
ETH Library

Trinity: The OSGi module
development server

Master Thesis

Author(s):
Granat, Jérémie

Publication date:
2008

Permanent link:
https://doi.org/10.3929/ethz-a-005657992

Rights / license:
In Copyright - Non-Commercial Use Permitted

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-005657992
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Systems Group

Master’s Thesis

Trinity: The OSGi module
development server

by
Jérémie Granat

Due date 20.7.2008

Advisor:
Jan S. Rellermeyer

Systems Group

ETH Zurich
Department of Computer Science

8092 Zurich
Switzerland

ii

Acknowledgement

This thesis is submitted for partial fulfillment of the requirements of the Master
of Science degree in Computer Science at the Swiss Federal Institute of Tech-
nology (ETH) Zürich. The thesis was done during a six month project from
January 21st 2008 to July 20th 2008 in the Information and Communication
Systems Research Group led by Prof. Gustavo Alonso at the Department of Com-
puter Science of the Swiss Federal Institute of Technology Zürich.

First of all, I would like to thank Professor Gustavo Alonso for giving me the
opportunity to work on this topic. I am grateful for the valuable discussions I
had with the members of the Information and Communication Systems Research
Group, especially Jan S. Rellermeyer, who spent some of his valuable time to
counsel me and answer all the silly questions I could think of with profound
patience and knowledge. I would also like to thank my current employer, the
Swiss Railway (SBB AG), which allowed me to finish my studies at the ETH
Zürich and gave me time, resources and support during the whole period of my
Master.

This work is dedicated to my family and friends who have given me strong
support during my time at the ETHZ.

Zürich, July 20th, 2008.

Jérémie T. Granat

For every problem, there is a solution that is simple, neat, and wrong.
(H. L. Mencken)

The underlying complexity of a given problem is constant. It can be hidden, but
it does not go away.
(Matt’s first law of software complexity)

iv

Abstract

This thesis presents the Trinity Server, a Server supporting the life cycle of dy-
namic application from creation to deployment, allowing developers to predict
the behavior of OSGi applications in different configurations. Furthermore, it
enables them to run tests from the smallest unit at the method level to high level
tests like load testing in live OSGi environments which can be fully customized
by the developers.

The OSGi specification is a dynamic module system for Java. It provides ser-
vices for service oriented computing through the uses of bundles. Bundles are
a packaging and delivery format for components or service implementations. A
specific bundle may have dependencies on arbitrary packages and/or on arbi-
trary services which are provided by other bundles. The OSGi specification
mandates the declaration of package dependencies, but there is no such mecha-
nism for declaring service dependencies. The developer needs a method to know
in advance if his application depending on specific bundles will work with other
version or other implementation. Users can install the application in environ-
ments the developer has no knowledge about. The risk to run into complex
integration and configuration problems when different versions are available is
high. In order to reduce this risk, every combinatorial possibility has to be
tested. The developer has to verify that the application is always working
within its expected behavior. However, there are currently no tools available to
test the variants.

This master thesis remedies this situation by describing the Trinity Server, a
bundle management server which maintains all possible configurations of its
bundles, continuously performs unit and integration tests on them, and allows
the deployment and publishing of the successfully tested configurations.

vi

Contents

1 Introduction 1
1.1 Motivation . 1

1.1.1 Application Lifecycle . 1
1.1.2 Code Evolution . 2
1.1.3 Framework Independence 4
1.1.4 Testing Dynamic Systems 4

1.2 Contributions . 5
1.2.1 Tracking the Application Lifecycle 5
1.2.2 Testing Code Evolution 6
1.2.3 Testing for Framework Independence 6
1.2.4 Alternative Configuration Testing 6

1.3 Outline of the thesis . 7

2 Background 9
2.1 Related Work . 9

2.1.1 SAVVY . 9
2.1.2 OSGi Test Tool . 9
2.1.3 Patent: Method of Testing Open Services Gateway 11
2.1.4 Spring Dynamic Module 12

2.2 Used Technologies and Methodologies 15
2.2.1 Iterative Development . 15
2.2.2 The OSGi Service Platform 16
2.2.3 Distributed OSGi . 22
2.2.4 OSGi Bundle Repository 23
2.2.5 Testing . 23
2.2.6 ASM . 25

3 The Trinity Application 27
3.1 Overview of the System . 27

3.1.1 Build Server . 28
3.1.2 Test Server . 28
3.1.3 Deploy Server . 28
3.1.4 Interaction between the servers 29

4 Trinity Build Server 31
4.1 Architecture . 31
4.2 Staged Test Pipeline (First part) 32
4.3 Creation Stage . 32

viii CONTENTS

4.3.1 Bundle Creator . 32
4.3.2 Directory Watcher . 32

4.4 Validation Stage . 32
4.4.1 Static Bundle Analyzer 33
4.4.2 The IBundleInfoListener Interface 35

4.5 Minimal Configuration Creation Stage 35
4.5.1 Bundle Configuration Manager 36
4.5.2 The IConfigurationListener Interface 38
4.5.3 The IConfiguration Interface 38
4.5.4 Configuration Export . 38

5 Trinity Test Server 41
5.1 Staged Test Pipeline (second part) 41

5.1.1 Unit Tests . 41
5.1.2 Integration Tests . 42
5.1.3 Higher-Level Tests . 42

5.2 Test Orchestrator . 42
5.3 Test Manager . 43

5.3.1 JUnit Bundle Generator 43
5.4 Test Repository Manager . 44
5.5 Report Manager . 44
5.6 Test Child Framework . 45

5.6.1 Default Child Creator . 45
5.7 Test Evaluator . 45
5.8 Test Reporter . 45

6 Test and Benchmarks 49
6.1 Trinity Build Server . 49

6.1.1 Apache Felix . 49
6.1.2 Newton . 51
6.1.3 Permutation of Configuration Generation 53
6.1.4 Scalability Tests . 55
6.1.5 Test Conclusion . 56

6.2 Trinity Test Server . 56
6.2.1 Jmood . 57
6.2.2 Service Binder Example 58

6.3 Newton . 58
6.3.1 Incorrect Bundles . 59
6.3.2 Libraries . 59

7 Future Work 61
7.1 Trinity Build Server . 61
7.2 Trinity Test Server . 61
7.3 Trinity Deploy Server . 62

7.3.1 p2 . 62
7.3.2 Promoted Configuration 63
7.3.3 Deploy Policies and Security 63

8 Conclusions 65

CONTENTS ix

A Trinity Properties 67
A.1 General Properties . 67
A.2 Directory Watcher . 67
A.3 Test Manager . 68
A.4 Test Orchestrator . 68
A.5 Bundle Manager . 68
A.6 External Library Properties . 68
A.7 Default Child Creator . 69

B Trinity Public Interfaces 71
B.1 The IBundleListener Interface . 71
B.2 The ITestManager Interface . 71
B.3 The IConfigurationListener Interface 71
B.4 The ITestRepositoryManager Interface 72
B.5 The IChildFactory Interface . 72
B.6 The IChildInstance Interface . 72
B.7 The IReportManager Interface 73
B.8 The IConfiguration Interface . 74
B.9 The ITestEvaluator Interface . 74
B.10 The IBundleManager Interface 74
B.11 The IBundleInfo Interface . 75
B.12 The ITestResult Interface . 76

C Trinity Generated Event 77
C.1 Event Sets . 77
C.2 Default Events . 78

D Errors in Trinity 81
D.1 Used Library . 81

D.1.1 R-OSGi . 81
D.2 Trinity Errors . 82

D.2.1 Socket Check . 82
D.2.2 RequireBundle Keyword 82
D.2.3 Service Analyzer . 82
D.2.4 Dependency Cycle . 83

Glossary 85

x CONTENTS

List of Figures

1.1 Typical Project Lifecycle[42] . 1
1.2 Software life cycle costs[28] . 3

2.1 SAVVY-aware development process.[10] 10
2.2 Screenshot of the OSGi Test Tool[35] 11
2.3 Main architecture of the OSGi test server[60] 12
2.4 Example of an OSGi Spring Application[63] 13
2.5 The Iterative Development Process[20] 15
2.6 The OSGi Service Gateway Architecture[76] 17
2.7 The physical bundle life-cycle[50] 18
2.8 OSGi Bundle Dependencies[45] 20
2.9 High Level Class Diagram of junit.framework 24

3.1 The main idea of the Trinity Application 27

4.1 Trinity Build Server: Overview 31
4.2 The Test pipeline (first part) . 32
4.3 Example of a schematic representation of a configuration 36
4.4 Representing a configuration with sub-configurations 37
4.5 Example of a configuration in Graphviz graphic format 39

5.1 The Test Pipeline (second part) 41
5.2 Generation of Test Bundles . 43
5.3 Example of a configuration in the Test Reporter 46

6.1 Apache Felix Test 1 . 50
6.2 Apache Felix Test 2 . 51
6.3 Newton Test 1 . 52
6.4 Newton Test 2 . 53
6.5 Mean Configuration Creation with Apache Felix 54
6.6 Scalability Test with Apache Felix 55
6.7 Newton Configuration in Test . 58

7.1 High Level View of the p2 System[72] 62
7.2 Trinity Server Network . 64

xii LIST OF FIGURES

Chapter 1

Introduction

1.1 Motivation

Component-Based Software Engineering (CBSE) and Service-Oriented Archi-
tectures (SOA) are prominent software architecture approaches nowadays[41].
Two popular specifications reflecting those architectures are Java EE[64], for-
mally known as J2EE, and OSGi[52, 55]. Those specifications cover, at different
levels, a set of important features that characterize components and services.
Conceptual parallels can be made between them to better understand the prob-
lems programmers have when they implement applications using those architec-
tures.

1.1.1 Application Lifecycle

The traditional life cycle of a project is composed out of 4 phases: Initiation,
Planning, Execution and Closure.[42]

Figure 1.1: Typical Project Lifecycle[42]

• The Initiation Phase is typically needed for the development of the dif-
ferent business cases: Creating the project team, getting the necessary

2 Introduction

financial support, defining the project lead etc.

• The Planning Phase consist of creating a project plan, finding and as-
signing the resources, creating a quality, risk and acceptance plan, and
defining the different milestones.

• The Execution Phase involves the building and testing of the application
as well as the monitoring of the different plans.

• The Closure is the delivery of the product and the review of the project.

An application is planned, build and run on the target systems. The num-
ber of cycles changed depending on the management model used (Waterfall[59],
Spiral[6] or Iterative[23]). However, the traditional lifetime of an application is
always the same from requirements, to design and implementation, to deploy-
ment, to operation.

Open World System

The dynamic nature of OSGi[76] based systems as well as service-oriented com-
positions requires a re-thinking of the whole lifetime of an application. The OSGi
framework[47] is a sophisticated solution for developing and managing modular
software. The Framework itself can be seen as an open world system[37] with
the modules being open to context changes from other dynamically loaded mod-
ules while the application is executing. This invalidates the traditional solution
software designers have adopted to create new application versions. The changes
they design, implement and test can have results which were never anticipated.
An OSGi Application designer must take into account that the program under
development is going to systems that could possibly interfere with his applica-
tion. However, the overall functionality and quality of the application will still
be under the responsibility of the developer. This high degree of dynamism
puts a indisputable emphasis on the need to validate the correctness of the
application — in as many environments as possible.

Integrated Tool Environment

There are existing tools to develop OSGi bundles[71] and upcoming approaches
like p2[73] to deploy these bundles to client machines. There are also tools
assisting in finding the correlations between tests and lines of code covered by
the tests.[78]. However, the current tools do not yet support the testing of
OSGi applications at runtime. There are also no tools supporting the whole
software life cycle of OSGi applications, which typically consists of iterations
of development, test, and deployment to the end users. Moreover, the different
tools are stand-alone applications and do not necessary communicate with each
other, which can lead to integration problems or inconsistencies in the deployed
applications.

1.1.2 Code Evolution

Parallels between SOA and OSGi Code Evolution

The use of regression tests[83, 19, 3] can reduce the integration problems with
version changes[44] but most of the time, components grow or change due to

1.1 Motivation 3

new requirements and the interfaces grow with them. We can distinguish three
types of changes in such a component[56]:

• Implementation change only (patches): As the implementation is isolated
from the user, this change will not have any effect on the composition
provided the regression tests are successfully passed.

• Compatible interface change: The compatibility for Java interfaces is
more complex than for Web Services / XML and can be found in [65]. If
the interfaces are compatible, it is the responsibility of the importing bun-
dle to choose the correct version if they want to use the new functionality.

• Incompatible interface changes: In this case, the importing client must
make sure to choose the right version. Old client could have runtime
problems if the Manifest does not exclude the incorrect version.

A tool for systematic testing of the compatibility in component evolution is
currently non-existent.

Code Isolation

Software developers are not just producing new software. Studies have shown
that between 50%[67] and 67%[61] of the cost of software is in changes made to
the software after the project is deemed complete. Of those 67%, about half is
in the fixing of bugs. The other half is either improving the working code, or
adding new features to the already existing software.[39]

Figure 1.2: Software life cycle costs[28]

Loosely coupled systems like OSGi or Web Services allow breaking the system
down into independent modules (the services) which interact with each other.
In theory, services can be developed in isolation and integrated at a later point
in time, provided that the interfaces (the “contracts” between the components)
are defined and “used as they were intended to be”. Interfaces are defined
with a concrete idea of their interaction in mind but will be used by others for
completely different purposes. In OSGi, the framework facilitates the complete

4 Introduction

isolation of the service implementation in bundles, sharing only what is needed
to communicate and to use methods of other components. The problem of this
approach is that the usual code evolution mechanism fails. This is a general
problem encountered in service oriented systems[40].

Versioning and Impact Problems

When developers modify service-driven applications by altering the service in-
terfaces, two problems arise: First, the new versions of the services are no longer
synchronized with the older versions. Second, the lack of a robust, scientifically
substantiated mechanism for identifying the places in the code where objects are
defined and used forces developers into a manual maintenance exercises. This
is when versioning conflict between different bundle releases appears. As more
versions appear over time, there is a very serious risk of conflicting modifications
and inconsistency.

1.1.3 Framework Independence

The OSGi platform and the JEE platform are specifications which defines the
container for the applications to run in. Both of them describe the format of the
components that can be installed in the environment as well as the semantics
for the definition of the interfaces. They also describe the basic services the
platform should implement for the life-cycle behavior of the components, their
security, and how they interact with each other.
The different implementations are based on those specifications, but at the
same time, offers a multitude of services, which, when used by the developers
renders the application framework dependent. This can lead to differences in
the expected behavior of the application or to errors and crashes if it is installed
on a different framework or version thereof than the one it has been tested on.

1.1.4 Testing Dynamic Systems

The current testing tools do not work well with dynamic[14] or service oriented[84]
systems. Applications implementing those architectures are often seen as a
grouping of more or less loosely coupled components interacting with each other,
each implementing a small part of the whole. Those components exhibit a very
small part of their behavior in static ways and rely most of the time on the
runtime environment and the underlying framework for meaningful interaction.
This is the case for technologies such as JEE and OSGi.

Mock Objects

The biggest problem with testing SOA/OSGi code, beside the correctness at the
method level, is at the bundle boundary. A lot of problems occur when a method
in a bundle calls another method on an object defined in a different bundle. This
is the case for any nontrivial SOA/OSGi system. The use of Mock Objects[58]
for simulating the behavior of the other components enables the programmer to
concentrate the testing effort on the component under development. However, a
mock object cannot fully replace the real environment. Furthermore, mocks can
be time consuming to write and to maintain. Often, to effectively or non-trivially

1.2 Contributions 5

test a service, dynamic behavior from the mock implementation is required.
E.g. the mock object cannot just send back a simple value but has to implement
some application logic and react accordingly. A developer can get distracted
from the original goals of the project by building and maintaining complex
mock/simulator systems.

Containerless Testing

Containerless tests are tests executed in an environment different from the one
the component under test were designed to run in. The most obvious example is
the use of JUnit Test[21] on the console or in an Eclipse environment to test an
OSGi module or a dynamic web component. Containerless tests are sometimes
not trivial to set up because all project effort is typically driven toward getting
the container-based code to function correctly. Basically, the programmer has to
simulate the framework and the other components (using mocks) in a predefined
configuration with very specific start parameters[1]. Even if the tests are useful
to check the correct implementation of some functionality, the results are not
really meaningful concerning their correctness as an active system or its stability
when other components are installed in the same environment.

Testing with different versions

Code evolves over time. In a conventional application, the use of regression
test[19, 3, 44, 29], unit test, and other controlling features[25, 57] helps projects
in holding the changes under control. The problem of open world systems is
that a programmer or a development team cannot be sure that the version of
the used services will be the same on every platform on which the program is
eventually deployed. This is even more complex since services may or may not
have been created by the same individual. Different teams may have created
alternative implementations of a given service. Testing every variant [11, 7, 82]
is an exponential endeavor and can currently only be done manually. Using
formal method to infer the correctness of a program does not help since every
variant still has to be inferred[9, 22].

