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Abstract

Energy balance and healthy eating behaviour are essential aspects that de-
termine health risks for chronic diseases and general morbidity. This crucial
relation becomes most prominent with the increasing share of citizens devel-
oping excessive body fat and weight worldwide. While short-term clinical in-
terventions can help obese patients, long-term strategies are sought to prevent
overweight and obesity. Sustained success in prevention is expected by support-
ing individuals in changing personal lifestyle and maintaining an appropriate
eating behaviour.

Current weight and diet coaching programs use self-reporting techniques of
eating behaviour to adapt and personalise feedback to participants. However
maintaining these reports is an additional burden for participants. Moreover
the reports incur large bias and hence, limit program success. Novel tools and
technical solutions are sought that alleviate the individual from manual eating
behaviour reporting.

In this work a novel concept is introduced, called automatic dietary moni-
toring (ADM), that targets this goal. New ADM-based diet coaching solutions
are supported by the constant trend in electronic miniaturisation. Miniaturi-
sation permits to embed sensors and computers in everyday objects, including
clothing, accessories, and buildings. Systems that leverage this paradigm of
pervasive computing can support their user with personalised health status
and diet coaching services. Moreover ADM-based solutions conceptually per-
mit coaching program durations of several years in order to make the coaching
most effective. The essential functions of ADM-based solutions are sensing and
recognition of the user’s eating behaviour. This work evaluates on-body sensing
and pattern recognition solutions for ADM.

The thesis comprises eight scientific publications that address four specific
goals of this work: (1) to review on-body sensing solutions and modalities,
relevant for diet monitoring, (2) to evaluate recognition of intake activities from
continuous sensor data, (3) to infer intake cycles from temporally distributed
activity events, and (4) to estimate eating behaviour from recognised activities.

On-body sensing solutions were reviewed with respect to the physiology
of eating and activities directly related to food intake. Three activities were
selected for further evaluation: intake gestures (using inertial sensors at arms
and torso), chewing (using an ear-worn microphone to record food breakdown
sounds) and swallowing (using Electromyography, EMG, and a stethoscope
microphone).

A procedure to recognise activity events in continuous data was devel-
oped. The procedure utilises explicit data segmentation (equidistant or data-
adaptive), a pattern search based on feature similarity and an event fusion
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step. All selected activities were evaluated using the recognition procedure.
Data-adaptive segmentation was utilised for inertial sensors and EMG data.
Equidistant segmentation was evaluated for all modalities. The feature simi-
larity search was used to spot activity events of variable length. Finally, event
fusion was used to combine several similarity search instances in one recogni-
tion result. The recognition performance for spotting and categorising activity
events from all sensing solutions was quantitatively analysed in several studies.
It was shown how individual recognition stages improve performance.

A model was developed to describe food intake cycles. The model is based
on a temporal composition of intake gestures, chewing, and swallowing events.
To implement the model an activity event parsing approach was used. Appli-
cability of the implementation was evaluated for different types of intake (food
categories, drinking). In a second investigation, acoustic chewing phases were
identified in intake cycles using an exploratory search approach. An acous-
tic chewing sequence model was introduced to facilitate the search task. The
results show that acoustic phasing structure depends on food texture.

Finally, estimation of food type and amount from on-body sensor infor-
mation was investigated. The relation of food, material texture and acoustic
breakdown emissions was used to derive pattern models for discriminating
up to 19 foods. Recognition of food-texture groups corresponding to nutri-
tional recommendations (food pyramid) was evaluated. Furthermore, robust
recognition of a fixed food set was demonstrated by combining the recogni-
tion procedure with intake cycle information. Food weight was estimated for
individual bites of recognised foods. The weight estimation is based on timing
and count variables of the chewing cycle structure. Predictive information of
several variables was investigated. In a further investigation, bolus volume was
classified from the swallowing reflex. While the latter approach provided cate-
gorical amount information, the approach based on chewing sequence variables
allowed a continuous weight prediction.



Zusammenfassung

Energiegleichgewicht und gesundes Ernährungsverhalten sind zwei wesentliche
Faktoren, die das Risiko für chronische Krankheiten und allgemeine Morbid-
ität beeinflussen. Der weltweit wachsende Anteil von Personen mit überhöhtem
Körperfett und -gewicht verdeutlicht diese Abhängigkeit. Während kurzfristige
klinische Interventionen bei Adipositas-Patienten helfen, sind jedoch langfristige
Strategien notwendig, um Übergewicht und Adipositas zu vermeiden. Einen
nachhaltigen Erfolg versprechen Präventionsmassnahmen, die persönliche
Lebensveränderung und adäquates Ernährungsverhalten unterstützen.

Aktuelle Beratungsprogramme für Gewicht und Ernährung benutzen
Berichte über das Ernährungsverhalten, die vom Teilnehmer selbst verfasst
wurden. Die Beratung wird entsprechend dieser Berichte angepasst und per-
sonalisiert. Für Programmteilnehmer ist das Ausfüllen der Berichte jedoch ein
zusätzlicher Aufwand. Darüber hinaus, haben die Berichte einen hohen Bias
und begrenzen damit den Programmerfolg. Neue Methoden und technische
Lösungen sind nötig, um Programmteilnehmer von der manuelle Erfassung
des Ernährungsverhaltens zu entlasten.

In dieser Arbeit wird ein neues Konzept eingeführt, genannt Automat-
ic Dietary Monitoring (ADM), dass diese Entlastung zum Ziel hat. Neue,
ADM-basierte Beratungsprogramme werden insbesondere durch den anhal-
tenden Miniaturisierungstrend bei elektronischen Systemen unterstützt. Die
Miniaturisierung erlaubt es, Sensoren und Computer in alltägliche Objekte
zu integrieren, wie zum Beispiel in Kleidung, Accessoires und in Gebäude.
Systeme, die diesen Gedanken des Pervasive Computing verfolgen, können
ihren Benutzer mit personalisierten Rückmeldungen zum Gesundheitssta-
tus und Ernährungsberatungsdiensten unterstützen. Darüber hinaus erlaubt
das ADM Konzept eine Programmdauer von mehreren Jahren, um die Be-
ratung wirkungsvoll zu gestalten. Die wesentlichen Funktionen ADM-basierter
Lösungen sind die messtechnische Erfassung und Erkennung des individuellen
Ernährungsverhaltens. Dieser Arbeit untersucht insbesondere körpergetragene
Sensoren und Lösungen zur Mustererkennung für ADM.

Die Arbeit besteht aus acht wissenschaftlichen Publikationen, die vier spez-
ifische Ziele verfolgen: 1. Evaluierung von körpergetragene Messlösungen und
Modalitäten zur Ernährungsbeobachtung, 2. Untersuchung zur Mustererken-
nung in Aktivitäten der Nahrungsaufnahme, 3. Erkennung des Nahrungsauf-
nahmezykluses aus zeitlich verteilten Aktivitätsereignissen und 4. Bestimmung
des Ernährungsverhaltens auf Basis der Aktivitätserkennung.

Es wurden körpergetragene Messlösungen im Hinblick auf die Ernährungs-
physiologie und Aktivitäten untersucht, die direkt mit der Nahrungsaufnahme
zusammen hängen. Drei Aktivitäten wurden für die weitere Untersuchung aus-
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gewählt: Gesten zur Nahrungsaufnahme (mit Hilfe von Inertialsensoren an den
Armen und am Rumpf), Kauen (mit Hilfe eines Ohrmikrophon zur Aufnahme
von Kaugeräuschen) und Schlucken (mit Hilfe von Elektromyographie, EMG,
und einem Stethoskop-Mikrophon).

Ein Verfahren zur Mustererkennung von Aktivitätsereignissen in kon-
tinuierlichen Daten wurde entwickelt. Das Verfahren nutzt die drei Schritte
Datensegmentierung (äquidistant oder daten-adaptiv), eine Mustersuche
basierend auf Merkmalähnlichkeiten und eine Ereignis-Fusion. Alle aus-
gewählten Aktivitäten wurden mit diesem Erkennungsverfahren untersucht.
Die daten-adaptive Segmentierung wurde für Inertialsensoren und EMG-
Daten eingesetzt. Die äquidistante Segmentierung wurde auch für alle weit-
eren Sensormodalitäten untersucht. Die Merkmalähnlichkeitssuche wurde be-
nutzt, um Aktivitätsereignisse mit variabler Länge zu erkennen. Schliesslich
wurde die Ereignis-Fusion entwickelt, um mehrere Instanzen zur Merk-
malähnlichkeitssuche in einem Erkennungsergebnis zu verknüpfen. Die Erken-
nungsleistung für Detektion und Kategorisierung von Aktivitätsereignissen
aller Messlösungen wurde in mehreren Studien quantitativ untersucht. Die Ar-
beit zeigt, wie die Erkennungsschritte eine kontinuierliche Erkennungsleistung
verbessern.

Ein Modell wurde entwickelt, um den Nahrungsaufnahmezyklus zu be-
schreiben. Das Modell basiert auf einem zeitlichen Verbund von Gesten, Kau-
und Schluckereignissen. Zur Umsetzung des Modells wurde ein linguistischer
Analyseansatz zur Verarbeitung von Aktivitätsereignissen benutzt. Die An-
wendbarkeit wurde anhand von verschiedenen Ernährungsformen (Speisekate-
gorien, Trinken) untersucht. In einer zweiten Untersuchung wurden akustische
Phasen im Nahrungsaufnahmezyklus mit Hilfe einer explorativen Suche iden-
tifiziert. Ein akustisches Kausequenzmodell wurde eingeführt, um die Suche zu
ermöglichen. Die Ergebnisse zeigen eine Phasenstruktur in Abhängigkeit von
der Speisentextur.

Schliesslich wurde die Bestimmung von Speisetyp und -menge aus In-
formationen der körpergetragenen Sensoren untersucht. Die Beziehung von
Speise, Materialtextur und akustischen Zerbrechemissionen wurde benutzt,
um akustische Modelle für die Unterscheidung von 19 Speisen zu bestim-
men. Die Erkennung von Speisen-Texturgruppen wurde in Anlehnung an
Ernährungsempfehlungen (Ernährungspyramide) untersucht. Weiterhin wurde
die stabile Erkennung einer festgelegten Speisenzahl gezeigt, indem das Erken-
nungsverfahren mit Informationen aus dem Nahrungsaufnahmezyklus ergänzt
wurde. Das Speisengewicht wurde für einzelne Bissen einer Speise bestimmt.
Diese Gewichtsschätzung basiert auf zeitlichen Variablen und Zählgrössen aus
der Kausequenzstruktur. Die Schätzqualität verschiedener Variablen wurde un-
tersucht. In einer weiteren Untersuchung wurde das Bolusvolumen während
des Schluckreflexes diskriminiert. Während der zweite Ansatz kategorische
Mengeninformationen liefert, erlaubt der Ansatz basierend auf Kausequenz-
Variablen die Schätzung eines kontinuierlichen Gewichtswerts.







1
Introduction

An introduction on the relevance of nutrition in daily life is pro-
vided. The global struggle in fighting diet-related pandemics and the
need for alternative diet monitoring solutions is summarised. This
lack of adequate diet reporting solutions motivates the present work
– the development of novel automatic on-body diet monitoring tech-
niques.

By reviewing state-of-the-art diet assessments, vital requirements
for such new systems are presented. Moreover, initial monitoring
attempts, originating in the area of pervasive healthcare, are dis-
cussed. Finally, the aims and outline of this thesis on on-body mon-
itoring are presented.
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1.1. The need for diet monitoring

Food intake aims at compensating energy expenditure, hence to attain a bal-
anced metabolism. However, intake is more than that – it involves an enjoyable
stimulus which cues eating. In the 20th century, the original challenge to ac-
quire food became a commodity and many foods were designed with high
energy content, oils, fat and caloric sweeteners [35, 42]. Concurrently, energy
expenditure has decayed [28]. This is primarily due to reduced physical ac-
tivity, required to accomplish everyday tasks and work. The World Health
Organisation (WHO) reported a global rise in body fat, determined by the
body mass index1 (BMI) as consequence of energy imbalance [41]. Accord-
ing to [40, 41], BMI is used to identify overweight (BMI>25), or more severe,
obesity (BMI>30). Both, overweight and obesity are a predispose for cardio-
vascular diseases, diabetes mellitus type 2 and further health risks [36], all
eventually increasing morbidity [5, 29]. For 2005, WHO estimated a pandemic
of 1.6 billion overweight and 400 million obese adults worldwide [42]. An even
increasing trend was projected for 2015 that emphasises a surge in child and
adolescent obesity.

The prevalence of obesity in the US population (aged 20 years and over)
increased from 14% in 1980 to 23% in 1994 and reached 30% in 2000 [9].
Moreover, by 2000 the ratio of overweight US-citizens exceeded 64%. In 2004,
17% of US-children and adolescents aged 2 to 19 years were overweight [24].
National prevalence among adults in Europe ranges from 8% in Switzerland
and 10% in Italy and the Netherlands to 25% in England and nearly 30% in
Greece and Croatia. In 2008 about 21% of the German adult population was
obese [16].

Estimations for economic cost of obesity range between 2% and 8% of
total healthcare costs in several developed countries. While these estimates
are conservative, obesity represents one of the largest cost items in national
healthcare budgets [41].

Moreover, overweight and obesity is not restricted to high-industrialised
regions and is even faster growing in developing countries. In 2002 about 15% of
the Chinese citizens were overweight [16]. – Fighting these epidemic dimensions
is a critical challenge for the success of our species!

Besides energy balance2, food intake provides unique access to nutrients
that cannot be sufficiently synthesised by the body, such as vitamins, miner-
als and water [44]. This explains the enjoyable stimulus and motivation for

1Body weight normalised by the squared body height; depends on age and body com-
position. Initially proposed by Adolphe Quetelet between 1830–1850. It is persistently used
to assess body fat, despite its shortcomings (http://en.wikipedia.org/wiki/Body mass index
and [7, 10, 21]).

2Substances providing energy include proteins, fats, carbohydrates.
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a diversified diet composition. It warrants sufficient amount of all required
nutrients [13]. Hence, any form of eating disorder is detrimental for health [4].

Several further eating disorders exist [3, 12], including crash dieting,
anorexia nervosa, binge eating, bulimia and orthorexia (see page 219 for de-
scriptions). Hence, there are many aspects influencing individual food intake,
including genetic and physiologic as well as psychological and social con-
straints [17]. The result is an individual eating behaviour described by specific
food choice and restraint, portion size, energy intake and meal intake frequency.
Eating behaviour is reported in temporal resolutions ranging from individual
snacks and meals every day to averages over several years, depending on the
type of investigation [45].

Monitoring eating behaviour is the prerequisite for research on disease in-
tervention and epidemiology as well as in deployed prevention, such as weight
loss coaching programs [25, 46]. In order to systematically reduce disease risks,
these programs target a modification of accustomed lifestyle. However, this is a
tough challenge for the individual. It requires continuous, potentially life-long,
everyday support and coaching [25]. To support the coach and individual with
actual information, eating behaviour reporting must provide a similar temporal
resolution, thus requires tracking of every individual meal intake. Such actual
information is particularly vital to adapt feedback in coaching programs and
has been identified to improve success rates [23].

Current studies on eating behaviour and weight loss consider typical inter-
vention periods of six months [37]. However only 20% of the individuals that
initially lost at least 10% of their weight, can maintain the new weight one
year after discharge [47]. This result suggests an even longer coaching phase of
two to five years.

To date, most investigations and weight loss programs assess daily eating
behaviour (intake schedule, food composition, amount and energy content)
with the help of questionnaires [48]. Questionnaire assessments in the form of
self-reports could capture eating behaviour in the required temporal resolu-
tion and information detail. However, they fail due to the burden of manual
logging [48]. All diet assessments (see Section 1.2 below) are either laboratory-
based or require a considerable effort by the respondent.

Novel tools and technical solutions are sought that alleviate the individual
from manual food intake logging. The vision for such solutions is to provide
eating behaviour information in the conceptual quality of daily self-reports.
This is the goal of automatic dietary monitoring (ADM). These solutions will
remove the inter-individual estimation error and increase user compliance in
interventions. Moreover, they would permit novel risk-prevention programs
through long-term personalised coaching [6] – clearly infeasible using manual
monitoring.
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1.2. Classic assessment of metabolism and diet

Various monitoring solutions have been developed that targeted the under-
standing of human metabolism, its modification through food choices and in-
take patterns. The approaches can be grouped into metabolism-focused assess-
ments, eating-rate monitoring and questionnaires.

Direct and indirect calorimetry assessments using metabolic chambers and
the doubly-labelled water test represent the most accurate solutions to mea-
sure metabolic rate. The highest standard of metabolic assessment is achieved
through heat or gas exchange measurement in metabolic chambers, hence by
monitoring the effect of ingested energy [34]. However, this procedure is neither
feasible for monitoring behaviour under the impact of natural environments nor
acceptable for investigations spanning months. In contrast, the doubly-labelled
water test [30] is particularly useful for measuring average metabolic rate while
following normal lifestyle. It is performed by tracking the loss of deuterium and
oxygen-18 from body fluids (saliva, urine, or blood) after administering dose
of water labelled with the heavy isotopes. It is typically used for studies with
durations of two weeks or less [27].

In order to specifically assess food weight and eating rate (intake weight
over time in g/s) an “Universal Eating Monitor” (UEM) was introduced [18].
The approach utilises a table with an integrated scale to measure the plate or
bowl weight. The system was used for assessments of fluid intake or prepared
solid food pieces mostly. The table can track potential deceleration in the
intake speed. The UEM is applicable for laboratory studies and was used in
clinical assessments of obesity [19] and, more recently, for investigations on
psychological aspects of eating behaviour [15].

Dietary assessment based on questionnaires measure food intake directly.
They can be utilised without activity-restricting supervision or laboratory en-
vironments. Three techniques exist: food-frequency history, 24 h recall and food
records. Food-frequency assessments have been designed for epidemiology stud-
ies, capturing food consummation history (food item from a list and calendar-
ing frequency) for long time periods (months to several years) [43]. The 24h
recall quantifies consumption of a single day through specific questions of an
interviewer (food type and qualitative portion size) [48]. Food records are daily
self-reports maintained by the respondent for up to one week, recording food
type, time of consumption and weighted amounts [48]. Energy intake is assessed
through manual analysis of reported food products by a dietitian.

Based on their temporal resolution of individual days to weeks 24h recall
and food records are used in eating behaviour studies and weight coaching
programs [37]. However, both suffer from a number of shortcomings, such as
motivation, intake awareness as well as memorising and literate capabilities
of the respondent [48]. Moreover, respondents are influenced by changing per-
ceptions of desirability and increasing self-awareness due to the reporting. In
turn, food details that could be interpreted as abnormal are omitted, snacks
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are forgotten. Reporting errors varied between 50% under- and overestima-
tion [14, 31, 39]. Due to the required effort and large errors, food records are
not applicable for monitoring durations longer than one week. Similarly, the ef-
fort of respondent and interviewer to maintain twenty-four hour recalls render
the method infeasible for longer periods [48].

1.3. Diet monitoring using personal assistants

The constant trend of electronic miniaturisation has enabled sensors and com-
puters to be embedded in everyday objects, including clothing, tools and build-
ings. Systems that leverage this pervasive computing paradigm can support
their user with personal in-time health status and coaching services. The core
functions for such personal assistants are (1) sensing and recognising the user’s
state and activity, (2) inferring health state as well as tracking tasks and ac-
tions relevant for the targeted service, and (3) providing adequate feedback.
Minimising the user’s disturbance by the system is a core property that affects
the entire design.

In the light of dietary monitoring, sensing is a difficult challenge due to the
complexity of eating behaviour. No single sensor or observable effect exist that
would specifically resemble a manual self-report in natural environments. For
this reason investigators and commercial solutions omit the sensing step and
rather use classic self-reporting approaches instead. Diet monitoring research
has focused on the translation of paper-based self-reporting into electronic
diaries, such as PDA- or smartphone-based solutions e. g. [32]. Latest inves-
tigations and discussions indicate that PDAs cannot improve the validity of
manual self-reporting assessments. They may even introduce new challenges
to untrained users [1, 49, 50]. Investigations of alternate data entry methods,
such as voice logs, bar-code and shopping receipt scanning resulted in simi-
lar estimation and validity errors [20, 33]. Commercialised solutions include
many Internet-based coaching platforms using self-reports e. g. [2]. Moreover,
services based on alternate reporting solutions have been established, such as
MyFoodPhone [22] that uses mobile phone pictures for diet tracking.

Research has made sporadic attempts towards ADM. Typically, these works
have focused on single activities and modalities. Patterson et al. [26] used radio-
frequency-identification RFID tags on 60 household objects and a reader worn
at the user’s hand to track morning activities, including breakfast preparation
and consumption. Chang et al. [8] used a table equipped with RFID readers to
identify food containers and weight sensors and tracked food transport from
containers to personal plates. While the first approach has potential to assess
the meal timing and food type, the latter can additionally record food weight.
Both approaches require specific labelling of objects and food to identify it.
Finally, Gao et al. [11] deployed an computer vision approach to identify hand
motions towards the head (“dining motions”) of patients at a nursing home.
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Their approach required cameras installed in the room. In addition to the
behaviour sensing and recognition challenge, all purely infrastructure-based
sensing approaches need to identify the person, e. g. the camera surveillance
system requires an additional face recognition to robustly assign the move-
ments to a specific person. Consequently, the development of wearable sensing
approaches seems advantageous to eliminate these shortcomings.

1.4. Aims of the work

The aim of this work was to develop and evaluate new sensing and recogni-
tion solutions for ADM. With these solutions eating behaviour was inferred.
All investigations focus on on-body sensing solutions. In order to emphasise
the technical system development at this early stage, all studies considered
healthy individuals in individual recording sessions up to 3 h duration for each
participant. Specifically, the following goals were investigated:

Review of relevant on-body sensing solutions and modalities.

The lack of ADM solutions stems from the absence of unimodal
sensing opportunities for food intake. All previous approaches re-
quired an instrumented environment, e. g. RFID, weight tables or
cameras as information source. This work investigates the appli-
cability of sensors worn at the body or attached to garments. As
these sensors reside close to the body, detailed information regard-
ing the eating behaviour is expected. In example, on-body sensors
allow the recognition of individual food intake gesture types, rather
than the unspecific to-head movement obtained from surveillance
cameras. Body-worn sensors can provide information originating
from physiologic responses to eating as well as activities prepar-
ing food absorption. In this work, behaviour sensing solutions are
considered both aspects. Out of all solutions considered, a subse-
quent selection and detailed evaluation was made. The selection
covered intake gesture, chewing and swallowing activities in order
to describe the complete food intake cycle.

Recognition of intake activities in continuous sensor data.

Recognition of patterns in sensor data provides the basis for esti-
mating eating behaviour information in this work. The focus was
set on short-term (up to a several seconds in length), non-repetitive
patterns in user activity. These units of activity are referenced as
activity events throughout this work.
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The challenge of activity event recognition originates from the re-
quirements in practical deployment: (1) to spot activity events em-
bedded in other, unknown data (NULL class) and (2) to categorise
events according to a application-specific definition. The spotting
can be viewed as a time-domain search problem with the aim to
determine time of occurrence and length of every relevant event in
the data. For the detection of variable, habitual and partly uncon-
scious activities, as in eating behaviour, many classic recognition
solutions fail. Sliding a fixed observation window over the data is
not feasible, as certain activities, such as gestures, are varying ap-
prox. 100 percent in length. Moreover, evaluating the observation
window for every new data sample is an inefficient processing ap-
proach. Finally, the presence of unknown embedding data prevents
the generalisation of a naive binary classification (correct activity
event or NULL class). For this problem [38] proposed the restriction
on an activity subset. However this closed-set approach does not ex-
tend to one-class problems, such as the spotting of swallowing or a
single food. Finally, the combination of detection and classification
algorithms need to be evaluated for the class-specific independent
recognition used in the work.

Fusion of temporally distributed activity events to infer intake
cycles.

The complexity of eating behaviour cannot be captured in single
activity events. By partitioning the activity recognition problem,
individual results (activity event streams) are obtained that can
be viewed as independent services. In this work, a temporal par-
titioning of dietary activities is considered. In order to infer eat-
ing behaviour, an intake cycle model is sought that permits the
temporal combination of multiple recognition services in composite
activities. In order to verify the model, an implementation is re-
quired that can parse activity event streams and permits recursive
relations, such as consecutive sequences of chewing and swallowing
events. The temporal fusion of activity events is a prerequisite for
the food type and amount estimation.

Estimation of eating behaviour from activity recognition.

Most prominent diet monitoring goals include intake schedule, food
composition, amount and energy content. In this work, the ADM
approach is evaluated regarding the estimation of food type as well
as amount. The recognised activity events and composite activities
are used to quantitatively evaluate the food identification perfor-
mance and estimate food amount.
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1.5. Thesis outline

This thesis comprises eight scientific publications addressing the aims sum-
marised above (Chapters 3 to 10). In Chapter 2 achievements and conclusions
of the thesis are summarised. Finally, Chapter 2 provides an outlook onto open
and new research challenges.

On-body
sensing

Chapter 3

Intake
gestures

Chapters 4, 5

Chewing
Chapters 4, 6

Swallowing
Chapter 9

Intake
modelling

Chapters 7, 10

Food type
Chapters 3, 4, 10

Food amount
Chapters 8, 9

Thesis aims

Sensing solutions&
modalities

Recognition of
intake activities

Fusion of temporally
distributed activity events

Estimation of
eating behaviour

Figure 1.1. Outline of the scientific contributions included in the thesis according

to the aims presented in Section 1.4. Arrows indicate result relations.

Table 1.1 lists the included publications and the chapter organisation. The
publications are grouped according to the thesis aims presented in Section 1.4.
Originating from the review of sensing solutions for diet monitoring in Chap-
ter 3, three activity-based sensing approaches were evaluated in Chapter 4 and
further in Chapter 5 (intake gestures), Chapter 6 (chewing), Chapter 9 (swal-
lowing).

The fusion of activity events and recognition of intake cycles are discussed
in Chapter 7 and 10. Chapter 7 targets the clustering of chewing cycles within
chewing sequences. Chapter 10 presents an intake cycle modelling approach
covering all three selected sensing solutions.

Eating behaviour was assessed regarding food type in Chapter 3 (food
classification), Chapter 4 (texture group recognition) and Chapter 10 (intake
cycle identification). Furthermore, food amount estimation was investigated in
Chapter 8 (bite weight) and Chapter 9 (swallowing volume).

Figure 1.1 visualises the thesis contributions according to the aims pre-
sented in Section 1.4. Arrows indicate result relations.
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Table 1.1. Publications included in the thesis (Chapters 3 to 10).

Chapter Publication

3 Automatic Dietary Monitoring: On-body sensing solutions for
eating behavior monitoring.
O. Amft and G. Tröster. Submitted to IEEE Pervasive Computing, sub-
mitted June 2008.

4 Recognition of dietary activity events using on-body sensors.
O. Amft and G. Tröster. Artificial Intelligence in Medicine, 42(2), 121–
136, February 2008.

5 Gesture spotting with body-worn inertial sensors to detect user
activities.
H. Junker, O. Amft, P. Lukowicz, and G. Tröster. Pattern Recogni-
tion, 41(6), 2010–2024, June 2008.

6 Analysis of chewing sounds for dietary monitoring.
O. Amft, M. Stäger, P. Lukowicz, and G. Tröster. UBICOMP 2005: Pro-
ceedings of the 7th International Conference on Ubiquitous Computing,
LNCS Vol. 3660, 56–72, Springer Berlin, Heidelberg, 2005.

7 Automatic identification of temporal sequences in chewing
sounds.
O. Amft, M. Kusserow, and G. Tröster. BIBM 2007: Proceedings of the
IEEE International Conference on Bioinformatics and Biomedicine, 194–
201, IEEE Press, 2007.

8 Bite weight estimation using acoustic recognition of chewing.
O. Amft, M. Kusserow, and G. Tröster. Submitted to IEEE Transactions
on Biomedical Engineering, submitted June 2008.

9 Methods for detection and classification of normal swallowing
from muscle activation and sound.
O. Amft and G. Tröster. PHC 2006: Proceedings of the First International
Conference on Pervasive Computing Technologies for Healthcare, ICST,
1–10, 2006.

10 Probabilistic parsing of dietary activity events.
O. Amft, M. Kusserow, and G. Tröster. BSN 2007: Proceedings of the
International Workshop on Wearable and Implantable Body Sensor Net-
works, IFMBE Proceedings Vol. 13, Springer, 242–247, 2007.
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2
Thesis summary

This chapter summarises the approach and most important achieve-
ments of the thesis. Specifically, on-body sensing solutions for diet
monitoring are discussed, the performance of an activity event
recognition procedure is summarised, and the results of different
activity event fusion algorithms are presented.

Moreover, results of food type and amount estimation from the on-
body sensing and recognition are summarised.

Conclusions, derived from the different achievements, are pre-
sented. The chapter closes with a discussion of limitations and an
outlook, indicating open challenges and new research directions.
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2.1. Summary of contributions

The most important results and novel achievements that advance the state-
of-the-art in on-body diet sensing and recognition are presented below. The
summary is structured according to the thesis aims introduced in Section 1.4
and illustrated in Figure 2.1. Detailed result descriptions and discussions can
be found in the particular publication chapter referenced in this summary.

On-body sensor
selection & positioning

Section 2.1.1

Intake gestures,
chewing & swallowing

recognition
Section 2.1.2

Intake cycle
modelling & clustering

Section 2.1.3

Food type & amount
estimation
Section 2.1.4

Thesis aims (Section 1.4) Contributions

Sensing solutions&
modalities

Recognition of
intake activities

Fusion of temporally
distributed activity events

Estimation of
eating behaviour

Figure 2.1. Outline of the contribution summary, presented in Section 2.1) accord-

ing to the aims listed in Section 1.4. Arrows indicate result relations.

2.1.1. Sensing solutions and modalities

Regarding the first objective of this work (see Section 1.4 on page 6), the ca-
pabilities of body-worn sensing solutions for monitoring individual meal intake
were reviewed. The analysis covered the physiology of eating as well as activ-
ities preparing food absorption. Table 3.1 on page 41 provides an overview of
all considered on-body sensing solutions.

The timing of physiologic responses and activities is a crucial aspect for
monitoring individual meal intake. It was assumed that responses following
food intake with a long or variable delay greater than 10min, are disturbed
by other activities or subsequent food intake. Consequently, late stage diges-
tion (gastric tract activity following the stomach) was excluded from the re-
view.

• Physiologic responses related to food intake. The literature re-
view showed that effects are variable in magnitude, duration and delay,
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depending on various context aspects, such as mental state and physical
activity (Section 3.5, page 38).

The varying magnitude, long response times (up to 3 h for cardiac ac-
tivity) and variable response delays ( 15-30min for heart rate) limit the
feasibility of these information sources for ADM. Physiologic responses
were not further considered in this work.

• Activities preparatory to food absorption. The review considered
food preparation and ingestion (intake gestures), food breakdown in the
mouth (chewing), bolus transport (swallowing, oesophageal movement)
and gastric activity (stomach movement).

Except intake gestures, all activities require an indirect measurement ap-
proach, due to comfort and privacy restrictions (Table 3.1, page 41). The
review showed that all existing principles to assess oesophageal move-
ment and gastric activity require controlled laboratory environments to
maximise signal to body-noise ratio (Section 3.5, page 38).

Based on the review results, further discussion focuses on the following set
of activities: intake gestures, chewing and swallowing. This set was selected,
since it reflects the core activities of an intake cycle, as detailed in Section 2.1.3.
For each activity, the selected sensor type, positioning and relevance for diet
monitoring is summarised below.

• Sensing of intake gestures. Inertial sensors at lower and upper arms
and the upper torso (Figure 5.9 on page 97) were investigated for intake
gesture recording. Inertial measurement units (consisting of acceleration,
gyroscope, magnetic field sensors) were initially used (Chapter 5). Later
refinement showed that a subset of these sensors (lower arms and torso
acceleration and gyroscopes) were sufficient to recognise four frequently
used food intake gestures (Section 4.4, page 59).

Food category is related to cutlery and, in turn, to the intake gestures
used. For example, a soup is consumed with a spoon, rather than fork and
knife. Inertial sensors can be integrated into clothing or accessories (Sec-
tion 3.4.1, page 33).

• Sensing of chewing. Chewing was recorded from food breakdown
sounds that propagate through mandible and skull. Section 6.1.4 on
page 114 provides an introduction to the sensing approach. The eval-
uation showed that emitted sound pattern is related to food texture and
can be used to identify chewed foods (Section 6.5, page 122).

The chewing sound evaluation at various facial positions showed that
the ear canal received +30dB higher sound intensity among all positions
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listed in Table 6.3 on page 120. Furthermore, sound intensity was +60dB
above the level of normal speaking (Section 6.2, page 120). The latter
result depends on ear occlusion. Lower occlusion increases comfort, but
lowers food recognition performance.

Two sensor prototypes with different occlusion were implemented and
evaluated (Figure 3.3(a), page 37). Food classification rates increased up
to 10% for a higher occlusion model (Section 3.4.2, page 35).

• Sensing of swallowing. Swallowing was assessed using surface Elec-
tromyography (EMG) at the hyoid (position close to the Adam’s ap-
ple) and a stethoscope microphone at the lower neck (see Figure 9.2
on page 184 for exact positions). These sensors were investigated in a
collar-prototype (Figure 3.4, page 38). Submental EMG (below chin) was
investigated as additional source of information (Figure 9.2, page 184),
however this position cannot be integrated in a collar. Furthermore,
movement of the thyroid cartilage (Adam’s apple) was analysed using
a strain-sensitive fabric integrated in a collar (Figure 3.4, page 38).

All investigated sensors were sensitive to head movement and voluntary
neck contraction (Section 9.5, page 195). Hyoid EMG and sound were
further analysed for the identification of swallowing, see Section 2.1.2
below.

2.1.2. Recognition of intake activities

To address the challenges of activity event recognition, introduced in Sec-
tion 1.4, a recognition procedure was developed that accommodates the dif-
ferent sensing solutions considered in this work. In this effort, the following
achievement were made.

• Activity event recognition procedure. The recognition procedure
comprises (1) segmentation, (2) feature similarity search (FSS) and
(3) event fusion was developed (Figure 4.1, page 54). As data-adaptive
segmentation the Sliding-window and bottom-up (SWAB) algorithm was
utilised for inertial sensors (intake gestures, Section 5, page 79) and EMG
data (swallowing, Section 9.3, page 185). Equidistant segmentation was
used with all sensing modalities, e. g. in Chapter 4 on page 47.

The FSS algorithm was used to spot variable-length activity events, such
as intake gestures. The search algorithm is illustrated in Section 4.3.1 on
page 54.

The event fusion step was used to combine several FSS detection in-
stances in one recognition result. The fusion selected one event among
all concurrently spotted events. To this end, the spotting result can be
used with standard classification algorithms, such as hidden Markov
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models (HMMs) (Section 5.4, page 87) or a linear discriminant analy-
sis (LDA)-algorithm (Section 8.3, page 158). This event fusion is not
intended to combine temporally distributed activity events, such as dis-
cussed in Section 2.1.3.

• Temporal-spatial transformation of features. This work demon-
strates that the temporal event pattern provides important information
for the detection and classification of activity events. This was exploited
by the HMM-approach in Chapter 5.

To assess this information during FSS detection, features were com-
puted for evenly-sized sections within every activity event (Section 4.3.2,
page 56). This approach represents a temporal-spatial transformation
of event features. It allows to use the FSS detection without an addi-
tional HMM classification, such as in chewing event spotting (Section 4.5,
page 62). However, this transformation multiplies the feature count by
the number of event sections. In this work, three and four event sections
were used in Chapter 8 and Chapter 4, respectively.

• Competitive and supportive event fusion. Using the classification
as event fusion method is an inflexible closed-set concept that requires
retraining once a class is added or removed. Moreover, it cannot be used
for one-class problems, such as the spotting of swallowing events (Sec-
tion 9.3, page 185).

An alternate event fusion approach was proposed, using competitive
and supportive event fusion (Section 4.3.1, page 56). For example, the
swallowing event recognition was improved by combining independent
sound and EMG-based spotting results. In this particular case, events
were retained if both, sound and EMG-based spotting agreed (support-
ive event fusion, Section 4.6 on page 65). The event fusion reduced false
positives (insertions) by -30% compared to the independent spotting re-
sults (Table 4.9, page 69).

• Soft-alignment event performance assessment. To account for im-
precise event boundaries of recognition and ground truth a new activ-
ity event accounting technique based on a soft-alignment was intro-
duced (Section 4.3.3, page 57). The soft-alignment was implemented us-
ing a jitter allowance for matching event start and end between recogni-
tion and ground truth (Eq. 4.2 on page 58).

In this work, a jitter was allowed that corresponds to 50% of the event
length. Consequently, if the boundary mismatch between recognition re-
sult and ground truth exceeded this jitter, the recognition result was
counted as an insertion (false positive).

Chapter 4 compares the soft-alignment technique to a sample-accurate
counting. Differences of less than 10% between recall and accuracy
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demonstrate good agreement of the assessments. However, the soft-
alignment approach additionally provides the precision of a spotting al-
gorithm.

The recognition procedure was evaluated in different configurations for in-
take gestures using inertial sensors (data rate: 50-100Hz), chewing, using a mi-
crophone (44 kHz) and swallowing using EMG (0.5-2 kHz) and microphone (22-
44 kHz). The following achievements were made for individual sensing solu-
tions:

• Recognition of intake gestures. Using a equidistant segmentation,
the FSS procedure achieved an average recall of 86% at 28% precision
for four subjects (Table 4.3, page 62). The event fusion by comparing
events (selecting the most probable event, COMP) boosted the result
to 64% precision (+30% increase), while maintaining 80% recall. In a
second evaluation using HMMs, precision gained +16% to 73%, while
maintaining ∼80% recall (Table 5.7, page 102).

In conclusion, the COMP approach is applicable and competitive, espe-
cially when a large number of classes are available (in this work only
four classes were considered). In the case of a low-precision class how-
ever, such as the less distinctive “Handheld” (HH) gesture, the HMM
approach achieved almost +20% increase in precision (to 59%), while
COMP reached a +10% increase (to 38%) only.

• Intake gesture recognition performance. Intake gestures are af-
fected by an accustomed eating style of every individual. The challenge
to recognise these gestures was shown in comparison to object interaction
gestures. For those object interaction gestures, the recognition procedure
achieved a +10% higher recall compared to intake gestures (Table 5.7,
page 102). This difference is explained by the increased variability in in-
take gestures.

For intake gestures, the overall best result was achieved by using the
recognition procedure with a SWAB segmentation and HMM classifica-
tion (79% recall and 73% precision, Table 5.7, page 102). This recognition
performance demonstrates that the gesture sensing and recognition ap-
proach is applicable for the intake cycle recognition, as summarised in
Section 2.1.3 below.

• Recognition of chewing. Chewing events (corresponding to the
mandible closing phase of chewing cycles) were spotted for two food-
texture groups: wet- and dry crisp. For the chewing recognition, an event
fusion based on logistic regression (LR) improved the event detection by
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+18% in recall (to 93%) and +11% in precision (to 52%) (Table 4.6,
page 67).

The low precision (52%) was attributed to an insufficient annotation of
chewing cycles. As Figure 4.5 on page 65 illustrates, no ground truth in-
formation was available for the “cleanup”-phase after chewing sequences.
Consequently, chewing events, retrieved in these sections were counted
as errors. In a followup work, this issue was resolved (Section 8.2.3,
page 157). In conclusion, chewing events of wet- and dry crisp texture
were robustly detected and discriminated using the event spotting pro-
cedure.

