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Abstract
We develop an asymptotic prime counting function based on the sieve process of Erathostenes.

This function can be generalized to include a finite set of conditions imposed on sums (generalized
Goldbach conditions) or differences (generalized Polignac conditions) of M primes. With one additive
condition for two primes p1, p2 (M=2) with p1+p2=E, the generalized counting function approximates
the number of Goldbach partitions and its average lower bound. Its relative errors decrease with
increasing even number E, and so enable it to explain the structure of the Goldbach-pair counting
function. With one subtractive condition for two primes (M=2), the number of prime pairs with a given
distance (e.g. twin primes with distance 2) in the interval 2...Z (Z=integer) can be estimated. For more
than two primes (M>2), additive and subtractive conditions can be mixed. As examples, counting
functions are considered to investigate strings of M=5 or more equidistant primes, twin-Goldbach pairs
(M=4), and well known triplets (M=3) or quadruplets (M=4). The generalized counting function is
based on an equality assumption we cannot prove (a proof would be equivalent to a simultaneous proof
for the Goldbach conjecture and other conjectures involving more than 2 primes). However, reasons
given for its validity include an observed scaling relation for the quasi-random errors of the generalized
counting function, leading to a heuristic "proof" for the Goldbach conjecture.

2000 MSC: 11N36 Applications of sieve methods

The problem
Instead of trying to solve one of the hardest problems in number theory, we

make the task even more difficult! Beyond asking for at least one prime pair adding
up to a given even number E, we are e.g. interested in the number of prime pairs
p1+p2=E that are at the same time members of twin primes in such a way that p1-2 and
p2+2 are also primes. For E=36 the three twin-Goldbach pairs would be 7+29, 19+17
and 31+5. For which E≥12 are there solutions and how many? Our generalized
counting function answers these and other questions with an accuracy quickly
increasing with increasing E. Does our method show a way heading towards a proof
of the Goldbach conjecture?

Introduction
Goldbach's conjecture1 from 1742 states that every even integer E>2 can be

expressed as sum of two primes (in the following called Goldbach pairs or Goldbach
partitions). Though computer-based numerical tests2 have confirmed the theorem up
to 4·1014 (and ongoing computations have increased this limit3 to over 8·1015), it
resisted any formal mathematical proof up to now3,4. Polignac's conjecture3,5 from
1849 states that there exist infinitely many pairs of consecutive primes with any given
even difference D≥2. A necessary condition for the conjectures to be valid is, that
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new primes steadily appear on the number axis without limit. The respective proof
was already given by Euclid around 300 BC and has been confirmed repeatedly in
different forms since then3,6,7.

We performed previous studies on the structure of prime-multiples and their
effects on the number of Goldbach partitions (Marques Filho & Walker, 20018). A
series of numerical tests up to E=3·107 confirmed the developed approximation NG(E)
for the Goldbach-pair counting function (Marques Filho, Gassmann & Walker,
20059). The computations showed the relative error of NG(E) decreasing proportional
to approximately E-0.4 for increasing E. Further computations to E = 2.56·1010 showed
converging of this power law towards E-1/2.

In the present paper, we will generalize our approach. We begin with a slightly
modified sieve process to develop an asymptotic prime counting function. A
generalization of this function, on the basis of an equality assumption (to be defined
later), will unite the sets of primes, Goldbach pairs, twin primes, and higher prime
combinations, to members of a family called generalized Goldbach-Polignac
problems. To demonstrate the validity of our method, we apply it to the special case
of Goldbach pairs and develop a calibrated Goldbach-pair counting function NG(E)
for E=4...2.56·1010. After showing other applications, we investigate errors of NG(E)
and show them to scale with the square root of NG(E). We propose reasons for the
validity of our equality assumption. Its proof would be equivalent to simultaneous
proofs of the Goldbach conjecture and other conjectures involving more than two
primes, and so is clearly beyond the scope of the present work. However, a heuristic
"proof" of the Goldbach conjecture, based on the observed scaling law, is given at the
end of this paper.

Approximation for the prime counting function
Gauss10 estimated the asymptotic total number p(Z) of primes smaller than a

given positive integer Z in 1792, at the age of 15, to:

  

† 

p(Z) µ
Z

ln Z
(1)

ln is the natural logarithm throughout the paper. This nowadays called prime number
theorem could be strictly proven only in 1896. To introduce our method and our
definitions, we give another approximation for p(Z), based on the sieve method which
Erathostenes11 proposed around 300 BC as an efficient means to find prime numbers.

