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Abstract

In this thesis we consider a new approach to the iterative solution of linear systems

AX = B

with a nonhermitian, nonsingular coefficient matrix A ∈ C
N×N and multiple right-hand sides stored

in B ∈ C
N×s that are all known in advance. We intend to generalize methods based on the unsym-

metric Lanczos process, such as QMR and BiCG, to the block case, thereby including look-ahead
and deflation (i.e. the elimination of (nearly) linearly dependent right and left Lanczos vectors). We
propose to make use of block operations whenever possible, in contrast to the algorithm developed
by Aliaga, Boley, Freund and Hernandez [1], where a vectorwise construction of the basis vectors for
the block Krylov spaces is used. We point out, however, that with the algorithm from [1], the matrix
vector products could still be computed blockwise, but other operations like orthogonalizations of
new vectors have to be done vectorwise. In our algorithm, all operations are done blockwise, and this
leads to the additional possibility of permuting columns to avoid look-ahead in certain situations.
Additionally, a completely blockwise approach offers more potential for program optimization.

From the above it follows that the first step is to develop a suitable block version of the unsymmet-
ric Lanczos process. This is achieved by decoupling the sizes of the right and left clusters (defined by
the diagonal blocks of the block diagonal inner product matrix of the left and right Lanczos vectors)
from the sizes of the right and left blocks. Consequently, the cluster size is not related to the sizes of
the blocks, and we may choose it according to aspects like performance and numerical stability. We
will formulate our block Lanczos algorithm in such a way that the look-ahead stratagy (which also
determines the cluster size) can be varied by changing just a few statements of the algorithm so that
different variants can be tried out easily. The result of the first step are two algorithms which are
generalizations of the look-ahead Lanczos biorthogonalization method (LABiO) and the look-ahead
Lanczos biorthogonalization and biconjugation method (LABiOC) to the block case.

The second step is then to construct iterative solvers on the basis of our block Lanczos process.
This will be done for QMR and BiCG in the second part of this work. In the case of QMR, only
the variant based on our block version of LABiO will be developed, and for BiCG, we will consider
block variants of BiORes and BiOMin. At the end of this part, numerical experiments are carried
out to test the new algorithms.

Zusammenfassung

In dieser Arbeit betrachten wir einen neuen Weg, um lineare Gleichungssysteme

AX = B

mit nichthermitescher, regulärer Koeffizientenmatrix A ∈ C
N×N und mehreren rechten Seiten in

B ∈ C
N×s iterativ zu lösen, wobei alle rechten Seiten schon im voraus bekannt sein müssen. Wir

wollen Methoden, die auf dem unsymmetrischen Lanczos-Prozess aufbauen, wie z. B. QMR und
BiCG, auf den Blockfall verallgemeinern und dabei auch Look-ahead und Deflation (also die Eli-
mination von (beinahe) linear abhängigen rechten und linken Lanczos-Vektoren) berücksichtigen.
Wir schlagen vor, dass Blockoperationen verwendet werden, wann immer dies möglich ist, im Ge-
gensatz zum Algorithmus von Aliaga, Boley, Freund und Hernandez [1], wo die Basisvektoren für
die Block-Krylovräume einzeln erzeugt werden. Zwar könnten beim Algorithmus aus [1] die Matrix-
Vektor-Produkte ebenfalls blockweise berechnet werden, aber andere Operationen wie die Ortho-
gonalisierung neuer Vektoren müssen für jeden Vektor einzeln durchgeführt werden. Bei unserem
Algorithmus werden alle Operationen blockweise gemacht, und dies führt zur zusätzlichen Möglich-
keit, Spalten zu vertauschen, damit in gewissen Situationen Look-ahead vermieden werden kann.
Weiter bietet der blockweise Zugang mehr Potential, Programme zu optimieren.

