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Zusammenfassung

Thema der Arbeit ist die optimale Steuerung eines Pumpspeicher-Elektrizitätskraft-
werks unter Unsicherheit. Die Unsicherheit stammt vom Wasserzufluss und von
Preisfluktuationen auf einem Spotmarkt, auf dem die Elektrizität gehandelt wird.
Das Kraftwerksmodell ist als mehrstufiges stochastisches lineares Programm for-
muliert. Ein kohärenter und zeitkonsistenter risiko-adjustierter Wert ist in einer
mehrperiodigen Risiko-Nebenbedingung berücksichtigt.

Die Arbeit besteht aus zwei Hauptteilen. Der erste Teil behandelt die kohärente
Risikomessung –soweit für das spätere Modell von Relevanz–, der zweite die optimale
Kraftwerkssteuerung.

Im ersten Teil wird ein einfach zu handhabender, rekursiver risiko-adjustierter
Wert definiert, für den in einem Spezialfall eine untere Schranke hergeleitet wird.

Im zweiten Teil werden Optimierungsprobleme von einfachen Kraftwerksmodel-
len explizit gelöst; die Probleme weisen diesselbe Struktur auf wie jene, die im
Zusammenhang mit kohärenter Risikomessung auftreten. Das hochfrequente Han-
deln am Spotmarkt wird modelliert, und dies trotz der beschränkten Anzahl nu-
merisch bewältigbarer Zeitstufen. Der Szenariobaum wird mittels Aufenthaltszeiten
des Spotpreises erzeugt, für welche eine Hauptkomponentenanalyse eine charakte-
ristische Struktur ergibt. Schlussendlich wird das allgemeine Kraftwerksmodell mit
der mehrperiodigen Risiko-Nebenbedingung numerisch gelöst.
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Abstract

The principal topic is the optimal operation of a hydro-electric pumped storage
plant under uncertainty. The uncertainty stems from the water inflow and from the
fluctuations of prices at a spot market, on which the electricity is traded.

The model of the plant is formulated as a multi-stage stochastic linear program-
ming problem. A coherent and time-consistent risk-adjusted value is incorporated
in a multi-period constraint on risk.

The thesis is made up of two parts. The first part considers coherent risk-adjusted
values, the second part the optimal control of the plant.

The first part defines a simple recursive risk-adjusted value, for which in a special
case a lower bound can be derived.

In the second part, some optimization problems of simple dispatch models are
explicitly solved; the problems are structured similarly to those in coherent risk
measurement. The short-term trading on the spot market is modeled in defiance
of the limited number of numerically tractable time stages. The scenario tree is
generated by the occupation times of the spot price. The principal component
analysis of the occupation times exhibit their characteristic pattern. Finally, the
general dispatch model subject to the multi-period constraint on risk is numerically
solved.
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electron (Greek): amber, acquires an electric charge by friction.

risk unclear origin:

• rixari (Latin): to dispute [76];

• risco (Spanish): dangerous cliff [76];

• rizq (Arabic): to seek your reward from God [65].
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Chapter 1

Introduction

The business environment of power producers has changed with the advent of elec-
tricity markets. In Europe, the first large electricity market was Nord Pool in Scan-
dinavia, founded in 1993. An example of a major market place in Central Europe
is the European Energy Exchange (EEX) in Leipzig, which opened in 2002. Based
on the directive of the European Union concerning a common electricity market
in 1996 [31], the ongoing harmonization of national laws facilitates the access of
electricity producers to these deregulated markets.

The electricity markets increase the flexibility of production. In the past, the
main concern of an electricity producer was to cover the demand with own pro-
duction; the demand originates from delivery contracts between the producer and
costumers. The new markets allow to cover demand by buying electricity on the
market. On the other side, own production capacity can be sold on the market.

The markets do not only increase the flexibility of demand coverage, but allow
the hedging of positions by derivative instruments. For example, the production
of energy can be immunized against falling electricity prices by selling a futures
contract1.

In the environment of electricity markets, a producer of electricity should coor-
dinate power generation with trading activity. Any optimization of a coordinated
strategy has to consider the uncertainty in market prices and demand, as well as
the uncertainty in production-related quantities like water inflow (in the case of
hydro-energy plants). If the uncertain quantities can be described by probability
distributions, then stochastic optimization methods can be applied.

The main subject of the thesis is the optimal operation of a hydro-electric
pumped storage plant. Because only a single plant is considered, the emphasis is
on the trading of electricity on a spot and futures market, and not on the demand2;
usually, the demand is satisfied by a large power portfolio.

1A futures contract is a contract for the purchase or sale of an underlying financial product at a
specified price at a future settlement date. In our case, the underlying is 1 MW of electricity over
a certain delivery period.

2The demand is only considered in an extended version of the model (Appendix A.6).
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2 Chapter 1. Introduction

We present two modeling views of the electricity plant: The first is a stochastic
control model, which singles out the control from other variables, and the second
is a multi-stage stochastic programming model, which is suitable for the numerical
tests.

The control of the plant is non-anticipative (as all human decisions) and desirably
adapted to movements in exogenous variables, like market prices and water inflow.
This leads to a formulation on a scenario tree. Numerical tractability restricts the
number of stages in the tree, such that it is difficult to incorporate the short-term
(hourly) trading activity on the spot market in mid or long-term models. This
problem is tackled by a suitable formulation of the dynamics of the spot price. In
addition, to generate a moderately sized scenario tree, the dynamics will be reduced
to a small number of factors. The cases in which a model formulation on a scenario
tree is actually needed (and not a simple path-wise formulation) are also numerically
identified.

To find the optimal operation of the plant, the model uses two financial selection
criteria: The expected final value of the plant and a so-called risk-adjusted value;
they are monetary, financial values, and, optimally, they should be as large as pos-
sible. The particular definition of these values is to some extend up to the decision
maker of the plant; for the risk-adjusted value, we use a multi-period coherent def-
inition, which takes the intertemporal values of the plant into account. Coherency
means that the risk-adjusted value has to fulfill a set of axioms that try to capture
the notion of financial risk.

The decisions in a multi-period model are commonly adapted to different states
and times. Hence, it is reasonable to measure the risk from the viewpoint of different
states and times, too. The connection between the different risk measurements is
achieved by the property of so-called time consistency (exact definition see Sec. 3.5).
A recursive definition of the risk-adjusted value will ensure time consistency.

Hence, at first glance, it seems that the role of risk-adjusted values is restricted
to constrain the risk in the model of the electricity plant. The connection is deeper:
Some electricity dispatch models have the same structure as optimization problems
that arise from the calculation of coherent risk-adjusted values.

The thesis is built up in two parts: The first part is about financial risk mea-
surement, and the second about the model of the electricity plant.

The next chapter contains a review of single-period coherent risk-adjusted values;
in particular, we present the duality relation of the risk-adjusted value Conditional-
Value-at-Risk (CVaR)1. Then, we introduce the notations for multiple periods and
define a specific form of a risk-adjusted value for processes as well as of a risk-
adjusted value for random variables at final time. The definitions are recursive,

1Our definition differs slightly from the literature; hence, we use the qualifier ‘risk-adjusted
value’.
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which ensure time consistency (Ch. 3). A particular recursive risk-adjusted value is
where a single step of the recursive calculation is similar to CVaR (Ch. 4).

In the second part, we motivate the modeling of the electricity plant, and we
introduce the notion of stochastic control as far as needed (Ch. 5). Before we proceed
to the general model, we solve some simple dispatch problems analytically (Ch. 6).
The general model of the plant is presented in two formulations: As a stochastic
control problem, and second, as a multi-stage stochastic linear program on a finite
scenario tree, which is numerically solvable (Ch. 7). The scenario tree generation
method is explained in detail (Ch. 8), and the model is numerically solved in a case
study (Ch. 9).

Eventually, we conclude (Ch. 10) and provide directions for extensions and fur-
ther research (Ch. 11).



Chapter 2

Single-Period Risk Measurement

In this chapter, we review coherent single-period risk-adjusted values to the extent
their theory is used in the further analysis.

2.1 Coherent Risk-Adjusted Value

Let a fixed probability space (Ω,F ,P) be given. The set Ω consists of the possible
outcomes. F is a σ-algebra of sets in Ω. A set in F is called an event. The σ-
algebra F is allowed to have infinitely many elements. The expectation of a random
variable X : Ω → R with respect to P is denoted by E[X]. Concerning the notation:
Random variables are upper case, and arguments of functionals are denoted in square
brackets.

In our context, a single-period risk-adjusted value will be defined for bounded
random variables X ∈ L∞ := L∞(Ω,F ,P;R). The random variable X is interpreted
as the value (net worth) of a financial position at the end of the period, where the
value is as seen from today. The financial position is typically a portfolio of assets;
in this case X is typically the discounted sum of the cash flows1 that have occurred
till the end of the period for these assets. More generally, the value of a position
at a specific time can be considered as a sum of two components: Retrospective
(occurred cash flows) and prospective (future cash flows). In the current single-
period setup, only the cumulative occurred cash flows at final time are relevant,
whereas the forthcoming multi-period setup will always consider the past and the
future.

In a portfolio of assets, the amount of each asset is adjustable by a decision
maker. In the particular case of an electricity plant, a sequence of cash flows over
time is generated by dispatching water to trade electricity. Hence, the portfolio of
an electricity plant can be considered to consist of the capacity to dispatch water
and of positions in other, purely financial contracts, like futures. In fact, because the

1cash flow := (uncertain) stream of money at a specific time

4



2.1. Coherent Risk-Adjusted Value 5

decision maker can adjust (subject to some constraints) the amount of dispatched
water at each time, the individual dispatch capacities over time can be considered
to constitute a portfolio of its own.

According to Artzner et al. [5], a coherent risk-adjusted value of a given financial
position is interpreted as a deterministic, monetary amount, such that the following
axioms are fulfilled.

Definition 1 (Coherency, [5]). A coherent single-period risk-adjusted value is the
value of a mappping π : L∞ → R such that the following axioms are fulfilled:

(i) π[X + Y ] ≥ π[X] + π[Y ] for all X,Y ∈ L∞,

(ii) π[λX] = λπ[X] for all X ∈ L∞, λ ≥ 0, λ ∈ R,

(iii) X ≥ Y a.s. ⇒ π[X] ≥ π[Y ] for all X, Y ∈ L∞,

(iv) π[X + c] = π[X] + c for all X ∈ L∞, c ∈ R.

Some remarks:

• The symbol c in axiom (iv) has two meanings: On the left, it is a constant
random variable c : Ω → R, and on the right, it is a scalar c ∈ R. The
identification is c(Ω) = c ∈ R.

• The mapping π is superadditive and positive homogenous. Therefore π is
concave. In the special case where Ω is finite, the continuity of π follows [4,
Proof Prop. 2.2].

• In the original definition in [4], ρ[X] = −π[X] is called the risk measure. In
our notation: The greater the value of X the worthier is X, and so the greater
is π[X].

A position X is called acceptable if π[X] ≥ 0 [5]. Let as assume that X ≥ 0 a.s.;
specializing property (iii) to Y = 0 a.s. and property (ii) to λ = 0 we get π[X] ≥ 0.
Hence, all non-negative random variables are acceptable. The risk-adjusted value
can be interpreted as the maximal amount of money that can be withdrawn from
the position such that it stays still acceptable:

sup{c ∈ R | π[X − c] ≥ 0} (iv)
= sup{c ∈ R | π[X] ≥ c} = π[X], (2.1)

where we used the translation invariance (iv). The maximal amount is negative for
positions that are not accepted. In this case, the negative of the risk-adjusted value
is interpreted as the minimal amount of money to be added to render the position
acceptable.

In the particular case of an electricity plant, the value of the plant will be defined
without considering capital costs, depreciation costs, maintenance costs and water



6 Chapter 2. Single-Period Risk Measurement

charges; only the value that originates directly from the exploitation of cost-free
water in the associated trading activity is considered. This can even lead to a
positive value X in almost all events: X ≥ 0 a.s. As we have just seen, this implies
π[X] ≥ 0 and X is always ‘accepted’. But, acceptance can also be viewed with
respect to a target as follows. A total value can be defined: X − c, where c consists
of (usually deterministic) net losses that are generated by the mentioned costs and
additional, firm-specific accounting amounts. The total value may become negative.
Hence, we can define that X is accepted with respect to a target c if π[X] ≥ c, or
equivalently, by translation invariance, if π[X − c] ≥ 0.

A profound discussion of the axioms in Def. 1 can be found in Artzner et al. [4].
A short interpretation is (X and Y are positions):

(i) The amount of money that can be withdrawn from the portfolio X + Y such
that the portfolio stays acceptable is greater than the sum that can be with-
drawn from the individual positions X and Y (‘diversification reduces risk’).

(ii) The amount of money that can be withdrawn from a position is proportional
to the size of the position.

(iii) The allowed amount of withdrawn money is larger if the value is larger in every
state.

(iv) if an amount c of money is added to the position, then we can withdraw
additionally this amount.

The theory of coherent risk measurement can be extended by relaxing the prop-
erties of homogeneity and superadditivity and replacing them by concavity (see
e.g. [62]). The advantage of relaxing homogeneity is that the risk of a large financial
position can be defined to be disproportionately high with respect to a small posi-
tion, owing to the observation that large positions are difficult to liquidate in limited
financial markets. The disadvantage is that the definition of the risk-adjusted value
is no longer invariant with respect to different currencies (exchange rate = λ).

2.2 Definition by Probability Measures

Coherent risk-adjusted values (Def. 1) can be constructed with help of the following
representation.

Lemma 1 (Definition by probability measures [4]). Let P be a set of proba-
bility measures on (Ω,F). The mapping π : L∞ → R, defined by

π[X] := inf
Q∈P

EQ[X], (2.2)

is a coherent single-period risk-adjusted value, where EQ[·] denotes the integration
with respect to measure Q.
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The proof is easy (see e.g. [4]). In fact, for every given coherent risk-adjusted value
π there exists a set P such that (2.2) holds (see [19]).

The representation (2.2) says that the expectation of the uncertain value X
is evaluated with respect to different probability measures Q ∈ P . These test-
probability measures may be considered as stress-scenarios. The worst expectation
over the set of test-probability measures is considered to be the risk-adjusted value
of X.

A specific coherent risk-adjusted value with representation (2.2) is given by a set
P of probability measures. For the forthcoming examples of coherent risk-adjusted
values, only Ps that contain probability measures Q that are absolutely continuous
with respect to P are taken into account:

For all F ∈ F , P[F ] = 0 =⇒ Q[F ] = 0.

This is reasonable because impossible events with respect to P may be assumed to
be impossible in all test-scenarios Q, too. If Q ∈ P is absolutely continuous, then
an integral with respect to Q can be expressed by an integral with respect to P:

Theorem 1 (Radon-Nikodym). Let Q be absolutely continuous with respect to
P. There exists an H ∈ L1

+(Ω,F ,P;R) such that

EQ[Y ] = E[HY ] for all bounded random variables Y . (2.3)

The non-negative random variable H is called the Radon-Nikodym (probability)
density of Q with respect to P.

For a proof, see [6, Prop. 17.3, Prop 17.10]. On the other hand, let H ∈ L1
+ :=

L1
+(Ω,F ,P;R) with E[H] = 1 be given. H defines a measure Q by taking the

indicator function Y := χF in (2.3): Q[F ] := E[HχF ] for all F ∈ F [6, Prop. 17.1].
Hence, if P contains only absolutely continuous probability measures, then P can
be identified with a set of Radon-Nikodym densities, and the representation (2.2) of
coherent risk-adjusted values becomes

π[X] = inf
H∈P̃

E[HX], (2.4)

where P̃ ⊆ {H ∈ L1
+ | E[H] = 1}.

The optimization problem (2.4) is linear. Therefore, relaxing the problem by

taking the convex hull of P̃ does not yield a lower risk-adjusted value. Indeed, let
0 < λ < 1 and H1, H2 ∈ P̃ . Clearly, λH1 +(1−λ)H2 ∈ L1

+, E[λH1 +(1−λ)H2] = 1,
and

E
[(

λH1 + (1− λ)H2

)
X

]
= λE[H1X] + (1− λ)E[H2X]

≥ min
(
E[H1X], E[H2X]

)
.

Therefore, the set P̃ can be considered to be convex.
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2.3 Conditional-Value-at-Risk

Next, we choose a specific set of Radon-Nikodym densities (i.e. test-probability
measures). The at first unmotivated choice leads to a risk-adjusted value that can
be interpreted as an expected shortfall.

Let us consider the following risk-adjusted value with uniformly bounded Radon-
Nikodym densities for X ∈ L1:

min
H∈L∞

E[HX],

s.t.





E[H] = 1, |q
H ≤ 1

α
a.s., |Z

H ≥ 0 a.s.,

(2.5)

where α ∈ (0, 1), and where we have indicated Lagrange multipliers for the first two
constraints: q ∈ R and the random variable Z ∈ L1.

With the help of the Lagrange multipliers, we can formulate the algebraic dual
problem:

max
q∈R, Z∈L1

q − 1

α
E[Z],

s.t.

{
Z ≥ q −X a.s.,

Z ≥ 0 a.s..
(2.6)

Clearly, if Z∗ is optimal, then Z∗(ω) is as small as allowed by the constraints for
every ω ∈ Ω. Thus, we have either Z∗(ω) = q −X(ω) or Z∗(ω) = 0. Therefore, we
can write the problem concisely as

max
q∈R

q − 1

α
E[(q −X)+], (2.7)

where (·)+ := max(·, 0) selects the positive part. For the stochastic programming
formulation of problem (2.7), see Kall and Mayer [49, p. 159]. The optimal solutions
of problems (2.5) and (2.7) are well-known; the next proposition emphasises their
strong duality.

Proposition 1 (CVaR Duality, [1, 80]). Let X be a bounded random variable.

(i) Problem (2.5) is strongly dual to problem (2.7): The problems have optimal
solutions, and the optimal objective values are the same. Every α-quantile of
X is an optimal solution of (2.7).

(ii) Let qα(X) be an α-quantile of X such that the distribution of X has no atom
at qα(X) : P[X = qα(X)] = 0. Then the optimal objective value is

E[X | X ≤ qα(X)]. (2.8)
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Definition 2. Let X ∈ L1 and α ∈ (0, 1). The risk-adjusted value Conditional
Value-at-Risk CVaR[X] at level α is the optimal objective value of problems (2.5)
and (2.7).

Note. The name CVaR originates from equation (2.8); the expectation of X is
taken conditionally on values less or equal an α-quantile, where the quantile may
be interpreted as a so-called value-at-risk. In applications, α is chosen to be small,
e.g. α = 0.05 or 0.01. The risk measure β-CVaR of Uryasev and Rockafellar [80] is
defined on losses, which are considered to be positive, and β is large, e.g. β = 0.95
or 0.99. The correspondence is for a (positive) loss Y

β-CVaR = −CVaR[−Y ] at level α = 1− β.

Acerbi and Tasche [1] use the notion of Tail Mean, whereas Artzner et al. [5, p. 16]
use Tail-VaR:

TMα(X) = TVaRα(X ) = CVaR[X] at level α.

The optimal solutions are formulated in terms of quantiles; an α-quantile of a
random variable X is every number qα such that

P[X < qα] ≤ α ≤ P[X ≤ qα]. (2.9)

Note that qα is not always unique; some useful facts about quantiles are provided
in Appendix A.1 (p. 112). Let qα be an arbitrary α-quantile of X. The proposition
already states that qα is an optimal solutions of (2.7) (see [80]); the optimal solution
of (2.5) is given by (a combination of) indicator functions χ : Ω → {0, 1}:

H∗ :=





1
α
χ{X<qα} +

1− 1
α
P[X < qα]

P[X = qα]
χ{X=qα}, if P[X = qα] > 0,

1
α
χ{X≤qα}, if P[X = qα] = 0,

(2.10)

where the definition is in the almost surely sense (see [1]).
Because the optimal solutions are known, Proposition 1 can be proved by strong

duality.

Proof. We have to show:

(i) Weak duality: For every feasible solutions, the objective value of (2.5) is
smaller or equal to the objective value of (2.6).

(ii) qα is feasible for (2.6), H∗ is feasible for (2.5), and the objective values are the
same; therefore, they are optimal solutions.

(iii) The optimal solution does not depend on the choice of the α-quantile.
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(iv) If P[X = qα] = 0, then CVaR[X] = E[X|X ≤ qα].

(i): Let H, Z and q be feasible.

E[HX] ≥ E[H(q − Z)] = qE[H]− E[HZ]

= q − E[HZ]
(Z≥0)

≥ q − 1

α
E[Z].

(ii): qα ∈ R and Z := (qα −X)+ are clearly feasible in (2.6). For (2.5) we have to
consider two cases: First, the discontinuous case. The first constraint in (2.5) is

E[H∗] =
1

α
P[X < qα] +

1− 1
α
P[X < qα]

P[X = qα]
P[X = qα] = 1,

and therefore fulfilled. The second constraints in (2.5) demands that

0 ≤ 1

α
≤ 1

α
a.s. on {X < qα},

and

0 ≤ 1− 1
α
P[X < qα]

P[X = qα]
≤ 1

α
a.s. on {X = qα}.

The first chain of inequalities is trivially fulfilled. The second chain of inequalities
is transformed equivalently by multiplying with (αP[X = qα]). The resulting chain
of inequalities is the definition (2.9) of an α-quantile qα . In the continuous case,
definition (2.9) becomes P[X < qα] = α = P[X ≤ qα]. Hence, the first constraint
becomes

E[H∗] =
1

α
P[X ≤ qα] = 1,

and the second is

0 ≤ 1

α
χ{X≤qα} ≤

1

α
.

Therefore, H∗ is feasible. In the continuous case, the objective value of (2.5) with
solution H∗ is

E[H∗X] = E[
1

α
χ{X≤qα}X]

=
1

α
E[Xχ{X≤qα} − qαχ{X≤qα}] +

1

α
E[qαχ{X≤qα}]

= − 1

α
E[(qα −X)+] +

1

α
qαP[X ≤ qα]

= qα − 1

α
E[(qα −X)+],
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whereas in the discontinuous case it is

E[H∗X] = E[
( 1

α
χ{X<qα} +

1− 1
α
P[X < qα]

P[X = qα]
χ{X=qα}

)
X]

=
1

α
E[Xχ{X<qα}] +

1− 1
α
P[X < qα]

P[X = qα]
E[Xχ{X=qα}]

=
( 1

α
E[Xχ{X<qα} − qαχ{X<qα}] +

1

α
E[qαχ{X<qα}]

)
+

(
1− 1

α
P[X < qα]

)
qα

= − 1

α
E[(qα −X)+] +

1

α
qαP[X < qα] + qα

(
1− 1

α
P[X < qα]

)

= qα − 1

α
E[(qα −X)+].

Therefore, we have strong duality.
(iii): We made no specific choice of the α-quantile qα. Therefore, the strong duality
holds for every α-quantile. Hence, every α-quantile is optimal in (2.6).
(iv): Let us write the expectation in the optimal objective value of (2.7) condition-
ally:

qα − 1

α
E

[
(qα −X)+

]
= qα − 1

α
P
[
qα −X ≥ 0

]
E

[
(qα −X)+

∣∣qα −X ≥ 0
]
,

because
(
P[X = qα] = 0

(2.9)
=⇒ P[qα −X ≥ 0] = α

)
, this is

= E
[
qα − (qα −X)+

∣∣X ≤ qα

]
= E

[
X

∣∣X ≤ qα

]
. ¥



Chapter 3

Recursive Risk Measurement

In this chapter, we introduce the multi-period setting. First, the gain of information
over time is modeled by a filtration of the probability space. Second, we define the
recursive risk-adjusted values for a process (called Case I ) and for a random variable
(Case II ). In the next chapters we will incorporate the risk-adjusted value into a
numerically solvable optimal-decision model. The complexity of this model demands
finiteness, hence, we consider –as in Artzner et al. [4]– a finite setup, that is, a finite
filtration (scenario tree).

3.1 The Scenario Tree

Let a probability space (Ω,F ,P) be given. As motivated above, we assume the
following finite setup.

Finiteness Assumption:

The forthcoming definitions of multi-period risk-adjusted values are considered only
for a finite number of time steps t = 0, 1, . . . , T and on a finitely generated σ-algebra
FT ⊆ F .

The finite σ-algebra FT ⊆ F of final events represents the possible outcomes.
Generally, a finite σ-algebra is generated by a finite partition of Ω, and a set in the
partition is called an atom.

The available information at time t is represented by a sub-σ-algebra Ft ⊆ FT ,
t = 0, . . . , T with Ft ⊆ Ft+1, t = 0, . . . , T−1. In other words, the gain of information
is represented by a filtration (Ft)t=0,...,T . The σ-algebra at time zero is chosen to
contain no information: F0 := {∅, Ω}.

A finite filtration (Ft)t=0,...,T corresponds to a tree: Each atom of Ft is identified
with a node of the tree at step t. In particular, the set Ω is identified with the root
node (Fig. 3.1), and the probability of a node is the probability of the corresponding
atom; if n denotes a node, then we write P[n] for its probability.

12
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Figure 3.1: A scenario tree generated by a finite filtration (F0,F1,F2). The filtration
corresponds to a sequence of refined partitions of Ω. F0 has the set {n0} of atoms, F1

has atoms {n1, n2}, and F2 has atoms {n3, n4, n5, n6, n7}. For all t, the σ-algebra Ft

is the powerset of the set of atoms.

Definition 3 (Scenario tree of a finite filtration). Let (Ω,F ,P) be the prob-
ability space. Let a finite filtration of F be given: (Ft)t=0,...,T . The representing
tree together with the probabilities of the nodes is called the scenario tree of the
filtration with respect to P.

Without loss of generality, we always assume that all nodes of the scenario tree have
strictly positive probability under P (otherwise the subtree originating from such a
node can be neglected).

Because we will consider different test-probability measures Q on (F , Ω), the
above definition can be extended to different probability measures Q by replacing P
with Q. If the scenario tree is with respect to the (original) probability measure P,
we just speak of a scenario tree for a given (finite) filtration, and we do not mention
that the probabilities of the nodes are according to P. In addition, given a scenario
tree with probabilities according to P, we can consider a probability measures Q on
(FT , Ω) (i.e. on the terminal nodes), and we say that Q is defined on the tree.

The set of nodes at time t is denoted by Nt. A scenario is defined as the unique
path from the root node to a terminal node, (n0, n1, . . . , nT ), where nt ∈ Nt for all
t. The history of node nt is defined as the unique partial path (n0, n1, . . . , nt−1),
where ns−1 is the parent node of ns for s = 1, . . . , t.

A stochastic process is in our case a sequence of random variables over time:
(Xt)t=0,...,T . Let a finite filtration be given: (Ft)t=0,...,T . We will consider only
(Ft)-adapted processes, that is, Xt is Ft-measurable for all t. A standard result of
measure theory says that Xt is Ft-measurable if and only if Xt is constant on each
atom of the finite σ-algebra Ft, or, equivalently, Xt takes values on the nodes Nt.
Hence, by the finiteness assumption of the filtration: In the forthcoming definitions
of multi-period risk-adjusted values, all stochastic processes are defined on a given
scenario tree.

For the rest of the thesis, if not stated otherwise, all equations or inequalities
between random variables are to hold almost surely. In our discrete case, this means
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that an (in-)equality between Ft-measurable random variables holds in all nodes n ∈
Nt. Nevertheless, we still write ‘a.s.’ in some expressions to avoid any ambiguities.

Note. The foregoing definition of a scenario tree uses atomic sets in Ft (i.e. sets in
the abstract space Ω) to define a node at time t (see also [68, Sec. 9]). In applications,
these sets (events) are usually generated by the values of a specific stochastic process
(Xt)t=0,...,T , where the Xts have finitely-discrete distributions. Thus, we can define
the filtration by considering the evolution of the process over time:

Ft := σ(X0, . . . , Xt), t = 0, . . . , T.

Hence, a node is given by a value of the process at time t conditional on the past
values, and a sequence of realizations of the process from time 0 till time T de-
termines a path (scenario) in the tree. Therefore, two different connotations can
be associated with scenarios: The event-view and the value-view. Because we will
consider several processes, and because in the first part of the thesis the nature of
the generating process is irrelevant, we stick to the first view and consider a scenario
tree (event tree) as a finite filtration on a probability space.

In the following, let a scenario tree of a finite filtration (Ft)t=0,...,T be given.

3.2 Multi-Period Financial Risk Measurement

Let us consider a financial investment that generates an uncertain series of cash
flows. Different stakeholders1 may require the acceptability of the investment:

• If a creditor does not accept the investment, the creditor does not grant any
credit, or curtails existing credits, and the investment has to be sold or even
liquidated.

• If a supervision authority does not accept the investment, the authority may
impose a fee, a capital increase, or even disallow further operation.

• If the investment becomes too risky, a risk-averse shareholder or the manage-
ment requests to change the business strategy.

In every case, the stakeholder’s acceptance may be based on the perceived ‘value’
of the investment. In our multi-period setting, the value at a future time t can
depend on the events at time t (i.e. the nodes n ∈ Nt). We assume a value that is
prospective and retrospective: The value in event (node) n ∈ Nt is a sum of the cash
flows that have realized till time t in event n, and of an assessment of the future
cash flows conditional on n (all quantities discounted to t = 0). The uncertain

1a person with an interest or concern in the investment
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sequence of the future financial values is described by an (Ft)-adapted stochastic
process (Xt)t=0,...,T .