Number of P-relative primes up to Z
We consider the sequence of integers after application of a slightly modified
Erathostenes sieve up to a prime P: multiples of all primes PL ≤ P are assumed to be
set to 0 (including PL, in contrast to the normal procedure). For P=5 and Z=50, the
resulting integer sequence is 0, 0, 0, 0, 0, 0, 7, 0, 0, 0, 11, 0, 13, 0, 0, 0, 17, 0, 19, 0, 0,
0, 23, 0, 0, 0, 0, 0, 29, 0, 31, 0, 0, 0, 0, 0, 37, 0, 0, 0, 41, 0, 43, 0, 0, 0, 47, 0, 49, 0. The
process shows that all non-zero integers up to PN

2-1 are real primes, PN > P being the
next higher prime following P. PN

2 (49 in our example) is the lowest P-relative prime
not being a real prime, i.e. it cannot be divided by any integer smaller than PN. By
substituting all non-zero integers by 1, we get the 5-relative prime-indicator sequence
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0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 1, 0, 0, 0,
0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 1, 0.

To find a generalizable procedure, we introduce the notion of phases. To
perform the iteration step on the relative prime-indicator sequence involving P, we
define phases j i Œ  {0...P-1} as the set of all positions ji + k·P ≤ Z (k=1,2...). Our
central assumption (called equality assumption) states that all the ones (and the zeros)
are almost equally distributed on all P phases. As the combined set of all phases
contains the whole set of ones, a deletion of d different phases reduces the number of
ones by approximately d/P, or multiplies it by (1- d/P) = (P- d)/P. Here, deletion of a
phase means setting all its members to 0. For the special case of the Erathostenes
method, d=1 for all P, because exactly one phase (phase 0) is deleted in each iteration
step. It follows for the approximative number Np,P of P-relative primes (i.e. the
number of ones in the relative prime-indicator sequence) below Z:

  

† 

Np,P ª Z ⋅
¢ P -1

¢ P 
¢ P =2

P

’ (2)

In this and the following relations, the product term always involves all primes P'
within the indicated boundaries.

Number of primes below Z
To find an approximative asymptotic prime counting function Np(Z), the procedure
has to be repeated until P ≈ Z1/2 giving:

  

† 

Np (Z) µ a ⋅ Z ⋅
¢ P -1

¢ P 
¢ P =2

Z

’ (3)

We use 

† 

µ instead of the equal sign to indicate asymptotic convergence. Due to
omission of all primes 2...P≤ Z1/2, and also to a slight asymmetry of phase 0
(explanation see later), a correction factor a has been introduced. It can be determined
using the prime number theorem together with the following asymptotic relation
found by Landau12:

  

† 

eg

2

Ê 

Ë 
Á Á 

ˆ 

¯ 
˜ ˜ 

¢ P -1
¢ P 

¢ P =2

Z

’
Ï 
Ì 
Ô 

Ó Ô 

¸ 
˝ 
Ô 

˛ Ô 
µ

1

ln Z( )
(4)

Here, g is the Euler constant (0.577215...). Multiplication of (4) with Z and
comparing with (1) and (3) leads to the value of a:

  

† 

a = 1
2

eg ª 0.890536... (5)

a<1 means that phase 0 (the only phase deleted), in the average, contains somewhat
more ones than we would expect on the basis of our equality assumption. We will
investigate the reason for this asymmetry towards the end of this report. We would
like to mention that the product term in (3) converges to the inverse of the Riemann
Zeta-function with argument 1 for large Z:
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† 

1

z 1( )
= lim

ZÆ•

¢ P -1
¢ P 

= 0
¢ P =2

Z

’ (6)

Generalization of the method for M primes
Imposing M-1 conditions on M-tuples of primes p0, p1,...pM-1 is possible by

defining additive (p0 + pi = Zi, generalized Goldbach conditions) or subtractive (p0 - pi
= Zi, generalized Polignac conditions) or mixed conditions (we use the term
"generalized Polignac conditions" for differences between primes that are not
necessarily consecutive). Obviously, each condition i=1...M-1 leads to deletion of a
certain phase, and therefore (3) has to be generalized for the deletion of a variable
number d of phases in each iteration step:

  

† 

N(Z) µ a M( ) ⋅ Z ⋅
¢ P - d ¢ P ( )

¢ P 
¢ P =2

Z

’ ≥ 0 (7)

The asymptotic number of representations N(Z) is a subset of p(Z). a(M) is a
prefactor depending on the number M of primes involved and the nature of the
conditions. Analogous to different calibrations, developed for better approximations
of p(Z) at small Z, the systematic error of (7) can be reduced by a second prefactor
a'(M, Z) converging to 1 for large Z (an example for M=2 will be given below). d(P')
is the number of different phases ji to be deleted in the iteration step involving P':
They always include phase 0 and are defined by the M-1 conditions imposed on the
prime M-tuples:

j0 = 0 (8a)
ji = Zi mod P'  (i=1..M-1) (8b)

mod is the modulo-function (a mod b is the rest of the integer division a/b, e.g., 162
mod 5 = 2). For Goldbach pairs, M=2 and Z1=Z. According to (8), e.g. for Z=162, the
phases deleted for P'=2,3,5,7,11 are (0,0),(0,0),(0,2),(0,1),(0,8) and the respective
numbers of different phases d(P')=1,1,2,2,2.