Aus dem Obigen folgt, dass der erste Schritt darin besteht, eine geeignete Blockversion des un-
symmetrischen Lanczos-Prozesses zu entwickeln. Dies wird dadurch erreicht, dass die Grösse der
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linken und rechten Cluster (die durch die diagonalen Blöcke der blockdiagonalen Skalarproduktma-
trix der linken und rechten Lanczos-Vektoren definiert ist) entkoppelt wird von den Grössen der
rechten und linken Blöcke. Die Clustergrösse ist daher unabhängig von den Grössen der rechten und
linken Blöcke, und wir können sie gemäss anderen Aspekten wie Geschwindigkeit oder numerischer
Stabilität wählen. Wir werden unseren Block-Lanczos-Prozess so formulieren, dass die Look-ahead-
Strategie (die auch die Grösse der Cluster bestimmt) durch Ändern von wenigen Anweisungen des
Algorithmus variiert werden kann, so dass verschiedene Varianten leicht ausprobiert werden können.
Das Resultat des ersten Schrittes sind zwei Algorithmen, die die Biorthogonalisationsmethode von
Lanczos mit Look-ahead (LABiO) und die Biorthogonalisations- und Bikonjugationsmethode von
Lanczos mit Look-ahead (LABiOC) auf den Blockfall verallgemeinern.

Im zweiten Schritt werden dann iterative Löser konstruiert, die auf unserem Block-Lanczos-Prozess
aufbauen. Dies wird für QMR und BiCG im zweiten Teil der Arbeit durchgeführt. Im Fall von QMR
wird nur eine Version entwickelt, die auf unserer Blockversion von LABiO aufbaut, und bei BiCG
werden wir Blockvarianten von BiORes und BiOMin betrachten. Am Schluss dieses Teils werden
numerische Experimente durchgeführt, um die neuen Algorithmen zu testen.
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thematik der ETH Zürich ausgeführt. Ihm möchte ich für die angenehme Zusammenarbeit ebenso
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0 Introduction

Assume that we are given a set of linear equations

AX = B

with a nonhermitian, nonsingular coefficient matrix A ∈ C
N×N and multiple right-hand sides stored

in B ∈ C
N×s that are all known in advance. If the matrix A is large and sparse, we may choose

to use an iterative method to solve these equations. In this work, we try to combine several known
ideas in a new way in order to obtain fast and reliable block iterative methods. To describe the
ideas behind our work, we take a short look at the evolution of block Lanczos algorithms, thereby
concentrating on points related to our task.

Block Lanczos algorithms were first considered in the 1970s for the computation of eigenvalues of
Hermitian matrices (see [1, Section 1.3] and the references given there). In 1979 Ruhe [18] published
his band Lanczos algorithm which includes a vectorwise computation of the Lanczos vectors as well
as a proper deflation checking procedure. In the nonhermitian case there is not only the need for
deflation but also the need to treat (near) breakdowns. Also, deflation may occur independently
of each other in the left and right block Krylov spaces. Therefore it is not surprising that the
development of algorithms which address these problems took much more time. The ABLE (adaptive
block Lanczos method for nonhermitian eigenvalues) method by Bai, Day and Ye [2] is an important
contribution in this context. In this algorithm, the blocksize is adapted to be at least equal to the
order of multiple or clustered eigenvalues and it is increased if a (near) breakdown occurs. The
ABLE method uses block operations throughout and therefore achieves one of our most important
goals. On the other hand, its handling of deflation and breakdowns requires that all the Lanczos
vectors be stored and is therefore not suited for the solution of linear equations.

The first block method for solving linear equations with nonhermitian matrix seems to be O’Leary’s
block biconjugate gradients algorithm [17] where deflations lead to a restart and breakdowns were
not treated. A major progress was achieved by Aliaga, Boley, Freund and Hernandez by developing a
block version of the unsymmetric Lanczos process [1] which includes proper deflation and look-ahead
procedures. Additionally, the number of right and left starting vectors does not have to be the same,
and there is no need to store all the Lanczos vectors. On the basis of this algorithm, Freund and
Malhotra subsequently constructed a block QMR method [8]. The drawback of the algorithm from
[1], however, is that it uses a vectorwise computation of the bases of the block Krylov spaces (as in
Ruhe’s algorithm), and although the matrix vector products could still be computed blockwise, other
operations like orthogonalizations of new vectors have to be done vectorwise. This becomes even
more pronounced in the block QMR method from [8] where new solutions are obtained after every
extension of the block Krylov spaces so that the QR factorization has to be updated vectorwise.
Consequently, these algorithms lead to worse performance compared with a completely blockwise
algorithm.