As in the single-period case, the acceptability of the value process is assumed to
be defined by a lower bound ρmin ∈ R of a risk-adjusted value. In a multi-period
setting, two cases of risk-adjusted values can be considered [5]:

Case I: The risk-adjusted value is a number that depends on the whole process
(Xt)t=0,...,T . The number is measured from the viewpoint of today, or it may
be measured as viewed from a state (event) at a future time.

Case II: The risk-adjusted value is a number that depends on the single random
variable XT at final time T . As in Case I, the risk can be measured at different
times (prior to final time) and states.

Case II is appropriate if the stakeholder is interested in the final value only. Case I
is appropriate if the stakeholder cares about intertemporal values. The decision
whether to use Case I or Case II depends on the specific application. For the
forthcoming model of the electricity plant, it is assumed that the intertemporal
values are important for the stakeholders, thus, a risk-adjusted value of Case I is
applied.

Sometimes, the notion of liquidity risk is associated with intertemporal risk.
Liquidity risk is the possibility of an intertemporal shortage of cash. Creditors can
help by lending money when such a shortage happens. Therefore, a temporary
shortage of cash is not always a problem per se. Rather, if the creditor perceives (at
any specific point in time) the value of the investment to be no longer acceptable,
then the creditor grants no longer money.

The forthcoming definition of multi-period risk-adjusted value is based on Artzner
et al. [5]. At the time of writing, multi-period financial risk measurement is an active
research area. In the following, a short overview of related work is given.

The applied approach is value-based. Instead, the risk measurement could be
based on (uncertain) cash flows [38]. The risk measurements from the viewpoint of
different states and time can be related to each other by the requirement of time
consistency (the exact definition in our setting is in Section 3.5). In discrete time,
time consistency leads to a recursive representation of risk-adjusted values [5,58,81].
The general continuous time case is treated in [20]. Similar approaches specifically
for Case II (final random variable) are given in [69,73,74,82]. Similar results in the
language of Markov chains were obtained in [12]. Another direction of research is
the use of the so-called expected-value-of-perfect-information (EVPI) as a criterion
for the hedging1 of a multi-period income stream; the value of the hedged income
stream turns out to have coherency properties [68]. If the time consistency is not

1Hedging is an action to reduce risk.
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demanded, then general risk-adjusted values on the product space of state and time
can be considered, where time is either continuous [17,18] or discrete [28].

Next, we define the coherent recursive risk-adjusted value in Case I and II, and
then the notion of time consistency.

3.3 Case I: Recursive Risk-Adjusted Value for Pro-

cesses

Let an (Ft)-adapted stochastic process of values be given: (Xt)t=0,...,T . The riskiness
of the process shall not be measured at time t = 0 only, but also in different events
at future times t = 1, . . . , T (i.e. in different nodes of the scenario tree, which is
given by the filtration). Hence, for each node of the scenario tree, we measure a
risk-adjusted value. The measurement in a node is assumed to be based on the avail-
able information given by the node. In other words, the sequence of risk-adjusted
values over time is an (Ft)-adapted stochastic process. This risk-adjusted value

process is denoted by (R
(X)
t )t=0,...,T for the process of values (Xt)t=0,...,T . Occasion-

ally, we will denote the dependence on the stochastic process more explicitly by
(R

(X0,...,XT )
t )t=0,...,T .

The risk-adjusted value process (R
(X)
t )t=0,...,T is assumed to fulfill the following

assumptions [5].

(i) The risk-adjusted value R
(X)
t should be smaller than the value Xt for t =

0, . . . , T :
R

(X)
t ≤ Xt for all t. (3.1)

(ii) As in the single-period theory, a set P of test-probability measures is con-
sidered. Because information is gained over time (for every possible test-
probability measure), the risk-adjusted value should increase in average for
every ‘test-scenario’:

R
(X)
t ≤ EQ[R

(X)
t+1|Ft] for all Q ∈ P , for all t. (3.2)

In other words, the risk-adjusted value process is a submartingale for all Q.

(iii) Given a set of test-probability measures, the decision maker is allowed to choose
freely among the risk-adjusted value processes that fulfil (3.1) and (3.2). The
most favorable, i.e. the largest possible is chosen.

The assumptions (i)-(iii) are equivalent to the following definition:

Definition 4 (Recursive risk-adjusted value, Case I, [5]). Let a set P of prob-
ability measures on the scenario tree be given. The risk-adjusted value process
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(R
(X)
t )t=0,...,T of an (Ft)-adapted stochastic process (Xt)t=0,...,T with set P of test-

probability measures is

R
(X)
t :=





XT , if t = T ,

min
(
Xt, min

Q∈P
EQ[R

(X)
t+1|Ft]

)
, if t = 0, . . . , T − 1,

(3.3)

where the minimization of the conditional expectation is pointwise, that is, for every
node n ∈ Nt separately. R

(X)
0 is called the risk-adjusted value (at time 0) of the

process.

We recall that we use sometimes the explicit notation R
(X0,...,XT )
0 .

For simplicity, we assume in (3.3) that the set P is such that the pointwise
minimum of the conditional expectation is attained. Later on, the attainability is
shown for a specific choice of P .

The pointwise minimum of the Ft-measurable conditional expectations takes
values on the nodes of Nt (i.e. is again Ft-measurable). This is obvious since the
values of the conditional expectation form a vector in R|Nt|, and a component-
wise minimization does not change this fact. Because the minimum of two random
variables in the outer minimization of (3.3) preserves measurability, it follows that
the risk-adjusted value process is (Ft)-adapted. By contrast, for infinite Ft the
formulation of (3.3) must be changed: The pointwise infimum of an uncountable set
of Ft-measurable random variables may no longer be measurable with respect to Ft

(see e.g. [34, Ch. A.4]). To prevent such cases, ‘inf’ must be replaced by ‘essential
inf’ [5].

The risk-adjusted value R
(X)
0 is F0-measurable and therefore a scalar. It can be

considered as a mapping Ψ̄0 from the space of adapted stochastic processes into the
reals:

Ψ̄0[X0, . . . , XT ] := R
(X)
0 ,

and generally,
Ψ̄t[X0, . . . , XT ] := R

(X)
t , t = 0, . . . , T,

where Ψ̄t maps into the space of Ft-measurable random variables (cf. the notation
in [5]). Note that by (3.3) only the random variables Xt, . . . , XT are relevant for the

calculation of R
(X)
t .

The axioms of coherency (Def. 1, p. 5) can be translated to the multi-period re-

cursive risk-adjusted value as follows. We use the notation R
(λX+Y )
0 := R

(λX0+Y0,...,λXT +YT )
0 ,

where λ ∈ R and (Xt)t=0...T , (Yt)t=0...T are processes.

Lemma 2. Let (Xt)t=0...T and (Yt)t=0...T be (Ft)-adapted stochastic processes. Then
the recursive risk-adjusted value is coherent in the sense that

(i) R
(X+Y )
0 ≥ R

(X)
0 + R

(Y )
0 ,
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(ii) R
(λX)
0 = λR

(X)
0 for all λ ≥ 0, λ ∈ R,

(iii) X0 ≤ Y0, . . . , XT ≤ YT =⇒ R
(X)
0 ≤ R

(Y )
0 ,

(iv) R
(X+c)
0 = R

(X)
0 + c for all c ∈ R,

where in (iv) the left-hand-side c denotes the constant process (c)t=0,...,T .

Proof. Only (i) is not obvious. We use backward-induction over time. At final
time T :

R
(X+Y )
T

(3.3)
= XT + YT

(3.3)
= R

(X)
T + R

(Y )
T .

Assume R
(X+Y )
t ≥ R

(X)
t + R

(Y )
t . Then

R
(X+Y )
t−1

(3.3)
= min

(
Xt−1 + Yt−1, min

Q
EQ

[
R

(X+Y )
t

∣∣Ft−1

])

≥ min
(
Xt−1 + Yt−1, min

Q
EQ

[
R

(X)
t + R

(Y )
t

∣∣Ft−1

])
,

separate minimization gives smaller values:

≥ min
(
Xt−1 + Yt−1, min

Q
EQ

[
R

(X)
t

∣∣Ft−1

]
+ min

Q
EQ

[
R

(Y )
t

∣∣Ft−1

])
,

min(a + b, c + d) ≥ min
(
a + min(b, d), c + min(b, d)

)
= min(a, c) + min(b, d) :

≥ min
(
Xt−1, min

Q
EQ

[
R

(X)
t

∣∣Ft−1

])
+ min

(
Yt−1, min

Q
EQ

[
R

(Y )
t

∣∣Ft−1

])

(3.3)
= R

(X)
t−1 + R

(Y )
t−1. ¥

Because of the translation invariance (iv), the single-period concept of acceptability

(2.1) (p. 5) can be taken over unchanged: (Xt)t=0...T is accepted if R
(X)
0 ≥ 0, and

R
(X)
0 is the maximal amount of money that can be withdrawn each time from the

value process such the value process stays acceptable.

3.4 Case II: Recursive Risk-Adjusted Value for

Final Values

If intertemporal values are not important for a decision maker, then the measurement
of the risk of the final value is sufficient. In this case, the recursive calculation (3.3)
can be simplified: Only the random variable XT at final time T enters the recursive
calculation.
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Definition 5 (Recursive Risk-adjusted Value, Case II). Let a set P of prob-
ability measures be given. The risk-adjusted value process (RXT

t )t=0,...,T of the ran-
dom variable XT is

RXT
t :=

{
XT , if t = T ,

min
Q∈P

EQ[RXT
t+1|Ft], if t = 0, . . . , T − 1.

(3.4)

RXT
0 is called the risk-adjusted value (at time 0) of a final value.

The definition is formally a special case of (3.3) if the random variables X0, . . . , XT−1

are so large that they do not enter the recursive calculation (3.3). The risk-adjusted
value RXT

0 represents the view of a decision maker who is only interested in the risk
of values at final time T .

As in the case for processes, the recursive risk-adjusted value of a random variable
XT at time t = 0, . . . , T can be viewed as the value of a mapping Φ̄t from the
space of FT -measurable random variables into the Ft-measurable random variables:
Φ̄t[XT ] := RXT

t (cf. the notation in [5]).

3.5 Time Consistency of Risk-Adjusted Value Pro-

cesses

In this section it is shown that the recursive calculation of the risk-adjusted value
ensures time consistency.

The notion of time consistency appears in the literature in different contexts.
The forthcoming definition is based on Artzner et al. [5]. A related notion appears
in Kydland and Prescott [59] (nobel laureates 2004), where time consistency of eco-
nomic policies is considered. In their setting, although not explicitly mentioned,
time consistency is essentially Bellman’s principle of optimality [8]. Bellman’s prin-
ciple applies to specially structured multi-period optimal control models. It says
that an optimal policy has the property that, whatever the initial state and ini-
tial decision are, the remaining decisions must constitute an optimal policy with
regard to the state resulting from the first decision [8]. Bellman’s principle implies
a backward-recursive calculation of an optimal policy (Dynamic Programming).

In our setting, time consistency is a property of a decision criterion. The crite-
rion is applied at different time and states of a probability space equipped with a
filtration1. The decision criterion is applied to financial investment opportunities,
such that a decision maker can decide which opportunity to prefer. In particular, in
our case, the decision criterion over time is given by the risk-adjusted value process.
Hence, in our setting, time consistency is not directly defined in the context of an

1the filtration is in our case finite =̂ scenario tree
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optimization problem. Nevertheless, time-consistent decision criteria may be used
in the objective function or in constraints of optimization problems.

First, we give a definition in words: The decision criterion is time consistent if
it has the property that

if an investment opportunity is preferred to another at a future time in
all possible events at that time, then it is preferred as of today, too.

Artzner et al. [5] use an extended definition where the future point in time is replaced
by a random time (stopping time). They show (among other results) that time con-
sistency is equivalent to a recursive calculation of the risk-adjusted value (as implied
by Bellman’s principle). In our approach, the recursiveness of the risk-adjusted value
is the starting definition. Thus, time consistency will be easily verified.

First, we will consider the more accessible Case II: The time consistency of a
risk-adjusted value process that measures the risk of a final random variable.

3.5.1 Time Consistency of Risk-Adjusted Value Processes
in Case II (Final Values)

In Case II, only the final outcome of the investment opportunity matters. The
possible outcomes are the values of an FT -measurable random variable XT . The
preference of a decision maker over time is represented by a real-valued decision
criterion that is calculated for every node on the scenario tree. Thus, at time t, the
decision criterion maps XT into the space of Ft-measurable random variables:

XT 7→ UXT
t , t = 0, . . . , T,

where UXT
t is a Ft-measurable random variable. In fact, in our finite setting, XT

takes values on the terminal nodes of the tree and UXT
t takes values on the nodes

at time t; hence, the mapping can be identified with a mapping from R|NT | to R|Nt|.

Definition 6 (Time consistency (Case II), [5]). Consider a sequence of map-
pings from the space of FT -measurable random variables into the space of Ft-
measurable random variables: XT 7→ UXT

t , t = 0, . . . , T , for all FT -measurable
XT . The sequence is time consistent if for every t ∈ {1, . . . , T} and for every
FT -measurable random variables YT and ZT such that

UYT
t ≥ UZT

t a.s.1,

it holds that
UYT

0 ≥ UZT
0 .

1in our finite setting: on every node n ∈ Nt
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In our finite setting, YT , ZT take values on the terminal nodes of the scenario
tree, and the decision criterion UYT

t , UZT
t takes values on the nodes at time t. In

other words, the decision criterion is evaluated at the nodes at time t by the decision
maker.

Lemma 3. The recursive risk-adjusted value process for final random variables (Def. 5)
is time consistent.

Proof. Let us consider two random variables YT and ZT that are ordered at a time
0 < t ≤ T in the sense that RYT

t ≥ RZT
t a.s.. Because X 7→ minQ EQ[X|Ft−1] is for

every random variable X a monotone mapping, the order is preserved:

min
Q
EQ

[
RYT

t

∣∣Ft−1

] ≥ min
Q
EQ

[
RZT

t

∣∣Ft−1

]
a.s.,

which is by Definition 5 of risk-adjusted values equivalent to

RYT
t−1 ≥ RZT

t−1 a.s..

Repeating the argument for the time steps from t− 1 to 0 gives RYT
0 ≥ RZT

0 . ¥

If a risk-adjusted value is not defined recursively, then time consistency can be
violated [5]:

Example. Let us define the value of a non-recursive decision criterion at time
t = 0, . . . , T − 1 in node n ∈ Nt for final a random variable XT as

UXT
t

∣∣∣
n

:= EPn [XT |XT ≤ q−α (XT )], (3.5)

where the probability measure Pn is the conditional probability measure on the subtree
with root n:

Pn[m] :=
P[m ∩ n]

P[n]
for every node m,

and q−α (XT ) is the lower α-quantile of XT with respect to Pn (see facts about quan-
tiles in Appendix A.1, p. 112). We can always divide because P[n] > 0 (general
assumption, p. 12). The decision criterion can be interpreted as a variant of the
risk-adjusted value CVaR from the viewpoint of different nodes in the scenario tree.

To keep the example simple, a binary, two-step (T = 2) scenario tree with
equiprobable terminal nodes is considered (Fig. 3.2). If the quantile is taken at
α = 1/2, one can resort to the simple rule for calculating the criterion UXT

t |n at a
node n: ‘Take the lower half of the values of the conditional distribution of XT and
average these values’.
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Figure 3.2: A binary scenario tree with random variables YT and ZT which take
values in the terminal nodes (T = 2). The tree is duplicated for the two random
variables such that numbers can be read-off conveniently. The terminal nodes are
assumed to be equiprobable. The value of the decision criterion (3.5) is calculated for
the nodes n0, n1 and n2. Parameter α = 1/2.

The example considers two final outcomes YT and ZT (Fig. 3.2). The decision
criterion is calculated at the root node n0:

UYT
0 = 1/1

2︸︷︷︸
1/conditional
probability

·
(

1/4︸︷︷︸
probability
under Pn0

· (−2)︸︷︷︸
value

+ 1/4 · 0
)

=
1

2
(−2 + 0) = −1,

UZT
0 = 1

2
(−3 + 23) = 10, and at the nodes of the first time step: UYT

1 |n1 = 31,

UYT
1 |n2 = −2, UZT

1 |n1 = 27, and UZT
1 |n2 = −3.

Hence, the order of the values of the criterion between YT and ZT is not consistent
over time: At the first time step, the values are 31 > 27 and −2 > −3 at n1 and
n2, respectively, whereas at the root node n0 the values are −1 < 10. Hence, at time
t = 1, the value of the criterion is larger for YT than for ZT , whereas at time t = 0,
ZT has a larger value.

In applications, the risk-adjusted value process serves as a decision criterion over
time. If the decision criterion prefers YT always to ZT at a later time t, then it may be
desirable that YT is preferred to ZT at time zero, too. Otherwise, the risk-adjusted
value process may not be used as decision criterion in a consistent way over time.
The expectations of YT and ZT could be used as an additional criterion, such that
time consistency says that if for both criteria two random variables are ordered at
later time in all events, then these variables should be ordered today in the same way.
This two-criteria case is important in mean-risk optimization problems, where the
optimal solution is selected with two critera: mean of the value, and risk of the value
(risk-adjusted value). We were able to give counter-examples of time-consistency in
this case, too. Finally, we may quote Wang [81]:

“It is well understood that in a dynamic optimization problem, if either
the objective function or any of the constraints is not time consistent,
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a strategy chosen today may be regretted later on. In other words, if
given the opportunity, the strategy, chosen earlier will be abandoned in
favor of another one, causing inconsistency in choices over time.”

3.5.2 Time Consistency of Risk-Adjusted Value Processes
in Case I (Processes)

Time consistency preserves the order of uncertain values, where the order is calcu-
lated from the viewpoint of different times: from time t and from time 0. Thus,
time consistency applies to values that realize in the future of time 0 and time t.
To compare processes over time, the definition of time consistency has to take into
account in some way the intermediate random variables of the processes from time
0 to time t − 1, which lay in the past from the viewpoint of time t. A particular
choice is that time consistency is demanded only for processes that are equal from
time 0 till time t−1. This prevents an influence of the values prior to t on the order.

Definition 7 (Time consistency (Case I), [5]). Let a filtration (Ft)t=0,...,T be
given. Consider a sequence of mappings from the space of adapted processes into
the space of Ft-measurable random variables: (Xs)s=0,...,T 7→ U

(X)
t , t = 0, . . . , T ,

for all adapted processes (Xs)s=0,...,T . The sequence is time consistent if for every
t ∈ {1, . . . , T} and for every (Fs)-adapted processes (Ys)s=0,...,T and (Zs)s=0,...,T such

that U
(Y )
t ≥ U

(Z)
t a.s.1 and such that

Ys = Zs a.s. for every s = 0, . . . , t− 1,

it holds that
U

(Y )
0 ≥ U

(Z)
0 .

Proposition 2. The recursive risk-adjusted value process that is defined for stochas-
tic processes (Def. 4) is time consistent.

For the proof, we need the following Lemma, which can be related to Bellman’s
principle [5].

Lemma 4. A recursive risk-adjusted value fulfils for every adapted process (Xs)s=0,...,T

and every 0 < t ≤ T that

R
(X)
0 = R

(X0,...,Xt−1,R
(X)
t,...,R

(X)
t )

0 , (3.6)

where we recall the explicit notation R
(Y0,...,YT )
t := R

(Y )
t for a process (Ys)s=0,...,T .

1in our finite setting: on every node n ∈ Nt
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Proof. The proof applies the recursive definition (3.3) to the right-hand-side of
(3.6), starting from time T going to time zero:

R
(X0,...,Xt−1,R

(X)
t,...,R

(X)
t )

T

(3.3)
= R

(X)
t ,

R
(X0,...,Xt−1,R

(X)
t,...,R

(X)
t )

s−1

(3.3)
=





min
(
Xs−1, min

Q
EQ[R

(X)
s |Fs−1]

) (3.3)
= R

(X)
t−1, s = t,

min
(
R

(X)
t , min

Q
EQ[R

(X)
t |Fs−1]

) (∗)
= R

(X)
t , s > t,

for s = T, . . . , t + 1, which implies

R
(X0,...,Xt−1,R

(X)
t,...,R

(X)
t )

t = R
(X)
t , (∗∗)

where in (∗) we used that an Ft-measurable variable is for t < T also FT−1-

measurable: EQ[R
(X)
t |FT−1] = R

(X)
t . Applying (3.3) on both sides of (∗∗) yields

(3.6). ¥

Proof (Proposition). Consider two adapted processes (Ys)s=0,...,T and (Zs)s=0,...,T

and a time t ∈ {1, . . . , T} such that

R
(Y )
t ≥ R

(Z)
t and Ys = Zs, s = 0, . . . , t− 1, a.s..

The monotonicity property (iii) (p. 18) implies

R
(Y0,...,Yt−1,R

(Y )
t,...,R

(Y )
t )

0 ≥ R
(Z0,...,Zt−1,R

(Z)
t,...,R

(Z)
t )

0 ,

which is by (3.6) equivalent to R
(Y )
0 ≥ R

(Z)
0 . ¥



Chapter 4

Risk Measurement with
Local-CVaR Sets

In the previous chapter, we defined the recursive risk-adjusted value for a stochastic
process (Case I) and for a final random variable (Case II). The associated set P
of test-probability measures was not specified further. In this chapter, we choose
the set P to be stable; the stability of P ensures consistency with single-period risk
measurement. In particular, we choose P in such a way that the associated recursive
risk-adjusted value reduced for a single-time period to the risk-adjusted value CVaR
(Def. 2, p. 9).

Similar notions related to stable sets are the multiplicative-stable (m-stable) sets
of risk-adjusted values in continuous time [20], and the so-called rectangular sets in
dynamic-consistent utility theory [30]. The forthcoming definition is based on [5],
but, the original general formulation (in terms of so-called density processes) is
adapted to our application-oriented focus.

As in the previous chapter, let a probability space (Ω,P,F) with a finite filtration
(Ft)t=0,...,T be given. In other words, all processes are defined on a given scenario
tree, and a node n at stage t, n ∈ Nt, is identified with an atomic event in Ft.

4.1 Stable Sets of Probability Measures

A probability measure Q on FT (i.e. on the terminal nodes NT ) can be written as a
product of transition probabilities as follows.

Let nT ∈ NT be a terminal node such that Q[nT ] > 01. Then the value of the
measure Q of nT can be written as a product:

Q[nT ] =
Q[nT ]

Q[nT−1]

Q[nT−1]

Q[nT−2]
· · · Q[n2]

Q[n1]

Q[n1]

Q[n0]
, (4.1)

1There may be nT s with Q[nT ] = 0; P[nT ] > 0∀nT is assured by general assumption (p. 12).

25
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where (n0, n1, . . . , nT ) denotes a root-to-leaf path. The formula holds because n0 is
the root node with Q[n0] = 1. The fractions are well-defined: If Q[nT ] > 0, then
Q[nt] > 0 for all nt in the history of nT .

Definition 8 (Transition probability). Let a scenario tree and a probability mea-
sure Q on the terminal nodes be given. Consider a node n with Q[n] > 0. The
transition probability from node n to a different node m of the probability measure
Q is

qnm :=





Q[m]
Q[n]

, if n is in the history of m,

0 else.

(4.2)

If the measure Q is the original probability measure P, then we just speak of the
transition probabilities from node n to node m (without mentioning P). The transi-
tion probability qnm is the conditional probability of node n given that node (event)
m happens.

Note. In our definition, given a probability measure Q, the transition probability
is defined between every pair of different nodes in the scenario tree, whenever the
conditioning node n has strictly positive probability. By contrast, assume a non-
terminal node n with Q[n] = 0. The successor nodes (events) of n, which are subsets
of n, have a probability of zero, too. The transition probabilities from such a node
n are not uniquely defined for a given Q.

Given a non-terminal node, the transition probabilities to its immediate successor
nodes can be combined into a vector. Such a vector can be defined without a direct
reference to a measure Q:

Definition 9 (Vector of single-step transition probabilities). Let a scenario
tree be given. Let n be a non-terminal node and denote the immediate successor
nodes of n by m(1), . . . ,m(N). A vector of single-step transition probabilities associ-
ated with node n is

qn = (qnm(1) , . . . , qnm(N))>,

where qnm(i) ≥ 0, i = 1, . . . , N , and qnm(1) + · · ·+ qnm(N) = 1.

The components of qn can be identified as the values of a probability measure on a
finite sample space of cardinality N .

Given a vector qn of single-step transition probabilities in each non-terminal
node n, a probability measure on the terminal nodes can be defined by building
products:

Q[nT ] := qn0n1 · · · qnT−1nT
, nT ∈ NT , qntnt+1 ∈ qnt , nt ∈ Nt, t = 0, . . . , T − 1,
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where (n0, n1, . . . , nT−1, nT ) denotes a root-to-leaf-path in the tree and the inclusion
‘qntnt+1 ∈ qnt ’ means that qntnt+1 is the component in qnt that corresponds to the
transition from nt to nt+1.

A set P of probability measures can be specified as follows. Assume a family of
sets Pn of vectors of single-step transition probabilities associated with every non-
terminal node n: {Pn}n∈Nt, t=0,...,T−1. A probability measure can be constructed as
above by selecting a vector from each of the Pns.

Definition 10 (Stable set of probability measures). Let a scenario tree be given.
Consider a family {Pn}n∈Nt, t=0,...,T−1 of sets of vectors of single-step transition prob-
abilities, where n goes over all non-terminal nodes. The corresponding stable set P
of probability measures defined on the scenario tree is

P :=

{
(
qn0n1 · · · qnT−1nT

)
nT∈NT

∣∣∣∣∣
qnt ∈ Pnt , nt ∈ Nt,

t = 0, . . . , T − 1

}
, (4.3)

where the probability measure on the scenario tree is represented by its values on
the set NT of terminal nodes, (n0, . . . , nt, nt+1 . . . , nT ) denotes a root-to-leaf-path in
the tree, and where the single-step transition probabilities qntnt+1 have to be chosen
such that if ñt+1 is another immediate successor node of nt then qntnt+1 ∈ qnt ⇐⇒
qntñt+1 ∈ qnt .

The set P is ‘stable’ in the following sense. Consider two elements of P : Q and Q′.
If we replace in some non-terminal node n the vector qn of Q by the corresponding
vector q′n of Q′, we get another measure Q′′. Because every concatenation of vectors
of transition probabilities is a feasible element of P , the measure Q′′ is again an
element of P .

The stability is desirable in the following context. In Case II, the recursive
risk-adjusted value considers a random variable at a single future time T . We may
consider the period from time 0 to T as a single period and apply also single-period
coherent risk measurement. In particular, let a set P of test-probability measures
on a scenario tree be given. The recursive risk-adjusted value of a random variable
XT should equal the coherent single-period risk-adjusted value with the same set P :

RXT
0

!
= min
Q∈P

EQ[XT ]. (4.4)

If the set P is stable, this consistency with single-period coherent risk measure-
ment is assured (see Appendix A.2, p. 114).

Note. We can only touch the surface of coherent multi-period risk measurement
with stable sets; the interested reader is referred to Artzner et al. [5]. We just
give a rough outline of a generalization of (4.4) for Case I (stochastic processes).
The process is considered at random times (stopping time). This gives a random
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variable that has values of the stopped process. The recursive risk-adjusted value
can be written as a minimization of the expected value of this random variable. The
minimization goes over a stable set of test-probability measures (as in (4.4)) as well
as over all possible stopping times. Hence, we may say that the risk-adjusted value
of the stochastic process is the expected value in the most adverse test-scenario, and
at the most adverse stop.

4.2 Local-CVaR Sets

By definition, a recursive risk-adjusted value is specified by its associated set P of
test-probability measures. As we have seen, a stable set P ensures consistency with
single-period risk measurement. In addition, the stability will facilitate interpreta-
tion as well as computation. In our context, a stable set P is given by a family of
sets Pn of vectors of transition probabilities associated with all non-terminal nodes
n (Def. 10). As in the single-period theory, a vector qn ∈ Pn is identified with a

vector hn of a corresponding set P̃n of Radon-Nikodym probability densities with
respect to the vector pn of the original probability measure P (Def. 1, p. 7),

pn = (pnm1 , . . . , pnmN
)>, qn = (qnm1 , . . . , qnmN

)>,

hn = (hnm1 , . . . , hnmN
)>, with qnmi

= hnmi
pnmi

, i = 1, . . . , N,

where N is the number of immediate successor nodes of n.
A simple choice of Pn is the set of test-probability measures of the single-period

risk-adjusted value CVaR (cf. problem (2.5), p. 8): The density is uniformly bounded
from above by a constant 1

α
with α ∈ (0, 1). In particular:

P̃α
n :=

{
h ∈ RN

∣∣∣h ≥ 0, h ≤ 1

α
1, p>n h = 1

}
,

Pα
n :=

{
q ∈ RN

∣∣∣ qnmi

pnmi

≤ 1

α
, i = 1, . . . , N, q>n 1 = 1, qnmi

≥ 0
}

, (4.5)

where 1 = (1, . . . , 1)> ∈ RN . The corresponding stable set Pα is given by Defini-
tion 10.

Definition 11 (Local-CVaR set of probability measures). Let a scenario tree
be given. Let 0 < α < 1, and let a family {Pα

n}n∈Nt,t=0,...,T−1 of sets of single-step
transition probabilities defined by (4.5) be given. The corresponding stable set of
probability measures is called the local-CVaR set Pα.

Note. For simplicity, the constant α is chosen to be the same for all sets Pα
n .