Restrictions on Z and Zi implied by M-1 conditions
Possible values for d are 1...M. M=1 imposes no constraints. Restrictions for Z

are imposed for M>1 to prevent factors of zero in the product term of (7). These
restrictions are effective for P'≤M. For Goldbach pairs (M=2, Z1=Z), P'=2 restricts Z
to even integers E, because the phase j1=1, resulting from odd Z, would imply
deletion of two phases, and (7) would evaluate to 0. However, also the zero resulting
from odd Z is a correct approximative result, because the sum of two primes is an odd
number only in rare exceptional situations when prime 2 is involved (e.g. Goldbach
pairs for Z=19 are (2,17) and (17,2)). If (7) evaluates to a negative number (possible,
e.g., for M=4), the correct result has to be zero, indicated by the condition ≥0 in (7).

The following restrictions for Zi are necessary for the applicability of (7). For
additive conditions, all Zi

1/2 should imply the same maximum prime Pmax to be
considered in the product term in (7), giving the condition:

Pmax
2 < Zi < PN

2 , where PN is the next higher prime following Pmax (9a)
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If (9a) is valid, the different phases involved have approximately equal lengths, and
the equality assumption can be applied. However, (9a) might be too restrictive in
some cases and, especially for large Z1=Z, this restriction is of minor importance,
because the respective factor (PN-d)/PN in (7) becomes nearly unity.

For subtractive conditions, Pmax is defined by Z, and by definition, all Zi (i>0)
are smaller than Z. For Zi<0, the relevant phase length is Z, imposing no further
constraints for the applicability of the equality assumption. However, for Zi>0, the
relevant portions of the involved phases are confined between Zi and Z with lengths
Z-Zi. Consider e.g. the extreme case Zi=Z: No prime pairs p0, pi exist with p0<Z and
p0-pi=Zi=Z. A restriction is therefore:

Zi<<Z (9b)

Examples for the application of the generalized counting function (7)
(7) is based on our equality assumption applied for each prime P'=2...Z1/2.

Before we try to make this assumption plausible, we show different applications of
(7), because they convincingly demonstrate its validity.

Calibrated formula for Goldbach partitions for the range 4...2.56·1010

Numerical tests with Goldbach pairs for even numbers (M=2, Z=E), performed
by one of the authors (Gassmann) for E in the range 4...2.56·1010, give the following
calibrated approximation:

  

† 

NG(E) @
E

1- 1
a+b⋅ln(E)

a2 ¢ P - d( ¢ P )
¢ P 

¢ P =2

E

’    with a ≈ -0.5455, b ≈ 0.5153 (10)

d(P'), according to (7, 8), has the two possible values 1 (P' divides E) and 2 (P' does
not divide E). The asymptotic prefactor a2 (defined by (5)) gave a very good
approximation for large E. a and b were calibrated for the range 4...2.56·1010.
Deviations of the approximation (10) from the exact numbers of Goldbach pairs never
exceeded 3.61·NG

1/2 for all E=4...1'000'000. This observation suggests the following
scaling law for the absolute errors e, leading to a universal distribution function for
the normalized errors en:

  

† 

en(E) =
e(E)

NG(E)
(11a)

The variance sn
2 for this normalized error distribution is the average of the squares of

en(E) taken over many different E:

  

† 

sn
2 = av

e2(E)
NG(E)

Ï 
Ì 
Ô 

Ó Ô 

¸ 
˝ 
Ô 

˛ Ô 
(11b)

Fig. 1 gives an impression of the astonishingly good performance of (10) around
E=3·107. Fig. 2 shows an almost perfect Gaussian distribution for the normalized
errors.
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Number of Goldbach partitions for E = 
30'000'000...30'000'500
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Fig. 1: "Goldbach Comet" near E=3·107. Our approximation (10) (squares) as compared to the
exact numbers of Goldbach partitions (points). The squares encompass about ±10·NG

1/2.
Maximum errors in this range are ±2.4·NG

1/2. The branch near 300'000, stemming from P'=3,
contains E's being multiples of 3 and lies a factor of 2 over the well-defined lower boundary,
indicated by the horizontal line at 151'869 according to (14a). For detailed explanations see
text below.