1.2 Contributions

The main purpose of Trinity is to address these points. The Trinity server
introduces the notion of managed bundles. Managed bundles are OSGi modules
under the control of the Trinity server.

1.2.1 Tracking the Application Lifecycle

The Trinity System uses a truly continuous integration model that first ana-
lyzes the bundles to determine its dependencies and capabilities. They are then
assembled in such a way as to fulfill the mandatory requirements and tested
with the existing unit tests in as many different valid configurations as possible
to increase the coverage of the unit tests and achieve generality. Through the
testing of the different configurations, a dependency matrix can be assembled
which shows the bundles interoperating correctly and pointing the programmer
to the problems found in the incompatible settings.

6 Introduction

Products in use which experience trouble with the bundles of other vendors
can use Trinity by adding those bundles as binary managed bundles which will
automatically create the appropriate configurations and have the tests run.

1.2.2 Testing Code Evolution

The Trinity System is version-aware and creates a set of configurations for ev-
ery version of a bundle added to the system taking the version constraints of
the other bundles into account. It will also test the resulting configuration to
detect constraints defined in the manifest of bundles which have not been nar-
rowed enough. This ensures that versioning conflicts between bundles are caught
quickly and can be remedied at an early stage. It also allows the programmers
to narrow the version constraints, thereby improving the resolving process by
excluding all incompatible versions.

The evolution of the code can also be tested explicitly by testing the appli-
cation using the update mechanism of the child OSGi instance. Thus ensuring
that the new bundle version will work with the application without restarting
it.

1.2.3 Testing for Framework Independence

The Trinity System provides the user with a test bed implementation. The
user can customize and extend it for his own needs and thus explicitly test for
framework independence by implementing a test bed for every framework ven-
dors and version he wants the application to be compatible with. The test bed
implementation is not limited to the framework, and could, in theory, encom-
pass the creation of a complete environment using virtual machines[81] and test
the application on different OS, Java versions, framework versions and so on.

1.2.4 Alternative Configuration Testing

The Trinity System provides mechanism to automatically generate the differ-
ent possible configurations and tests them against user defined and generated
test cases. Thereby, the administrator is able to catch integration problem or
version incompatibilities at a much earlier stage. The tests and the bundles are
installed on a new process, the test bed, where they are automatically executed.
This setup allows expected and unexpected exceptions to be thrown without af-
fecting the server. The tests can then still be evaluated, even if an error crashed
the whole system.

The user-defined test cases can be implemented as conventional JUnit[13] test
cases. Additionally, they can implement Trinity specific methods to get access
to the BundleContext and the Trinity configuration, which will be injected at
runtime. The test cases themselves are packed into test bundles by the Trin-
ity server with all the necessary dependency headers and activation mechanism
generated to allow the correct and automatic running of the tests.

1.3 Outline of the thesis 7

1.3 Outline of the thesis

The first Chapter described the different problems encountered when writing
component based applications and dynamic systems. It also presented how
the Trinity System helped in solving these problems. Chapter 2 introduces the
relevant background information this thesis is built upon and the other published
solutions found handling the same problems. It shows the different technologies
used in the implementation of the system. It also gives a brief overview of
the overall methodologies the system can be used in. Chapter 3 describes a
bird’s eye perspective of the system and the role of the different Trinity Servers.
The fourth chapter explains the Build Server and the different steps a bundle
has to go through to be added into the system. The Test Server is described
in chapter 5 in more detail and explains how the bundles are tested and the
result are propagated and saved. The tests and benchmarks done using the
Trinity System prototype implementation can be found in chapter 6. Chapter 7
provides an outlook on the work that will be done in the future and the different
concept which needs more attentions, in particular the implementation of the
Deploy Server as a possible extension of the p2 System. Finally, Chapter 8
presents the conclusions of this thesis. This is followed by the Appendix with
the different properties used by the Trinity System and the public interfaces to
extend its functionality. A glossary and the bibliography conclude the thesis.

8 Introduction

Chapter 2

Background

This chapter describes the methodologies and technologies Trinity is based on. It
also describes the different product alternatives already available. Some research
has been done on the potential cause of the problems of code evolution and
versioning in SOA[26, 4, 38, 56], but very few conjectures have been made about
this subject on OSGi.

2.1 Related Work

2.1.1 SAVVY

A method to facilitate open world programming is SAVVY (Service Analysis,
Verification and Validation methodologY), a methodology for lifelong validation
of service compositions[10]. SAVVY is composed of five steps consisting of

• The definition of the desired service.

• The addition of the different requirements with the functional and non-
functional attributes.

• The analysis and verification of the composition

• The deployment of the service with monitoring tools attached to it to
check the validation.

• The monitoring of the running service, with a feedback loop for contract
violations back to the correct authority.

SAVVY is still in a very preliminary phase of its development and is only a
high-level, long-term vision. Furthermore SAVVY focus on Web Services as
an example of open world system like other works on the subject of monitoring
[16, 36]. The specific aspects of OSGi, a representative of an open world system,
are not taken into account. Figure 2.1 on page 10 shows the proposed five step
development process.

2.1.2 OSGi Test Tool

The OSGi test harness[35] was developed to test OSGi framework component
in a runtime environment. It was designed before JUnit was around. The main

10 Background

Figure 2.1: SAVVY-aware development process.[10]

idea of the OSGi test harness is to have the test cases send their output to
the console, which is then compared to a reference output. The differences are
flagged as errors for the tester. As JUnit became increasingly popular, it was
decided to adopt the structure and ideas of JUnit in the test harness.

Nowadays test cases created with the OSGi test harness are virtually indistin-
guishable from the JUnit API. Unfortunately, JUnit itself could not be adopted
because of the severe constraints on the target environment. OSGi had to work
in embedded systems and JUnit, as is, is not well suited for the task. The
original test harness, which was developed in 1999, already had an architecture
where the UI was running in another process so that the requirements on the
target could be kept to an absolute minimum.
The test harness has the possibility to run the test case in two different pro-
cesses. Each test case can run partly in the Director (the GUI host) and partly
in the target. This architecture significantly reduces the need for setup instruc-
tions before the test can be run, a major headache with larger test suites.

At first sight, it might appear that bundle functionality is the only focus of
the unit test. However, in OSGi applications, bundle management turned out
to be as important to the testing process as the function tests were in more con-

2.1 Related Work 11

Figure 2.2: Screenshot of the OSGi Test Tool[35]

ventional applications and special support for the management of the bundles
had to be added. The start of a bundle or the update of a bundle with a newer
version can also be tested with the test harness.

The test suites can be run from a rather nice looking GUI (see figure 2.2)
but can also be run from a script or command line.

2.1.3 Patent: Method of Testing Open Services Gateway

The “Method of Testing Open Services Gateway” patent[60] defines a method
to effectively test whether a service bundle operates by loading it in a configu-
ration of predefined bundles and testing it with predefined test methods. The
OSGi service platform test tool of this patent includes a framework in which
test cases are installed, an adapter enabling the framework to function in a
test execution environment, a director bundle providing a UI of the test tool,
services that manage the test and OSGi services, and an agent bundle relying
message movement with the test case bundle to a framework of a test host.
The OSGi service platform test tool, as shown in figure 2.3 on page 12, is placed
in a test manager host. The manager is composed of an OSGI framework and an
adapter bundle. A system bundle, a director bundle and other services are then
loaded by the OSGi Framework to perform the tests. The Java virtual machine
is an external component and provides an environment for the whole Framework.

12 Background

The method of testing an OSGi service in this system is basically defined into
3 steps:

• Setting up the whole test environment (director, agent and service bundle).

• Installing the different test cases.

• Running the Tests and getting the output.

Figure 2.3: Main architecture of the OSGi test server[60]

The patent is dated 2005 and there are currently no public implementation
available. The test server as described in the paper does not make any uses of
external test frameworks and describes a proprietary system with no possibility
of extending it for user specific purposes.

2.1.4 Spring Dynamic Module

The Spring Framework[63] is the leading full-stack Java/JEE application frame-
work. The main purpose of Spring is to provide an effective way of managing
the business objects of an application. Its intend is to facilitate the use of J2EE
and provides a consistent configuration handling throughout applications. The
Spring Framework makes unit testing of application easier by allowing the user
to build application using Plain Old Java Objects (POJOs) instead of EJBs or
OSGI Bundles. It has recently published its first version (1.0.2) of the Spring
Dynamic Modules[62]. The Spring Dynamic Modules for OSGi enables develop-
ers to write Spring applications that run in an OSGi framework. OSGi enabled

2.1 Related Work 13

Spring applications automatically acquire the benefit of the OSGi framework
and have a better separation of the different modules, the ability to dynami-
cally add, remove and update modules at runtime, deploy multiple versions of
a module in parallel as well as a dynamic service model.

Figure 2.4: Example of an OSGi Spring Application[63]

Spring DM provides the following advantages[51]:

• Spring facilitates the splitting of application logic into modules.

• Several versions of a module can be deployed at the same time.

• Modules are able to automatically find and use services which other mod-
ules installed in the system provide.

• Modules can be dynamically deployed, updated and removed from the
running system.

• The Spring Framework is responsible for the instantiation, configuration,
composition and decoration of components within and across modules.

14 Background

In Spring DM, the spring-based application logic is packed as bundles. A bun-
dle contains one Spring application context and a Spring-based application may
consist of multiple bundles. The hope of Spring DM is to allow the program-
mer to build on OSGi, but deploy in Tomcat, WebSphere, WebLogic or any
other application server. Basically, it gives an ”OSGi powered Web Applica-
tion” view[2].
Integration testing with Spring-OSGi can be done by extending a predefined
class to automatically create an OSGi bundle containing the tests on the fly.
This class handles starting an OSGi container, installs all bundles and runs tests
inside OSGi. Currently, it supports Equinox, Felix and Knopflerfish. There is
also a maven property to simply switch containers with profiles (i.e. -Pfelix).
To interact with OSGi, Spring DM provides a number of conveniences like the
ability to automatically start other bundles after a specific one has been started,
add default property values or create bundles on the fly and add them to the
OSGi installation. In addition, it offers the possibility to create OSGi mock
objects derived from a specific Spring DM package to test the bundles created
using the Framework.

Here is an example on how to use mock objects in Spring DM:

private ServiceReference reference;
private BundleContext bundleContext;
private Object service;

protected void setUp() throws Exception {
reference = new MockServiceReference();
bundleContext = new MockBundleContext() {
public ServiceReference getServiceReference(String clazz) {
return reference;

}

public ServiceReference[] getServiceReferences(String clazz,
String filter) throws InvalidSyntaxException {

return new ServiceReference[] { reference };
}
public Object getService(ServiceReference ref) {
if (reference == ref)
return service;

super.getService(ref);
}

};
...

}
public void testComponent() throws Exception {
OsgiComponent comp = new OsgiComponent(bundleContext);
assertSame(reference, comp.getReference());
assertSame(object, comp.getTarget());

}

2.2 Used Technologies and Methodologies 15

2.2 Used Technologies and Methodologies

2.2.1 Iterative Development

Iterative development is a cyclical software development meta-process. A meta-
process supports the effort of creating flexible process models. The purpose of
process models is to document and communicate processes and to enhance the
reuse of processes. Iterative development was created in response to the weak-
nesses of the waterfall model[59]. It is an essential part of different development
paradigms like the Rational Unified Process[43], eXtreme Programming[85] and
other models related to Agile Software Development[5].

Program Lifecycle

The fundamental idea behind iterative enhancement is to develop a software
system incrementally. I. e. allowing the developer to take advantage of what
was being learned during the development of earlier, incremental, deliverable
versions of the system. In each iteration, design modifications are made and
new functional capabilities are added.
The procedure itself consists of the Initialization step, the Iteration step, and
the Deployment step as seen in figure 2.5.

• The initialization step creates a base version of the system. The goal for
this initial implementation is to create a product to which the user can
react.

• The iteration involves the redesign and implementation of new features
and the analysis of the current version of the system. The goal for the de-
sign and implementation of any iteration is to be simple, straightforward,
and modular, supporting redesign and enhancements. The analysis of an
iteration is based upon the tests and user feedback, and the program anal-
ysis facilities available. It involves analysis of the structure, modularity,
usability, reliability and efficiency.

• The deployment step is the last step in the process and involve the pub-
lishing of the finished product and its delivery to the users.[23]

Figure 2.5: The Iterative Development Process[20]

16 Background

Continuous Integration

Continuous Integration is a software development practice centered on the fre-
quent commitment of the individual work of the programmers into the central
source repository, thereby achieving an integration of the individual pieces of
code multiple times a day. Normally, each commit is followed by an automatic
building process and a test run to detect the integration errors as quickly as
possible. The feedback from projects using this method was that it leads to sig-
nificantly less integration problems and allowed for a more rapid development
with less undiscovered errors.[17]

The greatest and most wide ranging benefit of Continuous Integration is re-
duced risk. When component are fitted together as the last step before deploying
into a productive environment, the whole application falls apart. This is known
as the big-bang integration problem[8]. In big bang integration testing, individ-
ual modules of the programs are not integrated until a milestone has been reach
or the individual program parts are finished. In this approach, the program is
integrated without any formal integration testing, and then run to ensures that
all the components are working properly. There are many disadvantages of the
big bang approach:

• Interface contracts have been changed without notifying those using them.

• False assumptions have been made on what or how to return the results.

• It is very difficult to isolate the found defects, as it is very difficult to tell
whether the defect is in a component or result in the wrong usage of an
interface.

Add to the sudden explosion of problems found in the code the pressure of a
looming deadline (or the greater pressure of being behind schedule) and the
situation becomes a very explosive one that could have been avoided by a few
simple guidelines.
Continuous Integration gives the project members the possibility to know at all
times what the project status is, what works, what does not and what are the
outstanding errors in the system. The errors are easier to find and to remove
as everything has been written with self-testing code in mind. Since everyone
is only changing a little bit at a time each time the whole application is built,
the search for a bug is at an earlier stage and easier to find. As a result projects
with Continuous Integration tend to have dramatically less errors in production.

Of course, the benefits of Continuous Integration are directly related to how
good the test suite covers the functionality of the application. It’s quite easy
to create a test suite that does not really make any difference (by having every
method return true, as an example).

2.2.2 The OSGi Service Platform

The Open Services Gateway Initiative (OSGi) was founded by 15 companies and
incorporated as a non-profit corporation in May 1999. The initiative has been
formed in order to define and promote open specifications for the conception of

2.2 Used Technologies and Methodologies 17

managed components for applications ranging from small embedded to large-
scale client/server systems.[12]

OSGi Bundle

The basic component unit in OSGi is called the bundle. A bundle is a packaging
format for the applications that extends the normal Java ARchive (JAR) file.
The JAR file, in turn, is fully compatible with the ZIP files format. The main
contents of the bundle are the class files and a Manifest file. Class files are the
executable part of a bundle. In Java, classes are grouped in packages, which have
unique names within the jar file. The bundles provide services and packages to
others and make uses of services and packages from other bundles. The services
that a bundle provides to other components are registered with the framework
which provides a service registry for that purpose. Services themselves are Java
interface definitions with an intentional semantic.
A JAR file additionally adds a Manifest file containing information about the
content of the bundle, the meta data. A Manifest stores information about
the contents of the JAR file in headers. Some headers are predefined by the
JAR Manifest specification[66] but the total set of headers is freely extendable
and the values can be localized. The OSGi Alliance has defined a number of
additional Manifest headers to allow the JAR file to be used in an OSGi Service
Platform.

OSGi Architecture

Basically, the OSGi Architecture is a dynamic module system for Java and pro-
vides a set of specifications and tools allowing the construction of small, reusable
components: the bundles. A set of bundles can be packed and deployed as an
application.[76]

The OSGi Architecture is composed of different layers: The execution envi-
ronment depends on the device the framework is running on. The other compo-
nents completing the framework are the Service Registry, the Bundle Life Cycle
Service and the Bundle Class Loader (Modules) as seen in the picture below:

Figure 2.6: The OSGi Service Gateway Architecture[76]

18 Background

The Bundle Life Cycle Service allows the management of the bundle at runtime.
A bundle can be in one of the following states[50]:

• active - the bundle is now running

• installed - the bundle is installed but not resolved

• resolved - the bundle is resolved and is able to be started

• starting - the bundle is in the process of starting

• stopping - the bundle is in the process of stopping

• uninstalled - the bundle is uninstalled and may not be used

Figure 2.7: The physical bundle life-cycle[50]

The Manifest File

The manifest is a file called MANIFEST.MF in the bundle’s JAR file. It contains
meta-data describing, among other things:

• The name of the bundle

• The name of the class used as starting point.