• Recognition of individual foods from chewing events. The afore-
mentioned recognition approach works for a texture-based grouping of
foods. However, if similar-texture foods (such as lettuce, apple or potato
chips) were discriminated, the FSS showed confusions between the foods.
This is indicated by a low precision (∼35%) at a recall of 80% in Fig-
ure 8.3 on page 164. Utilising a classification-based fusion step improved
precision by +5% to +10% (Figure 8.3, page 164).

• Recognition of swallowing. EMG and sound data were considered in-
dependently and in combination (feature-level fusion) for the spotting of
swallowing events (using SWAB segmentation of EMG time-series, Sec-
tion 9.3.2, page 186). For all combinations of EMG and sound, a high
sensitivity was observed, yielding FSS recalls of 73%–84%. However, pre-
cision was very weak (15%–18%). While the feature-level fusion obtained
a marginally higher precision (+1%), the event fusion removed more
than 50% of the insertions, precision was 31% at 65% recall (Table 9.3,
page 188).

• Swallowing detection performance. Compared to a detection based
on EMG signal intensity, the spotting performance incurred only 50% of
the insertions (Table 9.3, page 188). In conclusion, EMG and sound data
are most relevant for the swallowing event detection when considered in
combination using event fusion. Head and neck movements disturb the
swallowing detection, resulting in insertion errors.

Further work is needed to evaluate alternative sensors and recognition
features (Section 4.7.4, page 71). The results presented in Chapter 9 were
the first quantitative evaluation published on swallowing detection per-
formance.

2.1.3. Fusion of temporally distributed activity events

In the effort to combine the activity event recognition from all sensing solu-
tions (according to the thesis aims in Section 1.4), the following achievement
were made.
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• Model of intake cycle. A temporal model was developed to describe
food intake cycles. The model represents a temporal composite of an in-
take gesture, multiple chewing events (chewing sequence), and swallowing
events (intermediate and final swallows) (Eq. 10.4, page 208).

The implementation of this concept requires that event recursions are
resolved. These occur for chewing-swallowing event repetitions within an
intake cycle.

With this model, the plausibility of specific intake types (gesture
type, chewed food, swallowing frequency) was determined (Figure 10.2,
page 210). For example, eating lettuce (chewing events) is performed us-
ing fork and knife, rather than bare hands (intake gesture).

• Intake cycle model evaluation. The model was evaluated using
probabilistic context-free grammar (PCFG) parsing (introduced in Sec-
tion 10.1.3 on page 205). Individual grammars were derived for chewable
foods (Eq. 10.6, page 210) and drinking (Eq. 10.7, page 211).

An evaluation using annotated event data showed parsing recalls of >80%
for 9 out of 11 intake types (10 foods and drinking). Precision was be-
tween 55%-100% for a non-recursive chewing-swallowing grammar (Fig-
ure 10.3, page 213). Using a refined grammar with recursion (Eq. 10.10,
page 213) increased precision by up to +40% (Figure 10.4, page 214).
This result indicates the relevance of recursion modelling for foods with
intermediate swallows (foods with wet compartments as in lettuce and
lasagna).

Finally, food-texture grouping showed that the PCFG approach is feasi-
ble to detect solid foods as well as to identify drinking (86% recall and
95% precision, for 8 foods and drinking, Figure 10.5, page 215).

• Estimation of chewing sequence phases. Chewing sounds alter
within a chewing sequence due to the progressing food destruction (Sec-
tion 7.1, page 134). The existence of phases (temporal clusters of chewing
events) was investigated using a chewing sequence model (Section 7.2.3,
page 138).

An analysis of four foods with different texture found a two phase result
for all, with a shorter first phase (30%-40% of the sequence length, Sec-
tion 7.4, page 143). The two-phase structure was confirmed by classifica-
tion rates of ∼80% for potato chips and chocolate (Figure 7.5, page 146).
This result was initially expected for the dry texture of potato chips only.
In contrast, the strict temporal phasing was not confirmed for apple and
lasagna (∼60% classification rate).

In conclusion, foods that show a fast deterioration during oral break-
down (due to wetting with saliva or melting) adhere to a two-phase
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structure. This result can be used to derive recognition models adapted
for specific food groups and sequence phases.

2.1.4. Estimation of eating behaviour

The final part of the thesis contributions addresses eating behaviour infor-
mation derived from on-body sensing and recognition solutions. Specifically,
food type and amount estimation was considered, according to the thesis aims
in Section 1.4.

• Food category and type extraction from chewing. Acoustic emis-
sions during food breakdown reflect the material texture (Section 6.1.4,
page 114). The classification of chewing events from 19 foods and three in-
dividuals, resulted in an average classification rate of 83%. Figure 3.3(b)
on page 37 visualises the classifier confusion. While these foods were
chosen to represent a large variety of textures, they also included sim-
ilar ones, such as in lettuce, apple and carrots. This classification re-
sult demonstrates the discrimination capabilities of acoustic chewing pat-
terns.

In contrast, using the spotting procedure, FSS precision was 30%-40%
at a recall >80% in three foods, see Section 2.1.2 above. Grouping foods
according to their texture simplifies the recognition task (as shown in
Table 4.6 on page 67). The continuous recognition of individual foods
was further improved by chewing sequence information (majority vote
for intake cycles), see below.

• Food identification from intake cycles. Based on a fixed-size sliding-
window approach, chewing recognition rates ranged between 66% and
86% in four foods (Table 6.4, page 125). In this approach a sound energy-
threshold was used to identify chewing events. Majority voting for all
chewing events in a chewing sequence led to performance gains of up to
+20% (Table 6.5, page 125).

The performance gain is even more profound, if a chewing event annota-
tion is available to train the classifier. Based on the three-food recognition
cited earlier (Chapter 8, page 153), a classification and chewing sequence
vote resulted in >90% correct identified sequences (+50% increase in
precision, to ∼70%, Figure 8.4, page 165). In conclusion, sequence infor-
mation is vital for an accurate identification of individual foods.

The classification and sequence vote were demonstrated to work with up
to four foods. To increase the number of foods, further information of
the intake cycle was used. This included the intake gesture type and the
chewing-swallowing interaction, as summarised in Section 2.1.3 above.

• Food weight estimation from chewing. Food weight of single habit-
ual bites was estimated from the chewing event microstructure. Variables
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derived from chewing sequences, such as the total number of chewing
events, showed high correlations (up to 0.96) with bite weight. Figure 8.6
on page 167 shows the variable relevance for three foods and eight indi-
viduals.

Bite weight was predicted with an average error of 19% for apples, 28% for
potato chips and 31% for lettuce (Table 8.2, page 169). The error obtained
for apples is in the range of natural fruit weight variation, hence it is com-
parable to the amount quantification in simplified self-reports (without
weighting).

Degradation due to fruit storage, addition of toppings (e. g. for lettuce)
increase uncertainty on the correct weight (Section 8.6, page 169). Nev-
ertheless, these results are encouraging to investigate further foods and
combine the prediction with the swallowing bolus volume classification
as summarised below.

• Food volume classification. Swallowing events were classified accord-
ing to bolus volume in a study using fixed bolus sizes (Table 9.4, page 190
summarises the considered food items). The classification rate for two bo-
lus volumes, large volume (15ml water) and small volume (5 ml water,
spoonful of yogurt and 2 cm3 bread), was ∼70% for five participants (Ta-
ble 9.6, page 194). Stethoscope sound provided the best-discriminating
features.
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2.2. Conclusion

Diet monitoring is relevant for clinical interventions on eating behaviour and
prevention programs on weight coaching alike. Self-assessments, however, ob-
tain a low respondent compliance due to the high effort required in maintaining
them. These assessments are not appropriate when following a normal everyday
life.

An essential change in the monitoring paradigm was proposed in this work:
freeing the individual from manual logging of food intake. Specifically, this
work evaluated new techniques for on-body dietary monitoring. Based on the
summary presented in Section 2.1 above, the following conclusions were made:

• On-body sensing and recognition solutions provide vital information
for diet monitoring: Activities related to food intake can be moni-
tored, namely, intake gestures (using inertial sensors at lower arms and
torso), chewing (using an ear-worn microphone to record food break-
down sounds) and swallowing (using hyoid EMG and a stethoscope mi-
crophone).

• The evaluations showed that intake gestures and chewing events are ro-
bust sources of information. For intake gestures, a recognition perfor-
mance of 79% recall and 73% precision was obtained. For chewing events,
recall was 93% at 52% precision. Swallowing event detection requires fur-
ther investigations (65% recall at 31% precision).

• A recognition procedure for activity event spotting and event fusion was
introduced and evaluated, using various sensing modalities (inertial sen-
sors, EMG, sound). The recognition procedure is applicable for activity
event spotting and identification.

• Food categories and chewing events, aligned to food-texture groups, can
be recognised from chewing sounds (93% recall, 52% precision for two
groups: wet- and dry-crisp texture). Event fusion methods improve the
recognition result (precision of 70% with recalls above 90% for three
individual foods). The classification of chewing cycles demonstrates the
discrimination capabilities of acoustic chewing patterns (classification of
19 foods resulted in an accuracy of 83%).

• Bite weight was estimated from the chewing event recognition with an av-
erage error of less than 20% for apples. Foods with low bite weight (<4 g),
such as potato chips and lettuce resulted in 30%-35% prediction error.

• Both, food type and amount estimation depend on the segmentation of
intake cycles in continuous data. The intake cycle is a vital step to com-
bine the activity event information from three sensing solutions. Robust
results were achieved for the recognition (86% recall, 95% precision for
eight solid foods and drinking).
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2.3. Limitations and relevance

Based on the sensing solution results obtained, it was concluded that an es-
timation of intake timing is a feasible recognition task. However, it was not
evaluated in this work. Furthermore, the estimation of energy intake was not in-
vestigated. In the practice of self-reports, energy intake is estimated from food
product information. However, these information details (exact food product,
brand and ingredients) were not automatically recognised in this work. Nev-
ertheless, an average energy level could be derived from the food type and
amount estimation presented in this work. Further work in this direction is
needed.

This work has focused on the evaluation of sensing and recognition methods
using a small number of foods (up to 19) only. The recognition approach,
using food-texture grouping as well as the partitioning of chewing sequences
were initial attempts to expand and generalise the food set. These approaches
require further investigations and should be applied in larger food sets with
various textures.

Recognition performance was evaluated in presence of noise and similar
foods. Therefore, the results demonstrate that initial systems can be realised
instantly for a fixed set of pre-trained foods. Moreover, an early practically
applied system may be allowed to ask the user if recognition confidence is low.
It can offer a choice of the most likely foods or food categories to support the
monitoring.

Eating behaviour is an accustomed habit that differs strongly between indi-
viduals. Consequently, personalised pattern models were required for all recog-
nition solutions in this work. Ongoing and future research on diet monitoring
needs to address this issue.
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2.4. Outlook

This work has opened new and promising research perspectives that may con-
verge to applicable solutions in the near future. To raise awareness on diet
monitoring among researchers working in pervasive healthcare and exchange
research results, an international symposium series was initiated in 2007, called
“e-Nutrition” (http://www.e-nutrition.org).

Further research should address the following challenges:

• A combination of chewing and swallowing recognition will resolve ambi-
guities in detection of both activities, since chewing and swallowing are
tightly coupled. Moreover, this combination has potential for the food
amount estimation, based on the results presented in this work.

• Selecting appropriate features is a challenging task even in classification
problems. The number of available features typically exceeds the required
amount of modelling data by far. This problem is exacerbated by expen-
sive datasets, e. g. due to the annotation requirements for chewing. In this
work, promising results were achieved using a feature selection procedure
adapted to activity event spotting (Chapter 8). Further investigations on
feature selection are needed for all sensing solutions.

• In order to validate diet monitoring solutions, systems should be evalu-
ated in typical use scenarios, as soon as technically feasible. The evalu-
ated solutions for intake gestures and chewing have reached this maturity.
Further work on swallowing recognition is needed.

• The combination of on-body and environmental sensors offers vast poten-
tial for resolving shortcomings that both approaches have independently.
While RFID technology is promising to identify foods, knowing the loca-
tion will provide information needed to reduce the set of potential foods,
e. g. from the menu in a restaurant. Even plausibility checks are useful,
such as eating on an gym ergometer is unlikely, while drinking is. These
concepts will decrease the recognition complexity. Moreover, information
on food preferences, e. g. from food frequency questionnaires, are a sen-
sible approach to reduce the set of likely foods and intake types.
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Abstract

Automatic dietary monitoring aims to recognise eating behaviour
from sensors. This information is required to adapt and personalise
feedback of weight and diet coaching programs. On-body sensors can
be used for continuous monitoring of eating behaviour.
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3.1. Introduction

The balance between energy in consumed food and energy expenditure is a
key to success for good long-term health. However this balance is challenging
to maintain as alerted by the pandemic of overweight and obesity. Worldwide
more than one billion adults are overweight and 400 million are obese (WHO
statistics 2005, http://www.who.int/topics/obesity/en/). By 2015 WHO pre-
dicts an increase to more than 700 million obese patients.

Weight and diet management programs have been established to support
weight changes. The programs coach individuals to improve eating behaviour
by daily or weekly status feedback, meal suggestions and behaviour recom-
mendations. However, only 20% of the individuals that achieved at least 10%
reduction in body weight, are able to maintain the new weight for one year [21].
From these outcomes researchers have concluded that support durations of two
to five years are needed to raise success of coaching programs. Practicability
of current programs is their main limitation. Participants have to complete
detailed self-reports on eating behaviour, while maintaining their lifestyle and
eating behaviour modification on a day-to-day basis. Besides a personal profile,
self-reports are the unique source of information to adapt and personalise feed-
back and recommendations for coaching programs participants. Unfortunately,
self-reports have a high bias and are hard to maintain.

Automatic dietary monitoring (ADM) aims to replace manual reporting
of eating behaviour with a sensor-based estimation. In this article we discuss
requirements and options for on-body sensing of eating behaviour. We demon-
strate that indeed, on-body sensor information can resemble some information
of self-reports. These initial solutions towards ADM are research prototypes
and consequently not yet comfortable enough for long-term (months and years)
continuous use. However, they highlight crucial benefits of on-body sensing and
the ADM concept for future eating behaviour coaching.

Besides energy, food provides essential nutrients for the organism. Eating
disorders, such as binge eating, underline psychological influence on eating. As
a consequence, strict everyday energy balance is not the primary optimisation
goal in food choice. Self-reports capture these aspects in a set of items to
answer.

Nevertheless, self-reports and similar manual assessments of eating be-
haviour suffer from a number of shortcomings. These include the respondents
motivation to complete questionnaires, awareness for food intake, snacks in
particular, as well as memorising, perception and literate capabilities [22]. Re-
porting errors range between 50% under- and overestimation [17].
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3.2. Towards ADM - What will it help?

Researchers have proposed a broad range of alternate self-reporting solutions
and, more recently, attempted to automatically recognise eating behaviour
from ubiquitous sensors (see box: diet monitoring approaches). We envision
that a sensor-based automatic monitoring will release individuals from a strin-
gent manual reporting and provide more robust eating behaviour information.
Hence, ADM will simplify long-term coaching programs on eating behaviour
that are urgently needed, and infeasible using current, manual monitoring tech-
niques.

To replace manual logging, ADM systems shall supply information on eat-
ing behaviour, as self-reports conceptually intend. This information - the di-
mensions of eating behaviour - include:

• intake timing,

• food type or category,

• food amount, and

• energy content (calories)

of every consumed food piece. Moreover, ADM systems shall be applicable for
long-term use regarding operational requirements, robustness and user comfort.

3.2.1. Challenges for ADM

The challenge for self-reports and ADM solutions is to capture the diversity
of consumed foods and the variability in personal eating behaviour. For exam-
ple, energy intake is most accurately determined if the calories of consumed
food products are reported. However, even with direct calorie reporting, en-
ergy estimation requires additional information, including amount of consumed
food and whether certain changes had been made (e.g. addition of a lettuce
dressing). Furthermore, calorie reporting is often infeasible for self-prepared
meals.

Personal preferences regarding choice of food or food category and meal
schedule exist. ADM solutions can integrate these preferences as prior infor-
mation for eating behaviour estimation. Nevertheless, actual eating behaviour
is influenced by varying environmental and psychological aspects, including
constraints in food availability, social interaction during meals, and emotions.

A particular challenge for ADM solutions is to robustly recognise eating
behaviour from sensor data. No single sensor, independent of its location and
recorded physiological or activity information, can capture all dimensions of
eating behaviour. This challenge is reflected in restrictions of initial ADM
approaches. Typically, these solutions emphasise particular dimensions of eat-
ing behaviour, such as recording consumed food amount using a weight scale,
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while restricting location to the weighting-enabled table. Moreover, solutions
that rely on environment-embedded sensors only, raise the challenge in assign-
ing measurements robustly to one person. While these works represent rele-
vant advancements towards ADM, we concluded that a multimodal sensing
approach will support the monitoring of several eating behaviour dimensions.

3.2.2. Benefits of on-body sensing for ADM

Monitoring eating behaviour continuously and independent of a particular lo-
cation is a vital property of an ADM system, since modern lifestyles imply
many location-changes, for work and leisure purposes. Consequently, food is
consumed in various locations and in transit. Solutions that depend on a par-
ticular environment, such as a home location, will miss a snack “in between”
or an entire business lunch. Such partly coverage limits the effect of behaviour
coaching severely and could lead to misleading recommendations. Hence coach-
ing requires a continuous monitoring that covers all daily situations.

On-body sensors can provide continuous monitoring of eating behaviour,
independent from dedicated sensor-enabled environments. In contrast to
environment-embedded sensors, on-body sensors allow a direct association of
recorded information to the wearer.

3.3. Diet monitoring approaches

Classic dietary monitoring techniques require manually recording of eating
behaviour. Among these assessments, respondent self-reports are intended to
capture every food intake as required by weight and diet management pro-
grams. However, low adherence and accuracy restricts the report validity, and
consequently the feasibility of coaching programs that use self-reports [6].

Multiple attempts were made to simplify tedious and error-prone logging.
Studies confirmed that electronic devices, as replacement for paper-based self-
reports could not reduce reporting errors, e.g. [24].

We highlight here some alternate manual methods for capturing eat-
ing behaviour information. Jennifer Mankoff and her colleagues scanned
shopping receipts to simplify diet monitoring [14]. MyFoodPhone Nutrition,
Inc. (http://www.myfoodphone.com) introduced commercial service to assess
food intake from mobile phone pictures. Katie Siek and her colleagues used
bar codes and voice recordings to replace self-report questionnaires [18].

For all manual dietary monitoring, participants of a coaching programs are
asked to record their eating behaviour. In contrast, automatic dietary moni-
toring aims to estimate eating behaviour without the participant in the loop.

Approaches towards automatic dietary monitoring can be categorised by
their sensing approach into environment-embedded, on-body and implantable
solutions. A few pioneering solutions have been developed using environment-
embedded sensors. Keng-hao Chang and his colleagues developed a dining ta-
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ble that detected the weight of foods and identified food bowls from radio-
frequency identification tags (RFID) [7]. Jiang Gao and colleagues recognised
arm movements to the mouth from surveillance video [9]. In a general evalua-
tion of RFID for home monitoring, Donald Patterson and colleagues estimated
morning activities, including breakfast consumption timing [16].

Implantable solutions, such as in-oral sensing [19], could provide more pre-
cise information on the eating process. However, this solution is technical chal-
lenging and alters oral sensation. Hence, it appears infeasible for long-term diet
monitoring.

3.4. Evaluation of on-body sensing solutions

We analysed on-body sensing approaches and modalities to evaluate the ben-
efits for ADM. The analysis covered both, activities related to eating and
physiological responses to food consumption (see Figure 3.1 for an overview).

To assess the relevance for ADM, we evaluated sensing solutions regarding
eating behaviour information and wearer comfort. For the first evaluation, we
analysed what particular dimensions a solution can estimate as well as their
limitations.

As summarised before, the estimation of energy intake requires at least food
category and amount information, combined with a more complex inference.
Hence energy intake was not considered in the evaluation. Table 3.1 and 3.2
summarise our evaluation and review results on dimensions of eating behaviour,
particular limitations and comfort for all sensing solutions.

From all sensing solutions we selected three activity-based solutions: in-
take gestures, chewing and swallowing. These activities represent a tempo-
ral description of food intake and permit the recognition of intake cycles. In
our analysis of these solution, we evaluated estimation performances regard-
ing food category and amount in user studies. Here we used a Näıve Bayes
classifier preceded by linear discriminant feature extraction, to obtain person-
adapted performances. To ensure robustness of results, we deployed a five-fold
cross-validation.

3.4.1. Intake gestures

Movements of the upper body (arms and trunk) are required for most forms
of intake. They can be separated into a coarse preparation of food or beverage
items, such as unpacking, cooking and plate loading, and actual food intake
phase. Food intake includes movements to fine-cut and maneuvering prepared
piece to the mouth. In the intake phase, tools such as fork and knife are used.
We focused our recognition approach on these intentional arm movements. In-
spired by the observation that gestures reflect intake types (eating or drinking)
and food category (from tools used), intake gestures provide timing and food
category information.
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Chewing

Chewing strokes from food
breakdown sounds during
food intake.

Swallowing

Swallowing reflex initiated
during food intake.

Intake gestures

Intensional arm movements
to bring food into mouth.

Thermic effect

Temperature increase after
food intake at liver region.

Body weight

Immediate body weight in-
crease after food intake.

Cardiac responses

Heart rate and blood pressure
change related to food intake.

Gastric activity

Stomach activity and bowel
sound related to food intake.

Body composition

Body composition changes re-
lated to food intake.

Figure 3.1. Major on-body sensing solutions for food intake. We selected intake

gestures, chewing and swallowing to estimate food intake cycles.

Intake gestures can be recorded using inertial sensors at wrists and up-
per back. We derived a comfortable recording setup by integrating commercial
motion sensors (http://www.xsens.com) in a jacket (see Figure 3.2(a)). The
sensing units contain three-dimensional acceleration, gyroscope and magne-
tometers.

To evaluate the discrimination performance of different gestures, we con-
ducted a study with four students eating foods from four different movement
categories [12]. The categories included, eating lasagna with fork and knife,
drinking from a glass, eating a soup with a spoon, and eating bread using
one hand only. The students ate all foods in random orders, without partic-
ular movement instructions. During recording breaks, they performed further
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activities (reading newspaper, using phone) to promote natural movement vari-
ability. In total, 1020 intake gestures were recorded in 4.68 hours. Using the
classification procedure, we obtained an accuracy of 94%. Figure 3.2(b) shows
the result for all gesture categories. Only temporal features from arm acceler-
ation sensors were used for this recognition. We observed that the temporal
structure of intake gestures can be modelled by computing features in four
sections of each gesture instance. Without these features we achieved simi-
lar classification results, but required all modalities of the motion sensors and
hidden Markov models [12].

While the motion sensor jacket was a useful research prototype, we plan to
replace it with less complex sensors. The classification using only acceleration
shows that sensors can be reduced. However, already in the current study
wearers reported that the jacket was comfortable for sitting activities.

3.4.2. Chewing

Chewing strokes (jaw opening and closing) can be monitored from masseter and
temporalis muscle activation using surface Electromyography (EMG). Since
muscles are located in exposed facial regions, privacy cannot be retained with
this technique.

Nevertheless, we found a feasible solution: chewing generates sound emis-
sions during food breakdown that conduct through mandible, skull and body
tissue. Using an ear-attached microphone, we recorded these chewing sounds.
From their acoustic profile during chewing we classified foods [3] and anal-
ysed different microphones and ear-device cases. Figure 3.3(a) shows a device,
where a miniature microphone was embedded into a standard headphone case.
In another construction, we used an ear-pad case. With this setup we studied
how users perceived the ear occlusion. Smaller pads reduced occlusion and in-
creased user comfort, however it reduced the signal to noise ratio too. Users
found the headphone device convenient, especially when they were used to
wearing similar models with music players.

We studied the scalability of food classification using various foods. We
asked three male students with natural dentation to eat 19 standard foods
as they were used to. In several sessions we recorded chewing using a low
occlusion ear-pad device. In this setup, the wearer could understand office-room
conversation in 2m distance. Totally, we obtained ∼12000 chewing strokes in
5 hours of data. For the classification of all foods, we obtained a high accuracy
of 80%. For the headphone case, we observed an accuracy drop by 5% to 10%,
depending on environmental noise. As features, spectral energy bands, cepstral
and linear predictive coefficients were used, detailed further in [5]. We selected
these features based on robust results obtained with earlier recordings.

Figure 3.3(b) shows a colour-coded classifier confusion. This representation
provides a quick assessment of the classifier performance for all foods. Con-
fusions (non-white colour besides the main-diagonal) indicate acoustic groups
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Figure 3.2. Intake gestures: (a) User wearing the motion sensor jacket during eating.

(b) Classification rates for different intake gestures, including inter-person min-max

values.

among foods. For example, lettuce is partly confounded with carrots and ap-
ples, indicating that sound patterns are primarily controlled by food texture.

Food texture was our main selection criteria in this evaluation. The set in-
cludes similar textures, e.g. lettuce, apples, and covers a broad variety of mate-
rials and preparation styles, e.g. cooked meat. While this result demonstrates
texture-based discrimination capabilities, we deploy chewing sound recognition
for nutritional-relevant food groups in the food pyramid. For example, fruits
and vegetables can be grouped, based on a similar “wet-crisp” texture and
recognised in continuous sound data [5].
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Figure 3.3. Chewing sounds: (a) Miniature microphone integrated in headphone

case. (b) Colour-coded classifier confusion for chewing of 19 foods. This classification

confirms individual sound patterns in foods.

3.4.3. Swallowing

Swallowing often occurs unconsciously during a day, with increased frequen-
cies during food intake [13]. After food was converted into a bolus by chew-
ing, tongue movements initiate a reflex of throat muscles that propel a bolus
through the throat into the oesophagus.

Most swallowing studies analyse abnormal swallowing in laboratory set-
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tings. Since tongue and oesophageal movements are challenging to monitor
with on-body sensors, we focused on the swallowing reflex using sensors at the
throat. We developed a set of collars to investigate different sensing modalities.

Figure 3.4. Swallowing: Collar prototypes with integrated surface EMG and mi-

crophone (left) and carbon-loaded rubber elongation sensors (right).

In one collar system, we monitored textile elongation to detect skin move-
ment during swallowing (see Figure 3.4). Elongations occur for male subjects
mainly, since females have a less prominent Adam’s apple. Moreover, the strain
sensing collar required accurate positioning. Signals were impaired by move-
ments of neck and collar itself.

In a second solution, we combined surface EMG and a stethoscope-like
microphone, to monitor both, throat muscle contraction in deep tissue layers
and swallowing sounds (see Figure 3.4). While EMG is impaired by other throat
muscle activations, sound pattern is influenced by food viscosity. We combined
both modalities to determine swallowed food amount.

We used the sensors with five students eating foods and drinking water as
they naturally do. From several sessions we analysed totally 4.85hours of data
and 868 swallows [4]. We discriminated low swallowing volume (5 ml water,
spoonful yoghurt, 2 cm3 bread pieces) vs. large volume (15 ml water) with an
accuracy of 73%. Similar to chewing sound classification, swallowing volume
discrimination required a spectral feature set, described in [4].

As expected, users found both collars uncomfortable for long-term mon-
itoring. Our current work aims to replace the collar prototypes with more
convenient systems, such as a collar-shirt.

3.5. Further on-body sensing options

We analysed whether further sensing solutions could provide eating behaviour
information. Our goal was to review activities and physiological responses
closely related to food intake and summarises available knowledge.
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3.5.1. Gastric activity

Swallowed food arrives at the stomach after ∼15minutes. It is subsequently
decomposed by stomach muscle contractions. Further digestion in the gastro-
intestinal tract incurs time delays in the range of hours with respect to the
originating intake and thus is far less deterministic.

On-body sensing options are rare for late stages of digestion. The electric
and magnetic fields of stomach muscles were captured by researchers using lab-
oratory setups, such as Electrogastrography (EGG) [1]. However EGG has not
reached broad clinical acceptance. Furthermore, abdominal sounds from food
movement in intestines can be assessed by stethoscope. While bowel sounds
are typically loudest after fasting, a relation to intake was recently confirmed
for laboratory settings [23]. All measurements are perturbed by heart and res-
piration activity as well as body movement.

3.5.2. Thermic effect of food intake

The thermic effect of food intake (TEF) is a thermogenesis in response to
intake above resting metabolic rate. Although TEF is the smallest component
in human energy expenditure, researchers studied its relation to intake restraint
and obesity.

Optimal TEF assessment requires a respiratory chamber to measure
changes in resting metabolic rate before and after intake. TEF starts im-
mediately after food reached the stomach and peaks after ∼60minutes. For
unrestrained eating in normal weight individuals, skin temperature above the
liver increased between 0.8 and 1.5K [20]. TEF depends on regularity of intake
and is lower for irregular intake [8].

3.5.3. Body weight

Food intake is associated with immediate gain in body weight. If weight is
monitored, intake timing and food amount can be determined. Typical meals
are in the range from 50 g, to 500 g or more, e.g. for multiple course menus.
Snack sizes are in the range of a few grams (5 g and more) but could contribute
an important share in intake, such as snacks from high-calorie foods or sweets.

In contrast to classical body weight measurements once a week, intake-
related weight changes require a continuous weighting. Shoes would serve ide-
ally for this purpose. Compared to a scale, the challenges for shoe-based weight-
ing are related to a low mechanical profile, high torsion flexibility and low sys-
tem weight. Weight must be measured from foot force distribution in (even
short) moments, when the user is standing.

Classic load cells do not fulfil the mechanical constraints. Pressure sensing
arrays struggle at resolution requirements. Capacitive in-shoe gait measure-
ment systems, have an error of 2.7% [11], corresponding to 1890 g for a 70 kg
person. We studied arrays of Force Sensitive Resistors (FSRs) and observed
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even larger errors due to signal noise and shoe torsion. In conclusion, a wearable
measurement of body weight remains unsolved.

3.5.4. Cardiac responses

After meal intake, blood is redistributed to the stomach and lower gastro-
intestine tract. Studies reported an increase in heart rate 30minutes after in-
take [15].

Blood pressure is known to depend on food composition, especially on salt
and sugar. Classic blood pressure measurements require cuff-based solutions
that are inconvenient for everyday use. Novel cuff-less approaches, e.g. based
on pulse arrival time, are part of ongoing research.

The responses depend on a variety of aspects, including physical activity,
body posture, fasting time and time of day.

3.5.5. Body composition

Single food intake modifies body composition immediately. Clinically, body
impedance is measured between hand and foot. In a laboratory setting com-
position altered 30minutes after intake [10]. The effect depends on gender and
food type. Further investigations are needed to study the validity of compo-
sition assessments. Movement artefacts make the effect impractical for ADM
systems.
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3.6. Intake cycle modelling

Intake gestures, chewing and swallowing represent a temporal description of
food intake. We selected these solutions to construct a hierarchical recognition
procedure to identify intake cycles as shown in Figure 3.5(a). In our approach,
an intake cycle stretches from an intake gesture (taking a bite of food) until
swallowing of this bite. We deployed individual detectors to recognise activity
events from each sensing solution.

Intake
gestures

Chewing

Swallowing

Gesture
detection

Chew stroke
detection

Swallowing
detection

Intake cycle
recognition

Sensing
solutions

Event
detection Events Information

fusion

(a)

Gesture
detection

Chew stroke
detection

Swallowing
detection

Time

Event detection map

Drinking Eating one bite of apple

Hand

WWW WWWWW

S S

Drink

S

Drink: Moving glass to mouth and back
Hand: Moving apple to mouth and back
W: wet-crisp chewing strokes
S: swallowing event

(b)

Figure 3.5. Intake cycle recognition approach. (a) Hierarchical recognition proce-

dure, e.g. for food category estimation. (b) Intake event sequences for drinking and

eating one bite of apple.

Figure 3.5(b) illustrates two event sequences, representing intake cycles for
drinking and eating. To recognise intake cycles from activity events, we imple-
mented a probabilistic context-free grammar (PCFG) parser [2]. The parser
estimates the fit of event sequences to an intake grammar. We derived gram-
mars for particular food categories, such as drinking and eating fruits. With
PCFGs, recursive event structures can be modelled, such as the recursion of
chewing and swallowing events shown in Figure 3.5(b) for eating apple.
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The approach provides a number of benefits for estimating of eating be-
haviour:

• The temporal fusion of individual food category estimations from intake
gestures and chewing permits more diverse food categories.

• Estimation errors of individual sensing solutions can be complemented
by the fusion.

• At event level, the hierarchical recognition allows simplified synchronisa-
tion of sensing solutions with different sampling rates.

ADM aims to replace manual diet monitoring that is currently in prac-
tice for weight and diet coaching. Hence, eating behaviour information that
is obtained using manual monitoring provide requirements and benchmark for
ADM solutions.

In our evaluations, we observed that recognising intake activities from on-
body sensors provides information on intake timing, food category and amount.
Moreover, by using on-body sensors, information is obtained continuously, in-
dependent from particular locations. Nevertheless, most on-body sensing solu-
tions have limitations regarding sensor artefacts and wearer comfort.

By combining selected solutions in a hierarchical recognition, we could com-
pensate estimation errors. Still, this approach refines estimations for food cat-
egories only. In comparison to self-reports that include an exact food type
reporting, this is a limitation of on-body sensing solutions. Similar restrictions
apply for food amount and hence, estimation of energy intake. However, if
practical issues and bias of self-reports are considered, even a categorical infor-
mation indicates ADM benefits. We expect that initially deployed systems will
track a small number of food categories, such as fruits and vegetables, related
to particular nutritional recommendations. In our studies, we achieved high
recognition performances for identifying these categories.

Among all selected solutions, primarily the swallowing solutions lacks in
comfort. In our on-going research we aim to replace the current collar proto-
types with more convenient solutions. Moreover, we plan to combine on-body
and environmental sensing solutions, to leverage the advantages of both ap-
proaches.
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Abstract

Objective: An imbalanced diet elevates health risks for many
chronic diseases including obesity. Dietary monitoring could con-
tribute vital information to lifestyle coaching and diet management,
however current monitoring solutions are not feasible for a long-
term implementation. Towards Automatic Dietary Monitoring, this
work targets the continuous recognition of dietary activities using
on-body sensors.

Methods: An on-body sensing approach was chosen, based on three
core activities during intake: arm movements, chewing and swal-
lowing. In three independent evaluation studies the continuous
recognition of activity events was investigated and the precision-
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recall performance analysed. An event recognition procedure was
deployed, that addresses multiple challenges of continuous activity
recognition, including the dynamic adaptability for variable-length
activities and flexible deployment by supporting one to many inde-
pendent classes. The approach uses a sensitive activity event search
followed by a selective refinement of the detection using different
information fusion schemes. The method is simple and modular in
design and implementation.

Results: The recognition procedure was successfully adapted to the
investigated dietary activities. Four intake gesture categories from
arm movements and two food groups from chewing cycle sounds
were detected and identified with a recall of 80% to 90% and a pre-
cision of 50% to 64%. The detection of individual swallows resulted
in 68% recall and 20% precision. Sample-accurate recognition rates
were 79% for movements, 86% for chewing and 70% for swallowing.

Conclusions: Body movements and chewing sounds can be accu-
rately identified using on-body sensors, demonstrating the feasibility
of on-body dietary monitoring. Further investigations are needed to
improve the swallowing spotting performance.

4.1. Introduction

Daily dieting behaviour strongly influences the risk for developing disease con-
ditions. The most prevalent disease associated to an imbalanced diet is obesity.
Current estimations account for over one billion of overweight and 400 million
obese patients worldwide. This still increasing trend was attributed to the rapid
changes in society and behavioural patterns in the last decades [42]. However,
obesity is not a unique diet-related disease that decreases healthy life-years in
many populations. Rather, it increases the risk for related diseases, including
diabetes mellitus, different types of cancer and cardio-vascular diseases. Often
the diseases confound or overlay each other, preventing accurate accounting.

Several key risk factors have been identified, that are controlled by dieting
behaviour. These include the timing of food intake and integration into daily
schedule. For example, intermediate snacking was found to add a major part
to the daily energy intake [34]. Another critical aspect is the food selection.
High-energy food can be replaced by lower energy densities, such as fruits and
vegetables. This improves the diet quality and lowers body weight [31].

Minimising individual risk factors is a preventive approach to systemati-
cally fight the origin of diet-related diseases. It is the most promising solution
for improving quality of life in the future. Since nutrition is an inherent part
of daily activities, the adoption of a healthy diet requires individual lifestyle
changes. These changes need to be implemented and maintained over peri-
ods of months and years. For this purpose, a convenient long-term monitoring
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of dietary behaviour could become a vital tool to assess eating disorders and
support diet modifications through feedback and coaching.

4.1.1. Dietary behaviour monitoring

No single-sensor solution exist that could capture the process of food intake and
is simple to implement for diet management. Currently, dietary activities are
studied manually by entering the information into food intake questionnaires.
Mobile devices and Internet appliances are used to support the information
entry, e.g. by taking pictures of the food [28] and estimating calories from
entered data [7]. Further approaches to simplify data entry include the scanning
of shopping receipts [27] as well as bar codes or recording voice logs [33].

These manual acquisition methods require a considerable effort of study
participants, primarily to remember entering the information into the ques-
tionnaire, and study managers, to verify and analyse the data. Typically, this
method is prone to errors such as imprecise timing due to back-filling, missing
food item details, e.g. when using voice recordings [33] and low user compli-
ance, especially for paper-based diaries [36].

Many dietary parameters such as the rate of intake (in grams/sec.) or the
number of chews for a food piece are rarely assessed because adequate sensing
facilities are only available in laboratory settings. However, these parameters
are related to palatability, satiety and speed of eating [41]. Behavioural inves-
tigations have utilised weighting tables in controlled settings to measure the
amount and rate of food intake during the consumption of individual meals [22].
An oral implant sensor was developed to acquire information about these pa-
rameters [35]. However these techniques certainly influence the user’s behaviour
and are not feasible for long-term monitoring.

All non-invasive dietary monitoring techniques suffer from estimation errors
regarding the exact amount and calories of every consumed food item. However,
a rough estimation for relevant parameters such as ratio of fluid and solid foods,
food category and timing information, such as eating schedule and meal intake
durations over the day, will provide a solid basis for behavioural coaching. We
believe that much of this information can be extracted from on-body sensors.

4.1.2. Paper contributions and outline

In this work, we evaluate on-body sensing methods to automatically monitor
dietary intake behaviour. In particular, three core aspects of dietary activ-
ity (sensing domains) were investigated by on-body sensors:

1. Characteristic arm and trunk movements associated with the intake of
foods, using inertial sensors.

2. Chewing of foods, monitored by recording the food breakdown sound
with an ear microphone.
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3. Swallowing activity, acquired by a sensor-collar containing surface Elec-
tromyography (EMG) electrodes and a stethoscope microphone.

We derive pattern models for specific activity events using the sensor data
of each domain and analyse the event recognition performance. For example,
individual chews are considered as events in the domain chewing. In particular,
the paper makes the following contributions:

1. We present a flexible event spotting method that can be applied either to
an individual sensing modality or a combination of several. The approach
obtains its adaptivity from a variable-length feature pattern search. Its
selective power originates from competitive and supportive fusion of event
spottings with largely independent sources of errors. We summarise the
domain-specific adaptations of the procedure. The pattern description is
achieved by using time and frequency-domain features that model the
temporal characteristics of an event. Using this approach, more complex
algorithms, like hidden Markov models (HMMs) were avoided.

2. We analyse the recognition of individual arm movements as well as chew-
ing and swallowing activities from the intake of different food items. For
each domain, we describe the activity sensing approach, the domain-
specific recognition constraints and the conducted case studies to obtain
naturalistic evaluation data. Since our work targets a combined detection
and classification of the activity events, we present quantitative results
for both, indicating a good performance and the feasibility of the sensing
approaches for Automatic Dietary Monitoring.

