggers the evaluation of assertions on the nodes and a central computer, which
also collects the states of the nodes and performs the evaluation without using node
resources.

2.1.2 MEGS

The application MEGS [6], that, like Wringer, was introduced on this year’s HotEm-
Nets in June, collects the state of the nodes in a similar fashion to PES and stores the
nodes’ changing variables on a central computer. In both systems, the nodes indicate
when they reach a location in the source code that has an assertion associated with it
which should be evaluated using the node states that have already been collected. In
contrast with PES, MEGS allows an assertion to be violated for a short time, defined
by the user, without announcing an error.

A difference can be found in the way PES and MEGS represent the state of the net-
work. While PES manages the state of the nodes on its own, solely based on the
available attributes, a developer using a preliminary implementation of MEGS needs
to manually create the node representation containing the available attributes by sub-
classing the general node class. The two applications also differ in the representation
of the assertions. Assertions in MEGS are directly handled by a developer-provided
class, which, based on the ID of an assertion, has to check whether the assertion is
valid for a node or not. PES on the other hand extracts the assertions that are given
as a Boolean expression in text form directly from the source code and then evaluates
the extracted assertion whenever a node comes across the location of the node.

As MEGS follows the same approach to identify anomalies in a WSN application,
they also encounter the same difficulties, such as an incomplete network state and an
inaccurate clock synchronization. PES already takes these difficulties into account,
while no such capabilities were mentioned for MEGS and it thus might simply return
a wrong evaluation result.

2.1.3 Marionette

With Marionette [10], Whitehouse et al. propose a system that allows direct access
to a deployed node with RPC-like semantics. It not only allows the variables to be
read and executes methods on the node - or the nodes, if all nodes are accessed si-



CHAPTER 2. RELATED WORK 5

multaneously -, but also makes it possible to directly write to a node variable. This
enables an application developer to try different settings when running his application
without having to change the node code or upload the new software. The direct mod-
ification of variables, however, requires deep knowledge of the application to prevent
severe consequences. The real application might only change a variable in accordance
with other preconditions or, alternatively, the application would usually acquire a lock
when changing a variable to ensure a consistent node state.

While Marionette is convenient for inspecting nodes and their state, it does not ease
the monitoring of the whole network and the overall network state. When various
variables have been read from the nodes, these values still need to be interpreted. Ad-
ditionally, the values retrieved are not synchronized, that is, the values are the results
received after flooding the network with the request, with some nodes responding ear-
lier than others. Marionette also imposes additional messages to the network as even
requests to a single node are sent by Drip, an epidemic protocol that floods the whole
network and therefore might hinder the real application’s execution. The same doubts
might be applied to PES as well, but in contrast with Marionette, only the originat-
ing node broadcasts a PES message. The packet is then captured and transferred to
the collecting computer using an independent network built by dedicated nodes. As
every communication with a node is initiated by the central workstation, a variable
that should be monitored for changes needs to be polled at regular intervals, thus
introducing overhead to the network, with the possibility of missing certain changes
when they occur between two polls.

2.2 Distributed Assertions

The detection of global predicates has received much attention in the field of dis-
tributed systems. An assertion is basically a predicate which is restricted to values
of a given point in time and the attached meaning that, under correct execution of
the program, the predicate always holds. To prove that a predicate always holds,
or formulated differently, that the negated predicate never evaluates to true, is not
efficiently possible for predicates in general, as shown in [3]. A less ambitious goal is
to validate that for a running or a previously ran computation, the assertion never
was violated, that is to say, that the examined computation did not show an error.
This goal is pursued by PES.
In distributed computations, the lack of synchronized clocks is usually compensated
by logical time, in which, instead of the absolute time, a time is available that correctly
represents the causality, that is the correct ordering of cause and effect. Since in a
sensor network the cause of an action of the system is usually external to the system,
environmental change for instance, logical time is of limited use, as the external event
might be detected by multiple, autonomous processes, which cannot reliably assign
all their activity to the single cause. To get a global state that is as consistent as
possible, PES tries to map all states of the participating processes to a global clock.
When evaluating an assertion over this global network state, there are three possible
results: Besides the two obvious ones fulfilled and violated, there is also unknown,
which indicates that the state of a node used in the assertion could not reliably be
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detected.

There are a number of different approaches to evaluate assertions during a computa-
tion in a distributed system. One specific approach in the context of robotics is given
below.

2.2.1 Distributed Watchpoints

In [4] De Rosa et al. propose a variation of assertions to debug multi-robot systems,
called distributed watchpoints. Such watchpoints specify the error conditions that
should be detected and are limited to conditions that can be expressed using a fixed-
size, connected sub-ensemble of robots in order to prevent the exponential search that
would be needed for disconnected sets. The watchpoints can then be specified using
temporal constructs to refer to a node’s previous state, spatial constructs to include
the neighborhood of nodes and, finally, numerical state variables of the nodes.
With the ability to express watchpoints over the changing robot state, they provide
a powerful tool for specifying possible error conditions. The limitation, however,
that an error condition must be formulated using a fixed number of robots, which,
additionally, have to be directly connected, might render the checking of certain error
conditions infeasible. These restrictions might be acceptable for multi-robot systems,
where predominantly neighboring nodes communicate and achieve a goal together. In
a large scale sensor network, where interaction can take place between two arbitrary
nodes, the limited node coverage for error conditions would presumably miss certain
error patterns.



Design 3
The approach taken in PES to improve the understanding on what is happening in
a sensor network, and how well it conforms to the expectations of the application
developers is largely based on [8]. To enable an external observer to gain knowledge
of the state of the network, every node publishes part of its internal state. Whenever
a decision on a node is taken that is based on the (assumed) state of some other
- not directly accessible – node, this can be stated in the source code such that a
central instance that also collects the node state information is able to verify these
conditions and might inform a developer about requirements that are not matched.
The communication from nodes to the central point is unidirectional such that the
nodes publish their state but neither know if anyone is listening, nor ensure that
the state is delivered in a reliable fashion. This chapter will further elaborate on
concepts and software design decision for the two part node integration and assertion
evaluation. Chapter 4 will focus on implementation specific issues and will discuss
various technical aspects of the two software components.

3.1 Overview

The state publishing is done using snapshots, while the conditions are specified in the
form of assertions which are both directly embedded in the application code. As the
assertions are not intended to be verified on a single node and the state is distributed
among the nodes these assertions are called passive distributed assertions or PDAs
for short.

Figure 3.1: All nodes submit some of their state to a central instance that then
evaluates the network condition.

To allow the gathering of data with minimal impact on the application code, a connec-
tor is introduced which offers the two main primitives for taking snapshots and stating

7



8 3.2. CONCEPTS

assertions. This connector then handles the transferring of the necessary information
to the evaluating instance. In order to get a consistent picture of the network state,
it is necessary to have a global clock. This allows the snapshots that carry changes
of the nodes’ states to be placed in relation to each other and makes it possible to
evaluate assertions at a fixed point in time.
On the other hand there needs to be a central data collection point that stores the
snapshot information and makes it available to be used in assertion evaluation. Fig-
ure 3.1 shows the basic architecture of the PDA evaluation system or PES for short.
Figure 3.2 outlines how the central evaluator aligns the snapshots and assertion with
a global clock.

Figure 3.2: The central instance merges the snapshots and assertions of different
nodes on a single timeline.

The transfer of state information and assertions is done using radio communication
and SNIF ([7]) is used as a solution for overhearing and forwarding the data to a
central point. To achieve this, the various SNIF nodes build up a deployment support
network (DSN), which is then used to forward the message in the tree structured
DSN until it reaches the root and thus the central instance. The SNIF nodes use
their Chipcon module to collect node communication and Bluetooth to communicate
among each other and with the application that collects and evaluates the incoming
messages. Another important service provided by SNIF is its ability to assign times-
tamps to messages such that they can be chronologically ordered thus the needed
time synchronization is provided by SNIF as well.

3.2 Concepts

This section introduces and describes the concepts used in the context of this thesis
and the accompanying documentation.

3.2.1 Node

A node is in a broader sense a part of the network and interacts with other nodes
within the network to achieve one or multiple common goals. Nodes have a state
directly accessible only to them which is available in the form of variables that are
situated somewhere in the nodes’ memory, the precise location of which is no concern
to an external observer. The developer can chose the part of the node state that is
published and thus made accessible in a read-only fashion to an observer in the form
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of a set of attributes that map a symbolic name to a value. It is not necessary that the
nodes have the same software running on them, but it is required that each node has
the same attributes that carry the same semantic meaning. Every node is assumed to
have a unique ID in the form of an Integer that distinguishes it from the other nodes.

3.2.2 Attribute

An attribute is part of the node state that can be referenced using a symbolic name.
Every attribute has a type that defines the context in which the attribute can be
used within assertions and which values the attribute can take. A numeric attribute,
for example, can be used with arithmetic operators while a Boolean attribute can be
used in conjunction with Boolean operators.

3.2.3 Node Neighborhood

When talking of the node neighborhood, the network neighbors of a node are implied.
These are the nodes that a given node can reach using its radio communication mod-
ule. The node neighborhood - or simply hood - is not required to be static. It may
change over time as nodes appear and disappear in the network or as external condi-
tions influence the range of the node’s Chipcon radio module. Although basically an
ordinary attribute, the hood is treated in a special way as it is an inherent property of
a node in a sensor network and the only attribute of the type set, that is an unordered
enumeration of node IDs.

3.2.4 Snapshots

A snapshot assigns values to one or multiple attributes of a given node. It contains a
list of string value pairs where the string is an attribute name and the value of a type
valid for the attribute’s type. The meaning of a snapshot is that now on the current
node the listed attributes have the supplied values. This current state is published
in the form of a message broadcasted via the Chipcon module such that it can be
collected by listening to the messages sent by nodes.
Snapshots do not have to be taken manually. Assuming that an attribute is connected
to a variable in the application program and no aliasing is allowed, it would be viable
to take a snapshot whenever the variable value changes. To do so, it is sufficient to
locate every assignment to the variable and insert a snapshot after the assignment
that takes the new value for the variable and publishes it. This, however, is not ac-
complished in the scope of this thesis.
The snapshots described in this section are intended to allow an external observer to
collect the state of the nodes by listening to their snapshot messages and, in this way,
detect all nodes that are running in the sensor network as well as the values of their
attributes. As the listener and the nodes run independently, the listener might be
started after the network and thus has to catch up with the nodes’ states.
When a central assertion evaluator starts listening to a network it takes some time
until it has captured a snapshot from every node in the network, let alone collected
the whole state of every node. Until every node and its state is known it is not always
possible to evaluate assertions, especially when they involve a considerable part of the
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node set, like for example an assertion to check that only one leader exists.

In order to have some upper bound by which time each node’s state is collected, peri-
odic updates are introduced. These updates behave like an ordinary snapshot contain-
ing the values of all node attributes. The difference from snapshots as described above
is that the values given for the attributes are cached values from previous, developer
invoked snapshots. This then makes it possible for periodic updates to be broadcasted
whenever needed and allows periodic updates to be sent at regular intervals. These
updates have two other benefits: firstly they compensate for lost messages such that
after some time, even if a snapshot gets lost, the listening system receives the correct
value. Secondly, they provide a heartbeat for nodes that allows any listener to detect
defective or discharged nodes, since in contrast to the absence of ordinary messages,
which are not necessarily sent in regular intervals, missing periodic updates indicate
a defunct node.

Besides the normal attributes, the node neighborhood, as described above, is a spe-
cial attribute that is handled in a specific way. The hood can change like every other
attribute and thus there has to be a way to include it in a snapshot. For this reason
the keyword hoodset is added for snapshots such that a developer who wants to make
a snapshot of a changed hood can just include this keyword in the list of attributes
for the snapshot and the snapshot will contain the current set of neighboring nodes.
No additional value has to be provided for the hoodset attribute, the neighborhood is
gathered via a function which is registered by the node application developer during
initialization of the sensor node. This function would then, for example, access the
neighbor table of the MAC protocol and return the known neighbors.

3.2.5 Distributed Assertions

Distributed assertions are the basic concept in PES as they provide the main func-
tionality: they describe which conditions have to hold in the network when everything
is working according to the developer’s intentions.
Every assertion that is evaluated in PES has a special timestamp connected to it;
the evaluation time. This point in time is used to resolve attributes found in the
assertion, which can change over time, to actual values. The assertion can contain
attributes from various nodes that, together, have to satisfy the constraint described
in the assertion.
The programmer places assertions in the code at the source location where they have
to hold. The time when the control flow passes this location is also the time when the
assertions have to hold and thus define the already mentioned timestamp. A slight
variation of the assertion construct is a delayed assertion that behaves like a normal
assertion, but is evaluated after a developer defined delay. The exact meaning is that
after, for example, 1000 milliseconds, the given assertion has to hold.