• A description of the bundle.

• The required Java version or environment.

2.2 Used Technologies and Methodologies 19

• The name of the bundle author.

• The bundle’s internal classpath.

• The native libraries required by the bundle.

• The Java packages that the bundle requires or provides.

Additionally the required and/or provided services of a bundle may be specified.
It is a structured file with attribute-value pairs (i.e., like Java properties) where
each attribute has a defined syntax that must be used to specify its values. For a
more detailed overview about the syntax and semantics of the different headers
and their attributes see[75].

1 Manifest-Version: 1.0
2 Bundle-ManifestVersion: 2
3 Bundle-Name: Trinity Bundle Manager
4 Bundle-SymbolicName: ch.ethz.jgranat.trinity.bm
5 Bundle-Version: 1.0.0
6 Bundle-Activator: ch.ethz.jgranat.trinity.bm.BundleActivator
7 Bundle-ClassPath: .,

lib/dependency1.jar
8 Import-Package: org.osgi.framework;version="1.3.0"
9 Export-Package: ch.ethz.jgranat.trinity.bm;version="1.1.0"

Example of a Manifest File

The Bundle represented by this Manifest File is named “Trinity Bundle Man-
ager” (3). Its namespace is defined by the SymbolicName header (4) and is

‘‘ch.ethz.jgranat.trinity.bm’’.

It exports one package (9) and imports the OSGi Framework package (8). It
also uses an internal jar file (7). The entry point for the bundle is the class

‘‘ch.ethz.jgranat.trinity.bm.BundleActivator’’

where specific methods will be called when the bundle is started and stopped
(6).

Sharing packages

The OSGi Framework treats packages as an integral part of the bundle and, if
not specified otherwise, keeps them private from the other handlers. However, it
is possible to share packages between bundles by specifying them in the import
and export headers of the Manifest file. Exporting means that packages (a set
of classes) are made available to other bundles. Importing means that packages
need to be available (exported) from other bundles in order for the bundle to
work. If multiple bundles are exporting the same package (e.g., with a different
version), the framework selects an appropriate version for each bundle import-
ing this package.
Even if the framework does not allow more than one package with the same
version to be shared at runtime, multiple bundles can still provide the same
class with different versions. This is a potential cause for version incompatibil-
ity between different bundles if the restrictions on the imports have not been
narrowed enough. A related problem is the direct dependency on other bundles.

20 Background

Sharing Services

The OSGi Platform defines the Service Registry, which dynamically links dif-
ferent bundles together while tracking their state and dependencies. Bundles
can then register objects, search for objects given a specific filter or receive
notifications when services matching the filter are registered or unregistered.
Object registered in this manner are called services and can be registered under
different names and with a set of properties.

Figure 2.8: OSGi Bundle Dependencies[45]

As with the packages, a bundle can register services to offer some functions to
the other bundles in the framework and can specify the services it needs as well.
There are, however, some differences:

• Package imports are tight coupling and have to be fulfilled in order for the
bundle to be resolved and started. They can be seen as mandatory require-
ments. Service dependencies are loose couplings and not required for the
resolution of the application. They can be seen as optional requirements.
However, bundles import services for a reason and not finding them may
result in the application not working according to its specification.

• The resolving of a package import is done by the framework, which will
automatically select the best choice from a list of possible matches. This
means that only one version of a package will ever be imported in a specific
bundle. The Service Registry allows for more than one service registered
under the same name to be retrieved and used, which offers a more complex
composition on the service level (1 7→ m for services instead of 1 7→ 1 for
packages).

public class Activator implements BundleActivator {
public void start(BundleContext context) throws Exception {

2.2 Used Technologies and Methodologies 21

context.registerService(IBundleManager.class.getName(),
new DefaultBundleManager(context),
new Properties());

}
...

}

Example of registering a service in the OSGi Framework

Events

Beside the direct communication between bundles that tight (packages) or loose
(services) coupling allows, the OSGi framework has also specified a complete
indirect communication layer that is based on the publish/subscribe messaging
pattern[77]. This pattern decouples sources from their handlers by interposing
an event channel between them. The publisher posts events to the channel,
which identifies the handlers needed to be notified and then takes care of the
notification process. The EventAdmin service provides a place for bundles to
publish events, regardless of their destination. It is also used by event handlers
to subscribe to specific types of events. Events are published under a topic,
together with a number of event properties. Event handlers can specify a filter
to control the events they receive on a very fine grained basis.

The topic of an event defines the type of the event. It is fairly granular in
order to give handlers the opportunity to register for just the events they are
interested in. When a topic is designed, its name should not include any other
information, such as the publisher of the event or the data associated with the
event, those parts are intended to be stored in the event properties. The topic
is intended to serve as a first-level filter for determining which handlers should
receive the event. EventAdmin service implementations use the structure of the
topic to optimize the dispatching of the events to the handlers.

Event Handlers must be registered as services with the OSGi framework
under the object class org.osgi.service.event.EventHandler. Event han-
dlers should be registered with a property (constant from the EventConstants
class) EVENT TOPIC. The value being a String[] object that describes which
topics the handler is interested in. A wildcard (’*’) may be used as the last to-
ken of a topic name, for example ch/ethz/jgranat/*. This matches any topic
that shares the same first tokens. For example, ch/ethz/jgranat/* matches
ch/ethz/jgranat/beginMethod. Event handlers which have not specified the
EVENT TOPIC service property must not receive events.

public registerEvent implements BundleActivator, EventHandler {

public void start(BundleContext context) {
this.eventAdmin = new ServiceTracker(context,

"org.osgi.service.event.EventAdmin",
null);

this.eventAdmin.open();
Hashtable ht = new Hashtable();

22 Background

ht.put(EventConstants.EVENT_TOPIC,
new String[] { ITestRunner.TEST_TOPIC_CHILD + "/*" });

context.registerService(EventHandler.class.getName(), this, ht);
}
public void handleEvent(Event event) {
// Handle the received events...

}
}

Example of an Event Handler

Event Publisher To fire an event, the event source must retrieve the Even-
tAdmin service from the OSGi service registry. Then it creates the event object
and calls one of the EventAdmin service’s methods to fire the event either syn-
chronously or asynchronously.

public class myPub {
ServiceTracker tracker;

public myPub(BundleContext context) {
tracker = new ServiceTracker(context,

EventAdmin.class.getName(),
null);

tracker.open();
}

public void doSomething() {
EventAdmin ea = (EventAdmin) tracker.getService();
if (ea != null)
ea.sendEvent(new Event("ch/ethz/jgranat", new Hashtable()));

}
}

Example of an Event Publisher

2.2.3 Distributed OSGi

The OSGi specifications define a small layer where multiple Java based compo-
nents cooperate together as an application. It is a very powerful system that
allow the partial isolation of the different component in a single JVM.[74]. But
sometimes, using a single instance is not enough and several frameworks have
been created to allow a transparent communication between different OSGi
frameworks.

R-OSGi

R-OSGi[30] is a middleware layer on top of OSGi that extends the ordinary
OSGi framework to incorporate support for distributed module communication
and management.

R-OSGi makes the following contributions:[27]

2.2 Used Technologies and Methodologies 23

• Seamless embedding in OSGi: From the OSGi framework’s point of view,
local and remote services are indistinguishable. Existing OSGi applica-
tions can be distributed using R-OSGi without modification.

• Reliability: The distribution of services does not add new failure patterns
to an OSGi application. Developers deal with network-related errors in
the same way they deal with errors caused by module interaction.

• Generality: The middleware is not tailored to a subset of potential ser-
vices. Every valid OSGi service is potentially accessible by remote peers.

• Portability: The middleware runs Java VM implementations for typical
resource-constrained mobile devices, such as PDAs or smartphones. The
resource requirements of R-OSGi are by design modest.

• Adaptivity: R-OSGi does not impose role assignments (e.g., client or
server). The relation between modules is generally symmetric and so is
the distributed application generated by R-OSGi.

• Efficiency: R-OSGi is fast, its performance is comparable to the (highly
optimized) Java 5 RMI implementation, and is two orders of magnitude
faster than UPnP.

2.2.4 OSGi Bundle Repository

OSGi specifications are being adopted at an increasing rate. The number of
bundles available worldwide is likely in the thousands, if not low ten thousands.
Although many of these bundles are proprietary and not suitable for distribu-
tion, there are a large number of distributable bundles available. The current
situation is that vendors have proprietary bundle repositories. However, in the
open source community, the OSGi Bundle Repository allows end users to dis-
cover bundles using a command line tool that runs on any OSGi Framework.[49]
The OSGi Bundle Repository[54] is an incubator and repository for OSGi bun-
dles. OBR has two main goals:

• Provide a repository of useful and/or didactic bundles that can be easily
deployed into existing OSGi frameworks.

• Promote a community effort around bundle creation by increasing the
visibility of individual bundles.

2.2.5 Testing

JUnit[32] is a unit testing framework for the Java programming language. Cre-
ated by Kent Beck and Erich Gamma, JUnit is one of the xUnit families of
frameworks that originated with Kent Beck’s SUnit. JUnit has spawned its
own ecosystem of JUnit extensions.[13]

Design

JUnit is designed around two key design patterns: the Command pattern and
the Composite pattern.
A TestCase is a command object. Any class that contains test methods should

24 Background

subclass the TestCase class. A TestCase can define any number of public
testXXX() methods. To check pre and post conditions, the Assert superclass de-
fines the necessary assertXXX() methods in all variations. A very useful method
is assertEquals which is present for the primitive types as well as one for ob-
jects. The arguments to the assert methods almost always take the same form:
“message, expected-value, actual-value” or the simpler version “expected-value,
actual-value”. As a rule a message should always be supplied because it helps
provide additional information when reading failed tests.
TestCase subclasses can use the setUp() and tearDown() methods to initialize
and release some initial environment. Each test runs in its own context, calling
setUp() before and tearDown() after each test method to ensure there can be
no side effects among test runs.
TestCase instances can be composed into TestSuite hierarchies that automati-
cally invoke all the testXXX() methods defined in each TestCase instances. A
TestSuite is a composite of other tests, either TestCase instances or other Test-
Suite instances. The composite behavior exhibited by the TestSuite allows you
to assemble test suites of test suites of tests, to an arbitrary depth, and run all
the tests automatically and uniformly to yield a single pass or fail status.

Figure 2.9: High Level Class Diagram of junit.framework

Example

public class MoneyTest extends TestCase {
public void testSimpleAdd() {

Money m12CHF= new Money(12, "CHF"); // (1)

2.2 Used Technologies and Methodologies 25

Money m14CHF= new Money(14, "CHF");
Money expected= new Money(26, "CHF");
Money result= m12CHF.add(m14CHF); // (2)
Assert.assertTrue(expected.equals(result)); // (3)

}
}

Example of a JUnit Test Case

A good example on how to use JUnit is written in the JUnit Cookbook[31].
The newest version (Version 4.x) also allows the use of annotation to specify
TestCases.

2.2.6 ASM

ASM is an all purpose Java bytecode manipulation and analysis framework.
It can be used to modify existing classes or to dynamically generate classes,
directly in binary form[46].
The main problem when manipulating a Java class is that a compiled class is
just an array of bytes, which is almost impossible to modify directly. In fact, it is
even difficult to just read a compiled class, in order to analyze its tree structure.
ASM uses the visitor design pattern without representing the visited tree with
objects and can effectively achieve a performant byte code manipulation.
The ASM library provides two APIs for generating and transforming compiled
classes: the core API provides an event based representation of classes, while
the tree API provides an object based representation.

26 Background

Chapter 3

The Trinity Application

3.1 Overview of the System

Figure 3.1: The main idea of the Trinity Application

The Trinity Server is the vision and the end system this master thesis started
to create. The main idea is to support the entire programmatic view of an
iterative program life cycle in an active, open world system. It is composed of
the three main phase ’Building’, ’Testing’ and ’Deploying’, coupled with client
components in form of Eclipse Plug-ins to help the programmer see, manage and
configure the servers, their components and the final configurations to export.
The idea behind the Trinity System is to create a loop of the three main phase
of building the application, testing it, deploying it and building again using the

28 The Trinity Application

feedbacks of the test and deployment to create better software.

3.1.1 Build Server

The Build Server is composed of a server construct and a few client plug-ins
which are responsible for the management of the different project under the
Trinity rule as well as a mean to get feedback on the different analysis reports
the server is creating. The client plug-ins were out of scope of the master thesis,
remain a part of the final implementation nonetheless.
The server part of the Build Server is responsible for the creation and the static
analysis of the managed bundles. The server is made of different component
interacting with each other.

• Bundle Manager : is responsible for the management of the bundle, the
verification of its structure and the extraction of its meta-data.

• Configuration Manager : creates and manages all the possible configura-
tions .

3.1.2 Test Server

The Test Server is responsible for the testing of the different configurations.
The main idea of the Test Server is to have a system to systematically install
and test the different configurations with a series of user-defined tests. Almost
everything is customizable, extendable and/or replaceable.

• Test bundles: The Test Server takes predefined project tests (Test Direc-
tories) and automatically generates test bundles to test the configurations.
There is also the possibility to add static or dynamic test generators[33, 80]
to create more complex integration tests. However, complex test genera-
tors are not in the scope of this master thesis.

• Child Creation: The Test Server tests the configurations on a predefined
child instance. This child instance is fully configurable and can be any
OSGi Framework in any version.

• Parallel Testing : The Test Server facilitates the configuration of the num-
ber of child instances running in parallel. It speeds up the testing process
considerably but may need more configuration work if the tested bundles
need unsharable resources like server sockets or exclusive rights to specific
files.

• Test Reporting : The Test Server sends the results of the tests through the
EventAdmin, allowing any listener to report the results in the manner it
prefers.

3.1.3 Deploy Server

The Deploy Server is composed of the server and some client plug-ins responsible
for the publishing of the user-defined configurations created and tested by the
Trinity Test Server. The Deploy Server was out of scope of the master thesis,
remain a part of the final System nonetheless. The Deploy Server is respon-
sible for the creation and deployment of profiles compatible with distribution

3.1 Overview of the System 29

programs and is also responsible for the security and policy aspects (e.g., who
can download the bundles under a specific configuration). A more complete
specification of the Deploy Server can be found in section 7.3 on page 62

3.1.4 Interaction between the servers

The lines between the different servers are not as defined as it appears at first
glance. Some concepts, like the idea of an object representing the meta-data of
a bundle or one representing a configuration are found in all three parts and,
even if their “creator” server can be found, may be more central to another
server then the one it was created in.

Basically, the Build Server is centered on individual bundles and their meta-
data, creating configurations in the process. The Test Server is centered around
the configurations as its main purpose is to test and evaluate them. The De-
ploy Server is also centered around configurations but with a greater emphasis
on user involvement for the promoting of the different configurations and the
creation of rules and deploys policies.

30 The Trinity Application

Chapter 4

Trinity Build Server

4.1 Architecture

The Trinity Build Server is used to build and analyze the different projects
(managed bundles) under its control and create all the possible configurations
that can resolve it. The meta-data extracted from the bundle are only derived
from static content analysis and will be refined in the Test server where the
dynamic behavior of the bundles will be analyzed. The Build Server is composed
of different components that all have their definite role.

Figure 4.1: Trinity Build Server: Overview

32 Trinity Build Server

4.2 Staged Test Pipeline (First part)

Bundles goes through a multi-step process before they are deemed “prepared”
to be tested and either deployed on the clients or made available to others
through public repositories. To ensure that the quality of the bundles stays
high, the bundles are routed through a series of tests and analyzed to make sure
the standards are correctly implemented. This process is called the Staged Test
Pipeline and the first part is shown in the figure below.

Figure 4.2: The Test pipeline (first part)

4.3 Creation Stage

4.3.1 Bundle Creator

The Bundle Creator, as the name suggests, is used to build all the artifacts
in the managed projects and to prepare them for analysis. This can also be
done by an external tool like Ant[68] or Maven[70]. After running through the
Bundle Creator, a project has been transformed to a bundle in the form of a
Jar file and the server first has to validate it for structural integrity. After the
first step, the bundle can be considered as structurally correct.

4.3.2 Directory Watcher

The Directory Watcher is used as an alternative to the Bundle Creator when
external tools are used to create the bundles. The entry point for the different
bundles of a project is then one or more directories. The server reacts to bundles
being added, removed or updated inside the directories. Depending on what
happens, the server starts the analysis of the added or updated bundles or tells
the configuration manager to remove all configuration containing the removed
bundles.