The evaluations are performed on data from three different studies. To
analyse the recognition performance under realistic conditions, the data sets
included other common activities, e.g. conversations and arbitrary movements.

4.2. Dietary activity domains and related work

Activity monitoring and recognition has attracted researchers from many back-
grounds, including machine vision and more recently pervasive and wearable
computing. An exhaustive review of the literature is beyond the scope of this
work. Instead, we focus on systems for behaviour and Automatic Dietary Mon-
itoring as well as research on the three sensing domains considered in this work.

Approaches towards Automatic Dietary Monitoring typically build on intel-
ligent infrastructures. Chang et al. [10] developed a monitoring table to detect
activities in a dining scenario. The table is partitioned into several sensing sec-
tions equipped with radio-frequency-identification (RFID) readers to identify
food containers and weight sensors to track food transport between containers
and personal plates. The precision of the system is bound to the spatial resolu-
tion of table sensing sections and requires static assignment of food containers
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to these sections. The concept of load sensing on a table surface for user activ-
ity detection was introduced earlier by Schmidt et al. [32]. In their approach
coarse object movements were estimated from a single sensing section.

Beigl et al. [8] equipped household objects with sensing capabilities. In the
presented example, a cup was chosen to identify activities carried out with it.

For dietary monitoring applications, RFID technology has great potential as
a combined wearable and environmental sensing modality. Patterson et al. [30]
attached tags to 60 household objects. The detection was restricted to morning
activities, recorded by an RFID reader worn at the user’s hand. The activities
included, using the bathroom, preparing breakfast foods and eating breakfast.

The infrastructure sensing approaches provide valuable information on var-
ious user activities were sensors can be easily attached or hidden. However the
approaches generally suffer from the user identification problem: while one user
may prepare the foods, several others can consume them. Wearable sensors can
bridge this gap and associate the user directly to the activities. Moreover, since
worn at the body, the sensors can reveal more detailed information that oth-
erwise would require laboratory setups.

4.2.1. Movement recognition

Movements and gestures related to dietary intake can be roughly discriminated
into a preparation phase of the food or beverage items, such as unpacking,
opening, cooking and plate or cup filling, and the actual feeding. The feeding
movements target the fine-cutting, loading, and manoeuvring of the prepared
piece to the mouth. In the feeding phase specific tools, such as fork and knife
can be used.

Our focus is to recognise intentional arm and upper body movements during
the feeding phase. These movements are a result of handling the tool in the
hand(s) and the food material properties viscosity and size. These properties
relate directly to the food category. For example a soup is usually feed with
a spoon while a glass, cup, or bottle is used for drinking. Hence all relevant
movement events can be characterised as directed gestures of the left or right
arm, supported by the upper body.

A large base of existing works addressed the problem of classification
on well-defined sequences or previously isolated gestures, e.g. for Kung Fu
moves [9] or in a worker assembly scenario [29]. Works that targeted the con-
tinuous recognition used explicit segmentation steps or implicit segmentation
capabilities of algorithms, such as HMMs. Lee and Kim [24] used HMMs and
introduced a threshold model to eliminate detection noise. The threshold model
is constructed from all trained gesture models. Explicit segmentation was used
by Ward et al. [39] in an assembly task. Recognition was achieved by fus-
ing classifier outputs. Lee and Yangsheng [23] used acceleration thresholds in
combination with HMMs. In previous works of the authors on intake gesture
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recognition, HMMs were used together with an explicit data-adaptive segmen-
tation [2].

While HMMs are helpful to model the temporal structure of movements,
they were avoided in this work to minimise the complexity of the search pro-
cedure for both training and actual search.

4.2.2. Chewing recognition

Chewing targets simultaneous food breakdown and lubrication to form a food
bolus that can be swallowed. A chewing sequence starts after the food piece is
transferred to the mouth. The food breakdown is composed of arbitrary tongue
movements and cyclic opening and closing of the jaw (chewing cycle). During
the material breakdown sounds are emitted that are partially audible by air-
conduction in the near vicinity, but effectively transmitted by bone-conduction
from teeth and jawbone to the skull and the ear canal.

The emitted sounds are related to the food material texture. Interaction
of chewing with the acoustic sensation and perception of food items has been
investigated to study food preferences. Typically, studio recording setups were
used to analyse air-conducted chewing sounds [38] and laboratory installations
to assess the deformation sounds with a destruction instrument [12]. The loud-
ness of a food item during chewing depends mainly on its inner structure, the
arrangement of cells, impurities and existing cracks [1]. Wet cellular materi-
als, such as apples and lettuce, are termed wet-crisp since the cell structures
contain fluids, whereas dry-crisp products, such as potato chips have air inclu-
sions [18].

The food deformation in a chewing cycle is understood as a gradually
decomposition of the material structure, observed as a decline of the sound
level [17]. Initial attempts were made by DeBelie et al. [14] to discriminate two
classes of crispness in apples by analysing principal components in the sound
spectrum of the initial bite. In a followup work DeBelie et al. [15] classified the
sound emissions from the initial bite of different dry-crisp snacks. Both works
addressed the isolated classification. In our previous work the microphone po-
sitioning and classification of four different foods was investigated [4]. The ear
canal provided the best signal (chewing) to noise (user speaking) ratio. This
sensor positioning can be comfortable and socially acceptable for continuous
monitoring, comparable to mobile headsets or hearing aids.

In this work, following our recognition approach, the identification of in-
dividual chewing cycles from food breaking sounds was targeted. The food
category is subsequently classified from the sound pattern of the cycle.

4.2.3. Swallowing recognition

Swallowing is a frequent activity during food intake. It is mostly performed
unconsciously and when initiated, controlled by a pattern of muscle activa-
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tions [19]. The swallowing act is often partitioned into (1) oral preparation
phase (food in the mouth), (2) pharyngeal phase (food bolus in the throat)
and (3) oesophageal phase (food propulsion towards the stomach) [16]. After
transforming the food to a sallowable bolus in the oral phase, the swallowing
reflex is initiated by the tongue, starting the pharyngeal phase. In this phase a
sequence of muscle activations is used to transport the bolus and protect the
respiratory tract.

A number of clinical assessment methods have been developed to anal-
yse the complex interaction of swallowing, phonation and respiration at the
pharynx and diagnose abnormal swallowing in the pharyngeal phase. The as-
sessment methods can be broadly grouped as invasive methods, that require a
strict laboratory or clinic setting and a variety of non-invasive sensing meth-
ods. In the latter category, the following main approaches were taken: sensing
muscle activations by surface EMG, e.g. [20], listening to the throat sounds us-
ing a stethoscope [26] as well as stethoscope-like acoustic transducers or sealed
microphones [11].

A large share of research works targeted the basic understanding of
the swallowing process, only few addressed the continuous monitoring. Dan-
bolt et al. [13] used sensors to detect hyoid movement at the throat. It was
found that the sensor incurs heavy measurement artifacts from neck and tongue
movements as well as from speaking. Limdi et al. [25] tracked muscle contrac-
tion intensity based on surface EMG to inform the user of elevated swallowing
rates. Sukthankar and Reddy et al. [37] used surface EMG and vibration sen-
sors and targeted applications in dysphagia rehabilitation. Both latter works
did not present a performance evaluation for their approaches to the contin-
uous recognition problem. In our previous work [5], swallowing was analysed
from surface EMG and sound for the isolated classification of swallowed bolus
types, e.g. solid or fluid. Moreover, an initial investigation towards the con-
tinuous detection was made. The approach is taken forward in the present
evaluation by extending the swallowing study and evaluating the performance
of different fusion methods.

4.3. Recognition and evaluation methods

The envisioned system shall be continuously worn during daily routine. In all
sensing domains relevant activity events occur only sporadically, often embed-
ded into a large set of other, non-relevant activities (NULL class). For example,
stethoscope-like sound recordings intended to record swallowing sounds at the
throat, inherently pick up speaking, or even environmental noises.

A method that targets the spotting of relevant activity events should be
effective in retrieving correct events while omitting NULL class data. However,
the sensing domains considered in this work have very few constraints, result-
ing in a highly variable NULL class. As a consequence of this diversity, it is
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not feasible to derive a model for NULL (garbage model) without integrating
assumptions about these random activities. Moreover, training of the relevant
event model(s) should be critically reviewed for its dependency on NULL.

Another challenge is the variable length of the activities, leading to duration
variances in the relevant events. Consider for example a intake gesture using
fork and knife where the food must be cut into appropriate sized pieces before
manoeuvring it to the mouth. This indicates that a simple, fixed sliding window
search would not be able to identify the gestures accurately.

Our approach to detecting and classifying dietary activities is based on
three main steps: (1) an explicit segmentation of signals to define search
bounds, (2) a sensitive event detection using a feature similarity search algo-
rithm with an adaptive, dynamically defined window size, and (3) a selective
fusion of detection results exploiting independent sources of error to filter out
false positives and obtain an event classification in the same step. Figure 4.1
outlines the components of our event detection and classification method.

Sensor
data

source
Segmentation

Detector
instance 1

Detector
instance 2

...

Detector
instance n

Event fusion
(competitive /
supportive)

Detected
and classified

event

Figure 4.1. Event detection and classification procedure used in the work. The

detector instances (1 to n) can be trained to spot activity event patterns of specific

classes or individual modalities. The event fusion can combine events of different

type (competitive) or modalities for one type (supportive). Both concepts are pre-

sented in this work.

4.3.1. Event recognition procedure

In the first step a segmentation is obtained that specifies the bounds for the
following search. Various data-adaptive methods or a fixed distance can be
used for this purpose. In this work, we used the latter approach with a domain-
specific distance setting.

Event detection using feature similarity search

The event detection step utilises the segmentation points to search for poten-
tial activity event sections using a similarity-based algorithm. The search is
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performed by comparing features of a data section under investigation to a
previously trained pattern.

The following search principle is illustrated in Figure 4.2. For a given seg-
mentation point, the history of sensor data is analysed between a lower and
upper search bound. These bounds are determined in the training step from
the overlapping of manually annotated events and the segmentation points.
For each search section the similarity of a feature set to a pre-trained set is
quantified by computing the Euclidean distance (DEvent) between them. A
distance threshold (DThres), also obtained during the training, is used to re-
move unlikely sections. The similarity search works as a detector that returns
a list of event sections associated with a distance to the training pattern.

One benefit of this algorithm is that it can operate as a single pattern de-
tector, when applied to retrieve one relevant type from continuous sensor data
only. Using the feature similarity search, multiple detector instances can be
combined to independently spot different classes. This permits an independent
feature set for each class. Furthermore, as we will show for the detection of
swallowing, instances trained from independent sensing modalities can be used
to detect one event type in parallel.

Time
Current

segmentation point

Segmentation

Event search step

Upper
search
bound

Lower
search
bound

Search
sections

{

Figure 4.2. Schematic of the activity event search step. The segmentation is indi-

cated by the dotted line. The search is performed by computing feature sets from the

sensor data (not shown) between lower and upper search bounds. The search sections

are evaluated by comparing their feature sets to a pre-trained pattern. (Please refer

to the text for more details.)



56 Chapter 4: Recognition of dietary activity events using on-body sensors

Competitive and supportive event fusion

By selecting an appropriate distance threshold (DThres), the similarity search
is configured to spot most of the activities in the sensor data. Consequently
it can incur false positives. In the fusion step different class- or modality-
specific event detectors are combined to reduce these errors. This improvement
originates from the independent sources of error of each detector and modality.

For multiple detectors a competitive fusion strategy was used to select the
final events. A supportive strategy was deployed to combine the modality-
specific detection of one activity type, since here the detectors could reinforce
each other.

In this work we evaluated different fusion methods: (1) comparison of the
events, keeping the event with the highest confidence (COMP), (2) agreement
of the detectors (AGREE) and (3) re-weighting of the detection by logistic
regression (LR). The methods are commonly used to combine classifier out-
puts [21, 39]. In this work, COMP corresponds to the competition strategy and
AGREE implements a supportive approach. LR can be used for both strategies.

To select the most probable from concurrently reported events, the compet-
itive fusion compares a confidence associated to each event. This confidence was
derived from the similarity search distances (DEvent) by normalisation using
the distance threshold (DThres) in each detector instance (Equation 4.1).

Confidence =
DThres −DEvent

DThres
(4.1)

A sliding buffer of candidate events is used and continuously updated as new
events are entering from the detector instances. For each entering event the
collision (temporal overlapping of the event section with events already in the
buffer) is resolved according to the selected fusion strategy. The events are
released from the buffer after a timeout as final result of the procedure.

4.3.2. Feature computation

The temporal structure of many complex activities is a key element for their
pattern modelling and subsequent machine recognition. For example, move-
ments are frequently modelled with HMMs and time-continuous features to
capture this effect.

In this work, we integrated the temporal structure of the activity events
in individual single-value features. The features were computed for predefined
sections of an event. We spitted the event in two or four slices. This solution
provided an acceptable trade-off between temporal description and total num-
ber of features. The solution permits a combination of sliced features and fea-
tures for the entire event. Moreover, this approach can simplify both modelling
and event search, compared to time-continuous features. We used it with the
recognition approach presented above. The similarity search is then performed
using the features to describe each event and search every section.
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4.3.3. Evaluation procedure

Experimental concept

The analysis of each sensing domain was based on experimental data, individ-
ually acquired for each domain. Figure 4.3 indicates the sensor attachment at
the body for all domains. For the recording of movements a commercial mo-
tion acquisition system based on inertial sensors was used. Customised systems
were utilised for the chewing (ear microphone) and swallowing (sensor collar)
recordings. Table 4.1 provides a detailed description of the sensors used. In
each study the activities were manually annotated by an observer. The study
procedures are further detailed in the evaluation sections for each sensing do-
main.

Ear microphone

Sensor collar
(EMG and microphone)

Upper body
inertial sensors

Figure 4.3. Schematic sensor positioning at the body. (See Table 4.1 for a detailed

description.)

Soft alignment procedure

In order to account an event as recognised, the detection procedure must return
a valid begin and end of an activity section and its identity (for multi-class
detections). The section boundaries were compared to begin and end of the
annotated events. However the boundaries do not match exactly since the
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Table 4.1. List of sensors systems used in the dietary activity studies.

Sensor type Sensor description Sensing
domain

Inertial sensors Sensor modules containing acceleration
sensors, gyroscopes (rate of turn) and com-
pass sensors (magnetic field), each in 3
dimensions. The modules were attached
to the user’s arms. Manufacturer: XSens,
model: MTi.

Movement
activity

Ear micro-
phone

Electret miniature condenser microphone.
The microphone was embedded into an ear
pad foam and worn at the ear canal. Man-
ufacturer: Knowles Acoustics, model: TM-
24546.

Chewing
activity

Stethoscope
microphone

Electret condenser microphone. The micro-
phone was attached with medical tape or
worn in a collar below the hyoid. Manufac-
turer: Sony, model: ECM-C115.

Swallowing
activity

Electromyogram
(EMG)

Electromyogram electrodes and acquisition
system. Electrodes were directly attached
or worn in a collar at the infra-hyoid
throat position. Manufacturer: MindMedia,
model: Nexus-10.

manual annotation was not accurate on the granularity of each sample and the
segmentation algorithm can introduce a small alignment error in the detection.

For the feasibility in the envisioned dietary monitoring application the exact
alignment is not a critical aspect, if the event is associated to the true activity
at all. Hence, we applied a soft alignment matching, following the concept of
a boundary jitter. Equation 4.2 describes the accounting of correct events.

Recognised =

{

true, if j ≤ max
(

|ABegin−EBegin|
AEnd−ABegin

, |AEnd−EEnd|
AEnd−ABegin

)

false, otherwise
(4.2)

The parameters ABegin and AEnd correspond to start and stop sample of
the manual annotation and likewise, EBegin and EEnd to the retrieved event.
The jitter parameter j can be set, depending on the acceptable jitter for an
application. The jitter j = 0 corresponds to an exact matching of the bound-
aries and j = 1 would allow a jitter in size of the event duration. Moreover,
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this accounting procedure assures that large events, covering more than the
annotation section, will be rejected as well, if their begin and end do not con-
form to Equation 4.2. Multiple counts of matches and misses were especially
avoided.

For the evaluation in this work a jitter of j = 0.5 was chosen. We believe
that this is an adequate accuracy for applications in dietary monitoring.

Performance measurement

To account for variations in the acquired data sets, a four-fold cross-validation
procedure was used to determine training and testing set for the performance
analysis. For training, three of four data parts were used. Evaluation was per-
formed on the left-out data part. This procedure was repeated until all four
parts were used for testing once. The partition boundaries were adapted to
avoid intersecting the manually annotated event sections. The choice of four
partitions reflects an empirical trade-off between processing effort, the need
for enough training observations in all combinations of the partitions and the
intended averaging effect for the final results. An additional performance gain
could be achieved by higher iteration counts, potentially using more events for
training.

To analyse the recognition performance, we used the metrics Precision and
Recall, commonly used for information retrieval assessments. These metrics are
derived as follows:

Recall =
Recognised events

Relevant events
, P recision =

Recognised events

Retrieved events
(4.3)

Relevant events corresponds to the manually annotated number of actually
occurred event instances. Retrieved events represents the number of events
returned by the event recognition procedure. Finally, Recognised events refers
to the correctly returned number of events. Both metrics have a value range
of [0, 1]. A recall value of one indicates a perfect accuracy of a method (all
relevant events are recognised), while a precision value of one indicates that
the method does not return false positives (insertion errors).

4.4. Movement recognition

4.4.1. Study description

To evaluate our recognition approach for movements, a case series was recorded,
utilising commercially available inertial sensors. Table 4.1 specifies the sensors
used. The inertial sensors were attached onto a jacket at the lower and upper
arm as well as the upper back. Figure 4.3 illustrates the sensor positions.
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The movements of the arms and upper body was recorded with a sampling
rate of 100 Hz from four right-handed volunteers (1 female, 3 male, aged be-
tween 25 to 35 years). The participants were seated in front of a table carrying
the food items and tools. They were instructed to eat and drink as they would
normally do.

Intake sessions were recorded from each participant on separate days. Four
intake activities were recorded for each session: (1) eating meat lasagne with
fork and knife (cutlery, CL), (2) fetching a glass and drinking from it (DK),
(3) eating a soup with a spoon (SP), and (4) eating slices of bread with one
hand only (HD). All meals were served at adequate temperature for normal
eating/drinking. Table 4.2 summarises the acquired data which was inspected
and annotated.

In order to enrich diversity of the data set and avoid long periods without
movements, the participants were asked to conduct a set of other, non-relevant
movements and gestures. Besides arbitrary movements of the participants the
following additional arm gestures have been recorded and annotated to quantify
the data set noise: scratching head (96 times), touching chin (92 times), reading
and turning pages of newspaper (99 times), using tissue (89 times), glancing at
the watch (92 times) and answering a simulated mobile phone call (90 times),
all total numbers of the data set.

Table 4.2. Movement study: Statistics of acquired and annotated intake gestures.

Number of participants 4
Annotated gestures 1020
Relevant event share 97.44min (34.7%)
Total length of data set 4.68hours

4.4.2. Evaluation results

The event recognition procedure was adapted to the movement domain in the
following way:

1. A time constant of 0.5 s was used for segmentation.

2. For each of the four gesture categories an event detector instance was
trained. Using the Euler angles of the lower arms, features such as mean,
variance and signal sum in four sliced sections and for the complete ges-
ture were computed. By visually inspecting test recordings we found that
the upper arm and the back sensors could not support the recognition
without constructing a more complex body model. Hence, they were ex-
cluded from the analysis.

3. The event fusion using the competitive strategy was subsequently applied
to the detector instance results and the event category with the highest
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confidence was selected as final result. Due to variable lengths of gestures
in our data set, the candidate buffer was configured to release events only
after 30 s.

Figure 4.4 shows precision-recall (PR) graphs for a user-specific evaluation
of the movement event fusion using the COMP method. The curves were cre-
ated by evaluating the performance at various confidence thresholds for every
class and for every participant (A-D). Best performance is found towards the
top-right corner (high precision, high recall).

Both graphs indicate a good performance for the movement event recogni-
tion. The best result was achieved for the category DK, while HD performed
less well. Since the latter gesture is very simple it was often confused with
other movements towards the head. In contrast, DK is more complex (fetching,
drinking). The second graph shows that all participants performed similarly
well.
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Figure 4.4. Movement study: User-specific PR analysis (confidence threshold sweep)

of the event fusion results using the COMP method. Best performance is found to-

wards the top-right corner (high precision, high recall). (a) Analysis for every cat-

egory (CL=cutlery, DK=drink, SP=spoon, HD=hand only). (b) Analysis for every

study participant (A-D).

Table 4.3 summarises the results obtained from the event detection and
the event fusion. For the SP gestures, we observed that participants bend
themselves over the bowl, to avoid spilling and to minimise the movements.
This affected the detection performance, since only lower arm features were
used in the evaluation.

Table 4.4 shows a confusion matrix of the event recognition, obtained by
comparing the recognition results to the annotation for each sensor data sam-
ple. Complementary to the soft alignment counting scheme used for the results
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in Table 4.3, this representation shows the sample-accurate result. For all cat-
egories and NULL a recognition rate of 75% to 82% was achieved. This rate
was computed as class-relative accuracy ( correctC

relevantC
).

Table 4.3. Movement study: Summary for the user-specific performance for the

event detection and the fusion method COMP.

Metric Event detection
Event fusion

(COMP)

CL DK SP HD CL DK SP HD Total

relevant 276 245 266 233 276 245 266 233 1020
retrieved 347 247 284 717 278 221 263 518 1280

recognised 223 210 208 201 220 199 204 198 821
deletions 53 35 58 32 56 46 62 35 199

insertions 124 37 76 516 58 22 59 320 459
recall 0.81 0.86 0.78 0.86 0.80 0.81 0.77 0.85 0.80

precision 0.64 0.85 0.73 0.28 0.79 0.90 0.78 0.38 0.64

Table 4.4. Movement study: Confusion matrix of the final user-specific evaluation

result using COMP fusion (duration in seconds and ratios).

Predicted category

NULL CL DK SP HD

A
c
tu

a
l
c
a
te

g
o
ry

NULL 8869 613 233 305 982
(81%) (6%) (2%) (3%) (9%)

CL 452 2130 0 0 8
(17%) (82%) (0%) (0%) (0%)

DK 302 1 1182 0 34
(20%) (0%) (78%) (0%) (2%)

SP 237 19 0 807 10
(22%) (2%) (0%) (75%) (1%)

HD 103 20 0 0 541
(16%) (3%) (0%) (0%) (81%)

4.5. Chewing recognition

4.5.1. Study description

For the evaluation of chewing sounds we used an ear microphone as indicated
in Figure 4.3. The miniature microphone was build into a standard type ear
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pad and kept at the ear canal by an ear hook, as it is used for mobile phone
headsets. In a single case study the chewing sounds from different foods were
recorded at 16bit, 44 kHz from a male individual with natural dentition (aged
29 years).

The participant was seated conveniently on a chair close to a table carry-
ing the foods. He could still hear normal-level conversation in the room and
was allowed to move and speak during the recording sessions. The room was
controlled for a constant noise level of an office environment (the recording
in a sound studio was avoided). Recordings were made in individual sessions
on separate days. The participant took bites from the foods as he wished. All
of the foods belonged to his normal diet. The food products included for the
recognition analysis were:

1. Dry-crisp food: potato chips, approx. 3 cm in diameter

2. Wet-crisp foods: (1) mixed lettuce, containing endive, sugar loaf, frisée,
raddichio, chicory, arugula, and (2) raw carrots.

3. Soft foods: (1) cooked chicken meat and (2) pasta.

The foods evaluated in this work, contained many chewing cycles. Manual
annotation of every chewing cycle was performed in a post-recording step by
reviewing the waveforms and listening to the sounds. This procedure is accurate
in identifying every chewing cycle until the food bolus is swallowed, however
it makes the recordings very expensive.

The recordings included chewing sounds from further food products (bread
and chocolate), as well as environmental conversation and speaking. Table 4.2
summarises the acquired data which was inspected and annotated.

Table 4.5. Chewing study: Statistics of acquired and annotated chewing sounds.

Number of participants 1
Annotated chewing cycles 1947
Relevant event share 10.50min (21.7%)
Total length of data set 0.81 hours

4.5.2. Evaluation results

The event recognition procedure was adapted to the chewing domain in the
following way:

1. A time constant of 125ms was used for segmentation. This choice was
made based on the average duration of a chewing sound (as annotated)
of 350ms or less, depending on the food type.
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2. Initially, for each of the three food categories a feature similarity instance
was trained. Using the microphone data, spectral features such as band
energy, auto-correlation and cepstral coefficients in four sliced sections
were computed. We observed during the evaluation, that the detector
for soft foods worked poorly, resulting in many insertion errors. This
behaviour was attributed to the low signal to noise ratio. We omitted this
model in the further evaluation to demonstrate the good performance of
the dry and wet food detectors.

3. The event fusion using the competitive strategy was subsequently ap-
plied to the detected chewing cycles and the category with the highest
confidence was selected as final result. We analysed the COMP and LR
methods for the fusion.

The low-amplitude chewing sounds from the soft foods (meat and pasta)
created a special problem for the detector. While a high recall was achieved,
the detection was very sensitive to other sounds (as seen in the low precision
in Table 4.6). COMP and LR fusion of the three detectors did not solve this
problem, because the number of soft-food insertions was too high.

For every intake cycle all chews were annotated until the food bolus was
swallowed and the normal mouth cleaning phase began. In this phase, chews
were hard to observe in the sound waveform. However the algorithm was still
able to detect them. Figure 4.5 visualises an example waveform including a
chewing sequence of potato chips, the cleanup and a conversation phase. For
this food the chewing cycles can be seen very well in the sound waveform. The
vertical bars indicate the annotation. In the lower plot, the detected chewing
events are shown as horizontal bars. As the diagrams shows, additional events
were reported for the cleanup phase. We exemplarily verified that these chews
were correctly retrieved.

Since the actually existing chews in the cleanup phase could not be auto-
matically verified, they were counted as insertion errors. The impact can be
seen in the PR performance analysis in Figure 4.6 and the summary in Ta-
ble 4.6. For both food categories the COMP and LR fusion methods return
good results. We concluded from the quantitative summary in Table 4.6 that
LR removes slightly more insertion errors and has less deletions.

Table 4.7 shows the confusion matrix derived by applying the LR method.
Using the same procedure as presented for the movement confusion analysis,
class-relative recognition rates of 85% to 87% were achieved. This indicates a
very good performance. Especially, a low confusion rate of the dry and wet
categories was observed.
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Figure 4.5. Chewing study: Example waveform of a chewing sequence of potato

chips, cleanup and conversation phases, indicated by the shaded areas. Upper plot:

sound waveform. Lower plot: chewing cycle detection result. (The detector correctly

identified chewing cycles in the cleanup phase, that were not annotated. Please see

the related text for more details.)

4.6. Swallowing recognition

4.6.1. Study description

Swallowing was analysed from surface EMG electrodes and a microphone sen-
sor. The sensor positioning was equal for all participants. For some participants
the sensors were embedded in a collar. The collar helped to quickly attach the
sensors to the correct throat region. The location of the EMG was constantly
verified, however the collar supported the stable positioning at the infra-hyoid
position very well. The microphone was situated at the lower part of the throat,
below the larynx. EMG was recorded at 24 bit, 2 kHz and bandpass filtered.
Sound data was recorded at 16 bit, 22 kHz. Figure 4.3 and Table 4.1 summarise
positioning and setup of the sensors and the collar.

Six volunteers (4 male, 2 female, aged 20 to 30 years) without known swal-
lowing abnormalities were instructed to eat and drink different food items:
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Figure 4.6. Chewing study: User-specific PR analysis (confidence threshold sweep)

of the event fusion stage. Best performance is found towards the top-right corner (high

precision, high recall). (a) Analysis for the two food categories (“dry” and “wet”).

(b) Analysis for the two competitive fusion methods (COMP and LR).

5 and 15ml of water, spoonfuls of yoghurt and pieces of bread (approx. 2 cm3).
The individuals were seated conveniently on a chair in front of a table carrying
the foods. They were allowed to move, chew and speak normally during the
recording sessions. The room was controlled for a normal and constant noise
level of an office environment. To account for physiologic variations, two in-
take sessions were recorded on different days. The participants were asked to
swallow the food items in one piece after chewing and manipulating the bolus
as usual. None of the participants expressed a dislike for any of the included
foods nor problems to swallow the selected bolus sizes. Table 4.8 summarises
the acquired data that was inspected and annotated.

4.6.2. Evaluation results

The event recognition procedure was adapted to the chewing domain in the
following way:

1. A time constant of 250ms was used for segmentation.

2. Feature similarity instances were trained using the EMG and microphone
data individually. The foods were initially grouped regarding their ex-
pected bolus size into small (5ml water, spoonfuls of yoghurt and pieces
of bread) and large (15ml water). This approach was dropped, since no
clear discrimination of the two categories was found. In the following, we
targeted the detection without further classification. We concluded from
early tests that the EMG is disturbed by different muscle activations, in-
dependent from swallowing. The investigated hyoid muscle is covered by
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Table 4.6. Chewing study: Summary for the user-specific performance for the event

recognition (three categories) and the fusion methods (COMP and LR). The fusion

results were derived using the food categories “Dry” and “Wet” only.

Metric Event detection Event fusion

COMP LR
Dry Wet Soft Dry Wet Total Dry Wet Total

relevant 187 979 781 187 979 1166 187 979 1166
retrieved 1327 2098 3483 416 1693 2109 416 1687 2103

recognised 186 909 460 152 722 874 184 900 1084
deletions 1 70 321 35 257 292 3 79 82

insertions 1141 1189 3023 264 971 1235 232 787 1019
recall 0.99 0.93 0.59 0.81 0.74 0.75 0.98 0.92 0.93

precision 0.14 0.43 0.13 0.37 0.43 0.41 0.44 0.53 0.52

Table 4.7. Chewing study: Confusion matrix of the final user-specific evaluation

result using LR fusion (duration in seconds and ratios).

Predicted category
NULL Dry Wet

A
c
tu

a
l
c
a
te

g
o
ry NULL 2791 100 344

(86%) (3%) (11%)

Dry 12 76 0
(13%) (87%) (0%)

Wet 57 3 332
(15%) (1%) (85%)

several layers of other muscle tissue. We concentrated on a simple activity
detection using time domain features such as sum, maximum and peaks
of the signal. For the sound data, spectral features such as band energy,
auto-correlation coefficients and signal energy were used. An initial test
of sliced features did not lead to an improvement in recognition.

3. The event fusion using a supportive strategy was subsequently applied to
the detected swallowing events from EMG and sound data. We analysed
the performance of AGREE and LR methods.

For the AGREE fusion all participants reached a high recall, indicating that
the detection procedure was able to retrieve many events. Figure 4.7 presents
the corresponding PR analysis. The evaluation revealed two groups: for par-
ticipants (C and D) the detection performance was higher than for the others.
However, these participants did neither belong to the same gender, nor were
they recorded with the collar. We observed that many other participants exhib-
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Table 4.8. Swallowing study: Statistics of acquired and annotated swallowing ac-

tivity.

Number of participants 6
Annotated swallows 1265
Relevant event share 44.58min (9.3%)
Total length of data set 7.93hours

ited either a high EMG response or sound, for C and D both sensors provided a
consistent event pattern. Consequently, both EMG and sound-based detection
more often returned a correct result for them, whereas for the remaining partic-
ipants no reduction of the insertion errors was achieved. Further investigation
of this issue is required.
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Figure 4.7. Swallowing study: PR analysis (confidence threshold sweep) for each

study participant (A-F) using the agreement fusion (AGREE). Best performance is

found towards the top-right corner (high precision, high recall).

On average for all participants, the AGREE fusion method improved the
precision. LR did not improve the individual spotting results. Table 4.9 sum-
marises the results obtained from the event detection instances and the fusion
methods.

The sample-accurate detection result was determined from the AGREE
fusion result. The swallowing recognition rate was 64%, for the NULL class
75% were obtained. This indicates that the detection provides a sensible result.
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Table 4.9. Swallowing study: Summary for the user-specific performance for the

event detection using muscle activity (EMG), audio (SND), and the fusion meth-

ods (LR and AGREE).

Metric
Event

detection
Event fusion

LR AGREE
EMG SND EMG+SND EMG+SND

relevant 1265 1265 1265 1265
retrieved 6046 8093 8085 4345

recognised 955 834 824 861
deletions 310 431 441 404

insertions 5091 7259 7261 3484
recall 0.75 0.66 0.65 0.68

precision 0.16 0.10 0.10 0.20

4.7. Discussion

4.7.1. Methodology

The continuous recognition of dietary activity events from sensor data pat-
terns was evaluated in this work. Spotting activity events in continuous sensor
data is a vital prerequisite for the deployment of activity detection in general.
While the targeted activities can be described by a domain expert, the embed-
ding data (NULL class) cannot be modelled due to the degrees of freedom in
the human activities and the cost for large training data sets. Consequently,
assumptions about the embedding should be minimised to achieve an accept-
able performance generalisation. We believe that the current work is a step
towards resolving this challenge, although the presented method is not com-
pletely free from assumptions. The most critical aspects in this respect include
the selection of features and event detection thresholds.

A combination of individual single-value features for activity event slices
were used for the detection. With this approach the temporal structure of the
activities was transformed into a spatial representation. This is a useful concept
to model activities for the continuous search. In an earlier work, we applied
this principle to the recognition of gaming gestures only [6]. For each domain,
features were selected from visual inspection of the sensor waveforms and from
previous experience. We expect that the recognition performance could be
improved by a thorough feature search and selection strategy. This will also
help to identify sensors that can be omitted or adjusted in its placement.

We introduced the scheme of competitive and supportive event fusion to
construct a selective refinement step for spotted events. By design of the recog-
nition system, the choice of the fusion strategy is made. The supportive strat-
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egy was applied for spottings from independent sensors, describing the same
event type. Using competitive fusion, we selected the most appropriate event
from different event type spottings. Both strategies could be combined to more
complex selection schemes. In related works, they have been used to combine
classifier outputs mostly [39].

An advantage of our method is its ability to work on single event detec-
tion classes with individual feature sets. For the detection of one event type,
typically a supportive fusion strategy can still be used, by deploying different
sensors. An application for detecting single event types in dietary monitoring
was shown in the swallowing evaluation. Further applications are the detection
of drinking gestures to assess fluid consumption or using a single food model
to assess one category of foods in dietary intake.

In order to describe the complexity of the event detection as a search prob-
lem, we listed the embedding size of the data sets. This size was expressed as
ratio of total annotated event duration over the total length of the data set.
For the data sets in this work, the ratio was 34.7% for the movement, 21.7%
for chewing and 9.3% for the swallowing study. The ratio indicates the severity
of the search: the smaller the ratio, the more difficult it is to achieve a good
recognition results due to the large and potentially diverse embedding data.
However, we believe that the high embedding size in the swallowing study is not
the unique reason for its weak precision. Section 4.7.4 discusses the swallowing
study in detail.

We introduced a soft alignment measure to account for the variability in
alignment between annotation and event detection. A boundary jitter nor-
malised by the annotated length of the event was defined as threshold, below
which the event is counted as recognised. The larger the jitter, the more mis-
match in alignment is allowed and an event reporting that may otherwise be
accounted as insertion/deletion will be accepted as correct. In its extreme,
the counting of correct events could be made by simply checking if an over-
lap with the annotation exist at all. For the targeted applications in dietary
monitoring an exact match is less critical as long as the activity is captured
at all. Therefore, we selected a jitter value that is neither too optimistic (by
permitting large alignment errors) nor pessimistic (being overly strict in the
boundary match). The comparison with sample-accurate confusion matrices
confirms that the soft alignment is a sensible solution for event spotting per-
formance analyses. For a more detailed analysis of detection errors, the Error
Distribution Diagrams [40] could be used.

4.7.2. Movement recognition

Different gesture types were defined, that occur frequently in European and
American diets, to evaluate the recognition of food intake movements. The re-
sults indicate that all types could be recognised from lower arm motion, most
of them with good accuracy. To improve the recognition of certain gestures,
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information from inertial sensors at the subject’s back could be added. The
proposed event fusion method is a valuable addition to the feature similarity
search for movement detection. In a related work of the authors, a two-stage
approach based on a similarity search and HMMs was used [2]. While the
HMMs proved valuable for refining the detection result in the second stage,
they add a high complexity in both, initial design and parameter estimation.
In comparison, the performance achieved with the event fusion approach in
the current work could match the recall, but performs approx. 10% lower in
precision than the HMMs on the same data set. Further refinement of features
and segmentation could close this gap. Moreover, we presented a rigorous eval-
uation framework using cross-validation in this work, that was not previously
available.

4.7.3. Chewing recognition

For the recognition of chewing sounds, novel achievements on a chew-accurate
detection were presented. Using the recognition procedure, individual chewing
cycles were identified in two food categories with good performance. This result
was achieved by considering the chew as a non-stationary event and grouping
the foods with similar textures. In comparison to our earlier investigation ([4]),
the current recognition rates are approx. 15% higher and a majority vote over
multiple chewing cycles could be avoided. However, for low-amplitude chewing
sounds, found in soft foods such as cooked pasta or meat, a low detection per-
formance persists with the current approach. This effect was attributed to the
low signal to noise ratio of these sounds. Moreover, the chewing sequence is not
consistent over the entire intake cycle as assumed in the current approach [3].
This is observed as a variability in the detection confidences and hinders fu-
sion methods such as LR to achieve a higher performance. Consequently, food
models should include the sequence information more carefully.

4.7.4. Swallowing recognition

The automatic detection of swallowing using EMG and sound information was
evaluated. We found that swallows can be retrieved from continuous data at
high recall rates using both sensing sources. By observing the final detection,
we found that the method is disturbed by neck movements and coughing.
In comparison to our previous work ([5]), we presented results from additional
fusion methods (AGREE, LR) and an extended study. The AGREE fusion was
able to remove a large share of insertion errors. The current results confirm
the previous findings: while the detection works to some extend in controlled
environments, it retrieved many false positives in our evaluation. These errors
could not be completely removed by the currently applied fusion techniques.

The collar worked well to standardise and maintain the sensor positioning.
No differences in the spotting results were observed for the collar-based swal-
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lowing data. For a subgroup of two participants an improved performance was
achieved. The difference could not be explained by the available information.
A larger study with more participants could reveal whether the subgroups
persist. Further investigations are required to analyse options for food bolus
categorisation and to increase the algorithm precision.

4.8. Conclusion

We presented novel approaches to monitor dietary activities from body-worn
sensors. Three sensing domains were analysed, that are directly linked to the
sequence of dietary activities: intake movements, chewing, and swallowing.
We presented evaluation results from studies in each domain using an event
recognition procedure, that supports the detection and identification of specific
activities in continuous sensor data.

The recognition of natural movements, such as for dietary intake, is a
challenging task, since it is strongly related to personal habits. The detec-
tion procedure in combination with the simple comparison fusion yielded good
recognition results for different intake types. This is a valuable result for the in-
tended application, since the intake movements help to categorise the consumed
foods. Moreover, the movement recognition could be used independently. For
example, the detection of drinking movements can be used to monitor fluid
consumption and avoid dehydration.

Chewing is a very important part in the intake process. In this work a
successful continuous recognition of two food types was achieved. This is a vital
result for a detailed analysis of food chewing. Based on the presented approach,
additional models can be derived that reflect the mechanical properties of
foods. Besides the identification of consumed foods, the chewing recognition
permits the assessment of dietary parameters, such as chews per food and
chewing speed. Both parameters can be used as indications for too fast, or
stress eating.

