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Abstract
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1. Introduction

MATSIM-T is a toolkit for the iterative multi-agent simulation of travel demand (MATSIM-T,
2006). On the one hand, it provides interfaces and configuration schemes for the various com-
ponents of an agent-based travel demand model. These are mainly microsimulations of traffic
flow, modules implementing a theory on travel behavior, learning mechanisms and the genera-
tion of initial demand. In MATSIM-T, an agent is the representation of a traveler that follows
an activity plan. Each activity plan is assigned a score. Thehigher the score, the better is the
plan. A particular implementation selects a suitable combination of traffic flow and travel de-
mand modules, which are called alternately until the systemreaches its stationary state. This
corresponds to user equilibrium in the case of traffic systems. Convergence to the stationary
state is, among other criteria, judged by the judged by the trajectory of the average score of the
complete agent population.

This paper is aboutplanomat, a flexible module which adapts the activity plans to the travel
times the agent experiences during the subsequent simulations of traffic flow. Since chang-
ing generalized costs of travel affect each aspect of traveldemand, it would be desirable that
this module was as comprehensive, allowing for choice of activity durations, departure times,
activity locations, modes, and other desired attributes. In the implementation presented here,
planomatoptimizes activity durations, departure times and routes according to a time-of-day
dependent approximation of travel times.

The paper is structured as follows. Our concept of an agent-based microsimulation of travel
demand is presented in Sec. 2. The details on the new moduleplanomatare given in Sec. 3.
Sec. 4 describes the test scenario, assumptions about activity parameters as well as algorithmic
details. The resulting choice of activity timing and systemperformance are presented in Sec. 5.
Finally, Sec. 6 discusses computing issues and gives an outlook to further modelling goals.

2. MATSIM-T: Multi-Agent Transportation SIMulation Tool-
box

In this section, the concepts required for understanding the planomatfunctionality are briefly
described. For a comprehensive and more detailed toolkit description, see Raney (2005).

2.1 The activity plan concept

The representation of an agent’s travel demand is an activity plan, an alternating sequence of
activities and trips. As shown in the example in Fig. 1, the toolkit uses XML to store and
exchange plans (W3C, 2006). The most important XML elements are the following.
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person Each person is identified by anid by which its socio-economic attributes can be found
in the synthetic population. A person can hold several plans.

plan Each plan can be assigned ascore according to a scoring function (see Sec. 2.2). The
attributeselected="yes" states that the plan was chosen for execution in the previous
iteration of the traffic flow simulation.

activities Each activity<act> is characterized by a type, a hectare-grid location coordinate,
a network link associated with that location, and its temporal extent defined by two of
three attributesstart_time, end_time, anddur (activity duration). The start of
the plan is defined by the end time of the first activity,07:35:04 in the case of the
plan in Fig. 1. In the example shown, first and last activity are the same activity ("h",
which means home). The location coordinates refer to "Swiss Grid", the Swiss geodetic
reference system (Swisstopo, 2006).

legs Movements between activities are called legs. The attributes of a<leg> include a mode, a
departure time and a duration. A leg can be characterized by aroute, which is a sequence
of numbers of the network nodes that are passed.

Read the example plan as follows:

• Agent No. 22018 is at home until 7:35:04. Its home location"h" is at the coordinates
(703600;236900).

• The agent leaves its home to drive to work ("w"). This trip takes 16 minutes and 31
seconds, using the route along the nodes1900 1899 1897.

• The agent stays at work more than 8 hours, then leaves for a leisure activity ("l" ). The
trip from the work location on route1899 1848 1925 1924 1923 1922 1068
to the leisure location takes about 1 hour and 10 minutes.

• After leisure, the agent returns home after a trip of≈34 minutes.

• Read the plan as a 24-hour wrap-around, so the end of the home activity is also at 7:35:04
the next day.

• The plan has a score of 157.72e.