4.4 Validation Stage

The second step of the validation is the inspection of the content of the bundle
and of the used classes through the import packages. If the newly created bundle

4.4 Validation Stage 33

has import statements inside the code that are neither declared in the manifest
files nor resolvable inside the bundle, there is the possibility of a “ClassNot-
FoundException” when the code with the missing class is run. This is obviously
not the expected behavior of a bundle and the Build Manager will mark the
bundle as being structurally incorrect.

The third step validates the import packages themselves as specified in the
OSGi Core Specification. If both validations succeed, the bundle is actually
installable on an OSGi framework and can be seen as a valid bundle.

4.4.1 Static Bundle Analyzer

The Static Bundle Analyzer is actually a two-phase-analyzer. It implements
both the validation phase and the extraction phase.

Bundle Validation

It is first used on all Bundles created by the Bundle Creator or found by the
Directory Watcher to validate it. This is done by analyzing the classes in the
bundle and finding out which classes are referenced. The Analyzer then tries
to resolve all the references either by looking at the declared import statements
found in the Manifest file or by other packages in the bundle itself. After
successfully validating the bundle with the first step, the Bundle is deemed
installable.

Validation Algorithm

The validation is done using the byte-code analyzer of ASM (For more details
on ASM, see section 2.2.6 on page 25) to retrieve all class references found in
all the classes of the bundle. The list of all dependencies is build using the
results. The analyzer then creates a list of classes defined in the bundle itself
and subtracts this list from the dependency list. It also reads the import meta-
data and subtracts all classes having the same package name assuming that the
classes will be found in other bundles. This may not always be the case as there
is no way at this point to check if the imported package actually contains all
the classes that needs importing. The algorithm is then used on all libraries
(jar files) found inside the bundle to further remove internal dependencies. At
the end of the analysis, the list of classes should be empty as all dependencies
should have been resolved internally or with the import statements.

The Keyword Ignore-Package was also implemented by removing all pack-
ages declared after this keyword from the package list dependencies. This is not
strictly OSGi conform, but is widely used and was implemented for compatibil-
ity issues.

checkJarFile(jarfile)
Check if SymbolicName is found (mandatory field)
Check that no ’java.’ import is found
Check that no ^java.’ export is found
Check that no import is found twice with the same name

34 Trinity Build Server

List dependencies.
for every class file ’i’ in jarFile
List class names <- references to other classes in class ’i’
add all class names to dependencies

for every jar file ’i’ in jarFile
checkJarFile(jar file ’i’)

remove all system classes from dependencies
remove all internal packages from dependencies
remove all bundle requirements from dependencies

isValid(jarfile)
return (dependencies is empty)

The validation algorithm in pseudo code

Meta Data Extraction

The second part of the analysis is the extraction of the meta-data. All meta-
data are extracted statically from the bundle and become an intrinsic part of
the bundle.

The meta-data includes:

• Imported Packages

• Exported Packages

• Bundle Dependencies (required bundles)

• Registered Services

• Consumed Services

The meta-data of the bundles are needed in the Bundle Configuration Manager
for the next step of the process.

Extraction Algorithm

The extraction of the attributes is done by finding the MANIFEST.MF file and
retrieving all the relevant information found there. For more details on how the
Manifest file is built, see section 2.2.2 on page 18. As the definition of exported
services in the manifest is optional and generally not complete, the extraction of
the imported and exported services is done using the byte-code analyzer. The
analyzer looks for code parts with the signature of the BundleContext and the
method call for registering a service (both for a single service name1 and for an
array of service names2). It does the same thing for the imported services by
looking at code parts with the signature of the serviceTracker constructor (both

1BundleContext.registerService(String name, Object service, Dictionary properties)
2BundleContext.registerService(String[] name, Object service, Dictionary properties)

4.5 Minimal Configuration Creation Stage 35

with a filter3 or with a name4) and the signature of the BundleContext and the
method call for getting a service reference5 or references6.

extractInfo(bundle)
save attributes

convert imports to requirements
find imported services
convert imported services to requirements

convert exports to capabilities
find exported services
convert exported services to capabilities

remove reexport statement
remove optional imports

The extraction algorithm in pseudo code

4.4.2 The IBundleInfoListener Interface

After the validation stage and the extraction stage, the bundles are able to
be used in configurations. At this stage of the pipeline, there is a “Hook” for
programmers wanting to extend the functionality of the Trinity System. It is
possible to build notification or viewer plug-ins based on the IBundleInfoLis-
tener interface. This interface is NOT, as the name might indicate, based on
the listener pattern. It is based on the pattern recommended by most OSGi pro-
grammers called “White Board Pattern”[48], where the notification is based on
the inversion of control principle. Inversion of control can be briefly summarized
as the ”don’t call us, we will call you” principle. This means that the IBundle-
InfoListener does not need to register itself on the object it wants to listen to as
might be expected from the “standard” listener pattern but only need to regis-
ter a service implementing the required interface to get the needed information.

To create new Plug-ins that can be notified by the OSGi System, the pro-
grammer only needs to create and register a service implementing the given
interface (see section B.1 on page 71 for more details on the interface).

4.5 Minimal Configuration Creation Stage

The next stage tries to resolve all tight couplings defined through package im-
ports and generate a set of minimal configurations that, when installed on an
OSGi framework, would make the bundle resolvable. The resolving of all the

3new ServiceTracker(BundleContext context, Filter filter, ServiceTrackerCustomizer prop-
erties)

4new ServiceTracker(BundleContext context, String name, ServiceTrackerCustomizer
properties)

5BundleContext.getServiceReference(BundleContext bundleContext, String filter)
6BundleContext.getServiceReferences(BundleContext bundleContext, String[] classes)

36 Trinity Build Server

needed bundles is a prerequisite of a functioning installation. The configura-
tions are then minimal or resolvable configurations. Those configurations could
be used for mock tests with specific mock bundles implementing the optional
needed services or for specific bundle test (stand alone tests) if the bundle can
be started without any of its optional requirements being fulfilled.

The last step of the configuration creation, done by the Test Server, is to take
the minimal configurations and to merge them with one or more configurations
until all the optional requirements have been met. The resulting configurations
are called complete configurations and are later used in the Test Server for in-
tegration tests and analysis.

Disregarding the optional requirements, a bundle can be drawn as a quadrangle
with the mandatory capabilities on top of it and the mandatory requirements at
the bottom. A valid configuration does not leave any mandatory requirements
unfulfilled and can thus be drawn as a triangle with the mandatory capabilities
of the root bundle at the top.

Figure 4.3: Example of a schematic representation of a configuration

4.5.1 Bundle Configuration Manager

The Bundle Configuration Manager is used after the bundles have been validated
and analyzed.

Minimal Configuration Creation

The Bundle Analyzer has found out all the dependencies of the bundles (op-
tional and mandatory, used and published) and the manager can now define
all the possible configurations a specific bundle can be used in that resolves
all mandatory dependencies (import packages). This is done by following the
OBR[49] model and interfaces but returning all resolvable configuration instead
of returning only the first one.

4.5 Minimal Configuration Creation Stage 37

Building Configurations

Bundle Graph If all loose bindings are removed from the equation, a config-
uration can be seen as an acyclic graph of bundles connected to each other by
the import and export statements in their manifest. A node in a bundle graph
is defined by its bundle and an optional number of import and export bindings.
One of the main problems of such a structure is the time it takes to test con-
figurations for equality or to calculate the hash number. To prevent wasting
time the configurations and nodes can cache their state and only recalculate it
if structural changes have been detected.

Configuration Algorithm The configuration described in figure 4.3 on page 36
can be broken down into a root bundle X with 3 capabilities and 2 requirements
coupled to a configuration Y containing bundle Y with 2 capabilities and no
requirements.

Figure 4.4: Representing a configuration with sub-configurations

It is easy to see that configuration trees are recursive structures. For any
given bundle, a configuration becomes the bundle as the root object with 0
to n “sub-configurations” depending on how many imports the root-bundle has.
The algorithm to calculate all possible configurations for the bundle is then
finding all “sub-configurations” fitting into the bindings of the node. The sub-
configurations themselves are in no way different than the “super-configuration”
and are composed of a root with a bundle and other “sub-configuration” for each
needed binding. The minimal configuration for a core bundle is the bundle itself
(as it does not have any dependencies).

addBundle(bundle)
add the bundle to the stack
check if bundles can be resolved
resolve all new configurations that have the new bundle as root

38 Trinity Build Server

if the resolving created new configurations
for every new config
find all bundles that are unresolved and may need the new config
add the bundles to the stack to be resolved

find all configurations where the new config could be swapped in
remove bundle from stack
resolve next bundle while stack is not empty
remove bundle from stack

The Minimal Configuration Creation Algorithm in Pseudo-Code

4.5.2 The IConfigurationListener Interface

The other bundles are notified by the system when new configurations have
been created using the “White Board Pattern”. It would be very easy to build
viewer plug-ins based on the IConfigurationListener interface to show the dif-
ferent configurations generated when a new bundle has been inserted.

To create new Plug-ins that can be notified by the OSGi System, the pro-
grammer only needs to create and register a service implementing the given
interface (see section B.3 on page 71 for more details on the interface).

4.5.3 The IConfiguration Interface

The collection received by the different ConfigurationListeners contains objects
implementing the IConfiguration interface, an abstraction of a configuration.
Through this interface, the programmer is able to check the completeness (all
requirements are fulfilled) and the validity of the configuration. He can also re-
trieve information about the requirements and capabilities of the configuration,
and get the bundles the configuration is made of (see section B.8 on page 74 for
more details on the interface).

4.5.4 Configuration Export

The possibility to print the different configurations into Graphviz-style files has
been implemented for visualization and documentation purposes.

Graphviz is an open source graph visualization software. It has both a web
and an interactive graphical interfaces, auxiliary tools, libraries, and language
bindings. The Graphviz layout programs takes descriptions of graphs in a simple
text language, and make diagrams in several useful formats such as images and
SVG for web pages, Postscript for inclusion in PDF or other documents.[24]

digraph "G" {
graph [size="200,200", rotate="90", ratio="compress"];
node [label = "\N"];
subgraph Configuration_0612 {
graph [label = "Configuration 0612"];

// creating the nodes
"{{ch.ethz.package1|ch.ethz.package4}|Config 0612.bundle22|{}}"

4.5 Minimal Configuration Creation Stage 39

[shape=record, color=lightblue];
"{{ch.ethz.package6}|Config 0612.bundle8|{}}"

[shape=record, color=lightblue];
...
// creating the links

"{{ch.ethz.package5}|Config 0612.bundle7|{ch.ethz.package1|ch.ethz.package3}}"
-> "{{ch.ethz.package1|ch.ethz.package3}|Config 0612.bundle4|{}}"

[color=blue,label="ch.ethz.package3"]
...
}

}

Example of a configuration in Graphviz text format

Figure 4.5: Example of a configuration in Graphviz graphic format

40 Trinity Build Server

Chapter 5

Trinity Test Server

5.1 Staged Test Pipeline (second part)

The second part of the Test Pipeline (figure 5.1) begins where the first part
stopped (see figure 4.2 on page 32) and concentrates on the configurations in-
stead of the bundles. The Configurations also go through a multi-step process
before they are deemed “prepared” to be deployed (valid configurations).

Figure 5.1: The Test Pipeline (second part)

5.1.1 Unit Tests

A minimal configuration is not the same as a complete (or possible) configuration
as only a subset of the requirements (the mandatory ones) has been resolved
with absolute certainty. Nevertheless, there are some test that can already be
performed with the minimal configuration. The most basic one is installing all
the bundle in an instance and finding out if they all resolve correctly. Another
possibility is to take some JUnit component tests provided by the developer
and run them in the child instance. Depending on the result of those tests, the
next step (testing a complete configuration based on the minimal one) can be
processed or not. As an example, if the minimal configuration does not resolve
correctly, even when all it’s mandatory requirements have been fulfilled, then
there may be something wrong with the whole configuration and will probably
not resolve even when adding the completing bundles.

42 Trinity Test Server

5.1.2 Integration Tests

The tests which can be run using the complete configurations based on the re-
solvable configuration provided by the Configuration Manager are more involved
than method or component tests. The user can create JUnit Integration test
that will be packed and installed with the application and that will run on a
configuration that resolves all the requirements.
Integration tests could involve the creation of a Mock Object implementing a
specific interface, pack it in a bundle and register is in the child OSGi framework
instead of the “normal” application implementation to test if the declared ex-
ceptions can be thrown safely. The importing bundle should not crash because
the mock threw a known exception. Another possibility could be for the mock
object to return different values within the range of the used type.

5.1.3 Higher-Level Tests

Using the Repository Manager (see section 5.5 on page 44), the Trinity System
can install “system” bundles on the child framework at runtime and start them.
The dynamic test bundles coupled with those from the Repository Manager
could be used to test higher level requirements like:

• Resource conflict. Most system resources are finite and things such as
ports or exclusive rights to directories cannot be shared among specific
bundles.

• Load behavior. Most systems are poorly stress tested and therefore do not
perform well or even within their specification past a given load. Some
bundles could be created to specifically test the behavior of the application
by producing load.

• Code coverage. A code coverage system could very easily be implemented
with only very small changes to the Test Orchestrator. The analysis would
then allow the programmers to know which part of the code was never
called by the application and thus, could hide bugs.

5.2 Test Orchestrator

The Test Orchestrator is the anchor point in testing OSGi components. It takes
all the new configurations from the Bundle Configuration Manager as well as
all the available TestCases from the Test Manager and tests every configuration
against them. For each configuration, the Orchestrator creates a child OSGI
instance of a predefined type, upload the bundles of the configuration and those
of the TestCases and route the result of the tests to the Test Reporters and the
Test Repository.

The child instances are used to allow runtime errors to be caught (or produced)
by the TestCases.

Get all Tests

For every new Configurations

5.3 Test Manager 43

Create a child instance
Install all bundles in the child
Test if all bundle resolve

If they resolve:
get all complete Configuration from the Manager

For every complete Configuration
Clean the child (remove all bundles)
Install the needed bundles
Run the tests
Collect the results

Destroy child instance

The Algorithm of the Orchestrator in pseudo code

5.3 Test Manager

The Test Manager is responsible for providing the tests for the managed bun-
dles. Using a base directory specified in the properties (which can be overridden
through setting the appropriate environment variables), the Test Manager will
create a test bundle for each sub-directory found inside the root.

Figure 5.2: Generation of Test Bundles

The Bundles are saved in the Test Repository Manager to improve performance.
The bundles will only be generated if the corresponding subdirectory has a newer
time stamp than the one used to generate the file.

The interface of the TestManager is very simple (see section B.2 on page 71)
and only allows the creation of new tests. The returned value is a collection of
JarWrappers. A JarWrapper is, as the name indicates, a wrapper over a bundle
and is used by the Orchestrator to access the generated test bundles.

5.3.1 JUnit Bundle Generator

The generated bundles contain a constructed MANIFEST.MF with a prede-
fined “test runner” class as Activator and a dependency import-package list.
A property file will also be created containing all the TestCases found coupled

44 Trinity Test Server

with their methods (test***). A mechanism is in place in the child instance to
inject the context and the configuration objects into the TestCases to facilitate
creating integration test cases. Both object can be used in the TestCase classes
by calling the “this.getConfig()” and “this.getContext()” methods defined in
the ITest interface.

Manifest-Version: 1.0
Bundle-Name: TestBundle-startStop
Bundle-Activator:

ch.ethz.jgranat.testserver.jarmaker.TestBundleActivator
Bundle-ManifestVersion: 2
Bundle-Description: on-the-fly test bundle
Bundle-SymbolicName: TestBundle-startStop
Import-Package: ch.ethz.jgranat.testserver.core.bcm,

ch.ethz.jgranat.testserver.core.bm,
ch.ethz.jgranat.testserver.core.util,
junit.framework,org.osgi.framework

Example of a Manifest file for a generated test bundle.

5.4 Test Repository Manager

The Test Repository Manager is used to store the test bundles the Test Manager
generated. The current implementation only saves the bundle in a Map. It
means that the Tests are not persisted anywhere and are lost at server restart.
However, implementing a new Test Repository Manager with predefined tests
or with a connection to a database is very easy. The Test Manager also allows
parallel implementations to work and would then save the tests on different
mediums.
To implement an alternative Test Repository Manager, the programmer only
has to create and register a service implementing the ITestRepositoryManager
interface (see section B.4 on page 72 for more details on the interface).

5.5 Report Manager

The Report Manager follows a double purpose:

1. Saving the finished tests. The current implementation just saves the test
suites in-memory in a Map but other repositories could persist the result
in a database or on the file system for greater security.

2. Monitoring the Children. Additionally to collecting the tests, the Report
Manager has two methods that are used to notify it when a new con-
figuration starts and stops being tested. Those method could be used to
start (or install) special monitoring bundles on the child that would collect
runtime data like memory usage or thread count.