Structure of NG(E)
The familiar phenomenon we call resonances, observed with numerical

experiments on Goldbach pairs (see, e.g., highest points in Fig. 1), finds a simple
explanation based on (10). Consider, e.g., the well known resonance at the primorial
P!17 = 510'510 = 2·3·5·7·11·13·17 with 18'986 Goldbach pairs, whereas for 510'508
and 510'512, the respective numbers are 4'998 and 4'534, leading to ratios of 3.80 and
4.19. By definition, 510'510 involves only phase 0 for the lowest 7 primes, and
d(P')=1 for P'=2...17. For the other two numbers, respective d(P') are 1, 2, 2, 2, 2, 2, 2
resulting in the ratio:

  

† 

NG(510510)
NG(510510 ± 2)

ª
1
1

2
1

4
3

6
5

10
9

12
11

=
27

33
ª 3.88

lying very near to the above given exact ratios. The asymmetry of the two exact
numbers stems from higher P', about half of the difference being attributed to P'=23,
giving phase 0 for 510'508, but not for 510'512.

In general, the main structure of the counting function NG(E) results from the
d(P') attributed to the lowest P'. Higher P' are responsible for finer detail in the
distribution. Its most prominent branches result from P'=3 and 5 with ratios 2 (3
divides E, compared to 3 does not divide E), 4/3 (same with 5) and 8/3 (3 and 5
combined) when compared with the well-defined lower boundary (14a). The branch
with ratio 2, stemming from P'=3, is clearly recognizable in Fig. 1.
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Lower bound of the generalized counting function
If Z fulfils the above explained restrictions (P'-d(P')≥1 for all P'≤M), we will

normally find d(P')=M for many P'>M. The minimum number of representations
Ninf(Z) is defined by:

  

† 

Ninf (Z) µ a M( ) ⋅ ¢ a ⋅ Z ⋅
¢ P -M

¢ P 
¢ P >M

Z

’ (12)

a' contains all factors of the product related to P'=2...M.
For Goldbach partitions (M=2, Z=E), (10) in the form of (12) can be

transformed using (1), (4), (5) and the asymptotic relation3,13

  

† 

cTP =
¢ P ¢ P - 2( )

¢ P -1( )2
¢ P =3

•

’ = 0.66016... (twin-prime constant) (13)

into the following approximation for the lower bound:

  

† 

NG,inf (E) @
2 ⋅ cTP ⋅E

lnE( )2
⋅ 1- 1

a+b⋅lnE( )
(14a)

a ' was set to 1/2 due to the first term omitted in (12) for P'=2: (P'-1)/P'. The
asymptotic minimum density of Goldbach pairs, being proportional to (ln E)-2,
suggests a superposition of quasi-randomly distributed primes with density (ln E)-1.

Related to this strong Goldbach conjecture (14a) is a heuristic probabilistic
approach given by Max See Chin Woon14 (2000) involving a sum of products of
reciprocal logarithms. Our bound (14a) has the advantage of simplicity, and it is based
on a clearly defined method resulting in a high precision estimate of the minimum
number of Goldbach partitions. Even nearer to our result (14a) comes Aktay15 (2000),
who describes our approximative relation (7) for the special case of Goldbach pairs in
words. Further, he mentions the asymptotic limit of our stronger form of Goldbach's
conjecture (14a), but without any clear reasoning and with a lower factor (1/2 instead
of 2⋅cTP).

(14a) can be used to explain our observation mentioned in the introduction of
this report, that relative errors erel decrease with a power of E approaching -0.5. With
the scaling law (11a), we find for the relative errors:

  

† 

erel =
e

NG

=
en NG

NG

=
en

NG

(15a)

For a fixed NG=NG,inf, the same relation is also true for the respective standard
deviation. With sn=constant, and the asymptotic lower bound NG,inf~E/(lnE)2, we find
the relation:

  

† 

srel =
sn

NG,inf

~
lnE

E
(15b)

To investigate the power law for the decrease of the standard deviation of the relative
errors srel with increasing E, we take the logarithm of (15b) and differentiate:
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† 

lnsrel = a + ln lnE{ } - 1
2
lnE

dlnsrel

dlnE
=

1
lnE

- 1
2

(15c)

For large E, the term 1/lnE vanishes, and we get the asymptotic power law:

  

† 

srel ~ E
- 1

2 (15d)

in accordance with our calculations.

Special questions regarding the distribution of primes
(7) gives answers to different questions related to the distribution of primes. In

the following, we give examples involving twin primes, Goldbach pairs and strings of
primes in arithmetic progression.