Every assertion is an expression that evaluates to a Boolean value, where true means
everything runs as supposed, while the value false is an indication of erroneous be-
havior. As the central aspect is to inspect the attributes of the nodes, it is possible
to access these attributes in an assertion. An attribute is referenced by specifying the
node ID that is separated using a colon from the name of the attribute that should
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be accessed. If the node ID is omitted, the attribute is taken from the this node, that
is, the node on which the assertion evaluation was encountered in the source code,
also called the triggering node. Such a reference could then look like

isLeader || 100:isLeader

to state the assumption that the current node’s isLeader attribute is set to true or
the same attribute of the node with ID 100 is set to true.
When using delayed assertions as described above, a problem may arise in that some
values in the assertion should be taken from the present, that is the time the assertion
is encountered, and the others in the future, when the assertion actually has to hold.
Imagine, for example, the assertion

LEADERCANDIDATE:isLeader

that has to hold after, let’s say 1000 milliseconds, to verify that a given leader can-
didate has become the leader after this time. The value for the attribute isLeader is
taken from the evaluation time (now + 1000 ms) while the LEADERCANDIDATE
should be the one the node regards as candidate now. To bridge this gap evaluation
constants are introduced whose value is defined at the time an assertion is encoun-
tered in the node source code. As the name suggests this value will not change over
time and only holds for the evaluation of the assertion it was supplied with. Another
way to think of it is that evaluation constants are simply placeholders in the assertion
whose value have to be defined when the assertion evaluation is triggered. To distin-
guish node attributes from evaluation constants there is a ¢ prepended to the constant
name, such that the above assertion correctly looks like the following snippet:

¢LEADERCANDIDATE:isLeader

To access the neighborhood of a node, there is the hood(D) function that makes it
possible to get a set of neighbors within distance D for the this node. The only
argument gives the distance a node might be away in number of hops. The function
nodes() is similar but takes no argument and returns all nodes in the network. To
work with these finite sets of nodes, there are quantifiers that offer the possibility to
check a condition that has to hold for at least one (exists) or all (all) nodes in the set.
As the quantifiers iterate over the set of nodes, the current node from the set can be
accessed using the node ID $. An example that uses the hood function together with
an all quantifier could look like this:

all(hood(1),!$:isLeader)

This assertion checks that none of the direct neighbors has its isLeader attribute
set to true. To count the number of nodes in a set that fulfill a certain condition,
there is the function count that takes as a first argument the set to count and in the
second parameter, which is optional, gives the condition that has to hold for a node
to be counted. The syntax of the condition is the same as for quantifiers, that is the
current node can be referenced using $. An example is an assertion that checks that
the number of nodes in a network that think themselves as group members is below
5:

count(nodes(),$:isGroupmember) < 5
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As can be seen in the previous assertion there is also support for comparisons of
Integers as well as support for basic arithmetic and logical operators. To make it
possible to access the ID of a node, the keyword id is introduced that simply returns
the ID of a node. This might be used to exclude the this node from a quantifier like,
for example, in an assertion where a node wants to make sure that it is the only node
with the isLeader attribute set to true.

all(nodes(),!$:isLeader || $:id == id)

To give a node application developer the possibility to adapt the assertion language
to his needs, there is also a way to include user-defined functions. The developer has
to implement a specific Java interface that allows querying the function name, the pa-
rameter count and types and the return type. The implementation is then registered
with the evaluation system and whenever the function name appears in an assertion,
the registered class will be asked to process the parameters and return the correct
return value.

The assertions described so far are all assertions written by an application developer
into the code of the node application to express the conditions that have to hold
whenever the control flow passes these places in the code. In addition to these asser-
tions with a fixed point in time they have to hold, there are global assertions. These
assertions have to hold all the time and are not written into the application code but
provided by the application developer by some other means, such that the assertion
evaluator can access them. As a global assertion has neither a local this node nor a
fixed time, when it has to be evaluated, there are some restrictions to the expressions
used in them. The missing local node makes it mandatory for node attributes to
always be referenced in a qualified manner, that is, specifying the node in the form
NODEID:ATTRIBUTENAME. As the evaluation of a global assertion is never trig-
gered explicitly evaluation constants are also missing.
All parts of an assertion expression can be found in table 3.1. A full BNF is given in
appendix B.

3.3 Assertion Integration

Within the sensor node code, two main operations are needed: State publication and
assertion evaluation. For this reason two constructs are provided:

SNAP is used for taking snapshots of certain state variables. The syntax looks as
follows:

SNAP(”aStateVariable[,aStateVariable2]*”, value1, value2, ...)

The first argument is a list of strings, naming the node’s state variables that were
changed, followed by a variable length list of expressions (variables, constants, ...) that
provide the values for the snapshot. The semantical meaning of SNAP is that from this
statement on the values of the listed attributes changed to the values supplied. Given
here as an example is a snapshot that gives notification of two changed attributes.

SNAP(”isLeader,leader”, is leader, leader);
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PDA is used to trigger the evaluation of an assertion. Its syntax looks as follows:

PDA(”Assertion”, evaluationConstant1, evaluationConstant2, ...)

The main part of a PDA operation is the assertion that is given as a String and will
be evaluated whenever the control flow passes this place. The other arguments are
evaluation constants, as described previously, whose values for an evaluation are set,
whenever the evaluation is triggered. An example is the evaluation of an assertion
which checks that all members, nodes with the attribute isGroupMember, know the
current leader, that is, have their attribute leader set to the same value as is supplied
for the evaluation constant ¢LEADER.

PDA(”all(nodes(),!$:isGroupMember || $:leader == ¢LEADER”, leader);

An extension to assertions that have to hold at the exact time the control flow passes
the assertion are delayed assertions, as described above. These assertions additionally
carry a delay that is added to the current time and then gives the time an assertion
has to hold. The syntax looks quite similar to the instant assertions except that the
delay in milliseconds is supplied as the first argument and the keyword is not PDA
but D PDA.
Delayed assertions have the advantage that they allow the formulation of an assump-
tion about the future network state that will hold after some time - if everything runs
as expected - with no more effort than using instant assertions. Using only assertions
that are evaluated immediately would require the node to contain a structure like a
timer that then checks the condition using a normal assertion after the delay. As this
timer has to be configured by the application developer, this has too much impact
on the node code and is, therefore, unacceptable. Delayed assertions allow this post-
poned evaluation at no cost beyond the fact that the developer has to be sure that the
network state will develop in the form described in the delayed assertion and within
the time constraint given by the delay. Otherwise, a spurious assertion violation will
be reported.

3.4 Assertion Evaluation

The assertion evaluation component needs access to the network state for the evalu-
ation of the assertions. Therefore, a network model is introduced that provides this
service. It collects all snapshots and processes them such that the information can
be accessed in a convenient way. This is the reason for splitting PES ’s backend into
two main components: one to keep a history of all gathered node states and one that
effectively evaluates the assertions. The two modules are described in the following
two sections, starting with the node state history, called the network model.
To integrate the assertion evaluation with the network, a kind of connector is also
needed which records the messages via radio communication and transfers them to
the appropriate component, that is, it directs all snapshots to the node state history
and passes all evaluation requests to the evaluator. Figure 3.3 shows the basic design
for the PES backend.
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Figure 3.3: The basic layout used for collecting and evaluating the network state.

3.4.1 Node Connector

As already described, SNIF is used to collect the messages that hold the snapshots
and the assertions defined in the node code. The connector implements the needed
interfaces to be integrated with SNIF and then receives a stream of messages as
collected by SNIF. The messages in the incoming stream still need to be checked for
duplicates, correct message types and for integrity. These tasks are accomplished by
the connector. What then remains are messages that are either snapshots or assertions
and have not been processed before.
For snapshots, all attributes are extracted and, together with information about the
originating node and the timestamp, passed to the network model. For assertions,
the evaluation constants are retrieved from the message and the assertion evaluator
is instructed to evaluate the assertion using the extracted evaluation constants.

3.4.2 Network Model

The network model’s main purpose is to manage the information collected by snap-
shots. The network’s evolving state is recorded gradually in order to have not only
the most recent state, but also the whole history of it. The network model then makes
this information accessible to the PES assertion evaluation.
The network state can be divided into two different parts; namely the state of the
nodes with regard to their attributes, and the connectivity between the nodes. This
distinction is made to allow these two types of state to be collected in different ways
and thus independently of each other.

For a single node, the internal state is divided into different attributes, whose name
is then used to access them. As the value of an attribute is assumed to change over
time, a history is kept, in order that the system is able to respond to queries about
the value of a given attribute at any given time. For every snapshot that updates the
value of an attribute, the new attribute value, together with the timestamp of the
change, is stored in the attribute. This basic and slightly idealistic view is expressed
in figure 3.4.
Unfortunately there are several limitations that lead to uncertainties when trying to
resolve an attribute value, which necessitates a more complex interface. SNIF, which
is used to collect snapshots, orders the incoming messages chronologically and assigns
a timestamp to each message. This timestamp, however, is not fully accurate and
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Figure 3.4: The network model as it should be: No lost messages, accurate message
serialization.

consequently the messages’ timestamp might be off by a few milliseconds.

When a client requests the value of an attribute at a given time t, the network model
associates a level of confidence with the return value based on some inner rules and
taking the possible error sources into account. The confidence is split into three states:
possible, verified, or unknown. A verified value is stable in the sense that it will not
change and is regarded as correct under some assumptions, mainly that the error in
the message timestamp is within a certain range. A possible value on the other hand
is one, where a value could be inferred, but the model is not or not yet sure if the
value is correct. Of course, a value can also be unknown for various reasons, such as
for a node that never sent a snapshot for an attribute, or a node whose reboot was
detected.
To account for the imperfect message serialization, a value that lies too close to an
attribute value change will always be possible as it is not definitely possible to tell
whether the attribute value changed before the request or after the request. Figure
3.5 shows how the value around an attribute value change is regarded as uncertain.

Figure 3.5: A network model that accounts for nodes with not completely synchro-
nized clocks.

Another source of errors can be found in missing attribute updates due to message
loss, that is, snapshot messages that got lost because of packet collisions, checksum
errors, or external influences. When an attribute value change goes unnoticed, the
system might return a wrong attribute value without being aware of this. To prevent
such errors, a sequence number is integrated into each message sent on behalf of PES
on a per-node base. This allows not only detection of lost messages, but also node
reboots in the same way it is accomplished in SNIF, namely by detecting a sequence
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number that is far away from the next expected sequence number, which suggests a
reinitialization of the sequence number counter that is only done on reboot. When a
lost message is detected for a node, all attribute values of this node have to be treated
as possibly changed, as the lost message could have changed all attributes. These
attribute values stay possible until a new snapshot updates the value. A slightly more
serious error is a node reboot. In this case, all detected attributes have their state
changed to unknown since attribute values before reboot are most likely unrelated to
their values after reboot. To prevent such an unknown state, a node is expected to
always post a snapshot to initialize the state of all node attributes when starting up.
Figure 3.6 illustrates a lost message and, how, after a reboot or after a lost message,
all attributes have to become either possible or unknown.

Figure 3.6: A network model that detects and handles lost attribute changes.

When it comes to initializing or reinitializing the node state, periodic updates as de-
scribed in section 3.2.4 are very important. They provide the full node state to make
up for lost messages and allow the network model to mark nodes that did not submit
any values as inactive.

The interface to the network model for querying values of attributes contains two
methods of the form getVerifiedValue(node, attribute, time) as well as getPossible-
Value(node, attribute, time).
To support assertion evaluations that are triggered by a changing attribute or a chang-
ing node connectivity, an event mechanism is needed that publishes changed attributes
and newly detected or lost nodes. Every interested component can then register itself
with the network model and react appropriately to these events. This infrastructure
is mainly intended to be used when evaluating global assertions, but is not limited to
it. Another possible use is an attribute viewer that visualizes the network, the nodes’
states and their changes over the time.