There is currently no way to get the results from the reports directly from the
Repository Manager as the bundles responsible for the displaying of the relevant
information were not in the scope of the master thesis and have been left for
future work.

5.6 Test Child Framework 45

5.6 Test Child Framework

The Test Child Framework is intended to be used to test the configurations in
respect to conformity (using special JUnit integration bundles), stability (using
“destructive bundles”) and durability (using a load tester or something simi-
lar). It provides a complete sandbox model for the configuration and could be
extended or replaced to include not just the already defined OSGi frameworks
but a whole complete system with OS and specific “deployment dependencies”
like drivers, Java runtime and so on.
The child framework interfaces, the IChildInstance (see section B.6 on page 72
for more details on the interface), is a generic interface to an OSGi framework.
It defines most of the methods needed for the management of the bundles as
well as method to handle the child (output handling, start and stop, ect). It is
declared in the core package.

The Test Orchestrator uses the Factory Pattern to create new child instances
through the IChildFactory interface (see section B.5 on page 72 for more details
on the interface) to define at runtime the type of child instances that should be
created to test the bundles.

5.6.1 Default Child Creator

The current implementation of the child framework creates a new instance of
a predefined configuration based on the properties given either in the Config-
Properties.txt file in the core package or through the environment properties.
It creates the new instance on the same server (using “localhost” to open the
console and R-OSGi ports) in a subdirectory based on the predefined root di-
rectory. The whole subdirectory will be deleted as soon as all the tests have
been run.

5.7 Test Evaluator

Evaluating the data collected during tests can be very difficult and most of the
time, very project dependent. The Trinity Server can only evaluate tests in a
most primitive way (test failed/passed) and any higher evaluation algorithm has
to be expressed either by visual plug-ins where the programmer can gives feed-
back on tests which will then be taken into account later on or by programmed
evaluation routines in a customized evaluator.

To create a new TestEvaluator, the programmer only has to create and reg-
ister a service implementing the ITestEvaluator interface (see section B.9 on
page 74 for more details on the interface).

5.8 Test Reporter

A prototype of a Test Reporter is also included in the Trinity server, showing the
different tested configurations and their test times. The whole system is built
on events and does not request the focus of the eclipse environment to enable
the list to be filled in the background. Of course, another implementation could

46 Trinity Test Server

be created (or one running in parallel) by creating a plug-in listening to event
in the form: “ch/ethz/jgranat/testserver/core/Parent/*”. See section C
on page 77 for more information about the generated event and their uses.

Figure 5.3: Example of a configuration in the Test Reporter

The Test Reporter is composed of two dependent parts.

• The Test Report View is a list of configurations containing every test done
on them while the Test Reporter has been connected to the Trinity Test
Server. Other implementations could query the Test Repository Manager
for older tests and configurations. The tests shown in this tree have the
same categorization as the JUnit tests.

– Success shows that the test was run successfully and that all asser-
tions were correct (see the JUnit section on page 23 for more infor-
mation on assertion).

5.8 Test Reporter 47

– Failure shows that one or more assertion in the current test was
incorrect and thus failed the test.

– Error shows that an unexpected exception was thrown and not caught
by the application under test. In contrast to failures, errors should
never reflect an incomplete or failed test but should always express
a bug in the system.

• The Graph Bundle Dependency View presents a graphical view of the
configuration selected in the Test View, showing the bundles and how
they relate to each others through the import and export of packages and
services. There are currently not graphical differences between package
and service dependencies and bundle informations are not shown beside
the symbolic name of the bundle.

48 Trinity Test Server

Chapter 6

Test and Benchmarks

6.1 Trinity Build Server

The benchmark tests of the Trinity Build Server were done on an IBM Thinkpad
model portable computer. The use of a slightly outdated computer as well as
using a portable computer allows for more pronounced differences in the config-
uration creation time and gives us a “lower boundary” for the time needed to
produce any results in a real, productive environment.

In order to evaluate the creation of configuration, it was decided to take “real”,
known applications and put them under the management of the Trinity Server.

6.1.1 Apache Felix

Apache Felix[69] is a community effort to implement the OSGi R4 Service Plat-
form, which includes the OSGi framework and standard services, as well as
providing and supporting other interesting OSGi-related technologies.

The current test was done using the version 636355 from the source reposi-
tory. Out of the 80 Jar files that were build using the source export, 73 were
actual bundles and were installable in the Trinity Server. The others were Java
libraries and were added to the classpath of the configuration manager. The
classpath is used to remove dependencies that would have been resolved through
other channels and not through the bundle resolution mechanism provided by
the OSGi Framework.

Felix Test 1

The first test created 918 configurations out of 73 bundles. However, 3 bundles
could not be resolved by the Trinity Server due to missing imports.
The bundles were added into the system by ordering the list of bundles by name
and adding one after another with a two second pause in-between. As can be
seen in figure 6.1 on page 50, there are two bundles central to Apache Felix that
generates a lot of configurations which resolves the majority of the bundles and
two smaller ones generating a smaller set. The central bundles were added as
Bundle Nr. 33 and Bundle Nr. 67. The fact that 2 to 4 bundles are creating

50 Test and Benchmarks

Figure 6.1: Apache Felix Test 1

so much differences points to a star architecture with core bundles as the main
body and satellite bundles depending on them. These bundles are central to
the correct functioning of the application and a lot of other bundles need some
capabilities from them. This means that changes made in these bundles should
be tested with even greater care. The risk of incompatibility issues increases
with the number of dependents on the changing component

The graph shows the direct dependencies between the number of created con-
figurations and the time needed to add the bundle. The first 20 Bundles have
been removed from the graph as the number of generated configurations from
the bundles between the 1st and the 25th are not significant and stays at about
25. It also shows that the number of bundles in the system only lengthens the
time needed to generate a configuration by very little. If a bundle does not cre-
ate any configurations, the number of bundles already in the system does not
impede the time needed to add it. The time needed to create a configuration,
however grows with the number of bundles in the system, as can be seen when
comparing the time needed to add bundle Nr. 33 and bundle Nr. 67 and the
number of new configuration generated by the addition.

Felix Test 2

The second test also created 918 configurations out of 73 bundles. Again, 3
bundles could not be resolved by the Trinity Server because of missing imports.
The second test was done by adding the bundles using a random generator that
creates a stream of pseudo-random numbers. The generator uses a 48-bit seed,
which is modified using a linear congruential formula[34]. The first 40 Bundles

6.1 Trinity Build Server 51

Figure 6.2: Apache Felix Test 2

have been removed from the graph as the number of generated configurations
from the bundles between the 1st and the 48th are not significant and stays at
about 25.

In this test, only 4 central bundles could be picked out of the graph. Again, two
of them seem to be more central than the others and produce significantly more
configurations. Those bundles are Nr. 56 and Nr. 69. The graph shows that
as soon as one of those bundles is added to the system, configurations are gen-
erated almost every time a new bundle is added. The time needed to generate
the “smaller steps” is more or less constant.

6.1.2 Newton

Newton[53] is a distributed OSGi framework in which the components can be
simple POJOs or wrappers around components based on other models.
Newton creates a framework allowing the installation and removal of code
through the network at runtime. Newton also dynamically wires up runtime
service dependencies between components and rewires them as service provider
components come and go.
Newton is able to install and manage component distributed across a large num-
ber of JVMs, continually comparing the deployed composite graph to a specified
target state and making adjustments in response to failures and network topol-
ogy changes.
Newton makes use of OSGi for wiring up composites within a single JVM and
Jini technology for tracking and wiring up dependencies between composites in

52 Test and Benchmarks

different JVMs.

For the testing of the Trinity system, the release version 1.2.3 from the web
page was downloaded and used. Out of the 176 Jar files that were found in
the release, 129 were actual bundles and were deemed installable by the Trinity
Server. The others were Java libraries and a subset of 33 were needed and added
to the classpath of the configuration manager.

Newton Test 1

The first test created 249 configurations out of 129 bundles. 4 Bundles could not
be resolved because of 2 import. Querying the resolver provided an explanation:
2 bundles were exporting a package that the other one needed, thus creating
a cycle in the resolving tree (org.cauldron.newton.cds.remote.protocol.jar needs
org.cauldron.newton.cds.remote.api.jar and vis versa). This does not necessarily
reflect a problem in the Newton application but rather the way the generation of
the configuration is implemented. Currently, the configuration generator cannot
handle dependency cycles and those two bundles were thus deemed irresolvable.

Figure 6.3: Newton Test 1

Following the time needed to add the bundles and the resulting number of new
configurations added to the system, 7 bundles can be identified as playing an
important role. The fact that the number of configurations is low compared
to Felix coupled with the high number of central bundles points to a layered
architecture with almost no tight dependencies between layers.

6.1 Trinity Build Server 53

Newton Test 2

The second test also created 249 configurations out of 129 bundles. 4 Bundles
could not be resolved because of a dependency cycle.

Figure 6.4: Newton Test 2

In this test, bundle Nr. 110 stands out as being a central bundle as the number
of configuration doubles due to its addition. The other 6 are still there, but
stand out a lot less.

6.1.3 Permutation of Configuration Generation

A permutation test was done to get a clearer picture of the dependency between
the number of configurations and the time needed to add a bundle. The test
consists of using one of the application (in this case, Apache Felix) and add
its bundles to the configuration manager. The order in which the bundles are
entered into the system is completely randomized.
The entire process of entering the bundles into the system one at a time and
measuring the time needed to generate the configurations was done 1000 times,
each with a different bundle ordering. Three mean values were calculated with
the measurements:

• The mean time is the time in milliseconds needed to add bundle Nr. X
into the system where X is a random bundle.

• The number of configuration is the number of minimal configuration in
the system after bundle Nr. X has been added to the system.

• The number of unresolved bundles is the mean number of bundles without

54 Test and Benchmarks

any configuration because some mandatory dependency is missing in the
system.

Nr. of Bundles Mean Time (ms) Nr. of Configuration Unresolved Bundles

1 22.650961 0 1

50 46.34488 2 48

55 66.175356 46 16

60 98.28614 133 8

65 164.96752 375 4

68 199.751354 683 3

69 213.96892 789 3

70 226.56507 918 3

Table 6.1: Mean Configuration Generation with Apache Felix

Collecting the results in a graph shows a clearer picture as to the tendencies of
both time consumption and number of configurations.

Figure 6.5: Mean Configuration Creation with Apache Felix

The figure 6.5 shows that the generation of configuration in the system is growing
exponentially. The time needed to add a bundle is closely related to the number
of generated configuration and also tends toward an exponential curve. The fact

6.1 Trinity Build Server 55

that the addition of the first few bundles to the system takes more time than
some of the latter ones may be due to some JVM specific resource allocation
algorithm.

6.1.4 Scalability Tests

After testing the Trinity System with two “real world” applications, a more
complex scenario was tried.

One Apache Felix bundle in three was installed in two different versions in
the Trinity System. The number of bundles in the system went from 70 valid
bundles to 103 where 30 bundles were redundant and taken from older Felix
version. Assuming that the dependencies did not change radically between one
version to the next, the number of configurations should double as each bundle
is interchangeable.

Figure 6.6: Scalability Test with Apache Felix

In the current implementation of the configuration object, the optimization of
the scalability is not a priority. A configuration is a heavy-weight object and
takes resources both in idle time due to its structure and memory footprint
and at calculation time due to the costs of its operations. The Configuration
Manager is also not optimized for scalability and has operations that could
be optimized to run in linear instead of exponential time. The Configuration
Manager holds every configuration in-memory. As the number of configuration
increase, which doubles almost constantly when 2 bundles with the same name
but different versions are inserted into the system, the resource problem be-
comes acute and the server can easily throw an “Out of Memory Exception”.

56 Test and Benchmarks

This could easily be corrected by using a more appropriate container for the
configurations.

After setting the maximum heap size of the Java virtual machine to 1024
Megabytes, the Trinity application finished the test successfully. Graph 6.1.4
on page 55 shows the explosive generation of configurations and their impact
on the generation time. The first 50 Bundles are irrelevant to the test and were
removed from the graph. As can be seen in the graph, a redesign of the config-
uration objects and its operations is needed to handle the expected number of
configurations the system would have to generate if used over a long period of
time.

6.1.5 Test Conclusion

It is quite clear from the permutation test that the number of configuration in
the system is growing exponentially. However the application tests show that
adding a bundle from a “normal” application into the system does not neces-
sarily use a lot of time.

The primary factor to calculate the time needed to add a bundle is the number
of configuration the bundle creates when entering the system. The tests show
that the number of configurations calculated by the Trinity Build Server is not
dependent on the order in which the bundles are added in the system.

The tests also allowed some conclusions about the applications under test.

• Central Bundles: The central bundles of applications could be found
through their impact on the configurations. Central bundles are impor-
tant to an application as their changes have a greater impact on the whole
functionality.

• Missing Requirements: Bundle which do not pass the installable stage or
which do not resolve can be queried as to which import is missing. This
helps the developer find build errors when a library is not integrated into
the bundle of when a bundle is missing.

6.2 Trinity Test Server

The Test Server was tested using the same version of Apache Felix as before.
73 installable bundles were added to the Trinity System and every one of the
918 generated configurations was systematically tested. The number of parallel
child instance was reduced to one (full serial testing) to remove any resource
allocation errors.

Some of the configurations could not be tested, throwing an Exception before
the actual test could be performed. The reasons for the exceptions, however,
were most likely stemming from problems of the composed application and not
from the test framework. A possible explanation of the problems has been
provided.

6.2 Trinity Test Server 57

6.2.1 Jmood

Exception 1

After all the Mbeans of JMood have been registered, an exception is thrown by
the framework while still in the Activator.start() method.

java.io.IOException:
Cannot bind to URL [rmi://xxxxxxxx:1199/server]:

java.rmi.ServerException: RemoteException occurred in server thread;
nested exception is: java.rmi.UnmarshalException:

error unmarshalling arguments;
nested exception is: java.lang.ClassNotFoundException:

javax.management.remote.rmi.RMIServerImpl_Stub
(no security manager: RMI class loader disabled)

Reason

The current version of JMood creates its own security Manager if the framework
does not provide one. The provided security manager is very simple and allows
everything. The current child framework does not start an active security man-
ager per default but the default security manager of JMood did not start.

After starting the security manager, another error was found. The RMI port
1199 is read from a property file inside the bundle and cannot be changed
through system properties. This means that JMood will not work if the default
port is not available. This bug has been documented in the JMood quickstart
text file in the Felix repository (http://svn.apache.org/repos/asf/felix/
trunk/jmood/QUICKSTART.txt).

Exception 2

The current Orchestrator tries to first test the resolvability of the configuration
before testing it. To do this, the bundles of the configurations are installed
and the status is queried. If all the bundles are resolved by the framework, the
bundles are deinstalled and reinstalled in order after installing the test bundles.
The JMood bundles do not lend themselves to such a method. After reinstalling
the bundle, an exception is thrown while starting it again.

org.osgi.framework.BundleException:
Exception in org.apache.felix.jmood.Activator.start()
of bundle org.apache.felix.org.apache.felix.jmood.

Caused by: javax.management.InstanceAlreadyExistsException:
osgi.core:type=controller

Reason

It seems that the JMood bundle does not unregister its MBean instances from
the MBean repository it creates in the background at first start-up. The correct
behavior should be to remove the managed instances from the registry when
the bundle is deinstalled. If JMood is responsible for the registry, it should also

http://svn.apache.org/repos/asf/felix/trunk/jmood/QUICKSTART.txt
http://svn.apache.org/repos/asf/felix/trunk/jmood/QUICKSTART.txt

58 Test and Benchmarks

stop it. This bug has been added into the Felix bug tracking system as bug Nr.
623 (https://issues.apache.org/jira/browse/FELIX-623).

6.2.2 Service Binder Example

Exception

The service binder example bundle threw an exception that at start-up that
seemed suspect.

org.osgi.framework.BundleException:
Exception in org.apache.felix.examples.spellcheckbinder.Activator.start()

java.io.FileNotFoundException: MetaData file not found at:
/metadata.xml

Reason

This exception could also be due to a build error and not an actual bug in Felix.
There were no predefined build of the example bundles found on the Felix web
page to check the used bundle against. To find the error, the source repository
was consulted and the project “examples.spellcheckbinder” was compared with
the “spellcheckbinder” project. Both the project structure and the pom.xml
files were similar. This confirmed the problem as a faulty build.

6.3 Newton

Figure 6.7: Newton Configuration in Test

https://issues.apache.org/jira/browse/FELIX-623

6.3 Newton 59

6.3.1 Incorrect Bundles

Some bundles in Newton could not be started with a standard OSGi framework
because of exceptions thrown while trying to resolve the bundles. The bundles
in question could not be started due to errors in the Manifest file. Most of the
time, a missing import statement was the cause of the exception.

