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Abstract

An external strategy module for an iterative multi-agentnoisimulation of travel demand
is presented. This module callptanomatcurrently optimizes the time allocation and route
choice of activity plans, which are the agent-based reptatien of travel demand. The module
combines broad search for alternative timing decisiong wait optimization procedure for a
scoring function that evaluates activity plans. As parbeféxisting Multi-Agent Transportation
SIMulation Toolbox (MATSIM-T), regional traffic systems several 100’000 agents can be
simulated. The test scenario used here is the Canton of Zuhetbiggest metropolitan area
of Switzerland, with 550’000 agents. The comprehensivarapation of activity plans leads
to a system relaxation within an acceptable number of 6@titars. The quality of the time
allocation optimization is shown by departure time disttibns.
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1. Introduction

MATSIM-T is a toolkit for the iterative multi-agent simuiah of travel demand (MATSIM-T,
2006). On the one hand, it provides interfaces and configurathemes for the various com-
ponents of an agent-based travel demand model. These anty mécrosimulations of traffic
flow, modules implementing a theory on travel behavior,ieay mechanisms and the genera-
tion of initial demand. In MATSIM-T, an agent is the repretdion of a traveler that follows
an activity plan. Each activity plan is assigned a score. Aigber the score, the better is the
plan. A particular implementation selects a suitable coration of traffic flow and travel de-
mand modules, which are called alternately until the systsches its stationary state. This
corresponds to user equilibrium in the case of traffic syste@onvergence to the stationary
state is, among other criteria, judged by the judged by tjedtory of the average score of the
complete agent population.

This paper is aboyplanomat a flexible module which adapts the activity plans to thedfrav
times the agent experiences during the subsequent siongatif traffic flow. Since chang-
ing generalized costs of travel affect each aspect of trdesland, it would be desirable that
this module was as comprehensive, allowing for choice a¥icdurations, departure times,
activity locations, modes, and other desired attributesthé implementation presented here,
planomatoptimizes activity durations, departure times and routep@ling to a time-of-day
dependent approximation of travel times.

The paper is structured as follows. Our concept of an agased microsimulation of travel
demand is presented in Sec. 2. The details on the new mpthrlematare given in Sec. 3.
Sec! 4 describes the test scenario, assumptions aboltygptivameters as well as algorithmic
details. The resulting choice of activity timing and systeenformance are presented in Sec. 5.
Finally, Sec. 6 discusses computing issues and gives amobuith further modelling goals.

2. MATSIM-T: Multi-Agent Transportation SIMulation Tool-
box

In this section, the concepts required for understandiegléinomatfunctionality are briefly
described. For a comprehensive and more detailed toolkdrgion, see Raney (2005).

2.1 The activity plan concept

The representation of an agent’s travel demand is an acplain, an alternating sequence of
activitiesandtrips. As shown in the example in Fig. 1, the toolkit uses XML to etand
exchange plans (W3C, 2006). The most important XML elemenetshree following.



person Each person is identified by arl by which its socio-economic attributes can be found
in the synthetic population. A person can hold several plans

plan Each plan can be assignedaor e according to a scoring function (see Sec. 2.2). The
attributesel ect ed="yes" states that the plan was chosen for execution in the previous
iteration of the traffic flow simulation.

activities Each activity<act > is characterized by a type, a hectare-grid location coatdin
a network link associated with that location, and its terapextent defined by two of
three attributest art _ti ne, end_ti ne, anddur (activity duration). The start of
the plan is defined by the end time of the first activily,: 35: 04 in the case of the
plan in Fig. 1. In the example shown, first and last activity #re same activity"h" ,
which means home). The location coordinates refer to "Swig$'Ghe Swiss geodetic
reference system (Swisstopo, 2006).

legs Movements between activities are called legs. The atethat a<l eg> include a mode, a
departure time and a duration. A leg can be characterizeddwtea, which is a sequence
of numbers of the network nodes that are passed.

