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Abstract

We study two dynamic approaches to the valuation of contingent claims in an incom¬

plete market. The first is indifference valuation where at each time t, an agent deter¬

mines for a random payoff X a value pt (X) by the requirement that she is indifferent

between buying X for pt (X) or not doing so, provided she always trades optimally in

the basic assets. We assume that the agent's time t preferences are given by a mon¬

etary concave utility functional (MCUF) Ut, i.e., that — Ut is a (conditional) convex

risk measure. The valuation functional pt (X) is then the convolution of Ut and a mar¬

ket functional constructed from the underlying financial market with the help of the

optional decomposition under constraints. Our main goal is to show that the valuation

functional /?.(•) is time-consistent, i.e., preserves (in a suitable sense) the ordering
of payoffs over time. This is achieved by proving that the market functional is time-

consistent and that the convolution of dynamic MCUFs preserves time-consistency.
As an auxiliary result, we provide a representation for (conditional) MCUFs in terms

of their concave conjugates and via equivalent probability measures. Moreover, we

show how our results can be translated to dynamic MCUFs defined via backward

stochastic differential equations.
Our second valuation approach is a bit less restrictive. We do not specify a unique

value for X, but a whole interval of possible values which is still small enough to be

useful in practice. This interval is obtained by taking for valuation those measures Q
which yield neither arbitrage opportunities nor good deals. The latter are defined as

investment opportunities with a (von Neumann-Morgenstern expected) utility which

is "too high" in comparison with the maximal utility obtainable by trading in the

basic assets. The main difficulty is the precise definition of the set M of no-good-
deal measures which is very important for computational and dynamic properties of

the good deal bounds, i.e., of the boundaries of the interval of possible values. In a

Levy setting, we define Jsf via a restriction on an appropriate integrand, and we clarify
the exact relation between this "local" and an economically more intuitive "global"
restriction. The resulting valuation bounds are then time-consistent dynamic MCUFs.

In order to establish the relation between the local and global restrictions, we need

to know that the Levy structure of the underlying market is preserved under an op¬

timal change of measure. This is proved in the last part of this thesis for optimal
measures obtained from the dual problem of minimizing some f-divergence over a

set of equivalent local martingale measures. These optimization problems naturally
arise in utility maximization, and we establish the Levy preservation result for the

/-divergences corresponding to logarithmic, power and quadratic utility.
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Zusammenfassung

Diese Arbeit befasst sich mit zwei dynamischen Bewertungsmethoden für Derivate

in unvollständigen Märkten. Die erste ist Indifferenzbewertung, bei der ein Agent zu

jedem Zeitpunkt t den Wert pt(X) einer zufälligen Auszahlung X dadurch festlegt,
dass es ihm gleichgültig ist, ob er X für den Preis pt (X) kauft oder nicht, sofern er

stets optimal in den Basisanlagen handelt. Wir nehmen an, dass die Präferenzen des

Agenten zum Zeitpunkt t durch eine monetäre konkave Nutzenfunktion (MCUF) Ut

gegeben sind, d.h., dass —Ut ein (bedingtes) konvexes Risikomaß ist. Das Bewer¬

tungsfunktional pt( • ) entspricht dann gerade der Faltung von Ut und einem Markt¬

funktional, welches mit Hilfe der optionalen Zerlegung unter Handelsbeschränkungen
aus dem zugrunde liegenden Finanzmarkt konstruiert wird. Unser eigentliches Ziel

ist es zu zeigen, dass p.( • ) zeitkonsistent ist, also (auf eine geeignete Art und Weise)

die Ordnung zwischen verschiedenen Auszahlung über die Zeit erhält. Hierzu be¬

weisen wir, dass das Marktfunktional zeitkonsistent ist, und dass bei der Faltung dy¬
namischer MCUFs die Zeitkonsistenz erhalten bleibt. Als Hilfsresultat leiten wir eine

Darstellung für (bedingte) MCUFs mit Hilfe der zugehörigen konkav konjugierten
Funktion und äquivalenten Wahrscheinlichkeitsmaßen her. Zusätzlich zeigen wir, wie

unsere Resultate auf solche dynamische MCUFs übertragen werden können, die durch

stochastische Rückwärtsdifferenzialgleichungen definiert sind.

Die zweite hier betrachtete Methode ist etwas weniger restriktiv. Anstelle eines

eindeutigen Wertes für X bestimmen wir ein ganzes Intervall möglicher Werte, welches

klein genug ist, um praktischen Nutzen zu haben. Dieses Intervall erhalten wir durch

die Verwendung all jener Bewertungsmaße Q, die weder zu Arbitragemöglichkeiten
noch zu good deals führen. Letztere definieren wir als Auszahlungen mit einem (von

Neumann-Morgenstern erwarteten) Nutzen, der im Vergleich mit dem maximal durch

Handeln in den Basisanlagen erreichbaren Nutzen "zu hoch" ist. Die eigentliche

Schwierigkeit besteht in der genauen Definition der Menge der no-good-deal-Maße
J>f. Sie ist maßgebend für die Berechenbarkeit und die dynamischen Eigenschaften
der good-deal bounds, d.h. der Grenzen des Intervalls der möglichen Werte für X. In

einem Lévy-Model definieren wir JV* über die Beschränkung eines geeigneten Inte-

granden and klären den genauen Zusammenhang zwischen dieser "lokalen" und einer

intuitiveren "globalen" Beschränkung. Die daraus resultierenden good-deal bounds

sind zeitkonsistente dynamische MCUFs.

Um eine Beziehung zwischen den lokalen und globalen Beschränkungen herzu¬

stellen, benötigen wir, dass die Lévy-Struktur des zugrunde liegenden Marktes bei

einem optimalen Maßwechsel erhalten bleibt. Dies wird im letzten Teil der vorliegen¬
den Arbeit für optimale Maße gezeigt, welche das duale Problem der Minimierung
einer /-Divergenz über eine Menge von äquivalenten lokalen Martingalmaßen lösen.
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X

Solche Optimierungsprobleme treten bei der Nutzenmaximierung auf, und wir zeigen
die Erhaltung der Lévy-Struktur für die /-Divergenzen, welche zu logarithmischen,

quadratischen und Potenz-Nutzenfunktionen gehören.
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Chapter 1

Introduction

This thesis is concerned with dynamic approaches to valuation in incomplete markets.

To put our contributions in perspective in a larger context, it seems useful to start with

a short overview.

1.1 Valuations in incomplete markets

Complete models of financial markets have nice conceptual properties. In particular,

by no-arbitrage arguments alone, one can obtain a unique price for any random payoff
X due at some time T in the future. This price is the expectation of X with respect to

the unique martingale measure for the traded assets. However, in a complete model,

every payoff is redundant, and this is in general not true for a real financial market.

Therefore realistic models are incomplete, and if the (discounted) price processes of

the traded assets are modelled by some semimartingale S, the set Me(S) of equivalent
local martingale measures for S contains infinitely many elements. Since any Eq[X]
with Q e Me(S) is an arbitrage-free value for X, we obtain a whole interval of possi¬
ble values; we refer to values for X rather than prices because they are not unique and

their determination typically involves subjective preferences. Valuation in incomplete
markets has been and still is being intensively studied, and we mention here only some
of the main approaches with a few original references, and some overviews.

A frequently chosen approach is to specify unique values Eq[X] for all X by
fixing one element Q of Me(S) as pricing measure; see Bellini/Frittelli [BF02] for

a discussion. Typical examples are the minimal entropy, the variance-optimal or the

minimal martingale measure. However, such a choice can be rather arbitrary or restric¬

tive, even if it is backed up by some specific subjective preferences. On the other hand,

as discussed above, introducing no preferences at all only gives a rather big interval

of arbitrage-free values for X. Its upper bound, supneMe(S) Eq[X]> is the superrepli-
cation value (also known as superhedging value), which is the smallest amount of

1



2 Chapter 1. Introduction

money from which it is possible to obtain, with a dynamic self-financing trading strat¬

egy in S, a payoff dominating X with probability one. This valuation principle was

first studied by El Karoui/Quenez [EKQ95] and Kramkov [Kra96]. Like most other

approaches, it is defined from the perspective of an agent who can trade in S and tries

to find a suitable amount of money for which she is willing to sell (or buy) X. Su-

perreplication is a very conservative approach since it allows the seller to implement a

dominating trading strategy for X, thus eliminating all the risk involved in selling X.

The drawback of this is that the capital requirement for the superreplication strategy
is usually very big, so that the superreplication value is unrealistically high. However,

if the agent is willing to accept some risk, the required capital can be reduced. This

leads to the quantité hedging and efficient hedging approaches. The first looks for the

smallest initial capital for which there exists a dynamic trading strategy in S whose

probability of a shortfall, i.e., of a loss after selling X and implementing the trading

strategy, stays below some bound; see Föllmer/Leukert [FL99]. In contrast, efficient

hedging also takes into account the size of the shortfall and determines the smallest

amount of money for which there is a trading strategy with shortfall risk below a fixed

bound; see Föllmer/Leukert [FLOO].

Perhaps the earliest approaches to valuation via hedging are those based on quad¬
ratic criteria. Mean-variance hedging is similar to efficient hedging, but instead of

fixing a bound for the shortfall risk, one minimizes the L2-norm of the hedging er¬

ror over all initial capitals and trading strategies; see Bouleau/Lamberton [BL89],

Duffle/Richardson [DR91] or Schweizer [Sch94]. The value of X is then given by

Eq[X], where Q denotes the variance-optimal signed martingale measure for S; this

is obtained via solving the dualproblem of minimizing the variance (under the subjec¬
tive measure P) of the density dQ/dP over all (signed) martingale measures Q. An

even earlier quadratic approach is (local) risk-minimization; see Föllmer/Sondermann

[FS86] and Schweizer [Sch91]. In contrast to the other approaches, one considers here

trading strategies which perfectly replicate X. Due to the incompleteness of the mar¬

ket, these trading strategies cannot be self-financing in general so that intermediate

costs occur. The value for X is then the initial capital of that trading strategy which

minimizes the expected squared intermediate costs, and it turns out to be given by the

expectation of X under the minimal signed martingale measure. An overview of these

quadratic approaches is given by Schweizer [SchOl]. More generally, one can con¬

sider other than quadratic criteria, e.g., one can replace the L2-norm by the L^-norm.

Viewing such a power function as a utility function then naturally leads us to utility
based valuation approaches.

The first utility based approach is utility indifference valuation which (in the con¬

text of financial markets) was suggested by Hodges/Neuberger [HN89]; see Hender-

son/Hobson [HH04] for an overview. One assumes that the preferences of the agent
can be captured by some utility functional U. The value p of X is then determined by
the condition that the agent is indifferent (according to U) between buying X for p and

not buying it, presuming she trades optimally in S in both cases. If one uses this ap-
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proach with a von Neumann-Morgenstern expected utility, it is very difficult to obtain

explicit results, and several variants have been suggested to overcome these problems.
A very recent and promising method is indifference valuation via convex risk mea¬

sures, where preferences are given by monetary utility functionals, i.e., minus convex

risk measures; see Barrieu/El Karoui [BEK05], Xu [Xu06] and Chapter 2 of this the¬

sis. The crucial difference is that monetary utility functionals measure, as their name

suggests, utility in monetary units; they are therefore translation-invariant for the ad¬

dition of cash, and this yields rather explicit results for the corresponding indifference

value. Another, considerably earlier variant is the, fair price (also known as marginal

utility based or shadow price) which goes back to Davis [Dav98] and which is defined

via a marginal substitutability condition on the expected utility. More precisely, it is

that amount p of money which, given the possibility of buy-and-hold trading in X for

the price p and dynamic trading in S, makes the agent's optimal demand for X (with

respect to her utility functional U) equal to zero.

All valuation concepts presented above aim to specify for the payoff X a unique
value out of the usually very large interval of arbitrage-free values. As mentioned

above, this can be quite restrictive, and one would perhaps like to have a middle way.

Instead of a single value, one could therefore aim for an entire interval of values which

at the same time is small enough to be useful in practice. This leads us to good deal

value bounds, where in addition to arbitrage opportunities, one also rules out those

investments which are too attractive (in an appropriate sense) in comparison with those

traded in the market. This approach has originally been suggested by Cochrane/Saà-

Requejo [CSROO] who measure attractiveness in terms of the Sharpe ratio; see also

Cerny/Hodges [CH02] and Jaschke/Kiichler [JKOl] for subsequent alternatives and

generalizations.

1.2 Main results

A large part of the existing literature studies valuation in incomplete markets statically,
i.e., at time t = 0; exceptions are notably works based on stochastic control theory.
The main goal of this thesis is a dynamic study of value functionals and valuation

bounds for some payoff X. More precisely, this is done for indifference valuation

via convex risk measures, and for good deal price bounds. Both topics in the current

general form have emerged only rather recently. In particular, indifference valuation

via convex risk measures has been developped in parallel to this thesis by Barrieu/El

Karoui [BEK05] and Xu [Xu06]. In our view, the most important dynamic property

of both indifference valuation via risk measures and good deal bounds (in the sense

they are presented here) is that they are time-consistent. This means that if at time t

the value of X is higher than that of Y, the same holds true at any time s < t, i.e.,

when less information is available. For indifference valuation in particular, the study
of time-consistency is one of the most important issues and contributions of this thesis.
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1.2.1 Indifference valuation via convex risk measures

We first consider indifference valuation via convex risk measures in more detail and

explain our main results. The mathematical formulation is as follows. We assume that

our agent's time t preferences are given by a monetary utilityfunctional Ut, i.e., minus

a convex risk measure. The corresponding indifference value pt(X) for a payoff X is

then defined by

ess supUt(G- pt(X) + X) = ess sup Ut(G), (1.2.1)
Gee, GeGt

where the set Ct of payoffs superreplicable from time t with zero wealth encodes the

trades available in the underlying financial market. Because Ut is translation invariant

in the sense that Ut(X + at) = Ut(X) + at ifat is Tt-measurable, we can solve (1.2.1)

explicitly for pt (X) to get

pt(X) = ess sup UtiG + X)- ess sup Ut(G) =: £/°pt(X) - £/°pt(0). (1.2.2)
GeCt GeC,

Here t/fop (X) describes the agent's modified preferences when she takes into account

her trading opportunities. Due to (1.2.2), it suffices to study £/°p instead of pt itself.

It turns out that C/°p is the convolution of Ut with another monetary utility functional,

namely the so-called marketfunctional. The latter is associated to the financial market

via the set Gt, and it is constructed like in Föllmer/Schied [FS02] with the help of

the optional decomposition under constraints. More precisely, we show in Theorems

2.5.11 and 2.6.8 that the market functional for Gt exists and that it is time-consistent.

Moreover, we study in Theorem 2.4.3 the convolution of two abstract dynamic convex

risk measures and prove in particular that the convolution operation preserves time-

consistency. Combining these results readily implies that the indifference valuation

functional (pt) itself is time-consistent, which achieves one of our major goals.
A second contribution in connection with the above approach concerns the struc¬

ture of conditional convex risk measures. Because pricing in financial markets is

usually done with the help of equivalent martingale measures, we want a representa¬

tion for conditional convex risk measures in terms of their conjugate functionals via

equivalent probability measures. In Theorem 2.3.16, we obtain such a result which is

slightly sharper than those in the existing literature. Finally, we also look at examples.
As shown in Rosazza Gianin [RG06], a large class of examples of time-consistent

dynamic convex risk measures can be obtained via backward stochastic differential

equations (BSDEs for short) and can be entirely described via some integrand. This

allows rather explicit representations, at the cost of strong assumptions (Brownian fil¬

tration) on the information structure. We show in Theorems 2.7.15 and 2.7.17 for such

a setting how Ut and the market functional can be expressed in terms of BSDEs, and

that £/°p can be obtained by convoluting the respective integrands.

Although various aspects of our approach have appeared before, the combined and

systematic treatment of all ideas at the general and conditional level seems to be new.
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Most previous results are only given unconditionally for t — 0; this applies to the in¬

difference valuation via risk measures mentioned in Barrieu/El Karoui [BEK05] and

discussed in more detail in Xu [Xu06], to the construction of the market functional in

Föllmer/Schied [FS02], or to the convolution in Barrieu/El Karoui [BEK05]. Some

conditional results are available; Larsen/Pirvu/Shreve/Tütüncü [LPST05] treat indif¬

ference valuation for a special Ut, Detlefsen/Scandolo [DS05] and Cheridito/Delbaen/

Kupper [CDK06] provide similar representations like here for conditional convex risk

measures; see Section 2.3 for a more detailed comparison with these two papers.

Jobert/Rogers [JR06] study several of the above issues in finite discrete time over

a finite probability space. Barrieu/El Karoui [BEK04] discuss the convolution of DM-

CUFs which are given by BSDEs. However, they work with a class of BSDEs which

is not general enough to incorporate the market functional of an incomplete market,

which is constructed as in Bender/Kohlmann [BK04],

1.2.2 Utility based good deal bounds

The second contribution of this thesis is in the area of good deal bounds. The main

idea is as follows. We have already observed that the interval

( inf EQ[X], sup EQ[X])

of all arbitrage-free values for a payoff X is usually too big to be useful in practice.
One reason for this is that Me(S) contains many pricing measures which are not very

reasonable, because they yield investment opportunities which are too "good" com¬

pared with those traded in the market. By omitting these "unreahstic" measures, one

obtains a smaller interval of values for X. This approach has the advantage that it is

not as restrictive as singling out one particular pricing measure.

But how does one measure "good" or "unrealistic"? We quantify here attractive¬

ness in terms of von Neumann-Morgenstern expected utility and relate this approach
to the original definition of Cochrane/Saà-Requejo [CSR00] where the Sharpe ratio is

used as performance measure. In order to obtain a mathematically tractable problem,

[CSR00] use an inequality from Hansen/Jagannathan [HJ91] to bound the Sharpe ra¬

tio of any payoff by the variance of the density of the pricing measure being used. We

prove that this upper bound is just the maximal attainable Sharpe ratio in an extended

market, where the extension depends on the chosen pricing measure. In addition, we

show that the set JV of no-good-deal measures from [CSR00] can also be obtained

by imposing an upper bound on the maximal quadratic utility attainable in the same

extended market. This gives rise to a more general approach where we replace the

quadratic by more general utility functions like power, exponential or logarithmic util¬

ity. A similar approach has been suggested by Cerny [Cer03]; one major difference is

that we provide here a more general and (we believe) more transparent treatment.

Our main goal is to study the no-good-deal values and value bounds as processes.
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Because their computability and dynamic properties depend on the set M of no-good-
deal measures, a key issue is to find an appropriate and yet workable definition for this

set in a dynamic context. In a Levy setting, we define ,M by a pointwise restriction

on an appropriate integrand. This allows to apply dynamic programming techniques
in the computation of the value bounds. Moreover, we show in Theorem 3.5.7 that

this pointwise ("local") restriction implies a bound on the corresponding "global" cri¬

terion. The resulting dynamic value bounds are dynamic coherent risk measures and

in particular time-consistent.

The main contributions of this thesis to the theory of good deal bounds are The¬

orem 3.5.7 and Proposition 3.5.10 which clarify the connection between the "global"
and the pointwise restrictions. This intrinsically depends on the fact that we choose

the pointwise bound for the integrand to be deterministic and time-independent. How¬

ever, this bound cannot be chosen completely arbitrarily. In order to yield meaningful
intervals for the values, it must depend on the maximal utility attainable from trading
in the basic assets S only. It is well known that the latter can be calculated via a dual

problem, namely minimizing some /-divergence, i.e., a functional Q i-> E \f I -^ \\

where / is convex, over Me(S). If the f-minimal martingale measure Qf, i.e., the

solution to this dual optimization problem, preserves the Levy property of the process

driving the financial market, then the pointwise bound can be chosen deterministic

and time-independent. This is one motivation for us to study in general the ques¬

tion whether the Levy property is preserved under an optimal change of measure; see

below for details.

Pointwise restrictions in connection with the determination of good deal bounds

have been suggested before in Cochrane/Saà-Requejo [CSROO], Cerny [Cer03] and

Björk/Slinko [BS06]. [CSROO] and [Cer03] work in a Brownian setting and obtain a

sort of connection between the local and global restrictions by taking limits. [BS06]

extend that model by adding a marked point process, but do not study the relation be¬

tween the local and global restrictions. In contrast, Theorem 3.5.7 proves in a general

setting that the local implies the global restriction, and Proposition 3.5.10 provides a

precise description of a situation when the local and global restrictions coincide for

the choice of no-good-deal pricing measures. Moreover, we also give a justification

why a constant or deterministic local restriction is reasonable, and in particular show

why it induces a non-empty set of no-good-deal measures.

1.2.3 Preservation of the Levy property under an optimal change
of measure

As explained above, we can obtain a nice relation between the global and local restric¬

tions in the definition of the good deal bounds if we know that the f-minimal martin¬

gale measure Qf preserves the Levy property of the underlying financial market. Let

us explain this in more detail. Suppose our filtration is generated by a ^-dimensional
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semimartingale L which is a Levy process under the subjective measure P, and con¬

sider the set Me (ML) of equivalent local martingale measures for ML with a fixed

d x J-matrix M. We assume that M and the basic assets are chosen such that Me(S) =

Me(ML)\ this includes for instance exponential Levy models S = 8(L) or suitable

classes of stochastic volatility models, as explained in Esche/Schweizer [ES05]. The

main result of [ES05] in this setting is then that L is still a Levy process under the mm-

imal entropy martingale measure Qe = argmingg^f{6^£' [(dQ/dP)log(dQ/dP)~\.
This Qe is the /-minimal martingale measure for the function fe(z) = zlogz which

comes up in the dual problem corresponding to exponential utility maximization.

In the final contribution of this thesis, we show that the approach and result in

[ES05] can be generalized to the f-minimal martingale measures associated to the

convex functions

fe(z) := -logz,

fp(z) - z~S for.5(0,oo), (1.2.3)

fHz) := z2.

These occur in the dual problems for logarithmic (I), power (p) and quadratic (q)

utility, respectively. More precisely, the allowed power utilities are the functions

£±I;ts+T = lxs with 8 :— j^ e (0, 1) and x (0, oo). The main idea for proving
this generalization is the same as in [ES05], but the computations and technical details

become a little bit more involved.

For completeness, let us explain how the argument works. Due to the underlying

Levy structure, any Q & P can be described by two stochastic processes called the

Girsanovparameters of Q. The /-divergence f{Q\P) — E[f(dQ/dP)] of Q is then

a convex functional of these Girsanov parameters and by Jensen's inequality can thus

be reduced by averaging the Girsanov parameters. More precisely, the new parameters
obtained by averaging define a measure Q with f(Q\P) < f(Q\P). Since we are

interested in the measure Qf = argmmQeMeiS)f(Q\P), we should also like to have

that Q is a local martingale measure if Q is. This is not true in general, but it does

hold if we take Q from a suitable subset of ^e(ML), specified via an additional

integrabihty property for L. We then show that this subset is dense in Me(ML) in an

appropriate sense, and this allows us to prove that for all / in (1.2.3), the /-minimal

martingale measure Qf has time-independent and deterministic Girsanov parameters.

Since this is exactly the property which describes the measures preserving the Levy

property of L, one can conclude that L is indeed still a Levy process under Qf.



8 Chapter 1. Introduction

1.3 Links between indifference valuation and good deal

bounds

At first sight, the above two valuation approaches may appear very different. However,

there is a close relation between the indifference valuation considered in this thesis

and good deal bounds, provided that the latter are defined slightly differently than

here. Alternative definitions are discussed in detail in Section 3.3 below, and so we

only outline the main idea.

In the literature, good deals are usually defined as payoffs with non-positive prices
and which are contained in an (abstract) set of desirable claims; see, e.g., CernyV

Hodges [CH02], Jaschke/Kiichler [JKOl] or Staum [Sta04]. The (lower) good deal

value bound for a payoff X is then defined as the biggest amount a of money that

can be subtracted from X so that the resulting payoff X — a cannot be turned into a

good deal by trading in the market with zero initial capital. Hence, buying X for a

price below this bound allows to generate a good deal by trading. It remains to specify
the set of desirable payoffs, and this is typically the acceptance set of a monetary

utility functional Ut, i.e., the set of those payoffs X with Ut(X) > 0. This is different

from our approach to good deal bounds because we work with a (non-monetary) von

Neumann-Morgenstern expected utility.
Now suppose that Ut used for defining good deals as above also describes the pref¬

erences in our indifference valuation approach. If pt is the corresponding indifference

value, then the interval of no-good-deal values turns out to be [pt (X), —pt{—X)\, this

is discussed in more detail at the end of Section 2.6 below. Hence we see that the good
deal bounds in this general approach coincide with the seller and buyer values from

the indifference valuation method.

1.4 Structure of the thesis

This thesis consists of an introduction, three chapters and an appendix. To keep each

chapter self-contained, we have deliberately allowed redundancies. The structure of

the thesis is as follows.

In Chapter 2 we study indifference valuation via convex risk measures, beginning
with a detailed introduction and some notation. In Section 2.3 we then concentrate

on monetary concave utility functionals (MCUFs) Ut. In particular, we provide a

representation for Ut in terms of its concave conjugate and via equivalent probability
measures. In addition, we give some results about time-consistency, inspired mainly

by Delbaen [Del06]. Section 2.4 studies the convolution of general dynamic MCUFs

(DMCUFs), showing in particular that this operation preserves time-consistency. The

proof is an application of the representation theorem of Section 2.3. In Section 2.5, we

adapt the results of Föllmer/Kramkov [FK97] about superhedging under constraints

to our needs. We combine the above results in Section 2.6 to prove that C/opt from
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(1.2.2) is the convolution of U and the market DMCUF given via the superhedging

price. Then we show that the indifference valuation functional p is a DMCUF, give
conditions for it to be time-consistent and consistent with the no-arbitrage principle,
and relate it to good deal bounds. Section 2.7 presents three examples. The first

deals with time-consistency and some properties of the convolution, the second with

DMCUFs described by BSDEs, and the third illustrates that a static MCUF cannot

always be extended to a dynamic MCUF.

In Chapter 3 we turn to good deal bounds. After a general introduction, we recall

in Section 3.2 the original definition of good deal bounds from Cochrane/Saà-Requejo

[CSROO] and explain how it can be generalized. For clarity of presentation, this is done

in a static setting. Section 3.3 explains the link between value bounds and monetary

utility functionals, and discusses in more detail the connections between the different

existing approaches on good deal bounds. We then turn to a dynamic setting to study

good deal values and value bounds as processes. In order to have a nice parametriza-
tion for the set of all equivalent local martingale measures, we choose to work in a

Levy framework, and Section 3.4 collects some auxiliary results on this. Section 3.5

deals with the extension of no-good-deal valuation to a dynamic setting. The main

difficulty is to find a reasonable definition for the set of no-good-deal measures which

still leads to mathematically tractable problems. As explained above in Section 1.2.2,

our definition is obtained from a pointwise restriction on an appropriate integrand.
We explain how this "local" restriction is motivated by a "global" criterion, and how

the two are connected. Section 3.6 discusses the properties of the resulting good deal

prices and price bounds as processes. Finally, we present two explicit examples in

Section 3.7.

Chapter 4 studies the preservation of the Levy property for a /'-Levy process L

under the /-minimal martingale measure for ML, with / as in (1.2.3) and a fixed

matrix M. We first motivate our results and relate them to existing literature. In

Section 4.3 we fix some notation and recall some important facts about Levy processes

and changes of measure. In particular, we explain how equivalent measures can be

described by their Girsanov parameters and give conditions for the latter to describe a

measure in ^e(ML). Section 4.4 then contains the main results of this chapter. We

explicitly define the averaging procedure for the Girsanov parameters and show how

it reduces the /-divergence. Then we specify a dense subset of Me(ML) consisting
of measures for which this averaging leads to measures again contained in Me(ML).

This is subsequently exploited to prove our main result that L is still a Levy process

under the /-minimal martingale measure. Finally, Section 4.5 briefly discusses the

quadratic case f(z) — fq(z) = z2. We show that if the /^-minimal martingale

measure and the variance-optimal signed martingale measure coincide, one can show

directly that the /-minimal martingale measure preserves the Levy property. This uses

that in a Levy setting the variance-optimal signed martingale measure agrees with the

minimal signed martingale measure, for which an explicit formula is known.
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Chapter 2

Dynamic indifference valuation

via convex risk measures

2.1 Introduction

This chapter deals with the valuation of contingent claims in incomplete financial

markets. We present a dynamic indifference valuation approach which stems from the

basic economic concept of certainty equivalent, modified and extended to accommo¬

date the market environment (an idea introduced by Hodges/Neuberger [HN89]). The

agents' attitudes towards risk are incorporated to establish preferences over risk which

cannot be eliminated by trading.
More precisely, our investor's preferences at each time t are given by some utility

functional Ut : L°° -» L°°(Ff). The investor has at time t an .^-measurable initial

endowment xt and can trade in a financial market, possibly under constraints. We

denote by Gt the set of payoffs she can superhedge by trading during (t, T] with zero

initial endowment. At each time t e [0, T], the indifference value pt(X) of a payoff
X g L00 due at time T is defined implicitly by

ess sup Ut (xt + G) = ess sup Ut (xt - pt (X) + G + X), (2.1.1)
GeCt GeCt

i.e., such that the agent is indifferent between buying X for the price Pt(X) and not

buying it, presuming she trades optimally in the market in both cases. Ut belongs to

the class of monetary concave utility functionals at time t (MCUFs for short), which

is defined axiomatically such that — Ut is a (!Ft -conditional) convex risk measure. In

particular, Ut is Tt -translation invariant in the sense that

Ut(X + at) = Ut(X) + at for all a, e L°°(F,),

11
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so that in (2.1.1) all ^-measurable quantities can be extracted. Hence

MX) = U?pt(X) - C/fopt(0), (2.1.2)

where the operator

£/°pl(-) :=ess supt/,(- + G)
Gee,

corresponds to the agent's market modified preferences when she takes into account

her trading opportunities.
We show that similarly as in Barrieu/El Karoui [BEK05], C/°pt is an MCUF and

given by the convolution of Ut and the market MCUF; the latter is associated to G( and

constructed like in Föllmer/Schied [FS02] with the help of the optional decomposition
under constraints. A key issue is to ensure (strong) time-consistency for the dynamic
behaviour of p — {pt). Therefore we study the convolution of two abstract condi¬

tional risk measures and prove that this operation preserves (strong) time-consistency.
In the same general setting, we give sufficient conditions to guarantee that pt (X) lies

inside the interval of arbitrage-free prices so that it could be considered as a price for

X, and we investigate the structure of p when there are no trading constraints. We

briefly discuss the connection to good deal bounds. In the special case where U is

given by a backward stochastic differential equation (BSDE), we also describe the

market DMCUF, C/opt and p in this way, and we show that the driver for Uopt is the

pointwise convolution of the drivers of U and of the market DMCUF. This extends

results of Rosazza Gianin [RG06] and Barrieu/El Karoui [BEK04]. Finally, because

pricing and valuation in financial markets is done with the help of equivalent martin¬

gale measures, we also want a representation for MCUFs in terms of their concave

conjugate functionals via equivalent probability measures.

Although various aspects of our approach have appeared before, the combined

treatment of all ideas at the general and conditional level seems to be new. Most

previous results are only given unconditionally for t = 0; this applies to the indif¬

ference valuation via risk measures in Xu [Xu06] or (briefly) in Barrieu/El Karoui

[BEK05], to the construction of the market functional in Föllmer/Schied [FS02], or to

the convolution in Barrieu/El Karoui [BEK05]. Some conditional results are available;

Larsen/Pirvu/Shreve/Tütüncü [LPST05] treat indifference valuation for a special Ut,

Detlefsen/Scandolo [DS05] and Cheridito/Delbaen/Kupper [CDK06] provide similar

representations for conditional convex risk measures; see Section 2.3 for a more de¬

tailed comparison with these two papers. Jobert/Rogers [JR06] study several of the

above issues in finite discrete time over a finite probability space. Barrieu/El Karoui

[BEK04] discuss the convolution of DMCUFs which are given by BSDEs. However,

they work with a class of BSDEs which is not general enough to incorporate the mar¬

ket functional of an incomplete market, which is constructed as in Bender/Kohlmann

[BK04]. Our general results that convolution preserves time-consistency and that the

market functional in an incomplete market with trading constraints is time-consistent

seem to be new.
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The chapter is structured as follows. Notations and conventions are given in Sec¬

tion 2.2. Section 2.3 introduces (dynamic) MCUFs. We state a representation theo¬

rem for MCUFs similar to [DS05] but in terms of equivalent probability measures;

a closely related result can be found in [CDK06]. Some results about (strong) time-

consistency inspired mainly by [Del06] are also given. Section 2.4 introduces the

convolution of general dynamic MCUFs and extends a result of [BEK05]. The proof
is one application of the representation theorem of Section 2.3. In Section 2.5, we

adapt the results of [FK97] about superhedging under constraints to our needs. We

combine the above results in Section 2.6 to prove that f/opt is the convolution of U

and the market DMCUF given via the superhedging price. Then we show that the

indifference valuation functional p is a dynamic MCUF, give conditions when it is

strongly time-consistent and consistent with the no-arbitrage principle, and relate it

to good deal bounds. Section 2.7 presents three examples. The first deals with time-

consistency and some properties of the convolution, the second with dynamic MCUFs

described by backward stochastic differential equations, and the third illustrates that a

static MCUF cannot always be extended to a dynamic MCUF.

2.2 Notations and conventions

Throughout this chapter, we work with a fixed probability space (Q, ¥, P) and a fixed

filtration IF — (Pt)o<t<T, where T < oo is a fixed finite time horizon. We assume

that F satisfies the usual conditions of right-continuity and completeness. Hence we

can and do choose for each semimartingale a right-continuous version with left limits

(RCLL for short). For simplicity we let 5^ be trivial and ¥t = ¥. For s < t

an integral from s to Ms defined on the half-open interval (s, t]. For p e [1, oo],

hp(Q, %, P) ÇLp{%) or even L^ - L^(^) if no confusion is possible) denotes the

space of all equivalence classes of real-valued, ^.-measurable random variables with

finite Lp(/>)-norm, where % is a sub-a-field of 7'. By L°(Jrf, Y) we denote the set

of all equivalence classes of .^-measurable mappings Œ —> Y. An ^-partition is a

family of pairwise disjoint sets (Aw)«ew in Tt whose union is Q. The transpose of a

vector z is denoted by z* and 1a denotes the indicator function for a set A e T. P

denotes the set of all probability measures Q on (Œ, ¥), tPa the set of all Q e Ü3 with

Q <SC P and !Pe the set of all Q e Pa with Q ^ P. Unless mentioned otherwise,

all (in-)equalities which involve random variables hold almost surely with respect to

P, (conditional) expectations and essential infima and suprema are taken with respect

to P, a density ZT of some measure Q 3ia is its density with respect to P on

¥ = Tr and its density process Z = (Zt)o<t<T consists of its densities Zt with

respect to P on f,. We frequently identify a probability measure Q e Pa with its

density Zj e L1^, !F, P). When we say that a set Q ç &>a has a property in

L1, we mean that the set of corresponding densities has this property. Q,e consists

of all Q e 62 which are equivalent to P. We always work with equivalence classes
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of random variables and thus do not distinguish between different versions of, e.g.,

the essential infimum of a family of random variables. In particular, when defining
some set depending on an equivalence class of random variables we take one (fixed)

representative, in order to have that set well-defined. For the definition of processes

having locally some property we refer to Definition VI.27 in [DM82]. As we consider

processes on [/, T~\ having some local properties, this definition has the advantage that

a stopped process with starting point t need not have the required property on all of £2

but only on the sets {rn > t} where (rn)new is a localizing sequence. In particular, for

any t > 0 we have {r„ > t} ç {rn > 0} and this ensures that if S is a locally bounded

semimartingale on [0, T], so is S on [/, T]. Moreover, note that the assumption of

!Fo to be trivial implies boundedness of So- Since we are working with a finite time

horizon T, a localizing sequence for some process (St)o<r<t is an increasing sequence

of [0, revalued stopping times rn, n e IN, such that lim^oo P\xn < T] — 0 and

such that for each n e IN, the stopped process STn has the desired property.

2.3 Representations and time-consistency of dynamic
MCUFs

In this section we introduce and study (dynamic) monetary concave utility function¬
als (MCUFs for short). This is the class of functionals we consider for indifference

valuation in a later section. Their definition is very similar to that of convex risk

measures, for which it is known that they can be equivalently described by their ac¬

ceptance set, i.e., the set of payoffs to which they assign non-positive values. We state

the analogous result for (dynamic) MCUFs and investigate the properties, in particular

continuity, of (dynamic) MCUFs. The main result of this section gives an equivalence
between continuity of an MCUF, its representability, and closedness of its acceptance

set. This extends well-known results from the static case to a dynamic setting. Similar

dynamic results can also be found in a recent work of Detlefsen/Scandolo [DS05],

and in [CDK06] in a more general setting. Finally we investigate a property called

(strong) time-consistency which ensures that the ordering on payoffs induced by a

dynamic MCUF is consistent between different points in time.

Definition 2.3.1. Fix t e [0, T], We call a mapping

<D, :L00(Q,¥,P)^L00(Q,¥t,P)

a monetary concave utility functional at time t (MCUF for short) if it satisfies

A) Monotonicity: <Pt(Xi) < 4>f (X2) for all Xi,X2e L00 with ATi < X2.

B) ^-translation invariance: <&t(X + at) = ^tiX) + at for all X e L00,

at L°°(*7)-
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C) Concavity: *,(/8Xi + (1 - ß)X2) > ß®t(X\) + (1 - ß)®t(X2) for all Xi,

X2 e L00 and 0 e [0, 1].

We say that an MCUF Of is normalized if Of(0) = 0, and we call it a monetary

coherent utility functional at time t (MCohUF for short) if it satisfies

D) Positive homogeneity: Of (XX) = XQ>t(X) for all X L00 and X > 0.

If Of is an MCUF (respectively an MCohUF) at each time t e [0, T], we call the

family O = (Of (. ))o<f<r a dynamic MCUF (respectively a dynamic MCohUF) and

use the abbreviation DMCUF (respectively DMCohUF).

An additional property one might require of Of is

E) Tt-regularity: ®t(UX\ + lAcX2) = lA®t(Xi) + lAc<Pt(X2) for all Xu

X2 g L00 and A e Tt.

But M. Küpper has pointed out to us that monotonicity and translation invariance

already imply E) as follows; see also Proposition 3.3 of [CDK06]. First of all, we

have lAOf (X1A) = U®t(X) for X e h°° and A Ft, because A) and B) yield

lAOf(X) ^ lAOf(XlA ± HXHlooIac) = lAOf(XlA).

Applying this to X = 1AX\ 4- 1^X2 gives

Of (X) = lAOf (X1A) + lAc0t(XlAc) = lAOf (Xi) + U<®t(X2).

Remark 2.3.2. i) An MCUF Of at time t automatically satisfies not only C), but

even the stronger property of Ff-concavity, where ß e L°(,F;; [0, 1]). This can

be proved by the standard measure-theoretic induction, using the Tt-regularity
and Lipschitz-continuity of Of. So —Of is almost an Tt-conditional convex

risk measure in the sense of [DS05]; the only difference is that in [DS05] Of

is normalized. Also by standard measure-theoretic induction, one can show

that an MCohUF automatically satisfies instead of D) the stronger property of

Ft-positive homogeneity, where X e L^0(Ff).

ii) Since To is trivial, —Oo is simply a convex risk measure in the usual sense;

see [FS04] for an comprehensive textbook account. We call t = 0 the static or

unconditional case.

iii) In the literature, extensions from static to dynamic risk measures have been con¬

sidered under two aspects. What we present here corresponds to the study of

risk measures conditioned on some information. A second aspect is to define

risk measures for payoff streams, i.e., on stochastic processes instead of ran¬

dom variables; see [Wan99], [Det03], [Sca03], [ADEHK04], [CDK04], [PR04],
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[Rie04], [CDK05], [CDK06], [Del06] or [Web06] for work on that topic. De¬

spite the importance of the latter aspect, we restrict our considerations here to

the first one.

iv) We note that MCohUFs are always normalized. Moreover, under the assump¬

tion of positive homogeneity, concavity is equivalent to

F) Superadditivity: Or(Xi + X2) > Of(X0 + Of(X2) for all Xu

X2 e L00. O

An MCUF at time t < T assigns to each discounted net payoff X due at time

T another random variable Of(X). We interpret Of(X) as the (individual) utility,

expressed in monetary units, that some agent assigns to X at time t. However, this

does not imply that it is always possible to swap at time t the future payoff X for

Of (X) monetary units. In fact, this would require the existence of another agent who

is willing to pay Or (X) in exchange for the entitlement to X. Such an agent need not

exist in general.
For an economic interpretation of the axioms, we assume that there is a non-risky

investment opportunity where the agent can borrow or invest arbitrary amounts of

money. Moreover, we assume that all payoffs are already discounted with respect to

this non-risky asset. Then the interpretation of ,Frtranslation invariance is of partic¬
ular interest because it clarifies the idea behind the definition of Of (X) and justifies
the terminology of a monetary utility functional; see also [FS04]. In fact, it implies
that Of (X — Of (X)) = 0. Hence Or (X) is the maximal monetary amount that can

be subtracted from X at time t such that the agent still assigns a non-negative utility
to the resulting (discounted) payoff X — Of (X) due at time T. (To be precise, the

agent cannot take the money away from X; she must borrow it from the non-risky
investment and pay this debt back at time T, thus changing the discounted payoff due

at time T to X - Of(X).)
We emphasize that translation invariance distinguishes the considered class of util¬

ity functionals from von Neumann-Morgenstem expected utility functionals, most of

which do not have this property. In contrast, the economic interpretation of the other

axioms is more familiar. The meaning of monotonicity is obvious, and concavity
models the idea that diversification should not decrease the utility. The condition that

Of (X) is Tt-measurable means that values only depend on information which is avail¬

able at time /. Tt -regularity implies that an event which can already be ruled out at

time t does not influence the value of Of (X). As utility may grow in a non-linear way

with the size of the payoff, we usually do not insist on positive homogeneity.
The issue of normalization is a bit more subtle. It depends on the exact interpreta¬

tion of the random variable X to which Of is applied whether this assumption makes

sense or not. If X expresses a change in wealth, assuming normalization seems rea¬

sonable. But if X is some payoff to which we want to apply some utility, normalization

might be inappropriate. To see this, suppose the agent has the possibility to trade in
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some financial market. Then she might obtain with zero initial endowment a position
she personally considers to be strictly preferable to the payoff 0. In this situation she

might very well assign non-zero utility to 0. Note that this again uses the idea that

Of(X) should be viewed as a subjective value rather than a (market) price. Finally,
we point out that normalization can always be achieved by subtracting Of (0) from the

original functional. This changes the initial level of utility, but has no influence on the

ordering induced by Of. Nevertheless, we will see that subtracting Of (0) to obtain a

normalized functional can yield some difficulties.

Example 2.3.3. a) A classical example of an MCUF at time 0 is the exponential

certainty equivalent with risk aversion y, i.e.,

O0(X) := -- log E [exp (-yX)] = ess mf{EQ[X] + yfe(Q\P)},
y QePe

where for Q e Pe with density Zj the functional fe(Q\P) := E[Zj log Zj\
denotes the relative entropy of Q with respect to P; see for instance Example
4.105 in [FS04], Section 5 in [DS05], or Examples 3.2 and 3.4 in [BEK04].

This MCUF is not coherent.

b) It is well known and easy to verify that every non-empty set GL ç Pe defines an

MCohUF by

Of(X) := ess inf EQ[X\Ftl (2-3.1)

For Gl = {Q}, this is just the conditional expectation under some Q e Pe.

If Gl is not a singleton, Of can be interpreted to express the preferences of a

conservative agent who is uncertain about the underlying model and hence takes

into account several possible models. For an extension to the convex case, see

Remark 2.3.18 below.

Note that since it is only taken over measures equivalent to P, the /*-essential

infimum in (2.3.1) is well-defined. This need not be the case if Gl were to contain

probability measures which are only absolutely continuous with respect to P.

O

An elementary consequence of the axioms is that every MCUF is Lipschitz-contin-
uous for the L°°-norm with Lipschitz coefficient 1. In fact, translation invariance and

monotonicity are already sufficient to obtain this property.

Lemma 2.3.4. For any MCUF Of at time t and any X, Y e L°° we have

l|Of(X)-Of(7)||L-<||x-y|iL~.

Proof This can be shown exactly as in the static case; see Lemma 4.3 in [FS04]. D
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It is well-known from the theory of static risk measures that an MCUF Oo at time

0 can be equivalently described by its acceptance set; see Propositions 4.6 and 4.7 in

[FS04]. This also holds true for the conditional case if we use (like in [CDK06J) a

conditional form of the L°°-norm as follows. For X g L00 and t e [0, T], set

||X||r ;= ess inf {mt G L°°(.Ff) | |X| < mt}

and call B ç L00 closed with respect to \\-\\t if for any sequence (Xn)new in B such

that lim^^oo ||X„ — X||f =0 for some X g L00, we also have X B. This holds for

instance if B is closed in <x(L°°, L1).

Definition 2.3.5. For a given MCUF Of, the acceptance set is

At:={Xeï.°°\ Of(X)>0},

and elements of At are called acceptable (with respect to Or, to be precise).

Lemma 2.3.6. The acceptance set At of an MCUF Of at time t has the following

properties:

a) At is non-empty and convex;

b) ess sup{mr g L00^) | - mt G At} — ess sup(-<Af HL00^)) G L00;

c) —At is solid, i.e., X e At, Y G L°° and Y > X imply that Y g At ;

d) At is ^-regular, i.e., X, Y G At and A G Tt implies that 1AX + \AcY G At.

Moreover, At is closed with respect to \\. \\t. Finally, if<&t is an MCohUF, then At is

a cone containing 0.

Proof For the closedness property, see Proposition 3.6 in [CDK06] and Remark 2.3.7

below. The rest follows from the definition as in the static case; see Proposition 4.6 in

[FS04]. D

Remark 2.3.7. Some of the results in the present section can be obtained as special
cases from [CDK06]. This is not entirely obvious for two reasons. Like [DS05],

[CDK06] impose in their axioms for MCUFs normalization and JFf-concavity; see

i) of Remark 2.3.2. This difference has no effect for those results we want to quote.
More importantly, [CDK06] work more generally with DMCUFs defined on processes

instead of random variables and therefore use more elaborate notations than we need

here. To help readers in making the connection, we very briefly sketch here the main

translations between [CDK06] and our setting.
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When using [CDK06] results for random variables, replace ^°° and 3le by L00;

replace || ||TÖ by || ||f; replace L°°(.!FT) by L00^); and omit all l[T,oo)- More¬

over, replace £)Tte by {Z g L,+ (P) | E\Z\Tt\ = l} which corresponds to the set of

densities of the elements in fPt~ defined in (2.3.21) below. Then «JD,^ corresponds to

{Z g V+(P) | E\Z\?t\ = 1, Z > 0 P-a.s.}

Z^ — (Z,)o<t<T is the density process of some Q g Pe
7Q

2?

Finally, (X, a)tte with X e Jt°° and a e A1 must be replaced by E[Xa\^ with

X G Luanda G {Z G L^(P) | £[Z|F,] = l}. O

Definition 2.3.8. A subset ,3 of L°° satisfying the properties a) - d) in Lemma 2.3.6

is called a pre-acceptance set at time t.

Lemma 2.3.9. Let B ç L°° be a pre-acceptance set at time t and define a mapping

on L°° by

Of (X) := ess sup {m, G L°°(Ff) | X - mt G B]
= ess sup ((X - B) n L00^)). (2.3.2)

Then:

a) Of w an MCUF at time t.

b) If B is in addition closed with respect to \\. \\t, then B is the acceptance set of

Of.

c) IfB is the acceptance set At ofan MCUF Or at time t, then Of = Of, i.e., we

can recover Of from its acceptance set as Of = Of .

d) If B is a cone containing 0, then Of is an MCohUF.