An activity plan can be interpreted in different ways: It canbe either astrategyexpressing what
the agents wants/plans to do, or ademand descriptionwhat an agent actually did in a certain
iteration. The character of a plan is even more general: Since many attributes are not required,
it is essentially aworking filein the demand generation process. The formal requirements for an
XML file are specified in a DTD (Document Type Definition) file. The plans DTD and others
can be found at MATSIM-T (2006).
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Figure 1: Example activity plan

<person id="22018">
<plan score="157.72" selected="yes">

<act type="h" x100="703600" y100="236900" link="5757" end_time="07:35:04" />
<leg num="0" mode="car" dep_time="07:35:04" trav_time="00:16:31">
<route>1900 1899 1897</route>

</leg>
<act type="w" x100="702500" y100="236400" link="5749" dur="08:12:05" />
<leg num="1" mode="car" dep_time="16:03:40" trav_time="01:10:22">
<route>1899 1848 1925 1924 1923 1922 1068</route>

</leg>
<act type="l" x100="681450" y100="246550" link="2140" dur="01:20:00" />
<leg num="2" mode="car" dep_time="" trav_time="00:34:35">
<route>1067 1136 1137 1921 1922 1923 1924 1925 1848 1899</route>

</leg>
<act type="h" x100="703600" y100="236900" link="5757" />

</plan>
</person>

2.2 Scoring

The quality of an activity plan is measured by a score. The corresponding scoring function was
introduced first by Charypar and Nagel (2005), and is with slight modifications still used in our
current work on traffic micro simulation. This subsection presents the basic parts of the scoring
function, while Sec. 2.3 demonstrates its use in the agent database.

The score of an activity plan is given by the sum of the utilities of all activities performed, and
the travel disutilities for trips necessary to get from one activity location to the other:

Uplan =
n

∑

i=1

Uact(typei, starti, duri) +
n

∑

i=2

Utrav(loci−1, loci) (1)

where
Uplan: score of an activity plan
Uact: utility of performing activityi
Utrav: (dis)utility of traveling from the location of activityi − 1 to the location of the current
activity i
typei, starti, duri, loci type, start time, duration and location of activityi

The utility of an activity is the sum of four terms, each of which is modeling a certain aspect of
the utility function.

Uact,i = Udur,i + Uwait,i + Ulate.ar,i + Uearly.dp,i + Ushort.dur,i (2)
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where
Udur,i: utility of executing an activity for a certain duration
Uwait,i: (dis)utility of waiting for an activity to start (for instance waiting for a shop to open)
Ulate.ar,i, Uearly.dp,i: penalties for coming too late resp. leaving that activity too early
Ushort.dur,i: penalty if an activity is performed for too a short time

There is no penalty fornotperforming an activity that might have been planned. Only activities
performed contribute to the plan score.

Utility of performing an activity

All terms in the activity utility function exceptUdur are modeled to be linear in time needed for
that activity aspect. The time performing an activity is assumed to have a logarithmic impact
on activity utility to reflect diminishing marginal utility:

Udur =







βdur · t
∗ · ln( tdur

t0
) (t0 ≤ tdur)

0 (0 ≤ tdur < t0)
βneg.dur · |tdur| (tdur < 0)

(3)

t0 = t∗ · exp−10/p·t∗ (4)

tdur denotes the actual activity duration.t∗ is the so calledoperating pointof the activity, the
duration at which the marginal utility equalsβdur. So, the value oft∗ can be interpreted as the
typical duration of an activity, while its effect in the activity plan context is the following: The
t∗i yield the ratios of the durations of different activities inequilibrium.

t0 is the activity duration at which the logarithmic curve has its null. It is chosen proportional
to the operating point, and is influenced by the priorityp of the activity. Usual values forp are
1,2,3. . . , with 1 being the highest priority. The higher the priority, the smaller will bet0. In
busy plans, high-priority activities tend to stay in the plan while low-priority activities will be
dropped when for instance traffic conditions worsen. In the current state of our work on activity
generation, we use fixed, revealed activity chains, all activities are performed irrespective of
their costs. All activities have the same priorityp = 1.

The utility of performing an activity with a positive duration cannot be negative. Due to the
interpretation of an activity plan as 24 hour-wrap round, inthe first iterations of the traffic flow
simulation negative durations can occur. They are penalized linearly withβneg.dur. This reflects
an undesirable plan which has taken the agent more than 24 hours to fulfil.

A similar approach, including financial constraints but outside a comprehensive simulation sys-
tem was proposed by Ashiruet al. (2004).