Read the example plan as follows:

e Agent No. 22018 is at home until 7:35:04. Its home locatibhis at the coordinates
(703600;236900).

e The agent leaves its home to drive to woflk'(). This trip takes 16 minutes and 31
seconds, using the route along the noti@80 1899 1897.

e The agent stays at work more than 8 hours, then leaves fosardeactivity {I"). The
trip from the work location on routé899 1848 1925 1924 1923 1922 1068
to the leisure location takes about 1 hour and 10 minutes.

e After leisure, the agent returns home after a trip=@4 minutes.

e Read the plan as a 24-hour wrap-around, so the end of the hdivieyas also at 7:35:04
the next day.

e The plan has a score of 157€2

An activity plan can be interpreted in different ways: It d@neither astrategyexpressing what
the agents wants/plans to do, odemand descriptiowhat an agent actually did in a certain
iteration. The character of a plan is even more general:eSimany attributes are not required,
it is essentially avorking filein the demand generation process. The formal requiremendsf
XML file are specified in a DTD (Document Type Definition) fileh& plans DTD and others
can be found at MATSIM-T (2006).



Figure 1: Example activity plan

<person id="22018">
<pl an score="157. 72" sel ected="yes"
<act type="h" x100="703600" y100=
<l eg nun¥"0" node="car" dep_tine=
<rout e>1900 1899 1897</route>

>
"236900" |ink="5757"
"07:35:04" trav_tine="00:16: 31">

</l eg>
<act type="w' x100="702500" y100="236400" |ink="5749" dur="08:12:05" />
<l eg nun="1" node="car" dep_tinme="16:03:40" trav_tinme="01:10:22">
<rout e>1899 1848 1925 1924 1923 1922 1068</rout e>
</l eg>
<act type="I|" x100="681450" y100="246550" |ink="2140" dur="01:20: 00" />

<l eg nun¥"2" node="car" dep_tine=""

<route>1067 1136 1137 1921 1922

trav_time="00: 34: 35" >
1923 1924 1925 1848 1899</rout e>

end_time="07: 35: 04"

/>

</l eg>
<act type="h"

</ pl an>

</ per son>

x100="703600" y100="236900" I|ink="5757" />

2.2 Scoring

The quality of an activity plan is measured by a score. Theesponding scoring function was
introduced first by Charypar and Nagel (2005), and is withhsligodifications still used in our
current work on traffic micro simulation. This subsectiorg®nts the basic parts of the scoring
function, while Sec. 2.3 demonstrates its use in the agaabedae.

The score of an activity plan is given by the sum of the uéititof all activities performed, and
the travel disutilities for trips necessary to get from ontvaty location to the other:

Uplan = Z Uaet(type;, start;, dur;) + Z Urav(loci_1, loc;)

i=1 =2

(1)

where

Uplan: Score of an activity plan

U,e: utility of performing activity:

Uirav: (dis)utility of traveling from the location of activity — 1 to the location of the current
activity i

type;, start;, dur;, loc; type, start time, duration and location of activity

The utility of an activity is the sum of four terms, each of wiis modeling a certain aspect of
the utility function.

Uact,i - Udur,i + Uwait,i + Ulate.ar,i + Uearly.dp,i + Ushort.dur,i (2)



where

Uauri: Utility of executing an activity for a certain duration

Uwaiti: (dis)utility of waiting for an activity to start (for instece waiting for a shop to open)
Ulate.ar,i» Ueariy.api: PENAIties for coming too late resp. leaving that activity early
Ushort.dur,i- PENAlty if an activity is performed for too a short time

There is no penalty fanot performing an activity that might have been planned. Ontivaies
performed contribute to the plan score.

Utility of performing an activity

All terms in the activity utility function except/;,. are modeled to be linear in time needed for
that activity aspect. The time performing an activity istamsd to have a logarithmic impact
on activity utility to reflect diminishing marginal utility

ﬁdur R A ln(t(i_gr) (tO S tdur)

Uur = 4 0 (0 < taur < to) 3)
ﬁneg.dur . |tdur| (tdur < O)
to = t* - exp /P (4)

t4.r denotes the actual activity duratiott. is the so calledperating pointof the activity, the
duration at which the marginal utility equals,,.. So, the value of* can be interpreted as the
typical duration of an activity, while its effect in the agty plan context is the following: The
tf yield the ratios of the durations of different activitiesaquilibrium.

to is the activity duration at which the logarithmic curve hissnull. It is chosen proportional
to the operating point, and is influenced by the priopityf the activity. Usual values fgr are
1,2,3..., with 1 being the highest priority. The higher th®gpty, the smaller will bety. In
busy plans, high-priority activities tend to stay in therplahile low-priority activities will be
dropped when for instance traffic conditions worsen. In timeent state of our work on activity
generation, we use fixed, revealed activity chains, alvdies are performed irrespective of
their costs. All activities have the same priorjty= 1.