Proof. This follows from Proposition 3.10 of [CDK06]; see Remark 2.3.7. D

Our next goal is now to provide a representation for an MCUF Of via its concave

conjugate functional, which is defined as follows.

Definition 2.3.10. The concave conjugate functional of an MCUF Of at time t is the

mapping at : ^f h> L0^ ; [-oo, +oo)),

Q m- at(Q) := ess inf {EQ[X\Ft] ~ Of(X)} (2.3.3)

where 3> :- {Q e P \ Q % P on F,}.
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Remark 2.3.11. P^ is the largest set on which the essential infimum in (2.3.3) is

well-defined in the usual sense; see Section 5 in [Del06] for more general definitions.

O

Lemma 2.3.12. The concave conjugate at ofan MCUF Of at time t with acceptance

set At can be written as

at(Q) = ess mf EQ[X\rt] for Q g P?, (2.3.4)
XeA,

and it has the following a -pasting property: If Qn, n g IN, are in Pe with den¬

sity processes Zn, if (An)nesv is an Tt-partition of Q and if Q G Pe is defined by

l3 = TZi 1a„|, thenat(Q) = £~ i UMQ*)-

Proof, We start by proving (2.3.4), i.e., by showing that

ess ir£\EQ[X'\Ft\ - Of(X')} = ess infEotX'l^].
X'eL

l '
X'eA,

As At ç L00 and Or is non-negative on At, we clearly have

essinf{Eß[X'|F,]-<I>,(X')} < ess inf {EQ[X'\Ft] - Of(X')}
X'eL°°

l '
X'eA,

l J

< ess inf £o[X'|Fr].
X'&A,

Conversely, translation invariance implies for X g L00 that X := X — Of (X) G At

and hence that

ess MEQ[X'\rt-\ < EQ[X\Ft] = EQ[X\Ft] - Or(X).
X'eA,

Taking the essential infimum over all X e L°° we obtain

ess mfE0[X'\rt] < ess inf {Eo[X'| J}] - 0,(X')|.
X'eA, X'eL

l v '

For the second claim note that E [v^i Un fl] = E \j2=\ Un ^nE\_ZnT\^ - 1
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Since At £ L°°, (2.3.4) and the dominated convergence theorem imply that

Ftat(Q) = essinfE
X'eA,

zn

Lfi=l
Zf

oo

= tssmiS\\AnEQn\X'\Tt\
X'eA,

n=\

= y^ U„ ess inf £q«[X'|F,]
X'eA,

= J21^t(Qn)
n=\

This finishes the proof. D

In Lemma 2.3.9 b), we proved that if B is a pre-acceptance set at time t which

is closed with respect to ||. \\t and thus in particular if it is closed in <t(L°°, L1), it is

the acceptance set of Of. We shall see that er(L°°, L^-closedness of the acceptance

set is equivalent to a continuity property of the corresponding MCUF. As in the static

case, this continuity property will be required to obtain a structural characterization of

MCUFs.

Definition 2.3.13. An MCUF Of at time t is called continuousfrom above (below) if

lim^oo Of (X„) = Of (X) for any sequence (Xn)n&]N in L00 decreasing (increasing)
to some X g L00. (Note that monotonicity of Of implies the almost sure existence of

the limit.)

Like in the static case, continuity from below is stronger than continuity from

above:

Lemma 2.3.14. //"Of is an MCUF at time t and continuousfrom below, then it is also

continuousfrom above.

Proof. Let (Xn)ne]N be a sequence in L°° decreasing to some X g L00 and for n e N

define Zn := Xn - X. With X := X - Of (X), we obtain from B) and C) that

0 = Of(X)

- Of(i(X + Zw) + i(X-Zn))
> -Of(X + Z„) + -Of(X-Z„)

= U®t(X + Zn) - Of(X) + Of(X - Z„) - Of(X))



22 Chapter 2. Dynamic indifference valuation

so that

Or(X + Zn) - Of(X) < Of(X) - Of(X - Zn). (2.3.5)

From this together with A), continuity from below and since X — Zn —2X — Xn f X,

we obtain

0 < Of(Xn) - Of(X) < Of(X) - Of(X - Zn) \ Of(X) - Of(X) = 0.

Hence Of (XM) decreases to Of (X) as n -» oo. n

Remark 2.3.15. The MCUFs in Example 2.3.3 a) and b) are always continuous from

above. The exponential certainty equivalent is also continuous from below, but for the

MCohUFs in part b) this depends on the choice of Q; see Corollary 4.35 in [FS04]. O

The following Theorem 2.3.16 is the main result of this section. It shows that for

an MCUF Of, the existence of a representation via the concave conjugate functional,

continuity from above, and <t(L°°, L^-closedness of its acceptance set «^f are all

equivalent. A detailed discussion is given below.

Theorem 2.3.16. For an MCUF Of at time t with acceptance set At, the following

are equivalent:

I) Of is continuousfrom above and mixeA, Eq[X] > —oo for some Q G Pe.

II) Of can be represented as

Of(X)=essinf{£0[X|Ff]-ar°(ô)} (2.3.6)

for a mapping af : Pe -» L°(5rf ; [—oo, +oo)) which has the a-pasting prop¬

erty.

III) Of can be represented as

Of (X) = ess inf l£ô[X|^f] - at(Q)\ (2.3.7)
QePe v t

where at is the concave conjugate o/Of.

IV) At is closed in a (L°°, L1) and'mfxeA, Eq[X] > —oo for some Q e Pe.

if Of satisfies one of the above properties and is in addition positively homogeneous,

hence an MCohUF, it can be represented as

Of(X) = ess mf EQ[X\rt] (2.3.8)
ßeÖe

for some set Gl ç pa and with GLe = Gl D Pe ^ 0. Gl can be chosen convex and

closed m L1.
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Definition 2.3.17. If one of the equivalent properties I) - IV) is satisfied, we say that

Of is well-representable.

Remark 2.3.18. i) In analogy to Example 2.3.3 b), it is easy to see that any func¬

tional Of : L°° -* L°°(J7) which can be represented as in (2.3.6) is an MCUF

at time t. This does not require the a-pasting property of af.

ii) In II) it suffices to have the or-pasting property only for those Q g Pe satisfying

ar°(Ö) # -oo.

iii) Note that Theorem 2.3.16 also allows us to define an MCUF at time t from a

suitable mapping af by (2.3.6). This is particularly useful in the coherent case

where Of is specified via (2.3.8) entirely by the set Gl; see Example 2.3.3 b).

A similar interpretation holds in the convex case, where ctf(Q) is a correction

term which quantifies how the model Q is viewed. In Example 2.3.3 a), P can

be seen as a reference model and the correction term is chosen proportional to

the (entropie) deviation of Q from P; see also Section 4.3 in [FS04].
O

Proofof Theorem 2.3.16. "Ill) => II):" Obvious due to Lemma 2.3.12.

"II) =>- I):" To see continuity from above, let (X„)wew Ç L00 be a uniformly
bounded sequence decreasing to some X e L°°. Then

\ - lim Of(Xw) =

w->oo

inf (essinf{£ö[Xn|Ff]-af0(o)}l
nsN [ QePe I J J

= ess inf { inf \EQ[Xn\Ft] - a?(Q)\ }

= ess inf (\ - lim EniX^Ft] - a?Ö)l
QePe I n-roo

* JQ

= Of(X),

where the last equality follows from the monotone convergence theorem and

(2.3.6). It remains to prove the existence of Q as desired. To this behalf choose

a sequence (Qn) in Pe and for s > 0 an ^-partition (An) of Q such that

-Of (0) - ess supaf°(ô) = sup af(Qn) < J^ Un<*?(Qn) + s.

Define Q g Pe by jp :— ^Z^Li 1a„ z»
and note that the a-pasting property of

a? gives a?(ß) + e > -<t>, (0) L°°. Using (2.3.4) and (2.3.6) yields

essinf£A[X|Ff] = ess inf \e^[X\^ - ess inf {EQ[X\Ft] - a?(Q)}\

> ö?(ß)
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and therefore inf*^, Eq[X] > E^afiQ)] > -£g[Of(0)] - s > -oo.

"I) =*> III):" First we show that "<" holds in (2.3.7), i.e., that

Of(X) < ess mf{EQ[X\rt] - a,(Q)} (2.3.9)
QePe

for all X g L°°. Indeed, for any Q g Pe and any X g L00, (2.3.3) gives

EQ[X\Ft]-at(Q) = £e[X|57]-essinf{^ß[X/|5'f]-Of(X/)}

> ^[XI^-^QfXI^fj-OftX))
= Of(X).

(2.3.9) follows if we take the essential infimum over all Q Pe. Inequality

(2.3.9) implies (2.3.7) if we show that for any X g L00

£g[Or(X)] = £g[ess inf {£ß[X|^f] - at(Q)} ]. (2.3.10)

Similarly to, e.g., [Det03], this will be done by exploiting the well-known rep¬

resentation results for the static case. To derive from Or an MCUF at time 0,

we define the mapping Oo : L00 -» 1R by Oo(X) := £g[Of (X)]. This is an

MCUF at time 0, and continuous from above because Of is. Hence Theorem

4.31 and Remark 4.16 of [FS04] imply that it can be represented as

O0(X)= inf {EQ[X]-äo(Q)}t (2.3.11)

where

äo(ß)= inf l£ß[n-*o(n|. (2-3.12)
YeL°° y i

We argue below that âo(Ô) > —oo, and because Q Pe, this implies that we

have

Öo(X)= inf {EQ[X]-äo(Q)}. (2.3.13)
QePe

l

Similarly to [DS05], we show next that (2.3.13) remains true if we take the

infimum only over all Q in

àt := {Q g Pe | Q[A] = Q[A] for all A Tt},
i.e., we claim that

inf {EQ[X]-6i0(Q)}= inf {EQ[X] - a0(Q)}. (2.3.14)

It is clear that "<" holds, and ">" will follow once we show that

ä0(ö) = -°o foranyßG(^\Qf). (2.3.15)
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But if ß f àt, there exists Aef, such that Q[A] ^ Q[A], As ^-translation

invariance of Of implies that

ô0(ÀlA) = £g[Of (ÀlA + 0)] = Eq[X1a] + ^ß[*r(0)l,

we obtain from (2.3.12)

oto(Q) < inf \Eq[X1a]-Ô>q&U)\

= inf \XQ[A] - XQ[A] - Ea[<D,(0)]] = -oo.

Hence (2.3.14) follows. Now we show that

£ß[ar(ß)]=äo(ß) forallßGÖf (2.3.16)

In fact, Ff-regularity of O, implies that the set { EQ [X | ¥t] - Of (X) | X L°°}
is a lattice. Hence ([Nev75]) there exists a sequence (Xw)„e^v ^ L°° such that

ess inf \Eq\X\Ff] - Of(X)} =\ - lim {EQ\Xn\Tt\ - Or(Xw)) (2.3.17)

so that by the monotone convergence theorem

essinf{£ö[X|Ff]-Or(X)}

= \ - lim Eö [EQ[Xn\ft] - Of(Xw)]

> inf ^[^ôt^l^l-^W];

clearly we then even have "=" in the last line. This together with (2.3.3), Q £ Glt

and (2.3.12) yields

EQ[at(Q)] = inf{£ß[X]-i<Q[Of(X)]}
= inf {£ß[X]-Ö0(X)l
= ä0(ß)

and hence (2.3.16). Combining this with (2.3.9), (2.3.16), (2.3.13) and (2.3.14)
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we can finish the proof of (2.3.10) as follows:

£ô[Of(X)] < Eq

* EQ

essmf{EQ[X\Ft]-ctt(Q)}

essinf{£ö[X|F,]-af(ß)}
Qeà,

< inf Eö[{EQ[X\rt]-at(Q)}]

= inf \EQ[X]-Eö[at(Q)]\
Qeà, y * J

= inf {£ß[X]-äo(ß))
Qeè,

= ôo(X)

= £ô[Of(X)].

Finally, to see that ä0(ß) > -oo, note that Y - Of (F) G At for any Y g L00.

Hence (2.3.12) gives

äo(ß)= inf £ô[F-Of(7)]> inf EÖ[X] > -oo.

FeL°° y Xe<A, ^

"I) =^ IV):" Closedness of the acceptance set can be shown as in the static case, see

[FS04], Theorem 4.31, c) =ï e) => f) together with Lemma 4.20.

TV) =>• I):" To see continuity from above, let (Xw)wew be a uniformly bounded

sequence in L°° decreasing to some X g L°° so that

\- lim Of(X„) = Z (2.3.18)

for some Z e L°°(5i). Then Yn := Xn - Of(X„) converges to X - Z P-a.s.

and is uniformly bounded as well. By dominated convergence, (Yn)n£pf thus

also converges to X — Z in a(L°°, L1). But by translation invariance, Y„ G At

for all n and At is closed in <j(L°°, L1) so that X - Z is in At as well. From

this together with translation invariance and since Z g L00^), we obtain that

Of (X) > Z. Hence monotonicity implies by (2.3.18)

lim Of(X„) = Z < Of(X) = Of( lim Xn) < lim Or(Xw).
ra—>-oo n^-oo rc-»oo

To finish the proof of Theorem 2.3.16, it remains to show that if Of is positively

homogeneous, there exists a set Gl ç pe such that

Of(X) = essinf£G[X|^f].
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By positive homogeneity, the acceptance set At is closed under multiplication with

non-negative scalars and in particular 0 e ^,. Therefore Q!f(ß) from (2.3.4) is

{0, -oo}-valued for each ß g Pe. Next we show that there exists Q g Pe such

that at (ß) = 0. In fact, as any MCohUF is normalized, we obtain from III) that

0 = Of (0) = ess inf{-«f (ß)} = inf {-or,(Qn)}
QePe n<=lN

for some sequence (Qn)neN Ç Pe (see [Nev75]). Hence there exists an Ff-partition

(A„)wew and a sequence (Qn)nEiN, Qn e 3*e with density processes Zn, such that

00

£U,«,(ßB) = 0;

n=\

this uses that each at(Qn) only takes the values 0 and -oo. We define the measure

ß g Pe via its density
oo

jn

Lemma 2.3.12 then implies that

00

at(Q):=J21^t(Qn) = 0. (2.3.19)

n=\

Now fix Q! e Pe and let

A := {at (Q') = 0} Ft

(where, as usual, we consider a fixed version of at (Q'))- If Z and Z' denote the

density processes of ß and Q', we define a new measure Q Ç. Pe via its density Zj

as

7 1
^

, I
Zr

^r Zf

Then Lemma 2.3.12 implies that

<*t(Q) = U<*t(Q') + U<<*t(Q)=0.

Because 1aEq>[. I^f] = UEq[. |Ff] andaf(ß') = -oo on Ac, we obtain

EQ>[X\Ft] - at(Q') > Eq[X\F,] ~ ott(Q)

by looking separately at A and Ac. In other words, when taking the essential infimum

in (2.3.7) it is enough to restrict attention to measures like ß that have at(ß) = 0. So

if we define

ö:={ß^|«f(ß) = 0},
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we obtain

Of(X) = ess inf £o[X|5f] = ess inf En[X\Ftl
Qea ßeöe

In order to have Gl convex and closed in L1, we can replace Ö by its L1-closed convex

hull and recall that for convex sets the norm closure and the weak closure are the

same.

The papers [DS05] and [CDK06] contain closely related representation results;

the relations and differences will be discussed below after we have introduced some

additional concepts. Another representation for conditional convex risk measures can

be found in Rosazza Gianin [RG06] in the context of BSDEs. In the coherent case,

things become simpler; see for instance [Rie04], [ADEHK04] or [RSE05]. The recent

work of Weber [Web06] is less relevant for our goals, because law-invariance does not

fit well with the notion of hedging.
For comparison purposes, let us first give a slight variation of Theorem 2.3.16;

without IV'), this is simply Theorem 1 of [DS05] in our notation.

Theorem 2.3.19. For an MCUF Or at time t with acceptance set At, the following

are equivalent:

V) Of is continuousfrom above.

II') Of can be represented as

Of(X) - ess m\Eq[X\^ ~ «f°(ß)l (2.3.20)
Qe.P= y >

for a mapping af : Pt= -> L0^ ; [-oo, +oo) ) and where

3>T •= {Q « P I Q = p on ft). (2-3.21)

III') Of can be represented as

Of(X) = ess inf \Eq[X\F,-\ -at(Q)\ (2.3.22)

where at is the concave conjugate o/Or.

TV') At is closed in a (L00, L1).

Definition 2.3.20. If one of the equivalent properties V) - IV) is satisfied, we say that

Of is representable.
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One difference to other related representation results is our use of the condition

inf E~[X] > -oo for some QePe. (2.3.23)
XeA, u

Before discussing this difference in more detail, let us first show how (2.3.23) can be

ensured from a relevance condition on Of; see Definition 4.32 and Corollaries 4.34

and 9.30 in [FS04] for this economically very natural concept.

Definition 2.3.21. If an MCUF Of at time t satisfies P[&,(-1B) < Of (0)] > 0 for

any B T with P[B] > 0, it is called relevant or sensitive.

Proposition 2.3.22. Let Or be an MCUF at time t.

a) TjfOf is continuousfrom above and relevant, then (2.3.23) holds. In particular,

Of is well-representable.

b) If Of is well-representable and an MCohUF at time t, then Of is relevant.

Proof, b) (2.3.8) gives Q,(-lB) < ~EQ[lB\Ft~\ for some ß g Pe, and Of(0) = 0.

Hence Of is relevant.

a) Almost like in the proof of Theorem 2.3.16,
"

I) ==>• III)", we define and repre¬

sent an MCUF Oo at time 0 by

Oo(X) := £[Of(X)] = inf {£ß[X]-ä0(ß)}= inf {EQ[X]-ä0(Q)}
äo(ß)>-°°

(2.3.24)

with

ä0(ß)= inf {EQ[Y]-®o(Y)};

the last equality in (2.3.24) holds since Oo is finite-valued. Because Of is relevant, so

is Oo. To construct ß g Pe with

ä0(ß) > -oo, (2.3.25)

we define B e T up to nullsets by

1B := ess sup (l{Zü>0} ß Pa andä0(ß) > -ooj.
By the definition of B, for Q e Pa with äo(ß) > —oo, we must have £g[l^] = 0,

so that by (2.3.24) we have Ö"0(-lß0 = O~0(0). Hence P[B] = 1 by relevance

of Oq. Now choose Qn e Pa with density processes Zn and oo(ßM) > —oo

such that supweW l{z«.>0} = 1b = 1 P-a.s., and ßn > 0 with Y,T=i ßn = 1 and

Y,T=i ßnao(Qn) > -oo. Then || := J^=i ^zr defines a measure Q e Pe which
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satisfies (2.3.25). With the same arguments as for (2.3.15) and (2.3.16) one can first

prove that ä0(ß) = -oo for any ß g (Pe \ P=) which implies that ß g Pt= and

then conclude that ä0(ß) = EP[at (ß)] so that (2.3.4) yields

inf Ed[X] > Eô\ess inf Eô[X\rt]\ = EP[at(Q)] = ä0(ß) > -oo.

X£At
& yL XeA,

u J

Hence Q does the job.

Now we can discuss the differences between Theorem 2.3.16, Theorem 2.3.19

(which corresponds to Theorem 1 in [DS05]) and Theorems 3.16, 3.18 and 3.23 in

[CDK06]. Obvious differences are changes of signs in [DS05] and that [CDK06] work

with MCUFs on processes instead of only random variables like here. In Remark

2.3.7, we have briefly sketched how their notation can be translated to our setting.
But the main difference is that [DS05] and [CDK06] assume in I) only that Of is

continuous from above. They then obtain representations like in (2.3.22), where the

set of measures is Pt= which explicitly depends on Tt. By imposing the additional

condition (2.3.23) on Of, we have in contrast a representation with one set Pe for all

t and, more importantly, a representation in terms of measures which are equivalent to

P. The term "well-representable" is meant to highlight this difference.

To be accurate, things are even more subtle. In their Theorem 3.23, [CDK06]

also provide a representation like (2.3.7) in terms of Pe. However, they assume for

this that Of is relevant, which by Lemma 2.3.22 is sufficient (but not necessary) for

(2.3.23). In contrast, we show that the weaker condition (2.3.23) is already sufficient

for the representation in (2.3.7), and that (together with continuity from above) it is

actually also necessary.

None of the properties imposed on DMCUFs so far requires any relation between

the MCUFs at different points in time. To actually study the dynamic behavior of

DMCUFs, we now introduce a notion of time-consistency.

Definition 2.3.23. A DMCUF O := (Of)o<f<r is called time-consistent if for any

X, Y e L°° and s < t,

Of(X) = Of(F) implies that ®S(X) = <PS(Y). (2.3.26)

O is called strongly time-consistent if in addition its acceptance sets (At)o<t<r satisfy

<A>t ^ <A>s f°r ?
—

s-

In the literature, one can find several differing definitions of time-consistency; see

for instance [Pen04], [Web06], or [ADEHK04] for an overview. For our purposes,

(2.3.26) means that indifference at time t between two payoffs X and Y is carried over

to any time s < t, i.e., when less information is available. Because the "=" signs
could obviously be replaced by ">" signs in (2.3.26), time-consistency preserves the
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ordering between payoffs over time, but does not fix the level at which this occurs.

Unless all Of are normalized, (2.3.26) therefore does not guarantee that an X accept¬

able in t is also acceptable at time s < t; this requires strong time-consistency. We do

not impose normalization here since we later consider operations on DMCUFs which

preserve (strong) time-consistency, but may change the initial utility level; see the

remark after Theorem 2.4.3 and Example 2.7.1.

Remark 2.3.24. i) In Section 2.7.2 we investigate DMCUFs which are defined

via solutions of backward stochastic differential equations. As they are al¬

ways time-consistent, these provide us with a big class of examples for time-

consistent DMCUFs.

ii) Epstein and Schneider's Example 4.1 in [ES03] illustrates that under ambiguity

aversion, a rational agent might well exhibit a time-inconsistent behavior. Like

for all axioms concerning decision making, it is thus important to be aware of

situations where seemingly natural rules are violated.

O

For a DMCUF (Of)o<f<r with acceptance sets (At)o<t<T and for s < t, we use

the notation As(Tt) := As n L°°(Ff). We note that O^r := O^ o O, is an MCUF at

time s and denote by Asot its acceptance set. Similarly as in Theorems 12 and 16 in

[Del06], time-consistency can then be characterized as follows; see also Proposition 8

of [DS05].

Lemma 2.3.25. For a DMCUF O = (Of)o<f<r, the properties

a) Oç = Oi0f for all s <t,

b) As = Asot for all s < t,

c) As — As(Ft) + At for all s < t,

are all equivalent and imply

d) O is time-consistent.

7/"0 is normalized, i.e., Of (0) = Ofor all t [0, T~\, then d) is equivalent to a) - c).

Proof a) implies d) and by c) of Lemma 2.3.9 is equivalent to b). If Or(0) = 0,

take X g L00 and define Y := Of(X) to get by translation invariance Of(7) =

Of(0+ Or(X)) = Of(X). Time-consistency then yields <PS(X) = ®S(Y) = Qsot(X)

so that d) implies a).

"b) =}> c)": To show the inclusion "D" in c), let X = Xi + X2 with X\ g As(Ft),

X2 G At and use translation invariance and that X2 G At to get Or(X) = Xi +

Of(X2) > X\. Monotonicity and X\ G As(3rt) thus yield 0,y0f(X) > O^(Xi) > 0
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so that X g ASot = >A>s by b). For the converse inclusion, write X e As as X =

Of (X) + (X — Of (X)). The second summand is in At, and the first is in Asffî) since

0^(Of(X)) = <£>s0t(X) > 0 because X g As = Asot by b).

"c) = b)": To show "Ç", write X G As by c) as X = Xi + X2 with X{ g A(^)

and X2 g At. As above, this yields Or(X) > Xi and hence by monotonicity of

$>s that Oj(Of(X)) > O^(Xi) > 0 since X\ As. Thus Or(X) G <A* which is

equivalent to X g Asot •
To obtain "2", note that X g Asot gives Of (X) g AsW) so

that X = (X - Of (X)) + Of (X) A, + As(yt) = As by c). G

For a normalized DMCUF, time-consistency and strong time-consistency are the

same. In fact, 0^(0) = 0 implies 0 g AsiFt) and therefore At ç As by c) of Lemma

2.3.25. Moreover, each of the equivalent properties a) - c) in Lemma 2.3.25 implies

that O is normalized. To see this for a), simply write

Of(0) = Of0f (0) = Of (0 + Of (0)) = Or(0) + Of(0) = 20f (0).

Moreover, an arbitrary DMCUF O := (Or)o<f<r is time-consistent if and only if

the normalized DMCUF O' :- (®'t)o<t<T defined by *',(•) := Of(-) - 4>,(0) is

(strongly) time-consistent. The acceptance set of Of is A't := At + Of (0), where At

denotes the acceptance set of Of. However, we illustrate in Example 2.7.1 below that

a DMCUF can be strongly time-consistent without being normalized.

Suppose that a DMCUF O satisfies At Ç As for t > s. Then t i-> inf^E^A, Eq[X]
is increasing and thus infxeA, Eq[X] > —oo holds for all t as soon as we have this

for / = 0, i.e., if ao(Q) = infxe^o Eq[X] > -oo. Hence condition I) in Theorem

2.3.16 simplifies in this case. Similarly, a time-consistent DMCUF O with Oo relevant

has Of relevant for all t.

For the economic interpretation of property a) in Lemma 2.3.25, note that for any

normalized DMCUF O we have Of(X) = Or(Or(X)) .
This means that the agent

assigns at time t the same monetary utility to X and to Of (X). If she acts in a time-

consistent way, she should stick to this indifference at time s, which yields exactly

property a). Clearly property b) is just a reformulation of a). For property c), we note

that As ç AsiFt) + <A>t means that we can split any payoff acceptable at time s into

the sum of a payoff Xi which is acceptable at time s when the observation period
ends at time t, and a payoff X2 which is acceptable if the observation period starts at

time t. Conversely, let a payoff X be the sum of such Xi and X2. Normalization and

translation invariance imply that Of(Xj + X2) = Of(X2) + Xi > Xi = Of(Xi),

i.e., at time t the agent prefers the payoff X = Xi + X2 to Xi. If she acts in a time-

consistent way, she should have the same ordering at time s; see the comment after

Definition 2.3.23. As Xi is acceptable at time s, this shows that the converse inclusion

should hold as well. Note that the above interpretations all use that O is normalized.
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Remark 2.3.26. Until now, we have considered DMCUFs for the time horizon T. To

emphasize the dependence on T we write

Os,r(-) instead of Oj(-).

In view of a possible study of indifference valuation functionals for intermediate time

horizons t < T one could also look at DMCUFs (O^f ( ))o<s<t for all t < T, the

idea being that <Ps,t (X) is the value at time s for the payoff X g L00^) due at time

t (instead of T). Where such a 0.jf comes from will be discussed later. In general,
a property one might want to have for such families of functionals (in addition to

(strong) time-consistency of O. r) is

(Ä) Recursiveness: Oj7f (<PttT (X)) = ®s,t(X) for any X G L°°(Fr).

(This could also be called Bellman's principle.) Note the difference between recur¬

siveness and property a) in Lemma 2.3.25, where we have $>S,T instead of O^f. In

economic terms, recursiveness means that if we want to value the time T payoff X

at time s, we can either do this directly or first value it at time t > s and then value

that result at time s. This can also be desirable for non-normalized functionals. The

concept of recursiveness seems to go back to Peng who studied it in the context of

non-linear expectations; see [Pen04] for a comprehensive overview. The following
considerations are motivated by a discussion with S. Peng.

The aim of the present work is to obtain a valuation functional from indifference

considerations. Among other things, we assume that there exists a bank account with

zero interest rate, so that money can be freely transferred over time. Hence an investor

should be indifferent between receiving a payoff X g L00^) at time t < T or at

time T. If the indifference valuation functionals over time are given by a family p, we

should therefore have

ps>t(X) = Ps,t(X) for all s < t < T and X e L00(£*,). (2.3.27)

In addition, indifference valuation functionals should be normalized, i.e., ps,t (0) = 0

for all s < t < T. With this and (2.3.27), time-consistency and recursiveness are

equivalent; see Lemma 2.3.25. Moreover, (P) for p then also holds for any time

horizon u > t instead of T.

The indifference valuation DMCUF p,j will be obtained from a (strongly) time-

consistent DMCUF O. j via normalization, i.e., psj(-) = ®s,t(-) — ®s,t(Q)- Here

difficulties can arise if we want to valuate also for intermediate time horizons / < T

but do not start with normalized families O. In fact, for all s < t < T we want to have

MCUFs (with time horizon t) <&Sjt : L°°(F,) -> L°°(5;) and then to set

PsAX) " 0,,f (X) - 0,,f (0) for all X G L°°(^). (2.3.28)

With this construction, we can assume (2.3.27) if and only if

OM(X)-O,,f(0) = O,,r(X)-O,,r(0) for alls < t < T, X e L°°(^). (2.3.29)
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This holds, e.g., if the indifference valuation DMCUF is constructed from the condi¬

tional exponential certainty equivalent; see Example 2.7.19. If O satisfies (2.3.29) and

O, t is time-consistent, then O. >t
is also time-consistent for each t. p_ f from (2.3.28)

is then normalized and strongly time-consistent for each t, and hence the family p also

satisfies (P.).
Since the family O is the basic building block in the above construction, we now

have to ask where Oif comes from. O.r is always given, and the simplest way to

obtain some O. j satisfying (2.3.29) is the brute force definition

QSJ(X) := <&s,t(X) for s < t < T and X g L00^).

This will always work, but is not always reasonable. Suppose for instance that O^f

should represent some maximal subjective utility achievable between s and /. Then

another reasonable definition could be

Om(X) :=Oijr(X)-Of,r(0) for alls < t < T and X V°(Ft). (2.3.30)

The loose argument for subtracting the second term is that since X is known at time

/, it is by translation invariance irrelevant for the maximal utility achievable during
the period from t to T. (But of course such an "argument" via splitting (s, T] into

(s, t] and (t, T] is based on the intuition from recursiveness and thus has a taste of

circularity.) It is straightforward to check that (2.3.30) implies (2.3.29). However,

0Jjf (X) is not ^-measurable unless Or r(0) is, and if this should hold for all s, we

must require that (Os,r(0))o<s<:r is a deterministic process. In that case, (2.3.30)

gives a good definition.

In Section 2.7.2, we shall examine functionals O. j defined via backward stochas¬

tic differential equations (BSDEs). In that case, the BSDE also produces a natural

definition for O. j
for each t < T, and one can show that if O. j (0) is deterministic,

those O. j must be of the form (2.3.30). In that sense, this definition is also natural. O

Although time-consistency is desirable in most situations, it is also quite restrictive

as we shall illustrate by an example in Section 2.7.3. In preparation and to complete

the results here, we provide another equivalent description of time-consistency for the

case where the DMCUF is coherent. Since DMCohUFs are always normalized, this

description is also equivalent to strong time-consistency.

Definition 2.3.27. A set Gl ç pa is called weakly multiplicatively stable (weakly

m-stable for short) if Gl D Pe ^ 0 and Gl has the following property: If we take any

ß°, ß1, Q2 G a with associated density processes Z°, Z1, Z2, fix t [0, T] and

A e 3^, impose that ß1, ß2 g Pe and define

Z° Z°
Zt :- Ia-j^t + Ia'^Zt»

then Zj is the density of some element in Gl.
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Remark 2.3.28. i) Intuitively, weak m-stability means that Gl is closed under the

following operation: We pick any time t and construct from ß°, ß ', ß2 G Gl a

new probability measure ß G Q which agrees with ß° on Tt and has after t on

A the same J7-conditional behavior as ß1 and on Ac the same as ß2.

ii) Definition 2.3.27 is similar to the definition of m-stable sets given in [Del06].

However, we only paste together probability measures at deterministic times,

whereas Delbaen also considers stopping times. Therefore we have to introduce

the set A to ensure that the set {Eq[X\Fi] \ Q e Gl n Pe] is a lattice for each

X G L°°, whereas this holds automatically when stopping-times are allowed;

see Proposition 1 in [Del06]. Moreover, in [Del06] it is assumed that P e Gl; but

since P is required only to specify the nullsets and to ensure that Ö Pi Pe ^ 0,

the latter condition is already sufficient. Moreover, our assumption that !Fq is

trivial simplifies the definition slightly.
O

The following Lemma 2.3.29 is a slight improvement of Theorem 12 of [Del06] as

it does not only give (in part a)) a structural description of time-consistent DMCohUFs

of a particular form, but also shows (in part b)) that every normahzed time-consistent

DMCUF which is well-representable and positively homogeneous at time 0 is of this

form, and gives an explicit representation. This will prove helpful in the abovemen-

tioned example of Section 2.7.3.

Lemma 2.3.29. a) Define a family ofmappings O = (Of)o<f<r on L00 by

Of(X) =essinf£G[X|5rf] (2.3.31)
Qe&e

for some L1 -closed and convex set Q ç Pa with Gle - Gl n Pe # 0. Then O

is a well-representable strongly time-consistent DMCohUF if and only if Gl is

weakly m-stable.

b) Conversely, let O = (Of )o<r<r he a normalized time-consistent DMCUF such

that Oo is positively homogeneous and well-representable. Then O can be rep¬

resented as in (2.3.31) and is in particular a DMCohUF, i.e., positively homo¬

geneousfor all t G [0, T]. Moreover, Gl is unique, weakly m-stable and consists

of all Q G Pa whose densities are elements of the polar cone of —Ac, where

Ao is the acceptance set 0/O0, i.e.,

& = \Qçpa\dQ = ZTdP, Zr (-*4>o)° n ^(L1)} . (2.3.32)

Here B(L,1) is the unit ball in L1, and the polar cone of—Ao is given by

(-A0)0 = { Z G L1 E[ZX] < 0 for all X (-A0)\ .
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Remark 2.3.30. Lemma 2.3.29 shows that a DMCUF which is positively homoge¬
neous at time 0 can only be time-consistent if the set of representing measures at time

0 or the acceptance set Aq at time 0 (more precisely, the polar cone of —Aq) has an

appropriate structure. Moreover, it shows that there exists at most one normalized

time-consistent DMCUF which extends a given static MCohUF at time 0. In Section

2.7.3 we consider an example of a static MCohUF at time 0 which cannot be extended

to a time-consistent DMCUF. O

ProofofLemma 2.3.29. a) This follows similarly as in the proof of Theorem 12 in

[Del06]. The assumption that Gle ^ 0 is obviously necessary from the definition

of a (weakly) m-stable set.

b) By the proof of Theorem 3.2 in [Del02], with Gl from (2.3.32),

<Do(-)= inf EQ[.] (2.3.33)

on L00, and Gl is L1-closed and convex. To show that Of can be represented by

(2.3.31), we define a DMCUF Ô = (Of)0<f<r as the RHS of (2.3.31), i.e.,

Ôf(X) := ess inf E0[X\Ft] for all X g L°°,
ßeo*

and we show that O = O; weak m-stability of Gl then follows from a) and the

time-consistency of O. Since Oq is well-representable, there exists Q e Pe

such that Oo( • ) < E-q[ ]. Hence the density Zj of ß is in (—^o)° so that

ß G Gle and we can replace Gl by Gle in (2.3.33) which then implies that

O0 = O0 (2.3.34)

on L°°. In fact, fix Q' e Gl with density Z'T and define for each e > 0 a measure

Qs G Gle by its density ZST := eZj + (1 — s)Z'T. Clearly, as e tends to zero,

Zj converges to Z'T in L1 and hence also weakly in L1. This shows (2.3.34).

Lemma 2.3.9 implies that two DMCohUFs O1 and O2 are equal if and only if

they have the same acceptance set at each time /. Therefore we are left to show

that for all t G (0, T]

At := {XL°°|Of(X) >0} = Ix G L°°(^)| Or(X) > 0 j =: Ât.

Fix t (0, T] and let X G if, i.e., Of(X) = ess inf EQ[X | Ft] > 0. Then

(2.3.34) yields

0 < inf^ Eq[1aX] = O0(lAX) for all AeFt. (2.3.35)
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As O is time-consistent and normalized, Lemma 2.3.25 and ^-regularity imply
that

O0(lAX) = O0(Of(lAX)) = O0(lAOf(X)) for all A G Ft.

From this, (2.3.35), (2.3.34) and since ß g Gle, we obtain that

0 < O0(lAOf(X)) = inf£ß [lAOf(X)] < Eq [lAOf(X)] for all A e Tt.

But since Of (X) is ^-measurable, this implies that Of (X) > 0. Hence X e ^f

and At ç At. To show the converse inclusion, suppose that Of (X) > 0. Then

Tt -regularity and normalization yield

Of(lAX) = lAOf(X) > 0 for all A&Ft.

Hence time-consistency, monotonicity and normalization imply that

O0(lAX) = O0(Of(lAX)) > 0 for all A g Ft.

Consequently, we have by (2.3.34) that

and obtain

inf £ß[lAX] = O0(lAX) > 0 for all A e Tt
ßeöc

Of(X) = ess mfEQ[X\Tt] > 0.
ßÖe

This shows that At = At.

We are left to show uniqueness of Ö, and it suffices to prove that there is a

unique representing set at time 0. Suppose there exists another L1-closed and

convex set Gl ^ Gl ç pa such that

O0(-)= inf EQ[-]= inf EQ[-] (2.3.36)

on L00. Then we apply the same arguments as in the proof of (2.3.34) to con¬

clude that also

inf EQ[-]= inf EQ[-] (2.3.37)
ßeö Qeé

on L°°. Without loss of generality there exists ß G Gl\Gl, and so the Hahn-

Banach theorem yields some X L00 such that

O0(X) = inf EQ[X] > EÖ[X] > inf EQ[X] = O0(X).
ßeö ^

QeQ.

This being a contradiction, Gl must be unique.
D
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2.4 Convolution

In this section we study an operation on MCUFs called convolution. We know from

the preceding section that an MCUF models the preferences of an agent. If this agent

gets the possibility to trade in some financial market, this will affect her preference
ordering. We shall see that this can be captured by convoluting appropriate MCUFs.

From a purely mathematical point of view, the convolution is an operation on two

MCUFs at time / which defines a new MCUF. If O1 and O2 are two (strongly) time-

consistent DMCUFs, then we can obtain a new DMCUF by convoluting O/ and O2

at each time t. An important property of the convolution is that this DMCUF is again

(strongly) time-consistent.

Definition 2.4.1. Let O* and O2 be two MCUFs at time t. The convolution of®} and

O2 is defined as

0jG02(X) :=esssupfo/(X + y) + 02(-F)} forallXGL00. (2.4.1)

If B ç L00 is non-empty, convex and .Ff-regular, the convolution of O] and B is

defined as

*J nB(X) := ess sup O,1 (X + Y) for X g L00. (2.4.2)
Y<e-B

Remark 2.4.2. i) The convolution is obviously symmetric, i.e.,

Oj D02(X) = 02noJ(X) for all X g L°°.

ii) Since L°° is a linear space, we could equivalently define the convolution by

0jD02(X) :=ess sup {of](X - Y) + 02(F)1.

This looks more natural because of the analogy to classical convolution opera¬

tions. We deliberately choose the formulation (2.4.1) because it will turn out to

be more convenient for subsequent interpretations. O

For a brief overview of the development of this type of convolution, we should

probably start with Rockafellar. In his book [Roc70], he studied the infimal convolu¬

tion of two convex functions / and g, defined as

fOg(x) := inf {f(x -y) + g(y)}. (2.4.3)
yelR

The terminology arises from the obvious analogy to the formula for classical integral
convolutions. The convolution (2.4.3) is dual to the operation of addition for convex
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functions in the sense that the convex conjugate of / + g is equal to the convolution of

the conjugates of / and of g. The convolution in (2.4.1) was introduced and studied

by [DelOO] for static and coherent risk measures; see also [Del06a]. One motivation

for studying Of] DO2 comes from a problem of risk transfer between two agents with

preferences given by O,1 and O2; see Barrieu/El Karoui ([BEK04], [BEK05]). We will

show below that convoluting O0 and O2, also corresponds to finding a Pareto-efficient

exchange between two individuals with preferences Oq and O2,. This has been pointed
out to us by N. Touzi; see also [JST05].

The main result of this section is an extension of Theorem 3.6 in [BEK05] in

several directions. We show that the convolution operation produces a new MCUF

and also preserves the dynamic property of (strong) time-consistency. All this is done

in a conditional and abstract setting. This is in contrast to [BEK05] who only treat

the static abstract case, and also to [BEK04J who study in the dynamic case a class of

DMCUFs defined via BSDEs; we will come back to this in Section 2.7.2. Moreover,

the question of time-consistency for convolutions ofDMCUFs seems not to have been

addressed so far in a general setting. In technical terms, the main difficulty here is

related to closedness properties of acceptance sets; this comes up when we need to

identify the acceptance set of the convolution ®}o®2. Before we state the main result

of this section, we recall from Lemma 2.3.14 that any MCUF which is continuous from

below is also continuous from above, and hence representable due to Theorem 2.3.19.

Theorem 2.4.3. For i — 1, 2, let Of be MCUFs at time t with acceptance sets A\ and

concave conjugates a\. Assume that O/üO2(0) g L°°. Then:

a) ®} DO2 is an MCUF at time t, andfor all X L00

0jD02(X) = ®}UA2(X) = ess sup {®}(X + Y) + 02(-F)}, (2.4.4)
Ye-£

where B is an arbitrary subset ofL°° containing A2.

b) If®} and ®2 are both coherent, so is ®}u®2.

c) If®} or ®2 is continuous from below, then ®}o®2 is continuous from below

and in particular representable. Its concave conjugate a}U2 is then given by

a}n2(Q) = ol](Q) + af(Q) for ß G $>?, (2.4.5)

and its acceptance set A}n2 is given by

A}D2 = A} + A2, (2.4.6)

where the closure is taken in er(L°°, L1). If in addition we have

inf EÖ[X] > -oo for some ß G Pe, (2.4.7)
XeAJ+Af

^
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then O/do2 is also well-representable.

d) Suppose that ®l — (®\)o<t<T for i = 1,2 are (strongly) time-consistent

DMCUFs such that for each t G [0, T], ®} is continuous from below and

0^00^(0) G L00. Then 0]n02 = (OjaO2)0<f<r is also a (strongly) time-

consistent DMCUF.

Remark 2.4.4. i) Like in Section 2.3, condition (2.4.7) simplifies if O^O2 is

strongly time-consistent; it is then enough if

inf Eq[X] = al0(Q) + aj(ß) > -oo for some ß e Pe.

ii) We illustrate in Example 2.7.1 below that ®} GO2 need not be normahzed even

if Oj1 and O2 both are. This is our main reason for abandoning the requirement
of normalization.

O

As mentioned above, convoluting the MCUFs Oq and O2, corresponds to finding a

Pareto-efficient exchange between two individuals with preferences corresponding to

Oq respectively O2,. To see this, denote by

K0:=\(Y\y2) eL00 xL°° Yl + Y2 = x\

the set of al\ feasible exchanges. Then (2.4.1) for / = 0 can equivalentiy be written as

sup \®l0(Yl) + ®0(Y2)}. (2.4.8)
(y\y^ek0

A feasible exchange (F1, Y2) g Ko is called Pareto-efficient if no (Y], Y2) G Ko

satisfies

O0(r ) > ®i0(Yi), ®J0(YJ) > ®J0(YJ) for (i, ;) = (1,2) or (i, j) = (2, 1). (2.4.9)

(f\ Y2) is called weakly Pareto-efficient if ">" is replaced by ">" in (2.4.9). It is

well known (see, e.g., Proposition 2.8 in [IBK02]) that (Y1, Y2) e K0 is weakly
Pareto-efficient if and only if there exists (X1, X2) g IR^XKO, 0)} such that

(Yl,Y2) maximizes (Y], Y2) hv X1*^1) + X2®l(Y2) overdo- (2.4.10)

If X1 > 0 and X2 > 0 then (F1, F2) is even Pareto-efficient.

Note that for any c g IR and (Y1, Y2) e K0 also (Yl + c, F2 - c) G K0 and that

by translation invariance of O0, we have

X1 ®l(Y] + c) + X2 ®2Q(Y2 -c) = X1 ®10(Y1) + X2 ®l(Y2) + c(Xx - X2).
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But if X1 ^ X2, then this tends to +00 if c - +00 or if c - -00. Thus (F1, F2) G

Ä'o is a Pareto-efficient exchange if and only if it satisfies (2.4.10) for X1 = X2 > 0,

i.e., if it maximizes (2.4.8). This explains the connection between the convolution and

Pareto-efficient exchanges.

There is another economic interpretation for the convolution which comes from the

second expression in (2.4.4) and was suggested in [BEK05]. Consider two individuals

I\ and I2 with preferences corresponding to O,1 and O2 who want to maximize their

monetary utilities. Suppose that I\ owns at time t < T some asset with payoff X at

time T. She might try to increase her utility by exchanging at time t with I2 some

payoff F due at time T. But of course, I2 will only agree to hand over Y to I\ if

he deems the for him resulting payoff —Y acceptable. This gives a constraint for the

maximization problem of I\ exactly as in (2.4.4). In particular, if the preferences
of agent I2 correspond to a normalized MCUF so that O2(0) = 0, he will agree to

handing over F if and only if this does not decrease his utility.

In the proof of Theorem 2.4.3, we use the following auxiliary result.

Lemma 2.4.5. Take an MCUF ®} at time t and a non-empty, convex and Ft-regular
set B ç L°°. If®}nB(0) L°°, then:

a) ®} DB is an MCUF at time t.

b) If®} is coherent and B a convex cone containing 0, then ®} DB is an MCohUF

at time t.

c) If®} is continuousfrom below, so is ®}oB.

Proof. To shorten notation we write Of := Or' OB.

a) Properties A) and B) of Definition 2.3.1 are obvious. To see C), let ß e [0, 1]

and X], X2 G L°°. Since B is convex and O* is concave, we get

®t(ßX]+(l-ß)X2)
= ess sup ®} (ß(X, + Fi) + (1 - ß)(X2 + F2))

YuY2£-ß

> ß ess sup O/ (Xi + Yi) + (1 - ß) ess sup 0/(X2 + F2)

= ß®t(Xl) + (l-ß)®t(X2).

Finally, A) and B) imply

l|Of(X)||Lro < ||Of(0)||L°o + ||X||l- < 00

so that Of (X) L00 for each X g L'
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b) To see that Of is coherent, we first show that

Of(0) = 0. (2.4.11)

Suppose this is not true. Since ®} as MCohUF is normalized so that 0 g B

implies Of (0) > ®} (0 + 0) = 0, we then must have Or (0) > 0 with positive

probability. Because the essential supremum in the definition of Of can be

written as the pointwise supremum over a countable number of elements of

-<© ([Nev75]), there exist F G -B and A g Tx with P[A] > 0 such that

Of(0) > ®}(Y) > 0 on A.