4



Penalties

The penalty terms of the utility function are linear according to Vickrey’s model of departure
time choice (e.g. Arnottet al., 1993):

Utrav(ttrav) = βtrav · ttrav (5)

Uwait(twait) = βwait · twait (6)

Ulate.ar(tstart, tlatest.ar) =

{

βlate.ar · (tstart − tlatest.ar) (tstart > tlatest.ar)
0 (tstart ≤ tlatest.ar)

(7)

where
tstart: starting time of the activity
tlatest.ar: latest possible starting time of that activity

Uearly.dp(tend, tearliest.dp) =

{

βearly.dp · (tearliest.dp − tend) (tend < tearliest.dp)
0 (tend ≥ tearliest.dp)

(8)

where
tend: end time of the activity
tearly.dp: earliest possible end time of that activity

Ushort.dur(tstart, tend) =

{

βshort.dur · (tshortest.dur − (tend − tstart)) (tend < tstart)
0 (tend ≥ tstart)

(9)

where
tshortest.dur: shortest desired duration for that activity.

Summary of parameters

The parameters of the utility function have the following values (see Chaumetet al. (2006) for
a recent summary of the literature):

βdur = 6e/h,

βtrav = −6e/h,

βwait = 0e/h,
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βlate.ar = −18e/h,

βearly.dp = 0e/h,

βshort.dur = 0e/h,

βneg.dur = −18e/h.

The parameters for the penalty terms are chosen to reflect therelations in Vickrey’s model of
departure time choice:

βV ickrey
wait : βV ickrey

trav : βV ickrey
late.ar = 1 : 2 : 3

This relation is not obvious on first sight when looking at theparameter values:

βwait : βtrav : βlate.ar = 0 : −6 : −18

Considering the opportunity costs ofnot performing an activity while waiting or traveling, one
has to subtractβdur from βwait andβtrav. So, the effective parameter values are the following:

βwait,eff : βtrav,eff : βlate.ar,eff = −6 : −12 : −18,

which reflect the ratios typically found for Vickrey type models. These values are different from
the ones used in Charypar and Nagel (2005), who already discussed the issue of opportunity
costs.

Fig. 2 illustrates the utility calculation using the example activity plan shown in Fig. 1.

2.3 Simulation

One task of a simulation is to find the stationary state of the system modeled. In the case of
our transport system model, the stationary state is the state where an agent cannot improve its
score by altering its plan. This is similar to the concept of astochastic user equilibrium used in
aggregate models of traffic assignment (Ortúzar and Willumsen, 2001).

As pointed out, an iterative approach is used to solve this maximization problem, in which travel
times as as the main element of generalized travel costs are the central feedback element. The
overall simulation system consists of the following steps (compare Raney, 2005, p.77 ff.):

1. Initialize: A first set of plans has to be generated, assuming initial states of the network
as well as plan attributes. For example, the agent might assume free flow travel for its
preliminary set of legs and a random start time of the plan. For each agent, one plan
is generated which will be marked as "selected", indicating ithas chosen that plan for
execution in the traffic flow simulation.

2. Simulate:The simulation of traffic flow executes the plans, that is it "moves" agent objects
through a model of the traffic network. Currently, a queue-based, synchronous model of
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Figure 2: Utility plot of example activity plan
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The graphUplan represents the plan score depending on time of day as this plan was canceled
at that certain time of day. One clearly sees positive utility of activity performance (log-shape
curves), the various penalties (linear elements starting on the x-zero axis) as well as the overall
plan score yielded at 24:00.
The very low score value between 8:00 and 10:00 can be explained as follows: On one hand,
only the home activity and a small part of the work activity including the (penalized) home-
work trip were performed. On the other hand, the penalties for early departureUearly.dp and
short activity performanceUshort.dur are very high.
For explanatory reasons, in this Fig.βearly.dp = βshort.dur = −6e/h, instead of0e/h. For the
activity parameters, see Table 2.
Based on Balmer (2005, p.15 ff.).
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traffic flow is used (Cetin, 2005). The output of the simulationis the so called events file
which keeps detailed information about which agent "did" what during the simulated day.

