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Preface

This volume collects research work on the rheology and fluid dynamics of highly viscous emul-
sions carried out at ETH Zurich between 2001 and 2005. A number of topics included in the
book had earlier been published in the ”Rheologica Acta” and in the ”Journal of Non-Newtonian
Fluid Mechanics” and have been covered in lectures held at ETH Zurich. Results in this volume
are the headstone for two Ph. D. scholarships financed by the Swiss National Science Foundation
(SNF).

The main focus of the volume is put for concreteness on highly viscous emulsions, with special
regard to their rheology and fluid mechanics. Non-equilibrium Thermodynamics is adopted
to construct flow models to describe their rheology and microstructure. Computer codes are
developed to solve the models for flows encountered in rheometry and in flow geometries of
processing relevance.

I hope that the volume will help the reader to get a feeling for the type of physical questions
that one should ask in theory and experiment with regard to the rheology and fluid mechanics
of highly viscous emulsions.

Prof. E. J. Windhab is acknowledged for giving me the possibility to carry out this research in
an environment of pre-financed projects. The engineering approach to science was a good source
of inspiration for this work. The fruitful discussions, the constructive criticisms, and the useful
comments helped me to complete this work. I am indebted to Dr. P. Fischer, Dr. R. Gunde,
Dr. J. Shaik, and the other present and past members of the Laboratory of Food Process
Engineering at ETH Zurich for their help, support, discussions, and interest towards my work.
I am grateful to Dipl. Phys. ETH A. Braun for the help in developing the codes of Chap. 5.2.3.
Prof. K. Feigl (Michigan Technological University) and Dr. D. Megias-Alguacil (ETH Zurich)
are acknowledged for fruitful collaboration and stimulating discussions.

In particular I want to express my gratitude to Prof. B. J. Edwards (University of Tennessee)
for the hospitality at the Chemical Engineering Department, and his advice in carrying out this
work. I further wish to thank Prof. A. N. Beris and Prof. N. J. Wagner (University of Delaware)
for the invitation at the Chemical Engineering Department at University of Delaware and useful
discussions concerning the comparison of my models with experimental data. Prof. H. H. Winter
(University of Massachusetts) is acknowledged for the interest and enthusiasm towards my work
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and for two stimulating discussions at ETH Zurich. I am grateful to Prof. A. Gadomski (Univer-
sity of Bydgoszcz) for inviting me to give a series of lectures as part of the official ceremonies for
“The international Year of Physics 2005” in Bydgoszcz (Poland) and the possibility to discuss
some topics of this thesis in the light of Statistical Physics.

The most important thank you goes to my parents, Jürgen and Lidia Dressler, to my brother
Jürgen Dressler, to Bettina Jungen, and to my grandparents Franz and Marta Dressler for their
support, help, and love.

Zurich, April 2006 Marco Dressler

Front cover: Microstructure-rheology relationships for a dilute emulsion. The figure shows model pre-
dictions for the steady shear viscosity, η, and the major droplet axis, L, as functions of shear rate, γ̇.
These qualitative predictions of emulsion behavior are obtained from the rheological model Eq. (3.18)
(p. 48) with the following parameters: φ = 0.1 (disperse phase volume fraction), p∗ = −0.25 (viscosity
ratio), G/Γ = 4 (ratio of matrix and interfacial elastic modulus), λCλS/λ2

n = 1 (ratio of relaxation
times) k = 0 (EWM-power law index of matrix phase), θ = 0.001 (phenomenological coupling of mat-
rix and interfacial elasticity). Droplet deformation is shown schematically for various regimes of the
major-droplet length curve. In Sec. 4.2 (Fig. 4.9) emulsion properties are discussed for the regime of
low and intermediate shear rates.



Contents

List of Figures vii

1. Introduction 1
1.1. Motivation and Literature Survey . . . . . . . . . . . . . . . . . . . . . . 1
1.2. A Simple Toy Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2. Theory 13
2.1. Master Equation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2. Functional Calculus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
2.3. Microstructural Constraints . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4. Flow Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.1. Unconstrained Microstructure . . . . . . . . . . . . . . . . . . . . 17
2.4.2. Volume Preserving Microstructure . . . . . . . . . . . . . . . . . . 25

3. Modeling 31
3.1. Matrix Viscoelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

3.1.1. System Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
3.1.2. Poisson and Dissipation Bracket . . . . . . . . . . . . . . . . . . . 32
3.1.3. General Flow Equations . . . . . . . . . . . . . . . . . . . . . . . 33
3.1.4. System Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . 35
3.1.5. Phenomenological Matrices . . . . . . . . . . . . . . . . . . . . . 35
3.1.6. Mechanical Energy Dissipation . . . . . . . . . . . . . . . . . . . 38
3.1.7. Model Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3.2. Break-up and Coalescence . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.1. System Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . 43
3.2.2. Droplet Number Equation . . . . . . . . . . . . . . . . . . . . . . 44
3.2.3. System Hamiltonian . . . . . . . . . . . . . . . . . . . . . . . . . 45
3.2.4. Phenomenological Matrices . . . . . . . . . . . . . . . . . . . . . 46
3.2.5. Mechanical Energy Dissipation . . . . . . . . . . . . . . . . . . . 46
3.2.6. Model Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

3.3. Surfactants . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

v



3.4. Highly Concentrated Emulsions . . . . . . . . . . . . . . . . . . . . . . . 50
3.5. Critical Comment on Emulsion Models . . . . . . . . . . . . . . . . . . . 51

4. Rheology 53
4.1. Model with Matrix Viscoelasticity . . . . . . . . . . . . . . . . . . . . . . 53

4.1.1. Simple Shear Flow . . . . . . . . . . . . . . . . . . . . . . . . . . 54
4.1.2. Elongational Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.1.3. Four-Roll Mill Flow . . . . . . . . . . . . . . . . . . . . . . . . . . 67

4.2. Model with Break-up and Coalescence . . . . . . . . . . . . . . . . . . . 69
4.2.1. Simple Shear Flow . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.2.2. Elongational Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5. Simple Laminar Flows 85
5.1. Channel and Tube Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

5.1.1. Model with Matrix Viscoelasticity . . . . . . . . . . . . . . . . . . 88
5.1.2. Model with Break-up and Coalescence . . . . . . . . . . . . . . . 90

5.2. Annular Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
5.2.1. Couette Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97
5.2.2. Poiseuille Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.2.3. Helical Flow . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

6. Conclusions 111

Bibliography 113

A. Comparison with Experimental Trends 121
A.1. Single Droplet Deformation in Viscoelastic Matrix Fluid . . . . . . . . . 121
A.2. PIB/PDMS blend with low viscoelastic contrast . . . . . . . . . . . . . . 123
A.3. HPC/PDMS600 blend with high viscoelastic contrast . . . . . . . . . . . 128



List of Figures

1.1. Morphological and viscometric properties of a Toy Model . . . . . . . . . 8

4.1. Rate of mechanical energy dissipation for a model emulsion . . . . . . . . 55
4.2. Semiaxes of ellipsoidal droplets for start-up of shear flow . . . . . . . . . 56
4.3. Viscometric properties for start-up of shear flow . . . . . . . . . . . . . . 57
4.4. Viscometric and morphological properties for steady shear flow . . . . . . 59
4.5. Shear viscosity and first normal stress coefficient for various emulsions . . 62
4.6. Viscometric and morphological properties for uniaxial elongational flow . 64
4.7. Viscometric and morphological properties for planar elongational flow . . 66
4.8. Morphological emulsion properties for start-up of four-roll mill flow . . . 68
4.9. Steady shear flow properties of a model emulsion with break-up . . . . . 71
4.10. Properties of the droplet distribution function for steady shear flow . . . 72
4.11. Droplet distribution functions for steady shear flow . . . . . . . . . . . . 74
4.12. Transient shear flow properties of an emulsion with break-up . . . . . . . 76
4.13. Properties of the droplet distribution functions for transient shear flow . 77
4.14. Droplet distribution functions for transient shear flow . . . . . . . . . . . 78
4.15. Uniaxial elongational flow properties of a model emulsion with break-up . 80
4.16. Properties of the droplet distribution function in steady elongational flow 81
4.17. Droplet distribution function for steady uniaxial elongational flow . . . . 82

5.1. Channel flow profiles for data of a PIB/PDMS emulsion . . . . . . . . . . 89
5.2. Channel flow for an emulsion with break-up . . . . . . . . . . . . . . . . 91
5.3. Stress and droplet shape profiles for channel flow . . . . . . . . . . . . . 92
5.4. Droplet size and number density profiles for channel flow . . . . . . . . . 93
5.5. Couette flow of an emulsion in an annular gap . . . . . . . . . . . . . . . 98
5.6. Droplet size and number density profiles for Couette flow . . . . . . . . . 99
5.7. Droplet semiaxes for Couette flow . . . . . . . . . . . . . . . . . . . . . . 100
5.8. Poiseuille flow of an emulsion in the annular gap . . . . . . . . . . . . . . 102
5.9. Droplet size and number density profiles for Poiseuille flow . . . . . . . . 103
5.10. Droplet semiaxes for Poiseuille flow . . . . . . . . . . . . . . . . . . . . . 104
5.11. Helical flow of an emulsion in the annular gap . . . . . . . . . . . . . . . 106
5.12. Stress profiles for helical flow . . . . . . . . . . . . . . . . . . . . . . . . . 107

vii



5.13. Droplet size and number density profiles for helical flow . . . . . . . . . . 108
5.14. Droplet semiaxes for helical flow . . . . . . . . . . . . . . . . . . . . . . . 109

A.1. Semiaxis of a silicon droplet in viscoelastic corn syrup fluid . . . . . . . . 122
A.2. Shear flow properties of a PIB/PDMS emulsion . . . . . . . . . . . . . . 124
A.3. Properties of a PIB/PDMS emulsion for start-up of shear flow . . . . . . 126
A.4. Shear stress and first normal stress difference for a HPC/PDMS blend . . 129



1. Introduction

The main purpose of this initial chapter is to introduce into the field of emulsion rhe-
ology and to make a first acquaintance with the experimental characterization and the
theoretical description of emulsions. It is useful to start with a summary of relevant
work in the field and to motivate the need to develop continuum descriptions for highly
viscous emulsions. Then, to present a simple Toy Model sharing some basic properties
of all descriptions to be developed later.

1.1. Motivation and Literature Survey

In recent years efforts have been undertaken to describe the flow of highly viscous emul-
sions. Highly viscous emulsions are liquids consisting of a thick matrix fluid with homo-
geneously dispersed droplets of a second, thinner fluid referred to as the disperse phase.
These materials play an important role in the manufacturing of foods, pharmaceuticals,
and plastics so that an understanding of their flow behavior, microstructure character-
istics, and material properties is of interest for the applied engineer. For the theoretician
the modeling of highly viscous emulsions is a challenge since a set of generally accepted
flow equations which are able to describe their rheology together with the dynamics of
the disperse phase inclusions is not available. The issue seems even more challenging if
one brings to mind that there is no consensus on the mathematical variables describing
appropriately highly viscous emulsions. This lack of consensus and knowledge is a good
starting point and bears the opportunity to achieve new insight and to gain alternative
understanding.

It is clear that highly viscous emulsions, as introduced in the preceding paragraph,
are complicated systems exhibiting complex flow behavior due to the highly viscous
(i. e. thick) matrix, the characteristics of the matrix-disperse phase interface, and the
large number of dispersed droplets. Due to these properties, they exhibit astonishing
flow behavior, e. g. die swelling or rod climbing (Bird et al., 1987), which in turn in-
fluences the microstructural characteristics. Therefore, model systems are investigated
both experimentally and theoretically to gain advanced knowledge on highly viscous

1



1. Introduction

emulsions. The model systems mentioned in the preceding sentence consist, e. g. , of a
Newtonian (i. e. thin) drop in another Newtonian liquid. For such a model emulsion,
the complexity “thick matrix fluid” is eliminated and the complexity “large number of
droplets” is reduced by investigating a thin matrix fluid and a single droplet, respectively.
The advantage of such model systems are easier sample preparation and experimental
characterization, e. g. droplet deformation and break-up measurements. The disadvant-
age is absence of important emulsion characteristics, e. g. matrix viscoelasticity and
droplet coalescence. Therefore, data on model systems should be considered carefully
when speaking about highly viscous emulsions. In the following paragraph we summar-
ize research activities on model emulsions which have been and are currently undertaken
at ETH Zurich.

The considerable amount of work dealing with processing, rheology, and Computational
Fluid Dynamics (CFD) of highly viscous emulsions which has been carried out in ETH’s
Laboratory of Food Process Engineering is summarized in (Windhab et al., 2005): Wolf
(1995) studied the dynamics of a single emulsion droplet in shear flow, i. e. fluid motion
due to relative motion of parallel walls confining it. Kaufmann (2002) extended this
work studying deformation of single droplets in more general flows, e. g. stretching flows
and in the gap between rotating concentric or eccentric cylinders. With these experi-
ments, deformation characteristics and break-up criteria for single droplets have been
determined. Megias-Alguacil et al. (2004) refined the measuring techniques to extract re-
liable surface tension data from deforming droplets and to study the role of surfactants.
Droplet deformation experiments are time consuming and difficult due to the macro-
scopic length and time scales and the non-equilibrium nature of droplet deformation.
Therefore, Computational Fluid Dynamics (CFD) of model emulsions is used to under-
stand model emulsions. This allows also to look at flows which are difficult to realize
experimentally. In Feigl et al. (2003) a CFD approach has been developed for studying
single droplet deformation in mixed, dispersing-type, flow fields. This approach consists
of a finite element method to solve the Navier-Stokes equations for Newtonian liquids,
calculation of a particle path in the flow, and calculation of droplet deformation along the
path using a boundary integral technique (Loewenberg and Hinch, 1996). In Kaufmann
(2002) the hybrid scheme has been applied to stretching flows and concentric/eccentric
cylinder geometries to simulate flow of model emulsions. The idea behind the choice of
these flows and geometries is the desire to model extrusion processing of highly viscous
emulsions. However, the numerical procedure is for Newtonian liquids and it does not
account for the coupled effects of droplet deformation, breakup/coalescence, and thick
matrix on the flow and processability of highly viscous emulsions. Furthermore, it is not
possible to model the droplet size distribution function of polymer blends (cf. Caserta
et al., 2005, 2004) within this simulation approach. In this volume we try to give an
idea how these issues can be addressed using non-equilibrium Thermodynamics. We
conclude this section giving an overview of the relevant research work carried out by
other researchers.
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1.1. Motivation and Literature Survey

In the 1930s, Taylor (1932, 1934) presented experimental and theoretical studies on de-
formation of a single Newtonian fluid droplet in a Newtonian matrix fluid. In the 1950s,
Oldroyd (1953, 1955) developed a theory for the linear viscoelastic behavior of emulsions
of Newtonian liquids with an ensemble of droplets. Using an effective medium approach
and assuming that the interfacial tension between the emulsion phases does not change
with deformation, he derived an expression for the complex modulus characterizing lin-
ear viscoelastic emulsion behavior. In the dilute disperse phase regime, i. e. , for small
droplet concentration, Oldroyd’s expression for the complex modulus is consistent with
the results of Taylor (1932, 1934). The works of Oldroyd represent the first steps towards
the development of a continuum description of highly viscous emulsions and have been
the starting point for further research. In the 1970s, they have been picked up by Choi
and Schowalter (1975) who adopted a cell model and a perturbation expansion of droplet
concentration and droplet deformation to refine Oldroyd’s expression for the complex
modulus. This allowed for more reliable prediction of experimental data. Finally in the
1990s, Palierne (1990) generalized Oldroyd’s expression for the elastic modulus to allow
disperse and continuous phases to be viscoelastic. In the limit of constant interfacial
tension, the predictions of Palierne’s theory are identical with the predictions of Oldroyd
(1953, 1955) and Choi and Schowalter (1975). Today, this model represents the state-
of-the-art to describe and to fit experimental data for highly viscous emulsions taken in
the regime of linear viscoelasticity. It is also adopted to obtain the droplet size in highly
viscous emulsions. However, the Palierne Model for highly concentrated emulsions as
well as the Taylor theory for dilute systems are for the small deformation regime; they
cannot describe the non-linear viscoelastic emulsion behavior.

At the beginning of the 1990s, Doi and Ohta (1991) put forth a continuum theory for a
mixture of two immiscible fluids, which still today is very popular to describe the flow
of highly viscous emulsions. The Doi-Ohta theory was developed to describe the flow of
Newtonian fluids of equal viscosity and roughly equal density. Furthermore, the theory
assumes a 50:50 emulsion so that both phases maintain continuity (co-continuous sys-
tems). The rheology of the Doi-Ohta fluid differs from that of a single Newtonian fluid
because of the presence of interface, which is accounted for by two variables: the inter-
face orientation tensor and the amount of interfacial area. Over the past fifteen years,
non-equilibrium Thermodynamics has become a well established theory to investigate
fluids with internal microstructure (cf. e. g. Beris and Edwards, 1994). Recently, poly-
mer blends and emulsions have become the subject of investigation in non-equilibrium
thermodynamics, with the goal being to derive dynamical time evolution equations for
these systems. The first attempts (cf. e. g. Wagner et al., 1999) in this direction focused
on blends of Newtonian liquids with a co-continuous morphology and, in particular, on
the improvement of the Doi-Ohta Model. These efforts tried to obtain more realistic
relaxation expressions within the context of the Doi-Ohta theory without changing the
microstructural variable of the Doi-Ohta Model.
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1. Introduction

Since 1998, research activities in theoretical polymer blend rheology shifted also towards
blends with a droplet morphology, where a disperse phase is present as microscopically
small droplets in a continuous matrix. Maffettone and Minale (1998) introduced the first
constrained-volume model for the deformation, orientation, and advection of ellipsoidal
droplets of a Newtonian fluid in a second Newtonian matrix fluid. In this model, the
droplet is described in terms of a second-rank, contravariant microstructural tensor with
constant determinant to account for volume preservation of the disperse phase. Note that
the model, as developed by Maffettone and Minale (1998), is purely phenomenological
and does not give an expression for the extra stress tensor. In the model it is assumed
that the so-called ”volume preservation constraint” is fulfilled for arbitrary homogen-
eous deformation and that the shape of the droplet can be represented by an ellipsoid
even close to break up. This approximation is in good agreement with computer sim-
ulations of Loewenberg and Hinch (1996) and with experimental observations of Guido
and Villone (1998). Aït-Kadi et al. (1999) undertook a thermodynamic study of general
constrained-volume models which lead to a restricted set of time evolution equations for
these systems. Later, this restricted set of time evolution equations was generalized by
Edwards et al. (2003). Grmela et al. (2001) adopted a non-equilibrium Thermodynam-
ics approach and introduced a phenomenological expression for the elastic free energy
to obtain a thermodynamically consistent expression for the extra stress tensor for the
Maffettone and Minale (MM) Model. This expression has been evaluated and compared
with experimental data for emulsions by Yu et al. (2002). Efforts have been under-
taken to generalize the MM Model to describe platelet like droplet configurations as
found for thin droplet phase liquids (Maffettone and Greco, 2004), non-Newtonian fluid
components (Minale, 2004), and to extract viscometric properties from single droplet
deformation experiments (Minale and Maffettone, 2003).

An alternative constrained-volume model for blends of Newtonian liquids with a droplet
morphology was presented in Almusallam et al. (2000), the ALS Model. The model is
written in terms of a modified anisotropy tensor of the Doi-Ohta type to describe the
disperse phase morphology. For this variable, an approximate volume for the droplet
inclusions is defined in terms of its scalar invariants, and a set of time evolution equations
is proposed, which was intended to conserve the approximate volume related to the
anisotropy tensor, cf. Chap. 2. However, this is a quite difficult task, which was fully
accomplished only recently by Edwards and Dressler (2003) adopting the methodology
proposed by Edwards et al. (2003). The Doi-Ohta Model and the model of Almusallam
et al. (2000) have been invoked in several instances to recover morphological properties of
polymer blends from rheological measurements (see, e. g. Jansseune et al., 2000, 2001).
The idea of these works is to measure viscometric material functions (e. g. transient and
steady-state shear stresses and first normal stress differences) which can be linked to
an orientation angle via a stress-optical rule. Then, a rheological blend model such as
the Maffettone Minale Model, the Doi-Ohta Model, or the model of Almusallam et al.
(2000) is invoked to obtain the average size of the dispersed droplets (Jansseune et al.,
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1.1. Motivation and Literature Survey

2000). To conclude this section, we summarize some recent experimental work on single
droplet deformation in complex fluids which has been published in the 1990s.

Delaby et al. (1994) investigated droplet deformation in polymer blends during uniaxial
stretching flow focusing on the influence of the viscosity ratio in the regime of negligible
interfacial tension. Their method has been developed for working directly with polymer
melts in the high temperature regime. It involves observation of the elongated droplets
at room temperature after extensional flow at high temperature in the molten state and
quenching. However, compared to the Couette, four-roll-mill, or opposed jet devices the
method of Delaby et al. (1994) is rather impractical since it requires one to elongate and
quench several specimens at various elongation strains to study time dependent effects.
The measurements of Delaby and coworkers considered the time-dependent deformation
of single polyethylene droplets with radius of approximately 100µm in a polystyrene spe-
cimen in constant strain rate uniaxial extensional flow with a viscosity ratio1 between
0.005 and 13. Iza et al. (2001) studied the rheology of compatibilized immiscible vis-
coelastic polymer polystyrene/polyethylene blends. They performed dynamic, steady
shear, and transient experiments to probe the effect of interfacial modification on the
rheological behavior. The presence of the copolymer was observed particularly in tran-
sient experiments after start up of shear flow. Vinckier et al. (1997) investigated the
response of semi-concentrated model blends (10% dispersed phase), consisting of slightly
viscoelastic polymers, on a step-wise increase in shear rate and observed a deformation
of droplets into fibrils. Similar studies have been performed by Lacroix et al. (1999)
in shear and elongational flows for several polymer blends and the results have been
compared with the Doi-Ohta Model (cf. above). Experimental measurements of droplet
deformation in uniaxial elongational flow have been reported by Chin and Han (1979)
who used a conical flow channel and injected single droplets along the central axis, where
the flow is uniaxial but the strain rate experienced by a single droplet changes during
time as it moves through the channel.

Starting from 1998, Guido and coworkers have published a series of articles in which an
accurate characterization of the behavior of micro-droplets in various types of shear flows
is given. The materials which are adopted in the experiments of Guido and coworkers are
polyisobutene and polydimethylsiloxane at room temperature and the size of the droplets
is approximately 50−100µm. Guido and Villone (1998) correlated droplet images taken
along the shear and the vorticity direction and presented independent measurements of
the three semi-axis of an ellipsoidal drop in steady shear for Newtonian fluid compon-
ents. Though the experiments of Guido and Villone (1998) where performed in a shear
rheometer the viscoelastic response of the droplet phase was not measured because the
focus was mainly on the characterization of the full ellipsoidal shape. In Guido et al.
(2003a,b) single droplet dynamics in a non-Newtonian Boger fluid is reported and it is

1The viscosity ratio is defined as the ratio of disperse phase and matrix phase zero-shear viscosity.
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1. Introduction

found that the elasticity of the matrix phase decreases the steady state orientation angle
of the droplet with respect to a Newtonian matrix fluid. Earlier, Levitt et al. (1996)
performed similar experiments for non-Newtonian blends detecting a so-called droplet
widening effect for start-up of simple shearing flow, i.e., an increase of the vorticity axis of
the droplet with respect to its equilibrium value. These authors tried to find correlations
of drop deformation with the elastic bulk properties of the blend components.

1.2. A Simple Toy Model

In this volume we construct flow equations for emulsions which take into account phys-
ical mechanisms influencing their rheology. To become familiar with some common
properties of these equations it is instructive to introduce a simple Toy Model which
shares some properties with these models and to solve the Toy Model for simple shear-
ing flow, which is done analytically. Furthermore, the model constitutes a good test for
the computer codes to be developed later.

Lets study a dilute emulsion of two Newtonian liquids of equal viscosity which is con-
sidered as a continuum with constant density, each particle of it containing an ensemble
of disperse phase droplets with equal size. It is assumed that the droplets deform into
ellipsoids in the flowing emulsion and that break-up and coalescence do not occur. The
volume fraction of disperse phase is φ, the droplet radius is R, and interfacial tension
of the emulsion components is Γ′. The elastic modulus of the emulsion is defined as
Γ = Γ′/R, i. e. interfacial tension over droplet radius. For this equi-viscosity emulsion
we introduce the following set of model equations

∇ ·v = 0 , (1.1a)

Re
Dv

Dt
= −∇p + ∇ ·σ , (1.1b)

De
DS

Dt
= De

(
S ·LT + L ·S

)
+ f1φ

(
S− 3

I2

1

)
, (1.1c)

where ∇ is the Nabla operator for derivative with respect to space and D · /Dt denotes
the material derivative. Equation (1.1a) is the continuity equation for an incompressible
medium, where v denotes the macroscopic velocity field of the flowing emulsion. Equa-
tion (1.1b) is the Cauchy momentum balance equation for the velocity field, where Re is
the Reynolds number, p is the isotropic pressure, and σ is the extra stress tensor. The
extra-stress tensor is given with Eq. (1.1d), below. Equation (1.1c) is the droplet shape
tensor equation for the deforming droplets. In this equations S is a positive definite
second rank tensor, LT = ∇v is the transpose of the velocity gradient tensor, f1 < 0
is a phenomenological parameter, I2 is the second invariant of the droplet shape tensor,
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1.2. A Simple Toy Model

De is the Deborah number, and 1 denotes the unit tensor. With the value f1 = −16/35
the droplet shape tensor equation is consistent with the Taylor Theory for single droplet
deformation (Taylor, 1932, 1934). The Eigenvalues of the droplet shape tensor are the
squared semi-axis of the deforming ellipsoidal droplets and the Eigenvectors are the dir-
ections of the semi-axis with respect to a fixed coordinate system. Equation (1.1c) is
such that the determinant of the droplet shape tensor is constant, detS = 1, which
reflects incompressibility of the disperse phase fluid. Equation (1.1c) is the Maffettone-
Minale Model for equi-viscosity conditions. To close the above set of flow equations we
need to specify the extra stress tensor, σ.

The extra stress tensor in the Cauchy momentum balance equation is defined as

σ = φ

(
I1S− S ·S− 2

3
I21

)
, (1.1d)

where I1, I2 denote the first and second invariant of the droplet shape tensor, respectively.
This expression for the extra stress tensor will be derived in Chap. 3. The contribution
of the matrix and disperse phase viscosity is neglected in the expression of the extra
stress tensor, for simplicity. The above model is a set of partial differential equations for
the velocity, pressure, and droplet shape tensor field which can be solved for arbitrary
flow geometries, defined through initial and boundary conditions for the unknown fields.
A simple analytical solution of the Toy Model may be obtained for a quiescent emulsion.
In deed for L = 0 we recover ellipsoidal droplets, i. e. S = 1.

Before evaluating the Toy Model we need to comment on the volume preservation con-
straint (detS = 1) and the assumption of ellipsoidal droplets inherent to Eq. (1.1c) since
these two aspects are basic ingredients of the descriptions to be developed later. The
approximation of ellipsoidal droplets has been investigated experimentally for droplets
with diameters between 40 and 500µm by Guido and Villone (1998) and by Hu and
Lips (2003) in simple shear flow and in planar hyperbolic flow, respectively. It is found
that even close to break-up droplets can be appropriately circumscribed with ellipsoids.
The use of the droplet shape tensor in Eq. (1.1c) implies that this is also true on much
smaller length scales than those examined experimentally.

The model equations (1.1) are written down in dimensionless form. To obtain physical
properties the dimensionless quantities are to be scaled: extra stress tensor (pressure)
with the elastic modulus, Γσ (Γp), droplet shape tensor with the equilibrium radius of
droplets in the undeformed state R2S, and the velocity gradient tensor with a character-
istic time scale of droplet retraction L/λS, where λS is a characteristic time scale of the
interface, in the following named relaxation time. Then the Reynolds and the Deborah
number are

Re =
UρL

ΓλS

, (1.2a)
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Figure 1.1.: Morphological and Viscometric properties according to the Toy Model for
steady shear flow (φ = 0.01 f1 = −16/35).

De = λS

√
2D : DT , (1.2b)

where U is a characteristic velocity, L a characteristic length scale of the flow problem,
D = 1/2(L+LT) is the rate of deformation tensor, and ” :” denotes contraction of second-
rank tensors. In the following we solve the Toy Model for simple shear flow as used in
rheological characterization and we discuss model predictions for the droplet shape and
the viscometric functions.

For steady shear flow, v = v1(x2)e1 (e. g. in the cone-and-plate geometry for standard
rheometers) the continuity equation (1.1a) and the Cauchy momentum balance (1.1b)
are trivial and the droplet tensor equation (1.1c) reduces to a set of algebraic third order
equations. These can be solved analytically to give

S =
1

(f̃1)1/3

f 2
1 + 2De2 f1De 0
f1De f 2

1 0
0 0 f 2

1

 , (1.3)

where f̃1 = f 4
1 (f 2

1 + De2). The Eigenvalues of this matrix read

λ1,2 =
1

S2
33

±

√
De2S2

12

f 2
1

+ S2
12 , (1.4)

λ3 = S33 , (1.5)

and are the squared semi-axis of the deformed droplets. Evaluating these expressions
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1.2. A Simple Toy Model

for the Eigenvalues with Eq. (1.3) gives the droplet semi-axis.

L2 =
f 2

1 + De2 + De
√

f 2
1 + De2

(f̃1)1/3
, (1.6a)

B2 =
f 2

1 + De2 −De
√

f 2
1 + De2

(f̃1)1/3
, (1.6b)

where L, B are the major and the minor droplet axis in the shearing plane, respectively.
The droplet axis perpendicular to the shearing plane is W =

√
S33 < 1. The components

of the extra stress tensor can be calculated easily from Eq. (1.1d) using the solution (1.3).
With I2 = 3/S33 one obtains

σ12 =
φf

1/3
1 De

(f 2
1 + De2)2/3

, N1 =
2φDe2

f
2/3
1 (f 2

1 + De2)2/3
, N2 = −1

2
N1 . (1.7)

We see that the model allows to predict the non-equilibrium droplet shapes as well as
the viscoelastic response of the emulsion due to the elastic interface between the fluid
phases. The morphological and viscometric properties according to Eqs. (1.6) (1.7) are
shown in Fig. 1.1, where the first and second normal stress coefficients are defined as
Ψ1 = N1/De2 and Ψ2 = N2/De2, respectively.