Now replace F by nY and use positive homogeneity of ®} and that S is a

convex cone to obtain for n -» oo that Of(0) = +00 on A, contradicting

Of(0) L°°. This establishes (2.4.11). Now let X > 0. For any X g L00 we

obtain by using positive homogeneity of ®} and the fact that B is a convex cone

that

ess sup ®} (XX + F) = ess sup X®} (x + -) |
Ye-B Yz-B I

^ ^'J

= X ess supO^X + F).
Ye-B

Hence Of is positively homogeneous.

c) To see that continuity from below of ®} carries over to Of, let (Xw)we^v be a

uniformly bounded sequence increasing to some X g L00. Then monotonicity
of Of yields

lim Of(X„) = sup Of(X„)

= sup I ess sup ®} (Xn + Y) 1
neW I Ye-B J

= ess sup { sup ®} (Xn + F)}
Ye-B »£JV

= ess sup oJ(X + F)
Ye-B

- Of(X),

which shows that Or is continuous from below.
_

Proofof Theorem 2.4.3. To shorten notation we write ®t := ®}o®2 for t G [0, T].
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a) Once we have shown (2.4.4), the rest follows from Lemma 2.4.5 a). We begin

by proving the first equality in (2.4.4), i.e., that

ess sup {oJ(X + F) + 02(-F)} = ess sup ®}(X + Y').
Yd Y'z-Aj

For arguing "<", we fix F g L00 and show that there exists Y' G —A2 such that

®}(X + Y) + ®2(-Y) = ®}(X + Y').

In fact, translation invariance implies that Y' :— F+02(—F) is in —A2 and also

yields ®}(X + Y') = ®} (X + F) + 02(-F). To see ">", note that Y' e -A2

yields 02(—F') > 0 and therefore

Oj(X + Y') < ®}(X + Y') + ®2(-Y').

This shows the first equality in (2.4.4) which then immediately implies the sec¬

ond by

®} n O2 (X) > ess sup { ®} (X + Y') + O2(- Y')}

> esssuplo^X + F^ + O^-F')}
Y'e-Aj

> ess sup Or' (X + Y')
Y'e-Aj

= ®}a®2(x),

where we used again that ®2(-Y') > 0 for all Y' G -A2.

b) This follows immediately from (2.4.4) and Lemma 2.4.5 b), since A2 is by
Lemma 2.3.6 a convex cone containing 0.

c) Continuity from below follows immediately from (2.4.4) and Lemma 2.4.5.

From this together with a) and Lemma 2.3.14, we can apply Theorem 2.3.19

which implies that ®t is representable. If in addition (2.4.7) holds, Of is even

well-representable by Theorem 2.3.16. Moreover, (2.4.5) holds since by Defi-
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nition 2.3.10 for any ß e _P~

ot]n2(Q) = essinf{£0[X|^f]-esssup{o;(X + F) + 02(-F)}}
XeL°° l

YéL.00

= ess inf I ess inf
X_L°° y FeL00

[eq[X + Y\Tt] + EQ[-Y\Ft] - ®}(X + F) - 02(-F)}}
= eySSLinf{£ö[-F|5-f]-02(-F)

+ ess inf \Eq\_X + Y\F,] - ®}(X + Y)\)

= essinf{£ö[-F|Ff]-02(-F) + u!r1(ß)]

= a2(Q) + a}(Q).

The proof of the assertion that À}ni = A} + A2 is a bit more involved. If

X; G A\ for i = 1,2, then <Dr(Xi + X2) > <Dj(Xj) -f 02(X2) > 0 shows

that X\ + X2 G ,Arin2, and because Af1D2 is closed in cr(L°°, L1) by Theorem

2.3.19, we obtain
________

e^«f "I- vbf __:
t/v* .

For the converse inclusion, we claim that for all Z G L+

inf E[ZX] = inf _?[ZX] = inf £[ZX]; (2.4.12)
X_A1D2 XeIA,1+tA2 __e_i+_2

note that the second equality follows from the first since we already know that

A} +A2£ A} + A2 ç a}U2. Then if the inclusion "ç" in (2.4.6) is not true,

there exists some X' g A}D2 \ A} + A2, and the Hahn-Banach theorem yields
some Z'eL1 with

inf E\XZ'\ > E\X'Z'\ > -oo. (2.4.13)

But since —{A} + A2) is solid, we must have Z' > 0, and so (2.4.13) contra¬

dicts (2.4.12).

To complete the proof, it remains to establish (2.4.12). To that end, we first use

Lemma 2.3.12, (2.4.5) and again Lemma 2.3.12 to obtain

1G2,essinf £ß[X|5f] =
a/uz(ß)

XïA}m

— ess inf £ß[Xi | J7] + ess inf EqIX^^
Xi<=A] X2<=AJ

= ess inf EQ[X\Ft] for all ß e 3>*. (2.4.14)
XeAl+Àf
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Now up to normalization, P n Pa can be identified with

Zt:=\z e\\ for all A g Tu P[A] > 0 implies £[Z1A] > ol.

Hence (2.4.14) implies that

ess inf
_ [ZX|Ff] = ess inf E[ZX\Ft] for all Z Zf. (2.4.15)

XïA)m XeAJ+Af

To extend this to all Z g Lj., fix Z e L+ and define 5
_ F, up to nullsets by

Is :— ess supjlx I A e Tt and Zl^ = 0} so that Z\& = Z. Because Or is

representable, we have by Lemma 2.3.12 that

L00 3 -Of (0) = ess suparin2(ß) = ess sup ( ess inf Eq[X\F,])

and so there exists Q' G Pf" such that ess inf
_ ^[Xl^] g L00. If Z'T denotes

XçAJn2

the density of Q', then Z :— Z'TlB + Z\Bc is in Zt and

lBcE[ZX\Ft] = lBcE[ZX\Ft\ forallXGL00. (2.4.16)

Using Z = Z\BC, (2.4.16), (2.4.15) for Z and then reversing the steps again

yields
ess inf E[ZX\Ft] = ess inf E[ZX\Ft]
X&A)n2 XeAJ+Àf

as desired. Because {__[Z_ï_Fr] | X g .B} is a lattice for B g {.Af102, A}+A2}
by Tt -regularity, we can interchange infimum and expectation to obtain

inf E[ZX] = inf E[ZX]
XtA]n2 XeAJ+A2

for every Z G Ll+. This establishes (2.4.12).

d) Suppose first that O1 and O2 are time-consistent. We may also assume that they
are normalized, because the MCUFs O^(X) := 0'M(X) — ®'u(0) for i = 1,2

are, we have Om(X) = Ô^nÔ2(X) + (O^(0) + O2(0)), and time-consistency
is not affected by translation. So lets < t and Xi, X2 be such that

Of(Xi) = Of(X2) = ess supOj(X2 + F). (2.4.17)
Yc-A2

By (2.4.4) it suffices to show that we then have

®lnA2(Xi) = ess supO](X! + Y') = ess supO](X2 + Yf).
Y'e-Al Y'e-A*
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Now Lemma 2.3.25 implies that

<_»](__) = 0](Of1(X)) forXGL00, (2.4.18)

A2 = A2(Ft) + A2, (2.4.19)

and Lemma 2.3.6 applied to A2 together with the Ft -regularity of ®} yields

that {o/(X + F) | F g -A2) is a lattice for any X G L00. Hence there is a

sequence (F„) in -A2 such that ess sup <Dj(__ + _) =/ - lim^oo ®}(X+Yn).

Ye-A2

Moreover, (®} (X + F„))wsW is uniformly bounded due to (2.4.4) because

-||X + Fi||l- < ®}(X + Fi) < <î»J(X + Yn) < ess supOJ(X + F) = ®t(X)
Ye-A2

and since Or (X) L°°. Hence translation invariance and continuity from below

of O] imply for any element F of A2(Ft) that

O] ( ess sup ®}(X + Y + Y)\ = /- hrn^ <_»] (®} (X + Y„) + Y)
V Ye-A2 /

n^"X>

< ess sup ®l (®} (X + F) + F),
Ye-A2

and by monotonicity of o], we even must have equality. Combining this with

(2.4.18), (2.4.19) and using (2.4.17) to exchange Xi for X2, we get

ess sup O](Xi + Y') ^ ess sup ess sup o] (®} (Xi + F + F))
Y'e-A2 Ye-A2(F,) Ye-A2

= ess sup O] I ess sup ®} (X2 + F) + F J
re-AjW)

^ Ye-A2 '

= esssup<Dj(X2 + y'),
Y'e~A2

where the last equality is obtained by doing the same steps in reverse order

with Xi replaced by X2. This shows that O is time-consistent. If O1, O2 are

strongly time-consistent, we have in addition A'( c A's for t > s and i = 1,2,

and thus also A} + A2 ç ^1+^2 Hence (2.4.6) implies that O is strongly

time-consistent as well, and so d) is proved.

D

Remark 2.4.6. Parts of the proof of Theorem 2.4.3 are a straightforward generaliza¬

tion of the arguments for the (static) Theorem 3.6 in [BEK05]; this extends smoothly
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because thanks to the preparations in Section 2.3, we can appeal to the dynamic repre¬

sentations in Theorem 2.3.16 and 2.3.19 instead of their static counterpart. Exceptions

are the parts where we show (2.4.6) and the assertions b) and d). O

If ®} is an MCUF and B a pre-acceptance set at time t, Lemma 2.4.5 implies that

Of := ®} B is again an MCUF, provided that ®t (0) L00. In the sequel, we want to

have a maximum of good properties for that Of with a minimum of assumptions on B.

To make this more precise, recall from Lemma 2.3.9 the MCUF ®f associated to B.

By (2.4.4), it seems natural to expect that ®}aB — ®} nof and that the acceptance

set of Of should be A} + B in view of (2.4.6). However, this can be deduced from the

preceding results only if ®} is continuous from below and B is the acceptance set of

Of, e.g., if B is closed in a (L°°, L1 ). Because the latter is often hard to check, we_do
not want to make that assumption. So we first work with the a (L00, L1 )-closure B of

B since we have precise results for O^DOf, and then show that the latter coincides

with O,1 D.S.

The program sketched above is carried out in the next result. This in turn is used

below in Section 2.6 when we study indifference valuation.

Proposition 2.4.7. Let B be a pre-acceptance set and ®} an MCUF at time t with

acceptance set A} and concave conjugate a}. Denote by B the closure of B in

<r(L°°, L1). If®}nB(0) = ess sup Or'(F) L00, then

Ye-B

®}nB = ®}a®f. (2.4.20)

If in addition ®} is continuousfrom below and

ess sup ( - B n h°°(Ft)) g L°°, (2.4.21)

then
_

®}OB = ®}a®f. (2.4.22)

In particular, ®t := ®} n_B is then continuousfrom below with concave conjugate

oct(Q) = a}(Q) + af(Q) := a](Q) + ess inf EQ[Y\Ft] (2.4.23)

and acceptance set

At = A} +B = A} + B.

Proof. If Af denotes the acceptance set of Of, then B ç Af so that (2.4.4) implies

O/nof (X) = ess sup oJ(X + F) > ess sup Oj(X + F) = 0ja#(X). (2.4.24)

Ye-Af Ye-B
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Since Of is non-negative on Af, (2.4.4) also yields

®}o®f(X) < esssup(Or1(X + F) + of(-F))
Ye-Af

< esssup(o;(X + F) + of(-F))

_ ®}\3®f(X)

so that ®}n®f (X) = ess sup (®}(X + F) + Of (-F)). In view of (2.4.24), it thus

Ye-Af

suffices to show that for each Y' e —Af,

®} (X + Y') + Of (- Y') < ess sup ®} (X + F). (2.4.25)
Ye-B

Pick a sequence (mnt ) in L°°(Ft) and an Ff-partition (An) with -Y' - m" G B and

00

*f(-^/)<E1^<+e'

for a fixed e > 0. Then translation invariance of O* implies that

00

ess sup ®} (X + F) = V] lAn ess sup ®} (X + F)

oo

«=i

00

= o;(x + f') + £iax

> O^X + FO + Oft-F')-^.

Since e > 0 was arbitrary, this proves (2.4.25) and hence (2.4.20).

If we now assume (2.4.21), B is like B acceptable at time t and thus by Lemma

2.3.9 the acceptance set of the MCUF Of. So it is enough to prove (2.4.22) because

all claimed properties then follow from Theorem 2.4.3 and Lemma 2.3.12, and as

Of :— ®}DB and ®}a®f both are MCUFs at time /, they coincide if their accep¬

tance sets At and A} + B — AJ + B agree. By the assumptions and Lemma 2.4.5,

Of is continuous from below, so that At is closed in _r(L°°, L1) by Lemma 2.3.14

and Theorem 2.3.19. Because the definition of Or gives A} + B ç At, we obtain

A} + B C At, and the converse inclusion is trivial since (2.4.2) and (2.4.4) with

A2 — B give

Of (X) < ess sup ®} (X + F) = <DJ DOf (X) for X g L00.

Ye-B
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This completes the proof.

2.5 Superhedging under constraints

This section deals with superhedging under constraints. The results presented here are

slight modifications of those Föllmer and Kramkov proved in [FK97]. We obtain the

existence of a minimal hedging portfolio for a given payoff if trading is constrained,

and we provide a representation of the value process corresponding to this portfolio.

These results will be very helpful in Section 2.6. There we consider a DMCUF O

representing the preferences of some agent and assume that she gets the possibility
to trade in a financial market, possibly under some constraints. Then we use the

value process of the minimal hedging portfolio to construct a strongly time-consistent

DMCUF which allows us to capture the effects on the agent's preference order of the

trading opportunities.
In this section, all processes (except for integrands of stochastic integrals) are as¬

sumed to be RCLL and adapted with respect to the given filtration IF. For two such

processes U and V, the relation U < V means that V - U is an increasing process.

We model the discounted price process of some traded assets by a locally bounded

Md-valued P-semimartingale S = (St)o<t<T- Before we can state the main theorem

of this section, we need to specify the set of strategies allowed for trading and provide

some technical results which are required for its proof.

Definition 2.5.1. We denote by L(S) the set of all _Rrf-valued predictable processes

TT = (TTt)o<t<T which are 5-integrable, and call H e L(S) an admissible strategy if

the process (fQ Hu dSu)o<t<T is locally bounded from below. The set of all admissible

strategies is denoted by L"œ(S). We call a triple (x, H, K) an admissible portfolio if

x e IR, H e L^iS) and K = (Kt)o<t<T is an adapted RCLL increasing process

with Ko = 0. The corresponding value process is defined by

Vt =x+ f HsdSs-Kt, te[0,Tl
Jo

The economic interpretation of an admissible portfolio (x, H, K) is very simple:

x gives the initial capital of the portfolio, H specifies the number of units of each asset

held in the portfolio, and K models cumulative consumption.
If trading is not constrained, every admissible strategy can be used for trading.

However, we want to allow for trading constraints. For technical reasons we need to

impose some closedness properties on the set of allowed hedging strategies. To that

end, we recall the Emery distance between two real-valued semimartingales N] and

Af2, defined as

D(Nl, N2) = sup E 1 A / Jsd(N1 - N2)s ,

\j\<i L Jo
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where the supremum is taken over all predictable processes J which are uniformly
bounded by 1. By Theorem 5.4 of [Mem80], the space L(S) is complete with respect

to the metric

ds(H\ H2) = D ( J Hl dS, J H2 dS) .

Definition 2.5.2. We call a subset H of L"oc (S) an admissible hedging set if it contains

H = 0, is closed in L"0C(S) with respect to the metric ds and is predictably convex,

i.e., for any H1, H2 g M and any [0, l]-valued predictable process h = (ht)o<t<T,

the process hH1 + (1 — h)H2 belongs to M. An admissible portfolio (x, H, K) is

called H-constrained if H 3t.

Remark 2.5.3. i) Note that M need not be closed under addition or multiplication

by scalars in general.

ii) Since M is predictably convex and contains 0, we have for every H e M and

every stopping time x that also FT' := H\jxj^ G 3t. In addition, for any B G

L"oc(5), such IT' is also in Lfoc(5). More generally, if N is any process which

is locally bounded from below and x is any stopping time, then N' :— N — NT

is again locally bounded from below. To see this, assume for simplicity that

Nq = 0, N > 0 and for some n e IN define er := inf{/ > 0 | Nt > n). Then

on {t > r} we have N'tha = NtAff — NrA(T >0 — n, since on {t < a} we have

Ntact < n and on {t > x > a) we have NtAa — NrA(T = Na — Na = 0. O

Definition 2.5.4. For a payoff X g L00, we call an Jf-constrained portfolio (x, H, K)

an M-constrained hedging portfolio for X if its value process V is uniformly bounded

from below and satisfies Vj > X. An M-constrained portfolio (x, H, K) for X with

value process V is called minimal H-constrained hedging portfolio for X if

Vt < Vt for all t [0, 7]

for any M-constrained hedging portfolio for X with value process V.

One central auxiliary result is a characterization of value processes corresponding

to M-constrained portfolios. For its formulation, we need to introduce some additional

notation. Moreover, we make the following assumption to ensure that the market does

not provide any arbitrage opportunities.

Assumption (NFLVR): There exists ß G Pe such that S is a local ß-martingale.

Let us fix an admissible hedging set H and introduce the family of semimartingales

S = t HdS H eM
.
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Definition 2.5.5. Let P(S) denote the class of all ß g Pe for which there exists an

increasing predictable process A (depending on Q and S) such that N — A is a local

ß-supermartingale for any N e S, i.e.,

AN(Q) <Afora\lNeS, (2.5.1)

where AN(Q) is the predictable process of finite variation in the canonical decompo¬

sition of N under Q. Then we call an increasing predictable process A*(Q) the upper

variation process of S under ß if it satisfies (2.5.1) and is minimal with respect to

this property in the sense that A*(Q) < A for any increasing predictable process A

satisfying (2.5.1).

Remark 2.5.6. a) The set P(S) is denoted by P(S) in [FK97]. However, we

changed notation to avoid confusion with the set P of probability measures on

(S2,F).

b) Note that (NFLVR) ensures that P(<8) # 0. In fact, since M ç L^(S), if

ß e Pe is a local martingale measure for S, then each N e S is even a local ß-

martingale by Corollary 3.5 in [AS94]. Hence AN(Q) = 0 so that AS(Q) = 0.

O

Example 2.5.7. If M — L"0C(S), i.e., in the case of unconstrained trading, it is well

known that P(S) is just the set Me(S) of all equivalent local martingale measures

for S. Indeed, this can also be seen from Remark 2.5.6 and Lemma 2.6.15 below.

As shown in Remark 2.5.6, we then have A*(Q) = 0 for all Q e P(S) = Me(S).

Further examples can be found in [FK97]. O

Lemma 2.1 of [FK97], which characterizes P(4) and the upper variation pro¬

cesses AS(Q), reads as follows:

Lemma 2.5.8. A probability measure Q e Pe belongs to P(S) if and only if all

N G 4 are special semimartingales under Q and ess sup AN (Q)t < oo P-a.s. for all

Nes

t G [0, T]. In this case the upper variation process exists and is uniquely determined

by the equations

A*(Q)X = ess sup AN(Q)r, (2.5.2)
NeS

e\a*(Q)z] = sup e\an(Q)t] (2.5.3)

for all stopping times x < T. Moreover, there exists a sequence (Nn)new Ç S such

that the compensators An ;— AN" (ß) satisfy An _< An~l and

lim sup (A*(Q)t-Af\=0 P-a.s.



52 Chapter 2. Dynamic indifference valuation

Remark 2.5.9. Equation (2.5.3) is not really required for the characterization of

A*(Q) as it is a consequence of (2.5.2). In fact, Föllmer and Kramkov show in

the proof of their Lemma 2.1 that for fixed ß g P(S), the space of compensators

{AN(Q)\ N g S] is directed upwards. This implies that {AN(Q)r \ N G $} is di¬

rected upwards for any stopping time x < T so that (2.5.2) implies (2.5.3). O

In order to manipulate the upper variation process we require the following result:

Lemma 2.5.10. Fix a stopping time x < T', a set B G Fx and probability mea¬

sures Q1, Q2, Q g P(S), anddenoteby Z1, Z2 the density processes of Q1, ß2 with

respect to Q. Then

—-

.__ LjYb + Zx~^-lBc

dQ Z2

defines a probability measure Q G P(S) such that Q — ß1 on TT and

%[.|S_ = £ßi[.|^]ls + ^ö2[.|^]l^' on{t>x). (2.5.4)

The upper variation process of S under Q can be written as

A4(Q)u = ((A^(ß1)M-A^(ß1),)lfi + (A^(ß2)M-A^(ß2)T)l^)l{M>r)
+ AS(Q')UAX. (2.5.5)

Proof. That ß = ß1 on FT is obvious. To see (2.5.4), denote by Z the density process
of ß with respect to ß and note that ZTl{t>r} is Tt-measurable for i = 1, 2, so that

Zfl{f>T} = I Zt ls + ZT —lßC I l{t>T}.

Then
_

Zt I Zj Zj \

^l{f>T}
= I JfU

+ -~^U< I l{f>T}

yields (2.5.4). From this it is easy to check that for any N e S the finite variation

process in the canonical decomposition of N under ß is given by

AN(Q)U = ((AiV(ß1)M~AAr(ß1)T)lB + (A7V(ß2)tt-A;v(ß2)T)lßC)l{M>T}
+ AN(Q\Ar. (2.5.6)

By Lemma 2.5.8, if AS(Q) exists, then it is given by (2.5.2). Hence (2.5.6) implies
that AS(Q) = A^ß1) on the stochastic interval [[0, tJ and we are left to consider the
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increments after x, i.e., to show that

(A*(ß)M-A*(ß)T)l{ll>Tj (2.5.7)

= ((A*(Q\ ~ A*(Q*)t) U + (a*(Q2)u - A\Q2)X) \Bc) \{u>x].

For this, we note that for every Nl,N2 e S, we also have A^Ijo.ti + ^2l_T,ri S

since M is predictably convex. This yields for any Q e P(S) that

ess sup AN(Q)U - esssup{A/v(ß)u-A7V(ß)r+AiV(ß)T}
NeS NeS

l '

= ess sup {AN(Q)U - AN(Q)X \ + ess sup AN(Q)X
NeS

l ' NeS

on {« > t} so that (2.5.2) and (2.5.6) imply that on {u > x) n Bc, we have

AS(Q)U = esssupfA^ß^-A^ß^+A^ß1),}
NeS

l J

= ess sup {AN(Q2)U - AN(Q2)X } + ess sup AN(Q\
NeS

l ' NeS

= ess sup (A^tß2), - AN(Q2)X\ + A\Q\
NeS

l J

= A^ß^-A^ß^+A^ß1),.

As an analogous equality holds on {« > r} n B, this proves (2.5.7) and hence (2.5.5).

In addition, existence of the upper variation process of S under ß implies by Lemma

2.5.8 that ß P(S).

One of our goals in the next section is the construction of a certain DMCUF from

the minimal M-constrained hedging portfolio. The key tool for this is the main result

of this section, which is a slight modification of Proposition 4.1 in [FK97]:

Theorem 2.5.11. For any X G L00 there exists a minimal M-constrained hedging

portfolio (x, H, K). Its value process equals

Vt = x+ [ HsdSs-Kt
Jo

= esssup{_0[X|^f]-_ß[A^(ß)r-A^(ß)f|^l} (2.5.8)
Qem.{S)

l L l J J

and is in particular uniformly bounded.
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Remark 2.5.12. i) We can immediately see from Example 2.5.7 that in the un¬

constrained case, (2.5.8) becomes the well-known representation of the super-

hedging price process as

Vf = ess sup Eç)[X\!Ft~\-
QeMe(S)

ii) There are some differences between our work and [FK97]. First of all, Föllmer

and Kramkov consider non-negative random variables as payoffs whereas we

impose that payoffs are in L°°. A more significant difference is that we allow the

value process of M-constrained hedging portfolios for a payoff X to be bounded

from below by an arbitrary constant (depending on X), whereas Föllmer and

Kramkov fix the lower bound at 0. This causes some changes in the results, and

some arguments in the proof become a bit more involved. For related results

see also Theorem 5.5 in [DS98] and Theorem 5.1 in [DS99].
O

The proof of Theorem 2.5.11 strongly relies on Theorem 4.1 of [FK97] which we

state next:

Theorem 2.5.13. Consider a process V which is locally boundedfrom below. Then

the following statements are equivalent:

a) V is the value process ofsome M-constrained portfolio (Vo, TT, K), i.e.,

V = V0+ j HdS-K.

b) For all Q G P(S), the process V — AS(Q) is a local Q-supermartingale.

As a second auxiliary result for the proof of Theorem 2.5.11, we require the fol¬

lowing Lemma 2.5.14, which is similar to Lemma A.l from [FK97].

Lemma 2.5.14. For each X g L00, there exists a uniformly bounded (RCLL adapted)

process V — (Vt)o<t<T such thatfor all stopping times x < T

VT = ess sap \eq[X\Fx]-Eq\ A* (Q)T-A* (Q)t\ft]\ P-a.s. (2.5.9)
QeJi(S)

l L I J J

Moreover, the process V — A^(Q) is a local Q-supermartingalefor each Q G P(4).

Proof Define via the RHS of (2.5.9) a family of random variables Ux, indexed by
the set of all stopping times x < T. Note that the family Ur is uniformly bounded.

Indeed, by (NFLVR) there exists an equivalent local martingale measure ß for S so



2.5. Superhedging under constraints 55

that in particular ß g P(S) and A* (Q) = 0. Then boundedness follows immediately
from the definition of Ux since

-||X||Loo < Eq[X\Tx] <UX < \\X\\Loo. (2.5.10)

1) Fix ß G P(S), t G [0, T] and stopping times a < t, x < T such that the

stopped upper variation process AS(Q)X is bounded. We first show that

where

Eô[UtAX\F<y] = ess sup Eq\x-A\Q)t\^ax]
Qeft(S),AT

L ' J

+ _ö[A4(ß)fAr|5vAT], (2.5.11)

W),AT := {Q e W) | ß = ß on 5;AT } .

For abbreviation we introduce on _*?(^) the operator

F(Q) := £ß[X|^AT] - £ß |V(ß)_- - A*(ß) FfAT . (2.5.12)

Moreover, in part 1) of this proof we express all densities and density processes

with respect to ß. To see (2.5.11), we first note that

UtAX = ess sup F(Q) = ess sup F(Q). (2.5.13)
QeJi(S) Qeft(S)tAT

In fact, take Q g P(S) with density process (ZM)o<M<r and define a new mea¬

sure Q by the density

ZT := p- (2.5.14)

with respect to Q. Then Lemma 2.5.10 implies that ß e P(S)tAX and

AS(Q)u - {a\Q)u - As(Q)tAX) l{_>(fAr)} + A^(ß){MA(fAT)},

and we have Eq[. |5fAT] = Eq[. |FfAT] so that (2.5.13) holds. Next we note

that the set {F(Q) | ß G P(S)tAX} is a lattice, since for any Q1, Q2 G _Ç(4)rAT

with densities Z^, Z2 and any _
g TtAX we can define a probability measure

Q' by Z^, := Z\\B + Z2.^- to obtain from Lemma 2.5.10 that Q' G P(S)tAx

and that F(Q') = F(Q1)lB+F(Q2)lBc This guarantees ([Nev75]) by (2.5.13)

the existence of some sequence (Qm)meN ^ P(£)tat such that

UtAX = ess sup F(Q) =/ - lim F(Qm). (2.5.15)
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To finish the proof of (2.5.11 ), we recall that by (NFLVR) there exists an equiv-
aient local martingale measure ß for S. By Remark 2.5.6, we have ß P(S)

and AS(Q) = 0. If we denote the density process of Q by Z, we can define as

in (2.5.14) a probability measure ß G P(S)tAx by the density

- ZT
Zt :=

ZfAr

Since {F(Q) | ß e P(S)tAX} is a lattice, we can assume without loss of gener¬

ality that in the above sequence ß1 = Q. By Lemma 2.5.10,

AS(Q)T - As(Q)tAX = A\Q)t - A\Q)tAx = 0

so that we can apply the monotone convergence theorem to obtain from (2.5.15),

(2.5.12) and since ß = Qm on rtAx that

Eq\_UtAx \-F(j\

= Eö\/- lim F(Qm)\ra]
= /-lim Eö[F(Qm)\F<r]

= /-lim £ß-[F(ßm)|Jv]

< ess sup _e |"x - A^(ß)r + A*(Q)tAX FaAr]
. (2.5.16)

£?_R(J),at
L J

As the converse inequality is trivial due to (2.5.13), we even get equality in

(2.5.16). This implies (2.5.11) since for any ß g «ftfAT with density process Z

we have ß = Q on TtAX and ZT = ^r2- so that by Lemma 2.5.10

As(Q)tAx=As(Q)tAx. (2.5.17)

2) As in 1), we fix ß g P(S), t [0, T] and stopping times a < t, x < T such

that the stopped process As (ß)T is uniformly bounded. We show the following

supermartingale property for the family ( UtAt — As (Q)tAx J '

E0[e/,at-A^0,at |_=_-] < UrrAX-A\Q)aAx. (2.5.18)

Indeed, since a < t implies that P(S)tAX
_

P(S)oAX, we get from (2.5.11)

that

Eö[UtAX\F„] < ess sup EQ \x - A*(ß)r| FOAr]

+ £ß[A^(ß)fAT|^AT]. (2.5.19)
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Because As(Q)tAx is ^-measurable, we have

^ß[A^(ß)fAr|^Ar] - £ß[£ß[A^ß),AT|FT]|_rff]
= £g[A^(ß)fAT|Fa].

From this together with (2.5.19), (2.5.13) and (2.5.17), we get

Eô\utAX-As(Q)tAz\^] < esssup EQ \x - AS(Q)T F_-at1
Qeft(S)aAT

= Ua/,T~A4(Q)aat (2.5.20)

and hence (2.5.18).

3) Our next goal is to show that for a sequence of stopping times an < T decreas¬

ing to another stopping time a < T, we have

Eô[Ua]= lim Eô[Ua„] (2.5.21)

for any equivalent local martingale measure Q for S. Indeed, (2.5.18) yields for

Q = Q,t = T and x = an that

Va >EQ[Uan\T^ (2.5.22)

and hence also

Eô[Ua] > limsupEa[£/ctJ. (2.5.23)

To prove the converse inequality, we fix e > 0. From (2.5.11), we get for

ß-ß, t = o, t = T and a-0 there that

Eq[U0]= sup EQ[x-As(Q)T],
Qeà(S)„

where Â(S)a = {Q e P(S) \ Q = Q on _=_}. Hence there exists Q' g Â(S)a
such that

EqVUA < EQ,[X - A\Q')T1 + s. (2.5.24)

Note that in particular 0 < A*(ß')r e L^ßO- For the rest of this proof, all

densities and density processes are expressed with respect to Q. Denote the den¬

sity process of Q' by Z' = (Z's)o<s<t and set v := inf {u > 0 \Z'U < 0.1} A T.

As Z' is right-continuous and Z' = 1 on |[0, ctJ, we have v > a. For each

« N we define a measure ßw by

Zr := ^7-1{<t„<v} + l{a„>W-
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lim inf £ a

w-»oo ii

By Lemma 2.5.10, Qn e P(S)(Jn and

A\Qn)T = (a4(Q')t - A\Q\n) l{an<v].

Hence we can apply (2.5.11) for each n G IN with ß = Q, t — T,a = 0 and

t = an to obtain

liminf_A[_/_-„] > liminf £ô» [x - A*(ß")rl

^ (X - A<(ß')r + A*(ß')_,) l{a„<v}

+ liminf_iA[XlK>w]. (2.5.25)

Because er„ \ a < v, the second summand is zero by dominated conver¬

gence. For the first summand, we note that Z'Gn > 0.1 on {an < v}, so that a

lower bound for the sequence (j- (X - A*(ß')r + A*(ß')a„) l{a„<v})
\^cn / neJN

is given by 10 (-||X||L«> - A*(ß')r) e L^ß')- This allows us to apply Fa-

tou's lemma to get from (2.5.25), (2.5.24) and since Q = Q' on Ta that

liminf_Tô[_/CTJ > EQ>\x-A\Q')T + As(Q')a~\ (2.5.26)

= E&[x~A4(Q')t\
> Eq[U„]-s;

we used like in (2.5.17) that Q' G P(%)a so that A*(ß')_- = A*(Q)a = 0.

Since e > 0 was arbitrary, this together with (2.5.23) implies (2.5.21).

4) Next we deduce that U := (Ut)o<t<T admits an RCLL modification V. Denote

by ß an equivalent local martingale measure for S and note that with s <t < T,

(2.5.18) yields for ß = Q, a = s and x = r that

Hence the family [/ — (Ut)o<t<T satisfies under ß the supermartingale prop¬

erty and is by (2.5.21) right-continuous in expectation. This implies by Theorem

VI.3 of [DM82] the existence of an RCLL modification V = (Vt)o<t<T of U.

5) By the definition of a right-continuous modification, (2.5.9) holds for any de¬

terministic time t. However, we still have to show that it remains true for any

stopping time a < T. To see this, take a sequence of stopping times an < T

decreasing to a and taking only rational values. If we can show that

lim Eô[\Ua~Uan\] = 0, (2.5.27)
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then we are done since right-continuity and boundedness of V then imply that

Ua = lim Ua„ = lim VUn = Va,
«-»oo n^-oo

J
A _

A

where the limits are taken in Ll(Q). However, (2.5.18) yields for ß — ß,

t — T ,cr — an+\ there and x = an that

EQ[Uan\^n+}]<Uan+1.

Since (av,)w_w is decreasing and U is uniformly bounded, this means that

(Uffn)neN is a backward supermartingale under Q. ByTheorem V.30of [DM82],

(Uan)neN therefore converges in Jul(Q) to some U. Clearly U is measurable

with respect to Ta — f]n _w ^on so that the sequence (is
g [£/„„ I ^„Hew also

converges to U in L^ß), and so it remains to show that (£'g[C/(Tn|5trCT])we_v
converges to Ua in L](ß)- But this follows immediately from (2.5.21) and

(2.5.22).

6) Finally we want to conclude that V — A^(ß)isa local Q-supermartingale for

each ß g P(S). To that end let (tw)„£w be a localizing sequence such that the

upper variation process A'S(Q)T" is bounded for each n. Then 5) implies that

y/»-A^(ß)rT" = _/fAr„-A^(ß) fAr„)

which together with 2) and boundedness of V implies that (V — A4(Q))Xn is a

bounded Q-supermartingale.

D

Proofof Theorem 2.5.11. Use Lemma 2.5.14 to define V as a uniformly bounded

(RCLL) process satisfying for each t g [0, T]

Vt = ess sup£ß \x - As(Q)t + As(Q)t I ^1. (2.5.28)
QeJi(S)

L ' J

Then Lemma 2.5.14 and Theorem 2.5.13 imply that V is the value process of some

M-constrained hedging portfolio (x, TT, K) for X. To prove that V is minimal, we

first show that in (2.5.28) we can replace P(i) by

P(S)b := [Q P(S) | EQ\i-A\Q)T + As(Q)t\ F,] >-2||X||L«> - 1 } .

By (NFLVR) there exists an equivalent local martingale measure ß for S. As As ( Q) =

0, we have ß g P(S)b. Since V, > E^[X\Ft~\ > -||X||L» and X < ||X||Loo,
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we claim that a measure ß G P(S) cannot contribute to the essential supremum in

(2.5.28) on the set

_

:= {_sß [-A*(ß)r + A*(ß), | F,] < -2||X||L- -l}e^
A

In fact, if Z = (Zt)o<t<T denotes the density process of ß with respect to ß, we can

construct a measure Q via its density

- zr
Zt '= Iß + -^~Uc

with respect to ß to obtain from Lemma 2.5.10 that Q G P(4) and that

Eq^~A\Q)t + A\Q)t\ Ff]
- EQ [-A<(ß)r + A*(ß)r j #] 1_- + £ß [-A*(Q)T + A\Q)t | J=}] l_-<

> -2||X||L--1,

where the inequality holds by the definition of B and because A*(Q) = 0. This shows

that ß is in P(S)b and also that in (2.5.28) we can indeed replace P(S) by P(S)b
since

Eq [-A^(ß)r + A^(ß)f j ft] 1b + Eg [-A*(Q)T + A*(Q)t | Ft] U°
> EQ[-A*(Q)T + A*(Q)t\rt],

where we used again that A^(ß) = 0.

Now we can prove that V is a lower bound for the value process V of any M-

constrained hedging portfolio (x, IT, K) for X. To that end fix Q g P(S)b and let

(tn)neiN be a localizing sequence of stopping times such that A^(ß) is bounded on

[[0, xnJ. By the definition of As(ß), the process V
— AS(Q) is a local ß-supermartin-

gale. On [[0, t„]], it is bounded from below and hence a ß-supermartingale, and there¬

fore

VtMn > EQ [vXn - A\Q)Xn + A^(ß)fATn| Ff]
for each n e N. Moreover, Q e P(S)b implies that -A*(Q)T + A*(Q), is ß-

integrable and hence an integrable lower bound for (—As(Q)Xll + A^(Q)tAXn)neN.
This allows us to apply Fatou's lemma to obtain

Vt > £örhminf(vTn-A^(ß)z„+A^(ß)fATn)|Ffl
= EQ[vT-As(Q)T + A^(Q)t\ft]
> EQ\x-A4{Q)T+A4{Q)t\FÏ\.
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Because ß P(S)b was arbitrary, this implies

Vt> ess sup EQ\x - A*(Q)T + A*(Q),\Ft] = Vt.

Qe.<R{S)b
L J

D

2.6 Dynamic indifference valuation

Asset valuation in incomplete markets is still an important problem in mathematical

finance. One approach is the dynamic indifference valuation method which we con¬

sider in this section. After defining the indifference value for each time t G [0, T], we

investigate its properties as a functional on L°°, in particular with respect to continuity
and time-consistency. For this we observe that the indifference valuation functional

is obtained by normalization of the convolution of the DMCUF corresponding to the

agent's preferences and the marketDMCUF whose acceptance sets consist (up to sign)
of exactly those payoffs that can be superhedged at zero cost. We extend an idea of

Föllmer/Schied [FS02] by using the optional decomposition under constraints dynam¬

ically over time to construct the market DMCUF, and notably show that this DMCUF

is strongly time-consistent. Moreover, we discuss the connections between this indif¬

ference valuation approach and arbitrage opportunities, explain the link to good deal

bounds, and examine the special case when trading in the market is possible without

constraints.

Valuation by indifference with respect to an expected utility is an old theme and

has been much studied again in the last years. An early reference is Hodges/Neuberger

[HN89]; Frittelli [FriOO] and Rouge/El Karoui [REK00] are at the start of the recent

resurgence of activity, and Becherer [Bec03] and Henderson/Hobson [HH04] contain

overviews and many more references. However, explicit results are hard to obtain

because except for the exponential case, the utility-based certainty equivalent is not

translation invariant.

The idea of replacing expected utility by a monetary (hence translation invariant)

utility functional and the naturally ensuing link to the convolution with the market

functional have only emerged rather recently. Perhaps the earliest reference where a

similar idea can be found in a general abstract (but static) form is Jaschke/Kiichler

[JKOl], even though the formulation there is for coherent risk measures and cast in

terms of good-deal bounds. Indifference valuation proper is mentioned in [BEK05]

and discussed in more detail in Xu [Xu06] which also contains a number of worked ex¬

amples. However, both deal only with the static case, and [Xu06] has no constraints in

the market. Larsen/Pirvu/Shreve/Tütüncü [LPST05] contains a dynamic treatment for

a particular class of examples where the monetary utility functional is given via a fi¬

nite set of scenario and stress measures, generalizing an idea from Carr/Geman/Madan

[CGM01]. None of these works study the issue of time-consistency.
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The underlying idea is the following. For each t g [0, T], let Ut be a functional

which maps L°° into L00^). We assume that Ut(X) models the utility that some

(fixed) agent assigns at time t < T to the payoff X which is due at time T. We suppose

that she can trade in a financial market and denote by Ct the set of payoffs due at time

T that she can superhedge by trading during (t, T] with zero initial capital. If the

agent has at time t an initial endowment xt G L°°(,Ff), she can implicitly determine a

time t value pt (X) for the payoff X g L00 by the indifference requirement

ess sup Ut(xt + G) = ess sup Ut(xt - pt(X) + G + X) (2.6.1)
Gee, Gee,

(presuming that Pf(X) is well-defined). We call p(X) — (pt(X))o<t<T the indiffer¬

ence value process for X since it makes the agent at each time t indifferent (according
to Ut) between buying the asset X or not, provided that she always optimally exploits
her trading opportunities.

Remark 2.6.1. i) The set Ct consists of all payoffs that the agent can superhedge

by trading during (t, T] from zero initial capital. Hence Ct is solid. This will be

required later when we assume that —Ct is a pre-acceptance set. Note that we

assumed implicitly in the definition of p that the initial endowment xt can be

transferred from t to T, i.e., the existence of a bank account with zero interest

rate. However, besides from this, we did not impose any conditions on the

structure of Ct so far. In fact, Ct can be used to incorporate transaction costs or

bid and ask prices for the traded assets. However, when we specify Gt later in

this section, we do not make use of this.

ii) In analogy to the value pt(X) for buying the asset X, we can define a value

pst (X) for selling X by

ess sup Ut (xt + G) - ess sup Ut(xt + pst(X) + G - X). (2.6.2)
Gee, Gee,

All results will be stated for pt(X) only, since pst(X) = —pt(—X) so that the

value of selling the asset X can easily be deduced from pt (X). O

Let us first consider the indifference value pt for a fixed time t. Throughout this

section we assume that the functional Ut is J7 -translation invariant in the sense of

Definition 2.3.1, i.e., we make the standing assumption

Assumption (TI): The functional Ut : L00 -» L00^) satisfies

Ut(X + at) = Ut(X) 4- at for all X L00 and at \.°°(Tt).

This assumption implies (like the notation suggests) that pt (X) does not depend
on the initial endowment xt e L°°(.!Ff), since this can be pulled out on both sides of
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equation (2.6.1). If in addition

C/fopt(X) := ess sup Ut(X + G)eLM for all X g L°°, (2.6.3)
Gee,

then translation invariance ensures that pt (X) is well-defined in L00 (Ft) and given by

MX) = t/f°pt(X) - f/f°pt(0). (2.6.4)

U°pt(X) is the maximal utility the agent can achieve from the payoff X by trading

optimally in the market. It is clear from (2.6.4) that this operator is a key tool in the

investigation of the indifference value.

When defining the value pt (X) as in (2.6.1), we implicitly assume that the agent

does not yet hold any other assets due at time T. In fact, such assets might cause

diversification effects which she should take into account for the valuation. Suppose
the agent already holds in her portfolio an asset with payoff Y e L00 due at time T.

Then she should define pj (X), the indifference value at time t for buying the asset X

when holding Y, implicitly by

ess sup Ut (xt + G + Y) = ess sup Ut (xt - pj (X) + G + Y + X). (2.6.5)
GeCt GeCt

In other words, she should compare the maximal utility she can achieve by trading

optimally when she has only Y with the maximal utihty she can obtain when her

portfolio consists of X and Y (and when she has to pay pj (X) at time t). Analogously

to (2.6.4), provided that _/°pt maps L00 into L00 (_=!), we can resolve (2.6.5) for p] (X)

to obtain

pYt(X) = C/fopt(X + Y)- UtP\Y). (2.6.6)

The following result shows that our approach has the pleasant property that this leads

to a consistent valuation principle, in the sense that the value for X + Y coincides with

the sum of the value for Y and the value for X when holding Y. Put differently, it

does not matter whether the agent buys the assets one after another or in bulk, always

provided that she properly takes into account what has already been bought.

Proposition 2.6.2. if _/°pt(X) g L00 for all X e L°° then

pt(X + Y) = pt(Y) + pf(X).

Proof. This follows immediately from (2.6.4) and (2.6.6). D

From now on we do not only assume that Ut is translation invariant, but that

Ut = Of is an MCUF at time t. The analogue of U^x from (2.6.3) is then

$"p (X) := ess sup Of (X + C), (2.6.7)
GeCt
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and the corresponding indifference value functional pt from (2.6.4) is

MX) = <pt(X) - O?pt(0). (2.6.8)

Monotonicity and translation invariance of an MCUF imply that 0°p maps L00 into

I.00 (Ft) if and only if O°pt(0) is bounded, i.e., if

O°pt(0) = ess sup ®t(G) = Ofn (-Ct) (0) G L00. (2.6.9)
Gee,

Recall that we have studied the operator 0°p in detail in Lemma 2.4.5 and Proposition
2.4.7. In particular, we have given conditions for when it is an MCUF and also for

when it corresponds to the convolution of Of and

0~e'(X) := ess sup{mf L00^) | X - mt G -Ct), (2.6.10)

the marketMCUFinduced by Ct. This name is justified by the observation that in view
—e

of the interpretation of Ct as superhedgeable payoffs, —Or '(—X) is the minimal

amount required at time t that allows to superhedge X. Lemma 2.4.5 and Proposition
2.4.7 together with (2.6.8) immediately yield the following result:

Proposition 2.6.3. Let Of be an MCUF at time t and Ct
_

L00 a non-empty convex

and Ft-regular set such that (2.6.9) holds. Then:

a) Pt( •) is a normalized MCUF at time t, which is continuousfrom below if O t (. )

is.

b) If—Gt is a pre-acceptance set at time t then

0?pt(X) = OfÜO^^X) for all X G L00 (2.6.11)

so that

pt(X) = OfnorC'(X)-OfDO,"Cî(0) forallX G L°°. (2.6.12)

Remark 2.6.4. A sufficient condition for (2.6.9) is that

Cf n {X G L00 | P[Of(X) > 0] > 0} = 0, (2.6.13)

since this implies that ess supCeC Of(C) < 0. If Of is coherent and Ct is a non¬

empty Ff-regular convex cone containing 0, then (2.6.13) is even necessary for (2.6.9).
In fact, if (2.6.13) does not hold, then there exist X e Ct and s > 0 such that for the

set A := (Of(X) > e] Ft we have P[A] > 0. But since for all n G IN also

nXlA G Cf, positive homogeneity and Tt-regularity of Of imply that

ess sup Of(G) > <&t(nXlA) > ns\A.
Gee,

Taking the limit for n —» oo, this shows that (2.6.9) cannot hold true. O



2.6. Dynamic indifference valuation 65

It seems natural to ask if we can consider pt (X) not only as a value for X, but also

as a price for (buying) X. A minimal requirement for this is clearly that pt (X) should

not lead to arbitrage opportunities. Before we make this more precise we should first

ensure that the market itself does not contain arbitrage opportunities. Therefore we

impose that

O~e'(0) = ess sup (e, n I,00(Ft)) < 0, (2.6.14)

i.e., that one cannot superhedge from t on at zero cost something known at time /

and positive. In particular (2.6.14) ensures that the interval [O, r(X), —Of
'

(—X)]

from the subhedging to the superhedging price is non-empty. Then for pt (X) respec¬

tively pf(X) not to yield arbitrage opportunities they should lie inside the interval

(®~Gt (X), -Or~C' (-X)); for an early work on this see [FriOO]. By Proposition 2.6.3,

pt(X) is a normalized MCUF at time t, and since pst(X) — -pt(~X), this implies

that pt (X) < pst (X) so that the value (or price) for buying X does not exceed the

value for selling X. In fact, normalization and concavity imply that

o = P,Qx-I_)>i„(X) + iP,(-x),

so that

-MX) > Pt(-X)

on L00. Consequently, we seek for conditions which ensure that pt(X) and pst(X)

yield arbitrage-free bid and ask prices for X in the sense that

[pt(X), p°t(X)] ç [Or-Cf(X), -cï>r-e<(-X)]. (2.6.15)

But a violation of condition (2.6.15) does not necessarily lead to an arbitrage opportu¬

nity. Indeed, to exclude arbitrage, it would already suffice to have the two interlocking

inequalities

Pt(X)<-®;e<(-X) and ^(X)>Or-e'(X). (2.6.16)

However, if for instance pf(X), the value for selling X, exceeds the superhedging

price — Of~c' (-X) for buying X, nobody would agree to pay this as a price. Therefore

we consider the stronger condition (2.6.15) to be desirable. The next result gives
sufficient conditions for (2.6.15).