The utility of performing an activity with a positive durah cannot be negative. Due to the
interpretation of an activity plan as 24 hour-wrap roundhi first iterations of the traffic flow
simulation negative durations can occur. They are perailinearly with 3, 4. This reflects
an undesirable plan which has taken the agent more than 24 toofwlfil.

A similar approach, including financial constraints butstdg a comprehensive simulation sys-
tem was proposed by Ashiet al. (2004).



Penalties

The penalty terms of the utility function are linear accaglto Vickrey’s model of departure
time choice (e.g. Arnotet al,, 1993):

Utrcw (ttrav) = ﬁtrav “Ttrav (5)
Uwait (twait) = ﬁwait ' twait (6)
ate.ar * (Ustart — liatest.ar Ustart > liatest.ar
Ulate.ar (tstart: tiatest.ar) = { gl ' (rare = fitestor) étsztmt: < tia;; arg (7)

where
tsiares Starting time of the activity
tiatest.ar- latest possible starting time of that activity

“(Tearti —t tend < tearli
Uearly.dp(tend7 tearliest.dp> = { ge‘"ly-dp ( cartiestdp e"d) Etenj > teariz.esjjpg (8)
end Z— learliest.dp

where

tenq: €nd time of the activity
Learty.dp- €rliest possible end time of that activity

wr (T — (topa — 1 ten t
Ushort.dur(tstartatend) _ { gshm’t.d r ( shortest.dur ( end start)) Ete ;l i tszarz; (9)
end — Ustar

where
tshortest.aur. Shortest desired duration for that activity.

Summary of parameters

The parameters of the utility function have the followingues (see Chaumet al. (2006) for
a recent summary of the literature):

ﬁdur = 6€/h1
ﬁtrav = _6€/h1
5wait - O€/h1



6late.ar = _18€/h|
ﬁearly‘dp = O€/ha

5short.dur = O€/h1

5neg.dur = —18€/h.

The parameters for the penalty terms are chosen to refleceldgons in Vickrey’s model of
departure time choice:

Vickrey ., pVickrey . pVickrey _ 1 . .
ﬁwaz’t : 6757“ * Mlate.ar 1:2:3

This relation is not obvious on first sight when looking at pfa@ameter values:

5wait : ﬁtrtw . ﬂlate.ar =0:-6:-18

Considering the opportunity costs bt performing an activity while waiting or traveling, one
has to subtracty,, from (3,.;;: andg;,..... So, the effective parameter values are the following:

ﬁwait,eff : ﬁtr(w,eff : Blate.ar,eff =—6:-12: 18,

which reflect the ratios typically found for Vickrey type madd. These values are different from
the ones used in Charypar and Nagel (2005), who already disdube issue of opportunity
costs.

Fig. 2 illustrates the utility calculation using the exampktivity plan shown in Fig. 1.

2.3 Simulation

One task of a simulation is to find the stationary state of ylstesn modeled. In the case of
our transport system model, the stationary state is the stiaére an agent cannot improve its
score by altering its plan. This is similar to the concept sfachastic user equilibrium used in
aggregate models of traffic assignment (Orttzar and Wilknrm2001).

As pointed out, an iterative approach is used to solve thigmmaation problem, in which travel
times as as the main element of generalized travel costharmentral feedback element. The
overall simulation system consists of the following stepmpare Raney, 2005, p.77 ff.):

1. Initialize: A first set of plans has to be generated, assuming initiad¢staft the network
as well as plan attributes. For example, the agent mighthasdtee flow travel for its
preliminary set of legs and a random start time of the plant dazh agent, one plan
is generated which will be marked as "selected"”, indicatirttgag chosen that plan for
execution in the traffic flow simulation.

2. Simulate:The simulation of traffic flow executes the plans, that is it e®' agent objects
through a model of the traffic network. Currently, a queuesdasynchronous model of

6



Figure 2: Utility plot of example activity plan
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The graphlU,,,,, represents the plan score depending on time of day as tmsygla canceled
at that certain time of day. One clearly sees positive ytditactivity performance (log-shape
curves), the various penalties (linear elements startmtipe x-zero axis) as well as the overall
plan score yielded at 24:00.

The very low score value between 8:00 and 10:00 can be explaia follows: On one hand,
only the home activity and a small part of the work activitgluding the (penalized) home-
work trip were performed. On the other hand, the penaltieséoly departurd/.,,, 4, and
short activity performanc¥y,,,+ 4. are very high.