Inspecting Eqs. (1.6) we see that the major droplet axis and the minor droplet axis are al-
ways larger and smaller than one, respectively. The vorticity axis is also smaller than one
which means that under equi-viscosity conditions the droplets deform into cigar shaped
particles, in the following named prolate. This is consistent with experimental data and
theoretical studies of Taylor (1932, 1934). Therefore, for thick disperse phase fluids, the
prediction of the Toy Model is in qualitative agreement with experimental data. For
thin disperse phase fluids one expects pancake shaped droplets, named hereafter oblate.
With the Toy Model it is not possible to describe these droplet configurations. From
Eqs. (1.7) we learn that the Toy Model allows to predict the viscoelastic response of the
emulsion which is due to the elastic interface. It allows to describe transient as well as
steady state deformations and it can be applied to any flow, since it is expressed in terms
of the arbitrary velocity field. The ratio of normal stress differences is very large com-
pared to typical values of −0.1 for polymer melts. Note that the Toy Model is only for
Newtonian emulsion components and it does not account for break-up and coalescence
phenomena. Moreover, it is not immediately clear how oblate droplet configurations can
be modeled and how matrix viscoelasticity influences droplet deformation.

The problems of the Toy Model discussed in the preceding paragraph are a shortcom-
ing of almost all theoretical works on emulsion rheology, and in particular of the works
dealing with the droplet shape tensor theory and the anisotropy tensor theory. In these
models the viscoelastic response of the emulsion is exclusively due to the elastic interface
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1. Introduction

between the components. It is clear that the limitation of Newtonian emulsion compon-
ents is a very severe one since commercial emulsions are made of high molecular weight
polymers with a characteristic non-Newtonian flow behavior. If the emulsion consists
of a continuous matrix of one polymer with microscopic droplets of a second phase, the
viscoelastic response is due to the matrix and not just the interface. Thus one should use
a description for emulsions consisting of a viscoelastic matrix phase with microscopically
small droplet inclusions of a second phase. In this volume we give a systematic approach
to the description of highly viscous emulsions, based on non-equilibrium Thermodynam-
ics. We show how the deficiencies of the Toy Model and other emulsion models can be
overcome. To conclude this chapter we give a short summary of the treatise.

In Chap. 2 we introduce a master equation of non-equilibrium Thermodynamics which
allows us to derive flow equations for viscoelastic fluids. We use this approach to obtain
dynamic equations for a complex fluid with a microstructure described in terms of a
second-rank tensor, e. g. a polymer solution. From this set of time evolution equations
we construct then flow equations for a viscoelastic fluid with a volume preserving mi-
crostructure, e. g. droplets of a Newtonian liquid in an Eulerian fluid. The descriptions
derived in Chap. 2 are for a compressible and non-isothermal medium.

Chapter 3 is dedicated to the development of thermodynamically consistent models for
highly viscous emulsions to consider various effects which are not taken into account
in the Toy Model. We are not so much striving for quantitative accuracy in model
prediction, but are instead attempting to develop an understanding for what type of
effects are necessary in order to render an accurate physical understanding of highly
viscous emulsions. Specifically, in Sec. 3.1 we focus on emulsions with a viscoelastic
matrix phase, we take into account the effect of matrix deformation on droplet shape,
and we consider both prolate and oblate droplet configurations. In Sec. 3.2 the model
is extended to incorporate phenomena of break-up and coalescence of droplets. This is
done through the introduction of a droplet distribution function to quantify the size of
the droplets. In Secs. 3.3 and 3.4 we point out how emulsions containing surface active
molecules and emulsions with a high volume fraction of disperse phase are to be modeled
in the framework of non-equilibrium Thermodynamics.

In Chap. 4 the emulsions models are solved for transient and steady flows as encountered
in the cone-and-plate rheometer, elongational rheometers, and in the stagnation point
of the four-roll-mill apparatus, i. e. we study flows with a homogeneous rate of deform-
ation history. We perform calculations for the models with matrix viscoelasticity and
break-up and coalescence. This is done to examine the extent to which matrix vis-
coelasticity and droplet break-up and coalescence affect the rheology and morphological
characteristics of highly viscous emulsions. We draw conclusions about the importance
of matrix viscoelasticity and about the size distribution of droplets for emulsion rheology.
A preliminary fit of the models with rheological and morphological data of emulsions is
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1.2. A Simple Toy Model

postponed to the Appendix.

In Chap. 5 we solve the model equations for steady laminar flows in channels, tubes,
and in the gap between concentric cylinders. This is done to demonstrate that the
models are suitable for CFD of highly viscous emulsions. The relationship with the
homogeneous flow calculations of Chap. 4 is worked out and the wall viscometric emulsion
properties are discussed as a function of wall shear rate. We discuss droplet dispersion in
annular flows and we draw some conclusions for emulsion processing. The last Chap. 6
summarizes the main results and gives an outlook.
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2. Theory

A mathematically precise way to describe the flow of complex fluids is afforded by
non-equilibrium Thermodynamics. We introduce first a master equation to derive flow
equations for complex fluids and the Volterra calculus of functionals as a necessary math-
ematical tool. Then we consider complex fluids with different microstructural character-
istics and we continue to derive flow equations for these complex fluids. We will obtain
two sets of flow equations which describe the matrix and the droplet phase of highly
viscous emulsions.

2.1. Master Equation

The structural equation of the Hamiltonian bracket formalism is (Beris and Edwards,
1994)

dF

dt
= {F, H}+ [F, H] , (2.1)

where F = F [a, b, ...] is an arbitrary functional (global quantity) of variables a, b, ...,
d · /d t is the total time derivative, { · , · } is a Poisson bracket, [ · , · ] is a dissipation
bracket, and the functional H = H[a, b, ...] is the system Hamiltonian (generator of the
dynamics), depending on the variables. Equation (2.1) is a special case of the more
general GENERIC expression of Grmela and Öttinger (1997); Öttinger and Grmela
(1997). The relationship with the master equation of that formalism is worked out in
Edwards (1998) and Edwards et al. (1998). The variables a, b, ... which are adopted to
describe the system’s dynamics are defined on an operational space, P . The brackets
appearing in the above structural equation have well defined properties to ensure that
the dynamics of the system obeys Hamilton’s principle of least action and the Laws of
Thermodynamics. The Poisson bracket is bilinear, it is antisymmetric, and it satisfies
the Jacobi identity1. It specifies the reversible contribution to the dynamics of the
functional F . The dissipation bracket (Beris and Edwards, 1994) is constructed in a

1 {F, {G, H}}+ {H, {F,G}}+ {G{H,F}} = 0
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2. Theory

way to ensure that the First and Second Law of Thermodynamics are satisfied and that
the total mass is conserved. It determines the irreversible contribution to the overall
dynamics of the functional F .

If one applies Eq. (2.1) to discrete particle dynamics the variables a, b, ... are general-
ized coordinates, F is a function of these coordinates, and we adopt the calculus of
partial derivatives. When describing a continuum, the variables a, b, ... are fields of
arbitrary tensorial order, F is a functional of these fields, and the calculus of func-
tional derivatives (Volterra calculus) is adopted. In this case a, b, ... are thermodynamic
variables, i. e. statistical mechanical averages over all constituent molecules and other
microstructural components which constitute a single fluid particle of the continuum.
Basic principles of the Volterra calculus are summarized in the next section.

2.2. Functional Calculus

An arbitrary functional F [a, b, . . . ] of the dynamical variables represents a global system
property (e. g. the total momentum) and it is defined in terms of the corresponding local
quantity (e. g. the momentum density) through the equation

F [a, b, . . . ] =

∫
Ω′

f(a, ∇a, b, ∇b, . . . )d3x , (2.2)

where Ω′ is an integration domain with fixed boundaries. The functional F is only
allowed to depend implicitly on ∇a and ∇b since it is a global system property. The
total time derivative of the arbitrary functional appearing in the structural equation
(2.1) is then given as

dF

dt
=

∫
Ω′

[
δF

δa

∂a

∂t
+

δF

δb

∂b

∂t
+ · · ·

]
d3x =

〈
δF

δa
,
∂a

∂t

〉
+

〈
δF

δb
,
∂b

∂t

〉
+ · · · , (2.3)

where ∂ · /∂ · and δ · /δ · denote the partial and the Volterra derivative, respectively.
Both derivatives have to belong to the same operating space, P , in order to form a
proper inner product, 〈 · , · 〉, as it appears on the right hand side of Eq. (2.3). For the
Volterra derivative of an arbitrary functional, F , with respect to a system variable with
arbitrary tensorial order, a, we have

δF

δa
= Πa

(
∂f

∂a
−∇ · ∂f

∂(∇a)

)
∈ P , (2.4)
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where Πa is a projection operator which ensures, that δF/δa and ∂a/∂t belong to the
same operating space, P (Beris and Edwards, 1990a, 1994). For an unconstrained vari-
able, a, Πa is the identity operation. The unconstrained Volterra derivative is obtained
from taking the variation of the functional F with respect to a and it represents the
Euler/Lagrange equation resulting from the variation of the functional F with respect
to the variable a.

For a constrained variable Πa is not anymore the identity operation and one has to define
a proper Volterra derivative so that δF/δa and ∂a/∂t belong to the same operational
space. The incompressibility of the material is an example for such a constraint since
it enforces the momentum density field, M(r, t) = ρv(r, t), to be divergence free in the
domain Ω′, i. e. ∇ ·M = 0 in Ω′. By applying the Weyl/Hodge theorem it can be shown
that for this constraint the projection operation is ΠM(a) = a − ∇p, where a ∈ R3

is an arbitrary vector and the pressure p is a scalar function which satisfies an elliptic
(Poisson) equation, subject to flux (von Neumann) boundary conditions for a given
vector, a (Beris and Edwards, 1994). Similarly, it is also possible to impose constraints
on other system variables, e. g. the structural tensorial variables which are adopted to
describe the deformation of complex fluids. This is the topic of the next section where
we introduce various constraints for a second-rank tensorial variable, C.

Before proceeding with the introduction of microstructural constraints we wish to com-
ment on the macroscopic and the microscopic interpretation of internal variables. If the
fluid is ideally elastic (i. e. for a purely conservative system) deformation is appropriately
described in terms of the Left-Cauchy-Green Tensor, i. e. C = F ·FT. However, if the
fluid is viscoelastic, (i. e. for non-vanishing dissipation) C cannot be identified with a
deformation tensor and a microstructural interpretation has to be adopted. In this case
C =

∫
RR d3r is interpreted as a configuration tensor, i. e. the second moment of the

end-to-end vector of the microstructural constituents of the fluid, where the integration
is over all accessible configurations of the macromolecule. This means that the macro-
scopic interpretation of C (as a deformation tensor) is related to ideally elastic material
behavior and the microscopic interpretation (as a configuration tensor) is related to non-
ideal, i. e. viscoelastic behavior. In what follows we refer to C as the deformation or
conformation tensor. However, the difference between the two quantities should be kept
in mind.

2.3. Microstructural Constraints

Our first task is to introduce the scalar invariants of symmetric and positive definite
second rank tensorial variables. Since every scalar constraint on a positive definite
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second rank tensor is represented as a function of the scalar invariants, it suffices to
focus on the invariants. For a second rank tensor, C, they are defined as follows

I1 = Cαα , (2.5a)

I2 =
1

2
(CααCββ − CαβCβα) , (2.5b)

I3 = detC . (2.5c)

We have introduced the Einstein summation convention which will be adopted through-
out the thesis. Let us next think about the importance of these constraints for the
modeling of complex fluids which are described in terms of C.

For complex fluids of long, flexible molecules (e. g. in polymer melts, polymer solutions,
or in the matrix of a highly viscous emulsion) the molecules will extend and orient in an
externally imposed flow field. Such a fluid possesses an unconstrained microstructure,
since the response to an external flow field will consist in a variation of the internal
variable which conserves only its positive definite character. We proceed to look at
microstructural constraints for complex fluids related to the scalar invariants of second
rank tensors. We start with the constraints related to the first and the second scalar
invariant.

For suspensions of rigid molecules or suspensions of rigid particles (e. g. liquid crystals)
the microstructure is different in nature from that of flexible macromolecular solutions
or melts since the molecules are inextensible. In this case we are dealing with a length
preservation (or inextensibility) constraint on the structural variable, since the molecules
are stiff and they are only allowed to change their orientation and motion in response to
an external flow field. In this case the microstructural constraint is I1 = 1. Alternatively,
the microstructural inclusions in a fluid may be deformable and orientable but the surface
area of the microstructural constituents cannot change under flow. We refer to this a
situation as a surface preservation constraint on the structural variable. This situation is
realized, e. g., for the interface of two co-continuous phases or an ensemble of deformable
micro-platelets which orient and deform in a flow field. Thus, for the surface preservation
constraint we have I2 = 1. We turn our attention the the constraint related to the third
invariant, the volume preservation constraint.

Special attention is to be devoted the the constraint related to the third scalar invariant,
the volume preservation constraint. This constraint is relevant for the modeling of highly
viscous emulsions and it has been introduced for the modeling of emulsions in Maffettone
and Minale (1998) and for polymeric fluids in (Aït-Kadi et al., 1999). Indeed, if the
microstructure consists of volume preserving units which can deform and orient under
flow, the microstructure obeys the constraint

I3 = 1 , (2.6)
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as we have already seen in the Toy Model. The implications of such a constraint for
the modeling of complex fluids are important and are investigated systematically in the
subsequent chapters.

As already mentioned at the beginning of this section every scalar constraint of a micro-
structural variable can be expressed as a function of its scalar invariants. Almusallam
et al. (2000), e. g. , adopted a surface orientation tensor, q, to describe the shape of el-
lipsoidal droplets in highly viscous emulsions. The approximate volume of the droplets,
described in terms of the invariants of the surface orientation tensor is then defined as

Vd =
4

3π
√

27 + 30
√

3

1√
I3(10I

3/2
2 + I3

1 )

(2.7)

i. e. the volume is expressed in terms of the scalar invariants, Ii, i ∈ {1, 2, 3} of the
anisotropy tensor, q. Almusallam et al. (2000) proposed a time evolution equation for
q which was intended to conserve the approximate volume of the droplet, a task which
was only accomplished by Edwards and Dressler (2003). In the following droplet shapes
are described in terms of a droplet shape tensor, S, introduced with the Toy Model,
Sec. 1.2.

To give a satisfactory description of complex fluids it is essential that the time evolution
equations for these fluids are constructed in a way to reflect and to conserve the inherent
characteristics of the microstructure. In the case of the volume preservation constraint,
e. g., the volume of the internal microstructure remains constant in space and time, for all
deformation undergone by the material. Therefore, the constraint on the microstructure
is to be used as basic ingredient when developing time evolution equations for complex
fluids. Only this allows to give a reasonable description of their dynamics. In Sec. 2.4
we show how appropriate time evolution equations can be derived from the master
equation.

2.4. Flow Equations

2.4.1. Unconstrained Microstructure

We illustrate the derivation of thermodynamically consistent time evolution equations
for complex fluids which are described in terms of the classical hydrodynamic fields and
an unconstrained, positive definite second rank tensorial variable. First, we specify the
operating space with the dynamical variables, next we write down the Poisson and dissip-
ation brackets, and finally we derive the resulting time evolution equations for the fluid.
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2. Theory

We need to introduce these concepts here because they are required in the subsequent
sections to obtain flow equations for fluids with a volume preserving microstructure. In
the derivation of the flow equations we follow standard procedure in Beris and Edwards
(1990a, 1994); Edwards and Beris (1991a, 1992).

Operating space

Our first task is to introduce the operating space for describing flow of a complex fluid
with an unconstrained structural variable (Beris and Edwards, 1994). For a complex
fluid with an unconstrained structural variable we adopt the following operating space
for the spatial (Eulerian) description of fluid flow

P =


ρ(r, t) ∈ R+

s(r, t) ∈ R+

M(r, t) = ρv(r, t) ∈ R3,n ·M = 0 on ∂Ω′

C(r, t) ∈ R3×3T .

(2.8)

This operating space consists of the hydrodynamic fields, namely the mass density field,
ρ(r, t), the entropy density field s(r, t), the momentum density field M(r, t) = ρv(r, t),
and an unconstrained structural variable C(r, t) = ρ c(r, t). The system variables are
defined on a domain Ω′ with fixed boundaries ∂ Ω′. The mass density and the entropy
density are scalar variables, the momentum density field is a vectorial variable, and the
structural variable is a second rank contravariant tensorial variable being symmetric
and positive definite. We mention that there is no generally accepted rule whether the
internal variable, C, should be a contravariant, a covariant, or a mixed second order
tensor. Yet the transformation rule of the internal variable influences the time evolution
equation of the internal variable and the form of the extra stress tensor so that we have
to be careful in specifying that quantity (Beris and Edwards, 1994).

The Volterra derivatives with respect to the system variables are defined through Eq. (2.4)
where the projection Πa is simply the identity operation since all system variables are
unconstrained. In particular, for the Volterra derivative of F with respect to the uncon-
strained structural variable we have

δF

δC
= ΠC

(
∂f

∂C

)
=

∂f

∂C
−∇α

∂f

∂(∇αC)
, (2.9)

i. e. ΠC is the identity operation. For a volume preserving microstructure the above
relationship has to be modified in order to take into account the volume preservation
constraint which is imposed on the structural variable (cf. Sec. 2.4.2). After having
specified the operational space and the Volterra derivatives of arbitrary functionals on
P we write down the two brackets appearing in the structural equation (2.1).
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2.4. Flow Equations

Poisson Bracket

Let us now consider the reversible dynamics of the complex fluid, fully described in
terms of the Poisson bracket. Looking at the operating space of Eq. (2.8) we see that its
elements are non-canonical variables the canonical ones being material coordinates and
conjugate momenta of single fluid particles.

The canonical Poisson bracket in the material (Lagrangian) description of fluid flow is

{F, G}L =

∫
Ω

(
δF

δYα

δG

δΠα

− δF

δΠα

δG

δYα

)
d3x , (2.10)

where the subscript L refers to the material description. In the above integral Ω repres-
ents the system volume with fixed boundaries, Y(r, t) denotes the material coordinate,
and Π(r, t) = δL/δ Ẏ(r, t) = ρ0(r) δY(r, t)/δt is the conjugate momentum vector field,
L being the Lagrangian and ρ0(r) the initial density distribution of the fluid. In order
to arrive at the spatial (non-canonical) Poisson bracket of the ideally elastic medium
the material variables, Y(r, t), Π(r, t), have to be transformed to the spatial variables
ρ, s, M, C. Inserting these representations into the material Poisson bracket (2.10) and
considering the anti-symmetry of the Poisson bracket one arrives at the non-canonical
bracket. The result of this formal exercise is (Beris and Edwards, 1990a,b, 1994; Edwards
and Beris, 1991a,b; Edwards et al., 1991)

{F, G}E =−
∫
Ω′

[
δF

δρ
∇β

(
δG

δMβ

ρ

)
− δG

δρ
∇β

(
δF

δMβ

ρ

)]
d3x

−
∫
Ω′

[
δF

δs
∇β

(
δG

δMβ

s

)
− δG

δs
∇β

(
δF

δMβ

s

)]
d3x

−
∫
Ω′

[
δF

δMγ

∇β

(
δG

δMβ

Mγ

)
− δG

δMγ

∇β

(
δF

δMβ

Mγ

)]
d3x

−
∫
Ω′

[
δF

δCαβ

∇γ

(
δG

δMγ

Cαβ

)
− δG

δCαβ

∇γ

(
δF

δMγ

Cαβ

)]
d3x I1

−
∫
Ω′

Cγα

[
δG

δCαβ

∇γ

(
δF

δMβ

)
− δF

δCαβ

∇γ

(
δG

δMβ

)]
d3x I2

−
∫
Ω′

Cγβ

[
δG

δCαβ

∇γ

(
δF

δMα

)
− δF

δCαβ

∇γ

(
δG

δMα

)]
d3x , I3

(2.11)

where the subscript E indicates spatial description of fluid flow, i. e. non-canonical
variables. The above bracket shares the properties of a Poisson bracket since it is bilinear,
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it is antisymmetric, and it satisfies the Jacobi identity. Let us briefly examine the several
integrals in the above dissipation bracket before turning our attention to the dissipation
bracket.

The first three integrals in Eq. (2.11) represent the Poisson bracket for the structure-less
medium and lead to the conservative classical hydrodynamic equations for the density,
entropy and momentum, i. e. Euler’s equations of ideal fluid flow. The last three integrals
have been labeled I1, I2, I3 and they represent the effects of elasticity in the medium.
The sum of these integrals is denoted as { · , · }C

E = I1 + I2 + I3 and we call it the
C-sub-bracket. Only this sub-bracket has to be transformed in Sec. 2.4.2 when we are
going to impose the volume preservation constraint (2.6) on the structural variable. The
form of the Poisson bracket is determined by the tensorial order of the elements of the
operational space, the transformation rule from the material to the spatial variables, and
eventual constraints on the elements of the operational space P , (2.8). It determines the
reversible contributions to the time evolution equations of the field variables, the form of
the pressure in terms of the thermodynamic potential, and the reversible contributions
of the stress tensor in the momentum equation, i. e. elastic stresses.

Dissipation Bracket

We come to the specification of the irreversible contribution to fluid flow that is to be
expressed in terms of a dissipation bracket. To obtain an appropriate dissipation bracket
one starts with a general expression which is consistent with the First and the Second
Law of Thermodynamics

[F, G]E = −
∫
Ω′

{
Ξ

[
L
(

δF

δω
, ∇δF

δw

)
;
δG

δw
, ∇δG

δw

]

+
1

T

δF

δs
Ξ

[
L
(

δG

δω
, ∇δG

δw

)
;
δG

δw
, ∇δG

δw

]}
d3x , (2.12)

where L[ · ] denotes that the dependence of Ξ is linear with respect to · , w = (a, b, . . . ,M,
s), and ω = (a, b, . . . ,M), i. e. w = (ω, s), s being the entropy density and a, b, · · · ≡
(ρ,C) the other dynamical variables. The quantities δG/δw and ∇δG/δw in the dissip-
ation bracket represent the relaxational and the flux system affinities, respectively and
they are coupled through the function Ξ. Determination of the affinities for the set of
variables ρ, s, M, and C, application of the Curie principle, of the principle of frame
indifference, of the material invariance principle, and consideration of local mass and
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local momentum conservation, gives the following dissipation bracket

[F, G]E = −
∫
Ω′

Bαβ∇α
δF

δs
∇β

δG

δs
d3x

−
∫
Ω′

Qαβγε∇α
δF

δMβ

∇γ
δG

δMε

d3x

−
∫
Ω′

Rαβγεην∇α
δF

δCβγ

∇ε
δG

δCην

d3x J1

−
∫
Ω′

Λαβγε
δF

δCαβ

δG

δCγε

d3x J2

−
∫
Ω′

Pαβγε

(
∇α

δF

δMβ

δG

δCγε

−∇α
δG

δMβ

δF

δCγε

)
d3x J3

+

∫
Ω′

Bαβ
1

T

δF

δs
∇α

δG

δs
∇β

δG

δs
d3x

+

∫
Ω′

Qαβγε
1

T

δF

δs
∇α

δG

δMβ

∇γ
δG

δMε

d3x

+

∫
Ω′

Rαβγεην
1

T

δF

δs
∇α

δG

δCβγ

∇ε
δG

δCην

d3x J1′

+

∫
Ω′

Λαβγε
1

T

δF

δs

δG

δCαβ

δG

δCγε

d3x , J2′

(2.13)

The integrals containing the internal variable, C, have been labeled J1, J2, J3, J1′, and
J2′. Note that the terms J1′ and J2′ differ from J1 and J2 only through the 1/T δF/δs
term. In analogy to the Poisson sub-bracket, { · , · }C

E, we define the dissipation sub-
bracket, [ · , · ]CE = J1 + J2 + J3 + J1′ + J2′, as the sum of the integrals containing
the structural variable. This sub-bracket will be transformed in the following Sec. 2.4.2
to impose the volume preservation constraint on the structural variable. We continue
with a discussion of the single integrals in the dissipation bracket and we examine the
coupling between the members of the operational space.

The bracket (2.13) involves all possible couplings not forbidden by the Curie principle
which states that only affinities of the same tensorial order can couple with each other.
The first and the sixth integral with the phenomenological matrix B account for an
irreversible entropy flux into internal degrees of freedom. The second and the seventh
integral with the phenomenological matrix Q reflect a flux of linear momentum into
internal degrees of freedom. The integrals with the phenomenological matrix R (labeled

21



2. Theory

J1 and J1′) represent dissipation due to spatial inhomogeneities, i. e. a flux, of the
structural variable. The integrals with the phenomenological matrix Λ (labeled J2 and
J2′) are dissipation due to a relaxation of the internal microstructure. The remaining
integral with the phenomenological matrix P is a flux-relaxation coupling between the
linear momentum and the structural variable and it accounts for the phenomenon of
non-affine motion. The minus sign in the integrand of this term arises since the two
affinities have different parities under time reversal. Two other couplings are allowed
due to the Curie principle, namely ∇(δF/δρ) with itself and with ∇(δF/δs). However,
for a one component fluid the phenomenological matrices are necessarily zero so that we
can omit these terms (Beris and Edwards, 1994). Furthermore, the (δF/δM)(δG/δM)
and the (δF/δρ)(δG/δρ) term do not appear in the dissipation bracket due to local
momentum and mass conservation. All phenomenological matrices B, Q, R, Λ, P have
to satisfy the principles of frame indifference, the principle of material invariance, and
to obey the Onsager/Casimir reciprocal relations. The application of these principles
reduces the number of independent phenomenological coefficients in these matrices. For
our further analysis we will need symmetry relationships of the form Qαβγε = Qγεαβ =
Qβαγε = Qαβεγ.

Reconsidering the non-canonical Poisson bracket and the dissipation bracket, Eqs. (2.13,
2.11), we notice that the structure of both objects depends primarily on the transform-
ation from the canonical to the non-canonical variables and the tensorial order of the
elements of P . To evaluate the Master Equation an appropriate system Hamiltonian
has to be known which generates the dynamics of the system.

System Hamiltonian

Let us now introduce the Hamiltonian of the fluid which is obtained from a Legendre
Transformation of the Lagrangian (Beris and Edwards, 1994)

H[ρ, s,M,C] =

∫
Ω′

(
MγMγ

2ρ
+ ep(ρ) + u(ρ, s,C)

)
d3x . (2.14)

From the above expression it is immediately evident that the Hamiltonian quantifies
the total system energy consisting of a kinetic energy contribution, an external field
potential, ep(ρ), and a thermodynamic contribution represented by the internal energy
density, u. The Volterra derivatives of the Hamiltonian functional can be easily evaluated
to give

δH

δρ
= −MγMγ

2ρ2
+

∂ep

∂ρ
+

∂u

∂ρ
, (2.15a)
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δH

δs
= −∂u

∂s
= T , (2.15b)

δH

δMα

=
Mα

ρ
= vα , (2.15c)

δH

δCαβ

= − ∂u

∂Cαβ

. (2.15d)

We remark that Eq. (2.14) is a general representation of the total system energy and
that the specification of the internal energy contribution is essential to obtain specific
descriptions for the fluid. Appropriate expressions for the potential, suitable for the
modeling of emulsions, will be introduced in the next chapter.

Flow Equations

We now use the expressions for the Poisson bracket, the dissipation bracket, and the
Hamiltonian to derive flow equations from the Master Equation. The two versions of
the dynamical equation for F , Eqs. (2.1) and (2.3), together with the brackets (2.11)
and (2.13) are compared to obtain the equations of motion for the spatial variables. It
is straight forward to identify the following general set of partial differential equations
if the arbitrary functional G has been replaced with the Hamiltonian (2.14)

∂ρ

∂t
= −∇β(vβρ) , (2.16a)

∂s

∂t
= −∇β(vβs) + Σ , (2.16b)

ρ
∂vα

∂t
= −ρvβ∇βvα − ρ∇αep −∇αp +∇βσαβ , (2.16c)

∂Cαβ

∂t
= −∇γ(vγCαβ) + Cγα∇γvβ + Cγβ∇γvα − Λαβγε

δH

δCγε

+ Pαβγε∇γvε

+∇γ

(
Rγαβεην∇ε

δH

δCην

)
.

(2.16d)

Equation (2.16a) is the continuity equation reflecting local mass conservation. Equation
(2.16b) is the entropy balance equation, where the first term on the right hand side is the
entropy change due to convection of the fluid particle and Σ is the irreversible entropy
production rate (per unit volume) in the system which is given by Eq. (2.19) below.
Equation (2.16c) is the momentum balance equation. The form of the extra stress tensor
in Eq. (2.16c) is determined through the Poisson bracket and the dissipation bracket

σαβ = 2Cβγ
δH

δCαγ

+ Qαβγε∇γvε + Pαβγε
δH

δCγε

. (2.17)
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The first term on the right hand side of Eq. (2.17) represents elastic effects, the second
term takes into account viscous dissipation, and the third term represents effects of
non-affine motion. The form of the pressure in the momentum balance (2.16c) arises
naturally through the form of the Poisson bracket

p = −u + ρ
∂u

∂ρ

∣∣∣∣
s,C

+ s
∂u

∂s

∣∣∣∣
ρ,C

+ Cαβ
∂u

∂Cαβ

∣∣∣∣
ρ,s

. (2.18)

Equation (2.16d) is the time evolution equation for the internal variable, C. The first
three terms on the left hand side of Eq. (2.16d) describe how the structural variable is
convected with the velocity field and they represent Oldroyd’s upper convected (Oldroyd-
B) derivative for a contravariant second rank tensor. Note that the Oldroyd-B derivative
arises naturally from the Poisson bracket (Beris and Edwards, 1994). The remaining
three terms account for relaxation, non-affine motion, and translational diffusivity, re-
spectively. The rate of entropy production per unit volume in the system is

Σ =
1

T
∇α(BαβT∇βT ) +

1

T
Qαβγε∇αvβ∇γvε

+
1

T
Rαβγεην∇α

δH

δCβγ

∇ε
δH

δCην

+
1

T
Λαβγε

δH

δCαβ

δH

δCγε

. (2.19)

In a numerical scheme which computes particular solutions of the set of partial differen-
tial equations (2.16) the property Σ ·T = [S, H] ·T ≥ 0 can be adopted as a consistency
requirement to check the positive rate of entropy production within the system.