3. Scoring:The agent database reads the events file and sends each event to the agent iden-
tified within it. Each agent uses its events to calculate the new score of its selected plan
– the one it most recently sent to the traffic flow simulation. New plan scores are calcu-
lated as described in Sec. 2.2, and are averaged with old planscores. Score averaging is a
simple mechanism to permit agents to learn about their plansperformance over time. The
agent averages scores according to:

Sp = (1 − α) · Sp + α · S
′

p, (10)

where
Sp: stored score of planp
S

′

p: newly calculated score,
α ∈ [0, 1]: blending factor

In the setup described here, a blending factor ofα = 0.1 is used.

4. Plan pruning: The agent database may limit the number of plans agents can store in
memory. New plans are accumulated until the maximum numberNplans is reached. Any
agent having a number of plansP > Nplans in its memory deletes the(P −Nplans) plans
with the lowest score in this step. Note that in the step following this one, an agent may
obtain a new plan. When this happens to an agent that has already Nplans, it temporarily
keepsNplans + 1 plans in memory until the new plan has been scored. Then, in this step,
it deletes the first plan (even if it is the newest one). Thus, the agent will have onlyNplans

to choose from when selecting from old plans.

5. Replanning:A subset of the agents is chosen for new plan generation by oneor more
external strategy modules. These modules, of whichplanomatis one, can capture one or
more travel behavior attributes. In the current setup, planomat is the only strategy module
because it captures all the travel behavior aspects varied during the iterations. A random
10% of all agents are chosen to obtain new plans by planomat.

6. Returnto step 2 until the system has reached a relaxed state which will be interpreted
as the result of the simulation. The state of the system is called relaxed (or stationary)
if there is no significant improvement in the average score ofthe plans selected by the
agents for simulation in the last iteration.

3. Methods of planomat

The task of the external strategy moduleplanomatis to generate plans which are optimal in
the sense of the scoring function described before. This is completely different to previous
rescheduling modules which
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• altered activity plan attributes randomly (e.g. shifting activity durations / departure times
±30min), or

• performed optimization of only a fraction of the travel behavior attributes that are var-
ied in the iteration process (e.g. route optimization without the opportunity to alter the
departure time).

Here, we propose a comprehensive rescheduler that suggestsoptimal plans considering the traf-
fic conditions the agent experienced in the last iteration ofthe traffic flow simulation. In this
section, first a method for travel time approximation is presented. It is followed by a descrip-
tion of the implementation of the genetic algorithm we currently use to solve the optimization
problem.

3.1 Travel time information

As pointed out, travel time is the only aspect of generalizedtravel costs in the proposed scoring
function. The agent needs a time-of-day dependent approximation of travel times in order to
react to traffic conditions varying throughout the day.

Our current approach to this is a very basic one: For each tripthe agent has planned the location
coordinates resp. the associated network links are given. For the agent it is desirable to know
exactly what travel times are yielded at every point in time on every feasible route to decide
which is the best activity timing/routing decision. The availability of such detailed information
is not only unrealistic, but also infeasible to compute in useful time. Furthermore, such a level of
exactness would only make sense if a particular agent was theonly one performing a replanning.
In this case the state of the network would be the same in the previous and the next iteration.
But since many agents, here 10%, will obtain new plans, this assumption will most likely not
hold.

In order to approximate the travel time for a given OD-pair, we sample the shortest path and the
associated travel time in the course of the day. If an agent requests a travel time information for
a particular departure time, a linear interpolation between the two sampling points before and
after the departure time is returned. Currently we use 1h as node interval. So, if an agent plans
a trip from A to B at 11:36 AM, it will receive the linear interpolation of the shortest travel
time information between 11:00 AM and 12:00 AM. Since we currently simulate daily activity
plans, information at 12:00 PM is also the value for 0:00 (seeFig. 3).

The 1h-wise routing is done using a time-of-day dependent Dijkstra shortest path algorithm
(Raney, 2005, p. 38 f.). So, for an agent which had three trips planned,3 · 24 = 72 routings
would have to be performed. This number is constant because every following travel time
lookup is no more than a linear interpolation. Concerning theinterval size, a fraction of 1h
would possibly increase the quality of the plan, but also remarkably increase the computational
effort. An even better method was one that samples more travel time information at times of
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Figure 3: Approximation of OD travel time
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day where many changes in trends are expectable (e.g. at the beginning of a peak period), and
less where the trend is constant (e.g. close to free flow travel time in night hours).