This restriction is not used by most of the subsequent analysis; α could be chosen
differently for different nodes n.
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The recursive calculation (3.3) of the risk-adjusted value can be written more ex-
plicitly by choosing P := Pα. Let t = 0, . . . , T − 1. Then

min
Q∈Pα

EQ[R
(X)
t+1|Ft]

(i)
= min
Q∈Pα

( ∑
n∈Nt

( ∑
m∈Nt+1

qnmR
(X)
(t+1)m

)
χn

)

(ii)
=

∑
n∈Nt

(
min

qn∈Pα
n

∑
m∈Nt+1

qnmR
(X)
(t+1)m

)
χn

(iii)
=

∑
n∈Nt

max
q∈R

(
q − 1

α

N∑
i=1

pnmi
(q −R

(X)
(t+1)mi

)+
)
χn

(iv)
= max

q∈R

(
q − 1

α
E[(q −R

(X)
t+1)

+|Ft]
)
, (4.6)

with remarks:

(i) The conditional expectation is an Ft-measurable random variable. Since the
discrete filtration is represented by a scenario tree, the conditional expectation
is constant on each node n ∈ Nt and can therefore be represented as a linear
combination of indicator-functions χn for each node (event) n. The value

of R
(X)
t+1 in node m ∈ Nt+1 is denoted by R

(X)
(t+1)m,and qnm is the transition

probability (4.2) of Q from n to m.

(ii) Recall Definition 10 (p. 27) of a stable set: A stable set P is defined by all
possible concatenations of vectors of single-step transition probabilities taken
from given sets Pn, where n goes over all non-terminal nodes. Because Pα is
stable the minimization can be performed node-wise over the local sets Pα

n .

(iii) The minimization is a discrete version of the minimization problem of the risk-
adjusted value CVaR (2.5). Therefore, we can replace the minimization by the
maximization of the dual problem (2.7).

(iv) The maximization is understood pointwise on the atoms of Ft, or, in the lan-
guage of nodes, for every n ∈ Nt separately.

The pointwise optimization problems (4.6) attain finite optimal values (Prop. 1,
p. 8).

Similarly to the single-period case in Uryasev and Rockafellar [80], the change
from ‘min’ to ‘max’ permits us to evaluate the risk-adjusted value by a linear opti-
mization problem as follows.

4.3 Linear Formulation (Case I)

We show that the recursive risk-adjusted value can be calculated by solving a linear
optimization problem. Despite we are in a finite setting, the problems are formulated
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in terms of random variables. The reason is threefold: First, cluttered notation is
prevented; second, the structure of the problem becomes apparent; and third, a
possible extension to the infinite-dimensional case is prepared.

We consider only Case I (recursive risk-adjusted value for a process). Case II
can be treated analogously.

4.3.1 Linear Optimization Formulation (Case I)

The recursive risk-adjusted value with a local-CVaR set of test-probability measures
can be formulated as a linear optimization problem:

Lemma 5. Let a finite filtration (Ft)t=0,...,T be given (scenario tree). Let (Xt)t=0,...,T

be an (Ft)-adapted stochastic process, and let Pα be the local-CVaR-set of test-

probability measures (Def. 11). Then the recursive risk-adjusted value R
(X)
0 with set

Pα is given by the optimal objective value of the following stochastic linear optimiza-
tion problem:

max R0,

s.t.





Rt ≤ Xt, t = 0, . . . , T,

Rt ≤ Qt − 1

α
E[Zt+1|Ft], t = 0, . . . , T − 1,

Zt ≥ Qt−1 −Rt, t = 1, . . . , T,

Zt ≥ 0, t = 1, . . . , T,

(4.7)

where Rt, Qt and Zt are Ft-measurable random variables. In addition, we have for
feasible (Rt)t=0,...,T and for the risk-adjusted value process (R

(X)
t )t=0,...,T (Def. 4) that

Rt ≤ R
(X)
t a.s. for all t.

Proof. First, we show that the recursive risk-adjusted value R
(X)
0 equals the optimal

objective value of the following optimization problem:

max
(Rt)

R0,

s.t.





Rt ≤ Xt, t = 0, . . . , T,

Rt ≤ max
q∈R

(
q − 1

α
E[(q −Rt+1)

+|Ft]
)
, t = 0, . . . , T − 1,

(4.8)

where the ‘max’ over q is taken pointwise (on the atoms of Ft); by the remarks
after (4.6) the maximum is indeed attained. By (3.3) and by transformation (4.6),

the risk-adjusted value process (R
(X)
t )t=0,...,T is a feasible solution in problem (4.8).

Hence:
R

(X)
0 ≤ R∗

0, (4.9)



4.3. Linear Formulation (Case I) 31

where R∗
0 is part of an optimal solution in (4.8). For the inverse inequality, we argue

by backward-induction over time. Let (Rt)t=0,...,T be a feasible solution. At final

time, RT ≤ XT
(3.3)
= R

(X)
T . Let t = 0, . . . , T − 1. Assume Rt+1 ≤ R

(X)
t+1. Then,

Rt

(4.8)

≤ min
{

Xt, max
q∈R

(
q − 1

α
E[(q −Rt+1)

+|Ft]
)}

,

(4.6)
= min

{
Xt, min

Q∈Pα
EQ[Rt+1|Ft]

}
,

≤ min
{
Xt, min

Q∈Pα
EQ[R

(X)
t+1|Ft]

}
,

(3.3)
= R

(X)
t , t = 0, . . . , T − 1. (4.10)

Combining (4.10) with inequality (4.9) gives R∗
0 = R

(X)
0 .

We have shown that the risk-adjusted value is the optimal solution of problem
(4.8). It remains to compare problem (4.8) with problem (4.7). In particular, we
have to show that the optimal objective value of the following problems (P ) and
(P ′) are the same.

(P )

max R0,

s.t.

{
Rt ≤ Xt, t = 0, . . . , T,

Rt ≤ Vt(Rt+1), t = 0, . . . , T − 1,

with sub-problems

(Psub,t)

Vt(Rt+1) := max
{
Qt − 1

α
E[Zt+1|Ft]

}
,

s.t.

{
Zt+1 ≥ Qt −Rt+1,

Zt+1 ≥ 0,

where (Psub,t) is in fact a family of pointwise optimization problems on the nodes
at time t; (Psub,t) subsumes the pointwise optimization in (4.8), and the pointwise
variable q is subsumed in the random variable Qt. The problem (P ′) is the same as
(4.7); only the indices of Zt are shifted to Zt+1 to make the link to (Psub,t):

(P ′)

max R0,

s.t.





Rt ≤ Xt, t = 0, . . . , T,

Rt ≤ Qt − 1

α
E[Zt+1|Ft], t = 0, . . . , T − 1,

Zt+1 ≥ Qt −Rt+1, t = 0, . . . , T − 1,

Zt+1 ≥ 0, t = 0, . . . , T − 1,

where the variables Rt, Zt and Qt are Ft-measurable random variables for all t (same
measurability in problem (P )). We have to compare the optimal objective value of
(P ) and (P ′).
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Let (Rt)t=0...T be a feasible solution of (P ). This implies that the sub-problems
(Psub,t) have attained optimal values (Qt)t=0...T−1 and (Zt)t=1...T . Inserting the com-
bined solution

(
(Rt)t=0...T , (Qt)t=0,...T−1, (Zt)t=1...T

)
in the constraints of (P ′), we can

verify that this yields a feasible solution of (P ′). This implies: Optimal objective
value of (P ′) ≥ Optimal objective value of (P ).

On the other hand, let
(
(R∗

t )t=0...T , (Q∗
t )t=0...T−1, (Z

∗
t )t=1...T

)
be an optimal solu-

tion of (P ′). Let t be fixed. Consider problem (Psub,t) with the random variable
R∗

t+1 as parameter. It can be verified that (Q∗
t , Z

∗
t ) is feasible in (Psub,t). Therefore,

Vt(R
∗
t+1) ≥ Q∗

t − 1
α
E[Z∗

t+1|Ft] ≥ R∗
t , holding for all t. Therefore, (R∗

t )t=0...T is feasible
in (P ). This implies that: Optimal objective value of (P ) ≥ Optimal objective value
of (P ′).

Combining the two inequalities for the optimal objective values of (P ) and (P ′),
we conclude that the values are the same.

We have shown the equivalence of problem (4.7) with problem (4.8). This equiv-
alence together with the inequalities (4.10) show the second part of the Lemma. ¥

Finite Linear Programming Formulation

The foregoing optimization problem (4.7) is formulated in terms of random variables;
this formulation is concise, and it highlights the general structure. In our finite
setting, the formulation has to be on a scenario tree; according to Section 3.1, the
scenario tree is defined to be the representation of the finite filtration (Ft)t=0,...,T .
The set of nodes at time t = 0, . . . , T is denoted by Nt, and let the transition
probabilities pnm from each node n to another node m be given by Def. 8 (p. 26). The
stochastic processes in the optimization problem are adapted to the finite filtration.
Hence, all random variables at time t can be represented by their finitely many
realizations on the scenario tree in the nodes n ∈ Nt:

Xt, Rt, Qt, Zt → (Xtn)n∈Nt , (Rtn)n∈Nt , (Qtn)n∈Nt , (Ztn)n∈Nt ,

where Xtn, Rtn, Qtn, Ztn ∈ R. The conditional expectation E[Zt+1|Ft] in (4.7) corre-
sponds pointwise (for each node n) to a finite sum:

E[Zt+1|Ft]
∣∣∣
n

→
∑

m∈Nt+1

pnmZ(t+1)m for all n ∈ Nt, t = 0, . . . , T − 1.

Note that the sum goes over all nodes at time t + 1, but only the transition proba-
bilities from node n to its successor nodes can be strictly positive. The constraint
Zt ≥ Qt−1 − Rt in (4.7) connects two subsequent time steps. In the finite setting,
this corresponds to a connection on an edge in the scenario tree:

Zt ≥ Qt−1 −Rt

∣∣∣
n

→ Ztn ≥ Q(t−1)n− −Rtn for all n ∈ Nt, t = 1, . . . , T − 1,
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where n− is the parent node of n.
Thus, the finite linear programming formulation of (4.7) on the scenario tree

reads

max R0n0 ,

s.t.





Rtn ≤ Xtn, t = 0, . . . , T, ∀n ∈ Nt,

Rtn ≤ Qtn +
1

α

∑
m∈Nt+1

pnmZ(t+1)m, t = 0 . . . T − 1, ∀n ∈ Nt,

Ztn ≥ Q(t−1)n− −Rtn, t = 1 . . . T, ∀n ∈ Nt,

Ztn ≥ 0, t = 1 . . . T, ∀n ∈ Nt,

(4.11)

where n0 denotes the root node of the scenario tree, Xtn ∈ R are parameters, and
Rtn ∈ R, Qtn ∈ R and Ztn ∈ R are the variables.

Note. The assumption that the parameter α is a constant was not needed in the
derivations so far. Hence we can generalize (4.11) to node-dependent αn:

1

α
→ 1

αn

.

The finite representation (4.11) has been derived from the general recursive definition
(3.3) (p. 17), where the set of probability measures P was specialized to the local-
CVaR set Pα, and where the inner minimization was replaced by a maximization
(see (4.6), p. 29). Let us assume that in the finite setting that α ≤ pnm for all strictly
positive transition probabilities pnm, n ∈ Nt, m ∈ Nt+1, t = 0, . . . , T − 1, then it
can be verified from (3.3) that

R
(X)
0 = min

n∈Nt
t=0,...,T

Xtn.

Hence, if α is sufficiently small, then the risk-adjusted value is the global minimum
over all scenarios and all time. To avoid such a worst-case risk measurement, a
sufficient condition is that all transition probabilities pnm are strictly smaller than α.
Hence, each non-terminal node must have a sufficiently large number of immediate
successor nodes. Unfortunately, such a tree grows exponentially over time. For
example, if each non-terminal node has m immediate successor nodes, then the
number of nodes, as well as the number of variables and the number of constraints
in problem (4.11) is each a polynomial in m of order T .

4.3.2 Risk-Mean Optimization (Case I)

The recursive risk-adjusted value may be used in a constraint of an optimization
problem. The considered risk-mean multi-period stochastic optimization problem
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maximizes the expected profit under a constraint on the risk-adjusted value (Def. 4,
p. 16):

max E[g(X0, . . . , XT )],

s.t.

{
R

(X)
0 ≥ ρmin,

(Xt)t=0,...,T ∈ X ,
(4.12)

where g : RT+1 → R is a measurable function. The recursive risk-adjusted value
R

(X)
0 of the process (Xt)t=0...,T is bounded from below by a constant ρmin ∈ R. The

set X denotes the feasible set of stochastic processes. Usually, Xt ∈ Xt, where Xt

is a subset of Ft-measurable random variables. We assume that g and X are such
that the optimal objective value exists and is finite.

In the finite setting on a scenario tree, the foregoing Lemma 5 permits us to
write the constraint on risk as a system of linear inequalities:

Proposition 3. Let Pα be a local-CVaR set of probability measures on a scenario
tree. An optimal solution of problem (4.12) on a scenario tree is given by optimal
values of the variables (Xt)t=0,...,T of the following stochastic linear optimization
problem:

max E[g(X0, . . . , XT )],

s.t.





R0 ≥ ρmin,

Rt ≤ Xt, t = 0, . . . , T,

Rt ≤ Qt − 1

α
E[Zt+1|Ft], t = 0, . . . , T − 1,

Zt ≥ Qt−1 −Rt, t = 1, . . . , T,

Zt ≥ 0, t = 1, . . . , T,

(Xt)t=0,...,T ∈ X ,

(4.13)

where Xt, Rt, Qt and Zt are Ft-measurable random variables.

Alternatively to (4.12), the risk could be minimized under a constraint on the ex-
pected profit; the foregoing proposition undergoes only a slight modification.

The proof goes along the same lines as the previous Lemma.

Proof. The optimization problem (4.12) is of the form of problem (P ) below, where
the abbreviation X := (Xt)t=0,...,T is used. By Lemma 5, the risk-adjusted value can
be calculated by a linear stochastic program, and the optimal value is attained; this
sub-problem is given by (Psub) in condensed form: v(Y ) is the objective function
with variables Y := (Yt)t=0,...,T . The matrix and the right-hand-side of the linear
constraints are denoted by A and b, respectively.
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The linear programming formulation of the optimization problem in (4.13) is then
of the form (P ′):

(P )

max E[g
(
X

)
],

s.t.

{
π[X] ≥ ρmin,

X ∈ X .

(P ′)

max E[g
(
X

)
],

s.t.





v(Y ) ≥ ρmin,

A(X,Y ) ≤ b,

X ∈ X .

(Psub)
π[X] = max v(Y ),

s.t. A(X,Y ) ≤ b.

We have to compare the optimal objective value of (P ) and (P ′).
Let X be a feasible solution of (P ), and let Y be the corresponding optimal

value of the sub-problem (Psub). If we insert the combined solution (X, Y ) in the
constraints of (P ′), we see that this yields a feasible solution of (P ′). Hence: Optimal
objective value of (P ′) ≥ Optimal objective value of (P ).

On the other hand, let (X∗, Y ∗) be an optimal solution of (P ′). Consider problem
(Psub) with X∗: Y ∗ is feasible in (Psub). Therefore, π[X∗] ≥ v(Y ∗) ≥ ρmin, and X∗

is feasible in (P ). This implies: Optimal objective value (P ) ≥ Optimal objective
value (P ′).

Combining the two inequalities for the optimal objective values of (P ) and (P ′),
we conclude that the values are the same. ¥

4.4 A Lower Bound (Case II)

In the forthcoming energy model, the risk will be constrained by a recursive risk-
adjusted value for processes (Case I) with a local-CVaR set of test-probability mea-
sures. Despite the convenient properties of this risk-adjusted value, a simple eco-
nomic interpretation can so far not be given. Nevertheless, the related and simpler
Case II (random variable) is more tractable, and a lower bound in terms of the
single-period risk-adjusted value CVaR can be given. The bound provides a hint
how to choose the α parameter for the local-CVaR set.

Proposition 4. Let Pα be a local-CVaR set of probability measures on a scenario
tree to a given level α. Let XT be an FT -measurable random variable. Then the
recursive risk-adjusted value RXT

0 with set Pα (Def. 5, p. 18) is bounded from below
by

CVaR[XT ] ≤ RXT
0 ,

(at level αT ) (at level α)
(4.14)

where the single-period risk-adjusted value CVaR is taken at level αT .
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Proof. By a complete analogue to Lemma 5 (p. 30), we can write the calculation
of the recursive risk-adjusted value RXT

0 as a linear program:

max R0

s.t.





RT ≤ XT , |H ≥ 0

Rt ≤ Qt − 1

α
E[Zt+1|Ft], t = 0, . . . , T − 1, |Kt ≥ 0

Zt ≥ Qt−1 −Rt, t = 1, . . . , T, |Lt ≥ 0

Zt ≥ 0, t = 1, . . . , T,

where we have indicated the random variables H, Kt and Lt as Lagrange-multipliers
for the dualization in the next step of the proof; H is FT -measurable, and Kt, Lt are
Ft-measurable. In our finite setup, the straightforward way to obtain the dual linear
program involves writing the constraints in matrix-form and transposing. For multi-
stage problems, establishing the matrix-form can be cumbersome. An equivalent
approach is Lagrangian dualization, which also suits a possible infinite-dimensional
extension. The Lagrangian is

L
[
(Rt)t=0,...,T , (Qt)t=0,...,T−1, (Zt)t=1,...,T ; H, (Kt)t=0,...,T−1, (Lt)t=1,...,T

]
=

= R0 + E
[
H(XT −RT )

]
+

T−1∑
t=0

E
[
Kt(Qt −Rt − 1

α
E[Zt+1|Ft])

]
+

+
T∑

t=1

E
[
Lt(Zt −Qt−1 + Rt)

]

= R0(1−K0) +
T−1∑
t=1

E
[
Rt(Lt −Kt)

]
+ E

[
RT (LT −H)

]
+

+
T−1∑
t=0

E
[
Qt(Kt − E[Lt+1|Ft])

]
+

T−1∑
t=0

E
[
Zt+1(Lt+1 − 1

α
Kt)

]−

+ E[HXT ].

sup{
Rt,Qt,
Zt≥0

}L < ∞ ⇐⇒





K0 = 1,

Kt = Lt, t = 1, . . . , T − 1,

H = LT ,

Kt = E[Lt+1|Ft], t = 0, . . . , T − 1,

Lt+1 ≤ 1

α
Kt, t = 0, . . . , T − 1.

(4.15)

This system of restrictions is equivalent to

E[H] = 1 ∧ E[H|Ft+1] ≤ 1

α
E[H|Ft], t = 0, . . . , T − 1.
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Thus, the dual linear program is

min
H
E[HXT ],

s.t.





E[H] = 1,

H ≥ 0,

E[H|Ft+1] ≤ 1

α
E[H|Ft], t = 0, . . . , T − 1, (∗)

(4.16)

where H is an FT -measurable random variable.
We show that this dual is a relaxation of the optimization problem that calculates

CVaR[XT ]; this will complete the proof. First, we note that the constraints E[H] = 1
and H ≥ 0 in problem (4.16) characterize a Radon-Nikodym probability density.
Notice that by general assumption, all nodes have strictly positive probability under
P. This implies for H ≥ 0 that

{E[H|Ft] = 0} ⊆ {E[H|Ft+1] = 0}, t = 0, . . . , T − 1, (4.17)

with abbreviation {Y = 0} := {ω ∈ Ω | Y (ω) = 0} for a random variable Y . We
will relax the set (∗) of constraints:

E[H|Ft+1] ≤ 1

α
E[H|Ft], t = 0, . . . , T − 1, (∗).

As an implication of (∗), we can consider the multiplied constraints (separately on
the left- and right-hand sides); the implication holds because the terms are non-
negative, and because by inclusion (4.17), we can multiply even on events where the
right-hand-side is zero. Hence, (∗) implies that

T−1∏
t=0

E[H|Ft+1] ≤ 1

αT

T−1∏
t=0

E[H|Ft], or H

T−1∏
t=0

E[H|Ft] ≤ 1

αT

T−1∏
t=0

E[H|Ft],

where we have used E[H|FT ] = H and E[H|F0] = 1. By dividing, we get

H ≤ 1

αT
on

{ T−1∏
t=0

E[H|Ft] > 0
}
.

On the complementary event, {∏T−1
t=0 E[H|Ft] = 0}, we have by (4.17) that E[H|FT ] =

0 on that event, which is H = 0 on that event. Hence, the set (∗) of constraints
implies that H ≤ 1/αT on every event, which is the same constraint as in the op-
timization problem (2.5) of CVaR at level αT . Because the other constraints of
(2.5) and (4.16) are the same (they just characterize a Radon-Nikodym density),
the optimization problem of CVaR[XT ] is a relaxation of the problem of RXT

0 . ¥
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The definition of CVaR[XT ] involves only the distribution of XT (cf. (2.7)), and
not the random variable as seen as a mapping XT : Ω → R. Hence, the right-hand-
side of (4.14) can be additionally minimized over all random variables that have the
same distribution-law as XT :

Corollary 1. Assume the same setting as in Proposition 4. Then

CVaR[XT ] ≤ min
YT∈Y

RYT
0 ,

(at level αT ) (at level α)
(4.18)

where Y is the set of FT -measurable random variables that have the same distribution-
law as XT .

4.5 Summary

Artzner et al. [5] extended the definition of coherent risk measurement to multiple
time periods. In the multi-period setting, a recursive definition over time ensures
time consistency. Our aim was to show that a special instance of such a recursive
risk-adjusted value is –in principle– numerically tractable, and that it can be applied
in linear mean-risk optimization problems.

In particular, we considered a finite setup (scenario tree), and a coherent risk-
adjusted value that is defined by local-CVaR sets on the scenario tree. A local-CVaR
set is a set of test-probability measures that is locally (nodewise) defined by the same
box-constraints as the single-period risk measure CVaR. The similarity to CVaR gave
a lower bound of the risk-adjusted value in terms of CVaR. By applying the duality
of CVaR, the recursive calculation could be written as a multi-stage stochastic linear
program, and a lower bound of the risk-adjusted value could be incorporated by a
set of linear constraints in multi-stage mean-risk optimization problems.

To prevent the risk-adjusted value to be equal to the worst-case scenario value,
we have argued that it suffices that each non-terminal node of the scenario tree has
a sufficiently large number of immediate successor nodes. This results in inevitably
large sizes of the linear programs, such that the problems are numerically demanding.



Chapter 5

Dispatch and Control

This chapter fixes the general setup of the control of an electricity plant. In the
first part of the chapter, the dispatch decision of the electricity plant is explained in
general terms. The second part reviews shortly the notion of stochastic control (as
far as it is needed for the forthcoming models of the electricity plant).

5.1 General Setting of the Electricity Plant

The hydro-storage plant consists of an upper reservoir of water and of a facility to
produce electricity from the potential energy of the water. The electricity is sold
on the spot market. The conversion factor of the amount of stored water into the
amount of produced electricity is assumed to be constant with respect to different
water levels. Hence, for convenience, the amount of water is measured in units of
producible electricity (MWh).

We consider a hydro pumped -storage plant that has the additional flexibility
to pump water from a lower reservoir into the upper reservoir. The lower reser-
voir is assumed to be large enough to allow maximal pumping at all times. The
electricity to operate the pumps is bought on the spot market. Because the water
level in the upper reservoir is measured in units of producible electricity, only the
back-conversion of electricity to water in the upper reservoir is accompanied by an
efficiency-loss factor.

The decision for a specific rate of production (selling) energy or for a specific
rate of pumping (buying) energy at a specific point in time is the dispatch decision
at this specific point in time. In practice, at the EEX market, the spot price of
electricity changes hourly. Preferably, the decision should change on that short-
term time scale, too. The decision may be based not only on the current spot price,
but also on other exogenous quantities, or on the current state of the plant, like the
water level.

The market is assumed to have unlimited liquidity, and the plant is assumed to
be price-taker on the market; a price-taker cannot influence prices with own trading
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operations.

The reservoir is a renewable resource that has a natural inflow of water. The
dispatch decision must ensure that the water level stays between an upper and a
lower bound. In fact, the upper bound is never violated because an arbitrary spill-
over is allowed. Because the spill is an energy loss and therefore reduces the value
of the plant, optimal dispatch decisions will cause a relatively small spill. If the
reservoir would have the additional purpose of a flood detention basin, an excessive
spill could be penalized.

The modeling of the plant in terms of stochastic optimal control as well as multi-
stage stochastic linear programming will be given in Chapter 7. Before we proceed to
this general model, the next section explains the notion of stochastic optimal control,
and Chapter 6 presents some simplified, exactly solvable models. The current section
ends with a short literature review of related models:

For short-term planning of a power system, single-period models are sufficient
[64]. Mid and long-term planning (several months up to several years) require a
dynamic setting. A first category of multi-stage stochastic programming models
addresses the generation of power under stochastic demand; the electricity market
is no yet considered [3, 40, 41, 63, 66]. A second category uses the flexibility of a
spot and futures market. Numerically tractable multi-stage stochastic programming
models have usually a finite state space, which leads to a formulation on a scenario
tree with a limited number of stages. Therefore, it is difficult to incorporate the
hourly trading activity on the spot market in mid and long-term models. One way
is to consider a single price during the stages [33,36].

The use of a scenario tree can be circumvented if the model allows a path-
wise formulation over time (no conditional expectations etc. are involved). In such
models, the scenario tree can be given by a simple fan1. Such models can be solved
by path-wise Monte-Carlo sampling. Path-wise models with hourly time steps and
a comparably large time horizon of several months are numerically tractable [79].
Even large power portfolios (hydro, thermal, wind), together with market activities
in spot and futures, have been proven to be numerically solvable by Döge and
Lüthi [23, 24]. As a drawback, the decisions are not path-dependent on a scenario
tree.

An alternative approach is to view the profit of a hydro-storage power plant as
the payoff of a series of contingent option contracts; exercising an option means to
produce electricity at a specific point in time [79]. Unfortunately, financial deriva-
tive pricing theory cannot be easily carried over to electricity markets, because,
in general, the payoff of an electricity plant cannot be replicated by a portfolio of
exchange-traded contracts, for which prices are known. A related, novel approach
uses financial interest rate theory to valuate a production utility [44].

1The scenarios have only the root node in common.
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5.2 Stochastic Control with Exogenous Observ-

ables

Stochastic control theory considers the optimal control of a stochastic process. In
many applied problems, the control cannot influence the observations; hence, the
observations are exogenously given. By freeing up the probability structure from
being influenced by the control, the problem is numerically tractable, and can be
formulated as a stochastic programming problem [71].

In the following, we give the general setting of a stochastic control problem with
exogenous observables. The time scale is assumed to be discrete with finite horizon:
t = 0, 1, . . . , T . In fact, the forthcoming general model of the electricity plant will
use a combination of a small and large time scale, but the basic notation remains
the same.

Let a probability space (Ω,F ,P) be given; for the general setting, we do not need
any finiteness assumption. The stochastic control model in discrete time consists of
the following:

1. The stochastic process of the controlled object: (Xt)t=0,...,T . Commonly, the
random vector Xt : Ω → Rn is called the vector of state variables at time t.
The state variables have to be in a feasible set: (Xt)t=0,...,T ∈ X a.s..

2. The stochastic process of the exogenous variables: (Et)t=0,...,T , where Et : Ω →
Rm. The distribution of this process is fixed; it cannot be influenced by the
control. In economic sciences, it is common to refer to them still as ‘variables’
, because changes in these quantities affect the optimization problem.

3. The stochastic process of the control(-decisions): (Ut)t=0,...,T−1, where Ut : Ω →
Rk. The process is given by a sequence of functions ut : (Rn×Rn×· · ·×Rm) →
Rk of the values of the past-and-present state variables and exogenous vari-
ables:

Ut := ut(X0, . . . , Xt,E0, . . . , Et). (5.1)

The vector-valued control-function ut is assumed to be measurable1. The
functions are in an admissible set: (ut)t=0,...,T−1 ∈ U .

4. The state equations: The state variables at time t are a function of the past
values of the state variables and controls, and of the past-and-present values
of the exogenous variables:

Xt = ft(X0, . . . , Xt−1,U0, . . . , Ut−1,E0, . . . , Et) a.s., (5.2)

where the vector-valued function ft is assumed to be measurable.

1i.e. Borel-measurable: B((Rn)t+1 × (Rm)t+1)- B(Rk)-measurable
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5. The objective is to maximize the expectation of a measurable function g : Rn×
· · · × Rk → R:

sup E
[
g(X0, . . . ,XT ,U0, . . . ,UT−1)

]
,

s.t.





Ut := ut(X0, . . . , Xt,E0, . . . , Et), t = 0, . . . , T − 1,

Xt = ft(X0, . . . , Xt−1,U0, . . . , Ut−1,E0, . . . , Et) a.s.,

t = 0, . . . , T − 1,

(ut)t=0,...,T−1 ∈ U ,

(Xt)t=0,...,T ∈ X a.s..

(5.3)

To ensure that the expectation in the objective function exists (in the sense
of e.g. [6, p. 74]), a sufficient condition is that the integrand is bounded from
below. A sufficient condition for boundedness is that the feasible state vari-
ables are uniformly bounded from below a.s., and that the admissible control-
functions are uniformly bounded, and that the function g : Rn× · · ·×Rk → R
is continuous, and for the first (T + 1) arguments (i.e. the state variables)
monotonically increasing. These conditions may be met in applications.