For the elements of the operational space, P , the equations of motion Eq. (2.16) represent
the most general form for describing the dynamics of a complex continuum without
constraints on the tensorial variable, C. The set of balance equations (2.16) accounts
for compressibility of the medium, it is fully non-isothermal, and it allows for elastic and
viscous stresses.

A transformation of the bracket (2.11) to its counterpart in terms of a covariant tensorial
variable or a second rank mixed tensorial variable is reported in Beris and Edwards
(1994). Transformation to a covariant tensor gives the lower convected (Oldroyd-A)
derivative in the time evolution equation for C, Eq. (2.16d). Transformation to a mixed
tensorial variable gives a positive sign in front of integral I2 if index α is transformed to
a covariant tensor index and it yields the mixed convected time derivative in the time
evolution equation for C.

In order to obtain a specific set of model equations it is necessary to adopt a micro-
structural interpretation of the structural variable, C, and to specify the Hamiltonian,
H, of the system together with the phenomenological matrices, B, Q, Λ, P, R. It is
possible to use established continuum descriptions as a guide for the specification for
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the Hamiltonian and the phenomenological matrices (Beris and Edwards, 1994; Dressler
et al., 1999), or to adopt statistical mechanics to obtain appropriate expressions.

2.4.2. Volume Preserving Microstructure

In the preceding section we derived a general set of time evolution equations for a complex
fluid with a microstructure described in terms of the unconstrained variable, C. Let us
examine now the consequences of imposing the volume preservation constraint on the
variable, C, and understand how the flow equations change. Following ideas that were
developed in Edwards et al. (2003) we define a projection which maps the unconstrained
variable onto one with constant determinant and we derive Poisson and dissipation
brackets for this new variable.

Projection Mapping

It is clear that the microstructural equation (2.16d) describes a spatio-temporal variation
of the variable C which does not conserve its third invariant, since C is unconstrained. In
order to obtain time evolution equations for the microstructural variable that respect the
constraint I3 = 1 we introduce a projection which maps the unconstrained variable, C,
onto a tensorial variable which respects the volume preservation constraint, Eq. (2.6). We
identify this as a new variable, S, for which we derive appropriate dynamic equations.

For the mathematical analysis of the constraint (2.6) we adopt the operational space P ,
(2.8) and we define the following projection operation

PS[Cαβ] =
Cαβ

3
√

detC
≡ Sαβ , (2.20)

which constrains S to be of unit determinant, I3 = 1. For the inverse of the structural
variable, S−1, we have

S−1
αβ =

3
√

detCC−1
αβ , (2.21)

which means that S−1
αβ Sγε = C−1

αβ Cγε. Furthermore, by taking the derivative of (2.20) we
see

∂Sγε

∂Cαβ

=
1

3
√

detC

(
δαγδβε −

1

3
CγεC

−1
αβ

)
. (2.22)
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For I3 = 1 we restrict the arbitrary functionals F , G to those which depend on S (and
∇S) only through their dependence on C (and ∇C): F [ρ, s,M,S] and G[ρ, s,M,S].
Hence we define the total time derivative of F through the sum of four inner products
once again as

dF

dt
=

〈
δF

δρ
,
∂ρ

∂t

〉
+

〈
δF

δs
,
∂s

∂t

〉
+

〈
δF

δMα

,
∂Mα

∂t

〉
+

〈
δF

δSαβ

,
∂Sαβ

∂t

〉
. (2.23)

The Volterra derivatives of the hydrodynamic variables ρ, s, M are still unconstrained.
To obtain an expression for the constrained Volterra derivative δF/δS we compute the
partial time derivative of I3 = detS = 1 which is

∂I3

∂t
=

∂I3

∂Sαβ

∂Sαβ

∂t
= S−1

αβ

∂Sαβ

∂t
= 0 , (2.24)

where we adopted the chain rule of differentiation to obtain the first identity and we used
the Boussinesq relation to obtain the second identity. Since both subjects of the fourth
inner product in Eq. (2.23) must belong to the same operating space, and therefore due
to the above Eq. (2.24), we require

S−1
αβ

δF

δSαβ

= 0 . (2.25)

Hence we define the Volterra derivative δF/δS through the relationship

δF

δSαβ

=
∂f

∂Sαβ

− 1

3

∂f

∂Sγε

S−1
γε Sαβ −∇η

(
∂f

∂(∇ηSαβ)

)
+

1

3
∇η

(
∂f

∂(∇ηSγε)

)
S−1

γε Sαβ ,

(2.26)

which is seen to satisfy the above requirement, Eq. (2.25). Disposing of the projection
mapping Eq. (2.20) we can now inspect the Poisson and dissipation brackets.

Transformation of the Poisson Bracket

To transform the Poisson bracket (2.11) in terms of the contravariant tensor C into its
equivalent expression in terms of a second-rank tensor, S, with I3 = 1, it suffices to
inspect the { · , · }C

E = I1 + I2 + I3 sub-bracket in (2.11) and to adopt the projection
mapping, PS as defined in Eq. (2.22). The derivation of the Poisson bracket in terms of
S is explained next.

To perform the transformation of the { · , · }C
E sub-bracket in (2.11) the Volterra deriv-

ative δF/δC has to be written in terms of δF/δS, once again

δF

δCαβ

=
δF

δSγε

∂Sαβ

∂Cγε

=
δF

δSγε

1
3
√

detC

(
δαγδβε −

1

3
C−1

αβ Cγε

)
, (2.27)
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where we have used Eq. (2.22). Next, the above relationship is inserted into the Pois-
son and dissipation sub-brackets. The mathematical manipulations to obtain the new
brackets are described in what follows.

Inserting the relationship for the Volterra derivative (2.27) into integral I2 and adopting
the definition (2.20) for S we obtain

I2 ≡ −
∫
Ω′

Sγα

[
δG

δSαβ

∇γ
δF

δMβ

− δF

δSαβ

∇γ
δG

δMβ

]
d3x

+
1

3

∫
Ω′

Sρη

[
δG

δSρη

∇γ
δF

δMγ

− δF

δSρη

∇γ
δG

δMγ

]
d3x ,

(2.28)

likewise, integral I3 becomes

I3 ≡ −
∫
Ω′

Sγβ

[
δG

δSαβ

∇γ
δF

δMα

− δF

δSαβ

∇γ
δG

δMα

]
d3x

+
1

3

∫
Ω′

Sρη

[
δG

δSρη

∇γ
δF

δMγ

− δF

δSρη

∇γ
δF

δMγ

]
d3x .

(2.29)

For integral I1 in Eq. (2.11) we have to perform more involved manipulations due to
the appearance of the ∇γ(δF/δMγ Cαβ) terms. Inserting the expression for the Volterra
derivative (2.27) into I1 of Eq. (2.11) we get

I1 ≡−
∫
Ω′

1
3
√

detC

[
δF

δSαβ

∇γ

(
δG

δMγ

Cαβ

)
− δG

δSαβ

∇γ

(
δF

δMγ

Cαβ

)]
d3x A

+
1

3

∫
Ω′

1
3
√

detC

[
δF

δSρη

CρηC
−1
αβ∇γ

(
δG

δMγ

Cαβ

)
− δG

δSρη

CρηC
−1
αβ∇γ

(
δF

δMγ

Cαβ

)]
d3x .

B

Next, we inspect integral A to which we apply the product rule of differentiation

A ≡−
∫
Ω′

[
δF

δSαβ

Sαβ∇γ

(
δG

δMγ

)
− δG

δSαβ

Sαβ∇γ

(
δF

δMγ

)]
d3x C

+

∫
Ω′

[
δF

δSαβ

δG

δMγ

∇γCαβ

3
√

detC
− δG

δSαβ

δF

δMγ

∇γCαβ

3
√

detC

]
d3x . D

Application of the product rule of differentiation and the projection (2.20) to integral D
gives

D ≡−
∫
Ω′

[
δF

δSαβ

δG

δMγ

∇γSαβ −
δG

δSαβ

δF

δMγ

∇γSαβ

]
d3x E
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+

∫
Ω′

[
Cαβ

δF

δSαβ

δG

δMγ

∇γ

(
1

3
√

detC

)
− Cαβ

δG

δSαβ

δF

δMγ

∇γ

(
1

3
√

detC

)]
d3x . F

Next we turn to integral B which we rewrite

B ≡
∫
Ω′

1
3
√

detC

[
δF

δSρη

Cρη∇γ
δG

δMγ

− δG

δSρη

Cρη∇γ
δF

δMγ

]
d3x

+
1

3

∫
Ω′

1
3
√

detC

[
δF

δSρη

Cρη
δH

δMγ

C−1
αβ∇γCαβ −

δH

δSρη

Cρη
δF

δMγ

C−1
αβ∇γCαβ

]
d3x .

Now we take I1 = B + C + E + F and we get

I1 ≡
∫
Ω′

[
δF

δSαβ

δG

δMγ

∇γSαβ −
δG

δSαβ

δF

δMγ

∇γSαβ

]
d3x , (2.30)

since B cancels with C and F and we have applied the relationship

∇γ
1

3
√

detC
= − 1

3 3
√

detC
C−1

ρη ∇γCρη ,

to integral F. The desired sub-bracket for the constraint I3 = 1 is given as the sum of
I1 + I2 + I3 from Eqs. (2.30), (2.28), (2.29).

{F, G}S
E = −

∫
Ω′

[
δF

δSαβ

δG

δMγ

∇γ (Sαβ)− δG

δSαβ

δF

δMγ

∇γ (Sαβ)

]
d3x

−
∫
Ω′

Sγα

[
δG

δSαβ

∇γ

(
δF

δMβ

)
− δF

δSαβ

∇γ

(
δG

δMβ

)]
d3x

−
∫
Ω′

Sγβ

[
δG

δSαβ

∇γ

(
δF

δMα

)
− δF

δSαβ

∇γ

(
δG

δMα

)]
d3x

+
2

3

∫
Ω′

Sαβ

[
δG

δSαβ

∇γ

(
δF

δMγ

)
− δF

δSαβ

∇γ

(
δG

δMγ

)]
d3x .

(2.31)

This bracket is bilinear, antisymmetric, and it satisfies the Jacobi identity since it has
been obtained from a transformation of the unconstrained bracket (2.11) using the re-
lationship of Eq. (2.27). It has been derived originally in Edwards et al. (2003). We
have thus found a Poisson bracket that allows to describe the dynamics of a fluid with
a volume preserving microstructure. We proceed to perform similar manipulations with
the dissipation bracket.
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Transformation of the Dissipation Bracket

Inserting (2.27) into the sub-bracket [ · , · ]CE of Eq. (2.13) and rearranging the terms we
obtain

[F, G]SE = −
∫
Ω′

{
R?

αβγεην∇α
δF

δSβγ

∇ε
δG

δSην

− 1

3
R?

αβγεην∇α

(
δF

δSρθ

SρθS
−1
βγ

)
∇ε

(
δG

δSην

)}
d3x

−
∫
Ω′

[
Λ?

αβγε

δF

δSαβ

δG

δSγε

− 1

3
Λ?

αβγεS
−1
αβ

δF

δSηξ

Sηξ
δG

δSγε

]
d3x

−
∫
Ω′

[
P ?

αβγε

(
∇α

δF

δMβ

δG

δSγε

−∇α
δG

δMβ

δF

δSγε

)

−1

3
P ?

αβγε

(
∇α

δF

δMβ

δG

δSρθ

SρθS
−1
γε −∇α

δG

δMβ

δF

δSρθ

SρθS
−1
γε

)]
d3x

+ additional terms involving
1

T

δF

δs
,

(2.32)

where Λ? = Λ/ 3
√

(detC)2, P? = P/ 3
√

(detC), and R? = R/ 3
√

(detC)2 are arbitrary
functions of the structural variable, S, and the phenomenological matrices satisfy ap-
propriate symmetry relationships. Let us now use the two brackets together with the
Hamiltonian to obtain a set of flow equations for the fluid with a volume preserving
microstructure.

Time Evolution Equations

Taking Eq. (2.1) together with the constrained Poisson and dissipation sub-brackets
(2.31), (2.32) we obtain the time evolution equation of the volume preserving internal
variable after the arbitrary functional G has been replaced with the Hamiltonian (2.14)

∂Sαβ

∂t
= −vγ∇γSαβ + Sγα∇γvβ + Sγβ∇γvα −

2

3
Sαβ∇γvγ + P ?

γεαβ∇γ
δH

δMε

− 1

3
P ?

ρθηξ∇ρ
δH

δMθ

SαβS−1
ηξ − Λ?

αβγε

δH

δSγε

+
1

3
Λ?

ηξγεS
−1
ηξ

δH

δSγε

Sαβ

+∇γ

(
R?

γαβεην∇ε
δH

δSην

)
− 1

3
∇ρ

[
R?

ρδγεην∇ε

(
δH

δSην

)]
S−1

δγ Sαβ .

(2.33)

Multiplication of the above Eq. (2.33) with S−1
αβ shows that the dynamical equation

satisfies the requirement (2.24). This means that S is volume preserving. We have
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derived a thermodynamically consistent set of time evolution equations for our set of
constrained variables. The structure of the balance equations for the mass density, the
entropy density, and the momentum density remains unaltered. These are given by
Eqs (2.16a)-(2.16c).

The set of time evolution equations (2.16a)-(2.16c) and (2.33) is the most general one for
describing the dynamics of complex material with a volume preserving microstructure
form a continuum level of description. Also this set of continuum equations accounts for
compressibility, it is fully non-isothermal, and it allows for elastic and viscous stresses.
Now, the extra stress in the momentum equation (2.16c) reads

σαβ = 2Sβγ
δH

δSγα

− 1

3
Sβγ

δH

δSρθ

S−1
ρθ Sαγ + Q?

αβγε∇γvε + P ?
αβγε

δH

δSγε

− 1

3
P ?

αβγε

δH

δSρθ

SρθS
−1
γε ,

(2.34)

where Q? = Q and we have to adopt Eq. (2.26) for the constrained Volterra derivative.
The pressure in the momentum equation arises naturally through the Poisson bracket
and it is given by the expression

p = −u + ρ
∂u

∂ρ

∣∣∣∣
s,S

+ s
∂u

∂s

∣∣∣∣
ρ,S

+
2

3
Sαβ

∂u

∂Sαβ

∣∣∣∣
ρ,s

, (2.35)

which has an additional extra term over the usual thermodynamic expression for the
pressure, Eq. (2.18). If one wishes to apply the set of balance equations (2.16a)-(2.16c),
(2.33) a further thermodynamic transformation should be defined in order to work with
the usual definition of the pressure. The rate of entropy production per unit volume in
the system is now

Σ =
1

T
∇α(B?

αβT∇βT ) +
1

T
Q?

αβγε∇αvβ∇γvε +
1

T
R?

αβγεην∇α

(
δH

δSβγ

)
∇ε

(
δH

δSην

)
− 1

3T
R?

αβγεην∇α

(
δH

δSρθ

SρθS
−1
βγ

)
∇ε

(
δH

δSην

)
+

1

T
Λ?

αβγε

δH

δSαβ

δH

δSγε

− 1

3T
Λ?

αβγεS
−1
αβ

δH

δSηζ

Sηζ
δH

δSγε

,

(2.36)

where B? = B.

In order to develop a useful theory it is necessary to supply a microstructural interpret-
ation of the constrained structural variable, S, to determine a suitable thermodynamic
potential for the Hamiltonian, H, and to specify constitutive assumptions for the phe-
nomenological matrices, B, Q, Λ, P, R. This is topic of the following chapter.
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3. Modeling

From the formal presentation of the dynamics of fluids in the last chapter we proceed to
model highly viscous emulsions with main emphasis on the matrix-droplet interaction.
In the specific treatment of emulsions with matrix viscoelasticity given below, we shall
assume that break-up and coalescence do not occur. Later, we will relax this assumption
to derive a model taking into account these phenomena. The main emphasis will be on
how to derive flow equations for emulsions and how to assess their thermodynamic
consistency, i. e. to ensure the models always respect the Laws of Thermodynamics.

3.1. Matrix Viscoelasticity

We model a highly viscous emulsion with droplet morphology which consists of a vis-
coelastic matrix phase and an incompressible Newtonian droplet phase. The emulsion
is described as a thermodynamic system of two immiscible phases. We assume that the
dispersed phase concentration and the material properties of the blend components are
such that breakup and coalescence do not occur in equilibrium and under flow, being a
reasonable approximation in appropriate deformation and strain rate regimes. Since the
matrix fluid is viscoelastic we expect large normal stresses in the deforming emulsion.
These normal stresses influence the deformation of the micro-droplets. Therefore, we
develop a model which accounts for the influence of matrix deformation on the droplet
shape. The coupling of matrix with droplet deformation is described phenomenologic-
ally.

3.1.1. System Variables

The physical variables for the description of the emulsion are the momentum density,
M = ρv, the unconstrained contravariant second-rank tensor, C, describing the con-
formation of the polymer molecules in the matrix, and the constrained contravariant
second-rank tensor, S, to describe ellipsoidal droplet shapes: hence x = [M,C,S]. Since
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3. Modeling

the disperse phase is assumed to be incompressible, we impose the microstructural con-
straint, detS = 1, to account for volume preservation of the deforming micro-droplets.
Further droplet configuration tensors or conformation tensors may be included into the
above set of variables to describe systems with non-uniform droplet size distribution or
rheologically more complex matrix fluids, if desired (Yu et al., 2005).

3.1.2. Poisson and Dissipation Bracket

We can simply use the results of Chap. 2 to write down the Poisson bracket for the
medium that is described in terms of x = [M,C,S]. The Poisson brackets in terms of
x = [M,C] and x = [M,S] are given by the last four integrals of Eq. (2.11) and the third
integral of Eq. (2.11) together with Eq. (2.31), respectively. Consequently, the Poisson
bracket expressed in terms of M, C, and S reads

{F, Hm} =−
∫ [

δF

δMγ

∇β

(
δHm

δMβ

Mγ

)
− δHm

δMγ

∇β

(
δF

δMβ

Mγ

)]
d3x

−
∫ [

δF

δCαβ

∇γ

(
δHm

δMγ

Cαβ

)
− δHm

δCαβ

∇γ

(
δF

δMγ

Cαβ

)]
d3x

−
∫

Cγα

[
δHm

δCαβ

∇γ

(
δF

δMβ

)
− δF

δCαβ

∇γ

(
δHm

δMβ

)]
d3x

−
∫

Cγβ

[
δHm

δCαβ

∇γ

(
δF

δMα

)
− δF

δCαβ

∇γ

(
δHm

δMα

)]
d3x

−
∫ [

δF

δSαβ

δHm

δMγ

∇γ (Sαβ)− δHm

δSαβ

δF

δMγ

∇γ (Sαβ)

]
d3x

−
∫

Sγα

[
δHm

δSαβ

∇γ

(
δF

δMβ

)
− δF

δSαβ

∇γ

(
δHm

δMβ

)]
d3x

−
∫

Sγβ

[
δHm

δSαβ

∇γ

(
δF

δMα

)
− δF

δSαβ

∇γ

(
δHm

δMα

)]
d3x

+
2

3

∫
Sαβ

[
δHm

δSαβ

∇γ

(
δF

δMγ

)
− δF

δSαβ

∇γ

(
δHm

δMγ

)]
d3x .

(3.1)

This bracket shares all properties of a Poisson bracket.
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3.1. Matrix Viscoelasticity

For the dissipation bracket, we adopt the following expression:

[F, H] = −
∫

ΛC
αβγε

δF

δCαβ

δH

δCγε

d3x

−
∫

ΛS
αβγε

δF

δSαβ

δH

δSγε

d3x

+
1

3

∫
ΛS

αβγεSρηS
−1
αβ

δF

δSρη

δH

δSγε

d3x

−
∫

Aαβγε

(
δF

δCαβ

δH

δSγε

+
δH

δCαβ

δF

δSγε

)
d3x

+
1

3

∫
Aαβγε

(
δF

δCαβ

δH

δSρη

SρηS
−1
γε +

δH

δCαβ

δF

δSρη

SρηS
−1
γε

)
d3x ,

(3.2)

with the three phenomenological matrices ΛC, ΛS, and A. The first integral in the
above dissipation bracket is the relaxation of the viscoelastic matrix, Eq. (2.12). The
second and the third integral account for the relaxation of the droplet inclusions under
the auspices of the constraint detS = 1, Eq. (2.32) derived in Edwards et al. (2003).
The most strikingly feature of the dissipation bracket (3.2) are the integrals with the
phenomenological matrix A. These two integrals describe the coupling of the viscoelastic
matrix fluid with the droplet interface and they have been derived with the procedure
presented in Sec. 2.4.2. In the above dissipation bracket, we neglect viscous dissipation
of the matrix fluid since it appears implicitly in the Maxwell viscosity related to the
phenomenological matrix ΛC. Let us in the next paragraph consider the dynamical
equations obtained from the above brackets.

3.1.3. General Flow Equations

The Poisson and dissipation brackets yield the following general set of dynamical evol-
ution equations, where u ≡ u(S,C) in the Hamiltonian (2.14)

ρ
∂vα

∂t
= −ρvβ∇βvα −∇αp +∇βσαβ , (3.3a)

∂Cαβ

∂t
= −vγ∇γCαβ + Cαγ∇γvβ + Cβγ∇γvα − ΛC

αβγε

δHm

δCγε

− Aαβγε
δHm

δSγε

+
1

3
Aαβγε

δHm

δSρν

SρνS
−1
γε ,

(3.3b)

∂Sαβ

∂t
= −vγ∇γSαβ −

2

3
∇γvγSαβ + Sαγ∇γvβ + Sβγ∇γvα − ΛS

αβγε

δHm

δSγε

+
1

3
ΛS

ρηγεSαβS−1
ρη

δHm

δSγε

− Aαβγε
δHm

δCγε

+
1

3
Aρνγε

δHm

δCρν

S−1
γε Sαβ .

(3.3c)
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Equation (3.3a) is the momentum balance equation in a spatial description of macro-
scopic fluid flow, where the pressure and the extra stress tensor have been denoted with
p, σ, respectively. As already mentioned, pressure and velocity are viewed as aver-
aged quantities at each location in space-time coordinates; i. e., they are coarse-grained
averages of the matrix fluid particles and droplets contained in the fluid particle at co-
ordinates (x, t). They arise naturally through the mathematical structure of the Poisson
bracket. The pressure obeys a Poisson equation with appropriate boundary conditions,
and the extra stress tensor is obtained as

σαβ = 2Cαγ
δHm

δCγβ

+ 2Sαγ
δHm

δSγβ

− 2

3
Sγε

δHm

δSγε

δαβ , (3.3d)

where the first term accounts for matrix phase elasticity and the remaining two terms for
interfacial elasticity, respectively. The two contributions are different since the droplet
shape tensor is volume preserving.
Equation (3.3b) is the conformation tensor equation describing the average deformation
and orientation of polymer molecules in the matrix. The first three terms on the right
hand-side of Eq. (3.3b) represent the upper-convected derivative of the unconstrained,
second-rank contravariant tensorial variable, and they arise from the mathematical struc-
ture of the Poisson bracket, Eq. (3.1). The remaining three terms on the right hand-side
of Eq. (3.3b) are of dissipative nature and they arise from the dissipation bracket (3.13).
The third term captures the relaxational dynamics of the matrix molecules and the last
two terms in Eq. (3.3b) account for the influence of droplet deformation on the conform-
ation tensor dynamics.
Equation (3.3c) is the droplet shape tensor equation describing the average shape and
orientation of micro-droplets in the emulsion. The first four terms on the right hand-
side of Eq. (3.3c) represent a generalized upper-convected derivative for a second-rank,
contravariant tensorial variable with the constraint detS = 1, obtained from the Pois-
son bracket (3.1). The last four terms in Eq. (3.3c) arise from the dissipation bracket
(3.13), and account for the relaxation of micro-droplets (fifth and sixth terms) and the
influence of the conformation tensor dynamics on the droplet dynamics (the last two
terms). With the procedure presented in Chap. 2 (cf. Edwards et al., 2003), it can be
shown for Eqs. (3.3b) and (3.3c) that detS is a conserved quantity independent of the
mathematical form of the phenomenological matrices ΛC, ΛS, A, and the Hamiltonian,
Hm[M,C,S].

In order to obtain a specific set of system equations from the set of Eqs. (3.3), we have
to find expressions for the Hamiltonian and the phenomenological matrices appearing in
the dissipation bracket, Eq. (3.2). These are the four ingredients required to reduce the
set of general time evolution equations (3.3) to a specific model for the emulsion. We
continue to specify the most simple relationships for the system Hamiltonian and the
phenomenological matrices, i. e. we will reduce the general set of equations (3.3) to a
specific emulsion model.
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3.1. Matrix Viscoelasticity

3.1.4. System Hamiltonian

Let us suppose that the emulsion can be envisioned as a Maxwell fluid with charac-
teristic elastic constant, K, coupling non-linearly to an elastic interface with interfacial
tension, Γ′. One particular realization of such a system can be described in terms of the
Hamiltonian

Hm[M,C,S] = K[M] + A[C,S] =

∫ [
MαMα

2ρ
+

1

2
nCK(1− φ)trC

−1

2
nCkBT (1− φ) ln(detC) +

1

2
ΓφIS

2

]
d3x , (3.4)

where IS
2 is the second invariant of S, φ is the concentration of droplets, nC is the degree

of elasticity per unit volume of the matrix, and Γ = Γ′/R where R is the average droplet
radius in the undeformed state. Eq. (3.4) represents the kinetic energy of the system
(first term in the integral) plus a linear superposition of the elastic free energy of an
ensemble of Hookean springs (second and third terms) and the energy of the elastic
interface, with IS

2 being associated with the droplet surface area (fourth term). The
subscript “m” in the Hamiltonian denotes that the description of the polymer blend is
purely mechanical, i.e., we have not considered a balance equation for the entropy density
to account for the transfer of mechanical energy into internal degrees of freedom. Note
that the last term in the integral of Eq. (3.4) is different from the expression for the
thermodynamic potential introduced in Grmela et al. (2001). A physical justification for
the choice for this term is that the specific surface energy is proportional to the surface
area (at least for small deviations from sphericity) and it assumes a minimum for the
spherical droplet.

3.1.5. Phenomenological Matrices

Let us continue with the specification of the dissipative phenomenological coefficients
appearing in the bracket of Eq. (3.2). We adopt the phenomenological matrix for the
Maxwell Model to describe the relaxation of the matrix fluid (Beris and Edwards, 1994)

ΛC
αβγε =

1

2GλC

kBT

K
(Cαγδβε + Cαεδβγ + Cβγδαε + Cβεδαγ) , (3.5a)

where λC is a characteristic relaxation time associated with the continuous phase and we
have introduced the elastic modulus of the continuous phase G = nCkBT . In conjunction
with the C-terms in the above Hamiltonian, Eq. (3.4), and with A = 0, this expression
gives the Upper-Convected Maxwell Model (UCMM) for the matrix phase.
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For the relaxation matrix of the interface we adopt the following expression

ΛS
αβγε =

1

ΓλS

[
(1 + p∗)2p∗

2
(Sαγδβε + Sαεδβγ + Sβγδαε + Sβεδαγ)

+
3p∗

IS
1 IS

2

(δαγδβε + δαεδβγ)

]
, (3.5b)

where λS is a characteristic time scale associated with the elastic interface and IS
1 , IS

2 are
the first and the second invariant of S, respectively. The quantity p∗ is a phenomenolo-
gical parameter that controls whether the droplet deformation is more oblate or prolate,
and it depends on the viscous and/or elastic properties of the two phases. The first term
in the square brackets accounts for droplets which deform into oblates for startup of
steady shearing flow, the second term accounts for droplets which deform into prolates
for startup of steady shearing flow. The difference between oblate and prolate droplet
shapes is illustrated in the figures of Chap. 4, Sec. 4.1.

The phenomenological matrix A is adopted in analogy with the coupling matrix intro-
duced in Beris and Edwards (1994); Dressler and Edwards (2004); Edwards et al. (1996)

Aαβγε =
1

2

(1 + p∗)2θ√
GΓλCλS

(CαγSβε + CαεSβγ + CβγSαε + CβεSαγ) , (3.5c)

where θ is a phenomenological coupling parameter. The relaxation matrix (3.5c) is linear
in the conformation tensor and in the droplet shape tensor and consequently it is the
easiest way to quantify matrix-disperse phase coupling in highly viscous emulsions. For
θ > 0, the above phenomenological matrix gives oblate droplet configurations. Note
that the coupling matrix vanishes for p∗ = −1. The phenomenological coefficient θ may
be taken as a function of the scalar invariants of the structural variables, if so desired;
however, here we want to work with θ being a constant, real number for simplicity.
Next we need to make some remarks concerning the scalar coefficients in the three
phenomenological matrices and their determination from experiment.

To fit the model to experimental data it is necessary to incorporate the viscoelastic
characteristics of the matrix phase into the relaxation matrix ΛC. Here we use a variable
relaxation time,

λc ≡ λc(1/3trC̃)k , (3.6)

with C̃ = CK/kBT and k being a power law index according to the Extended White-
Metzner (EWM) Model (Souvaliotis and Beris, 1992). This allows to incorporate the
effects of matrix shear thinning into the model. The inclusion of matrix viscoelasticity
into the description is essential for fitting experimental data in App. A. In the devel-
opment of the model equations we work in terms of the phenomenological coefficient of
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3.1. Matrix Viscoelasticity

the UCM Model to keep the equations as simple as possible. Equation (3.5c) has to be
generalized in analogy to Eq. (3.5a) if the shear thinning behavior of the matrix phase
is incorporated into the modeling, i. e. λc ≡ λc(1/3trC̃)k.