So the question arises whether it is possible to develop a completely blockwise algorithm which
is still reliable, i.e. handles deflation and look-ahead in a satisfactory way and does not involve long
recursions. It is the goal of this thesis to give a positive answer to this question. To this end, we
first develop a suitable block version of the unsymmetric Lanczos process. Instead of aiming at
vectorwise biorthogonality as in [1], we opt for blockwise biorthogonality so that the inner product
matrix will usually be a blockdiagonal matrix even if no look-ahead occurs. The sizes of the right
and left clusters are determined by the sizes of the blocks in the inner product matrix and are not
related in any way to the sizes of the right and left blocks. We are therefore able to formulate
our block Lanczos algorithm in such a way that the cluster size can be chosen according to aspects
like performance and numerical stability. In an implementation, a parameter can be introduced
which controls the way the cluster sizes are determined so that different variants can be tried out
easily. The result of the first part are two algorithms which are generalizations of the look-ahead
Lanczos biorthogonalization method (LABiO) and the look-ahead Lanczos biorthogonalization and
biconjugation method (LABiOC) to the block case.

The second part of this work is devoted to the construction of three Lanczos process based block
Krylov space methods. We first deal with QMR and develop a block variant based on our block
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version of LABiO. Then we consider block BiCG and develop block variants of BlBiORes and
BlBiOMin. The question of how to avoid the pivot breakdown is also addressed. At the end of this
part, some numerical experiments are presented.

The sections of this thesis reflect the scheme outlined above: Section 1 describes those algorithms
which will later be generalized to the block case. We only consider the simplest case of one single
pair of starting vectors and without look-ahead. Section 2 is devoted to the construction of our
block versions of LABiO and LABiOC, and Section 3 to the construction of the three block Krylov
space methods mentioned above.

1 Overview of some Lanczos process based Krylov space methods

In this section, we describe in their simplest form those algorithms which will appear later in this
work, i.e. in the nonblock case and without look-ahead. We closely follow [13], where more details
may be found. The standard inner product on C

N will be denoted by 〈x,y〉 = x?y and the hermitian

conjugate of M ∈ C
n×m will be written as M? = M>. We also introduce the convention that the

statement “line n.i” refers to line i of Algorithm n.

1.1 The BiO algorithm

The Lanczos biorthogonalization (BiO) algorithm [14], often referred to as the unsymmetric or two-
sided Lanczos algorithm, is a process for generating two finite sequences {yn}ν−1

n=0 and {ỹn}ν−1
n=0, whose

length ν depends on A, b, y0, and ỹ0, such that, for m,n = 0, 1, . . . , ν − 1,

yn ∈ Kn+1 := span (y0,Ay0, . . . ,A
ny0),

ỹm ∈ K̃m+1 := span (ỹ0,A
?ỹ0, . . . , (A

?)mỹ0)
(1.1)

and

〈ỹm,yn〉 =

{
0 if m 6= n,
δn 6= 0 if m = n.

(1.2)

Kn and K̃m are Krylov (sub)spaces of A and A?, respectively. The condition (1.2) means that the
sequences are biorthogonal. Their elements yn and ỹm are called right and left Lanczos vectors,
respectively.

The biorthogonal sequences of Lanczos vectors are constructed by a two-sided version of the well-
known Gram–Schmidt process, but the latter is not applied to the bases used in the definition (1.1),
since these are normally close to linearly dependent. Instead, the vectors that are orthogonalized
are of the form Ayn and A?ỹn; i.e. they are created in each step from the most recently constructed
pair by multiplication with A and A?, respectively. It follows that

yn ∈ Kn+1 	Kn , ỹn ∈ K̃n+1 	 K̃n, (1.3)

and thus
Kn+1 = span (y0,y1, . . . ,yn) , K̃n+1 = span (ỹ0, ỹ1, . . . , ỹn) .