Twin primes: Twin primes are prime pairs with difference 2, as 11,13 or 17,19.
According to (7), twin primes are addressed with one subtractive condition (M=2,
Z1=2). According to (8), j1=2 gives d(P')=2 for all P'>2. The number of twin primes is
therefore identical with the lower bound for the number of Goldbach pairs (14a):

  

† 

NTP(Z) @
2 ⋅ cTP ⋅ Z

ln Z( )2
⋅ 1- 1

a+b⋅lnZ( )
(14b)

E.g. for Z=3⋅106, there are approximately 20'708 twin primes according to (14b) with
their exact number being 20'932, only 1.6·NTP

1/2 away from (14b), though this relation
has been calibrated (constants a, b) for Goldbach pairs, not for twin primes. Hardy &
Littlewood13 (equation 5.311 on p. 43) have conjectured the same asymptotic relation
in 1923 (i.e. without the term containing a and b). Their result "Thus there should be
approximately equal numbers of prime-pairs differing by 2 and by 4, but twice as
many differing by 6" immediately follows from (8) and (14b), because with difference
4, the same numbers d(P') of phases are deleted for all primes P' and with difference
6, only one phase is deleted for P'=3 instead of 2.

Strings of primes in arithmetic progression: We can ask, e.g., for M-1 Goldbach
partitions p0+pi=E+(i-1)⋅D (i=1...M-1) leading to strings of equidistant primes
p1...pM–1. We consider M=5: D has to be chosen such that the four conditions Z1=E
(E=even number), Z2=E+D, Z3=E+2D, Z4=E+3D do not result in factors £0 for P'=2,
3 and 5. For P'=2, the resulting phase has to be always 0, i.e. D must be an even
number. For P'=3 it suffices that Z1(=E), Z2, Z3, Z4 result in the same phase, being not
necessarily zero. From this follows, according to (8), the condition:

j = E mod 3 = (E+D) mod 3 = (E+2D) mod 3 = (E+3D) mod 3
Solutions are E=6k or E=6k+2 or E=6k+4 and D=6k' (k, k'=natural numbers).

For P'=5, the only restriction is that not all 4 conditions lead to a different phase
different from zero. A simple solution is to require that the phase for E be zero, i.e.
E=30k''. A numerical test with multiples of 30 for E and D=6 (i.e. k'=k''=1) around
E=3'000'000 shows that (10) is a good approximation (though calibrated for Goldbach
pairs) with maximum errors of about 2.5 N1/2 around the mean positioned at 1.23 N1/2

above the value given by (10). Calculations show that there is no single violation (i.e.
Nexact=0) from E=30 to E=1'000'020. Further, the approximative counting function
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N(E) deviates less than 3.8 N1/2 (~4.8 standard deviations) from the exact number of
representations for all E=30k up to E=1'000'020. Because the probability for a
violation decreases with increasing E, and minimum numbers of representations
(N≈54 for E≈106) are about 7.3 N1/2, we conject that for every E=30k, there exists at
least one Goldbach partition p0+p1=E with the property that p1+6, p1+12, p1+18 are
also prime.

In the same way, counting functions for strings of primes in arithmetic
progression (pi = p0+(i-1)·D, i=1...M) can be investigated on the basis of subtractive
conditions. To prevent deletion of all phases for each P'≤M, the factorization of D has
to contain all P'≤M, leading to exclusive deletion of phase 0 for all P'≤M. Ribenboim3

gives the longest known string of primes in arithmetic progression on p. 209
containing M=22 primes with D=4'609'098'694'200=23·3·52·7·11·13·17·19·23·1033.
The factorization of D contains all primes ≤22, in accordance with our analysis. The
necessary  condi t ion P '≤M shows that  the  much smal ler
D=2·3·5·7·11·13·17·19=9'699'690 (primorial of 19) might give strings with 22 terms
also. The factor f=22·5·23·1033 increases the chance to find long strings by
compensating for the very low density of very large primes (the reported
p0=11'410'337'850'553). We think that our relations (7, 8) help to optimize the factor f
for highest probability to find such strings in a given range, and so might speed up
computations (see the example for M=10 given below).