Here some examples:

• org.cauldron.newton.frameworkintercept.jar cannot be resolved because it
uses org.osgi.service.packageadmin.PackageAdmin in the Activator with-
out importing the packageadmin package in the manifest file.

• org.cauldron.newton.instrumentation.jar cannot be resolved because it uses
classes from the org.osgi.framework package without importing it in its
manifest file.

6.3.2 Libraries

The Newton application seems to load standard Java libraries into the OSGi
Framework through its own mechanism. The standard procedure[15] to incor-
porate standard Java libraries into OSGi as an extension of the classpath is
to declare them as Bundle Fragments to the System Bundle and load them at
start-up. This was not done with the Newton libraries and a lot of exceptions
were found due to this deviation.

60 Test and Benchmarks

Chapter 7

Future Work

7.1 Trinity Build Server

The Trinity Server in its current version does not make any distinction between
binary bundles and source bundles. Binary bundles are bundles developed else-
where and used by the project, for example a bundle wrapping some open source
libraries or a bundle from an affiliated project with a different project life cycle.
Binary bundles should be treated as black box and should not be tested specif-
ically in unit tests but only as part of a whole application. Source bundles are
the bundles created by the project and should be tested in unit tests as well as
in the integration tests. Furthermore, a more complete integration into current
version control systems like CVS[18] or Subversion[79] would allow automatic
snapshot generation and test. The more fine grained the tests are run; the faster
the errors are found and corrected. Another possibility would be to integrate
the Build Server with other build tools like Ant[68] or Maven[70] to integrate
the testing of the different components into the whole building lifecycle.

7.2 Trinity Test Server

Currently, the Test Server has only basic test cases that check the starting
functionality of the bundle in the configuration. The higher level tests as de-
scribed in section 5.1.3 on page 42 have not been implemented yet. Those tests
would be a great help to the developers, in particular to those currently writing
server-side OSGi applications where scalability is a very important factor as a
non-functional requirement.
The Trinity Test Server is not integrated with any form of bug tracking system
and one of the nice feature that could be implemented would be the tracking of
bugs found in the system by the Test Evaluator and the ability to change the
state of the bugs when all the test for a specific bug pass.
The Test Reporter (see section 5.8 on page 45) is a very basic implementation
of the tooling the tester could have at his disposition to help the development
of better software. The handling of the configurations could be explored further
and control given to the tester to save it, redo the tests on it or exclude it from
the configuration pool.

62 Future Work

7.3 Trinity Deploy Server

Due to a very early evaluation of the Equinox Provisioning Platform (p2 for
short)[73], the Deploy Server was removed from the project scope to concentrate
the resources on the Build and Test server. However, the Deploy Server is a
essential part of the system and should not be left undefined. Here is a possible
implementation solution based on the new p2 system.

7.3.1 p2

As of Eclipse project build I20080305 (shortly before Eclipse 3.4/Ganymede
M6), the Eclipse SDK contains a new provisioning system called Equinox p2.
p2 replaces the Update Manager as a mechanism for managing an Eclipse in-
stallation, the search for updates, and the installation of new functionality.[72]

High Level View

An overview of the p2 System and its intended uses can be seen below:

Figure 7.1: High Level View of the p2 System[72]

To understand the system better, a few key components have to be explained
in more details:

• Agent : The provisioning infrastructure on client machines is generally
referred to as the agent. Agents can manage themselves as well as other

7.3 Trinity Deploy Server 63

profiles. An agent may run separate from any other Eclipse system being
managed or may be embedded inside another Eclipse system.

• Artifact : Artifacts are the elements that are ultimately provisioned to a
profile. All managed bundles will be provided as artifacts.

• Profile: Profiles are the unit of management in the system. That is,
the provisioning infrastructure can manage individual (or collections of)
profiles. Profiles are analogous to Trinity Configurations.

• Installable Units: The Installable Units are wrappers around artifacts to
allow the publishing of the artifact’s meta-data and providing a link to the
artifact itself. This allows the provisioning system to reason about profiles
using the meta data instead of the artifacts themselves, and saving the
time needed to download them. The Trinity configurations are based on
an acyclic graph of nodes containing the dependency relationships of the
artifacts, the artifact itself and a IBundleInfo Object which contains the
meta data of the artifact, thus providing a convenient 1-to-1 relationship
between BundleInfo objects and Installable Units.

• Touchpoints: IUs can be stamped with a type. Using this type the engine
identifies the touchpoint responsible for marrying the IU with the related
system. Each project within the Trinity Server may implement such a
touchpoint to put the project bundle in the appropriate spot, adding en-
tries to the necessary configuration files and setting default settings. The
set of touchpoints is open-ended.

7.3.2 Promoted Configuration

The number of valid configurations, depending on the number of concurrent
version and alternative bundle implementation in the Trinity Server can be
quite big and will grow over time. Not all valid configurations should be made
available to the end user and thus the concept of Promoted Configurations has
been defined.
A promoted configuration may be any configuration found on the Trinity Test
Server as some test may fail due to missing features but the developer will
still want to publish them. A promoted configuration is made available to
the p2 clients using the already implemented mechanism of update scheduling
and policies, where users are allowed to have detected updates automatically
downloaded.

7.3.3 Deploy Policies and Security

The Deploy Server needs to create profiles of the different users connecting to it.
The users should be able to authenticate themselves and should have a defined
role filtering the promoted configuration available.

• Tester. The Tester role is given to developer testing the configuration on
their system. This role does not filter any of the promoted configurations.
The user will be notified of any changes and can select any configuration.

64 Future Work

• Friend. The Friend role is given to developers of a different project that has
a very tight coupling to the configurations made available by the server.
The project has to use the latest stable version of a configuration filtering
all the intermediate configurations in-between.

• Distribution. The Distribution role is given to all users who want to use
the application and want to have the latest release of an application. All
other configurations in-between are ignored.

The binary bundles are source bundles somewhere and depend on a team cre-
ating new version with new features and bug fixes. Ideally, those bundles are
managed by other Trinity Servers and new configuration matching the need of
the project can be automatically downloaded. This would create a network
of project servers propagating tested bundles. Of course, to create a Trinity
Network, developer should be able to create profiles on their Build Server to
connect to a Deploy Server with a specific role thereby creating the loop Build
- Test - Deploy - Build talked about in section 3.1 on page 27.

Figure 7.2: Trinity Server Network

Chapter 8

Conclusions

The Trinity System shows that it is possible to test OSGi applications in a real
environment, providing analysis tools for the individual components as well as
for the whole application.

The generation and test of the different configurations creates a new dimen-
sion in the continuous integration process, as not just one but all possibilities
are checked. The System allows the concept of a configuration to be generalized
as a way to see applications. A valid configuration can be seen as a guideline to
a working application as its presence is central to an application from concept
to delivery.

The Trinity System provides definite advantages to the developer team of an
OSGi software project. The project manager can verify the compatibility of
his application through the integration tests and can decide its maturity level
from the evaluation of the tests. He also has the proof that it has been written
within its specification and can keep track of its compatibility level as an OSGi
framework independent software.

It also has a direct impact on the application developer, as the feedback loop
between programming and testing in a real OSGi environment is shortened as
much as possible. The ability to write tests working inside an OSGi framework
allows the detection of the bugs at a very early stage, which makes them easier
to correct. The system also helps in support cases by allowing the developer to
test specific configurations (given by the user having a problem) and running
tests against it to find the problems that may have been overlooked during the
deployment. The analysis of the bundles offers the possibility to implements
metrics and refactoring helps and to graphically see the dependencies of a bun-
dle in relation to others.

The release manager has a tool to track down the functioning configurations
and can select them to be published and downloaded to the clients. As config-
urations exist in parallel, it is easy for him to see when a new version should be
created and in which granularity (nightly build, stable, release, etc), and when
to remove the old ones. It is also possible to follow the different version of a
project and trace the incompatibilities due to service changes.

66 Conclusions

Appendix A

Trinity Properties

A.1 General Properties

ch.ethz.jgranat.testserver.core.debug

Switch the Trinity System to debug mode. The debug mode will
add more information on the console and do more check than the
normal mode. The response time will be slower than normal mode.

ch.ethz.jgranat.testserver.core.silent

Start the application in Silent mode. If set to false, will not
start the services of the application when the bundles are started.

ch.ethz.jgranat.testserver.core.logtoconsole

Log the received log messages to the console. If other implementations
of the Log Service are available, the value should be set to false.

Table A.1: Properties used by the Core bundle

A.2 Directory Watcher

ch.ethz.jgranat.testserver.bm.dirwatcher.local
If set to true, the Directory Watcher also watch the bundles
of the OSGi framework it is running in. This is used if the
dirwatcher is placed in a child instance to create IBundleInfo
object of the bundles installed in the system.

ch.ethz.jgranat.testserver.bm.dirwatcher.dir

A comma-separated list of URLs defining where to watch out for
bundles that should be “installed” in the trinity server.
The URL should be of the form file://c:/master/watched.jars.

Table A.2: Properties used by the Directory Watcher

68 Trinity Properties

A.3 Test Manager

ch.ethz.jgranat.testserver.trm.basetestdir

A path to the base directory where the tests are saved.

Table A.3: Properties used by the Test Manager

A.4 Test Orchestrator

ch.ethz.jgranat.testserver.torc.parallel

The number of parallel child instance the Test Orchestrator
will create to run the tests on the different Configurations

Table A.4: Properties used by the Test Orchestrator

A.5 Bundle Manager

ch.ethz.jgranat.testserver.bm.libs.dir

A list of directory pathes where the libraries used by the
application are temporarily stored. The dependencies of the
bundles will be adjusted according to the libraries found in
these directories

ch.ethz.jgranat.testserver.bm.SystemJars

A list of file pathes pointing to the system libraries. Typically
The Java runtime. The dependencies of the bundles will be
adjusted according to the libraries found in this path

Table A.5: Properties used by the Bundle Manager

A.6 External Library Properties

ch.ethz.iks.r osgi.port

The R-OSGi property is used by the Trinity System itself
to allow other applications components to connect to it. An
example is the default implementation of the Test Reporter.

Table A.6: Properties used by external libraries

A.7 Default Child Creator 69

A.7 Default Child Creator

ch.ethz.jgranat.testserver.torc.configs

The directory where the different framework configurations are placed.
Each configuration should be in a subdirectory with this path as root.

ch.ethz.jgranat.testserver.torc.currentconfig

The configuration to load and to test the bundles in. The
configuration can be completely arbitrary (it can have it’s
own config.ini).

ch.ethz.jgranat.testserver.torc.basedir

The path where the temporary children will be copied to.
This directory is used to create and delete the different
Children and should not be write protected.

ch.ethz.jgranat.testserver.torc.child.maxwait

Maximum number of retry until the Test Orchestrator kills
the child with a termination order. This is only used if the
child does not respond to a normal close order.

ch.ethz.jgranat.testserver.torc.child.timetowait

Maximum time to wait in milliseconds for the close order to work.
The Child will retry after the given time frame if the instance is
still active.

ch.ethz.jgranat.testserver.torc.child.r osgi.port

The first R-OSGi port used in the child instance. This port
will be increated for each new Child instance as the current version
of R-OSGi cannot handle port re-use.

Table A.7: Properties used by the Default Child Creator

70 Trinity Properties

Appendix B

Trinity Public Interfaces

B.1 The IBundleListener Interface

Implementations of the IBundleListener interfaces will get notified when a new
bundle has been installed or deinstalled in the Trinity System.

void bundleInstalled(IBundleInfo bundle)
A new bundle has been installed and approved.

void bundleDeinstalled(IBundleInfo bundle)
A bundle has been deinstalled from the system.

void bundleUpdated(IBundleInfo bundle)
An already installed bundle has been updated.

Table B.1: The IBundleListener Interface

B.2 The ITestManager Interface

ITestManager implementations will be asked bei the Test Orchestrator to deliver
new test based on the given configuration.

Collection createNewTests(IConfiguration configInfo)
Creates new tests based on the path in the

properties and the Test Repository Manager

Table B.2: The ITestManager Interface

B.3 The IConfigurationListener Interface

Implementations of the IConfigurationListener interfaces will get notified when
new configurations has been created in the Trinity System.

72 Trinity Public Interfaces

void newConfigurationsCreated(Collection configs)
New configuration have been created by the system

and can now be evaluated

Table B.3: The IConfigurationListener Interface

B.4 The ITestRepositoryManager Interface

ITestRepositoryManager implementations are responsible for the saving of the
tests artifacts. The getTests method will be called by the Test Orchestrator on
every implementation.

void saveTest(JarWrapper test, IConfiguration config)
Saves the given test, linked to the given

configuration. It is not mandatory to link the test to the
configuration.

void saveAllTests(Collection tests, IConfiguration config)
Saves all tests in the collection linked to

the given configuration. It is not mandatory to link the
test to the configuration.

Collection getTests(IConfiguration config)
Returns all Tests linked with the configuration

The returned tests should be compatible with the requirements
and capabilities of the configuration.

Table B.4: The ITestRepositoryManager Interface

B.5 The IChildFactory Interface

The IChildFactory interface is used to create new child instances.

IChildInstance createChild() throws InitializationException
Creates a new child instance based on the predefined

configuration.

IChildConfiguration getConfiguration() throws InitializationException
Returns the predefined child configuration.

Table B.5: The IChildFactory Interface

B.6 The IChildInstance Interface

The IChildInstance represent an abtraction of an OSGi independent instance.
The methods of this interface are quite extensive and only the most important
ones are shown below.

B.7 The IReportManager Interface 73

StreamProxy getOut()
Returns the stream to the “System.out” of

the child instance

StreamProxy getError()
Returns the stream to the “System.err” of

the child instance

IBundleInfo installBundle(String name, InputStream bundle)
Install the Bundle in the stream with the given

name in the child framework. Returns an IBundleInfo if the
installation was successful, null otherwise.

void removeBundle(Long id)
Remove the bundle with the id ’id’ from the

child framework.

Collection getInstalledBundles()
Returns all installed bundles.

boolean isAllResolved()
Check whether the bundles installed on the

child instance all resolve correctly or not.

Table B.6: Some of the IChildInstance Methods.

B.7 The IReportManager Interface

IReportManager implementation are responsible for the monitoring of the tests.

void beginMonitoring(IConfiguration configInfo, IChildInstance child)
Notifies the Report Manager that a test series on a

configuration has begun. The child instance where the tests are being done
is passed as argument to install and/or start monitoring bundles.

void endMonitoring(IConfiguration configInfo, IChildInstance child)
Notifies the Report Manager that a test series on a

configuration has ended. The child instance where the tests are being done
is passed as argument to either do some cleaning-up or retrieve data.

void testEnded(ITestSuiteResult result, IConfiguration config)
This method is used as an alternative to the event driven

notification. It notify the Report Manager that a test has just ended and
gives the result of the test as a parameter.

Table B.7: The IReportManager Interface

74 Trinity Public Interfaces

B.8 The IConfiguration Interface

The IConfiguration Interface represent a configuration. A configuration is a set
of dependent bundles.

boolean hasBundle(IBundleInfo bundle)
Check whether the given bundle is in the

configuration or not.

IBundleInfo[] getBundles()
Returns all the bundle contained in the configuration.

Capability[] getExports()
Returns all Capabilities (exporing packages

and registered services) of the configuration.

Requirement[] getImports()
Returns all Requirements (importing packages

and used services) of the configuration.

boolean isComplete()
Check whether all Requirements (importing packages

and used services) are fullfilled by the configuration.

Collection getMissingRequirements()
Returns a collection of Requirements that are

not fullfilled by the configuration.

Table B.8: The IConfiguration Interface

B.9 The ITestEvaluator Interface

ITestEvaluation getTestEvaluation(IConfiguration configInfo)
Get the evaluation of the given configuration. An

evaluation is based on the tests done using the configuration
and user specific evaluation criteria.

void addTestResult(IConfiguration config, ITestSuiteResult result)
Add the test suite result of a finished test done

using the given configuration.

Table B.9: The ITestEvaluator Interface

B.10 The IBundleManager Interface

The IBundleManager implementation publish the management of the bundles
as an alternative to the BundleContext object. This interface is used to com-
municate with the child instances (installing/starting bundles). It was created

B.11 The IBundleInfo Interface 75

to allow the transparent bundle management between different OSGi instances.

IBundleInfo installBundle(String name, InputStream bundle)
Installs the given bundle in the current OSGi instance with

the given name. Returns null if the bundle could not be installed.

void uninstallBundle(long id)
Uninstalls the bundle with the given id. The id is the one

given by the OSGi instance the BundleManager is running in.

void startBundle(long id)
Starts the bundle with the given id. The id is the one

given by the OSGi instance the BundleManager is running in.

void stopBundle(long id)
Stops the bundle with the given id. The id is the one

given by the OSGi instance the BundleManager is running in.

void updateBundle(long id)
Updates the bundle with the given id. The id is the one

given by the OSGi instance the BundleManager is running in.