The length ν of the sequences is determined by the impossibility of extending them such that the
conditions (1.1) and (1.2) still hold with δn 6= 0.

Algorithm 1 gives a detailed statement of the BiO algorithm. The coefficients αn, α̃n, βn−1, β̃n−1,
γn, γ̃n, and δn+1 are defined uniquely except for the freedom in line 1.16 for choosing two of the
three quantities γn, γ̃n, and δn+1. A popular choice is

γn := ‖ytmp‖ , γ̃n := ‖ỹtmp‖ , δn+1 := δtmp/(γnγ̃n), (1.4)

which leads to normalized Lanczos vectors at the cost of two additional inner products. The recur-
sions for yn+1 and ỹn+1 both have three terms:

yn+1γn = Ayn − ynαn − yn−1βn−1 ,

ỹn+1γ̃n = A?ỹn − ỹnα̃n − ỹn−1β̃n−1 .
(1.5)

2



Algorithm 1 Biorthogonalization (BiO) algorithm

1: Choose y0, ỹ0 ∈ C
N such that δ0 := 〈ỹ0,y0〉 6= 0.

2: y−1 := 0, ỹ−1 := 0, β−1 := 0, β̃−1 := 0
3: for n = 0, 1, . . . do
4: αn := 〈ỹn,Ayn〉/δn
5: α̃n := αn
6: βn−1 := γ̃n−1δn/δn−1 (if n > 0)
7: β̃n−1 := γn−1δn/δn−1 = βn−1γn−1/γ̃n−1 (if n > 0)
8: ytmp := Ayn − ynαn − yn−1βn−1

9: ỹtmp := A?ỹn − ỹnα̃n − ỹn−1β̃n−1

10: δtmp := 〈ỹtmp,ytmp〉
11: if δtmp = 0 then
12: Choose γn 6= 0 and γ̃n 6= 0
13: Set ν := n+ 1, yν := ytmp/γn, ỹν := ỹtmp/γ̃n and δn+1 := 0.
14: stop
15: end if
16: Choose γn 6= 0, γ̃n 6= 0, and δn+1 such that γnγ̃nδn+1 = δtmp.
17: Set yn+1 := ytmp/γn, ỹn+1 := ỹtmp/γ̃n.
18: end for

The BiO algorithm stops in line 1.14 if δtmp = 0. If ytmp = 0 or ỹtmp = 0 or both, then we have a
right, left or full termination, respectively. It may also happen, however, that δtmp = 0 but ytmp 6= 0
and ỹtmp 6= 0; this is referred to as a Lanczos breakdown.

For n ≤ ν, let us introduce the N × n matrices

Yn :=
[
y0 y1 · · · yn−1

]
, Ỹn :=

[
ỹ0 ỹ1 · · · ỹn−1

]
, (1.6)

the diagonal matrices

Dδ;n := diag(δ0, δ1, . . . , δn−1),

and the n× n tridiagonal matrices

Tn :=




Tn

γn−1l
>
n


 =




α0 β0

γ0 α1 β1

γ1 α2
. . .

. . .
. . . βn−2

γn−2 αn−1

γn−1




,

where ln = ( 0, . . . , 0, 1 )> ∈ R
n, and the analogous matrices with tildes. Then we have altogether

AYn = Yn+1Tn , A?Ỹn = Ỹn+1T̃n (n ≤ ν), (1.7)

Ỹ?
nYn = Dδ;n , Ỹ?

nAYn = Dδ;nTn (n ≤ ν),

Dδ;nTn = T̃?
nDδ;n (n ≤ ν).

Another popular algorithm for computing nested bases of Kn for n = 1, 2, . . . is the Arnoldi algorithm.
It differs from the BiO algorithm in that it computes an orthogonal basis for Kn using the modified
Gram-Schmidt procedure. Consequently, it does not need left Krylov spaces and only one matrix
vector product is needed at each step while BiO requires an additional product with A?. On the other
hand, the Arnoldi recurrence for yn generally involves all previous vectors so that the construction
of an orthogonal basis of the Krylov space becomes expensive and memory-intensive. The Arnoldi
process is the basis of the GMRes algorithm.
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1.2 The BiORes form of the BiCG method

Using general principles [11] it is easy to see how the Lanczos BiO algorithm can be applied to the
problem of solving linear systems of equations Ax = b where A ∈ C

N×N is nonsingular.