The connectivity between the nodes is treated separately to allow different compo-
nents to supply this service. Next to a connectivity model which receives its content
from snapshots, there could also be a connectivity model which integrates SNIF’s
capability to deduce a node’s neighborhood by analyzing to whom it sends messages.
The connectivity model is quite simple and allows queries of the form get-
Neighbors(node,time). Although a neighbor’s hood can be seen as yet another at-
tribute, it does not distinguish possible values from verified ones. This decision was
taken because the hood of a node is not expected to change often, which reduces the
probability of errors enough that the advantage of easier integration of other connec-
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tivity monitoring technologies exceeds the disadvantages.
As seen from any client external to the network model, the connectivity model is con-
tained within the network model, such that all model access is done via the network
model. Calls to the connectivity model will be redirected if needed and thus the above
mentioned methods also belong to the network model interface.
Next to an interface that allows access to the node state some interfaces are also
needed to describe how the network and connectivity models consume new snapshot
information. A class implementing those interfaces takes an attribute’s value, its
name, and the node the snapshot comes from, as well as a timestamp and stores the
information appropriately in its inner representation. A similar interface is needed
for storing connectivity model updates. It takes either a set of nodes together with a
timestamp for reporting the neighborhood at this specific time or two sets, one with
removed and one with added neighbors, to report a changed neighborhood at a given
time.

3.4.3 Assertion Evaluator

The assertion evaluator is the component that does the actual evaluation of assertions.
Given an assertion and an evaluation timestamp, and - if available - the local node, it
evaluates the assertion. Every assertion evaluation has an outcome that reflects the
evaluation result and a status that gives the reliability of the outcome. The outcome
might be unknown, success or fail, the status is one of not evaluated, tentative, finished
and dropped.
Depending on the involved nodes and attributes, some values might not be available or
definitive. When an unknown value is used during the evaluation of an assertion, the
outcome of the whole assertion is unknown as well and the status stays not evaluated.
When a possible attribute value is used, the assertion is nevertheless being evaluated
fully to give a first impression on the network state. The evaluation’s status then
becomes tentative to indicate the temporary nature of the assertion’s outcome. Non-
evaluated or not fully evaluated assertions are then re-evaluated after some time
and only left unevaluated after several retries. The assertion evaluation status then
becomes dropped. In case of an assertion not being evaluated definitely, the next
evaluation try is scheduled after some seconds, because some values that were unknown
or only possible might have become verified in the meantime. For every re-evaluation
the sleep interval is doubled until the assertion is evaluated successfully or a maximum
number of retries is reached and the evaluation dropped. It is important to see the
difference between the evaluation time, that is the time the assertion should hold and
the point in time the assertion is evaluated.

Whenever an evaluation is started or its outcome changed, an event is sent out to
inform interested listeners, like a GUI or a logging client about the changed evaluation
result. To be of use, an evaluation result contains not only the assertion text and the
evaluation result, but also some steps in between, like values for the different attributes
used in the evaluation. Another feature that is not vital but nevertheless desirable,
is the ability to provide for each assertion the name of the file and the line it comes
from. This allows easier error diagnostics and thus better debugging.
Figure 3.7 illustrates the evaluation of the assertion
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Figure 3.7: An assertion evaluator that evaluates an assertion for a given time. It
requests an attribute from two different nodes whereas one is the this node whose ID
is supplied implicitly.

¢LEADER:neighborcount >= neighborcount

that is encountered somewhere in the code as .

PDA(”¢LEADER:neighborcount >= neighborcount”, leader);

The node, where this assertion is encountered, assumes that - for whatever reason -
the attribute neighborcount for it is smaller or equal to the one of the node it refers
to as leader. In this context the leader is not an attribute of a node, but a value
the node has calculated and therefore is inserted in the assertion as an evaluation
constant. When the assertion is being evaluated by the assertion evaluator, it starts
gathering all required values which are:

ID of the local node This value is given to the evaluator when the assertion is
triggered by the node connector that extracts it from the received message.

¢LEADER The evaluation constants, including ¢LEADER, are sent together with
the request to evaluate the assertion and therefore were also supplied when the
connector forwarded the request to the assertion evaluator.

Neighborcount Neighborcount is an attribute and therefore its value at evaluation
time t is retrieved from the network model.

The assertion evaluator also handles the evaluation of the global assertions. The idea is
that whenever the network changes, it must be ensured that the global assertions still
hold. To do this, the evaluator analyzes all global assertions and creates a map that
assigns to every attribute a list of global assertions that depend on those attributes.
Whenever an attribute changes, these assertions are evaluated.
Unfortunately the concept of possible values brings in a problem since the evaluation
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time for such a global assertion is the same as the time the attribute changed. The
network model, however, will only return a possible value for the initially triggering
attribute that will then lead to the assertion first receiving the status tentative and
finally dropped as not all values are verified.
A possible solution to this problem is that the evaluation time of an assertion is moved
forward in time, until all values are settled and no possible values result from the fact
that the evaluation time is too close to the time when the attribute value was received.

Figure 3.8: A global assertion and its evaluation result how it changes over the time.

Figure 3.8 illustrates this idea. There the global assertion .

all(nodes(), !$:isMember || ($:leader>0))

is given in the form of its abstract syntax tree, which checks that all nodes that are
members of a group know the leader, assuming that a leader equal to zero indicates
no known leader.
In the beginning, the assertion is fulfilled, as only node B is a member and has a
leader > 0. Then suddenly at time t1, A becomes a member as well, therefore the
global assertion is queued to be processed after the expected node synchronization
error ∆ at t2 = t1 + ∆. But at t2 the attribute leader has changed its value just
recently, at t3, and therefore the evaluation is again postponed until also this value
is settled. The new envisaged evaluation time now is t4 = t3 + ∆. At this time the
assertion can be evaluated and results in a fail, which is then reported via the normal
event processing mechanism provided by the assertion evaluator. The same happens
a bit later when the values of leader are updated as well.
This solution introduces time spans when the system is not sure about the outcome
of a global assertion, but on the other hand gives a way to have global assertions
checked in a reliable way at other times. Due to a lack of time, this solution was not
implemented and therefore global assertions will end with a status dropped because
of possible attribute values.
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As discussed in the chapter Design (section 3), the software consists of two parts.
One to publish the nodes’ states (executed on the sensor nodes) and one to collect,
access and analyze the different node variables at a central point (executed on a
backend system). This chapter gives the reader some insight into the details of the
two implementations in order to understand the design decisions and to assist him or
her to find his or her way into the source code. In the beginning of this chapter, the
preprocessor is described followed by the implementation details for the two software
parts, written in C and Java.

4.1 Preprocessor

When assertions and snapshots are added to a sensor node application, they are for
the most part embedded in the application code. The preprocessor takes care of
extracting the assertions from the C code and makes them available for the assertion
evaluation software. Besides this, the preprocessor provides data structures that will
enable the PES sensor node connector to use less resources at runtime, and thus
reduce the impact PES has on the node application. This section describes in detail
the steps that are taken by the preprocessor.

4.1.1 Preparation

Because in the preprocessing stage the source code of the original sensor network
application is modified, all files found in the project directory of the node application
are copied to a new folder with the same parent as the original folder, but with an
build appended to its name. All files with the extension .c are processed to retrieve
the snapshots and assertions and to prepare the node code for the later execution.

4.1.2 Assertion Extraction

Instead of simply copying the C files, they are read line by line and a regular expression
is used to find all Strings of the form

["PDA" | "SNAP" | "D_PDA"] "(" (<DELAY>",")? <ASSERTION/SNAPSHOT>
("," <EXPRESSION)* ")")

Every assertion and snapshot found is assigned a unique ID, which then is used to
replace the <ASSERTION/SNAPSHOT> part in the found expression. This ID will then
be used to access the data structures described later and to communicate with the
backend system in a more efficient way, as only an ID, instead of the whole text, has

21
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to be transferred.

The retrieved assertions and snapshots are written to a file, one element per line.
This file is later used by the assertion evaluator to map IDs to assertions. Besides the
assertion and snapshot text, the file also contains the name of the file the assertion
was found in, the line it comes from and the type - PDA or SNAP - of this line. The
file has the format given below.

<FILE> <LINE> <TYPE> <ID> <ASSERTIONTEXT/SNAPSHOTTEXT>

In addition to the changed parameter in the SNAP and PDA macros, also #define
PDA RESOLVED is inserted at the beginning of the file, which causes the macro defini-
tions to accept the newly inserted integer arguments, instead of the replaced strings.

4.1.3 Type derivation

With all assertions extracted, the preprocessor tries to assign a type to every attribute
and evaluation constant. This type information is needed on the evaluator and the
sensor node to correctly encode and decode the messages. It is also used to check the
type safety of assertions.
To derive the types, every attribute and evaluation constant is assigned a set of
possible types, initially all available types. Now all assertions are inspected to see
at which positions in an expression an attribute is used, and all types that are not
allowed in such a place are removed from the list of possible types. Ideally only a
single type remains when all assertions are processed. If it is not possible to derive
the type, it has to be specified by the user in a file which has, on every line, the type
and the name of an attribute or evaluation constant in the following format:

<TYPE> <SYMBOL>
(For Evaluation Constants: <SYMBOL> = <ID>.<SYMBOL>)

Where <TYPE> is one of Boolean or Integer. All identifiers for evaluation constants
and attributes are then written to a final file that has the same format as the one
given further up.

4.1.4 Node Preparation

Now that the assertions and snapshots are replaced by IDs between 0 to n-1, where n is
the number of assertions and snapshots, the essential information from the assertions
and snapshots, such as the number of parameters and their type, has to be made
available to the PES sensor node code. Everything needed is written to the file
pdatable.h, which is added to the build directory and thus included into the build
process.
For every assertion and every snapshot there is, as already mentioned, the number and
the types of the parameters required to write the attributes or evaluation constants
in the correct format into the message that will be broadcast. This information is
stored in the array pda format at the index with the same value as the ID for the
SNAP or PDA. For every occurrence of SNAP and PDA, there is a String of the form
[h]-[d|b]* in the array, which will later be referred to as packet information, as



CHAPTER 4. IMPLEMENTATION 23

it contains everything needed to prepare the packet. All values before the dash are
options for the packet. Only one is available now, the h means that the hood is sent
with this packet, if hood sending is enabled. After the dash there is a list of types,
with the meaning the i-th char gives the type of the i-th attribute value in a snapshot
or the i-th evaluation constant in an assertion. The d and the b stand for the types
Integer and Boolean respectively. This is everything needed to prepare a packet.

For use in periodic updates, every node also caches the values published via snapshots
previously. The attributes, like the assertions, are numbered from 0 to m (where m is
the number of attributes) and the attribute ID is used to access the arrays that contain
information about the attributes. The header file pdatable.h contains an array, with
as many entries as there are attributes. The array is called pda symbol cache and
contains pointers, which, when the cache is initialized, point to the memory region
that holds the cached value. An array of the same form, with the name pda symbols
contains the types for all the attributes.
To assign the values contained in a snapshot to the different attributes, a mapping
from snapshot to contained attributes is needed. This is done using the struct given
in listing 4.1, which contains the number of attributes in a snapshot, together with an
array of this size, which is filled with the IDs of the updated attributes. An example
of a pdatable.h file can be found in listing 4.2.

typedef struct snap_to_symbol_s {

u_char size;

u_int snaps[];

} snap_to_symbol_t;

Listing 4.1: The struct used to store snapshot to attribute mappings.

/* SNAPSHOTS & PDAS

0 SNAP isGroupmember,isLeader,leader

1 SNAP leader;

2 PDA leader:isLeader

3 PDA ¢LEADERCANDIDATE:isGroupmember

*/

const u_int __pda_symbol_count = 3;

const u_int __pda_assertion_count = 4;

// The symbols are: isGroupmember,isLeader,leader

u_char* __pda_symbols[3] = {"b", "b", "d"};

// The attribute cache initalized with NULL pointers.

u_char* __pda_symbol_cache[3] = {NULL, NULL, NULL};

// A mapping that assigns

// Snapshot 0 has 3 attributes, in the order 1,2,3

static snap_to_symbol_t snap_0 = {3, {1,2,3}};

// Snapshot 1 has a single symbol, the symbol with ID 3

static snap_to_symbol_t snap_1 = {1, {3}};

// Mapping from symbol ID to symbol information

snap_to_symbol_t* snap_to_symbols[] = {&snap_0, &snap_1, NULL, NULL};

// The different messages

u_char* __pda_format[4]= {"-bbd", "-d", "-", "-d"};

Listing 4.2: An example for a pdatable.h file.
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File/Folder (default) Description
Project folder The project folder that contains all application source files.

The whole folder is copied and C files filtered. The build
folder has the same name with a build appended.