Proposition 2.6.5. Let Of be an MCUF at time t and — Ct ç L00 a pre-acceptance

set at time t such that (2.6.9) and (2.6.14) hold. Then we have absence ofarbitrage in

the sense of (2.6.15) if one of the following conditions holds:

a) —Ct is a convex cone containing 0.

b) 0 is in the acceptance set of Of and the MCUF 0°p is normalized, i.e.,

Of (0) > 0 and ess sup Of (G) — 0.

Gee,
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/3 rt>

In particular, if a) or b) holds and ifX satisfies Of
'

(X) — —Of
'

(—X), then

<p;c'(x) = MX) = P*t(x) = -ore'(-x).

Thusfor an asset which is traded in the market, value and market price must coincide.

Proof. Since pf ( • ) = —pt(~~ ), it suffices to show that

OrC'(X)</7f(X). (2.6.17)

—e

a) If —Ct is a convex cone containing 0, then O,
' is by Lemma 2.3.9 positively

homogeneous and therefore by Remark 2.3.2 iv) superadditive, i.e., it satisfies

0"C'(X + Y) > 0~e'(X) + Or"Cr(r). Hence Proposition 2.6.3 and the sym¬

metry of the convolution imply that

MX) = OfDOre'(X)-OfDO-e'(0) (2.6.18)

= ess sup (of"e'(X + Y) + Of(-y)) - Of aOf~e'(0)

> Of~Cf (X) + ess sup (of"Ct (Y) + Of (- Y)) - Of D Of"C/ (0)
y_L°

= orer(x).

b) If <t>rD<Df~e'(0) = O°pt(0) = 0, then (2.6.18) simplifies to

MX) - ofnorc'(X)

= ess sup(or_e'(X + F) + Of(-F))
reL1

> Of-C'(X) + Of(0)

> orCr(x),

where the last inequality holds since Of (0) > 0.

D

When Gt is only convex but not a convex cone containing 0, even the weaker

no-arbitrage condition (2.6.16) can be violated. This can be explained as follows.

Our definition (2.6.1) of the indifference value uses the same set Gt of gains from

strategies irrespective of whether the agent owns X or not, and so we implicitly assume

that buying X does not change the set of possible strategies. Note that X is here

viewed as a new financial instrument; like in a market with transaction costs, this

must be distinguished from a portfolio generating the same payoff as X, but formed
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from the primary assets in the market. The following example explicitly illustrates

how buying or owning such a portfolio can change the set Co of allowed gains into a

new set Gq, and how this makes it reasonable for the agent to pay more for X than the

Co-superhedging price. Indeed, although po(X) is bigger than —O^
°
(—X), the agent

cannot increase her maximal attainable utility by superhedging X via the portfolio
instead of buying it directly for po(X), because she may only work with C* after the

superhedging.
The above discussion shows that one must be very careful when introducing a new

instrument X in the market, because (especially with constraints) this may affect the

set of allowed trades. However, we do not pursue this delicate issue any further.

Example 2.6.6. For simplicity we consider a one-step discrete time model with only
two possible states. There exists a bank account with zero interest rate and one risky

asset S with net payoff Si — So = ( — 1, |). Trading is restricted in that the agent

is not allowed to hold strictly less than — 1 units of the risky asset. Hence the set of

payoffs which can be superhedged by trading from zero initial capital is

Go=\ß[-l,
1

ß > -\\ -m+•

We consider the payoff X := (j, — | j. Its superhedging price is

-o/vx) = inf {c IR for some ß > — 1

,k, H(_+*-*-HI
i

To'

since it is easy to check that the infimum is attained for ß = — |. Note that the corre¬

sponding superhedging strategy is even a hedging strategy as it perfectly replicates X.

The preferences of the agent correspond to the exponential certainty equivalent from

Example 2.3.3 with risk aversion ^ so that

O0(X) = -41og_ [e~*X],

where the probability measure P assigns to both possible states the same probability.
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Hence the maximal attainable monetary utility without owning X is

sup O0(G) = sup O0(/S (-1,-
G_e0 ß>-i V V 4v

= sup I —4 log
1 Ifl
e4P + _HI

= -4l0H5(
« 0.3264,

e 4 +eT5

where the supremum is attained for ß = — 1. Along the same lines, the maximal

attainable monetary utility when holding X is

sup O0(X + G) =

CeC0 ß

iS»pJ_4,og(VKM + ie-ä(-ä+ä^j
= -41ogQ(<e s +es

« 0.3763,

where again the supremum is attained for ß = — 1. By (2.6.8),

p0(X) = sup O0(X+G)- sup O0(G) » 0.050 > -— = -0~e°(-X) (2.6.19)
GeC0 Gee0

10

so that even the weak no-arbitrage condition (2.6.16) is violated. Moreover, we can

immediately see why this happens. In fact, the argument why prices should be consis¬

tent with the no-arbitrage principle is that instead of buying X for a price exceeding its

superhedging price, it would be cheaper to buy the assets required to superhedge X.

However, the situation is slightly different here. For superhedging X, the agent needs

to sell short | units of the risky asset, and then she can go short only | further units in

the risky asset. Therefore her maximal attainable monetary utility after implementing

the (super-)hedging strategy forX = —^ — |(—l,|jis

sup^ Oo (x - (-0-e°(-X)) + /?( - 1, i)J
= „p^(.|(_1,l)+/ï(_1,l))
= <P\°)
% 0.3264.
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Note how the initial trade to superhedge X has explicitly changed the set of strategies

from Co = {ß > -1} to C^ = {ß > -§}. On the other hand, if directly buying X

for po(X) does not change the set of possible trading strategies, then the maximal

monetary utility after that purchase is

sup O0(X - po(X) + G) = 0°pl(X) - po(X)
GeC0

= <(0)
« 0.3264.

Hence acting upon the apparent arbitrage opportunity does not yield a higher attain¬

able utility than buying X for po(X), since the former trade changes the set of admis¬

sible strategies. O

—e
To specify the representation and the acceptance set of the convolution Of D Of

'

and hence of pt more precisely, we require some additional properties. The following
result follows immediately from Proposition 2.4.7 (with B = —Ct) and (2.6.12).

Proposition 2.6.7. Let —Gt be a pre-acceptance set at time t and Of an MCUF at

time t which is continuousfrom below with acceptance set At and concave conjugate

at. If (2.6.9) holds and if

ess sup{mf e L,°°(Ft) | mt G Gt) G L00,

where the closure is taken in <t(L°°, L1), then the MCUF 0°pt = Of nO~
' is con¬

tinuousfrom below and its concave conjugate is

oct(Q) + atet(Q),

—e
where at

'

(Q) :— ess inf Eq[Y|Ft\ Its acceptance set is

Ye-e,

At + -Ct =At-Gt.

In particular, the indifference valuefunctional

A(.)=o?pt(.)-or(0)

is an MCUF which is continuousfrom below with acceptance set

opt
At-Ct + 0^(0).

Having discussed the properties of pt for fixed t, we now investigate the dynamic

aspects of the indifference valuation DMCUF p = (pt)o<t<T- m particular, we
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turn our attention to time-consistency. Under the assumptions of Proposition 2.6.3

b), pt is obtained at each time t from the convolution OfDOj~
'

by normalization,

and we know that normalization turns a time-consistent DMCUF into a strongly time-

consistent one. We also know from Theorem 2.4.3 that the convolution of (strongly)
time-consistent DMCUFs is again a (strongly) time-consistent DMCUF. Hence the

obvious idea to ensure that the indifference valuation DMCUF p is strongly time-

consistent is to choose O and the sets (Cf)o<f<r such that both O and the market

DMCUF (0/~e')o<f<7' are time-consistent. To achieve the latter by defining Gt in

an appropriate way, we have to specify the structure of the financial market in more

detail.

As in Section 2.5 we model the discounted price process of the basic traded as¬

sets by a locally bounded RCLL /'-semimartingale S = (St)o<t<T- We assume that

(NFLVR) holds and fix an admissible hedging set M ç Lfoc(5). For each time t

we define the set of payoffs superhedgeable from zero initial endowment via trading

during (t, T] by

et:= i: He dS? H 3ft - L+ n Lc (2.6.20)

with

Mt :— H G M /* dSs is uniformly bounded from below (2.6.21)

Each H g 3it describes a self-financing trading strategy on (t, T] with a wealth pro¬

cess which is uniformly bounded from below. The subtraction of L+ economically

means that we are always allowed to "throw away" money. In the following result we

apply Theorem 2.5.11 to prove that the above sets Gt yield a strongly time-consistent

market DMCUF (O"c')o< _r-

Theorem 2.6.8. For X e L°° and each t G [0, T] define

Of(X):=-Vf, (2.6.22)

where (Vt)o<t<T is the value process ofthe minimal 3i-constrained hedging portfolio

for —X from Theorem 2.5.11. Then (Of)o<f<r is a well-representable strongly time-

consistent DMCUF. Its acceptance set at any time t is

L00. In particular, each Gt is closed in or(L°°, L1).
-Cf so that Of = Of"

-Gt
on

Proof Clearly, Ôf (X) g L00 by uniform boundedness of V. By (2.5.8) we can write

Of(X) = ess inf

QeSi(S)
[EQ[X\Ft] + EQ [a*(Q)t - A\Q)t| Ft]j ;
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A A

note that we construct V from —X. Hence Remark 2.3.18 i) yields that Of is indeed an

MCUF at time? since in (2.3.6) we can seta? (Q) := -EQ [A*(Q)T - A*(ß),| Ft]
if ß G 3l(S) and oif(Q) := —oo otherwise. Now Theorem 2.3.16 together with Re-

A

mark 2.3.18 ii) imply that Of is well-representable and in particular that its acceptance

set «Af is closed in a^L00, L1). Next we show that At = —Ct. To see that —Gt
_

«Af,

note that for any H e M{ and Y e L% such that G :- jj HsdSs - Y g Gt,

we can construct an Jf-constrained hedging portfolio (0, H', K') for G by choos¬

ing H' := /flif,rn and K' := Ylm, where H' g M by Remark 2.5.3 ii). The

value process V corresponding to (0, H', K') is zero at time t and, as required for

an M-constrained hedging portfolio, uniformly bounded from below since H g 3tt

and G g L00. This implies that the value process V of the minimal ^-constrained

hedging portfolio for G satisfies Vt < V't = 0 so that Or(-G) = —Vt > 0, i.e.,
/v A A A A

—G g «Af. To see that also At ç —Gt, fix X g At and denote by (Jc, H, K) the

minimal »#-constrained hedging portfoho for —X and the corresponding (uniformly

bounded) value process by V. Since (Ku — Kt)t<u<T is an increasing process, we

obtain from

Vu = Vt + f Hs dSs -(Ku-Kt), t<u<T (2.6.23)

that H G Mt. Moreover, if we take u
— T in (2.6.23) and recall that Vt < 0 (since

A A

X g At) and Vt > —X, this also shows that —X g Gt. Hence we have proved that

—Cf is the acceptance set of Of.

Since clearly —Ct
_

—Cs for t > s, it only remains to show time-consistency. So

let s < t and suppose that Of (X) = ôf(F), but P[ès(X) > ôs(Y)] > 0 for some

X,Y g L°°. Denote by (xx, Hx, Kx), (xY, HY, KY) the minimal M-constrained

hedging portfolios for —X and —Y with value processes Vx = —O(X) and VY =

—O(F). Then we can define another _¥-constrained hedging portfolio (x', TT', K')
for —Y (by essentially switching from (xx, Hx, Kx) to (xY, HY, KY) at time 0 via

H'u '= Huhu<t}+Hul{u>t},

Ku '— Ku l{u<t} + (Ku — Kt + Kt )l{„>f}.

Note that H' G M by predictable convexity and that the value process corresponding
to (*', H', K') is given by V := V*l0o,ni + Vyl_r,r]] ^since V? = v?)- Hence, V is

in particular uniformly bounded (from below) so that (x', H', Kf) is an M-constrained

hedging portfolio for —Y. Since P[V{ < VY] > 0 we get a contradiction to the

minimality of (xY, HY, KY). Therefore <t\(X) = Oj(F) and O is time-consistent.

D

Combining Theorems 2.6.8 and 2.4.3 immediately shows that we can extend Propo¬
sition 2.6.7 to obtain strong time-consistency as well:
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Proposition 2.6.9. Let O be a time-consistent DMCUF which is continuous from

below, and such that (2.6.9) is satisfiedfor each t g [0, T] with Gt from (2.6.20). Then

the indifference valuation DMCUF p(.) is also continuousfrom below and strongly

time-consistent.

Remark 2.6.10. i) The idea for using the optional decomposition under constraints

to construct an MCUF describing a financial market is due to Föllmer/Schied

[FS02] in the static case; see also Section 4.8 in [FS04]. But, time-consistency

aspects have apparently not been studied or proved so far.

ii) Note that (NFLVR) implies that Gt from (2.6.20) always satisfies the no-arbitrage

condition (2.6.14); see also Lemma 2.6.15 below.

O

As mentioned in Section 2.3, one might be interested in finding an indifference

value ps,t(X) for all intermediate time horizons t < T and s < t, X g L00^). This

requires a definition for 0°p/ : L00^) -» L,0C(FS) so that we can set

^,f(X):=O?pt(X)-O°pt(0).

We have argued in Section 2.3 that the existence of a bank account with zero interest

rate implies that we should have

pStt(X) = Ps,T(X) for all X e L°°(Ff) (2.6.24)

since money can be freely transferred between t and T. (2.6.24) holds if and only if

0°pt(X) - O°pt(0) = 0°p}(X) - O^(0) for all s < t < T, X e L°°(Ft), (2.6.25)

and in this case, time-consistency of the family p is equivalent to its recursiveness.

The natural choice 0°pt(X) := 0°J* (X) - O°Ç(0) satisfies (2.6.25) and makes sense

if (0°p^ (0))o<j<r is a deterministic process, hence in particular if the process is con¬

stantly zero. This occurs for instance if all sets Gt from (2.6.20) are convex cones

containing 0, so that the market functional is a time-consistent DMCohUF, and if in

addition O is a time-consistent DMCohUF. Their convolution Oopt is then by Theo¬

rem 2.4.3 a strongly time-consistent DMCohUF and in particular normalized. Hence,

in this coherent setting, the valuation family p is recursive as in (_*?).

Remark 2.6.11. Let us indicate why we used the results of Section 2.5 about super-

hedging under constraints to prove that (0~Cr)o<f<r is time-consistent. In Theorem

2.6.8, we have seen that those results imply that —Gt is a a(L00, L!)-closed pre-

acceptance set at time t, so that it is the acceptance set of Or
' and the essential

supremum in the definition of Or
'

(X) is attained by some mt G L°° (Ft). Moreover,
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Theorem 2.6.8 tells us that there exists an Jf-constrained hedging portfolio for —X

such that Of~
'

(X) corresponds at each time t to minus the value Vt of this portfolio.
In particular, this value process is uniformly bounded.

/B

Now suppose we try to find a set M of integrands such that (O, ')o< _r becomes

time-consistent, without using the results from Section 2.5. From Lemma 2.3.25, we

basically have two possibilities to prove time-consistency. Since the set of payoffs
which can be superhedged from zero initial capital by trading during (/, T~\ corre¬

sponds to a set of stochastic integrals with respect to the price process of the traded

assets S, it seems natural to try and prove that the acceptance sets (At) of (Of
'

)o<f <:r

have the decomposition property

As = AS(F,) + At for all s < t. (2.6.26)

But then the following problems occur:

• It is difficult to find conditions on the set M of integrands allowed for trading
so that —Cf is an acceptance set of some MCUF at each time t, e.g., conditions

which ensure that —Gt from (2.6.20) is a a(h°°, L^-closed pre-acceptance set

at each time /. But if this fails, the acceptance set of Or~
' differs from —Gt

and we cannot expect that it has the nice structure as a set of integrals which

we would like to exploit to prove (2.6.26). Replacing Gt by its closure Gt in

cr(L°°, L1) at each time t we lose the above integral structure. So the difficulty
here is that a closure operation in a(L°°, L1) does not fit well with stochastic

integrals.

—e
m Even if — Gt is for each time t the acceptance set of Or

' and has a nice integral

structure as above, we have not finished. Indeed, if fs H dS is an element of C.v,

we can clearly split it for any s < t < T into the sum of f H dS and f( H dS.

But unfortunately, uniform boundedness from below of (f" TT dS)s<u<T need

not carry over to (ftu H dS)t<u<T, which is required if we want the latter to

correspond to an element of —Cf. So here the difficulty is to handle lower

bounds on varying time intervals.

Alternatively, we might try to prove time-consistency directly from its definition, i.e.,

to show that

0;~e'(X) = 0~e'(y) implies OJ^(X) = &Je*(Y) (2.6.27)

for all s < t, where Oj7e"(X) = ess sup{ra„ e L°°(FM) | X - mu e -Gu}. It looks

natural to try this by a contradiction argument, and that involves the construction of a

hedging strategy starting at time s by pasting together at time t the strategies which are

associated with 07 s

(X) and O" '

(Y). But then similar problems as above occur:
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• If —Cf is not a o-(L,°°, L^-closed pre-acceptance set at time t, the supremum

in the definition of Of~ ' need not be attained. Hence we cannot relate to it one

single hedging strategy, but need an entire sequence. However, pasting together

countably many strategies is not feasible in general since we lose control over

the required uniform lower bound for the corresponding value process.

• Even if —Gt is closed in er(L°°, L1), so that the essential supremum is attained,

it is not clear how 07e* (X) and Or-Cr (X) are related. The problem is that the

value at time t of the hedging strategy corresponding to O^
s need not be in

lu00(Ft), since it is not necessarily bounded from above.

This discussion explains why we decided to provide and work with the results about

superhedging under constraints. O

We now turn to a discussion of the special case of unconstrained trading. In partic¬

ular, we examine the effect of unconstrained trading on the MCUF Of which expresses

the preferences of an investor. For a static MCUF Oo, it is known (see e.g., Chapter 4.8

in [FS04] or [BEK05]) that this is captured by taking the infimum in the representation
of Oo only over all Q g Ma(S), the set of all ß g Pa which are local martingale
measures for S, instead of taking it over the whole set Pa. In other words, if olq is the

concave conjugate of Oo, then the new MCUF OqPI( . ) = supCeeo Oo(. + G) can be

represented as

0°pt(X) - inf \Eq\X\ - ao(Q)\. (2.6.28)

We shall obtain an analogous result in the dynamic case. One might expect that at time

t, we have to take the essential supremum over the set of all local martingale measures

for the process (Su)t<u<T, but we shall see that it is even possible to take the set of all

equivalent local martingale measures for S (considered on all of [[0, TJ).

Before we can state our result, we have to introduce some notation. Unconstrained

trading means that we allow all admissible strategies for trading, i.e., we use the ad¬

missible hedging set M = L"œ(S). We denote by Lf (S) :— Mt the set of all processes

H in Ly^S) which are (uniformly) admissiblefrom time t in the sense that the process

(J* HudSu)t<s<T is uniformly bounded from below, and by

£>t := H Lat(S)

we denote the corresponding set of terminal values. Furthermore we distinguish be¬

tween several sets of martingale measures:

Definition 2.6.12. For any t G [0, T] and A g Ft we denote by Met'A(S) the set of

all ß G 3*e such that (S_ lA)f__r is a local martingale under Q, i.e., there exists an
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increasing sequence of [t, revalued stopping times xn with lim,,^^ P[xn < T] = 0

suchthat (Sj" 1a l{fr„>f})f<i<r is a uniformly integrable ß-martingale for each n e IN.

For A =
_

we write Met(S) := Met'Q(S). In particular Me(S) := Me0(S) denotes the

set of all equivalent local martingale measures for S = (Ss)o<s<t-

Theorem 2.6.13. Let Of be an MCUF at time t with acceptance set At and concave

conjugate at. Assume that Or is continuous from below, infxeA, Eq[X] > —oo for

some Q G Me(S) and that (2.6.9) holds with

C, = (__), -L°_)nL°°. (2.6.29)

Then we have the representation

0°pt(X) = OfDOrC'(X) = ess inf \EQ[X\Ft] - ut(Q)\. (2.6.30)
QeMe(S) y i

Remark 2.6.14. Both (2.6.9) and the assumption that infxe^f Eq[X] > —oo for

some ß g Me(S) formalize the intuitive requirement that the a priori preferences

Of should fit together with the financial market. Like in the comment after Lemma

2.3.25, the second condition (involving Q) need only hold for / — 0 if O is strongly
time-consistent. O

In order to prove Theorem 2.6.13, we need to characterize the set Me(S) of equiv¬
alent local martingale measures in terms of _>f.

Lemma 2.6.15. Let t e [0, T], A e Ft, Q 3>e. Then

QeMpA(S) «=» EQ[GlA\Ft]<0 Q - a.s. for all G g S)t n L00

«=!> Eq[G1a] < 0 for all GeS,n L00.

Proof. The second equivalence is trivial since S)t is closed under multiplication with

1_;, B e Ft. Hence we only have to prove the first equivalence.

"=>"; Let ß G Met'A(S). Then (SilA)t<x<T is a local ß-martingale. Each element

G of £>f satisfies G = jj Hs dSs for some H G Lf(S). By Corollary 3.5 of

[AS94], the uniform boundedness from below of (1a // Hs dSs)t<s<T implies

that (1a // Hs dSs)t<s<T is also a local ß-martingale and hence, again by uni¬

form boundedness from below, a ß-supermartingale. Thus Eç[GlA\Ft] < 0

ß-a.s.
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Since (SslA)t<s<T is locally bounded, it is a local ß-martingale if and only
if (S*lAl{T>t})t<s<T is a ß-martingale for each stopping time t < x < T

such that (STs\A^{r>t})t<s<T is uniformly bounded. For t < s\ < ,s_ < T and

B G FSl, define IT :— 1\\xas1,tas2\i1b which is in Lf(S). By assumption,

wr*
0 > EQ 1a / #_ <*£ - fßtlsdA^-lASj)]

= EQ[lB(\ASl2l{x>t} - lAS]1l{x>t})],

and since B g 5^, is arbitrary, we get that EQ[\ASxS2l{X>t}\FS]] < IaS^I^^}
Q- a.s. Because we also have —H e Lf(S), we even get equality, and so

(5JlAl{r>f})r<_<r is a ß-martingale.

D

Proofof Theorem 2.6.13. 1) By Theorem 2.6.8, Or
e'

is a well-representable
MCUF at time t with acceptance set —Ct. Because Gt is a convex cone contain-

ing 0, the concave conjugate at
' of Or

f

only takes the values 0 and —oo. We

claim that we have for each ß Pe the explicit expression (with oo • 0 := 0)

a-C'(Q) = -ool{AQ)c, (2.6.31)

where A Ö
g ^7 is defined up to nullsets by

1AÖ = ess sup jlA I A g # and ß G ^f'A(.S) 1.

Intuitively, A^ is the largest Ft-measurable set on which (Ss)t<s<T is a local

ß-martingale. To see (2.6.31), note first that ß Met'A (S). Since 0 G Gt and

£>f n L°° c Cf, Lemma 2.6.15 implies that

\aq ess inf En\G\FA = 0 /* - a.s.,
Ge-ef

^

which means by Lemma 2.3.12 that a~e' (Q) = 0 on Ae. To prove (2.6.31), it

thus only remains to show that

ess inf E0[G\Ft] = -00 P- a.s. on (AQ)C.
Ge-e,

For this, we may assume that P[(A@)C] > 0 so that (S_)f<_<r with positive

probability fails to be a local ß-martingale. By Lemma 2.6.15, we can thus find

a B g Ft with P[B] > 0 and B ç (A^)c and some G0 g £>t n L°° ç Cr

such that £ß[—Gol^f] < -£on_ for some e > 0. Closedness of Ct under
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multiplication with non-negative scalars then implies that ess inf En[G\Ft] —

Ge-e,
*

—oo on
_ .

But this must even hold on the whole set (Aß)c. In fact, if it does

not, we obtain some set
_

e Ft with P[B] > 0 and
_ ç (Aß)c such that

0 > ess inf Eo[G\Ft] > —m > —oo on
_

for some m > 0.
Ge-e,

Closedness of Cf under multiplication with non-negative scalars now implies
that ess inf Eo[G\Ft] = 0 on B and therefore by Lemma 2.6.15 that

Ge-e,
*

Q g Met'A UB(S). But this contradicts the definition of A0, and hence we

have proved (2.6.31).

2) From (2.6.31), our assumptions and Theorem 2.4.3, the MCUF OfDO,"6' is

well-representable and since convoluting two MCUFs means adding their con¬

cave conjugates we obtain

Orao~c'(X) = ess inf {_ß[X|5-f] - a,(Q) + oo1,aq)c]. (2.6.32)
Qe!Pe y i

This suggests that it should be enough to take the above essential infimum only
over those ß Pe that have P [A0] = 1, which means that ß should be in

Met (S). We now prove that this is true by showing that

OfGOrC/(X) z_ ess inf \E0>\X\Ft\ - at(Q')}. (2.6.33)
Q'eMÏ(S)

l

By (NFLVR), there exists ß g Me(S) ç Met(S) with density process Z. For

any ß G Pe with density process Zß, define a new measure Q' G Pe with

density process Z' by

dQ' Z? ZT

dP Zf
}

Zt

so that Q' g Met(S) by the definition of AQ. Since

EQ>[.\Ft] = lAQ EQ[.\Ft} + 1(AQ)C Eà[. \Ft]

we obtain from Lemma 2.3.12 and (2.6.31) that

EQ,[X\Ft]-at(Q')-a;C>(Q')
= lAQ(EQ[X\Ft]-at(Q)-a;et(Q)^

+l(AQ)c (Eq[X\FA - ott(Q) - a7C' (Ô))
= lAe(^o[X|Jrf]-af(ß) + ool(AÜ)<-)

+\AQY (E$X\Ft] - at(Q) + oo 1(AÔ)C) .
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But (Aß)c is a P-nullset since ß g Met(ß) and so at
e>
(ß) = 0 = -ool(Aê)c

by (2.6.31). The same is true for Q'. Hence, using AQC\(AQ)C = 0 and (2.6.31)

for Q', we get

EQ,[X\FA-<*t(Q')
= EQ/[X\Ft]-at(Q') + OQliAQ>r

= lAe {EQ[X\Ft} - at(ß)) + l(AQy (Eà[X\Ft] - Mß))
< EQ[X\Ft]-at(Q) + ool(AQr

by looking separately at A0 and (Ae)c. This shows that we can replace any

Q Pe by a corresponding Q' e M^(S) when taking the essential infimum in

(2.6.32) and thus establishes (2.6.33).

3) In view of (2.6.33), it only remains to show that

ess inf {EQ[X\Ft]-ctt(Q)}= ess inf {EQ[X\Ft] - ctt(Q)}.
QeMf(S) QeMe(S)

The inequality "<" is clear since Met(S) „_

Me(S). To prove the converse, we

show that for any ß g Met (S) with density process Z, there exists Q' G Me(S)

with density process Z' such that

Zt = htZT

surable ht
>

0. Because then
we

have from
^-

=

using (2.3.3) that

EQ[X\Ft] - at(Q) = £ß'[X|:Ff] - at(Q'),

z z

for some Ft-measurable
ht

>

0. Because then
we

have from

-J-
= -£ and by

and obtain ">". To construct Q', take some ß G Me(S) with density process
A

Z and define

AZr_ 1

Zt ht
Zr := Zt-^~ = —Zt

with ht = ^-. Then ß' g =A{e(S) because Z'51 is a local P-martingale on all
z,

of [[0, 71: on [[0, /J because Z' = Z on [[0, /*]] and ß g ^(S), and on p, 71

because

Z' = ~Z onp,71

and ZS is a local P-martingale on \t, 71 since ß Mf(S). This completes
the proof.

D
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As an immediate consequence we get the following no-arbitrage result for the

indifference value in the case of unconstrained trading:

Corollary 2.6.16. Under the assumptions ofTheorem 2.6.13 andwith Ct as in (2.6.29),

the valuations pt and pf are consistent with the no-arbitrage principle in thefollowing

two senses:

a) If X G L°° is attainable from time t in the sense that X —

xt + ft TTsdSs

with xt G L°°(Ff) and H G Lf(S) such that (f(u HsdSs)t<u<T is uniformly

bounded, then

l>
b) Both, pt and p\, take values in the interval ofpossible arbitrage-free valuations,

i.e.,

ess inf EQ[X\Ft] < pt(X) < pUX) < ess sup EQ[X\Ft] for all X L00.
QeM<(S) QeM'(S)

Proof a) Since we have Eg[X\Ft'\= xt for any ß g Me(S), this follows imme¬

diately from (2.6.12) and the representation (2.6.30).

b) Since —Cf is a convex cone containing 0, this follows from Proposition 2.6.5

and Remark 2.5.12.

D

In all of Section 2.6, we have assumed that it is the MCUF O representing the

agent's preferences which is continuous from below, and not the market MCUF Or '.

(Note that for Theorem 2.4.3 it is enough if one of the two is continuous from below.)

The reason is the following. It is known that in the unconstrained case we can represent

O^0 analogously to (2.6.28) as

OÖCo(X)= inf Eq[X],v
QeMa(S)

where Ma(S) denotes the set of all local martingale measures ß g P" for S. It fol¬

lows from Corollary 4.35 of [FS04] that continuity from below of Oq"
°
implies that

Ma(S) is weakly compact (since it is weakly closed). But if the price process S is

continuous and the filtration is quasi left-continuous, Corollary 7.2 of [Del92] then

implies that Ma(S) is a singleton so that the market must be complete. This shows

that it may be rather restrictive to insist on a market DMCUF which is continuous

from below.
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We finish this section with a comment about the connection between the indiffer¬

ence values pt(X), pst(X) and good deal bounds.

The no-arbitrage price bounds Of~ '(. ) and —O" '(— . ) induced by superhedg¬

ing are usually not sharp enough to be useful for pricing in practice. Therefore several

approaches have been suggested to define tighter price bounds which are less restric¬

tive than the choice of one pricing measure; see, e.g., [BL00], [CSROO] or [CGM01].

In particular, Cochrane/Saà-Requejo [CSROO] introduced the concept of good deal

bounds. These price bounds are obtained by ruling out not only arbitrage opportunities
but also good deals, which are in [CSROO] defined as investment opportunities with a

high Sharpe ratio. This procedure is justified by arguing that Sharpe ratios observed

in the market tend to be rather low. Subsequently, the good deal pricing approach has

been generalized by many authors; see, e.g., [JKOl], [CH02], [Cer03] or [Sta04]. In

particular, they defined good deals more generally as investment opportunities which

are in some sense desirable and do not necessarily have a high Sharpe ratio. To jus¬

tify the exclusion of good deals, it is argued like for arbitrage opportunities that they
would vanish immediately from the market by trading.

For these good deal price bounds, it is well known that they correspond to risk

measures (and hence to MCUFs). However, the literature often creates the impression
that they are somehow generic and independent of individual preferences. This is not

the case: One has to specify the set of good deals, and we shall see presently that this

basically corresponds to the choice of an MCUF and hence of a specification of utility.
The following definition of good deals (in a static and coherent framework) is

taken from Jaschke/Kiichler [JKOl]. They fix Co, a convex cone containing zero of

payoffs which can be superhedged with zero initial capital, and in addition a coherent

acceptance set <Ao
_

L°°, i.e., Aq is the acceptance set of some MCohUF at time

0. This specifies the set of desirable payoffs, and the most conservative choice is

=Ao — L+ hi this latter case, the good deal price bounds correspond to those obtained

by excluding arbitrage opportunities only.

Definition 2.6.17. An element X g Co is called good deal of the first kind if X is

contained in Ao and X/0, and good deal (of the second kind) if there exists s > 0

such that X — ein G eAo.

Whereas good deals of the first kind represent opportunities to get something good
for free, where the good part may or may not come, those of the second kind are

"cash-and-carry good deals" and yield a sure profit. Jaschke and Küchler consider the

second concept to be much more important. They argue that any arbitrage transaction

in practice involves some risks or costs that cannot be captured in a model. Therefore

arbitrageurs will only act if the anticipated gain is substantial enough. As a conse¬

quence, they only consider good deals of the second kind, and we do the same here.

The lower bound for prices for X obtained by excluding these good deals is given by

tt0 °(X) := sup {mo G 1R \ X — moin + G G Ao for some G G Co}.
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In fact, if the agent could buy the future payoff X for a price 7To(X) < tt0 °(X),

then there exist G g Co and s > 0 with tto(X) + s < ttq°(X) - e and such that

X — (tzq(X) -t- e)1q + G is contained in the set of desirable payoffs =Ao- Hence the

agent could buy X for tto(X), use the superhedging strategy corresponding to G and

obtain a resulting payoff X - tto(X) + G which is a good deal. As before, selling X

corresponds to buying —X, and so the good deal price bounds are given by

[n^(X),-4»(-X)].
The above concept of good deal price bounds can immediately be generalized to a

dynamic and convex framework. For a convex (but still static) setting this can also

be found in Staum [Sta04]. However, he works with a slightly different definition,

and the one given in [JKOl] fits better into our framework. We model the set Gt of

payoffs which are superhedgeable via trading during (t, T] by a non-empty, convex

and Ft-regular subset of L00; compare Lemma 2.4.5. The set of desirable payoffs is

given by some pre-acceptance set Bt at time t. In analogy to the static case, we then

define a good deal as follows:

Definition 2.6.18. Fix Y e Bt Then X g Gt is called a good deal at time t if there

exists a constant s > 0 and a set A g Ft, P[A] > 0 such that (X — el^) Ia + F1ac

is contained in Bt.

Note that Bt is Ft -regular so that the definition does not depend on the choice of

the element F e S,; this is introduced since whether X is a good deal at time t or

not should not depend on events which can already be ruled out at this time. Note that

also Bt need not contain 0 which is otherwise a natural choice for Y. The lower price
bound obtained from excluding good deals is then given by

nf'(X) := ess sup [mt G L°°(Ft)\ X - mt + G G Bt for some G G Gt). (2.6.34)

The reasoning is similar to the static case. Indeed, if the agent could buy the future

payoff X for a price irt (X) which is not greater or equal to nt
'

(X), then there exist

e > 0 and a set A g Ft with P[A\ > 0 such that izt(X) + ein < xf'iX) - £l_> on

A. By (2.6.34) we can find a subset B e Ft of A with P[B] > 0, mt G L00^) and

G g Cf such that Y' := X - mt + G G Bt and mt > nf'(X) - ela on B. The Ft-

regularity of Bt implies that also Y'1b + YIß? G Bt. But since 7rf(X) + ein < mt on

B and -Bt is solid, we now obtain that ((X - nt(X) + G) - eln) 1B + YlBc e Bt,

i.e., that X — jtt (X) + G is a good deal.

Next we show how the above price bound is connected to an indifference valuation

functional pt(X). To this end, we recall from (2.3.2) in Lemma 2.3.9 that Bt induces

an MCUF Of at time t by

Of(X) :=<_>f'(_0 = ess sup {m, G L°°(Ff)| X - mt <= Bt].
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This representation implies that

0°pt(X) = ess sup Of (X + G)
Gee,

= ess sup ess sup {mt G I^0C(Ft ) \ X + G — mt G Bt}
Gee,

= ess sup {mt e L°°(Ff) | X - mt + G G Bt for some G G Cf}

= nf'(X).

Hence if O°pt(0) = 0 so that pt(X) = 0°pt(X), the lower good deal bound is the

indifference value pt (X) and

[ttb'(X), -7TB'(-X)] = [pt(X), pst(X)]

is the interval of possible prices for X which do not yield a good deal. We recall from

Proposition 2.6.5 that we might need additional assumptions to have price bounds

which are actually tighter than those obtained by excluding arbitrage opportunities.

Using that pt (. ) is defined as the indifference value, we can also give another

interpretation for why pt (. ) can be viewed as a lower price bound obtained by ex¬

cluding (slightly differently defined) good deals. We fix a set Gt of superhedgeable

payoffs and an MCUF Of. Then we might call X e Ct useful deal if it increases the

maximal attainable utility, i.e., if

0°pt(X) = ess sup Of (X + G) > ess sup Of (G) = O°pt(0)
Gee, Gee,

and the inequality is strict with strictly positive probability. This implies that

[MX), pst(X)]

is the interval of all prices for X which do not yield a useful deal.

Staum [Sta04] proves fundamental theorems of asset pricing for good deal bounds.

In particular, he gives in his Theorem 6.1 an equivalent condition for the weak no-

arbitrage condition (2.6.16). This theorem and its proof can easily be adapted to our

framework; we simply state the result without giving a proof.

Theorem 2.6.19. Let —Gt
__

L°° be a pre-acceptance set at time t containing 0 such
/s

that Or
'

(0) = 0. Let Of be an MCUF at time t with acceptance set At such that

Of(0) > 0. Then

Pt(X) < -<$>JG' (-X) for all X g L00 and O°pt(0) = ess sup Of (G) = 0

Gee,

ifand only if

(Ct - At) n jx g l°° \p [o"e'(X) > ol > 0} = 0.
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2.7 Examples

2.7.1 Time-consistency and normalization

This example illustrates several points we have discussed in this chapter. For the

exponential utility function V(x) = —e~x we define by

Of(X) :=U-1(£[U(X)|Ff]) = - log E[e~x \Ft] forXGL00 (2.7.1)

the corresponding ^-conditional exponential certainty equivalent; see Example 2.3.3.

Then O = (Of)o<f<r is a DMCUF, each Of is clearly continuous from below, and

the concave conjugate functional of Of is

at(Q) = -EQ

i.e., minus the Ft-conditional relative entropy of Q with respect to P. This is shown in

Section 4 of [DS05]; see also Example 4.33 in [FS04]. The DMCUF O = (Of)0<f<r

is clearly normalized and time-consistent due to the explicit expression (2.7.1); hence

O is strongly time-consistent. Moreover, each Of is well-representable since Lemma

2.3.14 and (2.7.1) imply I) of Theorem 2.3.16. In fact, from Jensen's inequality we

obtain E[V(X)\Ft] < V(E[X\Ft]), hence E[X\Ft] > Or(X) > 0 for all X G At and

therefore infxe^, E[X] > 0 > —oo. From Theorem 2.3.16 and (2.7.2), we thus have

Of(X) = ess inf {EQ[X\Ft] + ff(Q\P)}.
QePe

Consider next a financial market as in Section 2.6. Choose M = L"oc(S) so that we

have no constraints, define Cf by (2.6.29) and O = (Of )o<f<t by (2.6.22) so that Of is

by Theorem 2.6.8 the market MCUF induced by Gt. Moreover, O is also normalized,

well-representable and strongly time-consistent by Theorem 2.6.8. Define

0°pt(X) := ess sup Or (X + G) for t G [0, T] and X G L00

Gee,

and assume that

O?pt(0) = ess sup Of (G) g L°°. (2.7.3)
Gee,

We give below a sufficient condition on S to ensure (2.7.3). Due to (2.7.2) and Theo¬

rem 2.6.13, we have

0°pt(X) = Ofn(-Cf)(X)-OfDÔf(X)
= ess inf {Ee[X|:rf] + fte(Q\P)} (2.7.4)

and by Theorem 2.4.3, Oopt is then again a strongly time-consistent DMCUF.

log
Z^
^t

Ft =: -fte(Q\P), (2.7.2)
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Now impose on the financial market the assumptions that P g Me(S) (so S is

not a local P-martingale) and that infQeMeiS) fo(Q\P) < oo, so that there exists an

equivalent local martingale measure for S with finite relative entropy with respect to

P. Then it is well known that the minimal entropy martingale measure

Qe := argminjyjCßl/») | Q g Me(S)}

exists in Me(S) and is unique, and we have

fo£(Qe\P)>0 (2.7.5)

because P is not in Me(S). But (2.7.5) implies by (2.7.4) that

°opt(0) =
n ^UMQ\n

= fo(Qe\n > °,

and therefore 00pt is not normalized. Hence this example illustrates that

- a DMCUF may be strongly time-consistent without being normalized.

- the convolution of two normalized DMCUFs may fail to be normalized.

To finish the example, let us briefly discuss how to guarantee the condition (2.7.3).

By the explicit expression (2.7.1) for Of, (2.7.3) is equivalent to

ess supE[V(G)\Ft] G L°°, (2.7.6)
Gee,

and since G = 0 is in Cf, it is enough to have an upper bound for
_ [U(G)|,!Fr]

uniformly over G G Gt. Applying Fenchel's inequality

U(x) = —e~x < sup (V(x') — x'y) + xy — y log y — y + xy

zQ
with y ==

—£7
for some Q G Me(S) gives

Zt

E[V(G)\Ft] < fte(Q\P) - 1 + EQ[G\Ft] < ff(Q\P)

because Eq[G\ Ft] < 0 for any G G Cf, since ft' H dS for H M, is a ß-supermar-

tingale for any Q g Me(S); see Lemma 2.6.15. Hence (2.7.6) holds as soon as

ess inf //(0|/»)L°°.
QeMe(S)

One sufficient condition for this is that there exists some Q e Me(S) satisfying the

reverse Holder inequality RL\ogL(P), i-e.,

fte(Q\P) = E

'

7Q 7Q

_ß g_ß Ft < C

for all / G [0, T] with some constant C. This ends the example.
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2.7.2 DMCUFs, indifference valuation and BSDEs

In this subsection we first recall and extend some known results about DMCUFs which

are described by backward stochastic differential equations (BSDEs for short), since

this provides us with a big class of time-consistent DMCUFs. Then we represent the

preferences of our investor by such a DMCUF O and try to express the corresponding
indifference valuation DMCUF in terms of BSDEs as well. As in Section 2.6, we

apply the convolution to O and the market DMCUF given via the superhedging price
to obtain an equivalent description for the indifference value respectively for the DM¬

CUF Oopt. To this end, we first prove that the market DMCUF can also be described

by a BSDE. Then we show that the DMCUF && corresponds to a BSDE whose driver

is given by the pointwise convolution of the drivers for O and for the market DMCUF.

This extends results of Barrieu/El Karoui [BEK04] about the convolution of dynamic
risk measures described by BSDEs.

We start by recalling a well-known existence result for solutions of BSDEs. To

this end we introduce some notation and conventions. In particular, we require a very

special structure of the filtration since the proof of the existence result relies on a

martingale representation theorem.

Remark 2.7.1. An existence proof based on fixed point arguments instead of a mar¬

tingale representation theorem can be found in [EKH97]. However, the integrabihty
conditions there are too restrictive for our purposes. O

Let W — (Wf)o<f<r be a standard d-dimensional Brownian motion on a proba¬

bility space (_, F, P) and let F = (Ft)o<t<T be the augmented filtration generated

by W. As before, we assume that F = Ft. We introduce the notation M^(0, T;IRn)
for the space of all equivalence classes of IRn-valued, F-progressively measurable

processes (^o^r^r suchthat

/ ll#rl|2
.JO

dt < 00,

where ||. || stands for the Euclidean norm. Hence two processes û1 and û2 are identi¬

fied in M|(0, T; IRn) if

E f \\ûl-ûf\\2dt
Jo

= 0.

The drivers which appear in the BSDEs we consider are product-measurable functions

g :
_

x [0, T] x R x IRd -> 2R. We often write gt(y, z) instead of g(co, t, y, z) and

usually impose some of the following properties:

Definition 2.7.2. (A) (a>, t) h* g(œ, t, y, z) is in M|(0, T; IR) for any y g Hi,

zeIRd.
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(B) g is Lipschitz in (y, z) G IR x Rd, i.e., there exists a constant C > 0 such that

dP®dt-a.s. forall(y0,zo), (yi.Zi) e IR x IRd

\gt(yo,zo)-gt(yi,zi)\ < C(|y0-yil + ||zo-zi||).

(C) d/> ® df-a.s., g satisfies gf (y, 0) = 0 for any y _R.

(£)) g does not depend on y.

(g) g is concave in (y, z), i.e. dP ®dt-a.s. for all (yo,zo), (yi,zi) & IR x IRd and

a G (0, 1)

gr(ayo + 0 -a)yi,a_o + (l - a)zi) > agf(yo, Zo) + (1 - a)_-f(yi, zi).

(30 g is positively homogeneous in (y,z), i.e., dP ® dt-a.s. for all X > 0 and

(y, z) e IR x IRd

gt(Xy,Xz) = Xgt(y,z).

The following result is taken from Peng [Pen97], Proposition 36.4; see also Par-

doux/Peng [PP90], Theorem 4.1.

Theorem 2.7.3. Let g satisfy (A) and (B) ofDefinition 2.7.2. For any (fixed) random

variable X L2 = L2(_, Ft, P) there exists a unique pair ofprocesses (y, z) in

m£(0, T; IR) x Mj(0, T; IRd) with y continuous, satisfying the BSDE

yt = X + J gs(ys,zs)ds- f ztdWs, t g [0, T]. (2.7.7)

The pair (y, z) is called g-solution with terminal value X and satisfies yt G L2(30
for each t. If the driver g satisfies in addition property (C), then 88[X~\ := yo is called

^-expectation of X andfor each t G [0, T] there exists a P -a.s. unique r}t G L2(30
such that

S8[1aX] = e8[lA%] for all A e Ft.

Then nt = yt and we call 8f [X] := yt the conditional ^-expectation of X under Ft.

Remark 2.7.4. We can and do choose the process y in Theorem 2.7.3 continuous,

since this will allow us to draw conclusions about the behavior of yt which hold al¬

most surely, simultaneously for all t g [0, T], instead of only almost surely almost

everywhere. O

Next we recall some well-known properties of ^-solutions from which we shall

deduce conditions on the driver g under which a g-solution describes a time-consistent

DMCUF.
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Proposition 2.7.5. Let g satisfy conditions (A), (B) of Definition 2.7.2 and denote

for any X G L2 by (yx, zx) the corresponding g-solution as defined in (2.7.7). Then

the following assertions hold:

a) Ft-translation invariance: Ifg satisfies property ($)), then

yf+at = yf + at for any t G [0, T] and at G L2(Ft).

b) Monotonicity: For any X' G L2 such that X' > X, we have

yf' >jf foranyt[0,Tl

c) Concavity: If g satisfies property (8), then we have for any Xi, X% G L2 and

any ß [0, 1] that

d) Ft-regularity: For any X\, X2 G L2 and A G Ft,

e) Normalization: Ifg satisfies property (C), then

y°_0.

f) Positive homogeneity: Ifg satisfies property (F), then

yfx = Xyf for any X > 0.

g) Time-consistency: Let 0 < s < t < T andX[, X2 G L2. Then

yt
{
— yt2 implies that also yX[ — yXl.

Proof. For some parts of Proposition 2.7.5, proofs are available only for the special

case that g satisfies in addition to (A) and (B) also

(G') £f(0,0)_0.

Therefore we first show how the general case can be reduced to this situation. More

precisely, we prove that (yx, zx) := (yx — y°, zx — z°) is the g-solution for the driver

gtiy, z) := gt(y + y?, z + zQt)- gtiyf,z?), t e [0, r]
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and terminal value X. In fact, it is easy to see that g satisfies (A), (B) and (C'). Hence

by uniqueness, (yx, zx) solves

-dyf = {gt(yf,zf)-gt(yf,zf))dt-(zx-zfTdWt (2.7.8)

= (gt(yx + yf, zf + zf) - gt(y?, z?)) dt - (Iff dW, (2.7.9)

= ~gt(yf,zf)dt-(zx)*dWt. (2.7.10)

Since yf = yf — yf for all X g L00 and because the properties a) and d) are invariant

under the translation by —yf, we can thus assume for their proof that g satisfies (Gr)

as well. After this preliminary step, the rest is easy:

a) For g satisfying (C'), this can be found in Lemma 4.2 in [BCHMP00]; see also

Example 11 in [Pen97].

b) See Proposition 3.5 in [EKPQ97].

c) See Proposition 3.5 in [EKPQ97].

d) If g satisfies (G'), then

1a _*«( •, • ) = 8u(1a , 1a ) for all u > t and A g Ft.