3.2 Optimization

For several reasons, the decision was made to use a Genetic Algorithm (GA) to find good
solutions:

Flexibility In the current setup of the module, a better time allocation could be much easier
calculated. GAs are not the best choice to solve continuous problems like this, they were
designed to rather solve combinatorial problems. A gradient-based optimization proce-
dure or an Evolutionary Strategy would probably be much faster and/or produce better
results. Experiments are undertaken with the Covariance Matrix Adaptation-Evolution
Strategy (CMA-ES), a stochastic population based optimization algorithm for continuous
space problems (Hansen and Ostermeier, 2001). However, thegoal is to extendplanomat
to a comprehensive replanning module incorporating further, combinatorial dimensions
of travel behavior such as activity location choice, mode choice and the choice of the
activity pattern.
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Experience The GA method proved to be successful in various experimentsfor activity plan
generation for individual agents or households (Charypar and Nagel, 2005; Meisteret al.,
2005; Schneider, 2003). This paper is about the attempt to integrate this approach into a
multi-agent simulation system.

The implementation details of the GA operators in the planomat are described below, while
Table 1 gives an overview of the values chosen for the variousGA parameters. All these pa-
rameters have to be chosen according to the nature of the problem to be solved, and reflect our
experience.

Generation of initial population For each agent, the selected plan is read in and the travel
time information trajectory is generated as described in Sec. 3.1. The start time of the
plan, that is the end time of the first (home) activity, is uniformly selected between 00:00
and 12:00 PM. A value for the duration of an activity is chosenfrom ranged ∈ [0h, 24h].
All other attributes are kept constant as they came from the input plan (as described,
currently only time allocation is optimized). For each agent, popsize plan alternatives are
generated.

Recombination and mutation The crossover operator recombines two existing plans to a new
one by randomly choosing start time and activity durations from one of the parents. With
each a probability ofpmut, the following mutation operators are executed on the newly
created plan:

• A new start time is chosen by adding an amounts uniformly selected from range
s ∈ [pmut · −12h, pmut · 12h]. Values before 00:00 (midnight) are reset to that time.

• An activity duration is multiplied with a factord = eX with X being uniformly
selected from the rangeX ∈ [−pmut/2, pmut/2].

Preparation for scoring After both the creation and the recombination/mutation operations,
the new plan is stretched/compressed to a duration of 24 hours to be comparable to its
competitors in the GA population. Furthermore, the anticipated travel times are calculated
using the piecewise linear interpolation described before.

Scoring, selection and outputEvery time a new activity plan was created by the GA, it is
evaluated with the scoring function. Since the number of plans held in the GA population
at one time is constant, good plans are kept while bad ones aredropped. After a certain
number of recombination/mutation operations, the optimization is canceled. This may
either happen after a fixed number of iterationsngen, or if the average fitness of the pop-
ulation does not increase more than a thresholdǫstop within a number of newly plans that
had a high enough score to be inserted in the GA population. The setup presented here
uses the latter, adaptive stop criterion.

The best plan currently in the population is chosen as the agent’s new strategy to be
evaluated in the next iteration of the traffic flow simulation. Before returning the plan
to the agent database, it is routed a last time using the router directly (instead of the

11



Table 1: GA parameters

Variable Description Value
popsize Constant population size. 50
ngen When a fixed stop criterion is used: The optimzation is can-

celed afterngen individuals were generated by the crossover/-
mutation operations.

1’000

ǫstop When the adaptive stop criterion is used: If the average fitness
doesn’t increase more thanǫstop% after nstop newly inserted
plans, the optimization is canceled.

1.0

nstop seeǫstop 50
pmut Probability that one element of an activity will mutate accord-

ing to its respective mutation operator.
Initial: 0.30,
exponentially
decreasing to
0.07

τmut Each time a new indivdual was inserted into the population,
pmut is adapted. The higherτmut, the quickerpmut decreases.

mindiff Minimum fitness difference between two individuals. If a new
plan with almost the same score is generated, it will be dropped
in favor of the one that is already present.

0.10

approximation with the linear interpolation). This is donein order to provide the agent
the actual route of whose travel time we assume that it is not too different from what the
approximation suggested.