Assertions file (asser-
tions.txt)

The assertions file contains all assertions and snapshots to-
gether with their preprocessor assigned IDs and some addi-
tional info such as line numbers.

Type file (types.txt) A simple list of all node attributes, evaluation constants and
their types

pdatable.h A header file included in the node application that carries all
resources needed on the node, listing 4.2 on page 23 shows
an example.

User-supplied type
file (usertypes.txt)

This file is used in the step of type deduction and helps to fix
the type for some attributes and evaluation constants that
cannot be derived automatically.

Table 4.1: Summary of all files used or generated in the preprocessing step.

4.1.5 Compilation

When the node application code has been processed and the necessary helper files
created, the application is built, using make clean all, and can then be uploaded to
the node by issuing make burn btnode3.

Table 4.1.5 lists all files and folders that are used or created during the preprocessing
step.

4.2 Node Integration

To ease the integration with present and future wireless sensor network applications,
the node connector is realized as a C header file, with the name pes.h, that currently
has to be copied into the application directory, but could also be moved to the include
directory of the BTnut distribution.
The main interaction between application developer and PES, takes place via two
macros: PDA for evaluating assertions and SNAP for taking snapshots. These macros
are then translated into function calls, that publish the attribute values of the nodes
and that instruct PES to evaluate an assertion.
Besides these two macros, there also exist some functions to configure the PDAs which
are discussed later in this section.

4.2.1 PDA and SNAP

The two macros PDA and SNAP are translated into debug messages, unless the #define
PDAS RESOLVED is set by the preprocessor. After the preprocessing step, these macros
both call the function eval pda, which takes at least three arguments, the type of
the call (PDA or SNAP), the ID of the assertion or snapshot, the evaluation delay
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(only used for assertions) and then a variably sized list of arguments, which provide
additional values either for the evaluation of the assertion or as values for the node
attributes contained in the snapshot.
Both macros use the same function since the functionality required is nearly the same:
For publishing a snapshot, a message has to be broadcast which contains the ID of the
snapshot and a list of values that were assigned to the attributes. When a PDA macro
is encountered in the code, the PES system is requested to evaluate an assertion that
is given by a single ID. Together with the assertion ID, a list of evaluation constants
are also supplied that have to be included in the broadcast message as well. An
overview over the evaluation process is given in figure 4.1. The process described here
starts with the function eval pda and ends with the delivery of a message.

Figure 4.1: Overview of the general evaluation process for SNAP and PDA.

First the packet information provided by the preprocessor is requested using the
ID supplied by the macro. A detailed description of all resources created by the
preprocessor can be in found in section 4.1.4. Here it is sufficient to know that
the packet information holds a flag to tell whether the hood has to be sent and the
number and types of the parameters, which are included in this message. Using this
information, the packet size is calculated. Figure 4.2 shows which factors are taken
into account when calculating the packet size.

The neighborhood of a node is needed twice. First while calculating the size of the
packet that has to be allocated, and secondly to effectively write the neighborhood
to the message. As in all concurrent systems, the hood could possibly change during
these two steps. Therefore, when calculating the size of the hood, the message content
that will be added to the message is already written into a buffer and later copied
into the message. Obviously this needs careful locking between the calculation of
the hood size and the writing to the message in order to prevent other threads from
overwriting this buffer. Further information can be found in the source code. The
rest of the dynamic message size is simply the sum of the sizes of the parameter types.

Figure 4.3 shows the details about the writing process. It is basically the same as for
calculating the size, except that all the data is written and the flags for the different
packet options have to be set. In the end the message is queued for delivery.

To deliver a message, it is passed to the function deliver pda values, that takes
all packet information and guarantees that the message will be sent eventually. In
the current implementation, a message is first queued and sent asynchronously by
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Figure 4.2: Detailed actions for calculating the packet size.

Figure 4.3: Detailed actions for writing and delivering a snapshot or an assertion
evaluation.

a dedicated thread. This is done to have a minimal impact on the timing of the
application code. To counteract congestion during phases of activity, sending is also
delayed for a random time, up to one second, as it is to be expected that multiple
nodes will trigger evaluation of assertions and change their state at virtually the same
time, when some external event triggers the nodes to act. Shortly before the message
is sent, the current node timestamp is written to the message by the MAC protocol.
This timestamp is used, together with a timestamp taken immediately after the SNAP
or PDA invocation, to calculate the delay that was introduced by the node application.
This delay will be subtracted from the message’s receive timestamp to improve the
accuracy of the network model. Figure 4.4 shows how the difference between the
evaluation timestamp t1 and the send timestamp t2 are used to improve the accuracy
of the receive timestamp. The delays that make up the difference between t1 and t2
are the sum of artificial delays inserted by PES, the processing time of the operating
system and delays imposed by the MAC protocol, which has to await a slot to send
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the message. The global clock in Figure 4.4 is provided through synchronization of
the deployment support network of SNIF.

Figure 4.4: The different timestamps and how they are used to improve the accuracy
of the evaluation time.

4.2.2 Periodic Updates

As described in the design chapter in section 3.2.4, some functionality is provided in
order to publish the full node state in order to compensate lost SNAP messages. This
is done in regular, user-defined intervals to synchronize the collected state with the
evaluator. A periodic update contains values for all attributes that are taken from the
attribute cache, which is described in section 4.1.4. All attribute values are written to
this snapshot message in order of increasing attribute IDs. To identify this snapshot
- for which no assertion/snapshot ID is present - a special flag is set, which indicates
the packet structure and content. The rest of the delivery process is done via the
deliver pda values function, as described above.
To ensure that the periodic updates do not interfere with the rest of the node ap-
plication, a dedicated thread is present that sleeps for most of the time and checks
at regular intervals whether anything was broadcast on behalf of PES. If not, a pe-
riodic update is sent. This interval can also be configured at runtime using the
set periodic update interval method.

4.2.3 Packet Format

Message 4.2.3 shows the basic structure of a PDA packet. It contains the PDA ID
and a sequence number per node to detect lost messages and node reboots. There is
also a timestamp, which is taken at the time the PDA or SNAP macro was invoked.
Using this timestamp and the send timestamp, the delay can be calculated, which is
then used to correct the SNIF-provided timestamp. Furthermore, there are the flags
which are stored in a flags byte. The rest of the packet consists of dynamic content
that is described below. The packet is written in network byte order, that is, big
endian. Although there is no limit to the packet size by design, there is a limit in
SNIF for the default maximum packet size of 100 bytes (which could be increased),
that then also constrains the maximum size for the PES broadcasts.
There are different factors that affect the content of a packet. The dynamic content

can be inferred by inspecting the flags (described below) and the PDA ID. It is
possible to trigger the evaluation of an assertion with some delay to indicate that - if
everything ran correctly - some condition will hold after X ms. If such a delay exists,
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Base 0 1 2 3 4 5 6 7
0x00 PDA ID Seq # Timestamp
0x08 Flags Dynamic Content

Packet 4.1: Basic PDA packet structure.

it is written as the first integer in the dynamic section and the flag Delayed is set.

If the hood send flag is set, the next part of the message contains a set of nodes that
are in the neighborhood of the sending node. For the hood update flag it is basically
the same, except that two sets are sent; the first one contains all nodes that were
added and the second one all nodes that were removed since the last sent hood.
The last part consists of the parameters that are shipped with the message. The
number and types of the parameters are given by the PDA ID and loaded from the
preprocessor supplied pdatable.h.

Flags

Flags are stored in the message in the flag byte. The different flags are all powers of
two and can therefore be summed up to set multiple flags.

Hood send (0x1) Defines that along with this message a full hood set is sent, that
is, all known neighbors of the sending node.

Hood update (0x2) Defines that along with this message, a diff is sent from the
last sent hood to the current.

Delayed (0x4) Informs the receiver about a delay that was added in front of the
messages dynamic part.

Periodic Update (0x8) This indicates a periodic update packet that contains the
full node state.

Types

Currently there are two possible types for attributes and evaluation constants. Data
sets are only supported for node IDs as they appear in a hood set.

Integer Represented by a 2 byte unsigned integer.

Boolean Represented by an unsigned char with 0 meaning false and non zero mean-
ing true.

Integer Set An integer set is the type used for hood sets. Integer sets (sets in
general) consist of a 1 byte unsigned integer representing the size of the set,
followed by n times the size of the base type, where n is the number of elements
in a set. Although this restricts sets to a size of 255 elements, this should not be
a limitation as most sensor nodes already are memory constrained and therefore
no bigger data structures are to be expected.
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4.2.4 API

Besides the previously mentioned PDA and SNAP, there are also other interaction
and configuration possibilities when using the PDA header file. All functions and
macros intended for use by the developers of the node application are given below.

PDA(String, ...) Triggers the evaluation of a PDA. The supplied arguments are
used to substitute evaluation constants in the assertion.

D PDA(Delay, String, ...) The same as PDA except that the given delay is added
to the timestamp to have the assertion evaluated later.

SNAP(String, ...) Sends a snapshot for the listed node attributes. The following
arguments are used to set the value of the attributes.

set/is pda enabled(boolean) Enables a user to switch the PDA evaluation on and
off during runtime.

set/is hood transfer(boolean) Enables the user to change whether the hood is
transferred with messages or not. This only applies to periodic updates and
snapshots that explicitly transfer the node’s neighborhood.

set/get periodic interval(long) Configures the interval, after which periodic up-
dates are sent. This only has an influence when PDAs are enabled. The value
should be bigger than 1000 ms, as a smaller value only leads to more collisions
and thus worse results.

pda init(hood size fkt, hood fkt) Initialization function. It has to be called at
the start of the application. The two arguments are both function pointers.
The first one points to a function without argument, which returns the number
of neighbors. The second one takes one parameter, namely the index of the
neighbor from 0 to the number of nodes - 1, and returns the ID of this node.
This way the PDA infrastructure supports different platforms which may handle
the network neighborhood in different ways.

4.3 Assertion Evaluation

The assertion evaluation application is divided as suggested in the design section in
figure 3.7. There is an adapter that takes the incoming packets and directs snapshots
to the network model, and assertions that should be evaluated to the evaluator.

4.3.1 Packet Parsing

When initializing the system, SNIF is provided with a description of the packet format
that then enables the sniffer to capture the packets and forward them to a packet
sink. Packet parsing is the first step for incoming packets in assertion evaluation. Its
central class is PDASink. This class implements AbstractSink<PacketTuple> and is
therefore the entrypoint for all packets captured via SNIF.

The PES packet, as described in section 4.2.3, is read through an interface called
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PacketReader, which grants access to all parts of a packet in an abstract way. There
is currently only one implementation with the name SimplePacketReader, that can
be found as internal class of PDASink. For each packet, a PacketReader instance
is created, that is then used to access the packet contents. Upon instantiation, the
reader checks the CRC of the packet, to ensure its integrity. If the packet is not valid,
it is dropped, that is, it is simply ignored. Dropped packets are not unusual and are
expected to be encountered during regular operation due to the high probability of
bit errors and collisions.
Once the packet’s CRC is checked, its type is inspected to ensure the correct packet
type. Valid types are stored in the class as constants and are currently 0x12 for
snapshots and 0x11 for assertions. The next thing to check is the sequence number.
As there is a separate sequence number for each node, the sender address also has
to be retrieved from the message. PDASink checks with the network model that the
message is not a duplicate, which would be ignored.

If a set of neighboring nodes is sent with the message, this is indicated by the message
flags and the updated hood is retrieved and stored in the connectivity model. Now,
based on the ID of the message, a list with the expected number and the types of
values sent with the messages is loaded, and the values are extracted from the packet.
If the message was a snapshot, these values are attributes of this node and have to be
forwarded to the network model. Otherwise the message is a triggered assertion, for
which the supplied values are evaluation constants, which are stored in a map which
is passed to the assertion evaluator, together with the ID of the assertion that has to
be evaluated.

4.3.2 Network Model

The network model represents an abstract view of those aspects of the sensor network
that are relevant for assertion evaluation. The interface of the network model can be
found in listing 4.3. The first three methods are the most commonly used ones, while
the others are only used during start-up.

package ma.model;

public interface NetworkModel {

/**

* Get the attribute symbol for node

*/

Attribute getAttribute(int node, String symbol);

/**

* Get the neigbhors symbol at time.

*/

Set<Integer> getNeighbors(int node, long time);

/**

* Get all nodes at time.