Hence the claim follows from 2) of the proof of Proposition 36.4 in [Pen97].

e) See Lemma 36.6 in [Pen97].

f) This is Proposition 8 in [RG06]; see also Example 10 in [Pen97].

g) This follows immediately from Proposition 2.5 in [EKPQ97] and the uniqueness
of g-solutions.

D

Remark 2.7.6. To obtain normalization in e) it suffices to have (C') together with (A)

and (__) However, the stronger condition (C) yields in addition that the g-solution
is independent of the time horizon. In fact, let us write 8fT [X] instead of &f[X] to

emphasize the dependence on the time horizon T. Then property (C) implies that

8lt[X] = ff*r[X] for s < t < T and X 6 L2(Ft),

as described. Note also that (<£») implies the equivalence of (C) and (C). O
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Since BSDEs are typically defined on L2 spaces, it appears more natural in this

context to define (dynamic) MCUFs on L2 instead of L°°. Thus an MCUF at time

t is a mapping from L2 into h2(Ft) which has all the properties of Definition 2.3.1

with L°° replaced by L2 everywhere and with its acceptance set defined as a subset

of L2. In the same way, we extend Definition 2.3.23 of time-consistency by replacing
L00 with L2. It is easy to check that Lemma 2.3.25 remains true for DMCUFs on

L2 so that we can make use here of its equivalent conditions for time-consistency. In

particular, the following result follows immediately from Proposition 2.7.5:

Corollary 2.7.7. Let g satisfy properties (A), (B), (£>) and (8) of Definition 2.7.2

and denote by (yx, zx) the corresponding g-solution with terminal value X e As.

Then

Of(X):=yfx, te[0,T]

defines a time-consistent DMCUF. It is normalized and therefore even strongly time-

consistent ifg satisfies in addition property (G), and coherent if g also satisfies prop¬

erty (F).

Remark 2.7.8. i) A similar result, stated for dynamic risk measures, is given in

Proposition 19 of [RG06]. However, her definition of a dynamic risk measure

(and hence of a DMCUF) differs from ours. For the convenience of the reader,

we therefore showed here how Corollary 2.7.7 can be obtained. We also remark

that in her Section 4.1.2, Rosazza Gianin states in addition conditions under

which the converse holds true, i.e., for when a time-consistent DMCUF can be

described by some g-solution.

ii) Note that DMCUFs described by g-solutions are in particular continuous in t.

O

Now we consider an investor whose preferences can be expressed by a DMCUF

O which is described by a g-solution, and we assume that this investor can trade in

some financial market. As in Section 2.6, we want to obtain results for the indifference

valuation DMCUF by convoluting O with the market DMCUF corresponding to the

superhedging price process in the given market. To this end, we should like to express

also the market DMCUF in terms of BSDEs. However, the superhedging price process

(and hence the market DMCUF) is in general not a g-solution, but belongs to the

bigger class of (constrained) g-supersolutions which we define next:

Definition 2.7.9. Let X g L2 and let both f :
_

x [0, T] x IR x IRd -* IR+ and

g satisfy (A) and (B) of Definition 2.7.2. We call a triple (y, z, A) g-supersolution
with terminal value X if (y, z) is in M2 (0, T; IR) x M2 (0, T; Rd) with y RCLL

and A = (At)o<t<T is an increasing F-adapted RCLL process with Aq = 0 and
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E [__!] < oo such that (y,z, A) satisfies

y,=X+f gs(ys,zs)ds + (AT-At)- j z*sdWs, te[0,T± (2.7.11)

We call the triple a x/r-constrained g-supersolution if (y, z, A) satisfies in addition

ft (yt ,Zt) — 0 dP ® „/-a.s.

If y satisfies

yf < y't for all t [0, T] P-a.s.

for any t/t-constrained g-supersolution (y\ z', A') with terminal value X, we call

(y, z, A) the smallest iff-constrained g-supersolution with terminal value X.

Remark 2.7.10. i) Proposition 1.6 in [Pen99] implies uniqueness of the processes

z and A in a g-supersolution (y, z, A) in the following sense: If (y, z', A') is

also a g-supersolution with the same terminal value X G L2, then z and z'

respectively A and A' coincide.

ii) The original terminology in [Pen99] for a ^-constrained g-supersolution is g-

supersolution under the constraint xfr. We slightly change the terminology here

in order to avoid confusion. In fact, we shall consider the indifference valu¬

ation for the case of unconstrained trading opportunities in the market. But

the corresponding market DMCUF will be described by a x//-constrained g-

supersolution. The deeper reason for this mismatch is that the construction in

terms of ^-constrained g-supersolutions is somewhat artificial, as we describe

the market DMCUF as a stochastic integral with respect to a Brownian mo¬

tion W and as a process adapted to the filtration generated by W. It would be

more natural to use stochastic integrals with respect to the price process S of the

traded assets and work with the filtration generated by S.

O

A fundamental result for BSDEs which we require later is the comparison theo¬

rem. The version we present in Theorem 2.7.11 can be found in [Pen99], Theorem

1.3.

Theorem 2.7.11. Let y, /, B, B', g' g M2 (0, T; IR) where B and B' are RCLL pro¬

cesses with Bo = B'0, E [sup0<f<r \Bt\] < oo and E [sup0<f<r \B't\] < oo. More¬

over, let z, z' G Mj.(0, T; TRd), X, X' G L2 and let g be a driver which satisfies (A)

and (B). Assume that (y, z, B) solves

yt = X + j gt(yt,Zt)dt + (BT-Bt)- j z? dWt, te[0,T]
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and (y', z', B') solves

y't = X' + j g', dt + (B'T - B't) - j (z'tfdWt, t&[0,T].

V

X > X', gt(y't, z't) > g't dP®dt-a.s. and B > B' (i.e., B - B' is increasing),

then we have P-a.s.

yt>y't foralW g [0, 7/].

If in addition P[X > Xf] > 0 then P[yt > y't for all t G [0, T]] > 0.

In order to define the market functional, we now need to specify the financial

market and the set of strategies we allow for trading in the present L2-setting. We

retain the assumptions made at the beginning of this section with respect to the filtered

probability space and the „-dimensional Brownian motion W. Our model consists

of n < d risky assets and one riskless asset which is constantly 1 so that the price

processes of the n risky assets are already discounted. They are defined by

S\ - 4^pl^^alJdWj+^^dS-^^^\erl'J
with

_0
> 0, / = 1,..., n, where /x and a are uniformly bounded progressively mea¬

surable processes and such that the inverse of aa* exists and is uniformly bounded.

Note that there exists an equivalent martingale measure for S so that there are no

arbitrage opportunities in this market.

Definition 2.7.12. An admissible portfolio is a triple (x, n, K), where x G IR, n is

a progressively measurable IRn-valued process and K is an adapted RCLL increasing

process satisfying _o = 0 and

• T

E f \\7T?at\\2dt + K2
Jo

< CO.

Here, x is the initial wealth, nlt is the amount of money invested in the i-th stock at

time t, and Kt is the cumulative consumption up to time t. The corresponding value

process is defined as the RCLL process V = (VOo<f<r given by

dVt = 7i*ßtdt -dKt+TT*atdWt, (2.7.12)

Vo - x.

An admissible portfolio (x, tï, K) is a hedging portfoliofor X G L2 if Vt = X, and it

is a minimal hedging portfoliofor X if its value process V satisfies

Vf < Vi for all t G [0, T] P-a.s.

for every hedging portfolio (x', it', K') for X with value process V'.
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Remark 2.7.13. The definition of an admissible portfolio is here slightly different

from the one given in Section 2.5. First of all, due to a different setting, we impose
different integrabihty conditions. Moreover, the process H in an admissible portfolio

(x, H, K) in Section 2.5 describes the portfolio by fixing the numbers of units of each

asset held, whereas in this section the process iz fixes the amounts invested in each of

the assets. The relation between n and H is thus given by iz\ = H\ S\. O

For simplicity we only consider the case of unconstrained hedging in the sense of

Sections 2.5 and 2.6. Thus the agent can use any admissible portfolio for hedging, and

the set of payoffs she can superhedge by trading during (t, T] is given by

Gt:= \ I x* (nu du + ou dWu) — Y Y G L+ , (0, tt, 0) an admissible portfolio

Remark 2.7.14. In principle, the present approach via the results on minimal g-

supersolutions can be extended to more general situations with constraints imposed on

trading, i.e., when the set C't of payoffs which can be superhedged by trading during
(t, T] is a subset of the above Cf. This idea goes back to Bender/Kohlmann [BK04]
who also give many examples of general constraints. For the applications here, we

need G't to be convex so that we can impose only convex constraints. O

Similarly to Section 2.6, the programme for describing the indifference valuation

p with respect to O and the market corresponding to the family (Cf) now looks as

follows:

1) Construct the market DMCUF corresponding to (Cf); compare (2.6.10).

2) Describe it via BSDEs.

3) Convolute it with O to obtain 0°Pl; compare (2.6.7) and (2.6.11).

4) Describe O0Pl via BSDEs.

5) Express p via Oopt; compare (2.6.8).

Because we work here in L2 instead of L°°, the above steps become technically
slightly different. The main problem is that we cannot construct the market DMCUF

on all of L2. But fortunately, the convolution with O can still be formed since it only
needs the values of the market DMCUF on a suitable subset of L2; this essentially

goes back to the last equality of (2.4.4) in Theorem 2.4.3. Let us explain this in more

detail.

In analogy to (2.6.10), we should want to define the market DMCUF by

Or e'(X) :- ess sup f mt e h2(Ft) X -mt g -e,) (2.7.13)
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so that a simple reformulation would give

-0~c' (-X) = ess inf {mt e \}(Ft) X = mt + G for some GecJ. (2.7.14)

In other words, — O,- '(—X) should correspond to the superhedging price of X at

time t. But this does not work with every X in L2. It is well-known that in contrast

to the L°°-context, a hedging portfolio need not exist for every X g L2 in general so

that the set on the RHS of (2.7.14) can be empty and the essential infimum is possibly

not well-defined. In particular, Or~e' in (2.7.13) is not an MCUF at time t because it

is not defined on all of L2. We might try to save the situation by defining the essential

infimum in (2.7.14) as oo when it is taken over an empty set. But in view of the desired

interpretation as superhedging price, this is not appropriate either. In fact, there might
exist a set A g Ft with P [A] > 0 and such that there exists a hedging portfolio for X

on A, i.e., for Xl^, and then the superhedging price of X at time / should be finite on

A. Hence the definition (2.7.13) cannot be used for every X _

L2; we must restrict X

to some suitable subset of L2.
—G

Now the reason why we consider the functional Of 'is that we want to convo¬

lute it with the DMCUF O which expresses the agent's preferences. Fortunately, this

operation does not need the values of O,-
'
on all of L2; this can be seen from (2.4.4)

which is easily extended from the L00- to the present L2-context. In more detail,

(2.4.4) suggests that we should have

0°pt(X) = "Ofao"e'(X)" = ess sup (of(X + Y) + 0~C'(-7)) (2.7.15)
y_-_

^ '

for all X g L2, where B is an arbitrary subset of L2 such that

B 2 { Y g L2 O"6' (Y) from (2.7.13) is well-defind in L2 and > 0}.
—G

In other words, B should contain the "acceptance set of Of
' ". To prove that (2.7.15)

is indeed true with B := —Co, we shall first show that the superhedging price at time

t for X
_ G0 coincides with the RHS of (2.7.14), and is < 0 if X g Gt ç C0; hence

0,"C'(X) is well-defined by (2.7.13) for X g -C0 and > 0 if X g -Gt. Then we

prove that

0°pt(X) := ess sup Of(X + G) (2.7.16)
Gect

coincides for every X G L2 with the RHS of (2.7.15) for B := -C0.

The next result achieves steps 1) and 2) in the above scheme. It shows that

the superhedging price process for X g L2 can be described via a constrained g-

supersolution of a BSDE, and that this process is nonpositive at t if and only if X g Ct.
—G

Moreover, the superhedging price operator is shown to coincide with —O, '(—. )
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from (2.7.14) or (2.7.13) on Co- Note again that in contrast to the L°° case, these

results do not hold on all of Cf + \?(Ft )
__

Co, because not every X g L2(37) admits

a superhedging portfolio.

Theorem 2.7.15. a) Let X g L2 be such that there exists a hedging portfolio for
X. Then the minimal hedging portfolio (x, tt, A) for X exists, and the corre¬

sponding value process V coincides with the y-component from the smallest

xjr-constrained g-supersolution of the BSDE

-dyt = gril(zt)dt + dAt-zidWt (2.7.17)

with terminal value

yT = X

and constraint

ft(zt) :=

where

Zt - cr, \prtcrt ) crtzt = 0 „/><_> „/-a.s., (2.7.18)

gfW(z):=-zV(<W) V (2.7.19)

b) For X G L2, the minimal hedging portfolio exists and has a value process V

which satisfies Vt < 0 ifand only ifX belongs to Gt.

c) For any G e Co
_

Cf, the minimal hedging portfolio (x,n, K) exists, and its

value process V coincides with ( — O" '

(~-G°))0<t<T with
—

O,- '(— . )fromj—
Gt

f n0\\ „,uu i^~g'

(2.7.14): For each t G [0, T], we have

Vt = -Or~e'(-G°). (2.7.20)

Remark 2.7.16. i) We denote the driver in (2.7.17) by gm(. ) to emphasize its

—G
connection to the market functional (respectively to — Or

'

(— . )).

ii) Since a* (ata*)~ ot is the projection onto the range of er*, the constraint

(2.7.18) simply ensures that zt is in the range of er*. As mentioned before,

this is needed because our strategies ought to be expressed via S, not W.

O

Proofof Theorem 2.7.15. a) We first show that (x, tt, K) is a hedging portfolio
for X with value process V if and only if (V, ct*tt, __) is a ^-constrained g-

supersolution with terminal value X. To see this, note that (2.7.11) can equiva¬

lentiy be written as

-dyt = gtiyt, zt)dt + dAt - z* dWt, yr
- X
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and that the constraint from f is always satisfied for z = o*jt. Hence we

only have to check the integrabihty conditions in Definitions 2.7.9 and 2.7.12,

and show that for any V-constrained g-supersolution (y,z, A) we can write

z
— o*tt for a suitable process tt. However, the latter holds since z satisfies

the constraint from f so that we can take tt := (oo*)~loz, and the former

holds since /_, a and (oo*) are uniformly bounded processes. Now the as¬

sertion follows if we can prove the existence of a smallest V^-constrained g-

supersolution with terminal condition X. But this follows by Theorem 4.2 of

[Pen99] already from the existence of a xfr-constrained g-supersolution with ter¬

minal value X or, equivalentiy, from the existence of a hedging portfolio for

X.

b) Any X e Gt is of the form X = ft Tt* (pu du + erM dWu) - Y where
_

g Lq_
and tt is a progressively measurable IRd-valued process such that

Jo

i * n2 j+

\TTt Of || at < 00.

Hence (0, tt', K') with K'u := 0 for u < T, K'T := Y, tt' = 0 on [[0, tj and

tt' = tt on ]]/, TJ is a hedging portfolio for X so that by a) the minimal hedg¬

ing portfolio for X exists. Moreover, since the value process V' of (0, tt', K')
satisfies V/ = 0, the value process V of the minimal hedging portfolio for X

satisfies Vf < 0. To finish the proof of b), it suffices to show that if for X G L2

the minimal hedging portfolio (x, tt, K) exists with value process V such that

Vf < 0, then X g Cf. But this is easy since (2.7.12) implies that

X = VT = (VT - Vt) + Vf = f jr* (ßu du +ou dWu) - (KT - Kt - Vt)

where KT - Kt - Vt l?+ so that X e Cf.

c) By part b), it suffices to prove (2.7.20). Also by b) the minimal hedging portfolio

(x, tt, _") for G° exists. If V denotes the corresponding value process, we can

write

G° = Vt+ f TT*(pu du + ou dWu) - (KT - Kt) =: Vt + G,

where G g Ct. This yields the estimate

-Of-C'(-G°)

- ess inf \mt G l}(Ft) G° = mt + G'for some G'gcJ (2.7.21)

< Vt.
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The converse inequality is shown by contradiction. Suppose it does not hold.

Then there exist e > 0 and A g Ft with P[A] > 0 such that

-Or~e'(-<_°) + _
< Vf on A.

By (2.7.21), we can then find rnt e L2(37) and G G Gt such that G° = mt + G

and some set B ç A with B g $7 and P[B~\ > 0 so that on 5

m, < -OrC'(-G°) + s < V( = Vt- + A Vf = Vt- - A__f < V,_. (2.7.22)

By b) the minimal hedging portfoho (3c, tt, K) for G e Gt exists and if we

denote the corresponding value process by V, we can write

G = Vf + fw' (ßs ds + os dWs) - Kt + K,. (2.7.23)

Now we fix t G (0, T) and construct a new hedging portfolio (x,tt, K) for G°

such that its value process V satisfies Vt —nit < Vf on
_ ,

which contradicts

the minimality of V. To this end we define

TT

K

Ku

= ^l_0,f]] + (^1_ + 7Tl_c)l]lr,7']|»

=
_ onE0,/E,

= (Vf_ + Kt- -mt + Ku-Kt- Vt 1{U=T}) 1_ + KulBc

fort <u <T.

We note that Vt- + Kt- = x + fQl tt*(/u.s ds + os dWs) so that

Vf = Je + / Tts (ps ds + os dWs) — Kt —mt on B

Jo
(2.7.24)

and that by (2.7.23), we have on B from the definition of Kt that

VT = Vf_ + / 3f*0__ ds + er, dWs) -KT + kt-

= mt + G

= G°.

Hence we are only left to show that (x, tt, K) is an admissible portfolio, which

is obviously true if K is increasing. Because G G Ct implies that Vt < 0, this is

obvious if AKt :— Kt — Kt- — Kt — __f_
> 0 on B. However, the latter holds

true since by (2.7.24) and (2.7.22) we have AKt = -AVt = -(mt - Vt-) > 0

on B. This establishes the contradiction and hence completes the proof.
Ü
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We now pass on to steps 3) - 5) in our scheme. So let us fix a DMCUF O and

define for each X g L2 the indifference value pt (X) at time t implicitly by

ess sup Of (xt + G) = ess supOf(xf - pt(X) + X + G), (2.7.25)
GeG, GeG,

where xt g L2(Ft) is the initial endowment at time /. In addition, we define a func¬

tional 0°pt(X) = ess sup Of (X + G) as in (2.7.16). If

Gee,

O?pt(0) g L2(Ft) and 0°pt(X) g L2(Ft),

then we can use the translation invariance of Of to solve (2.7.25) for pt (X) and get

Pt(X) = 0?pt(X) - O?pt(0) g L2(Ft). (2.7.26)

This last expression is a first answer to step 5). For steps 3) and 4), we assume that O

is described by some g-solution and we should also hke to express 00pt(X) in terms of

BSDEs. The idea to achieve this is as follows. Thanks to Theorem 2.7.15 and (2.7.15),
ODt 0*

we know that O, is "morally" the convolution of Of with the market MCUF Or '.

Now Barrieu and El Karoui have proved in [BEK04] that the convolution of DMCUFs

which are both described by g-solutions corresponds (under some technical assump¬

tions) to the g-solution whose driver is the pointwise convolution (in the sense of

Rockafellar as in (2.4.3)) at each time t of the drivers for the two original g-solutions.
Since the market functional is not a g-solution but a constrained g-supersolution, we

have here a slightly different setting. Nevertheless, we can extend the result of Barrieu

and El Karoui to this more general setting by similar arguments.

Theorem 2.7.17. a) Let the DMCUF O be described by a g-solution with a driver

g which satisfies (A), (B), (ID) and (8). With gm as in (2.7.19), define for
zlRd

gt(z) := sup {gt(z + ofv) + gril(-oiv)}
vemn

= sup {gf(z + <u) + i;Vf} (2.7.27)
VGlRn

andfix X g L2. Ifg :
_

x [0, T~\ x IRd -> IR satisfies (A) and (B), then the

g-solution (y, z) of

-dyt = gt(zt)dt -z* dWt, 9t = X

exists. If in addition there exists
__
G M|(0, T; IRd) satisfying the xjs-constraint

(2.7.18) and such that

gt(zt) = gt(zt+zt) + gf(-zt) dP®dt-a.s., (2.7.28)
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then

0°pt(X) = ess sup (Of(X + G°) + Of"Cf (-G0)} = yt. (2.7.29)
G°_c0

l J

In other words, 00pt(X) then equals the y-component of the g-solution with

driver g and terminal value X.

b) Suppose the assumptions of a) hold and denote by (y°, z°) the g-solution with

driver g and terminal value 0. If there exists z° G M|(0, T; IRd) satisfying the

xjr-constraint (2.7.18) and also

lr(z?) = gf(z? + zf) + gr(-z?),

then (pt (X))0< - is the g-expectation with driver

|f(z):-gf(z + z?)-gf(z!)) (2.7.30)

and terminal value X.

Remark 2.7.18. i) It is easy to check that g always satisfies (£>) and (_ ); the latter

holds since g and gm are both concave and for any ß e [0, 1], we can replace
the supremum over all v G IRn in (2.7.27) by the supremum over all elements

ßv] + (1 — ß)v2, where y1, v2 G IRn. Moreover g can always be chosen

product-measurable on
__

x [0, T] x IRd and such that (<_>, t) h> g(a>, t, z) is F-

progressively measurable, so that (A) is reduced to an integrabihty condition. In

fact, we can fix a product-measurable A ç „

x [0, T] such that Ac is a dP®dt-

nullset and z i-» g(co, t, z) is continuous on 1Rd for all (co, t) g A. Without loss

of generality, 1a is F-adapted; otherwise replace it by A' := A n (B x _),

where _:={(£ [0, T] \ E[lA((o, t)] = 1} is a Borel set. It follows from

E \fQT lA(<w, 0dt\ = T andFubini's theorem that fQT lB(t)dt = T P-a.s. so

that (A')c is a dP _) „/-nullset. Adaptedness of 1a> is then implied by the usual

conditions and since E[lA>((o, 0] g {0, 1} for each t g [0, _"]. Now, since 1A is

product-measurable and adapted, it has a progressively measurable modification

Y = (Yt)o<t<T. Define

gt(z) := Yt sup {gf (z + o*v) + v*ßt}

on
_

x [0, T] x Rd. Then g is product-measurable on
_

x [0, T] x IRd and in

addition (_, t) t-» g(_, /, ^) is progressively measurable. Finally, we need to

show that

gt (z) _= gt (z) for all z e md dP ® „
r-a.s.
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To this end, note that by Fubini's theorem and since F is a modification of 1^

where Ac is a dP <g> dt-mxUseX. we have Y1A — 1 dP _> dt-a.s. Hence we can

conclude that dP ® dt-a.s.

gt(z) = YlAgt(z) = YlA sup {gt(z + cr?v) + v*(it} = gt(z) for a\l z e IRd,
ue_"

where the second equality holds since g is continuous in z on A.

ii) If g satisfies (A) and (B), it is by Corollary 2.7.7 the driver of a g-solution
which describes a time-consistent DMCUF. Note that the condition (2.7.28) on

z depends on X via z. If it does not hold for all X g L2, steps 1) and 2) in

the following proof still show that y = y(X) is an upper bound for O0pt(X).

However, y (. ) need not describe Oopt(. ) on all of L2 because the upper bound

need not be attained.

iii) Suppose /?. j = _ sr is described by the g-expectation with driver g on all of

L2. Since g satisfies (C), we know from Remark 2.7.6 that

e|r[X] = ^r[X] for all s < t < T and X e L2(Ff).

Since DMCUFs defined via BSDEs are always time-consistent, one might be

tempted to conclude that the family p satisfies the recursiveness property

(3i) psJ(Ps,t(X)) = Ps,t(X) for all s < t < T and X g L2

introduced in Section 2.3. But how is p_t defined? In view of the desired in¬

terpretation, we should take p, )f
= O0^1 — Oopt(0), where Oopt is described by

the g-solution with driver g and time horizon t, and then ask if p. >? coincides

with 8st. In general this is not true: Because g depends on z° which itself de¬

pends on the time horizon T, p, tt
will in general correspond to a g-expectation

with a driver different from g. However, if the driver g corresponding to 00pt is

deterministic, one can show that

0°pt(X) = O^(X) - 0^(0) for all s < t < T and X g L2(Ft).

This implies that

Ps,t(X) = 0°pt(X) - O,opt(0) = <_£(__) - O^(O) = p3,T(X)

for
_

< t < T and X g L2(Ft) so that the time-consistency of p. j does imply

(31) after all. Example 2.7.19 below and the subsequent remark illustrate that p

can satisfy (3i) even if g is not deterministic. It would be nice to have also an

explicit example for p described by a g-solution where (31) does not hold.

O
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Proofof Theorem 2.7.17. a) 1) We begin with the first equality in (2.7.29), i.e.,

we show that

ess sup Or(X + G) = ess sup !or(X + G') + 0,~ef (-G')l. (2.7.31)
GeGt G'eC0

l '

Since Cf ç Co and Or
' is non-negative on —Ct by part b) of Theo¬

rem 2.7.15, the inequality "<" is trivial. The converse inequality fol¬

lows if for any G' G C0, we have <t>~c'(-C) G h2(Ft) and G :=

G' + Of
' (—G') G Cf, since then Ft-translation invariance of Of implies

that Of(X + G') + <_^e'(-C) - Of(X 4- G). To show that these two

properties hold, we recall from Theorem 2.7.15 that the minimal hedging

portfolio (x\ tt', K') exists for G' e Go and that its value V/ at time t

equals ~®Jet(—G') so that in particular <&~e'(-G') G L2(3rf). Again

by Theorem 2.7.15, G g Cf if and only if a hedging portfolio for G exists

with a non-positive value at time t. But since V/ = —Of '(—G) and

(„', tt', K') is a hedging portfolio for G', we have

G/ = -ore'(-G/)+ /* (JT„)v_<fc h-o-^w^-cä-j,-_:;>.

Hence

G= f (7r's)*(jjis ds + os dWs) - (K'T - K't)

admits the hedging portfolio (0, tt, K) with n :— Tt'ljt,T]\ and

K := K'litjj which has value 0 at time t. This proves (2.7.31).

2) To show the second equality in (2.7.29) we take G' G Co and denote by

(y, z) the g-solution for the driver g and terminal value X + G'. By The-

—G
orem 2.7.15 the process (—Of

'

(—G ))o<;<r is the y-component of the

smallest ^-constrained g-supersolution (y', z'', A') with f from (2.7.18),
driver gm and terminal value G'. Hence we get

-d($t(X + G') + <ï>;Ct(-G')}
= (gtizt) ~ gTiz't)) dt - dA't - (Zt - z't)* dWt
= (gtizt + z',) + sTi-Zt)) dt - dA't ~ % dW(, (2.7.32)

with Or(X + G') + 0^Cr (-G') = X and where we set It '•- Zt - z't and
use that -g (. ) = gfm (- . ). Since

gt(zt) > gtizt + z't) + gfm(-z;) dP ® dt-a.s. and 0 ^ -A',
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the comparison result in Theorem 2.7.11 applied to the driver gt (. ) with

solution (y, z, 0) and the integrand gt(lt + z't) + gf(—z!t) with solution

((Of (X + G') + O,"6' (-G'))t, z, -A')
yields

yt > Of (X + G') + <3>;e'(-G') for all / 6 [0, _ ] P-a.s. (2.7.33)

Hence y is an upper bound for 00pt.
V

3) Next we construct an element G Co for which this bound is attained to

establish the second equality in (2.7.29). To this end set

G:= f gT(-zt)dt+ f z*dWt
Jo Jo

and note that z by assumption satisfies the constraint x/r from (2.7.18).

Hence 7Tf :— (er^er*)-1^^, t G [0, T], satisfies 7T*crf = z* so that

rT

G= / TTf(}Xtdt+OtdWt).
Jo

V V

Thus (0, tt, 0) is a hedging portfolio for G and so G g Co by Theorem

2.7.15. Next we define (yf)o<r<:r as the continuous process

yf.= j g?(-Zs)ds+ f rsdws.
Jo Jo

Again since gf (— . ) = —gj" (. ), (y, z) is the unique g-solution of

-dyt = gT(zt)dt-rtdWt, yT = G.

In particular, since z satisfies the constraint f from (2.7.18), the compar¬

ison result in Theorem 2.7.11 implies that the triple (y, z, 0) is the small-

est xjr-constrained g-supersolution with terminal value G and driver gm.
Thus and since G Co, parts c) and a) of Theorem 2.7.15 yield that

-yt = Of"e' (-G). We know from (2.7.32) that for G' := G we have

-d (Of(X + G) + Or-e'(-G)) = (gt(zt+zt) + gT(-Zt)) dt-z*dWt

for some z g Mjj^(0, T; IRd). Since one can easily check that the driver

(gt(- +Zt) + gT(-Zt))0<t<T
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satisfies (A) and (B) and since by assumption (2.7.28) we have

gt(zt) = g,(zt +zt) + gT(~Zt) dP® dt-a.s.,

uniqueness of g-solutions implies that

Of (X + G) + 0~c' (-G) = yt for all t e [0, T] P-a.s.

Hence y is not only an upper bound for 00pt, but equal to it. This proves

(2.7.29).

b) With a) and (2.7.26), this follows from the uniqueness of g-solutions and since

~d(y?-yf) = (gt(zf)-gt(zH))dt-(zf-z^dWt
= (gt (zf + z?) - gt ((z?))) dt - (ztT dWt,

yx-yT = X,

where z := zx — z°.

D

We conclude this section with an explicit example where the DMCUF O is given

by the conditional exponential certainty equivalent with risk aversion y, i.e.,

Of(X) := logZs[exp(—yX) \Ft] for X sufficiently integrable;
Y

see also Examples 2.3.3 and 2.7.1. Then O is described by the g-solution with driver

gf(z) :— — \ l|z||2; see, e.g., Section 3.1 in [BEK04]. Although this driver obviously
does not satisfy (_5), so that Theorem 2.7.17 cannot be applied, this is quite an illus¬

trative example. In fact, the driver of the g-solution describing the indifference value

process is known here explicitly, and we can show by formal calculations that it corre¬

sponds to g from (2.7.30). Moreover, this example shows that if g has a nice structure,

one can eliminate the dependence of g on z° by expressing the value process as g-

solution under an appropriate measure. Instead of successively solving two BSDEs

(one for y°, then one for y which depends on z°), one can first do a measure change
and then solve one BSDE (for y) under the new measure. While this usually does not

reduce the difficulty of the problem, it still gives a conceptually clearer view.
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Example 2.7.19. Let the DMCUF O be described by the g-solution with driver given

by gf (z) := -\ ||z||2. Then with 9t := oi(oto*)~[fit, we have from (2.7.27)

gf(z) - sup {gt(z + <r?v) + g?(-a?v)}
vemn

= sup {-||z + erfüll2+ t;*/u.f}

= sup \-^\\z + er*v\\2 + (er*v)%}.
vent"

l z '

By completion of the square we can rewrite the term in brackets on the RHS as

2

_.'

2

*

ot V

to get

gt(z) = -

r

-z + -Bt
y

,

rif (-z + -dt

l
—

iii/fi

2y
-z% + ^-\\et"2

-z% + ~\\et\\2,
2y

where Ut(u) denotes the projection of
„
onto the orthogonal complement of o*(IRn).

Denoting by (., . ) the scalar product and using the properties

||a||2 - ||fc||2 = ||„ - b\\2 + 2(a-b,b)

and (rif (a), Ut(b)) = (a , Tlt(b)) and linearity of the projection Ut, we get

l(z) = _r(Z + Z?)-&(Z?)

y_
2

Ut -z - z? + ~0t n, (-zt + V -z%

=
-Y- \\l\t(z)t - y (-Ut(z), -rif (-yz? + etfj -z*9t

= -|linf(z)l|2 + (z,nf(-y^ + öf))-z*öf
= -l\\nt(z)\\2 + (z,nt(-yz? + et)-0ty

In particular, if the process 8(J 6° dWs) for 0r° := _If (-yz? + 0*) - 9t is the density

process of some equivalent martingale measure Q° G 3>e, then we obtain

-dpt(X) = -?-\\nt(zt)\\2 + (zt,Ô?)dt-z;dWt
y

\nt(zt)\\2 - zi dw?,

Pt(X) = X,
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where W° := W — f 0® ds is a Brownian motion under Q°. This representation
has the advantage that the driver does not depend on z0', it was presented (in a more

general setting) by Rouge and El Karoui in Theorem 5.1 in [REK00]. To see that

their results agree with ours, note that the price/value process in [REKOO] is the seller

price process whereas we consider the value process for the buyer. Moreover, our

process z° is associated to the g-solution which describes the process Oopt(0) —

(—-jess infceGt E[exp(—yG)\Ft])o<t<T whereas their process z° is associated to

the g-solution which describes —Oopt(0). However, one can easily check that if

(y, z) denotes the solution for a driver g and terminal condition —X and if (y, z)
denotes the solution for the driver gt (y, z) := ~gt(~y, —z) and terminal condition

X, then (y,z) = (—y, —z). Therefore the driver in [REKOO] should be compared with

—gt(— • ) where in addition z° is replaced by —z°. The BSDE for Oopt can also be

found in Theorem 7 of [HIM05]. For similar reasons as above, the driver there should

be compared with g(— . ).

Remark 2.7.20. Although the driver g in the above example does not satisfy g(0) = 0

and is not deterministic, the corresponding indifference price satisfies (3t); see Propo¬
sition 15 in [MS05]. It would be interesting to see an explanation for why this happens.

O

2.7.3 Extension to a dynamic MCUF

In this example we show that an MCohUF at time 0 cannot always be extended to

a time-consistent normalized DMCUF; note that if there exists any time-consistent

extension, then there also exists a normalized extension. More precisely, we consider

the MCohUF

O0(X) :=E[__-a||(__-.[„J)-H, forXGL00, (2.7.34)

where 0 < a < 1 is a constant and \\ .\\p is the L^-norm for some 1 < p < oo. One

straightforward extension to a DMCohUF can be obtained by setting

Of (X) := E[X\Ft] -a(E[((X- E[X\Ft])-)p \Ft])K 0<t<T.

Then for each time t we can specify a convex L1-closed set _2f of measures represent¬

ing Of as in (2.3.8) of Theorem 2.3.16. However, we show by a counterexample that

$o is in general not weakly m-stable so that by Lemma 2.3.29 O is not time-consistent.

Moreover, we also show that it is even impossible to extend Oo to any time-consistent

DMCUF at all. The point of this example is to illustrate that time-consistency is a

rather severe condition on a DMCUF.

The definition of Oo is inspired by an example given in [FisOl] by Fischer who

considers (static) coherent risk measures depending on one-sided moments. It is quite
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natural to define an MCohUF in this way, since it is just the expected value of the

payoff minus a term which punishes the downside risk.

Let us first show that at each time t g [0, T], Of(.) can be represented as

Of(X) = ess inf EQ[X\Ftl (2.7.35)

where for p > 1

Ö, := Qe3(pa dQ_
dP

= i+a(Y-E[Y\Ft]), Y>0, E[Y<*\Ft] < 1

with q conjugate to p, and for p = 1

dQ
&,:= Qe3q>a

dP
= 1 + a(Y - E[Y\Ft]), 0 < Y < 1

Note that by Example 2.3.3 b), this shows in particular that O is a DMCohUF. For

t — 0 the proof of (2.7.35) can be found in [DelOO], and for general t e [0, T], it

works similarly as follows. Fix X g L00 and t g [0, T]. We start with the case when

p > 1 and define

((X - ElXlFtV+Y"1
Y :=

(E[((X-E[X\Ft])+)p\Ft])Ppl
> 0.

Then E[fq \Ft~\ = 1 and hence also E[f \Ft~\ < 1 by the conditional Jensen inequal¬

ity. Denote by Z the density process of the corresponding measure Q in £_f so that

Zs := eU+u(y - E[Y\Ft]\ I 3.1 for s G [0, T]. Note that Zt = 1. Since

Y — E[Y\Ft~\ > —1, Q is equivalent to P for a < 1. If a = 1, then Q need not be

absolutely continuous with respect to P. However, we shall see that Q.t is convex and

contains P, so that we can approximate <_ in L*(P) by the sequence (Qw)w__v <= Öf
associated to the sequence of densities ZT :— s + (1 — s)Zt, 0 < e < 1; see the proof

of Lemma 2.3.29. Since Zt = 1, we have

ZT

Zt
Ft = E[X\Ft] + E[zT(X-E[X\Ft])\ Ft]

= E[X\Ft] + E[(ZT-l+aE[Y\Ft])(X-E[X\Ft])\ Ff]
= E[X\Ft] + E[aY(X-E[X\Ft])\ 3v] (2.7.36)

E [((X - ^[Xl^]^)^"1 (X - E[X\Ft]) | Ft]
= £[X|Ff] + „-

p-i

(_.[((X-_.[X|3v])+)A'| Ft]) p

= E[X\Ft]+a(E[((X-E[X\Ft])+)p\Ft])r . (2.7.37)
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Now take Q' g _f with corresponding Y' and denote the density process of Q' by Z'.

As above we obtain

=+X
_

Lf
Ft = E[X\Ft] + E[aY'(X-E[X\Ft])\Ft]

< E[X\Ft] + aE[Y'(X-E[X\Ft])+\ Ft]
< E[X\Ft]

+ a (E [(¥')«\ Ft])« (_.[((__ - E[X\Ft])+)p \ Ft]Y

< E[X\Ft] + a{E[((X-E[X\Ft])+)p\ Ft]Y

by using Holder's inequality and the definition of _f. Replacing X by X := —X and

using (X - E[X\Ft])+ = (X - E[X\Ft])~ gives after changing signs that

Zf
T

~zlt
X Ft > £[X|3^f] -a{E[((X- E[X\Ft])-)p | Ft]Y = Of(X).

Analogously, (2.7.37) can be transformed into

^X
zt

Ft = Of(X).

This proves (2.7.35) for p > 1. If p
— 1 we take F := l{x<.E\x\Tt}} and obtain as in

(2.7.36) that

__i

zt
X Ft = E[X\Ft] + aE[9 (X-E[X\Ft])\ 3v]

= _.[X|37_-aE[(X-_.[X|3_r| ^]
__ Of(X)

and that for arbitrary Q' e GLt with corresponding Y' and density Z', we have

___ y

3^ < £[X|37] + „£[y/(X-JE[X|37])+| j;]

< £[X|Ff] + a£[(X-£[X|5;])+| 3v].

The same arguments as above then again yield (2.7.35).

In a second step, we now prove that Q.t is convex and closed in L1. Convexity is

easy since for p > 1, the boundedness by 1 of E [ (olY + (1 — a)Y')q | Ft] follows
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from the conditional Minkowski inequality. To show closedness, we fix a sequence

(Qn)neiN Q ®t which converges in L1 to some Q and denote by ZT and Zt their

respective densities and by (Fw)wew and Y the associated random variables from the

definition of _2f. Since each fn := E[Yn\Ft] satisfies 0 < fn < 1, Lemma 3.2 of
A /V

[Sch92] ensures the existence of a sequence (fn)n&iN of convex combinations fn g

conv{/„, fn+i, •} which converges to some / almost surely and hence also in L1.
/"

_J_ 1 A

Denote for each n g IN by ZT g conv{Z£, Zj ,...} and Yn g conv{7n, yn+i,...}

the convex combinations with the same weights as fn. Then

E[\Ym-Yn\] < £[|(fm-^)-(yM-/w)|] + £[|/w»/M|]
= e\-(ZTl-\)--(ZT-\)]+E\\fm-fn\\,

a a J LI IJ

A

and the RHS converges to 0 for m, n —> oo since (Zj)ne_\r converges like (ZT)nw
to Zj in L1; this uses that ZT g conv{Z£, Z"+1,...}. Thus the Cauchy sequence

(Yn)n&w converges to some Y > 0 in L1. If p > 1, the conditional Minkowski

inequality implies that E[YJj\Ft] < 1 for each n g IN and hence by Fatou's lemma
A A

also E\Yq \Ft] < 1; for p
— 1, we have 0 < y < 1. Moreover,

Z£ = 1+_ (£„-__[?„| 3v]) >0

converges for n ~¥ oo in L1 to

ZT :=l+a(y-£[y|3v])
/v A

-j
A

since Yn ~+ Y in L
.
So Zj is > 0 and the density of an element of GLt •

But we
A

| —, A

already know that Z^. -» Z^ in L ; hence Z^ = Zt which implies that <2f is closed.

Finally we provide a counterexample which shows that O is in general not a time-

consistent DMCohUF and that it is even impossible to redefine it for / e (0, T] such

that O becomes a time-consistent DMCUF. In fact, the counterexample shows that do

is not weakly m-stable in general, which is by Lemma 2.3.29 a necessary condition for

time-consistency if Oo is positively homogeneous; note that we showed in the proof
of Lemma 2.3.29 that the L^closed convex st fi_o representing a DMCohUF at time 0

is unique.

Counterexample: Let
_

= {co\,..., _e}, F the power set of
_,

T = 2, Fq =

{0, Q], F\ = _({__!, û_}, {w3, co4}, {cos, ft.}). F2 = F,a = p = \, pi :- P[{wi}],
i = 1,..., 6, p\ = 100/?2, P6 — 100/?5. Define two densities ZT and Z2, of elements

of é_o by their associated random variables Y1 and Y2, where E[Yl] = 5,0 < Yl < 1,

i" = 1,2, and

yl(wi)=_oö' rl(W2) = 1' rW = i, rW = i,
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Y2(m) = ~, Y2(co2) = l, Y2(ü>5)=1, Y2(co6) =
100'

' '

100*

If _2o is weakly m-stable, then

Z2
ZT := Z\^

^1

/ , i i \ 1 + (Y2 - E[Y2])
= (l + tEty^ij-^ty1])) ^ \V '

/ i + (£[y2|Fi]-£[y2])

/ / , ,
\ i + (y2 - e[Y2])

= i+ -l + fi + ^ty^ij-iity1])) —-^ —±-^-
y V '

/ i + (£[y2|Fi]-_:[y2])

must be the density of some element of ©o- Since

/ i ,
\ 1 + (Y2 - E [Y2])

V ' J7 l + (£[y2|Fi]-£[_2])

has E[Y] — 1 we can write

Zr = 1 + ((_ + c) - E[Y + c])
for any c e IR, and this is the unique decomposition of the form "1 + (Y — E[Y]y\
where y is a random variable, except for the constant c. Zt is an element of _2o if and

only if there exists c G IR such that 0 < Y + c < 1. Since Y > 0 this is equivalent to

max Y(cüt) - min
_ (_,) < 1. (2.7.38)

f'e{l 6} ie{1 6}

However, E[Yx\F\](co^ = E[Y2\Fi](coi) so that

Y(coi) = 1 + Y2(ù)i) - E [y2] = 0.51

and _:fK1|3ri](a_) = 1 and E[y2| _=!](__) = ^ imply that

/ 1 \ 1 + 1 - I 303

Therefore (2.7.38) is not satisfied and 62q is not weakly m-stable. O
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Utility based good deal bounds

3.1 Introduction

In this chapter we study good deal value bounds in a dynamic setting. We model the

discounted price processes of the traded assets in an incomplete market by a multi¬

dimensional semimartingale S and denote the set of equivalent local martingale mea¬

sures for
_ by Me(S); the latter is assumed to be non-empty. For a (possibly untraded)

discounted random payoff X, the expectation under any Q e Me(S) is an arbitrage
free value for X and the interval of arbitrage-free values is given by

inf EQ[X], sup EQ[X]
feM'iS)

u

QeMHS)

But this interval is usually too big to be useful in practice. On the other hand, intro¬

ducing subjective criteria to single out one pricing measure can be very restrictive.

Therefore we pursue a middle course. Me(S) contains many martingale measures

which are not reasonable for pricing because they are too "good" in some way, or,

more technically, too far away from the reference measure P in an appropriate sense.

Consider for instance the following simple example of a finite model with only one

time step and two traded assets. Their payoff structure is given in Figure 3.1 below

and we assume that the subjective measure P assigns the same probabihty to each of

the three states. The set of equivalent martingale measures is given by

Me(S) = (2q, 1 -3q,q)

Thus, for the payoff X = (0, 1, 0), the interval of arbitrage-free values is the whole

interval (0, 1). The values close to the boundaries of this interval are attained by prob¬

ability measures which either have hardly any mass in the second state or concentrate

109
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asset 0 asset 1

Figure 3.1:

most of the mass there. Since these measures are very different from the subjective
measure P, they are not very reasonable pricing measures. To exclude such extreme

values and degenerate measures, one might for instance impose a bound on the vari¬

ance of the density, i.e., allow only those measures for pricing which are contained

in

M := \ Q g Me(S)
dQ

dP
= ZT, Var[Z_]<A ,

where A is some constant. This gives for X the value interval

inf EQ[X], sup EQ[X]

which is (depending on the choice of A) much smaller than the no-arbitrage value

interval.

The first study of this approach is due to Cochrane and Saà-Requejo in [CSROO].

They use a performance measurement (the Sharpe ratio, to be precise) to quantify
the attractiveness of some payoff priced with respect to some Q g Me(S), and want

to exclude those measures from pricing which yield a good deal, i.e., an investment

opportunity which is too attractive in comparison with those traded in the market.

Using an inequality of Hansen/Jagannathan [HJ91], they find that a restriction on the

variance of the density of g G Me(S) with respect to P yields an upper bound for the

attractiveness of all payoffs priced with respect to Q. Therefore they take for pricing
only measures which are contained in M and thus do not yield good deals.

We show below that the upper bound for the Sharpe ratio in [CSROO] is just the

maximal attainable Sharpe ratio in an extended market, where the extension depends
on the respective pricing measure. Moreover, we prove that one can obtain the same

set M of no-good-deal measures by imposing a bound on the maximal attainable

quadratic utility in the extended market. This gives rise to a more general approach
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where we replace the quadratic by other utility functions. To obtain a set of no-good-
deal measures _V, i.e., of reasonable pricing measures, we then restrict the maximal

attainable utility in the extended market. Our main goal is to study the no-good-
deal values and value bounds as processes. Because their computability and dynamic

properties depend on the set _V, the main difficulty is to find an appropriate and yet
workable definition for this set in a dynamic context. In a Levy setting, we define M by
a pointwise restriction on an appropriate integrand. This allows us to apply dynamic

programming techniques. We show that this "local" restriction implies a bound on the

corresponding "global" criterion and clarify the connection between the pointwise and

the global restriction. The corresponding lower value bound is a dynamic monetary

coherent utility functional, i.e., up to sign a dynamic coherent risk measure and in

particular time-consistent. Any such functional O is fully described by a set Q of

probability measures Q m P via Or(X) = ess inf En[X\Ft\, see [Del06] or Lemma
ß_„

2.3.29. Although Ö has a clear economic interpretation as the set of all possible
scenarios, it is often not clear which measures one should choose. Thus a byproduct
of our approach is that it yields a very intuitive way to specify with É2 := JS a set of

scenarios in the context of valuation in incomplete markets.

Good deal value or price bounds have been studied in some recent papers. Simi¬

larly to Cochrane/Saà-Requejo, Björk/Slinko [BS06] use the Sharpe ratio and impose
a bound on the variance of the densities of the pricing measures. Ross [Ros05] also

works with this set of pricing measures, but obtains it in the Capital Asset Pricing
Model from a different reasoning. Cerny [Cer03] obtains good deal bounds for sev¬

eral utility functions via a constraint on the indifference value in an extended market.