Swallowing concludes the intake cycle. The swallowing frequency depends
on the food category, where foods containing fluid compartments require ele-
vated swallowing rates. The current detection method, using sound and muscle
activity at the throat, still incurs many insertion errors. However, it does pro-
vides an indication for swallowing events. We plan to use this information in
combination with the previous sensing domains. Further works will address
different fusion strategies and additional sensors.

The three domains provide a comprehensive picture of dietary activities and
a broad amount of information, that is vital for a long-term dietary coaching
and health management. This includes the food type as well as intake timing
and the overall meal schedule.

We have shown in this work, how our recognition procedure to spot sporadic
activity events can be slightly adapted to fulfil the requirements of very differ-
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ent sensor modalities and activities. We believe that the procedure is a helpful
tool for Automatic Dietary Monitoring and similar applications in continuous
activity recognition.
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[3] O. Amft, M. Kusserow, and G. Tröster. Automatic identification of temporal sequences
in chewing sounds. In T. Hu, I. Mandoiu, and Z. Obradovic, ed., BIBM 2007: Proceed-
ings of the IEEE International Conference on Bioinformatics and Biomedicine, pp.
194–201, San Jose, CA, USA, November 2007. IEEE Press. doi:10.1109/bibm.2007.18.
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Abstract

We present a method for spotting sporadically occurring gestures
in a continuous data stream from body-worn inertial sensors. Our
method is based on a natural partitioning of continuous sensor sig-
nals and uses a two-stage approach for the spotting task. In a first
stage, signal sections likely to contain specific motion events are
preselected using a simple similarity search. Those preselected sec-
tions are then further classified in a second stage, exploiting the
recognition capabilities of Hidden Markov models. Based on two
case studies, we discuss implementation details of our approach
and show that it is a feasible strategy for the spotting of various
types of motion events.



80 Chapter 5: Gesture spotting to detect user activities

5.1. Introduction

Monitoring and classification of human activity using simple body-worn sen-
sors is emerging as an important research area in machine learning. Activity
monitoring itself is motivated by a variety of mobile and ubiquitous computing
applications, such as personalisation of the user interface, behavioural moni-
toring in medicine, medication assessment, assistive systems for the elderly and
cognitively disabled or intelligent information delivery and recording systems
for industrial assembly and maintenance.

The choice of simple sensors, such as accelerometers instead of computer vi-
sion stems from the limited computational resources of mobile and ubiquitous
systems and the very diversified, dynamic environment in which such systems
need to operate. The later often implies varying light conditions, changing back-
grounds and a large clutter. This makes extracting relevant information from
visual signals difficult and computationally intensive. Body-mounted motion
sensors on the other hand, are influenced by user activity only. The problem
with activity recognition using such sensors lies less in the extraction of rel-
evant features than in the fact that the information is often ambiguous and
incomplete. Thus, once a vision system has managed to track, for example the
user’s arm, relatively exact trajectories could be obtained for activity recog-
nition. In contrast, arm worn accelerometers react to a combination of earth
gravity and arm speed changes. Gyroscopes describe rotational motions of the
arm. However none of the above provides exact trajectory information.

Despite the disadvantages listed above, body-worn motion sensors have
been successfully used for a variety of tasks (see related work). One area where
little progress has been made so far, is the spotting of sporadically occurring
activities in a continuous data stream. This is known to be difficult, even if
complete trajectory information is available from a vision system. It is even
more difficult in a wearable sensors based environment.

This paper describes a novel method for tackling this problem based on
appropriately adapted machine learning techniques. Focusing on activities as-
sociated with distinct arm gestures, the performance of the proposed method
is evaluated in two elaborate case studies.

5.1.1. Paper Scope and Background

Depending on the specific application, very different types of activity recog-
nition are needed. As an example, consider a system designed to monitor the
overall physical activity level of a person. The idea behind such systems is to
provide general information about the effect of certain behavioural recommen-
dations or to estimate energy expenditure without having the patient admitted
to stationary care or a laboratory for observation. A wearable system deploy-
ing appropriate body-worn sensors can be used to collect this data. Obviously,
the type of information, that such systems need to deliver is not about single,
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specific actions, but more about the overall level of activity. Often, the activity
level can be assessed by averaging parameters, such as mean acceleration of
specific body parts. In a way, this is a very simple form of activity recognition.

On the other side of the spectrum are applications, where reliable recogni-
tion on a more fine-grained level is needed. Such applications may include e.g.
the monitoring of specific tasks and/or movements in a rehabilitation scenario,
the spotting of specific gestures for novel, more natural human computer in-
terface or the classification of dietary intake gestures for an automated diet
monitoring system. Such recognition tasks are particularly difficult, because
the relevant activities occur sporadically in between a large variety of other
activities. For example, in between the actual activity a user might fetch tools,
drink, chat with anther person or just scratch the head. As a consequence,
the task at hand can be described as activity spotting. It is widely recognised
as a particularly complex domain of activity recognition and is still an open
problem.

The work described in this paper is part of a larger effort of our groups,
directed at this problem, e.g. [31, 34, 35]. It focuses on activities that are
associated with a characteristic arm gestures. For such activities, the paper
presents a novel gesture spotting method based on arm-worn motion sensors.
The method uses a natural partitioning of human motions. In order to achieve
a balance between precision and recall with reasonable computational effort,
the task is partitioned into a fast highly sensitive stage to pick up potentially
interesting signal segments and a more complex, highly selective second stage
to narrow down the selection and get rid of false positives.

Our method is primarily intended as part of a large activity spotting system
that uses additional information such as location, modes of locomotion, e.g. sit-
ting standing, walking [14], supplementary location sensors [26] or information
on objects involved in the activity [27]. Nonetheless, we present experiments
on activities from two different everyday life domains indicating, that even on
its own our method achieves reasonable performance.

5.1.2. Related work

In contrast to isolated motion recognition that has been shown in various areas,
the spotting task is much more challenging. The difficulty of spotting specific
human motion events stems from a number of sources. These include, among
others, co-articulation, where consecutive gestures influence each other [13],
as well as intra- and inter-person variability. Another challenge, the system
has to deal with, is the fact that the motion events to be spotted may only
occur sporadically, in a continuous data stream, while at the same time being
embedded into other, partly arbitrary movements (called zero class). These
movements however are inherently difficult to model, due to their complexity
and unpredictability. As a consequence, conventional recognition schemes for
continuous classification, such as Hidden Markov Models (HMMs) are not di-
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rectly applicable for our recognition task, since they rely on appropriate zero
class models. Consequently, we cannot take advantage of the implicit data seg-
mentation capabilities, that HMMs provide. Moreover, we have to deal with
the fact, that motion events are typically very short. This means that for any
explicit segmentation-based recognition, exact localisation of event boundaries
is important.

The recognition of gestures has been studied extensively over years and
many approaches have been proposed to tackle the diverse problems. In general,
these approaches can be broadly categorised in either of the two following
categories: Gesture recognition, requiring external infrastructure and gesture
recognition, focusing on wearable instrumentation.

The first category is dominated by vision-based motion recognition, using
a single or multiple cameras. While an exhaustive review of literature is be-
yond the scope of this work, we exemplary indicate related works. Starner [32]
proposed an approach for American Sign Language recognition, Campbell and
Bobick [10] developed a system for recognising classical ballet steps, Yamato
et al. [37] worked on the recognition of different tennis strokes, Brand et al. [7]
targeted T’ai Chi movements, Lee and Kim [20] dealt with typical gestures
for interacting with a computer and Rao and Shah [29] aimed at manipulative
gestures. Further literature on vision-based motion capture and recognition
can be found in [24, 30, 36].

More recently the use of wearable instrumentation for gesture recognition
has gained much attention mainly due to the success in sensor miniaturisa-
tion. Various approaches dealing with the recognition of activities or events
have been presented. Chambers et al. [11] targeted Kung Fu moves and Ben-
basat [5] focused on the recognition of “atomic” gestures. Kern et al. [18] looked
at activities, such as keyboard typing, writing on a white-board and shaking
hands. Cakmakci et al. [9] tried to identify when a person was looking at the
watch. Bao [4] aimed at typical household activities including vacuuming, fold-
ing laundry, watching TV or brushing teeth. Lukowicz et al. [23] concentrated
on workshop activities including sawing, hammering, drilling, and filing. Bras-
hear et al. [8] dealt with gestures for American Sign Language and Lementec
and Bajcsy [21] worked on the recognition of gestures used to instruct pilots
after landing.

Although many motion recognition approaches exist, few are dealing with
the spotting task itself. Deng and Tsui [12] proposed a method for spotting
gestures in continuous data. Their approach makes use of an HMM-based ac-
cumulation score, that supports endpoint detection of a particular gesture
in a continuous data stream. Based on a potential endpoint their algorithm
searches for a corresponding start point using the viterbi algorithm. While this
approach seems promising, it has been evaluated solely for the recognition of
two-dimensional trajectories (Arabic numbers). Lee and Kim [20] developed a
method deploying HMMs directly, to spot gestures in a continuous stream of
sensor data. They introduced the concept of a threshold model that calculates
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the likelihood threshold of an input pattern and provides a confirmation mech-
anism for the provisionally matched gesture patterns. The threshold model is a
weak model for all trained gestures and is constructed from all existing gesture
models. Lukowicz et al. [23] demonstrated continuous, on-line motion recog-
nition by partitioning the incoming data using an intensity analysis based on
the signals of two microphones exploiting the fact that the movements to be
recognised are accompanied with a particular sound.

While the first two approaches made use of the implicit segmentation ca-
pabilities of HMMs, the third approach used an explicit segmentation step to
facilitate spotting. We believe that explicit gesture segmentation can be very
helpful and efficient to facilitate the spotting task. Lee and Yangsheng [19]
developed a system for online gesture recognition using HMMs. They were
among the first researchers to use segmentation as a pre-processing step to ges-
ture recognition and were able to recognise 14 different gestures online. While
they proposed acceleration thresholds for segmentation, they used a simple
velocity-based segmentation relying on the fact that there must be short pauses
between two consecutive gestures. They successfully demonstrated good recog-
nition performance for the trained gestures, however they did not deal with
the rejection of non-relevant movements. Kahol et al. [16] proposed a gesture
segmentation algorithm which employs a hierarchical layered structure to rep-
resent the human anatomy. The algorithm used low-level motion parameters to
characterise motion in the various layers of this hierarchy and was able to pre-
dict segmentation boundaries based on profiles, generated from segmentation
results. The segmentation, in turn, was provided by observers, who manually
segmented training data. In a recent work, Kahol et al. [15] used the con-
cept to fully document every motion in dance activities using a Vicon camera
system. Wang et al. [33] presented an approach for automatically segment-
ing sequences of natural activities into atomic sections and clustering them.
The segmentation was based on finding the local minimum of velocity and local
maximum of change in direction. The minimum below and the maximum above
the certain threshold were selected as segment points. The limitation of their
approach is that it can only segment and label continuous human gestures,
but not spot them. Liang and Ouhyoung [22] used a temporal segmentation
based on the discontinuity of the movements according to four gesture param-
eters and HMMs to perform real-time continuous gesture recognition of sign
language. Their approach allows the recognition of gestures that were defined
in vocabularies only, thus rejection of non-gesture patterns is not considered.
Morguet [25] proposed a two-step approach to the continuous recognition of
gestures in video sequences. In a first step, a simple segmentation algorithm
was used to identify start and end points of potentially meaningful segments.
This segmentation process used a threshold on a specific motion parameter in
conjunction with simple rules to obtain valid segments. These segments were
then classified in isolation. However, this approach cannot reject non-gesture
patterns that are falsely retrieved in the first stage.
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5.1.3. Paper Contributions and Organisation

As stated in the introduction, the work presented in this paper is part of a
large effort towards reliable spotting of complex activities using simple on-body
sensors. It focuses on the recognition of gestures, that build the basis for the
inference of more abstract activities. The primary aim is to support complex
activity spotting systems rather then to develop an activity spotting system
based solely on arm gestures. Nonetheless, we show how, for suitable domains,
good performance can be achieved without any additional information.

Within this scope the paper makes the following contributions:

1. It presents a novel, two-stage gesture spotting method based on body-
worn motion sensors. The method is specifically designed towards the
needs and constraints of activity recognition in wearable and pervasive
systems. This includes a large null class, lack of appropriate models for
the null class, large variability in the way gestures are performed and a
variable gesture length. It also refrains from excessively computationally
intensive operations such as correlations over large data sets or com-
plex searches. Instead, it uses a natural partitioning of human motions,
combined with a simple parametrisation scheme as a computationally
cheap preselection stage that identifies potentially interesting data sec-
tions. These sections are then reevaluated using HMMs to reduce the
number of classification errors. This combination of a cheap, highly sen-
sitive initial stage with a highly selective second stage is what makes our
approach unique and well suited to the intended domain.

2. The paper describes the verification of the proposed method on two sce-
narios that together comprise of nearly a thousand relevant gestures.
The first one, interaction with different everyday objects, is part of a
wide range of wearable systems applications. The second one, food in-
take, is a highly specialised application motivated by the needs of a large
industry dominated health monitoring project. In both cases studies we
arrive at recall values between 80% and 90% and a precision of over 70%.
The significance of these case studies and results is twofold. First, they
confirm the soundness of our approach. Second they are a strong indica-
tion for the feasibility of reliable activity spotting using wearable sensors,
in particular, since the approach presented in this paper is meant to be
used as part of a large system that uses other information to further
improve the results.

As indicated in the related work section, two-stage activity spotting ap-
proaches have been tried before. However, to our knowledge, the specific ap-
proach described in this paper, with its focus on the peculiarities of activity
spotting using simple sensors and wearable systems is novel. Taking into ac-
count the results achieved in our case studies it represents a significant contri-
bution to the field.
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Paper Organisation In Section 2 of the paper, we introduce our two-stage
spotting approach. In Section 3, we describe the case studies used to validate
our approach. In Section 4, we focus on implementation details of the spotting
algorithm and in Section 5, we detail the experimental setup to acquire sen-
sor data for the case studies. In Section 6, we finally present our evaluation
results. In Sections 7 and 8, we discuss the results and highlight future work,
respectively.

5.2. Spotting Approach

Our two-stage spotting approach consists of a preselection stage (1st stage)
and a classification stage (2nd stage) as shown in Figure 5.1. The task of the
preselection stage is to localise and preselect sections in the continuous signal
stream, likely to contain relevant motion events. These candidate sections are
then passed on to the classification stage and are classified in isolation using
appropriate classifiers.

Candidate
sections

Preselection
stage

Classification
stage

Inertial
sensor
data

Identified
motion
event

Figure 5.1. Sensor data flow through the two-stage recognition framework.

The preselection of sections in a continuous signal stream can be considered
as a search problem. In a naive approach, the search may be performed on all
possible sections in the data stream. The major problem of this exhaustive
approach is its computational effort. To reliably capture human motions with
inertial sensors, the sensors are usually sampled with up to 100Hz. Considering
that a relevant motion event may take several seconds, the above mentioned
search strategy would require to check a large number of sections.

Obviously, one solution to reduce the complexity is to apply a coarse search,
where not all but only certain sections in the continuous signal stream are
considered for the search. One way to implement such a coarse search is to
partition the signal stream into segments which are significantly longer than
a single sampling interval and to consider the segment boundaries as possible
start/end points of the sections to be searched. However, an artificial parti-
tioning is likely to miss the exact boundaries of the relevant motion events
contained in the data stream. This makes the recognition more complicated,
since sections may contain only parts of the relevant motion event as well as
other motions.
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We propose to use a natural partitioning of the data into ’motion seg-
ments’. Inspired by the taxonomy of Bobick [6] these motion segments are
described as non-overlapping, atomic units of human movement, characterised
by their spatio-temporal trajectories. Assuming that a motion event can be
subdivided into a sequence of motion segments, we can obtain a natural, non-
ambiguous partitioning of the overall motion with the start and end of the
motion events corresponding to the start/end of a specific motion segment.
Thus, the search can be constrained to those sections, whose boundaries co-
incide with the boundaries of the motion segments. Table 5.1 summarises the
terminology used in this work.

For the partitioning task, motion parameter(s) were used that represent
the motion event closely. The number and types of motion parameters to be
used is specific to the motion event to be recognised. For arm-related motion
events, they include e.g. relative orientation information, such as joint angles
between the lower and the upper arm, absolute orientation information of the
arm segments to an earth-fixed reference frame, or simply the raw signals from
the sensors attached to the arm segments.

While the preselection stage identifies potential candidate sections, the clas-
sification stage is used to eliminate those sections that have been falsely re-
trieved in the preselection stage. This is achieved by individually classifying
the candidate sections using HMMs and comparing the classification result to
the result of the preselection stage.

The main motivation behind this two-stage approach is to reduce the com-
plexity of the spotting task, by constraining the search space within the con-
tinuous data stream and by applying a simple similarity analysis to preselect
potential sections. The subsequent classification stage is used to make the
recognition more robust and retain only relevant sections.

5.3. Case Studies

In order to discuss the implementation of our approach, we considered the
spotting of typical, everyday-life gestures in a continuous data stream from
body-worn inertial sensors. Specifically, we investigated two different case stud-
ies:
Case study 1 deals with the spotting of diverse object interaction gestures,
reflecting common activities of daily living. The detection of such gestures is
considered as key component in a context recognition system, to monitor com-
plex human activities. Furthermore, such gestures may facilitate more natural
human-computer interfaces.
Case study 2 focuses on dietary intake gestures. The spotting of body motions
related to human intake are expected to become one sensing domain of an au-
tomated dietary monitoring system [1]. Although the automatic determination
of exact type and amount of all foods is rather visionary, we believe that an
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Table 5.1. Applied terminology of human motion in this work.

Term Description

Motion segment Represents atomic, non-overlapping unit of human mo-
tion that can be characterised by their spatio-temporal
trajectory.

Motion event Span a sequence of motion segments. A gesture can
be considered as a particular class of motion events,
mainly involving movements of the arms and trunk.

Activity Describes a situation, that may consist of various mo-
tion events. Thus, it refers to higher-level context.

Signal segment A slice of sensor data that corresponds to a motion
segment.

Candidate section A slice of sensor data that may contain a gesture.

assistive system based on different sensors is conceivable. Hence, the gestures
included in this study refer to frequently used human feeding motions. Detect-
ing such gestures reveals information about the timing of nutrition events, e.g.
breakfast or lunch and on the category of the food item, e.g. a soup is fed with
a spoon, a glass, cup or bottle is usually used for drinking.

Figure 5.2 and Figure 5.3 illustrate the gestures that we aimed to recog-
nise (relevant gestures) in each case study (see Table 5.2 for a brief description).
All relevant gestures are characterised by distinctive movements of the left or
right arm. While in case study 1 only movements from the right arm and trunk
were used to detect the gestures, case study 2 uses information from both arms
as well as from the trunk.

5.4. Spotting Implementation

The implementation of our two-stage spotting approach is detailed in this sec-
tion. The first stage preselects candidate sections and the second stage refines
the preselection (see Figure 5.4).

5.4.1. Preselection Stage

This section details the segmentation scheme used for the initial partition-
ing of the continuous signal stream into motion segments, the search strategy
and similarity measure applied to identify potential sections and finally, the
selection of candidate sections.
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Table 5.2. Description of the relevant gestures in case study 1 and 2. Unless oth-

erwise noted, all gestures were conducted with the right arm pointing downwards at

start/end in case study 1 and with both arms at rest on table at start/end in case

study 2.

Gesture Description

C
a
se

S
tu

d
y

1

Light button (LB) Press light button to turn lights on.

Handshake (HS) Greet person by shaking hands.

Phone up (PU) Pick up receiver. Start position: arm resting on leg,
end position: hold receiver to ear.

Phone down (PD) Put down telephone receiver: End position: arm
resting on leg.

Door (DR) Turn door knob and open door of cabinet.

Coin (CN) Take out purse from right back pocket of trousers -
open purse with right hand - take coin and insert
it into slot of vending machine - close purse with
right hand - put purse back into pocket.

C
a
se

S
tu

d
y

2

Cutlery (CL) Meal intake of Lasagne using fork and knife. Fork
tap, loading and manoeuvring to mouth and back
with left hand.

Drink (DK) Pick up cup from table - take a sip - put cup back
on table.

Spoon (SP) Meal intake of cereals or soup using a spoon. Spoon
loading and manoeuvring to mouth and back.

Hand (HD) Meal intake of bread slice or chocolate bar using
the hand only: Moving the left hand to mouth and
back.
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(a) Handshake

(b) Light button (c) Door

(d) Phone

(e) Coin

Figure 5.2. Visualisation of the relevant gestures (acted) as performed in case

study 1.
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(a) Cutlery

(b) Drink

(c) Spoon

(d) Hand

Figure 5.3. Visualisation of the relevant gestures (acted) as performed in case

study 2.

Motion segment partitioning

The task of the segmentation algorithm was to partition a motion parameter
into non-overlapping, meaningful segments. This task can be considered as
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Section
similarity

search

Selection of
candidate
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HMM-based
section
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1. Preselection stage 2. Classification stage

Inertial
sensor
data
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gesture
sections

Figure 5.4. Detailed structure of the two-stage recognition framework.

a time-series segmentation problem, which has been extensively studied in
many application domains. An excellent review of time series segmentation
approaches was provided by Keogh et al. [17].

As motion parameter, we used the pitch and the roll of the lower arm, which
are the angle of the lower arm segment to the horizontal plane and the rotation
angle with the rotation axis along the limb of the lower arm (see Figure 5.5).

These angles have been chosen mainly for the following reasons: Many
movements of the entire arm typically involve movements of the lower arm as
well. Furthermore, the signals of the lower arm orientation (and in particu-
lar pitch and roll) correlated well with our visual perception of the gestures.
Despite good initial results by using the pitch in case study 1, the roll was ad-
ditionally investigated in case study 2. For certain gestures the segmentation
based on the roll matched the gesture boundaries better. This can be explained
by the typical feeding motion (moving the hand with a tool to the mouth),
involved in the gestures of case study 2.

Although relative orientation information between the lower arm and the
upper arm segment, such as joint angles would generally be well suited for
the partitioning of the signal streams, we found that the estimation of those
angles using inertial sensors attached to the arm segments can be prone to large
errors. The two major sources of errors were inaccurate orientation estimation
of the involved sensors (mainly due to magnetic disturbances) and the loose
attachment of the sensors to the arm segments. Attachment issues make the
sensors susceptible to displacement while moving the arm. Conversely the pitch
and roll of the lower arm could be derived very robustly. The estimation of these
angles from raw sensor data was less prone to magnetic disturbances than other
orientation angles, specifically the orientation in the horizontal plane.

For the segmentation task, we used the Sliding-window and Bottom-Up
algorithm (SWAB) introduced by Keogh et al. [17]. Based on the evaluation of
typical test data, we found the algorithm to be well suited for our application.
SWAB combines the advantages of a precise bottom-up segmentation scheme
with those of a sliding window algorithm. This allows the algorithm to be used
on-line while keeping a global view on the data.

The algorithm kept a small buffer of the signal data. A bottom-up seg-
mentation was applied to the data in the buffer. From the resulting signal
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Figure 5.5. Orientation angle ’pitch’ and ’roll’ of the lower arm segment.

segmentation, the segment with the oldest data was extracted from the buffer
and new data was added using the sliding window approach. This procedure
was repeated as long as new data was available, potentially forever.

The bottom-up partitioning of each buffer of length n started from the ar-
bitrary segmentation of the signal into n/2 segments. Next, the cost of merging
each pair of adjacent segments was calculated and the lowest cost pair in the
buffer was iteratively merged. As the algorithm iterates, more signal segments
were merged until all adjacent segments in the buffer exceeded a cost thresh-
old when merged. Figure 5.6(a)-5.6(b) depicts the segmentation process of
the buffered signal for different segmentation steps (iterations). At iteration 0
the fine-grained initial partitioning can be seen. The final state is depicted in
Figure 5.6(b). The sliding-window algorithm of SWAB reported the left-most
segment from the bottom-up buffer and added new data accordingly. The pro-
cedure was restarted with this new data in the bottom-up buffer.

The cost metric for merging two segments was based on the error of approx-
imating the signal with its linear regression (residuals) in the bounds defined
by the merged segment. This method can be explained as follows: When the
pair of segments differ strongly in its signal shape, the approximation of the
merged segments incurs large residuals. Hence it is less likely that the segments
belong to the same motion segment. We used the squared sum of the residuals
in the bounds of the merged segment as cost function.

To ensure that the algorithm provided a good approximation of the signal,
a small cost threshold was required, typically leading to a large number of
segments for any of the relevant gestures. These segments did not correspond
well to the small number of visually perceived sub-movements of the gesture.
As a solution to this problem, we merged adjacent segments, as created by
the SWAB-algorithm, if their linear regressions had similar slopes. As result
of this extension we obtained motion segment boundaries. Figure 5.7 depicts
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Figure 5.6. Segmentation of an example signal stored in the bottom-up buffer at

different algorithm iterations. The ’cross’-symbols indicate segment boundaries.

an example of the segmentation steps, based on the ’DK’ gesture that uses the
pitch angle as segmentation signal.

For each gesture an individual segmentation parameter could be chosen.
Person-specific training was used to accommodate for the dominant body side.
In the investigated case studies, the body side was fixed. Table 5.3 summarises
the final choices made in our implementation.

Table 5.3. Motion parameter selection for the SWAB algorithm.

Gesture SWAB mo-
tion parame-
ter

Body side
used in stud-
ies

S
tu

d
y

1 Light button (LB), Handshake
(HS), Phone up (PU), Phone
down (PD), Door (DR), Coin
(CN)

pitchLA(t) a right

Cutlery (CL) rollLA(t) a left
Drink (DK), Spoon (SP) pitchLA(t) right

S
tu

d
y

2

Hand (HD) pitchLA(t) left

aPitch, roll, and yaw are Euler angles representing rotations of an object in 3-dimensional
Euclidean space. The orientation of pitch and roll angles are described in Section 5.4.1 and
Fig. 5.5. The yaw angle corresponds to absolute orientation in the horizontal plane.

The mean number of segmentation points per gesture for the data sets of
both case studies are shown in Table 5.4. The ratio of segmentation points to
the total recorded samples indicates the achieved reduction in search effort.
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Figure 5.7. Segmentation of the ’DK’-gesture using the pitch of the lower arm as

segmentation signal. The cross symbols (’x’) correspond to segmentation boundaries

obtained from the SWAB-algorithm. The circles (’o’) highlight the remaining seg-

mentation points (motion segment boundaries) based on the proposed extension of

the segmentation algorithm.

Table 5.4. SWAB segmentation results. The SWAB segmentation points correspond

to the total number of segmentation points for the entire data sets. The ratio of

segmentation points by total recorded samples indicates the reduction in search effort

achieved by the preselection stage.

Segmentation category Case Study 1 Case Study 2

Mean number of SWAB segmenta-
tion points per gesture

15506 13020

Ratio of segmentation points per
gesture by total recorded samples

2.2% 0.77%

Section similarity search

A coarse search based on the motion segment boundaries was used to find
sections that contain relevant gestures. The search was performed by consid-
ering each motion segment endpoint as potential end of a gesture. For each
endpoint, potential start points were derived from preceding motion segment
boundaries. The search was performed for each gesture separately. To confine
the search space, we introduced two constraints on the sections to be searched.
These constraints were adapted to the gesture by training data:

1. For the actual length T of the section we constrained Tmin ≤ T ≤ Tmax,
where Tmin and Tmax denote the minimum and maximum length of the
section to be considered.
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2. For the number of motion segments nMS in the actual section, we selected
NMS,min ≤ nMS ≤ NMS,max where NMS,min and NMS,max corresponds
to the minimum and maximum number of motion segments to be con-
tained in the section, respectively.

As search criterion, we used the normalised Euclidean distance1 given in
Eq. 5.1, where fPS denotes the NF -dimensional feature vector of the preselec-
tion stage, derived from the section under consideration.

We used simple single-value features, such as minimum and maximum sig-
nal values of the lower and upper arm pitch and roll, sum of signal samples,
the duration of the gesture and the number of motion segments in the section
under consideration. In case study 2, the minimal distance between the hand
and estimated head position was additionally used.

The parameters µik and σik represent the mean and the standard deviation
of the i-th element of the feature vector of gesture Gk. These were computed
from training data.

d(fPS ; Gk) =

√

√

√

√

NF
∑

i=1

(

fPSi
− µik

σik

)2

, fPS = [fPS1
, .., fPSNF

] (5.1)

The normalised Euclidean distance provided a measure of how similar the
motion pattern given in the section were to a specific gesture. During the
evaluation of all possible start points for one endpoint, only the section with
the minimal distance were retained.

If the distance d(fPS , Gk) was smaller than a gesture-specific threshold
value dmin(Gk), the section under investigation was considered to contain ges-
ture Gk. If the condition was satisfied for more than one gesture, the section
was considered to contain either one of the corresponding gestures. Depending
on the application such collisions need to be checked and handled.

Selection of candidate sections

Figure 5.8 schematically shows the collision of two sections obtained by the
section search procedure. These overlapping candidate sections were resolved
by selecting sections with the smallest similarity values for every occurring
collision. In this way non-overlapping candidate sections were obtained for a
particular gesture.

1The normalised Euclidean distance corresponds to the Mahalanobis distance where the
covariance matrix is a diagonal matrix.
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Figure 5.8. Overlapping candidate sections.

5.4.2. Classification Stage

In the classification stage, we used Hidden Markov Models (HMMs), which
have long been used in speech recognition, due to their ability to cope with
temporal and spatial variations of input patterns [28].

For our evaluation, we considered left-right models with eight continuous
features. The features used for the classification differ from the features used in
the preselection stage. While in the preselection stage, data sections were char-
acterised by single-valued features, such as the minimum and maximum signal
value and the duration of the section, the HMMs were fed with time-series
features derived from the candidate sections. Moreover, a separate definition
of the feature set was useful to address the classification goal.

The following features were used for the HMM-based classification stage:

• Pitch and roll angles from the lower arm sensors.

• Pitch and roll angles from the upper arm sensors.

• Derivative of the acceleration signal from the lower arm sensor, with the
measurement orientation along the pitch angle measurement.

• The cumulative sum of the acceleration from the lower arm (orientation
as before).

• Derivative of the rate of turn signal from the lower arm sensor, with the
measurement orientation along the roll angle measurement.

• The cumulative sum of the rate of turn from the lower arm (orientation
as before).
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We found that all gestures could be modelled using single Gaussian models.
Our gesture models consisted of 4 to 10 states. The choice of the states for each
gesture model reflects a trade-off between the complexity of the gesture on the
one hand, and available training data, which is necessary to estimate the model
parameters properly, on the other. Although some gestures may require more
states, we achieved good recognition results with our models, as shown below.

5.5. Experiments

For the experimental evaluation of our approach, we recorded a variety of
different data sets using a commercially available measurement system2 with
five inertial sensors placed on the body (see Figure 5.9). Sensors were attached
to the wrists, upper arms and on the upper torso.

Upper arm sensors

Upper torso sensor

Lower arm sensors

Figure 5.9. Sensor placement for gesture recording.

Using this setup, we independently recorded continuous data sets from one
female and three male right-handed subjects, aged 25 to 35 years in both case
studies. In case study 2 food intake was recorded in two sessions on different
days. The subject data sets (S1.1-S1.4 for case study 1 and S2.1-S2.4 for case
study 2) were used for testing of our spotting approach. Additional person-
specific data was used for training purposes. The purpose of the studies was
explained to the subjects. However, the subjects were asked to perform the
movements as natural as possible while wearing the sensors.

In order to obtain data sets with a realistic zero class, we did not set con-
straints to the movements of the subjects, except that we asked the subject to
perform the relevant gestures according to the descriptions given in Table 5.2.

2http://www.xsens.com
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Moreover, to enrich the diversity of movements and to avoid wide intervals
constituting no motion, we defined eight additional gestures to be carried out
during the recording which were similar to those gestures we intended to spot.
In total 2 hours of motion data were recorded for case study 1, and 4.7 hours for
case study 2, with only 25.4% and 34.7% of the data sets containing relevant
gestures for case study 1 and 2, respectively (see Table 5.5).

Table 5.5. Statistics of the recorded data sets.

Feature Case Study 1 Case Study 2

Total duration of all
data sets

7185 Sec (2.00 Hours) 16848 Sec (4.68 Hours)

Share of relevant ges-
tures in data sets

25.4% (1826 Sec) 34.7% (5846 Sec)

5.6. Results

For the evaluation of our approach, the evaluation metrics Precision and Recall
were used. These metrics were derived as follows:

Recall =
Recognised Gestures

Relevant Gestures
Precision =

Recognised Gestures

Retrieved Gestures

Relevant gestures are those gestures that have been conducted by the sub-
ject, while retrieved gestures represent the sections that have been reported
in either preselection stage or classification stage. A recognised gesture is a
relevant gesture that has been retrieved. Furthermore, we derived the number
of insertions (sections that have been retrieved but do not contain a relevant
gesture), and the number of deletions (relevant gestures that have not been re-
ported). Figure 5.10 illustrates the different evaluation metrics schematically.
Set A corresponds to the relevant gestures, set B to the retrieved gestures after
the preselection stage (PS) and set C to gestures retained after the classifica-
tion stage (CS). The depicted subsets (1 to 5) reflect the metrics used in this
paper.

5.6.1. Preselection Stage

For the spotting of sections likely to contain motion events, appropriate thresh-
old values dmin(Gk) were identified for each gesture Gk, by evaluating the
performance of the preselection stage on the training data. In general, we ob-
served that the larger the threshold value, the more relevant gestures were
retrieved. However, at the same time, the total number of falsely retrieved ges-
tures increased. The precision-recall curves given in Figure 5.11 for the gesture
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Figure 5.10. Visualisation of the applied evaluation metrics for the preselec-

tion (PS) and classification (CS) stages.

’HS’ from case study 1 and Figure 5.12 for the gesture ’SP’ from case study 2
illustrate this trade-off for the test data sets (S1.1 to S2.4) respectively. More-
over, the individual curves in Figures indicate the variation of the detection
performance among the subjects.

The vertical lines towards the maximum recall in Figure 5.12 can be seen as
limitation of the similarity search. For these gestures, some instances were not
successfully detected due to variation between training and testing gestures.

Based on such precision-recall curves derived from training data, appro-
priate threshold values can be chosen considering application-specific require-
ments. For further evaluation of our approach, we set the thresholds for the
individual gestures such, that at least 90% of the relevant gestures (gestures
that have been conducted) were retrieved in case study 1 and 70% of the
relevant in case study 2. This corresponds to a recall value of 0.90 and 0.70
respectively.

Table 5.6 finally summarises the results of the preselection stage for both
case studies. For an overall recall value larger than 0.90, we obtained an overall
precision value of 0.47 in case study 1. In case study 2, with a recall larger
than 0.70, precision dropped to 0.57. The low precision indicated many falsely
retrieved sections, that did not contain a relevant gesture (insertions). As can
be seen, the spotting of simple gestures such as ’HS’ and ’HD’ tend to cause
more insertions (smaller precision values) than the others.

5.6.2. Classification Stage

We used HMMs to refine the spotting results from the preselection stage.

Model Training and Initial Testing

To accommodate for varying quality in the training process, that is due to
random initialisation of certain HMM parameters, we trained 10 instantiations
of each model and kept the one with the highest score.



100 Chapter 5: Gesture spotting to detect user activities

Recall

P
re

ci
si

o
n

S1.1
S1.2
S1.3
S1.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

0.5

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Figure 5.11. Precision-recall curves for the ’HS’-gesture from case study 1, based

on the evaluation of data sets from four different test subjects (S1.1-S1.4).

For initial model validation, isolated recognition was performed on the test
data based on manually added labelling information. From 258 gestures in case
study 1, 254 were classified correctly, leading to a recognition rate of 98.4%.
For case study 2, a recognition rate of 97.4% was reached from 784 gestures.
The results indicate that the models represented the gestures well and were
able to recognise the different gestures in the test set accurately.

Classification of Candidate Sections

The trained models were used to classify the candidate sections that have
been retrieved in the preselection stage. Only those sections were retained, for
which the recognition of preselection and classification stages agreed. Table 5.7
presents the final results of this stage for both case studies and all subjects.

The classification stage correctly recognised most of the relevant gestures
that have been retrieved in the preselection stage (the average recall value was
slightly reduced from 0.96 to 0.93 for case study 1 and from 0.80 to 0.79 for
case study 2). The classification stage discarded many sections that have been
falsely retrieved, leading to much higher precision values, especially in case of
the ’HD’, ’HS’ and ’LB’ gestures. Finally, Figure 5.13 depicts the summarised
spotting results for all gestures of the case studies 1 and 2.
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Figure 5.12. Precision-recall curves for the ’SP’-gesture from case study 2, based

on the evaluation of data sets from four different test subjects (S2.1-S2.4).

5.6.3. Extensions of the classification stage

Several options exist in which our spotting approach can be extended. One
possibility was to include a zero-class model in the classification stage. The
modelling of the zero-class is a challenging and yet unsolved problem. We eval-
uated the use of two different zero-class models as extension of the classification
stage. These extensions propose no viable elements of our spotting approach,
but rather indicate directions of further research. The preliminary results of
this investigation are shown in this section.

In case study 1 we evaluated the performance of a zero-class model that is
extracted from all relevant gesture models, following the approach presented
by Lee and Kim [20]. This modified classification stage yields a total recall
performance of 0.81 (without threshold model: 0.93) and a total precision
of 0.82 (without threshold model: 0.74). In direct comparison to the classi-
fication without the threshold model, a further increase of the precision was
achieved, however at the cost of decreased recall. Figure 5.13 shows the results
graphically.

In case study 2, we evaluated the spotting performance using a zero-class
model that was constructed on the basis of additional gestures that were
carried out by the subjects. An equal number of the gestures was used to
build one additional HMM. This garbage model was included in the classifica-
tion stage. The modified classification stage yielded a total recall performance
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Table 5.6. Evaluation results of preselection stage.

Case Study 1 Case Study 2
HS CN DR LB PU PD Total CL DK SP HD Total

Relevanta 43 43 43 43 43 43 258 196 165 186 153 700
Retrieveda 159 64 90 97 63 65 473 278 199 196 310 983
Recogniseda 41 41 41 40 42 43 248 146 138 154 125 563
Insertionsa 118 23 49 57 21 22 290 132 61 42 185 420
Deletionsa 2 2 2 3 1 0 10 50 27 32 28 137
Recall 0.95 0.95 0.95 0.93 0.98 1.0 0.96 0.74 0.84 0.83 0.82 0.80
Precision 0.26 0.64 0.46 0.41 0.67 0.66 0.47 0.53 0.69 0.79 0.40 0.57

aSee Figure 5.10 for corresponding description of evaluation metrics.

Table 5.7. Spotting results after classification (2nd stage).

Case Study 1 Case Study 2
HS CN DR LB PU PD Total CL DK SP HD Total

Relevanta 43 43 43 43 43 43 258 196 165 186 153 700
Retrieveda 57 61 58 41 47 65 329 225 155 163 209 752
Recogniseda 41 41 41 31 42 43 239 146 137 145 124 552
Insertionsa 16 20 17 10 5 22 90 79 18 18 85 200
Deletionsa 2 2 2 12 1 0 19 50 28 41 29 148
Recall 0.95 0.95 0.95 0.72 0.98 1.0 0.93 0.74 0.83 0.78 0.81 0.79
Precision 0.72 0.67 0.71 0.76 0.89 0.66 0.74 0.65 0.88 0.89 0.59 0.73

aSee Figure 5.10 for corresponding description of evaluation metrics.

of 0.78 (without garbage model: 0.79) and a total precision of 0.77 (without
garbage model: 0.73). Compared to the results of the classification without the
garbage model this indicates an improvement of precision at almost constant
recall.