*/

Set<Integer> getAllNodes(long time);

/**

* Register a listener that gets an event whenever an

* attribute changes or a node appears.
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*/

void registerNetworkModelChangeListener

(NetworkModelChangeListener listener);

/**

* Unregister a listener.

*/

void unregisterNetworkModelChangeListener

(NetworkModelChangeListener listener);

/**

* Set a new connectivity model

*/

void setConnectivityModel(ConnectivityModel connectivityModel);

}

Listing 4.3: The NetworkModel interface

The Attribute returned by the getAttribute method represents an attribute as
found on a node. It encapsulates the attribute’s history and therefore allows queries
for the attribute value at different times.

The implementation of this interface written in the context of this thesis is named
AdaptingNetworkModel and provides a model that dynamically creates and deletes
nodes, when no messages are received from them for some time. It also assumes
that when a difference in sequence numbers above a given threshold is detected, the
node has rebooted, as it is unlikely to miss a certain number of messages in a row.
Therefore the state of such a node is cleared, as if the node hasn’t been seen yet. The
class contains several inner classes, most notably two threads of which one carries out
notifications for newly detected nodes and changed attributes and one which removes
nodes that haven’t been sending messages for some time.

Another part of the network model is the connectivity model, which represents the
network connectivity between the nodes. The connectivity model is contained in the
network model and thus the methods for querying the connectivity between nodes
are available in both interfaces. The associated interface is called Connectivity-
Model, the main implementation is NetworkModelConnectivityModel. It allows
queries about connectivity between two specific nodes, a node’s neighborhood and
all known nodes. Listing 4.4 shows the interface. Its realization is named this way
as the connectivity model uses the same node information as the network model for
determining if a node is visible. There is also another implementation of the Con-
nectivityModel that is currently not used. It is the the StaticConnectivityModel
that has a fixed set of nodes with a constant connectivity between the nodes.

Next to the models, there are also two interfaces which reflect the model’s consumer
nature, namely the ability to accept connectivity and node state information and store
it somehow. These consumer interfaces are implemented by the AdaptingNetwork-
Model and the NetworkModelConnectivityModel and correspond strongly with the
respective model interfaces; one interface to absorb state information - the consumer
interface - and one to make the prepared state information accessible - the model
interface. These two can be seen in the listings 4.5 and 4.6. The NodeStateConsumer
interface also implements the interface SequenceNumberConsumer that offers the pos-
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package ma.model;

public interface ConnectivityModel {

/**

* Are/were a and b connected at time?

*/

boolean isConnected(int a, int b, long time);

/**

* Get all neigbhors for node at time.

*/

Set<Integer> getNeighbors(int node, long time);

/**

* Get all nodes in the network at time.

*/

Set<Integer> getAllNodes(long time);

}

Listing 4.4: The NodeConnectivityModel interface

package ma.model;

public interface NodeStateConsumer extends SequenceNumberController {

/**

* Report the state of an attribute.

*/

void reportAttribute(AttributeValue value, String symbol, int node);

}

Listing 4.5: The NodeStateConsumer interface

sibility of storing sequence numbers per node and checking whether any sequence
number is a duplicate. The classes implementing the network model are known to the
PDASink as consumer and to the assertion evaluator as network model.

As can be seen in the NetworkModel, the internal state is stored in individual At-
tribute classes. These classes provide chronological access to the attribute’s values.
There the distinction is made between possible values and verified ones. If the verified
method (getAttributeValue) returns null, then getPossibleAttributeValue may
be invoked and will return a value if there is one, even if it is not verified.
The implementation of Attribute holds a list of AttributeValues in reverse chrono-
logical order, such that the newest one comes first. When the attribute’s value is to
be looked up for time t1, this list is traversed to find the latest value supplied earlier
or equal to t1. Assuming that the value was recorded at t2 (where t2 ≤ t1), this value
is the possible value for the attribute at time t1.

To be sure that the value really is valid at t1, it must be checked that no messages
that could have changed the value of the attribute got lost between t2 and t1. This
is done via the network model, which has the information about missing sequence
numbers per node. Another requirement is that there is some time between t2 and
t1 (t1 − t2 > THRESHOLD) to compensate for possible errors when synchronizing
the messages to a global clock. The THRESHOLD will usually be in the range of a
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package ma.model;

public interface ConnectivityConsumer {

/**

* Report the neigbhors for a node at timestamp

*/

void reportConnectivity (int node, Set<Integer> neighbors,

long timestamp);

/**

* Report the neigbhors update for a node at timestamp

*/

void updateConnectivity(int node, Set<Integer> newNeighbors,

Set<Integer> removedNeighbors, long timestamp);

}

Listing 4.6: The ConnectivityConsumer interface

few milliseconds. The third requirement for a verified attribute value is that the node
receives at least one packet from the sensor node after t1, again without missing pack-
ets in-between, to ensure that it is still alive and has neither rebooted nor suddenly
stopped sending messages for whatever reason. Figure 4.5 illustrates the conditions
for an attribute value to be verified.

Figure 4.5: Illustration of an attribute’s value that is requested for time t1 and ex-
pected value comes from t2.

4.3.3 Assertion Evaluator

The assertion evaluation consists of a main interface that defines the methods used
for triggering an evaluation as well as the event-based notification system for keeping
listeners informed about the evaluation results. The interface AssertionEvaluator is
given in listing 4.7 and implemented in class BasicAssertionEvaluator. The Ass-
ertionEvaluator interface is used by the packet parser to kick off assertions that
have to be evaluated. The only thing supplied is the ID of the assertion, the time of
evaluation, the evaluation constants and - if it is not a global assertion - the local node
for this evaluation, that is the node, that triggered the evaluation of the assertion.

The assertion evaluator uses the AssertionResolver to retrieve the assertion that
belongs to the supplied ID. In the available implementation, which can be found in
the class FileAssertionResolver, the resolver uses the file that is created by the
preprocessor and uses the available information to map IDs to assertions.
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package ma.eval;

public interface AssertionEvaluator {

/**

* Evaluate an assertion for a node.

*/

void evaluate(int assertionID, int node, long time, long delay,

Map<String, Object> evaluationConstans);

/**

* Evaluate a global assertion.

*/

void evaluate(int assertionID, long time, long delay,

Map<String, Object> evaluationConstans);

/**

* Register and unregister a result consumer.

*/

void registerResultConsumer(EvaluationResultConsumer consumer);

void unregisterResultConsumer(EvaluationResultConsumer consumer);

}

Listing 4.7: The AssertionEvaluator interface

A core part of the assertion evaluator is the parser that is used to transform an as-
sertion into an abstract syntax tree (AST), a tree that reflects the assertion in a form
that can be easily evaluated. This section will only contain discussion about techni-
cal decisions; for information about the assertion language see section 3.2.5 or for a
EBNF appendix B.

The parser is generated using the Java compiler compiler (JavaCC). The generated
class is called AssertionParser and can be found with all other parser-related classes
in the package ma.parser. As the parser works internally with data streams, and is
therefore somewhat inconvenient to setup just to parse a single assertion, there is the
class StringAssertionParser that allows easy parsing using a singleton parser that
is re-initialized for each assertion in order to avoid side effects. The interface for the
StringAssertionParser provides a method that takes an assertion in the form of
a String and returns an Assertion object that encapsulates the AST. Snapshots, as
found in the source code of a sensor network application, are a list of at least one at-
tribute name, whose value is updated by the snapshot. These lists can also be parsed
by the StringAssertionParser that then returns a Snapshot object that contains
the list of attributes that are updated by the snapshot.
The abstract syntax tree of an assertion is built out of abstract Expression objects
that allow inspection using the visitor pattern. Whenever a class wants to inspect an
Expression, it implements the AssertionTreeVisitor interface and calls the ac-
cept method on the Expression object it wants to inspect. In doing so it passes
itself as an argument, and the actual class that extends Expression will call the
method corresponding to its type on the visitor interface. The listings 4.8 shows the
visitor pattern related part of Expression and listing 4.9 gives the visitor interface
that contains a method for each of the subclasses of Expression. More information
about the visitor pattern can be found in [5]. Figure 4.6 shows the class hierarchy for



CHAPTER 4. IMPLEMENTATION 35

package ma.parser.tree;

public abstract class Expression {

...

public abstract void accept(AssertionTreeVisitor visitor);

...

}

Listing 4.8: An excerpt from Expression the parent class to all assertion AST com-
ponents

package ma.parser.tree.visitor;

public interface AssertionTreeVisitor {

void visitAssertion(Assertion assertion);

void visitConstantExpression(ConstantExpression constant);

void visitIdentifier(Identifier identifier);

void visitBuiltinFunction(BuiltInFunction function);

void visitNegation(Negation negation);

void visitIntegerOperation(IntegerOperation operation);

void visitBooleanOperation(BooleanOperation operation);

void visitComparison(Comparison comparison);

void visitSet(SetExpression set);

void visitDynamicFunction(DynamicFunction function);

void visitEvaluationConstant(EvaluationConstant constant);

}

Listing 4.9: The AssertionTreeVisitor interface

Expression.

Figure 4.6: The class hierarchy of Expression.

There are several implementations of the tree visitor, most notably the Evaluating-
TreeVisitor that, as its name suggests, evaluates an assertion. To do so it traverses
the AST and recursively tries to evaluate subtrees until everything is evaluated up to
the root of the tree. If there are any problems with the evaluation process - usually
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due to unavailable attribute values - the runtime exception EvaluationException is
thrown, which should be caught be the class that started the evaluation.
Another visitor is the TypeCheckingTreeVisitor that checks the types in an asser-
tion. It also recursively tries to derive the type of subtrees until the root is assigned
a type. Every element in the tree is checked to ensure that the type of its children
are in conformity with it. The root of an assertion, for example, is expected to return
a Boolean value. When errors are detected in the tree, an exception with the name
TypeCheckException - similar to the EvaluationException - is thrown that needs
to be caught and handled by the class initiating the type check. The other visitors
are either for debugging purposes like the PrintingTreeVisitor or for extracting
certain parts of an assertion, like the evaluation constants found in an assertion, that
are then expected to be sent together with the evaluation request.

When parsing an assertion or a snapshot, a wrapper object called Assertion, re-
spectively Snapshot, is created that holds not only the structure of the parsed text,
but also meta information like the file the assertion was extracted from, the line it
was found on, the ID that will be received from the nodes and the original assertion
text that was passed to the parser. The StringAssertionParser will not fill in this
information, but when receiving an assertion via the provided AssertionResolver
this information is supplied.

After an assertion is evaluated for the first time, all listeners that subscribed with the
AssertionEvaluator are notified that a new assertion evaluation was triggered and
receive an EvaluationResult that holds all the information about the evaluation. If
the assertion could not be evaluated, or contains non-verified values, it is evaluated
again after a certain delay and every listener gets an update event, whenever such a
reevaluation takes place and part of the result changes.

The BasicAssertionEvaluator also takes care of evaluating global assertions. For
this it subscribes as an AttributeChangeListener to the NetworkModel and eval-
uates global assertions whenever an attribute that belongs to the assertion changes.
The global assertions are received via the AssertionResolver’s method getGlobal-
Assertions that returns all global assertions. The implementation in the FileAs-
sertionResolver loads all global assertions from a file where one assertion is given
per line.

To add a user-defined function to the assertion language, a developer has to imple-
ment the interface CustomFunction. For such a function, the following information
must be known: the name, the number and types of the parameters and the return
type. Whenever the name is encountered inside an assertion, the method evaluate
is called with the values of the parameters. The implementation should process the
parameters and return a valid result or throw an EvaluationException. Listing 4.10
gives the interface implemented by user-defined functions. The new class then needs
to be registered with the FunctionResolver that returns a CustomFunction object
for a given function name or null, if the function is unknown. The current imple-
mentation is a static one, that is, all functions needed at runtime need to be included
in the constructor that then inserts them into a map.

There is a graphical viewer for evaluation results. The viewer is connected to the
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package ma.eval.function;

public interface CustomFunction {

/**

* Get the name of the custom function.

*/

String getFunctionName();

/**

* Get the return type of the custom function.

*/

Type getReturnType();

/**

* Get the parameter types (if there are any).

*/

Type[] getParameterTypes();

/**

* Evaluate the function with the given parameters.