Bernardo/Ledoit [BLOO] use the gain-loss ratio as a measure for the attractiveness;

for a payoff X priced with respect to Q g Me(S), this is the ratio of the expecta¬
tions (with respect to P) of the positive and the negative parts of the excess return

X — Eq[X]. Pinar/Salih [PS05] use a similar gain-loss trade-off. Longarela [LonOl]

and Bondarenko/Longarela [BL04] suggest to take only those measures which are not

too far away from some benchmark valuation measure and propose several definitions

for the distance between valuation measures. A different type of approach is pur¬

sued by Cerny/Hodges [CH02], Jaschke/Kiichler [JKOl], Staum [Sta04], Carr et al.

[CGMOl] and Cherny [Che06,05a,05b]. They start with a set of desirable payoffs,
and a good deal is a desirable claim which is available for free. This latter approach is

strongly related with monetary risk measures; see the discussion at the end of Section

2.6. Of all these works on good deal price bounds, only [CSROO], [Cer03] and [BS06]
consider also a dynamic setting; in Section 2.6 we also work in a dynamic framework,

however our results are formulated in terms of indifference valuation.

The chapter is structured as follows. In Section 3.2 we recall the original definition

of good deal bounds from [CSROO] and explain how it can be generalized. This is

done in a static setting. Section 3.3 explains the link between good deal value bounds

and monetary risk measures. Moreover, we present in more detail the connections

between the different existing approaches on good deal bounds. But our main goal
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is to study good deal values and value bounds as processes. In order to have a nice

parametrization for the set of all equivalent local martingale measures, we choose

to work in a Levy framework. Section 3.4 provides some auxiliary results on such

parameterizations and on Levy processes. Section 3.5 deals with the extension of no-

good-deal valuation to a dynamic setting. The main difficulty is to find a reasonable

definition for the set of no-good-deal measures which still leads to mathematically
tractable problems. Our definition will be obtained from a pointwise restriction on

an appropriate integrand. This "local" restriction is motivated by a "global" criterion,

and we explain how the two are linked. Section 3.6 discusses the properties of the

resulting good deal values and value bounds as processes. Finally, we present two

explicit examples in Section 3.7.

3.2 Static good deal bounds

In this section we introduce some notation and the concept of good deal value bounds.

We generalize the original approach by Cochrane/Saà-Requejo [CSROO] and introduce

several criteria for good deals.

To describe a financial market, we start with a probability space (_, F, P) with

a right-continuous and complete filtration (37)o<f<r where T < oo is a finite time

horizon, Fq is trivial and F = Ft- There are one riskless and d risky assets with dis¬

counted price processes modelled by an /Revalued semimartingale S. In this section

we assume that S is locally bounded. We can and do choose RCLL versions for all

semimartingales. By Pa we denote the set of all probability measures Q <JC P and by
3>e the subset of equivalent measures. E[. ] denotes the expectation with respect to

P.

For any Q e Pa, its density process Z = (Zt)o<t<T and density Z_- are defined

with respect to P. The problem we investigate is the following. For an agent who can

dynamically trade in
_,

what is a reasonable value for an untraded (discounted) payoff
X contained in h°°(P) or in L^(P)? Let us fix a payoff X for the moment. A first

reasonable requirement is to have absence of arbitrage. An arbitrage-free value for

X is typically given by the expectation of X under some equivalent local martingale
measure for

_.
We denote by Me(S) the set of all Q _

3>e such that
_

is a local

martingale under Q and exclude arbitrage opportunities by the standing assumption

Me(S) ^ 0.

But for an incomplete market, Me(S) contains infinitely many elements. Thus no-

arbitrage arguments imply only that the value of X should lie in the interval

( inf Eq[X], sup EQ[X]).
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As illustrated in the introduction, Me(S) contains in general many martingale mea¬

sures which are not reasonable for pricing because they are too "good" respectively
too far away from the reference measure P in an appropriate sense. By omitting those

measures, we define a set Jf ç Me(S) of no-good-deal measures and obtain the value

interval

inf EQ[X], sup EQ[X]
QeM qçm

(3.2.1)

which is smaller than the no arbitrage interval. This is the abstract concept of good
deal bounds. To make things more concrete, one has to specify what too "good"
measures are. In the pioneering work by Cochrane and Saà-Requejo in [CSROO] this

is done as follows. If Q e Me(S) is chosen as pricing measure, the excess return of

some payoff X G L2(P) is X - Eq[X] and the corresponding Sharpe ratio is defined

as

e\x-eq[xy]
SR(X, Q) :=

L J

yVar[x-£ß[X]]
This is a widely used performance measure. Cochrane and Saà-Requejo now argue

that Sharpe ratios observed in the market tend to be rather low. Therefore they define

good deals as excess returns with high Sharpe ratios. To obtain a mathematically
better tractable problem, they use an inequality due to Hansen/Jagannathan [HJ91].
For Q g Me(S) with density ZT G L2(P) and X G L2(/>), this inequality yields

SR(X, Q) < V^iZnr] = Je[Z2]-1. (3.2.2)

Thus, a bound on Var[ZH or, equivalentiy, on E[ZT~\ implies a bound on the Sharpe
ratios of all payoffs valued by Q. Therefore, [CSROO] define the set of no-good-deal
measures by

Mq := j Q G Me(S) ^f = ZT, E[Z2} < A*
dP

for some constant Aq ; here q stands for quadratic.
A first and important question is in which sense the inequality (3.2.2) is sharp.

To discuss this, we need to clarify for which payoffs we should like to have a bound

on the Sharpe ratio. Our agent can dynamically trade in
_.

If we assume that also

the terminal payoff X is dynamically traded for the price EQ[X\Ft], we want the

Sharpe ratio obtainable by dynamically trading in SQ := (s, (EQ[X\Ft])o<t<T) to

be restricted. We define the set of all wealth processes obtainable by trading in S1 ô
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with initial capital x G IR by

X(x, SQ) := IV = (Vt)o<t<T Vt=x + (H- SQ)t for some predictable,

S ^-integrable TT such that V is uniformly bounded from below |.

The corresponding set of payoffs which are bounded from below and dominated by
the terminal values of these wealth processes is

G(x, SQ) (3.2.3)

:= JX G L°(P) X~ G L°°(P) and X < VT for some V G X(x, SQ)\.

This is the set of payoffs whose Sharpe ratios we want to be bounded. Since S ®

is a local g-martingale, eacn V g X(x, S@) is a local g-martingale and a g-

supermartingale. Hence G(x, Sß) is contained in

G(x, Q):={xeV(Q)\ EQ[X]<x, X~ g L°°(P)} . (3.2.4)

Recall that by duality theory, in a complete market with traded assets S' modelled by a

locally bounded semimartingale and unique martingale measure Q', we have for any

X G L°°(P)

Eq>[X]<x <^=> XeG(x,S').

In this sense the payoffs in G(x, Q) constitute the natural analogue of those obtainable

by dynamically trading in an extended market with unique martingale measure Q. The

following lemma shows that the RHS of (3.2.2) is the maximal Sharpe ratio obtainable

in this Q-extended market.

Lemma 3.2.1. Forx G R and Q g 3>e with density Zt L2(P) we have

sup SR(X, Q) = sup SR(X, Q) = Je[Z2] - 1. (3.2.5)
A-_e(0,Q) X£C(x,Q)

v

i?[*]<oc £[X]<oo

Remark 3.2.2. Note that if E[X] — oo, the variance and hence the Sharpe ratio of X

is not well-defined. If £[X] < oo and Var[X] = oo, we simply set the Sharpe ratio

equal to zero. O

Proof. Note first that G(x, Q) =x + G(0, g) andSR(x + X, Q) = SR(X; Q). Hence

the first equality in (3.2.5) is clear and we may without loss of generality take x = 1.

Now, let X C(l, Q) with _?[__] < oo and define X := X - E[X] so that
_ [X] = 0.

The Cauchy-Schwarz inequality implies that

E2Q[X] = E2[ZTX] = E2[(ZT - 1)X] < E[(ZT - 1)2]£[X2]
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so that

SR(X, g) = SR(X, Q) = fQ[X] < Ve[(Zt - l)2] = ^E\Z2\-\.
y/E[X2]

This proves "<" in (3.2.5). To show equality, first assume that ZT g L°°(P) and de¬

fine X := \-ZT sothat£[X] = OandX = X. Since then SR(X, g) = ^/£[Z2] - 1

and X g C(l, g), this establishes equality in (3.2.5). If ZT $ L°°(P), then approxi¬
mate X by

Xn := 1 - Z__{_r<„}

which is clearly in G(x, g). Computing the Sharpe ratio SR(X„, g) explicitly and

then using monotone convergence both for its numerator and denominator directly
gives

lim SR(Xn, Q) = JE[Z2]-I
n—>oo V '

and thus completes the proof. G

Exploiting the same estimate via the extended market, one can get the same good
deal bounds via a different criterion. In fact, it can be obtained from maximizing
expected utility in the extended market for the quadratic "utihty" function which is

defined for fixed
„ g IR by

Vq(x) :=-(a-x)2, xelR.

Proposition 3.2.3. Let g g 3>e with density ZT G L2(P) andx < a. Then

1

XeG(x,Q)
~ ' " ' '

£[Z£]

sup E[Vq(X)]=Vq(x)^7^. (3.2.6)

£[U^(X)]£[Z2] = -E[(a-X)2lE[Z2]<-(E[ZT(a-X)])2

Proof "<" holds by the Cauchy-Schwarz inequality since for any X G G(x, Q)

< -(a-x)2 = Vq(x).

If Zr g L°°(P), equality follows since X := a - ~kZT G G(x, Q) and
E[ZT]

<) (a — x)2
E[(a-X)2]=± /-.

E[Z2]

For ZT & L°°(P) approximate X by

Xn'=a-
_ 2 (^rl{Z7-<«} + c„)
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with cn = E[Zjl{zT>n}] \ 0. Then Xn g C(x, g), and combining an explicit
computation with the dominated convergence theorem yields

lim E \(a - Xn)2] = (a — x)

E[Z2]
'

D

Proposition 3.2.3 shows that the maximal expected utility in the extended market

is separable into the utility of the initial capital x and a term depending on g only.
Our aim is to find a set JV" of no-good-deal pricing measures. We want to deduce the

criterion for good deals from a restriction on the maximal quadratic utility, and we

should like it to be independent of the initial capital x. Therefore, we work with the

term depending on g only and thus choose the value of the variance or, equivalentiy, of

the second moment of Zt as criterion for no-good-deal measures. Since Vq(. ) < 0,
the set of no-good-deal measures is then like for the restriction of the Sharpe ratio

given by

Mq = | Q g Me(S)

for some constant Aq.

ZT := -?=-, E[ZÎ~\ < Aq

Remark 3.2.4. a) Both Cerny [Cer03] and Hodges [Hod98] purport to illustrate

with an example that the Sharpe ratio is not a good performance measure. In a

finite state model, they specify the excess returns of two payoffs in such a way
that except for one state, the excess returns of both payoffs are equal, but the

Sharpe ratio of the payoff with the higher excess return in the remaining state

is smaller. To describe this mathematically, suppose there are n different states.

Denote by xi and yz- the respective payoffs in state i g {1,..., n), by q, the

probability of state i under the pricing measure and by s > 0 the difference of

the excess returns in state n. By assumption, the excess returns satisfy

n n

-*1 ~ Yl X'q' ~ yi ~ _C y'qi '

« = 1 i=1

n n

Xn-\ - ^2 X'q' = yn-] ~

___

yHi '

«=1 ( = 1

n n

xn - ^ xtqi — s + yn - ^2 yiQi

i=ï i=l
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Since £_ qt = 1, multiplying the /-th equation with qi and summing up both

sides of the system of equations gives

n n n n

XI xm ~ _i_ xiqi =sqn + ^2 ymi
- J] yiqi

i=l i = l ( = 1 z = l

This can only be true if qn — 0, i.e., if the pricing measure g is only abso¬

lutely continuous, but not equivalent to P. Hence this animadversion against
the Sharpe ratio is not justified.

b) The quadratic "utility" function Vq is not increasing and thus not an econom¬

ically reasonable utihty function. Note, however, that this does not affect the

criterion derived from the restriction of the maximal attainable quadratic utihty
since this criterion is based only on the term depending on the measure g.

O

Up to now, we have examined the original approach of Cochrane and Saà-Requejo
which is based on a restriction for the Sharpe ratio. We have shown that restricting the

maximal attainable quadratic utility yields the same set of no-good-deal measures. An

obvious generalization of this approach is thus to introduce and study no-good-deal
criteria from maximizing expected utility for more general utility functions like

Ve(x) :=

Vp(x) :=

U*(jc) :=

1
-ßx ß>0;

^ x>0
1-y

x > u

x^-y
lim -r—j

x\ol
y

—oo

x =0

x < 0

0<y #1;

x > 0

x <0.

We set Vp and U^ equal to —oo on
___

to avoid having to distinguish between utility
functions on

__

and 1R+ and define dom(U') := {x G IR | U'(x) > -oo}. The well-

known approach to calculate maximal expected utility is to apply duality theory. We
are interested in the solution to the primal problem of maximizing expected utility
over some set of payoffs G(x), e.g., C(x) = G(x, S) from (3.2.3). That is, for U' :

R -» IR U {-oo} and i g {e, p, 1} we want to find

„''(„) := sup £[U'(X)].
XeG(x)

Here we make the convention that E[U* (X)] := -oo whenever E (U' (X)) = oo.
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The convex conjugate of the concave function U* is defined by

V'OO := sup{U'(x) -xy}, y>0 (3.2.7)
xtlR

and satisfies

U'(je) = inf{V'OO + xy}, x e dom(U'). (3.2.8)

In particular, we have

Ve(y) = ^(logy-l), VP(y) = -^~yr-^, Vl(y) = -logy - 1. (3.2.9)

If the market is complete with a unique martingale measure Q' with density Z'T, the

dual formulation is

vl(y) := vl'Q'(y) := £[V'(yZj.)]. (3.2.10)

Under appropriate assumptions on G(x), u' and vl are conjugate so that

u'(x) = M{vl(y) +xy}.
y>0

If the market is incomplete, then the RHS in (3.2.10) involves in addition an infimum

over an (extended) set of equivalent martingale measures; see [KS99] and [SchOl]

for precise statements. We apply these duality results to the above utility functions to

obtain the maximal expected utility in the g-extended market with payoffs G(x, Q)

from (3.2.4).

Definition 3.2.5. For / G {e, p, £} and g G Me(S), the maximal (V1, Q)-utility from

x G dom(U* ) is defined as

uUQ(x):= sup £[U''(X)]. (3.2.11)
XeG(x.Q)

We also introduce the set

&u :- 1 g g Me(S) 3x g dom(U') such that uUQ(x) < U'(oo) 1
.

Remark 3.2.6. For / g {/?, £} we have U'(oo) — oo, so that ul'@(x) < V1 (oo) holds

by concavity for all x e dom(U( ) if g g Q.lu. For / = e, this holds because of the

multiplicative dependence of uh ® on x. O

Proposition 3.2.7. For i e {e, p, £}, x g dom(U') and Q e Q.lu with density Zt, we

have

uUQ(x) = mf{vi'Q(y) + xy} (3.2.12)
y>0
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where vl'®(y) E[V((yZT)]sothat

ue'Q(x) = Ve(x)e-ElZTÏ°zZTi;
r Lzi~\y

up'Q(x) = Vp(x)E Z/ ;

ue'Q(x) = Vl(x)-E[logZT].

(3.2.13)

(3.2.14)

(3.2.15)

Proof. (3.2.13) - (3.2.15) follow from easy calculations as soon as we prove (3.2.12).

However, it is easy to check that G:= G(l, Q)nh°+ and £>- {Y gL<|_(P)|_ < ZT\
satisfy conditions (i) - (iii) of Proposition 3.1 in [KS99] and that for i G {p, 1} we can

replace in (3.2.11) G(x, Q) by xG since V1 (x) = —oo for x < 0. Hence for i G {p, 1}

the claim follows from Theorem 3.1 there. For / = e, it can be shown as in the proof
of Theorem 2.1 in [SchOl], approximating Ve by a sequence of functions U^ to which

one can apply the results from the first part of this proof.

Proposition 3.2.7 shows that like for Ve, the maximal attainable utility for Ve, Vp

and Ve is separable into the utility of the initial capital and a term depending on g

only. We thus propose the following criteria for no-good-deal measures.

Definition 3.2.8. Define the f-divergences of g g Pe with respect to P by

/e(g|P) := _.[ZrlogZ_],

fp(Q\P) := E sign(l - y)ZT
Hi
y with 0 < y 7^ 1,

fl(Q\P) := _[-logZr]

and for / G {e, p, 1} the corresponding subsets _V' ç Me(S) of no-good-deal mea¬

sures by

Nl := {g g Me(S) f(Q\P)< A1'} (3.2.16)

for some constants A1.

Remark 3.2.9. a) Any functional like fe(Q\P), fp(Q\P) or f(Q\P) of the

form E[f(Zj)] for a convex function / is called f-divergence; see [LV87].

It is a measure for the distance between g and P. Therefore another interpre¬
tation of the set of no-good-deal measures is that it is the set of all measures

which are close enough to P with respect to the /-divergence associated with

the utility under consideration.

b) In the definition of fp(Q\P), the term sign(l - y) is introduced to ensure that

/ in E[f(ZT)] is convex.

O
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In order to have the set àf* in (3.2.16) non-empty, the smallest choice for the

bound A1 is infQeMe{S) fl(Q\P)- Since we obtained /'(g|P) via Proposition 3.2.7

from u1,Q, this lower bound is linked to the infimum over all (U', g)-utilities where

g runs through Me(S). The following proposition shows that this infimum has a

very intuitive meaning. It is the maximal expected utility attainable from dynamically

trading in the basis assets
_ only.

Proposition 3.2.10. Let i G {e, p, I}, Qlu ^ 0 and x G dom(U'). Then

inf uUQ(x)= sup £[U'(X)].
QeM^S) XeG(x,S)

Proof. We first show for g G Me(S) the equivalence

g g Q}u «= inf {t»1"'ß (y) +xy} < U'(oo) for all x e dom(U'). (3.2.17)
v>o

If g g &u, then Remark 3.2.6 and (3.2.12) imply that for x G dom(U')

U'"(oo) > uUQ(x) = inf{vi'Q(y) + xy}.

Now assume that Q g <âlu and denote its density by ZT. Then relation (3.2.8) implies
that for all x G dom(U! ) and all y > 0

U('(oo) < uUQ(x)= sup £[U'(X)]
XeG(x.Q)

< E[Vi(yZT)]+ sup EQ[X]y
XeG(x,Q)

< EW^yZTÏÏ+xy. (3.2.18)

Since vUQ(y) = E[Vl(yZT)], this proves (3.2.17). Next we claim that

sup £[U''(X)] = inf{ inf vitQ(y) + xy)
__C(„,5) y>° QeM'(S)

inf inf{vi'Q(y)+xy}. (3.2.19)
QeMe(S) y>0

For / G {p, £} this is implied by [KS99] Theorem 2.1 (i) and Theorem 2.2 (iv). For

/ = e, it follows from the first part of this proof and [SchOl] Theorem 2.1 (i), Remark

2.3 and the discussion on page 697 in [SchOl] that G^(x) there can be replaced by

C(x, S); the latter uses in addition that Ue is bounded from above so that it suffices to

consider for the maximal attainable utility those elements of G\j (x) which are bounded

from below. Finally, for g g Q.lu and x g dom(U'),

U'(oo) > ul>Q(x) > sup [U'(X)]. (3.2.20)
XeG(x,S)
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Thus &u ^ 0, the first part of this proof, (3.2.19) and (3.2.12) imply that for

x g dom(U')

U'(oo) > sup [U'(X)]= inf inf{vUQ(y)+xy)
__C(_,5) QeM'(S)y>0

= inf inf{v''ö(y)+xy}= inf uUQ(x) > inf uUQ(x)
Qe&uy>0 Qç&u QeMe(S)

so that the claim follows from (3.2.20).

Remark 3.2.11. For later reference we remark that that for / g {e, £} and / = p, i.e.,

\]p(x) = j^-, with y G (0, 1) we have

Ö* = Q! := {g Me(S) | f(Q\P) < oo}.

In fact, "ç" holds by Proposition 3.2.7 and the definition of Q.lu, and for "2" note that

by (3.2.18) with y = 1 we have

ul'Q(x)< E[Vl(ZT)]+x.

Thus from Remark 3.2.6, (3.2.9) and Definition 3.2.8 we have for g g Me(S)

Q$Q}U => m1"' Q (x) = V1 (oo) for all x e dom(U' )

=» E[V1(Zt)] = oo

= f(Q\P) = oo.

Similarly one can show for i = p with y > 1 that

ap = Qp := {g g ^(„) | /^(g|P) < 0}.

o

In Definition 3.2.8 we defined for V1 and i G {e, p, £} a set of no-good-deal mea¬

sures. However, we did not say what a good deal exactly is. Consider an agent with

preferences corresponding to V and initial capital x g dom(U'). Suppose she gets

offered a future payoff X for the price x. For her, this is a good deal if E [U* (X)] is

bigger than the maximal utility attainable by trading with initial capital x in the basic

assets S; the latter utihty is known from Propositions 3.2.10 and 3.2.7. However, we

want to define good deals independently of any initial capital. Therefore we suggest

the following

Definition 3.2.12. Let i g {e, p, £}, g g &„ and X g LUdom(U<) G(x> Ö). We call

(X, g) a good deal of level «5 if
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a) i = e and E [Ve(X)] > |Ue (EQ[X])\

b) i = p, i.e., Vp(x) = ^r,ye (0, 1) and E [VP(X)] > 8VP (EQ[X]),

or i = p, y > 1 and E [U^(X)] > }U^ (EQ[X]);

c) i =
_

and £ \Vl(X)] > 8 + V1 (EQ[X]).

This definition deserves some comments. First of all, note that it is such that an

increase of 5 corresponds to good deals defined with respect to a higher utility level;

this is because Ve and XJP with y > 1 are non-positive. Moreover, by Proposition

3.2.7, if i g {e, p, £}, g g Q.'u and fl(Q\P) < A, then choosing g as pricing mea¬

sures excludes good deals (X, g) of some level 8 for any initial capital x G dom(U')-
More precisely, if / =

_,
then good deals of all levels 8 > eA are excluded; if / = £

of all levels 8 > A; if i = p and y g (0, 1), of all levels 8 > AY; and if / = p

and y > 1, of all levels 8 > (— j^)Y; note that in the last case any reasonable A is

negative. Of course, the question arises how Definition 3.2.12 is related to good deals

defined as excess returns with a high Sharpe ratio. An important difference is that

for the Sharpe ratio criterion we consider excess returns instead of payoffs. There¬

fore the bound specifying a good deal there does not depend on Eq[X], In addition,

for the agent, the attractiveness of a payoff does not depend on the initial capital she

has, provided there is a riskless asset in the market. In fact, suppose she has initial

capital x and the opportunity to buy a payoff X for a price p such that the Sharpe
ratio (E[X] — p)/^/Var[X — p] is higher than that in the market. Then the payoff
X — p + x can be obtained from initial capital x and has the same, attractive, Sharpe
ratio. In contrast, for a good deal defined via Definition 3.2.12, it is not clear that

adding the constant x — p to some good deal X still results in a good deal.

We might define good deals for Vq(x) = — (a — x)2 analogously as for Uc
.

However, relation (3.2.5) holds only for x < a since Uq is decreasing for j: > a.

Therefore we suggest for preferences corresponding to quadratic utility to stick to the

original definition via a high Sharpe ratio.

3.3 Monetary utility functionals

In this section we give a review of the existing hterature on good deal bounds and

explain where our approach fits in. It has been noticed quite early that good deal

bounds are closely connected with risk measures. To clarify the relations between the

different types of existing approaches on good deal bounds, we recall some key results

concerning risk measures; see Section 2.3 for a more detailed discussion of the latter.

We formulate these in terms of the recently very popular monetary utility functions;

these are defined as —/?(•) for a risk measure p. In particular, this is more convenient

to explain the connection with von Neumann-Morgenstem expected utility.
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Definition 3.3.1. A monetary concave utility functional on L°°(P) is a mapping <î> :

L°°(P) -* R satisfying

A) monotonicity: X\ < X2 implies <î>(Xi) < <Ï>(X2);

B) translation invariance: <Î>(X + a) = <Ï>(X) + a for a G IR;

C) concavity: <_ («Xi + (1 - a)X2) > aO(Xi) + (1 - a)<_>(X2) fora [0, 1].

The acceptance set of 4> is defined as A := {X G L°°(P)|$(0) > 0}. * is a monetary

coherent utility functional if it satisfies in addition

D) positive homogeneity: O(ÀX) = k<t>(X) for k > 0.

Remark 3.3.2. Translation invariance distinguishes monetary concave utility func¬

tionals from von Neumann-Morgenstern expected utilities, most of which do not have

this property. Presuming as usual that all payoffs are already discounted, transla¬

tion invariance implies that utility is measured in monetary units; see the book of

Föllmer/Schied [FS04] for an overview of the theory of risk measures. O

For the convenience of the reader and to keep this chapter self-contained, we recall

from Section 2.3 some important results on monetary concave utility functionals.

Proposition 3.3.3. (Proposition 4.6 of [FS04]) Let <t> be a monetary concave utility

functional with acceptance set A. Define afunctional on L°°(P) by

<_>A(X) :^sup{mG_?| X - ml„ G A) = sup ((X - A) n R).

Then <_> — O**, i.e., O can be recoveredfrom its acceptance set.

The following theorem gives a dual representation for monetary utility functionals

which is of great importance for mathematical calculations. In addition, this result

shows that for any non-empty set of no-good-deal measures _V, the lower good deal

value bound

X !- inf E0[X]

as a function on L°°(P) is a monetary coherent utility functional; see Remark 3.3.5

below.

Theorem 3.3.4. For afunctional <E> : L°°(P) —> 2?? the following are equivalent:

a) <t> is a monetary concave utilityfunctional which is continuousfrom above, i.e.,

for any sequence (X„)„e_v ^ L°°(P) decreasing to some X G L°°(P) we have

Hindoo <_(__„) = O(X).
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b) 0 can be represented as

0(X)= infa{£ô[X]-„°(g)} (3.3.1)

for a mapping „° : 3>a -> [—oo, +00).

If O satisfies one of these equivalent conditions and is in addition positively homoge¬

neous, then it can be represented as

0(X)= inf £Ô[X],
Qe3>

where P is a subset of 3>a.

Proof. See Theorem 4.3 and Corollary 4.34 in [FS04]. Ü

Remark 3.3.5. a) To see that the lower good deal bound has a representation as

in (3.3.1), take a°(g) := 0 if g g _V and a°(Q) := -00 otherwise.

b) If <_> has a representation as in (3.3.1) with some a0, then it can also be repre¬

sented with

a(Q):= inf {EQ[Y] - $(7)},

i.e., „° can be chosen as the concave conjugate a of <£>. Moreover, if there exists

Q e 3>e such that a(Q) > —00, then we can replace !Pa by Pe in (3.3.1) if we

take „° =
„.

c) The relation between upper and lower good deal bound is given by

sup E„[X] - - inf E0[~X].
QeM Q^

O

Now consider as in Section 3.2 a financial market with the process S describing
the discounted prices of the basic assets. In the seminal work on good deal bounds

by Cochrane/Saà-Requejo [CSROO] and also in the more recent work by Björk/Shnko

[BS06], good deals are defined as excess returns with high Sharpe ratio. Using an in¬

equality from Hansen/Jagannathan [HJ91], these authors define the set Mq ç Me(S)

of no-good-deal measures g by stipulating that the variance of the density dQ/dP re¬

mains below some threshold. We have shown in Section 3.2 that the estimate which is

induced by the Hansen-Jagannathan inequality for the Sharpe ratio of payoffs priced
with respect to g g Me(S) corresponds to the maximal attainable Sharpe ratio in

an extended market with payoffs from G(x, Q). Ross [Ros05] also obtains an upper
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bound on the variance of the density; however, he does not argue with the Sharpe ratio,

but works with the Capital Asset Pricing Model. Without stating this link clearly and

generally, Cerny [Cer03] proposes to define no-good-deal measures from several util¬

ity functions via the associated indifference price in the extended market. The same

approach is used in the early work by Bernardo/Ledoit [BLOO], but for good deals de¬

fined via the gain-loss ratio. This is the ratio of the expectations, under some bench¬

mark measure, of the positive and the negative parts of the excess return. Pinar/Salih

[PS05] use a similar gain-loss trade-off to define good deals. The formulation sug¬

gested by Longarela [LonOl] and Bondarenko/Longarela [BL04] is also very similar

to those above. They define no-good-deal measures by the condition that the distance

between these measures and a benchmark valuation measure is not too big and pro¬

pose several definitions for this distance. Our approach is inspired by [Cer03], and

one might say that our subjective initial ingredient is a (von Neumann-Morgenstem)

utility function.

A somewhat different line is taken by Cerny/Hodges [CH02], Jaschke/Kiichler

[JKOl] and also by Cherny [Che05a,06]. They first define a set of desirable claims

as the (abstract) acceptance set of a monetary coherent utility functional and a good
deal as a desirable claim with zero or negative price. Their aim is to find linear pricing
functionals which price the basic assets correctly and do not yield good deals. A sim¬

ilar approach is pursued by Cherny [Che05b] who allows the prices of the basic assets

to have bid-ask spreads. Instead of good deal bounds, he specifies no-good-deal bid

and ask prices in such a way that it is not possible to construct a good deal by trad¬

ing. Staum [Sta04] permits in addition for acceptance sets of monetary concave utility
functionals. Carr et al. [CGMOl ] define their set of desirable claims via valuation and

stress test measures. By requiring positive prices for these claims, they obtain that

the pricing functional must be a convex combination of the valuation test measures.

The common feature of this line of work is that desirability and hence good deals are

defined via a fairly abstract set only satisfying certain properties.

Although the two methods explained above look rather different at first sight,

they are actually closely related. Utility maximization also comes up in the second

approach, but with respect to monetary utility functionals instead of von Neumann-

Morgenstern expected utility. The key observation behind this is that the abstract set

used to define desirability induces by its properties in a natural way a monetary util¬

ity functional; see [JKOl], [Sta04] and also the discussion at the end of Section 2.6.

More precisely, let $ be a monetary coherent utility functional with acceptance set A.

Since this functional is defined on L°°(P), we restrict to L°°(P) the payoffs which

can be dominated by trading in the basic assets from initial capital zero and write

Gb(x, S) := G(x,S)n L°°(P). Jaschke/Kiichler [JKOl] define a good deal as an

element X G Gb(0, S) such that there exists e > 0 with X — _1„ G A. Hence a good
deal is a payoff which can be superreplicated by trading from zero initial capital and

from which one can even subtract s monetary units and still have a payoff which is

desirable, i.e., an element of the (acceptance) set A. The lower bound n
A for prices of
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X g L°°(P) is then obtained as the biggest monetary amount which can be subtracted

from X so that it is not possible to turn the resulting payoff into a good deal by trading
in the basic assets. Formally, it is defined by

7TA(X) := sup {m R |X - ml„ + X g A for some X G Gb(0, S)}.
A A . A

In fact, if the agent could buy the random payoff X for a price n(X) < tt (X), then

there exist X g Gb(0, S) and e > 0 with tt(X) + s < 7TA(X) - s and such that

X-(*(__)+ _)ln + __

A A

is contained in the acceptance set A. Hence the agent could buy X for jt(X), use the

superhedging strategy corresponding to X and obtain the payoff X — 7r(X) + X which

is a good deal. By Proposition 3.3.3, the maximal utility (with respect to <î>) attainable

from the random endowment X G L°°(P) by trading in the basic assets is given by

sup 0(X + X)
__Cfc(0,5)

—

sup sup{m g R\X + X - ml„ G A}
XeGb(0,S)

= sup{m R\X-mla + X G A for some X G Gb(0, S)}
= tta(X). (3.3.2)

Note that Cb(x, S) — x + Gb(0, S) and that <ï> is translation invariant. Thus an initial

capital x would show up in the above equations as an additive term. Hence the lower

good deal price bound of [JKOl] is just the term which is independent of the initial

capital x in the maximal monetary utility attainable from trading in S with random
A

_

endowment X. The generalization from monetary coherent utility functions to mon¬

etary concave utility functions then corresponds to the approach suggested by Staum

[Sta04] (if the prices of the basic assets are linear); see also the discussion at the end

of Section 2.6.

Instead of linking good deals from abstract (acceptance) sets to good deal bounds

from utility maximization as above, one can relate the former directly to our approach
here via martingale measures. The key insight behind this is that a given set of mea¬

sures naturally induces a monetary utility functional, which in principle brings us back

to the situation just discussed. In more detail, let _V
__

Me(S) be a set of no-good-
deal measures. Assume that _V, identified with the corresponding set of densities with

respect to P, is weakly relatively compact; for Mq and _VC this holds by the la Vallée-

Poussin theorem in [DM75], Theorem 11.22. Moreover, let _/ ç 3>a be any weakly

relatively compact set such that M ç Q! and M - Gl' n Me(S). By Theorem 3.3.4

we can define a monetary coherent utility functional O by

4>(X) := inf En[X]
Ô__
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with acceptance set A :— {X g L°°(P) | O(X) > 0}. Lemma 3.3.6 below yields that

inf EQ[X]= sup <_»(__+ X).
QeM XeGh(0,S)

If the acceptance set A specifies a set of desirable claims, then (3.3.2) implies that

tta(X) = inf EQ[X].

QeM
*

Thus the lower good deal price bound of Jaschke/Kiichler [JKOl] defined with respect

to A is the same then that obtained from the set of no-good-deal measures J4 with our

approach.

Lemma 3.3.6. Let _V
__

Me(S) be nonempty and Gl' ç <P" such that Jsf ç Q' and

jV = Gt'C\Me(S). Define 0(. ) := ir_Q__' Eq[ . ]. If Gl' is weakly relatively compact,
then

inf EQ[X]= sup 0(X + X) for all X G L°°(P).
QeJ/ XeCh(0,S)

Proof. Denote by _V and Gl' the L^Pi-closed convex hulls of Jsf and Gl', identified

with the corresponding set of densities with respect to P. Note that

inf En[X] = inf En[X] for all X g L°°(P) (3.3.3)
Q*# QeJf

and that an analogous statement holds for Gl'. Since Gl' is a Hausdorff compact space

and Gb(0, S) is convex, the minimax theorem in [Sim98] thus implies that

sup 0(X + X) = sup _nf_£ö[X + X]
XeCb(0,S) XeCb(0,S) ßeö'

= in£ sup EQ[X + X]. (3.3.4)
ße„'x_e6(0,5)

It is well known that g g 3ye is contained in Me(S) if and only if EQ[X] < 0 for all

X g Gb(0, S); see, e.g., Lemma 2.6.15. Since Gb(0, S) is a cone and contains 0, we

have for Q e 3>e

sup EQ[X + X] = \E^ XQ^<(S),

x_e*(o,s) I +°° otherwise.

Thus (3.3.4), M = a' n Me(S), G? n Me(S) c ^ and (3.3.3) imply

sup <_(X + X)= _inf £e[X] = inf EQ[X].
XeCh(0,S) ßeÖ'fW(S) Q*#

D
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Remark 3.3.7. a) The exact choice of Gl' does not matter. In particular Gl' = M

is always possible, provided that M is weakly relatively compact.

b) Weak relative compactness of a set Gl
__

3*a is equivalent to a continuity prop¬

erty of the corresponding monetary coherent utility functional infge# Eq[.];
see Corollary 4.35 in [FS04].

O

3.4 Auxiliary results on Levy processes

As mentioned in the introduction, we are mainly interested in the good deal value

bounds as processes. To obtain results in a dynamic context, we need a nice represen¬

tation of the set of all equivalent local martingale measures. Therefore we choose to

work in a Levy framework. In this section we introduce some terminology, provide
some auxiliary results about Levy processes, descriptions of probability measures via

Girsanov parameters and relative entropy. The proofs or references for proofs can

all be found in Esche/Schweizer [ES05]. Their main reference is the book by Ja-

cod/Shiryaev [JS87].

We first fix some notation. As before we work on a probability space (_, F, P)

equipped with a filtration (Ft)o<t<T satisfying the usual conditions. P denotes the

predictable o--field on
_

x [0, T] and 33d the Borel a-field on Rd. For a „-dimensional

semimartingale X we denote by px the random measure associated with its jumps and

by vp the predictable P-compensator of px; only in this subsection we denote by X

a process and not a payoff. Moreover, we work throughout with a fixed but arbitrary
truncation function h : Rd —» Rd. By (B, C, v) we denote the P-characteristics of

the semimartingale X with respect to h. We can and do always choose a version of the

form

B = bdA, C = I cdA and v(co; dx, dt) - Kù>tt(dx)dAt(o>), (3.4.1)

where A is a real-valued, predictable, increasing and locally integrable process, b

is an _R -valued predictable process, c a predictable process with values in the set of

symmetric non-negative definite
„
x „-matrices, and Kœj(dx) a transition kernel from

(_ x [0, T], P) into (Rd, 33d) with KWft({0}) = 0 and jRd(1 a ||x||2) K0)J(dx) < 1.

Let g G 3>u and L — (Lt)o<t<T be an adapted stochastic process null at 0 with RCLL

paths. We call L a g-Lévy process if for all s < t, the random variables Lt — Ls are

independent of Fs under g and have a distribution depending only ont — s. If g = P

we sometimes omit the mention of P. Every Levy process is a semimartingale, and a

P-semimartingale _

null at 0 is a P-Lévy process if and only if its P-characteristics

are of the form

Bt = bt, Ct = ct and vp(dx, dt) = K(dx)dt, (3.4.2)
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where b e Rd, eis a symmetric non-negative definite
„
x „-matrix and

__

is a cr-finite

measure on (IRd, 33d) with K({0}) = 0 and fRd(\ a \\x\\2) K(dx) < oo.

Next we recall Girsanov's theorem to introduce the Girsanov parameters (ß, Y) of

some g g 3>a.

Theorem 3.4.1. ([JS87], Theorem III 3.24) Let X be a semimartingale with P-char¬

acteristics (Bp,CP ,vp) and denote by c and A the corresponding processes from

(3.4.1). For any Q G 3>a, there exist a P <_) 33d-measurable function Y > 0 on

_
x [0, T] x Rd and a predictable Rd-valuedprocess ß satisfying Q-a.s.

f f \\(Y(s,x) - l)h(x)\\vp(dx,ds) + f \\csßs\\dAs+ f ß*csßsdAs < oo

JO JlRd JO JO

forallt G [0, T] and such that the Q-characteristics(BQ,C^,v^)ofXaregivenby

Bp = Bp + f csßs dAs+ f j ((_ (s, x) - l)h(x)) vp(dx, ds),
Jo Jo Jmd

CQ - Cp

vQ(dx,dt) = Y(t,x)vp(dx,dt).

We call ß and Y the Girsanov parameters of g (with respect to P, relative to X).

Remark 3.4.2. Note that the Girsanov parameters are not unique. In fact, Y(co, t, x)

is unique only vp-a.e., and for fixed c and A we have A-a.e. uniqueness only for cß.

In what follows we fix a Levy process L and express the Girsanov parameters of any

g G 3>a relative to L. We then identify all versions of Girsanov parameters (ß, Y)

which describe the same g. In particular, if we say that the Girsanov parameters

(ß, Y) of g are time-independent, we mean that there exists one version with this

property. O

In order to obtain nice parametrizations for the set of probability measures, we

make the following assumption for the rest of this chapter.

The filtration (Ft)o<t<T = (FtL)o<t<T is the P-augmentation of the filtration

generated by a d-dimensional Levy process L with semimartingale characteristics de¬

scribed by a triplet (b,c, K) as in (3.4.2).

The following result expresses the density process of any g G 3ye in terms of

its Girsanov parameters (ß, Y) and the Levy process L. As usual S(.) denotes the

stochastic exponential.

Proposition 3.4.3. (Proposition 3 in [ES05]) If Q e Pe has Girsanov parameters

(ß, Y), the density process of g with respect to P is given by Z® — 8(N®) with

Ntô := f ß*dLcs + f f d(Y(s,x) - 1) (pL(dx,ds) - K(dx)ds\, (3.4.3)
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for t G [0, T], where Lc denotes the continuous local martingale part ofL.

We can also go the other way round, i.e., start with some processes ß and Y(.)

and identify them with the Girsanov parameters of some probability measure. Let us

first introduce the convex function

g(y):=y\ogy-y + i forye[0, oo), (3.4.4)

where we set OlogO := 0. This function is denoted by / in [ES05]. However, in

order to preserve the variable / for the /-divergence, we use the notation g here. The

following result is a combination of Propositions 5 and 7 from [ES05].

Proposition 3.4.4. If ß is a predictable process and Y > 0 a predictable function
such that

< oo,exp (j Qß*cßs + j g (F(_, x)) K(dx)^j ds^j
then Y — lis integrable with respect to fxL(dx, dt) — K(dx) dt, and Z := 8(N) with

Nt := f TsdLcs+ f f (F(_,„) - 1) UL(dx,ds) - K(dx)ds) ,
t G [0, T],

Jo Jo Jmd v '

is a strictly positive P-martingale. In particular, Z is the density process of some

Q Pe with Girsanov parameters (ß, Y).

Let M be a fixed d x „-matrix and denote by M"(ML) the set of all absolutely
continuous local martingale measures for ML and by Me(ML) ç Ma(ML) those

which are equivalent to P. The following result describes the elements of Ma(ML).

Proposition 3.4.5. (Proposition 10 of [ES05]) Let Q G Pa with Girsanovparameters

(ß, Y) and such that Eq[ fQ fRd g(Y(s, x)) K(dx)ds] < oo. Then ML is a local g-

martingale if and only if Q-a.s. both f0 fmd ||M(„F(_,x) — /*(*)) || K(dx)ds < oo

andfor all t e [0, T]

M b + cßt+ f (xY(t, x) - h(x)) K(dx)J = 0. (3.4.5)

Condition (3.4.5) is called the martingale conditionfor ML.

As we have illustrated in Section 3.2, for g G 3>e with density process Z, the rel¬

ative entropy /e(g|P) := E[Zt log Zt] can be used as a criterion for the definition

of a set of no-good-deal measures. Analogously we define the Ft-relative entropy of

g g Pe with respect to P by

ff(Q\P):=EQ
Zt Zt

TtX^Tt Ft (3.4.6)
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Esche/Schweizer [ES05] give in their Lemma 12 a formula for fQe(Q\P) in terms of

the Girsanov parameters of Q. This can immediately be generalized to a formula for

f!(Q\P)-

Proposition 3.4.6. If Q g Pe with Girsanov parameters (ß, Y) and f0e(Q\P) < oo,

then for all t g [0, T]

fte(Q\P) = EQ j l-ß*cßsds + j j dg(Y(s,x))K(dx)ds Ft . (3.4.7)

If it exists, we denote by ge(ML) that probability measure g g Me(ML) which

minimizes the relative entropy fe(Q\P) = fo(Q\P) over Me(ML). ge(ML) is

called the minimal entropy martingale measure for ML. The following is one of the

main results from Esche/Schweizer [ES05]. It shows that ge(ML) preserves the Levy

property of L; conditions for the existence of ge(ML) can also be found in [ES05].

Theorem 3.4.7. (Theorem A of [ES05]) If ge(ML) exists, and if there exists some

Q G Me(ML) such that both fe(Q\P) < oo and L is a Q-Lévy process, then L is

also a Qe(ML)-Lévy process. In particular, the Girsanov parameters of Qe(ML) are

time-independent and deterministic.

3.5 Dynamic good deal bounds

Our main goal is to study the good deal value bounds as processes. Since their com-

putability and dynamic properties depend on the set of no-good-deal measures, the

main difficulty is to find an appropriate definition for this set in a dynamic context.

This is the subject of this section. The motivation for our way to proceed comes from

a restriction on the maximal attainable exponential utility, i.e., from the utility func¬

tion Ve (x) — —le"^x with ß > 0. Results for more general utility functions can be

deduced from Chapter 4 below.

For dynamic considerations it is important to have a nice parametrization for the

set of probability measures in a model which is still as general as possible. Therefore

we use the same approach as Esche and Schweizer in [ES05]. Let M be a fixed

„
x

„
matrix and L = (Lt)o<t<T a ^-dimensional Levy process with characteristics

(b, c, K) as in (3.4.2). The filtration (Ft)o<t<T — (FtL)o<t<T is the P-augmentation
ofthat generated by L. We consider the set Me(ML) of all equivalent local martingale
measures for ML because this allows for several possibilities to model the discounted

price processes of the basic assets
_.

For instance, the Levy process L is a local g-

martingale for g G 3>e if and only if S :— S(L) is a local g-martingale. One can

also model S as a process with stochastic volatility; see [ES05]. To exclude arbitrage
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opportunities we assume that

Me(ML) + 0.

In analogy to the static case, we now consider for each time t G [0, T] and each

g g Me(ML) the maximal attainable utility from trading in (t, T] with initial capital

xt G L°°(P, Ft) in the g-extended market. More precisely, we consider the maximal

attainable utility over the set of payoffs

et(xt, Q) := {X G L](g) | EQ[X\Ft] < xt and X" G L°°(P)}.

Definition 3.5.1. For g G Me(ML) we define the maximal (Ve, Q)-utility at time t

fromx, gL°°(P, Ff) by

uet'Q(xt) := ess sup E[\Je(X)\Ft].
XeG,(xt,Q)

We recall from Remark 3.2.11 the set

_T := {g G Me(ML) | /e(g|P) < oo }.

By Proposition 3.4.6 we have for g g Gle that also ff (Q \ P) is finite for all t g (0, 7].

Proposition 3.5.2. Forx G dom(Ue)a«„ g G Gle with density process Z = (Zt)o<t<T

we have

ufQ(xt) = \Je(xt)e-E[^los^\r']^Ve(xt)e-f^Q^ (3.5.1)

where fte(Q\P) is the Ft-relative entropy introduced in (3.4.6).

Proof. The conjugate function of Ve from (3.2.7) is Ve(y) = — | +1 log y for y > 0,

and the duality relation from (3.2.8) implies that

Ve(x) - inf {Ve(y)+xy} < Ve(y') + xy'
y>0

l '

for any y' > 0. If we set y' •- y'(co) := |f exp (-ßxt - ff(Q\P)) and take Ft-

conditional expectations, we obtain for X Gt(xt, Q) that

E[Ve(X)\Ft]<Ve(xt)e-X(eiP).

This proves "<" in (3.5.1). To prove equality, choose

x:=-Hiog(fHw'W))-
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If X~ G L°°(P), then we have X g Gt(xt, Q), and the result follows. Otherwise let

An := {|£ < n } and

1 / ZT
Xn = —Z I 1„„ log — -ßXt-E

Zt
,

Zj
1a„ —log — ^r

so that X„ g L°°(P) and EQ\Xn\Ft] = */. Finally, the conditional monotone con¬

vergence theorem for a uniformly bounded from below sequence of random variables

implies that lim„_,oo EQ [ lAn f1 log ff | Ft] = ff(Q\P) and

lim E[Ve(Xn)\Ft] = E[Ve(X)\Ft].
n—toQ

This completes the proof.

Proposition 3.5.2 suggests to use the ^-relative entropy as a measurement for the

attractiveness of any g G Me(ML) at time t. As in the static case t = 0, this is

an Ft-conditional divergence and thus a measure for the distance between g and P.

Therefore we define a set of no-good-deal measures at time / by imposing an upper

bound on ff(Q\P). In order to have this set non-empty, we introduce a benchmark

measure g G Me(ML) to obtain a lower bound for ff(Q\P). We take the same

benchmark measure for all / g [0, T] because the /-benchmark will usually be the

measure which minimizes the Ft-conditional divergence over Me (ML) and the fol¬

lowing result from Kabanov/Stricker [KS02] shows that this is achieved by the same

gforalW.