Both concepts indicate that classification improvements with zero-class
models can be achieved, however further work in this area is needed.

5.7. Discussion

Hidden Markov Models (HMMs) have proven to be applicable for recognition
tasks in a variety of application domains, including gesture classification from
inertial body-worn sensors. However, the spotting of gestures in a continuous
data stream with HMMs is problematic due to their complexity and require-
ment for a zero-class. The similarity-based search in the preselection stage
of our approach presents an elegant way to avoid the explicit modelling of a
zero-class. In the HMM-based classification we exploit the competition of all
trained models to select the most probable one. This requires that more than
one gesture needs to be included in the classification stage, which can be seen
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Figure 5.13. Summary of the total spotting results for the preselection (PS) and

classification (CS) stages in case study 1 and 2. Additionally, the results of two

extensions, discussed in Section 5.6.3, are shown.

as a limitation of our approach. However, for most applications, the spotting
of several different motion events is aimed. Moreover, an explicit zero-class
model can be added, when available, to improve the recognition. Initial results
for two different zero-class extensions have been presented in this work.

The similarity-based search procedure used in the preselection stage permits
different feature sets for individual gestures. Thus, the search can be tailored to
the individual characteristic of a gesture. For example, consider game control
gestures, as in [3], that are conducted in the horizontal or vertical plane only.
Such gestures could be described more precisely by specific feature sets. This is
an advantage over many established classification procedures, such as k-nearest
neighbour classifiers or HMMs, which use the same features for all gestures to
be recognised.

The section similarity search can be regarded as a natural extension of the
frequently used sliding window approach for motion and activity detection, as
e.g. in [34]. We introduced a size-variable search window to accommodate for
the variability in the length of gestures and used a dynamic step size given by
the segmentation points. While the trivial sliding window was mainly used for
the detection of repetitive motions, such as hammering, the approach presented
in this work was successfully evaluated for non-cyclic motion events in the two
case studies.

The problem of human gesture recognition depends largely on the applica-
tion domain: In contrast to artificial gestures used for human-computer control
or repetitive motions in very specific activities, natural motions in activities of
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daily living are more challenging to spot. This is due to the fact that control
gestures can be constructed to provide strong discrimination, that is typically
not the case for gestures being part of activities of daily living. Hence, such ges-
tures contain more intra- and inter-person variability, making the spotting task
more challenging. However, the presented results indicate, that our spotting
procedure performs well for these types of gestures.

In a related work of the authors, one-hand gestures, specifically constructed
for game control, were investigated [3]. The approach in that work differed from
the current work in firstly, raw inertial sensor signals were used from a sensor
attached to a glove at the hand and secondly, the gestures were designed to aim
at discrimination and detection in a gaming scenario. In contrast, the current
work aimed at recognising natural everyday life gestures with large fluctuations
in length and execution from using sensor data from the lower and upper arm.
Consequently, with the use of HMMs, a more complex approach was deployed
in the current work to achieve the recognition.

The focus of the current work was to analyse the recognition performance
using person-specific training. The case studies were designed to incorporate
additional motions and gestures and maintain a low share of relevant gestures:
25.4% in case study 1 and 34.7% in case study 2. Both case studies evaluated
four subjects each. An initial insight into the subject-specific variability was
obtained from reviewing the precision-recall curves. However, a larger number
of users should be evaluated in future works, to study the fluctuation in recog-
nition performance and investigate non-personalised detection models in more
depth.

The temporal phases of a gestures are onset, core and conclusion. Typically,
onset and conclusion are variable transfer states between consecutive gestures.
However, the core part is specific for a gesture. In the evaluated case studies
most of the gestures were acquired with a defined start and ending position,
but all contained a core part. For example, in the phone pickup gesture, the
user’s hand moved towards the receiver, picked it up and moved the receiver
to the ear. While the movement may commence with the hand at an arbitrary
position, the core is preserved in order to successfully complete the activity. The
motion segments in the core phase and during the transitions involve direction
changes in the segmentation signal. In our approach, segmentation points were
created at these positions. Based on the preselection feature set, the section
similarity search was used to test for gestures cores at every segmentation
point. Hence, we expect that by using the segmentation and search procedure,
gestures embedded in arbitrary transitions can be detected.

Looking at the individual results of case study 1 and case study 2, we ob-
serve lower spotting performance for those gestures included in case study 2.
We assume that this is due to higher intra-person variability of those ges-
tures. More specifically, we observed the following additional challenges for the
spotting of gestures: 1) differences in the size and consistency of food pieces,
2) additional degrees of freedom produced by the tools used for the food intake
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and 3) temporal aspects, such as the temperature change of the food and the
natural satiety of the subject developed during the intake session. To over-
come potential weaknesses in the spotting of gestures related to food-intake,
we argue that the recognition of such gestures can be enhanced by combining
different sensing modalities to develop a dietary monitoring system [2].

We expect that the presented spotting approach can be applied to other
types of motion events. At the implementation level an appropriate motion
parameter must be selected. This motion parameter shall describe the major
properties of the motion event and lead to a reproducible and distinctive motion
segmentation. We believe that this can be achieved for many applications.

5.8. Conclusion and Outlook

We conclude that our spotting scheme based on the concept of motion segments
is a feasible strategy for the identification of motion events in a continuous sig-
nal stream. We demonstrated that our approach works well for arm-based mo-
tions, that are particularly difficult to recognise due to the inherent complexity
of arm motions. Moreover, we have shown that our approach simplifies the re-
jection of non-relevant gestures. We argue that our method is likely to facilitate
a wide range of real-life applications of context and activity recognition.
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Abstract

The paper reports the results of the first stage of our work on an
automatic dietary monitoring system. The work is part of a large
European project on using ubiquitous systems to support healthy
lifestyle and cardiovascular disease prevention. We demonstrate
that sound from the user’s mouth can be used to detect that he/she
is eating. The paper also shows how different kinds of food can be
recognised by analysing chewing sounds. The sounds are acquired
with a microphone located inside the ear canal. This is an unob-
trusive location widely accepted in other applications (hearing aids,
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headsets). To validate our method we present experimental results
containing 3500 seconds of chewing data from four subjects on four
different food types typically found in a meal. Up to 99% accuracy
is achieved on eating recognition and between 80% to 100% on food
type classification.

6.1. Introduction

Healthy lifestyle and disease prevention are a major concern for large portions
of the population. Considering the worrying trend of sky-rocketing health care
costs and the ageing population, these are not just personal but also impor-
tant socio-economic issues. As a consequence all concerned parties: individuals,
health insurance and governments are willing to spend considerable resources
on tools that help people develop and maintain healthy habits. In Europe a
considerable portion of research funding in this area is directed at mobile and
ubiquitous computing technology. Within this program our group is involved in
the 34 Million Euro MyHeart project that includes 35 medical, design, textile
and electronics related research institutions and companies.

The aim of the consortium is to develop schemes that combine long term
physiological monitoring and behavioural analysis with a personalised direct or
professional-observed feedback to help users reduce their risk of cardiovascular
disease. As is well known, the three main aspects that need to be addressed
are stress, exercise and diet. In the project our group focuses on the later. Our
aim is to develop wearable sensing technology to aid the user in monitoring
his eating habits. In this paper we report on results of the first stage of this
work: using wearable microphones to detect and classify chewing sounds (called
mastication sounds) from the user’s mouth.

6.1.1. Dietary monitoring

Dietary monitoring includes a variety of factors starting from the diet compo-
sition to frequency, duration and speed of eating, all of which can be relevant
health issues. Today such monitoring is almost entirely done ‘manually’ by user
questionnaires. Electronic devices are at best used as intelligent log books that
can derive long term trends, calculate calories from entered data and give sim-
ple user recommendations. The collection and entry of the data has to be done
by the user which involves considerable effort. As a consequence, as anyone
who has ever attempted a diet knows, compliance tends to be very poor.

Since prevention involves the adaptation of a healthier lifestyle, long term,
quasi permanent monitoring (months or years) is needed to really make an
impact on the risk of cardiovascular diseases. Thus any, even very rudimentary,
tool that reduce the effort and interaction involved in data collection and entry
could make a big difference.
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6.1.2. Automating dietary monitoring

The ultimate goal of a system that precisely and 100% reliably determines
the type and amount of all and any food that the user has consumed is cer-
tainly more of a dream then a realistic concept. However, we believe that with
a combination of wearable sensors and a degree of environmental augmenta-
tion useful assistive systems are conceivable. On one hand, such systems could
provide a rough estimate on the food consumption much like many today’s
physical activity monitoring devices provide only a rough guess of the caloric
expenditure. On the other hand, it could be used as an entry assistant that,
at the end of the day, would present the user with its best guess of when, how
much, and what he has eaten and ask him to correct the errors and fill the
gaps.

Overall we imagine such a non-invasive dietary monitoring support system
to rely on the following three components:

1. Monitoring of food intake through appropriate wearable sensors. The
main possibilities are

(a) detecting and analysing chewing sounds,

(b) using electrodes mounted on the base of the neck (e.g in a collar)
to detect and analyse bolus swallowing,

(c) using motion sensors on hands to detect food intake related motions.

2. Monitoring food preparation/purchase through appropriate environmen-
tal augmentation. Here, approaches such as using RFID-tags to recognise
food components or communicating with the restaurant computer to get
a description and nutrition facts of the order are conceivable.

3. Including user habits and high level context detection as additional in-
formation sources. Here, one could accentuate the fact that eating habits
tend to be associated with locations, times and other activities. Thus in-
formation on location (e.g in the dining room sitting at the table), time
of day, other activity (unlikely to eat while jogging) etc. provide useful
hints.

6.1.3. Paper contributions

In the paper we concentrate on the first component of the envisioned system:
food intake detection. Specifically, we consider the detection and classification
of chewing sounds. To this end the paper presents the following results:

1. We show that good quality chewing sound signal can be obtained from
a microphone placed in the ear canal. Since much of the acoustic signal
generated by mechanical interaction of teeth and food during occlusion is
transmitted by bone conduction, these sounds are actually much stronger
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than the speech signal. At the same time the location is unobtrusive and
proved acceptable in applications such as hearing aids or recent high end
mobile phone headsets.

2. We show that chewing sequences can be discriminated from a signal
containing a mixture of speech, silence and chewing.

3. We present a method that detects the beginning of single chews in a
chewing sequence.

4. We show that chewing sound based discrimination between different
kinds of food is possible with a high accuracy.

For the above methods we present an experimental evaluation with a set of
four different food products selected to represent different categories of food
that might be present in a meal. The experiments consists of a total of 650
chewing sequences, from 4 subjects that amount to a total of 3500 seconds of
labelled data. We show that recognition rates of up to 99% can be achieved for
the chewing segment identification and of between 80 and 100% for the food
recognition.

Overall, while much still remains to be done, our work proves the feasibility
of using chewing sound analysis as an important component in a diet monitor-
ing system. An important aspect of our contribution is the fact that the type
of information derived by our system (what has actually been eaten) is very
difficult to derive using other means.

6.1.4. Related work

Activities of daily living are of central interest for high-level context-aware
computing. Information acquisition can be realised by distributing sensors in
the environment and on the human body. Realisation of intelligent environ-
ments have been studied, e.g. in the context of smart homes [16] and mobile
devices [9]. These works are generally focused on enhancing the quality of life,
e.g. for independent living [15, 18]. Smart identification systems have also been
developed [21] which may provide information associated to nutrition phases,
e.g. smart cups [2].

The interaction of chewing, acoustic sensation and perception of textures
in food has been studied intensively in food science. Work in this area has been
dedicated mainly to the relation of chewing sounds on the sensation of crispness
and crunchiness. This was done by investigating air-conducted noises produced
during chewing [25, 27] or by instrumental monitoring of the deformation under
force [5, 7, 11, 12] and studying correlation with sensory perception [23, 26].
The loudness of a foodstuff during deformation depends mainly on the inner
structure, i.e. cell arrangement, impurities and existing cracks [1]. Wet cellular
materials, e.g. apples and lettuce, are termed wet crisp since the cell structures
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contain fluids whereas dry crisp products, e.g. potato chips have air inclu-
sions [8]. A general force deflection model has been proposed [28] interpreting
the acoustic emissions as micro-events of fracture in brittle materials under
compression.

Initially Drake [7] studied the chewing sound signal in humans when chew-
ing crisp and hard food products. It was found that a normal chewing cycle
after bringing the food piece to the mouth cavity can be partitioned into two
adjacent phases: Gross cutting the ingested material and conversion in fine
grained particles. This process is understood as a gradually decomposition of
the material structure during chewing and is audible as a decline of the sound
level [7]. A swallowable bolus is formed after a certain level of lubrication and
particle size has been reached. A first attempt was made by DeBelie [6] to dis-
criminate two classes of crispness in apples by analysing principal components
in the sound spectrum of the initial bite.

Originating from the pioneering work on the auscultation of the masticatory
system (system related to chewing) done by Brenman [3] and Watt [29] the
stability of occlusion and has been assessed in the field of oral rehabilitation
by analysing teeth contact sounds (gnathosonic analysis) [19]. Similarly the
sounds produced by the temporomandibular joints during jaw opening and
closing movements have been studied regarding joint dysfunction [31]. It is not
expected that these sound sources provide a audible contribution to chewing of
food materials in healthy subjects. However, these studies provide information
regarding sound transducer types and mounting position that may be usable
also for the analysis of chewing sounds. Recent investigations [19, 24] evaluated
measurement methodology, applicable transducers types and positions.

6.2. Methodology

This section will give an overview of our approach. It is important to note that,
as described in the introduction, we consider the sound analysis to be just one
part of a larger dietary monitoring system. This means that sound analysis
is not meant to solve the entire dietary monitoring problem by itself. Instead
the goal of our work is to demonstrate that a significant amount of useful
information that is difficult to obtain through other means can be extracted
from chewing sound analysis. Furthermore, the question how it can be expected
to interact with other context information is an important research question
pursued by our group (although it is not the focus of this paper).

6.2.1. Approach

Nutrition intake can be coarsely divided into three phases: fracturing (tearing)
the food mainly with the incisors, chewing of the pieces and swallowing of the
bolus. Ultimately, all three phases should be analysed since the bolus forma-
tion process differs for characteristic food materials [10], e.g. a dry potato chip
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differs in structure, fluid compartments and chewing from cooked pasta. Initial
bites may have more distinctive properties [6], but occur less often and are not
available for all food types. A combination of fracture sound and bolus pro-
duction process features may permit the acoustic detection of food products.

In this paper, we concentrate on the longest phase. Therefore we have
chosen to analyse the sound of normal chewing cycles, i.e. beginning after intake
of the food piece up to and excluding swallowing of the bolus. We stopped with
analysing the sound when the amplitude level decayed to approximately 5dB
above the noise level.

Fig. 6.1 illustrates the overall structure of our approach. It consists of three
main steps: signal acquisition, chewing segment identification and food type
classification.
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Figure 6.1. Approach to the analysis of chewing sounds

The challenge of signal acquisition is to identify a microphone position that
combines good amplitude levels for the chewing sounds, with good suppression
of other sounds at a location that is comfortable and socially acceptable to the
user.

For chewing segment identification this paper considers only sound-related
means. In particular, we investigate a classifier that can distinguish between
a broad range of chewing sound and various speech/conversation sounds. In a
wearable computing environment, other means are possible. E.g., food intake
is usually accompanied by moving the arm up and bringing the hand close to
the users mouth. The lower arm is then pointing away from the earths centre
of gravity; something which can easily detected by an accelerometer mounted
on the users wrist. However, the user can perform similar movements for other
activities (e.g. scratching his chin) so other information from sensors in the
environment might be needed (e.g. location information that the user is in the
kitchen or the dining room).

Once a segment is classified as being a chewing sound, the type of food
needs to be identified. Again, we focus on the audio analysis of the chewing
sound. In doing so, we do not aim to be able to pick any of the thousands
of possible food types. This would clearly be unrealistic. Instead we assume
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(1) that we have a certain prior knowledge about the type of foods that are
relevant to the particular situation and (2) that often it is sufficient to just
be able to identify a general type of food or be able to say “could have been
XY”. The first assumption is not as far fetched as it might sound. The intelli-
gent refrigerator/cardboard that knows what food is inside and what has been
taken out (e.g. through RFID) is the prototypical ubiquitous application. In
a restaurant credit card information or an electronic menu could be used to
constrain the number of possibilities. Additionally, people have certain fairly
predictable eating habits. The second point relates to the type of application
that is required. As stated in the introduction, the system does not need be
fully automated to be useful and to be an improvement over current ‘manual’
monitoring. Thus it is perfectly sufficient if at the end of the day the system
can remind the user that for example “at lunch you had something wet and
crisp (could have been salad) and some soft texture stuff (spaghetti or pota-
toes)” and asks him to fill in the details. From the above considerations we
concentrate our initial work on being able to distinguish between a small set
of predefined foods and on the distinction between certain food classes.

6.2.2. Experiments

The evaluation of all methods described in the remainder of the paper has been
performed using the following experimental setup.

Test subjects: Four subjects (2 female, 2 male, mean age 29 years) were
instructed to eat different food products normally, with the mouth closed dur-
ing chewing. In this way the chewing phase of the nutrition cycle is covered:
Beginning after intake of the food piece up to swallowing of the bolus (see
Sec. 6.2.1).

By restricting our experiments to the chewing phase, we ensure that the
recognition works solely on chewing. Specifically, we exclude swallowing and
tearing sounds since these phases have different acoustic characteristics. Frac-
turing (tearing) and swallowing sounds are regarded as additional source of
information and may be analysed independently. Since these events are not
occurring at the same high frequency than chewing, they are considered less
relevant.

The subjects had no denture, no acute teeth or facial pain and no known his-
tory of occlusion or temporomandibular joint dysfunction. Furthermore none
of the subjects expressed a strong dislike of any food product in this study.

Test objects: The food products shown in Table 6.1 have been selected since
they imitate typical components in a meal or daily nutrition. The food groups
reflect the acoustic behaviour during chewing and not their nutrition value.
They can be simply reproduced with a high fidelity. Furthermore some of the
crisp-classified products have been referenced in texture studies before: Potato
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chips [28] and apples [6]. Beside the dry-crisp and wet-crisp categories, a third
acoustic group of “soft texture” foods have been included: Cooked pasta and
cooked rice.

Table 6.1. Details for the food products and categorisation

Food product Food group Product/Ingredients/Preparation

Potato chips dry-crisp Zweifel, potato chips
(approx. 3cm in diameter)

Apple wet-crisp type “Jonagold” and “Gala”
washed, cut in pieces, with skin

Mixed lettuce wet-crisp endive, sugar loaf, frisée,
raddichio, chicory, arugula

Pasta “soft texture” spaghetti
(al dente)

Rice “soft texture” rice without skin

Initial evaluation of the sound data showed that the rice recordings were
smallest in amplitude of all recorded foods. The potato chips produced the
highest amplitude for all subjects. Fig. 6.5 illustrates a typical waveforms
recorded for apples.

Table 6.2 depicts the inspected sound durations for the food products from
all subjects. The number of single chews is the number given by the single chew
detection algorithm explained in Sec. 6.5.1. The single chews per chewing se-
quence reflects the authors’ experience that usually potato chips are destruct
with only a few chews, whereas pasta or lettuce require several chews to mas-
ticate properly.

Table 6.2. Statistics of the acquired and inspected sound database for all food

products

Time recorded No. of chew- Detected Chews per
Food product

and inspected ing sequences chews sequence

Potato chips 677 sec 179 979 5.5
Apple 1226 sec 245 1538 6.3
Mixed lettuce 1054 sec 152 1691 11.1
Pasta 630 sec 74 1290 17.4
Ricea 240 sec - - -
Total 3827 sec 650 5498

aOmitted because of small amplitude, see Sec. 6.4
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Test procedure: A electret condenser microphone (Type Sony ECM-C115)
was placed in the ear canal as described in Sec. 6.3. After positioning, the
microphone fixation was checked to avoid interference between movements of
the jaw and the microphone in the ear canal. A second microphone of the same
type was used at collar level, at the side of the instrumented ear, as reference to
detect possible environmental sounds during inspection. The waveforms were
recorded at a sampling frequency of 44.1 kHz, 16 bit resolution.

All products were served on a plate. Cutlery was used for the mixed lettuce,
pasta and rice. Subjects were instructed to take pieces, small enough to be
ingested and chewed at once, as described above. The temperature of pasta
and rice was cold enough to allow normal chewing.

6.3. Positioning of the microphone

Sound produced during the masticatory process can be detected by air- and
bone-conduction. Frequency analysis of air-conduced sounds from chewed
potato chips showed spectral energy between zero and 10 kHz [12] although the
frequency range with highest amplitude for various crisp products are in the
range of 1 kHz−2 kHz [4]. Bone-conducted sounds are transmitted through the
mandibular bones to the inner ear. The soft tissue of mouth and jaw damp high
frequencies and amplify at the resonance frequency of the mandible (160Hz)
when chewed with closed mouth [11].

Condenser or dynamic microphone transducers have been used in texture
studies literature at various places with the goal to detect and reproduce hu-
man perception. Mainly the following positions were evaluated: In front of the
mouth [7, 12], at the outer ear above the ear canal [26], a few centimetres in
front of the ear canal opening [5], pressed against the cheek [5, 7] or placed
over the ear canal opening [6, 7]. Gnathosonic studies used a stereo-stethoscope
technique [29] and microphones [11] at the forehead or over the zygoma [30].
More recently a method using head-phones with the microphones positioned
over the ear canal opening has been proposed [19].

Several positions for the microphone have been evaluated for this study
as indicated in Table 6.3. This list includes some of the positions used in
previous work. The evaluation of ubiquitous positions, not hindering the user’s
perception was emphasised. To this end, positions 1, 5 and 6 are favourable
because their implementation can be hidden in human anatomy or in cloths.

Potential artifacts introduced by daily use could interfere significantly with
the microphone function. This may affect position 5 since it has the disad-
vantage of being hidden under cloths or disturbed by cloth sounds. Position
1 has the advantage of being less affected by loud environmental noises since
it is embedded directly into the ear canal: With a directional microphone ori-
ented towards the eardrum, the intensity of any noise from the environment is
reduced.
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Table 6.3. Evaluated microphone positions

Microphone Position

1 Inner ear, directed towards eardrum
(Hearing aid position)

2 2cm in front of mouth
(Headset microphone position)

3 At cheek
(Headset position)

4 5cm in front of ear canal opening
(Reference position for audible chewing sounds)

5 Collar
(Collar microphone position)

6 Behind outer ear
(Hidden by the outer ear, used by older hearing
aid models)

Chewing
Speech

1 2 3 4 5 6
10−5

10−4

10−3

10−2

10−1

100

10+1

10+2

N
o
rm

a
li
se

d
si

g
n
a
l
in

te
n
si

ty

Figure 6.2. Signal intensity of different microphone positions (see Tab. 6.3)

The position of the microphone was evaluated while a subject was chewing
potato chips and while the subject was speaking. The mean amplitude per-
ceived at position 1 was used as reference for normalisation. Fig. 6.2 depicts
the relation of the signal amplitude intensity shown on a logarithmic scale.
It can be seen clearly that position 1 not only has the highest intensity for
chewing sounds but it is also the only position with chewing sound intensity
higher than speech intensity. Therefore for all further measurements position
1 was used.
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A microphone at position 1 does not need to hinder the person, as mod-
ern hearing aids prove. Applicable microphones could be very small and com-
bined with an earphone be used for other applications, e.g. mobile phones.
For example, modern hearing aids already operate with a combined micro-
phone/earphone.

6.4. Chewing segment identification

The identification of chewing segments in a continuous sound signal can be
regarded as a base functionality and hence is of high importance for the detailed
analysis of the masticated food type. We see mainly two different methods
based on audio signal processing.

A: Intensity of audio signal:

In an environment, like a living room, with background music playing or in a
quiet restaurant, the chewing sound picked up in the inner ear is much louder
than a normal conversation or background music. This is indicated in the
sample recording shown in Fig. 6.3.
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Figure 6.3. Chewing sound and speech recording in a room with background music

B: Chewing sound - speech classifier:

Despite the general suppression of the speech signal, loud speech can at times
develop amplitude peaks similar to chewing signals. Therefore it is necessary
to be able to separate these two classes. This is achieved by calculating audio
features from a short signal segment of length tw, averaging the features over
Navg segments and then finally classifying them with a previously trained
classifier [22].

Features: We used features that are popular in the area of speech, audio
and auditory scene recognition [13, 14, 17]. In the temporal domain, those were
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zero-crossing rate and fluctuation of amplitude. Frequency domain features
were evaluated based on a 512-point Fast Fourier Transformation (FFT) using
a Hanning window. Here, the features included: frequency centroid, spectral
roll-off point with the threshold of 0.93, fluctuation of spectrum and band
energy ratio in 4 logarithmically divided sub-bands. Additionally 6 cepstral
coefficients (CEP) were evaluated. Both time and frequency domain features
were evaluated on a window of tw = 11.6ms. No overlap between the windows
was used.

The features were averaged over Navg windows to improve the recognition
results. This method helped to bridge pause gaps between the chewing sounds.
These gaps vary between 100ms and 600ms depending on the chewed material
and the progression of decomposition (see Fig. 6.5). Longer pauses may be
observed at the beginning of a chewing sequence for larger food pieces as well
as before and after partial bolus swallowing.

Classifiers: A C4.5 decision tree classifier from the Weka Toolkit [32] was
trained with the aforementioned features. The classifier was 10-fold cross-
validated on a two class data set. The first class contained all food products
as specified in Table 6.2 except cooked rice. Rice was excluded since individual
classification of food products against speech signals showed weak results for
rice. This was expected from the low signal-noise ratio of the rice sounds. The
second class included various speech signal segments from several speakers as
well as conversation of test subjects and the authors.

Since the accuracy of a classifier depends on the class distribution, the ROC
curve (Receiver Operating Characteristic) is presented instead (see Fig. 6.4).
ROC curves help to visualise classifier performance over the whole range of
frequency of occurrence [20]; the best classifier is the one to the top-left corner.
This is useful in our case since the number of occurrences of speech and chewing
sounds may vary and may not be known beforehand. Clearly, the classifier that
uses the CEP features dominates. This was expected since the CEP features
help to pick out speech sequences. Furthermore, the number Navg of averaging
frames was varied. We found that the highest recognition rates can be achieved
if Navg is chosen so that the features are at least averaged over one single chew
which takes about one second. In our case this occurs if Navg > 1 sec/tw =
86.2.

6.5. Discrimination of foods products

6.5.1. Isolation of single chews

First trials in separating different food products with the same methods as in
the previous section (i.e. calculating features over a large window) produced
recognition rates around 60%. The reason for this is mainly due to the rather
long pause between single chews, which produces the same audio signature for
all food items.
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Figure 6.4. ROC curve for chewing sounds (positives) and speech sounds (nega-

tives)

To overcome this problem we have looked in more detail at the temporal
structure of a typical chewing sequence (see Fig. 6.5). It can be seen that the
audio signal of one chew is mainly composed of four phases: The closing of the
mandible to crush the material, a small pause, the opening of the mandible
in which material that stick to the upper and lower teeth is uncompressed,
and again a pause. The timing between those phases is given mainly by the
mechanical properties of the food and the physical limitations of the mandible.
All test subject showed almost the same timing for the same food, with the
exception of a longer or shorter pause in phase 4 (fast/slow eater). The four
phases are very well distinguishable in crispy food, in softer food like pasta the
phases tend to merge. Still, the pause in phase 4 and the increase in amplitude
at the beginning of phase 1 remain.

A relatively simple algorithms helps us the detect the beginning of each
chew. The short-time signal energy in a 20ms window is compared to a energy
threshold and the resulting signal is set to 1 if the short-time signal energy
is larger than the threshold and to 0 otherwise. The resulting signal is low-
pass filtered with a 4th order butterworth filter. We found that a filter with
a 3dB cut-off frequency of 4 to 5 Hz reliably responds to the pause in phase 4
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Figure 6.5. Sample sound signal observed for chewing an apple

while filtering out the shorter pause in phase 2. With help of the hill climbing
algorithm the beginning of each chew is detected as shown in Fig. 6.5. We
found that this algorithm can detect the start point of about 90% of all chews
while producing only very little insertions.

6.5.2. Classification

Once the audio signal is segmented into single chews, the segments are classi-
fied using the same procedure as in Sec. 6.4. Several features were applied to a
short window that was consecutively shifted. We found that a 11.6ms window
with a shift of 8.7ms works best for our sound classes. The most promising
features were: zero crossing rate, band energy ratios, fluctuation of amplitude,
fluctuation of spectrum and bandwidth. The features were further averaged
over the length of a single chew. The length of a single chew was used as an
additional feature and helped to improve the recognition rate of especially the
pasta, since soft-texture foods have shorter durations of chews. The features
were then 10-fold cross-validated with a C4.5 decision tree classifier. Recogni-
tion rates range around 66% to 86% and the corresponding confusion matrix
is listed in Table 6.4.

Since the material inside the mouth can not change between single chews,
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Table 6.4. Confusion matrix for single chews

a b c d ← classified as Accuracy

669 170 25 115 a = Chips 68.34%
183 1024 41 290 b = Apple 66.58%
25 39 1112 114 c = Pasta 86.20%
125 293 95 1178 d = Lettuce 69.66%

a majority decision over a whole chewing cycle was performed. This measure
resulted in an increase of recognition rate of 15 to 20% as shown in Table 6.5. It
can be seen that there is some confusion between apple and lettuce which can
be explained by them belonging into the same food category (see Table 6.1)
and therefore having similar mechanical properties.

Table 6.5. Confusion matrix for chewing cycles

a b c d ← classified as Accuracy

156 12 1 10 a = Chips 87.15%
24 198 1 22 b = Apple 80.82%
0 0 74 0 c = Pasta 100.00%
4 21 0 127 d = Lettuce 83.55%

6.6. Conclusion and future work

6.6.1. Conclusion

The work presented in this paper has proven that chewing sound analysis is
a valuable component for automated dietary monitoring systems. Specifically
we have shown that:

1. A microphone location inside the ear can acquire good quality chewing
sounds while suppressing many other sounds originating inside the oral
cavity such as speech. At the same time it is a location that has been
proven to be acceptable to users in other applications (e.g. hearing aids,
headsets). Applicable microphones could be very small, not hindering the
normal perception. Moreover, a combination of microphone and earphone
for shared use with other applications, e.g. a mobile phone, could be
employed.

2. Chewing sounds can be reliably separated from the main sound source
inside the mouth cavity: speech.

3. Individual chews can be isolated and partitioned into phases with a sim-
ple low pass filter based algorithm
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4. Audio analysis can be used to distinguish between a small predefined set
of different food types as for example found in a single meal.

The food groups introduced in the experiments reflect the acoustic behaviour
during chewing and not their nutrition value. The results show, that our ap-
proach is not limited to a specific group of foods. Moreover, it is possible to
discriminate foods from the same group. The actual nutrition value can be
derived either precisely from other monitoring components, e.g. RFID tags of
packages, or as an estimate from a generic food database.

An important aspect of our work is the fact that information about the
specific type of food which is being chewed is very difficult to derive using
other sensor modalities. The only alternative we could think of is video analysis
of the items inserted into the mouth. While theoretically feasible it has many
problems of its own, in particular sensitivity to light conditions and background
clutter as well as large computational complexity.

Overall the results presented in this paper provide crucial groundwork for
further development that, we believe, will lead to complete automated dietary
monitoring systems. Within the scope of the EU-funded MyHeart project we
aim to have first versions of such a system within the next two to three years.
Additionally, points 1 and 2 have implications beyond dietary monitoring as
they allow a fairly accurate recognition of the fact that the user is eating. This
in itself is an important context information.

6.6.2. Future work

On the sound analysis the next steps that we will undertake are:

1. Modelling temporal evolution of the signal from individual chews with
hidden Markov models to further increase the recognition rates and allow
similar food types to be distinguished.

2. Modelling the temporal evolution of the individual chewing signals over
an entire chewing cycle to extract food type specific parameters. This
shall include the number of individual chews needed, their length and
the evolution of the sound intensity.

3. Performing studies about the robustness of the system by adding con-
trolled levels of noise.

4. Performing more studies with more, different food types.

5. Performing studies to determine how the recognition performance de-
grades with increasing number of food types that need to be differenti-
ated.

6. Using a hierarchical approach with an initial classification of the category
(dry crisp, wet crisp etc.) and then a category specific algorithm for
further recognition, to overcome the above limitation.



Bibliography 127

Furthermore, other components of a dietary monitoring system will also be
investigated. In particular, we will look at the detection of swallowing mo-
tion with collar electrodes, analyse the hand motions related to food intake
and integrate high level context information relevant to eating habits into the
system.
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button: Design of a low power wearable audio classification system. In ISWC 2003:
Proceedings of the 7th IEEE International Symposium on Wearable Computers, pp.
12–17, Oct 2003. doi:10.1109/iswc.2003.1241387.

[23] A. Szczesniak. Texture: Is it still an overlooked food attribute? Food Technology, 44
(9):86–95, 1990.

[24] K. Tyson. Monitoring the state of occlusion - gnathosonics can be reliable. J Oral
Rehabil, 25:395–402, 1998.

[25] Z. Vickers. Relationships of chewing sounds to judgements of crispness crunchiness and
hardness. J Food Sci, 47(1):121–124, 1981. doi:10.1111/j.1365-2621.1982.tb11041.x.

[26] Z. Vickers. Sensory acoustical and force-deformation measurements of potato chip
crispness. J Food Sci, 52:138–140, 1987.

[27] Z. Vickers and C. Christensen. Relationships between sensory crispness and other
sensory and instrumental parameters. J Tex Stud, 11:291–307, 1980. doi:10.1111/j.
1745-4603.1980.tb00327.x.

[28] J. F. V. Vincent. The quantification of crispness. J Sci Food Agric, 78:162–168, 1998.

[29] D. Watt. Gnathosonics - a study of sound produced by the masticatory mechanism.
Journal of Prosthetic Dentistry, 16(14):73, 1966.

[30] D. Watt. Gnathosonics and Occlusal Dynamics. Praeger New York, 1981.



BIBLIOGRAPHY 131

[31] S. E. Widmalm, W. J. Williams, and C. Zheng. Time frequency distributions of tmj
sounds. J Oral Rehabil, 18(5):403–412, Sep 1991.

[32] I. H. Witten and E. Frank. Data Mining: Practical Machine Learning Tools and Tech-
niques with Java Implementations. Morgan Kaufmann, 1 edition, 1999.





7
Temporal sequences in

chewing sounds

Oliver Amft, Martin Kusserow and Gerhard Tröster
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Abstract

Chewing is an essential part of food intake. The analysis and detection of
food patterns is an important component of an automatic dietary monitor-
ing system. However chewing is a time-variable process depending on food
properties. We present an automated methodology to extract sub-sequences of
similar chews from chewing sound recordings. The approach is based on a
chew-accurate segmentation of the sound signal, a multi-objective evolutionary
search for temporal partitions in the sequence using NSGA-II and a validation
of the best solution by classification.

We evaluate the method on chewing sound recordings from a four participant
study, eating foods with different rheological properties. The proposed methodol-
ogy allows to determine the most appropriate partitioning of the sequences and
extract relevant sound features at the same time. Potato chips and chocolate
showed a two-phase structure, for lasagna and apples a single-phase structure
was derived. The results led to the hypothesis that a sequential structure can
be found in chewing sounds from brittle or rigid foods.
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7.1. Introduction

Food intake is a vital aspect of human health. The prevalence of over- and
under-consumption as well as unbalanced meal composition surges the risk of
chronic diseases such as obesity. Consequently, assistive systems that monitor
food intake from non-invasive sensors could provide a valuable tool for dietary
monitoring in risk groups. Manual dietary monitoring systems that are cur-
rently used require frequent user interaction, e.g. to log food type and time
in consumption questionnaires, scan or take pictures of the foods consumed.
Besides the high post-processing efforts of professional services to analyse and
verify the data, all of these methods require intensive collaboration by the user.

We believe that the automation of dietary monitoring could alleviate this
problem by reporting daily schedule and tentative food consumption using a
wearable system. Towards automatic dietary monitoring, a system was pro-
posed [3] that consists of three sensing domains: 1) identification of arm and
trunk movements that characterise the food intake from inertial sensors [2], e.g.
using fork and knife, a spoon or hand-only movements, 2) detection of swal-
lowing from a sensing collar [4] and 3) characterisation of foods from chewing
sounds. The latter sensing domain is the focus of this work.

The breakdown of foods during chewing generates sound emissions that
are conducted by bones, skull and body tissue. For a wearable dietary moni-
tor, sound from chewing can be recorded by a microphone or similar acoustic
transducer in the ear canal or close to it. In this way, different foods have been
classified from their acoustic profile during chewing [3, 9]. However chewing is
a time-dependent process, modified by the changing properties of the food ma-
terial in the mouth when fluids are pressed out, the food is mixed with saliva
and a bolus is formed [17]. The intrinsic chewing movement pattern is gener-
ated by a brain stem pattern generator. The movement pattern is continuously
modified by oral sensory feedback [18].

Chewing sequences start from an initial bite (shearing of a sample from
a food piece with the incisors), followed by a variable number of rhythmic
chewing cycles (compressing the sample using molars) until swallowing occurs.
Recent studies confirmed that changes occur in movement as well as muscle
activity of the masticatory apparatus within these sequences (see Section 7.1.1
for a discussion of related work). Changes in movement of the mandible were
attributed to the modification of rheology parameters (hardness, fracturability,
adhesiveness) of food [13]. Since both, movement and rheology changes during
a chewing sequence, it can be hypothesised that different acoustic stages exist
in the sequence as well. Such stages could relate to sensory changes occurring
during the sequence. Moreover, if the existence of acoustic stages could be
confirmed, sequential food classification models become feasible. Such models
can achieve a better fit to the chewing sound pattern and potentially improve
the scalability of food sound models.

In the present work we apply an automated methodology to extract sub-
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sequences of chewing sequences from ear-canal chewing sound recordings. Sub-
sequences are defined as a series of cycles in the chewing sequence with similar
acoustic properties. Since the temporal evolution of the acoustic pattern and
hence chewing sound stages are largely unknown, an unsupervised search and
optimisation strategy was deployed to analyse the sub-sequences in a chewing
sequence and select appropriate features for discriminating these structures at
the same time. The solutions are qualified for compliance to a chewing sequence
model and validated by classification on test data.

7.1.1. Related work in chewing monitoring

First insight into the sequence of chewing was obtained by kinematic and
electromyographic (EMG) studies. At the beginning of the sequence hardness
was found to control the frequency of chewing and activity of M. masseter
and M. temporalis while in middle of the sequence product rheology described
mandibular movement such as vertical amplitude [13]. Similar results were
found in earlier studies, where burst duration and mean voltage of the EMG
as well as vertical mandibular movement decreased during the sequence [15].
Chewing of materials with different rheology indicated, that changes in the
activity pattern of M. masseter occur on the chewing cycle level during a
sequence, however sequence parameters did not differ for materials of varying
rheology [5].

Based on the initial investigation by Drake [11] chewing sound has been
assessed predominately to study auditory and sensory perception of material
texture in food science [1, 19]. From observing audio waveforms it was assumed
that a normal chewing sequence could be partitioned into two phases: initial
gross cutting of the ingested material and subsequent conversion in fine grained
particles [11]. This process is understood as a gradual decomposition of the
material structure during chewing and is audible as a decline of the sound
amplitude in brittle foods [3].

The loudness of a foodstuff during chewing depends mainly on the cell
arrangement, impurities and existing cracks [1]. Naturally grown foods, e.g.
apples or lettuce, contain more liquids compared to dry products, e.g. potato
chips, that have air inclusions [12].