Note that the prefactors that contain the viscosity ratio in the phenomenological matrices,
Eqs. (3.5b, 3.5c) have been introduced ad hoc: ζo = (1 + p∗)2p∗, ζp = p∗, ζc = (1 + p∗)2.
It may be necessary to adopt more appropriate functional dependencies if one wants to
fit experimental data or to make predictions over an extended range or viscosity ratios,
p∗.

Since experiments show that the deformation behavior of viscous droplets in a continu-
ous phase into prolates or oblates depends on the viscosity and the linear viscoelastic
response of the phases (Guido and Villone, 1998; Levitt et al., 1996), the coefficient p∗

should be related to the viscous properties of both phases. In principle, we can consider
two possibilities to relate the phenomenological coefficient, p∗, to the material properties
of the emulsion components.

If droplet deformation into oblate or prolate configurations is assumed to depend on the
viscous properties of the two phases, then p∗ should be taken as the negative viscosity
ratio of the emulsion components1

p∗ = −ηd

ηc

. (3.7a)

For this choice of the coefficient p∗ droplet deformation depends on the two dimensionless
groups viscosity ratio of emulsion components and Deborah number. The Toy Model in
Sec. 1.2 works with this definition of the coefficient p∗. It is also possible to define the
Capillary number instead of the Deborah number (Taylor, 1932, 1934)

If droplet deformation into oblate or prolate configurations is assumed to depend on the
viscoelastic properties of the interface, instead of the Newtonian viscosity of the droplet
phase, one may introduce an interfacial viscosity, η? = ΓλS, and define p∗ = −η?/ηc.
Then, if ηc = Gλc is identified as a Maxwellian viscosity of the continuous phase

p∗ = − ΓλS

GλC

. (3.7b)

Now the coefficient p∗ is determined through the linear viscoelastic properties of the
matrix and the interface and emulsion behavior does not depend on on the Newtonian
viscosity of the droplet liquid. Consequently, for this choice of p∗ droplet deformation
is governed by a single dimensionless group and the Deborah or Capillary number is

1The point that p∗ is a negative number will become clear below, when we evaluate the rate of
mechanical energy dissipation due to droplet relaxation, Eq. (3.9).
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the negative inverse of p∗ (cf. Sec. 4.1). In the sample calculations of Chap. 4 and 5 we
investigate the model equations for both definitions of the coefficient p∗, Eqs. (3.7).

There is no universal recipe available to determine the phenomenological parameter, θ,
and there are several possibilities how this coefficient could be related either to mor-
phological or viscometric properties of the blend: If morphological properties of the
blend can be measured easily in a well-defined flow field (e. g. in steady shear flow) then
one might study the corresponding solutions of the system equations as a function of
θ and use the value for θ that gives the most satisfactory fit to experimental data. If
morphological properties cannot be measured easily, then one might refer to nonlinear
viscometric properties of the blend and to calculate these properties as a function of the
coupling parameter from the time evolution equations. This method has been proposed
in Edwards et al. (1996) where the negative ratio of the normal stress differences has
been chosen as the viscometric property from which to obtain a value for the coupling
parameter.

3.1.6. Mechanical Energy Dissipation

We show next that it is important to evaluate the rate of mechanical energy dissipation in
the fluid. This property determines if the dynamics of the system described by Eq. (2.1),
is thermodynamically admissible for a given set of phenomenological coefficients λC, λS,
p∗, θ in Eqs. (3.5)

The rate of mechanical energy dissipation generated by the Hamiltonian, Eq. (3.4), is
given as

dHm

dt
= [Hm, Hm] ≤ 0 , (3.8)

and is a decreasing function of time (Beris and Edwards, 1994). Equation (3.8) is
obtained directly from Eq. (2.1) considering the antisymmetry of the Poisson bracket
and the fact that mechanical energy has to be dissipated into internal degrees of freedom
in the long time limit.

Inequality (3.8) is the appropriate condition to give a physically meaningful description
of the system, and it can lead to counterintuitive results for the range of thermodynam-
ically admissible phenomenological coefficients adopted herein. Mathematical criteria
which are imposed directly onto the dissipative phenomenological coefficients, e.g., on
the relaxation times, λC and λS, on the coupling parameter, θ, or on the dissipative
coefficient, p∗, do not necessarily satisfy Inequality (3.8), and may therefore lead to
aphysical results. This will become evident in the following paragraph, where we notice
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that the dissipative phenomenological coefficient, p∗, has to be negative to account for
a physically meaningful droplet relaxation according to the phenomenological matrix of
Eq. (3.5b).

For the dissipation bracket of Eq. (3.2), Inequality (3.8) is equivalent to

[Hm, Hm] = [Hm, Hm]C + [Hm, Hm]S + [Hm, Hm]CS

= −(1− φ)2G

2λC

∫ (
K

kBT
IC
1 +

kBT

K
IC
−1 − 6

)
d3x

− (1 + p∗)2p∗φ2Γ

2λS

∫ (
3− 1

3
IS
1 IS

2

)
d3x

− p∗φ2Γ

λS

∫
IS
2

(
3

IS
1

(IS
2 )2

− 1

)
d3x

− (1 + p∗)2φ(1− φ)θ
√

GΓ√
λCλS

K

kBT
×

×
∫ (

IS
1 CαβSαβ − CαγSβγSαβ −

2

3
IC
1 IS

2

)
d3x ≤ 0 ,

(3.9)

where IC
−1 = C−1

αα = IC
2 /IC

3 . The first integral is the mechanical energy dissipation of
a Maxwell fluid, [Hm, Hm]C, the second and third integrals are the mechanical energy
dissipation due to droplet relaxation including oblate and prolate relaxation, [Hm, Hm]S,
and the fourth integral is the rate of mechanical energy dissipation due to the irreversible
coupling of the matrix fluid and the droplet interface, [Hm, Hm]CS. Each of the first three
integrals on the right-hand side of Eq. (3.9) has to be negative since they account for
matrix chain relaxation and droplet retraction, respectively. This specifies the range of
thermodynamically admissible phenomenological coefficients, λC, λS, p∗. Furthermore,
the last integral should be negative since the irreversible coupling between the two phases
should not lead to an increase of mechanical energy in the long time limit. If one of the
four integrals was positive, the mechanical dissipation rate could become positive for
specific values of the physical variables.

In the following, we want to evaluate generically the four integrals in Eq. (3.9) for start-
up of homogeneous, weak shear flow, γ̇ � 1, and for vanishing coupling parameter,
θ = 0, to find the correct range of the thermodynamically admissible phenomenological
coefficient p∗. Numerical calculations (cf. Fig. 4.1) corroborate that the scalar invariants
of the structural variables increase upon start-up of steady shear flow (except the third
invariant of the droplet shape tensor, detS = 1). The invariant IC

−1 assumes values
above its equilibrium value, IC

−1 = 3K/(kBT ); however, the variations in IC
−1 are small

compared to the variations of IC
1 . Therefore, the first integral in Eq. (3.9) is negative

since the expression in parentheses is positive (the relaxation times, λC, λS, and the
elastic moduli, G, Γ, are positive numbers). Due to IS

1 ≥ 3 and IS
2 ≥ 3, the expressions
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in parentheses in the second and the third integrals are negative. Consequently, the
phenomenological friction coefficient, p∗, has to be negative to give a negative dissipation
rate due to droplet relaxation.

Neglecting the prolate contribution in Eq. (3.5b) for the time being (but still keeping
θ = 0), we notice that the range of thermodynamically admissible phenomenological
coefficients λC, λS, and p∗ in the two relaxation matrices (3.5a) and (3.5b) is different,
although both expressions have an identical mathematical form. The deduction of the
thermodynamic admissibility criterion p∗ < 0 from Eq. (3.5b), arguing that the droplets
relax to the lowest energy state of the spherical droplet in absence of entropic forces
and flow, is not obvious. Instead the admissibility criterion p∗ < 0 is obtained from
Eq. (3.8). Our analysis shows that the constraint det(S) = 1 and the functional form of
the thermodynamic potential, ES = 1/2ΓφIS

2 , produce this counterintuitive example of
a phenomenological dissipative coefficient being negative. Nevertheless, if p∗ is taken as
positive, then there is a direct violation of the Second Law of Thermodynamics. This is
the reason why the coefficient f1 has been taken as a negative number in the Toy Model
of Sec. 1.2.

For a vanishing coupling parameter, θ = 0, the last integral in Eq. (3.9) is zero. For a
small value of the coupling parameter, θ � 1, the coupling parameter has to be positive
to yield a negative dissipation of mechanical energy due to the coupling between the two
variables. Note that the possibility of a negative phenomenological friction coefficient
was also found in Edwards et al. (1996), where the coupling parameter was shown to be
θ ∈ [−1, 1]. Furthermore, note that the aspect of a negative friction coefficient in the
droplet configuration equation is not worked out rigorously in Grmela et al. (2001) and
Yu et al. (2002).

3.1.7. Model Equations

To complete the modeling of emulsions with matrix phase viscoelasticity we shall now
obtain the equations for the thermodynamic fields M, C, S. Evaluating the Volterra
derivatives of the Hamiltonian (3.4) and inserting the phenomenological matrices of
Eqs. (3.5) into Eqs. (3.3), we obtain the following set of time evolution equations:

ρ
∂vα

∂t
= −ρvβ∇βvα −∇αp +∇βσαβ , (3.10a)

∂Cαβ

∂t
= −vγ∇γCαβ + Cαγ∇γvβ + Cβγ∇γvα −

1− φ

λC

Cαβ +
kBT

λCK
(1− φ)δαβ

− 1

2

√
Γ

G

(1 + p∗)2φθ√
λCλS

[
(IS

1 δγε − Sγε)(CαγSβε + CβγSαε)−
4

3
IS
2 Cαβ

]
,

(3.10b)
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∂Sαβ

∂t
= −vγ∇γSαβ −

2

3
∇γvγSαβ + Sαγ∇γvβ + Sβγ∇γvα

− (1 + p∗)2p∗φ

λS

(
1

3
IS
1 Sαβ − SαγSγβ

)
+

p∗φ

λS

(
Sαβ −

3δαβ

IS
2

)
− K

2kBT

√
G

Γ

(1 + p∗)2(1− φ)θ√
λCλS

(
CαγSβγ + CβγSαγ −

2

3
IC
1 Sαβ

)
.

(3.10c)

The elastic extra stress tensor in the Cauchy Momentum balance equation is a linear
combination of the extra stress tensor of the two components. With Eq. (3.4), the
general expression of Eq. (3.3d) for the extra stress tensor is equivalent to

σαβ = σC
αβ + σS

αβ

= (1− φ) (nCKCαβ − nCkBTδαβ) + Γφ

(
IS
1 Sαβ − SαγSγβ −

2

3
IS
2 δαβ

)
.

(3.10d)

For the dilute regime (φ → 0), we have mainly a stress contribution due to the matrix
phase and the droplet configuration is governed by the coupling term in Eq. (3.10c).
For the concentrated regime (φ → 1), the extra stress is due to the droplet phase and
the non-linear coupling terms are the only contributions in the conformation tensor
evolution equation, Eq. (3.10b). Equation (3.10d) is consistent with the extra stress
tensor obtained by Grmela et al. (2001).

Equation (3.10b) is the conformation tensor equation. For θ = 0, we obtain the relaxa-
tion terms of the UCMM and our set of equations reduces to an uncoupled multi-mode
model. For θ 6= 0 and p∗ 6= −1, we have a non-trivial coupling of the droplet phase to
the matrix. This means that the droplet deformation induces changes in the average
conformation of the molecules in the matrix phase. Equation (3.10c) is the droplet shape
equation dynamics. The first four terms on the right hand side of Eq. (3.10c) are the
reversible contribution to the S-dynamics, the fifth term accounts for oblate droplets
and the sixth term accounts for prolate droplets. The last term captures the influence
of the local polymer conformation in the matrix phase on the shape and relaxational
behavior of the droplets, and it gives oblate droplets for θ > 0. It arises from the phe-
nomenological matrix (3.5c) and it is the most simple representation of matrix-droplet
coupling compatible with the Second Law of Thermodynamics.

It is useful to discuss the emulsion model (3.10) for several limiting cases of the viscosity
ratio, p∗, and to explore the consequences for matrix microstructure, droplet shape,
and matrix-droplet coupling. This is easily achieved giving a closer look to the system
equations (3.10). Let us explore equi-viscosity emulsions, p∗ = −1, emulsions with
vanishing interfacial tension, p∗ = 0, and droplets with large interfacial tension, p∗ =
−∞.
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For p∗ = −1, i.e., equi-viscosity blends, the oblate term in the droplet configuration
equation and the coupling terms drop out and we recover a model of the MM type
together with a UCMM. Note that for equi-viscosity blends, the droplet deformation
in the MM model is described by the upper-convected time derivative and the prolate
relaxation term since the degree of non-affine motion was taken as f2 = 5/(3 − 2p∗) in
Maffettone and Minale (1998); consequently, it vanishes for equi-viscosity liquids. For
p∗ 6= −1, the prolate contribution in the droplet configuration equation and the coupling
terms become different from zero, and the droplets deform into non-axisymmetric shapes
for start-up of steady shearing flow. In the MM model this effect is obtained through the
inclusion of the Gordon-Schowalter derivative into the droplet configuration equation.

For p∗ → 0−, the interfacial tension between the two phases is negligible, and variations
of the droplet shape are due to the coupling of the viscoelastic matrix to the droplets,
i.e., the last term in Eq. (3.10c). Vice versa, droplet deformation induces structural
changes in the matrix fluid via the coupling term in Eq. (3.10b). The coupling term in
Eq. (3.10b) is a consequence of the modeling approach and it ensures thermodynamic
consistency of the partial differential equations. Consequently, droplet deformation is
always coupled with structural changes in the matrix for thermodynamic consistency
requirements. However, for specific choices of the physical parameters (G, λC) and (Γ,
λS), the coupling terms in Eq. (3.10b) can be small compared to those in Eq. (3.10c) so
that there is only a small effect of droplet deformation on the structural properties of
the matrix. Note that in the limit p → 0−, the degree of non-affine motion as defined in
Maffettone and Minale (1998) is f2 = 5/3 > 1. For this value of f2, the deformation of the
droplets is not described by the usual Gordon-Schowalter derivative since f2 /∈ [−1, 1].

For p∗ = −∞, the droplet relaxation terms in Eq. (3.10c) become the dominant ones,
and the drops behave like rigid particles (note that the coupling term in Eq. (3.10b)
vanishes for S = δ, i.e., in the undeformed state or for non-deformable droplets). For
the dilute regime, φ → 0, only the coupling term in Eq. (3.10c) is different from zero,
which predicts oblate droplet shapes. However, the presence of the droplet phase allows
changes in the local polymer conformation of the matrix phase constituents.

We conclude this section remarking that the emulsion model reduces to a model in the
spirit of the Toy Model for equi-viscosity conditions, p∗ = −1, vanishing matrix-droplet
interaction, θ = 0, and in the limit of diluteness φ → 0. In this case we recover drops
which deform into prolates and the extra stress tensor of Eq. (1.1d).
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3.2. Break-up and Coalescence

Let us now model an emulsion with a narrow, non-uniform droplet size distribution. We
assume that the Weibull distribution function (Bronshtein and Semendyayev, 1985),

f(R) =
1

V
γqRq−1e−γRq

, (3.11)

gives a reasonable description of the average droplet size distribution, where R > 0
is a dimensionless droplet radius, f(R) is the number density of micro-droplets with
radii between R and R + dR per unit volume, V , and q > 1, γ > 0 are positive real
numbers. Note that the above droplet distribution function (DDF) is fully specified if
the location, R̃, and the height, f(R̃), of its absolute maximum are known. Therefore,
we can introduce two representative thermodynamic variables to account for the non-
uniform droplet morphology of the polymer blend. Another droplet distribution function
(DDF), such as the log-normal distribution (Caserta et al., 2004), can also be adopted
if desired.

We should explain how to obtain the DDF (3.11) from the thermodynamic variables S,
n because the emulsion model is developed in terms of S, n. However, in our sample
calculations of Sec. 4.2 we want to study the DDF. To obtain the DDF (3.11) from the
variables S, n we use the one-to-one relationship between the parameters, q, γ, in the
Weibull distribution function and the thermodynamic variables, S, n. The parameter
q is obtained by solving the non-linear equation n = f(R̃), where R̃ ≡ 1/3trS is the
location of the maximum of the DDF and n, S are solutions of the continuum equations
for a given initial and boundary conditions. Then also the second parameter of the
Weibull distribution function is fixed since R̃q = (q − 1)/γq.

3.2.1. System Variables

The macroscopic flow of the emulsion is quantified in terms of the momentum density
field, M, defined as the velocity of a fluid particle, v, times its density, ρ. The aver-
age orientation and deformation of the matrix molecules at a fixed position in space
is described in terms of the contravariant, second-rank conformation tensor field, C.
The droplet shape tensor, S, is related to the location of the maximum of the DDF,
trS/3 ≡ R̃, and is a contravariant, second-rank tensor field, with the constraint detS = 1
to account for volume preservation of the micro-droplets. A scalar variable, n, which
represents the average number density of micro-droplets of representative shape S, is re-
lated to the height of the maximum of the DDF, n ≡ f(R̃). We emphasize that the two
internal variables, S and n, are representative microstructural variables of the polymer
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blend. The full droplet morphology is described in terms of an appropriate DDF, here
f(R). Hence our set of thermodynamical variables is x ≡ [M,C,S, n].

3.2.2. Droplet Number Equation

To obtain a set of continuum equations using Eq. (2.1), one has to specify the Poisson
bracket, the dissipation bracket, and the generator of the dynamics. Now the Poisson
bracket needs to be expressed in terms of x = [M,C,S, n]. The Poisson bracket in terms
of M, C, and S has been given in the previous section. Due to the variable number
density of droplets an additional integral has to be added to the Poisson bracket (3.1)
which represents the Poisson bracket for the scalar variable n.

{F, Hm}n = −
∫ [

δF

δn
∇β

(
δHm

δMβ

n

)
− δHm

δn
∇β

(
δF

δMβ

n

)]
d3x . (3.12)

The bracket constructed from Eq. (3.1) plus the above sub-bracket (3.12) is the bracket
for the variables x = [M,C,S, n].

Also for the dissipation bracket, we have to generalize Eq. (3.2) to take into account the
variable number density of droplets

[F, Hm]n = −
∫

Λn δF

δn

δHm

δn
d3x . (3.13)

This sub-bracket with the phenomenological matrix Λn is the relaxation of the repres-
entative number density of micro-droplets in the fluid. Together with Eq. (3.2) this
sub-bracket is adopted to describe the irreversible dynamics for an emulsion which can
show droplet break-up and coalescence.

An irreversible coupling of the number density of droplets with the droplet shape tensor,
S, is not considered in Eq. (3.13) because it gives an antisymmetric contribution to
the dissipation bracket, which does not contribute to the rate of mechanical energy
dissipation. We wish to consider only contributions to the dissipation bracket that yield
a non-vanishing rate of mechanical energy dissipation. (This is a completely arbitrary
consideration, but we believe that it is better for a preliminary work to keep the final set
of evolution equations as simple as possible.) The rate of mechanical energy dissipation
associated with the new dissipation bracket, Eq. (3.13), is discussed below.

The Poisson and dissipation sub-brackets yield the following general dynamical evolution
equation for the number density of micro-droplets

∂n

∂t
= −∇α(nvα)− Λn δHm

δn
. (3.14)

44



3.2. Break-up and Coalescence

where the first term on the right hand side is the reversible contribution from the Poisson
bracket and the second term is the irreversible term from the dissipation bracket.

3.2.3. System Hamiltonian

Next we make a constitutive assumption for the Hamiltonian functional, which represents
the total energy of the polymer blend. Again, similar as before, we study a system that
is envisioned as a superposition of a Maxwell fluid with characteristic elastic constant,
K, an elastic droplet interface with interfacial tension, Γ′, and a non-linear coupling of
matrix and interfacial elasticity with the variable number density, n, of representative
micro-droplets, S:

Hm[M,C,S, n] = K[M] + A[C,S, n]

=

∫ [
MαMα

2ρ
+

1

2
(1− φ)G

K

kBT
IC
1 −

1

2
(1− φ)G ln(det

KC

kBT
)

+
1

2
φΓ

n

n0

IS
2 −

1

6
φΓ

K

kBT
ln(

n

n0

)IC
1 ε(IS

1 , IS
2 )

]
d3x .

(3.15)

In this expression, IC
n and IS

n denote the n-th invariant of C and S, respectively, φ =
1/V

∫∞
0

f(R)dR is the constant total volume fraction of droplets, G is the elastic modulus
of the matrix, Γ = Γ′/R0 where R0 is a representative droplet radius in the undeformed
state, n0 denotes the representative number density of micro-droplets at equilibrium,
and ε = ε(IS

1 , IS
2 ) is a measure for the asphericity of the droplets.

Equation (3.15) represents the kinetic energy of the system (first term in the integral)
plus a linear superposition of the Helmholtz free energy of a system of Hookean springs
(second and third terms) and the energy of the elastic interface, with IS

2 being associated
with the surface area (fourth term). Note that the energy of the elastic interface is pro-
portional to the relative number of micro-droplets, n/n0, and therefore increases linearly
with n. To represent the dynamic effects that determine the number density of droplets
away from equilibrium, a fifth term is added to the Hamiltonian. We consider here a
logarithmic term in n/n0 similar to the Flory/Huggins mixing term. This mixing term is
taken to depend on both microstructural variables, C and S. The mixing term depends
on the microstructural tensor C, since the conformation of the matrix molecules influ-
ences droplet shape and hence the break-up and coalescence processes. Here, we have
chosen a linear dependence of the mixing term on the trace of the conformation tensor,
IC
1 , for simplicity. Furthermore, the mixing term depends on the average asphericity of

the micro-droplets, which can be expressed in terms of the non-unit scalar invariants of
the droplet shape tensor, ε = ε(IS

1 , IS
2 ). Here we take the first invariant of the droplet

configuration tensor, ε = IS
1 , to express the asphericity of the droplet. Consequently,
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we have ε = 3 at equilibrium and ε → ∞ as the micro-droplets are stretched into long
fibers or compressed into thin sheets. More elaborate expressions for the asphericity
parameter in terms of the first and the second invariants of the droplet shape tensor can
be introduced if necessary.

The subscript “m” in the Hamiltonian denotes that the description of the polymer blend
is purely mechanical; i.e., we will not consider the transfer of mechanical energy into
internal degrees of freedom. Instead, we study an isothermal and incompressible system.
Note that Eq. (3.15) duly satisfies the consistency requirement that, at equilibrium in
absence of any stress and when the droplet shape is spherical, Sequil = δ, the Hamiltonian
is minimized for n = n0, which can be considered in general as a function of the viscosity
ratio and the temperature.

3.2.4. Phenomenological Matrices

We proceed to specify expressions for the phenomenological matrices ΛC, ΛS, Λn, and A
introduced in the dissipation bracket. For the phenomenological matrices ΛC, ΛS, and
A we adopt the expressions of the previous section, Eqs. (3.5), together with the EWM
expression for the relaxation time, λC, Eq. (3.6). For the phenomenological matrix Λn,
the following general expression is introduced:

Λn = 2fc
n0n

λnΓ
, (3.16)

where λn is a characteristic time scale of the break-up/coalescence process and fc is a
general function of the phenomenological parameter, p∗, and the scalar invariants of the
conformation tensor and the droplet shape tensor, fc = fc(p

∗, C̃,S). This quantity can
be related to the probability of the coalescence process (Fortelný, 2001). In what follows,
we will take fc = 1 for simplicity; i.e., we neglect a direct influence of the viscosity ratio
on the break-up/coalescence processes for simplicity.
Equation (3.16) is the most simple relaxation matrix since it depends linearly on the
number density of droplets. Note that the matrices ΛS and A, Eqs. (3.5), depend on
p∗ and thus the viscosity ratio will influence break-up and coalescence rates due to the
non-linear character of the resulting model equations (3.18).

3.2.5. Mechanical Energy Dissipation

Next we calculate the rate of mechanical energy dissipation in order to evaluate Inequal-
ity (3.8) for the rate of mechanical energy dissipation. For the dissipation bracket of
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Eq. (3.13), Ineq. (3.8) is equivalent to

[Hm, Hm] = [Hm, Hm]C + [Hm, Hm]S + [Hm, Hm]n + [Hm, Hm]CS

= − 1

2λC

∫
(trC̃/3)−k

[
(1− φ)2G

(
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kBT
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1 +

kBT
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)
+ 2φ(1− φ)Γ ln
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)
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+
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9
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r
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d3x
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∫ [(
n

n0

)2(
3− 1

3
IS
1 IS

2

)
+

2

3

K

kBT

n

n0

ln
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√
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∫
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3
φΓ ln
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×
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1 CαβSαβ − CαγSβγSαβ −
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ln
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)
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1

(
CαβSαβ −

1

3
IC
1 IS

1

)]
d3x ≤ 0 ,

(3.17)

where IC
−1 = C−1

αα = IC
2 /IC

3 . The first integral is the mechanical energy dissipation of
a Maxwell fluid, [Hm, Hm]C, the second and third integrals are the mechanical energy
dissipation due to droplet relaxation including oblate and prolate relaxation, [Hm, Hm]S,
the fourth integral is the rate of mechanical energy dissipation due to the change of the
representative droplet number density, [Hm, Hm]n, and the fifth integral is the rate of
mechanical energy dissipation due to the irreversible coupling of the matrix fluid and the
droplet interface, [Hm, Hm]CS. The above expression for the rate of mechanical energy
dissipation is negative, if each of the five integrals are negative.

Again, evaluation of the rate of mechanical energy dissipation is essential to generate
thermodynamically admissible model predictions. In particular, it is found, that the
phenomenological coefficient, p∗, identified with the viscosity ratio is again a negative
number.
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3.2.6. Model Equations

The last step in the modeling of emulsions with break-up and coalescence is to write
down the flow equations for the dynamic variables. We obtain the following set of
equations

ρ
∂vα

∂t
= −vβ∇βvα −∇αp +∇βσαβ , (3.18a)

∂Cαβ

∂t
= −vγ∇γCαβ + Cαγ∇γvβ + Cβγ∇γvα −

1− φ

λC

(trC̃/3)−kCαβ

+ (1− φ)
kBT

λCK
(trC̃/3)−kδαβ +

φΓ

3λCG
(trC̃/3)−k ln

(
n

n0

)
IS
1 Cαβ

− 1

2

√
Γ

G

(1 + p∗)2φθ√
λCλS

(trC̃/3)−k/2
{ n

n0

[
(IS

1 δγε − Sγε)(CαγSβε + CβγSαε)

− 4

3
IS
2 Cαβ

]
− K

3kBT
ln
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n
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)
IC
1

(
CαγSβγ + CβγSαγ −

2

3
IS
1 Cαβ

)}
,

(3.18b)

∂Sαβ

∂t
= −vγ∇γSαβ −

2

3
∇γvγSαβ + Sαγ∇γvβ + Sβγ∇γvα
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+
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ln
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×
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1 Sαβ
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,

(3.18c)

∂n

∂t
= −∇α(nvα)− φfcI

S
2

λn

n +
φfcKIC

1 IS
1

3kBTλn

n0 . (3.18d)

In the appropriate limits, the above set of model equations reduces to the emulsion model
of the previous section. For n = n0 we recover flow equations for emulsions with stable
droplets. Equation (3.18b) is the conformation tensor equation which now is coupled
with the number density equation (3.18d). Thus droplet break-up and coalescence have
an influence on matrix flow behavior in our description. The same holds also for the
droplet tensor equation (3.18c). We have an effect of break-up and coalescence on droplet
shape. For θ = 0, k = 0, and n = n0, Eq. (3.18b) reduced to the UCMM. For θ 6= 0
and p∗ 6= −1, we have a non-trivial coupling of the droplet phase to the matrix phase.
Equation (3.18d) is the number density equation with a reversible and two irreversible
contributions. The second term on the right hand-side of Eq. (3.18d) has a negative sign
and it accounts for a decrease of the representative number density of micro-droplets,
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i.e., droplet coalescence. This term is proportional to the number density of droplets, n,
cf. (Fortelný, 2001). The last term on the right hand-side of Eq. (3.18d) has a positive
sign, and it accounts for an increase of the representative number density of droplets,
i.e. break-up. Note that we have a single time scale for break-up and coalescence, λn.
Furthermore, note that an equilibrium of coalescence and break-up rates is predicted by
Eq. (3.18d) at any steady state. The last two terms on the right hand-side of Eq. (3.18c)
represent effective coalescence and break-up rates, which involve the dispersed phase
concentration and the invariants of the two structural variables. Though the time scale
for coalescence and break-up are identical, the time evolution equations give different
rates of coalescence and break-up far from thermodynamic equilibrium.

The elastic extra stress tensor of the blend is the linear combination of the extra stress
tensor of the two components. With Eq. (3.15), the general expression of Eq. (3.3d) for
the extra stress tensor is equivalent to

σαβ = σC
αβ + σS

αβ

= (1− φ)G
K

kBT
Cαβ − (1− φ)Gδαβ + φΓ

n

n0

(
IS
1 Sαβ − SαγSγβ −

2

3
IS
2 δαβ

)
− φΓK

3kBT
ln

(
n

n0

)[
IC
1 Sαβ + IS

1 Cαβ −
1

3
IC
1 IS

1 δαβ

]
.

(3.18e)

This expression generalizes the stress tensor derived for the model with matrix vis-
coelasticity. For the dilute regime (φ → 0), we have mainly a stress contribution due
to the matrix phase and the droplet configuration is governed by the coupling term in
Eq. (3.18c). For the concentrated regime (φ → 1), the extra stress is due to the droplet
phase and the non-linear coupling terms are the only contributions in the conformation
tensor evolution equation, Eq. (3.18b).