Proposition 3.5.3. (Proposition 4.1 of [KS02]) Let there exist ge(ML) G Me(ML)

with density process Ze such thatfor any g G Me(ML) with density process Z,

E[ZeT log ZeT] < E[ZT log Z_ ].

Then alsofor any stopping time 0 < x < T

ye ye

fl l0g±L
L ZT ZT

< E
Zt

,
Zt

—

log
— FT

Remark 3.5.4. An analogous result holds for Vq, Vp and Ve; see [KS02] and Lemma

5.1.4 in the Appendix. O

For dynamic considerations, the choice of the bound for the Ft -conditional diver¬

gences over time is very important. In principle, we should like to specify at each

time t the set of no-good-deal measures jVf as follows. Fix two adapted processes
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n' — (n't)o<t<T and 9' = (0't)o<t<T with n't > 1 and d't > 0, and choose a benchmark
A

measure g. Then define J\ft as the set of all g g Me(ML) such that

or equivalentiy

fte(Q\P)<r)tfte(Q\P) + e;

.e-f?lQ\P)<-0»e-nlf?iQ\P) With e'/-e-0>.

(3.5.2)

Let g(y) := y log y — y + 1. If g G 3>e has Girsanov parameters (ß, Y) and satisfies

/q (g|P) < oo, then Proposition 3.4.6 implies for all / < T that

ff(Q\P) - EQ J ]-ß*cßsds + j j dg(Y(s,x)^K(dx)ds

=: EQ f ke(ßs,Y(s, .)}ds Frl.

Despite this fairly explicit expression, calculating the good deal value bounds

F

(3.5.3)

ess inf En [X\Ft], ess sup _._)[__ I-!F*]

as processes for some random payoff X g L°°(P) is mathematically intractable with

the above general definition of _V,. Therefore we want to replace the global constraint

(3.5.2) on g by a local restriction on the integrand ke[ßs, Y(s, . )) in (3.5.3). It will

turn out to be very helpful that if we choose the minimal entropy measure Qe(ML) as

benchmark measure g, this integrand is very simple. In fact, Theorem 3.4.7 implies
that under appropriate assumptions, the Girsanov parameters (ße, Ye) of ge(ML)

are time-independent and deterministic. So if we write ke := ke[ße, Ye(. )) for this

constant integrand, then

fte(Q\P) = fte(Qe\P) = (T-t)ke.

Hence imposing a bound on /e(g|P) is clearly equivalent to imposing a bound on

ke. Generalizing the latter to other g still remains tractable, in contrast to (3.5.2).

The above discussion, motivated by exponential utility, leads us to the following

general problem. In order to emphasize the dependence of g G 3>e on its Girsanov

parameters (ß, Y) (with respect to L), we write Q^,Y\

Problem: Let k be a deterministic function on Rd x _?+ and ft(Q\P) > 0 an

Ft-conditional divergence. For the latter, assume thatfor all Q^*^ contained in

®{ :={QKP\ft(Q\P)<°o},
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it has theform

r rT

MQ{ß'Y)\P) = EQ{ß,Y) J k(ßs,Y(s, .))„_ F (3.5.4)

For a benchmark measure g = Q^-Y"> g Glt and global restrictions

ft(Q(PJ)\P) < r)'tft(Q(ß'*)\P) + 0't forallt [0,7], (3.5.5)

find more tractable but economically still reasonable local restrictions on the inte¬

grand k{ps, Y(s, . )), which imply the global restrictions.

Remark 3.5.5. a) The conditional expectation in (3.5.4) could also be with re¬

spect to some other measure R(ß,Y) depending on the same (ß, Y) as Q^^
and the integral f k(ß, Y) ds could be replaced by e$ k^'y) ds. This will actually
be required for \Jq, Vp and \Jl; see Chapter 4. The same arguments as below

then still work. In order to keep notation simple and to concentrate on the main

ideas of our approach, we do not introduce R(ß, Y) here.

b) Similarly, the assumption /r(gl^) > 0 is made only for simplicity. For more

general f(Q\P) the process n' might have to be chosen differently.

c) In this section we do not assume that the basic assets S are locally bounded.

Therefore it would be natural to consider instead of Me(S) = Me(ML) the set

Gla •- {Q g 3>e | _ is a a-martingale under g};

see [DS98]. However, if
_

is uniformly bounded from below, then ß e S"

if and only if g G Me(S); this holds since by Theorem 88 in [Pro04] we

can write any a-martingale under g as the integral with respect to some g-

martingale and this integral is a local martingale if it is uniformly bounded from

below. Moreover, it was pointed out to us by F. Delbaen that the assumption

Me(S) ï 0 implies by Theorem 1.1 in [KS01] that Me(S) is dense in GLa with

respect to the total variation norm. In fact, this holds since one can replace P in

Theorem 1.1 of [KS01] by some g G Me(S) so that as remarked there, the set

Q^jöe_ff j| g L00} is contained in Me(S) and dense in Gl". Thus,

for the purpose of good deal bounds it suffices to consider Me(S).
O

To tackle the above problem, we fix a benchmark measure g = g(^ y^
g Me(ML)

and processes n = (r)s)o<s<T and 0 = (0s)q<s<t with ns > 1 and 6S > 0. Then we

define for each time / a set of no-good-deal measures by local restrictions on the inte¬

grand k(ßs, Y (s, . )). In order to obtain meaningful results we always assume that

g G &{ for all t G [0, T).
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Definition 3.5.6. The set of no-good-deal measures at time t G [0, T) is defined by

:= {qV<Y) eMe(ML)\k(ßs,Y(s, .)) < nsk(ßs,Y(s, .)) + 0_

dP®dt-a.e. on
_

x [t, T]\. (3.5.6)

Note that g G Gif implies M£t ^ 0 for all t G [0, T), and that the restriction

in (3.5.6) is completely analogous to the one in (3.5.5); the only difference is that

it is formulated at the level of the integrands k instead of the integrals /(g|P), see

(3.5.4). Moreover, the value of ft(Q^'Y)\P) depends on g^'y) not only via the

integrand k(ßs, Y(s, . )) but also via the g^X)-conditional expectation. Therefore,

even for deterministic n and 0, the local restriction in (3.5.6) does not necessarily

imply the global restriction (3.5.5). However, suppose that the benchmark measure
A A A

g has deterministic and time-independent Girsanov parameters (ß, Y) (as it is the

case for the minimal entropy measure). Then it seems reasonable to choose n and 9

as deterministic functions as well. These two assumptions then imply that the local

restrictions induce the global restrictions.

Theorem 3.5.7. Let rj — n(-) and 0 — 9(-) be deterministic functions on [0, T]
A

with 77 > 1 and 0 > 0 and let the benchmark measure Q have time-independent and
A A

deterministic Girsanov parameters (ß, Y). Suppose also that (3.5.4) holds. Then for

rj'(t) := j^j f{ rj(s) ds and 9'(t) := ft 8(s) ds, we have

Mn,e.Q ç {g -

Me{ML) | ft{QlP) < r,'(t)MQ\P) + 9\t)}.

Proof This is obvious from (3.5.4), (3.5.6) and the assumptions. D

Remark 3.5.8. Why do we introduce the process 91 If 0 = 0, the upper bound for the

Ft-conditional divergence of g is proportional to the Ft -conditional divergence of the

benchmark measure g. A convenient choice for g is that measure which minimizes

the Ft-conditional divergence over Me(ML). Then ft(Q\P) quantifies how far P is

away from being a local martingale measure. If P itself is already a local martingale

measure, then one should choose Q = P, and if then ft (Q\P) = E[f(dQ/dP)\Ft]
A

with f(l) = 0, we would get f(Q\P) = 0. Hence in this case, the set of no-good-
deal measures would (for a reasonable /) contain only P. If one starts with a local

martingale measure for P, one can of course argue that this is a valid pricing measure;

but it is still a matter of taste whether or not one is willing to say that it is the only
reasonable one. If one is, then 0 = 0 is a very convenient choice. However, for greater

generality we allow also for 0^0. O
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Having defined NX}' ,
we next have to ask which dynamics the processes n

and 0 should have. As argued above, they should be deterministic functions in order

that for a benchmark measure with time-independent and deterministic Girsanov pa¬

rameters, the local restrictions imply the global ones. Given our Levy framework and

the above desired properties of the benchmark measure, it seems convenient to let also

77 and 0 or 7/ and 0' be time-independent in an appropriate sense. This can be made

more precise in two ways.

A first possibility is time-independence with respect to the global restriction (3.5.5),

i.e., such that 7/ and 9' are independent of t in (3.5.5). However, for fixed /, this yields

for ?7 and 9 from Definition 3.5.6 that ns = n' and 0S — 9$ = t_j
for all

_
G [t, T).

In other words, the local restriction which specifies J\fXt in (3.5.6) then depends

on t. This is very inconvenient if we want to apply dynamic programming techniques.
A much more convenient choice is time-independence with respect to the local

restrictions. One then chooses ns = n and 0S = 0 for all s e [0, T], and if 0 =0,

one gets the same result as for the first possibility. This second choice allows to

apply dynamic programming techniques; moreover, the set of no-good-deal measures

_V__f = _V__ ^ '

can be chosen independent of t in the following sense.

Lemma 3.5.9. If ns =77 > 1, 9S =9 > 0 for all s G [0, T] and the Girsanov
A

parameters of g are time-independent and deterministic, then for any X e L°°(P)

ess inf Eg[X\Ft] — ess inf EQ[X\Ft~\.

Proof Due to the Bayes rule, the Ft-conditional expectations under g depend only

on (Np)t<s<T with NQ from (3.4.3). Hence restricting /_ and Y via k has the same

effect if it is done on [t, T] or on [0, T], n

A

Now assume that 77, 9 and the benchmark measure g are as in Lemma 3.5.9. Then

we can skip the mention of t for the set of no-good-deal measures and set

NX := JSX0 = NXq1'0'0.
The next result illustrates how the local and global restrictions are linked if we im¬

pose in addition that any no-good-deal measure must preserve the Levy property of

L or, equivalentiy, must have time-independent and deterministic Girsanov parame¬

ters. Under this condition, the global and local restrictions on the set of no-good-deal
measures are equivalent.

Proposition 3.5.10. Suppose ns = 77 > 1, 0S• = 0 > 0 and the Girsanov parameters

of g are time-independent and deterministic. Define

Me^y(ML) := {g g Me(ML) \ L is a g-Lévy process},
MXL := MX^M'iML)
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andfor each t g [0, T] set

^ := {g g Me(ML) | MQ\P) < rjft(Q\P) + 0(T - t)} n M^JML).

Then

ess inf EQ[X\Ft] ^ ess infL:ô[X|^] for all X G L°°(P).
ß_<A_L ße^L

Prao/ Girsanov's theorem and (3.4.2) imply that Q(ß'Y^ g ^e(ML) preserves the

Levy property of L, i.e., is in ^^(ML), if and only if (ß, Y) is time-independent.

This implies that instead of Theorem 3.5.7, we have NXt n Meu^(ML) = JftL. The

rest then goes as for Lemma 3.5.9. D

To finish this section, let us relate Theorem 3.5.7 and Proposition 3.5.10 to the ar¬

ticles [CSROO], [Cer03] and [BS06] which also deal with good deal bounds obtained

from local restrictions. [CSROO] and [Cer03] work in a Brownian setting and obtain a

connection between the local and global restrictions by taking limits. [BS06] extend

that model by adding a marked point process, but they do not study the relation be¬

tween the local and global restrictions. In contrast, Theorem 3.5.7 proves in a general

setting that the local implies the global restriction, and Proposition 3.5.10 provides a

precise description of a situation when the local and global restrictions coincide for

the choice of no-good-deal pricing measures. Moreover, none of the above articles

gives a justification why a constant or deterministic local restriction is reasonable, nor

in particular why it induces a non-empty set of no-good-deal measures.

3.6 Valuation processes induced by good deal bounds

In this section we discuss properties of the processes of no-good-deal values and valu¬

ation bounds. As in the previous section, we work with the P-augmentation of the fil¬

tration generated by a ^-dimensional Levy process L and assume that Me(ML) ^ 0.

Proceeding in the abstract setting motivated by the exponential good deal bounds, we

fix a deterministic function k which describes some non-negative /-divergence, con-
A

stants n > 1 and 0 > 0 and a benchmark measure g with time-independent and

deterministic Girsanov parameters (ß, Y). The set of no-good-deal measures is

JSX={qV>Y) eMe(ML) | k(ßs, Y(s, .)) < nk(ß, Y(.)) +0

dP ®dt-a.e. on
_

x [0, T]\. (3.6.1)
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Definition 3.6.1. For any X g L°° (P) we define the lower and upper good deal value

process by

ttHX) := essinfLotXI^] forf[0,7_,
1

QeJSX
*

<(X) := -Ttf(-X) - ess supLô[X|^] for? G [0, T].
QeJSX

In analogy to the static case, it1 is a dynamic monetary coherent utility functional

in the sense of the following definition; see Section 2.3 for more details.

Definition 3.6.2. Fix / g [0, T]. A mapping Of : L°°(FT) -> L°°(_=}) is a monetary

coherent utility functional at time t if it satisfies

A) monotonicity: Of(Xi) < Or(X2) forXi < X2;

B) Ft-translation invariance: Or(X + at) — Or (X) + at for at G Ll0C(Ft);

C) concavity: ®t(aXi+(l-a)X2) > aOf(Xi)+(l-„)<_>,(X2) fora G [0, 1];

D) positive homogeneity: <&t(XX) — X<ï>t(X) for X > 0.

If each Of is a monetary coherent utility functional at time t e [0, T], we call the

family O = (Of (. ))0<t<T a dynamic monetary coherent utility functional.

Lemma 3.6.3. tc^ is a dynamic monetary coherent utility functional.

Proof. Easy to check.

The set JsfX of no-good-deal measures has the following property which is very

important for the existence of a regular version and a nice dynamic behaviour of nl

as well as for the application of dynamic programming techniques.

Definition 3.6.4. A set S ç 3>a such that S n 3>e # 0 is called m-stable if it has the

following property: If we take g1, g2 g S with associated density processes Zx, Z2

(with respect to P), fix a stopping time x < T, impose that Q2 ^ P and define

Z2

then Zt is the density of some element in S.
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Remark 3.6.5. a) Although in the Definition 2.3.27 of weak m-stability there oc¬

curs an additional set A, the only difference between weak m-stability and in¬

stability is that the latter is defined with respect to stopping times instead of

deterministic times; see Remark 2.3.28.

b) The set MXL from Proposition 3.5.10 is in general not m-stable; the reason

is that the Girsanov parameters of the probability measure defined by the con¬

catenation operation in Definition 3.6.4 change their value at time x, i.e., are

time-dependent.
O

Proposition 3.6.6. a) The set MXfrom (3.6.1) is m-stable.

b) For each X G L°°(P) there exists an RCLL version of n

again denoted by nl, such that

ixlT(X) = ess infE[X\FT]
QeJfX

for any stopping time x < T.

Proof. Part a) holds since Me(S) is m-stable by Proposition 5 in [Del06] and be¬

cause MX is defined by a pointwise restriction and b) holds by Lemmata 22 and 23 in

[Del06]. D

In the sequel, we choose an RCLL version for every tt^(X). The following two

properties are of interest for the dynamic behaviour of any dynamic monetary coherent

utility functional and in particular for n1.

Definition 3.6.7. Let S ç pe be non-empty and define for each stopping time r <
_

andX gL°°(P)

Ot(X) := ess inf E0[X\Fr].
Qe-s

O is called stopping-time-consistent if O^X1) < <t>T(X2) implies O^X1) < Oct(X2)
for any pair of stopping times a < x < T. We call O recursive with respect to stop¬

ping times if <&„ (Ot(X)) = Oa(X) for any pair of stopping times a < x < T.

Remark 3.6.8. a) The difference between stopping-time-consistency here and

time-consistency as defined in Definition 2.3.23 is that we allow here for stop¬

ping times instead of deterministic times. The literature usually does not distin¬

guish between these two properties and refers to both as time-consistency.

= Kw)0<t<T'
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b) In economic terms, stopping-time-consistency preserves over time the ordering
induced by O. Recursiveness means that if we want to value the time T payoff
X at time a, we can either do this directly or first value it at time x > o and

then value that result at time a.

O

One can show that the two properties are in fact equivalent, and that they automat¬

ically hold if S is m-stable. If S = S' O 3>e for some set _"' ç pa such that the set of

densities corresponding to $' is convex and norm closed in L1 (P), then they are even

equivalent to m-stability of
_ ; see Theorem 12 in [Del06],

Proposition 3.6.9. n1 is time-consistent and recursive with respect to stopping times.

Proof. This follows as in the proof of Theorem 12 in [Del06].

We next turn to the question of nice representations for the value bound processes.

Let us assume that the basic assets S are locally bounded and that Me(ML) = Me(S).

For any X g L00, recall that its superhedging value process is given by

( ess sup LgfXI^f]]

At time t, this corresponds to the smallest amount of money which allows one to

obtain, by trading in S during (t, T], a payoff which dominates X. It is well known

that this process has the optional decomposition

ess sup EQ[X\Ft] = xo + (û-S)t-Ct, (3.6.2)
QçMe(ML)

where xq g R, û is predictable, S-integrable and such that û S is locally bounded

from below, and C is an increasing adapted RCLL process; see [Kra96] or [FK97].

But even if we replace C by some adapted RCLL process C of finite variation which is

not necessarily increasing, we cannot hope in general to obtain such a representation
for the upper good deal value bound process 7tu, except for the special cases when

MX = Me(ML) or when X is attainable by trading in the basic assets. In fact,

suppose we could write

<(X) = ess sup_ô[X|Ff] = je«, + (£ S)t ~ Ct.
e_^_

For simplicity, assume that the filtration is Brownian so that any local martingale
of finite variation is constant. Since for any g MX the process 7r"(X) is a g-

supermartingale and û S is a g-local martingale, we see that C must be an in¬

creasing process. Hence if a representation exists, it must be of the form (3.6.2).

However, by Theorem 3.1 in [FK97], an optional decomposition exists if and only if



142 Chapter 3. Utility based good deal bounds

nu(X) is a local supermartingale for all g G Me(ML). This is not true in general;

we can get the supermartingale property for g G MX, but have no information for

g g Me(ML) \ MX.

Another way to obtain a representation might be to add a finite number of semi-

martingales to the basic assets S such that MX becomes the set of equivalent local

martingale measures for this enlarged family of processes. Unfortunately, this also

does not help in general. In fact, assume that the Levy process L is continuous, so that

every strictly positive martingale is of the form S(f /3* dLc) and

MX = {Qß eMe(ML)\k(ßt)<rik(ß) + 0 „P _>„f-a.e.}.

By Theorem 19 of [Del06], MX corresponds to a set of equivalent local martingale

measures if and only if for each t [0, T] and each t_ g £1,

\ßt(cn) g Rd k(ßt(co))<r]k(ß) + 0\-ß

is a subspace of Rd. But this is obviously not true in general. In view of the above

negative results, it would be interesting to know whether there are other useful decom¬

positions for the good deal value bound processes tt£ and ixu.

We finish this section with a brief consideration concerning dynamic no-arbitrage

properties of no-good-deal value processes. Fix X G L°°(P). Every g1 G MX

induces an arbitrage-free value process (EQ\ [X|5rf])o<f<r for X. This is a subjective

no-good-deal value process of some agent, and so the agent might want to switch

from g1 to some other pricing measure g2 MX at some stopping time x. This

raises the question when such a change of the pricing measure does not yield arbitrage

opportunities. For simplicity, assume that the basic assets S with ^(ML) = Me(S)

are locally bounded. Then there exist no arbitrage opportunities if and only if there

exists g g Me(ML) suchthat

-,v, } EQl[X\Ft] on[[0,rl

*<*>=={ EÔQ2[X\Ft] on It, 71
(3A3)

is a (true) g-martingale; see [DS94] for locally bounded and [DS98] for unbounded

processes, and note that ~p(X), like X, is bounded. Since the filtration is generated

by a Levy process, it is quasi-left continuous. If the stopping time x is predictable,
no jumps can occur for ~pT (X) and we can give a condition which is necessary and

sufficient for the existence of an appropriate g Me(ML). For a totally inaccessible

stopping time, we have found so far only a sufficient condition.

Proposition 3.6.10. Denote by Z1, Z2 the density processes of g1, g2 MX from

(3.6.3). Define Q e MX by the density Zt := Z\^ and set

AT :=EQ2[X\Ft]-EQi[X\FT].
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If M :— Arl[[Ti;r]] is a Q-martingale, then p(X) is a Q-martingale. If x is a pre¬

dictable stopping time, then the following are equivalent:

a) There exists g G Me(ML) such that~p(X) is a Q-martingale.

b) p~(X) is a Q-martingale.

c) pT_(X)=pT(X).

Proof. The process p = (pt)o<t<T defined by

Pt := EQl[X\FlAT] + l\\zJl(EQ2[X\Ft] - EQi[X\FA)

is a g-martingale. Since M = ~p(X) — p we see that ~p(X) is a g-martingale if

and only if M is. The m-stability of MX implies that g G MX ç Me(ML). This

proves the sufficient condition. Now suppose that x is a predictable stopping time.

The filtration is quasi-left-continuous so that FT = Fr-. This together with Theorem

VI. 14 of [DM82] implies that if p(X) is a martingale for some^ G Me(ML), then c)

must hold. Moreover, if c) holds then p(X) is a martingale for g g MX. This finishes

the proof.

3.7 Examples

In this section we study two examples. In the first we obtain a partial integro-differential

equation for the value bound via dynamic programming techniques. The second exam¬

ines good deal value bounds under the additional assumption that the pricing measure

preserves the Levy property of the process L which generates the filtration.

3.7.1 Stochastic control

In this example we derive a stochastic control problem for the good deal value process.

We fix the truncation function h(x) := jc1{h„h<i} on Rd. The filtration is generated

by a ^-dimensional Levy process L
— (Lt)o<t<T with dynamics

dLt =ocdt + cr dBt + / x (p(dx,dt) — K(dx)dt) + / xß(dx,dt),
J\\x\\<l \ / J\\x\\>l

where B is a „-dimensional Brownian motion, K(dx)dt is the compensator of the

random measure /_, a is a „-dimensional vector and o isad x d nonnegative definite
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matrix. We introduce the notations

0_l • • • cri„ \ (<*

and a =

o_i Odd \°d

a\

aj

The triplet (b, c, K) in (3.4.2) which describes the characteristics of L is given by

b = a and c = uu* =:

( c\\

V <_i

cid

Cdd

We define
_

= (St)o<t<T as the stochastic exponential of L, i.e.,

S = (s\...,_V = «(£),

and for a fixed
„
x „-matrix M we denote by Me(ML) the set of all equivalent local

martingale measures for ML. The interpretation is as follows. S describes the dis¬

counted price processes of some assets. If we assume, e.g., that trading is possible
—1 —2

only in
_

and S and set

M:=

/ 1 0 0

0 1 0

0 0 0

0 \

0

0

\ 0 0 0 • 0 )

then ^e(ML) - Me(6(ML)) - Me(~S~\ 52) corresponds to the set of equivalent

local martingale measures for the traded assets. For a payoff X = V(St) which is

sufficiently integrable (e.g., X _ L°°(P) ), we want to find the solution to the follow¬

ing optimal control problem which describes the upper good deal value process for X.

Problem: Find

ess sup EQui.r)[ty(ST)\Ft],
allowed (ß,Y)

where the allowed Girsanov parameters (ß, Y) satisfyfor all t e [0, T] the conditions

Y(t,x) > 0, (3.7.1)

/ / \\M(xY(t,x)-h(x))\\K(dx)dt < oo, (3.7.2)
Jo Jmd

M(b + cßt+ j (xY(t,x)-h(x))K(dx)j = 0, (3.7.3)

ke{ßt,Y(t, .)):=\ß*cßt+ ( g(Y(t,x))K(dx) < f), (3.7.4)
2 JjRd
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and where g(y) = y log y — y + 1 and fj is a fixed constant.

Remark 3.7.1. Recall from Proposition 3.4.5 that the conditions (3.7.2) and (3.7.3)

ensure that Q{ßJ) g Me(ML).

In order to apply dynamic programming techniques, we make the following

Assumptions:

A) /0e(g|P) < oo for some g g Me(ML).

B) For every allowed g = Q^'Y), the Girsanov parameters (ß, Y) are of the form

ßt=ß(t,~St-) and Y(t,x) = Y(t,S,-,x)

for deterministic functions ß : R+ x Rd -» Rd and Y : R+ x Rd x Rd -+ R.

Assumption B) implies that the Markov property of L is preserved under g^F) so

that

ess sup EQ(P,Y)[V(ST)\Ft] = V(t,St)
allowed (ß,Y)

for a deterministic function V : R+ x Rd -^ R. Note that B — fa*ßsds is a

g^F)-Brownian motion and that the compensator of the random measure p under

Q(ß,Y) is given by Y(t, x) K(dx)dt. If V is in Ch2(R+, Rd) and fj is big enough,
then formally Itô's formula implies that V should solve the following problem:

— V(t,s)+ sup A(ßJ)V(t,s) = 0,
dt allowed {ß,Y)

V(T,S) = *(_),

Y(t,s,x) > 0,

Myb + cßt+ f (xY(t,x)-h(x))K(dx)J = 0,

lß*(t,s)cß(t,s)+ [ g(Y(t,s,x))K(dx) < fj,
2 Jmd

where A^-Y) denotes the Q(ß<Y) generator of S. Even if V solves the above partial

integro-differential equation, it remains to check that Y satisfies (3.7.2) and that V

actually yields a solution to the original stochastic control problem; see [OS05] for a

more detailed discussion and Theorem 3.1 there for a verification problem in a similar

setting.
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Remark 3.7.2. In [BS06] there is a detailed discussion of a control problem which

differs from this example only with respect to the condition ke {ß(t, s), Y(t, s, .)) < fj
which is replaced there by

ß*(t,s)cß(t,s)+ f (Y(t,s,x)-\)2K(dx)<fj.
Jmd

O

3.7.2 Good deal bounds and preservation of the Levy property

In this example we consider good deal value bounds under the additional condition

that the pricing measure has to preserve the Levy property of L or, equivalentiy, has

deterministic time-independent Girsanov parameters. In this case one cannot apply
the methods of dynamic programming. However, the restriction to time-independent
Girsanov parameters often yields relatively simple optimization problems for the value

bounds. To illustrate this, let the filtration be generated by the 2-dimensional Levy

process

Lf = at + aBt + / / x fi(dx,dt),
Jo Jm2

where B — (B1, B2)* is a 2-dimensional Brownian motion, a = („i, c_)* is a vector

in R2 and a — j r = } with _i, o_. > 0 and p e [0, 1]. We denote
o-i 0

(T2/0 0_\/l
- P2

by 8{x] the Dirac measure in x e R2 and assume that the compensator of p is of the

form K(dx)dt with
n

K(dx) - Y2kJ hxj}(dx)
;=i

for fixed À i,..., Xn > 0 and x\,..., xn e R2 such that with xj —: (x'j, xp* we have

x', > — 1 and x'! > — 1 for j e {1,..., «}. This means that under P the sum ofjumps

/ Im2 x ^(dXi dt) is the sum of n independent Poisson processes with respectivejump

size Xj and intensity Xj. We introduce the notation [S ,
S ) := S (L). As before, it is

the choice of the 2R2x2-matrix M which decides which processes are traded assets. By

Me(ML), we again denote the set of equivalent local martingale measures for ML.

If we impose that any pricing measure Q(ß-Y) has to preserve the Levy property of

L ~ (L], L2)*, the corresponding Girsanov parameters (ß, Y) are fully described by
a constant vector ß = (ß\, ß2)* G R2 and by the values Y(xj) =: yj e (0, oo) for

j g {l,...,n}.

Assumption: There exists Q^'Y"> g Me(ML) with (ß, Y) deterministic and time-

independent and with fae(Q(ß>Y)\P) < oo.
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Let us consider the payoff X = (ST)2 and define Wt := pB}+^\ — p2B2. Denoting

x = (x', „")*, Itô's formula implies that s" — S(L2) — eLt, where

Lt = L2+ f f (\og(x"+l)-x")fi(dx,dt)--4
Jo Jm2 2

T'+fI
JO JlR

1
= a2t + a2Wt + / / log(*" + 1) ß(dx, dt) - -a^t

h Jm2 2

1
—i.

2

= [•X2-^°ï + ''2\pPi+Ji--p2k\ \t

+vM«-r) +
Jo Jm2

\og(x" + I) p(dx,dt)

and W(ß'Y^ is the g^'y>-Brownian motion Wtiß'Y) := Wt - (pßi + Vi - p2ß2) t.

Note that / jR2 21og(„// + 1) p(dx, dt) is under g^-K) the sum of n independent
Poisson processes with respective jump sizes 21og(x'' + 1) and intensities Xjyj so

that

'Q(ß.y) exp CI. 21og(x// + \)ix(dx,dt)
m1

n I oo

Ft

k

= n e*
j=\ \k=0

21og(„;+l)-t {Xjyj(T -0) -XjyjCT-t)
k\

n / °°
1 \

j=\ \k=0
'

I

= exp [ J^kjyjiT - t)(2x'J + (x])2)

Hence (s, to) h* exp^ jRi 21og(*" + 1) (x(dx, dt) - s £}_, Xjyjfa'j + (xp2))
is a g^y^-martingale. Since continuous and purely discontinuous martingales are

orthogonal we thus have that
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'•Q(P. Y) [(3r>2|tf]
= (S")2EQ<ß.Y) [exp (2(Lr - Lf)) | Ft]
= (S"? exp M2„2 + a2 + 2cr2(pßi +y/l- P2ßi)

n \

x Eqv,y) exp (2a2{W(TßJ) - Wt(ß'Y)) - 2a2(T - t)\

x exp ( / / 21og(x// 4-1) ß(dx, dt)

-j^Xjyj(T-t)(2x"j+(x"j)2))j Ft

= (S"t)2exp I \2a2 + a2 + 2a2(pßx +yj\- p2ß2)

+ J2xJyj(2x,; + (x,j)2)yT-t)\
j=i

/

Since (St )2 > 0, calculating the upper good deal value process thus reduces to the

following optimization problem (which is independent of t):

maximize 2„2 + <r22 + 2cr2 (pß\ + yjl ~ P2ßij + £"_i ^jyj (2x'j + (x'j)2)
over ß g R2 and y G Rn, subject to

yi,3_.•••.yn > o,

M \a + oo*ß + J2xjyjXJ ) = °>

1
n

-ß*aa*ß + J2(yjtogyj~yj + Wj ^ t

7= 1

for some constant fj.

It seems unlikely that this problem can be solved explicitly, but at least one can

resort to numerical methods. For other payoffs, analogous computations could be

done.



Chapter 4

Preservation of the Levy

property under an optimal

change of measure

4.1 Introduction

Levy models are very popular in finance due to their tractability and their good fitting

properties. However, Levy models typically yield incomplete markets. This raises

the question of which measure one should choose for valuation or pricing of untraded

payoffs. Very often, a measure is chosen which minimizes a particular functional over

the set Me(S) of equivalent local martingale measures for the underlying assets S.

This choice can be motivated by a dual formulation of a primal utility maximization

problem. If P denotes the subjective measure, then the functional on Me(S) is typi¬

cally of the form g h» £'p[/(^p)] where / is a convex function on (0, oo). Then

/(g|P) :— £p[/(^7>)]> known as the f-divergence of g with respect to P, is a

measure for the distance between g and P; see [LV87] for a textbook account. Hence

one chooses as pricing measure the martingale measure which is closest to P with

respect to some /-divergence.
In this chapter, we consider /(g|P) corresponding to

f£(z):=~logz, fp(z):=z~s for8 e (0,oo) and fi(z):=z2; (4.1.1)

they are (strictly) convex. More precisely, we work on a probability space (_, F, P)

equipped with a filtration which is the P-augmentation of that generated by a d-

dimensional Levy process L. Instead of determining the basic assets S explicitly,
we only assume that they are such that Me(S) = Me(ML) where M is a fixed

„
x „-

matrix; this allows several choices for S. Our main result then is that for a fixed

149
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/ g {fl, fp, fq}, the process L is still a Levy process under the f-minimal martin¬

gale measure (for ML) Qf which minimizes /(g|P) over ^(ML). Put differently,
we show that the Levy property is preserved under a change to Qf. This is a very

pleasant result. Firstly, it simplifies the determination of Qf significantly. Secondly,
for values of payoffs calculated with respect to this measure one obtains relatively

simple formulas and often even closed-form expressions.
We obtain our main result as follows. Since the filtration is generated by the P-

Lévy process L, any probability measure Q ^ P can be fully described via two

parameters ß and Y, called Girsanov parameters of g with respect to L. The f-

divergence /(g|P) is a convex functional of the Girsanov parameters of g. Thus

one can apply Jensen's inequality to show that /(g|P) can be reduced by averaging

ß and Y. More precisely, the new parameters obtained by averaging define a measure

g with /(g|P) < /(g|P). Since we are interested in the measure Qf which min¬

imizes /(g|P) over g Me(ML), we need to ensure in addition that g is a local

martingale measure if g is. This is not true in general, but it does hold if we take g

from a suitable subset of Me(ML), which is specified via an additional integrabihty
condition for L. We then show that this subset is dense in Me(ML) in an appropri¬
ate sense, and this allows us to prove that Qf has time-independent and deterministic

Girsanov parameters. Because this characterizes those measures which preserve the

Levy property of L, our main result follows.

The chapter is structured as follows. In Section 4.2, we motivate our results and

relate them to the existing literature. In Section 4.3 we fix some notation and recall

some important facts about Levy processes and changes of measure. In particular, we

explain how equivalent measures can be described by their Girsanov parameters and

give conditions for the latter to describe a measure in Me(ML); for convenience of

the reader and to keep this chapter self-contained, we also recall results which were

already presented in Section 3.4. Section 4.4 then contains the main results. In Sub¬

section 4.4.1 we explicitly define the averaging procedure for the Girsanov parameters
and show how it reduces the /-divergence. In the following Subsection 4.4.2 we spec¬

ify a dense subset of Me(ML) consisting of measures for which the averaging proce¬

dure results in measures again contained in Me(ML). This is then exploited to prove

our main result, i.e., that L is a Levy process under Qf. In Section 4.5 we restrict to

f(z) = fq(z) = z2, where /(g|P) is basically the variance of the density dQ/dP.
There is a direct connection between Qq and the variance-optimal signed martingale
measure. We show that if these two coincide, then one can show directly that Qq pre¬

serves the Levy property. This uses that in a Levy setting the variance-optimal signed

martingale measure agrees with the minimal signed martingale measure for which an

explicit formula is known.

For better reading we omit long proofs from the main body of the chapter. They
are collected in the appendix together with some auxiliary results.
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4.2 Motivation and background

In this section we motivate the results contained in this chapter and connect them to

those of Esche and Schweizer in [ES05], abbreviated ES in the sequel. Our approach
is mainly inspired by ES.

The study of /-minimal martingale measures naturally arises in valuation in in¬

complete markets. One way to specify a value for a nontraded payoff is to fix a mea¬

sure g g Me(S) and to take the g-expectation of the payoff. A common choice for

g is to take the martingale measure which is closest to the subjective measure P, or,

more precisely, to take the measure which minimizes the /-divergence /(g|P) over

Me(S) for some convex function /. Typical choices are, e.g., f(z) = zp with p > 1

or f(z) = z logz. The first choice results in minimizing the L^-norm of the density

jp,
the second in minimizing the relative entropy. The same pricing measures can also

be obtained from an approach based on utility maximization. In fact, each (primal)

utihty maximization problem has a corresponding (dual) /-divergence minimization

problem; see [KS99] and [SchOla] for precise results. The /-divergences introduced

in (4.1.1) are associated to the following utility functions U. The function fl cor-

responds to V£(x) := -logx with x g (0, oo), fP to Up(x) := 2±Ijt*+r = jxs
with 8 := j|y g (0, 1) and x g (0, oo) and, finally, fq to W(x) = -(1 - x)2 with

x G R; see Chapter 3 for precise results. Loosely speaking, minimizing /(g|P) over

g G Me(S) is dual to maximizing expected U-utility from terminal wealth, and / is

essentially the Legendre transform of U. We remark that the superscript £ stands for

log, p for power and q for quadratic.
Instead of specifying a unique measure in Me(S) and thus a unique value for any

payoff, one can relax this approach to obtain a whole interval of possible values. For

instance, one can allow all those measures in Me(S) for pricing which do not yield

good deals. The latter are investment opportunities which are too good in an appropri¬
ate sense, e.g., because they have a very high Sharpe ratio; see [CSROO] and [BS06].

Such good deals can also be defined via an upper bound on the maximal attainable

utility (in some extended market); this is done, e.g., in [Cer03] and Chapter 3 of this

thesis. In order to define a good deal one then has to calculate as benchmark the max¬

imal utility attainable from trading in the basic assets, which again leads via duality

theory to the problem of finding the /-minimal martingale measure Qf. In a model

where the filtration is generated by a multi-dimensional process L which is a Levy

process under the subjective measure P, it is then very convenient for interpretation
as well as calculation purposes if Qf preserves the Levy property of L; see Chapter 3

for a precise statement. This has been the original motivation for this chapter.
In Chapter 3, we exploit the result of [ES05] that in a Levy model, the minimal

entropy martingale measure preserves the Levy property. It turns out that this approach
can actually be extended to the whole class of /-divergences defined with respect to

the functions in (4.1.1 ). In contrast to ES, we consider only equivalent local martingale
measures here to avoid complications with the definitions of fl(Q\P) and fp(Q\P).
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We remark that for the purposes of Chapter 3, we need the /-minimal martingale

measure not only at time t = 0, but also at any time t between 0 and the finite time

horizon T, i.e., we seek at time t a measure g which minimizes Ep [f(Zf /Z^)\Ft].
However, Lemma 5.1.4 in the appendix shows that the measure which is /-minimal
at time t = 0 is also optimal at any later time t < T.

4.3 Change of measure and Levy processes

4.3.1 Notation and conventions

In this subsection we fix some notation and conventions, assumed to hold for the

whole chapter; for unexplained notation we refer to [JS87], abbreviated JS in the

sequel. We work on a filtered probability space (Q, F, F, P) with F = (Ft)o<t<T

satisfying the usual conditions under P, with a finite time horizon T < oo and Fq

trivial. A localizing sequence is a sequence of stopping times xn < T such that

lim^oo P[xn < T] = 0. We denote by Eq[ . ] the expectation with respect to g. For

g — P we often drop the mention of g and write E[. ]. For any g <äC P, its real-

valued density process Zô — (Zrö)o<f<r with zf ;— E[dQ/dP\Ft] and its density

Zj := E[dQ/dP\FT] are defined with respect to P. If not mentioned otherwise,

processes are assumed to be .K^-valued and if it exists, we choose a right-continuous
version. For a semimartingale __

and a probability measure g & P, we denote by px
the random measure associated with the jumps of X and by v

ß (or vx>ß if confusion

is possible) the predictable g-compensator of fix. If p is a random measure and W

is sufficiently integrable, we denote by W * p the integral process of W with respect

to p. Moreover, we work throughout with a fixed but arbitrary truncation function

h : Rd —> Rd; the results do not depend on the particular choice of h. By P we

denote the predictable a-field on ß x [0, T] and by (B, C, v) the P-characteristics of

the semimartingale X with respect to h. As in Proposition II.2.9 of JS, we can and do

always choose a version of the form

= j bdA, C = jB=lbdA, C= cdA, v(_; dt,dx) = dAt(w) K^t(dx), (4.3.1)

where A is a real-valued predictable increasing locally integrable process, b an Rd-

valued predictable process, c a predictable process with values in the set of all sym¬

metric nonnegative definite d x „-matrices, and Kü)j(dx) a transition kernel from

(_ x [0, T], P) into (Rd, £d) with K^t(0) = 0 and j"Ä_(l A ||x||2)___,,(„„) < 1 for

all t < T. We denote by ||. || the usual norm on Rd.

We now turn to the description of absolutely continuous probability measures. As

mentioned in the introduction, any g <§; P can be described by two parameters ß and

Y. To introduce them, we recall Girsanov's theorem.
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Proposition 4.3.1. (Theorem III.3.24 of JS) Let X be a semimartingale with P-

characteristics (Bp', Cp, vp) and denote by c, A the processes from (4.3.1). For any

probability measure g <$C P, there exist a P _) 3Sd -measurable function Y > 0 and a

predictable R -valued process ß satisfying

||(7 - 1)Ä|| *vÇ+ [ \\csßs\\dAs 4- f ß*csßsdA5 < oo g-a.s.
Jo Jo

and such that the Q-characteristics (B®, c®, v@) ofX are given by

Bp = Bp + fl csßs dAs + ((Y - l)h) * v/\
rQ — rP
_ t

__

_ r ,

vQ(dt, dx) = Yt(x) vp(dt, dx).

We call ß and Y the Girsanov parameters of Q (with respect to P, relative to X) and

write Q — g^-y) to emphasize the dependence.

Remark 4.3.2. a) In Proposition 4.3.1 we have Y(x) > 0
„
P _> dt-a.e. for __-a.e.

x if and only if g äs P.

b) Note that ß and Y are not unique. For Y and ß we identify all versions which

are vp-a.e. respectively A-a.e. equal. Thus ß and Y are called, e.g., time-

independent, if there exists one such version. In addition, for fixed c and A

only cß is A-a.e. unique. To have ß A-a.e. unique, we can and do define ß as

suggested in Remark NV in ES. When defining quantities depending on ß and

Y directly, we always fix one version.

O

4.3.2 Levy processes

We are concerned with models where the underlying filtration is generated by a Levy

process. Therefore, we recall some facts about Levy processes.

Let Q « p and L = (Lt)o<t<T be an F-adapted stochastic process with RCLL

paths and Lq — 0. Then L is called a (g, ¥)-Lévy process if for all s < t < T, the

increment Lt — Ls is independent of Fs under g and has a distribution which depends
ont — s only. If there is only a process L with Lq = 0 and independent, stationary
increments under g, we call L a Q-Lévy process, take as F the g-augmentation of

the filtration generated by L and denote this by FL,Ö. Recall that a Levy process is

a Feller process, so that FL,0 automatically satisfies the usual conditions under g. If

g — P, we even sometimes drop the mention of P, i.e., refer to L simply as a Levy

process and write FL. In particular, if g = P and F = ¥L for quantities depending
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on P and L we often do not write this dependence explicitly; this is done, e.g., for

Girsanov parameters. We will use frequently that for Q % p, every (g, F)-Lévy pro¬

cess is an F-semimartingale and a (g, F)-martingale if and only if it is a (g, F)-local

martingale; see [HWY92], Theorem 11.46.

Another important fact is that Levy processes have the weak predictable repre¬

sentation property; see JS, Theorem III.4.34. That is, if F — ¥L, then every local

P-martingale (starting in zero) is the sum of an integral with respect to the continuous

martingale part Lc and an integral with respect to the compensated jump measure.

This allows to give an explicit formula for the density process of any probability mea¬

sure Q te p with Girsanov parameters ß and Y. We quote this from from [ES05],

abbreviated ES in the sequel.

Proposition 4.3.3. (Proposition 3 of ES) Let L be a P-Levy process and¥ = ¥L. If

Q te P with Girsanov parameters ß, Y, the density process of g with respect to P is

given byZQ-e(N^) with

NtQ= f ß*dLcs + (Y-l)*(pL-vp)t.
Jo

Remark 4.3.4. We frequently use that in the setting of Proposition 4.3.3, for a func¬

tion k : (-1, oo) -> R we have J2s<t k(AN?) = k(Y -l)*ßf'- O

In (4.3.1) we have introduced an integral version for the characteristics of a semi¬

martingale. The main result of this chapter is based on the fact that the characteristics

of a Levy process have a very particular structure.

Lemma 4.3.5. (Corollary II.4.19 of JS) Let Q te P and L be an (g, ¥)-semimartin-

gale. Then L is a (Q, ¥)-Lévy process if and only if there exists a version of its Q-

characteristics such that

Bp(co) = bQt, Cp(co) = cQt, vQ((o; dt, dx) = dtKQ(dx) (4.3.2)

where b® G Rd, c® is a symmetric non-negative definite d x d-matrix, K® is a

positive measure on Rd that integrates (\\x ||2 A1) and satisfies K ® ({0}) = 0. We call

(b®, c®, K@) the Levy characteristics ofL (with respect to Q).

Remark 4.3.6. For a P-Lévy process we drop the mention of P and denote the Levy
characteristics by (b, c, K). Moreover, without further mention we always use the

notation

vp(dx,dt) = K(dx)dt.

O
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As an immediate consequence of Girsanov's theorem and Lemma 4.3.5, for any

(P, F)-Lévy process L, we can characterize the set of all probability measures g *=» P

under which L is a (g, F)-Lévy process. We denote this set by

_" := 0(1) := {g te p | L is a (g, F)-Lévy process}.

Corollary 4.3.7. Let L be an (P,¥)-Lévy process and Q <=w P w„/z Girsanov pa¬

rameters ß and Y. Then L is a (Q, ¥)-Lévy process if and only if ß and Y(x) are

dP ®dt-a.e. time-independent and deterministic for K-a.e. x G R .

4.3.3 Change of measure

In the previous subsections, we have described for any g te p the corresponding Gir¬

sanov parameters. Now we want to start with arbitrary predictable processes ß and Y

and give conditions under which they define a probability measure g te p and can

be identified as the Girsanov parameters of g. Obviously, ß and Y have to satisfy
some integrabihty conditions. In view of our aim to minimize for/ g {fi,fp,fq}
the /-divergence /(g|P) over some set of probability measures g te p, we im¬

pose integrabihty conditions on ß and Y which naturally arise in the computation of

/(g|P); see Subsection 4.4.1 below. In order to formulate these conditions, we need

to introduce the following functions g on (0, oo):

g£(y) := -logy + y-1,

gP(y) := y-&-i+8(y-l) for_(0,oo),

gq(y) := (y-1)2.

As shown in Lemma 5.1.2 below, each of these functions is strictly convex and non-

negative.

Remark 4.3.8. a) For f = fl with i {£, p, q}, we refer to g' as the corre¬

sponding function g. Moreover, for fp(z) = z~R, the corresponding g = gp is

defined with respect to the same
_
g (0, oo).

b) ES consider the relative entropy, i.e., the z log ^-divergence. The correspond¬
ing function g there is y logy — (y — 1) and is (unfortunately) denoted by /.
However, in order to preserve the variable / for the /-divergence, we use the

notation g here.

O

Proposition 4.3.9. Let L be a P-Lévy process with Levy characteristics (_>, c, K),
¥ — ¥L, g e {gl, gp, gq], ß a predictable process and Y > 0 a P <_> Bd-measurable

function. If

/ g(Ys(x))K(dx) < const. dP®dt-a.e., (4.3.3)
Jmd
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then Y — 1 is integrable with respect to pL — vp. If in addition

ß*cßs < const. dP®dt-a.e., (4.3.4)

then Z := 8(N) with

Nt= [ ß* dLcs + (Y - 1) * (pL - vp)t (4.3.5)
Jo

is a strictly positive P-martingale.