Here we discuss first an algorithm introduced by Young and Jea [22]. It was originally called
Lanczos/Orthores and renamed BiORes in [12]. It is one of several forms of the biconjugate gradients
(BiCG) method, which is defined by requiring that iterates xn ∈ x0+Kn satisfy the Petrov–Galerkin
condition

〈ỹ, rn〉 = 0 (∀ỹ ∈ K̃n), i.e. K̃n ⊥ rn . (1.8)

The most straightforward way of taking into account the two conditions xn ∈ x0 +Kn and rn ⊥ K̃n

is the following one. Representing xn − x0 in terms of the Lanczos vectors we can write

xn = x0 + Ynkn , rn = r0 −AYnkn , (1.9)

with some coordinate vector kn. Using AYn = Yn+1Tn, see (1.7), and

r0 = y0ρ0 = Yn+1e1ρ0 ,

with e1 :=
[
1 0 0 · · ·

]
∈ R

n+1 and ρ0 := ‖r0‖ (assuming ‖y0‖ = 1 here), we find that

rn = Yn+1 (e1ρ0 −Tnkn) . (1.10)

In view of Ỹ?
nYn+1 =

[
Dδ;n 0

]
, the Petrov–Galerkin condition (1.8), which may be written as

Ỹ?
nrn = 0, finally yields the square tridiagonal linear system

Tnkn = e1ρ0 ,

where now e1 ∈ R
n. By solving it for kn and inserting the solution into (1.9) we could compute xn.

However, this approach is very memory-intensive, as one has to store all right Lanczos vectors for
evaluating xn = x0 + Ynkn. We note that this approach is analogous to the full orthogonalization
method (FOM). Fortunately, there are more efficient versions of the BiCG method that generate not
only the residuals (essentially the right Lanczos vectors) but also the iterates with short recurrences.
One such algorithm is BiORes, see Algorithm 2. Note that this is the so-called consistent version
of BiORes, which means that yn is the nth residual: yn = b−Axn.

Algorithm 2 BiORes form of the BiCG method

Choose an initial approximation x0, set y0 := b−Ax0, and choose ỹ0 such that δ0 := 〈ỹ0,y0〉 6= 0.
Apply Algorithm 1 (BiO) with γn := −αn − βn−1 and some γ̃n 6= 0, so that 1.8–1.17 simplify to:

yn+1 := (Ayn − ynαn − yn−1βn−1)/γn

ỹn+1 := (A?ỹn − ỹnα̃n − ỹn−1β̃n−1)/γ̃n

δn+1 := 〈ỹn+1,yn+1〉

Additionally, compute xn+1 := −(yn + xnαn + xn−1βn−1)/γn.
If γn = 0, the algorithm breaks down (“pivot breakdown”), and we set ν̇ := n. If yn+1 = 0, it
terminates and xn+1 is the solution; if yn+1 6= 0, but δn+1 = 0, the algorithm breaks also down
(“Lanczos breakdown” if ỹn+1 6= 0, “left termination” if ỹn+1 = 0). In these two cases we set
ν̇ := n+ 1.

1.3 The QMR method

The basic version of the QMR (quasi minimal residual) method of Freund and Nachtigal [9] without
look-ahead is obtained as follows: the BiO algorithm with normalized Lanczos vectors (i.e. with
normalization (1.4)) is applied to build up bases of the growing Krylov spaces Kn and K̃n. The right
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initial vector y0 := r0/‖r0‖ is the normalized initial residual, while the left one, ỹ0 can be chosen
arbitrarily. The relations (1.9)–(1.10) remain valid, but since finding the minimum residual becomes
too expensive, the so-called quasi-residual

qn := e1ρ0 −Tnkn , satisfying rn = Yn+1qn , (1.11)