For explanatory reasons, in this Fi@.,iy.qp = Bshort.aur = —6€/N, instead of)€/h. For the
activity parameters, see Table 2.

Based on Balmer (2005, p.15 ff.).




traffic flow is used (Cetin, 2005). The output of the simulai®the so called events file
which keeps detailed information about which agent "did" ihaing the simulated day.

3. Scoring: The agent database reads the events file and sends eachoahenagent iden-
tified within it. Each agent uses its events to calculate the score of its selected plan
— the one it most recently sent to the traffic flow simulatiomwN\plan scores are calcu-
lated as described in Sec. 2.2, and are averaged with oldptares. Score averaging is a
simple mechanism to permit agents to learn about their gdarfermance over time. The
agent averages scores according to:

Sp=(l—a)-S,+a-S, (10)

where

Sy stored score of plap

S,: newly calculated score,
a € [0,1]: blending factor

In the setup described here, a blending factax ef 0.1 is used.

4. Plan pruning: The agent database may limit the number of plans agents oam ist
memory. New plans are accumulated until the maximum numbgr,, is reached. Any
agent having a number of plafs> N4, in its memory deletes th@” — N,..s) plans
with the lowest score in this step. Note that in the step Yalhg this one, an agent may
obtain a new plan. When this happens to an agent that has wli&agl, it temporarily
keepsN,i.»s + 1 plans in memory until the new plan has been scored. Thenidrstép,
it deletes the first plan (even if it is the newest one). Thus agent will have only,,;q,s
to choose from when selecting from old plans.

5. Replanning: A subset of the agents is chosen for new plan generation byonere
external strategy module3hese modules, of whighlanomatis one, can capture one or
more travel behavior attributes. In the current setup,qiaat is the only strategy module
because it captures all the travel behavior aspects vadedgithe iterations. A random
10% of all agents are chosen to obtain new plans by planomat.

6. Returnto step 2 until the system has reached a relaxed state whitbenminterpreted
as the result of the simulation. The state of the system Ieccatlaxed (or stationary)
if there is no significant improvement in the average scorthefplans selected by the
agents for simulation in the last iteration.

3. Methods of planomat

The task of the external strategy modplanomatis to generate plans which are optimal in
the sense of the scoring function described before. Thismsptetely different to previous
rescheduling modules which



e altered activity plan attributes randomly (e.g. shiftiragivty durations / departure times
+30min), or

e performed optimization of only a fraction of the travel beioa attributes that are var-
led in the iteration process (e.g. route optimization withthe opportunity to alter the
departure time).

Here, we propose a comprehensive rescheduler that suggéstsl plans considering the traf-
fic conditions the agent experienced in the last iteratiotheftraffic flow simulation. In this
section, first a method for travel time approximation is preed. It is followed by a descrip-
tion of the implementation of the genetic algorithm we caotiguse to solve the optimization
problem.

3.1 Travel time information

As pointed out, travel time is the only aspect of generalizagel costs in the proposed scoring
function. The agent needs a time-of-day dependent appatikximof travel times in order to
react to traffic conditions varying throughout the day.

Our current approach to this is a very basic one: For eaclhteipgent has planned the location
coordinates resp. the associated network links are giventhié agent it is desirable to know
exactly what travel times are yielded at every point in tinmeevery feasible route to decide
which is the best activity timing/routing decision. The @adaility of such detailed information
Is not only unrealistic, but also infeasible to compute iefustime. Furthermore, such a level of
exactness would only make sense if a particular agent wasitii@ne performing a replanning.
In this case the state of the network would be the same in #aqus and the next iteration.
But since many agents, here 10%, will obtain new plans, trgaraption will most likely not
hold.

In order to approximate the travel time for a given OD-pag, sample the shortest path and the
associated travel time in the course of the day. If an agepuiegs a travel time information for
a particular departure time, a linear interpolation betwnee two sampling points before and
after the departure time is returned. Currently we use 1h ds mterval. So, if an agent plans
a trip from A to B at 11:36 AM, it will receive the linear inteofation of the shortest travel
time information between 11:00 AM and 12:00 AM. Since we euntly simulate daily activity
plans, information at 12:00 PM is also the value for 0:00 (Gige 3).