*/

Object evaluate(Object... parameters) throws EvaluationException;

}

Listing 4.10: The interface implemented by all custom functions.

evaluation system by implementing the EvaluationResultConsumer interface. The
GUI presents the results in a table that gives a brief overview of the current situation.
The user then has the possibility to select a result, which is displayed in the detail
view showing the user all available information for the result. Furthermore the list of
the results can be filtered for specific outcomes and status. Whenever a new assertion
is evaluated, it will show up directly in the GUI and will be updated as soon as the
result changes to reflect the current evaluation history.
To run the GUI, it is sufficient to create an instance of AssertionViewer and make

it visible by using its setVisible method. The only thing that has to be provided is
an assertion evaluator, which delivers the evaluation results to the GUI.
When using the PESRunner to start the assertion evaluator, as it is described in the
appendix C, the GUI is started automatically. Figure 4.7 shows the user interface
in a situation in which a network of three nodes is inspected. The snapshot was
taken shortly after the target was switched off. The ceding leader tries to transfer the
leadership to other nodes but fails as no other node detects the target. The selected
assertion that is shown in the detail form was triggered by the leader and should
ensure that the triggering node is the only leader in the network. It is not yet fully
evaluated, thus the value of the isLeader attribute of the leader is rated as possible.
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Figure 4.7: The graphical user interface to display. The status and outcome color
indicate the current state of the evaluation result.



Example Application 5
In order to be able to test PES with a real sensor network, an example application
was written to assess the impact that assertions have on the development process and
how many additional resources are needed when using PES. The evaluation can be
found in chapter 6, while this chapter focuses on the application and the assertions
used.

5.1 Overview

The goal of the example application is to track the position of a single mobile target by
computing the average of the positions of the nodes that currently detect the target.
Therefore the application is called Tracker. The idea for the example application is
taken from [1] with reduced features for a feasible application.

5.2 Design

The Tracker application uses BTnodes, of which every single one has a unique num-
ber, called the ID, that is used to address the node and to distinguish between various
nodes. Nodes also know their position in terms of x and y coordinates and commu-
nicate using their Chipcon radio module. The target is just another BTnode which
broadcasts, also via radio, beacon messages with a predefined type to make itself de-
tectable.

The Tracker nodes form a multihop network in which every node announces itself to its
neighbors by periodically sending broadcast messages. The nodes use the announce-
ments they receive to hold a network neighborhood table. To keep the application
simple, a greedy geographic routing algorithm is used that always forwards a packet
to the neighbor nearerst to the packet’s destination, ignoring the possibility of dead
ends. Alternatively, an algorithm like GFG [2] that deals with these problems using
face routing could be used.
Besides point-to-point communication, there is also broadcast communication in
which the number of hops a packet is forwarded can be specified by the sender.
Every node receiving a broadcast message for the first time that has more hops to
take, will re-broadcast it and decrease the hops-to-live counter in the message by one.
This broadcast communication is used to announce a node to its neighbors and to
make a leader known to the other nodes.

The basic idea behind Tracker is that all nodes that detect the target form a group
with a single leader node. All nodes in the group send their position to the leader,
which calculates the position of the target. The nodes can hold four different roles
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that are described below.

Leader The leader is the node that calculates the position of the target. There is
only one leader in the network and every node detecting the target knows the
leader. For most of the time, the leader also detects the target and is thus also
a group member, but it is allowed for the leader to temporarily not be a group
member and still act as a leader until a new one is found. This could be the
case when the target is moving and leaves the detection radius of the current
leader.

Group member A group member is a node that detects the target and therefore
sends its own position to the leader to be included in the calculation of the
target’s position.

Border node A border node is one that receives a leader announcement, but does
not detect the target itself. This indicates that one of its network neighbors
detects the target and is therefore group member.

Idle A node has the role idle when it does not detect the target and has not received
a leader announcement.

Figure 5.1: Overview of the Tracker application, showing the role assignment in a
network.

Figure 5.1 shows how the roles are assigned to the nodes and the knowledge that they
have about the network. The leader knows the position of the target and all nodes
that detect the target, while the other group member nodes only know the leader. A
node that carries the role of border node is basically an idle node, that has already
received a leader announcement message and is therefore aware of the leader in the
approaching observation group. When the target moves into the node’s detection
range, this node can start reporting to the leader immediately.
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Figure 5.2 shows the different roles that a node can take and the circumstances under
which a node changes its role. It also shows that the only roles that can be held
simultaneously are leader and group member.

Figure 5.2: The possible role transitions in Tracker.

When a node with the role border node detects the target, it starts reporting to the
leader. If no leader is known, that is, the node has the role idle, it considers becoming
leader itself. To do so, it first waits for a random time and then, if no other node
announces its leadership in the meantime, it announces itself as the leader. As the
node detects the target, it becomes a group member in any case. Every node that
becomes a group member broadcasts the ID of the node it regards as the leader to
the neighbors to prepare those that might not have detected the target at this time
for the approaching target.
If a node is leader and receives a leader announcement of some other node, it stays
leader if its ID is higher than the ID of the other announcing node or otherwise it
takes the other leader as its new leader. Either way it then announces the current
leader to its neighbors to notify them about the resolution of the leadership collision.
The leader does not only calculate the current position of the target, but the direction
the target is moving in. When the target is lost by the leader, the leader tries to
find a new leader among the nodes already known to it that lies the furthest in the
direction of the target movement. If there is a new candidate for leadership, the
ceding leader sends out a handover request to the candidate, which is confirmed by
an acknowledgment. Both nodes then announce the new leader and the old leader
takes the role idle.

5.3 Implementation

This section focuses on the implementation details of the application described in the
previous section and gives details on the use of distributed assertions.
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5.3.1 Communication

Every message used in the tracker application has a common header that incorporates
all information needed for routing. The header contains a sender ID, sender position,
recipient ID, recipient position and a sequence number. Packet 5.1 shows the basic
packet structure.
For sending broadcast messages, the recipient ID is set to 0xFFFF and the coordinate
fields, which in point-to-point messages hold the position of the recipient, are used
to count the number of hops the broadcast message still has to take (x coordinate)
and the number of hops already taken (y coordinate). The sequence number is used
to avoid duplicate packets, especially in the context of broadcasts, where a message
could be received multiple times. To distinguish the different messages, the type field
of the BMAC message is set according to the message content. Henceforth, this field
is simply referred to as the type of message.

Base 0 1 2 3 4 5 6 7
0x00 sender receiver sender x sender y
0x08 receiver x receiver y seq # ... (Payload)

Packet 5.1: The basic packet structure.

When nodes announce themselves to their network neighbors, the above described
basic packet requires no additional payload data. All a node needs to know about
its neighbors is the ID and the coordinates that are then used for routing packets.
Initially, however, it was planned to allow nodes to provide services to other nodes,
like for example, a video camera, whose focus can be adjusted onto the target by
sending a service request to the service-providing node. Therefore, there is a one-byte
flag field embedded into messages, which allows nodes to announce their services with
their identity. The field is not used, but for completeness it is also included in this
documentation. Packet 5.2 shows the payload of the announcement packet that has
type 0xa0. Packet 5.3 shows the packet initially intended to invoke services of the
node, containing the flags for the service to be invoked, the position of the target
and the duration of the service, i.e. for how long a camera should film the target.
Such a service request message would be sent with message type 0xa1. The node
announcement message is sent only to the direct neighbors via broadcast. In case of
a node that provides a service, announcements could be sent over more than one hop,
depending on the number of nodes that provide services. The service request message
on the other hand is sent directly to the node that provides the service.

Base 0
0x00 service (Video|Audio|Unused [6])

Packet 5.2: Announcement packet payload.

To announce the leadership of a node, another broadcast message is used that holds
the ID and the position of the leader. This message is only sent to direct neighbors,
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Base 0 1 2 3 4 5 6
0x00 service event x event y duration

Packet 5.3: Service invocation packet payload.

but resent by them, based on the their content and their current state. This means
that a leader announcement is forwarded by all nodes that are group members and
which had a different leader before. The leader announcement packet, that is sent
with type 0xa3, is shown in packet 5.4.

Base 0 1 2 3 4 5
0x00 leader ID leader x leader y

Packet 5.4: Leader announcement packet payload.

The other remaining messages are used to request a leadership handover, with type
0xa4, for sending a handover ACK, with type 0xa5, and to inform a leader about the
seen target, with type 0xa6. They all have no payload as the ID of the sender and
the sender’s position is all the information needed by the recipient.

All the above mentioned packets have a corresponding struct in the application code
that, having cast the received message payload to the proper struct, allows easy
access to the different attributes. When accessing the structs, one has to be aware
that all packets are in network byte order, and therefore fields with more than one
byte need to be converted to host byte order.

5.3.2 Node Attributes

The attributes that are published by the nodes by means of SNAP statements and
can therefore be used in assertions are the x and y coordinates as Integers and the
flags isGroupMember and isLeader as Booleans, which indicate whether the node has
one of the above mentioned roles.
The x and y coordinates are not measured using a sensor or any other technique,
but are stored statically in the application source code. At the start, a node reads
its address from EEPROM and, based on the node address, takes the appropriate
coordinates from the array node identities.

5.3.3 Assertions

The core of the tracking application is a thread, which every 10 seconds executes a
leader function if the node is a leader, or a member function, if the node is a group
member. In the case of a node being both a leader and a group member, the leader
function supersedes the member function.
As a group member, a node sends a target detection message to the leader node to
inform the leader about its position and that it is able to detect the target. There the
assertion
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leader:isLeader

is inserted, which checks that the destination of the message really is the leader.
Another assertion could be added there to check that every other node that is a group
member sends target detection messages to the same leader. Such an assertion would
then look as follows.

all(nodes(),!$:isGroupMember || $:leader==leader)

In the code, only the first assertion was used since the second one crossed my mind
during the evaluation and was therefore not inserted into the code.

As the leader, a node takes all reports it received in the previous interval - the time
between two thread cycles - and calculates the target ’s position as well as the direction
of the target. The leader node has to ensure that every message it includes in the
calculation of the target ’s position really originates from a node that detects the
target. An assertion to verify this was added to the packet handler for target detection
messages and looks as follows, whereas ¢NODE is set to the ID of the sending node.

¢NODE:isGroupMember

This assertion was added to the packet handler for incoming target reports and not
to the leader function, although the intention is that every node whose position is
used in the target calculation is really a group member at that time. This decision
was taken because a target detection report from a node that is not a group member
is considered an error, while a node that is not a group member during the time the
leader calculates the target position is an inaccuracy, which is hoped to be small, but
was accepted in the design phase. The assertion given above could, of course, still be
added to the leader thread cycle, to get a picture of the introduced target localization
error.
Another assertion that is triggered by the leader is

all(nodes(), !$:isLeader || id == $:id) && isLeader;

that can be found at the beginning of the leader function. It asserts that the local
node’s isLeader attribute is set to true and that there are no other nodes with this
attribute set to true.

When the leader lost the target, it tries to hand the leadership over to a node that
recently reported the target, preferably the one lying the furthest in the direction the
target moves in. After choosing such a node and sending it a handover request, the
leader triggers a delayed assertion, to ensure that the leadership is transferred after
100 ms. The assertion in which ¢CANDIDATE is set to the ID of the selected node
that should become the leader is evaluated after 100 ms to confirm the successful
leadership transfer. The assertion is given below.

¢CANDIDATE:isLeader

This assertion, though, contains the risk that upon receiving the handover request, the
CANDIDATE no longer detects the target and therefore ignores the request. If this
is not regarded as an error, the assertion could be extended by adding the conditions
that the CANDIDATE only needs to be leader if it still is a group member. The above
given assertion would then look as follows.
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!¢CANDIDATE:isGroupMember || ¢CANDIDATE:isLeader

To ensure that there never is more than one leader, a global assertion was added to
the evaluator to test that only one node has its isLeader attribute set to true. This
assertion looks as follows:

count(nodes(), $:isLeader) <= 1;

The evaluation system then evaluates this assertion, whenever the isLeader attribute
of a node changes or a node appears or disappears.

5.4 Discussion

During and after the development of Tracker, the application was tested to ensure
that it was running correctly. The group formation and leader election work very
well with the transmitter power set to a high value. Unfortunately, the position of
the target was not very accurate due to the fact that the coverage of a radio signal
is not circular, but very much dependent on the environment. A target detection
mechanism that does not rely on radio would lead to more accurate results here, but
also to more work to detect a target.

To test the routing and the formation of the observation group, the radio transceiver
power was reduced. Although the routing worked at times, the setup of the network
neighbor table was not very stable, nodes kept losing their neighbors and routed mes-
sages to neighbors that did not receive them. Also the collection of snapshots via
SNIF did not work very well, as the PES messages were sent with the same trans-
mitter power and the sniffer nodes seemed to miss some of them, which then led to
dropped assertions because of missed snapshots.