(see (1.10)) is minimized instead. Let Tn = QnR
MR
n be a QR decomposition of Tn. The last row of

the upper triangular (n+1)×n matrix RMR
n is zero. If we denote its upper square n×n submatrix

by RMR
n and let

hn :=

[
hn
η̃n+1

]
:= Q?

ne1ρ0 , (1.12)

we see that

kn := (RMR
n )−1hn (1.13)

is the solution of our least squares problem since

‖e1ρ0 −Tnkn‖2 = ‖Q?
ne1ρ0 −RMR

n kn‖2

= ‖hn −RMR
n kn‖2 (1.14)

= ‖hn −RMR
n kn‖2 + |η̃n+1|2

= |η̃n+1|2. (1.15)

In fact, multiplying the least squares problem (1.11) by the unitary matrix Q?
n turns it into one

with an upper triangular matrix, see (1.14), where the choice of kn no longer influences the defect
of the last equation, and thus the problem is solved by choosing kn such that the first n equations
are fulfilled.

From (1.11) and (1.15) we see in particular that the minimum norm of the quasi-residual is equal
to |η̃n+1| and hence can be found without computing kn or the quasi residual. The unitary matrix
Qn is only determined in its factored form, as the product of n Givens rotations that are chosen to
annihilate the subdiagonal elements of the tridiagonal (or Hessenberg) matrix:

Qn :=

[
Qn−1 0

0> 1

]
Gn with Gn :=




�
n−1 0 0

0> cn −sn
0> sn cn


 , (1.16)

where cn ≥ 0 and sn ∈ C
n satisfying c2n + |s2n| = 1 are chosen such that

G?
n




?
...
?
µn
νn




=




?
...
?

cnµn + snνn
0




with




?
...
?
µn
νn




:=

[
Q?
n−1 0

0> 1

]
Tn




0
...
0
1


 ,

which means that

cn :=
|µn|√

|µn|2 + |νn|2
, sn := cn

νn
µn
, if µn 6= 0,

cn := 0, sn := 1, if µn = 0.

If Tn is real, cn and sn are the cosine and sine of the rotation angle.
The formula for updating hn is therefore very simple:

[
hn
η̃n+1

]
= hn = G?

n

[
hn−1

0

]
= G?

n




hn−1

η̃n
0


 =




hn−1

cn η̃n
−sn η̃n


 . (1.17)
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In particular, it follows that

‖e1ρ0 −Tnkn‖ = |η̃n+1| = |snη̃n| = |s1 s2 · · · sn| ‖r0‖,

since η̃1 = ‖r0‖. Even more important is the fact that hn ∈ C
n emerges from hn−1 ∈ C

n−1 by just
appending an additional component cnη̃n. By rewriting the first equation in (1.9) using (1.13) as

xn = x0 + Znhn , where Zn := [ z0 . . . zn−1 ] := Yn(R
MR
n )−1

contains the QMR direction vectors, we can conclude that

xn = xn−1 + zn−1cnη̃n . (1.18)

Finally, since RMR
n is a banded upper tridiagonal matrix with bandwidth three, the relation

Yn = RMR
n Zn (1.19)

can be viewed as the matrix representation of a three-term recurrence for generating the vectors
{zk}n−1

k=0 .
Multiplying (1.18) by A we could find an analogous recurrence for the residuals, but since it

would require an extra matrix-vector product, it is of no interest. There is another, cheaper way of
updating the residual. First, inserting Tn = QnR

MR
n and (1.13) into (1.10) and taking (1.12) into

account we get

rn = Yn+1

(
e1ρ0 −QnR

MR
n (RMR

n )−1hn
)

= Yn+1

(
e1ρ0 −Qn

[
hn
0

])

= Yn+1Qn ln+1η̃n+1 , where ln+1 = [ 0 . . . 0 1 ]> ∈ R
n+1 (1.20)

as before. Using (1.16) we conclude further that

rn =
[

Yn yn
] [

Qn−1 0

0> 1

]
Gn

[
0

1

]
η̃n+1

= −YnQn−1lnsnη̃n+1 + yncnη̃n+1 .

Finally, using (1.20) and η̃n+1 = −sn η̃n (see (1.17)) to simplify the first term on the right-hand

Algorithm 3 BiOQMR version of the QMR method

For solving Ax = b, choose an initial approximation x0 ∈ C
N .

