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Abstract

In a large majority of regions where forestry activities occur, roads are the backbone of their
efficient management. Automatic planning of a road network is an ongoing, challenging task.
Advances have been aided by the increased availability and accuracy of digital terrain models,
greater computing power, and improvements in optimization techniques. Defining the objectives
and deriving adequate objective functions are crucial steps in guiding the solution toward an ideal
network, especially when individual goals may conflict. For example, whereas the conservationist
might prefer that a layout minimizes any detrimental impacts on the environment, the forest
landowner may favor cost-minimal roads while the forest operator would like to have a dense
network in order to reduce transportation costs. This thesis introduces models for three objective
functions: (1) forest road construction and maintenance costs, (2) negative ecological effects
from such roads, and (3) the suitability, or attractiveness, of a network for cable-yarding. Case
studies in mountainous project areas illustrate the trade-offs among these conflicting goals, and
demonstrate how to optimize different objectives in order to make an optimal decision overall.





Contents

List of Symbols and Abbreviations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
Preface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
Zusammenfassung . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
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a year (lat. annus)
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ing on the problem size on a non-deterministic Turing machine. Up to now,
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NP-hard For problems of the complexity class NP-hard there is no known algorithm
which is able to solve the problem in polynomial time depending on the prob-
lem size with a deterministic Turing machine. To find the mathematical best
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limited time span. Most probably NP-hard � N .
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projects
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on the problem size on a deterministic Turing machine. A deterministic Turing
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however it is one of the unsolved problems in Mathematics.
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Preface

In engineering sciences, the development of new tools for planning forest road networks is not
considered a top subject. For example, in central Europe, most networks have already been
designed and, in some regions, the existing system is extremely dense, thereby encumbering
high maintenance costs. However, in rural areas, forest roads are still the backbone of effective
management practices. Their existence is a main reason for our continued focus on this topic.

In the research described here, the root was expertise from the local forest agency for the
Canton of Uri in Switzerland. Located in a very important transit valley, this Canton requires
extremely well managed forests that can provide protection against such natural hazards as
rock fall, landslides, and avalanches. The aim in that region was to build an initial forest road
network in an otherwise roadless area. Due to the steepness of the terrain and the high rock
ratio of the subsoil, construction costs are very high. Therefore, in collaboration with a forest
engineer familiar with local conditions, ETH was asked to locate an economical and optimal
road network. While evaluating the existing optimization tools, we noted that none could handle
different geological types and steep terrain. Thus, these challenges led us to formulate a prototype
of our first road optimization model.

While installing these roads in the Canton of Uri, we were able to enhance our prototype for
general application. The goal was to develop a program for identifying an optimized network
that automatically fulfills all mathematical criteria. The benchmark for this was a conventional
approach involving an expert solution drawn on a map. Although the project described here did
not beat that benchmark at every point, we learned that some components of these newer tools
proved much better than an expert solution, while other features of the models were limited.
Because we acknowledge that we are not the first research group to deal with road network
optimization, here we have described a framework that entails different stand-alone tools and
allows for flexible use of those models. For example, it is possible that one management group
will choose to employ only our model for estimating road construction costs when devising their
particular decision-support system while others may opt to follow the general framework but
will also exchange or add some new components for their specific project area.

Because construction costs are a decisive factor in determining the general layout for forest
roads, we have expended considerable effort in developing a model that precisely predicts those
costs. Furthermore, I happen to have a strong affinity for basic forest engineering and soil me-
chanics, especially with regard to unstable subsoil. Thus, it is not surprising that such aspects
are some of the best verified components in the entire framework of this model. However, the
constraint of construction costs is not the only key to achieving good network design. Environ-
mental factors are also becoming more important, such that ecological models are incorporated
here in an attempt to find a multi-criteria optimization. In this particular research, two impor-
tant ecological topics are of major relevance: Capercaillie (a mountain grouse) and marshlands.
These tests were conducted primarily in the area of Wägital, Canton of Schwyz, which is lo-
cated on the northern slopes of the Swiss Alps. I undertook my evaluation of this region because
ETH has been utilizing it for research and teaching purposes since 2001. However, although the
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abundance of available data and expertise might ordinarily simplify such an evaluation, the fact
that this area has numerous contradictory goals, challenging geological subsoil, and different
ecological constraints means that execution of our proposed road network will not be realized
over its entire length.

This thesis comprises several components, a result of intensive, hard work based on experience,
discussions, and field verification. One component represents the standard modeling of construc-
tion costs. Another two components, however, are products of innovation. One of those is the
introduction of a new dimension for direction in the graph model. This new feature allows one
to solve layout problems using well-known graph algorithms. I got this idea while making a ski
tour in the Swiss Alps. Hiking with skis in a mountainous area is very similar to dealing with the
problem of building forest roads in steep terrain. In both situations, one must find a constant
gradient for the trail. Switchbacks on roads should be minimized because they necessitate high
construction costs, and they require hikers to expend much energy when maneuvering turns.

Another innovative point is the introduction of a different scale to the graph. The inspiration
for this came when my godchild and I were playing with a rubber ball. When a ball is bounced,
it will seek the lowest local position. If the ball is allowed to go into a staircase, it will of course
immediately begin to move downward; any surface unevenness is irrelevant then. However, when
that ball reaches the ground floor, it will cease bouncing and, instead, begin to roll. Even though
the ground may seem perfectly flat, just a bit of unevenness will determine whether that ball
stops or continues to roll. Now, back to road design. When we are looking for a minimum network
we can present the general road centerline in a resolution of about 10 m × 10 m. However, for
switchbacks, which are important contributors to the total costs of a project, we must adopt a
more precise resolution. Another parallel to the bouncing rubber ball is the fragility of certain
objects, such as vases and porcelain – these might correspond to weak subsoil or rare ecotypes
within the road model. By their very nature, both porcelain and delicate habitats must, of
course, be excluded from either the playground or the solution space.

These two innovations – turning constraints and applying a different scale to the graph – are
the most interesting facets of my thesis. Neither must be restricted to road network problems
only, and may, in fact, be appropriate when tackling other challenges as well. However, because
they are novel, their proposed utility has often led to some differences with reviewers, such that
we have not emphasized them too much in the ensuing publications. Nevertheless, we are very
pleased to report that the paper included here as the third chapter was judged by the Council
on Forest Engineering as the best presented paper in 2006.

The design tools that have become viable as a result of this thesis can find many applications.
I briefly describe four possible scenarios: (1) In steep terrain and difficult geology, the model can
be used to identify the minimum-cost road network, provided that spatial data and engineering
parameters are available in a small-scale resolution. Whereas Switzerland has only a few roadless
areas, regions in Eastern Europe, South and North America, or Asia provide much potential.
Nonetheless, even when a road network seems to be optimal for a specific location, its instal-
lation is not always possible. For example, we employed the existing model while conducting a
project in the Western Carpathians (Ukraine). However, that project will not be realized due to
a lack of investment capital from forest and wood enterprises. (2) In a project area that has two
or three objectives, such as minimizing construction costs and ecological penalties, the model
provides Pareto-optimal solutions. The benefit of our new model is demonstrated when we eval-
uate expertly designed road networks. Taking an analytical approach, we can judge whether the
solution is Pareto-optimal or else how far it is from the goal. (3) In central European countries,
many road networks were designed in the 1960s, or even before. Since then, their transporta-
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tion and harvesting systems have changed. In trying to meet current needs, the road density
has become too high but the pavement structure is not strong enough, resulting in expensive
maintenance. One possibility for decreasing such costs would be to reduce the existing network
while improving the remaining roads. In such cases, our model could solve those problems as
well. (4) Although these new tools have been developed for road network design, some ideas are
portable, and can be adapted for use in addressing challenges within other engineering sciences,
such as devising models for natural hazards. In fact, numerous debris-flow tools that are relied
upon by experts are based on a simple grid-raster model. Moreover, their results are sometimes
very startling. I am convinced that our enhanced neighborhood definitions and proposed graph
model with additional dimensions will provide better solutions.

The end of this Ph.D. project should be the start for solving future real-world problems. I
hope that engineers will be able to extract some ideas from this current report, and that they
and other research groups will recognize the potential available for collaborations.

Jürg Stückelberger
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Summary

In most regions that support forestry activities, roads are the backbone of efficient management.
Planning of a road network is still a challenging task, whether the goal is to design new routes
or to improve or reduce existing systems. Automatic road network planning is a very complex
locational problem that involves elevation, the geotechnical subsoil, different types of harvesting
systems, and ecological effects.

Most existing optimization tools for such planning do not work well in steep terrain due to
various shortcomings: (1) the assumption that road construction costs are homogenous over
the entire project area, (2) neglect of the turning constraints for a road centerline and limited
road directions, and (3) optimization of a road network for one objective only. The goal of the
thesis presented here was to remedy these shortcomings and provide a model framework so that
planners could automatically locate an optimal forest road network in mountainous areas of up
to 50 km2, and at a resolution of 10 m.

This problem is mapped here on a mathematical weighted graph. A graph (G) consists of a
set of vertices (V , i.e., nodes) and a set of edges (E, i.e., road links) between two vertices. The
weight (w) of an edge represents road costs or the ecological impact of a link. If one supposes that
the mandatory access points are known, the situation can be formulated as a Steiner Minimum
Tree problem (SMT). For example, if the weight of the edges represents construction costs, the
SMT produces a cost-minimal network between given mandatory access points. There is most
probably no exact algorithm that can solve this within a polynomial time deterministically; thus,
the problem is NP-hard. My thesis, therefore, presents some intelligent heuristics for finding
near-optimal solutions to this problem.

In the first step, we try to identify the cost-minimal network. Our focus is on road life-cycle
costs, which comprise expenses for construction and maintenance over the life-cycle period. To
solve this problem, we require good models that can give accurate cost estimates (cf., Chap-
ter 1) as well as a useful model representation for forest road alignment (cf., Chapter 2). In
our second step, we incorporate other objectives, including harvesting-attractiveness and penal-
ties for negative ecological impacts. These bi- and tri-objective problems call for multi-criteria
optimization (cf., Chapter 3). Several optimal alternatives are made available, depending on
the preferences of the stakeholders for different objectives. For example, a conservationist may
prefer a road with no ecological disturbance whereas the forest landowner would rather have a
cost-minimal solution. A solution is deemed Pareto-optimal if it is not possible to decrease one
objective without increasing another. We call the set of all Pareto-optimal solutions the Pareto
set or Pareto frontier. Depending on the shape of the trade-off between different objectives,
there is a subset of Pareto-optimal solutions located on the convex hull in the criterion space.
The mathematical formulation for this specific subset of Pareto-optimal solutions is described
in Chapter 4. For practical applications, these solutions can be considered the most interesting.
Whereas in Chapter 3 we attempt to find Pareto-optimal solutions for bi-objective functions, in
Chapter 4 we also examine tri-objective functions.

The model framework was tested in different project areas over steep terrain. We assumed the
mandatory access points for the road network were known, and we limited our focus to harvesting
via cable-yarding. Only two penalties were applied for ecological disturbance: to capercaillie, an
endangered breeding bird (Tetrao urogallus), and to rare ecotypes (marshland). The following
are our major findings:

(1) A cost-estimating procedure that incorporates slope gradient and geotechnical properties of
the subsoil results in an optimal road network that incurs about 25% less in construction costs.
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However, its total length is about 10% longer compared with state-of-the-art models where
construction costs are assumed to be homogenous over the entire project area. Furthermore, a
model that includes slope gradient but neglects the geotechnical subsoil results in 17% higher
costs compared with our newly proposed model.

(2) The representation of a forest road is the crucial qualification for accurate network planning.
The steeper the terrain, the more important it is to choose a model that is able to handle turning
constraints and several different road directions. State-of-the-art models, which have a limited
set of directions and do not map turning constraints, cannot find a feasible solution in areas
where the average slope gradient is > 35%. Furthermore, models that do include different road
directions but neglect turning constraints will project network costs that are about 50% over
the optimum.

(3) Using our methods, we have found it possible to determine Pareto-optimal solutions.
The criteria of these solutions are located on a convex trade-off surface, as predicted by the
multi-criteria optimization theory. These evaluations show that not only do economic objectives
interact with ecological goals but also different ecological goals operate inversely. In one test
area, a road network that can minimize one of our two ecological impacts encumbers two to
three times higher costs, and increases other ecological disturbances by 20% to 40%.

The preferences for various objectives (i.e., weighting factors of the objective function) by the
stakeholders greatly influence these solutions. Even relatively small changes in those preferences
may cause the decision to jump from one Pareto solution to a completely different one. Knowing
the trade-offs associated with these individual objectives helps the stakeholders make the final
Pareto-optimal decision.

Our approach for solving the road network problem through a graph representation and SMT
is very favorable when the graph is static and the weight of an edge (road link) can be assigned
by a weighted sum of the different objectives. This is indisputably correct for road construction
costs. For our two chosen ecological impacts, those assumptions seem to be reasonable as well.
However, they are no longer valid when we incorporate forest harvesting-attractiveness. If a
particular road link is chosen, the attractiveness for neighboring links may decrease. Applying
our approach has one large shortcoming in that we are unable to handle the dynamic weights of
a graph. Nonetheless, for low-weighting factors of harvesting-attractiveness, this model produces
reasonable and nearly optimal solutions.
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Zusammenfassung

In fast allen Waldgebieten, in welchen aus ökonomischen oder ökologischen Gründen, oder zur
Abwehr von Naturgefahren eingegriffen wird, sind Forststrassen die Grundvoraussetzung für eine
effiziente Bewirtschaftung. Die Planung eines forstlichen Erschliessungsnetzes ist nach wie vor
eine herausfordernde Aufgabe, beispielsweise für den Entwurf eines neuen Strassennetzes, für
den Ausbau bestehender Strassen oder für den Rückbau von Teilen des existierenden Strassen-
netzes. Computergestützte, vollautomatische Strassennetzwerkplanung ist ein sehr komplexes
räumliches Problem, welches die Topographie, den geotechnischen Untergrund, verschiedene
Holzerntesysteme und die Auswirkungen auf die Umwelt einschliessen muss.

Die meisten existierenden Optimierungsprogramme für die Planung forstlicher Erschlies-
sungen sind ungeeignet für die Anwendung im steilen Gelände, da sie folgende Schwächen
aufweisen: (1) die Annahme, dass die Baukosten im gesamten Projektgebiet gleich sind, (2) Ver-
nachlässigung der massgebenden Restriktionen für Richtungsänderungen der Strassenlinie und
stark limitierte mögliche Strassenrichtungen und (3) Optimierung des Strassennetzwerkes für
nur eine Zielgrösse. Die vorliegende Arbeit hat zum Ziel, diese Schwächen zu beheben und stellt
ein Komponentenmodell vor, welches für ein Projektgebiet von bis zu 50 km2 vollautomatisch
ein optimales forstliches Erschliessungsnetz mit einer Genauigkeit von 10 m entwerfen kann.

Das Problem wird auf einem mathematischen gewichteten Graphen abgebildet. Ein Graph (G)
besteht aus einer Menge von Knoten (V , Punkte) und einer Menge von Kanten (E, Strassen-
abschnitte) zwischen zwei Knoten. Jede Kante wird mit einem positiven Wert gewichtet, der
beispielsweise den Baukosten oder dem ökologischen Einfluss eines Strassenabschnittes ent-
spricht. Angenommen, die positiven Fixpunkte einer Strasse sind bekannt, so kann das Problem
als minimaler Steinerbaum (engl. Steiner Minimum Tree, SMT) formuliert werden. So führt
ein SMT mit dem Gewicht “Baukosten” zum kostenminimalen Strassennetzwerk, welches alle
Fixpunkte verbindet. Leider ist kein Algorithmus bekannt, der dieses Problem in polynomialer
Zeit deterministisch lösen könnte, das Problem ist daher NP-hart. Die vorliegende Arbeit zeigt
intelligente heuristische Ansätze, wie das Problem nahezu optimal gelöst werden kann.

In einem ersten Schritt wird versucht, ein baukostenminimales Strassennetzwerk zu finden.
Es werden die gesamten Lebenszykluskosten einer Strasse betrachtet, welche die Baukosten im
ersten Jahr sowie die laufenden und periodischen Unterhaltskosten der gesamten Lebensdauer
der Strasse umfassen. Um das Problem zu lösen, ist ein Modell erforderlich, welches sowohl diese
Kosten zuverlässig schätzen kann (vgl. Kapitel 1) als auch die Linienführung der Strasse korrekt
abbildet (vgl. Kapitel 2). In einem zweiten Schritt wird versucht, weitere Zielgrössen, wie die
Güte für die Holzernte und Straffunktionen für negative ökologische Einflüsse zu berücksichtigen.
Multikriterielle Optimierungstechniken erlauben, diese Zwei- und Dreizielprobleme zu lösen (vgl.
Kapitel 3). Je nach den Prioritäten der Entscheidungsträger resultieren unterschiedliche opti-
male Lösungen. Beispielsweise bevorzugt ein Naturschützer eine Strasse mit möglichst geringem
negativen Einfluss auf die Umwelt, während eine Waldbesitzerin eine kostengünstige Strasse
bevorzugt. Eine Lösung ist Pareto optimal, wenn es nicht mehr möglich ist, eine Zielgrösse
zu verbessern, ohne andere Zielgrössen zu verschlechtern. Die Menge aller Pareto optimalen
Lösungen wird Paretomenge oder Paretogrenze genannt. Abhängig von der Form der Wechsel-
wirkung dieser Zielgrössen gibt es eine Untermenge der Paretomenge, die auf einer konvexen
Hülle der Zielmenge liegt. Die mathematische Formulierung für diese Paretomenge ist in Kapi-
tel 4 beschrieben. Für praktische Anwendungen sind fast immer nur Lösungen dieser Pare-
tomenge von Interesse. In Kapitel 3 wird versucht, die Paretomenge zwischen zwei Zielgrössen
zu finden, in Kapitel 4 werden zusätzlich die optimalen Lösungen zwischen drei Zielgrössen
untersucht.
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Das Komponentenmodell wurde in verschiedenen Projektgebieten im steilen Gelände ange-
wandt. In dieser Arbeit wird davon ausgegangen, dass die Fixpunkte bekannt sind und nur
ein Holzerntesystem mit Seilkran zur Anwendung kommt. Zudem werden nur zwei negative
ökologische Auswirkungen betrachtet: (1) das vom aussterben bedrohte Auerhuhn (Tetrao uro-
gallus) und (2) seltene Feuchtgebiete.

Aus den Ergebnissen lassen sich folgende Haupterkenntnisse ableiten:
(1) Eine Baukostenfunktion welche die Hangneigung und die geotechnischen Eigenschaften des

Bodens berücksichtigt führt zu einem optimalen Strassennetzwerk, welches etwa 25% kostengüns-
tiger jedoch etwa 10% länger ist, verglichen mit herkömmlichen Modellen, welche die Strassen-
baukosten im Projektgebiet als konstant voraussetzen. Ein Modell, welches nur die Hangneigung
berücksichtigt, jedoch den geotechnischen Untergrund vernachlässigt, führt zu einer Lösung mit
etwa 17% höheren Kosten, verglichen mit dem neu entwickelten Modell.

(2) Die Art und Weise, wie eine Forststrasse in einem Modell abgebildet wird, ist der entschei-
dende Faktor für die Güte der daraus resultierenden Erschliessungsplanung. Je steiler das Ge-
biet, desto entscheidender ist es, ein Modell zu wählen, welches Richtungsänderungen und
mehrere verschiedene Strassenrichtungen abbilden kann. Herkömmliche Modelle, welche nur eine
beschränkte Anzahl möglicher Richtungen aufweisen und Richtungsänderungen nicht korrekt
berücksichtigen, sind nicht in der Lage, machbare Lösungen in Projektgebieten mit durchschnitt-
lichen Hangneigungen von über 35% zu finden. Modelle, welche viele verschiedene Strassen-
richtungen einschliessen, jedoch die Richtungsänderungen vernachlässigen, führen zu Lösungen,
welche 50% über den optimalen Kosten liegen.

(3) Mit den in der vorliegenden Arbeit vorgestellten Methoden ist es möglich, Pareto optimale
Lösungen zu finden. Die Zielgrössen der Paretomenge liegen auf einer konvexen Hüllkurve, so
wie dies in der multikriteriellen Optimierungstheorie vorhergesagt wird. Die Auswertung zeigt,
dass nicht nur ökonomische Ziele gegenläufig zu ökologischen Zielen sind, sondern dass sich auch
verschiedene ökologische Ziele gegenseitig konkurrenzieren. Im vorliegenden Untersuchungsgebiet
führt ein Strassennetz, welches eine der zwei Zielgrössen minimiert, zu zwei– bis dreimal höheren
Kosten und erhöht die negative Auswirkung der anderen ökologischen Zielgrösse um 20% bis
40%.

Die Lösung ist stark abhängig von den Prioritäten der Entscheidungsträger für die einzel-
nen Zielgrössen (d.h. die Gewichtung der einzelnen Zielfunktionen). Eine kleine Änderung der
Zielgewichtung kann zu völlig unterschiedlichen optimalen Lösungen führen. Die Lösung springt
an jener Stelle von einem Pareto Optimum zu einem völlig andern Pareto Optimum. Sind die
Wechselwirkungen verschiedener Zielgrössen bekannt, so ist es für die Entscheidungsträger viel
einfacher, die gewünschte Pareto optimale Lösung auszuwählen.

Der in dieser Arbeit vorgestellte Ansatz, das Strassennetzwerkproblem mit Hilfe eines Graphen
und eines SMT zu lösen, ist sehr vorteilhaft, wenn es sich dabei um statische Gewichte der Kan-
ten (Strassenabschnitte) handelt, die mittels einer gewichteten Summenfunktion verschiedener
Zielfunktionen hergeleitet werden können. Für Strassenbaukosten ist dieser Ansatz zweifelsfrei
korrekt. Für die ökologischen Auswirkungen scheint dieser Ansatz ebenfalls vernünftig zu sein.
Dieser Ansatz ist jedoch nicht mehr gültig, wenn die Attraktivität für die Holzernte abgebildet
wird. Wenn ein Strassenabschnitt gewählt wird, so kann die Holzernteattraktivität von benach-
barten Strassenabschnitten stark abnehmen. Der gewählt Ansatz ist nicht fähig, dynamische
Veränderungen der Kantengewichte zu verarbeiten. Dies ist der grösste Schwachpunkt des Mo-
dells der vorliegenden Arbeit. Dennoch führt das Modell zu fast optimalen Lösungen, so lange
kleine Gewichtungsfaktoren für die Holzernteattraktivität gewählt werden.



11

Résumé

Les dessertes forestières sont la base d’un aménagement du territoire efficace pour la plupart des
régions où l’activité forestière est importante. La conception d’un réseau de dessertes demande
une grande réflexion pour planifier de nouvelles routes, améliorer ou redimensionner des routes
existantes. L’automatisation de la conception d’un réseau est un problème spatial très complexe
qui doit tenir compte de plusieurs paramètres tels que la topographie, la géotechnique du sol,
les systèmes d’exploitation du bois et les contraintes écologiques.

La plupart des logiciels existants pour l’optimisation des réseaux de dessertes forestières sont
inappropriés pour les terrains à forte pente, parce qu’ils présentent les désavantages suivants:
(1) Les coûts de construction sont homogènes pour toute une surface; (2) ils négligent les con-
traintes liées aux virages et les directions potentielles pour la route sont très limitées; (3) il n’est
possible d’optimiser la route qu’en fonction d’une seule variable.

Le présent travail a pour but de contrer ces désavantages et propose un modèle à plusieurs
composantes qui est capable de générer automatiquement un réseau de dessertes forestières pour
une surface de 50 km2 avec une précision de 10 mètres.

Le problème est représenté sur un graphe mathématique (G). Le graphe consiste en un en-
semble de sommets (V , nœuds ou points de la desserte) et un ensemble d’arêtes (E, connections
ou sections de la desserte) entre deux sommets. Chaque arête a un poids qui représente par
exemple les coûts de construction ou les contraintes écologiques d’une section. Supposant que
les points fixes sont connus, le problème peut alors être formulé par l’arbre de Steiner de poids
minimal (angl. Steiner Minimum Tree, SMT). Par exemple, si les arêtes représentent les coûts, le
SMT donnera le réseau connectant les points fixes avec les coûts minimaux. Malheureusement,
il n’existe pas d’algorithme connu qui puisse résoudre le problème en temps polynomial. On
parle alors de problème NP-dur. Ce travail présente des approches heuristiques intelligentes qui
permettent de résoudre le problème de façon quasi optimale.

En premier lieu, on recherche le réseau de dessertes aux coûts minimaux. Tout le cycle de
vie de la desserte est considéré, c’est-à-dire que non seulement les coûts de construction sont
pris en compte, mais également les coûts de maintenance et d’entretien sur toute la durée de
service de la desserte. Pour cela, il est nécessaire d’avoir un modèle qui estime les coûts avec
fiabilité (Chapitre 1). Dans un deuxième pas, on considère d’autres paramètres tels que les
besoins pour l’exploitation du bois ou les contraintes écologiques. Pour résoudre ce problème
plus complexe, des techniques d’optimisation multicritère sont utilisées (Chapitre 3). Le résultat
sera entièrement lié aux choix et préférences des décideurs. Par exemple, un écologiste va favoriser
une desserte forestière avec un minimum d’impact sur l’environnement tandis qu’un propriétaire
va se soucier essentiellement des coûts. Les solutions obtenues sont appelées optima de Pareto,
s’il n’est pas possible d’améliorer le résultat d’un paramètre sans empirer le résultat d’un autre
paramètre. L’ensemble des optima de Pareto est l’ensemble de Pareto ou la frontière de Pareto.
Selon l’interaction entre les paramètres, il existe un sous-ensemble de Pareto qui se trouvent
sur une enveloppe convexe. La formulation mathématique est indiquée au Chapitre 4. Pour la
pratique, seules les solutions de cet ensemble des optima de Pareto sont intéressantes. Dans le
Chapitre 3, des solutions des optima de Pareto sont trouvées pour deux paramètres et dans le
Chapitre 4 pour trois paramètres.