When the radio transceiver power for the target was set to a minimum, the Tracker
nodes detected the target quite haphazardly. Not the nodes nearest to the target
detected it, but just any node. Additionally the nodes tended to detect and immedi-
ately lose the target again, which led to many leadership handovers that were often
unsuccessful because the selected new leader had frequently lost the target as well.

The benefit of PES was considerable, as it allowed the state of the nodes to be quickly
ascertained. Especially when tuning the leader election mechanism, PES helped a
lot with monitoring the leadership in the network or with verifying, for example, that
every node in the network assumed a single node to be leader. It helped, for example,
to detect an error in a case where all nodes pointed to the same node as leader, but
this specific node was neither leader nor detecting the target.
The rest of the assertions, especially the simple ones which simply check one attribute
on another node, were mostly successful in evaluation and expressive when they failed
once. The more complex assertions, especially those that involved the whole set of
nodes by using the nodes() function, had a higher probability of being dropped, that
is remain unevaluated, because of missing verified attribute values due to message
loss.





Evaluation 6
The impact of PES on an application should be as small as possible. This not only
applies to the time a developer needs to integrate assertions and snapshots in his
application, but also, to an even greater extent, to the overhead on the nodes them-
selves.
The goal of this section is to analyze the overhead of PES in comparison to its benefits.

6.1 Parameters and Metrics

PES provides some parameters that allow the application’s behavior to be influenced.
The parameters are given below:

Enable PDA/SNAP This parameter enables PES to be switched on and off during
runtime. Of course, this is no parameter for subtle adjustments of the impact
that PES has on an application, but it allows it to be kept ready for when it is
needed and minimizes its performance impact when it is not needed. Even with
PDAs disabled, there is some CPU consumption for snapshots as the internal
variable cache has to be kept up-to-date to be able to send periodic updates as
soon as PES is enabled again.

Send Hood The user can decide whether he wishes to collect the neighborhood of
the nodes via PES. Disabling hood sending will seldom lead to less messages, but
it will decrease the number of bytes sent per message, as an average snapshot
does not need to transfer the network neighbors but only contains the attribute
values of the node.
In this context there is another configuration possibility. When transferring
the hood, PES switches between sending the full neighborhood (hood send)
and incremental hood changes (hood update), in order to decrease the average
message size. How many incremental updates are sent until a complete hood
is sent can be adjusted. When setting this trade-off, one has to bear in mind
that using too many updates before a full hood is sent might lead to many
dropped assertions, as a single lost message renders assertions that access the
neighborhood not evaluable until a full hood is sent.

Periodic Update Interval The time between two periodic updates can be set by a
user. This setting has a major influence on the number of sent messages because
after every such interval the node publishes its full state, that is, it broadcasts
a snapshot that contains a value for every node attribute. The periodic update
snapshot is only omitted if PES causes other messages to be sent in order to
reduce the load imposed on the network.
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Assertion locations The place where assertions are located in the code is important
for the number of message that are sent in addition to regular communication
when PES is used. An assertion that, for example, is added to a periodically
called function will be evaluated frequently, which leads to an increase in the
number of messages broadcast by PES. At the other extreme, assertions could
be placed in the code such that an assertion is evaluated only when state changes
take place, for example, when a node changes its role. This would decrease the
number of messages sent on behalf of PES but at the same time reduce the
benefit of PES, as it decreases the amount of code monitored by PES.

There are several basic metrics that can be used when a sensor network application is
to be evaluated in order to compare it with other implementations. The following list
gives possible metrics and some suggestions on how these metrics can be influenced
using the existing parameters in PES.

Energy As one of the limited resources, it would be interesting to measure the in-
creased power consumption when comparing an application with and without
PES. Unfortunately it is labor-intensive to directly measure the power con-
sumption with a high level of accuracy. As an alternative, it is possible to count
the node operations whose power consumption is known or that are known to
strongly influence the battery drain, like radio communication that can easily
be counted in terms of the number of messages and the number of bytes sent.
Other candidates for increased energy consumption are additional wakeups from
a low-power state and increased CPU usage due to snapshot and assertion pro-
cessing. These two, however, are not considered by this study as they, again,
are hard to estimate and it is assumed that they play a secondary role in the
energy consumption imposed by PES.

Memory Another critical resource in many sensor nodes is the available memory.
When using PES the memory usage is of course increased, but it does not seem
to be critical - at least in conjunction with BTnodes, which are equipped with
a relatively large memory when compared with other nodes.

Computational overhead Although sensor nodes are generally limited in terms of
processor speed, this is no issue for PES as it does not perform CPU-intensive
tasks on the nodes.

The accuracy of PES is not evaluated, as it is assumed that PES always delivers
correct results based upon the assumption that the clock synchronization error is set
to an appropriate value. The benefit, however, that a user yields from making use of
PES, can be measured by counting the dropped assertions. These are the assertions
that could not be evaluated because a snapshot message got lost or because the as-
sertion’s evaluation time lies too close to the change of a node attribute value that is
relevant for the assertion evaluation. An obvious goal is therefore to keep the number
of dropped assertions as small as possible.

As sensor nodes have a limited energy budget and this resource is assumed to be influ-
enced most by PES, the attention is focused on minimizing the power consumption,
which correlates rather strongly with the number of messages sent and their size. To
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evaluate PES only the parameter periodic update interval (PUI) was varied, as it is
assumed to have the biggest influence on the number of messages sent and thus the
most influence on the energy consumed by a node. To rate the difference between
PUI settings, the following metrics were collected:

# of messages The number of messages sent was counted separately for PES and
Tracker. In order to estimate the packet loss, the received PES message were
additionally counted on the backend system.

# of bytes transferred The size of the different messages was summed, again once
for PES and once for Tracker.

# of evaluated assertions The number of evaluated assertions was split into two
groups: Local assertions and global assertions. A local assertion is invoked by a
PDA statement in the source code of Tracker. The number of global assertions
denotes the number of times that the single global assertion, which checks that
only a single leader is present, is evaluated. Such an evaluation takes place
whenever the attribute isLeader changed on a node.

# of dropped assertions The number of dropped assertions, which, again, is
counted for global and local assertions separately, states how many of the above
mentioned assertion evaluations were dropped.

6.2 Evaluation Setup

The main goal of this evaluation is to estimate the amount of additional radio com-
munication introduced by the use of PES in Tracker. To be able to measure the
number and the size of messages, the PES connector and the example application
were equipped with counters, which are inserted into their code to allow tracking of
the number of messages, and thus facilitate comparison of the communication over-
head by attributing each message to either the Tracker or PES. The aim is to draw
a graph that shows the number of messages and bytes and how these two values rise
during an evaluation run that takes 300 seconds. To facilitate the collection of the
values, a thread was added to the node which, once started, first resets the counters
for messages and bytes and then periodically prints the values to the terminal.

There were three different PUI settings chosen for evaluation: A periodic update time
of 2, 10 and 30 seconds. Initially, a periodic interval of 1 second was envisaged but
problems were encountered since the SNIF nodes weren’t able to transfer the accumu-
lating messages reliably to the laptop, which was acting as central evaluation instance
at that time. Every test setup was run five times and the average values obtained
were considered. The power of the radio transceiver was set to such value that every
Tracker node is able to communicate directly with every other node. This single-hop
setup was chosen to keep the order of events similar between the runs with the same
PUI. Also, the radio for the target was set to a high value to allow all nodes to detect
the target simultaneously.

An evaluation starts in an idle state, that is to say, when no target is visible. All nodes
are initially waiting for it to appear and only exchange message to keep the neighbor
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tables updated. At second 120 the target becomes visible to all nodes, which triggers
them to select a leader and all those nodes that detect the target start sending regular
updates to the leader. After 240 seconds the target disappears and the former leader
first tries to transfer the leadership to another node but fails, as no node sees the
target anymore. The test ends at time 300 seconds.

Figure 6.1: The setup used for the evaluation.

As depicted in figure 6.1 the network consisted of eight nodes which are placed in a
grid layout and assigned x and y coordinates from 1 to 3, while position 1,1 was left
out due to a lack of USB ports. Two SNIF nodes were used to collect the PES ’s
messages. The target was located at a central point and did not move during the test.

6.3 Results

The collected results are given in the figures 6.2, 6.3 and 6.4 that show a timeline
displaying the entire test run time from second 0 to second 300. The accumulated
number of bytes and messages that were sent per node on average are plotted. The
values were calculated as follows: For every evaluation run, the average value per
node was calculated and the five resulting values (one for each evaluation run) were
averaged again, thus arriving at the average values given in the graphs. Also depicted
is the standard deviation between the five evaluation runs. The results are listed in
increasing periodic update interval (PUI) order.

It is immediately apparent from figure 6.2 that in the first setting, with a periodic
update interval of 2 seconds, the network traffic is dominated by the periodic updates
that - together with the other PES messages - make up roughly 150 of the 200 mes-
sages sent in total by a node on average. The moment the target is activated is not
visible in the graph when looking at the sent messages. The few additionally sent
messages during the time the target is activated disappear among the large number of
periodic updates. The same holds true for the transferred bytes, so that this plot also
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Figure 6.2: Timeline with the number of bytes and messages sent for a periodic update
time of 2 second.

forms a straight line with a slope of 81
3 bytes per second. The target that appears is

only reflected in the data transferred on behalf of the Tracker application, for which
the leader starts announcing its leadership and the group members start sending pe-
riodical messages to the leader in order to inform it about the detection of the target.

For a periodic update interval of 10 seconds, shown in figure 6.3, the appearance
of the target at time 120 sec becomes more visible, especially when looking at the
standard deviation that raises from 1

5 to 1
2 for the number of PES messages. This

increase in deviation can be attributed to the random wait time, which is included in
the leader election mechanism and the fact that the target is started manually and
therefore minor time delays are expected when turning the target on. The messages
sent by the Tracker code should stay roughly the same as there is no change in its
parameters, and only the scale in the plot changed such that the increase in messages
becomes more apparent. The only possible change to Tracker - as compared with a
periodic interval of 2 seconds - could be that there is less communication on behalf of
PES that would then lead to less collisions with Tracker messages. The assumption
is that this reduced number of collisions could lead to fewer messages sent overall
because a leader announcement is received by all nodes. Therefore, it is less likely
that another node simultaneously becomes leader and, consequently, there is no need
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Figure 6.3: Timeline with the number of bytes and messages sent for a periodic update
time of 10 seconds.

for leadership resolution that causes more messages to be sent by Tracker.
It can clearly be seen that the number of messages rises for PES when the target
appears while the number of bytes sent per second stays nearly constant. This is due
to assertions triggered in the code that lead to multiple messages. Simultaneously the
periodic update is omitted. As a periodic update message is rather large, the multiple
messages triggered by the appearance of the target equate roughly to the same as a
single periodic message. In sum, PES nearly doubles the number of messages for
Tracker when a periodic update interval of 10 seconds is used.

The influence of PES drops, as expected, even more when setting the periodic update
interval to 30 seconds as can be seen in figure 6.4. The number of messages that
are directly caused by assertions in the nodes’ role function can be seen between the
time 120 and 240 seconds, when the number of messages broadcast by PES in a 30
second interval is nearly doubled. On the other hand, it shows that Tracker still has
potential for optimization, as about half the traffic is caused by the announcements
sent to network neighbors, which is not only done during active times, when a target
is visible, but also during idle times.

Figure 6.5 shows the number of messages sent by an average node and received by
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Figure 6.4: Timeline with the number of bytes and messages sent for a periodic update
time of 30 seconds.

the evaluation system during the 300 second evaluation run. It is clearly visible that
the number of messages sent by PES is dominated by the periodic updates for short
periodic update intervals. It can also be seen that the message loss for the shortest
PUI is much higher than for the other two PUI values. The percentage of lost PES
message for the three PUI settings of 2, 10 and 30 seconds is 9.83%, 1.80% and 2.42%
respectively, equating to 27.08, 1.33 and 0.88 messages on average.
At first sight, the variation in sent Tracker messages seems strange, after all, there
was no change in the parameters of Tracker. This variation, that is, the slightly higher
number of messages that were sent with a PUI of 2 seconds, results from the conges-
tion in the network that hindered the leader election to run smoothly. I conjecture
that a node missed a leader announcement from another node and then - as it also
detected the target - announced itself as a leader. The following negotiation to find a
single leader is, most likely, the reason for the increased number of Tracker messages.