Most previous works that targeted classification of chewing sounds used a
small share of chewing cycles from each sequence only or analysed a sequence
as one entity. None of these works used the complete chewing sequence, conse-
quently phasing of the sequences was not investigated. De Belie et al. [9] used
the sound spectrum of the initial bite to compute principal components and
discriminate two classes of crispness in apples. More recently a classification
of five snack food products was presented, based on the auditory signal of the
initial bite and the first chew [10].

Analysing the initial bite or the chewing cycle refers to two separate inves-
tigation techniques. It was found that bite and chewing cycles differ regarding
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movement and emitted sound [6, 16]. For our purpose of finding stages in the
chewing sequence, all chewing cycles are included in this analysis, while the
initial bite is manually excluded.

7.2. Methods

This section summarises the study procedure to acquire chewing data and
presents the data analysis steps for extracting a partitioning from the chewing
sequences. After summarising the feature processing from chewing cycles, the
multi-objective search strategy is presented. Finally the procedure to identify
and test the best partitioning solution is detailed.

7.2.1. Chewing study

Four participants (male students, natural dentition, aged 20 to 30 years) with-
out known chewing or swallowing abnormality were recruited for the study.
During a pre-recording interview the lab and measurement environment was
shown to each participant for familiarisation. Two measurement sessions were
carried out on separate days, with at least one day break in between. Each
session was recorded around mid-day. Participants were asked to eat the fol-
lowing foods: Potato chips (“Chio chips Ready salted”, ∼25 pieces), meat
lasagna (∼250 g), one apple (“Jangold”, ∼100 g), 12 pieces of chocolate (“Coop
lait”, total: 40 g). The meat lasagna was a commercial deep-frozen version,
heated in an oven for 40 minutes.

All participants were familiar with the food types based on cultural origin.
None of the participants expressed a dislike for any of the foods nor problems
to chew or swallow the selected foods. Participants were sitting comfortably on
a chair close to a table carrying the food items and a glass of water. They were
asked to chew and swallow normally and allowed to move, drink and speak
during the recording sessions between the chewing sequences. The recording
duration was not constraint since the participants were eating/drinking at their
individual pace.

Chewing sound was recorded using a miniature microphone (Knowles, TM-
24546) embedded into an ear-pad. The sound signal was amplified and sampled
at 44 kHz, 16 bit. Surface EMG from left and right M. masseter was recorded
at 2 kHz, 24bit.

An observer controlled the recording procedure during each session and
annotated the chewing sequences. In a post-processing step all annotated se-
quences were reviewed, the start/end times adapted and swallowing events
marked for exclusion by inspecting the signals. Synchronisation marks in the
data (set during the recordings) were used to align audio and EMG data
streams.
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7.2.2. Chewing segmentation and feature processing

From the continuous chewing sequence recordings individual chewing cycles
were extracted using the muscle activity derived from EMG. Signals from
left and right M. masseter were bandpass filtered and combined for indepen-
dence from the chewing side. Peak muscle activity was used to estimate teeth
clench (complete occlusion, teeth in full contact) and hence the previous on-
set of the combined EMG signal determined the beginning of the current and
end of the previous chewing cycle. The first and last cycles were determined
using the sequence annotation. Only chews segmented in the bounds of the
annotation were used for further analysis.

Three feature search spaces were computed from the segmented chewing
cycle. For search space one, the complete segmented chewing cycle was used, for
search space two, only an initial part of the chewing cycle was used (EMG onset
to peak) and for search space three both previous spaces were combined. Spaces
one and two contained 65 audio features (130 for feature space three), computed
from time and frequency domain. The time domain features included: length
of the segment, extrema, fluctuation, zero crossings and the integrated signal.
The spectral features included: total and band energy, fluctuation, centroid,
bandwidth, rolloff as well as auto-correlation and cepstral coefficients.

For the subsequent investigation observations were derived by computing
the features from every chewing cycle. The total set of observations was split
into a search and testing set. The testing set (10% of all observations) was used
for result validation in the final classification.

Search step (NSGA-II) Induction step

Non-dominated
sortingDensity estimation

Evolutionary
operations

Evaluation population
(FT , K)

Hierarchical
clustering

Chewing sequence
model estimation

(α, σ2, β)

Figure 7.1. Outline of the search procedure for feature selection and chewing se-

quence partitioning.

7.2.3. Sequence partitioning using multi-objective search

Finding partitions in the temporal evolution of chewing sequences was regarded
as a search problem that required the identification of related observation sub-
sequences and the selection of discriminative features to model the partitioning.
Fig. 7.1 provides an overview on the search framework, composed of a search
and an induction step. In the search step potential features were selected. In the
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induction step, these features were used to determine clusters in the observation
data. The clustering result was validated against a chewing sequence model.

Search step

We selected the Non-dominated Sorting Genetic Algorithm, version 2 (NSGA-
II) [8] as search algorithm and feature selection wrapper. NSGA-II belongs
to the family of search heuristics based on evolutionary algorithms that can
accommodate multiple search goals. A detailed introduction to evolutionary
algorithms can be found in [7].

The algorithm keeps a diverse population of individual solutions and aims
at finding non-dominated (Pareto-optimal) solutions by applying evolutionary
operations (selection, mutation and crossover). With the diversity of individ-
uals in the population a high robustness is achieved: locked oscillations and
single solutions at local optima are avoided. Moreover, the algorithm promotes
elitism by maintaining Pareto-optimal solutions, once found, in the following
generations. The algorithm achieved a good performance when compared to
similar methods [20].

For each individual solution, a binary bit vector encodes the feature set and
expected sub-sequences (clusters) in the chewing sequences. At initialisation a
uniform distribution of the bits was used to set the vector.

The genetic search was performed with a population size of 100 individuals,
a mutation rate of 0.05 (uniform) and a crossover rate of 0.8 (single point).
An independent search was performed for each of the three feature spaces.
After 250 generations the feature selection was stopped and the Pareto-optimal
solutions were evaluated and tested as described in 7.2.4.

Induction step

As induction step for the feature selection we used a hierarchical clustering
of the chewing observations in each sequence and assessed the partitioning
result using validity parameters of a chewing sequence model. The validity
parameters were used in the search step (as search goals) and during the result
selection (as quality measure).

The expected number of sub-sequences (specified in the search step) was
used as clustering target. We analysed the range of 2 to 5 clusters.

The following chewing sequence model was defined to describe the search
problem and to develop the model validity parameters. The model was applied
for each food type individually.

A complete sequence of chewing cycles Si, (Si ∈ S) of food type T consists
of K unique sub-sequences, called phases P . S is the set of all N sequences
from T . Each phase Pi,j consists of Mi,j chewing observations described by
feature vector fi,j,n from feature space FT . The relation of the sets is described
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by Eq. 7.1.
S = {S1 . . .SN}
Si = {Pi,1 . . .Pi,K}, i = 1 . . .N
Pi,j = {fi,j,1 . . . fi,j,Mi,j

}, ∀i : j = 1 . . .K
(7.1)

Phases can neither overlap nor repeat in a single chewing sequence Si. An
observation fi,j,n belongs to exactly one phase Pi,j .

Based on this model formulation, the following model validity parameters
were defined to describe a chewing sequence: phase count α, phase size variance
σ2 and phase transitions β. The parameters were defined in order to obtain a
minimisation problem.

1. The parameter phase count α relates the number of retrieved phases K̂
and the number of expected phases K, normalised over all sequences of
S (Eq. 7.2).

α = 1−
1

N

N
∑

i=1

K̂

K
(7.2)

The value of α is minimal (zero) if K̂ = K, i.e. if the number of phases
found is equal to the number of expected phases in all sequences of S.

2. The parameter phase size variance σ2 depicts the variation in the number
of chewing observations within each phase, normalised over all expected
phases K and chewing sequences N (Eq. 7.3). Mj is the mean share of
observations in all sequences assigned to phase Pj .

σ2 =
1

K

K
∑

j=1

N
∑

i=1

(
Mi,j

Mi
−Mj)

2

N − 1
(7.3)

Mi =

K
∑

j=1

Mi,j ; Mj =
1

N

N
∑

i=1

Mi,j

Mi
(7.4)

The parameter σ2 reflects the stability of the obtained partitioning: if
σ2 = 0, the relative number of chewing observations in each phase is
constant for all phases of all chewing sequences.

3. The parameter phase transitions β is defined as ratio of existing phase
changes in each sequence and the expected number of phase changes (K−
1), normalised over all sequences in S (Eq. 7.5 and 7.6).

β =
1

N

N
∑

i=1

∣

∣

∣

∣

∑Mi−1
n=1 di,n

K − 1
− 1

∣

∣

∣

∣

(7.5)
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di,n =

{

1 : cluster(fi,n) 6= cluster(fi,n+1)
0 : otherwise

(7.6)

The parameter β measures the consistency of the phases in the sequences:
the higher β, the less correspondence exist between the obtained grouping
and the expected sequential partitioning (the more alternations exist).
If β = 0, the number of transitions matches the expectation. If β > 0
the number of transitions does not match, because more or less than the
expected transitions were obtained.

7.2.4. Result selection and testing

A selection strategy was developed to extract the best result from the solution
space. Fig. 7.2 provides an overview on the applied selection steps.

Solution spaces
(FT ,1 . . .FT ,3)

Pareto-optimal selection

Selection for chewing seq. model
(α, σ2)

Minimal parameter selection
(α, σ2, β, |FT |)

Classification
(anorm)

Figure 7.2. Outline of the selection and testing procedure.

All results from the independent search runs for each feature space were
merged into a single solution space and their Pareto-optimal individuals were
selected. Fig. 7.3 exemplarily visualises the obtained solution space for the
three model validity parameters.
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Figure 7.3. Visualisation of the solution space derived by the search procedure for

food type chocolate after merging of the feature spaces. Each point corresponds to

an individual solution. The optimal compliance with the chewing sequence model is

at α = 0, σ2 = 0 and β = 0. The plots show: (a) All axes α, σ2 and β; (b) Projection

on α-β; (c) Projection on α-σ2; (d) Projection on σ2-β.

In the following step all solutions that weakly matched the chewing se-
quence model were removed. Eq. 7.7 shows the constraints applied for α and
σ2. Individual solutions that did not comply with these bounds were removed
from the solution space. Parameter perr limits the share of sequences that do
not conform to the chewing sequence model and was set to perr = 0.2.

α ≤
perr

K
; σ2 ≤

perr

2
(7.7)

The best candidate was chosen from the remaining solutions in a final
selection step. The space was reduced by sequentially selecting the minimal
value of each parameter α, σ2, β and |FT |. Individuals with a minimal α
were chosen first, since the correct phase count is a prerequisite to achieve the
partitioning target.
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In order to verify the result, the identified solution was applied in a clas-
sification of phases in the testing observation set. Using the selected features
for the best candidate, a nearest centroid classifier was trained on the training
set using the candidate’s clustering result as class association rule. For evalu-
ating the testing result, the class associations were obtained by assuming the
phase distribution of the best candidate. In this way, the solution was tested
independently of the search procedure.

The partitioning into phases resulted in class skews (one phase contained
more observations than another phase). Training a skewed classifier was
avoided by selecting an equal number of training observations from all phases.

To compare classification results with an unequal number of test observa-
tions in each class, the normalised accuracy measure as used. For a multi-class
classification the normalised accuracy was derived as mean of the class-relative
accuracies:

anorm =
1

K

K
∑

i=1

Recognisedi

Relevanti
(7.8)

where K is number of expected phases, Recognisedi and Relevanti are the
number of correctly identified observations and the total number of observa-
tions for each phase category.

7.3. Results and discussion

7.3.1. Chewing segmentation

In total 11480 chewing cycles were extracted for the analysis from 602 anno-
tated chewing sequences. Tab. 7.1 summarises the number of chewing sequences
and cycles for each food product.

Table 7.1. Summary of the segmentation results.

Food type Chewing sequences Chewing cycles

Apple 102 2447

Potato chips 227 3015

Chocolate 90 1913

Lasagna 183 4105

Total 602 11480

7.3.2. Food-specific analysis

The partitioning was analysed for every food type, including the observations
from all four study participants. The solution space spanned by the model
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validity parameters is visualised in Fig. 7.3 for the food type chocolate.
The solution space diagram shows the distribution of the individuals around

the optimal solution of the minimisation problem (α = 0, σ2 = 0 and β = 0).
While the optimal solution was not achieved in the search, good solutions were
found, using the result selection procedure.

The result selection from a solution space is considered to be a critical step
for multi-objective approaches [14]. The procedure applied in this work aimed
at evaluating the search goals individually, instead of combining the goals in a
single weighting function. This strategy was reasonable due to the exploratory
analysis approach.

In the food-specific evaluation a two-phase structure was obtained for all
foods. Fig. 7.4 shows the average distribution of the phases (occurrence ratios)
in the chewing sequences for the individual foods. The occurrence ratios indi-
cate the relative share and position of each phase in the chewing sequences. For
all food types a short first phase (30-40% of the sequence length) was found,
followed by a second longer phase. For potato chips the longest initial phase
was obtained, when compared to the other foods.

Phase occurrence ratio
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Lasagne

Chocolate

Potato chips

Apple

Figure 7.4. Average distribution of phases in the chewing sequences for all four

foods obtained in the food-specific analysis. The plots indicate the location of the

phases, but do not show insertions inside individual phases. For food types potato

chips and chocolate the partitioning was confirmed by the testing procedure.

This finding confirms the assumption of an initial chewing phase that differs
from the remaining sequence made by observing sound amplitude vs. time
plots [11]. Tab. 7.2 summarises the phase ratios and quality of the solutions
obtained. Both, search and testing performances of the selected candidates are
indicated by the model validity parameters of the chewing sequence model.

A good quality, according to the parameters α and σ2 was found for all four
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Table 7.2. Results of the food-specific sequence partitioning analysis.

Search parameter Apple Potato Choco- Lasa-
chips late gna

Expected phases (K) 2 2 2 2

Nr of features (|FT |) 16 24 22 20

Feature space 2 2 2 2

Sequence model
parameter Candidates after search

Phase count (α) 0.04 0.00 0.00 0.07
P. size variance (σ2) 0.07 0.02 0.04 0.09
Phase transitions (β) 3.45 1.35 4.60 5.55

Testing data

Phase count (α) 0.07 0.02 0.00 0.08
P. size variance (σ2) 0.09 0.05 0.03 0.09
Phase transitions (β) 2.86 1.07 4.80 5.63

food types. However, the high number of phase transitions (indicated by β)
suggest that the phases had several insertions. This effect was very strong for
the food type lasagna. The overall best quality for all parameters was achieved
for potato chips.

The effect of applying the candidate solutions on testing data was very low
on the model parameters: the values for all three model parameters remained
in the same range. For all foods 16 to 24 features were selected from feature
space two.

Whether the sequence structure of the candidates can be verified, was as-
sessed by the classification performance on test data. Fig. 7.5 shows the clas-
sification result for all four foods, when applying the properties of the selected
solution on the testing set. A normalised accuracy of anorm = 0.5 would in-
dicate a random classification. Therefore only the range anorm = 0.5 . . .1.0 is
shown.

The classification confirms the partitioning for potato chips and chocolate:
a normalised accuracy of approx. 80% was achieved, indicating that the two-
phase assumption holds, even on the testing data.

For apple and lasagna a low accuracy was obtained, indicating that the
foods cannot be classified with the two-phase search solution. Since phase
counts larger than two were rejected during the search stage already, we con-
cluded, that the foods do not exhibit a sub-sequence structure at all.
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Figure 7.5. Classification result for all four foods when applying the search solution

on the testing set. (A normalised accuracy of anorm = 0.5 would indicate a random

classification. Therefore the plot shows the range anorm = 0.5 . . . 1.0 only. )

7.3.3. Participant-specific analysis

The search and solution selection was performed for each participant individu-
ally to analyse the person-related structure of the chewing sequences. Tab. 7.3
summarises the results for all four foods and participants A–D. Except for food
type apple from participant A, two-phase solutions were found for all combi-
nations of food and participant using the selection procedure. For apple from
participant A none of the solutions matched the required criteria.

The classification accuracy anorm achieved during testing gives an indi-
cation whether the two-phase result can be generalised on the testing data.
Except for chocolate, the result of the food-specific analysis were confirmed:
For potato chips a two-phased partitioning was obtained with good classifica-
tion rates (0.79 . . .0.92) for all participants. For apple and lasagna the rates are
generally lower. While the performance for apple was above random (∼ 0.6),
the two-phase partitioning for lasagna often performed less well.

For chocolate participants A and C achieved a classification performance
of 0.81 and 0.75 respectively. However, no phase structure was found for the
remaining two participants and chocolate. In order to analyse this effect in
more detail, the study should be extended by additional participants.

7.3.4. Result discussion

The phase distribution and selected features of the participant-specific analysis
showed a higher variability when compared to the food-specific analysis. It was
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assumed that this is a result of the lower number of test observations and hence
less averaging effect in the participant-specific analysis.

In contrast to the food-specific analysis, applying the search solution on
the testing data in the participant-specific analysis had a strong effect on the
model validity parameters. For apple and lasagna this indicated the absence of
sub-sequences, for the other food types this result was not expected. Although
an overall large set of observations was available, the splitting into search and
test set (test set size was 10% of all observations) may have led to a reduction
of the result stability. Even to confirm the results of the food-specific analysis,
a test with different observations should be performed. However, these result
confirms the benefit of the applied testing procedure.

The modelling of phases in chewing sequences for an exploratory search is a
challenging task. While the developed optimisation goals (phase count, phase
size variance and phase transitions) proved to be vital parameters for a valid
partition, some limitations of the automatic phase extraction approach remain
to be solved.

Regarding the search procedure, the indirect control by rating the solu-
tions after the clustering step, produced invalid solutions, that could have
been avoided. To this end clustering should consider the sequence of the obser-
vations. However, to achieve this, a highly domain specific grouping algorithm
would be needed.

From the phase transitions result (parameter β), large values were found
for both food- and participant-specific investigations. While the parameter cor-
rectly indicates a partitioning that does not correspond to the analysed number
on phases, it is sensitive to insertions. Single assignments of observations to a
different phase, which is non-critical for the overall integrity of the partitioning
and could be ignored, was not distinguishable from an completely invalid par-
titioning. This aspect influenced the selection of optimal solutions and could
mislead conclusions. Again with the help of our selection and testing proce-
dure this issue was minimised, since β was used as the last of all three model
parameters and all results were verified by the classification test.

7.4. Conclusion

We presented an automatic method to extract partitions from chewing se-
quences, that follow a sequential order and can be identified using sound fea-
tures. Our approach relied on a search and selection procedure, followed by a
verification on test data. The search was performed using a NSGA-II wrapper
for selecting appropriate features and expected sub-sequences in combination
with an induction step. The induction was composed of hierarchical clustering
of the chewing observations and analysing the search quality with respect to a
chewing sequence model.
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Three parameters were derived that describe a chewing sequence model.
The parameters were used for the qualification of the search results and the
final selection of the valid solutions. In the present work the model parameters
phase count, phase size variance and phase transitions were used.

The sequence structure of four food types was analysed in recordings from
four participants, regarding food-specific and participant-specific behaviour. A
two-phase structure was found from the food- and participant-specific analysis
of the food types potato chips and chocolate. The search results were verified
in a classification test, by assuming the retrieved features and the partition
structure in a food sequence model. A classification accuracy of approx. 80%
was achieved for both foods. A person-dependency was found for chocolate,
where no valid phasing was obtained for two of the participants, while for
the remaining tow a good classification was possible. We assumed that this
variability was caused by the small and fixed test observation set, since the
food-specific analysis of all participants returned a classification performance
of 78%.

Overall, the food- and participant-specific evaluations returned at maxi-
mum two phases for all foods. A common distribution of the phases was found
in the food-specific analysis. For all food types, a short first phase (30-40% of
the sequence length) was derived, followed by a second longer phase. For the
participant-specific analysis different distributions were obtained depending on
both, food and person.

Out of the three model validity parameters described above, the most im-
portant goal was phase count, since the number of actually retrieved phases
was vital for the application of the sequence model. Solutions that had large
values for this goal (α ≥ 0.2), typically did not perform well. A selection proce-
dure was designed that reflected this observation, by sequentially limiting the
share of sequences that did not conform to the chewing sequence model.

The parameter phase transitions was found to be most difficult to minimise,
since the phases contained insertions in many sequences of the foods. The
insertions were attributed to the natural variability in the data that could not
be captured by the clustering algorithm. In the current work, the impact of
this issue was minimised by the selection and testing procedure. For further
investigations alternate solutions to obtain a requested number of transitions
should be evaluated.

The frequent selection of feature space two in the food-specific analysis
indicated that the chewing cycles were not stationary and hence supportive
information was extracted from the intra-chew signal variation (as captured
by the feature space) when compared to the entire chew (feature space one).

For the food types apple and lasagna no stable partitioning was found,
indicating that both foods have a non-sequential sound pattern that alterna-
tively could be described by a single phase for each sequence. Following these
findings, it can be hypothesised that out of the different foods analysed, only
dry and rigid foods have a clear sequential structure. Consequently, foods that
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are soft, e.g. lasagna or based on a fibre-structure as apple do not change their
sound pattern in an ordered sequence.

We consider the classification rates for potato chips and chocolate as a
comparably good result in relation previous investigations of food sound clas-
sification. For bite and first chew classifications from five snack foods up to 18%
classification error were reported [10]. In our previous work on classifying foods
from chewing recordings, rates between 66% and 86% were achieved, depend-
ing on the food type [3]. For an application in automatic dietary monitoring
the result of the current work will support the development of food-adapted
classifiers. For the above food types an independent model of the two phases
could be helpful to boost the system performance, while for other (single-phase)
foods one model is sufficient.
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[4] O. Amft and G. Tröster. Methods for detection and classification of normal swallow-
ing from muscle activation and sound. In E. Aarts, R. Kohno, P. Lukowicz, and J. C.
Trainini, ed., PHC 2006: Proceedings of the First International Conference on Per-
vasive Computing Technologies for Healthcare, pp. 1–10. ICST, IEEE digital library,
November 2006. doi:10.1109/pcthealth.2006.361624.

[5] I. Ashida, H. Iwamori, S.-Y. Kawakami, Y. Miyaoka, and A. Murayama. Analysis of
physiological parameters of masseter muscle activity during chewing of agars in healthy
young males. J Tex Stud, 38(1):87–99, February 2007. doi:10.1111/j.1745-4603.2007.
00087.x.

[6] C. Dacremont, B. Colas, and F. Sauvageot. Contribution of air- and bone-conduction
to the creation of sounds perceived during sensory evaluation of foods. J Tex Stud, 22
(4):443–456, January 1991. doi:10.1111/j.1745-4603.1991.tb00503.x.

[7] S. De, A. Ghosh, and S. K. Pal. Genetic Algorithms for Pattern Recognition, chapter 1,
pp. 1–23. CRC Press, Boca Raton, FL, USA, 1996. ISBN 0849394678.

[8] K. Deb, S. Agrawal, A. Pratab, and T. Meyarivan. A fast elitist non-dominated sorting
genetic algorithm for multi-objective optimization: NSGA-II. In M. Schoenauer, K. Deb,
G. Rudolph, X. Yao, E. Lutton, J. J. Merelo, and H.-P. Schwefel, ed., Proceedings of
the Conference on Parallel Problem Solving from Nature VI, number 1917 in Lecture
Notes in Computer Science, pp. 849–858, Paris, France, 2000.

[9] N. DeBelie, V. De Smedt, and D. B. J. Principal component analysis of chewing sounds
to detect differences in apple crispness. Postharvest Biol Technol, 18:109–119, 2000.

[10] N. DeBelie, M. Sivertsvik, and J. DeBaerdemaeker. Differences in chewing sounds of
dry-crisp snacks by multivariate data analysis. J Sound Vib, 266(3):625–643, September
2003.

[11] B. Drake. Food crushing sounds. an introductory study. J Food Sci, 28(2):233–241,
March 1963. doi:10.1111/j.1365-2621.1963.tb00190.x.

[12] J. Edmister and Z. Vickers. Instrumental acoustical measures of crispness in foods. J
Tex Stud, 16(2):153–167, 1985.



152 BIBLIOGRAPHY

[13] K. D. Foster, A. Woda, and M. A. Peyron. Effect of texture of plastic and elastic model
foods on the parameters of mastication. J Neurophysiol, 95(6):3469–3479, Jun 2006.
doi:10.1152/jn.01003.2005.

[14] A. A. Freitas. A critical review of multi-objective optimization in data mining: a position
paper. SIGKDD Explor Newsl, 6(2):77–86, 2004. ISSN 1931-0145. doi:10.1145/1046456.
1046467.

[15] K. Kohyama and L. Mioche. Chewing behavior observed at different stages of mas-
tication for six foods studied by electromyography and jaw kinematics in young and
elderly subjects. J Tex Stud, 35(4):395–416, October 2004. doi:10.1111/j.1745-4603.
2004.tb00603.x.

[16] C. Lassauzay, M. A. Peyron, E. Albuisson, E. Dransfield, and A. Woda. Variability of
the masticatory process during chewing of elastic model foods. Eur J Oral Sci, 108(6):
484–492, Dec 2000. doi:10.1034/j.1600-0722.2000.00866.x.

[17] P. J. Lillford. The materials science of eating and food breakdown. MRS Bulletin, 25
(12):38–43, December 2000.

[18] J. P. Lund and A. Kolta. Generation of the central masticatory pattern and its
modification by sensory feedback. Dysphagia, 21(3):167–174, Jul 2006. doi:10.1007/
s00455-006-9027-6.

[19] Z. Vickers. Relationships of chewing sounds to judgements of crispness crunchiness and
hardness. J Food Sci, 47(1):121–124, 1981. doi:10.1111/j.1365-2621.1982.tb11041.x.

[20] E. Zitzler, M. Laumanns, and L. Thiele. SPEA2: Improving the strength pareto evo-
lutionary algorithm. Technical Report 103, ETH Zürich, Gloriastrasse 35, CH-8092
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Abstract

Manual recording of eating behaviour, food amount in particular, is a cumber-
some burden for individuals following a diet management program. This work
investigates the estimation of bite weight from chewing microstructure based
on techniques developed for Automatic Dietary Monitoring.

Chewing activity was acoustically recorded at the ear. A recognition procedure
was developed for detecting chewing cycles in continuous sound data and iden-
tifying food type. Based on the recognition result, timing and structure variables
of the chewing process were extracted to predict bite weight.

Bite weight estimation was investigated in 50 variables from habitual food in-
take of eight healthy individuals. The recognised food type was used to select
the bite weight prediction model. Three foods of similar acoustic properties
but different material structures were investigated: potato chips, lettuce, and
apples.

Food-specific multivariate linear models were deployed to predict bite weight.
Mean prediction error was lowest for apples (19.4%) and largest for let-
tuce (31%). The bite weights estimated from chewing sound were compared
to an estimation based on Electromyography. We conclude that bite weight
estimation using acoustic chewing recordings is a feasible approach for solid
foods.
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8.1. Introduction

The goal of Automatic Dietary Monitoring (ADM) is to simplify reporting of
eating behaviour for personalised weight and diet coaching programs, and many
further applications that require dietary supervision, such as obese patients
under clinical observation. Such eating behaviour information includes meal
schedule and consumed food type of each meal for monitoring durations of
several days to years, as for long-term diet coaching [32].

Currently, information on eating behaviour is acquired through self-reports,
that are not feasible to maintain for longer time periods than one week [34].
Besides meal schedule and food type the respondent is typically asked to pro-
vide the amount of food consumed. While food weight provides important data
on the balance of nutrient composition and portion size, weighting every food
item adds a substantial burden for the individual to follow a normal lifestyle.
This continuous manual effort is detrimental for reporting compliance [24].
Misreporting of intake amount results in an estimation bias that depends on
various social and personal aspects [16, 31]. Typically, the reporting becomes
inaccurate after a short time and weighting may be omitted completely, even
because of an adapted perception of desirable intake patterns [16, 29].

The ADM approach assists an individual in dietary monitoring by ex-
tracting and fusing information from on-body sensors that monitor different
diet-related activities. These activities include upper body and arm movement
during intake [17], chewing [1] and swallowing [2]. In chewing, a particularly
vital source of information is the chewing microstructure for each bite taken.
That is the sequence of chewing cycles (closing and re-opening movement of
the jaw) used to decompose a food piece from ingestion into the mouth until
swallowing [35]. Our previous investigations have shown that bone-conducted
food breakdown sounds can be recorded by a miniature microphone at the
ear canal [1]. Moreover, food category and individual chewing cycles could be
recognised from acoustic pattern models. These acoustic patterns correspond
to food texture properties [3].

The goal of this work was to analyse the potential for estimating food weight
in individual bites. In particular, our focus was to predict bite weight under
unconstrained food size selection and freestyle chewing. For this purpose an
acoustic recognition of chewing cycles was used to derive structural and timing
variables of the chewing microstructure. These variables included the number
of chews to consume a food piece, duration of chews, chewing speed, and total
chewing time. Bite weight estimation from the sound-based recognition was
compared to a second chewing cycle recognition approach using muscle activity
recorded from surface Electromyography (EMG). In total 50 microstructure
variables were analysed from three foods and eight healthy individuals.

Moreover, to demonstrate the applicability of the sound-based bite weight
estimation for ADM, we present the recognition approach to identify and cate-
gorise chewing cycles and food type in continuous sound data. The recognised
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food type was subsequently used to select a bite weight prediction model. Per-
formance of this recognition architecture was quantitatively analysed using
cross-validation and compared to sound-energy and EMG detections.

8.1.1. Chewing microstructure

Human chewing adapts to food type according to the individual’s physiology
and capabilities as well as taste [25] Food ingested to the mouth excites different
oral receptors that convey sensory information on the material properties to the
brain stem. Most important stimuli are food texture related, such as crispness
and hardness, size and shape related as well as flavour related [22, 35].

The continuous adaptation to these stimuli target an efficient food break-
down and creating a food bolus, feasible for swallowing [37]. However, intra-
individually, this process is fairly constant. Using controlled settings and food
stimuli, no significant differences were found in several repetitions, analysing
mandibular movement parameters, muscle activity and chewing microstruc-
ture [7, 20]. This stability is the key aspect to derive personalised bite weight
estimation models in this work.

Some variables of the chewing microstructure were reported to alter in re-
sponse to variations of the bite size for constant food [35]. The most consistent
reports exist for variables measuring the number of chewing cycles and chew-
ing sequence duration from ingestion to swallowing. Both variables increased
with bite size for artificial food [8] and three natural foods using constrained
sizes [13]. Moreover the movement trajectory of single chewing cycles change
with bite size [27, 30]. A prominent effect is an increase in vertical jaw ampli-
tude and inter-arch distance with increasing bite size during the first chewing
cycles [9, 27]. The reported relations were mostly tied to correlation and linear
regression analyses with bolus dimensions.

The estimation of bite weight from the chewing microstructure remains
broadly unexplored. Neither are reports available that analyse the relevance of
larger microstructure variable sets. To this end it is unclear whether changes
within chewing sequences occur that relate to bite weight. Most investigations
assessed the chewing microstructure to analyse masticatory performance using
standardised food items [15, 27]. Weight estimation was neither investigated
for fixed induced bite sizes nor in the habitual freestyle settings. Consequently,
it is not clear how consistently habitual bite weight of different natural foods
is reflected in the chewing behaviour.

8.1.2. Food selection

Food texture provides vital features for an intra-individual food discrimination
using chewing sounds [3, 10]. This relation to texture and material structure
was investigated in a detection of chewing cycles based on texture groups [3].
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Texture groups can be defined in various forms, since they relate to the
food perception and jargon of human panelists [14]. For the purpose of this
paper, we refer to two texture groups and utilise three different foods: (1) wet
structures from naturally grown foods, such as apple and lettuce, and (2) dry
foods, such as potato chips.

Although these foods are different in composition, our previous investi-
gations have shown that bone-conducted breakdown sounds of crisp textures
with wet and dry structures are often confused during detection. Nevertheless,
a robust categorisation of the food type is needed in our approach to select
the bite weight estimation model. Consequently, the recognition procedure was
optimised to discriminate these foods from their acoustical pattern.

Hence, the foods selected in this work serve two purposes. Firstly it allowed
to evaluate the discrimination of two similar sound emission groups (dry and
wet structures). Secondly, we studied the habitual bite size selection and the
bite weight prediction in different weight ranges. Regarding the second goal,
the foods were chosen to cue different weight selections: from very low weight
potato chips to apples that are typically consumed in mouthful bites.

8.2. Experimental procedure

8.2.1. Study protocol

Eight volunteer students (two female, six male) aged between 20 to 35 years
were recruited from different ETH departments through advertisements. All
participants had natural dentition and no known history of chewing or swallow-
ing abnormalities. Further exclusion criteria were known disorders or audible
sounds of the temporomandibular joints as well as known food allergies. A pre-
recording interview was conducted with each participant in the measurement
room for familiarisation. The recording procedure was explained, however the
specific goal of this investigation was not mentioned. Participants were invited
for a individual recording session around mid-day.

Participants were asked to eat the following foods: potato chips (Chio chips
“Ready salted”, ∼25 pieces, 20 g), mixed lettuce (containing endive, sugar
loaf, frisée, raddichio, chicory, arugula, ∼55 grams) and one apple (“Jangold”,
∼110 g). The food amounts indicate approximate values, participants were al-
lowed to eat the foods, chew and swallow in their habitual style. From the
potato chips a few chips were taken for each bite with the hand, lettuce was
consumed using fork and knife and apples were eaten by taking bites from the
entire skinned fruit. The fruit core was not consumed.

All participants were familiar with the food types. None of the participants
expressed a dislike or problems to chew or swallow the selected foods. Par-
ticipants were allowed to move, drink water and speak during the recording
sessions. The recording duration was not constraint since the participants were
eating/drinking at their individual pace. Informed consent was obtained from
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each participant. The study protocol was reviewed and approved by the ETH
ethics committee.

8.2.2. Data recording

Chewing sound was recorded using a miniature microphone (Knowles, TM-
24546) embedded in an ear-pad device. The occlusion of the pad was kept low,
so that participants could still hear room-level conversation at the applied side.
The room was controlled for a constant noise level of an office environment.
The sound signal was amplified and sampled at 44 kHz, 16 bit. Surface EMG
was recorded bilaterally from Ms. masseter at 2 kHz, 24 bit and bandpass fil-
tered. The plate weight was recorded at ∼1Hz with a resolution of 0.1 grams
using a weight scale build into the table. The scale performed an automatic
measurement stabilisation.

An observer controlled the recording procedure during each session and
annotated the chewing sequences and swallowing events. In a post-recording
step all annotated sequences were reviewed, the start/end times adapted and
swallowing events marked for exclusion by inspecting the signal waveforms.

Figure 8.1 shows a sample plot of sound and EMG data for one chewing
sequence. Individual chewing cycles are visible as change in signal amplitude of
audio and EMG. The mandible closing phase of each cycle is marked as shaded
area. The entire chewing sequence corresponds to the intake of one piece of
apple from ingestion into the mouth until final swallow. While intermediate
swallowing may occur none was observed in the depicted example.

8.2.3. Chewing annotation

To derive food pattern models, the annotation (location in the recorded data
and food type) of chewing cycles was needed. A manual annotation of chewing
cycles (mandible closing phase) was performed in a post-recording step by
reviewing the sound and EMG waveforms and listening to the chewing sounds.
To differentiate the phase annotation from the complete chewing cycle, we
denote the annotated phase as chewing event where necessary.

The chewing event annotation was performed by one observer, in order
to keep the annotation as consistent as possible. The method is accurate in
identifying every chewing cycle until the food bolus is swallowed, however it
is expensive and time-consuming for large chewing data sets. To alleviate this
effort, a share of all chewing sequences were annotated, in total approx. 300–
400 chewing events for each subject. The remaining chewing sequences were
marked as continuous sections where chews may potentially exist. Intermediate
swallows were excluded in both cases. The recognition procedure was adapted
to this annotation method, as detailed in Section 8.5.1. In total 7301 chewing
cycles were identified and annotated in 473 chewing sequences. Including the
continuously marked sections, a total of 504 chewing sequences were recorded.
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The total length of the data set was 8.64 h, the average length per participant
was 64.83min (SD 14.6min).

8.3. Recognition of chewing

Figure 8.2 illustrates the complete evaluation procedure to detect chewing
events, identify food type and predict bite weight. In order to recognise chewing
events a feature similarity search (FSS) was applied for each food and subject.
The food type was subsequently classified for each detected chewing event and
a chewing sequence voting was applied to determine the food type of each
sequence. Finally, by comparison of all concurrently detected events, those
with the highest model confidence were retained in a final fusion step (COMP).
Below, the recognition procedure is presented in detail. The remaining steps
to estimate bite weight are discussed in Section 8.4.

8.3.1. Feature similarity search

FSS is an online event-oriented pattern detection algorithm, based on a
variable-length feature pattern search. The method is a generalisation of the
classic sliding-window algorithm and has been discussed in previous works,
e.g. [3]. It was adapted here for detection chewing events of a specific food in
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Figure 8.2. Analysis procedure to recognise chewing events and estimate bite

weight. The steps related to Recognition of chewing were used to detect chewing

events and identify the food type (see Section 8.3 for details). The steps related to

Bite weight estimation were used to extract the microstructure variables and estimate

bite weight (see Section 8.4 for details).

sound data. This sound data may as well contain other arbitrary noises that
embed the chewing events (NULL class).

A chewing structure model was used to capture the relation of chewing
sequences S of one food type and chewing events (Figure 8.1 illustrates the
concept). The chewing sequence of one food Si, (Si ∈ S) consists of Mi chewing

events c
(i)
j :

Si = {c
(i)
1 . . . c

(i)
Mi
} (8.1)

Viewed as event, c
(i)
j has unique temporal parameters: time of occurrence

ti,j and duration li,j . The set F+ of feature vectors f was used to describe the

chewing event, with: c
(i)
j → f(ti,j , li,j). The sound data that embeds the event

is referenced as feature set F− (NULL class).
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A normalised Euclidean distance function d was used to evaluate feature
vector f(t, l) at every position t and potential duration l. The result is a distance
D(t), indicating the similarity of f(t, l) to training features derived from F+. A
training set XTrain from F+ and F− was used for every food to obtain training
features and search bounds for l:

XTrain = {F+
Train,F−

Train},

with F+
Train ⊂ F

+ ,F−
Train ⊂ F

−
(8.2)

A distance threshold DThres was derived during training by evaluating the
detection sensitivity on XTrain. The pattern models used in this work were
optimised for a high sensitivity, to retrieve at least 90% of the training set
events. By applying function d and threshold DThres on test data, an estima-
tion of chewing events, ĉFSS was obtained. The threshold was used further to
normalise distances and derive a confidence for each event C(ĉFSS) [3].

Using a fixed-time segmentation, the time between each evaluation of d
was set to ∆t = 1/8 sec. While this choice limits the temporal resolution of
retrieved chewing events it reduces processing requirements, compared to an
evaluation for every sampled data point. The resolution was acceptable for the
bite weight estimation, since temporal information below ∆t was not expected.
Similarly, parameter l was limited to multiples of ∆t.

Cross-validation in continuous data

To account for a natural dataset variability a ten-fold cross-validation was per-
formed to select training and validation set for FSS and all subsequent recog-
nition steps. The dataset was partitioned into ten sections, while avoiding an
intersection with a chewing sequence. For each iteration of the cross-validation,
nine data sections were used for training and one for validation. Hence, each
section was used once for validation.