3.3. Surfactants

Emulsions can be unstable against coalescence or spontaneous phase separation, par-
ticularly if the continuous phase is low viscous and if the components have different
densities. Therefore, surface active molecules are added in order to stabilize micro-
droplets against coalescence. These surface active molecules have, e. g. a hydrophilic
and a hydrophobic end-group so that they aggregate at the interface. We assume that
interfaces are surfactant covered (i. e. the surfactant concentration is larger than the crit-
ical micelle concentration) with the result of a stable emulsion, at least on a very long
time scale. It is clear that the surface active molecules influence the elastic properties
of the interface as well as the response of the interface to an external perturbation.
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Therefore, the elastic free energy of the interface is modified to account for an interfacial
elastic modulus which is a function of droplet deformation

A[S] =
1

2

∫
Γ(IS

1 , IS
2 )φIS

2 d3x , (3.19)

where Γ(IS
1 , IS

2 ) is an arbitrary function of the first and second scalar invariant of the
droplet shape tensor. This function should be obtained, e. g. from steady state droplet
deformation experiments on covered droplets. If the concentration of surfactant mo-
lecules is large and droplet deformation is small a constant interfacial modulus, Γ, is to
be adopted. For the relaxation matrix of the interface one can adopt

ΛS
αβγε =

1

ΓλS(IS
1 , IS

2 )

[
(1 + p∗)2p∗

2
(Sαγδβε + Sαεδβγ + Sβγδαε + Sβεδαγ)

+
3p∗

IS
1 IS

2

(δαγδβε + δαεδβγ)

]
, (3.20)

i. e. the relaxation time of the interface is a function of the scalar invariants of the droplet
shape tensor. One could take, e. g. λS(I

S
1 , IS

2 ) = λS0(I
S
1 )−k, where k is a phenomenological

parameter. Note that the relaxation time is not taken as a function of the invariants
of the rate-of-deformation tensor, but it is a function of the invariants of the droplet
shape tensor. Especially for low surfactant concentrations at the interface and for large
droplet deformation we expect λS to be a strong function of droplet deformation due to
advection and diffusion of surfactants. Appropriate constitutive relationships have to
be adopted for the relaxation matrix ΛCand the phenomenological coupling matrix A.
For matrix fluids with low viscosity the relaxation matrix of the UCM Model is to be
adopted for ΛC and effects of matrix deformation on droplet shape can be neglected,
A = 0. If A is non-trivial, the relaxation time λS has to be replaced by the variable
interfacial relaxation time, λS(I

S
1 , IS

2 ).

3.4. Highly Concentrated Emulsions

The models developed so far are intended for the dilute disperse phase regime. We ex-
plain how emulsions of high disperse phase concentration can be modeled. First of all we
keep in mind that an increase of disperse phase volume fraction can lead to phase inver-
sion. Let us assume therefore, that the highly concentrated emulsion is stable (e. g. due
to a stabilizing surfactant) and that it is a fluid and not a solid (i. e. that the actual
configuration can be taken as the reference configuration). In such systems we expect
strong droplet-droplet interaction and the dynamics of single droplets is influenced by
the neighboring drops. This should have an influence on the drop shape dynamics which
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we account for in terms of the phenomenological friction coefficient, ζ. This approach is
similar to the Giesekus model for highly concentrated solutions or polymer melts. Con-
sequently, the rheological response of the emulsion is mainly due to the large amount of
interface and the Newtonian flow behavior of the disperse phase fluid. Viscoelasticity
of the matrix phase plays a minor role since its volume fraction is small. For the phe-
nomenological matrix for interface relaxation we can adopt the following expression

ΛS
αβγε =

1

ΓλS

[
(1 + p∗)2p∗

2
(Sαγδβε + Sαεδβγ + Sβγδαε + Sβεδαγ)

+
3p∗

IS
1 IS

2

(δαγδβε + δαεδβγ) + ζ (SαγSβε + SαεSβγ)

]
, (3.21)

which has an additional higher order term with respect to Eq. (3.5b). The number ζ is a
phenomenological coefficient which accounts for anisotropic relaxation of the interface.
Note that the values of ζ have to be such that the flow equations satisfy the Second
Law of Thermodynamics. The Hamiltonian can be taken from the emulsion model with
matrix viscoelasticity, since we expect only small deformation.

3.5. Critical Comment on Emulsion Models

Before evaluating the models for flows as encountered in rheometers and simple geomet-
ries we should comment on their ability to fit the complicated viscometric behavior of
complex fluids. Remember that a single relaxation time as used for the modeling of the
continuous phase allows to describe the non-linear viscoelastic behavior only qualitat-
ively. With the EWM Model, e. g., the shear thinning behavior of the viscosity and
the first normal stress coefficient are recovered. To model fluids with non-trivial second
normal stress coefficients, e. g. the Giesekus Model can be used. However, with a single
relaxation time it is not possible to recover quantitative predictions for the viscosity
and the normal stress coefficients. Therefore, to make quantitative predictions of the
viscometric material functions a set of discrete relaxation times is needed (Bird et al.,
1987). The use of a single relaxation time for droplet deformation is reasonable if drop
behavior is dominated by the interfacial tension between the fluid phases.
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The discussion in this chapter will be concerned with some basic features of the mod-
els derived in the previous chapter. The main properties of the models in shear and
elongational flows are discussed and the connection with experimental characterization
is indicated. By resorting to computational means and by especially reporting results of
numerical calculations we shall already entering the realm of CFD.

4.1. Model with Matrix Viscoelasticity

The set of continuum equations (3.10), is solved for homogeneous deformation velocit-
ies, ∇v, as realized in shear and elongational rheometers and in the stagnation point of
the four roll mill apparatus. We use a fourth order Runge-Kutta scheme with adaptive
step-size and a Newton-Raphson algorithm (Press et al., 1992) to solve for transient
and steady state material properties, respectively. In the long time limit the transi-
ent calculation gives the steady state model characteristics. The model equations are
rendered dimensionless using t̃ = t/

√
λCλS, C̃ = K/kBTC, S̃ = S, and σ̃ = σ/(

√
GΓ).

In all that follows, we omit the tilde over dimensionless quantities. The groups that
we adopt to render the system of equations dimensionless thus only involve character-
istic material properties and intrinsic time scales. The viscosity ratio of the emulsion
is defined in terms of the Maxwellian viscosities of the matrix fluid and the interface,
i. e. p∗ = −(ΓλS)/(GλC), Eq. (3.7b).

With these dimensionless groups and the definition of the coefficient p∗, the Capillary
Number is defined as Ca = ηcR/(Γ′λS) in analogy with Edwards and Dressler (2003),
i. e. , the intrinsic time scale of the viscoelastic interface is adopted in the definition of
the Capillary Number instead of the time scale related to the velocity gradient. This
is a more physically realistic definition if one incorporates matrix-phase viscoelasticity
into the problem because the Capillary is defined in terms of material properties only
and it does not depend on space and time. Using the standard definition of Ca, this
quantity depends on space and time for transient and non-homogeneous flow fields; hence
the advantage gained in using a Ca defined in terms of material properties only. With
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the above relationship, we see that the Capillary Number is fixed once the viscoelastic
properties of the two phases have been specified: Ca = −1/p∗. The reason for the
Capillary Number being the only dimensionless group is the definition of the coefficient
p∗ in terms of Maxwellian viscosities, Eq. (3.7b).

We discuss sample calculations for various viscosity ratios, p∗, droplet concentration
regimes, φ, and coupling parameter values, θ. First, we focus on a dilute model emulsion
(Ca = 4) with linear viscoelastic properties defined as G/Γ = 4 for the ratio of elastic
strengths and λC/λS = 1 for the ratio of relaxation times. Furthermore, the model is
solved for Ca = 0.1, 1, and 10 to discuss the predictions over a larger range of Capillary
Numbers, and to compare our equations with the predictions of the MM Model and
the ALS Model. The dispersed phase concentration is taken as φ = 0.1 in the sample
calculations.

4.1.1. Simple Shear Flow

First, we investigate the system equations for start-up of steady shear flow

∇v =

0 0 0
γ̇ 0 0
0 0 0

 , (4.1)

focusing on the non-linear rheological features of the two coupled modes description of
the emulsion (Figs. 4.1-4.3). Then, we discuss the steady state rheological and morpho-
logical properties (Figs. 4.4 and 4.5)

Figure 4.1 illustrates the transient behavior of the scalar invariants of the structural
variables as a function of shear strain, γ, for a given shear rate, γ̇, and two values of
the coupling parameter, θ, according to Eqs. (3.10). In this case, all fields are spa-
tially homogeneous and the integrals in Eq. (3.9) give the total system volume, Ω. The
calculations are for the Ca = 4 model emulsion, i. e. p∗ = −0.25 < 0 to satisfy thermo-
dynamic admissibility criteria for the system equations. We note that the invariants of
C (Figs. 4.1a-c) increase upon start-up of steady shear flow, and that they each attain
a value greater than their equilibrium values. The solid lines in Figs. 4.1a-c corres-
pond to the single-mode UCMM, and they can be obtained analytically solving this
linear viscoelastic model. The first and the second invariant of S (Figs. 4.1d, e) show
a strongly non-linear behavior which is related to the increase of the surface area of
the ellipsoidal inclusions. The third invariant of S is always unity, as prescribed by the
constant-volume constraint. Figure 4.1g displays the total rate of mechanical energy
dissipation, [Hm, Hm]/Ω, according to Eq. (3.9). Inequality (3.9) should be evaluated in
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Figure 4.1.: The invariants of the structural variables, C and S, and the mechanical
dissipation rate, [Hm,Hm]/Ω for start-up of steady shear flow, γ̇ = 0.1, as a function of
strain, γ. The parameters in the model have been specified as follows: G/Γ = 4 for the
ratio of elastic strengths, λC/λS = 1 for the ratio of relaxation times (i.e., p∗ = −0.25),
and φ = 0.1 for the dispersed phase concentration. We chose two values for the coupling
parameter, θ = 0 (solid lines) and 0.1 (dashed lines).
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Figure 4.2.: The average semiaxes of the ellipsoidal droplets, L, B, W , and the orientation
angle, χ, for start-up of steady shear flow for a coupling parameter, θ = 0.1, and three shear
rates γ̇ = 0.05 (solid lines), 0.1 (dashes lines), 0.2 (dotted lines) for the Ca = 4 emulsion
with dispersed phase concentration φ = 0.1. Depending on the shear rate, the model
predicts either oblate droplets (W > 1) or prolate droplets (W < 1). For γ̇ = 0.1 and small
shear strains, we observe a competition between oblate and the prolate configurations.

all flow calculations to ensure that model predictions are compatible with the Second
Law of Thermodynamics.

The morphological properties of the disperse phase are represented by the average mag-
nitude of the three semiaxes of the ellipsoidal droplets and the average orientation of the
droplets with respect to the flow direction. The semiaxes of the droplets are the square
roots of the eigenvalues of the droplet configuration tensor, S, as already introduced
with the Toy Model. The droplet semiaxes in the flow direction, in the direction of the
shear gradient, and in the direction of the vorticity axis are denoted with L, B, W , re-
spectively. Upon inception of weak steady shear flow, γ̇ / 1, the major droplet axis, L,
increases and the minor droplet axis, B, decreases. However, the vorticity axis, W , can
be greater than, smaller than, or equal to unity upon start-up of flow and the droplets
are thus either oblate or prolate: one has oblate droplets for W > 1 and prolate droplets
for W < 1. The orientation angle, χ, is the angle between the eigenvector corresponding
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Figure 4.3.: The same as Fig. 4.2 for the transient viscometric properties of the Ca = 4
emulsion. The left column shows the start-up behavior of the shear stress and the shear
viscosity, σ12 and ηS, while the right column displays the start-up behavior of the normal
stress differences, N1 and N2.

to the largest eigenvalue of the S-tensor and the flow direction and it is defined as

χ =
1

2
arctan

(
2S12

S11 − S22

)
. (4.2)

Figure 4.2 displays the start-up behavior of the three droplet semiaxes upon inception of
steady shear flow for a fixed value of the coupling parameter and three shear rates. We
see that the model predicts a transition from the prolate to oblate droplet configurations
for increasing shear rate when θ 6= 0. At intermediate shear rates, there is a competition
between the prolate and the oblate droplet deformations that ends up in a prolate non-
equilibrium state for high shear strains. The start-up behavior of the three semiaxes
and the orientation angle for fixed shear rate and various coupling parameters shows
also a competition between oblate and prolate droplet configurations. An illustration
for γ̇ = 0.5 and θ = 0.1, 0.2, and 0.4 which results in a steady state prolate droplet
configuration can be found in Dressler and Edwards (2004, Fig. 3b).

In Fig. 4.3, we display the transient viscometric properties of the Ca = 4 emulsion
for three shear rates. The continuum equations derived in the previous section predict
a typical non-linear viscoelastic response known from synthetic polymer rheology. The
right column in Fig. 4.3 displays the shear stress, σ21, and the shear viscosity, ηS = σ21/γ̇,
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as a function of shear strain. The shear stress shows a strongly non-linear transient
behavior with over- and undershoots, which increase with increasing shear rate. The
first normal stress difference, N1 = σ11 − σ22, is positive. Similarly to the shear stress,
it shows a non-linear behavior with over- and undershoots, and it is of the same order
of magnitude as the shear stress. The second normal stress difference, N2 = σ22 −
σ33, is negative and, in the steady state, approximately half the magnitude of the first
normal stress difference. The normal stress differences attain a steady state at higher
shear strains compared to the shear stress. Finally, the transient shear viscosity, ηS, is
also reported in Fig. 4.3; it displays the characteristic shear-thinning behavior. This
is illustrated more clearly in Fig. 4.4a where we present the steady-state viscometric
properties for the Ca = 4 emulsion.

It is interesting to determine correlations between the magnitude of the semiaxes of the
ellipsoidal droplets and the viscometric functions of the material. Such a procedure is
discussed, e.g., in Yu et al. (2002), who propose correlations between the viscometric
properties of polymer blends and higher-order Taylor deformation parameters of the
type, DXY = (X2−Y 2)/(X2 +Y 2), where X,Y ∈ {L, B, W} denote the semiaxes of the
drop. Possibly, it is more instructive to establish correlations between the semiaxes and
the viscometric functions instead of defining generalized Taylor deformation parameters.
A comparison of Figs. 4.3 and 4.2 shows, e. g., that the first normal stress difference
correlates with the major semiaxis, L, and the second normal stress difference correlates
with the minor droplet semiaxis, B. However, such correlations should be used with
caution due to the non-linear character of the underlying dynamics. Note that the Taylor
Deformation Parameter, D = (L− B)/(L + B), does not give information whether the
droplets are oblates or prolates; however, the full droplet shape can be relevant for the
viscoelastic response of the emulsion, as the calculations demonstrate. Therefore, the
information contained in the Taylor Deformation Parameter is insufficient for correlating
viscometric data with morphological characteristics of the emulsion.

The morphological properties of the matrix phase are described in terms of the con-
formation tensor, C, being the second moment of the end-to-end vector of the linear
polymer chains in the matrix. Upon start-up of steady shear flow the matrix chain con-
formations start to deviate from their equilibrium value, C = 1, and after several strain
rate units one obtains steady state conformations with non-trivial shear and normal
conformations, C12 and Cii, i ∈ {1, 2, 3}, respectively. The non-trivial second and third
normal conformations are due to the coupling terms in the model equations. For θ = 0
the conformation tensor equation can be solved analytically to recover the well known
results for the UCM Model.

In Fig. 4.4, we present the steady-state viscometric and morphological properties of the
Ca = 4 emulsion in shear flow. Figure 4.4a shows the viscometric functions for the emul-
sion with dispersed phase concentration φ = 0.1. We observe a shear-thinning behavior

58



4.1. Model with Matrix Viscoelasticity

10
−3

10
−2

10
−1

1
0

10

20

30

40
2

2.5

3

3.5
θ=0.05
θ=0.1
θ=0.15

10
−3

10
−2

10
−1

1
0

0.2

0.4

0.6

0.8
0

20

40

60

80

shear rate, γ
.

ηs

−Ψ2

Ψ1

−Ψ2/Ψ

G/Γ=4,  λC/λS=1, φ = 0.1a)

10
−3

10
−2

10
−1

1
0.5

1

1.5

2
1

1.5

2

2.5

θ=0.05
θ=0.1
θ=0.15

10
−3

10
−2

10
−1

1
0

10

20

30

40

50
0.2

0.4

0.6

0.8

1

0.01 0.1
0.98
0.99

1
1.01

shear rate, γ
.

L

W

B

χ

G/Γ=4,  λC/λS=1, φ = 0.1b)

Figure 4.4.: The steady-state viscometric (a) and morphological (b) properties of the
Ca = 4 emulsion with dispersed phase concentration, φ = 0.1, for three coupling parameter
values: θ = 0.05 (solid lines), 0.1 (dashed lines), and 0.15 (dotted lines) in simple shear
flow. a) Steady state viscometric functions ηS, Ψ1, Ψ2 and the ratio Ψ1/Ψ2, b) droplet
semiaxes L, B, W , and orientation angle, χ.
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in the three viscometric functions. The plateau values of the viscometric functions de-
crease as the coupling parameter is increased. The power-law index of the shear viscosity
curve in the shear-thinning region decreases with increasing coupling parameter. How-
ever, the power-law indices of the steady-state normal stress coefficients increase with
increasing coupling parameter. This is seen more clearly if the viscometric functions
are normalized with respect to the zero shear-rate values of the respective flow curves
(Dressler and Edwards, 2004, Fig. 8). We find that the shear-thinning regime sets in at
shear rates of γ̇ ≈ 0.01, and there is a broad transition from the plateau in the low shear-
rate regime to the power-law region in the intermediate and high shear-rate regimes. For
γ̇ ≈ 0.2, the steady-state viscometric functions start to deviate from power-law behavior
and a second Newtonian plateau is reached. For even higher shear rates, the onset of a
shear-thickening region is observed where the shear viscosity begins to increase again.
A dimensionless value of γ̇ ≈ 1 corresponds to extremely high shear rates in reality
since we have already left the power-law region of the flow curves. Finally, the ratio
−Ψ2/Ψ1 is reported in Fig. 4.4a which varies between 0.1 and 0.6. The dot-dashed lines
in Figs. 4.4a is the prediction of the Toy Model, Ψ2/Ψ1 = −0.5. We realize that our set
of equations allows for a more general behavior of the ratio of normal stress differences
compared to the Toy Model. We arrive at the important conclusion that the large value
of normal stress differences found for the Toy Model is also recovered with an emulsion
Model that is constructed in the framework of non-equilibrium Thermodynamics. It is
worth to assess these model predictions experimentally.

Our emulsion model, (3.10), allows to predict steady-state viscometric properties over an
extremely large shear rate regime that extends from a Newtonian plateau to a power-law
regime at low and intermediate shear rates, to a second Newtonian plateau with the a
shear-thickening region at high shear rates. The prediction of steady-state viscometric
emulsion properties is critical for both the ALS Model and the MM Model. As has been
pointed out in Jansseune et al. (2001), the original ALS Model does not yield a steady-
state shear stress for start-up of simple shear flow. The problem with the MM Model is
that it yields a critical shear rate, γ̇c = f1/(

√
f 2

2 − 1 λ). Beyond γ̇c, the droplet shape
tensor (and hence the extra stress tensor) increases to infinity for start-up of steady shear
flow. Therefore, the steady-state shear viscosity and the first normal stress difference
can be predicted only over a limited range of shear rates for the MM Model – see Yu
et al. (2002, Fig. 5). Our model does not use the mixed convected derivative for the
droplet configuration tensor, but is expressed in terms of the upper-convected derivative.
However, this corresponds to f2 = 1 which means γ̇c → ∞ for the uncoupled set of
evolution equations in simple shear flow. In the MM Model, the Gordon-Schowalter
derivative has been adopted to describe droplet deformation in blends of Newtonian
liquids with a viscosity ratio different from unity. In this article, we do not want to
adopt the Gordon-Schowalter derivative since it is an irreversible contribution to the
system dynamics which does not lead to dissipation of mechanical energy; i. e., it does
not contribute to Eq. (3.8), even though it is irreversible!). Instead, we wish to study the
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effect of the oblate relaxation term in Eq. (3.10c) and of the coupling terms in Eqs. (3.10)
on the rheological and microstructural properties of the blend.

Figure 4.4b shows the steady-state morphological properties of the ellipsoidal inclusions
in the viscoelastic matrix. We observe a strong increase in the major droplet axis, L,
which reaches a maximum at γ̇ ≈ 0.4 for our Ca = 4 model emulsion. This increase in
L correlates with (i) flow alignment of the droplet inclusions since the orientation angle,
χ, decreases with increasing shear rate, and (ii) with a strong increase of the vorticity
axis, W . The minor droplet axis, B, is a decreasing function of shear rate over the entire
range of shear rates investigated herein. A comparison with Fig. 4.4a shows that the
increase in the major droplet axis, L, correlates with the beginning of the power-law
region that is observed in the steady-state viscometric functions. The decrease of the
major droplet axis, L, and the strong increase of the vorticity axis, W , correlate with
the approach of the viscometric functions to a second Newtonian plateau. Also, the
orientation angle approaches a plateau value for high shear rates, and an increase of χ
is observed for θ = 0.15 at very high shear rates.

The important result of Fig. 4.4b is that the major droplet axis is a non-monotonic
function of shear rate. This model behavior is qualitatively different from the predictions
of the Toy Model, where the major droplet axis is a monotonic function of shear rate.
For highly viscous emulsions we expect an influence of matrix deformation on droplet
morphology, especially at high shear rates and non-monotonic droplet length should be
possible. The non-monotonic droplet length can also be taken as the motivation to
include break-up and coalescence into the model.

Summarizing the results of Figs. 4.4b we can identify several steady-state droplet shape
regimes. For small shear rates, 10−3 / γ̇ / 10−2, the steady-state droplet shape lies
in the prolate deformation regime. The major droplet axis increases with increasing
shear rate and the minor droplet axis decreases, whereas the vorticity axis, W , remains
almost unity. The droplets are non-symmetric, B 6= W . In the intermediate shear rate
regime, 10−2 / γ̇ / 10−1, we observe a further stretching of the droplets into prolates,
which manifests as a further increase of the L-axis and a further decrease of the B-
axis. Simultaneously, the vorticity semiaxis decreases below unity, and the droplets
are stretched into long ellipsoids (cf. the inset in Fig. 4.4b). In the high shear rate
regime, γ̇ ' 0.3, the vorticity axis shows a strong increase which is compensated by
a simultaneous decrease of the major droplet axis to unity; i. e., a compression of the
droplets in flow direction. Hence, we recover flat prolates (B � 1) with major semiaxes
L ≈ 1, which are almost aligned parallel to the shearing planes (χ ≈ 0) and extend into
the vorticity direction.

Figure 4.5 displays the steady-state shear viscosity and the first normal stress coefficient
for the three model emulsions Ca = 0.1, 1, and 10. We display results for three coupling

61



4. Rheology

10
−3

10
−2

10
−1

10
03

3.5

4

4.5

5

θ=0.005
θ=0.01
θ=0.02

10
−3

10
−2

10
−1

10
00.4

0.8

1.2

1.6

2

φ=0.1
φ=0.5
φ=1

10
−2

10
−1

10
0

10
10.286

0.296

0.306

0.316

0.326

θ=0.001
θ=0.005
θ=0.01

10
−3

10
−2

10
−1

10
00

50

100

150

200
10

−3
10

−2
10

−1
10

00

5

10

15

20

25

30
10

−2
10

−1
10

0
10

10.64

0.66

0.68

0.7

0.72

shear rate, γ
.

ηs

ηs

Ψ1

Ψ1

G/Γ=0.1,1,10,  λC/λS=1, φ = 0.1

Ψ1ηs

Ca=0.1

Ca=1

Ca=10

Figure 4.5.: The steady-state shear viscosity, ηS (left column), and the first normal stress
coefficient, Ψ2 (right column), for three emulsions Ca = 0.1 (first row), 1 (second row),
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parameters and droplet concentrations in the three Capillary Number regimes. For
the Ca = 0.1 emulsion, we note that an increase of the coupling parameter increases
the power-law index of the steady-shear viscosity and the first normal stress coefficient
curves. This is qualitatively different from the results reported in Figs. 4.4a, where an
increase of θ resulted in a decrease of the power-law index of the steady-state shear
viscosity. For the Ca = 1 emulsion, we report the steady-state viscometric properties
for three different droplet concentrations in Fig. 4.5. The case φ = 1 corresponds to the
MM Model and it is identical to the stress tensor predictions in Yu et al. (2002). For
Ca = 10, we observe that the power-law index of the steady-state shear viscosity and the
first normal stress coefficient are almost insensitive to a variation of 0.005 / θ / 0.02.

For the second normal stress coefficient, Ψ2, and the ratio of normal stress coefficients,
Ψ2/Ψ1, we find that both emulsion characteristics depend strongly on the Capillary
number regime (cf. Dressler and Edwards, 2004, Fig. 13). For the low Capillary number
regime both quantities are small and constant for shear rates γ̇ / 1. In the intermediate
and in the high Capillary number regime the second normal stress coefficient is large and
it shows a pronounced shear thinning behavior. The same is also true for the ratio of
normal stress coefficients which is approximately one half in the low shear rate domain.

A comparison of the zero-shear viscometric functions of Fig. 4.5 with experimental data
for emulsions and emulsion components would be a worthwhile. Figure 4.5 illustrates
that the emulsion has specific zero shear viscometric characteristics and it is not obvious
how they are related to the zero shear material functions of the single components,
because the zero shear characteristics of the emulsion depend on the phenomenological
coupling parameter, θ. Thus, θ can also be determined from zero shear viscometric data
of the emulsion and emulsion components.

4.1.2. Elongational Flow

Figure 4.6 summarizes the predictions of the continuum equations in uniaxial elonga-
tional flow,

∇v =

ε̇ 0 0
0 − ε̇

2
0

0 0 − ε̇
2

 , (4.3)

for the Ca = 4 emulsion and dispersed phase concentration φ = 0.1. For uniaxial
elongational flow, the droplets maintain a symmetric shape, B = W . The left column of
Fig. 4.6 displays the transient morphological and rheometrical properties of the emulsion
for constant coupling parameter and various elongation rates, ε̇. In Fig. 4.6a, we show
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Figure 4.6.: The morphological and viscometric properties of the Ca = 4 emulsion with
φ = 0.1 dispersed phase concentration in uniaxial elongational flow: (a-c) The transient
behavior of the droplet semiaxes and the elongational viscosity for three elongation rates,
ε̇ = 0.1 (solid lines), 0.2 (dashed lines), 0.4 (dotted lines), and θ = 0.1. (d-f) The steady-
state properties of the same quantities for three coupling parameter values, θ = 0.05 (solid
lines), 0.1 (dashed lines), 0.2 (dotted lines).
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4.1. Model with Matrix Viscoelasticity

the transient behavior of the major semiaxis of the ellipsoidal droplet, L, as a function
of elongational strain, ε = ε̇t, for three elongation rates. For the two smallest elongation
rates, we have a monotonic increase of the major semiaxis and an approach to a steady
state. The steady-state value of L increases in this elongation rate region. For the
highest elongation rate, we recover an overshoot and a slow relaxation of the major
semiaxis to the steady state. Figure 4.6b shows the transient behavior of the minor
semiaxis of a droplet, which decreases monotonically for small elongation rates and
displays an undershoot for the highest elongation rate examined. In Fig. 4.6c, we report
the transient elongational viscosity,

ηE =
σ11 − σ22

ε̇
. (4.4)

This quantity increases monotonically for start-up of flow and reaches a plateau value
at rather low elongational strains. Note that for small elongation rates, the slope of the
transient elongational viscosity is bigger than the slope of the transient droplet axis upon
start-up of elongational flow. The steady-state morphological and viscometric properties
of the model are reported in the right column of Fig. 4.6 for three coupling parameter
values. The steady-state behavior of the major droplet axis is shown in Fig. 4.6d. We
see that the major semiaxis increases monotonically up to elongation rates ε̇ ≈ 0.3,
where it attains a maximum. The steady-state behavior of the minor droplet semiaxis,
B, reported in Fig. 4.6e is a decreasing function of elongation rate due to the volume
preservation constraint, LB2 = 1. This quantity decreases monotonically for small and
intermediate shear rates, and reaches a minimum for γ̇ ≈ 0.3. Finally, we display the
steady-state elongational viscosity for three coupling parameter values in Fig. 4.6f. For
small elongation rates, we observe a slight strain softening of the emulsion which then
turns into a pronounced strain hardening as the elongation rate approaches ε̇ ≈ 0.1. The
range of coupling parameter values investigated in Fig. 4.6 has only a minor influence
on the steady-state morphological and rheological properties in the high elongation-rate
regime.