The 1h-wise routing is done using a time-of-day dependejitsia shortest path algorithm
(Raney, 2005, p. 38 f.). So, for an agent which had three tigisned,3 - 24 = 72 routings
would have to be performed. This number is constant becatesy éollowing travel time
lookup is no more than a linear interpolation. Concerningititerval size, a fraction of 1h
would possibly increase the quality of the plan, but alsoakably increase the computational
effort. An even better method was one that samples morel tiiave information at times of



Figure 3: Approximation of OD travel time
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day where many changes in trends are expectable (e.g. atgimening of a peak period), and
less where the trend is constant (e.g. close to free flowlttawe in night hours).

3.2 Optimization

For several reasons, the decision was made to use a GengtcitAin (GA) to find good
solutions:

Flexibility In the current setup of the module, a better time allocatimuct be much easier
calculated. GAs are not the best choice to solve continuoatsgms like this, they were
designed to rather solve combinatorial problems. A gradiased optimization proce-
dure or an Evolutionary Strategy would probably be muchefaahd/or produce better
results. Experiments are undertaken with the CovarianceiMataptation-Evolution
Strategy (CMA-ES), a stochastic population based optinamatigorithm for continuous
space problems (Hansen and Ostermeier, 2001). Howevep#iés to extenghlanomat
to a comprehensive replanning module incorporating furtt@mbinatorial dimensions
of travel behavior such as activity location choice, modeiod and the choice of the
activity pattern.

10



Experience The GA method proved to be successful in various experinfentgctivity plan
generation for individual agents or households (Charypdmagel, 2005; Meistest al.,
2005; Schneider, 2003). This paper is about the attemptegrate this approach into a
multi-agent simulation system.

The implementation details of the GA operators in the plasware described below, while
Table 1 gives an overview of the values chosen for the var@dgarameters. All these pa-
rameters have to be chosen according to the nature of théeprdb be solved, and reflect our
experience.

Generation of initial population For each agent, the selected plan is read in and the travel
time information trajectory is generated as described in Sel. The start time of the
plan, that is the end time of the first (home) activity, is omifily selected between 00:00
and 12:00 PM. A value for the duration of an activity is chofem ranged € [0h, 24h).

All other attributes are kept constant as they came from tipatiplan (as described,
currently only time allocation is optimized). For each aggnpsize plan alternatives are
generated.

Recombination and mutation The crossover operator recombines two existing plans tova ne
one by randomly choosing start time and activity duratisnefone of the parents. With
each a probability op,,.:, the following mutation operators are executed on the newly
created plan:

e A new start time is chosen by adding an amosniniformly selected from range
$ € [Pmut - —12h, pmu - 12h). Values before 00:00 (midnight) are reset to that time.

e An activity duration is multiplied with a factod = ¢* with X being uniformly
selected from the rang® € [—put/2, Pmut/2]-

Preparation for scoring After both the creation and the recombination/mutationrajpens,
the new plan is stretched/compressed to a duration of 24shiiouse comparable to its
competitors in the GA population. Furthermore, the andétepl travel times are calculated
using the piecewise linear interpolation described before

Scoring, selection and outputEvery time a new activity plan was created by the GA, it is
evaluated with the scoring function. Since the number aiplzeld in the GA population
at one time is constant, good plans are kept while bad onedrapped. After a certain
number of recombination/mutation operations, the optat@n is canceled. This may
either happen after a fixed number of iterations,, or if the average fitness of the pop-
ulation does not increase more than a threshkglg within a number of newly plans that
had a high enough score to be inserted in the GA populatioe. s€tup presented here
uses the latter, adaptive stop criterion.

The best plan currently in the population is chosen as thatasgeew strategy to be
evaluated in the next iteration of the traffic flow simulatioBefore returning the plan
to the agent database, it is routed a last time using therrairectly (instead of the

11



Table 1: GA parameters

Variable  Description Value
popsize  Constant population size. 50
Ngen When a fixed stop criterion is used: The optimzation is cah- 000
celed aftem,, individuals were generated by the crossover/-
mutation operations.
Estop When the adaptive stop criterion is used: If the average Btnds O
doesn’t increase more that,,% after ng,, newly inserted
plans, the optimization is canceled.
Nestop S€E€¢,10p 50
Dmut Probability that one element of an activity will mutate acto Initial: 0. 30,
ing to its respective mutation operator. exponentially
decreasing to
0. 07
Tonut Each time a new indivdual was inserted into the population,
Pmut IS @adapted. The higher,,.;, the quickemp,,.,; decreases.
mindiff Minimum fitness difference between two individuals. If a ne@. 10

plan with almost the same score is generated, it will be dedpp
in favor of the one that is already present.

approximation with the linear interpolation). This is ddneorder to provide the agent
the actual route of whose travel time we assume that it isaodifferent from what the
approximation suggested.