Apart from the mere existence of the expectation in (5.3), the existence of an
optimal solution of (5.3) can be assured only under several technical assump-
tions in the infinite state-space setting, see e.g. Bertsekas and Shreve [10]. We
do not attempt to prove the existence of an optimal solution for the stochas-
tic optimization problem of the general electricity plant (in the forthcoming
Ch. 7). In fact, the optimization problem that will be numerically solvable
uses a finite state space. The resulting finite linear program is either infeasi-
ble, unbounded, or has an optimal solution.



Chapter 6

Exact Solutions

In this chapter, exact solutions of some simple dispatch problems are given. The
problems generalize those of Unger [79, Ch. 6.5].

The problems have the structure of optimization problems that are used to calcu-
late coherent risk-adjusted values. This shows a strong relationship between coherent
risk measurement and certain production problems.

Throughout the chapter, the probability space is (Ω,F ,P), which has no finite-
ness assumption. In fact, to simplify the proofs, the spot price is assumed to have a
continuous distribution. Nevertheless, the method of proof is extendable to discrete
distributions (cf. Section 11.2).

6.1 Single-Period Production Model

The model considers a single period in time. The single-period model can be con-
sidered as an aggregation of a multi-period model that has a stationary distribution
of the electricity price [79, Ch. 6.5].

The electricity price (Euro/MWh) is a non-negative random variable S with
finite expectation: S ∈ L1

+ := L1
+(Ω,F ,P;R).

The control is assumed to be given by a Borel-measurable function of the elec-
tricity price:

u : R+ → R+,

S 7→ u(S).

The value of the control-function u is the amount of produced energy (MWh). The
maximal capacity of energy production for a single period is denoted by umax ∈ R+.
The control-function is assumed to be chosen at the beginning of the period, and
the objective is to maximize the expected profit at the end of the period.

The produced energy is drawn from a water reservoir. The initial water level of
the reservoir is denoted by l0 ∈ R, and has units of (MWh) (see Sec. 5.1 concerning
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this unit). In this thesis, exact solutions can be given only for water-level constraints
‘in expectation’, and not in the ‘almost sure’ sense. Hence, the expected final level
is subject to stay above a lower bound lmin ∈ R. An inflow of water is not explicitly
modeled. Nevertheless, l0 can be a sum of an initial water level and an expected
inflow.

The production model can be formulated as a stochastic control problem:

max
u
E[S u(S)]

s.t.





l0 − E[u(S)] ≥ lmin,

0 ≤ u(s) ≤ umax for all s ∈ R+,

u : R+ → R+, u measurable.

(6.1)

To exclude trivial cases, we assume that lmin < l0; otherwise, there would be no us-
able water in the reservoir. The expectation in the objective function exists because
S ∈ L1 and u is bounded and measurable.

To relate the production problem (6.1) to coherent risk measurement, we need
the following Lemma.

Lemma 6. Consider problem (6.1). If the usable energy is strictly less than the
production capacity,

l0 − lmin < umax,

and if the electricity price is almost surely greater than zero,

P[S = 0] = 0,

then the constraint on water is binding in the optimum.

In reality, P[S = 0] = 0 is always true because the electricity price is never zero.

Proof. Let u1 be an optimal solution of (6.1) under the assumption l0−lmin < umax,
and let u2 be an optimal solution of the relaxed problem without the constraint on
water (first ineq. in (6.1)). Clearly, u2(·) ≡ umax, which implies u1(s) ≤ u2(s)
∀s ∈ R+. Because of the assumption l0 − lmin < umax, u2 violates the constraint
on water. Thus, on a set of positive probability, u1 is strictly smaller than u2:
P[u1(S) < u2(S)] > 0. Let us assume that u1 is such that the constraint on water
is not binding. Then there is a λ ∈ (0, 1) such that a convex combination of u1 and
u2 has a binding constraint on water:

l0 − lmin = λE[u1(S)]︸ ︷︷ ︸
<l0−lmin

+(1− λ)E[u2(S)]︸ ︷︷ ︸
>l0−lmin

= E[λu1(S) + (1− λ)u2(S)].
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Clearly, the convex combination is feasible. Its objective value is

E
[
S
(
λu1(S) + (1− λ)u2(S)

)]
= λE[Su1(S)] + (1− λ)E[Su2(S)] ≤ E[Su2(S)].

The last inequality can be made strict because if P[S = 0] = 0, then

P[{u1(S) < u2(S)} ∩ {S > 0}] = P[u1(S) < u2(S)] > 0. ¥

Proposition 5. Let the distribution function of S be continuous, and let the as-
sumptions of Lemma 6 be fulfilled. Then there exists an optimal solution of problem
(6.1) that is an indicator function

u∗(S) = umaxχ{S≥q(1−β)(S)},

where q(1−β)(S) is a (1− β)-quantile of S, with

β :=
l0 − lmin

umax

,

and χA : Ω → {0, 1} denotes the indicator function for sets A ⊆ Ω.

Proof. Let us make the substitution H := u(S)
l

a.s., where l := l0 − lmin and
H ∈ L∞(Ω,F ,P;R). By Lemma 6, we can assume that the constraint on water is
an equality. Therefore, a relaxation of problem (6.1) is

−min
H
E[−lHS],

s.t.




E[H] = 1,

0 ≤ H ≤ 1

β
a.s..

Except for the sign in front of the ‘min’, this is the optimization problem (2.5) (p. 8)
of the risk-adjusted value CVaR[−lS] with solution (2.10, second line):

H∗ =
1

β
χ{(−lS)≤qβ(−lS)} a.s.. (6.2)

Let us substitute u∗ back and use the definition of β:

u∗(S) = umaxχ{lS≥−qβ(−lS)}.

Finally, we use the fact that quantiles are positively homogeneous and that qβ(·) =
−q1−β(−·) (Appendix A.1, Lemma 8, p. 113). It can be checked that the solution
u∗ of the relaxed problem is also feasible in the original problem (6.1). ¥
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By the foregoing proof, we can associate to problem (6.1) the dual of the optimization
problem of the risk-adjusted value CVaR (2.7):

min
q∈R

lq + umaxE[(S − q)+] = −max
q̃∈R

q̃ − 1

β
E[(q̃ − (−lS))+], (6.3)

where q̃ := −lq, l := l0 − lmin. By Prop. 1 (p. 8), an optimal q̃∗ is a β-quantile of
−lS. Therefore, the optimal q∗ is a 1 − β-quantile of S ∈ L1

+. Hence, by the non-
negativity of S, we can consider on the left-hand side the restricted problem ’minq≥0’.
The minimization problem has an economical interpretation: Let us assume that the
owner of the electricity plant wants to sell the plant with the following contract:

• The water surplus l = l0− lmin in the reservoir is sold at a fixed price q, which
can be chosen freely by the buyer;

• If the (future) electricity price S is greater than q, then the buyer has to pay
the amount umax(S − q) to the seller at the end of the period. This is the
buyer’s surplus because of the flexibility of producing at full capacity if prices
are high.

The buyer minimizes the expected total cost of the contract.
Because the proof gives a correspondence between problem (6.1) and problem

(2.5), q can be considered as the Lagrange multiplier of the water constraint. There-
fore, applying the theory of parametric linear optimization, we can interpret the
optimal quantile q∗ as the marginal price of water.

Note. The optimal solution has a zero-one-behavior: If the electricity price sur-
passes a certain quantile, then the decision maker produces at full capacity. If the
price is less, there is no production at all. In general, if the admissible controls
take values in a compact subset of Rn, then an optimal control that takes only
values on the boundary is called a bang-bang solution [60]. It can be shown that,
for certain problem classes, bang-bang solutions are extreme points of the feasible
set, where the feasible set lays in a space of functions. For further details, see e.g.
Bauer’s Maximum Principle [83, Example VIII.6.34], Lyapunov’s theorem and its
proof [83, Prop. VIII.4.8], and the pioneering work of LaSalle [60].

6.2 Single-Period Dispatch Model

Let us extend the foregoing production model by a control-function for pumping :
u− : R+ → R+. The value of u− is the amount of water that is pumped-up. The
control-function for producing is now denoted with a plus sign: u+. Both functions
are assumed to be Borel-measurable.
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The efficiency of pumping1 is 0 < c < 1. As in the previous model, we exclude
the possibility of production at full capacity:

u+
max > l0 − lmin > 0. (6.4)

The stochastic control problem of producing and pumping is

max
u+,u−

E
[
Su+(S)− 1

c
Su−(S)

]
,

s.t.





l0 − E
[
u+(S)− u−(S)

] ≥ lmin,

0 ≤ u+(s) ≤ u+
max for all s ∈ R+,

0 ≤ u−(s) ≤ u−max for all s ∈ R+,

u± : R+ → R+, measurable.

(6.5)

The expectation in the objective function exists because S ∈ L1
+ and u± are bounded

measurable functions.

Proposition 6. Let the distribution function of S be continuous. Then an optimal
solution of problem (6.5) is

∗
u+(S) = u+

maxχ{S≥q∗},
∗
u−(S) = u−maxχ{S≤cq∗}, (6.6)

where q∗, which is the optimal Lagrange multiplier of the water constraint, is given
by a solution of the equation

u+
maxP[S ≥ q∗]− u−maxP[S ≤ cq∗] = l0 − lmin. (6.7)

If the efficiency c of pumping is strictly smaller than 1, then the optimal solution
(6.6) exhibits no simultaneous producing and pumping.

We need a short Lemma for the proof.

Lemma 7. The set of solutions q∗ of (6.7) is a non-empty, non-negative interval.

Proof. The left-hand-side of (6.7) is a monotonous (decreasing) function in the
variable q. Hence, the set of solutions q∗ of (6.7) is an interval. The function tends
to −u−max for q ↗ ∞, and to u+

max for q ↘ 0. By the continuity of the function, a
solution of (6.7) can always be attained under assumption (6.4). Hence, the interval
is non-empty. In addition, the interval is non-negative. This holds because q < 0
implies P[S ≥ q] = 1 and P[S ≤ cq] = 0 (since S ≥ 0). Hence, if q < 0 fulfils (6.7),
then u+

max = l0 − lmin, which contradicts assumption (6.4). ¥
1The production has no efficiency factor (see Section 5.1).
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Proof (Proposition 6). Because we postulate the optimal solutions, we just have
to show strong duality.

Let q ≥ 0 be the Lagrange multiplier of the water constraint in (6.5), Z+, Z− ∈
L1

+ those of the upper box-constraints, and set l := l0 − lmin. After straightforward
calculation, the Lagrangian dual of problem (6.5) is

min
q≥0

lq + u+
maxE[Z+] + u−maxE[Z−],

s.t.





Z+ ≥ S − q a.s.,

Z− ≥ q − 1

c
S a.s.,

Z+ ≥ 0, Z− ≥ 0 a.s..

(6.8)

Problem (6.8) is equivalent to

min
q≥0

lq + u+
maxE

[
(S − q)+

]
+ u−maxE

[
(q − 1

c
S)+

]
. (6.9)

Problem (6.9) can be explicitly minimized: The derivative of the objective function
in (6.9) with respect to q is

l + u+
max

(
P[S ≤ q]− 1

)− u−max

(
P[

1

c
S ≥ q]− 1

)
.

For the explicit calculation of this derivative, see Rockafellar and Uryasev [72]; the
derivative exists if S has a continuous distribution function. The critical points q∗

have to fulfil

u+
maxP[S ≥ q∗]− u−maxP[S ≤ cq∗] = l, (6.10)

which is equation (6.7). By the foregoing Lemma, q∗ exists and is non-negative.
Therefore, the proposed optimal solution q∗ is feasible in (6.9). Next we show that
the proposed optimal solution (6.6) is feasible in (6.5). Clearly,

0 ≤ ∗
u+(·) ≤ u+

max, and 0 ≤ ∗
u−(·) ≤ u−max.

It remains to check the constraint on the water level:

l0 − E[
∗
u+(S)] + E[

∗
u−(S)] = l0 − u+

maxP[S ≥ q∗] + u−maxP[S ≤ cq∗]
(6.10)
= lmin.

Next, we will show weak duality as well as strong duality of the proposed solutions.
In fact, the method of Lagrange-dualization implies always weak duality. But be-
cause we are in an infinite-dimensional setting, we will show weak duality explicitly.
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Let u+(·) and u−(·) be a feasible solution of (6.5) and let Z+, Z− and q be a feasible
solution of (6.8). The objective function of (6.5) is

E
[
u+(S) S

]− 1

c
E

[
u−(S) S

]

(i)

≤ E[
u+(S) (Z+ + q)

]− 1

c
E

[
u−(S) c (−Z− + q)

]

= E
[
u+(S) Z+

]
+ E

[
u−(S) Z−]

+ q
(
E

[
u+(S)]− E[

u−(S)
])

(ii)

≤ E
[
u+(S) Z+

]
+ E[u−(S) Z−]

+ ql

(iii)

≤ u+
maxE[Z+] + u−maxE[Z−] + ql,

where (i) follows by using the inequalities for Z+ and Z− in problem (6.8), (ii)
follows by using the constraint on the water level in (6.5), and (iii) follows by using
the box-constraints of feasible solutions in (6.5). The final expression is the objective
function of (6.9).

Next, we show strong duality. Let q∗ be a feasible solution of problem (6.9)
that fulfils (6.10), and let

∗
u+ and

∗
u− be the proposed optimal solutions (6.6). The

optimal objective value of problem (6.9) is

u+
maxE[(S − q∗)+] + u−minE[(q∗ − 1

c
S)+] + q∗l

= u+
maxE[(S − q∗)χ{S≥q∗}] + u−minE[(q∗ − 1

c
S)χ{S≤cq∗}] + q∗l

(6.6)
= E[S

∗
u+(S)]− u+

maxq
∗P[S ≥ q∗]− 1

c
E[S

∗
u−(S)] + u−minq

∗P[S ≤ cq∗] + q∗l

= E[S
∗
u+(S)− 1

c
S
∗
u−(S)]− q∗

(
u+

maxP[S ≥ q∗]− u−minP[S ≤ cq∗]
)

+ q∗l

(6.10)
= E[S

∗
u+(S)− 1

c
S
∗
u−(S)],

which is the optimal objective value of problem (6.5). ¥

The algebraic dual problem (6.8) is a stochastic recourse problem (see e.g. [49]): The
variable q with feasible set R+ is the so-called first-stage decision. The recourse at
the second stage is measured in units of Z+ and Z−. If the outcome of S is such
that q ∈ [0, S), then Z+ is strictly positive, and if c · q ∈ (S,∞), then Z− is strictly
positive. At the second stage, the total expected cost of recourse is to be minimized:
The cost of a (unit) deviation in Z+ and Z− is u+

max and u−max, respectively.
In the special case c = 1, the equivalent formulation (6.9) can be re-ordered to

u+
maxE[S] + min

q≥0

(
lq − u+

maxE[min(S, q)] + u−maxE[max(q − S, 0)]
)
. (6.11)
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The minimization can be (formally) identified with a newsvendor problem (see e.g.
[11]): q is the number of newspapers to buy in advance at price l, S is the stochastic
demand for newspapers, u+

max is the selling price, and u−max is the cost to dispose an
unsold newspaper. The objective is to minimize the expected total costs.

6.3 Multi-Period Dispatch Model

Let us extend the foregoing model to multiple periods. The electricity price is given
by a non-negative stochastic process: (St)t=0,...,T , with St ∈ L1

+ for all t. The control
is represented by functions of the electricity prices:

u+
t (S0, S1, . . . , St) and u−t (S0, S1, . . . , St), t = 0, . . . , T. (6.12)

The chosen form of the control is non-anticipative: The control-functions do not
depend on future electricity prices.

For analytical tractability, constraints on the water level are assumed to hold
only in expectation: The expected water level is constrained by a lower bound lmin

at each time step. An expected water inflow wt ≥ 0, t = 0, . . . , T , increases the
water level at each time step. The initial water level is assumed to be above the
minimal level: l0 − lmin > 0. The stochastic control problem is

max
(u±t )

T∑
t=0

E
[
Stu

+
t (S0, . . . , St)− 1

c
Stu

−
t (S0, . . . , St)

]
,

s.t.





l0 +
s∑

t=0

(
E

[
u−t (S0, . . . , St)− u+

t (S0, . . . , St)
]

+ wt

)
≥ lmin,

s = 0, . . . , T,

0 ≤ u+
t (s) ≤ u+

max for all s ∈ RT+1
+ , t = 0, . . . , T,

0 ≤ u−t (s) ≤ u−max for all s ∈ RT+1
+ , t = 0, . . . , T,

u±t : RT+1
+ → R+, measurable, t = 0, . . . , T.

(6.13)

The expectation in the objective function exists because St ∈ L1
+ and the u±t are

bounded measurable functions.

Proposition 7. Let the distribution function of St be continuous for all t. Then an
optimal solution of problem (6.13) is

∗
u+

t (S0, . . . , St) = u+
maxχ{St≥

∑T
s=t q∗s}, t = 0, . . . , T,

∗
u−t (S0, . . . , St) = u−maxχ{St≤c

∑T
s=t q∗s}, t = 0, . . . , T,

(6.14)
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where q∗ = (q∗0, . . . , q
∗
T )> ∈ RT+1 is given by a solution of the following system of

equations





s∑
t=0

(
u−maxP

[
St ≤ c

T∑

s′=t

q∗s′
]− u+

maxP
[
St ≥

T∑

s′=t

q∗s′
]
+ wt

)
+ l0 − lmin = vs,

s = 0, . . . , T,

v>q∗ = 0, v ≥ 0, q∗ ≥ 0, v = (v0, . . . , vT )>.
(6.15)

The existence of q∗ is assured in the proof. Its components are the Lagrange mul-
tipliers of the water constraints.

Proof. The proof is similar to that for Proposition 6. Because the optimal solutions
are already proposed, their optimality is verified by introducing a Lagrangian dual
problem: We show feasibility of the solutions, as well as weak and strong duality.

Let q∗ = (q∗0, . . . , q
∗
T )> ≥ 0 be the Lagrange multipliers of the water constraints in

problem (6.13). By additionally introducing Lagrange multipliers for the constraints
u±t ≤ u±max for all t in problem (6.13), the (algebraic) Lagrangian dual problem
becomes

min
q≥0

T∑
t=0

(
u+

maxE
[
(St −

T∑
s=t

qs)
+
]
+ u−maxE

[
(

T∑
s=t

qs − 1

c
St)

+
]
+ qt

(
l0 − lmin +

t∑
s=0

ws

))
.

(6.16)
Because (·)+ is a convex function, the objective function in (6.16) is convex in q.
The objective function behaves as follows for large q. By assumption, we have
l0 − lmin +

∑t
s=0 ws ≥ 0, and

E
[( T∑

s=t

qs − 1

c
St

)+
]
≥ E

[ T∑
s=t

qs − 1

c
St

]
=

T∑
s=t

qs − 1

c
E[St].

Hence, the objective function value gets arbitrarily large if a feasible q gets ‖q‖ ↗ ∞
, where ‖ · ‖ is the euclidian norm in RT+1. Hence, a possible minimum of (6.16) is
attained in the compact set {q | q ≥ 0, ‖q‖ ≤ M}, where M > 0 is a sufficiently
large number. The gradient of the objective function with respect to q is

(
l0 − lmin +

t∑
s=0

ws +
T∑

t=0

(
u−maxP

[ T∑
s=t

qs ≥ 1

c
St

]− u+
maxP

[
St ≥

T∑
s=t

qs

]))

t=0,...,T

.

For the explicit calculation of the derivatives, see Rockafellar and Uryasev [72] (the
derivative exists if S has a continuous distribution function). Because the objec-
tive function (6.16) is convex in q, it is continuous in q. Because a continuous
function on a compact set attains its minimum, the existence of a minimizing q∗ is
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assured. The optimal solutions are Karush-Kuhn-Tucker-points (KKT-points). The
corresponding KKT-conditions correspond to the system (6.15).

Next, we show weak duality. Define U+
t := u+

t (S0, . . . , St) and U−
t := u−t (S0, . . . , St)

for all t. In particular, U+
t and U−

t are Gt := σ(S0, . . . , St)-measurable random vari-
ables. We will show a little more than what is needed: We show weak duality for
all Gt-measurable random variables U+

t and U−
t that fulfil the constraints implied

by problem (6.13) for all t. The objective function of (6.13) is bounded from above
(i.e. weak duality) as follows (see notes below):

T∑
t=0

(
E[U+

t St]−
1

c
E[U−

t St]
)

(i)
=

T∑
t=0

(
E

[
U+

t (St −
T∑

s=t

qs)
]
+ E

[
U−

t (
T∑

s=t

qs − 1

c
St)

]
+

T∑
s=t

qs

(
E[U+

t ]− E[U−
t ]

))
,

(ii)

≤
T∑

t=0

(
u+

maxE
[
(St −

T∑
s=t

qs)
+
]
+ u−maxE

[
(

T∑
s=t

qs − 1

c
St)

+
])

+
T∑

s=0

qs

s∑
t=0

(
E[U+

t ]− E[U−
t ]

)
,

(iii)

≤
T∑

t=0

(
u+

maxE
[
(St −

T∑
s=t

qs)
+
]
+ u−maxE

[
(

T∑
s=t

qs − 1

c
St)

+
])

+
T∑

s=0

qs

(
l0 − lmin +

s∑

t′=0

wt′
)
,

where (i) the term 0 =
∑T

s=t qs−
∑T

s=t qs was added, (ii) the upper bound of feasible
control in (6.13) was used, the accompanying factors are made positive (·) → (·)+,
and the sums in the second term were interchanged, and (iii) the constraints of water
in (6.13) were applied. The final expression is the objective function of (6.16). Thus,
the objective function of (6.16) is for every q ≥ 0 an upper bound for problem (6.13),
and this holds for all G-measurable, feasible random variables U+

t and U−
t .

Next, we show that the proposed solution (6.14) is feasible in problem (6.13).
Clearly,

0 ≤ ∗
u+

t (·) ≤ u+
max, and 0 ≤ ∗

u−t (·) ≤ u−max ∀t.
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It remains to check the constraints on the water level. Let s = 0, . . . , T :

s∑
t=0

(
E[

∗
u−t (St)]− E[

∗
u+

t (St)] + wt

)
+ l0 − lmin

=
s∑

t=0

(
u−maxP[St ≤ c

T∑

s′=t

q∗s′ ]− u+
maxP[St ≥

T∑

s′=t

q∗s′ ] + wt

)
+ l0 − lmin

≥ 0,

where the last inequality follows from the system (6.15).
Next, we show strong duality. Let q∗ be a solution of (6.16) that fulfils the

system (6.15), and let
∗
u+

t and
∗
u−t be the solution (6.14). The optimal objective

value of (6.16) is

T∑
t=0

(
u+

maxE
[
(St −

T∑
s=t

q∗s)
+
]
+ u−maxE

[
(

T∑
s=t

q∗s −
1

c
St)

+
]
+ qt

(
l0 − lmin +

t∑
s=0

ws

))

(i)
=

T∑
t=0

(
u+

maxE
[
(St −

T∑
s=t

q∗s)χ{St≥
∑T

s=t q∗s}
]

+ u−maxE
[
(

T∑
s=t

q∗s −
1

c
St)χ{St≤c

∑T
s=t q∗s}

]
+ qt

(
l0 − lmin +

t∑
s=0

ws

)
)

(ii)
=

T∑
t=0

(
E

[
St

∗
u+

t (St)
]− u+

max

( T∑
s=t

q∗s
)
P
[
St ≥

T∑

s′=t

q∗s′
]

− 1

c
E

[
St

∗
u−t (St)

]
+ u−max

( T∑
s=t

q∗s
)
P
[
St ≤ c

T∑

s′=t

q∗s′
]
+ qt

(
l0 − lmin +

t∑
s=0

ws

)
)

(iii)
=

T∑
t=0

E
[
St

∗
u+

t (St)− 1

c
St

∗
u−t (St)

]

+
T∑

s=0

q∗s

(
s∑

t=0

(
u−maxP

[
St ≤ c

T∑

s′=t

q∗s′
]− u+

maxP
[
St ≥

T∑

s′=t

q∗s′
]
+ wt

)
+ l0 − lmin

)

(iv)
=

T∑
t=0

E
[
St

∗
u+

t (St)− 1

c
St

∗
u−t (St)

]
+ 0,

where (i) the (·)+-function was converted into an indicator function, (ii) the pro-
posed solution (6.14) was substituted, (iii) sums were interchanged, and (iv) the
system (6.15) was used. The final expression is the optimal objective value of prob-
lem (6.13). ¥
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By assumption, the feasible control is non-anticipative. In fact, it can be verified
that the non-anticipativity is not used in the proof. Hence, the bang-bang solution
(6.14) is optimal even in the case where anticipative controls are allowed. Because
q∗t ≥ 0 for all t, the optimal threshold for the maximal production and the maximal
pumping decreases over time. If q∗t is considered to be the marginal price of water in
interval [t, t + 1], then the solution (6.14) can be interpreted such that the operator
shall produce whenever the marginal price of remaining water is less than the spot
price.

The numerical evaluation of the q∗t for non-trivial spot-price distributions can
be difficult. In addition, the model assumes that the water level is constrained in
expectation; obtaining the mere form of exact solutions for models with almost-sure
(path-wise) constraints is unknown. Accordingly, the more realistic model of the
next chapter resorts to a numerical solvable optimization problem in terms of a
discretized multi-stage stochastic linear programming model.



Chapter 7

The General Dispatch Model

In the previous chapter, the models were analytically solvable, but simple. Now, we
present a more realistic model of a hydro-electric pumped storage plant.

First, we consider the different time scales of the state variables and of the ex-
ogenous quantities. Then, the stochastic control model is introduced. The straight-
forward formulation of the model needs two different time scales. By approximating
the electricity price with a step function, we can remove the finer time scale. The
resulting model is a multi-stage stochastic linear program on a single time scale. In
fact, a stochastic control model that has exogenous observables can always be viewed
as a stochastic linear programming model (see Section 5.2). Nevertheless, the use
of control-language helps to clarify the concepts of our engineering application.

The forthcoming stochastic control model does not assume any disretization
of the random variables. Nevertheless, to obtain a numerically solvable problem,
the resulting stochastic linear program is formulated on a scenario tree, that is,
the filtration has to be finite. The scenario tree will be obtained by a suitable
discretization of the random variables (Chapter 8).

Let a probability space (Ω,F ,P) be given.

7.1 Stochastic Control Formulation

In the following, we will argue that the trading-decisions on the electricity market
are on a finer time scale than variations in the state of the hydro-electricity plant.
Hence, the formulation has two time scales; the fine (small) time scale will be
modeled as a subdivision of the coarse (large) time scale.

7.1.1 The Small and the Large Time Scale

The dispatched electricity is traded on the spot market. On the EEX spot market,
the spot price changes every hour considerably. To benefit from these changes, the
amount to dispatch should be decided on that hourly time scale, too. Apart from
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the electricity price, another exogenous quantity is the water inflow. In reality, the
inflow is continuously varying over time. For the moment, we assume that sufficient
data is available (which is hardly ever the case) to calibrate an inflow model on
an hourly time scale. In a typical modeling, the technical state of the plant is
determined by the water level, whereas the financial state is characterized by the
realized cumulative profit-and-loss and, possibly, by a current outlook on future
revenues. We could choose for the state variables an hourly time scale, too. The
most general control would be a function of all past-and-present exogenous and
state variables. Unfortunately, current methods are not able to numerically solve
the resulting control problem over a longer period of time.

At a typical electricity plant, relative changes of water level induced by the
dispatch and water inflow during one hour can be neglected. Likewise, relative
changes in the financial state of the electricity plant during one hour are small.
Accordingly, the applied model uses a small and a large time scale. Because the
hourly electricity price-changes have to be taken into account, the small scale has
hourly intervals. The small time scale is measured in fractions of the large time
scale: The points in time of the large scale are t = 0, 1, . . . , T , and those of the small
scale τ = h

H
, h = 1, 2 . . . where H is the number of hours between consecutive large

time steps. All intervals are assumed to be equally spaced (see Sec. 11 for a possible
extension).

The choice of the large time scale depends on the particular plant and the de-
cision maker. For example, the full reservoir of the typical plant in the case study
is emptied in about a month by producing at full capacity without inflow (cf. Ta-
ble 9.3, p. 90). Hence, the decision maker should check the state variables monthly.
Several time scales in related models were tested by Döge [23, p. 161]: Half-a-month
was considered to be a sufficient granulation. A numerically solvable multi-stage
stochastic programming model is restricted to a few time periods (commonly less
than ten periods), and hence the time steps are modeled as large as possible. Ac-
cordingly, we choose the large time scale in the magnitude of one month which suits
a planning horizon of several months.

7.1.2 The Exogenous Variables and the Control

The control-functions for the rate (MW) of production and pumping are denoted
by u+

t and u−t , respectively. The control in a specific hour starting at time t + h
H

is
chosen to be a function of exogenous variables:

u±t (St+ h
H

,E0, . . . , Et), h = 1, . . . , H, t = 0, . . . , T − 1, (7.1)

where the current (electricity) spot price is denoted by St+ h
H

(Euro/MWh) at hour

h in time interval [t, t + 1], and (Et)t=0,...,T is a sequence of random vectors of
those exogenous variables that vary on the large time scale. The first argument
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electr. dispatch rate
price
s1 u±t (s1, E0···Et)
...

...
sN u±t (sN , E0···Et)

valid in [t, t + 1)

y
electr. dispatch rate
price
s1 u±t+1(s1, E0···Et+1)
...