Figure 4.7 presents the predictions of the continuum equations for planar elongational
flow,

∇v =

ε̇ 0 0
0 −ε̇ 0
0 0 0

 . (4.5)

In the left column of Figs. 4.7a-c, we plot the transient behavior of the three semiaxes
and of the elongational viscosity for two elongation rates. For both elongation rates, we
observe a monotonic increase of L and W and a monotonic decrease of B in Fig. 4.7a
and 4.7b. This is contrary to the predictions of the MM Model, which predicts prolate
droplet configurations in planar elongational flow (see Yu et al., 2002, Fig. 10). The
transient elongational viscosity in Fig. 4.7c shows the same qualitative behavior as the
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Figure 4.7.: The same as Fig. 4.6 for planar elongational flow: (a-c) The transient beha-
vior of the droplet semiaxes and the elongational viscosity for two elongation rates ε̇ = 0.05
(solid lines), 0.1 (dashed lines), and θ = 0.01. (d-f) The steady-state properties of the same
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4.1. Model with Matrix Viscoelasticity

transient evolution of L and W , and it also increases monotonically. The steady-state
morphological and viscometric properties of the emulsion are reported in Figs. 4.7d-f for
several coupling parameter values. Whereas for uniaxial elongational flow (cf. Figs. 4.6d
and e) we observe a stretching of the droplets into elongated, prolate ellipsoids, the
situation is more complicated for planar elongational flow (Figs. 4.7d and e). In this
flow field, the droplets are first stretched into prolates, and in this range of deformation
rates the elongational viscosity remains almost constant. However, for higher values of
the elongation rate, the droplets start to expand in the 3-direction deforming into an
oblate state. The steady-state curves are insensitive with respect to a variation of θ
between 0.01 and 0.07. The equations predict a strong strain hardening of the emulsion
being subjected to planar hyperbolic flow. The beginning of the strain hardening regime
(Fig. 4.7f) is observed in a rather narrow range of elongation rates, and it correlates with
a sharp increase of the W -axis which is observed in the same elongation-rate interval
(Fig. 4.7e). The major semiaxis, L, and the minor semiaxis, B, in Figs. 4.7d and
4.7e show a smooth increase and a smooth decay to zero, respectively. Therefore, in
the present situation, the strain hardening in planar elongational flow is related to an
expansion of the droplets into the 3-direction. Note that the strain hardening behavior
recovered here is a feature which was not observed in the recent work of Yu et al. (2002),
who evaluated the extra stress tensor for the MM model. Yu et al. (2002) report a
constant elongational viscosity in uniaxial elongational flow and in planar elongational
flow (see Yu et al., 2002, Eqs. (40), (44) and Figs. 8, 10). Viscometric properties of the
ALS model in uniaxial elongational flow have not been reported thus far.

4.1.3. Four-Roll Mill Flow

We solve the time evolution equations for a deformation that is found at the stagnation
point of the four roll mill

∇v =
1

2
g

 1 + α 1− α 0
−1 + α −1− α 0

0 0 0

 , (4.6)

where g is the strength of the deformation field, and −1 < α < 1, is a measure of
the relative strength of the straining motion and the vorticity in the flow. A purely
rotational flow, a purely straining motion, and a simple shear flow are obtained with
α = −1, +1, and 0, respectively.

In Fig. 4.8, we display the droplet semiaxes and the droplet orientation angle for two
model emulsion with Ca = 0.25 (Fig. 4.8a) and Ca = 4 (Fig. 4.8b) for start-up of a
four-roll mill flow. We chose α = 0.2, i.e., the magnitude of strain rate, 1 + α, over
the magnitude of vorticity, 1 − α, is three halves. The Ca = 0.25 and the Ca = 4
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Figure 4.8.: The transient morphological properties for (a) a Ca = 0.25 and (b) a Ca = 4
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strength of the flow field, g. The droplet concentration and the coupling parameter are
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emulsion are investigated for high and low values of the the velocity gradient strength,
g, respectively. We have chosen the same droplet concentration and coupling parameter
value for both emulsions, and we have tracked the transient droplet morphology for three
deformation velocities. For the Ca = 0.25 emulsion in Fig. 4.8a, we observe a monotonic
behavior of the droplet semiaxes for small times and a steady state is obtained after a
dimensionless time of approximately one decade. For this Capillary Number and the
rather high values for g, oblate droplet configurations are generated in the four-roll mill.
The orientation angle shows a non-linear increase with a pronounced overshoot. The
qualitative behavior is different for the Ca = 4 model emulsion and the rather low values
of g (Fig. 4.8b), where a non-monotonic approach with damped oscillations is observed
for the transient behavior of the droplet morphology. A steady state is attained at long
times. In general, such an oscillatory behavior of an internal variable is observed if a
corotational derivative is employed for the time evolution equations of the structural
variable. Here, the oscillations in the droplet shape tensor components are due to the
non-linear coupling of the time evolution equations involving the structural variables.
For Ca = 4, we observe a competition between oblate and prolate droplet shapes for
small times immediately after start-up of flow. In the steady state, a prolate droplet
configuration is recovered. The orientation angle shows an increase with dimensionless
time.

We conclude this section by remarking that the emulsion model with matrix viscoelasti-
city predicts the typical rheological response of a viscoelastic fluid. The model is thus
able to predict non-linear start-up effects in shear and elongational flows and a shear
thinning behavior of the viscosity and the normal stress coefficients. The model can be
solved also for mixed flows. A fit of the model to experimental data is thus possible and
some preliminary fits are given in the Appendix. We proceed to study the model with
break-up and coalescence next.

4.2. Model with Break-up and Coalescence

Now, the emulsion model with break-up and coalescence (3.18) is solved for homogeneous
deformation velocities, ∇v. Again, a Runge-Kutta scheme with adaptive step size and
a Newton-Raphson algorithm are used to solve for transient and steady state material
properties, respectively. The model equations have been rendered dimensionless using
t̃ = t/ 3

√
λCλSλn, C̃ = K/kBTC, S̃ = S, ñ = n/n0, and σ̃ = σ/(

√
GΓ). In all that

follows, we omit the tilde over dimensionless quantities.

For the sample calculations in this section the phenomenological coefficient, p∗, is taken
as the ratio of Newtonian viscosities of disperse and continuous phase according to
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Eq. (3.7a). In particular we take p∗ = −0.25 and p∗ = −1.25 for our sample calculations.
We compare model predictions with the predictions of the emulsion model of Sec. 3.1
in order to investigate the effect of a non-uniform DDF on the morphological properties
and the rheological response of the emulsion.

4.2.1. Simple Shear Flow

Figure 4.9 shows the rheometric and the morphological properties as a function of shear
rate, γ̇, for two model emulsions with p∗ = −0.25, G/Γ = 4 (solid lines) and p∗ = −1.25,
G/Γ = 4 (dashed lines), solving the full set of model equations (3.18) for steady shearing
flow. The dispersed phase concentration is φ = 0.1. The thin dotted lines in Fig. 4.9
are predictions for a constant droplet distribution and analogous material parameters.
We have taken λCλS/λ

2
n = 1 for the ratio of relaxation times of the emulsion, and a

phenomenological coupling coefficient θ = 0.001. Figures 4.9a-d show the non-linear
rheometric properties as predicted from the system equations for steady shear flow.
All viscometric functions possess a Newtonian plateau for low shear rates, a power-law
regime for intermediate shear rates, and another Newtonian plateau in the high shear-
rate regime (Figs. 4.9a-c). The ratio of the normal stress coefficients in Fig. 4.9d is
non-trivial and decreases with increasing shear rate. The viscometric properties of the
emulsions with variable and constant DDF are very similar for the present choice of
model parameters.

Figures 4.9e-h show the deformation induced microstructural changes of the droplet
morphology and the orientation of the micro-droplets with respect to the external flow
field. The major droplet axis, L, increases and the minor droplet axis, B, decreases
with increasing shear rate. For the low viscosity ratio emulsion, p∗ = −0.25, we observe
stronger variations in the major and in the minor droplet axes than for the p∗ = −1.25
emulsion. The steady-state behavior of the vorticity axis of the droplet, W , is different
for the two emulsions. Whereas a droplet widening effect, W > 1, is calculated for the
low viscosity ratio, p∗ = −0.25, a droplet compression effect, W < 1, is obtained for
the high viscosity ratio, p∗ = −1.25. The orientation angle, χ, decreases as a function
of shear rate. From Figs. 4.9e-h we see that a variable DDF influences the steady-state
morphological properties as obtained from the model equations, if we compare with the
prediction for a constant DDF. This is especially true in the high shear-rate regime,
γ̇ ' 0.2. Note that for very high shear rates, the viscometric and the morphological
properties of the emulsion seem to approach constant plateau values. Finally, it should
be mentioned that the continuum equations predict steady-state solutions for a wide
shear-rate regime, extending from a low shear rate region with a lower Newtonian plateau
to high shear rates with an upper Newtonian plateau.
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Figure 4.9.: Model predictions of the continuum equations for a variable DDF as func-
tions of shear rate for two viscosity ratios, p∗ = −0.25 (solid lines) and p∗ = −1.25 (dashed
lines). For the ratio of elastic moduli, the relaxation times, the coupling parameter, and
the EWM power-law index, we chose G/Γ = 4, λCλS/λ2

n = 1, θ = 0.001, and k = 0,
respectively. Dispersed phase concentration is φ = 0.1. The thin dotted lines are model
predictions for a constant droplet distribution, i.e., n = 1. The graph on the front cover
shows the non-linear flow curve and the major droplet axis for an extended regime of shear
rates where a transition to the shear thickening regime is recovered. Here, we discuss only
the regime of low and intermediate shear rates.
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Figure 4.10.: The same as Fig. 4.9 for the properties of the steady DDF, f(trS/3): a)
position of the maximum, trS/3, b) maximum of the distribution function, n, c) volume
fraction of residual droplets left and right from the inflection points R± (τ+, τ−) and total
volume fraction of residual droplets (τ+ + τ−), d) volume fraction of the droplets around
the maximum of the droplet distribution function, σ.

In Fig. 4.10, we examine the properties of the steady-state DDF for p∗ = −0.25 (solid
lines) and p∗ = −1.25 (dashed lines) as functions of shear rate. We use the same model
parameters as in Fig. 4.9. Figure 4.10a shows the average radius of the representative
micro-droplets. This quantity increases for both viscosity ratios reported in Fig. 4.10
as the shear rate, γ̇, is increased. For shear rates as high as γ̇ ≈ 0.8, the increase in
the average droplet radius becomes less pronounced and seems to reach a plateau value
(cf. Fig. 4.9). The behavior of the average droplet radius shown in Fig. 4.10a corresponds
to a shift of the location of the maximum of the DDF towards higher values of R̃ ≡ trS/3
as the shear rate, γ̇, is increased (cf. Fig. 4.11).

Figure 4.10b shows the solution of the droplet number density equation, Eq. (3.18d),
for steady shear flow. We note that the representative number density of micro-droplets
decreases for the p∗ = −0.25 emulsion, whereas it increases for the p∗ = −1.25 emulsion
with increasing shear rate, γ̇. This means that the steady-shear DDF is smeared out for
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p∗ = −0.25 (cf. Fig. 4.11a), and it is compressed for p∗ = −1.25 (cf. Fig. 4.11b). Hence
our model equations predict a shear-induced droplet coalescence in the low viscosity
regime, and a shear-induced droplet break-up in the higher viscosity ratio regime.

In Fig. 4.10c, d, we show several characteristic droplet volume fractions, τ−, τ+, σ, which
are calculated from the DDF:

τ− =
1

V

∫ R−

0

f(R)dR , σ =
1

V

∫ R+

R−

f(R)dR , τ+ =
1

V

∫ ∞

R+

f(R)dR , (4.7)

where f(R) is the DDF, Eq. (3.11), and

R± = R̃
q

√
3

2
±
√

5q − 1

q − 1
, (4.8)

are the inflection points of the DDF with q > 1. The first integral in the above Eq. (4.7),
τ−, represents the volume fraction of micro-droplets with droplet radii smaller than R−,
whereas the last integral, τ+ corresponds to the volume fraction of droplets with radii
larger than R+. The second integral, σ, is the number density of droplets with radii
between R− and R+, and it is a measure of the width of the center part of the DDF, i.e.,
the volume fraction of droplets that are found around its maximum at R̃. Consequently,
τ− + τ+ might be considered as the total volume fraction of small, residual droplets
(e.g., daughter or satellite droplets). Fig. 4.10c shows that τ− increases as a function of
shear rate, whereas τ+ decreases with increasing shear rate. This means that the left
edge of the DDF is smeared out as the shear rate is increased, whereas the right edge is
compressed and becomes steeper as the shear rate increases (cf. Fig. 4.11a,b). The total
volume fraction of residual droplets, τ− + τ+, is not a constant, but it increases with
increasing shear rate. This is mainly due to a decrease of the third integral, σ, which
is found to decrease for the low viscosity ratio emulsion, p∗ = −0.25, as well as for the
higher viscosity ratio emulsion, p∗ = −1.25 (Fig. 4.10d).

In Fig. 4.11, we display a band of steady-state DDFs for p∗ = −0.25 (Fig. 4.11a) and
p∗ = −1.25 (Fig. 4.11b), which have been discussed in Fig. 4.10. In Fig. 4.11, the shear
rate is a parameter, 0 ≤ γ̇ ≤ 0.3. The dotted lines in Fig. 4.11 are the trajectories of the
maximum of the DDF with γ̇ as a parameter, whereas the vertical dashed lines denote
the maximum of the equilibrium DDF, γ̇ = 0. The set of model parameters is the same
as in Figs. 4.9 and 4.10. We see clearly in Fig. 4.11 that the left edges of the DDF
are smeared out for increasing shear rate, γ̇, whereas the right edges become steeper as
the shear rate is increased, although we have a qualitatively different behavior for the
representative number density of droplets, n (cf. Fig. 4.10b, c). The insets in Fig. 4.11
show the DDF for γ̇ = 0.3 (solid lines) together with the equilibrium DDF (dashed lines),
which have been shifted onto the DDF for γ̇ = 0.3. The vertical dotted lines in the two
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Figure 4.11.: The DDF for steady shearing flow and two viscosity ratios a) p∗ = −0.25,
b) p∗ = −1.25, with the shear rate as a parameter (0 ≤ γ̇ ≤ 0.3). The dotted line is the
trajectory of the maximum of the DDF in the trS/3–f/φ plane, with γ̇ as a parameter, and
the vertical dashed line marks the maximum of the equilibrium DDF for γ̇ = 0. The inset
shows the equilibrium DDF (dashed line), which has been superimposed onto the DDF for
the highest shear rate (solid line). Vertical dotted lines mark the position of the inflection
points of the two DDFs, R±.
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insets denote the positions of the inflection points of the two DDFs, R±. Note that the
position of the inflection points separate from each other for the p∗ = −0.25 emulsion
(Fig. 4.11a), whereas they approach each other for the p∗ = −1.25 emulsion (Fig. 4.11b).
However, the volume fraction of droplets between the two inflection points, σ, decreases
with respect to the equilibrium DDF for both viscosity ratios (cf. Fig. 4.10d). Although
the DDF in Fig. 4.11b is compressed, the volume fraction of residual droplets, τ+ + τ−
increases. If dispersity of the system is defined as the distance between the inflection
points of the DDF then we see that the degree of dispersity increases for the emulsion
in Fig. 4.11a and it decreases for the emulsion in Fig. 4.11b.

In Figs. 4.12-4.14, we show sample calculations for start-up of steady shearing flow
for a p∗ = −0.25, G/Γ = 4 emulsion with φ = 0.1 dispersed phase concentration,
λCλS/λ

2
n = 1, θ = 0.001, and k = 0. Fig. 4.12 shows the transient behavior of the model

as a function of shear strain, γ, for start-up of steady flow with three different shear
rates, γ̇ = 0.2 (solid lines), 0.4 (dashed lines), and 0.8 (dotted lines).

Figures 4.12a,b display the transient shear stress, σ12, and the transient shear viscos-
ity, ηs = σ12/γ̇, respectively. The shear stress shows a rapid, monotonic increase for
small shear strains and a subsequent overshoot before the steady state is attained. The
steady shear stress increases with increasing shear rate. The transient shear viscosity in
Fig. 4.12b shows the same qualitative behavior as the shear stress; i.e., a rapid increase,
an overshoot, and an approach towards its steady state as the shear strain increases
during the start-up experiment. In Figs. 4.12c, d, the two normal stress differences are
displayed. Note that the first normal stress difference, N1, is larger than the shear stress,
whereas the second normal stress difference, N2, is nearly equal to the shear stress. The
morphological characteristics of our model equations are shown in Figs. 4.12e-h. The
transient behavior of the major droplet axis, L, correlates with the transient stresses;
i.e., a steep increase is observed for small strains, which is followed by an overshoot and
an approach to the steady state. The minor droplet axis, B, shows an undershoot for
the small shear rate, γ̇ = 0.2 (solid line), and a monotonic decrease for the high shear
rate, γ̇ = 0.8 (dotted line). For γ̇ = 0.2, the vorticity axis of the droplets, W , shows a
transition from an oblate configuration for small strains to a prolate configuration for
higher shear strains (solid line in Fig. 4.12g). For the other two shear rates, the droplet
configuration is oblate for all shear strains (broken lines in Fig. 4.12g). In Fig. 4.12h,
the transient orientation angle of the droplet with respect to the external flow field is
shown. For the smallest shear rate (solid line), an undershoot in the orientation angle is
obtained. From Figs. 4.12e-h, we see that transient droplet deformation and orientation
become more pronounced as the shear rate is increased (cf. Fig. 4.9e-h). The thin dotted
lines in Fig. 4.12 are predictions for the emulsion with a constant DDF, i.e., n = 1.

In Fig. 4.13, we examine properties of the transient DDF as functions of shear strain for
the same model parameters as in Fig. 4.12. Figure 4.13a shows the transient behavior
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Figure 4.12.: The same as Fig. 4.9 for start-up of steady shearing flow for a p∗ = −0.25
emulsion and three different shear rates, γ̇ = 0.2 (solid lines), 0.4 (dashed lines), 0.8 (dotted
lines). The thin dotted lines are model predictions for a constant DDF.
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Figure 4.13.: The same as Fig. 4.10 for the function properties of the transient DDF
for p∗ = −0.25 and three different shear rates, γ̇ = 0.2 (solid lines), 0.4 (dashed lines), 0.8
(dotted lines). Other model parameters are as in Fig. 4.12.

of the representative average droplet radius of the micro-droplets. This quantity shows
a pronounced overshoot and reaches a steady state for γ ≈ 40 shear strain units. The
solution of the droplet number density equation, Eq. (3.18d), is reported in Fig. 4.13b.
We recover an increase of the representative number density of droplets immediately
after start-up of flow of approximately 10-50%, which is followed by a rapid decrease of
this quantity towards the steady-state value. This value is n ≈ 0.9 for the lowest shear
rate (γ̇ = 0.2, solid line), and of n ' 0.5 for the highest shear rate (γ̇ = 0.8, dotted
line). This means that for start-up of steady shear flow, a transition from a break-up to a
coalescence regime is obtained with the model. The volume fractions of residual droplets,
τ+, τ−, and τ++τ− are shown in Fig. 4.13c. Note that these volume fractions also show a
strongly non-linear behavior with an overshoot (for τ− and τ++τ−) or an undershoot (for
τ+). Whereas the small droplet radius regime, τ−, is smeared out for increasing shear
strains, the large droplet radius regime, represented by τ+, is compressed as the shear
strain increases. The total volume fraction of residual droplets, τ++τ−, is approximately
25% for γ = 0, and reaches a value of approximately 33% at the steady state. Figure
4.13d, displays the volume fraction of droplets with radii between the inflection points,
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Figure 4.14.: The same as Fig. 4.11 for the transient DDF with shear strain as a
parameter (0 ≤ γ ≤ 80) and two shear rates: a) γ̇ = 0.4, b) γ̇ = 0.8. The dotted line is the
trajectory of the maximum of the DDF in the trS/3–f/φ plane, and the vertical dashed
line denotes the equilibrium DDF for γ = 0.
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σ. This volume fraction decreases rapidly for small shear strains, shows an undershoot at
γ ≈ 7, and reaches a steady-state value for γ ' 40. The volume fraction of droplets with
radii between the two inflection points of the DDF is approximately 75% at equilibrium,
and decreases to approximately 67% at the steady state. From Figs. 4.13c, d, we deduce
that the volume fraction σ is reduced and the total volume fraction of residual droplets,
τ+ + τ−, is increased for start-up of steady shearing flow.

Figure 4.14 shows two bands of transient DDFs for the same set of model parameters as
in Figs. 4.12, 4.13. The shear rates are γ̇ = 0.4 (Fig. 4.14a), γ̇ = 0.8 (Fig. 4.14b) and
the dimensionless strain, 0 ≤ γ ≤ 80, has been taken as a parameter. Again, the vertical
dashed lines mark the position and the height of the equilibrium DDF, whereas the
dotted lines are the trajectories of the maximum of the DDF in the trS/3− f/φ plane.
It can be seen from Fig. 4.14 that both the location of the maximum (the representative
average droplet radius) and the height of the DDF (the number density of droplets
with the representative average droplet radius) increase for low shear strains and then
decrease as the shear strain increases (cf. Fig. 4.13a, b). This effect is more pronounced
in Fig. 4.14b for the shear rate, γ̇ = 0.8. Furthermore, we see clearly in Fig. 4.14 that
the left edge of the DDF is smeared out, whereas the right edge becomes steeper as the
shear strain increases.

4.2.2. Elongational Flow

Figures 4.15-4.17 summarize model predictions for uniaxial elongational flow. We have
taken the same model parameters as before, i.e., G/Γ = 4, φ = 0.1, λCλS/λ

2
n = 1,

θ = 0.001, and a vanishing EWM power-law index, k = 0. Again, we have studied two
different viscosity ratios, p∗ = −0.25 and p∗ = −1.25.

Figure 4.15 shows morphological and viscometric data obtained from the continuum
model. In the left column (Figs. 4.15a-c), we show the start-up behavior of the model for
p∗ = −0.25 and three different elongation rates, ε̇ = 0.05 (solid lines), 0.1 (dashed lines),
and 0.2 (dotted lines). For low elongation rates, the droplet semiaxes in Fig. 4.15a, b
show a monotonic increase and reach a steady state for ε ≈ 4. For the highest elongation
rate, ε̇ = 0.2, a slight overshoot/undershoot is detected in the transient droplet semiaxes.
The transient elongational viscosity, ηe, in Fig. 4.15c increases monotonically for ε̇ =
0.05 (solid line) and shows a strongly non-linear behavior for ε̇ = 0.1 and 0.2 (broken
lines). In the right column (Figs. 4.15d-f), we display the steady-state morphological
and viscometric data as calculated from the model for two viscosity ratios, p∗ = −0.25
(solid lines) and p∗ = −1.25 (dashed lines). For elongation rates ε̇ ' 0.2, we observe
an increase of the major droplet axis, L, and a decrease of the minor droplet axis,
B, (Fig. 4.15d, e). For the low viscosity ratio emulsion, a strain-hardening behavior is
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Figure 4.15.: Model solution for uniaxial elongational flow for various elongation rates
and viscosity ratios: a)-c) transient calculations for p∗ = −0.25 and three different elonga-
tion rates, d)-f) steady-state calculations for p∗ = 0.25 (solid lines) and p∗ = −1.25 (dashed
lines). The other model parameters are the same as in Fig. 4.9. Thin lines are predictions
for a constant DDF.
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Figure 4.16.: The properties of the steady-state DDF for two different viscosity ratios,
p∗ = −0.25 (solid lines) and p∗ = −1.25 (dashed lines), for steady uniaxial elongational
flow. Other model parameters are the same as in Fig. 4.15.

recovered for ε̇ / 0.1, whereas the high viscosity ratio emulsion shows only a slight strain
hardening (Fig. 4.15f). For ε̇ ' 0.2, the elongational viscosity becomes very large. The
thin dotted lines in Fig. 4.15 are predictions of a constant DDF.

In Fig. 4.16, we display the properties of the steady DDF for uniaxial elongational flow
as a function of elongation rate, ε̇, for two different viscosity ratios p∗ = −0.25 (solid
lines) and p∗ = −1.25 (dashed lines). The other model parameters are as in Fig. 4.15.
Figure 4.16a shows that the steady DDF for uniaxial elongational flow is shifted towards
higher droplet radii, trS/3, for ε̇ / 0.1. Furthermore, the height of f(R) increases as the
elongation rate is increased (Fig. 4.16b). This means that the DDF is shifted to the right
and it is compressed as the elongation rate increases (cf. Fig. 4.17). Figure 4.16c shows
that the volume fraction of droplets with radii smaller than R− (τ−) increases with
increasing elongation rate, whereas the volume fraction of droplets with radii greater
than R+ (τ+) decreases. The total volume fraction of residual droplets, τ+ + τ−, varies
between 26% and 37%, approximately, for ε̇ / 0.2. Fig. 4.16d shows the volume fraction
of droplets with radii between R+ and R− (σ). This quantity decreases as the elongation
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Figure 4.17.: The DDF for steady uniaxial elongational flow and two viscosity ratios,
a) p∗ = −0.25 and b) p∗ = −1.25. The dotted lines are the trajectories of the maximum
of the DDF in the trS/3–f/φ plane with ε̇ as a parameter (0 ≤ ε̇ ≤ 0.3). The vertical
dashed lines mark the maximum of the equilibrium DDF. In Fig. 4.17a we have included
the trajectory for p∗ = −1.25 (solid line).
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rate is increased, and varies between 74% and 63%, approximately. Note that the results
of Fig. 4.16c, d are qualitatively similar to the results obtained for steady shearing flow
(cf. Fig. 4.10).

Figure 4.17 shows the steady-state DDF for uniaxial elongational flow for p∗ = −0.25 and
p∗ = −1.25, using the elongation rate as a parameter, 0 ≤ ε̇ ≤ 0.3. Again, the vertical
dashed lines mark the equilibrium DDF, whereas the dotted lines are the trajectories of
the maximum of the DDF. Note that the DDF is compressed and becomes as high as
n ≈ 10 for ε̇ = 0.3 and p∗ = −0.25, i.e., we observe an elongational flow-induced break-
up. Recently, the phenomenon of flow induced coalescence in extensional flow has been
investigated in Fortelný and Zivný (2003). The volume fraction of droplets between the
inflection points of the DDF becomes smaller and the volume fraction of drops outside
the center part of the DDF increases as the elongation rate increases (cf. Fig. 4.16c, d).
We see that for both viscosity ratios the dispersity of the system decreases because the
distance of the inflection points of the DDF becomes smaller. On an absolute basis, the
dispersity decreases as the width of the distribution gets narrower.

Grizzuti and Bifulco (1997) studied the effect of coalescence and break-up on the steady-
state morphology of immiscible polymer blends in shear flow. In their experimental
studies, coalescence and break-up phenomena prevail over the effects of droplet deform-
ation. It might be interesting to find out whether our model can be applied to fit those
data.
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5. Simple Laminar Flows

An important application of the emulsion models is the simulation of flow in geometries
of practical importance. Simple emulsion flows are realized in channels, tubes, and in
the annular gap. This chapter gives an introduction to CFD of highly viscous emulsions
with main emphasis on the computation of flow profiles and microstructural emulsion
characteristics. The dispersing characteristics of the flows are discussed in connection
with the rheometer flows of the previous chapter and in connection with their dispersing
characteristics.

5.1. Channel and Tube Flow

For pure Poiseuille flow between two horizontal planes located at x2 = ±H/2 the blend
model of Sec. 3.2 is solved for steady laminar flow in the x1 direction. For this type
of flow the model equations (3.18) are rendered dimensionless with ṽ = 3

√
λCλCλnv/H,

C̃ = KC/kBT , S̃ = S, ñ = n/n0, p̃ = p/
√

GΓ, σ̃ = σ/
√

GΓ, and r̃ = r/H, ∇̃ = H ∇.
In what follows we skip the tilde over dimensionless quantities. The velocity vector is of
the form v = v1(x2) e1 and obeys the boundary conditions

v′1(x2 = 0) = 0 , (5.1a)
v1(x2 = 1/2) = 0 , (5.1b)

where “ ′ ” denotes differentiation with respect to the transversal direction, x2. The flow
is symmetric with respect to the midplane, x2 = 0 and the density, ρ, is constant since
∇ ·v = 0. The conformation tensor, the droplet shape tensor, the number density of
droplets, and the extra stress tensor are functions of the transversal coordinate, x2.

For this type of flow the set of PDE’s (3.18) reduces to a set of ODE’s since flow is
stationary and the fields depend only on one spatial coordinate. The set of ODE’s can
be rewritten in the form

A · ξ′ = b , (5.2)
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which has to be solved for the boundary conditions (5.1). In Eq. (5.2) ξ is a 12-tuple of
non-trivial physical fields, A is a 12× 12 coefficient matrix, b is another 12-tuple called
the “inhomogeneity,” and “ ′ ” denotes differentiation with respect to the x2 coordinate.
The coefficient matrix, A, and the inhomogeneity, b, are obtained from the continuum
equations (3.18). For laminar channel flow, we have

ξ =
(
v1, v′1, p, vec(C), vec(S), n

)T
, (5.3)

where v′1 = ∂v1/∂x2 is the velocity gradient, and vec(X) = (X11, X12, X22, X33), X ∈
{C,S}, denotes the non-trivial components of the microstructural variables, C and S.
Equation (5.2) together with Eqs. (5.1) defines a Two Point Boundary Value (TPBV)
problem which is solved numerically.

The coefficient matrix, A, and the inhomogeneity, b are obtained in the following way
from Eqs. (3.18). The first two rows of (A,b) corresponding to v1 and v′1 are the
1-component of Eq. (3.18a) and the 12-component of Eq. (3.18b), respectively. The
third row of (A,b) corresponds to the v2-component of the momentum balance equation
(3.18a). Note that the constitutive relation for the extra stress tensor (3.18e) is to be
used in the Cauchy momentum balance (3.18a) for appropriate identification of the first
and the third row of (A,b). The remaining nine rows of (A,b) corresponding to the
non-trivial components of the conformation tensor, the droplet shape tensor, and the
number density of droplets, are identified by taking the derivative with respect to x2 of
the appropriate components of Eqs. (3.18b-3.18c) and of the number density equation
(3.18d).