Les différents composants du modèle ont été testés pour plusieurs régions à forte pente. On sup-
pose toujours que les points fixes sont connus. On ne considère qu’un seul système d’exploitation
de la forêt; ici la grue à câble et seulement 2 contraintes écologiques; la présence du grand tétras
(Tetrao urogallus) et la présence de marais. On trouve les résultats principaux suivants:
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(1) D’un modèle qui considère la pente et les propriétés géotechniques du sol résulte un réseau
de dessertes forestières qui est environ 25% meilleur marché, mais 10% plus long que les résultats
des modèles développés jusqu’à ce jour, qui calculent avec des coûts de construction constants.
D’un modèle qui considère la pente, mais néglige la géotechnique du sol résulte des solutions
environ 17% plus chères que le nouveau modèle présenté.

(2) La manière dont un modèle représente les dessertes forestières est cruciale pour la qualité
de la planification du réseau de dessertes. Plus raide est le terrain, plus il est important d’utiliser
un modèle qui considère plusieurs directions de route et qui peut traiter les changements de di-
rections correctement. Les modèles traditionnels qui ne considèrent que peu de directions et
ne peuvent pas traiter les changements de direction, ne sont donc pas capables de trouver une
solution réalisable sur un terrain ayant une pente supérieure à 35%. Les modèles qui tiennent
compte de plusieurs directions, mais qui ne traitent pas correctement les changements de direc-
tion donnent des solutions environ 50% plus chères.

(3) Avec la méthode présentée ici, il est possible de trouver des optima de Pareto. Les
paramètres de l’ensemble des optima de Pareto se trouvent sur une courbe convexe comme prédit
par la théorie d’optimisation multicritère. L’analyse montre qu’il n’y a pas que les contraintes
écologiques qui sont en concurrence avec les contraintes économiques, mais que les différentes
contraintes écologiques sont concurrentes entre elles. Pour une surface test, un réseau de desserte
qui minimise les impacts pour une contrainte écologique donne des coûts environ deux à trois
fois plus élevés et défavorise une autre contrainte écologique de 20% et 40%. Les solutions sont
fortement liées aux poids que les décideurs attribuent aux paramètres (c.-à-d. pondération). De
petits changements de pondération peuvent résulter des solutions complètement différentes. La
solution saute en fait d’un optimum de Pareto à un autre optimum. Si les interactions entre les
différents paramètres sont connues, il est plus facile de définir l’optimum de Pareto à atteindre.

L’approche présentée dans ce travail, qui est de formuler le problème avec un SMT dans un
graphe est très avantageuse, si les segments de routes ont des poids constants qui peuvent être
définis par une somme des fonctions pondérées des différents paramètres. Cette approche est
sans aucun doute correcte pour obtenir un réseau de desserte aux coûts minimaux ou pour
minimiser les impacts écologiques. Si par contre, on ajoute le paramètre “exploitation du bois”,
cette approche n’est plus correcte. Le choix d’une méthode d’exploitation du bois ne sera pas
valable pour tous les segments de route et le modèle présenté ici n’est pas capable de traiter des
changements de poids entre les segments. C’est d’ailleurs le point le plus faible de ce modèle.
Cependant, ce désavantage est moindre si la pondération de l’exploitation du bois est petite et
le modèle donne alors des solutions quasi optimales.
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General introduction

Goals

In most regions that support forest activities, such as harvesting and silvicultural practices,
roads are the backbone of efficient management. These roads are costly infrastructures, have a
lifespan of several decades or even centuries, and often bring adverse effects to the environment.
Switzerland, for example, has a forest road network of about 32’000 km (Brassel & Brändli,
1999), which corresponds to a total investment of about 8 to 10 billion Swiss francs (about
6 ·109 USD) for replacement. To reduce the maintenance costs for this infrastructure, the trend
has been to decrease density while improving standards for the existing roads. Worldwide total
forest cover is 3.9·109 ha (FAO, 2007). If managers were to increase this density by an additional
5 m

ha , at a cost of 3 USD per meter, the overall investment volume would be about 60 billion
USD.

Therefore, road network planning is a crucial activity that should strive for optimal solutions.
It is a challenging task for engineers, whose goals are simultaneously to find routes with the
lowest construction and maintenance costs, the least adverse impact, and the maximum benefit.
Mathematical optimization is a widely used approach to solve such complex problems, requiring
the formulation of an objective function and several constraints. Forest engineers and scientists
have been searching for computer-aided techniques and tools that will considerably improve
the effectiveness and efficiency of road-network layouts. However, the existing tools have some
critical shortcomings: (1) they assume road construction costs to be homogenous throughout
the project area; (2) they neglect the turning constraints for a road centerline, and limit the
directions for discrete road segments to 8 or 16 only; and (3) they optimize the road network
for only one objective, primarily the lowest cost. Although the currently available methods may
provide useful results in flat and homogenous areas, they do not work well over steep terrain.

The goal of this thesis project was to develop techniques that help engineers locate an optimal
road network within a specific project area, whether planning new routes or evaluating the ex-
isting networks. This novel approach is designed for mountainous regions, of up to 50 km2, with
different geological subsoils. It provides an optimal forest road network with a precision of about
10 m. Its main improvements are in: (1) estimating the spatial variability of road construction
costs by considering the geometry of the road cross section, terrain slope, and geotechnical prop-
erties of the subsoil; (2) mapping various turning constraints on a mathematical graph, so that
40 different directions are possible for each road segment leaving a single node; and (3) imple-
menting optimization for multiple objectives (i.e., life-cycle costs, harvesting-attractiveness, and
ecological penalties).

History and state of the art

Forest road planning

Until the 1960s, the main emphasis in this field of research was related to such technical problems
as road embankments and retaining and pavement structures. In modern times, the first studies
were conducted by the “Ecole Nationale des Ponts et Chaussées” in Paris, founded in 1747,
and by John Loudon McAdam, a Scottish engineer in the late 18th century. Most contemporary
engineering problems in forest road construction have been solved and recorded in standard
books, including those by Kuonen (1983), Walbridge et al. (1984), and AASHTO (1993).
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Although some research is on-going into the materials and methods for forest road building, the
principles of road construction are now well-established.

The challenging task today is to find an optimum road network layout. General road planning
has it roots in the 1860s. Wilhelm Launhardt, a German road engineer, started to formulate
general rules for locating a cost-minimal network (Launhardt, 1869, 1872). His approach was
driven by planimetry, and his focus was on determining the shortest connections between differ-
ent villages. The first rules for identifying the best layout for forest road networks were derived
by K. Jägerschmid, a German engineer in the early 19th century, at a time when roads had to
lead to a good rafting location at the riverbank. However, Jägerschmid’s approach was limited to
general guidelines for road gradients and spacing, and did not provide optimization techniques.
In the early 20th century, planning for forest roads was not considered as crucial as for forest
railways. After the second World War, those railway systems became less significant while forest
roads and, therefore, their network planning became more important because of the rapid spread
of truck transportation. Until the 1970s, road network layout was a cognitive, time-consuming
task that required both engineering skills and practical experience. Computer-aided design arose
in the 1970s, when automatic algorithms were developed by Kirby (1973), Mandt (1973), and
Dykstra (1976). However, computing power and the availability of digital terrain data limited
the capacity and usefulness of those programs. Nevertheless, spatial resolution decreased con-
tinuously, from about 200 m (Tan, 1999) to 10 m (Heinimann et al., 2003), while accuracy
increased.

Tools for automatic road network design improved simultaneously with advancements in com-
puting performance and the emerging availability of digital terrain data. A first stream was
the introduction of decision-support tools, from simple spread sheet applications to integrated
software packages running together with GIS-applications. A second stream of research was
aimed at developing fully automated tools that – for given terrain and design specifications –
could apply mathematical optimization techniques to produce an optimal or near-optimal so-
lution without any decisive influence from an operator. Seminal work in this regard was done
by Twito et al. (1987), Epstein et al. (1994), Chung & Sessions (2001a), and Chung et al.
(2007). The software tool PLANEX (Epstein et al., 1999) is probably the most widely used
in forest management. However, it does not provide acceptable results for steep terrain. An-

derson & Nelson (2004) have recently presented a technique for finding the shortest path
between two locations, even in steep terrain, assuming that an accurate digital elevation model
(DEM) is available. The approach described in the following chapters presents further improve-
ments, mainly by considering the spatial variability of construction costs, turning constraints,
and optimization for multiple objectives.

Graph optimization

The theory of graphs has its roots in work by Leonard Euler, as revealed in the problem of
the “Seven Bridges of Königsberg” in 1746 that had first been published by Euler (1741).
That topology involved edges, nodes and edges, and nodes and areas. Later, Sylvester (1878)
introduced the mathematical term graph for chemical algebra. Now, the general formulation of
a graph (G) is defined as follows: G = (V,E), where V is a finite, non-empty set of vertices
(nodes) and E is a finite set of edges (links between a pair of vertices E ⊂ V ×V ). Furthermore,
a weighted graph, which is relevant to our current study, is defined as G = (V,E;w), where w
is an attribute for each edge that represents the weight (cf., e.g., Jungnickel, 2005). Graph
theory is widely used for modeling practical problems, including those pertaining to forest road
network design (Sakurai et al., 2002). With such an application, the problem can be solved
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with a specific graph optimization algorithm. In the thesis presented here, the most important
methods incorporate Dijkstra’s shortest path algorithm (Dijkstra, 1959) and the minimum
spanning tree algorithms of Kruskal (1956) and Prim (1957), both of which have been utilized
for a wide variety of challenges in operations research. The Steiner Minimum Tree (SMT), a
subgraph that connects a subset of given nodes with a minimum weight, has been used as
well. This tool was developed from studies conducted in the 1820s by Jakob Steiner, a Swiss
mathematician who solved the problem of determining the Euclidean minimum connection of any
three and four points in the plane. Launhardt (1872) then formulated this Steiner approach to
find the cost-minimal lines of communications in Germany. As formulation of the SMT problem
in graphs has become increasingly important, Karp (1972) has been able to prove that this
problem is NP-complete. Unfortunately, that means the problem is up to now not solvable
with an algorithm within polynomial time deterministically. Nevertheless, different heuristics
are known to provide a near-optimal solution in keeping with that time constraint.
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Figure 1: Efficient set (Yeff ) and convex hull around Yeff in the criterion space. a, ..., e represent
the tangents around Yeff .

Multi-criteria optimality

The theory of optimality and the economical formulation of multiple, conflicting objectives had
its start at the end of the 19th century. Edgeworth (1881), (1889), and Pareto (1896–1897)
introduced the effects of feasible and unfeasible solutions in welfare economics. The border line
for solution space between feasible and unfeasible alternatives is now known as the Pareto frontier
and Pareto border, respectively. Solutions at the Pareto frontier are Pareto-optimal. There, it is
impossible to enhance one objective without diminishing at least one other objective. Since the
1950s, Pareto-optimality has become an important notion in neoclassical economics, with broad
applications in game theory, engineering, and the social sciences. Together with economical and
technical applications, fundamental work has been conducted in mathematical science. However,
the terminology may differ across disciplines. Here, we have followed the definitions of Ehrgott

(2000), which are state-of-the-art for mathematical multi-criteria optimization. They present x
as the solution and x∗ as the Pareto-optimal solution. The set of feasible solutions is called
the solution space X; the set of Pareto-optimal solutions, XPar. “Decision” is a synonym for
“solution”; “decision space”, a synonym for “solution space”. Every feasible x has a vector y that
consists of a finite set of criteria (y1, y2, y3, ...), y = f(x), where f(x) is the objective function.
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The set of feasible criterion vectors is Y , i.e., the “criterion space”. The criteria for a Pareto-
optimal solution x∗ is called an efficient point y∗. Mapping XPar on the criterion space leads to
the efficient set Yeff .

Solutions which are not Pareto-optimal are definitively not sensible for real world applications.
However, we can not say that every Pareto-optimal solution leads to a sensible solution. For ex-
ample, all Pareto-optimal solutions not located on the convex hull of Yeff leads to an unfavorable
ratio between the increase of one objective and the decrease in another one. Therefore, our main
goal is to find all Pareto-optimal solutions which are located on the convex hull of Yeff (Fig. 1).

Problem definition and scope

The ideal forest road network must be able to access different points within an area, e.g., good
landing locations or the existing forest infrastructure. The most important locations should be
accessible from two directions in order to provide some redundancy if road segments become
temporarily blocked. Whereas sites with a higher priority should be reached directly, it does not
matter whether sites with low priority have a long access distance. Our approach is based on
the following assumptions:

• the location for the set of mandatory access nodes (K) is known,

• redundant access to the mandatory nodes is not needed,

• all locations have the same priority.

If the problem can be modeled as a mathematical graph (G), we then look for the weight
(w)-minimal subset of this graph (G′) that connects all mandatory nodes (K ⊂ V ) minimally.
This is known as an SMT problem.

The result of such optimization is a road network layout in the form of a digital geo-referenced
vector file. The data format is compatible with ArcGIS, and its accuracy of 10 m is adequate for
preliminary planning. Additionally, our program provides detailed cost and impact information
for each road segment.

Here, we describe a forest road as a sequence of straight lines, curves, and switchbacks. The
width of the roadway is defined by different cross sections. Even though a particular cross section
in steep terrain may necessitate the movement of a lot of earth, the model is strictly attached to
the terrain surface. This model does not consider the design of bridges and tunnels for crossing
extremely difficult units. However, it is possible to add potential bridges and tunnel locations
manually before the optimization process begins.

Outline

Our road network optimization framework can tackle mountainous project areas up to a size of
about 50 km2, assuming a resolution of 10 m. In steep terrain, the resolution of the underlying
DEM should be at least 10 m if the model is to be useful for recognizing uneven terrain. The
framework consists of four major clusters of components (Fig. 2): (I) a model to estimate spatial
variability in road construction and maintenance costs; (II) a concept that defines discrete road
segments and geometric constraints, and then is mapped on a mathematical graph; (III) an
objective function for multiple objective dimensions; and (IV) the optimization procedure itself.

For this thesis, the four component clusters are presented as separate papers that have been
or will soon be published in scientific journals:



GENERAL INTRODUCTION 17

(1)

Discretization of 

Road Segments

(2)

Road Geometry 

Constraints

(6)

Ecological Pe-

nalty Functions

(5)

Harvesting

Attractiveness

(4)

Road Con-

struction Cost

(3)

Graph Topology

(7)

Multicriteria Ob- 

jective Function

(a)

Scaling

(b)

Control Points

(8)

Mathematical Graph Model

(9)

Optimization Techniques

(Results)

Optimal Road Network

II I III

IV

Figure 2: Framework of the automatic road network design model

Paper I – “Modeling spatial variability in the life-cycle costs of low-volume forest roads”1. This
describes a generic model for road construction and maintenance costs (Component 4). A cost
estimation model has been developed for mountainous areas, and this paper shows the effect of
introducing a DEM and a layer for the geotechnical unit of the road network design.

Paper II – “Improved road network design models with the consideration of various link
patterns and road design elements”2. Horizontal and vertical road alignment constraints are
mapped on a mathematical graph (Components 2, 3), and the effect of different link patterns is
evaluated in order to discretize the road (Component 1).

Paper III – “Automatic road-network planning for multiple objectives”3. Themes include the
integration of construction costs, harvesting-attractiveness (Component 5), and adverse eco-
logical impacts (Component 6) into the same optimization (Component 7). For harvesting-
attractiveness, we have selected the cable yarder system; as our two examples for analyzing
ecological impacts, we have chosen the capercaillie (Tetrao urogallus), the largest mountain
grouse in Europe, and which is now threatened with extinction, plus marshlands, which are very
rare in Switzerland. Here, we succeed in finding Pareto solutions and trade-offs among these
different objectives. However, this paper does not follow the terminology defined by Ehrgott

(2000). Instead, we use standard definitions common to the economics discipline, which do not
distinguish between solution space (X) and criterion space (Y ). Our diagram of a Pareto fron-
tier is, in fact, the mapped criterion vectors for Pareto-optimal solutions within the criterion
space, Yeff . With the chosen method, we are able to identify only the Pareto-optimal solutions,

1Stückelberger, J.A., Heinimann, H.R. and Burlet, E.C. (2006). European Journal of Forest Research, 125:
377–390.

2Stückelberger, J.A., Heinimann, H.R. and Chung, W. (2007). Canadian Journal of Forest Research, 37: 2281–
2298.

3Stückelberger, J.A., Heinimann, H.R., Chung, W. and Ulber, M. (2006). In: Chung, W. and Han, H.S. (Eds.):
Proceedings of the 29th Council on Forest Engineering, pp. 233–248. July 30 – August 2, 2006, Coeur d’Alene,
ID, USA. This report received the Council on Forest Engineering 2006 Student Communications Award for the
best paper.
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which are located on the convex hull of (Yeff , and not all Pareto-optimal solutions (XPar).
Nevertheless, this precision does not change our conclusions.

Paper IV – “Multi-criteria optimization procedures for designing a forest road network”4. The
main focus is on the mathematical formulation of a graph model (Component 8), the optimization
technique (Component 9), and the results of our model evaluation. This paper also provides an
overview of the entire framework for Components 1 to 9. We specify the incomplete definition
of Pareto optimality, and we explore the efficiency presented in Paper III. A case study in the
area of “Wägital”, on the northern slopes of the Swiss Alps, demonstrates the trade-offs within
a tri-objective optimization.

4Stückelberger, J.A., Heinimann, H.R., Schwartz, J., Steger, A. and Chung, (submitted October 2007).
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20 CHAPTER 1. LIFE-CYCLE COSTS OF FOREST ROADS

Abstract

Cost estimation is probably the most decisive factor in the process of computer-aided, prelim-
inary planning for low-volume road networks. However, the cost of construction is normally
assumed to be route-independent for a specific project area, resulting in sub-optimal layouts.
This is especially true for mountainous terrain and in areas with unstable subsoil. Here, we
present a model for more accurately estimating spatial variability in road life-cycle costs, based
on terrain surface properties as well as geological properties of the subsoil. This parametric
model incorporates four structural components: embankment, retaining structures, pavement,
and drainage and stream-crossing structures. It is linked to a geodatabase that allows users to
derive location-specific parameter values as input. In applying this model, we have demonstrated
that variability in costs ranges widely for mountainous areas, with the most expensive construc-
tion being approximately five times greater there than on more favorable sites. This variability
strongly affects the optimal layout of a road network. First, when location-specific slope gradi-
ents are considered, costs are reduced by about 17% from those calculated via currently available
engineering practices; when both slope gradient and geotechnical formations are included, those
costs are decreased by about 20%. Second, the length of theroad network is increased by about
4% and 10% respectively, compared with current practices.

1.1 Introduction

Computer-aided engineering approaches for the layout of low-volume forest road networks have
been in development since the 1970s (Kirby, 1973, Mandt, 1973, Dykstra, 1976), resulting
in software packages such as PLANS (Twito et al., 1987), PLANEX (Epstein et al., 2001),
or NETWORK 2001 (Chung & Sessions, 2001b). Each formulates the problem in terms of
combinatorial optimization, which comprises three main components: (1) a finite set of possible
road segments for a specific project area, (2) an objective function, and (3) an optimization
mechanism. The objective function represents both construction and transportation costs, which
must be minimized by considering specific constraints. Accuracy of this cost information is a
decisive factor in identifying an optimal or at least near-optimal solution. However, construction-
cost estimates very often rely on expert judgments, and are assumed to be route-independent.
Because high costs are increasingly becoming a major concern when building low-volume roads,
engineers urgently need to develop an effective, more highly accurate procedure for estimating
route-dependent costs.

Three methodological streams of cost estimating are available: (1) direct rule-of-thumb esti-
mating, (2) estimating relationships, and (3) bottom-up parametric modeling. The first method
employs a judgmental estimate by an expert familiar with the current task. Such direct estima-
tions rely more or less on data from past projects or programs, with readily available data. This
approach has historically been dominant in preliminary road-network planning, serving as the
basis for software packages such as PLANEX or NETWORK 2001.

The second approach, using estimating relationships and formulae, calculates the cost of either
individual components or the entire system, and is based on cost-driving technical parameters.
Markow & Aw (1983) have identified relationships to predict the volume of earthwork needed,
as well as the numbers of culverts and bridges per unit length. Those relationships estimate
physical construction quantities, which are then multiplied by respective unit prices and summed
to determine the total cost of construction. In contrast, Anderson & Nelson (2004) have
devised an estimating relationship that uses only road gradient as an input parameter.
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The third method – bottom-up parametric modeling – starts with a work-breakdown structure
(WBS) that represents the subsystems, components, or elements of a whole project. Here, similar
deliverables are grouped into classes and a physical measure is then used as an indicator for
cost within each class. Durston & Ou (1983) have developed an approach that considers the
following subsystems: earthwork, clearing area, grubbing area, seeding area, ditch relief culverts,
drainage crossings, and the aggregate volume for surfacing. This particular model, run on a
hand-held computer, has been demonstrated to be more effective and accurate than previously
used techniques. Heinimann (1998) has developed a similar approach that has been proven
useful for cost-modeling under steep-slope conditions.

Here, we report the development and analysis of a model for estimating the life-cycle costs of
forest roads, using location-specific parameters within a given project area. Our emphasis is on
low-volume routes through mountainous regions. In addition, we present validation results, and
discuss the influence of different cost-modeling options on both construction cost estimations
and road network layouts.

1.2 Methods and model development

1.2.1 Cost estimation framework

Understanding how the design elements of road and terrain features can influence life-cycle
costs is a challenging task. A cost-estimating procedure for predicting spatial variability must
be able to automatically derive the cost-driving characteristics of road components for any
specific location within a project area, and to analyze cost per unit of road length based on their
unit-cost information.

Identification of the building components for low-volume roads follows a standardized WBS
(Westney, 1997) within the construction industry, i.e., the cost classification by elements (CCE)
approach (CCE, 1991). This method consists of three hierarchical levels: (1) the macro element,
(2) the element group, and (3) the element level. For preliminary planning, Level 2 is an appropri-
ate decomposition that accommodates four element groups: embankment structure, supporting
and retaining structures, pavement structure, and drainage and stream-crossing structures. A
standard design cross-section defines the structural dimensions in terms of crown, surface, ditch,
and shoulder width, cut- and fill-slope angles, and retaining wall specifications (Fig. 1.1). To
verify how those element groups affect construction costs, we assessed five low-volume projects
carried out under different slope conditions in Switzerland (Fig. 1.2). There, the cost for the
embankment structure (A) depended heavily on the slope gradient, whereas the cost for sup-
porting and retaining structures (B) seemed to be relevant for slope gradients > 50%. The
costs for pavement (C) and drainage structure (D) were somewhat variable, as explained by
the bearing capacity of the subsoil and by the design standard. For example, our second study
site, “Prabé Sud”, is situated in limestone in the central Swiss Alps with heavy rainfalls, where
its asphalt concrete surface course incurred high construction costs. This preliminary, approxi-
mate analysis clearly indicated that slope gradient is the leverage factor for an analytical cost
model. Additionally, the shear strength of the subsoil is critical to the design of cut-and-fill
slopes (Coulomb, 1776, Terzaghi, 1944), as well as for the design of the pavement structure
(AASHTO, 1993). Therefore, spatial information about geotechnical soil properties must be
included if road engineers are to improve the accuracy of cost modeling.
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Figure 1.1: Standard design cross-section with four element groups: (A) embankment structure,
(B) retaining structures, (C) pavement structure, and (D) drainage and stream-crossing structures.
hw: height of retaining wall, hg: depth of foundation of retaining wall, w: crown width (surface +
shoulder + ditch). Figure is not drawn to scale, especially in shoulder and ditch dimensions.
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1.2.1.1 Embankment model

Design engineers can choose among full-bench, self-balanced, or retaining-wall cross-sections.
Therefore, our current analysis combined the element groups “embankment” and “retaining”
structures. The embankment model was aimed at calculating the excavation volume of a standard
cross-section at any location within a project area (Fig. 1.3). This model assumed: (1) the slope
angle of the terrain (η) to be constant for the whole cross-section,(2) the cut- and fill volume
to be self-balanced, (3) the angles for cut-and-fill slopes to be determined by the geotechnical
properties of the subsoil, (4) consolidation of cut-and-fill slope material to differ, and (5) the
bedrock surface to be parallel to the terrain surface. Loosening and loss of fill-slope material
was assessed with a shrinking factor (fshr) that depended on subsoil geotechnical properties.
Because the cut-slope angle (φcut) is most often higher than that of the fill slope (φfill), the

Figure 1.3: Standard design cross-section of low-volume road. Acut: cut-slope area; Afill: fill-slope
area; hcut: cut-slope height; hfill: fill-slope height, uphill side; wcut: road width, uphill side; wfill:
road width, downhill side; η: slope angle, depending on terrain surface; φcut: cut angle, depending on
geotechnical properties; and φfill: fill angle, depending on geotechnical properties.

self-balanced design required the axis to be shifted horizontally in uphill direction (Fig. 1.3).
However, if the slope angle had become equal to or larger than the fill-slope angle, the road would
then have needed to be built according to a full-bench design. Heinimann (1998) has devised
Equations 1.1, 1.2 and 1.3 to calculate excavation volumes for the conditions and constraints
mentioned above; these equations are valid only for positive slope angles. Nevertheless, on a
digital elevation model (DEM), values for slope gradient may also be negative. Therefore, our
algorithmic implementation had to be robust, which required a more detailed model formulation
as follows:

Acut =
w2

cut · tan(φcut) · tan(η)
2
(
tan(φcut) − tan(η)

) > 0 (1.1)

Afill =
(w − wcut)2 · tan(φfill) · tan(η)

2
(
tan(φfill) − tan(η)

) > 0 (1.2)

fshr =
Afill

Acut
≤ 1 (1.3)
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w2
cut·

(
tan(φcut) · fshr

tan(φcut) − tan(η)
− tan(φfill)

tan(φfill) − tan(η)

)
︸ ︷︷ ︸

a

+wcut· 2w · tan(φfill)
tan(φfill) − tan(η)︸ ︷︷ ︸

b

+
w2 · tan(φfill)

tan(η) − tan(φfill)︸ ︷︷ ︸
c

= 0 (1.4)

wcut =
−b ±√

b2 − 4ac

2a
(1.5)

To make the analytical explanation easily understandable, only positive slope gradients were
considered in Equations 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8 and 1.9. Cut-slope and fill-slope an-
gles (φcut and φfill) had to be greater than ground slope (η) because of geometrical constraints.
Here, we examined three different cases in terms of variable a (Eqs. 1.5, 1.6): (1) fill-slope angles
larger than cut-slope angles, (2) cut-slope angles greater than fill-slope angles, and (3) fill-slope
angles equal to cut-slope angles. In the first case, the resulting value was less than zero (a < 0).
Therefore, the root term of Equation 1.5 was the limiting factor, and the discriminate d had to
be positive (Eq. 1.6), thereby resulting in Equation 1.7.

d = b2 − 4 · a · c > 0 (1.6)

d =
4 · w2 · tan(φfill) · tan(φcut) · fshr(

tan(φfill) − tan(η)
) · ( tan(φcut) − tan(η)

) > 0 (1.7)

All factors in the numerator of Equation 1.7 were positive, and both φcut and φfill were always
greater than η. Hence, the formulation was correct for any possible case. Likewise, because the
negative branch of the root term in Equation 1.5 led to values greater than w, only the positive
branch of the root term was feasible.