4. Canton Zurich Scenario

The scenario setup includes a regional definition of the study area, the demand generation pro-
cess, the specification of the traffic network and a list of assumptions about activity-related
behavior as well as temporal constraints.

4.1 Study area: Canton Zurich

The case study used for testing theplanomatis a simulation of the Canton Zurich, the biggest
metropolitan area in Switzerland. The demand generation process, as well as the toolkit used
for it, is described in detail in Balmeret al. (2006).

12



Table 2: Activity parameter values

Activity type abbreviation t∗ [h] tshortest.dur [h] tlatest.ar tearliest.dp

home h 12 8 — —
work w 8 6 9:00 —
work1 w1 4 2 9:00 —
work2 w2 4 2 — —
work3 w3 8 6 — —
education e 6 4 9:00 —
education1 e1 3 1 9:00 —
education2 e2 3 1 — —
education3 e3 6 4 — —
shop s 2 1 — —
leisure l 2 1 — —

All activities have the same priorityp = 1.
The different work and education activity types can be explained as follows. If an activity chain
includes twowork or educationactivities, it is assumed that their typical activity duration is
half the complete-activity duration and will be renamedwork1andwork2resp.education1and
education2. An example would beh-w1-l-w2-h. If a work or education activity is not the
first an the activity chain, it is renamedwork3 or education3without the desired start time at
9:00, but all other attributes equal. An example of that would beh-s-w3-h.
The activity parametertshortest.dur has no effect in the scenario presented here, because it was
chosenβshort.dur = 0e/h.

First, a synthetic population of the Canton Zurich is generated, using data from the Swiss Na-
tional Population Census. It is a list of approx. 1’200’000 agents with individual attributes
like age or sex, and a hectare-based home location (Frick andAxhausen, 2004). Each agent
is assigned an activity chain based on the Swiss travel behavior microcensus (Rieser, 2004).
These activities are distributed in space by several location choice modules (Marchal and Nagel,
2006). The network model used for the traffic flow simulation is the Swiss National Traffic Net-
work model (Vrticet al., 2003).

4.2 Activity parameters and constraints

The scoring function requires several parameters, either activity or location specific.

Each activity is characterized by a typical durationt∗, a mimimum durationtshortest.dur and
desired start/end timestlatest.ar, tearliest.dp. While the typical duration is a mandatory parameter
for the utility function, the minimum duration and desired time windows are optional. Table 2
provides a list of parameter values used in this scenario.
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Table 3: Opening hours as temporal constraints

Activity type opening time closing time
home (h) — —
work (w, w1, w2, w3) 7:00 18:00
education (e, e1, e2, e3) 7:00 18:00
shop (s) 8:00 20:00
leisure (l) 6:00 24:00

Furthermore, there exist temporal constraints for the execution of activities, represented here
by opening hours. An agent will fail to perform an activity outside these opening hours, and
will have to wait instead. In this case, it does not gain any score or even loses some in case of
βwait < 0. The temporal constraints are an attribute of a specific facility. In this setup, they are
the same all over the modelled region because more detailed data about opening hours was not
available yet. This is why they are activity-specific in Table 3.

For analysis, the activity chain types are summarized into five groups:

education-dominated chain typesheeh, heh

leisure-dominated chain typeshlh,hllh,hlslh

shop-dominated chain typeshsh,hssh

work-dominated chain types hwh,hwlwh,hwswh,hwwh

other chain types helh,hesh,hleh,hlsh,hlwh,hslh,hswh,hweh,hwlh,hwsh

5. Results

5.1 A world without congestion

In order to test the optimization capability of the GA, the plans of all 550’000 agents were
generated assuming free flow travel time in the network. The result might be interpreted as "a
world without congestion", as the plans will be completely independent of traffic conditions
changing throughout the day. They are only determined by theagents’ preferences which are
formulated in the utility function as well as environmentalconstraints (e.g. opening times). The
result is shown in Fig. 4, and to be read like the following:

• Peak periods can be seen for the work- and education-activity chain types. They are the
result of the trade-off between the latest start times of themain activity (9:00 in this case),
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Figure 4: Departure time distribution by activity chain type: Free flow travel time,≈550’000
agents
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and the extension of the time "spent" at home according to the specification of the utility
function. The variance of the departure times is only determined by the distribution of trip
distances between the home and the work/education activity. There are additional, smaller
peaks in the time around noon (12:00 AM). These are departures to additonal activities
besides the main work activity, e.g. of agents with activitychain typeh-w1-l-w2-h.