The TPBV problem for the emulsion is solved computationally using a shooting al-
gorithm (Press et al., 1992). The algorithm uses a fourth-order Runge-Kutta scheme
with adaptive step size to integrate the set of ODEs and a globally convergent Newton
algorithm to match the no-slip boundary conditions at the upper wall, x2 = 1/2. First,
in our computer algorithm the linear system (5.2) is solved using an LU decomposition of
the coefficient matrix, A. The set of ODEs ξ′ = A−1 ·b is then integrated with a Runge-
Kutta algorithm shooting from the mid-plane, x2 = 0, to the upper plane, x2 = 1/2.
Every Runge-Kutta shoot starts with equilibrium values of the microstructural variables
and a different mid-plane velocity, V = v1(x2 = 0), being the independent variable in
the Newton subroutine of the shooting algorithm

ξ =
(
V, 0, p0, vec(1, 0, 1, 1), vec(1, 0, 1, 1), n0

)T
. (5.4)

The last nine entries of the above 12-tuple are specified through the boundary condition
(5.1a). The requirement of vanishing shear rate implies that the microstructure of the
emulsion is in equilibrium on the mid-plane. For the starting value of the pressure, p0,
an arbitrary value can be taken since it is not specified up to an additive constant. The
Runge-Kutta integrations with the starting tuple (5.4) are repeated until the Newton
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algorithm has converged, i. e. the non-slip condition Eq. (5.1b), is satisfied. This gives
the non-trivial mid-plane velocity of the emulsion, V , the solution of the TPBV problem.
A final Runge-Kutta integration with the solution of the TPBV problem is performed to
obtain the flow profiles together with the profiles of the microstructural characteristics.

If the velocity field is not symmetric (e. g. for mixed Couette-Poiseuille flow) one has to
integrate from the lower to the upper wall. In this case one has to shoot with different
wall shear rates on the lower wall to match the no-slip boundary condition at the upper
wall. Since the micro-structural characteristics of the emulsion are a function of shear
rate, one has to solve the steady state-shear flow problem prior to every Runge-Kutta
shoot. This procedure will be adopted for the solution of the annular flow problems in
Sec. 5.2.

To describe the axial flow of the emulsion through a circular tube of radius R, Eqs. (3.18)
are solved in cylindrical coordinates (r, φ, z), where r is the distance from the cylinder
axis, φ is the azimuthal coordinate, and z is the axial coordinate along the cylinder axis.
The boundary conditions for the velocity field are

v′z(r = 0) = 0 , (5.5a)
vz(r = R) = 0 , (5.5b)

and the tube axis is a symmetry line for the velocity and microstructural profiles. Now
the tube radius, R, is the characteristic length of the flow problem, i. e. r̃ = r/R,
∇̃ = R ∇. The set-up of the ODE’s (5.2) is analogous as explained above, for the
channel flow problem. The emulsion equations (3.18) are reformulated in terms of a
TPBV problem for the boundary conditions (5.5) and the 12-tuples of unknown profiles
is

ξ =
(
p, vz, v′z, vec(C), vec(S), n

)T
. (5.6)

The “ ′ ” denotes differentiation with respect to the radial coordinate and vec(X) =
(Xrr, Xrz, Xφφ, Xzz), X ∈ {C,S} denotes the non-trivial components of the microstruc-
tural variables, C and S. The coefficient matrix, A, and the inhomogeneity, b, are
obtained in an analogous way as for the laminar channel flow problem. The first row of
(A,b) corresponding to p is the r-component of the Cauchy momentum balance (3.18a)
in cylindrical coordinates. The second and third row of (A,b) corresponding to vz and
v′z are the z-component of the momentum balance and the rz-component of the con-
formation tensor equation (3.18b), respectively. The remaining nine rows of (A,b) are
obtained as before by taking the derivative of the appropriate microstructural equations
with respect to the radial coordinate, r. The flow problem is symmetric with respect
to the tube axis and the velocity on the tube axis is the independent variable of the
Newton subroutine in the shooting algorithm. It is varied until the boundary condition
(5.5b) is matched.

87



5. Simple Laminar Flows

The computer codes for the emulsion models of Sec. 3.1 and 3.2 have been checked care-
fully. We have solved viscoelastic fluid models for Polymer melts (Dressler and Edwards,
2005) to assess the performance of the shooting algorithm and we have compared nu-
merical data with analytical solutions of the UCM Model (Dressler and Edwards, 2006)
to further check the accuracy of the code.

5.1.1. Model with Matrix Viscoelasticity

We compute laminar channel flow profiles for the PIB/PDMS emulsion discussed in
App. A assuming a constant DDF, i. e. n = n0. Then, the emulsion model accounting for
break-up and coalescence reduces to the model that assumes a constant DDF (Sec. 3.1)
This is used as a consistency check of our computer codes.

Figure 5.1 shows channel flow profiles for the φ = 0.1 PIB/PDMS emulsion and five
pressure drops. Model parameters for this system have been introduced in App. A;
Figs. A.2, A.3. Figures 5.1a and 5.1b display the velocity field and the shear rate as
functions of the distance from the mid-plane. Figures 5.1c and 5.1d show the shear
stress profile and the profile of the first normal stress difference, respectively. The
velocity profile matches the boundary conditions on the mid-plane and the upper plate
of the channel. Note that the first normal stress difference is much larger than the
shear stress. Furthermore, high wall shear rates are obtained for the highest pressure
drop in Fig. 5.1b. The profiles of the major and the minor droplet axes as functions of
the transversal direction are shown in Figs. 5.1e and 5.1f. The variation of the major
droplet axis is monotonic for the lowest pressure drops in Fig. 5.1e, but it becomes non-
monotonic for higher pressure drops. This finding is consistent with Figs. 4.4b where
the droplet semiaxes are non-monotonic functions of shear rate. The minor droplet axis
decreases monotonically for all pressure drops shown in Fig. 5.1. Consequently, the
increase of the flow stresses does not correlate with the behavior of the major droplet
axis, which varies non-monotonically for higher pressure drops.

The wall viscometric material functions and the droplet characteristics as a function
of the wall shear rate, γ̇w, are identical to the steady shear viscometric functions and
droplet characteristics in Fig. A.2. Thus the wall shear properties in laminar channel
flow correspond to the viscometric properties in steady homogeneous shearing flow at
the same value of shear rate. In a channel flow experiment, it is not clear whether the
same properties will be detected since shear-induced migration from the wall or flow
instabilities might occur at elevated pressure drops. These phenomena could lead to
different shear rates at the walls.

88



5.1. Channel and Tube Flow

0 0.1 0.2 0.3 0.4 0.5
0

5

10

15

20

25

30

0 0.1 0.2 0.3 0.4 0.5
-200

-150

-100

-50

0

0 0.1 0.2 0.3 0.4 0.5
-10

-8

-6

-4

-2

0

0 0.1 0.2 0.3 0.4 0.5
0

10

20

30

40

0 0.1 0.2 0.3 0.4 0.5
1

1.5

2

2.5

3

0 0.1 0.2 0.3 0.4 0.5
0

0.2

0.4

0.6

0.8

1

distance from mid-plane, x
2

L

B

σ
12

N
1

v

γ .

d)

e)

a)

b)

c)

f)

Figure 5.1.: Dimensionless channel flow profiles for a φ = 0.1 PIB/PDMS blend for
different pressure drops: ∇1p = −2 (solid lines), −5 (dotted lines), −10 (dashed lines),
−20 (dot-dashed lines). Model parameters are the same as in Fig. 4.9 and the number
density of droplets is constant, n = 1. a) Velocity profile, b) shear rate profile, c) shear
stress, d) first normal stress difference, e) major droplet axis, f) minor droplet axis.
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5.1.2. Model with Break-up and Coalescence

After having solved and discussed the case n = n0, we want to solve the system equations
for a variable DDF (n 6= n0) now. We do so to investigate whether non-monotonic trends
of the droplet length occur also if break-up and coalescence are taken into account.

For solving the emulsion model accounting for break-up and coalescence, we adopt the
model parameters of Sec. 4.2, i. e. G/Γ = 4, λCλS/λ

2
n = 1, φ = 0.1, θ = 0.001, and k = 0.

The viscosity ratio of the blend components is an independent parameter according to
Eq. (3.7a), i. e. it is the ratio of Newtonian viscosities of the components, and we study
the cases p∗ = −0.25 and p∗ = −1.25. First, we discuss the flow field of the polymer
blend (Fig. 5.2), then we present the non-trivial components of the stress tensor and the
droplet shape tensor (Fig. 5.3), and finally we discuss the droplet distribution function
(Fig. 5.4).

Figure 5.2 shows the velocity and the shear rate profiles for the p∗ = −0.25 emulsion and
different pressure drops. We notice that the fluid has a maximum velocity on the mid-
plane, and that the velocity vanishes on the channel walls to match the no-slip boundary
condition (Fig. 5.2a). With the solution of the TPBV problem we know the velocity field,
v1(x2), which can be easily integrated, e. g. with a ten-point Gauss-Legendre integrator
(Dressler and Edwards, 2005), to obtain the volumetric flow rate

Q =

+W/2∫
−W/2

dx3

+H/2∫
−H/2

v1(x2)dx2 , (5.7)

where W is a unit-width of the channel. The volumetric flow rate, which corresponds
to the area under the velocity profiles of Fig. 5.2a, increases with the pressure drop.
Figure 5.2b shows that the shear rate increases monotonically from the mid-plane to
the channel wall and it visualizes the strong deviation of the velocity profile from the
parabolic Poiseuille profile of Newtonian liquids. This is evident mostly for the high
pressure drop curves in Fig. 5.2.

Figure 5.3 shows the profiles of the flow stresses and the droplet shape as functions of
the distance from the mid-plane for three pressure drops. Again, the shear stress var-
ies linearly over the channel height, as required by the linearized momentum balance
equation. The normal stress differences show a nonlinear increase as the walls are ap-
proached. Note that the absolute value of the shear stress in Fig. 5.3a is one order of
magnitude smaller than the first normal stress difference in Fig. 5.3b. The second nor-
mal stress difference in Fig. 5.3c is again negative and of the same order of magnitude
as the shear stress. The elastic stresses vary monotonically from the mid-plane to the
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Figure 5.2.: Channel flow profiles for the model of Sec. 3.2, Eqs. (3.18) for different
pressure drops: ∇1p = −2 (solid lines), −4 (dotted lines), −6 (dashed lines), −10 (long
dashed lines), −15 (dot-dashed lines), −20 (dot-long dashed lines). a) Velocity profile, b)
shear rate profile. The viscosity ratio of the emulsion model is p∗ = −0.25, other model
parameters are the same as in Fig. 4.9: G/Γ = 4, λCλS/λ2

n = 1, φ = 0.1, θ = 0.001, k = 0.

walls. For a fixed position, the absolute value of the stress increases as the pressure drop
is increased.

Figures 5.3d-f display the profiles of the droplet semiaxes. For small pressure drops, the
major and the minor droplet axes vary monotonically as functions of the transversal
direction. For the highest pressure drop, a non-monotonic variation of the three axes is
recovered from the model equations. The vorticity axis in Fig. 5.3f shows a transition
from the oblate (W > 1) to the prolate (W < 1) configuration regime near the centerline
for the three pressure drops. An interesting conclusion from Fig. 5.3 is that the positions
of the highest stresses in the channel (the walls) differ from the positions of the largest
droplet deformation, which are located away from the walls at the maxima of the broken
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Figure 5.4.: The trace of the droplet shape tensor (right column) and the number density
of droplets (left column) for p∗ = −0.25 (first row) and −1.25 (second row) for three
pressure drops: ∇1p = −2 (solid lines), −4 (dotted lines), −10 (dashed lines). Other
model parameters are the same as in Fig. 5.3.

lines in Figs. 5.3d-f. This is consistent with the steady shear trends of Fig. A.2e which
also predict a non-monotonic droplet length in the high shear rate regime.

Figure 5.4 shows the position and the height of the droplet distribution for the p∗ = −0.25
(Figs. 5.4a, b) and the p∗ = −1.25 emulsions (Figs. 5.4c, d) as functions of the distance
from the mid-plane. We report sample calculations for the three pressure drops discussed
in Fig. 5.3. For the smallest pressure drop, the maximum of the DDF is shifted towards
larger droplet sizes as we approach the channel wall. For the largest pressure drop, the
maximum of the DDF is first shifted towards larger droplet sizes near the mid-plane. As
the channel walls are approached, the maximum of the DDF shifts backwards to smaller
sizes. This holds for the low viscosity ratio blend as well as for the high viscosity ratio
blend (Figs. 5.4a, 5.4c). As already seen for the emulsion model of Sec. 3.1 the wall
viscometric functions and droplet characteristics as a function of the wall shear rate are
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identical to the steady state properties of Figs. 4.9-4.11.

The droplet number density for the low viscosity ratio blend is displayed in Fig. 5.4b.
For the smallest pressure drop, we observe flow-induced break-up near the mid-plane and
flow-induced coalescence near the walls (solid line in Fig. 5.4b). For the highest pressure
drop, we see flow-induced break-up near the mid-plane and near the walls. Between the
mid-plane and the wall, there is a region of flow-induced coalescence (Fig. 5.4b). For the
high viscosity ratio blend in Fig. 5.4d, the droplet number density is a monotonically
increasing function of the three pressure drops, and we have flow-induced break-up along
the transversal direction.

Figures 5.2-5.4 show that the emulsion model of Sec. 3.2 predicts a non-monotonic
droplet length at high shear rates. In this model the disperse phase dynamics is in-
fluenced by the deformation of the matrix fluid and the variable number density of
micro-droplets. We believe that both mechanisms are reasonable from a physical point
of view. On the one hand, matrix deformation influences droplet deformation even if
break-up and coalescence do not occur. On the other hand, the break-up/coalescence
events have an effect on matrix and droplet deformation. It should be checked whether
the sole assumption of a variable number density (i.e., θ = 0) is sufficient to produce a
non-monotonic droplet length.

An obvious conclusion of Figs. 5.2-5.4 is that laminar tube flow is not an advantage-
ous dispersion flow because there is no droplet deformation around the mid-plane of
the channel. Next, we study dispersing characteristics of Couette flow and of mixed
Poiseuille-Couette flow. Therefore, we solve the emulsion model in the annular gap
between concentric cylinders since it is a typical dierspersing geometry in process engin-
eering.

5.2. Annular Flow

The emulsion model of Sec. 3.2 is solved for flows in the annular gap between two
concentric cylinders with inner radius Ri and outer radius Ro. We explain how the
coefficient matrix A, and the inhomogeneity b, in Eq. (5.2) change with respect to
channel and tube flow. The ratio of cylinder radii is κ = Ri/Ro, the annular gap is
δ = Ro−Ri, and the relative distance from the inner cylinder is r̄ = (r−Ri)/(Ro−Ri).
Now the gap width, δ, is the characteristic length scale of the flow problem. Again, we
adopt cylindrical coordinates (r, ϕ, z) to describe the flow. We study flows of the form

v = vϕ(r)eϕ + vz(r)ez , (5.8)
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i. e. there is no radial fluid flow in the annulus. The density of the material is constant
since the divergence of the velocity field (in cylindrical coordinates) is zero. The no-slip
boundary conditions to be imposed on the velocity field are

vϕ(r = Ri) = U , (5.9a)
vz(r = Ro) = 0 , (5.9b)
vz(r = Ri) = 0 , (5.9c)
vϕ(r = Ro) = 0 . (5.9d)

The inner cylinder rotates at a constant angular velocity, Ω = U/Ri ez, generating
Couette flow in the annular gap and a constant pressure drop along the cylinder axis,
∇zp, leads to axial through-flow. Note that for large inner cylinder velocities or large
axial pressure drops the fluid will also move in the radial direction. The treatment of
outer cylinder rotation or of two rotating cylinders is analogous as will be seen from the
following.

Due to the rotation of the inner cylinder we have now non-linear convective terms in the
momentum balance equation, in the conformation tensor equation, and in the droplet
shape tensor equation. These centrifugal terms are not present in laminar channel and
tube flow but they arise in the annulus if one or both cylinders rotate around their
common axis.

The Cauchy momentum balance in dimensionless form is

Tav ·∇v = ∇ ·σ −∇p , (5.10)

where Ta = ρ2U2δ3/(RiGλCΓλS) is the Taylor number and the model equations (3.18)
are rendered dimensionless as before for the channel and tube flow problems, except that
now the characteristic length scale of the flow geometry is δ, i. e., r̃ = r/δ, ∇̃ = δ ∇.
The Taylor number increases with the inner cylinder velocity, i. e. an increase of U
corresponds to an increase of Ta.

The reversible contribution to the conformation tensor equation (3.18b) and the droplet
shape equation (3.18c) are of the form

v ·∇X−X ·∇v − (∇v)T ·X = Q̂X +
vϕ

r
M−X ·∇v − (∇v)T ·X , (5.11)

where X ∈ {C,S} (Tanner, 2000). In Eq. (5.11) we have Q̂ = vr∂r + vϕ/r∂ϕ + vz∂z,

M =

−2Xrϕ Xrr −Xϕϕ −Xϕz

∗ 2Xrϕ Xrz

∗ ∗ 0

 , (5.12)
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is a matrix with ∗ denoting a symmetric entry, and the velocity gradient tensor is given
by Eq. (5.14), below. For laminar flow in the annulus geometry, we have Q̂ = 0 since
vr = 0, and the flow is homogeneous in the eφ and ez direction.

The model equations (3.18) are reformulated in terms of a TPBV problem (5.2) for the
radial coordinate and the boundary conditions (5.9). The 18-tuple of flow profiles to
solve for is

ξ =
(
p, vϕ, v′ϕ, vz, v′z, vec(C), vec(S), n

)T
, (5.13)

where vec(X) = (Xrr, Xrϕ, Xrz, Xϕϕ, Xϕz, Xzz) and X ∈ {C,S}, denotes the microstruc-
tural tensors. The 18× 18-coefficient matrix, A, and the inhomogeneity, b, in Eq. (5.2)
are obtained as for the laminar channel and tube flow problem in the previous sections.
The first row of (A,b) is obtained form the r-component of the Cauchy momentum
balance equation (5.10), and the third and fourth row are obtained from the rφ and rz
equations of Eq. (3.18b), respectively.

The set of ODEs ξ = A−1 ·b is integrated with the Runge-Kutta algorithm shooting from
the inner cylinder, r = Ri, to the outer cylinder, r = Ro. Every Runge-Kutta shoot
starts with the same initial condition, Eq. (5.9), on the velocity field and a different
velocity gradient on the inner cylinder being the independent variable in the Newton
subroutine of the shooting algorithm. Here we have to match two boundary conditions
on the outer cylinder, Eqs. (5.9) and the flow fields are not symmetric. This means that
we have to integrate the model equations from the inner cylinder to the outer one and
we do not know the structural variables on the inner cylinder since the shear rate is
non-trivial on the inner cylinder. Therefore, a two-dimensional Newton method for the
variables v′ϕ and v′z is embedded into the shooting algorithm to match the two relevant
boundary conditions, (5.9). Consequently, prior to every Runge-Kutta integration in
the shooting algorithm, the homogeneous shear flow problem for the velocity gradient

∇v =


0 −vϕ

r
0

∂vϕ

∂r
0 0

∂vz

∂r
0 0


T

, (5.14)

is solved on the inner cylinder to determine correct starting values for the structural
variables C and S. The Runge-Kutta integrations are repeated until the Newton al-
gorithm has converged, i. e. the boundary conditions on the outer cylinder, Eq. (5.9) are
satisfied.

We show solutions of the emulsion model for Couette, Poiseuille, and helical flow in a gap
with κ = 0.5. The model parameters are taken from Sec. 4.2; G/Γ = 4, λCλS/λ

2
n = 1,
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φ = 0.1, θ = 0.001, and k = 0, and we present sample calculations for an emulsion with
viscosity ratio p∗ = −0.25 and p∗ = −1.25.

5.2.1. Couette Flow

We consider the case of Couette flow generated via rotation of the inner cylinder with a
stationary outer cylinder. Figure 5.5 shows the angular velocity field and the non-trivial
components of the extra-stress tensor for various inner cylinder velocities, i. e. different
Taylor numbers. The viscosity ratio of the blend components is p∗ = −0.25. Figure 5.5a
displays the velocity field as a function of the relative distance from the inner cylinder for
various inner cylinder velocities which can be identified from the abscissa of Fig. 5.5a. We
see that the velocity field satisfies the no-slip boundary conditions on the two cylinders,
in particular that the fluid velocity on the inner cylinder corresponds to the cylinder
velocity, U . Figure 5.5b is the shear rate, as a function of the relative distance from
the inner cylinder. The absolute value of the shear rate decreases monotonically as
we approach the outer cylinder. The absolute mean value of the shear rate, (vϕ(Ri) −
vϕ(Ro))/δ, increases with increasing Taylor number. Note that in Fig. 5.5 the shear rate
in the annular gap is a non-trivial function of the distance from the inner cylinder and
in particular that the shear rate is not constant. Even for the smallest inner cylinder
velocity the shear rate in the annulus is not constant. Only for the narrow gap (κ → 1)
the velocity field is linear, the shear rate and the shear stress are constant, and the
shear rate and elastic stresses increase with inner cylinder velocity. For κ = 0.9 we find
that the narrow gap approximation holds for cylinder velocities U < 0.1. The extra-
stress tensor components are shown in Fig. 5.5c-f. The radial-axial shear stress and the
angular-axial shear stress components are zero. The radial normal stresses in Fig. 5.5c
behave qualitatively different for low and for high inner cylinder velocities. Whereas for
small Taylor numbers the radial normal stress increases monotonically near the inner
cylinder, for large Taylor numbers it decreases near the inner cylinder.

A linear stability analysis of our solutions allows to understand whether this behavior of
the radial normal stresses is realistic. Note that the variation of radial normal stresses
in the fluid are in equilibrium with centrifugal forces and with the radial pressure drop
in the gap, i. e.

−Ta
v2

ϕ

r
=

1

r

∂

∂r
(rσrr)−

σϕϕ

r
− ∂p

∂r
(5.15)

according to the r-component of Cauchy’s momentum balance (5.10). For large Taylor
numbers the variation of the normal stresses and the radial pressure drop increase in the
gap. This can lead to radial motion of the emulsion, i. e. the laminar solution of Fig. 5.5
is unstable. It would be interesting to find out whether there exists a critical pressure
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Figure 5.5.: Couette flow profiles of an emulsion (φ = 0.1) in the annular gap (κ = 0.5) for
four inner cylinder velocities: U = 0.2 (solid lines), 0.4 (dotted lines), 0.6 (dashed lines),
0.8 (long-dashed lines), and ∇zp = 0. Model parameters are G/Γ = 4, λCλS/λ2

n = 1,
θ = 0.001, k = 0, p∗ = −0.25.
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Figure 5.6.: The same as Fig. 5.5 for (a) the relative number density of droplets and (b)
the representative droplet size.

drop where Couette flow becomes unstable and where we expect Taylor vortices. If this
quantity becomes very large the laminar flow field of of Fig. 5.5 are probably unstable.

For the angular normal stress (Fig. 5.5d) and the axial normal stress (Fig. 5.5f) we find
a monotonic decrease as we approach the outer cylinder. These stresses increase with
the Taylor number. The radial angular shear stress in Fig. 5.5e is a monotonic function
in the annular gap and its absolute magnitude increases with increasing inner cylinder
velocity. Note that the angular shear rate and the angular radial shear stress are non-
linear functions of the relative distance from the inner cylinder and the assumption of
a constant shear rate and shear stress in the gap is critical. Also the approximation of
shear rate and stresses with the values on the inner or the outer cylinder is critical.

The characteristics of the DDF in the gap are reported in Fig. 5.6. Figure 5.6a shows the
relative number density of micro-droplets in the annular gap and Fig. 5.6b the average
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Figure 5.7.: The same as Fig. 5.7 for the droplet semiaxes. (a) Major droplet semiaxis,
(b) minor droplet semiaxis, and (c) vorticity axis.

size of micro-droplets as a function of the relative distance form the inner cylinder. For
small values of the inner cylinder velocity the average number density of micro-droplets
decreases below the equilibrium value in the annular gap, i. e. we have flow induced
coalescence in the gap. For U = 0.4 we have break-up near the inner cylinder (position
of highest shear rates) and coalescence near the outer cylinder (position of smallest shear
rate). The same holds also for U = 0.6 and U = 0.8, except that now high values of
droplet number density are found near the outer cylinder. For the largest Taylor number
in Fig. 5.6a the number density of droplets near the inner cylinder is 25 times higher
than in the undeformed state. The large break-up rates near the inner cylinder are
due to centrifugal forces being proportional to v2

ϕ. It might be interesting to compare
calculations for Ta = 0 and M = 0 with the calculations shown in Fig. 5.6 to understand
the effect of centrifugal forces on droplet break-up. The average size of micro-droplets
in the annular gap is reported in Fig. 5.6b. We notice that the average droplet size
is a non-monotonic function of the relative distance from the inner cylinder. For the

100



5.2. Annular Flow

smallest Taylor number the largest droplets are found near the inner cylinder. This is
consistent with Fig. 5.6a where for U = 2 coalescence occurs in the whole gap and we
have larger coalescence rates on the inner cylinder than on the outer one. For large
values of inner cylinder velocity the largest droplets are found on the outer cylinder
(where coalescence occurs) and the smallest droplets are found on the inner cylinder
(where break-up occurs).

In Fig. 5.7 we plot the three semiaxes of the ellipsoidal droplets as a function of the
relative distance from the inner cylinder. Figure 5.7 shows the major droplet axis which
correlates with the average droplet size of Fig. 5.6b. For the four inner cylinder velocities
the droplet length is more than twice the equilibrium droplet size in the annular gap,
i. e. we have large droplet deformation in Couette flow. For the smallest Taylor number
the largest droplets are found on the inner cylinder and for larger Taylor numbers they
are found on the outer cylinder. The minor droplet axis is shown in Fig. 5.7b. As
already found for the droplet size in Fig. 5.6b and the major droplet size in Fig. 5.7a the
minor droplet axis increases towards the outer cylinder for small values of inner cylinder
speed and it decreases for the largest value of U . Figure 5.7c shows the droplet width
as a function of the relative distance form the inner cylinder. Note that this quantity is
greater than one for all cylinder velocities in Fig. 5.7.

An important conclusion of Fig. 5.6a is that large Taylor numbers lead to high break-
up rates on the inner cylinder and coalescence near the outer cylinder. Consequently,
dispersing with stationary outer cylinder is not effective if one defines effectiveness as
break-up in the whole geometry. Probably the rotation of both cylinders results in more
effective dispersing in the gap. Lets now treat Poiseuille flow in the gap and study its
dispersing characteristics.

5.2.2. Poiseuille Flow

Figure 5.8 displays the velocity and stress tensor components for Poiseuille flow in the
annular gap. Here, the flow is due to an axial pressure drop. We show sample calculations
for an emulsion p∗ = −1.25 and five pressure drops. Figure 5.8a is the emulsion velocity
as a function of the relative distance from the inner cylinder. The velocity vanishes on
the two cylinders due to the no-slip boundary conditions and the position of maximum
velocity is a non-trivial function of shear rate. The axial through flow, i. e. the area
under the velocity profile, increases with the pressure drop. Figure 5.8b shows the
shear rate as function of the relative distance from the inner cylinder. The position of
maximum axial velocity, i. e. zero shear rate, is near the inner cylinder at r < κ/2.
Furthermore, shear rates are larger on the inner cylinder than on the outer one. Figure
5.8c-f show the components of the stress tensor as a function of the distance from the
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Figure 5.8.: Poiseuille flow profiles of an emulsion (φ = 0.1) in the annular gap (κ = 0.5)
for five pressure drops: ∇zp = −0.2 (solid lines), −0.4 (dotted lines), −0.6 (dashed lines),
−0.8 (long-dashed lines), −1 (dot-dashed lines), and U = 0. The viscosity ratio is p∗ =
−1.25. Other model parameters are the same as in Fig. 5.5.
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Figure 5.9.: The same as Fig. 5.8 for (a) the relative number density of droplets and (b)
the representative droplet size.

inner cylinder. Now the radial-angular and the angular-axial shear stresses are zero.
Figure 5.8c shows the radial normal stress as a function of the radial position. It is
interesting that the variation of the radial normal stress correlates with the velocity field
for the two small pressure drops in Fig. 5.8. For the larger pressure drops the radial
normal stress is non-monotonic with local minima near the inner and the outer cylinder.
Via the Cauchy momentum balance equation the radial normal stress is related to the
radial pressure distribution in the gap. It would be interesting to investigate the linear
stability of the laminar flow solutions and to understand whether the profiles of the radial
normal stresses are physically reasonable. Furthermore, calculations should be done for
a narrow gap to see whether a monotonic trend for the radial normal stress is recovered.
In Fig. 5.8d,f we show the angular normal stress profile and the axial normal stress
profile, respectively. Note that both normal stresses are larger on the inner cylinder
than on the outer. Furthermore, both quantities correlate with the variation of the axial
velocity field of Fig. 5.8a. The radial axial shear stress of the emulsion is displayed in
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Figure 5.10.: The same as Fig. 5.8 for the droplet semiaxes. (a) Major droplet semiaxis,
(b) minor droplet semiaxis, (c) vorticity axis.

Fig. 5.8e. This quantity correlates with the shear rate distribution of Fig. 5.8b.

Note that we find a similar stress tensor behavior for laminar Couette flow (Fig. 5.5)
and laminar Poiseuille flow (Fig. 5.8). The angular normal stresses, the axial normal
stresses, and the shear stress profiles correlate with the velocity field. They show the
same qualitative behavior for the regime of inner cylinder velocities and axial pressure
drops in Figs. 5.5 and 5.8. The radial normal stress profiles change qualitatively as the
Taylor number or the axial pressure drop are increased. Also note that all flow stresses
are larger on the inner cylinder than on the outer cylinder, a result that was also found
for laminar Couette flow in Fig. 5.5.

Figure 5.9 shows the number density of droplets (Fig. 5.9a) and the average size of
representative droplets (Fig. 5.9b) in the annulus. As already seen for the flow stresses
in Fig. 5.8c-f also the number density of droplets is non-symmetric with a maximum
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number density on the inner cylinder. The minimum of the number density is found
near the inner cylinder, where the axial velocity is maximum and where the shear rate
and the radial axial shear stress vanish. Note that in Fig. 5.9a the number density
of droplets on the inner cylinder is more than five times smaller than in Couette flow
(Fig. 5.6b) though the shear rates in Fig. 5.5b and Fig. 5.8b are almost the same. The
strong break-up rates encountered in Couette flow (Fig. 5.6b) are due to centrifugal
forces. The profile of the average droplet sizes in pressure driven annular flow are shown
in Fig. 5.9b. Here we observe that the profiles of average droplet size are non-monotonic
for the smallest pressure drop and monotonic for the largest pressure drop. Again, the
position of equilibrium droplet size is identical to the position of equilibrium droplet
number density, maximum fluid velocity, and vanishing shear rate and shear stress in
the gap.