Let r0 := (b−Ax0) and y0 := r0/‖r0‖, choose ỹ0 of unit length.
Apply Algorithm 1 (BiO) with the option (1.4) producing normalized Lanczos vectors.
Within step n− 1 of the main loop, after generating yn and ỹn,

(i) update the QR factorization Tn = QnR
MR
n .

(ii) compute the coefficient vector hn by appending the component cnη̃n to hn−1, and compute
the new last component η̃n+1 := −sn η̃n of hn,

(iii) compute zn−1 according to the three-term recurrence implied by (1.19),
(iv) compute xn and rn according to (1.18) and (1.21), respectively,
(v) stop if ‖rn‖/‖r0‖ is sufficiently small.

side, we get the recursion
rn = rn−1|sn|2 + yncnη̃n+1 . (1.21)

In general, ‖rn‖ = ‖qn‖ does not hold, instead we just have

‖rn‖ ≤ ‖Yn+1‖ ‖qn‖ ≤
√
n+ 1 |η̃n+1| ,

since Yn+1 has columns of length 1, and ‖qn‖ = |η̃n+1| as before; see (1.15). The factor
√
n+ 1 nor-

mally leads to a large overestimate, so that the bound is of limited value. However, the relationship
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between the residual and the quasi-residual may suggest sparing the work for updating the residual
and computing its norm until the norm |η̃n+1| of the quasi-residual has dropped below a certain
tolerance. In Algorithm 3, which gives a (simplified) version of the QMR method, we nevertheless
assume that the residual is updated. We choose to call it BiOQMR for distinction, to indicate that
it is based on the BiO algorithm without look-ahead, whose results are then piped into the QMR
least squares process.

1.4 The BiOC algorithm

While the BiO algorithm for the nonsymmetric Lanczos process described in subsection 1.1 is based
on a three-term recurrence we turn now to another algorithm based on a coupled pair of two-term
recurrences for the same process. In addition to the pair of biorthogonal Krylov space bases, a
second pair of biconjugate (i.e. A-biorthogonal) bases for the same Krylov space is now generated.
That is why we use here the acronym BiOC for this algorithm.

The formulas in lines 4.7–4.8 and 4.12–4.13 are known as coupled two-term recurrences. By
eliminating vn and ṽm from them we may get back to the three-term recurrences (1.5) of the BiO
algorithm.

Algorithm 4 BiOC

1: Choose y0, ỹ0 ∈ C
N such that δ0 := 〈ỹ0,y0〉 6= 0 and δ′0 := 〈ỹ0,Ay0〉 6= 0.

2: v0 := y0, ṽ0 := ỹ0.
3: for n = 0, 1, . . . do
4: Choose γn 6= 0, γ̃n 6= 0.
5: ϕn := δ′n/δn
6: ϕ̃n := ϕn
7: yn+1 := (Avn − ynϕn)/γn
8: ỹn+1 := (A?ṽn − ỹnϕ̃n)/γ̃n
9: δn+1 := 〈ỹn+1,yn+1〉

10: ψn := γ̃nδn+1/δ
′
n

11: ψ̃n := γnδn+1/δ′n
12: vn+1 := yn+1 − vnψn
13: ṽn+1 := ỹn+1 − ṽnψ̃n
14: δ′n+1 := 〈ṽn+1,Avn+1〉
15: if δn+1 = 0 or δ′n+1 = 0 then
16: ν̇ := n+ 1
17: stop
18: end if
19: end for

It can be shown (see [13, Theorem 7.1]) that the sequences {yn}ν̇n=0 and {ỹn}ν̇n=0 generated by the
BiOC algorithm are biorthogonal, and the sequences {vn}ν̇n=0 and {ṽn}ν̇n=0 are biconjugate (with
respect to A) except that 〈ỹν̇ ,yν̇〉 = 0 or 〈ṽν̇ ,Avν̇〉 = 0. That is, for m,n = 0, 1, . . . , ν̇,

〈ỹm,yn〉 =

{
0 , m 6= n,
δn , m = n,

〈ṽm,Avn〉 =

{
0 , m 6= n,
δ′n = δnϕn , m = n,

where δn 6= 0 and δ′n 6= 0 for 0 ≤ n ≤ ν̇ − 1, but δν̇ = 0 or δ′ν̇ = 0. Moreover, for n = 1, . . . , ν̇ − 1
holds in addition to (1.3)

vn ∈ Kn+1\Kn , ṽn ∈ K̃n+1\K̃n .