...
sN u±t+1(sN , E0···Et+1)

valid in [t + 1, t + 2)

Figure 7.1: The change of the decision table from time t to time t + 1

of the control-function captures the high-frequency hourly variation of the spot
price, whereas the remaining arguments capture the movements of slowly varying
exogenous quantities. The exact definition of the variables Et is postponed to Sec-
tion 7.2.3. The probability distribution of the exogenous quantities, that is the spot
prices and (Et)t=0,...,T , will be discussed in Chapter 8.

Note that the control-function (7.1) depends only on exogenous quantities. Nev-
ertheless, a realization of the sequence E0, . . . , Et determines a historical path and
therefore a specific state of the plant at time t. Hence, the control depends implic-
itly on the state of the plant. Freeing the control-function from the (endogenous)
state variables has the advantage that the model allows a straightforward linear
formulation (cf. Sec. 7.3).

If the control-function takes into account only finitely many levels of the spot
prices, s1, . . . , sN , then the function reduces to a (finite) decision table (Fig. 7.1).
The final numerically solvable model will use such a decision table; for the moment,
we proceed in general terms.

The rate of producing and pumping is assumed to be monotonically increasing
and decreasing in the spot price, respectively. In addition, the rate of dispatch is
physically limited: The upper bounds of producing and pumping are denoted by
u+

max and u−max, respectively. Accordingly, the set of admissible control-functions is

U :=





(u+
t , u−t )t=0,...,T−1

∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣

u±t : R× Rn0 × · · · × RnT → R,

measurable,

0 ≤ u+
t ≤ u+

max,

0 ≤ u−t ≤ u−max,

u+
t (·,v) monotonically increasing,

u−t (·,v) monotonically decreasing

for all v ∈ Rn0 × · · · × RnT ,





(7.2)

where nt is the dimension of the vector Et.



58 Chapter 7. The General Dispatch Model

7.1.3 The State Variables

The plant is determined by a technical as well as a financial state. The technical
state at time t is the water level Lt (MWh). The financial state is chosen to be the
cumulated, discounted profit-and-loss Pt (Euro), and the value of the plant Vt (Euro).
As we have argued in Section 7.1.1, the state variables need not to be checked on
the hourly time scale of the short-term dispatch decision; the model assumes that
it suffices that their bounds are taken into account only on the large time scale
t = 0, 1, . . . , T .

The feasible water levels are given as follows. The initial level is denoted by l0.
Subsequently, the level has to stay between a lower and upper bound: lmin ≤ Lt ≤
lmax a.s. for all t. At final time T , the level is restricted to be above an additional
lower bound: lT ≤ LT a.s..

The cumulated discounted profit-and-loss at time t consists of the flown dis-
counted cash flows from time 0 to time t. The value of the plant is defined as
follows.

The Value of the Plant (State Equation of Value)

The objective of the optimization problem is chosen to maximize the expected value
VT of the plant at final time T :

sup E[VT ],

subject to appropriate constraints specified later.

The existence of the expectation will be shown when the complete model has
been specified (p. 61). The considered value is related to operation; operation-
independent costs, like depreciation and water charges are not taken into account.
Different stakeholders can have different definitions for an operation-related value.
We assume that the value is retrospective as well as prospective: The value Vt at
time t = 0, . . . , T is assumed to be a sum of the realized cumulated (discounted)
profit-and-loss and of a value attributed to future profit-and-loss. The uncertain
future profit-and-loss can be considered in two ways:

Dependent on operation: The value of future production is calculated in some
way from the path-wise future profit-and-losses in each scenario. In this case,
the value depends on the operation of the plant (on how to dispatch). This
implies that the stakeholder, who values the plant, knows the future operation,
or, at least a probability distribution of it.

Independent on operation: The value is a function of the remaining usable water
in the reservoir. This assumes that the stakeholder is not willing or is just not
able to judge future operation in detail.



7.1. Stochastic Control Formulation 59

We assume the latter; the prospective part of the value is independent of the oper-
ation and is considered to be an agreed definition even to those stakeholders who
are not willing to become experts in power optimization and therefore cannot judge
future operation. Hence, the value at time t is the sum of occurred cash flows and a
value of the expected water that is usable for production in the future. By neglecting
discounting1, the value is

Vt := Pt + vt

(
E

[ T∑

k=t+1

Ik

∣∣Ft

]
+ Lt − lmin

)
, t = 0, . . . , T. (7.3)

where vt (Euro/MWh) denotes a deterministic value of the remaining water at time
t, Lt − lmin is the usable water in the reservoir, and the stochastic process of water
inflow between consecutive time steps is denoted by

(It)t=1,...,T in (MWh), It ∈ L1
+(Ω,F ,P;R). (7.4)

The expectation in (7.3) is conditioned on the σ-algebra that is generated by the
exogenous information: Ft := σ(E0, . . . , Et). The probability distribution of inflow
will be discussed in Section 8.2 (p. 76). The conditional expectation of Ik exists
because Ik is integrable by definition.

The future water in (7.3) is valued by a deterministic factor vt for simplicity,
which is chosen by the stakeholder. For example, the choice is based on a historical
selling price. Particularly, the remaining usable water in the reservoir at final time
T is valuated. If the final water would not contribute to the value of the plant, or
the value of the water is sufficiently small, then an optimization tries to spend all
usable water till time T . A remedy is to make the lower bound on the reservoir
level at final time T sufficiently high (see [79] for such use of a final water restriction
instead of valuing the final water level).

The Constraint on Risk of the Value of the Plant

The decision maker is assumed to be risk-averse: The maximization of the expected
final value is subject to a constraint on risk. Common risk measures in energy
applications are CVaR [79], target shortfall [33], or multi-period VaR [55].

In our model, the constraint on risk is imposed by a stakeholder who cares about
the distributions of the intertemporal values. Hence, the calculation of the risk
takes the whole value process (Vt)t=0,...,T into account. It is assumed that the risk is
bounded by a lower bound on a multi-period risk-adjusted value:

π[V0, . . . , VT ] ≥ ρmin.

1Discounting is neglected for ease of presentation. Discounting factors are introduced in the
final stochastic programming problem.
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Table 7.1: The state variables and the exogenous quantities

state variables (t = 0, . . . , T ) exogenous variables (t = 0, . . . , T − 1)

Lt : water level St+ h
H

: spot price at hour h in interval
Pt : cumulated profit-and-loss [t, t + 1]
Vt : value of plant Et : vector of other variables

The risk-adjusted value assigns a number to the distribution of the value process.
Due to simplicity, we have introduced multi-period risk-adjusted values only for
finitely discrete processes (Ch. 3 and 4). Nevertheless, for the formulation of the
stochastic control problem, it suffices to assume that π is a mapping from the space of
stochastic processes into the reals, and monotone in its arguments: If Vt ≤ Wt a.s.
for all t, then π[V0, . . . , VT ] ≤ π[W0, . . . , WT ], which agrees with property (iii) of
Lemma 2 (p. 17) for recursive risk-adjusted values. The detailed definition of π in
terms of recursive risk-adjusted values will be given in the forthcoming formulation
of the multi-stage stochastic program.

Summarizing, the feasible set of state variables is

X :=





(Lt, Pt, Vt)t=0,...,T

∣∣∣∣∣∣∣∣∣∣∣∣

(Lt, Pt, Vt) : Ω → R3, measurable,

lmin ≤ Lt ≤ lmax a.s., t = 0, . . . , T,

lT ≤ LT a.s.,

P0 = 0, L0 = l0,

π[V0, . . . , VT ] ≥ ρmin.





(7.5)

The state variables and exogenous variables are recapitulated in Table 7.1.
The only constraint that inter-connects the state variables over the time steps in

a non-separable way is the lower bound of the risk-adjusted value. This constraint
prohibits an additive separability of the optimization problem. Hence, we cannot
use backward-recursive dynamic programming solution algorithms [8].

The Change of Profit-and-Loss and of Water Level

The change in the water level in the hth hour of time interval [t, t + 1] is

Lt+ h
H
− Lt+h−1

H
= u−t (St+ h

H
, E0···Et)− u+

t (St+ h
H

,E0···Et) + Wt+ h
H

,

where Wt+ h
H

is the hourly water inflow; because the model of the plant takes the

water level only at time t = 0, . . . , T into account, the relevant quantity will be the
cumulated inflow It =

∑H
h=1 Wt+ h

H
. For simplicity, a spill over of the reservoir is not

yet modeled and will be considered only in the final, numerically tractable model.
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The profit-and-loss in hour h is

Pt+ h
H
− Pt+h−1

H
= St+ h

H
u+

t (St+ h
H

,E0···Et)− 1

c
St+ h

H
u−t (St+ h

H
, E0···Et),

where 0 < c < 1 is the efficiency of pumping.

7.1.4 The Stochastic Control Problem

Combining the definitions of the previous two sections, we get the following opti-
mization problem of stochastic control:

sup
(u±t )t=0,...,T−1

E[VT ], subject to

Pt+1 − Pt =
H∑

h=1

St+ h
H

(
u+

t (St+ h
H

,E0···Et)− 1

c
u−t (St+ h

H
,E0···Et)

)

a.s., t = 0, . . . , T − 1, (7.6)

(SC) Lt+1 − Lt =
H∑

h=1

(
u−t (St+ h

H
,E0···Et)− u+

t (St+ h
H

, E0···Et)
)

+ It+1

a.s., t = 0, . . . , T − 1, (7.7)

Vt = Pt + vt

(
E

[ T∑

k=t+1

E[Ik

∣∣Ft

]
+ Lt − lT

)
a.s., t = 0, . . . , T, (7.8)

(Lt, Pt, Vt)t=0,...,T ∈ X a.s., (u+
t , u−t )t=0,...,T−1 ∈ U .

The control formulation has two simplifications: First, the discounting is not written
explicitly. Second, a spill-over of the reservoir is not yet allowed; a (inconvenient)
dummy control would have to be introduced. Both features can be elegantly re-
introduced in the final formulation as a stochastic programming problem. The profit-
and-loss does not include marginal costs; they could be included in an obvious way.
We assume that the expectation of spot price exists: St+ h

H
∈ L1

+ := L1
+(Ω,F ,R)

for all t, h. By definition (7.4), It ∈ L1
+, and by the boundedness of admissible

control-functions, Lt ∈ L1 for all t. In addition, St+ h
H
∈ L1 implies Pt ∈ L1 for all t,

hence Vt ∈ L1 for all t. Thus, the expectation in the objective function exists.
The notation of the control-functions u+

t and u−t suggests that they are the plus
and minus part of a function with no sign restriction.

Proposition 8 (Unger [79]). Consider the stochastic control problem (SC). If the
efficiency of pumping is c < 1, then simultaneous producing and pumping is not
optimal at each time.

The proof is given in Appendix A.3 (p. 115).
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7.2 Transformation of the State Equations

The state equations of profit-and-loss and of water involve a short and and a large
time-scale. In this section, we change the summation in these state equations by
using as summation index the price levels instead of the points of the short time-
scale. The change allows a reformulation of the model solely on the large time-scale.

The transformation is motivated by the following general observation. To cal-
culate an income over a time period we can consider the path over time of the
underlying price process. Equivalently, we can also consider the fraction of time
the process is below (or above) different price levels. This second view may be
advantageous for some multi-period decision models in general.

7.2.1 Discrete Price Levels and Occupation Times

Consider the right-hand-side of the state equations (7.6) and (7.7). They can for-
mally be written as

H∑

h=1

ft,ω

(
St+ h

H
(ω)

)
, (7.9)

where ft,ω : R → R is a function of discrete time t = 0, . . . , T and of state ω ∈ Ω.
To get a numerically solvable, finite multi-stage stochastic programming model, the
electricity price is approximated by a step function1:

St+ h
H
→ S̃t+ h

H
:=

N∑
i=1

s̄iχ{si−1<S
t+ h

H
≤si}, (7.10)

where the range of electricity price is discretized by N + 1 levels

0 ≤ s0 < s1 < · · · < sN , (7.11)

and intermediate prices s̄i ∈ (si−1, si) as steps are introduced. Because ω is not
altered in the following formula, it will be notationally suppressed. If we use the
approximation (7.10) in (7.9), we can interchange the sums:

H∑

h=1

ft(S̃t+ h
H

) =
H∑

h=1

N∑
i=1

ft(s̄i)χ{si−1<S
t+ h

H
≤si},

=
N∑

i=1

ft(s̄i)
H∑

h=1

(
χ{S

t+ h
H
≤si} − χ{S

t+ h
H
≤si−1}

)
,

= H

N∑
i=1

ft(s̄i)
(
Ft+1(si)− Ft+1(si−1)

)
,

(7.12)

1Every measurable positive function is the pointwise limit of step functions [6, Prop. 11.6].
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where Ft+1 : R+ → [0, 1] is monotonically increasing (ω fixed), and defined as follows.

Definition 12 (Occupation time). The occupation time Ft+1(s) : Ω → [0, 1] of
the electricity price at level s in unit time interval [t, t + 1] is the random variable

Ft+1(s) :=
1

H

H∑

h=1

χ{S
t+ h

H
≤s}, (7.13)

where St+ h
H

is the electricity price during hour h in the interval.

-

6

s

t t + 1t + h
H

St+ h
H

S
t+ h

H
>s

︷ ︸︸ ︷
S

t+ h
H
≤s

︷ ︸︸ ︷
S

t+ h
H

>s

︷ ︸︸ ︷

Note. In a continuous time setting, sums would be replaced by integrals, and the
interchange of sums in (7.12) corresponds to the transformation of a time-integral
into a Stieltjes integral with measure-inducing function Ft+1.

Consider the last line of (7.12), which corresponds to the right-hand-side of the state
equation of profit-and-loss or of water. The control-function has to be evaluated only
at finitely many electricity prices: s̄1, . . . , s̄N . Thus, the control-function reduces
to a finite decision table (cf. Fig. 7.1, p. 57). The finiteness allows the following
convenient parametrization, which is due to Unger [24].

7.2.2 Parametrization of the Control-Functions

Let t = 0, . . . , T − 1. The steps of the control-functions can be parameterized with
their normalized differences:

x+
it(E0···Et) :=

1

u+
max

(
u+

t (s̄i, E0···Et)− u+
t (s̄i−1,E0···Et)

)
, i = 1, . . . , N,

x−it(E0···Et) :=
1

u−max

(
u−t (s̄i−1,E0···Et)− u−t (s̄i,E0···Et)

)
, i = 1, . . . , N,

where an additional lowest price step s̄0 ∈ [0, s0) had to be defined. Owing to the
measurability of u±t , the x±it are measurable functions, and because u+

t (·, v) and
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u−t (·, v) are for all v monotonically increasing and decreasing, respectively, we have
x±it(E0···Et) ≥ 0 for all i and t (see properties (7.2) of u±t , p. 57). If we assume no
production at the lowest price s̄0 and no pumping at the highest price s̄N , then the
parametrization is

u+
t (s̄i,E0···Et) = u+

max

i∑
j=1

x+
jt(E0···Et),

u−t (s̄i,E0···Et) = u−max

N∑
j=i+1

x−jt(E0···Et).

(7.14)

Furthermore, if we assume full-capacity production at s̄N and full-capacity pumping
at s̄0, then

N∑
i=1

x±it(E0···Et) = 1.

This is a rather strong assumption, but in accordance with similar models [23, 79]
(dropping the assumption gives the relaxed constraint

∑N
i=1 x±it(E0···Et) ≤ 1). Under

the previous assumptions, the set of admissible controls becomes

{(
x±it(E0···Et)

)
i=1,...,N,
t=0,...,T−1

∣∣∣∣∣ x±it(E0···Et) ≥ 0,
N∑

i=1

x±it(E0···Et) = 1

}
. (7.15)

For fixed t, the values of (x±it(E0···Et))i=1,...,N are a decision table: If the spot price is
in the interval (s̄i−1, s̄i], then the additional fraction of production is x+

it with respect
to prices less or equal than s̄i−1, and the additional fraction of pumping in interval
[s̄i−1, s̄i) is x−it with respect to prices greater or equal than s̄i.

7.2.3 Exogenous Variables in the Transformed Model

We have introduced occupation times into the state equations and we have param-
eterized the control. In particular, the approximation of the state equations for
profit-and-loss and for water (7.6)-(7.7) according to the scheme (7.12) together
with the parametrization of the control according to (7.14)-(7.15) gives

Pt+1 − Pt = u+
maxH

N∑
i=1

( N∑
j=i+1

x+
jt(E0···Et)

)
s̄i

(
Ft+1(si)− Ft+1(si−1)

)

− u−max

1

c
H

N∑
i=1

( i∑
j=1

x−jt(E0···Et)
)
s̄i

(
Ft+1(si)− Ft+1(si−1)

)
,

t = 0, . . . , T − 1, (7.16)
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Lt+1 − Lt = l0 + u−maxH

N∑
i=1

( i∑
j=i+1

x−jt(E0···Et)
)(

Ft+1(si)− Ft+1(si−1)
)

− u+
maxH

N∑
i=1

( N∑
j=i

x+
jt(E0···Et)

)(
Ft+1(si)− Ft+1(si−1)

)

+ It+1, t = 0, . . . , T − 1. (7.17)

The stochastic control problem (SC) (p. 61) with the foregoing approximated state
equations (7.16)-(7.17) and with the admissible set of controls (7.15) is formulated
entirely on the large time scale; the small time scale is hidden in the occupation
times Ft (Def. 12, p. 63). The question (Sec. 7.1.2) about the precise definition of
the exogenous random variables Et can now be satisfactorily answered: To have full
flexibility in the sense that the control shall have the best ability to react to exoge-
nous events, the Ets consist of all exogenous variables appearing in the transformed
model, that is, the water inflow and the occupation times. Accordingly,

Et :=
(
It, F0t, . . . , FNt

)>
, t = 0, . . . , T, (7.18)

where the occupation times are abbreviated by

Fit := Ft(si), i = 0, . . . , N, t = 0, . . . , T.

In fact, no component of the vector E0 appears explicitly in the stochastic control
model. Hence, E0 could be neglected, but is kept for notational coherency.

7.3 The Stochastic Linear Program on a Scenario

Tree

Most of the modeling work has been accomplished in terms of the foregoing stochas-
tic control problem. To make this problem numerically tractable, it has to be dis-
retized and linearized. Moreover, we have to specify the constraint on risk in more
detail. The resulting problem will be a multi-stage stochastic program on a scenario
tree.

7.3.1 Linear Formulation on a Scenario Tree

So far, the model of the electricity plant was formulated as a stochastic control
problem (problem (SC), p. 61, and its subsequent modifications). We shortly review
the model and highlight the advantages of using the control-language. The multi-
period model has time steps t = 0, . . . , T . The problem’s objective is to maximize
the expected final value of the plant. In the formulation as a control problem, the
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decision variables (control-functions for producing and pumping: u±t ) are separated
from the state variables. The state variables are the water level Lt, the cumulated
profit-and-loss Pt, and the value of the plant Vt. Each state variable is equipped
with a state equation, which governs the dynamic behavior of the variable. Because
the plant has technical restrictions, the control-functions have to be in an admissible
set. Similarly, the state variables have to be in a feasible set, too. Especially, in the
case of the plant’s value, the feasible set is restricted by a constraint on risk: The
risk-adjusted value of the plant’s values over time is bounded from below.

The state variables were modeled to vary on the time steps. Apart from this com-
paratively large time scale, the high-frequency trading activity had to be modeled.
Consequently, a (fractional) hourly time scale had to be introduced. The formula-
tion as a control problem allowed to remove the hourly time scale. The exogenous
variables of spot prices over time were thereby transformed into a set of occupation
times at different price levels (see the modified state equations (7.16)-(7.17)). In
view of solving the optimization problem numerically, the number of the price levels
was chosen to be finite. The finiteness allowed to parameterize the control in terms
of fractions of maximal producing- and pumping-capacity (see admissible set (7.15)).

To solve the problem numerically, the random variables in the stochastic control
problem have to be discretized. The discretized problem is formulated on a sce-
nario tree (see Sec. 3.1, p. 12), where the tree is generated by a discretized version
of the exogenous variables (Et)t=0,...,T . The components of the vectors Et are the
occupation times (F1t, . . . , FNt) and the water inflow It (definition (7.18)). Conse-
quently, the distributions of the occupations times and of the water inflow must be
discretized. A discretization method will be given in Chapter 8; here, for the for-
mulation of the numerically solvable model, we assume that the exogenous variables
are already suitably discretized. In terms of σ-algebras, we can say that the discrete
exogenous variables generate a finite filtration (Ft)t=0,...,T (cf. Sec. 3.1):

Ft := σ(E0, . . . , Et), t = 0, . . . , T,

where F0 := {∅, Ω} because E0 is deterministic. The corresponding scenario tree is
defined to be the representation of (Ft)t=0,...,T . All state variables, all the variables
for the control, and all auxiliary variables take values on specific nodes of the scenario
tree; the state equations determine on which node the variables take their values
(see details below). The resulting problem is a multi-stage stochastic program on a
scenario tree.

In the current discrete setting, we can now specify precisely the risk-adjusted
value of the value process (Vt)t=0,...,T that appears as bounded from below in the set
of feasible state variables (7.5) (p. 60):

π[V0, . . . , VT ] ≥ ρmin. (7.19)

So far, π is a mapping from the space of stochastic processes into the reals. We define
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π[V0, . . . , VT ] := R
(V )
0 , where R

(V )
0 is the recursive risk-adjusted value of the value

process (Def. 4, p. 16). The corresponding set of test-probability measures is chosen
to be a local-CVaR set (Def. 11, p. 28). The recursiveness ensures time consistency,
which rules out regrettable optimal solution (Sec. 3.5, p. 19). In addition, the
recursive risk-adjusted value is coherent, which implies the convenient properties (i)-
(iv) of Lemma 2 (p. 18), and the stability of the local-CVaR set ensures consistency
with single-period coherent risk measurement. Finally, local-CVaR sets enable a
linear formulation of the constraint on risk and give a link to the common single-
period risk-adjusted value CVaR (Sec. 4.3 and 4.4). The filtration of the recursive
risk-adjusted value is chosen to be (Ft)t=0,...,T . Indeed, we will see in the next section
that (Vt)t=0,...,T is adapted to this filtration.

Apart from discretization, the model should desirably be linear ; the linearity
permits to solve large problem instances. Fortunately, all the constraints of the
control problem are already linear except the constraint on risk (7.19). By Prop. 3
(p. 34) the constraint on risk can be written as a system of linear constraints with
help of auxiliary variables (Rt)t=0,...,T , (Qt)t=0,...,T−1, (Zt)t=1,...,T .

7.3.2 The Discretized LP Formulation

In this section, we formulate the model on the scenario tree in detail. The scenario
tree is defined by the node set Nt at time t = 0, . . . , T , and by the transition
probabilities pnm from each node n to another node m (Def. 8, p. 26). The values
of the discretized exogenous variables Et = (It, F1t, . . . , FNt) on node n ∈ Nt, t =
0, . . . , T , is denoted by (Itn, Ft1n, . . . , FtNn).

The modified state equations for profit-and-loss and inflow (7.16)-(7.17), and the
state equation for the value of the plant (7.8) induce that the state variables Pt, Lt

and Vt are Ft-measurable for all t. By Prop. 3 (p. 34), the auxiliary variables Rt, Qt

and Zt of the constraint on risk are also Ft-measurable for all t. Accordingly, for all
t, all random variables are represented by their finitely many values on the scenario
tree:

Pt, Lt, Vt → (Ptn)n∈Nt , (Ltn)n∈Nt , (Vtn)n∈Nt ,

Rt, Qt, Zt → (Rtn)n∈Nt , (Qtn)n∈Nt , (Ztn)n∈Nt ,

X±
it → (X±

itn)n∈Nt
i = 1, . . . , N,

where on the last line the control-functions x±it is written as a Ft-measurable random
variable:

X±
it = x±it(E0, . . . , Et), i = 1, . . . , N, t = 0, . . . , T − 1. (7.20)

On the scenario tree, expectations are finite sums. For the constraint on risk, this
was already described in detail by the finite linear programming formulation (4.11)
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(p. 33). For the objective function of the stochastic control model (SC) (p. 61), we
get

E[VT ] →
∑

n∈NT

pn0nVTn,

where pn0n is the transition probability from root node n0 to a terminal node n.
The conditional expectation in the value of the plant (7.8) corresponds pointwise
(for each node n) for t = 0, . . . , T − 1, k = 1, . . . , T to the following sum:

E[Ik|Ft]
∣∣∣
n

→
∑

m∈Nk

pnmIkm, for all n ∈ Nt, k > t,

where the sum goes over all nodes at time k, but where only the transition proba-
bilities from node n to its successor nodes can be strictly positive.

As an additional feature of the stochastic programming model, the discounting
is written explicitly with a continuous discounting rate r ∈ R+.

To summarize, the stochastic control problem (SC, p. 61) can be reformulated
as the following finite stochastic linear program (SLP):

max
∑

n∈NT

pn0nVTn subject to (I)-(IV): (SLP)

(I)





Ptn = u+
maxH

t∑

k=1

e−rk

N∑
i=1

( N∑
j=i+1

X+
j(k−1)n

)
s̄i(Fikn − F(i−1)kn)

− 1

c
u−maxH

t∑

k=1

e−rk

N∑
i=1

( i∑
j=1

X−
j(k−1)

)
s̄i(Fikn − F(i−1)kn),

Ltn ≤ l0 + u−maxH

t∑

k=1

N∑
i=1

( i∑
j=1

X−
j(k−1)

)
(Fikn − F(i−1)kn)

− u+
maxH

t∑

k=1

N∑
i=1

( N∑
j=i+1

X−
j(k−1)

)
(Fikn − F(i−1)kn) +

t∑

k=1

Ikn,

Vtn = Ptn + e−rtvt

(
Ltn − lT +

T∑

k=t+1

∑
m∈Nk

pnmIkm

)
,

t = 0, . . . , T, ∀n ∈ Nt,

(II)

{
lmin ≤ Ltn ≤ lmax, t = 0, . . . , T, ∀n ∈ Nt,

lT ≤ LTn, ∀n ∈ NT ,
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(III)





R0n0 ≥ ρmin,

Rtn ≤ Vtn, t = 0, . . . , T, ∀n ∈ Nt,

Rtn ≤ Qtn +
1

α

∑
m∈Nt+1

pnmZ(t+1)m, t = 0, . . . , T − 1, ∀n ∈ Nt,

Ztn ≥ Q(t−1)n− −Rtn, t = 1, . . . , T, ∀n ∈ Nt,

Ztn ≥ 0, t = 1, . . . , T, ∀n ∈ Nt,

(IV)





N∑
j=1

X+
jtn = 1, X+

itn ≥ 0, i = 1, . . . , N, t = 0, . . . , T − 1, ∀n ∈ Nt,

N∑
j=1

X−
jtn = 1, X−

itn ≥ 0, i = 1, . . . , N, t = 0, . . . , T − 1, ∀n ∈ Nt.

Parameters

s0, . . . , sN : price levels, with intermediate levels s̄i ∈ (si−1, si)
l0/ min / max /T : water levels: starting, minimal, maximal, and minimal final
u+

max, u−max: maximal production rate, maximal pumping rate
vt: value of the remaining water at time t
c: efficiency of pumping
r: continuous discounting rate
ρmin: lower bound of risk-adjusted value
H: number of hours in time interval [t− 1, t]
Itn: water inflow in time interval [t− 1, t] in node n ∈ Nt

Fitn: occupation time of spot price at level si in time interval [t− 1, t]
in node n ∈ Nt (Def. 12, p. 63, where Fit := Ft(si))

pnm: transition probability from node n to node m

Variables

At time t in node n ∈ Nt:

Ptn: cumulative profit-and-loss
Ltn: water level
Vtn: value of the plant
R0n0 : risk-adjusted value in root n0 (when constraint is binding)
Rtn: upper bound of risk-adjusted value process
Qtn, Ztn: auxiliary variables for the risk-adjusted value
X+

itn: production rate (fraction of u+
max) if spot prices are in (s̄i−1, s̄i]

X−
itn: pumping rate (fraction of u−max) if spot prices are in [s̄i−1, s̄i)
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Constraints (I)-(IV)

We shortly review the constraints (they were thoroughly discussed in the previous
two sections):

(I) The constraints correspond to the state equations of the stochastic control
model (SC) (p. 61). The state equations for the cumulative profit-and-loss
and the water level use the approximated formulation (7.16)-(7.17) (p. 64).
Each term has the following form: For each time t and spot price level indexed
by i, a fraction X±

it of dispatch is multiplied with the occupation time of spot
prices in the interval (si−1, si]. This gives the additional fraction of dispatch
in time interval [t, t+1] for price interval (s̄i−1, s̄i] with respect to prices lower
or equal to s̄i−1. The water level is constrained by an inequality because an
arbitrary spill-over is now allowed (in contrast to the control formulation (SC)
where for the sake of simple presentation an equality was used).

(II) The constraints correspond to the feasible water levels in the set of feasible
state variables (7.5) (p. 60).

(III) The constraints correspond to the constraint on financial risk in the set of
feasible state variables (7.5). Because the applied risk-adjusted value uses a
local-CVaR set (Def. 11, p. 28), Proposition 3 (p. 34) allows a formulation
as a set of linear constraints (see also the discussion at the beginning of this
section). For other useful properties of the risk-adjusted value see the previous
discussion on page 60.