4. Canton Zurich Scenario

The scenario setup includes a regional definition of theystuida, the demand generation pro-
cess, the specification of the traffic network and a list oliagstions about activity-related
behavior as well as temporal constraints.

4.1 Study area: Canton Zurich

The case study used for testing thlanomatis a simulation of the Canton Zurich, the biggest
metropolitan area in Switzerland. The demand generatioogss, as well as the toolkit used
for it, is described in detail in Balmest al. (2006).

12



Table 2: Activity parameter values

ACtIVIty type abbreViation t* [h] tshortest.dur [h] tlatest.ar tearliest.dp

home h 12 8 — —
work w 8 6 9: 00 —
work1 wl 4 2 9: 00 —
work?2 W2 4 2 — _
work3 W3 8 6 — _
education e 6 4 9:00 —
educationl el 3 1 9:00 —
education2 e2 3 1 — _
education3 e3 6 4 — _
shop S 2 1 — —
leisure I 2 1 — _

All activities have the same priority = 1.

The different work and education activity types can be expldas follows. If an activity chain
includes twowork or educationactivities, it is assumed that their typical activity duoatis

half the complete-activity duration and will be renanveark1andwork2resp.educationland
education2 An example would bé&- wl- | - w2- h. If a work or education activity is not the
first an the activity chain, it is renamemdork3 or education3without the desired start time at
9:00, but all other attributes equal. An example of that widagéh- s- w3- h.

The activity parametet,;,...s¢.4ur has no effect in the scenario presented here, because it was
chosens,,ori.aur = 0€/N.

First, a synthetic population of the Canton Zurich is geregtatising data from the Swiss Na-
tional Population Census. It is a list of approx. 1'200'00@iatg with individual attributes
like age or sex, and a hectare-based home location (Frickkahdusen, 2004). Each agent
is assigned an activity chain based on the Swiss travel I@hancrocensus (Rieser, 2004).
These activities are distributed in space by several looathoice modules (Marchal and Nagel,
2006). The network model used for the traffic flow simulati®thie Swiss National Traffic Net-
work model (Vrticet al,, 2003).

4.2 Activity parameters and constraints

The scoring function requires several parameters, eitttefity or location specific.

Each activity is characterized by a typical duratidn a mimimum durationt,,,est.q.- and
desired start/end timeg, st ar, tearticst.dp- While the typical duration is a mandatory parameter
for the utility function, the minimum duration and desiréti¢é windows are optional. Tahle 2
provides a list of parameter values used in this scenario.
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Table 3: Opening hours as temporal constraints

Activity type opening time closing time
home f) — —
work (w, wl, w2, W3) 7: 00 18: 00
education ¢, el, e2, e3) 7: 00 18: 00
shop 6) 8: 00 20: 00
leisure () 6: 00 24: 00

Furthermore, there exist temporal constraints for the @@t of activities, represented here
by opening hours. An agent will fail to perform an activitytside these opening hours, and
will have to wait instead. In this case, it does not gain amyesor even loses some in case of
BGuwair < 0. The temporal constraints are an attribute of a specifiditiadin this setup, they are
the same all over the modelled region because more detatadcatbout opening hours was not
available yet. This is why they are activity-specific in Tabl

For analysis, the activity chain types are summarized ineodroups:

education-dominated chain typesheeh, heh

leisure-dominated chain typeshl h, hl | h, hl sl h

shop-dominated chain typeshsh, hssh

work-dominated chain types hwh, hwl wh, hwswh, hwwh

other chain types hel h, hesh, hl eh, hl sh, hl wh, hsl h, hswh, hweh, hwl h, hwsh

5. Results

5.1 A world without congestion

In order to test the optimization capability of the GA, theud of all 550’000 agents were
generated assuming free flow travel time in the network. Eselt might be interpreted as "a
world without congestion”, as the plans will be completelgapendent of traffic conditions

changing throughout the day. They are only determined byglents’ preferences which are
formulated in the utility function as well as environmentahstraints (e.g. opening times). The
result is shown in Fig.|4, and to be read like the following:

e Peak periods can be seen for the work- and education-gativéin types. They are the
result of the trade-off between the latest start times ofrthe activity (9:00 in this case),
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Figure 4: Departure time distribution by activity chain ¢ypFree flow travel times550’000
agents
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and the extension of the time "spent" at home according togd&eifscation of the utility
function. The variance of the departure times is only deteeohby the distribution of trip
distances between the home and the work/education actihgre are additional, smaller
peaks in the time around noon (12:00 AM). These are departoradditonal activities
besides the main work activity, e.g. of agents with actieityain typeh- wl- | - w2- h.