The second case dealt with fill angles smaller than cut angles (a > 0). In most case, however,
geotechnical stability required the latter to exceed the former. Assuming that, in some cases, the
fill angles were smaller, the root term in Equation 1.5 become smaller than b. As a consequence,
only the positive branch of the root term resulted in feasible solutions.

The third case considered fill angles equal to cut angles (a = 0). The conditions for this case
follow from Equation 1.8. Furthermore, for a self-balanced design the cut-road width was equal
to the fill-road width Equation 1.9.

fshr · tan(φcut)
(
tan(φfill) − tan(η)

) − tan(φfill)
(
tan(φcut) − tan(η)

)
= 0 (1.8)

wcut = wfill = −c

b
=

w

2
(1.9)

Equations 1.1, 1.2, 1.3, 1.4, 1.5, 1.6, 1.7, 1.8 and 1.9 are analogously applicable for negative slope
gradients (η < 0). However, in these cases cut-slope and fill-slope angles (φcut and φfill) had to
be more negative than ground slope angle (η) because of geometrical constraints.

When one knows the relation of wcut to wfill, one can then calculate self-balanced cut-and-
fill volumes for each location in the project area. However, such a cross-section design is not
always the most appropriate. Full bench is a second option for cross-section design, increasing
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embankment stability in steep terrain or unstable subsoil conditions by shifting the road struc-
ture horizontally in the uphill direction. As the third option for cross-section, the retaining-wall
design locates those structures on either the uphill or downhill side of the road. We used a
lookup table to define the critical terrain slope figures for each geotechnical unit as well as to
discriminate among these three cross-section design solutions (cf., Tab. 1.1).

In difficult terrain conditions, part of the excavation volume may be of rock. Practical expe-
rience in Switzerland has shown that the unit cost for its excavation is approximately 4 to 5
times greater than for the removal of soil alone. Inaba et al. (2001) have developed an empirical
model to estimate the share rock excavation as a function of slope, a coefficient for each geologi-
cal unit (coefrock), and crown width for low-volume roads Equation 1.11. For the current study,
we determined the share of rock for cut-slope areas in three groups of geological formations,
all with crown widths of 4.10 m (Fig. 1.4). The first group comprised mesozoic and tertiary
sediment formations, typical of the northern slopes of the Alps, and included conglomerate,
sandstone, limestone, and flysch. The second group consisted of intrusive and the metamorphic
rock formations – granite and gneiss – that are typical for the central and southern slopes of the
Alps. The third group consisted of quaternary formation such as moraine and alluvial deposit.
For slope gradients of up to approximately 40%, the necessary volume of rock excavation was
of minor importance and could be easily neglected. At gradients of 70%, about one-third of the
volume was rock; at gradients of about 90%, two-thirds consisted of rock. In general, the rock
excavation volume was calculated as the product of the cut-slope volume multiplied by the rock
share factor (Fig. 1.4).
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Figure 1.4: Share of rock excavation for low-volume road (crown width = 4.10 m), as a function of
slope gradient and type of geological formation.

logit = −6.69 + coefrock + (4.913 + 0.396 · w̃) · tan(η)0.6

prock =
elogit

1 + elogit
(1.10)
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where, coefrock = geological parameter for rock ratio estimation (cf., Tab. 1.1)
η = slope angle of the terrain
e = the Euler number (2.718...)
logit = interim result for logit-function
prock = share of rock in total cut area [0...1]
w̃ = the dimensionless numerical value of the road crown width in meter

The total costs for earthwork and embankment preparation for a road segment depended
on both the earth excavation volume (Vcut) and rock excavation volume (Vrock). Volume was
approximated by the frustum of a pyramid (Eq. 1.11), whereas the total embankment cost was
determined with Equation 1.12.

V =
l

3
· (A0 +

√
A0 · A1 + A1

)
(1.11)

where, A0 = area (either fill or cut) of the initial cross-section
A1 = area (either fill or cut) of the following cross-section middle length
l = middle length of the arc of the segment
V = volume (either fill or cut)

Cemb = Vfill · ccomp + Vcut ·
(
cexc + prock · crock

)
(1.12)

where, ccomp = cost for compaction per volume unit
Cemb = embankment cost
cexc = excavation cost per volume unit
crock = extra cost for rock excavation per volume unit
prock = share of rock in total cut area [0...1]
Vcut = cut volume
Vfill = fill volume

1.2.1.2 Retaining structure model

In difficult terrain conditions (e.g., steep slopes, unstable soil conditions), retaining structures
are necessary to provide safe embankments. Assuming that the slope gradient could be extracted
automatically from a digital elevation model, and that preference rules indicated a retaining-wall
cross-section design, we then calculated the height (hw) (Fig. 1.1) and length of the retaining
wall. Additional height (hg) used for the foundation was presumed to be constant. The cost for
a retaining wall was assumed to be proportional to its height times length (Eq. 1.13), a rule that
seems appropriate for heights of up to 3 m.

Cwall = (hw1 + hw2 + 2 · hg) · l · cwall (1.13)

where, cwall = cost for retaining wall per unit area
Cwall = cost for retaining wall
hw1, hw2 = height of retaining walls (uphill and downhill sides)
hg = constant value for foundation and clearance of retaining wall (in

the present model, = 1 m)
l = length of road segment

1.2.1.3 Pavement structure model

The cost of pavement structures is assumed to be proportional to numerous variables, including
the surfaced road area for specific soil-bearing conditions, expected traffic volume, and the
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aggregate materials used for the sub-base, the base course, and the surface course. To design
the pavement structure, we adapted AASHTO procedures to the special requirements for low-
volume roads in Switzerland (Burlet, 1980). In Equation 1.14, both a standard road width
and widening at curves and switchbacks were considered.

Cpav =
(
ws0 +

kcw

r

)
· l · cpav (1.14)

where, cpav = cost for pavement per unit area
Cpav = cost for pavement structure
kcw = constant value for road widening in curves (in the present model, = 26 m)
l = length of road segment
r = curve radius
ws0 = standard road surface width

1.2.1.4 Drainage and stream-crossing structures

The cost for drainage structures, such as ditches or culverts, was assumed to be proportional to
road length (l) (Eq. 1.15). Ditch relief culverts ideally are arranged at constant 50-m intervals,
but would be unnecessary on flat terrain (η < 12%). Three principal types of stream-crossing
structures are available: bridge, culvert, and ford, the last type being the only one automatically
considered in the present model. Its construction incurred a higher cost due to the hardening
measures of the surface, extra drainage (e.g., a culvert at the vertex location in the channel),
and additional retaining structures. The unit cost for a ford presumably depends on geology and
size of the area defined by its location.

Cdrain =
{

0 if tan(η) < 12%
Cculvert

d · l else
(1.15)

where, Cculvert = cost for single culvert
Cdrain = cost for drainage structure
d = distance between ditch relief culverts (in the present model, = 50 m)
l = length of road segment

1.2.1.5 Life-cycle cost model

Life-cycle costs entail those for construction, routine and periodic maintenance, rehabilitation,
and decommissioning. The model analyzed here did not consider the last two factors, and as-
sumed the maintenance cost to be dependent only on road gradient and geology. This assump-
tion, however, differs from practices in the USA and in Canada, where thresholds for total traffic
volume trigger periodic maintenance. To make these cost components comparable, they must be
normalized in time. Net present value (NPV), annual equivalent rate (AER), and internal rate
of return (IRR) are measures commonly used for obtaining the time value of money. Our model
followed the NPV approach, assuming a project life cycle of 50 years, an interest rate of 2%,
and a constant share in maintenance costs per year. Equations 1.16 and 1.17 are widely applied
in engineering economics (Heinimann, 1998, Park & Sharp-Bette, 1990).

Cann = Creg +
Cperi

n
(1.16)
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Ctot = Ccon + Cann ·
(1 − (1 + i)−N

i

)
(1.17)

where, Cann = average annual maintenance cost
Ccon = construction cost
Cper = periodical maintenance cost
Creg = regular maintenance cost
Ctot = total cost for a single road segment
i = annual interest rate (in the present model, = 2%)
n = periodical-maintenance interval (in the present model, = 5 years)
N = amortization period of the road (in the present model, = 50 years)

1.2.1.6 Curve and switchback model

Detailed road engineering defines the horizontal layout of a road as a consecutive set of straight
lines and curves, whereas computer-aided preliminary planning tools usually use a traverse rep-
resentation, consisting of a continuous series of lines. The latter approach has two shortcomings
(Heinimann et al., 2003). First, the road length for curves is shorter than the tangent distance,
and the road does not widen (cf., Eq.Equations 1.14). Second, a change in direction of > 135◦

requires a “hairpin bend” embankment structure, called a switchback. Constructing a switch-
back always involves considerable additional earthwork and surfacing, resulting in significantly
higher total cost. The balancing of cut-and-fill volumes is not possible for a single cross-section
of a switchback, but must be achieved between the beginning and the end of the switchback
curve. Figure 1.5 shows that, depending on the central angle (γ), our procedure for calculating
switchback costs required several intermediate cross-sections. The best possible volume balance
was then identified by shifting the switchback center orthogonally to the contour lines, at a step
width of 0.5 m and within an interval of -5 m to +5 m. This procedure was similar to one
proposed by Aruga et al. (2004).

a) b)

Figure 1.5: Road segments of switchbacks, (a) γ central angle = 180◦, (b) γ central angle = 220◦.
Each switchback starts and ends at regular nodes (bold point symbols). The centerline is subdivided
into 6 (a) or 10 (b) respectively, intermediate sections (slim point symbols). Regular nodes are fixed
whereas locations of intermediate nodes depend on the location of the center as well as γ.
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Figure 1.6: Entity-relationship model for the input data

1.2.2 Organization of input data

1.2.2.1 Data model

One purpose of the present model was to derive cost-driving features automatically from a
geographical database. This database, represented by 10 m × 10 m cells, had two layers: (1) a
digital elevation model (DEM) of the terrain surface, and (2) a geotechnical classification of the
subsoil. A first lookup table (Tab. 1.1) specified the engineering and cost properties for each
geotechnical unit. A second lookup table (Tab. 1.2) defined the design elements of a standard
cross-section for each geotechnical unit. Figure 1.6 shows an entity-relationship model of the
data. This data structure makes it possible to adapt the model to any area specific conditions
in the world as long as the road can be modeled by the four element groups explained in
Subsection 1.2.1.

1.2.2.2 Geotechnical parameters

Engineering and cost properties are specific for each geotechnical unit. Site specific parameters
are stored as a record in a data base table consisting of five engineering properties (cut-slope in-
clination (tan(φcut)), fill-slope inclination (tan(φfill)), inclination of retaining wall (tan(φwall)),
shrinking factor (fshr), and a coefficient for rock ratio estimation (coefrock), cf., Eq. 1.10), six
parameters for construction costs (excavation cost (cexc), cost for emplacement and compaction
of the filling material (ccomp), additional cost for rock excavation (crock), cost for pavement
structures (cpav), cost for retaining walls (cwall), and cost for drainage structures (cdrain)), and
two parameters for maintenance (constant cost per road length (c0ann), and variable cost pro-
portional to the road gradient (c1ann) and road length). Special terrain types (e.g. landslides,
stream crossings, rehabilitation of existing roads) may require additional cost parameters. These
parameters can be defined by flat cost per link or flat cost per length. Sites where construction
is impossible (e.g. lake, marshland) are represented by negative values. Construction processes
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(full mechanized, low mechanized, labor intensive) are represented by cost values only that may
be obtained by analyses of contractor bids, engineering estimation, or final costing analysis.
Table 1.1 shows all geological parameters used in the area of Wägital (cf., Subsection 1.3.2).

1.2.2.3 Road parameters

The model assumes one predominant road type for a specific project area. However, the designer
may specify different design parameters, e.g. a smaller road width in rocky terrain are, or a less
maximum, road gradient in instable subsoil. The road type is linked to the geotechnical unit and
defined by the parameters maximal allowable road gradient (ηmax), minimal radius in curves
(rmin) and switchbacks (rSB), standard road surface width (ws0), width for ditch and shoulders
(wd+s), road widening in curves (kcw), and minimal excavation depth for pavement structures
(zmin). Table 1.2 shows all road design parameters used in the area of Wägital (cf., Subsection
1.3.2).

1.2.3 Model implementation

Our procedures were implemented via Borland Delphi 7.0 software (Object Pascal language),
which produced approximately 3700 lines of code. Input and output data consisted entirely of
text files that could be easily imported from or exported to commercial geographical information
systems, such as ESRI ArcGIS. At present, this implementation can handle areas of up to
100 km2, with 10 m × 10 m raster cells. The model split the road route into 10-m segments
for straight lines and curves, and 2-m sections for switchbacks. Procedures for optimizing the
road network were implemented in a separate program unit, which was previously described by
Stückelberger et al. (2004).

1.3 Validation and evaluation

1.3.1 Model validation

Validation was aimed at demonstrating that our model reasonably represented the cost of low-
volume road projects. It required high-quality cost data normally available only after a project
is completed. However, a full validation that investigates assumptions, input parameters, and
output values is difficult to achieve. Therefore, compromises were necessary, resulting in a pre-
liminary validation approach.

In this current study, validation was performed for projects on two different geological for-
mations. The first covered an area in the molasse zone; the second, in limestone. Both were
located on the northern slopes of the Swiss Alps. The first part of the validation compared the
excavation volumes produced by the model with those values obtained from actual, detailed
road projects, as engineered by students in the molasse zone. The second part occurred in the
limestone zone, and was mainly focused on investigating rock excavation volumes and costs. De-
cisive figures from real-world cases were extracted from engineering documentation, especially
technical reports and cost estimates. Application of the model required us to specify the design
element and the unit-cost parameters, both of which were stored in a lookup table linked to the
geology layer of the spatial database (Fig. 1.6).

The first part of the validation demonstrated that our model accurately estimated the exca-
vation volume. However, it also showed that a 10 m × 10 m representation resulted in inaccu-
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Table 1.1: Engineering and cost parameters for each geotechnical unit. The data were calibrated for
the area of Wägital (Switzerland).
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Road type ηmax rmin rSB ws0 wd+s kcw zmin

ID name m m m m m2 m

-1 no go -1 -1 -1 -1 -1 -1 -1
1 standard road 0.12 20 10 3.4 0.6 26 0.30
2 road in instable 0.10 20 10 3.4 0.6 26 0.50
3 existing road 0.20 10 5 3.4 0.6 13 0.30

Table 1.2: Design parameters for each road type used in the area of Wägital (Switzerland)

rate estimates for stream channel or terrain edge locations. For the second part, data obtained
from the engineering documentation were compared with the model output (Tab. 1.3). Here,
the model overestimated the total embankment volume by about 16%, seemingly favoring a
full-bench cross-section design. In contrast, the road engineers preferred a retaining-wall cross-
section design, which was represented by a much higher cut-slope volume predicted by the
model. Cost figures showed that the model estimate for the embankment structure was within
the range of accuracy (+/-10%), while the engineer’s estimate for the pavement structure was
about 20% higher. Although the road engineer planned for additional turnouts and other areas
to be surfaced with aggregate material, if those factors were neglected, costs for the pavement
structure were more or less identical. The usefulness of our validation results was limited because
they were based on a comparison of estimates from an engineer versus a model. A more reliable
validation would have required accurate post-construction information on design-element unit
quantities and unit cost, which is usually not available.

Item Unit Project bid Model Difference
earth work Cut volume m3 1’929 2’720 +41%

Fill volume m3 1’042 7’21 -31%
Total volume m3 2’971 3’441 +16%

cost Embankment and
retaining
structures

CHF 78’465 85’648 +9%

Pavement
structure

CHF 59’200 45’900 -23%

Drainage and
stream-crossing
structures

CHF 13’180 17’880 +36%

Total cost CHF 150’845 149’428 -1%

Table 1.3: Comparison of excavation and cost figures for two alternatives: (1) results of engineering
project design and contractor bid versus (2) model results. Costs, in Swiss francs (CHF ), are adjusted
to price level for Year 1997.

1.3.2 Model evaluation

The objectives of our model evaluation were (1) to investigate the influence of terrain parameters,
e.g., slope and geology, on the spatial variability in construction costs; and (2) to assess the effect
of cost-estimating strategies on optimal road network layout.
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Figure 1.7: Spatial variability in road life cycle costs for Scenario III, based on slope gradient and
geotechnical soil properties. The lake “Wägital” is at eastern boundary and watershed is at western
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1.3.2.1 evaluation of road network layout

The “Wägital” project site is located on the northern slopes of the Swiss Alps, in flysch and
limestone zones. This area is characterized by extremely difficult geotechnical conditions, such
as low soil-bearing capacity (CBR values < 3%), unstable terrain with many landslides, and a
dense channel network. Evaluation was based on three cost-estimating scenarios:

1. Scenario I, which assumed construction costs to be route-independent (240 CHF
m ) and

constant for the entire project area. The design parameters (minimum curve radius (rmin),
maximal allowable road gradient (ηmax), etc.) correspond to road type #1 “standard road”
of Tabel 1.2.

2. Scenario II, in which slope gradient was considered the only parameter affecting the spatial
variability of construction costs. The geotechnical parameters correspond to geotechnical
unit #10 “standard subsoil” of Tabel 1.1.

3. Scenario III, which considered both slope gradient and geotechnical information as decisive
parameters as well as different road types for cost variability. All design and cost parameters
are shown in Tabels 1.1 and 1.2.

Scenario I served as a reference for the engineering practices currently used to estimate costs at
a preliminary planning stage.

10%-quantile (Q0.1) median (50%) 90%-quantile (Q0.9) difference (Q0.9 − Q0.1)
CHF EUR CHF EUR CHF EUR CHF EUR

Scenario I 240.0 155.8 240.0 155.8 240.0 155.8 0.0 0.0
Scenario II 160.1 104.0 179.0 116.2 234.2 152.1 74.1 48.1
Scenario III 139.5 90.6 238.0 154.5 441.6 286.8 302.1 196.2

Table 1.4: Quantiles of cost estimation after Scenarios I, II, III

1.4 Results and discussion

1.4.1 Spatial variability of construction costs

The 35-km2 project area included the lake “Wägital” at the eastern boundary and a watershed
at the western boundary. For each of these 3 scenarios we calculated in each grid cell the potential
road life-cycle cost for a unit length of 1 m, assuming a straight alignment of the road parallel to
the contour line. Figure 1.7 illustrates the spatial variability in road life cycle costs for Scenario
III, which considered both slope gradient and geotechnical soil properties. Figure 1.8 presents
the variability of life-cycle cost per unit for the three model scenarios as cumulated frequency
curves.

Scenario I assumed a route independent cost of 240 CHF
m . Therefore the variability is zero,

resulting in a vertical straight line of cumulated frequency curve.
Scenario II, which considers terrain slope gradient as the only factor influencing construction

cost resulted in a median cost of about 180 CHF
m with a range of about 75 CHF

m between the 10%-
quantile (Q0.1) and 90%-quantile (Q0.9) (Tab. 1.4). The cumulated frequency curve represents
more or less the distribution of the slope gradients in the project area.
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Scenario III represents a cost estimating procedure that considers terrain, slope, and different
road types resulted in a cumulative frequency curve with median cost of about 240 CHF

m and a
variability range of about 300 CHF

m . The huge cost variability is a result of different subsoil that
was represented by three classes (A) stable subsoil in limestone and moraine, (B) instable subsoil
in flysch formation and high landslide activity, and (C) stream crossing sites with laborious
construction work.

The cumulative frequency curves of Scenario II and III asymptotically converge to the 100%
line. However, values above the 98%-quantile should be excluded from analysis due to model
limitation for very steep terrain conditions.

Assuming that Scenario III is closest to reality and the most accurate procedure, the results
depicted in Figure 1.9 clearly demonstrate that conventional cost-estimation practices (which
are route- and location independent) are inappropriate for difficult terrain conditions.
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Figure 1.8: Variability of life-cycle cost per unit for Scenario I, II, and III. The curves show the
cumulated frequency of the project area to the construction and maintenance costs for each scenario.

1.4.2 Influence of cost-estimating procedures on road network location

A minimum spanning tree problem was used to evaluate how various cost-estimating strategies
affect the optimal layout of road networks. In this study, 10 mandatory access points were linked
by a minimum-cost network (Fig. 1.9). Access points 000, BRH, and AU are at lake level (about
900 mNN), ROW, SBU, ALP, and OBO have a intermediate elevation between 1000 mNN
and 1200 mNN , and EGS, TAS, and STO have a high elevation of about 1300 mNN . We
first devised a finite set of vertices that corresponded to the centers of all 10 m × 10 m grid
cells. Second, a set of road links was defined from each vertex to its adjacent vertices. Third,
we formulated a set of design constraints, e.g., minimum curve radius, maximum road gradient,
and turning constraints for the combination of incoming and outgoing road links (Tab. 1.1 and
1.2). We then calculated the first- and second-order Steiner points (Prömel & Steger, 2002).
Finally, we identified the minimum cost spanning tree by combining Dijkstra’s (Dijkstra, 1959)
shortest path (SP) and Prim’s (Prim, 1957) minimum spanning tree (MST) algorithms (see also
Stückelberger et al., 2004).



36 CHAPTER 1. LIFE-CYCLE COSTS OF FOREST ROADS

Criterion Unit Scenario I Scenario II Scenario III
Network length m 17’406 18’176 19’001
Embankment and
retaining
structures

1000 CHF 3’098 1’972 1’847

Pavement
structure

1000 CHF 3’337 3’062 2’871

Drainage and
stream-crossing
structures

1000 CHF 207 298 167

Total
construction cost

1000 CHF 6’642 5’332 4’885

Avg. construction
cost

CHF
m 382 293 257

Maintenance cost
per year

1000 CHF
a 50.1 67.7 50.9

Net present value
(50 years)

1000 CHF 8’196 7’430 6’464

Relative
difference

reference -17% -21%

+27% +15% reference

Table 1.5: Key values calculated for road network, based on three different cost-estimation scenarios

Figure 1.9 presents the evaluation results for the three scenarios. A visual assessment of the
map demonstrates that the three strategies greatly affected the spatial layout of the road net-
work. Scenario I has two connections from lake level to high level (BRH-SBU-ROW-EGS and
AU-ALP-STO). Because the costs are route independent, the model tried to keep the road
network at minimal length. Both effects resulted in a lot of switchbacks and therefore high
life-cycle cost. Scenarios II and III shows nearly identical road routes in 000-BRH-SBU-AU and
EGS-ROW-TAS. However, Scenario II connects the high level via access points AU-SBU-STO in
less stable subsoil where as Scenario III made a connection via AU-OBO-ALP-STO in limestone
layer, which is stable and therefore favorable.

Table 1.5 contains key data for the scenarios. Again, Scenario I depicted current modeling
practices, which assumed route-independent costs. Optimization for this scenario resulted in
the shortest road length (17.4 km), but the highest life-cycle cost (+27%) compared with the
minimum cost alternative. Scenario II (slope gradient only) produced a total network length of
18.2 km. Compared to the minimum cost alternative, this scenario resulted in life-cycle costs of
15% above the minimum but 17% below the conventional practice. Finally, Scenario III, with
both slope gradient and geotechnical information as major decisive parameters, was most cost-
effective, with a minimum road network tree and life-cycle costs 21% lower than those incurred
by standard, current practices.