Proof. See appendix. D

Remark 4.3.10. a) Note that / ß*cßs ds = (Nc).

b) Proposition 4.3.9 is very similar to Proposition 5 in ES. However, their integra¬

bihty condition on ß and F is of a weaker form. The proof then works because

there the function g considered (and denoted by /) is ge(y) := y log y — (y — 1 );

ge naturally arises when minimizing the relative entropy. More precisely, for in¬

tegrabihty conditions with respect to ge there exist rather general results which

imply that 8(N) from Proposition 4.3.9 is a (true) P-martingale; see Theorems

III. 1 and IV.3 of [LM78]. However, this is not (yet) the case for g G {g1, gp, gq}
considered here. On the other hand, in order to obtain the main results of

this chapter, it would already be sufficient to prove Proposition 4.3.9 for time-

independent and thus deterministic ß and Y. From this point of view, Proposi¬
tion 4.3.9 is even more general than required. But the conditions imposed on

ß and Y in Proposition 4.3.9 are exactly those which appear in connection with

the computation of dynamic good deal bounds. Thus the generality chosen for

Proposition 4.3.9 is exactly what is required to apply the results of this chapter
to calculate good deal bounds; see Section 3.7 for such an application.

O

The following result now allows to identify a priori given ß and Y with the Gir¬

sanov parameters of the measure g defined via Z — 8(N), where N is constructed

from ß and Y via (4.3.5).

Proposition 4.3.11. (Proposition 7 of ES) Let Lbea P-Lévy process with Levy char¬

acteristics (b,c, K) and ¥ — ¥L. Let ß be a predictable process, integrable with

respect to Lc, and Y > 0 a predictable function such that Y — 1 is integrable with

respect to pL — vp, and define N := f ß* dLcs + (Y — 1) * (pL — vp). If there exists

a probability measure Q te P with density process Z® — Z :— 8(N), then ß and Y

are the Girsanov parameters of Q.
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4.3.4 Martingale measures

We have seen that a probability measure g <$C P can be described via its Girsanov

parameters. In particular, we haven given conditions under which two processes ß
and Y are the Girsanov parameters of some equivalent probability measure. For a

fixed P-Lévy process L and a matrix M G Räxd we now look for conditions on the

Girsanov parameters of Q te p which ensure that ML is a local martingale under g,

i.e, that g is a local martingale measure for ML. We denote the set of all equivalent
local martingale measures for a semimartingale S by

Me(S) := {Q te p | S is a local martingale under g}.

Remark 4.3.12. We consider equivalent local martingale measures for ML because

this allows for several possibilities to model the price processes in a financial market

model; see Section 1 of ES for a detailed discussion. O

Proposition 4.3.13. Let L be a P-Lévy process with Levy characteristics (b, c, K),
¥ = ¥L, M a d x d-matrix and Q te p with Girsanov parameters ß and Y. Then

Q G Me(ML) ifand only ifwe have both

\\Mx - h(Mx)\\ * Vj'Q < oo Q-a.s. (4.3.6)

and

M(b + cßt+ f (xYt(x)~h(x))K(dx)) =0
„ g ® „/-„._. (4.3.7)

Condition (4.3.7) is called the martingale conditionfor ML.

Proof. This is Proposition 10 of ES, except that we skip the proof of the equivalence
of (4.3.6) with the integrabihty condition ||M(„F — h)\\ * vp < oo there. Therefore

we do not require their additional assumption on the integrabihty of Y. D

Property (4.3.6) is an integrabihty condition on the big jumps of ML. As shown

below in Subsection 4.4.2, if g^'y) te p has finite /-divergence for some / G

if1, fp, fq}, then for the corresponding g g {g1, gp, gq), g(Y) has certain integra¬
bihty properties. In that case, condition (4.3.6) is equivalent to \\M(x Y—h) \\ *vp < oo

which is technically more convenient. This is a consequence of the following result.

Lemma 4.3.14. With the notation ofProposition 4.3.13 andfor g G {g1, gp, gq}

||M„-/z(M^)||*v^ö<||M(xF-/z)||*yf+const. (g(YT(x)) + (1 A ||„||2))*vf („„),

\\M(xY-h)\\*vÇ <||M„-/*(Mjc)||*v£'ö+const. (g(YT(x)) + (1 a \\x\\2))*vp(dx).

Proof. See Lemma 5.1.10 d) from the appendix. D
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4.4 Preservation of the Levy property by an /-minimal

change of measure

For all of Section 4.4, we fix a matrix M Rdxd, a P-Lévy process L with Levy
characteristics (b, c, K) and assume that F = FL. For / g {f£, fp, fq) we call

Qf g Me(ML) the /-minimal martingale measure if it minimizes the /-divergence
over Me(ML), i.e., if f(Qf\P) < f(Q\P) for all Q G Me(ML), and denote it by
Ql, Qp and Qq, respectively. Note that since / is strictly convex, Qf is unique if it

exists. The aim is to show that Qf is contained in _2 = &(L), i.e., that Qf preserves

the Levy property of L.

We proceed as follows. From g g «A_e(ML) with Girsanov parameters ß and Y,

we define a new pair of Girsanov parameters ß and Y by averaging ß and Y over t

and _>. Then we show that for g = Q(ß<Y) we have f(Q\P) < £(Q\P), i.e., the

/-divergence is reduced by this averaging procedure. We refer to g as obtained by

"averaging g". Since we want to minimize /(g|P) over g g Me(ML), we have to

ensure that averaging preserves in addition the integrabihty condition (4.3.6) and the

martingale condition (4.3.7). This requires some extra care.

4.4.1 Reducing the /-divergence by averaging

Averaging ß and Y(x) means that we consider them (for fixed x) as random variables

on
_

x [0, T] and take their expectations. Thus, we need to find a candidate for the

measure which is used to define the expectation on
_

x [0, T], This candidate will

naturally arise from the formula we derive next for the /-divergence of g in terms

of its Girsanov parameters. We can restrict the averaging procedure to measures with

finite /-divergence, i.e., which are contained in

af := {Q te p\ f(ZQ) is a P-submartingale}.

Note that each / {fl,fp,fq) defines a different set &f denoted by &fl, ®fP and

&fq, respectively, and that g te p is contained in Q^ if and only if E [/(Z^)] < oo;

see Corollary 5.1.3. In particular, for i G {£, p, q) we have for Gl1 from Chapter 3 that

&' = afl' n Me(ML).

We state the results separately for each / g {fl, fp, fq).

Proposition 4.4.1. Let Q - g^>r> g Q.ft with density process Z = ZQ = 8(N).

The canonical P-decomposition of fl(Z) = — log Z — Ml + A1 is

M£ = -N + g£(Y)*(pL-vp) = ~Nc-\og(Y)*(piL -vp),

A1 = ^(Nc)+gl(Y)*vp =:Al + Al,
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where g£(y) = — logy + y — 1, M£ is a uniformly integrable P-martingale and A£

and A1 are predictable, increasing and P-integrable. Thus,

f£(Q\P) = E[fl(ZT)] = E[AlT] = E\^^ ß*cßsds + gl(Y)*vp . (4.4.1)

Proof. See appendix. D

Proposition 4.4.2. Let Q = Q(ß'Y) g QfP with density process Z = ZQ = 8(N).
The canonical P-decomposition of fp(Z) = Z~s — Mp + Ap is

MP = fZZ5dMP = ffP(Z^)dMP

with MP := -8N + gP(Y)*(pL-vp) = -8Nc + (Y-s-\)*(pL-vp)

and AP - f Z_5 dÂP = f fp(Z_) dkp

with AP :- W+H(Nc)+gp(Y)*vp,

where gP(y) - y~s - 1 + 8(y - 1). In particular, fp(Z) = 8(MP)8(AP) where

8(MP) is a strictly positive uniformly integrable P-martingale. With ^fp- := 8(Mp)t

the process 8(AP) = eAP is increasing and Rp-integrable and

fp(Q\P) = E [fp(ZT)] = Erp[s(ÂP)t]
= Erp exp

'*(* + !)_.*

ßtcßt +j gp(Yt(x)) K(dx)\dt\ .(4.4.2)

Proof. See appendix. D

For fq (z) = z2 the results are (formally) exactly those of Proposition 4.4.2 for

8 — —2. However, to introduce the notation and because of the importance of the case

fq, we decided to state the result for fq separately; see Section 4.5 below.

Proposition 4.4.3. Let Q - g^-y) g &fq with density process Z = ZQ = 8(N).

With gq(y) = (y — l)2, the canonical P-decomposition of fq(Z) = Z2 = Mq + Aq

is

Mq

with Mq

and Aq

with AP

= fZidMq=ffq(Z^)dMq

:~ 2N + gq(Y)*(pL -vp) = 2Nc + (Y2

= JZ2_dAq =f fq(Z-)dkq

:= (Nc)+gq(Y)*vp.

1) * (pL - vp)
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In particular, fq(Z) = 8(Mq)8(Aq) where 8(Mq) is a strictly positive uniformly in-

tegrable P-martingale. With ^- := 8(Mq)T the process 8(Aq) — e is increasing
and Rq-integrable and

fq(Q\P) = E[fq(ZT)] = ERq [e(Âq)T]

exp (7 (ß?cßt + j dgq(Yt(x))K(dx)\ dt\ .(4.4.3)= ERi

Proof See appendix.

In Subsection 4.3.3 we have associated to each function / G {fl, fp,fq}a cor¬

responding g g {g£, gp, gqY, (the proofs of) Propositions 4.4.1, 4.4.2 and 4.4.3 show

where the definitions for g£, gp and gq come from. From now on, we associate in

addition to each / and each g — g^-y) a probability measure R = R(f; ß,Y). For

/ e {fP, fq}, the corresponding R(fP; ß, Y) := RP and „(/*; ß, Y) := Rq are

defined in Propositions 4.4.2 and 4.4.3. For / = f£ we define R(f; ß, Y) := P;

this is actually independent of ß, Y. The introduction of R£ allows us to treat the

different /-divergences simultaneously and highlights the analogy in their treatment.

The measures R G {R£, Rp, Rq) or, more precisely, the product measures R <8> X are

the candidate measures for the averaging procedure to reduce the /-divergence. The

next lemma provides us with some important integrabihty properties, with respect to

R = R(f; /?, Y), of functionals depending on the Girsanov parameters ß and Y.

Remark 4.4.4. For f(z) = zlogz as considered in ES, the candidate measure is

g ® X. This can be seen from Lemma 12 of ES. O

Lemma 4.4.5. Let f g {fe,fp,fql Q = Q(ß'Y) G &f with correspondinge

8 G {g£> Spi 8q) and R = R(f;ß, Y). The following random variables are R-

integrable:

a) ßßfcßtdt,

b) j0T\\ßt\\dt,

c) g(Y)*vp,

d) J* Yt(x)dtforK-a.e. x G Rd.

Proof. Parts a) and c) follow from Propositions 4.4.1,4.4.2 and 4.4.3; note that g > 0,

ß*cß > 0 and ex > x. Finally, b) and d) can be deduced from a), c) and Lemma 5.1.1

c) analogously to Lemma 12 in ES with g-expectations and / there replaced by R-

expectations and g. O
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The following theorem shows that for / g {f£, fp, fq), the quantities ß and Y(x)

obtained from g — Q(ß<Y^ e Qf via averaging with respect to R(f; ß, Y)<g>X define

some g = Q(ß'Y) with f(Q\P) < f(Q |P). Since ß and Y are time-independent and

thus also deterministic, g is contained in É2(L) by Corollary 4.3.7, i.e., preserves the

Levy property of L.

Theorem 4.4.6. Let f e {f£, fp, fq}, Q = g^'y) g Q,f with corresponding mea¬

sure R = R(f; ß, Y), and define ß e Rd and a measurablefunction Y from Rd into

(0, oo) by

• r

ß := ER\- I ßtdt

if this is finite (which holds K-a.e.),Y(x) := ErI^I Y'^dt

Y(x) := 1 otherwise.

Then there exists Q te P with Girsanov parameters ß, Y such that Q G Q.f fi _2 and

f(Q\P) < f(Q\P),

with equality iff dP _> dt-a.e. both ß = ß and Y(x) = Y(x) for K-a.e. x, i.e., iff

Qeä.

Proof See appendix. D

Remark 4.4.7. The measure g does not depend on the version of ß and Y. O

4.4.2 Preservation of the martingale property

In the previous subsection we have shown how for / g {f£, fp, fq}, the /-divergence

/(g|P) of some g(ß'y) g Q.f can be reduced by averaging the Girsanov parameters

ß and Y. Since the obtained ß and Y are time-independent, the corresponding measure

g = g^>y) is in É2(L) and hence preserves the Levy property of L. If in addition the

original g is in =MÊ(ML) we should like this to hold for g as well; in other words, we

hope that also (4.3.6) and the martingale condition (4.3.7) are preserved under averag¬

ing. Since ß and Y enter (4.3.7) linearly, we naturally expect this to be true. However,

to actually prove this, we need to apply Fubini's theorem, which requires an additional

integrabihty condition. This condition, which will also be used to show that (4.3.6) is

preserved under averaging, holds for all g contained in

e_t := \Q(ßY) G _/|_.Ä[||M(„y-/z)||*yfl < oo for R = R(f; ß, Y)}
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Therefore we prove that for any g G Qf there exists a sequence (Qn)n __v ^ ©4
with lim-^oo /(gM|P) = /(g|P). Moreover, we show that for g and g" obtained

from averaging g and Qn, we also have lim^oc /(g |P) = /(g|P). These results

then imply that the /-minimal martingale measure Qf preserves the Levy property of

L and that it suffices to look for Qf in the set Me(ML) C\ Qf C\Q. Before we show

that measures from Me(ML) C\ Q(nt preserve the Levy property under averaging, we
remark that

^(MDns^oç Q(nv
In fact, Lemma 4.3.14 yields

\\M(xY-h)\\*vÇ < ||Mx-/ï(Mjt)||*v£'Ô-fconst. (g(YT(x)) + (1 A ||x||2))*vf (dx).

Moreover, if g G Me(ML), then the first summand on the RHS is finite by Proposi¬
tion 4.3.13 and if g g Qf so is the second by Lemma 4.4.5 c). Finally, if g e 02,

then Y is deterministic, hence so is ||M(*F — h) || * v£, and then finiteness is the same

as R-integrabihty.

Proposition 4.4.8. Let f g {fl, fP, fq] and Q = Q{ßX) G Me(ML) n Qfm. Then

Qfrom Theorem 4.4.6 is in Me(ML) fl Qf fl _2 so that ML is a local Q-martingale.

Proof. See appendix.

We next show that Me(ML) n ö£t is dense in Me(ML) n Qf in a suitable sense.

Proposition 4.4.9. Let Q G Me(ML) n Ö-^/or / g {fl, fp, fq] and suppose that

Me(ML) DQf n_ 7^ 0. T/z_n ?/z_re ex_?_ a sequence (gw)we_v m .Me(ML) n Q(nt
with

lim /(gM|P) = /(g|P).

Proo/ See appendix. D

In addition, the /-divergences of the corresponding averaged measures converge

as well.

Proposition 4.4.10. In the setting ofProposition 4.4.9 denote by Q and Q the cor¬

responding averaged measures as defined in Theorem 4.4.6. Then

lim f(Qn\P) = f(Q\P).
n->oo

vi/ vi/

Proof See appendix. D
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Putting all this together we obtain our main result.

Theorem 4.4.11. Let f g {fl, fp, fq} and suppose that Me(ML) fl^nö^.
Ifthere exists Qf g ^ê(ML) C\Q,f such that

f(Qf\P)<f(Q\P) for all QtMe(ML),

then Qf G Q, i.e., L is a Levy process under Qf.

Proof. Suppose Qf $_ Q. By Theorem 4.4.6 we can obtain from averaging Qf some

~Qf eQDQf such f(Qf\P) < f(Qf\P). This is not yet a contradiction, since ~Qf
need not be contained in Me(ML). However, Proposition 4.4.9 ensures the existence

of a sequence (gn)we_v Ç Me(ML) na{nt such that Kmn^œ f(Qn\P) = f(Qf\P).
In addition, Proposition 4.4.10 implies that also the /-divergences of the measures g

constructed from Qn as in Theorem 4.4.6 satisfy

lim f(Qn\P)=f(Qf\P)<f(Qf\P).
n—>oo

vi/ \ i / \ i /

Thus there exists n G N such that /(_f | P) < /(Qf | P) and

Qn eMe(ML)nQf na

by Proposition 4.4.8. This yields a contradiction. Hence Qf e Q. D

Remark 4.4.12. We assumed in Theorem 4.4.11 the existence of the /-minimal mar¬

tingale measure Qf. This is a non-trivial assumption if we do not impose that ML is

locally bounded, i.e., that it has bounded jumps; see Theorem 1.1 in Bellini/Frittelli

[BF02], O

Theorem 4.4.11 suggests that it is enough to look for the /-minimal martingale
measure Qf in Q. The following corollary show that this is indeed true.

Corollary 4.4.13. Let f e {fl,fp, fq}. If there exists Q' eMe(ML) n Qf n Q

such that f(Q'\P) < f(Q\P)for all Q G Me(ML) fl Qf n Q, then we also have

that f(Q'\P) < f(Q\P)for all Q G Me(ML), i.e., Q' = Qf is the f-minimal

martingale measure.

Proof. Suppose there exists g (Me(ML) n Qf)\Q suchthat f(Ù\P) < f(Q'\P).
By Theorem 4.4.6 we can average g to obtain some g g Qf C\ Q such that

/(g|P)</(g|P)</(g/|P).

As in the proof of Theorem 4.4.11 one then applies Propositions 4.4.9 and 4.4.10 to

obtain a contradiction. D
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4.5 Connections to the variance-optimal measure

In this section we relate the /^-minimal martingale measure Qq to the variance-

optimal signed martingale measure P. An intensively studied pricing and hedging ap¬

proach in incomplete markets is mean-variance hedging; see [SchOl] for an overview

and terminology not explained here. In that approach, the value of a payoff is defined

as the initial capital of the strategy which minimizes the L2-norm of the hedging er¬

ror over all self-financing L2-strategies. This value is equal to the expectation of the

payoff under P, which minimizes the P-variance of the density -jp (or, equivalentiy,

fq(Q\P)) over all signed local martingale measures g for ML. If P is a probability
measure equivalent to P, then it coincides with the fq-minimal martingale measure

Qq which we have studied in the previous sections. In a Levy setting, P is (under

some mild additional assumptions) equal to the minimal signed martingale measure

P which occurs in the local risk minimizing hedging approach. Since there is an

explicit formula for the density of P, it is then very easy to show that P = P pre¬

serves the Levy property of L. Thus in the special case when Qq is equal to P, i.e.,

if the latter is an equivalent probability measure, one can show almost directly that
H_ A,

Qq __

P — p preserves the Levy property. We explain this in more detail in this

section.

Let L be a P-Lévy process with Levy characteristics (b, c, K), F = FL and

M g Rdxd a fixed matrix such that ML is a special semimartingale. By Corollary
II.2.38 and Proposition II.2.29 of JS we have

ML, = (MLct + Mx * (pL - vp)t\ + (Mbt + (Mx - h(Mx)) * vp)

= h/lLct + Mx * (pL - vp)t) + (m_ + f (Mx- h(Mx)) K(dx)\t

=: Mt + yt =: Mt + At.

Let the local martingale M be locally square integrable (and thus square integrable)
with respect to P. Then we have

(M)t = McM*t + (Mjix*M*) * vp

= MU+ f xx* K(dx)\M*t

=: at.

We assume in addition that ML satisfies the structure condition (SC), i.e., that there

exists a ^-dimensional predictable process X such that

A= f d(M)X and KT := f i* d(M)X < oo ; (4.5.1)

see Definition 1.1 in [CS96] and Subsection 12.3 in [DS06] for a related discussion.
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A

Since At — yt and (Af), = at, (4.5.1) is satisfied if and only if À satisfies

A

y = aX,

i.e., if y G range(o-). In particular, we then can and do choose X constant. We can

now define

N :=- f X*dM.

If Z := S(N) is a P-martingale, then
~j

:= Zt defines a signed measure called the

minimal signed martingale measure for ML. By Proposition 2 of [Sch95], it is a local

martingale measure for ML in the sense that ZML is a local P-martingale. Note that

if Z > 0 (i.e., if -k*AM > -1), then Z — 8(N) is a local martingale and as in the

proof of Proposition 4.3.9 an application of Theorem II.5 of [LM78] yields that it is

automatically a P-martingale. In particular, it is then in Me(ML).

Under the above assumptions, the mean-variance tradeoffprocess

Kt:= f k*dAs = lfX*dM) =X*ait

is deterministic. This implies by Theorem 8 of [Sch95] that P is equal to the variance-

optimal signed martingale measure P. If we denote the density of P by Zt, then P

is defined by the property that

E[fq(ZT)]<E[fq(ZT)]

for all P-martingales Z with Zq = I such that ZML is a local P-martingale; the cor¬

responding measures g with ^ = Zt are called signed local martingale measures

for ML. Hence, if Z = Z > 0 so that P G Me(ML), then P coincides with the

/^-minimal martingale measure Qq.
Since we have an explicit formula for P, it is very easy to check that it preserves

the Levy property of L. Indeed, by Corollary 4.3.7 we only need to identify the

Girsanov parameters of P and show that they are time-independent and deterministic.

But

N = -X*M = ~X*MLC - (k*Mx) * (pl - vp)
A

so that by Proposition 4.3.11 the Girsanov parameters of P are

ß := -M*X and Y(x) - ~X*Mx + 1

which are obviously time-independent and deterministic.

In conclusion, if ML is sufficiently integrable and y g range(cr), then P = P,

and if this is an equivalent probability measure, then Qq = P, i.e., the /^-minimal

martingale measure is just the minimal martingale measure and preserves the Levy

property of L.
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Chapter 5

Appendix

In Section 5.1 we collect a number of auxiliary results for Chapter 4, and in Section

5.2 we give the proofs omitted from the main body of Chapter 4.

5.1 Auxiliary results

Lemma 5.1.1. Let t < T, k : R —» RU {+00} a convexfunction and Y a random

variable such that E[\k(Y)\] < 00.

a) IfE[\Y\] < 00 then

k(E[Y\Ft])<E[k(Y)\Ft]. (5.1.1)

b)Ifk is strictly convex on dom(k) := {x e R\ k(x) < oo}, L[|y|] < 00 and

t = 0, then equality holds in (5.1.1) ifand only ifY = E[Y~\ P-a.s.

c) If Y is boundedfrom below, lmv^oo k(x) = +00 and if there exists an affine

function l(x) :— mx + b with b G R and m > 0 such that k(x) > t(x) on R,

thenE[\Y\] < 00.

Proof Part a) is just the conditional Jensen inequahty and part b) can be shown like

Lemma C.6 in [Esc04]. For c), note that since Y is bounded from below, E[Y] is well

defined (possibly +00) and it suffices to show that E[Y] < 00. Suppose E[Y] = 00.

Then

00 = I (E\Y\) = E[l(Y)] < E[k(Y)] < 00

which is a contradiction. Thus E[Y] < 00.

167
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Lemma 5.1.2. Thefollowing functions are all strictly convex on (0, oo).'

fl(z):=-logz and g£(y) :- -logy + y - 1,

fp(z):=z~s and gp(y) := y~s - 1 + 8(y - 1) for_G(0,oo),

fq(z):=z2 and gq(y) := (y - l)2.

In addition, each g G {g£, gp, gq) is nonnegative and attains its unique minimum in

y = 1 where g(y) = 0.

Proof. Strict convexity is obvious. Hence it suffices to show that each g g {g£, gp, gq}
has its derivative zero in y = 1 where g (I) =0. So we compute

d
l<^-

l
l1 d-~PM

= —+8 and ^gq(y) = 2(y-\).
dy y dj

=

'

^- dy

D

The following result is an immediate consequence of Lemmas 5.1.1 and 5.1.2.

Corollary 5.1.3. Let f g {f£, fp,fq} and let Z be a strictly positive martingale. If

L[/(Zr)] < oo, then f(Z) is a submartingale.

Proof. For fp and fq this is obvious, since they are bounded from below. For f£
denote by l(x) :— mx + b some linear function with m < 0 and f£(x) >i(x) for all

x > 0. Similarly to Lemma 5.1.1 c) one can then prove that
_ [/^(Z_-)] > —oo.

Lemma 5.1.4. Let f G {f£, fp,fq} and let £> be a set of strictly positive density

defines anprocesses such that for all t < T and Z{ ,Z2 G £>, also Z_ \— Z]t AT

Af v2

element of £>. IfZ° G £> satisfies E[f(ZT)] < E[f(ZT)]for all Z G <£>, then also

f
_?

Ft < E '(¥ Ft for all Z G £> and for each / G [0, T].

Remark 5.1.5. This pasting property is in particular satisfied for the set of equivalent
local martingale measures for any semimartingale; see Proposition 5 in [Del06] and

note that we do not require there that the semimartingale is locally bounded. O
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ProofofLemma 5.1.4. For / &{fp, fq}, this is Proposition 4.1 in [KS021, and for

fl the result can be shown analogously. Indeed, suppose there exists Z1 e JD such

that E[f£(ZT/Zj)\Ft] < E[f£(ZT/Z°)\Ft] and such that "<" holds with positive

probability. Define Z. - Z°At^f- g £>. Then

I — log-Zrl - log Zr° + E

-logZ° + E -log
_L rT'

Z°

-log

Ft

__ rp

Ft
Z1

= L[-logZ?],

which contradicts the optimality of Z° at time t = 0. D

Lemma 5.1.6. Pbr g g {g^, g^} we have

(l — ^/y) < const. g(y) for all y > 0.

Proof. For gp(y) = y
s
— 1 + 5(y — 1) we can take const. = |. In fact, define for

y > 0 the function kP(y) :=
SfSÛ

- (1 - v^)2. Since faP(y) = 7^
+ ^<0

for 0 < y < 1 and j^kp(y) > Qfor y > l,kp attains its unique minimum in y
— 1.

Since A^O) = 0, this proves the claim. Analogously, for g£ we can take const. = 1.

Indeed, let kl(y) := gl(y) - (1 - ^y)2 for y > 0. Then |^(y) = -) + ^ and

the same arguments hold true.

Lemma 5.1.7. Let g G {g£,gp,gq} and fix y G (1, oo). There exists a constant

C — C(y) > 0 such thatfor all c > C

(y-î)2<cg(y) for all y G (0, y].

Proof. For gq this is trivial. We first show that for gl we can take C — Cl := 2y2. To

see this, let ke(y) := cge(y) - (y - l)2 with c > C£. Then ^k£(y) = c (l - j) -

2(y - 1) and for 0 < y < y we have f^k£(y) = -^-2>^f-2>0. Thus &£

is nonnegative on (0, y] since it is a convex function there with unique minimum in

y = 1 where Ä:£(l) = 0. Analogously, we can show that for gp(y) = y~s — l+5(y — 1)

we can take C = Cp := j^y8*2. In fact, let c > Cp and jfc^(y) := cgp(y) -

(y - I)2. Then j^kp(y) = cS (l - -^\ - 2(y - 1) and for 0 < y < y we have

A^kp(y) = C-4IJ-- — 2 > 2^pj - 2 > 0. Again, the unique minimum is in y = 1

where kp(\) = 0. This finishes the proof. Ü
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Lemma 5.1.8. Let g G {g£, gp, gq}. There exists C > 0 such thatfor alle > C

\y-l\b<c (g(y) + b2\ for all y > 0 and all b G [0, 1].

Proof. By Lemma 5.1.2, there exists a unique y > 1 with g(y) = 1. By C] = Ci(y)
denote the corresponding constant from Lemma 5.1.7. We claim that we can then take

C = C£ := max UVC_, =îj, Çl forg1, C = Cp := max ÜVCi", }) for gp and

C = Cq := max
± VcT, 1} for gq. To see this, fix y > 0, c > C and define

#c'^) := c(g(y) + Z>2) - \y - l\b = cb2 - \y - l\b + cg(y)

for b e R. We claim that qc'y(b) considered as quadratic function of b is nonnegative
on [0, 1]. Because c > 0, this obviously holds true if we can show that either qc,y has

at most one zero, or all zeros occur for b > 1. The latter holds true if and only if

|y-l|
-J(y-i)2-4c2g(y)

i/ i vu ) *^i > l, (5.1.2)
2c

and the first if the expression under the square root is less or equal to zero. Thus we

may assume that

(y-l)2-4c2g(y)>0 (5.1.3)

and show that (5.1.2) then holds. However, since c > \*JC~\, (5.1.3) and g(y) > 0

imply that (y — l)2 > C\g(y), so that by the definition of C\ and of y we have

y > y > 1 and g(y) > 1. We deduce that (y — l)2 > 4c2g(y) > 4c2 and thus that

\y — 11 > 2c, i.e., that |y — 11 — 2c > 0. As a consequence and since |y — 11 = y
— 1,

we have

(5.1.2) ^ (y-l)-2c> yj(y - l)2 - 4c2g(y))

^ y-l<c(g(y) + l). (5.1.4)

In order to prove that the last inequality holds, we consider each g G {g£, gp, gq]

separately. For g£(x) = — logx + x — 1 and jc > 0 we define

ke(x):=c(ge(x) + \)-(x-l).

Since c > =^r the function k£ is increasing on [y, oo) because there
y

4~k£(x) = c(\--)-l> c^__i - 1 > 0.
dx \ xj y

Thus (5.1.4) holds if k£(y) > 0. However the definition of y imphes that we have

k£(y) = c(\ + 1) — y + 1 and this is non-negative since c >
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For gP(y) = y~s - 1 + S(y - 1) we define kp(y) := c(gp(y) + 1) - (y - 1).

Then kp(y) > 0 iff -^ > (y - 1)(1 - c<5) and the latter holds true since the RHS is

non-positive because y > y > 1 and c > j.
It remains to consider gq (y) = (y — l)2 for which we have y = 2. Now y > y

— 2

implies that (y - l)2 > y - 1 and thus c(g?(y) +1) > cg9(y) = c(y - l)2 > c(y - 1)

and hence (5.1.4) holds since c > 1.

D

Lemma 5.1.9. For g e {g£, gp,gq) there exists C > 0 such that

(y - l)2 A |y - 1| < Cg(y) for all y > 0.

Proof For g = gq this is trivial and it suffices to consider g g {g^, gp}. Lemma 5.1.7

with y = 2 implies the claim for 0 < y < 2. To see it also for y > 2, not that there

(y - l)2 > |y - 1| = y - 1, and define k(y) := Cg(y) - (y - 1). Forfc(y) = kl(y)
note that the tangent of logy in y = 2 yields with b := 1 — log2 > 0 the estimate

-logy > -%+b. Thusk£(y) > y (f - l) + C(_»-l) + l and if in addition C > 2 so

that(f -1) > Owe have fory > 2thatk£(y) > 2 (f -l) + C(fc-l) + l = C_i-l.

The last expression is clearly nonnegative if C is big enough. For k(y) = kp(y) note

that y > 2 implies that ys+1 > 2 so that j^kp(y) - C8 (\ - -^\ - 1 > C8\ - 1.

Thus for C > |, ^ is increasing on [2, oo). If in addition C > ^), then ^(2) > 0.

This finishes the proof. D

For the next result, we recall that h : Rd —> Rd is an arbitrary but fixed truncation

function, i.e., a bounded function with compact support such that h(x) = x in a

neighbourhood of 0. The canonical choice is h(x) := xl{||X||<i}-

Lemma 5.1.10. Let g G {g£, gp,gq], Ma dxd-matrix, Y > 0 a measurablefunction

on Rd, K a a-finite measure on Rd and 0 < e < 1. Then the following estimates

hold:

a)fntd MwxW^Yix) K(dx) < const./jj. (g(Y(x)) + (1 A ||x||2)) K(dx).

b)jRd \\Mh(x)-h(Mx)\\Y(x)K(dx) < const. J^. ^(y(x))+(lA||x||2)) K(dx).

c)fmd \\(Y(x) - \)h(x)\\ K(dx) < const. jRd (g(Y(x)) + (1 a ||x||2)) K(dx).
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d) f \\Mx - h(Mx)\\Y(x) K(dx)

< / ||M(jcy(jc) - h(x)) || K(dx)+const. fmd (g(Y(x)) + (l a||x||2)) K(dx),

J\\M(xY(x)-h(x))\\K(dx)
< f \\Mx - h(Mx)\\Y(x) K(dx) + const. /Ä_ (g(r(*)) + (1 A ||x||2)) ÜT(d;c).

Proof. a) We first show that from Lemma 5.1.8 one can deduce that there exists

a constant C > 0 such that for all y > 0 we have y < C(g(y) + 1). In fact,

Lemma 5.1.8 with b = 1 yields the existence of some constant c > 1 such that

y-l< Lv-l|<c(g(y) + l)

for all y > 0. Since g(y) > 0, we then get for C := c — 1 that

y<c(g(y) + l) + \<C(g(y) + l)

as required. From this and since g is nonnegative, we deduce that

h\\x\\>e}Y(x) < C (g(Y(x)) + 1{||„||>_}) •

Since l{||„-||>e} < \ (l A IWI2), it suffices to take const. = %

b) Since by Lemma C.3 of [Esc04] there exists 0 < s < 1 such that

\\Mh(x) - h(Mx)\\ < const.l{||X||>?},

this follows immediately from a).

c) Note that \\h(x)\\ < const. (||*||l{||„n<i} + l{||x||>i})- Thus

f \\(Y(x)-l)h(x)\\K(dx)

< const. j d
(\Y(x) - 1|||jc||1{||„h<i, + \Y(x) - l|l{||„||>i}) K(dx)

and the result now follows from Lemma 5.1.8 applied to each summand sepa¬

rately with b = ||x||l{||„n<i} respectively b — l{||_n>i}-

d) This follows from b) and c) as in the proof of Lemma 9 in ES.

D
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5.2 Omitted proofs

ProofofProposition 4.3.9. The integrabihty of Y — 1 with respect to pL — vp follows

for gq from Theorem II. 1.33 a) in JS and for gl and gp from Lemma 5.1.6 together
with Theorem II. 1.33 d) in JS. Thus by (4.3.4) Af is a local martingale and in addition

quasi-left-continuous, so that by Theorem II.5 in [LM78] 8(N) is a martingale if

the predictable compensator of (Nc ), +y^ ((ANS)2 a \AN\s j is bounded; (5.2.1)

note that for Theorem II.5 of [LM78] it suffices if A7 is a local martingale. In addition,

8(N) is strictly positive since Y > 0 implies that AN > -1 so that it only remains to

show (5.2.1). For (Nc) = f ßfcßt dt which is already the predictable compensator of

itself, the claim is trivial by (4.3.4). The jump term can be rewritten as

£_ ((AA^)2 A |AAm) = ((Y - l)2 A |F - 1|) * p\. (5.2.2)

Since N is in particular a special semimartingale, (5.2.2) defines by Propositions
II. 1.28 and II.2.29 a) of JS a locally integrable process. Also by Proposition II. 1.28,

the latter has (Y — l)2 A \Y — 1| * vp as predictable P-compensator. This compen¬

sator is then bounded thanks to Lemma 5.1.9 and assumption (4.3.3). This finishes the

proof. D

ProofofProposition 4.4.1. Itô's formula applied to Z = Ze = 8(N) yields

- log Zf = -Nt + ^{Nc)t - J2 <loS^ + AN^ ~ AN^ =: ~Nt + \<N^ - Dt-

Recall from Proposition 4.3.3 the expression for N and note that (Nc) — f ßfcßt dt

and N are locally P-integrable and, since Q G Qf
,
that so is log Z. This implies that

also

~D - (- log Y + Y - 1) * fiL = g1 (Y) * pL

is locally P-integrable. Since g£ is nonnegative, Proposition II. 1.28 of JS then implies
that the predictable compensator of —D is g£(Y) * vp. Moreover,

-(Y - 1) * (pL - vp) + (-logy + Y - 1) * (pL - vp) = -logF * (pL - vp)

since both sides are local martingales having the same jumps; see Definition II. 1.27 in

JS. This and the formula for N from Proposition 4.3.3 yield the canonical decompo-
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sition

-logZ = -N + (-logY + Y ~l)*(pL-vp) + -{Nc)

+ (-iogr + y- i)*vF

__ -Nc _ log(y) * (fML -vp)+X- (Nc) + gl(Y) * vp

-
M£ + Ä£ + Äl.

Since A£ and A1 are increasing and nonnegative, they are both P-integrable if and

only if A£ — Ä£ + Äl is. But Q G Qf so that — log Z is a P-submartingale and of

class (D) since

—ZT < — log ZT < —is [log Zt\Fz] for all stopping times r < 7\

Theorem III.7 of [Pro04] then implies that the process M£ of the unique Doob-Meyer

decomposition above is a martingale. Then A1 must be P-integrable since log Z is,

(4.4.1) holds trivially true, and the proof is completed. D

ProofofPropositions 4.4.2 and 4.4.3. We only prove Proposition 4.4.2. Setting 8 —

—2 and changing the notation from p to q then gives the proof for Proposition 4.4.3.

An apphcation of Itô's formula to Z = ZÖ = 8(N) yields

zr! = £z?(-tdN, + s-^<im.)
+£ ZJ_ ((ANS + iys + S(ANS + 1) - 1 - S) .

Recall from Proposition 4.3.3 the expression for N and note that (Nc) = f ßfcßt dt

and N are locally P-integrable and, since Q G QfP, so is Z~s. Thus we have local

P-integrability also for £_<, Z~l ((ANS + l)"5 + S(ANS + 1) - 1 - 8) and for

J]((AAr_ + l)-5 + <5(AA^ + l)-l-5) = (F-5-l + .(F-l))*/xL

= ^(F)*M£.

Since gp is nonnegative, Proposition II. 1.28 of JS then implies that the predictable

compensator of gp(Y) * pL is gp(Y) * vp. Moreover,

(y-5 _ 1 +5(F - l))*(/xL-vp)-5(F-l)*(/xL -vp) = (Y~s - l)*(/xL~vF)
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since both sides are local martingales having the same jumps; see Definition II. 1.27 in

JS. From this and the formula for N from Proposition 4.3.3 we obtain the canonical

decomposition

dZ~h = ZZS(-8dNc + d((Y-s-l)*(pL-vp))

+____±i_(/(ArC) + d ((y-a _ i + s (y - 1)) * v') )
= ZZ5 (dMp + dAp\

= d8(Mp+Ap\

= d(8(MP)8(ÂP)\, (5.2.3)

where the last equality holds by Yor's formula since Ap is of finite variation and

continuous so that [Mp, Âp] = 0. Moreover, Q G QfP implies that Z"s is a positive

submartingale and thus of class (D) since 0 < Z~s < E Z~s FT for all stopping

times x < T. Since AP > 0 we have 8(AP) = eAV > 1 so that (5.2.3) implies
that 8(MP) is a local P-martingale of class (D) and thus a martingale; this uses that

8(MP) is positive since AMP —
Y~s — 1 > —1 because Y > 0. Moreover, (5.2.3)

then implies the Rp-integrabihty of 8(AP) and the strict positivity of 8(MP). This

completes the proof. D

Proofof Theorem 4.4.6. Note that ß and Y are well-defined thanks to Lemma 4.4.5

b) and d) and since Y is positive. Moreover, since Y is P <8> S^-measurable, Y is

a measurable function on Rd and thus can be considered asaP® 33d-measurable

function on the product space _ x [0, T] x Rd. By Jensen's inequality (with Lemma

5.1.1 c)), Fubini's theorem and Lemma 4.4.5,

f g(Y(x))K(dx) < f ER\^ f g(Ys(x))ds] K(dx)
Jmd Jmd L1 Jo

= jER[g(Y)*vp~\<oo. (5.2.4)

JhusJ^ropositions 4.3.9 and 4.3.11 yield the existence of Q = gv?T) % p with

Q G Q by Corollary 4.3.7. We prove Theorem 4.4.6 only for f = fp and explain the

differences occurring for / g {f£, fq} briefly at the end of the proof. Since Q e Qf ,

Proposition 4.4.2 yields

fp(Q\P) - ERP |V"] (5.2.5)
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where ^- = 8(MP). Both Ap and Rp depend on Q. In order to apply Proposition

4.4.2 also to Q, we show below that Q g QfP. Then we get

fp(Q\P) = ERm[eÂr^],
where we emphasize the dependence on Q by adding it in brackets. Note that

Âp(Q) = S-^^-(Nc(Q)) + gP(Y) * vp (5.2.6)

is deterministic since (Nc(Q))t = ß cß and both ß and Y are deterministic; hence

fP(Q\P) =_e^r(Ö). But by (5.2.5) and Jensen's inequality fp(Q\P) > cErP KJ,
andsofp(Q\P)<fP(Q\P)if

APT(Q) < ERP [if]
This can be done as in ES, by showing the inequality for both summands of Ap and

Aj(Q) separately, using Jensen's inequality. Moreover, since all above inequalities

go back to Jensen's inequality, we have fp(Q\P) = / (ß | P) iff all involved variables

are deterministic and time-independent, i.e., iff ß and Y are; see Lemma 5.1.1 b).
It remains to show that Q G QfP, i.e., that fp(Q\P) < oo. This can be shown by

an apphcation of Itô's formula as in the proof of Proposition 4.4.2 and has not been

considered in ES. Similarly as for Proposition 4.4.2, one then obtains the canonical

decomposition and in particular that fp(M) ~ eA?(Ö)r 8(Mp(Q))t. The only

difference in the proof is the way one obtains that g(Y) * pL is locally P-integrable;
this cannot be done as before since we do not know if Q g QfP. However, since g is

nonnegative we obtain immediately from (5.2.4) that g(Y) * vp is locally P-integrable
and this is by Proposition II. 1.28 of JS equivalent to the local P-integrabihty of g(Y) *

pL. Thus it only remains to show that fp(Q|P) = E ïeÂT(Q)T 8(MP(Q))T] is finite.

This is true since AMP(Q) > — 1 imphes that 8 (Mp(Q)) is a P-supermartingale, and

since AP(Q) is deterministic and finite. This completes the proof for / = fp.
For / = fq the proof is exactly the same, except that instead of Proposition 4.4.2

one applies Proposition 4.4.3. For / — fl one takes Proposition 4.4.1. There, the

canonical decomposition is of a simpler form so that no stochastic exponentials occur.

—— ft
This simplifies the arguments slightly. In particular, for the proof that Q e QJ it then

suffices to note that a local P-martingale which is in addition an P-Lévy process is a

(true) P-martingale; see Theorem 11.46 of [HWY92J. Ü

ProofofProposition 4.4.8. In Theorem 4.4.6 we have aheady proved that Q = Q^ß,Y)
is in Qf n Q. In order to show that Q g Me(ML), we have to show that it satisfies
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(4.3.6) and (4.3.7). We exploit that since Q G Qf, condition (4.3.6) for Q is by
Lemmatas 4.3.14 and 4.4.5 c) equivalent to fmj ||M (xY(x) — h(x)) || K(dx) < oo.

But the latter now follows from the definition of Y, Fubini's theorem and the fact that

Q g Q{nv since

Jmd
\M(xY(x)-h(x))\\ K(dx)

< f ER\^ f \\M(xYs(x)-h(x))\\ds K(dx)
Jmd L1 Jo

= ~ER[\\M(xY-h)\\*vp~\<oo.
In particular, this allows us to apply Fubini's theorem for M(xYs(x) — h(x)) in order

to obtain that the martingale condition (4.3.7) is satisfied by ß, Y. Indeed,

M ( b + cß + j (xY(x) - h(x)) K(dx)\

= jER\i M\b + cßs+ f (xYs(x) - h(x)) K(dx)J ds =0,

where we have also used Lemma 4.4.5 b). D

ProofofProposition 4.4.9. Let Q G ^(ML) n Qf n Q so that Q G „/, as pointed
out before Proposition 4.4.8. Denote by ß, Y the Girsanov parameters of Q and apply

Proposition 4.3.3 to write the density process as Z^ __ 8(N) with

N = jß*dLcs + (Y-\)*QiL-vp).

Analogous quantities with a superscript~refer to Q. Since ML is a local g-martingale,

||Mx - h(Mx)\\ * Vj,Q is finite by Proposition 4.3.13 and so is ||M(jcF - A)|| * vÇ
by Lemma 4.3.14 and Lemma 4.4.5 c) since Q g Qf. Hence the continuous process

||M(xF — h) || * vp is even locally _-integrable for the corresponding R = R(f; ß, Y)
with localizing sequence (tw)« __v- As in Proposition 18 in ES, for n e N we construct

Qn which coincides with Q until rn and with Q afterwards by setting

ß$ := ß^ho,Tn\\ + ßhzn,n,

Ysn(x) := Ys(x)lio,rA + Y(x)lnTn,n,

Nn := j(ßnsT dLcs + (Yn - 1) * (pL - vp) and Zn := 8(Nn). We hence obtain that
Z"

-

Zip,*]+

|
process of some Qn

zZn
—

Z1[o,t„]]+

^Sl^1_t„,7']1 is a strictly positive martingale and thus the density



178 Chapter 5. Appendix

Now we show that Qn G Me(ML) n q{m. The definition of Yn, Proposition 4.3.13

and Q, Q g Qf yield that P-a.s.

\\Mx - h(Mx)\\ * vf = \\Mx - h(Mx)\\Yn * vf

< \\Mx - h(Mx)\\ * v® + ||Mx - h(Mx)\\ * v^ < oo.

Since ßn and Yn satisfy the martingale condition (4.3.7) by construction, we thus by

Proposition 4.3.13 we have Qn G Me(ML). Let R = R(f; ß, Y), R = /_(/; ß, Y)

and Rn = R(f; ßn, Yn). Then Rn = R on FTn and Y is deterministic so that

ERn \M(xYn -h)\ *vf]
< £Ä [||M(xF - Ä)|| * v£] + T f ||M(xF - h)\\ K(dx)

oo.

Next we use that Q and Q are in 0^ to deduce from Corollary 5.1.3 that Qn e Qf ;

this has not been considered in ES. For f = f£ this follows immediately from the

definition of Qn and since \og(ab) = log a + log_». For / G {fp, fq}, note that TV is

a (P, FL)-Lévy process since ß, Y are deterministic and time-independent. Therefore

Zt/ZTh = fT d8(N)s is independent of ZZn and of Zf~. Thus

< ooE [f (Zt.)] L [/ (Zr/Z*)] = £[/(Zr)l

and Q, Q g _2^ imply that

0 < /(ßn|P) - E[f(ZnT)] = E[f (ZTn)] is [/ (Zr/Zt.)] < oo.

/
inf

Hence Qn Qf and therefore Qn e Q

It remains to show that lirn^oo f(Qn\P) = f(Q\P). First let / g {fP, fq}.
Then by applying Proposition 4.4.2 (for fp) respectively 4.4.3 (for fq) to Qn and Q,

we have /(ßw|P) = ERn[exp(A'T)] and that Ä = A(Q) is deterministic and given by

Af = A\t because Q g Q has deterministic time-independent Girsanov parameters.
A

A A _

Hence A^ = AT/l + A\ (T — xn) is FTn-measurable and therefore

ERn[exp(ÂnT)] = ER[exp(AnT)] = ER [exp (_T_) exp ((r - t„)Äi)] .

A

In addition, exp (Âj) < exp (At) exp (TA\) where the first factor is i?-integrable

since Q e Qf and the second is deterministic. Then the assertion follows by domi¬

nated convergence. For / = f£ one uses formula (4.4.1) for the /^-divergence and

proves analogously that E\AnT' ] converges to is [A^]. This ends the proof. D
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ProofofProposition 4.4.10. Since ß and ß have time-independent and determinis¬

tic Girsanov parameters and since for any sequence (an) we have lim„^oo ean = ea if

and only if lim,,-»., an = a, the formulae (4.4.1) (for f), (4.4.2) (for p) and (4.4.3)

(for fq) imply that it suffices to show that

lim (~ßn)*cßn = fcß,
n—too

wüm f
g (f"(x)) K(dx) = j g (Y(x)) K(dx).

This can be shown with the same arguments as in the proof of Proposition 19 in ES

with / there replaced by g and by plugging in our definitions for ß , ß, Y and Y.

This changes the Q- and Qn-expectations there to expectations under R = R(f; ß, Y)

and Rn = R(f; ßn, Yn). D
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