e The departure time distributions of activity chain typesshhare dominated by shop or
leisure activities have quite a uniform shape. They are oahstrained by the respective
opening/closing times, about which assumptions were nadable 3. For example, all
shop activities in the shop-dominated activity chain typmpd are located between 8:00
and 20:00. Since travel times are the same all the day, tliy ldhdscape within these
opening time windows is "flat". Each of the graphs has two pletedVhile the lower
one represents agents with only one out-of-home activity. (e | - h), the higher one
are the departures of the agents with additional activiges. h- s- s- h).
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5.2 Complete scenario simulation

The iterative simulation of traffic flow and strategy optiation by planomat were tested with
four different setups of the agent database. Agent memaep Sif N,qns = 1 and Npjans = 3
were combined with score averaging switched on and off (@m®Bec. 2/3). The agent
database used to serve as the learning framework selebgnigest strategies, when external
strategy modules were only optimizing one particular trdehavior attribute, or randomly
altering them respectively. Setups wit,,,,s = 1 are simulated to test whether the strategy
generation/learning can be performed in a (computer mesafhigient) external strategy mod-
ule rather than in the (heavily computer memory-demandaggnt database. Setups without
score averaging are intended to explore the need of sueeBsaveraging provisional solutions
of a stochastic optimization procedure like the MATSIM tabl

For test reasons, the traffic of only a 1% sample of the whodaiggopulation is simulatédin
order be able to still produce some congestion and semgitiftiming decisions to experienced
travel times, the network capacity was reduced to a simiéantiion as the agent population.

The results of these experiments are presented in Fig. 5holt/s the development of the
average score of the most recently simulated plans of théendgent population. Its steady-
state density is used to determine when the system convergesser equilibrium, where no
agent can unilaterally improve its score. The four uppeplgsaeach representing a different
setup of the agent database, show a tendency towards agméiue which is reached afte60
iterations.

Variation of N,,,s In general, setups witv,,,,,, = 1 converge to the same average score
level as setups witlV,,.,s = 3, while convergence speed is slightly higher. This can
be explained as follows: The planomat always generates plaiimized for travel times
yielded in the previous iteration, assuming this time aratspdependent landscape un-
changed in the next iteration. Of course, this is not the sasee not only one agent
but 10% of the entire population are provided with a new sgwat Additional to this
accepted bias, witV,;,,s > 1, for some agents a random plan is chosen for the next
simulation of traffic flow. This leads to an additional chamngéhe time-space travel time
landscape, and therefore a worse prediction. \With,,; = 1, each agent whose plan is
not optimized by planomat will be simulated with the sameng@a before, as assumed by
planomat.

Variation of score averaging As Fig./5 shows, setups with score averaging converge slower
but yield a higher steady state as the ones without scoragivey. In the first iterations,
the plans’ scores rapidly increase because there is stitat gotential for improvement
for finding better routes and/or peak spreading. This effeclampened by the score
averaging technique which explains the slower converge@oehe other hand, an aver-
aged score is a better estimator for the expectation valtreafcore than a non-averaged

We are hoping to present runs of the full scenario in Kyotdciiare delayed by problems with the available
computing hardware.
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Figure 5: Convergence of average scores
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score. This explains why the system is able to find a betteagedfitness with the aver-
aged score.

The trajectories with score averaging show less varianbehns also due to the damp-
ening effect. The variances of the average scores stabil@similar way (not shown).

Fig.'5.2 presents the departure time distribution of iteral00, with the agent database setup
Nyans=1, No score averaging used. The main differences comparadree flow travel time

world are:

Peak spreading of work trips The peak periods of the work-activity dominated chains have
widened, which is a result of an increased level of congesiiothe network links around
work facilities in the region of desired arrival/departtirees. Also, the two local maxima
at 11:00 AM and 1:30 PM from Fig. 4 have merged into one, widskpwith maximum
at 12:00 AM.