1.5 Conclusions

We have developed a model for estimating forest road construction costs. This system consid-
ers location-specific terrain and subsoil parameters, and can be used to evaluate how various
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cost-estimating strategies affect the optimal layout of road networks. Our model consists of four
element groups – embankment, retaining, pavement, and drainage structures – their dimensions
and quantities being defined in terms of topographic, subsoil, and cross-sectional parameters. A
spatial database that comprises a digital elevation model (10 m × 10 m resolution) and speci-
fications for geotechnical formations is a prerequisite if one is to derive location-specific terrain
parameters. Our validation and evaluation of this model demonstrated that: (1) under difficult
terrain conditions, construction costs can range from 140 (10%-quantile) to 440 CHF (90%-
quantile) per unit of length, thereby typically requiring a factor of about 3 between minimum
and maximum costs; (2) a cost-estimating procedure that incorporates both slope gradient and
geotechnical properties of the subsoil results in an optimal road network in which, compared
with current modeling practices, construction costs are reduced by about 25% and life-cycle costs
by about 20%, all while road lengths increase about 10%; and (3) a cost-estimating procedure
that considers only slope gradient can still produce an optimal road network with 20% lower
construction costs and 17% lower life-cycle costs. Therefore, based on these results, we believe
that spatial variability in construction costs decisively affects the identification of an optimal
road network, and that an improved strategy for cost estimations should become a matter of
course for engineering practices.

Our approach may be used in any case for which site specific life-cycle cost information is
available for element groups (1) embankment, (2) supporting and retaining, (3) pavement, and
(4) drainage structures. However, the model is restricted to terrain conditions with slope gradient
below 150%, where height of retaining structures is less than 3 m, and where no bridges and
tunnels are required. Nonetheless, our validation also revealed some uncertainty that requires
further investigation. A first problem consists of stream crossings for which we implemented
only the ford-case. In some sites bridges may be more appropriate. A second problem is the road
location near sharp terrain edges and small channels for which a 10 m × 10 m grid resolution
is inappropriate to map these small-scale terrain features. Finally protective structures against
natural hazards (rock fall, mudflow, avalanches) which result in additional cost, is a third problem
to be investigated for extreme area conditions.
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Abstract

The success of an automatic road network layout over steep terrain mainly depends on the model
design. Most previous models have used a grid representation that considers only eight adjacent
cells when evaluating feasible road links. Here, we present improved models and alignment
constraints mapped on a mathematical graph for better designs that are more applicable under
field conditions. We have refined the link pattern by considering up to 48 neighboring cells, and
have introduced 16 directional classes per grid cell. Optimization techniques, such as shortest
path, minimum spanning tree, and Steiner minimum tree algorithms, are used on the graph to
derive a road network that is optimal in terms of its construction costs. These improved models
have been applied to different mountainous project areas. Our results show that, by considering
various link patterns and alignment constraints, one can determine more appropriate and cost-
effective locations for road networks, especially in steep terrain.

Résumé

Le succès de la conception automatisée d’un réseau routier en terrain montagneux dépend prin-
cipalement du type de modèle utilisé. Pour représenter des liaisons de routes possibles, la plupart
des modèles développés jusqu’à ce jour utilisent une représentation en trame et ne considèrent
que les 8 cellules voisines. Cette publication présente un modèle qui permet d’améliorer la con-
ception des routes forestières et rurales et qui représente toutes les conditions sur un graphe
mathématique. Le modèle de routes est affiné en tenant compte de 48 liaisons d’une cellule aux
cellules voisines et en introduisant 16 classes de directions. Avec les techniques d’optimisation,
par exemple les algorithmes du chemin le plus court, de l’arbre couvrant de poids minimal et de
l’arbre de Steiner de poids minimal, on peut déterminer le réseau routier optimal du point de vue
des coûts de construction. Le modèle amélioré est évalué en trois régions différentes. Les résultats
montrent que le nouveau modèle permet d’obtenir un meilleur emplacement du tracé vertical
et horizontal de la route – spécialement en terrain forte pente – et réduit substantiellement les
coûts de construction.

2.1 Introduction

Designing an optimal forest road network across a varying landscape is a challenging task
(Scaparra & Church, 2005b). Several engineering problems, such as an overwhelming amount
of terrain and environmental data, the uncertainty of cost figures, a lack of explicit constraints,
and fuzzy and contradictory goals, make this task even more complicated. Computer-aided engi-
neering approaches for solving road network layout problems have now emerged (Kirby, 1973,
Mandt, 1973, Dykstra, 1976). The development of such approaches has been accelerated by
the widespread availability of digital elevation models. Initially limited by computing power,
they have been continuously improving, resulting in software packages for optimal road network
design such as PLANS (Twito et al., 1987), PLANEX (Epstein et al., 1999, Epstein et al.,
2001), and CPLAN (Chung et al., 2004). In addition, road centerline optimization techniques
have been evolving (Chew et al., 1989, Aruga et al., 2004) to optimize detailed engineering
design of both highways and low-volume forest roads. However, even the most sophisticated
methods may have the following shortcomings: (1) they often ignore the road cross section when
estimating road construction costs, (2) they limit the number of possible links from a specific
network node to its adjacent nodes, and (3) they assume the road centerline to be a chain of
consecutive straight lines without considering curve or switchback constraints. Automatic design
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approaches that overlook these shortcomings may result in impractical road network locations,
especially in steep terrain.

Previously, we addressed the first shortcoming and presented a route-dependent cost estima-
tion model (Stückelberger et al., 2006a). Here, we introduce a new approach to forest road
layout that overcomes the last two shortcomings: limited link patterns and the lack of gradient
and curvature constraints. In our approach, we determine the minimum-cost path between two
control points in a geographical area, as well as the minimum-cost spanning tree that connects
multiple control points. Our approach aims to (1) improve the formulation of road link patterns,
(2) enhance the formulation of horizontal and vertical alignment constraints by considering
realistic design elements, and (3) evaluate the improved formulation solved by standard graph
optimization algorithms. We first describe the mathematical formulation of the location problem,
including link pattern representation and design constraints. We then describe the adaptation
of network optimization algorithms. Finally, we present and discuss model validation.

2.2 Mathematical formulation of the road network location
problem

Laying out a road network is a complex location problem (Church et al., 1998), especially over
steep terrains. This problem can be solved by finding the shortest path (the least-cost path) or
minimum spanning tree that connects control points within a specific geographical area, subject
to horizontal and vertical alignment constraints. Such an approach requires representation of
the solution space as a graph, while mathematically formulating the alignment constraints.

2.2.1 Link pattern representation

Road engineers control the geometry of a layout by following a sequence of vectors, known as a
‘traverse’. The road is then designed as a series of curves inside the angles between consecutive
straight segments along vectors, plus curves outside the angles between successive vectors that
define hairpin bends (Ervin & Gross, 1987). A geographical area is the continuous physical
entity on which we can define an infinite number of points for use as the start- and end-points
of vectors. However, graph optimization algorithms require a finite set of nodes (vertices) and
links (edges). Therefore, the specification of all possible alternatives follows the concept of dis-
cretization, i.e., splitting a continuous physical system into a discrete set of simple shapes. The
prevailing approach uses a grid consisting of squares. Although the resolution of such a grid for
different road layout models varies with the computing capacity and the area of interest (Liu &
Sessions, 1993, Dean, 1997, Chung & Sessions, 2001a), we have used a 10 m × 10 m node
resolution in this study. Each node represents the center of a grid cell. We believe this resolution
is appropriate for forest road design (Heinimann et al., 2003, Stückelberger et al., 2004)
because it equals the lower limits of the elements that define the centerline of a road, especially
the minimum lengths of curve tangents, the straight segments between curves, and the minimum
radius for switchbacks (Kuonen, 1983).

Because the finite set of all possible start-points and end-points is defined, the next task is
to identify which connections (links) between any two points are feasible. The predominant ap-
proach is to determine the links from a start-node to its adjacent nodes (Fig. 2.1a), a process
that results in eight links per node, i.e., a Moore neighborhood of Range 1 (Barile & Weis-

stein, 2002). A Moore neighborhood of Range 2, which provides 24 possible links and has 16
unique directions (Fig. 2.1b), has previously been used by Heinimann et al. (2003). However,
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that extension of 24 links results in only eight additional directions. Because one of our goals
is to evaluate the effect of different link patterns on the road layout, we have also defined and
assessed a 48-link pattern (Fig. 2.1c), which consists of the full Range 2 neighborhood, 16 links
of Range 3, and eight links of Range 5. This pattern results in a nearly homogenous distribution
of 40 directions.

A rectangular grid representation may cause an angular and, therefore, unrealistic road align-
ment because its location is represented by a series of connected grid cells. Anderson & Nelson

(2004) have described an approach that prevents this risk by shifting the coordinate values for
each point randomly. They have generated 30 nodes per hectare, at an average node spacing of
18.25 m. However, a rectangular grid representation requires less memory than a vector that
represents the same level of node density because it is not necessary to store the coordinates of
individual points when a grid is used. For this reason, and to facilitate systematic analysis of
the alternative road links, we have used a 10 m × 10 m grid to identify road nodes, and have
combined it with the link pattern described for Figure 2.1c.

Figure 2.1: Neighborhood patterns for Models 8- (a), 24- (b), and 48-link (c)

2.2.2 Road curvature constraints

In steep terrain, where a road must accommodate considerable differences in elevation, a shortest-
path algorithm used on a grid often produces a zigzag sequence of straight lines and excessive
switchbacks. Under real conditions, such patterns should be limited for two reasons. First, roads
have to maintain a certain minimum-curve radius for driving comfort. Second, the construction
of switchbacks entails additional cost. One approach for preventing this has been to penalize
dramatic directional changes in road alignment (Anderson & Nelson, 2004). Another has
been to check the horizontal road alignment feasibility (curvature) of combining incoming and
outgoing links for each node, and allow only feasible links to be considered (Chung & Sessions,
2001a, Epstein et al., 2001). However, none of these previous tactics has actually been used to
map curvature constraints on a mathematical graph.

For the link pattern in Figure 2.1b, 16 different directions are considered in the model. At
each outgoing and incoming node, the model checks all possible directional combinations. Conse-
quently, the solution space increases by a factor of 162 = 256. A minimum radius is the criterion
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Figure 2.2: Curvature constraints in graph model. Link A-B is feasible whereas link B-C is not,
because its road radius would be smaller than the minimum radius (rmin).

for determining whether a link is feasible or not (Fig. 2.2). In this study, the minimum radius
has been set at 20 m for regular curves and 10 m for switchbacks.

Representation of such constraints requires one physical node to be split into 16 virtual nodes.
Thus, the corresponding mathematical graph can be displayed three-dimensionally (3-D), con-
sisting of 16 virtual layers, each of which maps one directional class. Figure 2.3 illustrates this
3-D approach for turnings of different road links. Node O represents an incoming node, while
Nodes A, B, C, and D represent potential intermediate control points, depending on the road
direction. The 0-layer represents the link direction, from west to east, whereas the 4-layer indi-
cates the south-to-north link. The 8- and 12-layers represent link directions from east to west
and from north to south, respectively. A link with a 180◦ turn (for example, from Node O to
Node D in Figure 2.3 results in a left-turn switchback. In this representation of the solution
space, any chains of links (walk) result in a feasible alignment of the road. Graph optimization
takes place in this 3-D graph, and the result can then be mapped back to the 2-D grid, which
represents the x, y-surface area of the real world.

Although a total of 40 possible road directions exists in the 48-link model, we have regrouped
them into 16 directional classes to reduce the problem size. All links connecting to the nodes
in the Moore neighborhood of Ranges 1 and 2 can be assigned to one of 16 directions without
errors. However, some links connecting nodes in the Moore Neighborhood of Ranges 3 and 5
(Fig. 2.1c) do not fit exactly to the 16 directions of Figure 2.1b. So, the effective direction is
rounded toward the nearest of the 16 given directions. In our analysis, we have assumed that
this angular difference (max. 18◦ distributed over 51 m) does not affect practical applications.

2.2.3 Road gradient constraints

Road gradient must be less than or equal to a maximum allowable value for safe truck operations.
The gradient of a single road segment is calculated by dividing the elevational difference by the
segment’s horizontal length. If the gradient is too high, the link becomes infeasible. Each node
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Figure 2.3: Representation of directional change constraints, illustrated by 4 directions. Combinations
of outgoing and incoming links represent right-hand curve (OA), straight line (OB), left-hand curve
(OC), and left-hand switchback (OD).

Figure 2.4: Sector of feasible link gradients (-12% < road gradient < +12%) in slope gradient of 25%
(a) or 40% (b)
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Figure 2.5: Number of feasible links (-12% < road gradient < +12%), depending on link pattern and
slope gradient

located in steep terrain has a feasible sector of allowable link-gradients. The steeper the terrain,
the smaller the sector and the fewer the links that are feasible (Figs. 2.4, 2.5). Because of this,
the link pattern used in road network models becomes important, especially in steep terrain.

In order to connect two terminals (mandatory access nodes) with a large elevational difference,
one should find the road route with a centerline gradient (nroad) nearest the maximum allow-
able value (nroad = nmax). Then again, the strict application of gradient constraints (nlink ≤
nmax) to each single link gradient (nlink) often results in the average gradients of the centerline
(nroad), which are usually below the maximum allowable link gradient (nroad < nmax). This is
a consequence of the regular node structure, where most outgoing links have a gradient lower
than the maximum allowable link gradient (nlink max < nmax). To overcome this problem, we
have developed and introduced a relaxation rule into our model to accept link gradients that are
slightly above the maximum (nmax). If the gradient (nt) of a link is higher than the maximum
allowable gradient but smaller than the maximum gradient plus a tolerance (nmax + c), a proba-
bility (p) is calculated according to Equation 2.1. The closer nt is above nmax and the farther n0

(i.e. presenting nlink max) is below nmax, the greater the probability for accepting this link. This
procedure then calculates a random number (r) and compares it to the calculated probability. If
the random number is smaller than the probability, the link is classified as “feasible”; otherwise,
it is “infeasible” (Eq. 2.2). This relaxation provides some link over the maximum allowable road
gradient for preliminary planning. During the field survey and detailed planning, the vertical
road alignment must then be adjusted so that the average road gradient does not exceed nmax.
Although some links may have a gradient above the maximum allowable limit, it is unlikely
that the overall gradient between the start-terminal and the end-terminal will be larger than
the allowable gradient due to a small tolerance. With this relaxation rule it is possible to find
centerlines that use, on average, nearly the entire capacity of the maximum road gradient.
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p =
{ nmax−n0

nt−n0
if n0 ≤ nt ≤ nmax + c

0 else
(2.1)

b =
{

1 if r ≤ p
0 else

(2.2)

where, b = Boolean value, 0: infeasible, 1: feasible
c = maximum tolerance for a relaxed link gradient (about 4%)
n0 = maximum gradient among the previous links of the same outgoing node
nmax = maximum allowable road gradient (about 12%)
nt = link under investigation
p = probability
r = random number [0...1]

Additional rules exist for special cases. The first exception is a switchback. To ensure safe
truck operations and driving comfort, the road gradient in switchbacks must be much lower
than the maximum allowable road gradient. Therefore, only links with a gradient less than half
the maximum allowable link gradient are considered feasible (≤ 1

2 ·nmax). The second exception
is a ford, which is a type of stream crossing where the planned road must fulfill additional design
criteria, i.e., the gradient must decline toward the stream and incline after the ford. Therefore,
our model only accepts, within a buffer of 30 m from a stream, those links that either have a
negative gradient toward the stream or are leaving the stream with a positive gradient.

2.2.4 Road construction cost and weight function

Using graph optimization algorithms requires that each link (edge) be weighted. In the present
case, the weight of each link corresponds to the cost of the road segment. Dean (1997) has
assigned the cost value using a given cost layer and the length of the link, while O’Neal et al.
(2006) have presented a spread sheet tool to estimate the construction cost for a specific road
segment. Anderson & Nelson (2004) have estimated that cost as a function of road length
and gradient. Previously, we introduced a model for accurately estimating road construction
and maintenance costs based on terrain surface properties as well as the geological properties
of the subsoil (Stückelberger et al., 2006a, Stückelberger, 2006). That model followed
an approach of cost classification by elements (CCE, 1991). For example, forest roads com-
prise four structural components: (1) embankment, (2) retaining structures, (3) pavement, and
(4) drainage and stream-crossing structures. Our cost model considered road widening in curves
and switchbacks, and aimed for – if geotechnically possible – a balanced design for cut-and-fill
volume in each cross section.

In the applications presented here, we have applied that cost model (Stückelberger et al.,
2006a) to estimate construction and maintenance costs for each road link identified as feasible.
That cost is considered the weight of the link. The parameters for engineering, cost, and road
design used with these applications are shown in Tables 2.1 and 2.2.

2.3 Optimization procedures

Once a mathematical graph of vertices (nodes), edges (road links), and weights (road construc-
tion and maintenance costs) is built, graph optimization techniques are applicable.
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Table 2.1: Engineering and cost parameters for each geotechnical unit. The data were calibrated
for the areas of Uetliberg, Wägital, and Giswil (Switzerland), and for the Mica Creek Watershed
(Idaho, USA). tan(φcut): cut-slope inclination, tan(φfill): fill-slope inclination, tan(φwall): inclination
of retaining wall, fshr: shrinking factor of earth volume fill : cut, coefrock: coefficient for rock ratio,
cexc: excavation cost, ccomp: emplacement and compaction of the filling material, crock: additional cost
for rock excavation, cpav: cost for pavement structures, cwall: cost for retaining walls, cdrain: cost for
drainage structures. 1 CHF ≈ 1 CAD ≈ 0.85 USD, 1 CY ≈ 0.764 m3, 1 ft ≈ 0.308 m
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nmax rmin rSB ws0 wd+s kcw zmin

Switzerland: [m] [m] [m] [m] [m2] [m]
- Uetliberg (ZH) 12% 20 10 3.4 0.6 26 0.30
- Giswil (OW) 10% 20 10 3.6 0.6 30 0.50
- Wägital (SZ) 12% 10 10 3.4 0.6 26 0.30
Idaho: [ft] [ft] [ft] [ft] [ft2] [ft]
- Mica Creek (ID) 12% 100 60 14 3 250 1

Table 2.2: Design parameters for each road type used in design projects. nmax: maximum road
gradient, rmin: minimum radius for standard curves, rSB : minimum curve radius for switch backs, ws0:
standard road surface width, wd+s: additional width for shoulder and ditch, kcw: road curve widening
factor (x/radius), zmin: minimum excavation depth (i.d. topsoil material not usable for embankment),
1 m = 3.24 ft

The problem-solving procedure can be subdivided into the following steps:

1. Identify t terminal nodes that must be accessed.

2. Find all t − 1 shortest paths (SPs) from one starting node to all other terminals.

3. Find all t
2 · (t − 1) SPs, connecting each terminal with the others.

4. Find t − 1 edges to define a minimum spanning tree (MST) that connects all terminals.

5. Find additional nodes in the area where the road can branch out, and determine the Steiner
minimum tree (SMT).

2.3.1 Gradient-sensitive shortest-path algorithm

Determining the shortest path in a graph is a P-problem (P: polynomial, meaning that the
problem is solvable within a polynomial time, nk, where n is the number of nodes and k is
any positive real number). Dijkstra (1959) earlier introduced an algorithm to identify the
SP from any node to all other nodes. This algorithm, widely used to locate the shortest route
(Anderson & Nelson, 2004), is applicable for positive link weights only. The source code is
available on the Internet (e.g., www.cprogramming.com, 2005a). This algorithm guarantees
the mathematical optimum; by running it t − 1 times, we can obtain all t

2 · (t − 1) SPs.
However, Dijkstra’s algorithm considers only the link weight, and is incapable of simultaneously

analyzing multiple link attributes, such as link weight and gradient. Because frequent and large
fluctuations in gradient reduce traffic comfort and contradict engineering practices, changes in
those link gradients are penalized depending on the difference between the gradients of the
incoming and outgoing links. Therefore, the weight of a link is the sum of the construction cost
and its penalty. This penalty function aims to prefer a solution where the gradients of several
consecutive road links are nearly identical and to prevent excessive gradient changes along the
road centerline. However, this penalty function does not affect the actual cost of the links. In the
current model, the penalty function is set as linear and corresponds to the cost of four additional
meters per 1% change in gradient. Due to this penalty, the modified Dijkstra’s algorithm used
in our model does not provide the “shortest path”, but it most likely identifies the least-cost
path with less frequent gradient changes.
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2.3.2 Network optimization algorithms

To find the minimum spanning tree between all terminals, we have created a very simple graph,
where only terminals exist as vertices. This new graph is completely independent of the 10 m×
10 m graph-model, which covers the entire project area presented in Subsection 2.2.1. To avoid
confusion, we call the 10 m × 10 m-graph the “1st order graph”, and the new graph, the “2nd

order graph”. The edges between the vertices in the latter are the shortest paths, which result
from the iterative SP algorithm in the former. The weight of an edge in the 2nd order graph
corresponds to the total cost between two terminals in the 1st order graph, which is also gained
through the SP algorithm. Kruskal (1956) and Prim (1957) have introduced algorithms to
determine the MST. Both algorithms lead to the mathematical optimum and solve the problem
in the polynomial time of the number of vertices (P-problem). For example, a 128-node problem
– which is far above the presented cases of a 2nd order graph – is solved almost instantly (< 1
sec) with a modern PC. These algorithms are very common; their source codes are well described
on the Internet (e.g., www.cprogramming.com, 2005b). Prim’s MST algorithm is used in our
current model.

Nevertheless, the MST in the 2nd order graph may not result in the least-cost road network.
Good branch-out points for roads often exist in a 1st order graph, and are known as Steiner points
(Fig. 2.6). Finding such points in a graph is very complex, and up to now cannot be solved exactly
within the polynomial time deterministically (NP-hard problem). The processing time for an
exact solution is kn where n = number of nodes, and k = any positive real number (Garey &
Johnson, 1977, Garey et al., 1977). However, as the values for n increase, such problems soon
become unsolvable within a limited time span. Methods to obtain nearly optimal solutions have
been described by Prömel & Steger (2002), Polzin (2003), and Rosenwein & Wong (1995).
We have previously applied these to find SMTs for low-volume forest roads (Stückelberger

et al., 2004). These algorithms, which usually require a large amount of computing time even
though optimality is not reached, have an expected error of about 2 to 4% (Ghanwani, 1998).

Figure 2.6: Example of Minimum Spanning Tree (MST) and Steiner Minimum Tree (SMT) with 7
mandatory access nodes (Terminals) and 3 good branching points (Steiner points), respectively
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2.3.3 Implementation

The current program has been developed in Object Pascal (Borland Delphi 7.0); the source code
for calculating the road cost of all the links and building a graph consists of 3’700 lines. In
contrast, the source code for finding the MST comprises only a few hundred lines.

One complication is memory management. A project area of 36 km2, with a 10 m × 10 m
resolution, is nearly the limit for a modern PC with 2 GB RAM. Such a problem leads to
5.8× 106 nodes, or a maximum of 276× 106 links. Each link contains 60 bits of information; for
all links we have used 16.6 × 109 bits, or approximately 2 GB. However, not all the theoretical
links are feasible because of curvature and gradient constraints, as well as soil bearing capacity.
Depending on the slope gradient and the geology of the subsoil, only a subset of one-quarter to
one-half of the theoretical links is usually feasible, which greatly frees up computer memory.

2.4 Link model specification

The more neighbor nodes that are involved in the road link pattern, the more complex the
graph model becomes, and the longer the process takes to find the optimum solution. However,
a more complex and realistic link pattern usually better represents the real world, provides
more alternatives, and, therefore, results in a better solution. We have tested and compared
nine models that use different link patterns in order to identify their influence on road layouts
(Tab. 2.3).
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b) Zigzag 24 • • 0 0 0 0
c) Lazy Zigzag • • 0 0 100 0
d) 8-link • • 20 10 0 0
e) 24-link • • 20 10 0 0
f) 48-link • • 20 10 0 0
g) Relax • • 20 10 0 0
h) Ramp • • 20 10 0 4
i) Combined • • 20 10 0 4

Table 2.3: Nine models and their constraints. a In the present study: tolerance = 4%; b The penalty
increases the weight of a link by the value of the construction cost for the indicated distance, but does
not affect either the road length or the road cost

Model (a) “Zigzag 8” considers only 8 direct links to adjacent nodes and no curvature con-
straints, so it allows zigzagging without any penalties. Many road network models and GIS
software (e.g., ESRI ArcGIS 9) utilize this approach in their least-cost path algorithms. Model
(b) “Zigzag 24” is similar to Model (a), but it also connects the nodes in the Moore neighbor-
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hood of Range 2 (cf., Fig. 2.1b). Scaparra & Church (2005a) have used this layout for finding
corridor locations. Model (c) “Lazy Zigzag” has the same link pattern as Model (b) but penal-
izes switchbacks. Due to this penalty, the alignment is expected to be less zigzagging than with
Model (b). Model (c) also allows links to be slightly above the maximum road gradient (nmax),
with tolerance set at 4%. Model (d) “8-link”, Model (e) “24-link”, and Model (f) “48-link” all
have curvature constraints, as described in Section 2.2. The link pattern follows Figure 2.1a
for Model (d), Figure 2.1b for Model (e), and Figure 2.1c for Model (f). For these models, the
gradient of each link (nlink) is set to be always below the maximum allowable gradient (nmax).

As explained in Subsection 2.2.3, we have tried here to relax the constraints in order for
maximum link gradients to approach nmax. Model (g) has the same link pattern as Model (f),
but allows for values above the maximum road gradient (nmax). Because a constant road gradient
is preferred over a long section (cf., Subsection 2.3.1), Model (h) “Ramp” penalizes the gradient
change between two consecutive road links. It is based on the link pattern of Model (f) as well.
Finally, Model (i) “Combined” is the aggregation of Models (g) and (h). The goal is to find a
constant road gradient near nmax.

2.5 Results

2.5.1 Link model comparisons

These nine different models (Tab. 2.3) have now been applied to a 1-km2 area in the research
forest of ETH Zurich (Fig. 2.7). The southwestern portion of that area is flat terrain, with
an average downhill slope of 40% to the northeast. Various student project results and expert
opinions have been analyzed and compared with model outputs.