(IV) The constraints correspond to the parameterized set (7.15) of admissible con-
trols.

7.4 Extension of the Model: Futures

The foregoing optimization problem (SLP) is a model of the dispatch decision of
the hydro-electric pumped storage plant. The assumed decision maker of the plant
trades the dispatched electricity only on the spot market; opportunities to invest
in other markets do not exist. This restriction diminishes the flexibility to bound
financial risk. To increase the flexibility, an extended version of the model considers
a decision maker who can invest in futures contracts. In the case study, we will
make use of the additional flexibility of futures.

Exchange traded futures-contracts are standardized, and the exchange is the
intermediary between the buyer and the seller; this excludes any counterparty risk.
Futures on the electricity market are different from those on traditional financial
markets: Electricity futures exchange a fixed price against a floating price. Hence,
these contracts can be considered to be financial swaps [9].
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In our case, the floating price is chosen to be the spot price during consecutive
time steps. The futures are assumed to be cash settled: The pay-off is the hourly
difference between the fixed futures price and the spot price. These assumptions
are not artificial: At the EEX (year 2005), Phelix-Base-Month-Futures (Phelix =
‘Physical Electricity Index’) are monthly futures on the hourly spot price.

The decision maker is assumed to enter all positions in futures at initial time
t = 0, and the positions are not changed subsequently. This assumption is reasonable
if the futures are used to hedge1 the value of the plant over the time horizon, and
are not used for short-term trading activities. Accordingly, a future-price process is
not modeled.

For each time step, a different position amount pt (MW) in futures can be chosen.
The profit-and-loss of the futures in time period t to t + 1 is

P fut
t+1 − P fut

t = pt

H∑

h=1

(
ft − St+ h

H

)
, t = 0, . . . , T − 1, (7.21)

where ft is the futures-price (Euro/MWh) as fixed at time zero (discounting is
suppressed). Using the approximation (7.10) and the associated transformation
into occupation times Fit = Ft(si), the approximated profit-and-loss is

P fut
t+1 − P fut

t = pt

(
Hft −H

N∑
i=1

s̄i

(
Fi(t+1) − F(i−1)(t+1)

))
, t = 0, . . . , T − 1. (7.22)

Because the considered models have a time-horizon within a year, discounting can
be neglected.

1Hedging is an action to reduce risk
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Scenario Tree Generation

In this chapter, the scenario tree generation method is presented. The scenario tree
is generated by a discretized version of the exogenous random variables over time.
Let us recall the stochastic process of exogenous variables (7.18):

Et = (It, F1t, . . . , FNt)
>, t = 0, . . . , T,

where It is the water inflow in time interval [t− 1, t], and Fit is the occupation time
of the spot price at level si, i = 1, . . . , N in time interval [t− 1, t] (F0t is neglected;
we assume s0 = 0, hence F0t ≡ 0 for all t).

We assume that the random variables of water inflow are stochastically indepen-
dent from the occupation times of spot prices. The reasoning is as follows. The
water inflow is a function of several variables: Temperature, precipitation, altitude
of reservoir, water branch-off, snowmelt etc. Some of these variables depend on
local circumstances. The available historical sample for several water reservoirs was
small; a proper correlation estimation would require more data. In addition, the
EEX-power market covers a large region of Europe with various electricity sources
and heterogenous weather conditions. By contrast, in spatially smaller regions such
as in Scandinavia, where hydro-energy is the predominant source for electricity, the
local electricity price was reported to be correlated with precipitation [33].

In the following, we give a short overview of the scenario tree generation method.
A factor model will reduce the random vector of exogenous variables to a small num-
ber of factors. Each factor is modeled by an autoregressive process. Autoregressive
means that the value at a specific time is a function of previous values plus an addi-
tive, stochastic random quantity, called the innovation (white-noise). It is assumed
that these innovations are stochastically independent with respect to different time
and different factors. This assumption will be tested in the case study. The inde-
pendence allows for a simple discretization scheme of the exogenous variables: The
distribution of each innovation will be approximated separately by a discrete distri-
bution. The scenario tree is generated inductively : The root node corresponds to
the starting value of the factors. Given a specific node of the tree at a specific time,

72
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the different values of the discretized innovations generate the immediate successor
nodes of the scenario tree. In each node, the values of the innovations determine
the values of the associated factors. Finally, the values of the factors determine via
the factor model the values of the original exogenous variables.

The dimension-reduction and the discretization technique is inspired by Jamishid-
ian and Zhu [48]. We give a short overview of other approaches (for reviews see
e.g. [26,51]):

One approach is to sample complete paths of the exogenous variables over time.
Then, the pathes are clustered into a tree by some distance criteria (see e.g. [42]).
Conditional random sampling methods can produce directly a tree (see e.g. [56]).
Another commonly used method to produce an approximative distribution (condi-
tional on a given node) is by matching moments of the exact distribution. Com-
monly, the first few moments are matched [46,47].

Other methods yield directly a bound on the difference in optimal objective
value of the approximative optimization problem with respect to the exact opti-
mization problem. A particular kind of such methods reduces the value of a so-
called probability metric between the exact and approximative distribution. Under
suitable assumptions of the optimization problem, this metric is an upper bound
for differences in optimal objective values [27,39,43,67]. Other examples use linear
complementarity approaches [77], or barycentric approximations [35].

Some of the aforementioned methods use an iterative disaggregation algorithm:
They start with a small tree and insert additional branches into the tree. The node
in which to disaggregate is thereby determined by a local or global criteria. For
example, the branching can be based on a local information criterion [21], a local
infeasibility criterion [54], or a global criteria like complementary relations [77].

Our approach of scenario tree generation is rather unsophisticated; the forth-
coming model of the exogenous variables is demanding by itself, such that the tree
generation uses the previously outlined, simple discretization method.

8.1 The Model of Occupation Times

In the following, the multivariate vector of occupation times is described by a sta-
tistical factor model. The factors are related to principal components of the sample-
covariance-matrix of the occupation times. The proposed factor model is fairly
standard and based on Zivot and Wang [84]. The idea to use principal components
for scenario generation is from Jamshidian and Zhu [48]. The methodology seems
to be applied for the first time to occupation times.
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8.1.1 Principal Components

Principal component analysis is a dimension reduction technique. The aim is to
explain the sample-covariance-matrix Σ̂ of a multivariate random vector by a small
number of principal components. Principal components are linear combinations of
the components of the random vector. The coefficients bk, k = 1, . . . , K, of the
principal components are successively chosen according to the following set of rules:

(i) The variance of the sum of the first k principal components is maximal,

(ii) principal components are orthogonal,

(iii) principal components have unit length (Euclidean norm).

The corresponding least-square optimization problem can be solved by Lagrange’s
method of multipliers (see e.g. [78, p. 42]); it turns out that the principal components

are eigenvectors corresponding to the K largest eigenvalues of the matrix Σ̂.
In our case, the multivariate quantity is the occupation time at the N different

price levels. The (N ×N)-sample covariance matrix of occupation times is given by

Σ̂ =
1

M
F̂F̂>, with F̂ := (F̂1, . . . , F̂M),

where M is the size of the historical sample, and where the mean-adjusted vector of
occupation times is given by

F̂t =




F̂1t − F 1
...

F̂Nt − FN


 , with F i =

1

M

M∑
t=1

F̂it,

where F̂it is the empirical sample at historical time t = 1, . . . ,M for level i. The
principal components of Σ̂ are used for the following factor model.

8.1.2 Statistical Factor Model

The factor model tries to describe the mean-adjusted stochastic process of the mul-
tivariate occupation times,

Ft = (F1t − F 1, . . . , FNt − FN)>, t = 1, 2, . . . ,

by a related sequence of stochastic factors (Gt)t=1,2,.... Preferably, the dimension
K of Gt should be smaller than Ft. In our case, the factor model is chosen to be
linear and to have no time lags (the use of this rather simple model is justified by
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the model-parameter estimation in the case study). The linear regression equation
of the statistical factor model is

Ft = µ + BGt + εt, t = 1, 2 . . . , (8.1)

where µ ∈ RN is an intercept, B is an (N ×K)-matrix of factor loadings, and the
residual error is εt

1 [84, Ch. 15]. Standard assumptions for the regression are [84]:

• εt has zero mean for all t,

• (εt)t=1,2,... is serially uncorrelated, and the vector εt is uncorrelated for all t,

• COV[εt] is time invariant,

• factors and errors are not correlated: COV[Gt, εs] = 0 for all t, s.

The input to (8.1) are the estimated factor realizations Ĝt := (Ĝ1t, . . . , ĜKt)
>,

which are chosen to be given by the foregoing principal component analysis:

Ĝkt = b̂>k F̂t, t = 1, . . . , M, k = 1, . . . , K, (8.2)

where b̂k is the kth eigenvector of the sample covariance matrix Σ̂ of occupation
times. The loadings βi for each price level i, the intercepts µi, and the residual
variances VAR[εit] = σ2

i are estimated from the regression (8.1):

F̂it = µi + β>i Ĝt + εit, t = 1, . . . , M, i = 1, . . . , N, (8.3)

yielding the estimates µ̂i, β̂i, and σ̂i. Note that σ̂i can be interpreted as the residual
variance, which cannot be explained by the factors. The tree generation method
will choose K as large such that the residual variance is small. If we neglect the
residual variance, then the dynamics of the occupation times is described entirely
by the dynamics of the factors.

If Ft is covariance stationary, then the sample covariance matrix Σ̂ is an estimator
of COV[Ft] (the same for all t), and the columns of B are approximately the first

K eigenvectors of Σ̂. In this case, the variances and covariances of the factors are

COV[Gkt, Glt] = E[b>k Ft(b
>
l Ft)

>] = b>k COV[Ft]bl ≈ b>k Σ̂bl = δklλl, (8.4)

where λl denotes the eigenvalue of eigenvector bl. Hence, the factors are approxi-
mately uncorrelated, and the ratio of the cumulative variance explained by K factors
is ∑K

k=1 VAR[Gkt]∑N
i=1 VAR[Fit]

≈
∑K

k=1 λk∑N
i=1 λi

. (8.5)

The nearer the ratio is to one, the better is the factor model.

1Notational exception: εt, though a random vector, is lower case.
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8.1.3 Autoregressive Model of the Factors

So far, the factor model has reduced the dynamics of the occupation times to the
dynamics of the factors; the estimated time series of the factors was (Ĝkt)t=1,...,M

(8.2). Under the assumption that (Ft)t=1,2,... is covariance stationary it follows from
(8.4) that the factors are uncorrelated. Indeed, the case study will show that the
estimated correlations are small. Accordingly, each factor is modeled separately
with a univariate autoregressive process. The case study will validate that it suffices
to consider an autoregressive process of order 1 (AR(1)-process). For simplicity,
we neglect any trends and seasonality and assume that the factors are covariance
stationary. These assumptions are justified by the short time horizon of several
months of the model of the electricity plant. The mean-adjusted regression-equation
of the AR(1)-process for the kth factor is

Gkt −Gk = φk(Gk(t−1) −Gk) + εkt, t = 1, . . . , M, k = 1, . . . , K, (8.6)

where Gk = 1
M

∑M
t=1 Gkt denotes the mean, φk the coupling, and εkt, t = 1, 2, . . . ,

is the sequence of i.i.d. innovations with vanishing mean and VAR[εkt] = σ2
k. Plug-

ging the estimated factors (Ĝkt)t=1,...,M into the regression (8.6) for each k, we can

estimate φ̂k and σ̂k.

8.2 The Model of Water Inflow

State-of-the-art models for the daily river throughput in mountainous areas are
periodic autoregressive models with external influences like temperature or precipi-
tation [16]. Sufficient amount of data to calibrate such models is rarely available. In
addition, local environmental factors influence the water inflow into reservoirs (cf.
start of Ch. 8). Hence, different reservoirs may have different inflow dynamics. In
our case, to cover a wide class of reservoirs, the process of water inflow considers
only the first two moments of the distribution at a specific time: The inflow at time
t is the sum of a historical mean, denoted by Īt, and an i.i.d. perturbation ε0t with
zero mean and VAR[ε0t] = σ2

0:

It = Īt + ε0t, t = 1, 2, . . . . (8.7)

The i.i.d. assumption is a simplification: If the time steps are sufficiently short,
then inflow is clearly autocorrelated. In our model, the time intervals are large
(e.g. a month); the autocorrelation of monthly precipitation can be neglected [75].
Thus, by neglecting the storage of water as ice, a monthly inflow model can be
assumed to have no autocorrelation. Moreover, the variance of inflow may change
during seasons. But, it is questionable if a more detailed model of an idiosyncratic
mountainous river adds any value to the analysis (cf. Döge [23, p. 19]).
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Model (8.7) gives for the conditional expected future inflow

T∑
s=t+1

E[Is|Ft] =
T∑

s=t+1

Īs, (8.8)

where Ft = σ(E0, . . . , Et). The formula holds because ε0s is independent of Ft for
s > t, hence E[ε0s|Ft] = E[ε0s] = 0. Expression (8.8) is used for the calculation of
the value of the plant (7.8) (p. 61).

8.3 The Generation of Discrete Distributions

Let us recall that the exogenous quantities are the occupation times of the spot price
and the water inflow. The random variables in the model of the occupation times
are the i.i.d. innovations εkt, t = 1, 2, . . . of the factors k = 1, . . . , K (Sec. 8.1.3), and
the random variables in the model of the water inflow are the i.i.d. perturbations
ε0t, t = 1, 2, . . . (Sec. 8.2). These random variables can be combined into a random
vector of innovations

(ε0t, ε1t, . . . , εKt), t = 1, . . . , T. (8.9)

By assumption, the water inflow and the factors are stochastically independent (see
start of Ch. 8). Hence, the sequence of the random vectors of innovations (8.9)
must be serially and contemporarily independent, too. Apart from independence,
we assume that each component εkt of the random vector of innovations (8.9) is
normally distributed.
The normality of the first component (water inflow) is in accordance to other models
on a continuous time scale [23]. The normality of the innovation of the factors is
motivated by a (presumed) asymptotic normality of the occupation times of the
electricity spot price as follows.

The presumption of asymptotic normality is based on the extended Central Limit
Theorem in Appendix A.4 (p. 116): If the hourly spot-price is a weak-dependent
stochastic process, then the vector of occupation times is asymptotically multivariate
normally distributed. Asymptotically means that the number of hours for which the
occupation time is calculated tends to infinity (Def. 12, p. 63). Hence, if the time
scale of the optimization problem of the electricity plant is large in comparison
to one hour, for example a month or larger, and if the spot price exhibits only
weak dependencies, then the occupation times are approximately normal. Hence,
if we choose the innovations εkt in the autoregressive models of the factors to be
normal, then the factors are normal, and if the residuals in the factor regression
(8.1) are chosen to be normal, then the normality of the factors translates into the
normality of the occupation times (the linear transformation in (8.1) from factors
into occupation times preserves normality).
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The approximative normality of the factors and of the occupation times will be
tested in the case study. To summarize: The exogenous variables are modeled such
that the random vector of innovations (8.9) has components that are

• normally distributed (conjectured by Central Limit Theorem and verified in
the case study),

• stochastically independent from the others (by the factor model and by the
independence of water inflow and electricity price),

• constitute an i.i.d. sequence over time (standard assumptions of autoregressive
models).

To generate a scenario tree, the normal distributions of the random vector of in-
novations have to be approximated by finitely-discrete distributions. A suitable
choice are binomial distributions (cf. Jamshidian and Zhu [48]). For details, see
Appendix A.5 (p. 117).

8.4 The Generation of the Scenario Tree

Let us recall again that the scenario tree is generated by the process of the dis-
cretized exogenous variables, which are the water inflow and the occupation times
(represented by the factors). The combined random quantity in the models of inflow
and occupation times is the random vector of innovations (8.9), which in turn is dis-
cretized by binomial distributions. Algorithmically, the scenario tree is inductively
generated by the discretized innovations over the time steps t = 0, . . . , T :

root node n0 (time t = 0):
The factors are initialized with their historical long-term mean:

Gk0n0 = Gk, k = 1, . . . , K.

If the end of historical sample time, M , is isochronous with the root node
(this work does not assume that), an alternative would be to initialize with

the last historically estimated values ĜkM . In any case, the autocorrelation
(dependence on initial value) of a mean-reverting AR(1)-process decays expo-
nentially [84, Sec. 3.2.3].

node n− → successor node n (time t − 1 → t):
Let the node n− be given. The successor node n is determined by a combined
value of the discretized random vector of innovations:

(σ̂0B0t, σ̂1B1t, . . . , σ̂KBKt),
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where the Bkt are independent, standardized1 binomial distributions with pa-
rameters Jkt and 1/2, k = 0, . . . , K (see Appendix A.5, p. 117). The value in
node n is denoted by

(ε0tn, ε1tn, . . . , εKtn) ∈ RK+1. (8.10)

The parent node n− has
∏K

k=0(Jkt + 1) successor nodes. Because the compo-
nents of the vector are stochastically independent, the transition probability
from node n− to node n is the product of the marginal probability of the
binomial distribution probabilities:

pn− n =
K∏

k=0

(
Jkt

j
(n)
kt

)(
1

2

)Jkt

,

where node n is associated to the vector of realizations (j
(n)
0t , . . . , j

(n)
Kt ) of the

binomial distributions; each vector in the range

(0, . . . , 0) ≤ (j0t, . . . , jKt) ≤ (J0t, . . . , JKt).

is associated to a different successor node. The values of the exogenous vari-
ables in node n at time t are computed as follows:

Factors: Let the value of the kth factor in node n− be given: Gk(t−1)n− . The
value of the kth factor in node n, Gktn, is given by the autoregressive
model (8.6), where the innovation is set to the value εktn.

Occupation Times: The value of the ith occupation time in node n is given
by the factor model (8.3):

Fitn = µ̂i + β̂>i (G1tn, . . . , GKtn)>, i = 1, . . . , N. (8.11)

Water Inflow: The value of water inflow in node n a time t is given by the
model (8.7):

Itn = Īt + ε0tn.

Note. Because the price levels are ordered, that is si > si−1 for all i, the original
random vectors of occupation times are ordered, too: For each time t, we have

Fit ≥ F(i−1)t a.s., i = 2, . . . , N.

By contrast, the discretized values (8.11) may not be ordered: There might be Fitn <
F(i−1)tn for a specific triple (i, t, n). In the optimization model of the electricity plant,
the occupation times appear in the state equations (and only there). Fortunately,

1i.e. unit variance, zero mean
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the state equations are in a sense robust against such a ‘wrong’ order as follows.
The values Fitn and F(i−1)tn enter the first two state equations (see model (SLP),
p. 68) in the form of the term

f(s̄i−1)
(
F(i−1)tn − F(i−2)tn

)
+ f(s̄i)

(
Fitn − F(i−1)tn

)
+ f(s̄i+1)

(
F(i+1)tn − Fitn

)
,

where f is a monotonically increasing function. By re-ordering the terms, we obtain

f(s̄i−1)
(
Fitn − F(i−2)tn

)
+ f(s̄i)

(
F(i−1)tn − Fitn

)
+ f(s̄i+1)

(
F(i+1)tn − F(i−1)tn

)

+ 2
(
Fitn − F(i−1)tn

) (
f(s̄i)− 1

2

(
f(s̄i−1) + f(s̄i+1)

))

︸ ︷︷ ︸
≈0

.

Hence, if Fitn < F(i−1)tn, then we can consider the ordered vector

(. . . , F(i−1)tn, Fitn, . . . ) → (. . . , Fitn, F(i−1)tn, . . . ),

which leads only to a slightly changed value in the state equations.



Chapter 9

Case study

The goals of the case study are as follows.

(1) Operationalization and quality-testing of the scenario tree generation method,

(2) testing how the constraint on risk influences the optimal objective value and
the optimal decisions,

(3) testing how the flexibility of the feasible decisions influences the optimal objec-
tive value, where flexibility means the ability to react to exogenous events or to
endogenous states.

The structure of the case study is as follows.

First, the parameters of the scenario tree generation method are estimated, and
the applied estimation methods are validated. As a by-product, a distinctive pattern
of the covariances of the occupation times of the spot prices is provided.

Second, we examine the sensitivity of the optimal objective value and (partially)
of the optimal solution with respect to changes in various model properties: Tree
size, increased flexibility by futures, stochasticity of water inflow, right-hand-side
of risk constraint, multi-period versus single-period risk constraint, relaxation of
non-anticipativity, and restriction to state-independent decisions.

Third, we test the quality of the scenario tree generation method with a self-
contained benchmark method, which uses Monte-Carlo sampling.

9.1 Estimations for the Scenario Tree Model

In this section, we validate the factor model of the occupation times of the electricity
prices: First, we estimate the statistical factor, then we estimate the autoregressive
models of each estimated factor. At the end of the section, the estimation of the
model of water inflow is discussed shortly.

81
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9.1.1 Principal Components of Occupation Times

First, we give some statistical properties of the underlying historical electricity spot-
price data, which consists of an hourly time series from 1 January 2002 to 1 February
2005 taken from the EEX market [32].

The summary statistics are in Table 9.1. The spot price is extremely leptokurtic
(Def. kurtosis: mean(Y 4)/mean(Y 2)2 − 3, where Y = S −mean(S)). The kurtosis
can be large because higher moments are sensitive to outliers. For example, consider

Table 9.1: Summary statistics of the spot price from 1/1/02 to 1/2/05: The quantiles
at thirteen different probability levels; the first four moments; the histogram (clipped
at 100 Euro/MWh); and the quantile-quantile plot with respect to the standard normal
distribution.

probability quantile
(Euro/MWh)

0.01 3.34
0.05 8.05
0.1 12.00
0.2 16.13
0.3 19.06
0.4 22.68
0.5 25.67
0.6 29.18
0.7 32.89
0.8 36.85
0.9 42.25
0.95 48.60
0.99 79.97

min 0.00Euro/MWh
maxa 1719.72Euro/MWh
mean 27.61Euro/MWh
std.dev. 19.64Euro/MWh
skewness 26.58
kurtosis 2021.57

a7. Jan. 2003, 6-7 p.m. (cf. [23])
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a two-point distribution P[S = 0] = 0.99, P[S = 1] = 0.01, which has kurtosis
= 95.0101 (cf. [53]). The outliers can be caused by an unforeseen disruption of
production capacity in the EEX area, or by an unexpected high demand of electricity.
By choosing the level sN in the set of price levels s1, . . . , sN (7.11) (p. 62) sufficiently
high, the model can take such outliers into account to some extend. The spot
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price is not normally distributed: The null hypothesis that the historical spot price
is normally distributed is rejected (0.00% p-value) in a Jarque-Bera test1. The
logarithm of the spot price gave the same test result. Thus, the distribution of the
spot price is far from normal. We will see that the occupation times have a much
more pronounced similarity to a normal distribution.

The price levels si, i = 1, . . . , N , of the occupation times are chosen to be the
empirical quantiles of the spot price at N = 13 probability levels (Table 9.1). The
intermediate points s̄i ∈ (si−1, si) with s0 = 0 are chosen to be the conditional
means.

The points in time, t = 0, 1, . . . , T , of the stochastic programming model are
chosen to be one month apart. For each month, the (normalized) occupation times
at the thresholds si are calculated. Thus, we get a monthly, multivariate time series
of occupation times of dimension N = 13. The estimation of the factor model for
this time series goes as described in Section 8.1: The sample covariance matrix,
its eigenvalues and eigenvectors b̂k (principal components) are calculated from the
mean-adjusted time series (Sec. 8.1.1). Then, a sufficient number K of principal
components has to be determined with the criterium of variance explained (8.5)
(p. 75). We assume that 95% explained variance is sufficient.

The result is that the observed variance explained by the first principal compo-
nent is 90%, and by the first two principal component it is 96% (Fig. 9.1). Hence,
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Figure 9.1: The first three principal components of the vector of occupation times.
Vertical axis: variance (eigenvalue of sample-covariance matrix). On top of bars:
Percentage of cumulated variance.

it suffices to select the first two principal components as the only factors (K = 2).

The coefficient-vectors b̂k of the principal components k = 1, 2, 3 have a distinc-
tive form (see Fig. 9.2). We give a possible, somewhat preliminary interpretation

of the first two principal components b̂k, k = 1, 2. Because the ith coefficient

1See the end of the current section for more information on this statistical test.
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Figure 9.2: The vector b̂k of coefficients of the first three principal components
k = 1, 2, 3. Each coefficient corresponds to a price level s1, . . . , s13 of occupation
times (cf. Table 9.1).

bki := (b̂k)i corresponds to the occupation time at price level si, the differences of
the ith and the (i − 1)th coefficient corresponds to the occupation time in price
interval (si−1, si], i.e., in terms of the factor model, the occupation time in price
interval (si−1, si], i = 1, . . . , N , and time (t− 1, t] is

Ft(si)− Ft(si−1) = µi − µi−1 + (b1i − b1(i−1))G1t + (b2i − b2(i−1))G2t + residual.

The observed differences b̂1i − b̂1(i−1), i = 1, . . . , 13, of the first principal component
are as follows (Fig. 9.2). The differences for i ≤ 8 have positive sign, whereas the
differences for i > 8 have negative sign. Hence, if the first factor G1t increases over
time, and if movements in the second factor G2t are neglected, then the frequencies
for high prices increase, whereas the frequencies for low prices prices decrease (and
vice versa for G1t decreasing). In other words, the first factor can be associated
with a shift between high and low prices. The differences b̂2i − b̂2(i−1) of the second
principal component have for medium-price intervals, i = 4, . . . , 8, a positive sign,
whereas for high- and low-price intervals a negative sign. Hence, the second factor
either disperses prices (G2t decreases) or concentrates them near the mean (G2t

increases). Hence, the second factor can be associated with volatility.
Empirically, a similar pattern of principal components is observed for the term

structure of interest rates: The first three principal components have the figurative
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names shift, tilt, and hump (also called butterfly) [37, 48]. In addition, the author
was able to reproduce semi-analytically the same pattern of principal components
for the occupation times of a mean-reverting gaussian markov process (Ornstein-
Uhlenbeck process) [22]. Ornstein-Uhlenbeck processes are suitable models for the
empirical spot price [15, 61].

The foregoing principal component analysis suggests to condense the original
time series of occupation times, which had dimension 13, into a 2-dimensional time
series of factors (8.2) (p. 75): (Ĝkt)t=0,1,..., k = 1, 2. The time series of the factors is
used to fit the regression equation of the factor model (8.3) (p. 75) by an Ordinary
Least-Square method. The variability explained by the regression model can be
expressed by the sample multiple correlation coefficient R2 which gave a median
of 0.9986. The regression gives the estimated factor loadings and intercepts of the
factor model.

Having estimated the factor model, it remains to estimate the time series model
of the factors themselves. Before we proceed, we test the assumption of normality
for the occupation times and for the factors (as stated in Sec. 8.3).

Only marginal normality is tested: We use a Jarque-Bera univariate normality
test. The Jarque-Bera test statistic is a function of the sample skewness and the
sample kurtosis [84, Ch. 3]. The null hypothesis of the test is normality. If the
null hypothesis is true, then discrepancies as large or larger than the one observed
in the test would take place with probability (of so-called) p-value. The test is
applied to the occupation time at each of the thirteen price levels, as well as to the
two factors. The result is as follows (Table 9.2): With a p-value of 21% or higher,
the null hypothesis of normality is not rejected for the occupation times from the
4th price level till the 10th price level. For the two factors, the null hypothesis is
not rejected with a p-value of 60% or higher. The relatively large deviation from
normality of the occupation times at very small and large levels can be attributed
to the scarcity of historical data of these rare events. Generally, in comparison to
traditional financial market data, only a small amount of historical electricity price
data is available (38 data points on the monthly time scale in this case study).

9.1.2 The AR(1)-Model of the Factors

The time series of factors is modeled by AR(1)-processes (Sec. 8.1.3). Next, we will
check whether AR(1)-processes are in fact a suitable choice.

First, the empirical autocorrelation and the empirical partial autocorrelation are
calculated. In general, autocorrelations of an AR(1)-process are exponentially de-
caying, and partial autocorrelations are insignificant after the first time lag [84]. The
observed empirical autocorrelation as well as the empirical partial autocorrelation
do no reject an AR(1)-model (Fig. 9.3).

Second, the sample covariance matrix of the factors is calculated. If all the
assumptions of the factor model of the occupation times would be exactly met, then
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Table 9.2: On the left: Jarque-Bera normality test for the historical occupation
times F̂i := (F̂it)t=1,...,M , i = 1, . . . , 13, and for the factors (Ĝkt)t=1,...,M , k = 1, 2. The
probability of the quantile si of spot price is indicated in parentheses. On the right
above: Quantile-quantile plot of F̂8 with respect to normal distribution. Below: The
same plot for a randomly generated normal sample.

occupation time p-value

F̂1 (0.01) 0.0000
F̂2 (0.05) 0.0001
F̂3 (0.1) 0.0144
F̂4 (0.2) 0.2146
F̂5 (0.3) 0.2648
F̂6 (0.4) 0.4309
F̂7 (0.5) 0.6929
F̂8 (0.6) 0.7384
F̂9 (0.7) 0.8088
F̂10 (0.8) 0.5324
F̂11 (0.9) 0.0145
F̂12 (0.95) 0.0035
F̂13 (0.99) 0.0000

factor

Ĝ1 0.6026
Ĝ2 0.6513
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Figure 9.3: The sample autocorrelation and the sample partial-autocorrelation of
the two factors. The interval bounded by dotted line is the 95%-probability around-
zero range of the sample (partial-)autocorrelations for an i.i.d. normally distributed
process.
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the factors are identical to principal components and therefore uncorrelated. The
estimated covariance matrix of the factors is

ĈOV(Ĝ1, Ĝ2) =

(
0.16 −2.7 · 10−17

−2.7 · 10−17 0.011

)
,

which indicates that the factors can be considered to be uncorrelated.
The foregoing empirical auto- and cross-correlations suggest that each factor is

modeled separately as an AR(1)-process. The parameters of the AR(1)-model were
estimated by maximum likelihood [84, Ch. 3].