Feature selection

A set of 264 features was selected based on chewing sound data of an earlier
study [3]. The set consisted of (1) log-band spectral energy, cepstral coefficients,
linear predictive coefficients (10 features each), and (2) skewness, kurtosis, and
tristimulus, in total: 33 features. Laws to compute these audio features are de-
tailed in [26]. All features mean and variance were computed for the annotated
chewing event and three evenly-divided slices of each event using a sliding
window of 512 samples without overlap.

To select an adapted feature subset we deployed a feature relevance and
independence filtering. While this procedure was not confirmed to be partic-
ulary optimal among selection methds, it could be adapted to the FSS data
description problem. For FSS, two classes (correct events and embedding data)
have a large skew, consequently the selection should not consider a class prior.
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In a first step, relevance of a feature fn ∈ f was determined. A weight w was
computed from the feature distribution in correct events F+ and embedding
data F−, (1 ≤ n ≤ |f|):

w(fn) =
∣

∣P (f+
n ∈ F

+
Train)− P (f−n ∈ F

−
Train)

∣

∣ (8.3)

The feature distribution was computed using a histogram with a bin size
N (1/3), where N is the number of training feature vectors in XTrain.

The second step refines the feature relevance ranking by using an indica-
tion for the independence between features [36]. This step aims to select a
relevant feature subset while minimising redundancy. Independence I was de-
termined from correct events (F+

Train) using Spearman’s correlation coefficient
ρ [21] (1 ≤ m ≤ |f|, m 6= n):

ρ(fn, fm) = 1− 6
∑

N

(fn, fm)2

N(N2 − 1)
, (8.4)

I(fn, fm) =
√

1− ρ(fn, fm)2 , fn, fm ∈ F
+
Train . (8.5)

We used an iterative scheme to select features based on [36]. Starting with
the highest relevance-weighted feature, in each iteration i one feature was se-
lected that obtains the highest combined weight wC , when evaluated against
previously selected features fm1, . . . fmi:

wC(fn) = w(fn)× I
(

fn, {fm1, . . . fmi}
)

, 1 < i ≤ iMax. (8.6)

The procedure was terminated when a maximum number of features, spec-
ified by iMax, had been selected. For this work 20 features were used.

8.3.2. Food classification and sequence voting

The FSS detection of individual foods of similar texture leads to confusions
between the foods. Typically, lettuce chewing events are confused with potato
chips and vice versa. This prohibits the direct inference of food type from
the detection result. Consequently, we applied an additional food classification
step using the detected chewing events. The food type was determined from a
majority vote of all classified events in a chewing sequence. This approach is
reasonable, since the food type does not change within one chewing sequence.
Moreover, the weight estimation approach required the food type information
for each chewing sequence only.

A nearest centroid classifier was trained based on a Fisher’s linear discrimi-
nant feature transformation [11]. The dataset cross-validation and the features
from the detection were reused for this classification.
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8.3.3. Chewing event fusion

Temporal event overlaps, as a result of independent FSS instances for each
food, were merged using a event comparison fusion (COMP). This method
filters the combined event detection results and retains those events from all
temporal overlaps, that have the highest confidence C(ĉFSS). COMP fusion
was introduced for continuous recognition in [3].

8.4. Bite weight estimation

8.4.1. Microstructure variable extraction and relevance analysis

A set of 50 variables was extracted from the recognised microstructure of each
chewing sequence. Eight basic variables were defined, as summarised in Ta-
ble 8.1. This basic set was applied to each entire chewing sequence, three
evenly-partitioned sections as well as the first five and the first three chew-
ing events only. Additionally, from the first chewing event two variables were
obtained: event duration (l(i, 1)) and mean signal energy. We computed vari-
ables for sections within chewing sequences to investigate the microstructure
precisely and evaluate whether recognition or estimation could be simplified
by using a few chewing events only.

The correlation of each variable vn with bite weight W was analysed using
Spearman’s correlation coefficient ρ, corresponding to Eq. 8.4. The correla-
tion result of the variables was summarised in a measure of variable relevance
wV (vn) for all subjects:

wV (vn) =
∑

Subjects

∣

∣ ρ(vn, W )
∣

∣ . (8.7)

8.4.2. Food-dependent bite weight estimation

The food classification result was used in this step to select a bite weight
estimation model. We deployed a multiple linear regression approach of the
form:

Ŵi = a0 +

n
∑

j=1

ajxij , (8.8)

for the bite weight prediction. The microstructure variables are represented
by x1 . . . xn, n is the total number of variables included in the estimation
model. The result Ŵi denotes estimated bite weight for chewing sequence Si.
The coefficients a0, a1, . . . an were found by a least-squares fit.

Two evaluation methods were investigated, (1) a stepwise regression fit
to select informative variables, and (2) a leave-one-out weight prediction to
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Table 8.1. Basic microstructure variable set. This set was computed for each chew-

ing sequence Si (see Eq. 8.1) and sections within Si (see Sec. 8.4). Iterator j is used

to denote all chewing events within Si.

Pos Description Law for sequence Si

(∀i : 1 ≤ j ≤ M̂i)

1 Nr of chewing events M̂i

2 Total chewing duration
∑

j l(i, j)

3 Mean event duration
∑

j l(i, j)/M̂i

4 Variance of event dura-
tion

∑

j (l(i, j)− l̄i)
2/M̂i

5 Slope of event duration argmin
x

∑

j (l(i, j)− jx)

6 Chewing speed M̂i/
∑

j l(i, j)

7 Trend in chewing speed argmin
x

∑

j (1/l(i, j)− jx)

8 Mean signal energy ēi

∑

j e(c(i, j))

analyse the model prediction error. For both evaluations variable subsets were
preselected based on the variable correlation analysis (Section 8.4.1 above).

8.5. Results

8.5.1. Recognition of chewing

The chewing event detection performance was analysed using the metrics Pre-
cision and Recall, see [17] for a detailed description. To account a chewing event
as recognised a soft-alignment procedure was applied, that allows a jitter be-
tween the detected section bounds and annotation [3]. In this work, detections
with a jitter of < 50% with respect to annotation were accepted as recognised.

All individually annotated chewing events were considered as ground truth.
In the detection performance analysis, events were not considered when they
were reported within continuously marked chewing sequences (according to
Section 8.2.3).

The FSS detection, food classification and COMP fusion steps were eval-
uated on testing data using the cross-validation procedure detailed in Sec-
tion 8.3. The detection performance was compared to a trivial sound energy
detection. For this purpose, the FSS algorithm was fed with a energy fea-
ture only. Figure 8.3 shows the food-specific precision-recall performance for
all participants, at different steps of the recognition procedure as well as the
sound energy detection. The performance was evaluated by applying confidence
thresholds on the set of retrieved chewing events. Best performance is found
towards high precision and recall. The EMG detection result in Figure 8.3 is
further discussed in Section 8.5.2.
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Figure 8.3. Food-specific validation performance of major recognition steps (con-

fidence threshold sweeps): FSS detection, food classification, and COMP fusion in

comparison to a sound energy threshold applied on the sound data. EMG detection

shows the performance of an EMG threshold detection w.r.t. to annotation, as de-

scribed in Sec. 8.5.2. Best performance is found towards the top-right corner (high

precision, high recall). (a): Potato chips, (b): Lettuce, (c): Apple.

The results show good recognition performance was achieved, despite the
very similar sound patterns of the selected foods. In particular the additional
classification helped to refine the detection result. For all foods, a recall larger
than 80% was achieved for the COMP fusion, demonstrating that chewing
events can be spotted and classified from sound data. The precision was larger
than 60% for all foods.

Starting from the FSS detection an increase in precision is obtained in
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particular for the COMP fusion step. The performance result obtained with
this approach is noticeable, since recall was only minimally depressed by the
additional steps (<10% for apple and <20% for lettuce and potato chips).

As expected, the energy threshold cannot achieve a high recall and incurs
many insertion errors (precision <10% in this evaluation). This weak general-
isation performance was attributed to arbitrary noise in the dataset and the
natural variability in chewing sound energy.

Figure 8.4 visualises the food classification and majority voting accuracy
for chewing sequences. The normalised accuracy was used and any class skew
was removed from the training set. The results show a very good discrimination
of the foods in each sequence with an average accuracy above 90%.
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1

Figure 8.4. Normalised accuracy of chewing event classification and chewing se-

quence majority voting. Min-Max values shows participant-specific result variation.

8.5.2. Bite weight estimation

Figure 8.5 visualises the cumulative intake curves for all foods and participants.
The smallest bite weights were recorded for potato chips, the largest for apples.
The largest participant-specific weight variances were observed for apples.

Figure 8.3 shows the performance of sound-based recognition besides an
EMG-based chewing detection. The EMG detection was obtained from the
M. masseter activity, according to methods described in chewing movement
investigations [5, 15]. This detection is performed by applying a threshold
on the rectified and averaged EMG signal in regions annotated as chewing
sequence. The threshold was set to the signal level before chewing onset plus
1 SD.

Precision of the EMG detection was less than 10% better than the fi-
nal sound-based precognition performance, except for lettuce. Conversely, the
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sound-based precognition method achieved at least 10% higher recall. These
results indicate a similar performance of both. The weaker sound-based result
for lettuce was attributed to persisting confusions of the sound-based precog-
nition.
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Figure 8.5. Cumulative intake curves for all foods in this study. Min-Max values

show participant bite weight variation.

Variable relevance analysis

Correlations of the microstructure variables with the bite weight were analysed
to determine variables that were commonly relevant in the chewing behaviour
of all participants. Relevance was derived using Eq. 8.7.

Figure 8.6 shows the resulting relevance map. Highest variable relevance
wV ≥ 0.6, hence good individual correlations, were observed for the number
of chewing events and chewing duration except for potato chips. For apple the
highest participant-specific correlations were observed (up to 0.96) and overall
relevance of chewing event count and chewing duration were highest (wV ≥
0.7). None of the further variables was consistently relevant for more than one
food and participant.

A good agreement was observed between the correlations for sound-based
recognition and EMG detection. EMG correlations were higher for apple in
sections First 5 and First 3.
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Figure 8.6. Microstructure variable relevance derived using Eq. 8.7 for sound-based

recognition (left) and EMG detection (right) of all foods. According to Tab. 8.1 eight

variables were derived for each of the following sections: the entire chewing sequence,

three partitions (Sections 1 to 3), the first five and three chewing events. Two further

variables were derived for the first chewing event only.

Stepwise variable selection

Stepwise variable exclusion was performed using linear regression fitting. The
most important variables according to the relevance analysis discussed before
were selected as starting model. In particular, the following variables were in-
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cluded: number of chewing events and chewing duration for the entire sequence
and all three sections of the sequence (in total eight variables).

Variables from the entire sequence and first section were most frequently
left in the model for all foods and participants. The mid-section variables
were least frequently retained. We concluded that alternatively to the entire
sequence variables, the first section could be used for the weight prediction.

Leave-one-out prediction performance

The bite weight was predicted using a subset of four variables that were manu-
ally determined from related literature and confirmed by the relevance analysis.
The subset contained the number of chewing events and chewing duration for
the entire sequence and Section 1 of 3. This choice was made since the variables
were often retained in the selection models and a small variable set was sought.

Table 8.2 shows the prediction error for both, sound-based recognition and
EMG detection approaches. Moreover, the performance of an inter-individual
model using sound-based and a prediction assuming a constant weight (aver-
age weight from 2nd and 3rd chewing sequence) are shown. The leave-one-out
verification scheme was used for all results, except the constant weight predic-
tion.

The constant weight prediction assumes that the bite weight does not
change between the bites of a specific food and that the 2nd and 3rd sequences
represent stable weight averages. Hence, the constant weight prediction marks
a baseline for predictions based on chewing microstructure detections.

Overall, lowest prediction errors were achieved for the sound-based predic-
tion for apple with an average error of ≤19%. This result demonstrates the
effectiveness of the sound-based prediction compared to the constant weight
prediction (error: 62%) and EMG (error: 28%).

For lettuce the sound-based prediction error was 31%, compared to 29%
for EMG. For potato chips both sound- and EMG-based prediction incurred
an error of 27-28%, confirming the low variable relevance result. As expected,
the inter-individual models cannot capture the microstructure adequately. For
all results, sound and EMG show a dependency on the detection performance:
higher detection fidelity is reflected in lower prediction errors.

Figure 8.7 illustrates the sound-based prediction of bite weights as a cumu-
lative weight prediction for one participant. For comparison the constant weight
is shown. The sound-based prediction closely followed the actual weight, while
the constant weight provides best estimates for low weight variations, such as
in potato chips.
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Table 8.2. Leave-one-out bite weight prediction using chewing microstructure in-

formation (participant-specific). Bite weight estimation errors are shown for sound-

based recognition, EMG detection, inter-individual sound-based recognition, and for

a constant weighta.

Metric Foods

Mean (SD) Potato chips Lettuce Apple

Sequences (M̂i) 26.9 (4.4) 20.0 (3.3) 14.9 (2.9)
Bite weight W [g] 0.8 (0.2) 2.3 (0.8) 7.8 (1.5)

Sound recognition

Absolute error [g] 0.2 (0.1) 0.6 (0.2) 1.4 (0.4)
Relative error [%] 27.7 (9.5) 31.0 (5.5) 19.4 (4.3)

EMG detection

Absolute error [g] 0.2 (0.1) 0.6 (0.2) 1.9 (1.1)
Relative error [%] 26.5 (9.0) 28.9 (4.0) 27.8 (14.6)

Sound rec. (inter-individual)

Absolute error [g] 0.2 (0.2) 0.8 (0.6) 2.3 (1.8)
Relative error [%] 31.7 (30.6) 40.2 (38.2) 37.2 (37.1)

Constant weighta

Absolute error [g] 0.3 (0.1) 0.9 (0.3) 3.3 (1.8)
Relative error [%] 41.1 (25.8) 50.5 (29.8) 62.2 (33.8)

aAverage weight of 2nd and 3rd chewing sequence.

8.6. Discussion

8.6.1. Paper methodology

Both energy density and portion size influence energy intake indepen-
dently [19]. The focus of this work was to evaluate the estimation of bite
weight, being the smallest granularity of food intake. Our work builds on the
relationship between chewing microstructure and bite weight. This relation is
an area of ongoing research. To this end, the current work pioneers in con-
sidering natural foods, habitual consumption protocol and introducing a novel
wearable measurement system.

Specific challenges faced in this investigation included the expensive data
annotation, the continuous detection of chewing sound patterns and a tight
acoustic relation of the foods. The latter raised the challenge to discriminate
foods. As a consequence of these challenges, only a small number of foods
was evaluated. The foods were chosen following our interest to monitor fruits
and vegetables consumption, studying the acoustic discrimination of similar
food-textures, and analysing the weight estimation from habitual bite choices
of different material densities. However, we expect that the concept will be
feasible for larger food groups or other specific foods.

Although expensive, the choice to manually annotate the chewing events
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Figure 8.7. Prediction of cumulative weight intake: sound-based prediction and

constant weight (average bite weight of 2nd and 3rd chewing sequence) for one subject

and all foods. (a): Potato chips, (b): Lettuce, (c): Apple.

was made, to exclude potential errors from automatic chewing segmentation
procedures. These were observed, e.g. for EMG-based chewing detection [18].
Nevertheless did the EMG detection perform well in our investigation.

8.6.2. Bite weight estimation

Both correlation and weight estimation results show that bite weight is not
equally reflected in the chewing microstructure. Especially for low weight, such
as lettuce (mean bite weight: 2.3 g) and potato chips (mean bite weight: 0.8 g),
the sound-based prediction incurred larger errors (∼30%) compared to ap-
ple (error: 19.4%). We concluded that chewing behaviour does not adapt to
these bite weights as it does for larger weights. This is partially confirmed by a
recent study on gum chewing of different weights [33]. A 1 g gum bolus resulted
in the largest within-subject variability, suggesting that the oral sensation is
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less sensitive to these low weight stimuli. Consequently, the chewing pattern is
less predictive for the bite weight of these foods.

In contrast, the habitual bites taken from apple were larger (mean bite
weight: 8.3 g) and more varying in size. These bite weights fall into the range of
4 to 18 g. For this weight range similar boluses were found after gum chewing,
indicating an adaptation of the oral management to these weights [28]. For
apples, this prediction performance approaches the weight variation of the
fruit itself. Hence it also reaches the reporting quality of food reports that use
qualitative amount descriptions. However, further investigations are required,
that focus on foods in this weight category.

The variable relevance analysis showed that individuals adapt their chewing
behaviour to the food in a similar way. We observed consistent correlations of
microstructure variables with bite weight, up to 0.7 − 0.96 for apple. This is
novel result for these natural foods and habitual bite selection. The result is
supported by correlations found when comparing fixed volume food items and
artificial foods [13].

We observed that the within-sequence chewing cycle distribution is not
related to weight. This is confirmed by low correlations obtained for the mi-
crostructure variables chewing speed trend and the consistently positive cor-
relations of all three sequence sections with weight. Moreover, the results indi-
cates that the chewing speed variation does not dependent on bite weight.

An increase in vertical movement of the mandible was observed when bolus
size increased [9, 27]. However, closing velocity and muscle activity increased
as well [4, 6]. The current investigation showed that in naturally variable bite
shapes, these changes did not alter microstructure variables such as chewing
speed. In agreement with this result, overall chewing cycle duration was main-
tained with changing gum bolus sizes [6].

An restriction of the current work is that the chewing detection did not
consider the mandible reopening phase. However, we do not expect to derive
further supportive information from this phase.

While altering the lubrication of foods, such as buttering toast [12], lowers
the total number of chews, the change in absolute numbers remained low.
Deterioration, e.g. in apples adds an uncertainty in a mass density change of
∼10% [23].

However, if food preparation steps or deterioration modify the material
structure, the acoustic food recognition would reject the food category. Prac-
tically deployed, the food recognition system may offer a selection of the most
likely foods and toppings. Once a user selection was made, the corresponding
food model can be used for the amount estimation. The impact of food modifi-
cation and deterioration requires further investigations to derive model bounds
and integrate those in recognition and weight estimation.
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8.7. Conclusion

Our work is driven by the stringent need for novel automatic diet monitoring
solutions that provide an estimate of consumed food amounts. We combined
the acoustic recognition of chewing cycles and foods with the estimation of
bite weights in this current work. Moreover, this work presented a refined
recognition procedure to recognise specific foods robustly in continuous sound
data. Bite weight was predicted, based on prediction models selected according
to the food type recognition. The approach was evaluated quantitatively and
compared to EMG-based detection and estimation results.

Food type was recognised in continuous data among three foods with very
similar acoustic properties as well as various arbitrary sounds. The sound-
based detection achieved a performance that closely matched the EMG-based
detection (avg. precision 60%-70%). Sound-based food classification achieved
a normalised accuracy of 94%.

The weight prediction results indicated that assessing bite sizes using the
chewing microstructure is a feasible approach. We showed that a simple con-
stant bite size assumption fails with prediction errors of 60%, while the sound-
based recognition achieved 19.4% prediction error for apples. We observed that
the detection performance is a predictor for the bite weight estimation: weaker
recognition of lettuce and potato chips resulted in larger weight prediction
errors.

We concluded that microstructure information is vital to estimate food
amount with a weight above 4 g. The approach is applicable for solid foods,
hence further work is needed to evaluate larger food sets. Our future work will
also address the ambulatory evaluation of the bite weight estimation.
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Abstract

Swallowing is an important part of the dietary process. This paper
presents an investigation to detect and classify normal swallowing
during eating and drinking from Electromyography and microphone
sensors. The non-invasive sensors are selected in order to integrate
them into a collar-like fabric for continuous monitoring of swallow-
ing activity over a day. We compare methods for the detection of
individual swallowing events from continuous sensor data. Further-
more we present a classifier comparison for the swallowing event
properties volume and viscosity. The methods are evaluated on ex-
perimental data and a performance analysis is shown. Moreover we
present a class skew analysis based on the metrics precision and
recall.
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9.1. Introduction

The prevalence of chronic diseases related to lifestyle and behaviour as well
as the aging population leads to a surge of healthcare costs all over the world.
Consequently new concepts and methods are needed to fight diseases such as
obesity, hypertension and cardio-vascular diseases. It is envisioned that long-
term behavioural monitoring and coaching can contribute vastly to the problem
of maintaining or achieving a healthy lifestyle and therefore reducing the risks
of these diseases.

Relevant lifestyle aspects related to the afore-mentioned diseases include
exercise and dietary behaviour. Our work aims at developing methods to mon-
itor dietary behaviour automatically. We believe that wearable systems can
provide valuable insight into daily eating behaviour, that is difficult to achieve
by other means. The work on swallowing detection presented in this paper is
considered one part of a wearable dietary monitoring system, since swallowing
is inherently linked to eating and drinking activities.

9.1.1. Automatic dietary monitoring

Dietary monitoring includes a variety of aspects such as timing and frequency
of eating activities, rate of intake as well as type and amount of foodstuff.
Information about these parameters on a daily basis provide insight into the
dietary activities and can be integrated in lifestyle feedback and reminders
that have a relevant impact, e.g. to maintain a lunch duration of at least 15
minutes. Currently dietary activities are studied exemplary by entering the
information manually into questionnaires. This involves a considerable effort
of study participants and managers.

We believe that the absolute error-free estimation of amount and calories of
every possible nutrient is rather visionary, using non-invasive sensors. However,
a rough estimation of food type, e.g. ratio of fluid and solid nutrient combined
with the timing information, e.g. event schedule and meal durations over the
day, already provides a solid basis for behavioural monitoring. Although focus-
ing on wearable sensors we expect that additional information can be obtained
in combination with a supportive environment, e.g. food products with RF-
identification tags, intelligent shopping lists or dietary monitoring tables.

We target a non-invasive wearable system relying on information from the
following three sensing domains: 1) the identification of characteristic arm and
trunk movements associated with food intake using inertial sensors [1], 2) the
analysis of food chewing sounds from an ear microphone [2] and 3) the detection
of swallowing from body-worn sensors. The focus of this paper is on the latter.
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9.1.2. Swallowing process

Swallowing is a frequent human activity. It is estimated that normal swallowing
occurs approx. 600 to 2000 times per day in healthy persons [10].

The swallowing act is often partitioned into three distinctive phases [10]:
1) the oral preparation, 2) the pharyngeal, and finally 3) the oesophageal phase.
During the oral phase a food piece is transformed to a swallowable bolus. This
may involve chewing and forming a bolus by tongue movements (depending
on the food texture) and initiating the swallowing reflex, which starts the
pharyngeal phase. In the oral phase the bolus type is sensed with regard to
volume and viscosity. Henceforth the swallowing apparatus may adapt to the
bolus [4].

The pharyngeal phase is formed by the bolus travelling through the phar-
ynx and passing the upper oesophageal sphincter. During this phase a sequence
of muscle activations is used to propel the bolus and protect the trachea from
contamination. The following oesophageal phase is composed of peristalsis con-
tractions that move the bolus towards the stomach.

Since the oral phase is involved with the variable process of chewing, it is less
informative for the detection of swallowing. The pharyngeal and oesophageal
phase are expected to be more specific since these are not controlled voluntarily.
However the latter cannot be accessed with non-invasive methods due to the
spine and trachea covering the oesophagus. Hence the pharyngeal swallowing
phase is addressed with non-invasive sensors.

9.1.3. Paper contributions

The work presented in this paper aims at utilising non-invasive sensing modal-
ities to detect and identify swallowing at the pharyngeal phase. Specifically,
the following contributions are made:

1. We propose sensor modalities and locations that support the identifi-
cation of individual swallows and present a experimental methodology
to evaluate the feasibility of these sensor types during daily activities.
Moreover we address the restricted sensor positioning that stems from
the goal to integrate the sensors into a collar-like fabric.

2. We compare the performance of two swallowing event detection ap-
proaches on continuous sensor data. Here, the goal is to separate the
swallowing events from sensor noise incurred from everyday activities
and the various other functions of the pharynx.

3. We evaluate classifiers for the discrimination of bolus volume and vis-
cosity and present classification results that indicate the discriminative
information extracted from the chosen sensor modalities.
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The work presented here is a first attempt to detect and classify swal-
lowing events automatically and evaluate different procedures. The envisioned
detection system shall not hinder the user’s perception and a deployment in
non-clinical environments is aimed. Specifically we rely on surface electromyo-
graphy (EMG) detection of muscle activation patterns and sounds associated
with the swallowing event. We evaluate the different classification and event
detection algorithms on recordings from 5 subjects and a total of 868 annotated
swallows.

9.1.4. Related Work

A number of clinical assessment methods have been developed to analyse the
complex interaction of swallowing with phonation and respiration at the throat
level. The most important invasive methods include videofluoroscopy, e.g. [14],
manometry, e.g. [25] and wire-electrode based EMG, e.g. [12].

A number of non-invasive assessment methods have been evaluated dur-
ing pharyngeal swallowing, including sensing of muscle activations by EMG,
e.g. [15, 16], listening to the throat sounds (cervical auscultation) by stetho-
scope [22] and stethoscope acoustic transducers or sealed microphones [6]. As
alternative to the acoustic analysis, tissue vibrations have been analysed [31].
However no clear advantage of the vibration based analysis was reported, ex-
cept that the vibration sensor is more robust against environmental noises at
the expense of a much higher device cost.

Some works aimed at sensing the larynx movement by using movement
sensors at the neck, e.g. [7]. However the detection performance is strongly
depending on gender with weak results at the less prominent female larynx.
Furthermore it was shown that the simple sensor incurs errors from neck and
tongue movements as well as larynx movements during speaking or externally
applied pressure when used during daily activities.

Several other approaches have been proposed for the analysis of swallowing,
mostly in combination with previously mentioned invasive methods, including
ultrasound [4, 29], pharyngeal impedance sensing methods [13, 17, 24, 32] and
impedance plethsmography [23].

Different automatic feedback systems for the detection of swallowing ab-
normalities such as dysphagia have been proposed. Most of the abnormality
detection approaches rely on EMG or vibration sensors, e.g. [20]. These sys-
tems classify the subjects based on isolated swallowing events that have been
identified and marked manually by an expert.

A few attempts have been made to detect swallowing from continuous
sensor readings. Pehlivan et al. [26] proposed a device for counting swallows
and compared swallow counts in normal subjects and Parkinson’s disease sub-
jects during eating and drinking. The device is based on the mechanical sens-
ing approach using a piezoelectric sensor attached to the larynx. A manual
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pre-segmentation for nutrition phases was applied. Speech was specifically ex-
cluded.

Das et al. [9] deployed an ensemble of neural networks to discriminate
normal and dysphagic swallows from vibration recordings. In their approach
swallows were recorded in a controlled environment largely avoiding sensor
artefacts. Persisting artefacts were segmented by modelling them specifically
with the neural networks.

The approach of Limdi et al. [21] was based on EMG intensity detection
and aimed at informing the user of elevated swallowing rates. Sukthankar,
Reddy et al. [30] used EMG and vibration sensors and aimed at dysphagia
rehabilitation. However both works did not present a performance evaluation
of their approaches for the continuous detection problem.

The pharyngeal phase of swallowing is influenced by the type of swallowed
foodstuff. During chewing and tongue movement the bolus is sensed by various
receptors in the oral cavity. Specifically volume, mass and viscosity of the bolus
modify the central neurological pattern generator [4, 12]. Dantas et al. [8] found
that bolus transit time through the pharynx increases with viscosity. This effect
was captured in duration and amplitude parameters of EMG recordings from
the submental and infra-hyoid regions [8, 11, 27]. Moreover it was found in
these studies that transit time and EMG features are largely unaffected by
bolus volume.

Chichero et al. [5] and Boiron et al. [3] reported a dependency of swallow
sound features on bolus volume. However the studies disagree on the type of
interaction.

9.1.5. Paper structure

The remaining of the paper is structured as follows: Section 9.2 describes our
event detection and classification approach as well as the conducted experi-
ments. Section 9.3 summarises the results of the swallowing event detection
from continuous data. Section 9.4 provides the results of the bolus type clas-
sification. Finally, Section 9.5 provides a conclusion followed by an outlook on
further work.

9.2. Methodology

This section provides an overview on our approach to detect and classify swal-
lowing. Furthermore the experimental protocol to acquire evaluation data is
described.

9.2.1. Approach

As described in the introduction of this paper our detection and classification
targets the analysis of pharyngeal swallowing using non-invasive sensors at-
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tached to the user’s neck. Fig. 9.1 illustrates the overall concept of our approach
to the problems of sensor data acquisition, event detection and classification.
The following sections of this paper will evaluate solutions for these problems.

Swallowing
event detection

Swallowing
classification

EMG
sensors

Sound
sensor

Detected
swallowing events

Identified bolus
volume/viscosity

Swallowing
frequency

Figure 9.1. Approach to search and identify swallowing events. In this paper the

swallowing classification is supported by manual annotation information.

Swallowing data acquisition is related to the problem of selecting appro-
priate non-invasive sensors that provide means for extracting information on
swallowing events and the bolus characteristics viscosity and volume from the
pharyngeal swallowing phase. Following the findings in [27] we recorded EMG
to capture the viscosity variability and sound to analyse the volume/density
variability of the pharynx [5]. Details of the experimental procedure and sensor
placement are described in the following Section 9.2.2.

The swallowing event detection aims at extracting signal sections that con-
tain individual swallows from a continuous stream of sensor data. Specifically
the challenge is to distinguish swallowing events from sensor noise and arti-
facts, recorded when wearing the system during daily activities. By selecting a
experimental procedure that includes non-swallowing activities, e.g. speaking,
head turning, chewing, we aimed to cover these situations.

We evaluate two different methods for the swallowing event detection: 1) us-
ing a simple signal intensity measure applied to the rectified EMG amplitude
and 2) using a pattern search based on a similarity measure of a data section.
Here the pattern of a swallowing event is described using features derived form
the sensor data. Section 9.3 presents the procedures and the evaluation results
in detail.
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We analyse the feasibility to discriminate bolus viscosity and volume using
the sensor data in Section 9.4. Our approach is based on an isolated classifi-
cation of individual voluntary swallows. For the investigation in this paper a
manual annotation was applied to isolate the swallows. Fused EMG and sound
feature sets from time-domain and combined frequency- and time-domain were
evaluated by analysing the classification performances.

9.2.2. Experiments

Test subjects and materials

Five subjects (3 male, 2 female, aged 20 to 30 years) without known swallowing
abnormalities were instructed to eat and drink different foodstuff items: 5 and
15ml of water, a spoonful of yogurt and a piece of bread (approx. 2 cm3). The
items are summarised in Tab. 9.1. The material size was controlled by syringe
for the water and visually for the spoonful of yogurt and the bread pieces.
Additionally, reference samples from all foods were weighted.

The subjects were asked to aim at swallowing the nutrient items in one
piece after chewing and manipulating the bolus as usual. None of the subjects
expressed a dislike for any of the covered nutrients nor problems to swallow
the selected bolus sizes. Subjects were sitting conveniently on a chair close to
a table carrying the nutrients. They were allowed to move, chew and speak
normally during the recording sessions. Naturally, during the short pharyngeal
swallowing phases on speaking was audible. The environment was controlled
for low and constant noise level during the swallowing events.

Sensor selection and location

Surface EMG from submental (SM-EMG) and infra-hyoid (IH-EMG) regions
were recorded by gel electrodes at 24 bit, 2 kHz and bandpass filtered. Swal-
lowing sound was recorded by an electret condenser microphone (type Sony
ECM-C115), placed inferior midline from the cricoid cartilage. The microphone
was secured and sealed with medical tape, following the protocol of previous
investigations [5, 6, 31]. Sound data was recorded at 16 bit, 22 kHz. For the
individual analysis steps the sample rate of EMG and sound was reduced.

Fig. 9.2 illustrates the positioning of the sensors. These positions have been
used by previous investigations on EMG [27] and sound [5]. The SM-EMG elec-
trode set was included in the recordings mainly for comparison and swallowing
event inspection purposes.

Recording procedure

The nutrient properties are listed in Tab. 9.1. The subjects were instructed
to eat/drink items from each of the nutrient categories to obtain at least
15 swallows per session. To account for physiologic variations two sessions



184 Chapter 9: Recognition of swallowing

Submental EMG
position

(SM-EMG)

Microphone
position

Infra-hyoid EMG
position

(IH-EMG)

Figure 9.2. Schematic sensor positioning at the neck.

were recorded on different days. The recording duration was not constraint
since the subject were eating/drinking at their individual speeds, selecting the
food category for each individual swallow.

An observer was verifying the procedure during each session and annotating
the food category as well as begin/end of each swallowing event. Additionally
all recording sessions were videotaped for later verification of the annotated
events. To simplify the online annotation, subjects were instructed to indicate
swallowing to an observer by raising the hand and stop chewing shortly before
swallowing. In a post-processing step all annotated events were reviewed and
the begin/end times were adapted by the observer inspecting the signals. In
situations were the swallowing event could not be clearly identified, the sound
data was played back and/or the recorded video was analysed. In some sit-
uations spontaneous swallowing or multiple swallowing occurred before/after
swallowing the food item. It was assumed that these swallows were used to clear
the oral cavity and resulted in a tiny bolus or saliva swallow. These swallows
were annotated as 5ml water swallows.

To achieve a data level alignment artificial synchronisation events have
been inserted on both data streams (EMG and sound) during the recordings.
In the post-processing step the synchronisation events were used to adapt the
alignment of the data streams.

Tab. 9.2 summarises the recorded and inspected swallowing events. To
obtain a realistic data set additional data, resembling daily activities, were
recorded with all subjects wearing the sensors. These activities included, speak-
ing and conversation, background noise, head turning, tilting, nodding and
chewing. In total 868 swallowing events were recorded and inspected from
4.85 hours of sensor data.
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Table 9.1. Description of evaluation data: nutrients and properties.

Food Item vol-
ume

Viscosity
cate-
gory

Total
swal-
low-
ing
events

Annotation
duration
(mean ± SD)

SM-EMG
activa-
tiona

(mean ± SD)

IH-EMG
activa-
tiona

(mean ± SD)

Water 5ml fluid 353 1.8 s ± 0.5 s 0.49 ± 0.13 0.55 ± 0.17

Water 15ml fluid 205 2.0 s ± 0.5 s 0.55 ± 0.13 0.59 ± 0.16

Yogurt ∼7ml
(filled spoon)

semifluid 171 1.8 s ± 0.5 s 0.54 ± 0.14 0.56 ± 0.15

Bread ∼2 cm3

(prepared
pieces)

solid 139 2.0 s ± 0.6 s 0.54 ± 0.14 0.64 ± 0.17

aRectified EMG signal duration above minimum+1SD within the annotation section.

Table 9.2. Summary of evaluation data from 5 subjects.

Total swallowing events 868
Total swallowing duration 1632 s (27.2min)
Total length of dataset 17465 s (4.85hours)

9.3. Detection of swallowing events

In order to analyse and classify individual swallows, data sections containing
the swallowing events need to be extracted from the continuous stream of
sensor data.

The challenge to detect swallowing events can be formulated as follows:
the envisioned system shall be continuously worn during daily activities, how-
ever swallowing events occur comparably rarely, embedded in non-swallowing
phases (NULL class). A method aiming at detecting swallows shall be effective
in retrieving correct events and omitting non-swallow phases while maintain-
ing a low processing effort. The approach presented here attempts to isolate
swallowing events for later analysis. Consequently the methods are optimised
to reduce event misses at the expense of increased false positives. Moreover,
the swallowing phases have a variable length as the event durations in Tab. 9.1
indicate.

9.3.1. Signal intensity detection

EMG signals are usually rectified and averaged for human inspection. In this
way muscle contractions can be spotted visually as peaks in the waveform. We
utilise a similar approach for detecting muscle contractions during swallowing
events automatically: by sweeping a threshold on the rectified EMG amplitude
possible events are obtained as signal sections, where the amplitude is above
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the threshold. Selecting the threshold controls the system performance, e.g.
the rate of false positives and false negatives.

We used the IH-EMG data at a resolution of 256Hz. The rectified IH-EMG
was obtained by averaging the absolute signal amplitude using a sliding window
of 32 samples, one sample step size.

Since this method is not sensitive to the data pattern of a swallowing event,
except for the signal intensity, it incurs errors and can be used to qualify the
evaluation data. For the IH-EMG intensity, more detection errors correspond to
more sensor artifacts from chewing and other pharyngeal activities. Further-
more the thyrohyoid muscle targeted with the infra-hyoid surface electrode
position is covered by other muscle layers, disturbing the activation detection.

9.3.2. Feature similarity detection

The feature similarity approach relies on a two-step procedure of signal seg-
mentation and similarity search. In the first step segmentation points are de-
termined that reduce the subsequent search effort for the similarity analysis.
We used the Sliding-Window And Bottom-up (SWAB) algorithm [19]. This
algorithm partitions a continuous stream of sensor data very robustly by se-
quentially testing the approximation of the signal through linear regression
lines and using the boundaries of these approximations as segments. The du-
ration of the signal segments describe the signal variation over time, with
shorter segments for highly fluctuating signals and longer segments for rela-
tively monotone phases. We applied this algorithm to the rectified averaged
IH-EMG signal (256Hz signal resolution, mean window size of 32 samples, one
sample step size). Fig. 9.3 illustrates the obtained segmentation boundaries at
a sample signal.

IH
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Figure 9.3. Rectified IH-EMG sample signal of yogurt eating (mean-filtered). The

SWAB segmentation points are marked with
N

. The shaded section indicates an

annotated swallow.

The second step utilises the IH-EMG segmentation points to search for
swallowing event sections using a feature similarity measure. The search is



9.3. Detection of swallowing events 187

performed by analysing the similarity of a data section under investigation
compared to a trained pattern. For a given segmentation point, the history
of sensor data is analysed from a lower up to an upper search bound. These
bounds are determined in the training step from minimum/maximum overlaps
between the annotated events and the segmentation points.

The similarity of the sensor data is determined from the Euclidean dis-
tance between the features of the data section under investigation during the
search and the trained pattern. This approach has been applied previously to
a classification problem of movement data from inertial sensors [1, 18].

The results of the feature similarity search (FSS) is a list of data sections
with an associated Euclidean distance. From the training data an optimal
distance threshold is determined that retains the best matching sections with
the manual annotation.

The FSS procedure was applied to features from IH-EMG and sound data
individually and combined using feature-level fusion. The features from feature
set 1 (time domain, see Tab. 9.5) were used for the evaluation of the similarity
searches. With regard to the potentially low mobile processing performance a
low data resolution was used for both IH-EMG (128Hz) and sound (4 kHz).

Furthermore two event fusion methods were tested: 1) a comparison of the
individual IH-EMG and sound event detections and 2) a second-pass similarity
search.

The comparison of sensor-specific event detections aims at selecting the
front of best events from the individual similarity searches. For this procedure
a detection confidence was determined by normalising the sensor-specific event
distances with the corresponding similarity training threshold. In this way the
event detection results of independent similarity searches can be compared.
The best events were selected by a sliding window procedure.

For the fusion using a second-pass similarity search we applied an additional
training step based on the event confidences of the individual similarity results.
The training data from the first-pass similarity was reused for this training.
The confidence was determined in the same way as for the comparison method.

9.3.3. Evaluation procedure

Training and testing was performed on the subject-specific data sets. To ac-
count for variations in the data set a 4-fold cross-validation procedure was
used to determine training and testing data set for both detection procedures,
IH-EMG intensity and FSS. For the training 3 of 4 data parts were used. Eval-
uation was performed on the left out data part. This procedure was repeated
until all 4 parts were used for testing once. The partition boundaries were
adapted to avoid intersecting swallowing data sections.

To analyse performance, we utilised the metrics Precision and Recall com-
monly used for evaluation in Information Retrieval. These metrics are derived
as follows:
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Recall =
TP

P
=

Recognised swallows

Relevant swallows
(9.1)

Precision =
TP

TP + FP
=

Recognised swallows

Retrieved swallows
(9.2)

Relevant swallows corresponds to the manually annotated number of swal-
lowing events in a class (positives, P). Retrieved swallows represents the num-
ber of swallowing events that are returned by the algorithm. This includes both,
true positives (TP) and false positives (FP). Finally, recognised swallows refers
to the correctly returned number of swallowing events (true positives, TP).