Three terminals (control points) have been located: (A) at the bottom of the hill (in the
northeast, elevation 492 mNN), (B) on the upper ridge of the hill (in the middle, elev. 619
mNN), and (C) in the flat area (in the south, elev. 643 mNN). Terminal (B) is positioned
between terminals (A) and (C), so that no Steiner Point is necessary. This project results in two
road sections – one in steep terrain (from A to B), and the other in the flat area (B to C). The
input data include a digital elevation model and a grid-layer for the geological subsoil, both in
the resolution of 10 m × 10 m.

The results of each model are summarized in Table 2.4, in terms of road length and cost, and
road locations (Fig. 2.7). Because the zigzag models (a, b, c) develop road locations without
considering switchbacks, we have also calculated construction costs with the additional expense
for switchbacks based on the road alignments of these model results. Model (g) “Relax”, which
considers realistic curvature constraints and relaxes the gradient constraint, provides the least
cost path among the nine models. Therefore, we have used this one as a base model for our
further comparisons.

Model (a) “Zigzag 8” is incapable of determining a solution for a road route through steep
terrain (A-B), and the proposed route B-C is unreasonable, based on field verification.

Model (b) “Zigzag 24” does identify a feasible solution for both sections. However, its section
A-B is very zigzagging, resulting in 18 switchbacks, which is not a practical design in that
project area. According to our field verification, section B-C is feasible except for the very last
switchback near point C. The road cost is 13% higher than from the base model. Model (c)
“Lazy Zigzag” produces only two switchbacks between A and B, which seems realistic in this
terrain.
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Table 2.4: Comparisons of road lengths, costs, and processing times among the nine models. a Pro-
cessing time with a PC Pentium IV, 2.66 GHz, 1 GB physical RAM, and 1 GB virtual RAM for SP road
route location. The processing time for data-reading and graph-building is not included. b Percent ratio
to the base model (g). c The effective cost is the sum of the model cost plus the cost of constructing
switchbacks. Model (g) “Relax” is used as the base model. kCHF = 1000 CHF ≈ 1000 CAD
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However, the field verification shows that their proposed locations would be suboptimal be-
cause they require a huge excavation volume and/or high retaining structures. Section B-C from
Model (c) seems similar to that of Model (b), but just a slight difference in road alignment
makes its cost 10% less than for Model (b). Model (c) also provides for a minimum road length
that is 5% less than the base model for Section B-C.

Model (d) “8-link” includes curvature constraints and switchbacks, but the result seems to be
less desirable than with the base model. A total of four switchbacks is located in section A-B.
Although their proposed locations appear reasonable, the road length and cost are much higher
than for the base model. Even in flat terrain (B-C), this model calls for 5% more length and
9% higher cost than does the base model. Models (e) “24-link” and (f) “48-link” achieve similar
solutions, but the former seems to follow grid structures, while the latter better fits the terrain,
producing a less expensive route. The average road gradient from Model (f) is 9%, or 3% less
than the road gradient limit of 12%. In steep terrain (section A-B), both models produce routes
that are 10% to 20% higher in road length and cost than the base model. In flat terrain, Models
(e) and (f) differ very little, and their routes are similar to that from the base model.
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Figure 2.8: Profile in length (10×super-elevated) for 4 model alternatives (f, ..., i)

When the strict limit of a maximum road gradient is eased, Model (g) “Relax” is able to
connect A and B with one switchback only, leading to an approximately 10% reduction in both
length and cost compared with Model (f). The average road gradient is about 1% higher than
for Model (f), but is clearly within the limit of 12% (Fig. 2.8). The road location for section B-C
is identical to that from Model (f).

Models (h) “Ramp” and (i) “Combined” attempt to obtain a homogenous road gradient. Their
length profiles show that both are slightly smoother than those of Models (f) and (g) (Fig. 2.8).
The proposed penalty for changes in road gradient reduces the average gradient by about 0.5%
when comparing (f) to (h) and (g) to (i). In steep terrain, the constraints of having constant
road gradients increases cost and length by about 10%.
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The computation times required for models that include curvature constraints (i.e., d through
i) are about twice as long as those calculated with the zigzagging models (a, b, c) (Tab. 2.4).

2.5.2 Model validation

In order to validate our models, we have chosen three obviously different models – ((a) “Zigzag 8”,
(c) “Lazy Zigzag”, and (f) “48-link”) – and have applied them to two forest areas where roads
have previously been developed. Those model results have also been compared with the current
road locations. Model (a) “Zigzag 8” was selected to represent most existing grid-based models.
Model (c) “Lazy Zigzag” represents a contemporary state-of-the-art in road network optimiza-
tion, incorporating the need for penalties for switchbacks Anderson & Nelson (2004) and
the neighborhood link patterns Scaparra & Church (2005a). All segments are assumed to be
straight lines. It includes no penalties for horizontal or vertical alignment. The costs are calcu-
lated after the geotechnical subsoil and digital elevation model and includes additional costs for
stream crossings. To show the benefit of the enhanced link pattern, we have selected Model (f)
“48-link”, which is deterministic. Even though Model (g) “Relax” may provide the least-cost
road locations, we have not selected it because it may produce a different solution in each run
due to a probabilistic component in the model that makes further analysis more difficult.

The comparisons we have made here with the existing roads may not provide perfect validation
due to the following drawbacks: (1) the models consider construction costs only, although actual
road networks are often built for multiple objectives (e.g., timber harvesting, recreation access,
minimized expense); (2) existing road locations and alignments may not be optimal; and (3) road
alignment alternatives may exist that have nearly similar construction costs, but with totally
different spatial alignments. Keeping those shortcomings in mind, the comparisons here have
been done only qualitatively and not quantitatively.

Project Model (a) Model (c) Model (f) Existing
“Zigzag 8” Lazy Zigzag “48-link” road

Giswil:
- length [m] - 6’606 2’864 3’021
- model cost [CHF ] - 2’725’700 1’180’400 1’244’800
- cost per length [CHF

m ] - 413 412 408
Mica Creek: (nmax= 15%)
- length [ft] (25’144) 16’239 15’889 18’758
- model cost [USD] (300’117) 90’474 80 662 9’716
- cost per length [USD

mile ] (63’021) 29’413 26’800 26’097

Table 2.5: Model evaluation results in the project areas “Giswil” and “Mica Creek”.
1 USD ≈ 1.23 CHF , 5280 ft ≈ 1 mile ≈ 1.609 km

Our first area for validation is located in Giswil, in the northern slopes of the Swiss Alps
(Fig. 2.9). With an average slope gradient of about 39%, this site was formerly used for cost-
benefit analysis of road investments (Stückelberger et al., 2006a), which have now provided
us with numerous data for engineering and cost parameters. Three control points (A, C, and
D) are given, and we have built the SMT connecting those points. However, real costs for the
existing roads (built in the 1960s) are not available. Therefore, we have estimated construction
costs for the existing road by using our cost model and the actual road centerline (Tab. 2.5).

Model (a) “Zigzag 8” is inadequate for finding a feasible solution at this particular site, even
though the maximum allowable road gradient has been set to 20%. Likewise, the result from
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Figure 2.9: Model-designed road network for Models “Lazy Zigzag” (c) and “48-link” (f), and existing
road network. Background: slope gradient and streams. Giswil project area (Switzerland)
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Model (c) “Lazy Zigzag” does not match well with the existing road (Fig. 2.9). Although nine
switchbacks are called for with that model, the current road has none. The road length and cost
are more than twice as great compared with the existing conditions, even though section B-C
is similar to the actual road. Model (f) “48-link” describes nearly the same alignment as the
real road, with only a minor variation near site B, where the current road must connect with
another. The existing road follows the contour lines in the area between C and D, whereas the
model suggests slight road gradient changes. The model result is less expensive, but the existing
road may provide better traffic comfort. Road lengths and costs are similar in both cases.

Our second area for validation is in the Mica Creek watershed in Northern Idaho, USA
(Fig. 2.10). The average slope gradient is 30% and the node spacing used is 75 ft (22.9 m).
Engineering and cost parameters (cf., Tab. 2.1) for this site were obtained from the USDA For-
est Service cost guide for road construction (US Forest Service, 2006). As with the Giswil
site, four control points (A, B, C, and D) have been identified in this area (Fig. 2.10).

Model (a) “Zigzag 8” does not provide a feasible solution here except when the maximum
allowable gradient (nmax) is increased to 15%. Moreover, the network design for this solution
is far different from the existing roads. In contrast, Model (c) “Lazy Zigzag” produces a road
alignment similar to actual conditions, and both designs are nearly identical along section A-B.
The model results, however, present different road locations along section C-D, where two stream
crossings are required in the model result, compared with the current avoidance of such crossings.
Model (f) “48-link” produces road alignments similar to the existing road in sections A-B and
C-D. Section B-C, however, differs in that the current road is located farther away from another
parallel road than the model result would indicate, perhaps because road spacing accommodates
timber harvesting purposes. Finally, the existing road crosses streams three times, whereas the
model calls for only one stream-crossing, resulting in a less expensive road.

2.5.3 Model application

For further evaluation of our models, we have applied them to a large, unroaded area, Wägital,
which is located on the northern slopes of the Swiss Alps in the geological zones of flysch and
limestone (Fig. 2.11). The road network layout in this region is challenging because of the steep
terrain (average slope gradient of approximately 45%), difficult geotechnical conditions, and a
dense water channel network. Our evaluation task is to find a Steiner minimum tree and connect
10 terminal nodes that have been identified by road engineers. The area is 35 km2, and its graph
representation consists of 5.6× 106 nodes and 95.3× 106 links. This problem size nearly reaches
the capacity limit of a PC with 2.66 GHz and 2 GB RAM.

The purpose of such a model application is to answer the following questions:

• Can the model solve the road network location problem, and how much computing time
is required?

• What is the benefit of the 48-link model over other models?

• Does the model result seem reasonable when compared with expert opinion?

Similar to the model validation introduced above, we have again used Model (c) “Lazy Zigzag”
as a current state-of-the-art approach, and Model (f) “48-link” as the new approach. Model
(a) “Zigzag 8” has not been included because of its inability to find any feasible solutions. The
quantitative results from each model are presented in Table 2.6, and the network layouts are
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[min] [min] [m] [1000 CHF ] [%]b

Lazy Zigzaga 113 MST 31 24’292 40 8’028 118%
SMT 38 22’931 35 7’623 112%

48-link 164 MST 301 20’358 10 7’295 107%
SMT 746 18’769 6 6’802 100%

Table 2.6: Results of Models “Lazy Zigzag” (c) and “48-link” (f) in the Wägital project area.
1 CHF ≈ 1 CAD. a This model does not include additional costs for curve-widening and switchbacks.
b Percent ratio to the SMT of the 48-link model.

shown in Figure 2.11. The Steiner minimum tree that has resulted from the 48-link model is
used as the base reference in these comparisons.

With a personal computer (2.66 GHz, 2 GB RAM), both models can find a solution after 0.5
hours or 12 hours of computation time for Model (c) or Model (f), respectively. The difficulties
associated with the former arise because too many switchbacks are proposed when connecting
nodes in steep terrain, especially near terminals G, H, J, and K. Although both models connect
the 10 terminals in a similar sequence, their road network layouts are not congruent. Terminal
E is connected from Terminal F in Model (c), whereas Model (f) connects Terminal E from
Terminals D and H. Both models locate two Steiner points in similar areas (one for B, C, and
F; the other, for H, J, and K).

Our field verification, conducted with road engineers, has revealed that the location of road
routes in Model (c) is not practical because too many switchbacks are involved. In contrast, the
road locations resulting from Model (f) seem feasible, although one potential problem is noted
in section H, J, K, where the engineers have suggested the possible elimination of two of the
three switchbacks.

2.6 Conclusions and discussion

The objective of this study has been to increase the effectiveness of automatic route location
layouts for forest roads in steep terrain by (1) refining the road link pattern from one node to
its adjacent nodes, and (2) improving the formulation for road curvature constraints.

Our investigation of the various models demonstrates that the link pattern specification heav-
ily influences road network locations and alignments. Standard 8-link models that have been
widely used may not be adequate for finding field-applicable road networks, even over moderate
terrain. Our results indicate that a “24-link” pattern model, with switchback penalties but with-
out curvature constraints, represents the lower limit of link pattern specifications for moderate
conditions with slope gradients of up to 30%. Increasing the steepness of the terrain demands the
improvement of link patterns (e.g., 48 links per node) as well as the introduction of curvature
constraints, although such enhanced link models require more processing time than do simple
8-link models.
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By modifying the link pattern from 8 to 24 and penalizing switchbacks, one can improve the
cost of proposed road network solutions in moderate terrain by at least three-fold, while increas-
ing the computing time by only about 20%. In this model, the penalties for switchbacks are
constant and may be very low for steep terrain. A higher switchback penalty or a penalty as a
function of the slope gradient, additional penalties for vertical and horizontal road alignment
would presumably improve the penalty model and may lead to more accurate results. However,
a 24-link pattern is very limited in steep terrain (cf., Fig. 2.4 and Fig. 2.5). Instead of improv-
ing enhanced penalty models we mapped the curvature constraints on the graph model. The
introduction of curvature constraints increases the size of the graph representation by a factor
of 256, resulting in a 2- to 20-fold longer computing time. For moderate terrain, this addition
of curvature constraints improves a solution by about 10% in cost savings, whereas for steeper
conditions, such constraints become mandatory when identifying reasonable road network align-
ment designs. However, those curvature constraints only make sense together with an enhanced
link pattern.

This improved approach has some limitations, including, first, the size of the project site.
For example, an area of 35 km2 with a node spacing of 10 m × 10 m and 10 terminal points
seems to define the maximum for both problem size (6 × 106 nodes and 3 × 108 links) and
processing time (about 12 hours) for personal computers currently available. Second, our new
approach considers only a single objective function (i.e., minimizing road construction costs).
Most real-world problems, however, deal with multiple objectives, such as minimizing road and
harvesting costs as well as ecological impacts. Although our approach can be modified to consider
those multiple objectives (Stückelberger et al., 2006b), the efficiency of the current problem-
solving techniques may remain questionable as the problem becomes more complicated. Third,
the improved approach may not always provide “optimal” road networks. Some modifications
to the proposed link-pattern and node spacing may be necessary for better results, depending
on the road design specifications. Those results must then be field-verified before they can be
implemented.

Further study of any automatic road layout should include improving network optimization
algorithms, e.g., SMT. The Steiner Tree problem is NP-hard, and up to now no algorithm can
find the real mathematical optimum within a short solution time. When combined with exact
network algorithms, intelligent heuristic search methods may be a promising path toward such
improvements. Other research should involve the formulation and scaling of multiple objective
functions in order to better represent real-world problems. Not only the economic efficiency of
forest roads, but also other considerations such as ecological impacts, soil disturbance, and scenic
values, often must be incorporated into road decision-making.
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Abstract

Automatic planning of forest road networks is an on-going, challenging task. Advances have been
triggered by the increased availability and accuracy of digital terrain models, greater computing
power, and improvements in optimization techniques. Defining one’s objective functions is a
crucial step in guiding the design process and controlling optimization. However, the problem
still exists for mapping the fitness of design alternatives to valuable, spatially explicit figures
for one or more of those functions. This paper aims (1) to present system models that map
the spatial variability of three objective functions (construction and maintenance costs, negative
ecological effects, and the suitability, or attractiveness, for cable-yarding landings); and (2) to
evaluate the effects of this multi-objective problem on Pareto-optimal solutions. We have taken
two approaches for articulating our objective preferences (a priori “choice before search” and a
posteriori “search before choice”) as well as two optimization methods (graph algorithms and a
heuristic search). Our results show that (1) the Steiner minimum tree solutions are located on
convex trade-off surfaces, as expected from the multi-objective optimization theory; (2) single-
point solutions are clustered on the Pareto frontier, such that small changes in the relative
weights of objective-function components can trigger movement from one cluster to the next;
and (3) allocation of relative weights to those components greatly affects the solution.

3.1 Introduction

Designing the optimal road network is difficult to do across a varying landscape (Scaparra

& Church, 2005a). Engineers must consider several related problems: (1) an overwhelming
amount of terrain and environmental data, (2) a lack of explicit constraints, and (3) unclear
and contradictory goals. Computer-aided engineering approaches have been developed for solv-
ing these layout problems (Kirby, 1973, Mandt, 1973, Dykstra, 1976, and their utility has
been accelerated by the widespread availability of digital elevation models. Initially limited by
computing power, they have been improving continuously, resulting in software packages such
as PLANS (Twito et al., 1987), PLANEX (Epstein et al., 1999, Epstein et al., 2001), and
CPLAN (Chung & Sessions, 2002). However, even the most sophisticated methods have some
shortcomings: (1) they assume road-building costs to be route-independent, (2) they limit the
number of possible links from a specific network node to its adjacent nodes, (3) they assume the
road centerline to be a chain of consecutive straight lines without considering curve or switchback
constraints, and (4) they rarely analyze systematically the trade-offs between different objective
functions. Previously, we reported improvements on the first three shortcomings, and presented a
route-dependent cost estimation model (Stückelberger et al., 2004, Stückelberger et al.,
2006a) and an improved link-pattern. Here, we introduce an approach to forest road layout
that overcomes the last shortcoming – the lack of systematic analysis for trade-offs in multiple
objectives.

Real-world engineering optimization problems are inherently multi-objective because they nor-
mally have several, possibly conflicting, goals that must be satisfied simultaneously (Stadler,
1988). Rarely is there a single point that optimizes all the objective functions concurrently.
Most optimization algorithms rely on a scalar fitness function to guide the search. The most
intuitive approach is to combine the multiple objectives into a single function via the “weighted
sum of objective functions methods” (Coello, 2000), (Coello, 2001). Weighting factors map
the preferences of a decision maker, and can be allocated in two ways: (1) a priori, where the
trade-offs to be applied are defined before the optimization methods are run, and (2) a posteri-
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ori, where the decision maker chooses the solution by examining possible options computed by
optimization methods (Collette & Siarry, 2004). A posteriori methods produce, at the end
of the optimization process, a trade-off surface. Most previous approaches to road layouts used
a mono-objective configuration that minimized some cost functioning. Only a few contributions
were based on a bi- or multi-objective problem, and were implemented very efficiently by the
“weighted sum of objective functions” approach. Nevertheless, it is possible, by varying the value
of the weights, to approximate the trade-off surface. One obvious problem with this approach,
however, is that it may be difficult to generate a set of weights that properly scales the objectives
when little is known about the problem. Another, more serious, drawback is that this approach
cannot generate proper members of the Pareto (1896–1897) optimal set when the frontier is
concave (Coello, 2001, Collette & Siarry, 2004). The goals presented here include: (1) the
development of a system model that maps the spatial variability of three objective functions
(life-cycle costs, concurrent ecological effects, and the suitability, or attractiveness, of cable-
yarder landings; and (2) an evaluation of the Pareto frontier for this objective configuration at
specific test sites. We first describe the methodology and then provide an assessment of optimal
road layouts for different mono- and multi-objective configurations.

3.2 Methods

3.2.1 Objective functions

The resolution of problems concerning realistic road-route layouts requires the simultaneous
optimization of more than one objective function. Solutions must be (1) physically feasible,
(2) economically efficient, (3) environmentally sound, and (4) institutionally acceptable. Phys-
ical feasibility is usually guaranteed by constraint formulations on the solution space, whereas
economic efficiency and environmentally soundness have to be simultaneously maximized. Our
aim is to solve the following problem: find a minimum spanning tree that connects mandatory
points in mountainous terrain. Here, “minimum” refers to simultaneously and efficiently reducing
life-cycle costs and the likelihood of selecting attractive landing locations, as well as minimizing
the disturbances to habitat and rare ecotopes. The four components of this objective function
are specified below.

3.2.1.1 Estimating construction costs

Cost estimation is the most decisive factor when planning the layout of low-volume forest road
networks. We (Stückelberger et al., 2006a) have developed a model that estimates the spatial
variability of road life-cycle costs. This overall model has five components: (1) a digital elevation
model (DEM), (2) classification for geotechnical properties of the subsoil, (3) the specification
of road design parameters, (4) unit costs for structural components, and (5) a rock-excavation
share model (Fig. 3.1). Historically, this method has been superior to estimates based on expert
knowledge, and is believed to be the only procedure for modeling the spatial variability of roading
costs in large, mountainous areas.

3.2.1.2 Estimation of adverse ecological effects

It is a normative decision to select a set of adverse ecological effects. Decision preferences also
vary in space and time, making it difficult to compare different approaches. In our investigation,
we have considered two types of environmental impacts – habitat quality for the capercaillie



66 CHAPTER 3. ROAD-NETWORK PLANNING FOR MULTIPLE OBJECTIVES

not trafficable

> 500 CHF / m 

300...500 CHF / m

150...300 CHF / m

< 150 CHF / m

N

N

N

50 170 + v/2 170 + v/2

4 : 5

1:1

Spat ia l  input data

elevation model

layer of the geotechnical subsoil

Resul tCost & engineer ing parameters

construction cost estimation

cross-section and engineering parameters

element cost

Figure 3.1: Flowchart for potential road construction cost estimation. Area of Wägital (Switzerland),
2 km × 2 km

(Tetrao urogallus) and marshland biotopes. Capercaillie, the largest mountain grouse in mid-
dle Europe, is threatened with extinction (Keller et al., 2001). Its requirements for forage,
cover, reproduction, and comfort are crucial variables that define habitat suitability (Boll-

mann, 2003). We have used Graf’s (Graf et al., 2002) habitat suitability index (HSI, cf., USDI

Fish and Wildlife Service, 1981) to measure capercaillie habitat quality. Disturbances are
assumed to be proportional to road length and HSI (Ulber, 2004). For example, a 100-m-long
road segment that crosses a capercaillie habitat with a suitability index of 0.2 results in an
impact cost of 20, which is considered equivalent to a 20-m road segment that might cross a
habitat with an HSI of 1.

Marshland areas, including upland moors, reeds, and wetlands, are important ecotopes that
are protected by Swiss legislation. Determining their ecological value is difficult. Government
agencies have established a standard evaluation procedure that considers the size of the area, the
number of different vegetation types, and diversity (BUWAL, 1991). Several adverse effects on
marshlands must be weighed. First, road construction directly disturbs such areas due to sealing
of the surface. Second, it can cause indirect disturbance by influencing the flow of groundwater
(Marti et al., 1997). Third, a road can dissect a marshland biotope, leading to fragmentation
(Jaeger, 2002). Therefore, we have introduced outside and inside buffer zones, each 100 m
wide (Fig. 3.2). The inside buffer zone and the center zone are assumed to have habitat values
based on the considered worth of the ecotope (Ulber, 2005), whereas the habitat value of the
outside buffer zone is assumed to decrease from that value to zero. Marshland disturbance is
presumed to be proportional to road length and ecological value. If a road enters the center zone,
an additional penalty is added to the disturbance factor, thereby representing the fragmentation
effect.
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3.2.1.3 Attractiveness of cable-yarder landings

Positioning of the landing locations influences the efficiency of off-road transportation, especially
for cable-based extractions. A road should not only connect mandatory access points, but also
reach favorable landings. We, therefore, have introduced a landing-attractiveness factor that
considers both effectiveness and efficiency of the cable yarder in operations (Fig. 3.3). This
factor is calculated according to the following procedure:

1. select a raster cell as a potential landing location (L)

2. for = 0◦ to 345◦ (in 15◦ increments):

3. determine the tailspar point (T) for maximal skyline length,

4. determine the terrain profile,

5. for any point between T and L:

6. calculate ground clearance of the cable road,

7. when ground clearance is ≤ 0, then

8. move T one unit in the direction of L.

9. fix location T,

10. connect all T-points,

11. calculate area bounded by T-points (Fig. 3.4),

12. weight the area with the timber volume to be harvested, and

13. repeat 1 to 12 until all raster cells are evaluated
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Step 12 can also be modified slightly by weighting the potential logging volume by a factor that
represents the installation and logging conditions (e.g., the number of intermediate supports (I)
and logging direction).

A powerful model (CableAnalysis 1.0) is available for automatically determining the landings
for cable logging (Chung, 2002, Chung & Sessions, 2003, Chung et al., 2004). We have
incorporated this model into our procedure for calculating attractiveness for the cable yarder.
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Figure 3.3: Flowchart for calculating cable-yarder attractiveness. Area of Uetliberg (Switzerland),
1 km × 1 km

3.2.2 Multi-objective optimization

Multi-criteria optimization is rooted in late-19th century welfare economics, as described by
Edgeworth (1881), (1889) and Pareto (1896–1897). A feasible solution to a multiple objective
problem is considered Pareto-optimal if no other feasible solution is at least as good for every
objective function or performs worse than at least one other. This means that no objective
component can be improved without other components being made worse. Typically, there is
an entire curve or surface of Pareto points, whose shape indicates the nature of the trade-off
between different goals (Fig. 3.5). Multi-objective problems are very often solved by combining
all components into one scalar objective function (Eq. 3.1). The prevailing approach consists of
minimizing the weighted sum of function components, which is called an “a priori definition of
the multiple-objective function”. With this approach, the decision maker defines the trade-off
to be considered and explicitly expresses his or her preferences before running the optimization
model.

Ox =
k∑

i=1

wi × fi(x) (3.1)
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Figure 3.4: Cable-yarder landing and its overspanning harvesting area (schematic draft)

where, x = objective x
Ox = aggregate fitness of object x
k = number of different objectives
wi = weighting factor of objective i
fi(x) = ith objective function for object x

It is up to the user to choose appropriate weights, which are extremely decisive for the so-
lution that will result from the optimization process. The main shortcoming of this “a priori”
approach is that the solution represents only one point on the Pareto frontier, and trade-offs
are not evaluated and understood. In contrast, an “a posteriori” optimization aims at tracing
the complete Pareto frontier curve for each multi-objective case, thereby producing n(k − 1)
evaluation cases. The eventual computational effort is extremely high, necessarily restricting the
analysis to only a small subset of the solution space.