• The departure time distributions of activity chain types which are dominated by shop or
leisure activities have quite a uniform shape. They are onlyconstrained by the respective
opening/closing times, about which assumptions were made in Table 3. For example, all
shop activities in the shop-dominated activity chain type graph are located between 8:00
and 20:00. Since travel times are the same all the day, the utility landscape within these
opening time windows is "flat". Each of the graphs has two plateaus. While the lower
one represents agents with only one out-of-home activity (e.g. h-l-h), the higher one
are the departures of the agents with additional activities(e.g.h-s-s-h).
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5.2 Complete scenario simulation

The iterative simulation of traffic flow and strategy optimization by planomat were tested with
four different setups of the agent database. Agent memory sizes ofNplans = 1 andNplans = 3
were combined with score averaging switched on and off (compare Sec. 2.3). The agent
database used to serve as the learning framework selecting the best strategies, when external
strategy modules were only optimizing one particular travel behavior attribute, or randomly
altering them respectively. Setups withNplans = 1 are simulated to test whether the strategy
generation/learning can be performed in a (computer memory-efficient) external strategy mod-
ule rather than in the (heavily computer memory-demanding)agent database. Setups without
score averaging are intended to explore the need of successively averaging provisional solutions
of a stochastic optimization procedure like the MATSIM toolkit.

For test reasons, the traffic of only a 1% sample of the whole agent population is simulated1. In
order be able to still produce some congestion and sensitivity of timing decisions to experienced
travel times, the network capacity was reduced to a similar fraction as the agent population.

The results of these experiments are presented in Fig. 5. It shows the development of the
average score of the most recently simulated plans of the whole agent population. Its steady-
state density is used to determine when the system convergesto a user equilibrium, where no
agent can unilaterally improve its score. The four upper graphs, each representing a different
setup of the agent database, show a tendency towards a limiting value which is reached after≈60
iterations.

Variation of Nplans In general, setups withNplans = 1 converge to the same average score
level as setups withNplans = 3, while convergence speed is slightly higher. This can
be explained as follows: The planomat always generates plans optimized for travel times
yielded in the previous iteration, assuming this time and space-dependent landscape un-
changed in the next iteration. Of course, this is not the casesince not only one agent
but 10% of the entire population are provided with a new strategy. Additional to this
accepted bias, withNplans > 1, for some agents a random plan is chosen for the next
simulation of traffic flow. This leads to an additional changein the time-space travel time
landscape, and therefore a worse prediction. WithNplans = 1, each agent whose plan is
not optimized by planomat will be simulated with the same plan as before, as assumed by
planomat.

Variation of score averaging As Fig. 5 shows, setups with score averaging converge slower,
but yield a higher steady state as the ones without score averaging. In the first iterations,
the plans’ scores rapidly increase because there is still a great potential for improvement
for finding better routes and/or peak spreading. This effectis dampened by the score
averaging technique which explains the slower convergence. On the other hand, an aver-
aged score is a better estimator for the expectation value ofthe score than a non-averaged

1We are hoping to present runs of the full scenario in Kyoto, which are delayed by problems with the available
computing hardware.
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Figure 5: Convergence of average scores
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score. This explains why the system is able to find a better average fitness with the aver-
aged score.

The trajectories with score averaging show less variance, which is also due to the damp-
ening effect. The variances of the average scores stabilizein a similar way (not shown).

Fig. 5.2 presents the departure time distribution of iteration 100, with the agent database setup
Nplans=1, no score averaging used. The main differences compared to a free flow travel time
world are:

Peak spreading of work trips The peak periods of the work-activity dominated chains have
widened, which is a result of an increased level of congestion on the network links around
work facilities in the region of desired arrival/departuretimes. Also, the two local maxima
at 11:00 AM and 1:30 PM from Fig. 4 have merged into one, wider peak with maximum
at 12:00 AM.