9.3.4. Detection results

The results of all investigated detection methods are summarised in Tab. 9.3:
IH-EMG intensity (Intensity), FSS for IH-EMG, sound and the feature level
fusion, as well as the event fusion methods comparison (COMP) and second-
pass. For all methods a threshold was chosen to achieve high recall. For the
comparison both recall and precision must be considered.

Table 9.3. Summary for the subject-specific detection performance.

Intensity FSS FSS FSS COMP 2nd pass

Sensors IH-EMG IH-EMG SND IH-EMG IH-EMG IH-EMG
&SND &SND &SND

Relevant 868 868 868 868 868 868
Retrieved 8065 4128 4368 3961 1853 1660

Recognised 645 715 634 726 567 491
FN 223 153 234 142 301 377
FP 7420 3413 3734 3235 1286 1169

Recall 0.74 0.82 0.73 0.84 0.65 0.57
Precision 0.08 0.17 0.15 0.18 0.31 0.30

IH-EMG intensity

An overall recall of 0.74 was achieved on the evaluation data. However the
method retrieves many false positives (low precision value). The weak detection
result can be accounted to the fluctuating signal with high amplitude values
for arbitrary muscle contractions and artifacts.

Feature similarity

The SWAB algorithm obtained 76803 segments for the 4.85hours of evalua-
tion data. The jitter between segmentation boundary and manual swallowing
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event annotations were analysed for all food categories. The mean jitter was
below 0.12 s (SD: 0.11 s) for all 868 events.

An overall recall of 0.82, 0.73 and 0.84 was achieved for IH-EMG, sound
and the feature-level fusion respectively. However FSS retrieved far less false
positive errors (higher precision value), compared to the IH-EMG intensity
method. This is illustrated in the threshold sweep of Fig. 9.4. While the inten-
sity method reaches an acceptable recall level, the precision does not increase
above 0.1.

The precision-recall comparison in Fig. 9.4 furthermore presents the mod-
elling performance of the two event fusion methods: similarity comparison
(COMP) and second-pass similarity. While both methods retrieve far less false
positives (increased precision), the number of recognised swallowing events
decrease, when compared to the sensor-specific similarity searches. In the de-
picted example, the second-pass similarity provides (as intended) a far better
result, resembling the performance of the best sensor-specific similarity result
while the comparison method incurs more recognition errors.
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Figure 9.4. Precision-recall comparison (threshold sweep) of the IH-EMG intensity

and FSS methods of a trained data section containing 150 relevant swallows from

one subject. Best performance is found towards the top-right corner (high precision,

high recall).
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9.4. Classification of swallowing events

As reviewed in the introduction, different interactions of bolus volume and
viscosity with EMG and sound features have been tested in the clinical set-
tings of previous studies. In this section we evaluate the following hypotheses:
1) IH-EMG supports the discrimination of the bolus viscosity independent
from volume and 2) sound supports the discrimination of the bolus volume.
Our analysis is based on the isolated classification using manually derived
swallowing annotation.

9.4.1. Evaluation procedure

In order to investigate the hypotheses described above the recorded food cate-
gories were grouped into classes according to Tab. 9.4. We assumed here that
the chosen foodstuffs represent the typical variations in foods with regard to
viscosity (fluid, semifluid and non-fluid) as well as volume (see Tab. 9.1).

Table 9.4. Class groupings of nutrient categories.

Hypothesis Food group classes

V
o
lu

m
e

1 Class 1: 5ml water, 2 cm3 bread pieces
Class 2: spoonful yogurt
Class 3: 15ml water

2 Class 1: 2 cm3 bread pieces, 5ml water, spoonful yogurt
Class 2: 15ml water

V
is

c
o
si

ty

1 Class 1: 5ml+15ml water
Class 2: spoonful yogurt
Class 3: 2 cm3 bread pieces

2 Class 1: 5ml+15ml water
Class 2: spoonful yogurt, 2 cm3 bread pieces

Two feature sets (summarised in Tab. 9.5) were computed from the sensor
data. Feature set 1 is based on time domain properties of the sensor streams,
feature set 2 contains set 1 and additional frequency domain features. Feature
set 1 was processed at relatively low sampling resolution of 128Hz for EMG
and 4 kHz for sound. For feature set 2, higher frequencies were used: 2 kHz for
EMG and 16 kHz for the sound.

The feature sets were evaluated using three classifiers of different com-
plexity: 1) Naive Bayes (NB), 2) k-Nearest Neighbour (KNN) and 3) Hidden
Markov Models (HMMs). For NB a feature pre-processing using Linear Dis-
criminant Analysis (LDA) was applied, LDA+NB. The LDA filter method per-
mitted the integration of larger feature sets and improved the discrimination
performance in some situations as described below.
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Table 9.5. Feature sets for EMG and sound data.

Set Feature description

S
e
t

1

Absolute sum of 4 partitions, sum of pos/neg. deviation,
Absolute sum of signal greater than 1SD,
Length of absolute signal greater than 1SD,
Peak count, peak distance, peak maximum

S
e
t

2

All features from feature set 1,
Spectral power, bandwidth,
Centre of gravity, roll-off point,
Spectral fluctuation,
Sum of lin. band energy (4 bands),
Log. band energy (4 bands),

For the KNN classifier k = 10 was chosen, however only a minimal per-
formance degradation was observed for k = 5. For the HMMs, continuous
left-right models with 5 states were used for each class with one Gaussian mix-
ture per feature. Continuous features were derived according to feature set 2.
To reduce the influence of the varying training performance, 10 instances of
each HMM were trained and tested on the training data. The best performing
set was used for the evaluation.

Training and testing was performed on the subject-specific data sets. To
account for variations in the partitioning of classifier training and testing data
set a 10-fold cross-validation procedure was used. For training 9 of 10 parts of
all instances were used. Evaluation was performed on the left out data part in
order to test every instance exactly once.

The chosen nutrient groups resulted in class skews (one class contained more
instances than another class). To avoid training a skewed classifier an equal
number of training instances was used for all classes and the test instances
were adapted to satisfy the cross-validation procedure as described before.

To compare the classification results the normalised accuracy was used:

Normalised accuracy =
1

2
∗

(

TP

P
+

TN

N

)

. (9.3)

The normalised accuracy is robust against skew with a given (trained) clas-
sifier [28]. In our evaluation, the classifiers were trained with an equal class
distribution. The measures are derived from the two-class confusion matrix as
seen from one class: true positives (TP), all positives (P), true negatives (TN)
and all negatives (N).
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Class skew analysis

We present a performance analysis that incorporates the class skew based
on class-wise precision and recall metrics. The class skew analysis simulates
different class distributions using the classification result of the full evaluation
dataset. The procedure starts with all relevant instances from class 1 and adds
instances from the second class sequentially. This procedure is repeated for
class 2 by stepwise removing instances from class 1. For each class distribution
precision and recall was computed. The results are presented in the following
class skew plots. Precision and recall were derived for each class in the same
way as for the event detection described in Section 9.3.

9.4.2. Classification results

The class distribution for three volume and viscosity categories as presented in
hypotheses 1 for volume and viscosity respectively (see Tab. 9.4), performed
weak on all tested classifiers, sensor streams and feature sets. Therefore we
concentrated on the evaluation of hypotheses 2 (classes for low and high vol-
ume/viscosity).

Volume classification

Fig. 9.5 illustrates the classification performance using the class skew precision-
recall plot procedure as described before. The midpoint of each curve shows
the performance for the class distribution in the evaluation data set. A natural
distribution may be found to contain a large variation in swallowing volume,
depending on nutrient, taste and physiology. According to the actual distri-
bution the classifiers produces a result along the curves. Best performance is
found towards the top-right corner (high precision, high recall).

The classification result of LDA+NB using EMG and sound (individually
and by feature-level fusion) and from one KNN is shown in Fig. 9.5. For these
results feature set 1 was utilised. Fig. 9.6 shows a comparison of the different
classifiers using feature set 2. The best performing LDA+NB classifier from
Fig. 9.5 is shown for reference. Overall the LDA+NB procedure with features
from feature set 1 (time domain) performs marginally better than the KNN
using feature from set 2. The HMMs did not improve the recognition rate
compared to the best LDA+NB.

From the graphs it can be seen that the sound data contributes largely to
the discrimination result while the individual IH-EMG or combined IH-&SM-
EMG classification performs relatively less using LDA+NB. Best results are
obtained from the feature-level fusion of IH-EMG and sound. Although more
complex, feature set 2 did not improve the result. The classification perfor-
mances for the bolus volume are summarised in Tab. 9.6 using the normalised
accuracy metric.
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Figure 9.5. Class skew plot of the low vs. high volume bolus classification result

using LDA+NB and KNN. Best performance is found towards the top-right corner

(high precision, high recall).

Viscosity classification

Fig. 9.7 illustrates the classification performance using the class skew precision-
recall plot procedure. Similar to the volume analysis, the midpoint of each curve
shows the performance for the ratio between low and high viscosity in the
evaluation data set. A natural distribution may be found to contain more low
viscosity swallows than obtained in the experiments of this investigation (see
Tab. 9.1). Using the non-skewed classifiers this would shift the result towards
higher precision at a reduced recall.

The classification result of LDA+NB using EMG and sound (individually
and by feature-level fusion) and from one KNN is shown in Fig. 9.7. For these
classification results feature set 1 was utilised. The evaluation of the different
classifiers using feature set 2 revealed a KNN using IH-EMG and sound features
as best-performing classifier for low viscosity swallows. Similar to the volume
analysis, the LDA+NB classifier performed well with feature set 1 using IH-
EMG and sound. The 5-state HMMs did not improve the recognition rate
compared to the best the KNN and LDA+NB classifiers.

The classification performances for the bolus viscosity classification are
summarised in Tab. 9.7 using the normalised accuracy metric.
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Figure 9.6. Class skew plot of the low vs. high volume bolus classification result

using KNN and HMM. Classifiers using feature set 2 are marked (*). The best per-

forming LDA+NB classifier from Fig. 9.5 is shown for reference. Best performance is

found towards the top-right corner (high precision, high recall).

9.5. Discussion and conclusions

The work presented in this paper aimed at 1) detecting individual swallowing
events in continuous data from EMG and sound and 2) classifying swallows
regarding volume and viscosity properties.

9.5.1. Swallowing detection

For the detection of swallowing events from continuous data two approaches
were presented: signal intensity thresholding and a feature similarity search.
The method based on the signal intensity threshold recalled the swallowing
events well (recall: 0.7), at the expense of high false positive errors (preci-
sion: 0.08). Comparably, the evaluated feature similarity methods retrieved
almost half of the false positive errors, while achieving a similar recall.

The feature similarity search based on the IH-EMG signal performed better
than using sound (recall and precision). However the overall result of sound is
acceptable considering that the IH-EMG segmentation was used. The feature-
level fusion of IH-EMG and sound similarity searches marginally improved the
detection result, compared to the IH-EMG search alone.

To further improve the detection two event fusion methods were developed
and tested. Both methods improved the precision clearly. However this was
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Figure 9.7. Class skew plot of the low vs. high viscosity bolus classification re-

sult using LDA+NB and KNN. Best performance is found towards the top-right

corner (high precision, high recall).

achieved at the expense of a reduced recall for both methods. The second-
pass similarity algorithm aimed at combining the best results from the sensor-
specific searches. Although a good training performance was achieved the
method failed to generalise on the test data.

In conclusion, both the IH-EMG and the sound provide important informa-
tion for the swallowing event detection. The feature similarity based approach
to detect swallows is clearly advantageous compared to the signal intensity
method.

9.5.2. Swallowing classification

Two independent classification strategies for individual swallows were analysed:
classification of bolus volume and classification of bolus viscosity. Initially the
evaluated foodstuffs were grouped into three classes. However the classification
result was very weak, indicating that no appropriate discriminative power was
found in the sensor data and the chosen features. Therefore we concentrated
on the discrimination among two classes of low and high volume as well as
viscosity.

This classification revealed that the sound provides important information
for volume as well as viscosity discrimination. This was expected from our
initial hypothesis for the volume only. The classification result from EMG alone
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was weak for both, volume and viscosity classification from the infra-hyoid and
the submental positions. Best result were achieved from a feature-level fusion
of IH-EMG and sound data.

We found that the combination of LDA+NB classifier performed well given
the simpler time-domain feature set. This set included static features aimed at
modelling the temporal pattern of the sensor data by partitioning the complete
swallow into segments. These features improved the classification result. Al-
though without LDA, the KNN classifier performed well in the evaluation. The
HMMs reached the recognition rate of the best performing static classifiers.

In conclusion, a recognition rate of 0.73 to 0.75 was achieved for the vol-
ume and viscosity classifications. Although this is not an ideal performance
we believe that it contributes to the envisioned dietary monitoring system. A
tentative classification on individual swallowing events can be integrated since
the system will be worn for entire meal consumption sessions.

9.6. Further work

From the results achieved in this work the following goals for future investiga-
tions can be derived:

1. Testing the methods on data from further subjects and additional nutri-
ents to evaluate the robustness of the system and to verify the current
findings regarding the classification of bolus volume and viscosity.

2. Evaluating the use of further sensors to improve the detection perfor-
mance.

3. Studying the detection performance of double-swallowing and sequential
swallowing specifically.
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Abstract

Dietary behaviour is an important lifestyle aspect and directly re-
lated to long-term health. We present an approach to detect eating
and drinking intake cycles from body-worn sensors. Information
derived from the sensors are considered as abstract activity events
and a sequence modelling is applied utilising probabilistic context-
free grammars. Different grammar models are discussed and ap-
plied to dietary intake evaluation data. The detection performance
for different foods and food categories is reported. We show that the
approach is a feasible strategy to segment dietary intake cycles and
identify the food category.
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10.1. Introduction

Nutrition is a key aspect of our everyday life and health. While pure over-
consumption in time frames of months and years leads to the predominant
overweight and obesity, many other forms of malnutrition exist. Often malnu-
trition is a confounding factor for developing chronic illnesses. Since nutrition is
related to daily living behaviour, modifying eating behaviour requires changing
lifestyle.

Besides caloric value, nutrition behaviour includes a variety of aspects such
as duration and frequency of eating and drinking activities, rate of intake as
well as the type of food itself. Information about these parameters on a daily
basis provide insight into the dietary activities and can be integrated in lifestyle
coaching, e.g. reminders to maintain a lunch duration of at least 15 minutes.

Our work aims at developing methods to monitor dietary behaviour au-
tomatically using wearable systems. In this paper we present an approach to
infer eating and drinking activity as well as food categories from activity events
derived in three on-body sensing domains.

10.1.1. Automatic dietary monitoring

We expect that by utilising wearable systems useful assistive systems for di-
etary monitoring are conceivable. Such systems could provide a rough estimate
on the food consumption and could provide valuable insight into daily eating
behaviour. This includes a rough estimation of food type, e.g. ratio of fluid and
solid nutrient combined with the timing information, e.g. event schedule and
meal durations over the day.

We target non-invasive wearable systems relying on information from the
following three sensing domains: (1) the identification of characteristic arm
and trunk movements associated with food intake using inertial sensors [1],
(2) the analysis of food chewing sounds from an ear microphone [2] and (3) the
detection of swallowing from collar-worn sensors [3]. These sensing domains are
modelled as activity event sources by appropriate continuous pattern detectors.
These events constitute the input for the event sequence detection presented
in this work.

10.1.2. Decomposition of hierarchical activity

While many human actions may not be feasibly sensed and modelled as a
whole, they can be described as a hierarchical activity process. Consequently,
such an activity process is composed of separate sub-activities, often aligned
in a sequential order. Given that a sufficient abstraction was chosen, patterns
of identified sub-activities can be recognised from sensor data. An example
for such an activity consisting of a sub-activity event sequence are dietary
intake cycles. These cycles consist of movements to prepare a food piece and
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manoeuvre it to the mouth, e.g. using fork and knife, chewing the food with
multiple closing and opening cycles of the jaw and eventually swallowing the
food bolus. Usually several intake cycles are used to consume a food product
or meal. The combination of these sub-activities in their correct order forms
the superior activity eating.

Sequences of sub-activities that are linked to form a meaningful action
suggest the analogy to linguistic terms, e.g. words (=sub-activity events) and
sentences (=action, consisting of sub-activity event sequences). Following the
example of an intake cycle described above, a syntax is given by the fact that
foods may be chewed and swallowed only after they have been prepared and
moved to the mouth. We hypothesise that sub-activities follow a grammatical
structure and henceforth can be interpreted as computable language. Given
that this hypothesis holds, the high-level segmentation of intake cycles can be
achieved and moreover, structure parameter such as number of chews and food
category estimates per intake cycle become available.

The detection of the event sequences, in linguistic terms the parsing of
symbols, has to deal with the following main problems: (1) the input sequence
may not follow the assumed language syntax in all situations and (2) the input
sequence may be partially incorrectly detected by the event pattern detectors.
Both problems violate the applied grammar and a standard language parser
would simply give up. Obviously the applied parsing method and grammar
has to cope with such situations, however accounting for the violations. As a
solution a probabilistic context-free grammar (PCFG) parser is used in this
work.

10.1.3. Probabilistic parsing of activity events

A grammar G can generally be described by G = (T, NT, P, S). Here T is a
set of terminal symbols, NT is a set of non-terminal helper symbols, P is a set
of production rules of the grammar and S is the start symbol.

The prototype production rule of a context-free grammar is described in
Eq. 10.1. These production rules require that the left hand side corresponds
to a non-terminal symbol X that is expanded by the set of terminal and non-
terminal symbols (NT∪T )∗ at the right hand side when required. This concept
of production rules permits the modelling of embedded symbol sequences by
parsing from outside to inside instead of left to right.

X → λ, with X ∈ NT, λ ∈ (NT ∪ T )∗ (10.1)

A context-free grammar is extended to a PCFG by assigning a probability
P to each production rule. This principle is shown in Eq. 10.2.

X → λ [P ] (10.2)
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Conceptually, this probability is conditional on the selection of the non-
terminal symbol X for derivation. The aspect of “contextual freeness” is re-
flected by the independence of the production rules Xi in a complete PCFG,
Eq. 10.3.

∀i :
∑

j

P (Xi → λj) = 1 (10.3)

While several problems can be tackled with this approach, we concentrate
on the scoring task: we intend to estimate the probability that a symbol se-
quence was generated by a certain grammar. For this task J. Earley developed a
parsing algorithm [5]. This algorithm was extended to probabilistic processing
by Stolcke [10].

Further in this section, related works for activity sequence modelling and
activity parsing are discussed. Section 10.2 describes our detection approach
in the three on-body sensing domains and introduces the activity event pars-
ing method. In Section 10.3 a experimental procedure is sketched to acquire
and analyse evaluation data. Section 10.4 reports the achieved performance
of the event parsing approach. Finally Section 10.5 summarises the work and
Section 10.6 provides an outlook on future research.

10.1.4. Related works

Many attempts have been made to decompose activities into individual events
of varying granularity and apply learning machines to identify the events in-
dividually. However the combined detection of the activity events sequences is
favourable to reason about the superior activities. The methods applied at this
level include Hidden Markov Models (HMMs), Bayesian networks, PCFGs and
combinations thereof.

For HMMs different solutions have been proposed to model higher-level
temporal structures including hierarchical HMMs and layered HMMs. Gener-
ally these HMM-based solutions require high training efforts, e.g. the avail-
ability of a large training corpus and extensive parameter search in order to
tune the large amount of model parameters. Layered HMMs attempt to re-
duce this complexity by training layers independently [9]. Bayesian networks
are by far the most flexible framework for reasoning and have been applied to
the recognition of human activities, e.g. [4]. Moreover combinations with other
reasoning approaches, such as PCFGs have been attempted, e.g. [7].

Research work relying on PCFGs for activity recognition have been pre-
sented in the domain of image recognition mainly, e.g. Moore and Essa [8],
Ivanov and Bobick [6] and Yamamoto et al. [11]. Moore and Essa used the
Earley-Stolcke parsing algorithm to detect activities in the card game Black
Jack. The identification of player strategies were targeted. The authors pro-
posed a complex error handling concept. Ivanov and Bobick demonstrated
single recognition results for music conduction and activity surveillance at a
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parking lot. A simpler error handling was used in this work. Yamamoto et al.
applied PCFGs to the Japanese tea ceremony and tracked the correct activity
execution.

10.2. Sensing and detection principle

The sensing domains used for our approach in dietary behaviour monitoring
are further detailed in this section. Moreover the event detection method using
PCFGs is introduced and basic dietary behaviour models are presented.

10.2.1. On-body sensing domains

To analyse dietary behaviour, we evaluated three sensing domains that are
obviously related to dietary intake activities and provide insight into the eating
micro-structure. For each sensing domain different sensing modalities are used
to detect activity events in continuous data. The following event types are
derived:

1. Movement events from inertial sensors, e.g. gestures of the arms during
drinking or eating with specific tools.

2. Chew events from an ear-worn microphone sensor.

3. Swallow events from neck muscle contraction (Electromyography elec-
trodes) and a stethoscope microphone integrated into a sensor-collar,
worn at the neck.

Fig. 10.1 illustrates the applied sensing modalities and their respective po-
sitioning. Inertial sensors have been attached to the lower and upper arms and
the back, a microphone is worn at the ear and the sensor-collar at the neck.
Data acquisition using this setup is further described in Section 10.3.

Events for each sensing domain are discriminated into different categories:
for motion events we distinguished gestures using fork and knife, using a spoon,
drinking from a glass or bottle and simple hand-only gestures. A similar ap-
proach was taken for the chew and swallow events to discriminate the food
texture and food bolus consistency respectively.

The search for individual event types is regarded as independent pattern
detection problem. This detection was discussed in previous works [1–3]. For
the remainder of this paper a correct detection of these events was assumed in
order to analyse the grammar modelling feasibility.

We refer to a sequence of the events containing motion EM , chew EC

and swallow events ES as an intake cycle with the number of occurrences
NM , NC , NS , Eq. 10.4.
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Microphone
position

Sensor collar
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Upper arms
inertial sensors

Lower arms
inertial sensors

Figure 10.1. Schematic sensor positioning at the body.

ECycle = ( ENM

M , ENC

C , ENS

S )

with NM = 1, NC ≥ 1, NS ≥ 1
(10.4)

We restricted our intake cycle model to consist of one initial movement
event only, NM = 1. This is useful in order to segment individual intake cycles
and analyse the natural processing of these single “bites” in isolation. The food
type estimation is facilitated by the abstraction, since the food item will not
change during a cycle. Certain cycles event types may not be available in all
intake cycles, e.g. there are usually no chew events for drinking activities.

10.2.2. Earley-Stolcke parsing algorithm

The aim of our event sequences analysis is to derive an event level segmentation
that resembles the intake cycles and classify the food type in parallel. For this
goal events are interpreted as terminal symbols of an Earley-Stolcke parser.

The parser processes symbols of the input stream sequentially by applying
the defined PCFG. While processing, the parser keeps track of all possible
derivations of the symbol sequence. With every new input symbol the number
of possible derivations is increased as new alternatives appear or decreased
when multiple solutions are resolved. For this purpose the parser keeps a set
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of states for each position in the input stream. A state is described by the
notation shown in Eq. 10.5.

i : kX → λ.µ [α, γ], with λ, µ ∈ (NT ∪ T )
∗

(10.5)

The index i, (i ≥ 0) and the dot “.” refers to the current position in the
input stream, index k, (k ≤ i) indicates the begin of a sub-string given by the
non-terminal X . The variables α and γ refer to forward- and inner probability
respectively. The forward probability αi(kX → λ.µ) is the summarised proba-
bility of all paths of length i that end at kX → λ.µ. The inner probability γ is
the summarised probability of all paths of length i−k starting at k :k X → .λµ
and ending at i :k X → λ.µ.

The Earley-Stolcke parsing algorithm consists of the states Prediction,
Scanning and Completion. A brief summary of the algorithm operation is pro-
vided below, a more in-depth elaboration can be found in [10]. For every input
symbol the states are processed and the probabilities α, γ are updated. In the
prediction step all non-terminals are expanded as long as non-terminal symbols
are available. In the scanning step a new input symbol is read and matched to
a terminal. When a match was found, the position index i is incremented. All
expansions that are not matched in this step are omitted from the current set
of states. The completion step is the finalisation of the non-terminal derivation.
All fully expanded non-terminals are added to the set of states. Prediction and
completion steps can have loops due to cyclic expansions. These are resolved
by the parsing concepts left corner relation and unit production relation [10].

A vital aspect for the PCFG-application in activity parsing is the handling
of errors in the symbol sequence. Many related works expect that the input
has a low error rate, e.g. Yamamoto et al. [11] and Moore et al. [8]. However
the latter work provides a full framework to cope with multiple insertions, sub-
stitutions and deletions by hypothetically continuing parsing paths. It can be
assumed that the complexity of the parsing algorithm increases significantly
due to this complex error handling. Ivanov and Bobick [6] utilised grammar
modifications and multivalued input vectors to address insertion and substitu-
tion errors. In this paper, we followed the approach of Ivanov and Bobick.

10.2.3. Parsing of dietary activities

Since the relevant activities are very different regarding their activity event
structure, e.g. eating and drinking consist of different events, each type of
intake cycle was modelled with a dedicated PCFG. For each such PCFG we
were interested in solving the scoring problem and determine, how well the
current event sequence match the specific grammar.

Fig. 10.2 shows the parsing concept and the parser instantiations used in the
evaluation. Events generated from one or multiple sensor pattern detectors are
parsed by N parsers, where N equals the number of different PCFGs. Using a
dedicated parsing instance for each grammar, provides a scalable solution that
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can tolerate multiple differently structured nutrition activities. Eventually all
parsing results are combined to a final decision based on the best matching
sequence indicated by the parser forward probability.

Activity
events

Parser 1

Parser 2

...

Parser N

Result
combination

Identified
intake cycle

Figure 10.2. Concept of parsing using different PCFGs.

10.2.4. Probabilistic models for eating and drinking

For eating cycles we exploited the freedom of the parsing concept by modelling
different foods and food categories by an individual grammar. Eq. 10.6 de-
scribes a generic rule for eating based on the intake cycle specification provided
above (Eq. 10.4). Every cycle is described by an initiating movement symbol
followed by non-terminal chew and swallow symbols1. The non-terminal sym-
bols are expanded to a sequence of chew and swallow terminals based on the
received chew and swallow events. The model is restricted to swallow terminals
from chewed foods only, hence ES,Chewed.

FOOD → EM CHEW SWALLOW [1.0]

CHEW → EC [0.1]

| EC CHEW [0.9]

SWALLOW → ES,Chewed [0.5]

| ES,Chewed SWALLOW [0.5]

(10.6)

The eating grammar shown above accounts for the number of occurrences of
chew and swallow events (NC , NS) by the probabilities associated to each pro-
duction rule. Typical food intake cycles contain multiple chew events, described
by a high probability of one chew event followed by further chew events (0.9),
while the derivation of a single chew event indicates the end of a chew sequence.

1Following the nomenclature in related works, non-terminal symbols are printed in upper
case letters.
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These probabilities have been chosen manually. Swallow events are modelled
in this grammar as finalisation of the intake cycle occurring as one or multiple
events.

Contrary to the eating cycle grammar, drinking requires less event types.
Here, chewing is not involved in the cycle. Similar to the eating grammar,
multiple swallowing events may occur. The movement is restricted to the drink
gesture, EM,Drink. For drinking a swallow terminal ES,F luid (fluid bolus item)
is required. The grammar is shown in Eq. 10.7.

DRINK → EM,Drink SWALLOW [1.0]

SWALLOW → ES,F luid [0.5]

| ES,F luid SWALLOW [0.5]

(10.7)

These grammar rules are applied and further discussed in the evaluation
described in Section 10.4.

10.3. Evaluation procedure

10.3.1. Evaluation data set

In order to analyse the performance of our parsing approach we recorded a
data set of eating and drinking activities using the sensors as described in Sec-
tion 10.2 above. The sensors were positioned as shown in Fig. 10.1. While the
test user was eating different food products an observer annotated the record-
ings online. In a post-processing step this annotation was manually refined by
reviewing the waveforms to obtain sections that reflect the boundaries of the
described event types. The annotation information for every event was then
used as input for the parsing evaluation.

Tab. 10.1 summarises the recorded foods. In total 3799 events were recorded
and annotated from eating and drinking of one test user consuming 11 foods
in 162 intake cycles.

10.3.2. Performance analysis

Since there is no automatic algorithm training step involved in the applied
parsing approach, we did not partition the data into training and testing set.
Instead, we used the entire data set to test the parsing and the grammars.

To analyse performance, we utilised the metrics Precision and Recall, com-
monly used for algorithm evaluation in information retrieval applications.
These metrics are derived as follows:

Recall =
Recognised intake cycles

Relevant intake cycles
(10.8)
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Table 10.1. Description of the recorded food data set.

Food item Description

Drink Drinking from a glass. Drinking does not involve chewing.

Cornbar, Bis-
cuit, Peanuts,
Potato chips

Eating the food items using the hand to bring the food to the
mouth. The foods are of dry texture during chewing.

Lasagna Eating lasagna using fork and knife. The cooked food is of soft
texture. The swallow bolus is of variable consistency.

Lettuce Eating using fork and knife. The food is of wet texture. The
swallow bolus is of variable consistency.

Bread Eating bread using the hand to bring the food to the mouth. The
food is of soft texture during chewing.

Soup Eating a soup from a bowl using a spoon. This food item provides
no chewing events.

Apple Eating an apple using the hand to bring the food to the mouth.
The food is of wet texture. The swallow bolus is of variable
consistency.

Yogurt Eating from a mug using a spoon. This food item provides no
chewing events. The swallow bolus is of variable consistency.

Precision =
Recognised intake cycles

Retrieved intake cycles
(10.9)

Relevant intake cycles corresponds to the annotated number of actually
conducted intake cycle instances. Retrieved intake cycles represents the number
of cycles returned by the parsing algorithm. Finally, Recognised intake cycles
refers to the correctly returned number of cycles. Both metrics are defined for
the value range [0, 1]. A recall value close to one indicates a good sensitivity of
a method to return relevant intake cycles, while a precision value close to one
indicates that the method does return few insertion errors.

10.4. Results

In the first analysis step we aimed at exploring the sequential properties of
the intake cycles and feasibility of the grammar models. For this purpose we
applied the simple eating and drinking grammars as defined in Eq. 10.6, 10.7
to the individual foods. For movement and swallow events the abstract event
instances were used as described in Tab. 10.1. For chew events we assumed in
this step that every food can be modelled by a food-specific symbol. Fig. 10.3
shows the achieved parsing performances using the metrics precision and recall.
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Figure 10.3. Performance chart for the intake cycle detection of the simple food

grammars shown in Eq. 10.6, 10.7. For precision and recall, best performance is found

towards high values.

These performance values show that the simple model is not a feasible
solution for all food types. For several food items many insertion errors were
retrieved, indicated by the low precision value at ∼0.6 or below. The used
grammar requires a strict sequence of chew and swallow events while many
foods contain alternating chew and swallow events, e.g. apple and lasagna.
These food items contain more fluid than dry foods, e.g. peanuts, that lead to
increased swallow rates. Moreover, the intermediate swallows are an additional
food-specific feature that could be explored.

In the following step the food model was refined for non-dry foods to in-
corporate the typical intermediate swallowing activity. Eq. 10.10 shows the
updated grammar.

FOOD → EM MAST
+ [1.0]

MAST → CHEW SWALLOW CHEW [0.2]

| CHEW SWALLOW MAST [0.8]

CHEW → EC [0.1]

| EC CHEW [0.9]

SWALLOW → ES,Chewed [0.5]

| ES,Chewed SWALLOW [0.5]

(10.10)

+MAST. = Mastication

Using this model, we repeated the analysis of step 1. Fig. 10.4 shows the
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parsing performances for this analysis using precision and recall. A clear im-
provement for food items containing fluid was achieved, e.g. for lasagna the
precision increased from ∼0.6 to 1 indicating that no insertion errors were
retrieved when parsing the data set with this grammar.

Performance
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Soup

Bread

Lettuce
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Biscuit

Cornbar

Apple

Figure 10.4. Performance chart for the intake cycle detection of the refined non-

dry food grammars shown in Eq. 10.10. For precision and recall, best performance is

found towards high values.

In a further step we analysed the performances of intake cycles grouped into
food categories. We defined the groups based on the similarity of food texture,
movement and swallow type. The group “Dry” contained bar, biscuit, peanuts
and chips. Yogurt and soup were grouped into “Spoon” since no difference
in the activity event sequences was expected for the food items: movement
and swallows are similar for both foods and both are not chewed. Fig. 10.5
shows the precision and recall results for the “Dry” and “Spoon” food groups
in comparison with the remaining foods.

The very good performance for the group “Dry” indicates that all food
items in this group are similar in their event sequence structure. However the
new “Spoon” group suffered from high deletion errors, indicated by the low
recall. This is mainly due to the weak matching of the grammar on yogurt
intake, since yogurt consisted of highly fluctuating number of swallows.

10.5. Conclusion

We presented an approach to detect dietary intake cycles from on-body ac-
tivity event sequences. The event sequences were modelled using probabilistic
grammars. The approach was evaluated with sensor data annotations and the
algorithm performance was derived for detecting intake cycles.
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Figure 10.5. Performance chart for detection of intake cycles of “Dry” and “Spoon”

groups in comparison with the remaining foods. For precision and recall, best per-

formance is found towards high values.

We analysed different variants of the grammars, starting with simple and
strict sequencing rules. The analysis however showed, that these rules were
not capable to catch intermediate swallows in certain food cycles. Hence, we
adapted the grammars to better accommodate the observed sequences. With
the refined rules the detection rates of non-dry foods improved clearly. This
analysis addressed the basic intake cycle modelling on individual foods. In order
to handle multiple food items a further abstraction from individual foods was
needed. For this purpose the food items were grouped by similar texture and
intake characteristics. We analysed the feasibility of using one grammar for the
detection in each food group.

Overall detection rates of ∼80% were achieved for precision and recall in
the food category analysis. This indicates that the intake cycle modelling using
probabilistic grammars is a feasible solution. The evaluation was performed
with event data acquired from one subject only. However we expect that the
approach is scalable to multiple users since no automatic model training was
used that would fit the model to the event data. Hence the grammar models
applied in this work were rather tuned for food features than for the test user.

10.6. Future work

We plan to further analyse the PCFG approach for detecting dietary intake
activities. While the general feasibility of probabilistic grammars was shown
in this work, the interconnection with event detection methods will be investi-
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gated. Moreover we intend to evaluate the method on further food items and
test users.
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Glossary

Terms and definitions

Activity event Application-specific non-repetitive pattern in
continuous sensor data.

Anorexia nervosa Eating disorder, obsessive fear of gaining
weight.

Binge eating Eating disorder, periodically uncontrolled food
consumption.

Bulimia nervosa Eating disorder, recurrent binge eating followed
by extreme compensatory behaviour.

Calorimetry Measurement of heat as a result of physical
reactions.

Chewing cycle One period of mandible closing and reopen-
ing aiming at food breakdown between teeth.
See Chewing event.

Chewing event Used to reference the closing phase of a chewing
cycle.

Chewing sequence All consecutive chewing cycles used to consume
one food piece from ingestion into the mouth
until final swallow. (Intermediate swallowing
may occur between chewing cycles.)

Composite activity Activity combined from one or more sub-
activities in a activity hierarchy.

Crash dieting Diet, extreme in its deprivations targeting
rapid weight loss.

Cricoid cartilage Cartilage ring around trachea, caudal of the hy-
oid bone and thyroid cartilage.

Deletion error False negative; missed activity event of an
recognition algorithm.
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Digestion Mechanical and chemical breakdown of food for
absorption in the gastro-intestinal tract.

Ear occlusion In audiology and hearing: Extend of ear canal
insulation for air-conducted sound transmission
with environment.

Embedding data Sensor data enclosing relevant temporal data
sections (events) in the application’s scope.
Embedding data does not represent relevant
sections itself.

Oesophagus Organ (muscular tube) transporting a food bo-
lus from the pharynx to the stomach.

Gastro-intestinal
tract

System of organs that decompose food and ab-
sorb nutrients (digestive tract, gastrointestinal
tract, GI tract).

Insertion error False positive; incorrectly retrieved activity
event of a recognition algorithm.

Intake cycle Composite activity, used to describe food con-
sumption, consisting of intake gesture, chew-
ing, and all swallowing events. The chewing se-
quence is a subset of the intake cycle.

Intake gesture Movement of arms and torso intended at food
intake.

Malnutrition Improper or insufficient diet (nutrients) to
maintain normal body functions, caused by
under- or over-nutrition.

Metabolic rate Speed of energy conversion in cells.

Metabolism Collection of chemical reactions to convert en-
ergy in living cells.

NULL class See Embedding data.

Nutrients Food substances required for metabolism, in-
cluding proteins, fats, carbohydrates, vitamins,
dietary minerals, and water.

Occlusion See Ear occlusion.

Orthorexia nervosa Eating disorder, fixation on food considered
healthful.
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Pharyngeal move-
ment

Swallowing manoeuvre aiming at food trans-
port form the mouth into the oesophagus with-
out contaminating the airway.

Precision Performance measure indicating the number of
insertions, defined as the number of recognised
activity events divided by the the number of
retrieved activity events.

Recall Performance measure indicating the number of
deletions, defined as the number of recognised
activity events divided by the the number of
relevant activity events.

Recognised activity
event

Activity event that was retrieved and counted
as correct, according to the performance evalu-
ation procedure.

Relevant activity
event

True activity event, existing in the dataset and
annotated as ground truth.

Retrieved activity
event

Activity event that was reported by the recog-
nition procedure. Subsequent performance
evaluation accounts retrieved events as cor-
rect (see Recognised activity event) or error (see
Insertion error)

Thyroid cartilage Largest cartilage of the laryngeal skeleton.
The laryngeal prominence (Adam’s apple) is a
formed by the angle of this cartilage.
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Abbreviations

ADM Automatic dietary monitoring

AGREE Event fusion by agreement in multiple sources

a.u. arbitrary unit

BMI Body mass index

C4.5 Decision tree classification algorithm

CEP Cepstral coefficients

CL Intake gesture “Cutlery” (using fork and knife)

COMP Event fusion by comparison of multiple sources

CS Classification stage

dB Decibel

DK Intake gesture “Drink”

ECG Electrocardiogram

EGG Electrogastrography

EMG Electromyography

FFT Fast fourier transform

FN False negatives

FP False positives

FSS Feature similarity search

FSR Force sensitive resistors

GI Gastro-intestinal

HCI Human computer interaction

HD Intake gesture “Hand” (using hand only)

HMM hidden Markov model

Hz Hertz

IH-EMG Infra-hyoid electromyography

IMU Inertial measurement unit

KNN k-nearest neighbour classifier

LDA Linear discriminant analysis (also known as Fisher dis-
criminant analysis)

LR Event fusion by logistic regression

Mic Microphone

N/A not applicable

NB Näıve Bayes classifier

n.d. not defined

NSGA Non-dominated sorting genetic algorithm
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NT Non-terminal

PCFG Probabilistic context-free grammar

PDA Personal data assistant

PR Precision-recall

PS Preselection stage

RFID Radio frequency identification

RMS Root mean square

ROC Receiver Operator Characteristics

SEMG Surface electromyography

SP Intake gesture “Spoon”

SM-EMG Submental electromyography

SWAB Sliding window and bottom-up

TEF Thermic effect of food intake

TN True negatives

TP True positives

UEM Universal eating monitor

WHO World Health Organisation
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