On p. 210, Ribenboim3 gives the longest known string of consecutive primes in
arithmetic progression with M=10 terms and D=210=2·3·5·7. As strings of
consecutive primes are a subset of the strings we can investigate with our method, a
necessary condition to find infinitely many consecutive primes in arithmetic
progression with D=210 is M<11 (the next higher prime after 7). We conclude that
strings with 10 terms are the longest possible strings with D=210 (not taking into
account exceptions as mentioned earlier). Further, the above introduced factor f has
been set to the lowest possible value of unity, a plausible choice for the search of
consecutive primes. Our relations (7,8) with the prefactor of (10) show that p0 must
exceed ≈109 (giving N≈5±2) for a reasonable chance to find strings of (not necessarily
consecutive) primes in arithmetic progression with D=210. Computations for Z=108

show for D=210, 210·11, 210·11·13 the following numbers of prime-strings with 10
terms: N=2±1 (1), 12±3 (13), 61±7 (57). The numbers in parentheses are exact results
from computerized counting. A comparison with the approximations based on relation
(10), calibrated for Goldbach pairs, shows that the exact numbers lie within an
interval of less than N1/2 around the approximations. These examples demonstrate the
considerable increase of the probability to find strings of primes in arithmetic
progression, when D is increased by prime factors above 7 (i.e. above the largest
necessary prime). The only string for D=210 and Z=108 begins at p0=199. Our
computations for strings of primes in arithmetic progression make the high p0 in the
order of 1092 plausible, where strings of consecutive primes for D=210 with 10 terms
were found.

Further, the density of the well known triplets (p, p+2, p+6) and (p, p+4, p+6)
and the quadruplet (p, p+2, p+6, p+8) can be estimated using relations (7,8).
Numerical tests for these and different other problems show that the prefactor of (10),
calibrated for Goldbach pairs, is always a good first approximation.

A last example we give for M=4 are twin-Goldbach pairs, consisting of the
subset of Goldbach partitions for which the first prime has a lower and the second has
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a higher twin prime, i.e. p1+p2=E, p1-2=p3, p2+2=p4 (E=even number, pi=primes). The
condition that not all phases of P'=3 are deleted gives E=6k. Calculations show that
for all E=6k between 4'212 and 500'004, at least one twin-Goldbach pair exists.
E=4'206 is the largest E below 500'004 for which no twin-Goldbach pair exists. We
found an almost perfect Gaussian error distribution (as the one shown in Fig. 2) with
mean 0.44 and normalized standard deviation sn≈1.18. The maximum deviation from
the mean in this range is -4.5sn. With a minimum of 81 solutions found for E around
500'000, only an error exceeding 7 standard deviations (occurring with a probability
of the order 10-15) would lead to a violation of our conjecture that for all E=6k larger
than 4'206, at least one twin-Goldbach pair exists. Note that this conjecture is much
stronger than the Goldbach conjecture!

Reasons for the validity of the equality assumption
A rigorous proof for the validity of the equality assumption for M=2 would be

equivalent to a proof of the Goldbach conjecture, which is beyond the scope of the
present paper. Instead, reasons will be given to make the validity of the equality
assumption plausible, using the example of Goldbach partitions. For this aim, we will
investigate the propagation of the deletions of certain phases during the iteration
process beginning with P=2 and ending with Pmax≈E1/2.

Initially, all relative prime indicators are set to 1, except for the positions 0 and
1 which are put to 0 (0 and 1 are not primes). For Z=E, phase 1 contains one prime
indicator with value 1 (later called one occupied position) less than phase 0. As phase
0 is deleted in every iteration step (and for P=2 only phase 0), slightly more ones than
50% are deleted. (10) assumes deletion of exactly 50% of the number of ones,
showing already now its approximative character. As all even positions are deleted
(phase 0 of P=2), only the odd positions remain (phase 1 of P=2), i.e. E/2-1 positions
are occupied, including all odd numbers 3....E-1.

These occupied positions are distributed in the following way on the 3 phases of
P=3:

phase 0 of P=3: positions 3, 9, 15,...
phase 1 of P=3: positions 7, 13, 19,...
phase 2 of P=3: positions 5, 11, 17,...

In each phase, occupied positions form a string in arithmetic progression with
separation 6. For all E, phase 0 contains the same number of occupied positions as
each of the other two phases or it contains one position more. Numerical tests show
that phase 0 contains more occupied positions than averaged over all phases for most
of the lowest primes up to about 0.7·E1/2. This fact is the reason for the prefactor a2 in
(10) being smaller than one: Because the systematic deletion of the (most of the time)
larger phase 0 leads to a reduction of the remaining occupied positions below the
average value given by the product term in (10). This asymmetry concerning phase 0
stems from the asymmetry in the iteration process, always deleting phase 0, whereas
the other phases are deleted in a pseudo-random way.