“A posteriori” preference methods investigate a set of solutions that results from systematic
variation in the weights of the objective-function components. At the end of the optimization,
those methods produce a trade-off surface, i.e., the Pareto frontier1. Given two objectives, O1 and

1Here we used a definition, which is common in economics but not entirely strict. In Paper IV (Chapter 4)
we referred to a mathematical, more precise definition which distinguishes solution space and criterion space. We
therefore used the term Efficient Set, i.e. the mapped Pareto Set from the solution space to the criterion space
(cf. Definition 2).
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O2, that must be minimized simultaneously, many Pareto frontiers in real-case studies describe
a hyperbolic function derived with Equation 3.2, and defined by parameters a, b, c, and d. Often,
parameter a is set to 1.

y =
c

xa + b
+ d (3.2)

where, x = O1 and y = O2

3.2.3 Graph model for road-network system

Road engineers control the geometry of a layout by following a sequence of vectors, known as a
‘traverse’. The road is then designed as a series of curves inside the angles between consecutive
vectors, straight segments along vectors, and curves outside the angles between successive vectors
that define hairpin bends (Ervin & Gross, 1987). A geographical area is the continuous physical
entity on which we can define an infinite number of points for use as the start- and end-points of
vectors. However, graph optimization algorithms require a finite set of nodes (vertices) and links
(edges). Therefore, the specification of the design space follows the concept of discretization,
i.e., splitting a continuous physical system into a discrete set of simple shapes. The prevailing
approach uses either grid or graph representations. Road directions in the former are limited to
the eight neighboring grid cells. In contrast, a graph representation is not limited to a regular
grid structure, and allows more and different road directions. The aim of a graph model is first
to generate a mesh of all possible links over the entire project area, then find the best subset of
the graph that represents the optimal forest road network.

Our model employs a graph representation. However, our nodes are arranged in a regular
structure representing the central point of each raster cell of the DEM. In contrast to a standard
grid representation, road links (edge) are not defined between neighboring grid cells only, but
also are found within an enlarged neighboring area (Fig. 3.6). This extension of neighborhood
is very important, especially in steep terrain (Stückelberger et al., 2004).

3.2.4 Optimization techniques

The problem here is to find the minimum spanning tree that links all mandatory control points.
The solution requires a sequence of analytical tasks:
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• identify a feasible set of links,

• calculate and assign the weight for each feasible link,

• use Dykstra’s algorithm (Dijkstra, 1959) to calculate the shortest paths (SPs) for any
subset of two control points,

• find the minimum spanning tree (MST), using the SP to all mandatory control points
(terminals), according to Prim’s algorithm (Prim, 1957), and improve the solution by
introducing Steiner points (Prömel & Steger, 2002) to identify the Steiner minimum
tree (SMT).

SP and MST algorithms are well documented (www.cprogramming.com, 2005a, www.cpro-

gramming.com, 2005b). The problem of introducing Steiner points is more difficult. In a graph
with n nodes, n − 2 Steiner points may be incorporated to improve the solution and find the
Steiner minimum tree. Unfortunately, there is no algorithm to locate those Steiner nodes within
polynomial time, making this problem NP-hard (i.e. Non-deterministic Polynomial-time hard).
If the size of the project area and the number of terminal points are limited, it is possible to
determine the mathematical optimum for the SMT by testing all combinatorial possibilities.
For larger problems, however, the use of heuristics is an efficient approach to obtain at least
near-optimal solutions. Simulated annealing (Kirkpatrick et al., 1983), the heuristic we have
adopted here, produces solutions that are within a couple percentage points of the optimum.

3.3 Model evaluation and results

3.3.1 Evaluation of layout

Different configurations of the multi-objective function are evaluated in order to optimize route
layouts. Here, we have analyzed three configurations: (1) mono-objective, (2) Pareto frontier, and
(3) bi-objective with weight variations. Although our graph model follows the 48-link pattern
(Fig. 3.6), a Steiner minimum tree optimization procedure is used. Our first test site is at
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“Wägital”, a 35-km2 area on the northern slopes of the Swiss Alps. This region is characterized
by steep terrain (average slope gradient of approximately 35%), difficult geotechnical conditions,
a dense water channel network, and high-value ecotopes and habitats. It, therefore, is an ideal
model for investigating multiple, conflicting objective conditions.

3.3.2 Mono-objective optimization results

The “Wägital” area has 10 mandatory control points (Fig. 3.7). The problem to be solved is
to find an SMT that minimizes costs, impacts on capercaillie habitat, and harm to marshland
ecotopes. The key parameters in our cost-optimal solution (Scenario 1; Tab. 3.1) consist of a
19-km-long road network with a life-cycle cost of 6.6 million Swiss francs (CHF). Adopting
eco-optimal solutions that conserve both capercaillie habitat and the marshland ecotope results
in a longer road network and higher costs. When those potential impacts are evaluated sep-
arately and compared with our cost-optimal data, the capercaillie-optimal solution (Scenario
2) involves a 62% longer road network and 84% higher costs. Likewise, the marshland-optimal
solution (Scenario 3) requires an additional 18% in road length and a 32% increase in costs, com-
pared with the cost-optimal solution. These results demonstrate the conflicting nature of two
ecological objectives. The capercaillie-optimal solution not only incurs longer roads and greater
costs, but also increases the impact on marshland ecotopes by about 65%. Overall, the impact
of the marshland-optimal solution is three-fold greater than that of the capercaillie-optimal so-
lution. The main difference in length and cost for capercaillie-optimal versus marshland-optimal
solutions, based on our Steiner minimum tree network (Fig. 3.7), arises because a long detour
is required for bypassing capercaillie habitat in the northern part of the project area.

3.3.2.1 Cost versus ecology trade-offs

The determination of the Pareto frontier is based on stepwise changes in the relative weight of
objective-function components2. Here, we have evaluated the trade-off between cost minimization
and the lowest ecological impact. The eco-component is a scalarization of the two eco-objectives,
minimization of capercaillie habitat impacts and minimization of marshland ecotope impacts.
Relative weights of these two components change within a range from zero to 1000. Our Pareto
frontier evaluation (Fig. 3.8) is bound by two extremes: (1) the cost-optimal solution (at the
upper-left end), and (2) the eco-optimal solution (lower-right end). These numbers represent the
relative weight between the eco- and the cost-components of the objective function. One might
assume the Pareto points to be evenly distributed along that frontier. However, the Pareto-
optimal solutions are concentrated on three clusters: (1) a cost-optimal cluster, with relative
weights of 0 to 4, (2) a cost-eco-balanced cluster, relative weights of 5 to 350, and (3) an eco-
balanced cluster, relative weights of 400 to 1000. The Pareto frontier has two discontinuities at
which the solutions are “jumping”: first, at the weight change from 4 to 5, and second, from 350
to 400. The Pareto points (Fig. 3.8) are located on a hyperbola (parameters a = 1, b = -0.62, c
= 0.182, and d = 0 (Eq. 3.2), and the optimization results truly lie at the Pareto frontier. The
spatial layouts for the cost-optimal, cost-eco-optimal, and eco-optimal solutions are shown in
Figure 3.9. These evaluation results improve our understanding of the trade-offs.

2This approach leads to a subset of the Pareto frontier only. However, this subset contains the most interesting
Pareto optimal solutions for real cases. In Paper IV (Chapter 4) we discuss this issue in detail (cf. Subsection 4.2.7).
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Scenario Road Net present Capercaillie Marshland
length value impact impact
[m] [CHF ] relative [m × I] relative [m × I] relative

(1) Cost-optimal 19’001 6’630’831 100% 6’221 285% 1’677 80 ×
(2) Capercaillie-optim. 30’827 12’216’567 184% 2’184 100% 2’776 132 ×
(3) Marshland-optimal 22’439 8’771’925 132% 7’279 333% 21 1 ×

Table 3.1: Key parameters and their associated costs when comparing road networks among optimized
scenarios
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Wägital (Switzerland)
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3.3.3 Trade-offs between costs and landing attractiveness

In evaluating the trade-off between minimizing costs and maximizing of landing attractiveness
for cable yarding, determination of the Pareto frontier is based on a stepwise change in the
relative weights of two objective-function components. The problem to be solved here is to
connect three control points in the “Uetliberg” project area (Fig. 3.11). Relative weights change
between zero and two. The Pareto frontier (Fig. 3.10) is bound by the cost-optimal solution
(upper left) and the attractiveness-optimal solution (lower right). One assumes that a stepwise
change in relative weight would be manifested in corresponding steps on the Pareto frontier.
Nevertheless, relative weights between zero and 0.65 result in a cost-optimal cluster with a road
length of about 1.85 km and a landing attractiveness of about 150%. In contrast, a relative
weight of 0.7 is associated with approx. 33% longer roads and a landing attractiveness of about
250%. This discontinuity is caused by a change in route location between points B and C. A
further increase to 1 for relative weight alters the route between points A and B, such that
relative road construction costs rise by 170% and the relative landing attractiveness is enhanced
by 360%, compared with our construction cost-optimal solution. Raising the relative weight from
1 to 2 produces marginal improvement in landing attractiveness but also increases construction
costs considerably. Figure 3.11 illustrates the spatial layouts of our different Steiner minimum
trees.

3.4 Discussion and conclusions

This paper presents models for mapping the spatial variability of three objective functions in
forest road design (life-cycle costs, adverse ecological effects, and landing attractiveness). The
effects of this multi-objective problem on Pareto-optimal solutions were evaluated at various test
sites. Three major findings have emerged from this investigation. (1) The Steiner minimum tree
solutions are located on convex trade-off surfaces, as predicted by the multi-objective optimiza-
tion theory. (2) Single-point solutions are clustered on the Pareto frontier; even small changes
in the relative weights of objective-function components can trigger jumping from one cluster
to the next. (3) The allocation of relative weights to those components greatly influences the
solution.

To our knowledge, this is one of the first analyses of the trade-off surfaces for multi-dimensional
objectives that optimize the layout of road networks at a 10 m×10 m resolution. Problem-solving
in the open space is characterized by a set of partially conflicting requirements brought forward
by different stakeholders. Mono-objective analysis evaluates the edges of the solution space that
characterize those varying points of view.

In our example, the landowner was interested in a cost-optimal solution, whereas ornithologists
would prefer our capercaillie-optimum and marshland specialists would look for the marshland-
optimum. Therefore, mono-objective results are a good starting point in the negotiation process
because they quantify the effects of extreme preferences on the different objectives. Systematic
variations in the relative weights of the objective-function components are a prerequisite for
exploring the Pareto frontier. The evaluation presented here clearly improves our understand-
ing of problem-specific trade-offs and identifies solution clusters. Only three clusters resulted
from the 10 mandatory control points analyzed in this Steiner minimum tree problem. It seems
a likely supposition that the number of solution clusters would increase with the number of
mandatory control points. Obtaining a Pareto solution by a priori “choice before search” is only
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permissible if a problem is repeatedly solved for many different weighting factors, a task that
can tremendously multiply computational efforts.

Our approach also has some shortcomings. Whereas a cost metric may adequately map a real-
world situation, our ecological impact metric is based on expert knowledge that considers some
weak, unclear components, which one must be aware of when interpreting these results. A basic
assumption of multi-criteria-optimization is that objective values must be independent. However,
our landing-attractiveness metric violates this assumption because it allocates accessible, though
overlapping, areas to each grid cell. Nevertheless, this approach seems to be useful in controlling
the location of routes for specific off-road transportation technologies (e.g., ground-based, cable-
based, or airborne).
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Abstract

The sophistication of digital spatial data, such as elevation models, soil and stand information, or
habituate suitability indices, has risen in the last few years. Simultaneously, enhanced computer
power has enabled the solution of large combinatorial problems. These two improvements have
made it possible for us to develop automatic procedures for locating road networks. However, to
benefit from this increase in spatial data with better resolution, we must have suitable models
for planning forest operations. Likewise, we must know and quantify the objectives to find
the optimal solution. Current goals often have more than one dimension, such as monetary
(e.g., road construction costs) and non-monetary (e.g., ecological impacts) components, so that
the optimal solution depends on valuations from different stakeholders. This paper is intended
to (1) give an overview of the framework for determining near optimal forest road network,
(2) present new components of this framework, and (3) demonstrate how to implement multi-
objective functions. Here, those new components were applied to a test area in the Swiss Alps,
where the steep terrain provided challenging subsoil and ecological constraints. These tests led to
three major findings. (1) The objective values of all model designed alternatives lay on a convex
trade-off surface, (2) small changes in the objective function may lead to completely different
solutions, and (3) the preferences of the stakeholders influence the solution greatly.

4.1 Introduction

Computer-aided engineering (CAE) is an emerging field that aims to support the problem-solving
activities of engineering experts. The layout of road networks is a complex locational problem
(Church et al., 1998), (Church, 2002) that is extremely demanding, especially in steep terrain.
CAE approaches were introduced in the 1970s (Dykstra, 1976, Kirby, 1973, Mandt, 1973).
Increased computing power has now resulted in software packages such as PLANS (Twito

et al., 1987) and PLANEX (Epstein et al., 1994, Epstein et al., 1999, Epstein et al., 2001).
The availability of spatial data has improved tremendously in the last two decades due to new
remote-sensing technology (e.g., LIDAR) and enhanced high-speed data connections. However,
because most existing software packages were developed in the 1990s, they do not take in account
to this improved spatial data and, therefore, have the following shortcomings. (1) They assume
road-building costs to be constant throughout the project area, (2) they limit the number of
possible links from a specific network node to its adjacent nodes in the nearest neighborhood,
and (3) they optimize the road network for one objective only. Previously, we reported on the
modeling of spatial variability in road construction costs (Stückelberger et al., 2006a), on the
improvement in model representation of forest roads by mathematical graphs (Stückelberger

et al., 2007), and on the problem of Pareto-optimality (Stückelberger et al., 2006b).
The present paper focuses on (1) providing a framework that integrates our improved compo-

nents for this road network problem and (2) reporting the effects of our new framework model
and the analysis of different near optimal networks according to various objective functions.

4.2 Model framework

Road network optimization requires three major steps – accurate model representation, the
defining of objectives and adequate objective functions, and intelligent optimization procedures
– in order to solve an inherently complex problem.
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The methods described here for automatically locating road networks comprise a framework
of nine components (Fig. 4.1): for model representation (i), we need a discretization of road
segments in a high resolution (1) to map road-geometry constraints (2) on a graph (3) in or-
der to determine the topology. We define the objectives (ii) by estimating road construction
and maintenance costs (4), the attractiveness for harvesting a potential road segment (5), and
penalties for adverse ecological effects (6). These components and their scaling by the stakehold-
ers (a) lead to a multi-criteria objective function (7). In order to optimize the problem (iii), we
have chosen a mathematical graph representation (8), and intelligent and efficient optimization
algorithms (9) to find the optimal road network between given control points (b).
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Figure 4.1: Framework of different components for automatic road network design: (i), representation
of the problem; (ii), objective functions; and (iii), optimization in order to find the result

4.2.1 Discretization of road segments

Road engineers control the geometry of a road layout by following a sequence of vectors, known as
a ‘traverse’. The road is then designed as a series of curves inside the angles between consecutive
vectors, straight segments along vectors, and curves outside the angles between successive vectors
that define hairpin bends (Ervin & Gross, 1987). A geographical area is the continuous physical
entity on which we can define an infinite number of points that can be used as the start- and end-
points of those vectors. However, graph optimization algorithms require a finite set of nodes and
edges. Therefore, the specification of the design space follows the concept of discretization, i.e.,
we split up the continuous physical system into a discrete set of simple shapes. The prevailing
approach utilizes a regular mesh form – a grid consisting of squares, where the node is located
at the center point of the grid. As computing power has increased, grid sizes have decreased.
For example, Liu & Sessions (1993) used a grid size of 91.4 m × 91.4 m; Dean (1997), of
30 m×30 m; and Chung & Sessions (2001a), of 25 m×25 m. However, our research group has
been using a 10 m × 10 m resolution (Heinimann et al., 2003, Stückelberger et al., 2004).
In mountainous and heterogeneous areas, that grid size has proved to be appropriate for low-
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volume roads because it equals the lower limits of the design elements that define the centerline
of a road, especially the minimum lengths for curve tangents, straight segments between curves,
and the shortest radius for switchbacks (Kuonen, 1983, Walbridge et al., 1984). Nonetheless,
that size can be increased if the terrain is homogenous and the minimum curve tangents and
minimum road radius are > 10 m. Because the finite set of all possible start-points and end-
points is stipulated, we must determine the link pattern within these nodes. The predominant
approach is to define links from a start-node to its adjacent nodes (Fig. 4.2a), resulting in eight
links per node; this is called a Moore neighborhood of range one (Barile & Weisstein, 2002).
This eight-link model is very limited and, when applied in steep terrain, it is hard to find a
feasible road alignment (Stückelberger et al., 2004, 2007). Therefore we have introduced an
enhanced link pattern using the connection to all nodes in a Moore neighborhood of range two
(Fig. 4.2b), and a well-defined subset of nodes in a Moore neighborhood of ranges three, four,
and five (Fig. 4.2c). The aim of this enhanced neighborhood is to obtain more and different road
directions. We have previously presented the advantages of this improvement.
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Figure 4.2: Neighborhood patterns for models with 8 (a), 24 (b), and 48 (c) links

4.2.2 Road-geometry constraints

Roads must fulfill technical requirements for safe truck traffic, especially by including a gradient
that is lower than the maximum allowed and by satisfying a minimal curve radius requirement
along the road centerline. Calculating the gradient for a single segment can be done easily by
dividing the difference in elevation by the horizontal distance of the centerline.

The curve of a road is limited by the minimum turning clearance circle of a vehicle. For traffic
comfort, the designed minimal curve radius is about two or three times the technical minimum
turning clearance. We must check if the radius of each curve is above that minimum allowable
in order to evaluate the feasibility of the horizontal road centerline. As explained in the previous
section, our model road is controlled by a discrete number of nodes and links between nodes.
To decide if a link between two consecutive nodes is feasible, we have to know the direction in
which the road enters to the first node and which direction the road is going out of the second
node. Three cases can be examined here: (1) for geometrical reasons, it is not possible to lay a
road centerline between two given nodes with specific directions (Fig. 4.3a); (2) it is possible to
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fit a theoretical centerline between two given nodes and given direction, but the radius is below
the allowable minimum road radius (Fig. 4.3b); or (3) it is possible to fit a centerline between
two given nodes and given directions, while keeping the curve radius above the minimum road
radius (Fig. 4.3c). In the present project area, we used a minimum road radius of 20 m for the
standard, but at least 10 m for switchbacks.
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Figure 4.3: Road alignment constraints. Horizontal check from the first node at Point (0, 0) to a
second node at Point (20, 10): (a) From Northeast to North: it is geometrically impossible to design a
curve. (b) From North to East: the link is considered “non-feasible” because the minimum allowable
road radius (rmin) is greater than the effective road radius (r). (c) From Northeast to East: the link
is “feasible” because the effective road radius (r) is greater than the minimum allowable road radius
(rmin).

4.2.3 Graph topology

For our purposes, a mathematical graph G = (V,E) consists of a set of nodes V and a set of edges
E ⊂ V × V (Jungnickel, 2005). To solve road network problems, a center point corresponds
to a node v, and a feasible road link corresponds to an edge e in G. If we neglect turning
constraints, we can map the problem on a graph where each grid cell is represented by its center
point as a node in the graph. Nearly all road optimization models use such graphs. In order
to contribute to the turning constraints, one has to implement special rules. For example, the
PLANEX software package has a procedure that considers the feasible incoming and outgoing
links related to a specific node (Epstein et al., 2001). However, such enlarged models are not part
of the strict mathematical graph definition and, therefore, the wide range of graph algorithms
is not applicable. Numerical graph representation of those constraints requires nodes to be split
into several virtual nodes, thus increasing the problem size. Similar to the discretization of
coordinates for nodes on a mesh of 10 m× 10 m, we must also discretizate the directions. Here,
we were considering 16 road directions per node, all identical to the 16 directions for the nodes
in a Moore neighborhood of range two (Fig. 4.2b). Figure 4.4 shows an example of four feasible
links from one outgoing node (O). Each set for the same outgoing direction (to the East) but with
a different incoming direction (to the South, East, North, or West) is then mapped in separate
directional layers. We also distinguish three types of directional change – straight line, curve, or
switchback. The feasibility of directional change from an incoming to an outgoing link results
from calculating the radius of the curve, which must be greater than a minimum allowable value
(Fig. 4.3).
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Figure 4.4: Representation of directional-change constraints. Incoming-outgoing combinations of links
represent a right-hand curve (OA), straight line (OB), left-hand curve (OC), and left-hand switchback
(OD). In contrast, our current implementation considers 16 possible road directions instead of the 4
shown here.
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4.2.4 Road construction and maintenance costs model

Estimating the costs for construction and maintenance is the most important factor when plan-
ning the layout of forest road networks. However, the procedures now available for locating routes
(Chung & Sessions, 2001a, Epstein et al., 2001) assume that construction costs are constant
within a specific planning area. We previously presented a generic model that estimates the
spatial variability in road construction costs as a function of five input factors: (1) a digital ele-
vation model (DEM), (2) classification of geotechnical properties of the subsoil, (3) specification
of road design parameters, (4) unit costs for structural components, and (5) a rock-excavation
share model (Stückelberger et al., 2004, 2006a) (cf. Fig. 4.5). This earlier model was devel-
oped for mountainous areas, but is applicable to any project as long as topography and subsoil
are the predominant factors for cost.
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Figure 4.5: Flowchart for estimating potential road construction costs. Area (2 km × 2 km) at
Wägital, Switzerland

This present approach is based on the “cost classification by elements (CCE)” framework
(CCE, 1991), a hierarchical system that comprises different constructive element groups. The
four element groups relevant to cost estimation of roads include structures for embankment,
retaining and support, pavement, and drainage and stream-crossing (Fig. 4.6).

An analytical approach (Heinimann, 1998, Stückelberger et al., 2006a) calculates the
embankment cut area (Acut) and fill area (Afill) as a function of both slope and the specifications
for road cross-sectional geometry. Inaba et al. (2001) have developed a model to estimate rock
occurrence per cross section as a function of slope, geological formation, and crown width.
Combining these two models then results in Equation 4.1 for excavation and embankment cost
estimations.
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Figure 4.6: Standard design cross section with four element groups: A) embankment structure, B) re-
taining structure, C) pavement structure, and D) drainage and stream-crossing structures. hw, height
of retaining wall; hg, depth of foundation for retaining wall; w, crown width (surface + shoulder +
ditch). Figure is not drawn to scale, especially in the shoulder and ditch dimensions

Cemb = l · (Acut · (cexe + prock · crock) + Afill · ccomp

)
(4.1)

where, Cemb = embankment cost per segment
Acut = average cut area of the segment
cexe = soil excavation cost per volume
crock = extra cost for rock excavation per volume
prock = share of rock in total cut area
Afill = average fill area of the segment
ccomp = cost for compaction per volume
l = middle length of the arc for the road segment

Life-cycle road costs consist of initial road-building, routine and periodic maintenance, reha-
bilitation, and decommissioning. The model analyzed here does not consider the last two factors,
and assumes the maintenance cost to be dependent only on road gradient and geology. For fur-
ther analysis, we evaluate over a 50-year period. To make the maintenance cost comparable to
the initial road-building costs, we calculate the net present value (NPV), and assume an interest
rate of 2%.

4.2.5 Harvesting-attractiveness Model

Positioning of the landing locations for harvesting operations affects the efficiency of off-road
transportation, especially for cable-based extractions. A road should not only connect manda-
tory access points, but also reach favorable landings. Therefore, we have introduced a landing-
attractiveness factor that considers both the effectiveness and efficiency of the cable yarder (Fig.
4.7). For such an evaluation we need a grid representation of the project area. A layer for el-
evation (derived from the DEM) and a layer for potential harvesting volume over the next 50
years also are required. Thus, the factor for harvesting-attractiveness is calculated according to
the following procedure:
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1. select the first (or next) raster cell as a potential landing location L
2. for α = 0◦ to 345◦(in 15◦ increments):
3. determine the potential tailspar point T in direction α for the maximum skyline

length
4. determine the terrain profile between T and L
5. for any point between T and L:
6. calculate ground clearance of the cable road
7. if ground clearance is < 0, then
8. move T one unit in the direction of L, repeat Steps 4 to 7,
9. or else fix location T , and add T to Set T

10. increase α, repeat Steps 3 to 9
11. connect all T-points of Set T
12. calculate the area bounded by T-points (Fig. 4.8)
13. weight the area with the timber volume to be harvested, and
14. allocate this volume as the value for harvesting-attractiveness to L
15. clear Set T
16. repeat Steps 1 to 15 until all raster cells are evaluated

Step 13 can also be modified slightly by weighting the potential logging volume by a factor that
represents installation and logging conditions (e.g., the number of intermediate supports I and
logging direction). Hence, the attractiveness value is equivalent to the volume of timber. Here we
use cubic meters [m3]. A model (CableAnalysis 1.0) is available for automatically determining
the landings for cable logging (Chung, 2002, Chung & Sessions, 2003). We have incorporated
this model into our procedure for calculating attractiveness for a cable yarder.
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Switzerland



88 CHAPTER 4. MULTI-CRITERIA OPTIMIZATION PROCEDURES

sl
op

e 
gr

ad
ie

nt

landing cell

cell within the cable yarding area

border, border cell

feasible cable road, tailspar

unfeasible direction for cable yarder logging

Legend:

Figure 4.8: Cable-yarder landing and its over-spanning harvesting area (schematic draft)

4.2.6 Ecological penalty functions

On the one hand, a road network makes harvesting operations easier and, therefore, more effi-
cient. On the other hand, roads may affect the environment adversely, for example, by increas-
ing erosion and sediment content in streams or by disturbing wildlife or other members of the
ecosystem. The decision as to which adverse ecological effects to examine is normative. Here,
we illustrate two types of environmental impacts – habitat quality for the capercaillie (Tetrao
urogallus) and marshland biotopes – both of which have major relevance in middle Europe,
especially in the Swiss Alps. Capercaillie, the largest mountain grouse in middle Europe, is
threatened with extinction (Keller et al., 2001). Its requirements for forage, cover, reproduc-
tion, and comfort are crucial variables that define habitat suitability (Bollmann, 2003). We
have made our measurements of quality using Graf’s (Graf et al., 2002) habitat suitability
index (HSI; USDI Fish and Wildlife Service, 1981). Disturbances are assumed to be pro-
portional to road length and HSI (Ulber, 2004). For example, a 100-m-long road segment that
crosses capercaillie habitat with a suitability index of 0.2 results in an impact cost of 20, which
is considered equivalent to a 20-m segment that might cross a habitat with an HSI of 1. In our
further analysis, we use the unit “meter-equivalent” [m]. Marshland areas, which include upland
moors, reeds, and wetlands, are important ecotypes protected by Swiss legislation. Determining
their ecological value is difficult. Government agencies have established a standard evaluation
procedure that considers the size of the area, the number of different vegetation types, and
diversity (BUWAL, 1991). Several adverse effects on marshlands must be weighted. First, road
construction directly interrupts such sites due to sealing of the surface. Second, construction
activity can cause indirect disturbance by influencing the flow of groundwater (Marti et al.,
1997). Third, a road can dissect a marshland biotope, leading to fragmentation (Jaeger, 2002).
Therefore, we have introduced outside and inside buffer zones, each 100 m wide (Fig. 4.9).
The inside buffer and center zones are assumed to have habitat values based on the considered
worth of the ecotype (Ulber, 2005), whereas the habitat value of the outside buffer zone is
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Figure 4.9: Marshland area with buffer and central zones. Road 1 affects the marshland in the buffer
zone and periphery only, whereas Road 2 also influences that marshland because of the intersection
effect (schematic draft).

assumed to decrease from that higher level to zero. Marshland disturbance is presumed to be
proportional to road length and ecological value. If a road enters the center zone, an additional
penalty is added to the disturbance factor, thereby representing the fragmentation effect. This
penalty-value must be compatible with the unit “meter-equivalent”. Methods, how to calculate
this fragmentation penalty in a specific case is given in (Jaeger, 2002). The function we use to
convert this fragmentation effect to “meter-equivalent” value in the area of Wägital is explained
in (Ulber, 2005).