Off-peak concentration of shop/leisure trips Activity chain types that are dominated by ac-
tivities without a desired time window tend to be allocated in off-peak regions. For exam-
ple, consider the maxima of departures in leisure-dominated chains before the morning
peak period around 6:00 AM, after that period around 9:30 AM,and after the evening
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Figure 6: Departure time distribution by activity chain type - iteration 100,≈12’000 agents
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peak period from 7:00 to 12:00 PM. Also, the major share of thetrips in the shop-
dominated chains is shifted to the region between the peak periods. This shift is not
as obvious as for the leisure activities because shop activites are constrained to opening
time windows close to the peak periods anyway.

6. Discussion and outlook

6.1 Computing issues

All figures presented here apply to aSun Fire X4100 Extra Largemachine, AMD Opteron 2
Model 275 (Dual Core), 1 MB L2 Cache, 8 GB RAM, Debian Etch with gcc4.0.3. The entire
simulation system was run using a single Dual Core processor.

The overall runtime for one iteration of the 550’000 agents scenario is approx. 2000 sec-
onds. Sufficient convergence could be shown after 60 iterations, which results in an overall
runtime of one and a half days. This is a massive improvement compared to former versions of
MATSIM-T, mainly due to the reduction of required iterations from several hundreds to around
60 (Balmeret al., 2005). The following description presents the share of runtime of each ele-
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ment of the simulation system, and discusses approaches forfurther runtime improvements.

Traffic flow simulation The synchronous, queue-based simulation of traffic flow takes 700 s to
simulate 24h plans of 550’000 agents, which is a Real Time Ratio(RTR) of 100. Recent
experiments with an event-based version of the queue model let expect an RTR of about
300.

Planomat The planomat module yields a replanning performance of 75 agents/s. Of the run-
time of approx. 730 s, 15% are required to read the events produced by the traffic flow
simulation. The routing of the planned trips for travel timeapproximation described in
Sec. 3.1 takes about half the planomat runtime. So the replanning performance depends
strongly on the choice of the travel time information interval (currently 1h). Furthermore,
the use of smarter optimization algorithms such as Evolution Strategies might help to
reduce the required number of generations during one optimization.

Event file I/O The agent database requires 400 seconds, or 20% of overall runtime to read
events and assign them to the agents. In the moment it is not clear if the reason is slow
textfile I/O, or expensive search operations in the agent database.

Plans I/O About 9% or 120 s are required for exchanging plan information between the agent
database and the planomat. Our current efforts on system integration include the abolish-
ment of file-based plans exchange during the iterations (Balmeret al., 2006).

Computer memory requirements are no limiting factor to performance, since optimization is
done agent by agent. The temporary caching of the events information of 10% of all agents
takes several dozens of megabytes which nowadays does not create a problem.

The technical challenges described have a high priority considering our vision to include more
aspects of travel behavior into MATSIM-T.

6.2 Improvement of the location choice concept

One upcoming modeling goal is the improvement of the location choice concept. The ba-
sic difference will be that location choice for secondary activities will be part of the replan-
ning process, instead of its currently limited role as a preprocess to initial demand generation
(Marchal and Nagel, 2006).

At first, we will improve the data basis. Up to now, the number of overall workplaces in a spatial
aggregate was assumed as predictor for the utility gained there, regardless of the activity type.
This is insufficient because the functional organization typical for urban areas is not considered
at all. We are creating an activity-fine set of facilities based on landuse information available on
hectare-level for all Switzerland, called the Swiss National Enterprise Census provided by the
Swiss Federal Statistical Office (BfS, 2001). Opening time windows will be no longer activity-
specific, but location-specific. Data about opening times still have to be imputed. Furthermore,
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the synthetic facilities will have an activity-specific capacity which at first will be proportional
to the number of workplaces. An open question is how to include location capacity constraints
into the agents’ decision making.

For each agent, a choice set of locations is generated. Here,an approach based on revealed
activity spaces is chosen. Refer toactivity spaceas a continuous spatial representation of the
locations visited by a person in a certain time range. We willuse activity space generation
algorithms developed in Vazeet al. (2005), see also Schönfelder and Axhausen (2004). It is
then task of theplanomatto find the best location for each activity in the sense of the scoring
function. The complexity of the search space is thus extended with a non-scalar dimension
activity location. Earlier GA experiments show that this task is feasible, although it will take
more computing time than the comparably simple time allocation problem.
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