Figure 6.6 shows the assertions that were evaluated on the central evaluator. It
includes the total number of assertions, the global assertions and the dropped asser-
tions. All global ones were dropped due to a design problem described in section 3.4.3.
Therefore, the figure also contains a visualization of the number of the dropped local
assertions, that is, the dropped assertions whose evaluation was triggered directly by
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Figure 6.6: The average number and standard deviation of local and global assertions
evaluated after 300 seconds in total.

a node.
The difference in evaluated global assertions between a PUI of 2 and 10 is, surpris-
ingly, bigger than the difference in evaluated assertions in total. This means that
more assertions are triggered by PDA statements in the code for a PUI of 10 seconds
than a PUI of 2 seconds. Whether this is due to lost assertions triggering messages,
or due to an non-functional Tracker application that skipped the node duty cycle
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and thus did not invoke the assertion in the first place is hard to tell. In any case,
as already mentioned above, nearly 10 percent of the PES messages got lost with a
periodic update interval of 2 seconds.

Another interesting aspect is the number of global assertions that is inversely pro-
portional to the PUI. Because global assertions are evaluated whenever an attribute
in the model changes, this raise in global assertion evaluation is the effect of many
changing attributes, which supports the thesis stated above that the nodes have dif-
ficulties selecting a leader. Whenever a node becomes leader or stops being leader it
changes its isLeader attribute or a node that receives a new leader changes its leader
attribute. As soon as the network model receives these changes, the global assertion
to check that at most one node is leader, is evaluated by the assertion evaluator.

With increasing PUI, even when only local assertions are regarded, the absolute num-
ber of dropped assertions decreases, even though there are more local assertions eval-
uated. This suggests that the PUI interval should be at least as high as 30 seconds,
as most metrics are best for this PUI value: There is the smallest number of dropped
assertions and the least number of messages and bytes sent per node. Given this re-
sult, it is probably advisable to try PUI values larger than 30 seconds, to see whether
the performance drops, as I initially thought it would with a PUI of 30 seconds.

When comparing the number of messages and bytes per node to the Tracker appli-
cation, the results have to be taken with care as Tracker is not optimized to use as
few messages as possible and could certainly be tuned to work with fewer resources
at a similar performance level. Another thing to keep in mind is that the form of the
assertion will also have an influence on the number of of dropped assertions. An asser-
tion that uses many different nodes is more likely to be dropped since the probability
for this is equal to the probability that any of the nodes used in the assertion has lost
a snapshot and its attribute values are therefore only possible.





Conclusion 7
The PDA evaluation system designed and implemented in this thesis, improves the
visible state of wireless sensor network applications and allows a developer to use
distributed assertions to identify unexpected and probably unwanted behavior. This
chapter revises the aims given in section 1.2, discusses the limitations imposed by the
design and lists possible future work.

7.1 Contributions

The assertion language presented in section 3.2.5 was designed to allow a developer to
describe the assumptions made on the state of the network in the form of distributed
assertions. The basic components available in the language were chosen after inspect-
ing different WSN applications and proved to be sufficient for a representative example
application. With custom functions, a developer is able to adapt the language to his
needs. Still, since many necessary assertions arise when an application is actually
implemented, further extension may be required in the future.

Sections 3.4.2 and 3.4.3 describe the measures taken to allow a reliable evaluation of
distributed assertion. These sections explain how the values of the internal node state
can be collected and put into a global picture of the network state. Furthermore, they
elaborate on the conditions that have to be fulfilled in order for an attribute value
to be regarded as verified, in the presence of message loss and clock synchronization
inaccuracy.

PES implements the defined assertion language and evaluation algorithm in order
to guarantee a correct evaluation of assertions whenever possible. Integrating SNIF,
PES provides everything needed to include PDAs in an application, to collect the
state of the nodes and to decide which assertions have to be evaluated. The evalu-
ation results are then presented to the developer, to give him insight into the state
of the network and allow him to identify possible problems and their causes. As the
connection to the nodes is realized via radio communication, PES can be used during
early development in the laboratory as well as after the deployment of the application
in the field.

7.2 Limitations

A limitation of the current design is that it requires all assertions to be placed within
the code. While this is a key restriction for a passive system, for which nodes only
publish their state, it might prove a severe drawback when an application is deployed
and it turns out that the already inserted assertions are not sufficient to track down
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an error. It is therefore required that the assertions and the location they are placed
at are well-chosen in advance.
A restriction imposed by the current version of PES is the inability to evaluate global
assertions satisfactorily. A solution for this problem has already been presented in
section 3.4.3. The implementation of the proposed solution, though, requires a re-
design of the interface between the assertion evaluator and the network model and
has not been implemented for the current version of PES.
An attribute value that is received from a node for time t, is only regarded as verified
after/before time t ± ∆, where ∆ is the maximum clock synchronization error, as
it cannot accurately be found out at which time the value changed on the node. If
an attribute value now changes faster than 2∆, the system will always regard it as
being a non- verified value. This might reduce the usefulness of assertions in certain
applications or certain parts of an application that have such fast changing attributes.

7.3 Future Work

As already indicated in section 6.3, the reasons for the rather high percentage of
dropped assertions should be analyzed in more detail. A better understanding of these
reasons should enable this number to be decreased by, for example, enhancing periodic
updates with a timestamp that states how long a supplied value has already held. This
would reduce the time span during which the network model cannot obtain verified
attribute values because of lost snapshot messages. On the other hand, a timestamp
per attribute would greatly increase the size of periodic updates. Another topic, that
could be looked into is how larger periodic update intervals affect the number of
dropped assertions. The evaluation showed that this number was - contrary to the
expectations - lowest for the largest interval. As larger intervals reduce the resource
consumption of PES, the goal should be to increase this interval as much as possible.

A mapping between node attributes and global variables in the node application code
which would allow the compiler to automatically insert snaphots in the code whenever
a variable corresponding to an attribute changes would relieve the developer of the task
of manually inserting snapshot statements into the source code. This goal, however,
is not easily achievable when attributes are not stored as simple variables, but held
within more complex structures, such as a table of network neighbors.

When a snapshot message is lost, all attributes are marked as possibly changed for the
time between the previous and the next update. An analysis of the node application
could allow PES to deduce the type of the lost message from the previously received
messages and thus offer the possibility of marking only those attributes as possibly
changed which really could have been changed by the lost message. Such a lost
message prediction requires control flow analysis as found in today’s compilers and
might not be feasible in C applications, which allow a direct modification of the control
flow, without restricting language features for the sensor node application.
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Assertions Extended BNF B
ASSERTION ::= EXPRESSION
EXPRESSION ::= "!" EXPRESSION

| LITERAL
| FUNCTION
| NAMED_EXPRESSION
| LOGICAL_EXPRESSION
| NUMERIC_EXPRESSION
| "(" EXPRESSION ")"

LOGICAL_EXPRESSION ::= EXPRESSION "==" EXPRESSION
| EXPRESSION BOOLOP EXPRESSION

NUMERIC_EXPRESSION ::= EXPRESSION INTOP EXPRESSION
| EXPRESSION COMPARISON EXPRESSION

NAMED_EXPRESSION ::= [EXPRESSION ":"] IDENTIFIER
| "¢" IDENTIFIER
| "id"
| "$"

FUNCTION ::= BUILTIN_FUNCTION
| USERDEFINED_FUNCTION

BUILTINFUNCTION ::= HOOD_FUNCTION
| COUNT_FUNCTION
| NODES_FUNCTION
| ALL_QUANTIFIER
| EXISTS_QUANTIFIER

HOOD_FUNCTION ::= "hood" "(" EXPRESSION ")"
COUNT_FUNCTION ::= "count" "(" EXPRESSION ["," EXPRESSION] ")"
NODES_FUNCTION::= "nodes" "(" ")"
ALL_QUANTIFIER ::= "all" "(" EXPRESSION "," EXPRESSION ")"
EXISTS_QUANTIFIER ::= "exists" "(" EXPRESSION, EXPRESSION ")"
USERDEFINED_FUNCTION ::= IDENTIFIER "(" [ARGUMENT_LIST] ")"
ARGUMENT_LIST = EXPRESSION {"," EXPRESSION}
INTOP ::= "+" | "-" | "*" | "/"
BOOLOP ::= "&&" | "||"
COMPARISON ::= ">" | "<" | "<=" | ">="
IDENTIFIER ::= CHAR {CHAR | DIGIT | "_"}
LITERAL ::= BOOLEAN_LITERAL | INTEGER_LITERAL
BOOLEAN_LITERAL ::= "true" | "false"
INTEGER_LITERAL ::= NONZERO_DIGIT {DIGIT} | DIGIT
DIGIT ::= "0" | NONZERO_DIGIT
NONZERO_DIGIT ::= "1" | ... | "9"
CHAR ::= "a" | ... | "z" | "A" | ... | "Z"
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Deployment C
This chapter describes which steps have to be taken to include PES into a sensor node
application and how the application is started to allow PES to receive and process
messages broadcast by the nodes.

C.1 Prerequisites and Configuration

A sensor network application developer who indends to use PES to debug and deploy
his application first needs to include the pes.h header file into every C file he wants to
use assertions with. To make pes.h accessible to the compiler, it needs to be copied
into the application directory, together with linked list.h, another header file, which
pes.h requires to be in the same folder.

The other necessary changes to the application code are that after initializing the node
hardware, the developer also has to initialize PES by calling pda init and supplying
it with two function pointers, which allow PES to access the network neighborhood
as described in section 4.2.4. The other call that has to be done on initialization
of the node is to initialize the attributes of the node, which is achieved by placing
a snapshot into the initialization routine of the application that publishes an initial
value for all attributes.
If the developer intends to use the terminal, he can also call pda cmds register cmds
that registers the commands listed in table C.1 with the BTNut terminal.

Command Description
pdas (on|off) Switch PDA’s on or off.
hood (on|off) Switch hood transfer on or off (i.e., trans-

ferring the hood with SNAP and PDA
messages).

cache Print the attribute cache of the node.
pupd (<INTERVAL>) Set the interval for periodic updates.

Table C.1: The terminal commands that are provided by PES.

To be able to connect to the deployment support network (DSN) provided by SNIF,
the computer that will host the evaluation system needs a Bluetooth adapter that can
be accessed using the Java Bluetooth API (JSR-82 ). Table C.2 lists all dependencies
and the versions used during development, testing and evaluation that are needed by
PES.
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64 C.2. PREPROCESSOR

Dependency Used Version
SNIF Revision 71
Log4J 1.2.15
Commons Logging 1.1.1
Commons IO 1.4

Table C.2: Dependencies required by PES.

C.2 Preprocessor

The preprocessor can be run by executing the class ma.preprocessing.PDAPrepro-
cessor that takes up to 6 arguments. The first two are mandatory

Node folder The name of the folder that contains the node application that has to
be processed. This folder is copied and the contained .c files are modified.

Evaluator folder The name of the folder to which all files containing the extracted
assertions and the derived attribute types are written.

Assertion file The name of the file, relative to the evaluator folder, where the as-
sertions are written to. Optional, defaults to assertions.txt.

Type file The name of the file that will contain all the derived types for node at-
tributes relative to the evaluator folder. Optional, defaults to types.txt.

User type file Path to the file that contains the user-specified types. Optional, the
file is not needed when all types can be inferred automatically.

Global assertion file The name of the file that contains all global assertions, one
assertion per line. Optional, needed only if global assertions are used.

After the preprocessor runs successfully and the generated application is uploaded to
the sensor node, PES can be launched to monitor the network.

C.3 Running PES

To run PES, the class PESRunner has to be executed. It allows the names for the
files that are used by the system to be set. Its main method takes three arguments to
specify the assertion file, the type file and - if available - the global assertion file.
When executed, the main method creates an instance of PESRunner, which effectively
starts PES when the method run is invoked. In the run method, the system is set up
with the BasicEvaluator as assertion evaluator, the AdaptingNetworkModel as the
network model and the NetworkModelConnectivityModel as the connectivity model.
After the basic system is set up, PESRunner starts the GUI and connects it to the
assertion evaluator to receive evaluation results.



Development Setup D
This chapter gives the setup used for testing and developing PES. The backend was
running on a laptop (Lenovo ThinkPad T61p) using the Linux operating system with
the kernel version 2.6.26. The node applications ran on BTnodes Revision 3.
The software used is given in detail in table D.1 on the next page. The table not only
lists the direct dependencies of PES but also components that are required by SNIF
and were a bit arduous to set up.
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