We can allocate a penalty for adverse outcomes along individual road segments. If we have
several different ecological effects, this penalty is a function of the values for each. In our model
we assume that the penalty is the sum of all single values, weighted with a user-defined factor.
Moreover, we encounter ecologically very sensitive zones that are either protected by federal law
or excluded by the stakeholders. These zones are considered “non-trafficable”.

4.2.7 Multi-criteria objective functions

Multi-criteria decision-making can be divided into two groups: multi-criteria attribute decision-
making (MADM) and multi-criteria objective decision-making (MODM) (cf., Malczewski,
1999). For example, the construction cost function produces one outcome (e.g., unit dollar, Euro,
or franc), and is based on multiple attributes such as elevation or geological unit. Therefore,
that functional parameter is usable for MADM.

Here, we briefly introduce the multi-criteria objective functions used for MODM. Because we
have all the necessary models for generating optimization values, we can define the objectives,
which will of course depend on the different interests among stakeholders. For example, an
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ornithologist prefers a road network that minimizes the negative impact on capercaillie habitat
whereas the landowner mainly wants to minimize road construction costs. Therefore, to reach
consensus for all concerned, we have to understand the trade-offs among these various criteria.

Multi-criteria optimization is rooted in late 19th century welfare economics, as described by
Edgeworth (1881) and Pareto (1896–1897). A feasible solution to a multiple-objective prob-
lem is considered Pareto-optimal if no objective component can be improved upon without
worsening other components (Definition 1). Typically, there is an entire curve or surface of
Pareto points, whose shape indicates the nature of the trade-off between goals (Fig. 4.10). Al-
though various definitions of Pareto-optimal have been developed and used (Ehrgott, 2000).
Here, we use one that commonly appears in most of the contemporary literature concerning
operations research in multi-objective discrete and combinatorial optimization (see Hammer

(2006), Collette & Siarry (2004), Ehrgott (2000), and Geoffrion (1968)). In the present
case, each objective value is positive and real (R+), which leads to following definition of the
optimization problem:

fi(x) = ith objective function
k = number of different objectives
X = set of feasible solutions (design space, syn. solution space)

“ min
x∈X

”
(
f1(x), ..., fk(x)

)
, subject to x ∈ X (4.2)

For all x ∈ X we define f(x) =
(
f1(x), ..., fk(x)

)
and f(x) ≤ f(y) if fi(x) ≤ fi(y) for all

1 ≤ i ≤ k.
In Equation 4.2, the range of f is a subset of the k-dimensional space Rk. The “min” is defined

with respect to the given order on Rk which for k ≥ 2 is not a total pre-order relation.

Definition 1. A solution x∗ ∈ X is called Pareto-optimal, if there is no x ∈ X such that
fi(x) < fi(x∗), for some i ∈ {1, ..., k} and fj(x) ≤ fj(x∗) for all j ∈ {1, 2, ..., k}. The set of all
Pareto-optimal solutions x∗ ∈ X is XPar, the Pareto set.

Definition 2. A point y∗ = f(x∗) ∈ Rk with x∗ ∈ XPar is called efficient. The set of all
efficient points y∗ = f(x∗) ∈ Rk, where x∗ ∈ XPar is Yeff , the efficient set.

Multi-criteria objective problems are very often solved by combining all components as a sub-
function into one scalar objective function (Eq. 4.3), and than minimizing the weighted sum of
this aggregated function:

min
x∈X

k∑
i=1

λi · fi(x) (4.3)

where, λi = weighting factor of objective function fi, λi ∈ R+

Let λ be the vector λ = (λ1, ..., λk). The scaling for vector λ is irrelevant. This reduces the
dimension of the space for weights to k − 1. The weighting of the components λ1, ..., λk is
extremely decisive for the optimal solution. It is not possible to check every combination. Thus,
we select a finite number ni of values for each λi, which leads to

k∏
i=1

ni alternatives.

Even if we were able to test all combinations of weights of λ1, ..., λk, we would not be able to
find the entire efficient set Yeff , but only the subset of Yeff which matches the convex hull of
Yeff (Fig. 4.10)(cf., Ehrgott, 2000).
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Figure 4.10: Efficient set (Yeff ) and convex hull around Yeff in the criterion space. a, ..., e represent
the tangents around Yeff .

We consider a small example to demonstrate the effect of using the weighted sum as objective
value in the case of a bi-objective optimization of a road layout (Fig. 4.11): (1) a shortest-path
connection of a weighted sum function (Eq. 4.3), and (2) a shortest path with constraints for
the objectives. Given is a model area of 20×20 grid cells, with a cell size of 10 m×10 m. Within
the model area is a marshland with a constant ecological value of 1 unit per meter. The terrain
is a plane, and the road construction costs are homogenous over the entire area, = 1 unit per m.
Our aim is to find an optimal connection between two given points following the 24-link pattern
(cf., Fig. 4.2b). Road A is the straight-line connection while Roads B, C, and D are the shortest
path solution (cf., Subsection 4.2.9) with respect to the weighted sum of f1(x) and f2(x). The
input values for λ are shown in Table 4.1. Roads e, f, g, h, i, and j represent the shortest paths
under a restriction that the marshland impact (y1) is at most 60, 50, ..., or 10, respectively. The
Alternatives A, B, C, D are Pareto-optimal and they lay on the convex hull of Yeff (Fig.4.12),
Alternatives e, f, g, h, i, j are Pareto-optimal as well, however they lay not on the convex hull
of Yeff .

Alternative Construction Ecological λ2 λ1 subject
costs (y2) impact (y1) to

A 206.2 76.0 straight line
B 208.9 74.7 1 0...1.886
C 217.8 70.0 1 1.887...2.044
e 294.9 60.0 y1 ≤ 60
f 303.2 50.0 y1 ≤ 50
g 315.5 40.0 y1 ≤ 40
h 327.9 30.0 y1 ≤ 30
i 340.2 20.0 y1 ≤ 20
j 352.6 10.0 y1 ≤ 10
D 360.9 0.0 1 ≥ 2.045

Table 4.1: Results for a model area of 20 × 20 grids
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Figure 4.11: Left: Shortest Path by weighted sum function (Alternatives A, B, C, D). Right: Shortest
Path under the restriction for a maximal allowable value of y1 (Alternatives e, f, g, h, i, j). Model area
of 20 × 20 grids. The gray grids represent marshland.

Regarding Table 4.1 and Figures 4.11 and 4.12, we see two other effects: (1) Alternatives A,
B, and C build a cluster of similar solutions whereas Alternative D shows a completely different
solution. (2) Only a certain and narrow range of λ1 leads to Alternative C. By increasing the
weight slightly beyond the range, the solution “jumps” very fast to Alternative D.

There are two approaches for finding the multi-criteria objective solution – “a priori” and “a
posteriori”. In the “a priori” approach, it is up to the stakeholders to choose appropriate weights
for each component of the objective function first. The main shortcoming of this method is that
the solution represents only one point in XPar, and trade-offs among different objectives are not
evaluated or understood.

In contrast, an “a posteriori” optimization aims at tracing the complete Pareto-solution space
for each multi-objective case. The eventual computational effort is extremely high, especially for
spatial problems (Duha & Brown, 2007). The stakeholders then must make their decision after
knowing the Pareto-solution space. The state of the art for spatial multi-criteria optimization has
been reported by Xiao et al. (2002). Xiao et al. (2007) and Malczewski (1999) also provide
overviews for multi-criteria decision analysis in GIS, with both using very simplified models for
the mono-objective functions, and often assuming a deterministic spatial relationship. However,
the combination of different objectives and their optimization techniques is highly sophisticated.

4.2.8 Mathematical graph model

Let us first introduce some graph theoretical notions. An undirected graph G = (V,E) consists
of the set of nodes V and the set of edges E ⊂ {{u, v} | u, v ∈ V, u �= v}. Graph H = (V ′, E′) is
a subgraph of G = (V,E) if V ′ ⊂ V and E′ ⊂ E. Likewise, a path P in graph G is a sequence
of nodes P = v1, . . . , vk, where {vi, vi+1} ∈ E for all 1 ≤ i < k. We say P is a path from v1 to
vk. If for each pair of nodes u, v in the graph there is a path from u to v, we say the graph is
connected. A cycle in a graph is a path from a node to itself. For our purposes, a type of graph
called a tree is of special interest. A tree is a connected graph without cycles, i.e., a minimally
connected graph.
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Figure 4.12: Yeff of the different road alternatives for a model area of 20 × 20 grids

Here, we are dealing with weighted graphs; that is, we have a graph with a weight function
w : E �→ R+ on the edges. In this case, the weight represents the objective function for the road
links, e.g., the road construction cost. For a weighted graph G, the weight of a subgraph w(H)
is defined as the sum of the weights of the edges in H. An important optimization problem is
to find the path of minimum weight between two nodes u, v – this is called the shortest path
between u and v.

4.2.9 Optimization techniques

Closely related to our application is the problem of determining the minimum spanning tree,
MST, which is the minimum-weight subgraph that is a tree and which contains all nodes. In our
application, we are given a weighted graph G and a set of terminal nodes K that must then be
connected by the road network. In other words, we have to find a minimum-weight connected
subgraph T containing the nodes in K (terminals). This scenario is known as the Steiner problem
in graphs, and the subgraph T is called the Steiner minimum tree, or SMT (see Hwang et al.
(1992) and Prömel & Steger (2002)). All non-terminal nodes of degree > 2 in T are called
Steiner points. These correspond to bifurcations or junctions in the network.

In our graph, for each 10 m × 10 m square, we arrive at 16 nodes for the different directions.
For a 35-km2 project area, this leads to 5’600’000 nodes and, depending on the steepness of the
area, approximately 80’000’000 edges. Therefore, we have no hope of computing the real optimum
within a reasonable amount of time. In our case, the number of terminals is bounded from above
by a small constant, e.g., 10, but in the running time of the Dreyfus-Wagner algorithm, the
limiting factor is the 2kn2 term, which, for k = 10, is about 32 · 1018. Thus, we have to use a
heuristic that gives us an approximate solution.
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Figure 4.13: A quad Q with its subquads: QNE , QNW , QSW , and QSE

For a graph of size n := |V |, m := |E| and k := |K|, various efficient algorithms are available
for solving the above-mentioned problems. For the shortest path problem, Dijkstra’s algorithm
(Dijkstra, 1959) can compute the shortest paths from one start-node to every other node in
time O (m + n log n). This algorithm, widely used to locate the shortest route (e.g., Anderson

& Nelson, 2004), is only applicable for positive edge weights. For the MST problem, Prim’s
algorithm (Prim, 1957) is for computing an MST in time O (m + n log n). However, for the
SMT problem, the situation is different, being termed NP-hard because it is quite unlikely
that an efficient algorithm exists. Currently, only algorithms with exponential running times
are known. In contrast, an algorithm described by Dreyfus & Wagner (1971/72) based on
dynamic programming, has a running time of O (

3kn + 2kn2 + n2 log n + nm
)
. For constant k,

this is a polynomial algorithm. Here, we use a variant of the so-called MST heuristic, which can
only guarantee an approximation ratio of 2− 2

k but works well in practice Hwang et al. (1992).
This MST heuristic works in the following way:

1. For all k terminals, compute the shortest paths to all other nodes.

2. Build a weighted graph on k nodes with all nodes connected. The weight on the edge (i, j)
is the weight of the shortest path from the ith to the jth terminal. This graph is called the
distance network.

3. Compute an MST on the distance network. This MST corresponds, by taking the union
of the individual shortest paths, to a connected subgraph of the original graph.

4. Because the graph that results at this point may not yet be a tree, we obtain the final tree
after a post-processing step.

The MST heuristic described above is often not good enough. To obtain better results, there-
fore, we calculate a set of candidate Steiner points by determining the optimal Steiner point for
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Figure 4.14: A quadtree and the corresponding subdivision. The labels show to which quadrant the
children correspond.

each 3-tuple of nodes. If the shortest paths from the terminals to all nodes are pre-computed
(in time O (k(m + n log n))), then for each 3-tuple the optimal Steiner point can be found in
time O (n) leading to O (

k3n
)

time for this step. Then, either the best subset of these candi-
date points is found by complete enumeration or a nearly best subset is found by a heuristical
approach, e.g., Simulated Annealing (Kirkpatrick et al., 1983).

The main difficulty when evaluating the quality of the approximate solutions is to provide
good lower bounds on the optimum value. Unfortunately, different known techniques, such as
those using reduction tests to gain a smaller graph, do not work in our circumstances.

Here, we used a quadtree-based approach to get a good lower bound on the optimal solution.
A quadtree is a rooted tree, where every internal node has four children. A node in the quadtree
corresponds to a rectangle and, if the node has children, they correspond to the four quadrants
of the rectangle (Fig. 4.13). A quadtree corresponds to a subdivision of the rectangle of the
root node. See Figure 4.14 for an example of a quadtree and the corresponding subdivision. The
rectangles of the leaf nodes (in Figure 4.14 being the rectangular nodes) form the subdivision.
Hereafter we will call the rectangles of the quadtree quads.

Figure 4.15: Partition into quads, and a Steiner Tree with two Steiner Points and four terminals
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We define the distance between two quads as the minimum of the distances between points
in the two quads. A lower bound on the optimum SMT can then be computed using a suitable
partitioning of the area into quads and running an exact algorithm on the smaller graph given
by the quads. For an illustration, see Figure 4.15.

We cannot split the area in a regular fashion because the number of quads becomes too large.
Using a branch-and-bound technique, however, a good partition of the project area is found, an
example of which is given in Figure 4.16.

By taking this approach in the current study, we were able to show that, for our input instances,
the solutions returned by the heuristic were usually less than 2% and never more than 4% worse
than the optimum. For further explanation we refer to Schwartz & Stückelberger (2008).

Figure 4.16: Partition obtained by applying a branch-and-bound process in the area of Wägital.
[circle-symbol] mandatory access points.
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4.3 Model evaluation and results

4.3.1 Project area

The project area for our evaluation was located at “Wägital”, a 35-km2 site on the northern
slopes of the Swiss Alps. This region is characterized by steep terrain (average slope gradient
of approximately 35%), difficult geotechnical conditions, a dense water channel network, and
high-value ecotypes and habitats. It, therefore, is an ideal study site for investigating scenarios
with multiple, conflicting objectives. The digital elevation model and the geotechnical layer had
a grid resolution of 10 m × 10 m, which resulted in 350’000 grid cells. Up to now the area
was either roadless or its few existing roads were not suited to contemporary harvesting and
transport systems. Our goal was to find the optimal road network that encompassed 10 given
access points. Various student project results and expert opinions were analyzed and compared
with model outputs.

4.3.2 Evaluation layout

For the optimization procedures, we had four objectives: (1) minimizing road construction costs,
(2) maximizing harvesting-attractiveness, (3) minimizing disturbances for the capercaillie, and
(4) minimizing adverse ecological effects in marshland areas. In order to find Pareto-optimal
solutions, we use the weighted sum approach (Eq. 4.1).

We assumed the following factors to be constant in order to make this evaluation comparable.

1. Terminals: Mandatory access points, such as mountainous farms, important lumber yards,
and indispensable landings were given. In fact, it was the responsibility of the stakeholders
to determine whether access to individual locations should be mandatory or optional.

2. Road construction costs: Our focus was the life-cycle cost, which entailed initial, first-year
construction costs plus maintenance costs. The latter was assumed to be a function of the
geotechnical subsoil as well as the gradients for the road and the hill-slope. We calculated
the net present value (NPV) over a period of 50 years and at an interest rate of 2%.

3. Harvesting-attractiveness: We considered only one harvesting system, cable-yarding. How-
ever, most of this project area is logged with a combination of ground-, cable-, and airship-
based systems.

4. The aggregate weighting function was a linear combination of four sub-functions after
Equation 4.4. We incorporated attractiveness as a negative weight. To apply Dijkstra’s
algorithm, however, no aggregate weight can be negative. For that reason, we introduced
Equation 4.5 to guarantee that every link had a non-negative weight.

f(x) = λc × fc(x) + λh × fh(x) + λt × ft(x) + λm × fm(x) (4.4)

w(x) =
{

0, f(x) ≤ 0
f(x), otherwise

(4.5)
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where, x = road link x
w(x) = aggregate weight of the link x (aggregated function)
λi = weighting factor of the ith objective
fi(x) = ith objective function
i = index indicating the objective:

c, construction costs;
h, harvesting attractiveness;
t, ecological impact on capercaillie (T. urogallus);
m, ecological impact on marshland

λ1

λ3

λ2 λ1

λ3

λ2 λ1

λ3

λ2

(a) (b) (c)

Figure 4.17: Space for weighting vector λ = (λ1, λ2, λ3) and the plane area for λ1 + λ2 + λ3 = 1
in R3

+. (a) corner points for mono-objective solutions, (b) border line for bi-objective solutions, and
(c) entire area for tri-objective solutions.

We first tested three mono-objective alternatives, then bi-objectives, followed by multi-criteria
objective alternatives. The solutions were controlled by the direction of the weighting vector λ
only. Most studies let λ1 + λ2 + . . . + λi = 1. In the tri-objective case, λ described a triangular
area in R3

+ (Fig. 4.17c). Mono-objective alternatives corresponded to the corner points within
this area (Fig. 4.17a). Here, we evaluated the cost-optimal alternative (C!), where λc = 1 and
all λi = 0{∀i �= c}. Likewise, the capercaillie-optimal alternative (T!) used λt = 1, and the
marshland-optimal alternative (M!) put λm = 1.

The bi-objective alternatives corresponded to the border line of the weighting area (Fig. 4.17b).
In our case, alternatives that did not consider construction costs were not of practical relevance.

Therefore, we primarily analyzed combinations where λc �= 0. Without loss of generality, and in
order to make the different objectives comparable to costs, we let λc = 1 and varied λh, λm, λt.
We recall from Section 4.2.7 that the scaling of the vector λ is irrelevant and we therefore may
drop the condition

k∑
i=1

λi = 1.

Capercaillie-friendly alternatives showed λc = 1, λt ∈ {5, ..., 100′000}, λh = λm = 0. Labels
for these alternatives were “T5”, ..., “T100k”. Likewise, the marshland-friendly alternatives
stipulated λm ∈ {5, ..., 50′000}, with labels of “M5”, ..., “M50k”. To maximize harvesting-
attractiveness, λh had to be negative. To obtain reasonable results, the attractiveness could
not exceed the construction costs (Eq. 4.5). Therefore −λh had to be small. We tested alterna-
tives from −λh ∈ {0.002, ..., 0.3}, with labels of “H.002”, ..., “H.3”.

The tri-objective alternatives were gained by analyzing the entire weighting area regu-
larly (Fig. 4.17c). Here, we assessed only construction costs and the adverse ecological im-
pacts on capercaillie and marshland. The weight for harvesting-attractiveness was fixed as
−λh = 0.05 (a priori choice, cf., Subsection 4.2.7). Similar to the bi-objective alterna-
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tives, we let λc = 1. For the weighting factors for capercaillie, we tested a discrete set for
λt : T ∈ {200, 339, 574, 972, 1′646, 2′788, 4′723, 8′000}; for marshland, we used a discrete set for
λm : M ∈ {20, 44, 97, 213, 469, 1′032, 2′272, 5′000}. Spacing was evenly distributed geometrically
(multiplier = 7th root of the range). The labels for these alternatives were “[t,m]”, where t was
the element number of Set T and m was the element number of Set M (e.g., Alternative [2,4]
had λt = 339, λm = 213; and constants were λc = 1, −λh = 0.05). Additionally, we considered
Alternative [0,0], with λc = 1, −λh = 0.05, λt = λm = 0; as well as Alternative “eco!”, with
λc = −λh = 0, λt = λm = 1.

4.3.3 Mono-objective optimizations

In the remainder of this section we will refer to the solution found by our approach as the optimal
solution. As our lower bounds show that the solutions we obtain are usually indeed within 2% of
the optimal solution (cf., Subsection 4.2.9) and such a small error is insignificant comparing to
the fuzziness of the objective functions of about 5% to 10% (cf., Stückelberger et al., 2006a).

The layouts for different road networks are shown in Figures 4.18, 4.19, and 4.20, with key val-
ues presented in Table 4.2. The cost-optimal alternative served as our reference. The capercaillie-
optimal alternative involved costs that were more than three times higher than the reference, but
habitat disturbance was reduced by about two-thirds. However, theoretical adoption of this alter-
native also increased marshland disturbances by one-third. In contrast, the marshland-optimal
alternative led to almost no disturbance for its ecotypes. Nonetheless, the accompanying costs
rose by nearly three times, and disturbance to the capercaillie also increased by about one-third.

Alternative Description Distance Cost T-imp. M-imp.
label [m] [1000 CHF] [m] [m]
C! Cost-optimal 20’916 5’161 6’263 2’598

(100%) (100%) (100%) (100%)
T! Capercaillie-optimal 29’546 16’046 2’222 3’359

(141%) (311%) (35%) (129%)
M! Marshland-optimal 23’173 14’198 7’526 24

(111%) (275%) (120%) (1%)

Table 4.2: Key data for results from mono-objective optimizations. T-imp., adverse ecological impact
for capercaillie (T. urogallus) [m-equivalent]; M-imp., adverse ecological impact for marshland [m-
equivalent]

4.3.4 Harvesting volume versus construction costs

Harvesting-attractiveness is a metric value for the potential yield volume that can be extracted
to a specific location within the project area. If we are able to harvest the entire accessible
area using only one landing, the attractiveness will be decreased for all neighboring landings
with an overlapping catchment area (Fig. 4.21). Correct implementation of such problems leads
to dynamic optimizations. However, Dijkstra’s shortest path algorithm, which was part of our
optimization, is applicable for static weights only. To verify whether the attractiveness consid-
ered here was correlated with yield volume, i.e., the actual target value, we calculated a linear
regression (Fig. 4.22). Even though we did not use a dynamic optimization, we found good cor-
respondence with potential volume. Regarding our tests, two solutions turned out to be slightly
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Figure 4.18: Cost-optimal road network (Alternative C!) indicated in yellow (length = 20.9 km).
Area (5 km × 7 km) at Wägital, Switzerland

Figure 4.19: Capercaillie-optimal road network (Alternative T!), indicated in yellow (length = 29.5
km). Red region, habitat suitability index for capercaillie; black region, exclusion area (known courtship
sites). Area (5 km × 7 km) at Wägital, Switzerland
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Figure 4.20: Marshland-optimal road network (Alternative M!), indicated in yellow (length = 23.2
km). Red region, marshland and buffer zone; black region, exclusion area (rare ecotypes). Area (5 km×
7 km) at Wägital, Switzerland

not Pareto-optimal. Compared with C! (the cost-optimal reference), Alternative H.002 resulted
in 0.6% less volume while Alternative H.04 was associated with 0.6% less volume and 0.08%
higher costs. Nevertheless, these discrepancies were very small, and within the range of model
accuracy.

Figure 4.23 shows the relationship between road construction costs (at NPV) and harvesting
volume. The curve for the data points was nearly hyperbolic, even though there were a few
inconsistencies. Knowing that our approach to include the harvesting attractiveness as a refer-
ence for harvesting volume is limited, we fixed −λh = 0.05 for the tri-objective analysis, a low
weighting factor comparing to λc, λt and λm. Such an alternative led to a road network that
was about 5% more expensive but approximately 5% more attractive for harvesting.