Collection getInstalledBundles()
Returns a collection of IBundleInfo Objects representing the

installed bundles in the OSGi instance the BundleManager is installed in.

boolean isAllResolved()
Returns true if all the bundles installed in the OSGi instance

the BundleManager is in have the status “Resolved” or above.

Table B.10: The IBundleManager Interface

B.11 The IBundleInfo Interface

IBundleInfo implementations represent a Bundle artifact and all its meta data.
It extends the interface “org.osgi.service.obr.Resource” adding only some get-
ters.

Bundle getBundle()
Returns the underlying bundle object represented

by this IBundleInfo object

void refreshInfo()
Forces a refresh of the bundle information

int getStatus()
Returns the status of the bundle.

Table B.11: The IBundleInfo Interface

76 Trinity Public Interfaces

B.12 The ITestResult Interface

An ITestResult implementation is returned for each Test found in the generated
test bundles. This interface is closely related to the JUnit TestResult Object.
Another interface, the ITestSuiteResult is analogous to the ITestResult interface
but represent a suite (collection) of test cases.

boolean wasSuccessful()
Returns whether the entire test was successful or not.

int errorCount()
Returns the number of detected errors.

Enumeration errors()
Returns an Enumerations for the list of errors.

int failureCount()
Returns the number of detected failures.

Enumeration failures()
Returns an Enumerations for the list of failures.

int runCount()
Return the number of time this test was run in the

child instance.

long getTestTime()
Returns the time in milliseconds the test took to run.

String getTestName()
Returns the name of the test.

Collection getTestMethodNames()
Returns a list of names representing the names of the

methods this test is composed of.

String getTestClass()
Returns a String representation of the class name of

the test class.

Table B.12: The ITestResult Interface

Appendix C

Trinity Generated Event

C.1 Event Sets

There are 2 different set of events that are generated by the Trinity System. The
publishing of the events is based on the distributed event implementation of R-
OSGi which can distribute the events between different JVMs. The distribution
of the events happens transparently and client plug-ins just have to connect to
the server through the R-OSGi port to get the relevant events generated by the
Test Orchestrator.

The first set is reserved for the Test Orchestrator and contains events generated
by the child instances. The second set is created by the Test Orchestrator and
is intended for all other interested parties. The mapping of event is completely
1-to-1. The Test Orchestrator will transparently consume the child events and
forward it in the corresponding parent event with all its attributes copied from
the child event.

The events have the same schema but different root definitions:

ch/ethz/jgranat/testserver/core/Child
The root “object” for all child events. The Child

events are reserved for the Test Orchestrator and should not be
consumed by anyone else.

ch/ethz/jgranat/testserver/core/Parent
The root “object” for all Trinity events. The Test

Orchestrator will re-send the child events and change the root
Object but transparently pass every other attribute of the event.

Table C.1: The 2 event roots

78 Trinity Generated Event

C.2 Default Events

Both sets and all the attributes used in the Trinity System are defined in the
core interface ch.ethz.jgranat.testserver.core.child.ITestRunner. The events gen-
erated by the child instance are optional, meaning that new implementations
may not send the whole set, and are generated to make the whole testing more
user friendly. The more events the child instance is sending, the more interac-
tive the user interfaces can be written. The minimum list of attributes is also
defined but can be extended to fit the need of future clients or child instances.

The default events and their meaning can be seen in the table below:

. . . /BEGINMETHOD
This event is sent just before a test method

is started. The parameters for this events are:
testname: The name of the overall test class.
testmethodname: The name of the starting method.
testconfig : The Configuration Object.

. . . /ENDMETHOD
This event is sent just after a test method

has ended. The parameters for this events are:
testname: The name of the overall test class.
testmethodname: The name of the starting method.
testconfig : The configuration object.
testresult : The result (an ITestResult implementation)

of the method test.

. . . /BEGINTEST
This event is sent just before a test class

is started. The parameters for this events are:
testname: The name of the overall test class.
testconfig : The Configuration Object.

. . . /ENDTEST
This event is sent just after a test class

has ended. The parameters for this events are:
testname: The name of the overall test class.
testconfig : The configuration object.
testresult : The result (an ITestSuiteResult implementation)

of the method test.

. . . /FINISHED
This event is sent just after the last test class

has ended or if an error happened in the whole test process.
The parameters for this events are:

testconfig : The configuration object.

Table C.2: The events generated by the Trinity System

C.2 Default Events 79

The default events are generated in a structured way but may not be received
in the same order as they were sent, depending on the EventAdmin implemen-
tation. The default event structure is shown in the graph below.

sent by the Child and forwarded by the Test Orchestrator:
for every test found
send /BEGINTEST
for every method in TestCase
send /BEGINMETHOD
test method
send /ENDMETHOD

send /ENDTEST

sent by the Test Orchestrator:
/FINIHSED

80 Trinity Generated Event

Appendix D

Errors in Trinity

D.1 Used Library

D.1.1 R-OSGi

Reuse of Ports

The current R-OSGi implementation does not work well with the reuse of ports
for new child frameworks. The first implementation of the child framework tried
to reuse the ports of destroyed children. The R-OSGi library, however, tried
to use the same proxy bundle for a different instance and threw an exception.
This bug has been submitted into the bug tracking system of R-OSGi (http://
sourceforge.net/tracker/index.php?func=detail&aid=2010407&group_id=
158382&atid=807609)

Restart Problem

The current R-OSGi implementation does not allow a restart of the bundle.
R-OSGi creates a ServerSocket to listen to incoming calls from other OSGi
instances at start-up and does not destroy it at shut down. Instead, a new
port is opened. This can cause strange behavior in the eclipse client plug-ins
when trying to access the reports on the server. This bug has been submitted
into the bug tracking system of R-OSGi (http://sourceforge.net/tracker/
index.php?func=detail&aid=2010399&group_id=158382&atid=807609).

ClassCastException

The R-OSGi library threw a ClassCastException on rare occasions. The error
could not be reproduced consistantly to understand what exactly went wrong
in the communication.

WARNING: ch.ethz.iks.r_osgi.messages.StreamRequestMessage
cannot be cast to ch.ethz.iks.r_osgi.messages.MethodResultMessage

java.lang.ClassCastException: ch.ethz.iks.r_osgi.messages.StreamRequestMessage
cannot be cast to ch.ethz.iks.r_osgi.messages.MethodResultMessage

http://sourceforge.net/tracker/index.php?func=detail&aid=2010407&group_id=158382&atid=807609
http://sourceforge.net/tracker/index.php?func=detail&aid=2010407&group_id=158382&atid=807609
http://sourceforge.net/tracker/index.php?func=detail&aid=2010407&group_id=158382&atid=807609
http://sourceforge.net/tracker/index.php?func=detail&aid=2010399&group_id=158382&atid=807609
http://sourceforge.net/tracker/index.php?func=detail&aid=2010399&group_id=158382&atid=807609

82 Errors in Trinity

at ch.ethz.iks.r_osgi.impl.ChannelEndpointImpl.
invokeMethod(ChannelEndpointImpl.java:301)

at ch.ethz.iks.r_osgi.impl.ChannelEndpointMultiplexer.
invokeMethod(ChannelEndpointMultiplexer.java:125)

at proxy.bchoaoaob_feggcj.ch.ethz.jgranat.testserver.core.
bm.IBundleManagerImpl.installBundle(Unknown Source)

. . .

D.2 Trinity Errors

D.2.1 Socket Check

After extensive tests, it was noted that the current implementation of the child
instance of the Trinity Test Server did not check for socket availability at cre-
ation time. This led to false negatives where the System marked a configuration
as not working when in fact the error was due to a port already in use by another
system.

java.net.BindException: Address already in use: JVM_Bind
at java.net.PlainSocketImpl.socketBind(Native Method)
at java.net.PlainSocketImpl.bind(PlainSocketImpl.java:359)
at java.net.ServerSocket.bind(ServerSocket.java:319)
at java.net.ServerSocket.<init>(ServerSocket.java:185)
at java.net.ServerSocket.<init>(ServerSocket.java:97)
at org.eclipse.osgi.framework.internal.core./

FrameworkConsole.getSocketStream(FrameworkConsole.java:125)
at org.eclipse.osgi.framework.internal.core./

FrameworkConsole.run(FrameworkConsole.java:216)
at java.lang.Thread.run(Thread.java:619)

D.2.2 RequireBundle Keyword

The Trinity Analyzer System cannot, as yet, resolve the “RequireBundle” key-
word. The current analyzer view every bundle as a “closed entity” with de-
fined package dependencies. The RequireBundle keyword allows packages to be
loaded and accessed by the bundle without any explicit declaration. This is
currently not implemented in the system and can lead to correct bundles not
being added to the system.

D.2.3 Service Analyzer

The service analyzer, as described in section 4.4.1 on page 33, can only find
services which use the OSGi framework interface to register its services. In the
case of Apache Felix (see section 6.1.1 on page 49 for more details on Felix), the
services have been encapsulated in an application specific wrapper. The number
of services found in cases like Felix is therefore not complete.

A new version of the analyzer could find those encapsulation and add them
to the list of patterns defining the consuming or publishing of services.

D.2 Trinity Errors 83

D.2.4 Dependency Cycle

As seen with the Newton test application (see section 6.1.2 on page 52 for
more details), The Trinity System cannot, as yet, resolve dependency cycles.
A dependency cycle occurs when bundle A needs package B while providing
package A and bundle B needs package A while providing package B.

84 Errors in Trinity

Glossary

Bundle Graph A Bundle Graph is the meta data representation of a config-
uration. It represent a set of bundles connected to each other by their
bindings. Each node in the graph is defined as the meta data of the
bundle, the bundle itself and its bindings to other bundles. Each edge is
part of a node and connect to another node with a requirement as edge
qualifier, 38, 68

Bundle Meta-Data The Meta-Data of a bundle is the information about the
bundle that can be read or calculated out of it. It contains essential infor-
mation about the bundle (e.g., names, ids, version numbers, dependencies,
etc), 34

Capability An OBR keyword representing anything that can be described with
a set of properties (e.g. A package or service export, a bundle, an Execu-
tion Environment, a Display type, the size of the available memory, etc).
Capabilities are named. The reason they are named is so that they can
only be provided to requirements with the same name. Capabilities can
originate from resources, but can also be innate in the environment, 39

Child Instance A child instance is a separate process created for the express
purpose of testing some configuration against a series of tests. The mini-
mum (and currently implemented) child instance is a separate OSGi pro-
cess where the bundle are remotely installed and started. There is no
restrictions as to the nature of a child instance and, depending on the
application, could involve the specification of different Java version or dif-
ferent operating systems or the use of a complete mobile environment, 42,
45

Configuration In the most abstract sense of the term, a configuration is a
set of OSGi Bundles. In Trinity, the sense of a configuration has been
narrowed to bundles having some kind of connection to each other in the
form of requirements/capabilities. A configuration is then essentially a
bundle graph, 28

Minimal Configuration A minimal configuration or resolvable configuration
is a set of bundle with no missing mandatory requirements (tight cou-
pling). However, the requirements taken into account are “only” the OSGi
application specific ones (imports of packages or services), 36

86 Errors in Trinity

Complete Configuration A complete configuration is a set of bundle with
neither mandatory nor optional requirements missing (tight and loose cou-
pling). However, the requirements taken into account are “only” the OSGi
application specific ones (imports of packages or services) , 36, 41

Promoted Configuration A promoted configuration is a configuration that
has been selected to be published on the deploy server and can be down-
loaded by the client systems, 68

JarWrapper A JarWrapper is a wrapper over a dynamically created jar file
used to make it more convenient to access it, 43

Loose Coupling Loose couplings are optional requirements and are expressed
as service imports/exports in OSGi. It means that the requirements does
not have to be fulfilled for the bundle to resolve and start, 36

Managed Bundle A Managed Bundle is a bundle which has been added to
the Trinity System, 31

Binary Bundle A managed bundles developed outside the control of the Trin-
ity System and added as a “used bundle”. Binary bundles are not meant
to be unit tested, 65

Source Bundle A managed bundles developed by the project the Trinity Sys-
tem is responsible of. Source bundles are unit tested and have a higher
rate of versioning cycle as binary bundles, 65

Profile A profile is the P2 analogy to a configuration. It represent a set of
bundles that can be installed on a client system, 68

Requirement An OBR keyword representing the counterpart to (or need for)
capabilities. It is expressed as a filter on a resource. The filter must only
be matched to capabilities with the same name. A requirement matches
a capability when its filter matches any of the properties defined in that
capability. A requirement can optionally contain a reason. A reason is a
short description that is applicable when a requirement is the cause for
the selection of a resource, 39

Staged Test Pipeline A multi-step process defining the steps a bundle goes
through from its creation to its deployment as part of a working profile.
The Staged Test Pipeline is composed of two distinct part. The first part
defines the steps related to a single bundle, the second part defines the
steps related to entire configurations, 32, 41

Test Bundle A test bundle is a generated bundle containing JUnit tests that
will be packaged in an OSGi bundle and installed on the child instance
to test the configuration. The dependencies of the bundle is analyzed at
creation time and the test bundle will only be added to the configurations
where all its requirements can be resolved, 28, 43

D.2 Trinity Errors 87

Tight Coupling Tight couplings are mandatory requirements/capabilities and
are expressed as package imports/exports in OSGi. It means that the
requirements have to be fulfilled for the bundle to resolve and start, 36,
41

White Board Pattern Programming Pattern where the notification is based
on the inversion of control principle, 36, 39

88 Errors in Trinity

Bibliography

[1] A. Assad, A. Santos, L.-F. Guimaraes. Service-oriented architec-
ture testing design and practices. http://www.cesar.org.br/pdf/
ServiceOrientedArchitectureTestingDesignandPractices.pdf, 2006.

[2] A. Colyer. Spring osgi with adrian colyer. http://raibledesigns.com/
rd/entry/tse_spring_osgi_with_adrian, 2006.

[3] A. Orso, H. Do, G. Rothermel, M. J. Harrold, and D. Rosenblum. Us-
ing component metadata to regression test component-based software. In
Journal of Software Testing, Verification, and Reliability, volume 17, pages
61–94, June 2007.

[4] A. Ryan, J. Newmarch. An architecture for component evolution. In Con-
sumer Communications and Networking Conference, pages 498–503. IEEE
Computer Society, 2005.

[5] S. Ambler. Agile software development. http://www.agilemodeling.com/
essays/agileSoftwareDevelopment.htm, 2007.

[6] B. Boehm. The spiral model. http://www.maxwideman.com/papers/
linearity/spiral.htm, 1988.

[7] C. Oriat. Jartege: A tool for random generation of unit tests for java
classes. In QoSA / SOQUA, pages 242 – 256, September 2005.

[8] Codice Software. Integration strategies. http://codicesoftware.
blogspot.com/2008/04/integration-strategies.html, 2008.

[9] D. Angluin and C. H. Smith. Inductive inference: Theory and methods. In
ACM Computing Surveys, volume 15, pages 237–269, September 1983.

[10] D. Bianculli, C. Ghezzi. Towards a methodology for lifelong validation of
service compositions. In Proceedings of the 2nd international workshop on
Systems development in SOA environments, pages 7–12. Association for
Computing Machinery, 2008.

[11] D. M. Cohen, S. R. Dalal, M. L. Fredman, G.C. Patton. The aetg design:
an approach to testing based on combinatorial design. In trans on Software
Engineering, volume 23, pages 437–444. IEEE, 1997.

[12] D. Nieland, W. Dunn, D. Kamlani. Osgi provides open platform for
the internet-enabled car. http://www.osgi.org/wiki/uploads/News/
pressrel1016900.pdf, 2008.

http://www.cesar.org.br/pdf/ServiceOrientedArchitectureTestingDesignandPractices.pdf
http://www.cesar.org.br/pdf/ServiceOrientedArchitectureTestingDesignandPractices.pdf
http://raibledesigns.com/rd/entry/tse_spring_osgi_with_adrian
http://raibledesigns.com/rd/entry/tse_spring_osgi_with_adrian
http://www.agilemodeling.com/essays/agileSoftwareDevelopment.htm
http://www.agilemodeling.com/essays/agileSoftwareDevelopment.htm
http://www.maxwideman.com/papers/linearity/spiral.htm
http://www.maxwideman.com/papers/linearity/spiral.htm
http://codicesoftware.blogspot.com/2008/04/integration-strategies.html
http://codicesoftware.blogspot.com/2008/04/integration-strategies.html
http://www.osgi.org/wiki/uploads/News/pressrel1016900.pdf
http://www.osgi.org/wiki/uploads/News/pressrel1016900.pdf

90 BIBLIOGRAPHY

[13] D. Saff. JUnit. http://en.wikipedia.org/wiki/JUnit, 2007.