The estimated mean-reverting parameters were φ̂1 = 0.80±0.10, φ̂2 = 0.45±0.15
with estimated residual variances σ̂2

1 = 0.073, σ̂2
2 = 0.0092. The residuals had not

any significant autocorrelation (5% level), and the Ljung-Box test [84, Ch. 3] did
not reject the null of white noise (5% level).

Note. The chosen AR(1)-models of the factors have no drift term or seasonality,
whereas in historical data, yearly seasonality exists [15, 61]. In the case study, the
optimization model has a time horizon not longer than four months. So we can
focus on a single season only. The exclusion of a drift is based on the poor data
base: We have to estimate a monthly factor model based on a historical data of
length of three years only, which makes it difficult to estimate drifts. In addition,
it can be doubted if a historically estimated drift can be used for the future drift.
Another reason of the exclusion of drifts and seasonality is the new approach by
means of occupation times, which demands to keep the model simple. Nevertheless,
it is possible to incorporate seasonality and drift, and we will tackle this in future
versions of this work.

9.1.3 The Water Inflow

The available historical data of water inflow is a daily time series over a single hydro-
logical year (starting in October). The data was provided by an industrial partner in
an already aggregated form: The originally available daily value is averaged over the
last five years. The available data set is additionally aggregated to yield a series of
monthly inflows: (Īt)t=1,2.... Because the original data is already highly aggregated,
the simple model (8.7) (p. 76) is considered to be appropriate for a monthly mod-
eling. The estimated standard deviation of the monthly inflow is σ̂0 = 1.96GWh,
which is used for the i.i.d. innovations ε0t, t = 1, 2 . . . of the model.

The yearly inflow is
∑12

t=1 Īt = 54GWh, which is the same order of magnitude
as the storage capacity of the reservoir (cf. Table 9.3).

9.1.4 Notation of Scenario Tree Topology

In the foregoing sections, we discussed the parameter-estimation for the factor model
of occupation times and for the model of water inflow. Let us recall that the oc-
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cupation times and the inflow constitute the exogenous variables, which generate
the scenario tree. In particular, the scenario tree is generated by the inflow and
by the two factors of the occupation times (Sec. 8.4, p. 78). Hence, there are three
exogenous values in each node of the tree. For simplicity, in the case study, the gran-
ularity of the discretization of the factors and of the inflow is constant over time. In
other words, the number of immediate successor nodes of each non-terminal node is
chosen to be the same1. Thus, the notation of the scenario tree can be kept simple.
The following notation is compatible with that of Dupačová et al. [26].

Let a and b be the number of values of the discretized innovation (conditional
on every non-terminal node) of the first and second factor of occupation times,
respectively, and let c be the respective number for the water inflow. Then the tree
is denoted by

(a · b · c)T ,

where T is the number of stages. Hence, there are a · b · c immediate successor nodes
for each non-terminal node, and the tree has ((a · b · c)T+1 − 1)/(a · b · c− 1) nodes.
Dupačová et al. [26] use a more compact notation: The product a · b · c is written
as a single number.

9.2 The Parameters of the Electricity Plant

In the foregoing section, we were concerned with the estimation of the parameters of
the scenario tree. The optimization model of the electricity plant (SLP) (p. 68) has
several additional parameters. The chosen parameter values are given in Table 9.3.
In the following, these choices are discussed.

The maximal power of production and pumping, the efficiency of pumping, and
the bounds on the water level are chosen from a mid-sized Swiss power plant.

The default value of the lower bound of the water level at final time lT is set
to the overall lower level lmin. Hence, the reservoir can be emptied down to the
minimum level lmin. Thus, in the default setting, the final filling degree is triggered
not by lT but by the perceived price of water vT at final time T .

The perceived price of water and the parameters of the constraint on risk are
chosen with help of computational experiments by solving the model over a range
of values as follows.

Let us recall that the value of the plant is that perceived by a stakeholder who
supervises the operation of the plant, and the value is both retrospective, counting
the occurred cash flows, and prospective, valuing the future usable water (see (7.3),
p. 59). For simplicity, the stakeholder is assumed to value the future water by a
fixed price, which does not change over the optimization period: vt = v = const.

1An alternative is to equip the nodes far in the future with less successor nodes. The reasoning
is that the first stage is considered as the most important one.
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Table 9.3: Parameters of the electricity plant (default values)

category parameter value

technology maximal power of production u+
max 60MW

maximal power of pumping u−max 16MW
efficiency of pumping c 70%
upper water level lmax 41GWh
lower water level lmin 10GWh
initial water level l0 40GWh

decision maker perceived price of future water vt ∀t 55 Euro/MWh
level of recursive risk α 25%
lower water level at final time lT 10GWh

market price of futures ft ∀t 28Euro/MWh

The value of future water is chosen sufficiently high such that the reservoir is not
emptied down to lmin at final time in every scenario (see Figure 9.4 for a typical
dependence).

The constraint on risk in model (SLP) (p. 68) has two parameters: The right-
hand-side ρmin and the level α of the local-CVaR set of probability measures. An
increase of α relaxes the risk constraint, as does a decrease of ρmin. If the risk-
adjusted value would be an ordinary single-period CVaR, then an α-level of 0.05 or
0.01 is usually used in practice [80]. In our case, the risk is measured by a recursive
risk-adjusted value for the process of values over time, and the set of test-probability
measures is a local-CVaR set (Def. 11, p. 28). The simplified version of this risk-
adjusted value is defined for a single random final value, for which the lower bound
(4.14) (p. 35) can be given. Based on the lower bound, a judicious choice is that αT

is in the range of ordinary single-period CVaR-levels: For example (0.25)3 = 0.02 or
(0.25)4 = 0.004, where T = 3, 4 are typical final times of moderately sized models.

In a test for a 4-period model, the level α was varied over three values (0.25 =
4
√

0.004, 0.32 = 4
√

0.01, 0.47 = 4
√

0.05), and the optimal objective value in depen-
dence of ρmin was calculated. The results do not qualitatively differ for different α
(Fig. 9.5); this was already observed for single-period models with a constraint on
risk measured by single-period CVaR [57]. Hence, the severity of the constraint on
risk will be investigated by changing the lower bound ρmin; the level α is held fixed.
Table 9.4 shows a backtest: We are interested in the specific level of CVaR that
makes the value of CVaR[VT ] equal to the value of the recursive risk-adjusted value

R
(V1,...,VT )
0 . The results indicate that the CVaR-levels are in the order of magnitude

comparable to αT .

Note. The (recursive) calculation of CVaR takes only values lower or equal to the
α-quantile of the distribution into account. As a function of α, the α-quantile of a
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Figure 9.4: Influence of the value of future water (v = vt = const.) on the final water
level (left) and on the final value of plant (right). On the left: The physical lower
and upper water levels are indicated by dashed lines. – Parameters: Tree topology
(4 · 1 · 2)4, ρmin = 105 Euro, no futures.
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Figure 9.5: The risk-mean diagram for different α-levels. Vertical axis: expected
final value of the plant, E[VT ]. Horizontal axis: lower bound ρmin on risk-adjusted
value. The right end-points of the curves are the last feasible solutions that were
numerically obtainable; to the left, the curves continue horizontally. Every data point
is a change of optimal basis. – Parameters: Tree topology (4 · 1 · 2)4, no futures.
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Table 9.4: The CVaR-levels in comparison to multi-period risk levels α. In particular,
the entries are max{β ∈ (0, 1) | CVaRβ[VT ] ≤ ρmin}, where VT is the value of the plant
at final time T , ρmin is the lower bound of the recursive constraint on risk, and CVaRβ

denotes single-period CVaR at level β. The levels are calculated for different multi-
period risk parameters α and ρmin. – Parameters as in Fig. 9.5.

α ρmin (Euro)

2.04 · 106 2.05 · 106 2.08 · 106 2.15 · 106

0.25 0.024 0.025 - -
0.32 0.039 0.041 0.042 -
0.47 0.040 0.044 0.061 0.090

finitely discrete distribution is constant for sufficiently low values of α. Hence, in
our case of a finite scenario tree, a decrease of α below a certain threshold does no
longer tighten the constraint on risk. Thus, especially for sparse scenario trees, α
has to be chosen sufficiently large.

Note. In most of the considered scenario and parameter settings, the value of the
plant is positive (cf. the discussion after Def. 1, p. 5). Hence, the risk-adjusted
value (= ρmin, if the constraint on risk is binding) is positive, too. If additional
deterministic costs are taken into account, the value is shifted downwards. The
translation invariance of recursive risk-adjusted values ensures that the same shift
can be applied to ρmin (property (iv), p. 18), yielding a negative risk-adjusted value.

The extended dispatch problem of the electricity plant allows the additional flexibil-
ity to enter positions in futures contracts (Sec. 7.4, p. 70). For each time interval,
a different, but fixed position can be chosen. As discussed, the futures are used to
hedge the production of the plant over the time horizon, and not for short-term trad-
ing. This justifies the assumption that the positions are not dynamically adapted
and hold fixed until maturity. For simplicity, the price of the futures is chosen to
be the same for all maturities, and is approximately equal to the averaged historical
spot price (cf. [23, Sec. 2.2.3.2] for a similar risk-neutral assumption).

Because the time horizon is less than a year, the discount rate r is of minor
importance and set to zero.

9.3 Implementational Setup

The model (SLP) (p. 68) with the extended profit-and-loss of futures (7.22) was
implemented in the modeling language of the software GAMS 22.0 [14]. The linear-
program solver in GAMS was the dual simplex solver CPLEX 9.1. The scenario tree
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generation method was implemented mainly in the language S of the statistical
software S-PLUS 6.2 [7]. The time-critical part of the scenario tree generation was
implemented in the language C (compiled with Microsoft VisualStudio) [52], and
the statistical estimation part used the S-PLUS module S+FinMetrics [84]. The
hardware was an AMDAthlon 64 2GHz processor with 1GByte memory, and the
operating system was WindowsXP.

As an example for the model size, let the tree topology be (5 · 2 · 6)3; therefore,
the tree has 219’661 nodes. The model in GAMS used 714 MByte of memory, and
the matrix had 1’109’287 rows, 1’197’153 columns, with 14’815’953 non-zeroes. The
presolver of CPLEX reduced this sparse matrix to 457’623 rows, 545’490 columns,
with 13’296’627 nonzeros. GAMS built the model in 103 seconds, and CPLEX solved
the model in 3.8 hours by executing 508’852 pivot steps.

9.4 Variation of the Scenario Tree Size

In this section, for a fixed number of time steps, we test the sensitivity of the optimal
objective value with respect to variations in the size of the scenario tree, that is,
with respect to the granularity of the discretization of the exogenous variables. If
the discretization becomes sufficiently fine, then the scenario tree generation method
should stabilize itself.

In the test, the tree has three time periods: T = 3 (though, the same qualita-
tive behavior was observed for less or more periods). We test the discetization for
each exogenous variable separately; a straightforward combined increase surpasses
numerical tractability.

First, the discretization of the first factor is tested. The test starts with tree
topology (2 · 1 · 1)3, which defines a binary tree where the first factor has a con-
ditional two-point distribution, and where the second factor and the water inflow
are deterministic. The tree is made finer until the first factor has fourteen different
conditional values: (14 · 1 · 1)3. The result suggests that a five-point distribution of
the first factor may be considered to be sufficient (Fig. 9.6).

Second, the discretization of the second factor is varied. The test goes from tree
topology (5 · 1 · 1)3 to (5 · 7 · 1)3. The result indicates that the second factor has
a minor influence on the optimal objective value (Fig. 9.6): The transition from a
deterministic one- to a two-point distribution reduces the optimal objective value
by 1.4%. A further increase in the number of discretizations leaves the objective
value almost unchanged. This is in accordance to the fact that the second factor
contributes much less to the variance of the occupation times in comparison to the
first factor (Fig. 9.1, p. 83).

Third, the discretization of the water inflow is tested, where the tree topology
goes from (5 · 2 · 1)3 to (5 · 2 · 6)3. The result indicates that the influence is small
(Fig. 9.6): The transition from a deterministic one-point distribution to a two-point
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Figure 9.6: The influence of the discretization of exogenous variables (first factor,
second factor, water inflow) on the optimal objective value. The tree topology is varied
as follows. First factor: (2 · 1 · 1)3 to (14 · 1 · 1)3; second factor: (5 · 1 · 1)3 to (5 · 7 · 1)3;
and water inflow: (5 · 2 · 1)3 to (5 · 2 · 6)3. – Other parameters: ρmin = 1.6 · 106.
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distribution reduces the optimal objective value by 3.7%. A further increase in
the number of discretizations leaves the objective value almost unchanged. This
is in accordance with the fact that the reservoir serves as a buffer for the water
inflow; thus the influence of higher-moment inflow-variations on the operability of
the electricity plant are small. Hence, a two-point distribution seems to be sufficient,
too.

A very similar behavior was observed for four stages. Due to limited compu-
tational resources, there are less tested tree-topologies. E.g., with the same lower
bound ρmin as in Fig. 9.6 we have

topology optimal objective value (Euro) change

(2, 1, 1)4 3604226
(4, 1, 2)4 3071034 -15% to (2, 1, 1)4

(5, 1, 2)4 3002917 -2.2% to (4, 1, 2)4

(5, 1, 3)4 2977544 -0.8% to (5, 1, 2)4

(4, 1, 4)4 3048540 1.5% to (4, 1, 2)4

(4, 2, 1)4 3200062 -11% to (2, 1, 1)4

(4, 4, 1)4 3192789 -0.2% to (4, 2, 1)4

(5, 2, 1)4 3111932 -2.8% to (4, 2, 1)4

Hence, by these tests for three and four stages, we may conclude that the first
factor requires more than a two-point distribution, the second factor has marginal
influence, and the water inflow requires at least a two-point distribution. In the
following, due to an acceptable computing time, we use four time periods with tree
topologies (4 · 1 · 2)4 and (4 · 2 · 2)4.

9.5 The Constraint on Risk

Let us recall that the constraint on risk in the model is given by a lower bound
of the recursive risk-adjusted value: R

(V0,...,VT )
0 ≥ ρmin, where the whole stochastic

process (Vt)t=0,...,T of the value of the plant is taken into account (Def. 4, p. 16).
In the node-wise setting of the optimization problem (SLP) (p. 68), this constraint
reads R0n0 ≥ ρmin, where R0n0 is the corresponding variable for the root node n0. If
the constraint is binding in the optimum, then the optimal R∗

0n0
is the risk-adjusted

value. Generally, the feasible variables (Rtn)t=0,...,T, n∈Nt are an upper bound of
the risk-adjusted value process (Lemma 5, p. 30), and a lower bound of the value:
Rtn ≤ Vtn for all t, n ∈ Nt (see (SLP)). The latter constraint can be binding, but
the marginal (dual variable) of the constraint can still be zero; for zero marginals,
a small change of Vtn may not influence the optimal solution of the model. An
example over four time intervals (T = 4) is shown in Figure 9.7. In the example,
at the root node and at t = 1, the inequality is strict in every node n: R∗

0n < V ∗
0n.
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Figure 9.7: The plots correspond to the time steps t = 0, . . . , 4 of the scenario tree.
Horizontal axis: The nodes at time t. Every non-terminal node has 8 immediate
successor nodes. For better visibility the point-wise values associated to the nodes are
extended to staircase-lines. Vertical axis: The optimal value of the plant V ∗

tn (Euro)
and the optimal upper bound R∗

tn (Euro) for the risk-adjusted value process which
coincides for t = 0 with the risk-adjusted value itself. The constraint R∗

tn ≤ V ∗
tn has

to hold in every node. An indicator function selects those nodes n for which this
constraint has a non-zero marginal value. – Parameters: Tree topology: (4 · 1 · 2)4,
ρmin = 2.14 · 106 Euro.
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At t = 2, the inequality is binding in four different nodes (e.g. in the 19th node).
From the figure, it is apparent that the constraint is binding in the nodes n at t = 2
where V2n is small.

At final time t = 4, the inequality is always binding, which means that all
uncertainty is resolved: The risk-adjusted value equals the actual value of the plant
in all nodes. Nevertheless, not all terminal nodes have non-zero marginal.

For a further investigation, we recall from Artzner et al. [5] that the dual formu-
lation of the recursive calculation (3.3), (p. 17) is

R
(V )
0 = min

τ∈T ,Q∈P
EQ[Vτ ], (9.1)

where T is the set of (Ft)-stopping times with values in {0, . . . , T}. Let (τ ∗,Q∗) be
an optimal solution. If we restrict to optimal Q∗ we just have

R
(V )
0 = min

τ∈T
EQ∗ [Vτ ], (9.2)

which is a classical optimal stopping problem. There is a smallest and largest optimal
solution. The smallest solution is

τ ∗min = min
{
t ∈ {0, . . . , T} | R(V )

t = Vt

}
. (9.3)

We have to keep in mind that our particular setup is slightly different, because
the recursive calculation (3.3) was transformed into a linear optimization problem.
Investigation of the numerical optimal solution showed that for a node n and its
successor node m it can happen that R∗

tn = V ∗
tn as well as R∗

(t+1)m = V ∗
(t+1)m, where

both equalities have non-zero marginals. In fact only the first occurrence (from t = 0
onwards) of equality is relevant, because the conditions further in the future are not
taken into account for the recursive calculation of R∗

0n0
.

Next, the constraint on risk is varied in different ways.

9.5.1 Optimal Objective Value in Dependence of ρmin

In this test, we vary the lower bound ρmin of the constraint on risk. Because ρmin

is part of the right-hand-side of the linear maximization problem (SLP) (p. 68), the
risk-mean frontier is a piece-wise affine-linear and concave function.

The impact on the optimal objective value is calculated in four cases: With
futures, without futures, with stochastic inflow, and with deterministic inflow.

The tree topology was (4·1·1)4 for deterministic inflow and (4·1·2)4 for stochastic
inflow; with different topologies we got qualitatively similar results. The findings
concerning the inflow are as expected (Fig. 9.8): The uncertainty of the water inflow
shifts the risk-mean frontier downward.

Future contracts are incorporated into the model according to Sec. 7.4 (p. 70):
For every month of the planning horizon, we can enter a different position in futures.
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Figure 9.8: The risk-mean diagram. Vertical axis: E[VT ] (expected final value of
the plant); horizontal axis: ρmin (lower bound on risk-adjusted value). On the left:
Investment in futures is prohibited; on the right: Fixed positions in monthly futures
are allowed. Upper-right curves: deterministic inflow; lower-left curves: stochastic
inflow. The right end-point of the curves are the last feasible solutions that were
numerically obtainable. – Tree topology: deterministic inflow (4 · 1 · 1)4, stochastic
inflow (4 · 1 · 2)4.

For simplicity, the positions are not changed over time, and no self-financing portfolio
process is involved (nevertheless we could make the value process self-financing by
introducing a saving account). According to (7.22), p. 71, we assume that the
profit-and-loss of the future contributes to the value of the plant only in the delivery
month (we assume zero interest rates); in reality, the profit-and-loss is realized daily
by so called margin-calls. If the additional flexibility of futures contracts is not
allowed, then the constraint on risk is active only in a relatively small interval of
the lower bound ρmin (Fig. 9.8); the optimization problem becomes infeasible by a
further increase of ρmin. Hence, the model cannot respond well to different bounds
on risk. This behavior does not change if the stochastic water inflow is altered to a
deterministic one.

Let us relate this behavior to traditional portfolio optimization in finance. In
a typical portfolio optimization problem, an investor has the choice between risky
assets that have high expected returns and relatively secure assets that have low
expected returns. The risk can be reduced by investing more into the secure assets.
By contrast, the dispatch problem of the electricity plant considers only the single
asset of electricity. If the electricity plant is restricted to sell or buy on the spot
market only, a reduction of risk is limited. The reduction can be larger if the decision
maker has the additional flexibility to open positions in futures contracts (Fig. 9.8).
The subsequent analysis (if not stated otherwise) includes always futures contracts.
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Table 9.5: Optimal first-stage solution for different lower bounds ρmin of the risk-
adjusted value. The optimal dispatch decisions for the thirteen price levels are X±

i0,
i = 1, . . . , 13 (+: producing, −: pumping, missing values are zero). The optimal
fixed future positions for the four monthly time intervals are p1, p2, p3, p4 (MW). Sign
convention: pi positive means ‘short’-position, i.e. we earn money if the underlying
electricity prices are falling. – Tree topology (4 · 1 · 2)4.

solution ρmin (Euro)

2.1407 · 106 2.13 · 106 2.0 · 106 1.0 · 106

X+
1 0, X−

1 0 , , , ,
X+

2 0, X−
2 0 , , , ,

X+
3 0, X−

3 0 , , , ,
X+

4 0, X−
4 0 , 0.882 , , ,

X+
5 0, X−

5 0 , 0.118 , 0.805 , ,
X+

6 0, X−
6 0 , , 0.195 , 1 , 1

X+
7 0, X−

7 0 , , , ,
X+

8 0, X−
8 0 , , , ,

X+
9 0, X−

9 0 , , , ,
X+

10 0, X
−
10 0 0.195, 0.799, 1, 1,

X+
11 0, X

−
11 0 0.805, 0.201, , ,

X+
12 0, X

−
12 0 , , , ,

X+
13 0, X

−
13 0 , , , ,

p1 3.531 · 104 4.213 · 104 1.161 · 105 6.753 · 105

p2 5.144 · 103 2.464 · 103 1.827 · 103 1.827 · 103

p3 −5.008 · 102 −2.974 · 103 −2.905 · 103 −2.905 · 103

p4 −2.860 · 103 −2.860 · 103 −2.860 · 103 −2.860 · 103

9.5.2 Optimal Solution in Dependence of ρmin

An example of an optimal solution in dependence of the right-hand-side of the
constraint on risk (ρmin) is shown in Table 9.5. In the example, the largest right-
hand-side is chosen to be tight (ρmin = 2.141·106 is already infeasible). The dispatch
decision is depicted only for time t = 0 (first-stage decision). The result indicates
that the dispatch decision changes not drastically by varying ρmin. If the right-hand-
side is sufficiently lowered, the dispatch decision becomes constant, and a further
change in the value distribution of the plant is generated only by the futures position.
These findings are in agreement with the aforementioned risk-mean frontiers. Similar
results were obtained for different tree topologies.

In addition, in all numerically solved model instances, the optimal dispatch deci-
sion exhibited a bang-bang behavior (cf. Table 9.5): There exists a threshold level for
production and a threshold level for pumping such that the plant produces (pumps)
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Figure 9.9: The optimal value of the plant for different lower bounds (ρmin) of the
risk-adjusted value. The value’s distribution function is plotted for each time stage.
Gray curve: Tight lower bound (2 · 106 Euro). Black curve: Loose constraint (106

Euro). – Tree topology (4 · 2 · 2)4.

at full capacity if the spot price is larger (smaller) than the respective level. Because
X±

it is the additional fractions of production (pumping) capacity at price level si,
X±

it is observed to be equal either to zero or one, or, the sum of adjacent values
equals one (‘the real threshold is between two adjacent sis’). We have not yet a
proof for that phenomenon, as we were able to give for the problems in Chapter 6.

9.5.3 The Value over Time in Dependence of ρmin

The distribution of the value of the plant over time in dependence on the constraint
on risk is considered. A tight and a loose lower bound (ρmin) is tested. The result
is as follows (Fig. 9.9). If the bound is tight, then the values are concentrated in a
relatively small range. If the bound is loose, then the values of the plant can spread
widely; even negative values occur. The staircase curve for the loose constraint can
be attributed to the position in futures in the first period, which was observed to
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Figure 9.10: The value of the plant for different constraints on risk. The value’s
distribution function is plotted for each time stage. The two different constraints on
risk are the recursive multi-period risk-adjusted value and the single-period CVaR.
Optimal objective value (E[VT ]) for CVaR: 2.65 · 106 Euro, and for the multi-period
risk: 2.62·106 Euro. – Parameters: CVaR-level α = 0.05; lower bound of risk-adjusted
value ρmin = 2 · 106; tree topology (4 · 2 · 2)4.

have a six times larger amount than for the tight constraint.

9.5.4 Comparison with a Single-Period Risk-Adjusted Value

In this test, the multi-period recursive risk-adjusted value is replaced by the single-
period risk-adjusted value CVaR (Def. 2, p. 9):

R
(V0,...,VT )
0 ≥ ρmin → CVaR[VT ] ≥ ρmin.

An example of the corresponding distributions of values of the plant over time
is shown in Figure 9.10. The example illustrates that a CVaR-constraint of the
final value forces implicitly the intermediate values to have small variations, too;
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qualitatively similar results were observed for different tree topologies. Whether
this observation depends on the particular parameter setting of the electricity plant
or constitutes a general behavior in multi-period models is subject to future research.
Nevertheless, the properties of a recursive multi-period risk-adjusted value ensure
in every possible problem-instance that the risk of intermediate values is actually
bounded.

The aforementioned test contrasts to Eichhorn and Römisch [29]. In their work,
the CVaR-constraint of the final value does not prevent large variations of interme-
diate values. Hence, without considering multi-period risk, their model is inherently
different to ours. Consequently, they observe significant differences in intermedi-
ate values by applying multi-period risk with respect to CVaR. Their multi-period
risk measure seems not to be time-consistent. The scenario tree in their case study
has an extraordinary topology: The tree has 8760 time-steps and 40 scenarios (for
comparison, a binary scenario tree would have 28760 scenarios). As a remark, they
consider a weighted sum of mean and risk in the objective; it can be shown that
this approach is equivalent to the mean in the objective and the risk bounded by a
constraint.

9.6 Expected-Value-of-Perfect-Information

The decisions on the scenario tree are non-anticipative, that is, the decision at time
t can depend only on the information up to time t. This was reflected notationally
in the decision variables (7.20) (p. 67):

X±
it = x±it(E0, . . . , Et), i = 1, . . . , 13, t = 0, . . . , T − 1, (9.4)

where the decision variables at time t depend only on the past and present exogenous
variables: E0, . . . , Et, and we recall that the dispatch table X±

it , i = 1, . . . , 13, de-
notes the fraction of production/pumping at the different electricity spot price levels
si. The term here-and-now solution is sometimes used for such non-anticipative op-
timal solutions of optimization problems (see e.g. [50, p. 138]). Taking into account
the filtration that is generated by the exogenous variables, we can equivalently say
that the process (X±

it )t=0,...,T−1 is adapted to the filtration for all i.
If the decision maker would know the future evolution of the exogenous variables,

then the non-anticipativity of the decisions could be relaxed:

Definition 13 (Anticipative decisions). The decisions are anticipative if they
can depend on past and future exogenous variables E0, . . . , ET :

x±it(E0, . . . , ET ) for all i, t. (9.5)

The relaxation of non-anticipativity says that all decision variables (even those at
intermediate times) can take values for each scenario separately. This implies by
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the state equations that the state variables Pt, Lt and Vt take different values for
each scenario, too. In other words, using the fact that the scenario tree corresponds
to a finite filtration Ft = σ(E0, . . . , Et), t = 0, . . . , T , the anticipativity says that
the decisions X±

it and the state variables Pt, Lt and Vt are assumed to be just FT -
measurable for all t, and no longer Ft-measurable.

The optimal solution of the anticipative problem is called a wait-and-see solution
[50, p. 8]. Because non-anticipativity is relaxed, the objective value of the wait-
and-see solution (WS) is always larger (maximization problem) than that of the
here-and-now solution (HN). The difference is the so-called expected-value-of-perfect-
information (EVPI) [50, p. 140]:

EVPI := WS− HN ≥ 0.

The EVPI can be interpreted to be the maximum amount a decision maker would be
ready to pay in return for complete (and accurate) information about the future (see
e.g. [11, p. 137]). In the case of the model of the electricity plant, the information
about the future consists in knowing the future values of the water inflow and of the
occupation times of spot prices.

Next, we calculate the EVPI for the optimization problem of the electricity
plant. We shall emphasize that the same scenario tree (of exogenous variables) is
used in the HN-problem as in the WS-problem, as well as are all parameters; the
only difference is that in the WS-problem the variables take independently values
for each scenario, whereas in the HN-problem the value of a variable at time t has
to be identical in different scenarios whenever the scenarios have a node n ∈ Nt of
the scenario tree in common.

For the numerical example, we assume that positions in futures are not allowed;
if the future is known, futures give an arbitrarily high profit (unless there would be
an upper bound on the positions). The absence of futures implies that the model
is very insensitive with respect to the constraint on risk (cf. Fig. 9.8). Thus, for
simplicity, we consider the model without constraint on risk.

The results are as follows (Table 9.6). The EVPI depends heavily on the lower
bound on the final water level: If the reservoir must be as full at final time as at the
beginning (LT ≥ l0), then the information about the future is more valuable than if
the reservoir can be emptied (LT ≥ lmin).