In Fig. 5.10 we show the profiles of the ellipsoidal droplets for five pressure drops. Figure
5.10a are the profiles of the major droplet axis being greater than one, Fig. 5.10b are
the profiles of the minor droplet axis being smaller than one, and Fig. 5.10c are the
profiles of the vorticity axis. Again, the position of undeformed droplets correlates with
the position of maximum fluid velocity, i. e. of zero shear rate and shear stress. The
viscosity ratio of p∗ = −1.25 leads to W < 1, i. e. the droplets in the gap are prolate.

A major difference between Couette flow (Figs. 5.5-5.7) and Poiseuille flow (Figs. 5.8-
5.10) is that in Poiseuille flow we have droplet break-up around a position of undeformed
droplets for all pressure drops. In Couette flow, we have positions with droplet break-up
and positions with droplet coalescence. We have seen from Fig. 5.9a that dispersing in
pressure driven flow is not as effective as in Couette flow because break-up rates are
much smaller though shear rates are more or less the same. Furthermore, there is a
position of zero shear rate in the annular gap where droplets do not deform.

5.2.3. Helical Flow

We have seen that Couette flow due to inner cylinder rotation is not very effective for
dispersing since we get droplet break-up near the inner cylinder and droplet coalescence
near the outer one. For pure Poiseuille flow we have mainly droplet break-up in the
annulus. However, at the point of zero shear rate in the annular gap droplets stay
undeformed. Lets now look at helical flow in the annulus and investigate its effect on
droplet dispersing behavior.

In Figs. 5.11-5.14 we show sample calculations for helical flow of a p∗ = −1.25 blend in the
annular gap κ = 0.5. In Fig. 5.11 the velocity is shown together with the corresponding
shear rates. Figure 5.11a and 5.11b show the angular velocity and the corresponding
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Figure 5.11.: Helical flow profiles of an emulsion (φ = 0.1) in the annular gap (κ = 0.5)
for inner cylinder velocity (U = 0.5) and three axial pressure drops: ∇zp = −3 (solid lines),
−6 (dotted lines), −9 (dashed lines). The viscosity ratio of the blend is p∗ = −1.25. Other
model parameters are the same as in Fig. 5.8.

shear rate.

We report sample calculations for inner cylinder velocity U = 0.5 and three axial pressure
drops. The angular velocity in Fig. 5.11a matches the no-slip boundary conditions and
the axial pressure drop has a small effect on the angular velocity. The same is also true
for the angular shear rate. The angular and the axial motion of the blend cannot be
studied independently of each other but that they are coupled via the non-linear elastic
stresses. The absolute value of the angular shear rate is larger on the inner cylinder than
on the outer one. The axial pressure drop results in steeper angular shear rate profile
since the absolute value of the angular shear rate is increased on the two cylinders.
Figure 5.11c,d show the axial velocity field and the corresponding shear rate. Again, the
axial velocity matches the no-slip boundary conditions, the position of maximum fluid
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Figure 5.12.: The same as Fig. 5.11 for the profiles of the extra stress tensor.
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Figure 5.13.: The same ad Fig. 5.11 for (a) the relative number density of droplets and
(b) the representative droplet size.

velocity coincides with the position of vanishing axial shear rate in Fig. 5.11d, and it is
near the inner cylinder. We expect the Taylor number to have minor influence on the
axial motion.

The shear stress profiles corresponding to the velocity field of Fig. 5.11 are shown in
Fig. 5.12. The appearance of a non-trivial angular-axial shear stress component means
that the angular and the axial flow of the emulsion cannot be considered separately
from each other due to the non-linear elastic stresses. The flow and the non-linear
stresses are coupled non-linearly. Figure 5.12a shows the radial normal stress profile.
This component is dominated by the angular velocity of the emulsion (Fig. 5.5c) and
the axial flow leads to an increase of the radial normal stresses near the inner cylinder.
Figure 5.12b displays the radial angular shear stress profile. The effect of the axial
motion of the blend has only a minor influence on this shear stress component since
the three curves in Fig. 5.12b superimpose. Figure 5.12c shows the radial axial shear
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Figure 5.14.: The same as Fig. 5.11 for the three droplet semiaxes. (a) Major droplet
semiaxis, (b) minor droplet semiaxis, and (c) vorticity axis.

stress profile. This component is mainly due to the axial shear flow of the blend and
consequently it is a strong function of the axial pressure drop. The angular velocity is
expected to have only minor influence on this stress tensor component. Figure 5.12d
shows the angular normal stress profile. This stress tensor component is dominated
by the angular motion of the emulsion as reveals a comparison of Fig. 5.12d with the
corresponding stress tensor profile for pure Couette flow (Fig. 5.5d) and pure Poiseuille
flow (Fig. 5.8d). Again, the axial fluid motion has only minor influence on this shear
stress component. Figure 5.12e is the angular-axial shear stress profile. This component
arises only in helical flow. For the flow parameters (i. e. inner cylinder velocity and
axial pressure gradient) this component correlates with the angular velocity field of the
material. Figure 5.12f is the axial normal stress. For the axial normal stress profile we
find that it is dominated by the Couette flow contribution for small pressure drops and
by the pressure flow contribution for large pressure drops. Again, this can be understood
by comparing Fig. 5.12f with Fig. 5.5 for Couette flow and Fig. 5.8 for Poiseuille flow.
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5. Simple Laminar Flows

The droplet number variation in the gap and the average droplet size are shown in
Fig. 5.13. Note that on the inner cylinder the average number density of droplets is
between fifteen and twenty. The centrifugal forces lead to strong droplet break-up near
the inner cylinder. The superimposed pressure flow leads to a further increase of the
number density of droplets, i. e. to even higher break-up rates. On the outer cylinder we
have still break-up but break-up rate are much smaller compared to the inner cylinder.
Note that the imposition of an axial pressure drop on the Couette flow allows to obtain
droplet break-up in the whole gap. For pure Couette flow we found a region of coalescence
near the outer cylinder. Thus the advection of the material in the axial direction results
in a better dispersion of the blend. The average size of droplets is small on the inner
cylinder and large on the outer cylinder. The superimposed pressure flow leads to a
decrease of average droplet size on the inner cylinder and an increase of average droplet
size on the outer cylinder.

The three droplet semiaxes of the disperse phase micro-structure are shown in Fig. 5.14.
Here we see that the superimposed pressure flow leads to stronger droplet deformation on
the inner cylinder and to a smaller droplet deformation near the outer cylinder. Again
droplets in the annular gap deform into prolates. We are in the high viscosity ratio
regime.
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6. Conclusions

In Chap. 1 we give a literature survey and we motivate the need to develop thermody-
namically consistent models for highly viscous emulsions. These models should capture
the viscoelastic flow behavior together with microstructural characteristics of the matrix
and the droplet inclusions. Furthermore, we introduce and we discuss a Toy Model to
give an illustrative example for the type of thermodynamic descriptions pursued in this
treatise. The Toy Model is for an emulsion of equi-viscosity Newtonian liquids with low
volume fraction of disperse phase. Since the model describes only prolate droplet con-
figurations and it cannot be generalized to account for matrix viscoelasticity, break-up
and coalescence phenomena, or the appearance of oblate droplets, a systematic modeling
framework is necessary.

In Chap. 2 we introduce a Hamiltonian framework of non-equilibrium Thermodynamics
to develop continuum equations for complex fluids. We consider fluids with an uncon-
strained microstructure (e. g. macromolecular fluids) which are described in terms of the
classical hydrodynamic fields and a second rank tensorial variable. We explain how to
obtain a general set of time evolution equations which id for a compressible and non-
isothermal medium. Then, we repeat the analysis for a fluid with a volume preserving
microstructure (e. g. a fluid of Newtonian droplets in an Eulerian medium), which is
described in terms of a second-rank tensorial variable with fixed determinant. To satisfy
the volume preservation constraint a projection is introduced to map the dynamics of
the unconstrained microstructure to a volume preserving one.

In Chap. 3 we develop various models for highly viscous emulsions. To accomplish this
we combine the flow descriptions developed in Chap. 2 to describe the matrix phase
and the droplet shape with the two different microstructural variables. For simplicity,
we restrict to incompressible and isothermal media. Making constitutive assumptions
for phenomenological coefficients of matrix phase relaxation, droplet interface relaxation,
and matrix-droplet interaction we derive a model for highly viscous emulsions in Sec. 3.1.
In Sec. 3.2 the model is generalized to describe droplet break-up and coalescence. Fur-
thermore, we explain how emulsions with surface active molecules at the interface should
be modeled and we discuss emulsions with a high volume fraction of disperse phase. In
the appropriate limits the models of Chap. 3 reduce to the Toy Model of Chap. 1.
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6. Conclusions

In Chaps. 4 and 5 we solve different flow problems to understand basic model features and
to demonstrate that the models are suitable for CFD calculations for emulsions. Since the
models of Chap. 3 are coupled non-linear partial differential equations computer codes
have to be developed. We restrict our computational work to the more complex emulsion
models of Secs. 3.1 and 3.2. In Chaps. 4 we solve the emulsion model for transient and
steady flows as encountered in rheometric characterization. For transient shear flow
we find a non-linear start-up behavior of the viscometric and morphological emulsion
properties with over- and under-shoots. For steady shear flow the models predict shear
thinning, shear thickening, and non-trivial normal stress coefficients. The ratio of normal
stress differences is large in the low shear rate regime. Moreover, model characteristics
are discussed for elongational flows and for the four-roll-mill flow. The model predictions
are in qualitative agreement with experimental data. With these models we are able to
study systematically the influence of matrix viscoelasticity on droplet shape, the effect of
break-up and coalescence on the rheology, and we recover oblate droplet configurations
in the small viscosity ratio regime. We overcome the problems of the Toy Model.

In Chap. 5 the emulsion models are formulated in terms of Two Point Boundary Value
Problems in order to solve for simple flows of practical importance. This is done to
demonstrate that the models can be used for CFD simulations of emulsions. The mod-
els are solved for pressure driven channel and tube flow in the steady state. The velocity,
shear rate, stress tensor, and droplet shape profiles are computed. The wall viscometric
material properties are determined as a function of the wall shear rate and the relation-
ship with the homogeneous flow calculations of Chap. 4 is worked out. Furthermore,
the emulsion models have been solved for steady flow in the annular gap. We solve for
Poiseuille, Couette, and helical flow in the gap and we discuss the viscometric and mor-
phological emulsion characteristics together with the flow field. We find that centrifugal
forces affect the break-up of droplets and we discuss the consequences for dispersing
processes. We conclude that helical flow gives satisfactory emulsion dispersing if weak
Poiseuille flow is superimposed on Couette flow.
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A. Comparison with Experimental
Trends

The appendix deals with preliminary fitting of the emulsion models with experimental
data for polymer blends. We fit morphological characteristics related to droplet deform-
ation as well as non-linear flow curves related to blend viscoelasticity. Experimental
data are taken from the literature. Fits with experiments performed at ETH Laborat-
ory of Food Process Engineering and comparison with boundary integral calculations
(Loewenberg and Hinch, 1996) have been published in Megias-Alguacil et al. (2005).

A.1. Single Droplet Deformation in Viscoelastic
Matrix Fluid

Single droplet deformation measurements in a viscoelastic matrix fluid are reported,
e. g. in Guido et al. (2003a,b) and, earlier, in Levitt et al. (1996). Whereas Guido
et al. (2003a,b) study droplets of a Newtonian liquid Levitt et al. (1996) report meas-
urements on droplets of a viscoelastic fluid. In what follows we fit our blend model to
the experimental data of Guido et al. (2003b).

In Guido et al. (2003b) the dynamics of a single silicon drop (R = 50µm, η? = 13Pas) in
a viscoelastic matrix fluid made of corn syrup with 0.13wt% polyacrylamide (ηc = 10Pas,
Ψ1,c = 2.5Pas2) has been investigated. The interfacial tension between the two liquids
is Γ′ = 30mN/m. Invoking the UCMM and the relationship for the interfacial elastic
modulus, we obtain G = 80Pa and Γ = 600Pa, respectively. Fig. A.1 shows steady-state
morphological predictions of our model (solid lines) together with experimental data
(symbols) reported in Guido et al. (2003b). Fig. A.1a shows a monotonic increase and
decrease of the major and the minor droplet axes in the shearing plane, respectively.
Fig. A.1b displays a strong decrease of the steady-state orientation angle. Solid lines in
Fig. A.1 have been calculated for the following values of the ratio of matrix and interfacial
elasticity, the viscosity ratio, and the droplet concentration: G/Γ = 0.13, p∗ = −1.3,
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Figure A.1.: The major and the minor semiaxes, L, B (a) and the orientation angle, χ
(b) of a single silicon droplet in a viscoelastic corn syrup matrix (symbols) together with
model predictions (solid lines). Experimental data are from Guido et al. (2003b).

φ = 0.01. The EWM power law index, k, has been taken as vanishing. Note that for
the calculations in Fig. A.1 the phenomenological coefficient p∗ has been taken as the
viscosity ratio of the blend components, i.e., p∗ = −η?/ηc = −1.3 is an independent
quantity. For the purpose of the present comparison with experimental data we chose
φ = 0.01 which is reasonable to represent the low concentration regime of a single droplet
experiment. To fit experimental data the following values for the relaxation times and the
phenomenological coupling parameter have been adopted: λc = 10−3s, λs = 5 · 10−4s,
θ = 0.01. (Note that model predictions are insensitive for 0.01 < θ < 0.05.) We
notice that the fit of the droplet semiaxes is satisfactory in Fig. A.1, whereas the strong
decrease of the orientation angle is not predicted by our model. The strong decrease of
the orientation angle with increasing shear rate is presumably due to a non-affine motion
of the silicon droplet with respect to the externally-imposed flow field and it may be
recovered using the Gordon-Schowalter derivative in the droplet shape tensor, Eq. (3.3c).
The perturbative approach proposed by Greco (2002) gives a more satisfactory fit to
experimental data compared to the present model (cf. Guido et al., 2003b, Fig. 4).
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A.2. PIB/PDMS blend with low viscoelastic
contrast

Vinckier et al. (1996) studied morphological and rheological properties of different blends
of polysiobutene (PIB, ηd = 86Pas) and polydimethylsiloxane (PDMS, ηc = 195Pas,
Ψ1,c = 10.4Pas2) in steady shear flow. Whereas pure PDMS shows a pronounced shear
thinning behavior, pure PIB is Newtonian for shear rates γ̇ / 10s−1 (Vinckier et al.,
1996). Therefore, we compare experiments on PIB/PDMS blends with our model. In-
terfacial tension between the blend components is Γ′ = 2.3mN/m. With the UCMM and
the relationship for the interfacial elastic modulus we obtain G ≈ 7300Pa and Γ = 230Pa
for an average droplet radius of 10µm. In what follows, we fit rheological measurements
of 10wt% and 30wt% PIB in PDMS with our model.

Figure A.2 shows calculations for the pure matrix fluid with G = 7300Pa and φ = 0
(solid lines) and two PIB/PDMS blends with G/Γ = 30, φ = 0.1 (dashed lines) and
G/Γ = 30, φ = 0.3 (dotted lines). The EWM power-law index has been taken as k = −2
to recover the shear-thinning behavior for the matrix fluid and the phenomenological
coupling coefficient has been chosen as θ = 0.01. The phenomenological parameter,
p∗, is not taken as the viscosity ratio of the blend components, but it is related to the
interfacial elasticity in Figs. A.2 and A.3, p∗ = −η?/ηc. The ratio of relaxation times
λC/λS is adjusted to fit experimental data.

In Fig. A.2a and b, we show the steady-state shear viscosity and the first normal stress
coefficient for the viscoelastic PDMS matrix fluid and for two different PIB/PDMS
blends (symbols) together with model predictions (lines). Experimental data have been
taken from Vinckier et al. (1996) and they have been normalized with their zero shear
rate values. Circles in Fig. A.2a,b are for the viscometric properties of the pure PDMS
matrix fluid, squares and diamonds represent the φ = 0.1 and the φ = 0.3 PIB/PDMS
blend, respectively. Solid lines in Fig. A.2a,b have been calculated from the model
equations with G = 7300Pa, φ = 0, and k = −2 for the EWM power law index to fit the
shear thinning of the matrix phase. The dashed lines and the dotted lines in Fig. A.2
have been calculated for G/Γ = 30, k = −2 and φ = 0.1, 0.3 for the 10wt% and the
30wt% blends, respectively. The relaxation times and the phenomenological coupling
parameter have been chosen to recover the shear-thinning behavior. This is reasonable
since there is no standard technique available to determine the relaxation time of the
interface, λs – cf. Vinckier et al. (1996, Figs. 6 and 7). We took λc = 0.03s, θ = 0 for pure
PDMS, λc/λs = 0.012, θ = 0.01 for the φ = 0.1 blend, and λc/λs = 0.04, θ = 0.01 for the
φ = 0.3 blend. Note that in Fig. A.2 the phenomenological coefficient p∗ is related to the
elasticity of the matrix phase and the interface, i. e., p∗ = −(Γλs)/(Gλc). We note that
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Figure A.2.: Model predictions of the continuum equations for constant droplet distri-
bution n = 1, as a function of shear rate for three different dispersed phase concentrations,
φ = 0 (solid lines), 0.1 (dashed lines), and 0.3 (dotted lines). Other model parameters are
G = 7300, k = −2 (for φ = 0); G/Γ = 30, θ = 0.01, k = −2 (for φ 6= 0); p∗ = −ΓλS/GλC.
The ratio of relaxation times has been taken as a fitting parameter: λC/λS = 0.03 (φ = 0),
0.012 (φ = 0.1), 0.04 (φ = 0.3). The viscometric functions have been normalized with
respect to their zero shear-rate values. Symbols are experimental data from Vinckier et al.
(1996).
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A.2. PIB/PDMS blend with low viscoelastic contrast

model predictions for the steady-shear viscosity and the first normal stress coefficient
are satisfactory for φ = 0.1. For φ = 0.3 only the onset of the shear-thinning behavior
is recovered from the model and the model fails to predict the quantitative behavior of
the first normal stress coefficient. The fit to both rheological characteristic functions is
satisfactory only in the dilute regime, φ / 0.2.

Figs. A.2c-h show further solutions of the system equations for which no experimental
data are available. Note that for the pure matrix fluid, the EWM model predicts Ψ2 = 0
and no droplet morphology is present. Therefore, only the predictions of the two blends
are reported in the remaining graphs of Fig. A.2. Fig. A.2c displays the shear-thinning
behavior of the second normal stress coefficient, Ψ2, for the φ = 0.1 and the 0.3 blend.
Fig. A.2d shows the ratio of the two normal stress coefficients. For φ = 0.1, we recover
Ψ2/Ψ1 ≈ −0.8 being considerably larger than for polymer melts, whereas for φ = 0.3 a
smaller value of Ψ2/Ψ1 ≈ −0.5 is recovered from the system equations. This value is close
to the stress tensor predictions of the Maffettone-Minale (MM) Model, Ψ2/Ψ1 = −0.5,
cf. Yu et al. (2002), which has also been included in Fig. A.2d.

In Figs. A.2e-h we display the morphological characteristics of the polymer blend, which
are represented by the average magnitude of the three semiaxes of the ellipsoidal droplets
and the average orientation of the droplets with respect to the flow direction. The semi-
axes of the droplets are the square roots of the eigenvalues of the droplet configuration
tensor, S Maffettone and Minale (1998). The droplet semiaxes in the flow direction, in
the direction of the shear gradient, and in the direction of the vorticity axis are denoted
with L, B, W , respectively. For steady shear flow, the major droplet axis, L, increases
and the minor droplet axis, B, decreases with respect to the equilibrium droplet radius
(Figs. A.2e, f). However, the vorticity axis, W , can be greater than, smaller than, or
equal to unity upon start-up of flow and the droplets are thus either oblate or prolate.
In Fig. A.2g, we have oblate droplets (W > 1) for the φ = 0.1 blend and prolate droplets
(W < 1) for the φ = 0.3 blend. The orientation angle, χ, is the angle between the ei-
genvector corresponding to the largest eigenvalue of the S-tensor and the flow direction;
it is defined as χ = 1/2 arctan[2S12/(S11 − S22)]. This quantity decreases for increasing
shear rate, Fig. A.2h.

In Guido et al. (2003a) the steady-state deformation of single Newtonian droplets in
a viscoelastic matrix is studied where the continuous and the dispersed phase are a
non-Newtonian polyisobutylene (PIB) and a Newtonian Polydimethylsiloxane (PDMS),
respectively. For viscosity ratios p∗ = −1 and p∗ = −0.1, steady-state prolate droplets
have been observed. Note, that this is identical to the blend system investigated rheolo-
gically by Vinckier et al. (1996) except that Guido et al. (2003a) perform measurements
on a single droplet whereas Vinckier et al. (1996) study the rheological response of the
blend, hence there is no full control of the droplet morphology.
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Figure A.3.: The same as Fig. A.2 for start-up of steady shearing flow as a function of
shear strain for the φ = 0.1 blend and three different shear rates, γ̇ = 0.27s−1 (solid lines),
1.38s−1 (dashed lines), and 2.77s−1 (dotted lines) corresponding to the filled symbols in
Fig. A.2. The shear viscosities in b) are normalized with respect to the zero shear-rate
viscosity.
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A.2. PIB/PDMS blend with low viscoelastic contrast

Figure A.3 displays transient solutions of the continuum equations for start-up of steady
shearing flow for the φ = 0.1 blend. Sample calculations were carried out for three
different shear rates, γ̇ = 0.27s−1 (solid lines), 1.38s−1 (dashed lines), and 2.77s−1 (dotted
lines), which correspond to the abscissas of the filled squares in Fig. A.2a. Material
parameters are the same as in Fig. A.2 for the 10wt% PIB/PDMS blend, i.e., G/Γ = 30,
θ = 0.01, k = −2, and λC/λS = 0.012. Figs. A.3a-d display the transient viscometric
behavior of the system equations showing a typical non-linear viscoelastic response as
encountered often in synthetic polymer rheology. The transient shear stress, σ12, and the
shear viscosity, ηs = σ12/γ̇, (Figs. A.3a, b) show a rapid approach to their steady-state
values, which are attained at γ ≈ 5 shear strain units. The shear viscosity in Fig. A.3b
has been normalized with respect to the zero shear-rate value. The first normal stress
difference in Fig. A.3c is positive and shows a monotonic increase for the lowest shear
rate (γ̇ = 0.27s−1, solid line), whereas a slight overshoot is seen for the higher shear
rates (γ̇ = 1.38s−1, 2.77s−1, broken lines). The steady-state value of N1 is attained
at strains of γ ≈ 10, being twice as high as the strains that are necessary to attain a
steady-state shear stress. The first normal stress difference is approximately one order of
magnitude smaller than the shear stress. The second normal stress difference in Fig. A.3d
is negative, and of the same order of magnitude as the first normal stress difference. Both
normal stress differences, N1 and N2, show a similar qualitative behavior as a function
of strain rate in the regime of shear rates shown in Fig. A.3.

Figs. A.3e-h display the transient morphological properties of the φ = 0.1 blend for
start-up of steady shearing flow. For the low shear rate, γ̇ = 0.27s−1 (solid line), we
recover a monotonic approach of the droplet axes and the orientation angle towards their
steady-state values. For the highest shear rate, γ̇ = 2.77s−1 (dotted line), a pronounced
overshoot is observed in L, which goes along with slight undershoots in the two minor
droplet axes, B and W . For all shear rates shown in Fig. A.3, the droplet shape evolves
towards a oblate, sheet-like configuration.

Levitt et al. (1996) report transient morphological measurements of a single polypropyl-
ene droplet in a viscoelastic matrix with G/Gd ≈ 0.3, where Gd is the elastic modulus
of the dispersed phase. Immediately after start-up of steady shear flow, an increase of
the vorticity axis to 40% of its equilibrium value is observed. For higher shear strains,
the vorticity axis decreases and a prolate droplet is recovered.

In the above sample calculations, we see that the transient first normal stress difference
is approximately one order of magnitude smaller than the shear stress (σ12 � N1) for the
shear-rate regime investigated in Fig. A.3. The changes that the externally imposed flow
field induces in the droplet morphology are as large as 70% for the major droplet axis,
L. For the minor droplet axis, B, and for the vorticity axis, W , we recover variations of
50% and 15%, respectively, for a shear rate as high as γ̇ = 2.77s−1, and a steady state
is recovered from the model. This may be due to the viscoelastic similarity between the
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matrix and the interface, which is quantified in terms of G/Γ = 30 and λC/λS = 0.012.
With these values, we calculate Ψ1c/Ψ1d ≈ 4 · 10−3 for the ratio of zero shear-rate first
normal stress coefficients.

A.3. HPC/PDMS600 blend with high viscoelastic
contrast

Now, we wish to solve the continuum equations for a polymer blend with a high vis-
coelastic contrast between the matrix phase and the interface and to investigate whether
a large viscoelastic contrast of the blend components allows for highly deformed micro-
structural constituents such as fibers or sheets. This is of technological importance since
in processing one is interested in the creation of a strongly deformed droplet morphology
with a high amount of interface.

In Fig. A.4 we present sample calculations for a polymer blend with a strong viscoelastic
contrast between the two phases. Also for the present calculations, we assume a con-
stant DDF, i.e., n = 1. However, we take the phenomenological coefficient, p∗, as an
independent quantity, i. e., p∗ = −ηd/ηc corresponds to the viscosity ratio of the blend
components. Polymer blends with a strong viscoelastic contrast are of technological
importance because it is possible to produce highly deformed inclusions (e.g., fibers or
sheets), by means of modest mechanical deformation of the blend. Kernick and Wag-
ner (1999), e.g., examined a polymer blend of 5wt% hydroxypropyl cellulose (HPC,
ηd ≈ 300Pas) in a PDMS (ηd = 600Pas) matrix by means of rheology and small angle
neutron scattering. In this system, the large viscoelastic contrast between the matrix
and the dispersed liquid-crystalline polymer phase is due to the phenomenon that HPC
displays a phase transition from the tumbling to the flow aligning regime that correlates
with a sign change of the first normal stress difference causing a Ψ1c/Ψ1d � 1.

Figure A.4 shows calculations for a polymer blend with dispersed phase concentration
φ = 0.05, and viscosity ratio p∗ = −0.5. In the present model, the droplet phase is
assumed to be Newtonian and hence anelastic. Only the first normal stress difference of
the matrix and the interface can be varied in the model to tune the viscoelastic difference
between the two phases. In order to mimic the strong viscoelastic contrast between the
two phases, we have taken G/Γ = 106, and λC/λS = 103; i.e., the ratio of the zero shear-
rate first normal stress coefficient of the matrix and the interface in the steady state is
Ψ1c/Ψ1d = 1012. The EWM power-law index for the continuous phase has been chosen
as k = −0.13, reproducing the shear-thinning behavior of the PDMS matrix (cf. Fig. 7
in Kernick and Wagner (1999)).
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Figure A.4.: The transient shear stress, σ12, and first normal stress difference, N1 (left
column) and the transient droplet axes, L, B, W (right column) for four different shear
rates γ̇ = 0.01 (first row), 0.02 (second row), 0.05 (third row), and 0.2 (fourth row). The
blend components have a strong viscoelastic contrast with G/Γ = 106 and λC/λS = 103.
The phenomenological coefficient p∗ = −0.5 is taken as the viscosity ratio of the blend
components, i.e., an independent model parameter. Other model parameters are φ = 0.05,
θ = 0.01, and k = −0.17. The dashed lines in c) and d) are for k = −1.3.
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Figure A.4 shows transient rheological and morphological properties of the model blend
for start-up of steady shearing flow for four different shear rates: γ̇ = 0.01 (a), γ̇ = 0.02
(b), γ̇ = 0.05 (a), and γ̇ = 0.2 (d). For the lowest shear rate portrayed in Fig. A.4a,
we observe a monotonic increase of the shear stress, σ12, and the first normal stress
difference, N1, to their respective steady-state values. Note that in the low shear-rate
regime, the shear stress is always bigger than the first normal stress difference, which
corresponds to a system with a small viscoelastic contrast as studied, e.g., in Figs. A.2,
A.3. In this shear-rate regime, only relatively small droplet deformations are observed.
In particular, the vorticity axis of the droplet increases slightly and reaches a steady-
state value that is approximately 4% above its equilibrium value in the undeformed
state. In Fig. A.4b (γ̇ = 0.02), the shear stress is bigger than the first normal stress
difference only in the small shear-strain regime, γ? ≈ 1.5 (γ? denotes the shear strain
where σ12 = N1 which we can identify from Figs. A.4b-d). For γ > γ?, the first normal
stress difference becomes greater than the shear stress which may be due to the high
values of G/Γ and λC/λS. The crossover of the two stresses correlates with a strong
increase of the vorticity axis of the droplet, W , for shear strains γ ≈ γ?. At the steady
state, the vorticity axis, W , is approximately 18% above its equilibrium value, whereas
for γ̇ = 0.01 an increase of approximately 4% is observed at the steady state (Fig. A.4a).
For even higher shear rates, γ̇ = 0.05 and 0.2, the crossover of the first normal stress
difference, N1, and the shear stress, σ12, shifts towards smaller shear strains (γ? ≈ 1),
and the first normal stress difference becomes considerably larger than the shear stress
(Figs. A.4c, d). For these shear rates, two different droplet deformation regimes can
be identified. For γ / γ?, we observe only a slight droplet widening in the vorticity
direction, whereas the droplet widening becomes very strong for γ ' γ?. In the latter
strain-rate regime, the strong droplet widening correlates with the droplet extension
in the flow direction and the droplets deform into thin disks with L ≈ W ≈ 10 and
B ≈ 0. For smaller EWM power-law indices, the steady state is recovered at smaller
shear strains. This is illustrated in Figs. A.4c, d, where predictions for k = −1.3 (dashed
lines) are included.
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