In the next iteration step, involving prime 3, there are three possibilities for the
function d(3) in (10): Depending on E, only phase 0 is deleted (d(3)=1) or phases 0
and 1 or 0 and 2 are deleted (d(3)=2). We investigate the effect of the deletion of one
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phase of P=3 (phase i) on the occupation numbers (i.e. numbers of ones) of phases in
belonging to any Pn>3. Phase i of P=3 has the above specified occupied positions
i0+6k (i0=3, 7, 5 for phase 0, 1, 2 respectively, k=0,1,2...). The phases in of Pn are
related to the phase i of 3 to be deleted in the following way:

i0 + 6k = in + knPn (16a)
From this follows

in = (i0 + 6k) mod Pn (16b)
and obviously, with k increasing one by one, all Pn different phases of Pn will be
visited before the cyclic process repeats itself, i.e. the deletion of phase i of 3 will be
distributed almost regularly on all the phases of all primes above 3. Maximum
differences due to this distribution step are 1 position. This means that the remaining
occupied positions in all phases for all primes above 3 are almost the same, maximum
differences being 2 (1 from different numbers of occupied positions in each phase and
1 from deletion of phase i of prime 3). If two phases of prime 3 are deleted,
differences can increase to 3.

Continuing with P=5, the occupied positions are distributed in the following
way on the 5 phases of P=5:

phase 0 of P=5: positions 5, 25, 35, 55...
phase 1 of P=5: positions 11, 31, 41, 61…
phase 2 of P=5: positions 7, 17, 37, 47…
phase 3 of P=5: positions 13, 23, 43, 53…
phase 4 of P=5: positions 19, 29, 49, 59…

Occupied positions are now separated by 2·3·5=30, and there are two different strings
in arithmetic progression with separation 30 in each phase. The above presented
reasoning is true for both sequences of each phase, leading to more complicated
superposition effects resulting in larger maximum deviations. In addition, phases
deleted during the iteration step with P=3 affect occupations of the phases of P=5.

Due to the described more and more involved superposition effects, we leave
exact mathematical reasoning and introduce statistical arguments. Our numerical tests
showed that the errors can be normalized according to (11a) and suggest a Gaussian
error distribution typical for statistical superposition processes. Fig. 2 convincingly
demonstrates such an error distribution calculated with all E in the range
E=500'000...721'024.
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Logarithmic Error Distribution
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Fig. 2: Natural logarithm of the normalized error distribution for 110'513 even numbers E
between 500'000 and 721'024. Errors are defined as deviations (NG-NG,exact) of the number of
Goldbach partitions NG calculated with (10) from the exact number NG,exact based on
computerized counting. The abscissa indicates normalized errors en(E) according to (11a). The
squares are calculated numbers of errors lying within intervals of width 0.1. The line indicates
respective values based on a Gaussian distribution with the same normalized standard
deviation sn≈0.736, calculated according to (11b). The mean lies at -0.216 and was shifted to
0 for comparison with the Gaussian distribution. Higher moments are 0.0564 (skewness) and
0.0188 (excess) which both vanish for a Gaussian distribution. The maximum deviation
occurred for E=712'432=24·7·6361 and was 4.6sn (a second error was near to this value, both
together leading to the square at the bottom left). These two points are the largest normalized
errors existing below 106. The calculated distribution is not distinguishable from a Gaussian
distribution within the range of about 4 standard deviations.

To estimate the probability of a violation of the Goldbach conjecture and also for our
heuristic "proof" given below, we approximate the Gaussian error distribution by a
binomial distribution BN,p with N steps and probability p for one of two outcomes (in
our case decreasing the number of Goldbach pairs by 1). The average m and the
variance s2 are:

  

† 

BN,p(k) =
N!

k!⋅ N-k( )!
pN-k ⋅ 1-p( )k

m = Np , s2 = Np 1-p( ) = m 1-p( )
(17)

Identifying m with a number NG of Goldbach partitions, around which we want to
investigate the errors, we get the relations:

  

† 

m = Np = NG

s = sn NG = NG(1-p)
(18)

With sn=0.736 (see Fig. 2), we get p≈1/2 and N≈2NG. A violation of the Goldbach
conjecture would therefore have a probability of the order 2-N. For the lower bound
(14a), this violation probability pv would become approximately:
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† 

pv ª 2-2E /(lnE)2

(19)

With increasing E, pv quickly decreases and reaches a value of about 10-200'000'000'000 for
E=4·1014, the upper end2 of the range in which numerical tests showed no violation of
the Goldbach conjecture.