9.7 State-Independent Decisions

The counterpart of the foregoing anticipative decisions (Def. 13) are decisions that do
not use any information from the exogenous process (Et)t=0,...,T at all. Such decisions
are identical in all scenarios. Hence, the function in the original non-anticipative
dispatch decision (9.4) is replaced by constant values:
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Table 9.6: The expected-value-of-perfect-information (EVPI) for different lower
bounds of final water level LT : Initial level l0 and minimal level lmin. The model
is without futures contracts and without the constraint on risk. LT ≥ l0/min means
LTn ≥ l0/min ∀n ∈ NT . Tree topology: (4 · 2 · 2)4.

objective value (Euro) EVPI

water level here-and-now (HN) wait-and-see (WS) (WS−HN)/HN

LT ≥ l0 520’776 937’399 80%
LT ≥ lmin 2’495’064 2’664’400 7%

Definition 14 (State-independent decisions, [23, p. 57]). The decisions are state-
independent if they do not depend on exogenous variables E0, . . . , Et:

x±it(E0, . . . , Et) = x±it = const. for all i, t.

Note that the dependence on time t and on the exogenous electricity price levels si

is still given; The dispatch decision at a specific time t is still a dispatch table x±it ,
i = 1, . . . , 13, with respect to the thirteen spot prices levels si.

If we consider the scenario tree of exogenous variables, a state-independent dispatch
decision (dispatch table) at a specific stage is identical for all nodes on that stage.

State-independent decisions (as well as the foregoing wait-and-see decisions) al-
low to formulate the stochastic optimization model path-wise [23,79]. The path-wise
formulation considers just a fan of scenarios; a non-trivial scenario tree is not needed.
Thus, it is crucial to know whether the original non-anticipative decisions on a sce-
nario tree are better than the state-independent decisions. The non-anticipative de-
cisions are allowed to depend on the history of the exogenous variables; hence they
depend implicitly on the state variables (therefore the notion ‘state-independent
decision’ for their counterpart). Thus, non-anticipative decisions are useful if the
constraints on the state variables are relatively tight.

In the test, the optimal objective value of the problem that is confined to state-
independent decisions is compared with the problem that has the original, non-anti-
cipative decisions. It has to be emphasized that the original optimization problem
is altered only in a single aspect: The dispatch table at each time t is no longer
allowed to vary over the set of nodes at time t of the scenario tree. The optimal
objective value (expected final value of the plant, E[VT ]) is calculated for different
bounds on final water level and for different bounds on risk.

The result is as follows (Table 9.7). If the final water level must be large (LT ≥
l0), then an adaptive decision has a considerable advantage, and tighter bounds of
risk do still lead to a feasible solution. If the reservoir can be emptied (LT ≥ lmin),
then the differences are much less pronounced. The test was also executed with
different prices of future water giving similar results.



9.8. Quality-Test of the Scenario Tree Generation Method 105

Table 9.7: The optimal objective value for state-independent decisions and for non-
anticipative decisions. The lower bounds on the final water level and on the risk-
adjusted value are varied. – Tree topology (4 · 1 · 2)4.

constraints objective value (Euro)

LT ≥ R0 ≥ state-independent non-anticipative

lmin 0 4’216’743 4’625’948
lmin 1.9·106 2’370’202 2’779’487
lmin 2.0·106 infeas 2682305
lmin 2.1·106 infeas 2585123
lmin 2.2·106 infeas infeas

l0 0 24’030 1’023’124
l0 0.1·105 14’312 1’013’406
l0 0.2·105 infeas 1’003’688
l0 3.6·105 infeas 670’734
l0 3.7·105 infeas infeas

9.8 Quality-Test of the Scenario Tree Generation

Method

The applied quality-test is a heuristic technique to detect rough errors in the scenario
tree generation method. The test is based on Kaut and Wallace [51] and compares
the original method with a benchmark method.

9.8.1 Definition of Stability and Bias

We need the following definitions. The objective function of the optimization prob-
lem to be tested is denoted by g(·, ·), where the first argument holds the variables
(which have to fulfil certain constraints), and the second argument holds the exoge-
nous values. The optimal objective value of the benchmark-optimization problem
is denoted by g(x̃, Ẽ), where x̃ denotes the optimal variables, and where Ẽ de-

notes the exogenous values. The vector Ẽ (which is a notational abbreviation for
the stochastic process of exogenous values over time) is assumed to have the exact

probability distribution. Let El, l = 1, . . . , L, be approximations of Ẽ of different
qualities. Let g(xl,El) be the optimal objective value for the approximation El with
optimal solution xl. A scenario tree generation method should fulfil the following
three requirements [51].

(i) In-sample stability : g(xl,El) ≈ g(xm,Em), l, m ∈ {1, . . . , L}. The required
approximation quality depends on the particular problem. In words: If sce-



106 Chapter 9. Case study

nario trees of different, but sufficient qualities are considered, then the optimal
objective value should be (almost) the same.

(ii) Out-of-sample stability : g(xl, Ẽ) ≈ g(xm, Ẽ), l, m ∈ {1, . . . , L}. In words:
If the objective value function of the benchmark model is evaluated with the
optimal solutions of different approximative models, then the optimal objective
value should be (almost) the same.

(iii) Absence of bias : g(xl, Ẽ) ≈ g(x̃, Ẽ), l = 1, . . . , L. In words: An optimal
solution of every approximative model should be an (almost) optimal solution
of the benchmark model.

9.8.2 Quality-Test with Monte-Carlo Sampling

The benchmark method is chosen to use Monte-Carlo sampling. Monte-Carlo sam-
pling that creates a scenario tree would usually need conditional sampling. For
statistically reasonable sample sizes, the resulting tree would be numerically not
tractable. Moreover, the scarcity of available historical data, which is used in the
statistical estimation procedures, may prohibit a proper comparison of the original
method with the benchmark method. Hence, for simplicity, we assume the following
setup:

• The optimization problem is restricted to use state-independent decisions (cf.
Sec. 9.7); In this problem formulation, the scenarios of the exogenous vari-
ables need not (but can be) in tree-form. Hence, unconditional Monte-Carlo
sampling can be used for the benchmark model, resulting in a fan of scenarios.

• The quality-test considers only the generation method for the occupation
times, and not for the water inflow (the data and models for inflow are not far
developed).

• An hourly time-series model is used to generate random sample-paths of spot
prices. Such a (sufficiently long) sample-path is used for the statistical estima-
tion in the original method. The sample-paths also generate sample-paths of
monthly occupation times (by counting frequencies) in the benchmark method.

The workflow of the scenario generation methods is shown in Table 9.8. The hourly
spot price model is Lucia and Schwartz’ model [61]. It is a mean-reverting autore-
gressive (AR(1)-)model of the logarithm of the spot price where the daily and yearly
variations, as well as the different behavior at holidays and week-ends, is taken into
account by a deterministic additive function. The model was fitted to hourly data
from 1 January 2002 to 10 March 2005 from the EEX [32].

The quality-tests of stability and bias (Sec. 9.8.1) is performed for single and
three-period models (Table 9.9). The constraint on risk is neglected in the test; it is
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Table 9.8: The workflow of the scenario generation methods.

historical time series

?
estimation

hourly spot price model

?

estimation
(from sample-path)

factor model

?
discretization

scenario tree of
occupation times

?

random
sampling

random sample-paths of
occupation times

(benchmark)

Table 9.9: The optimal objective value for different quality-tests of the scenario-tree
generation method. The in-sample test calculates an optimal solution xl with respect
to scenario tree El, l = 1, . . . , 5. The out-of-sample test applies the xls and the
scenarios Ẽ from the benchmark model (Monte-Carlo model with 10’000 scenarios).
The bias test calculates the optimal solution x̃ of the benchmark model. – Constraint
on risk is relaxed.

quality-tests (deviation from in-sample in %)

tree topology in-sample out-of-sample bias
l of El g(xl, El) g(xl, Ẽ) g(x̃, Ẽ)

1 (6·6·1)1 864’164 860’283 (0.4%) 871’980 (0.9%)
2 (12·12·1)1 863’703 865’109 (0.2%) (1.0%)
3 (2·2·1)3 2’019’806 2’015’473 (0.2%) 2’029’175 (0.5%)
4 (4·4·1)3 2’011’987 2’021’970 (0.5%) (0.9%)
5 (6·6·1)3 1’981’209 2’011’129 (1.5%) (2.4%)
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assumed that the relaxed model suffices to test the scenario tree generation method.
The resulting differences between the original method and the Monte-Carlo method
are in the range of several percentages or smaller. Let us recall that the original
method uses only the two first principal components of the occupation times, and the
used factor model is valid only under several theoretical assumptions. Considering
this, the differences are acceptable.
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Conclusion

We were able to build a multi-stage stochastic programming model for the op-
timization of high-frequency dispatch-decisions over a long-term horizon, and the
operability of the concept could be numerically validated. In addition, for simple
dispatch models, exact optimal bang-bang solutions are derived, and the optimiza-
tion problems are related to coherent risk measurement.

The applied factor model and principal component analysis of occupation times
of the electricity spot price allowed to consider a small number of relevant factors,
which exhibit a characteristic pattern (Figure 9.2, p. 84). The low number of factors
enabled the generation of moderately sized scenario trees. In particular, four-period
models with sufficient granularity in the discretization of the exogenous variables
could be solved (1 period =̂ 1 month).

The presence of a substantial expected-value-of-perfect-information indicates that
stochasticity is a vital part in the modeling of electricity plants. The superiority
of non-anticipative decisions (adapted on a scenario tree) over state-independent
decisions depends on the constraints: If the constraints on the water level are tight,
then the adaptiveness increases the expected value of the plant considerably, and
the bound on risk can be tighter (Table 9.7, p. 105).

The constraint on risk is given by a lower bound on a recursive risk-adjusted
value that has the desirable properties of multi-periodicity, coherency and time con-
sistency. Moreover, it is consistent with single-period coherent risk measurement
and fits into the optimization model as a set of linear constraints. In the simple
case of the risk of a final outcome, a lower bound of the risk-adjusted value can be
given. Although a single-period risk-adjusted value gave similar results in terms of
intertemporal values of the plant, and the presented counterexample of time consis-
tency for a non-recursive risk-adjusted value (Fig. 3.2, p. 22, cf. Artzner et al. [5])
may rarely occur in applications, only the applied risk-adjusted value can ensure the
aforementioned desirable properties in all problem instances.
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Further Work

11.1 Extensions for Risk Measurement

• The linear optimization problem for the recursive risk-adjusted value can be
algebraically dualized, which yields a coherent risk-adjusted value on the prod-
uct space of state and time. Strong duality in the case of infinite state spaces
could be investigated.

• The set of test-probability measures can be related to Lagrange-multipliers of
a non-anticipativity constraint [68]. This concept is not yet fully extended to
multiple periods. The goal would be a unification of the concepts of expected-
value-of-perfect-information (EVPI), coherent risk-adjusted values, optimiza-
tion of production models, and the concept of flexibility [62].

• Time consistency preserves an order over time, and its relation to stochas-
tic dominance over time may be instructive. In addition, time consistency
considers the view of future, better informed observers, similarly to EVPI.

11.2 Extensions for the Power Plant Model

• The presented model is for a single electricity plant; it could be extended to a
whole power portfolio. In addition, the model formulation allows in principle
the incorporation of demand (see Appendix A.6, p. 118).

• An alternative choice of modeling would be to bound the water level only in
expectation [79], which is a less severe restriction leading to a greater flexibility
in the dispatch decisions.

• The parametric value of future water, vt, could be calculated by the linear
optimization model of the electricity plant as follows. In the model (SLP)
(p. 68), the water level is constrained in each node. The node-wise optimal
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dual variable can be interpreted as the marginal price of water in that node.
In the linear dual optimization problem, the parameter vt is in the technology
matrix, in the right-hand-side and in the objective function. If vt is interpreted
as a variable in the dual problem, we get a quadratic optimization problem in
vt and in the remaining dual variables.

• The characteristic principle component structure of the occupation times (Fig. 9.2,
p. 84) seems to be valid for general mean-reverting Gaussian Markov pro-
cesses [22]. In addition, in an alternative study, an hourly model for the
logarithmic spot price may be considered, which ensures positive model prices
by definition.

• The exact solutions of the simple dispatch problems could be extended to
distributions of the spot price S that are discrete. For example, the production
model (6.1) is basically the optimization problem of CVaR, which does not
require continuity. Hence, the optimal solution can be extended to the case
where S has a general distribution. Specifically, the density (6.2) could be
replaced with the expression in the first line in (2.10).

In addition, a preliminary study of the complementary equations of the gen-
eral dispatch problem indicates that it has a (rather complicated) bang-bang
solution, too.

The exactly solvable multi-period model could be extended to infinitely many
periods or to continuous time.

• The number of hours may be chosen differently for different time steps of
the multi-stage problem. For example, later stages could be be separated by
longer time intervals, because ignorance prevents a detailed modeling of the
far future. – Most of the performed analysis carries over unchanged.

• The value of the plant could depend on future production. For example:

Ṽt :=
t∑

k=1

e−rk · (Pk − Pk−1) +
T∑

k=t+1

e−rk · EP∗ [Pk − Pk−1|Ft], t = 0, . . . , T,

where the expectation is taken with respect to an appropriate probability
measure P∗.
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A.1 Quantiles

Let X be a random variable. The distribution function of X is denoted by F : q 7→
P[X ≤ q]. The aim is to define inverses of F . Unfortunately, the set of pre-images
of a given value1 α ∈ (0, 1) can have several elements (the distribution function is
flat) or it can be empty (the distribution function has a jump). To encompass all
pre-images, an ‘upper’ and ‘lower’ inverse is defined.

Definition 15 (Upper-, Lower-Quantile). Let α ∈ (0, 1). The upper-quantile
of a random variable X is

q+
α := sup{q | P[X ≤ q] ≤ α}

= sup{q | P[X < q] ≤ α},
= inf {q | P[X ≤ q] > α},

(A.1)

and the lower-quantile is

q−α := inf {q | P[X ≤ q] ≥ α},
= inf {q | P[X < q] ≥ α},
= sup{q | P[X ≤ q] < α}.

(A.2)

The second and third equalities in the quantile definitions are not that obvious;
hence a proof is provided.

Proof. We consider the first equalities for the lower- and upper-quantiles as the
definitions. So we have to proof the remaining two.

Let us proof that q+
α = qα := sup{q | P[X < q] ≤ α}. Because P[X < q] ≤

P[X ≤ q] ∀q it holds that q+
α ≤ qα. Because F is monotone, F has only countably

many points of discontinuity, i.e. points q with P[X = q] > 0. By definition,

1α ∈ (0, 1) is to ensure finiteness; the whole unit interval α ∈ [0, 1] could be taken into account
by taking pre-images ±∞.
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α- s

q−α

c
s

q+
α

-

F (q)6

α-
s c

s

q−α = q+
α

-

F (q)6

Figure A.1: Upper- and lower-quantiles of a discrete random variable with distribu-
tion function F for different levels α. If the pre-image is empty, then the α-quantile
is unique (picture on the right).

P[X ≤ q] = P[X < q] + P[X = q]. Let us assume that q+
α < qα would hold. By the

countability of discontinuities, there exists a q ∈ R with

P[X ≤ q] = P[X < q] and q+
α < q < qα. (A.3)

The inequality q < qα implies that P[X < q] ≤ α, and therefore, by (A.3), P[X <
q] = P[X ≤ q] ≤ α. But this is a contradiction to q+

α < q in (A.3).
The same reasoning can be applied to q−α .
The second equalities are yielded by considering the complementary set of con-

straints with respect to the first equalities. ¥

Clearly, the lower- is smaller than the upper-quantile: q−α ≤ q+
α . The ±-notation

should be a reminder of the fact that the mapping α 7→ q+
α is right-continuous on

α ∈ (0, 1), and the mapping α 7→ q−α is left-continuous on α ∈ (0, 1) (see e.g. [34,
Lemma 2.72]).

Definition 16 (Quantile). Let q−α and q+
α be the lower- and upper-quantile of a

random variable at a level α. Then q ∈ [q−α , q+
α ] is called an α-quantile.

If there are ambiguities, the random variable X and the level α are written explicitly:
q = qα(X).

Lemma 8. We have

(i) q ∈ [q−α , q+
α ] ⇐⇒ {

q
∣∣ P[X < q] ≤ α ≤ P[X ≤ q]

}
,

(ii) q−α (X) = −q+
1−α(−X),

(iii) q(λX) = λq(X) for λ ≥ 0.

Proof. (i): Because F : q 7→ P[X ≤ q] is monotone, the set {q | P[X ≤ q] ≥ α} is
an interval. Because F is right-continuous, the interval is closed:

[
inf{q | P[X ≤ q] ≥ α},∞)

.
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Because q 7→ P[X < q] is monotone, the set {q | P[X < q] ≤ α} is an interval.
Because q 7→ P[X < q] is left-continuous, the interval is closed:

(−∞, sup{q | P[X < q] ≤ α}].

The intersection of the intervals is therefore

{
q | P[X < q] ≤ α ≤ P[X ≤ q]

}
=

[
inf{q | P[X ≤ q] ≥ α}, sup{q | P[X < q] ≤ α}]

def
= [q−α , q+

α ].

(ii): q−α (X)
def
= inf{q | P[X ≤ q] ≥ α}
= − sup{−q | P[X ≤ q] ≥ α}
= − sup{ q̃ | P[X ≤ −q̃] ≥ α}
= − sup{ q̃ | P[−X ≥ q̃] ≥ α}
= − sup{ q̃ | P[−X < q̃] ≤ 1− α},

which is the form of the second line in (A.1). Therefore
def
= −q+

1−α(−X).

(iii): By (i), q is an α-quantile of λX if and only if it is in the set

{q | P[λX < q] ≤ α ≤ P[λX ≤ q]} = {λq̃ | P[λX < λq̃] ≤ α ≤ P[λX ≤ λq̃]}
= λ{q̃ | P[X < q̃] ≤ α ≤ P[X ≤ q̃]}. ¥

A.2 Consistency with Single-Period Risk Measure-

ment

Assume that the set P of test-probability measures is stable. We show (4.4) (p. 27):
The recursive risk-adjusted value RXT

0 equals the single-period coherent risk-adjusted
value minQ∈P EQ[XT ].

Consider a single step in the recursive calculation (3.4) (p. 19) of RXT
0 . It is a

minimization of the conditional expectation of RXT
t+1. We make use of (4.6) (p. 29)

and the stability of P to write it as

min
Q∈P

EQ[RXT
t+1|Ft] =

∑
n∈Nt

(
min

qn∈Pn

∑
m∈Nt+1

qnmRXT

(t+1)m

)
χn, (A.4)

where the definitions as for (4.6) are used. A minimization over two time-steps at
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once is

min
Q∈P

EQ[RXT
t+2|Ft]

def
= min

Q∈P

( ∑
n∈Nt

( ∑
m1∈Nt+1

qnm1

∑
m2∈Nt+2

qm1m2
RXT

(t+2)m2

)
χn

)

stbl.
=

∑
n∈Nt

(
min

qn∈Pn

∑
m1∈Nt+1

qnm1
min

qm1∈Pm1

∑
m2∈Nt+2

qm1m2
RXT

(t+2)m2

)
χn

(A.4)
=

∑
n∈Nt

(
min

qn∈Pn

∑
m1∈Nt+1

qnm1
min
Q2∈P

EQ2 [R
XT
t+2|Ft+1]χm1

)
χn

(A.4)
= min

Q1∈P
EQ1

[
min
Q2∈P

EQ2 [R
XT
t+2|Ft+1]

∣∣∣Ft

]
.

Hence, owing to the stability of P , the minimization over two time steps equals the
recursive minimization over the single steps. A similar calculation gives for each
m = 1, 2, . . . , T − t that

min
Q∈P

EQ[RXT
t+m|Ft]

= min
Q1∈P

EQ1

[
· · · min

Qm−1∈P
EQm−1

[
min
Qm∈P

EQm [RXT
t+m|Ft+m−1]

∣∣∣Ft+m−2

]
· · ·

∣∣∣Ft

]
.

Setting t = 0 and m = T , we find for the conditional expectation on the left-hand-
side that

EQ[RXT
T |F0] = EQ[RXT

T ]
(3.4)
= EQ[XT ],

whereas we have on the right-hand-side the recursive definition of RXT
0 .

A.3 Segregative Production and Pumping

We prove that an optimal solution of (SC) (p. 61) does not simultaneously produce
and pump.

Let u+
t (·) := u+

t (·,E0···Et) and u−t (·) := u−t (·, E0···Et) be the control-functions
for production and pumping at time t. Let us assume that for every time t the u±t
are such that the constraints in the optimization problem are fulfilled. The idea of
the proof is to define for every feasible control-functions (u+

t , u−t ) the new functions

ũ+
t := max(u+

t − u−t , 0) for all t,

ũ−t := max(u−t − u+
t , 0) for all t.

By definition, the new functions are not simultaneously strictly positive. It rests to
verify that the new functions are admissible, give the same water levels as the old
functions, and lead to an increased profit.

For ease of readability, we suppress the time index t: u± := u±t ; so the following
expressions are supposed to hold for all t.
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First, we verify that the functions ũ+ and ũ− are in the set (7.2) (p. 57) of
admissible control-functions. Clearly,

0 ≤ ũ+ ≤ u+
max and 0 ≤ ũ− ≤ u−max.

The maximization max(·, 0), as well as the functions u+ and −u−, are monotonically
increasing. Hence, ũ+ is monotonically increasing. The functions u− and −u+ are
monotonically decreasing. Hence, ũ− is monotonically decreasing. Thus, the control-
functions are admissible.

The control functions enter the state equation of water level (7.7) (p. 61) in the
form of the following expression:

ũ− − ũ+ = max(u− − u+, 0)−max(u+ − u−, 0)

= max(u− − u+, 0)−max
(− (u− − u+), 0

)

= u− − u+.

Thus, the water level is the same as with the original control-functions.
Next, we consider the differences in the state equation of profit-and-loss (7.6)

between the original and the new control-functions. Let s ∈ R+ denote spot price
in a specific hour. The difference in the respective expressions is

(
s · ũ+(s)− 1

c
s · ũ−(s)

)
−

(
s · u+(s)− 1

c
s · u−(s)

)

= s
(

max
(
u+(s)− u−(s), 0

)− u+ +
1

c

(
u−(s)−max

(
u−(s)− u+(s), 0

)))

= s
(1

c
− 1

)(
u+(s) + u−(s)−max

(
u+(s), u−(s)

)) ≥ 0,

where the last inequality holds because s ≥ 0, 1
c
−1 > 0 and u+, u− ≥ 0. If there is a

spot price s in a specific hour such that u+(s) > 0 and at the same time u−(s) > 0,
then the profit-and-loss is strictly increased.

By the state equation of the value of the plant (7.8), the value of the plant is
increasing in the profit-and-loss. Thus, if we take the new control, the objective
value, which is the expected final value, is increased.

The risk-adjusted value was assumed to be increasing in the value of the plant.
Thus, the constraint on risk is still satisfied under the new control.

Overall, we have shown that the new control-functions fulfil every constraint of
the optimization problem and that they strictly increase the objective value when-
ever the old control-functions do simultaneously produce and pump.

A.4 Asymptotics of Occupation Times

Consider the occupation time Ft(s) at time t and price level s (Def. 12, p. 63). If the
sequence of random variables of the hourly spot price (S h

H
)h=1,2,... is i.i.d., then the
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indicator functions (χ{S h
H
≤s})h=1,2... are also i.i.d., and the classical Central Limit

Theorem says that the asymptotic (H →∞) distribution of Ft(s) is normal, that is,
the distribution function of the normalized occupation time converges pointwise and
uniformly to the standard normal distribution function. It may be noted that in the
i.i.d. case, the occupation time is identical to the empirical distribution function of
the spot price.

The Central Limit Theorem is valid under a weaker assumption as follows.

Definition 17. Let G andH be sub-σ-algebras of the σ-algebra F of the probability
space (Ω,F ,P). The strong mixing coefficient is

α(G,H) := sup
G∈G,H∈H

∣∣∣P[G ∩H]− P[G]P[H]
∣∣∣.

The strong mixing coefficient measures the stochastic dependence of two σ-algebras.
The strong mixing coefficient for a process (Xt)t=1,2,... with gap m is defined as

αm := sup
n∈N

α
(
σ(X0, X1, . . . , Xn), σ(Xn+m, Xn+m+1, . . . )

)
.

Proposition 9 (Central Limit Theorem for mixing processes, [70]). If the strong
mixing coefficients of the electricity price (S h

H
)h=1,2,... are summable, i.e.

∞∑
m=0

αm < ∞, (A.5)

then the vector of occupation times
(
Ft(s0), . . . , Ft(sN)

)
is asymptotically (H →∞)

multivariate normally distributed.

The foregoing proposition is useful because the hourly electricity price can be mod-
eled by autoregressive processes [15, 61]. Many types of autoregressive processes
have summable strong mixing coefficients [2, 25]. Therefore, the vector of occupa-
tion times may be considered to have asymptotically a multivariate normal distribu-
tion. To clarify: The definition of an autoregressive process allows for non-normal
innovations, such that the process at a specific time is generally not normal (see
e.g. [13, Def. 3.1.2]).

A.5 Binomial Approximation of Normal Distri-

bution

Consider an i.i.d. sequence of Bernoulli random variables (Xi)i=1,2,...,J : P[Xi = 1] =
P[Xi = 0] = 1/2. The sum of these variables has a binomial distribution. By
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the classical Central Limit Theorem, the sum is asymptotically (J →∞) normally
distributed. The binomial distribution with parameters (p = 1/2, J) has values
j = 0, 1, . . . , J with probabilities

pj =

(
J

j

)(
1

2

)J

, j = 0, . . . , J. (A.6)

To get an approximation of a standardized normal distribution, the binomial distri-
bution is mean-adjusted and divided by its standard deviation, giving values

1√
1
4
J

(
j − 1

2
J
)
, j = 0, . . . , J. (A.7)

Empirically, the approximation quality is good for low values of J . A proven er-
ror bound in terms of the supremum-norm of the difference between the standard
normal and standardized binomial distribution function is 1/

√
2πJ [45]. Let Bkt,

k = 0, . . . , K, t = 1, . . . , T , be stochastically independent, standardized binomial
distributions with parameters Jkt and 1/2; the number of attainable values, Jkt + 1,
is allowed to vary over different components k and time t. The random vector of
innovations (8.9) on p. 77 is approximated by these standardized binomial distribu-
tions:

(ε0t, ε1t, . . . , εKt) ≈ (σ̂0B0t, σ̂1B1t, . . . , σ̂KBKt), t = 1, . . . , T. (A.8)

For a given t, the discrete distribution on the right-hand-side has
∏K

k=0(Jkt + 1)
different values.

A.6 Profit-and-Loss of Demand

Let us assume that the demand of electricity is modeled by an exogenous hourly
stochastic process (D h

H
)h=1,2.... The demand is sold at a fixed price cd to a costumer.

The profit-and-loss in time interval t to t + 1 is

P dem
t+1 − P dem

t =
H∑

h=1

Dt+ h
H

(cd − St+ h
H

),

where the discounting factors are suppressed for simplicity. Let us approximate the
demand with a step function (similarly to (7.10)):

Dt+ h
H
→ D̃t+ h

H
:=

M∑
i=1

d̄iχ{di−1<D
t+ h

H
≤di},
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where the range of the demand is discretized in M + 1 levels:

d0 < d1 < · · · < dM ,

with intermediate levels d̄i ∈ (di−1, di). Then the approximated profit-and-loss can
be written as

P dem
t+1 − P dem

t = H

N,M∑
i,j=1

d̄j(cd − s̄i)
(
Ft+1(si+1, dj+1)− Ft+1(si, dj)

)
,

where

Ft+1(s, d) :=
1

H

H∑

h=1

χ{S
t+ h

H
≤s, D

t+ h
H
≤d}

is the joint price-demand occupation time in the time interval [t, t + 1].
Alternatively, the demand could be considered as a dependent process as follows.

Empirically, the demand is strongly correlated with the electricity price [15]. Hence,
a simple model of demand is Dt = f(St), where f : R→ R is a measurable function,
and the associated profit-and-loss is

P dem
t+1 − P dem

t = H

N∑
i=1

f(s̄i)(cd − s̄i)
(
Ft+1(si)− Ft+1(si−1)

)
.

In principle, using the foregoing proposals, we can integrate the demand in the
existing modeling framework.
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May 2003.

[21] M. Dempster and R. Thompson. EVPI-based importance sampling solution
procedures for multistage stochastic linear programms on parallel MIMD archi-
tectures. Annals of Operations Research, 90:161–184, 1999.

[22] M. Densing. The covariance structure of occupation times of an Ornstein-
Uhlenbeck process. Technical report, Institute for Operations Research, Uni-
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In W. Jäger and H.-J. Krebs, editors, Mathematics – Key Technology for the
Future, pages 632–646. Springer, 2003.

[65] N. Osman. Kleines Lexikon deutscher Wörter arabischer Herkunft. Beck,
München, sixth edition, 2002.

[66] M. V. Pereira and L. M. Pinto. Multi-stage stochastic optimization applied to
energy planning. Mathematical Programming, 52:359–375, 1991.

[67] G. C. Pflug. Scenario tree generation for multiperiod financial optimization by
optimal discretization. Mathematical Programming, 89:251–271, 2001.

[68] G. C. Pflug. A value-of-information approach to measuring risk in multi-period
economic activity. Journal of Banking & Finance, 30:695–715, 2006.

[69] F. Riedel. Dynamic coherent risk measures. Stochastic Processes and Applica-
tions, 112:185–200, 2004.
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