[14] E. W. Weisstein. Definition of a dynamical system. http://mathworld.
wolfram.com/DynamicalSystem.html, 2008.

[15] Equinox development mailing list. System bundle package ex-
ports. http://osdir.com/ml/ide.eclipse.equinox.devel/2007-01/
msg00043.html, 2007.

[16] F. Barbon, P. Traverso, M. Pistore, M. Trainotti. Run-time monitoring of
instances and classes of web service compositions. In ICWS 06 Proceedings,
pages 63 – 71. IEEE Computer Society, 2006.

[17] M. Fowler. Continuous Integration. http://www.martinfowler.com/
articles/continuousIntegration.html, 2006.

[18] Free Software Foundation. CVS - Concurrent Versions System. http:
//www.nongnu.org/cvs/, 1998.

[19] G. Rothermel and M. J. Harrold. Selecting regression tests for object-
oriented software. In the International Conference on Software Mainte-
nance, pages 14–25, September 1994.

[20] H. Vo. Iterative process. http://www.vocw.edu.vn/content/m10078/
latest/, 2008.

[21] IEEE Standards Board. IEEE Standard for Software Unit Testing: An
American National Standard, volume 2, chapter IEEE Standards: Software
Engineering, pages 1008–1987. The Institute of Electrical and Electronics
Engineers, 1999 edition edition, 1987.

[22] R. Iosif. Formal verification applied to java concurrent software. In In-
ternational Conference on Software Engineering archive, pages 707 – 709,
2000.

[23] Iterative Development. Definition: Iterative and incremental develop-
ment. http://en.wikipedia.org/wiki/Iterative_and_incremental_
development, 2008.

[24] J. Ellson, E. Gansner. Graphwiz. http://www.graphviz.org/, 2004.

[25] J. Hartmann and D. Robson. Revalidation during the software maintenance
phase. In Conference on Software Maintenance, pages 70–79, October 1989.

[26] J. Maron, G. Pavlik. The evolution of soa application development. http:
//si.vse.cz/archiv/clanky/2006/maron.pdf, 2006.

[27] J. S. Rellermeyer, G. Alonso, T. Roscoe. R-osgi Distributed applications
through software modularization. In Middleware 2007, volume Volume
4834/2007 of Lecture Notes in Computer Science, pages 1–20. Springer
Berlin / Heidelberg, 2007.

[28] y. . . h. J. Sloan a.k.a. Chip Overclock, title = The Total Cost of Code
Ownership.

http://en.wikipedia.org/wiki/JUnit
http://mathworld.wolfram.com/DynamicalSystem.html
http://mathworld.wolfram.com/DynamicalSystem.html
http://osdir.com/ml/ide.eclipse.equinox.devel/2007-01/msg00043.html
http://osdir.com/ml/ide.eclipse.equinox.devel/2007-01/msg00043.html
http://www.martinfowler.com/articles/continuousIntegration.html
http://www.martinfowler.com/articles/continuousIntegration.html
http://www.nongnu.org/cvs/
http://www.nongnu.org/cvs/
http://www.vocw.edu.vn/content/m10078/latest/
http://www.vocw.edu.vn/content/m10078/latest/
http://en.wikipedia.org/wiki/Iterative_and_incremental_development
http://en.wikipedia.org/wiki/Iterative_and_incremental_development
http://www.graphviz.org/
http://si.vse.cz/archiv/clanky/2006/maron.pdf
http://si.vse.cz/archiv/clanky/2006/maron.pdf

BIBLIOGRAPHY 91

[29] J. Yang and D. Evans. Automatically inferring temporal properties for
program evolution. In International Symposium on Software Reliability
Engineering, pages 340 – 351, November 2004.

[30] Jan S. Rellermeyer. R-OSGi. http://r-osgi.sourceforge.net/index.
html, 2008.

[31] JUnit Community. JUnit cookbook. http://junit.sourceforge.net/
doc/testinfected/testing.htm, 2003.

[32] JUnit Community. JUnit homepage. http://www.junit.org/, 2008.

[33] Kellerman Software. NUnit Test Generator. http:
//www.kellermansoftware.com/p-30-NUnit%20Test%
20GeneratorSpecifications.aspx?mode=Specifications, 2008.

[34] D. Knuth. The Art of Computer Programming, volume 3, chapter 3.2.1.
Addison-Wesley, 1998.

[35] P. Kriens. OSGi and testing. http://www.aqute.biz/Blog/2005-06-27,
2005.

[36] L. Baresi, D. Bianculli, C. Ghezzi, S. Guinea, P. Spoletini. Validation of
web service compositions, 2007.

[37] L. Baresi, E. Di Nitto, C. Ghezzi. Toward open-world software Issue and
challenges. In Computer, volume 39, pages 36–43. IEEE Computer Society
Press, October 2006.

[38] L. G. Smith, D. Kontogiannis. Soam 2008: 2nd workshop on soa-based
systems maintenance and evolution. In Software Maintenance and Reengi-
neering, pages 336–337, 2008.

[39] L. Hatton. Does OO really match the way we think? http://www.
leshatton.org/Documents/OO_IS698.pdf, 1997.

[40] M. Kajko-Mattsson, G. A. Lewis, D. B. Smith. Roles
for maintenance and evolution of soa-based systems.
http://www.cs.vu.nl/csmr2007/workshops/3-2007.

[41] M. S. Mimoso. Survey: SOA prominent on 2005 budgets.
http://searchsoa.techtarget.com/news/article/0,289142,sid26_
gci1010622,00.html, 2004.

[42] Method123. Project management life cycle. http://www.method123.com/
project-lifecycle.php, 2003.

[43] Methods and Tools. Understanding the unified process (up). http://www.
methodsandtools.com/archive/archive.php?id=32, 2002.

[44] M.J. Harold, J.D. McGregor, and K. J. Fitzpatrick. Incremental testing of
object-oritented class structures. In the 14th International Conference on
Software Engineering, pages 68–80, May 1992.

http://r-osgi.sourceforge.net/index.html
http://r-osgi.sourceforge.net/index.html
http://junit.sourceforge.net/doc/testinfected/testing.htm
http://junit.sourceforge.net/doc/testinfected/testing.htm
http://www.junit.org/
http://www.kellermansoftware.com/p-30-NUnit%20Test%20GeneratorSpecifications.aspx?mode=Specifications
http://www.kellermansoftware.com/p-30-NUnit%20Test%20GeneratorSpecifications.aspx?mode=Specifications
http://www.kellermansoftware.com/p-30-NUnit%20Test%20GeneratorSpecifications.aspx?mode=Specifications
http://www.aqute.biz/Blog/2005-06-27
http://www.leshatton.org/Documents/OO_IS698.pdf
http://www.leshatton.org/Documents/OO_IS698.pdf
http://searchsoa.techtarget.com/news/article/0,289142,sid26_gci1010622,00.html
http://searchsoa.techtarget.com/news/article/0,289142,sid26_gci1010622,00.html
http://www.method123.com/project-lifecycle.php
http://www.method123.com/project-lifecycle.php
http://www.methodsandtools.com/archive/archive.php?id=32
http://www.methodsandtools.com/archive/archive.php?id=32

92 BIBLIOGRAPHY

[45] OASIS Research Team. OSGi Bundle dependency. http:
//proactive.inria.fr/release-doc/html/ProActiveManual.html#
OSGi_html_overview, 2007.

[46] ObjectWeb. Definition asm. http://asm.objectweb.org/, 2007.

[47] Open Service Gateway Initiative. Osgi homepage. http://www.osgi.org/,
2008.

[48] OSGi Alliance. Listener pattern considered harmful: The ”whiteboard”
pattern. http://www.osgi.org/wiki/uploads/Links/whiteboard.pdf,
2004.

[49] OSGi Alliance. RFC-0112 bundle repository. http://www.osgi.org/
download/rfc-0112_BundleRepository.pdf, 2005.

[50] OSGi Alliance. Bundle: OSGi Service Platform release 4 version
4.1. http://www2.osgi.org/javadoc/r4/org/osgi/framework/Bundle.
html, 2007.

[51] OSOA Collaboration. Power combination: Sca, osgi and spring. http:
//www.osoa.org/download/attachments/250/Power_Combination_
SCA_Spring_OSGi.pdf, 2006.

[52] P. Collet, T. Coupaye, H. Chang, L. Seinturier, G. Dufrêne. Components
and services: A marriage of reason. http://www.i3s.unice.fr/~mh/RR/
2007/RR-07.17-P.COLLET.pdf, 2007.

[53] Paremus Limited. Newton framework. http://newton.codecauldron.
org/site/index.html, 2008.

[54] R. S. Hall. Oscar bundle repository. http://oscar-osgi.sourceforge.
net/, 2005.

[55] R. S. Hall, H. Cervantes. Challenges in building service-oriented applica-
tions for osgi. In Communications Managzine, volume 42, pages 144–149.
IEEE Computer Society, 2004.

[56] R. Z. Weinreich, T. Draheim, D. Draheim. A versioning model for en-
terprise services. In Advanced Information Networking and Applications
Workshops, pages 570–575. IEEE Computer Society, 2007.

[57] S. Elbaum, D. Gable, G. Rothermel. The impact of software evolution on
code coverage information. In IEEE International Conference on Software
Maintenance (ICSM’01), page 170. IEEE Computer Society, 2001.

[58] S. Freeman, N. Pryce, T. Mackinnon, J. Walnes. Mock roles, not objects.
http://jmock.org/oopsla2004.pdf, 2004.

[59] S. J. Zeil. The waterfall model. http://www.cs.odu.edu/~zeil/cs451/
Lectures/01overview/process2/process2_htsu2.html, 1999.

[60] S. Jeong, G. Yeo, Y. Jang, S. Sung, H. Lee. Method of testing open
services gateway initiative serviceplatform and test tool using the method.
http://www.wipo.int/pctdb/en/wo.jsp?wo=2005081106, 2005.

http://proactive.inria.fr/release-doc/html/ProActiveManual.html#OSGi_html_overview
http://proactive.inria.fr/release-doc/html/ProActiveManual.html#OSGi_html_overview
http://proactive.inria.fr/release-doc/html/ProActiveManual.html#OSGi_html_overview
http://asm.objectweb.org/
http://www.osgi.org/
http://www.osgi.org/wiki/uploads/Links/whiteboard.pdf
http://www.osgi.org/download/rfc-0112_BundleRepository.pdf
http://www.osgi.org/download/rfc-0112_BundleRepository.pdf
http://www2.osgi.org/javadoc/r4/org/osgi/framework/Bundle.html
http://www2.osgi.org/javadoc/r4/org/osgi/framework/Bundle.html
http://www.osoa.org/download/attachments/250/Power_Combination_SCA_Spring_OSGi.pdf
http://www.osoa.org/download/attachments/250/Power_Combination_SCA_Spring_OSGi.pdf
http://www.osoa.org/download/attachments/250/Power_Combination_SCA_Spring_OSGi.pdf
http://www.i3s.unice.fr/~mh/RR/2007/RR-07.17-P.COLLET.pdf
http://www.i3s.unice.fr/~mh/RR/2007/RR-07.17-P.COLLET.pdf
http://newton.codecauldron.org/site/index.html
http://newton.codecauldron.org/site/index.html
http://oscar-osgi.sourceforge.net/
http://oscar-osgi.sourceforge.net/
http://jmock.org/oopsla2004.pdf
http://www.cs.odu.edu/~zeil/cs451/Lectures/01overview/process2/process2_htsu2.html
http://www.cs.odu.edu/~zeil/cs451/Lectures/01overview/process2/process2_htsu2.html
http://www.wipo.int/pctdb/en/wo.jsp?wo=2005081106

BIBLIOGRAPHY 93

[61] S. R. Schach. Object-Oriented and Classical Software Engineering.
McGraw-Hill, 2004.

[62] Spring Community. Spring Dynamic Modules for OSGi Service Platforms.
http://www.springframework.org/osgi/, 2008.

[63] Spring Community. Spring framework. http://www.springframework.
org/, 2008.

[64] Sun Microsystem. Java Platform, Enterprise Edition (Java EE). http:
//java.sun.com/javaee/, 2006.

[65] Sun Microsystems. Sun microsystems: Versioning of serializeable ob-
jects. http://java.sun.com/j2se/1.5.0/docs/guide/serialization/
spec/version.html#9419, 2004.

[66] Sun Microsystems Inc. JAR File Specification. Technical report,
http://java.sun.com/j2se/1.5.0/docs/guide/jar/jar.html#JAR%
20Manifest, 2003.

[67] T. Standish. An essay on software reuse. Transactions on Software Engi-
neering SE-10, 1984.

[68] The Apache Software Foundation. Ant: Another neat tool. http://ant.
apache.org/, 2008.

[69] The Apache Software Foundation. Apache felix. http://felix.apache.
org/site/index.html, 2008.

[70] The Apache Software Foundation. Maven build project. http://maven.
apache.org/, 2008.

[71] The Eclipse Foundation. Eclipse. http://www.eclipse.org/, 2008.

[72] The Eclipse Foundation. Equinox p2 getting started. http://wiki.
eclipse.org/Equinox_Provisioning_Getting_Started, 2008.

[73] The Eclipse Foundation. Equinox p2 wiki. http://wiki.eclipse.org/
Equinox_Provisioning/, 2008.

[74] The Eclipse Foundation. Osgi technology. http://www.osgi.org/About/
Technology, 2008.

[75] The OSGi Alliance. OSGi Service Platform Core Specification.

[76] The OSGi Alliance. About the OSGi Service Platform.
Technical report, http://www.osgi.org/wiki/uploads/Links/
OSGiTechnicalWhitePaper.pdf, 2007.

[77] The OSGi Alliance. OSGi Service Platform Service Compendium. I O S
Press, 2007.

[78] ThoughtWorks. Cruise control. http://cruisecontrol.sourceforge.
net, 2001.

http://www.springframework.org/osgi/
http://www.springframework.org/
http://www.springframework.org/
http://java.sun.com/javaee/
http://java.sun.com/javaee/
http://java.sun.com/j2se/1.5.0/docs/guide/serialization/spec/version.html#9419
http://java.sun.com/j2se/1.5.0/docs/guide/serialization/spec/version.html#9419
http://java.sun.com/j2se/1.5.0/docs/guide/jar/jar.html#JAR%20Manifest
http://java.sun.com/j2se/1.5.0/docs/guide/jar/jar.html#JAR%20Manifest
http://ant.apache.org/
http://ant.apache.org/
http://felix.apache.org/site/index.html
http://felix.apache.org/site/index.html
http://maven.apache.org/
http://maven.apache.org/
http://www.eclipse.org/
http://wiki.eclipse.org/Equinox_Provisioning_Getting_Started
http://wiki.eclipse.org/Equinox_Provisioning_Getting_Started
http://wiki.eclipse.org/Equinox_Provisioning/
http://wiki.eclipse.org/Equinox_Provisioning/
http://www.osgi.org/About/Technology
http://www.osgi.org/About/Technology
http://www.osgi.org/wiki/uploads/Links/OSGiTechnicalWhitePaper.pdf
http://www.osgi.org/wiki/uploads/Links/OSGiTechnicalWhitePaper.pdf
http://cruisecontrol.sourceforge.net
http://cruisecontrol.sourceforge.net

94 BIBLIOGRAPHY

[79] Tigris.org Community. Subversion. http://subversion.tigris.org/,
2006.

[80] Verifysoft Technology. Conformiq qtronic. http://www.verifysoft.com/
en_qtronic_testautomation.html, 2008.

[81] VMWare. Vmware homepage. http://www.vmware.com/, 2004.

[82] W. Visser, C. S. Pasareanu, S. Khurshid. Test input generation with java
pathfinder. In International Symposium on Software Testing and Analysis,
pages 97 – 107. ACM: Association for Computing Machinery, 2004.

[83] Wikipedia. Regression testing definition. http://en.wikipedia.org/
wiki/Regression_test, 2008.

[84] W.T. Tsai. Service-oriented system engineering: a new paradigm, volume
Service-Oriented System Engineering, chapter 1, pages 3–6. INSPEC Ac-
cession, October 2005.

[85] XP. eXtreme Programming: A gentle introduction., 2006.

http://subversion.tigris.org/
http://www.verifysoft.com/en_qtronic_testautomation.html
http://www.verifysoft.com/en_qtronic_testautomation.html
http://www.vmware.com/
http://en.wikipedia.org/wiki/Regression_test
http://en.wikipedia.org/wiki/Regression_test