Off-peak concentration of shop/leisure trips Activity chain types that are dominated by ac-
tivities without a desired time window tend to be allocatedff-peak regions. For exam-
ple, consider the maxima of departures in leisure-doméhakains before the morning
peak period around 6:00 AM, after that period around 9:30 ANY after the evening
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Figure 6: Departure time distribution by activity chain &ypiteration 100~12’000 agents
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peak period from 7:00 to 12:00 PM. Also, the major share ofttigs in the shop-
dominated chains is shifted to the region between the pea&dse This shift is not
as obvious as for the leisure activities because shop @sigre constrained to opening
time windows close to the peak periods anyway.

6. Discussion and outlook

6.1 Computing issues

All figures presented here apply toSun Fire X4100 Extra Largenachine, AMD Opteron 2
Model 275 (Dual Core), 1 MB L2 Cache, 8 GB RAM, Debian Etch with 4a@.3. The entire
simulation system was run using a single Dual Core processor.

The overall runtime for one iteration of the 550'000 agerdsnsrio is approx. 2000 sec-
onds. Sufficient convergence could be shown after 60 iteratiwhich results in an overall
runtime of one and a half days. This is a massive improvenmanpared to former versions of
MATSIM-T, mainly due to the reduction of required iteratgfilom several hundreds to around
60 (Balmeret al,, 2005). The following description presents the share ofimum of each ele-
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ment of the simulation system, and discusses approachésgtioer runtime improvements.

Traffic flow simulation The synchronous, queue-based simulation of traffic flonws@k® s to
simulate 24h plans of 550’000 agents, which is a Real Time RRi&) of 100. Recent
experiments with an event-based version of the queue metekpect an RTR of about
300.

Planomat The planomat module yields a replanning performance of &ntsgs. Of the run-
time of approx. 730 s, 15% are required to read the eventupeatby the traffic flow
simulation. The routing of the planned trips for travel tieggroximation described in
Sec! 3.1 takes about half the planomat runtime. So the nejplgperformance depends
strongly on the choice of the travel time information intricurrently 1h). Furthermore,
the use of smarter optimization algorithms such as EvaluStrategies might help to
reduce the required number of generations during one agairon.

Event file /O The agent database requires 400 seconds, or 20% of oveméitheuto read
events and assign them to the agents. In the moment it is @at iflthe reason is slow
textfile 1/0O, or expensive search operations in the agefttdeste.

Plans I/O About 9% or 120 s are required for exchanging plan infornmatietween the agent
database and the planomat. Our current efforts on systegration include the abolish-
ment of file-based plans exchange during the iterations (Bedtral., 2006).

Computer memory requirements are no limiting factor to penénce, since optimization is
done agent by agent. The temporary caching of the eventsmatmn of 10% of all agents
takes several dozens of megabytes which nowadays doeseaté er problem.

The technical challenges described have a high prioritgidening our vision to include more
aspects of travel behavior into MATSIM-T.

6.2 Improvement of the location choice concept

One upcoming modeling goal is the improvement of the locatihoice concept. The ba-
sic difference will be that location choice for secondaryiwaites will be part of the replan-
ning process, instead of its currently limited role as a press to initial demand generation
(Marchal and Nagel, 2006).

Atfirst, we will improve the data basis. Up to now, the numbiameerall workplaces in a spatial
aggregate was assumed as predictor for the utility gainer@ thegardless of the activity type.
This is insufficient because the functional organizatigndsl for urban areas is not considered
at all. We are creating an activity-fine set of facilitiesé@®sn landuse information available on
hectare-level for all Switzerland, called the Swiss Nadidanterprise Census provided by the
Swiss Federal Statistical Office (BfS, 2001). Opening timedeivs will be no longer activity-
specific, but location-specific. Data about opening timishstve to be imputed. Furthermore,
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the synthetic facilities will have an activity-specific @ity which at first will be proportional
to the number of workplaces. An open question is how to inellodation capacity constraints
into the agents’ decision making.

For each agent, a choice set of locations is generated. Herapproach based on revealed
activity spaces is chosen. Referdotivity spaceas a continuous spatial representation of the
locations visited by a person in a certain time range. We ug# activity space generation
algorithms developed in Vazt al. (2005), see also Schonfelder and Axhausen (2004). 1t is
then task of theoplanomatto find the best location for each activity in the sense of tteing
function. The complexity of the search space is thus exi@mwdéh a non-scalar dimension
activity location Earlier GA experiments show that this task is feasibldyaalgh it will take
more computing time than the comparably simple time aliocgiroblem.
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