Heuristic "proof" of the Goldbach conjecture
The above presented estimate was based on a binomial distribution for N≈2NG

steps, which is unsatisfactory, because the earlier explained redistribution process
involves only far less iteration steps NS, namely the number of primes in the range
2...E1/2:

  

† 

NS ª
E

ln E
ª

2NG

cTP

<< 2NG (20)

In (20) the asymptotic lower bound (14a) has been used. We showed that
additional deviations from the equality assumption contributed by each step increase
during the iteration process. We approximate this fact and describe the build-up of the
errors e(E) as a diffusion process involving NS steps with average size d and
probabilities of 1/2 for both directions (+d and -d). For our assumed symmetric
diffusion process, maximum deviations from its centre are ±d·NS. Instead of fitting a
binomial distribution covering the range 0...N=2NG (with p=1/2 and mean NG) and
adjusting N as we did above, we prescribe now Nb=2NS and use step size d of the
diffusion process to adjust its variance to the observed value:

  

† 

s = sn NG = dsb = d
Nb

4
= d

NS

2
(21)

With sn
2≈1/2 (see Fig. 1), we get NG=d2NS, and with use of (20):

  

† 

d =
NG

NS

=
NGcTP

2
4 (22)

Using (20) and (22), maximum deviations around NG become:

  

† 

d ⋅NS =
2

cTP

4 NG
3/ 4 ª 1.32 ⋅NG

3/ 4 < NG (23a)

Expressed as multiples of the standard deviation s (cf. the second term in (21)),
maximum deviations around NG become:

  

† 

d ⋅NS

s
= 2 ⋅

NG

2cTP

4 ª 1.86 ⋅NG
1/ 4 (23b)

This estimate shows that maximum deviations d·NS of the Goldbach counting
function below its asymptotic lower bound (14a) are considerably smaller than its
lower bound NG. This heuristic "proof" of the Goldbach conjecture is based on the
observed error scaling law (11a) and the resulting binomial error distribution with the
assumption that the underlying process is a quasi random diffusion process with a
limited number (NS) of equal steps (d). This conclusion is supported by the fact that
among 500'000 even numbers tested in the range 2...1'000'000, only 2 errors deviated
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more than 4.3sn from the mean, whereas a Gaussian distribution would give a
probability of 5.6·10-5 giving 28 values outside this limit. This suggests that the
normalized error distribution falls off faster than a Gaussian distribution. A fit of a
symmetrical binomial distribution to the normalized error distribution with maximum
deviations of 4.3sn from its mean gives:

  

† 

4.3 ⋅ N 1
2

1- 1
2( ) = 1

2
N (24)

resulting in N=4.32≈18. The probability to reach either extreme of this binomial
distribution is 2·2-18 = 2-17 leading to four values out of 500'000. For comparison with
our calculations for all even integers E below 106, the range of –3.6...+3.6 has been
divided into 18 intervals of width 0.4. In the lowest interval –3.6... –3.2, only the two
values on the left side of Fig. 2 (positioned at –3.4) have been found. In the highest
interval +3.2...+3.6, only one value on the right side of Fig. 2 (positioned at +3.22)
has been found, though another value outside the E-range considered in Fig. 2 was
found at +3.19, lying very near to the somewhat arbitrary interval boundary of 3.20. A
reasonable estimate is therefore four values as suggested also by the symmetrical
binomial distribution with maximum deviations of 4.3sn.

Conclusions
Based on a plausible equality assumption, we developed a counting function

that can be applied for estimates of the number of representations for generalized
Goldbach-Polignac problems involving a finite set of additive and subtractive
conditions. Our function encompasses the prime number theorem (no conditions,
M=1), the Goldbach conjecture (one additive condition, M=2), twin prime density
(one subtractive condition, M=2) and infinitely many higher order problems. The
quasi-random errors of the formula (at least for M=1...10) scale with the square root
of the number of representations and therefore, relative quasi-random errors vanish
for large E. An important exact result of the function is its distinction between sets of
conditions allowing only very few exceptional representations or a number of
representations monotonically increasing with increasing Z.

A proof of the equality assumption would prove the generalized Goldbach-
Polignac conjecture for a finite number of conditions. Though this aim is beyond the
scope of the present report, we hope that the equality assumption might be provable in
the future. A heuristic "proof", based on statistical properties of the error distribution,
together with an assumed diffusion process involving a limited number of equal steps,
shows a strategy for combining the statistical nature of the Goldbach problem with
absolute limits and so circumventing the nonmathematical way to "prove" the
Goldbach conjecture with vanishing probability of violations.

We would like to point to a more general and astonishing fact, namely, that
primes do not play an important role in physics, e.g. in quantum mechanics or in the
framework of complex systems research. For physical applications, restrictive
boundary conditions are always present, because they define the special problem to be
investigated. Lacking a general formula involving primes and boundary conditions,
primes could not easily penetrate physics. Possibly, our counting function could pave
a way into this direction.
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