4.3.5 Adverse ecological impacts versus construction costs

The data for costs and adverse ecological impacts are shown in Figure 4.24. An increase of
10% for costs caused the adverse impact to decline by 5% for capercaillie and by 55% for the
marshland. When costs rose by 25%, the adverse impact dropped by 21% for capercaillie and
97% for marshland. This demonstrated that, in the Wägital project area, it is much harder to
improve the solution for capercaillie than to optimize for marshland.

The distribution of solution points mapped on the criterion space (YT , YM , see Fig. 4.24) was
monotonic, decreasing for both values and describe the convex hull of Yeff . YT and YM are not
even distributed but build numerous clusters. For example, from T5 to T450, we had a dense
cluster within an improvement of 7%. By increasing the weight only slightly, we were able to see
a big leap in that improvement, from 7% to 36%. The next cluster occurred from T500 to T1.2k;
the last, T1.5k to T100k. Distribution of the marshland solutions area clustered as well, though
not as strongly as noted with the capercaillie alternatives. Such knowledge of this effect helps
the stakeholder make a final decision. Furthermore, these different solutions can be reduced to
a few alternatives that are all Pareto-optimal.
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A B

a b

a      ba b

Figure 4.21: Two overlapping catchment areas (a, b) for two cable yarder landings (A, B). The
harvesting attractiveness for A as well for B is 106, i.e., 212 in total. The total accessible volume in A
and B – without multiple counting of overlaps a∩b – is 194.
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4.3.6 Tri-objective optimization

The 66 tri-objective alternatives resulted in the building of three clusters (A, B, and C) on Yeff

(Fig. 4.25). These corresponded to the three clusters found with the bi-objective alternatives for
capercaillie and costs. Tables 4.3, 4.4, and 4.5 present these data numerically.
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Figure 4.25: Pareto-optimal solutions within the criterion space for construction costs, and adverse
impacts on capercaillie and marshland. These criterion points are efficient, and group into 3 clusters
– A, B, and C. The yellow area is a fitted shape through the efficient points in order to visualize the
3-dimensional effect.

Figures 4.26, 4.27, and 4.28 show three examples of road alignment for Clusters A, B, and C.
Cluster A takes a wide span on Yeff . Therefore, the road alignments from the three alternatives

are much different. Alternative [1,1], which is close to the cost-optimal alternative, connects
Locations C3 over A1, A2, A3, and B3, and the Steiner point near C3. This alternative has the
shortest total road length, 19.9 km. Alternatives [1,5] and [1,7] connect C3 directly over A1, and
B1 and C2.

Clusters B and C connect locations – without regard to Steiner points – in the same order:
00, A1, B2, A2, A3, B3, C3, C2; and 00, A1, B1, C1, respectively. However, small differences
exist. For example Alternative [1,8] does not cross any marshland between Locations C3 and
C2, but takes a route through the capercaillie area that is longer than the one specified with
the other alternatives. Vice versa, although the alternatives in Cluster C do cross marshland
near Location C1, less of that ecotype is traversed than when the alternatives in Cluster B are
utilized.
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[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[0,0] 5’198
[1,] 5’199 5’200 5’245 5’638 5’655 5’793 6’158 6’566
[2,] 5’971 5’971 5’977 5’977 6’012 6’015 6’288 6’631
[3,] 5’995 5’995 6’002 6’002 6’016 6’068 6’332 6’631
[4,] 6’009 6’010 6’017 6’017 6’031 6’085 6’333 6’638
[5,] 6’088 6’088 6’095 6’095 6’110 6’244 6’360 6’900
[6,] 8’545 8’545 8’547 8’551 8’805 8’947 6’406 6’937
[7,] 8’825 8’827 8’835 9’055 9’096 9’171 9’317 9’440
[8,] 9’018 9’018 9’024 9’114 9’167 9’649 9’683 9’983
eco! 12’855

Table 4.3: Road construction and maintenance costs (at NPV) associated with Alternatives [0,0],
[1,1], ..., [8,8], and eco! (in 1000 CHF). The small borders delineate Clusters A (top left), B (middle),
and C (bottom).

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[0,0] 8’077
[1,] 7’867 7’639 5’810 7’277 7’302 7’303 7’509 4’694
[2,] 3’853 3’853 3’853 3’853 3’853 3’961 4’397 4’364
[3,] 3’817 3’817 3’817 3’817 3’817 3’817 4’254 4’364
[4,] 3’796 3’796 3’796 3’796 3’796 3’796 3’856 4’242
[5,] 3’691 3’691 3’691 3’691 3’748 3’748 3’790 4’142
[6,] 2’311 2’311 2’311 2’321 2’272 2’338 3’682 3’758
[7,] 2’230 2’230 2’230 2’185 2’191 2’186 2’292 2’354
[8,] 2’178 2’178 2’178 2’175 2’179 2’181 2’212 2’306
eco! 2’283

Table 4.4: Adverse ecological impacts on capercaillie that result from the implementation of Alter-
natives [0,0], [1,1], ..., [8,8], and eco! (in m-equivalent). The small borders delineate Clusters A (top
left), B (middle), and C (bottom).

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8]
[0,0] 1’399
[1,] 1’399 1’399 1’130 793 725 458 123 48
[2,] 823 823 719 719 614 499 124 48
[3,] 825 825 721 721 684 569 130 48
[4,] 825 825 721 721 684 568 357 65
[5,] 910 910 806 806 653 574 369 38
[6,] 2’327 2’327 2’224 2’147 1’624 1’166 388 252
[7,] 2’459 2’412 2’266 1’727 1’601 1’438 978 843
[8,] 2’177 2’177 2’065 1’751 1’563 1’326 1’151 846
eco! 798

Table 4.5: Adverse ecological impacts on marshland that result from the implementation of Alterna-
tives [0,0], [1,1], ..., [8,8], and eco! (in m-equivalent). The small borders delineate Clusters A (top left),
B (middle), and C (bottom).
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Figure 4.26: Road alignments from Alternatives [1,1], [1,5], and [1,7] for Cluster A. Area (5 km×7 km)
at Wägital, Switzerland



4.3. MODEL EVALUATION AND RESULTS 107

!.

!.

!.

!.

!.

!.

!.

!.

!.

!.

E

E

E E

218 000

7
1

2
 0

0
0

213 000

7
0

9
 0

0
0

1 km

N

A3A3

C2C2

C3C3

A2A2

B3B3

A1A1

B2B2

0000

B1B1

C1C1

alternative [1,8]

alternative [5,1]

lake, streamalternative [6,8]

marshland imp = 1, 0 < imp < 1 

Capercaillie HSI = 1, 0 < HSI < 1 

not accessible areamandatory access point (terminal)

access to the existing road network hillshade (north-west)
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4.4 Discussion

4.4.1 Evaluation and rating of the different components

With the framework described here, it is possible to find a near-optimal road network layout
automatically by considering different objectives. This layout seems reasonable even if not all
components have the same quality. In its present form, the entire framework is applicable only
to the Wägital project area. However, we should be able to customize or exclude certain com-
ponents or incorporate new models for specific uses. Table 4.6 provides ratings for the different
components.

4.4.2 Evaluation of the results

As demonstrated with the tests described here, a step-wise change in the weights for different
objectives can lead to a set of feasible and Pareto-optimal solutions. Even though we had checked
various combinations of different weights, the results could be grouped into only a few clusters.
Small changes in scaling for the objective function may result in a completely different road
network (e.g., T450 to T500). There, the solutions are “jump” from one cluster to another. In
contrast, big changes in scaling may produce nearly identical alternatives (e.g., T500 to T1.2k),
when such changes do not affect the solution.

The weighted sum approach, which we used in our evaluation, can only find a subset of
the entire Pareto-set. We have to consider that there are most probably more Pareto-optimal
solutions between the “jumps”. Pareto-optimal solutions which are not laying on the convex hull
are most probably not preferred by the stakeholders (cf., Fig. 4.11). A Pareto-optimal solution,
that is not located on the convex hull of Yeff leads often to an unfavorable ratio between the
increase in one objective to decrease in another one.

Few general patterns exist for connecting the different mandatory control points only. Knowing
the behavior of these effects is useful for the various stakeholders, who then can concentrate on
just a small number of solutions and can find the most desirable alternative within a few road
network alignments that are Pareto-optimal.

Within our project area, the two ecological objectives are inverse. The most capercaillie-
friendly alternative (T!) is 29% less favorable to marshland than the cost-optimal alternative
(C!), whereas the most marshland friendly-alternative (M!) is 20% less suitable for capercaillie
habitat than C!. However, the penalty for capercaillie affects the adverse marshland impact
more than the penalty for marshland influences the adverse impact on capercaillie. For example,
Alternative [8,8] is about 18 times worse for marshland than Alternative [1,8]. Vice versa, Al-
ternative [8,8] is only about 6% worse for capercaillie than Alternative [8,1]. The reason for this
effect is as follows: The capercaillie area is large and coherent, while the marshland areas are
small and not contiguous. Consequently, it is possible to find a road that can curve around the
sides of the different marshland sites. However, because Locations B1, C1, and C2 are within
the capercaillie impact area, the SMT must cross it.

One of the crucial optimization problems in forestry is to minimize both off- and on-road trans-
portation costs and road construction costs (Chung et al., 2007). Our framework excludes those
transportation costs and, instead, considers an auxiliary value of potential landing volume, which
should lead the SMT to a more harvesting-friendly alternative. Off-road costs will decrease indi-
rectly. Still, our approach is useful only with small weights for harvesting-attractiveness because
Dijkstra’s algorithm does not allow for adverse weights. In central Europe, road standards are
high and must often fulfill different criteria for forestry and agriculture simultaneously. As a con-
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Nr. Component Quality / estimated
error a

Transferability Comment

1 Discretization of
the road

< 1% yes We used a 10 m × 10 m grid res-
olution and 16 road directions (cf.,
Stückelberger et al., 2007). The
highest possible resolution for the
grid is constrained by the accuracy
of the spatial data.

2 Road geometry
constraints

< 1% yes Same standards as used for manual
road design (cf., Kuonen, 1983 or
US Forest Service, 2006)

3 Graph topology exact yes Each potential and feasible road
segment in the project area is
mapped to a link in the graph G
(cf., Section 4.2.3).

4 Road
construction cost
model

5% - 10% good In order the construction cost
model is generic, the model is ap-
plicable for nearly every project, as
long as the input data are known
(cf., Stückelberger et al., 2006a).

5 Harvesting
attractiveness
model

10% - 30% good It is common for planners to con-
sider the potential landing vol-
ume when locating optimal land-
ings (Chung & Sessions, 2002).
However, the degree of difficulty for
installing and operating is not con-
sidered in our model.

6 Ecological
penalty functions

10% - 30%, assuming
the presumptions are
correct

The presented capercail-
lie model and marsh-
land model are applica-
ble in Central Europe
only. However, similar
models for other species
should be developable in
most case.

The applied penalty functions are
common in the science of ecology
(cf., USDI Fish and Wildlife

Service, 1981, Jaeger, 2002).
However, the influence of for-
est roads on different species is
based on numerous presumptions.
Furthermore, the set of species
and ecotypes considered relevant is
subjective.

7 Multiple-
objective
function

is considered a good
approach but has
limited utility

good The linear combination of all single
objectives may be faulty. It seems
reasonable to combine construction
costs and ecological penalties lin-
early. In contrast, the linear combi-
nation of harvesting-attractiveness
and construction costs is appli-
cable within only a small range
(Stückelberger et al., 2006b).

8 Mathematical
graph model

exact yes Any path P in graph G leads to a
feasible road (cf., Section 4.2.8)

9 Optimization
techniques

0% - 4% yes The method used to find the SMT
on a graph most probably leads
to a near mathematical optimum
(Schwartz & Stückelberger,
2008).

Table 4.6: Quality and transferability of the different components of the model framework. a compared
to the theoretical optimal objective value
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sequence, construction costs there are more critical factors compared with harvesting costs. This
is why our approach leads to reasonable results even though transportation costs are included
only indirectly.

4.5 Conclusion

This paper presents models for mapping the spatial variability of different objective functions in
forest road design (life-cycle costs, adverse ecological effects, and landing-attractiveness). Three
major findings have emerged from this investigation. (1) The Steiner minimum tree solutions
are located on convex trade-off surfaces, as predicted by the multi-objective optimization theory.
(2) Single-point solutions are clustered on the Efficient set for Pareto-optimal solutions; even
small changes in the relative weights of objective-function components can trigger jumping from
one cluster to the next. (3) The allocation of relative weights to those components greatly
influences the solution.

Problem-solving in road network design is characterized by a set of partially conflicting re-
quirements brought forward by different stakeholders. Mono-objective analysis evaluates the
edges of the solution space that characterize those varying points of view.

In our example, the landowner was interested in a cost-optimal solution, whereas ornithologists
would prefer the capercaillie-optimum and marshland specialists would look for the marshland-
optimum. Therefore, mono-objective results are a good starting point in the negotiation process
because they quantify the effects of extreme preferences on the different objectives. Systematic
variations in the relative weights of the objective-function components are a prerequisite for
exploring the Pareto solution space. The evaluation presented here clearly demonstrates our
improved understanding of problem-specific trade-offs among different objective functions, and
identifies solution clusters. Only three clusters resulted from the 10 mandatory control points
analyzed in this Steiner minimum tree problem. It seems a likely supposition that the number
of solution clusters would increase with the number of mandatory control points.

Our approach also has some shortcomings. Whereas a cost metric may adequately map a real-
world situation, our ecological impact metric is based on expert knowledge that considers some
weak, unclear components, which one must be aware of when interpreting these results. A basic
assumption of multi-criteria optimization is that objective values must be independent. However,
our landing-attractiveness metric violates this assumption because it allocates accessible, though
overlapping, areas to each grid cell. Nevertheless, this approach seems to be useful in controlling
the location of routes for specific off-road transportation.





Synthesis

Goals

This thesis presents a model framework that automatically designs the spatial layout of an
optimal forest road network. Project areas of up to 50 km2 can be accommodated, assuming a
resolution of 10 m for the underlying digital elevation model. Goals here included (1) estimating
the spatial variability of road construction costs, (2) improving road link patterns in order to map
turning constraints on a mathematical graph and extend the set of different road directions, and
(3) balancing one’s consideration of construction costs, attractiveness for harvesting systems,
and disturbances to various ecological factors.

Main results

(1) In a first step, we set up a model for predicting road construction and maintenance costs
based on a digital elevation model (DEM), the geotechnical subsoil, and design parameters
for a specific road. This model was tested in two mountainous areas, and was compared with
state-of-the-art approaches that assume construction costs to be homogenous over the entire
project area. When the spatial variability of those costs was considered, expenses were about
25% lower but the road length increased by about 10% compared with previous approaches. A
model that incorporated the DEM but neglected the geotechnical subsoil resulted in 17% higher
costs than with the current model. Here, the correlation between road network length and cost
was low, although previous approaches had assumed this relationship to be very strong. This
can be explained as follows. About 15% of the project area was located in terrain units where
construction costs ordinarily are three times the average. However, our optimization approach
avoided road assignments in those high-cost sites, resulting in longer routes but at a lower price.
Our new model distinguished among straight segments, curves, and switchbacks. In steep terrain,
a switchback would have entailed extremely high costs due to earth and rock excavation, as well
as the installation of retaining structures. Those details accounted for up to 60% of the total
cost. Therefore, the siting of switchbacks was a crucial task. Furthermore, previous models had
assumed the road centerline to be a series of straight lines, with cost proportional to line length.
However, that would have been inappropriate for sharp changes in road direction between two
following segments. Introducing a constant penalty for any directional changes of more than 120
degrees, which is especially true for switchbacks, slightly improved the layout by suppressing
the occurrence of “zigzagging”. Nevertheless, none of the existing models estimated the costs for
switchbacks based on an actual centerline and cost figures for those construction elements. Our
new model led to an approximately 20% improvement in network layout effectiveness compared
with models that called for a constant switchback penalty.

(2) The geometry of the road centerline is controlled by a maximum road gradient and a
minimum curve radius. Steeper terrain means fewer feasible alternatives for the centerline. State-
of-the-art representations of the road network assume a finite set of regularly spaced nodes,
and road segments linking adjacent nodes. A widely used approach defines eight possible links
between a node and its directly adjacent nodes (8-link pattern). The maximum road gradient
is limited due to the gradeability constraints of vehicles. Within the 8-link pattern in steep
terrain, this limitation for the maximum road gradient results in a low number of feasible links
or even entirely non-feasible links. Our investigation demonstrated that the 8-link pattern did not
present feasible solutions for conditions with an average slope gradient of ≥ 35%. We therefore
considered links to the second-order neighborhood, consisting of 16 additional nodes, thereby
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producing a 24-link pattern. This enhanced pattern proved favorable in steep terrain because it
gave better layout alternatives. However, this approach still did not lead to smooth centerline
layouts for rolling terrain with a complex morphology. Therefore, we developed a 48-link pattern
that provided smooth road centerlines that were well adapted to the terrain morphology.

Turning constraints are decisive controls for ensuring a feasible horizontal alignment of two
consecutive road links. Here, we introduced 16 different road directions for each physical node
and mapped each direction on a separate layer. This was equivalent to 16 virtual nodes per
physical node, and it enlarged the solution space by a factor of 162. Such an approach made it
possible for us to map the turning constraints directly on a mathematical graph. In general, the
solution of graph problems, e.g., determining a minimum path between two nodes, occurs in an
enlarged solution space with virtual nodes. A solution may easily be mapped back to the “real
world” by re-merging the 16 virtual nodes to the physical node. The location of the mandatory
control points is assumed to be known. The optimal road network that connects all the control
points by a spanning tree is known as the Steiner Minimum Tree (SMT) problem. Applying
our approach to a real-world road network layout resulted in a cost improvement of about 35%
compared with previous approaches that had neglected turning constraints. Our results clearly
indicated that representation of the road network solution space – including link patterns and
turning constraints – is absolutely essential for finding solutions that fit well to a complex terrain
morphology. This might be more important than algorithmic power for real-world applications.

(3) Real-world road network layout problems must always take several objectives into ac-
count, e.g., reducing costs while minimizing adverse ecological impacts. We introduced multiple-
objective configurations here. First, we simultaneously analyzed the trade-offs between two ob-
jectives – e.g., construction costs versus detrimental effects on the environment, or costs vs.
harvesting-attractiveness. Second, we analyzed the trade-offs among three objectives simultane-
ously – construction costs and the ecological impacts on both marshland and the capercaillie.
To do so, we used a main objective function that consisted of a linear combination of cost,
impact, and attractiveness objective components. Trade-offs were investigated by applying a set
of scaling vectors to the objective components (i.e., evaluating different weighting factors for the
objectives), which resulted in the set of Pareto-optimal solutions that are located on the convex
hull of Yeff .

Our evaluation demonstrated that economical and ecological objectives were in conflict. That
is, the solutions that could improve ecological performance also increased costs by 2- to 3-
fold compared with a cost-optimal solution. Moreover, within our particular project area, the
“Wägital” (which is representative of Switzerland), even our two ecological objectives clashed.
The capercaillie-optimal alternative caused 30% more disturbance to the marshland compared
with the cost-optimal alternative. Likewise, the marshland-optimal alternative was associated
with 20% greater interruption of capercaillie habitat over the cost-optimal solution. In fact, the
bi-objective optimization for construction cost and harvesting-attractiveness was valid only for
the low weighting factors assigned to attractiveness. Nonetheless, in the “Wägital” area, the
increments for road construction costs and accessible harvesting volume were balanced, with 5%
higher costs resulting in about 5% more available volume.

Preferences for different objectives (i.e., weighting factors of the objective function) by the
stakeholders are extremely decisive for the solution. At certain areas in the criterion space,
small changes in preferences (weights) may cause the solution to jump dramatically from one
efficient point to another. In other areas of the criterion space, solutions are less sensitive to
changes in preference weights. In the “Wägital” area, we found three major clusters for the tri-
objective optimization. Therefore, our approach will help both experts and laymen understand
the trade-offs between different objectives, thereby enabling them to make a final decision that
is Pareto-optimal.
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Limitations

Mathematical formulation of a problem leads to an SMT problem, where the terminals are de-
fined by the mandatory access points within a specific project area. However, this approach has
two major difficulties. First, the situation is complex and belongs to the 21 recognized NP-
complete problems in graph theory (Karp, 1972). There is no known algorithm for finding the
mathematically optimal solution within polynomial time. In the case of “Wägital”, a full enu-
meration of all possible Steiner trees would have resulted in a problem size of 1055 alternatives,
which is far too large to be enumerated within a reasonable period of time1. We instead took a
heuristic approach that introduced one Steiner point for any triple of adjacent terminals. The
best Steiner Minimum Tree solution found was then improved upon by looking for additional
second-order Steiner points for triples of one first-order Steiner point and two adjacent termi-
nals. We proved, via quad tree analyses, that our solution for the quasi-SMT was < 2% lower in
performance than the theoretically optimal SMT. This demonstrated that our approach most
likely produces a solution very close to the real optimum.

Problem size is a second difficulty. A project area of 50 km2 – with a node spacing of 10 m×
10 m, 16 different road directions, and a 48-link pattern – results in 8 · 106 vertices and about
2 · 108 feasible edges. This reaches the memory limit for modern computers with about 2 GB
RAM. Therefore, clever memory management is necessary in order to provide model stability.
Here, we had to develop and compile a stand-alone application because such problems cannot
possibly be run within a spread sheet or standard GIS program. In fact, our software required
about 6 hours (Pentium 4, 2.66 GHz) to solve this problem.

An SMT approach is favorable if the graph is static, if the weight of each edge can be assigned
by a weighted sum of the different objectives, and if the main objective value is the sum of
the weights for all edges chosen for the solution. These assumptions are correct if we map cost
figures directly on the graph. Conventional wisdom says that two road segments with individual
costs of 1’000 and 2’000 units will be equal to one road segment with a cost of 3’000 units.
It is more difficult to compare ecological impacts, e.g., two road segments with capercaillie
disturbance values of 200 and 300 versus one road segment with an impact value of 500. Even
though the models that calculate these impacts may need some improvement, the assumption
that one must add those different weights is usually appropriate. However, those assumptions
are no longer valid if we are also mapping harvesting-attractiveness on the graph. For example,
if a particular road link is chosen, the attractiveness for neighboring road links may decrease.
This is the case when a road follows a slope so that timber can be transported to an area that
is easily accessed from the road, thus improving its harvesting-attractiveness. If, however, that
road turns in a switchback, then a stand can be reached from either the upper or lower section,
drastically reducing the attractiveness of the road below the switchback. This is why “zigzag”
roads are not efficient when opening the forest for harvesting. Correct implementation of this
problem requires a graph that must be updated after each step during the optimization process.
With our approach we were unable to handle such dynamic weights for a graph, making this
one of the biggest shortcomings of the present model. However, when harvesting-attractiveness
had low-weighting factors, this model produced reasonable and nearly optimal solutions.

Outlook

Because the standard graph model reaches the memory limit of currently available computers,
one must reduce the problem size. Some parts of a project area will never be accessible, perhaps

1the supposed age of the universe is < 1018 sec.
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because of lakes, slopes that are too steep, or a lack of interest in resources. These non-accessible
areas then lead to isolated nodes within the graph model. Such nodes can be eliminated, which
reduces the graph but not the solution space. However, a graph may still remain large due to
the introduction of 16 vertices for the different directions within each physical node, as well as
the inclusion of up to 48 edges per vertex. This is very desirable for steep terrain but is not
required on flat sites. The link pattern in our presented model was always consistent, having
a pattern of 8, 24, or 48 links. Moreover, fewer road links were feasible in the steeper terrain.
Thus, a possible solution would have been to raise the number of links with increasing slope.

Our new model called for a regular road spacing within a 10 m×10 m grid. However, Ander-

son & Nelson (2004) have introduced irregular node spacing, with the big advantage being
that one can find road centerlines that are at the feasible limit of the maximum road gradient.
However, complexity is dramatically increased by this irregular spacing. Therefore, a combina-
tion of regular node spacing on flat ground plus irregular spacing along contour lines in steep
terrain may be a promising approach.

Up to now, no one has been able to provide an algorithm that can exactly solve the problem of
minimizing road construction costs and harvesting transportation costs simultaneously within
a real-world application2. Our models are mostly deterministic. The way they work is much
different from the manner in which a human being might search for a good road network.
A computer model is based on many iterative calculations whereas a person will try to find a
solution graphically and intuitively. To implement intuition is very difficult. However, many non-
deterministic algorithms used in the field of operations research are based on biological strategies,
e.g., ant colony system optimization (ACO) (Dorigo, 1992, 1996) or genetic algorithms (GA)
(Holland, 1975). GA in particular has some potential for problem-solving here. For example,
we could add additional random points to the set of mandatory access points and resolve the
Minimum Spanning Tree (MST) problem. This MST-problem is a P-problem, thereby making it
solvable within polynomial time. By choosing different sets of additional random access points we
then obtain a population of solutions. We can use a fitness function (e.g., one that corresponds
to overall costs) to select favorable candidates that will be the parents of the next generation of
solutions. Our approach may be combined with such artificial-intelligence algorithms in order
to find faster and/or better solutions.

Two aspects of this model framework that might benefit from improvements include variable
graph representation and the use of artificial intelligence. However, we must never lose sight
of the practicality of any potential solution. For example, if a construction company is unable
to build a road to a satisfying standard and in an economical way, they will have no use for
highly sophisticated optimization techniques. Moreover, if the spatial data are out-dated and
the resolution is lower than the mesh of the nodes, then it is futile to introduce a complex
graph model. Therefore, before this proposed model framework can be adapted to more general
applications, we ought to test it, step-by-step, under various project conditions and in a wide
range of geographical areas in order to receive more feedback from design engineers in the field.

2Although there are authors who claim to have a solution, many of them do not realize, how complicated the
problem actually is.
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