Algorithm 4 may break down if δn+1 = 0 (Lanczos breakdown) or if δ′n+1 = 0 (pivot breakdown).
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Next, we turn to the matrix relations related to the BiOC algorithm. In addition to Yn and Ỹn

of (1.6) we need the N × n matrices

Vn :=
[
v0 v1 · · · vn−1

]
Ṽn :=

[
ṽ0 ṽ1 · · · ṽn−1

]

the n× n matrices

Ln :=




ϕ0

γ0 ϕ1

γ1 ϕ2

. . .
. . .

γn−2 ϕn−1



, Un :=




1 ψ0

1 ψ1

1
. . .
. . . ψn−2

1



,

which are lower and upper bidiagonal, respectively, and the extended bidiagonal matrices

Ln :=




Ln

γn−1l
>
n


 =




ϕ0

γ0 ϕ1

γ1 ϕ2

. . .
. . .

γn−2 ϕn−1

γn−1




and

Un :=
[

Un lnψn−1

]
=




1 ψ0

1 ψ1

1
. . .
. . . ψn−2

1 ψn−1



,

with an additional row and column, respectively. Analogously, we define L̃n, Ũn, L̃n, and Ũn in the
obvious way. Then, according to 4.12, 4.13, 4.7 and 4.8,

Yn = VnUn , Ỹn = ṼnŨn (n ≤ ν̇)

and
AVn = Yn+1Ln , A?Ṽn = Ỹn+1L̃n (n ≤ ν̇).

1.5 The BiOMin form of the BiCG method

This algorithm is often just called “the BiCG method”. It is essentially due to Lanczos [15] but it
has been worked out in a more useful form only by Fletcher [6]. We apply Algorithm 4 (BiOC) with
γn := −ϕn and γ̃n := −ϕn, so that after substituting ωn := 1/ϕn we obtain Algorithm 5. Here, the
vector yn is again identical to the nth residual rn.

2 A block Lanczos process

The basis of this work consists of a version of the unsymmetric Lanczos process which includes
deflation and look-ahead. As in the nonblock case, there are several possibilities to realize the
idea of the two-sided block Gram-Schmidt process. We will consider the analogues of LABiO and
LABiOC, which we call BlBiO and BlBiOC, respectively. In Subsection 2.1, we outline the
goal and general properties of the block Lanczos algorithm, more precisely, of the BlBiO variant.
Subsection 2.2 then covers BlBiO and its basic properties in detail. The algorithm described in
this subsection does contain look-ahead but the choice of a look-ahead strategy is not yet specified.
Different realizations based on different choices of look-ahead strategies are possible and will be
discussed in Subsection 2.3. The next step is then to consider BlBiOC, see Subsection 2.4, and
finally, we present some numerical examples in Subsection 2.5.
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Algorithm 5 BiOMin form of the BiCG method

For solving Ax = b choose an initial approximation x0 and set v0 := y0 := b−Ax0.
Choose ỹ0 such that δ0 := 〈ỹ0,y0〉 6= 0 and δ′0 := 〈ỹ0,Av0〉 6= 0.
ṽ0 := ỹ0

for n = 0, 1, . . . do
ωn := δn/δ

′
n

yn+1 := yn −Avnωn
ỹn+1 := ỹn −A?ṽnωn
xn+1 := xn + vnωn
δn+1 := 〈ỹn+1,yn+1〉
ψn := −δn+1/δn
vn+1 := yn+1 − vnψn
ṽn+1 := ỹn+1 − ṽnψn
δ′n+1 := 〈ṽn+1,Avn+1〉
If yn+1 = 0 the process terminates and xn+1 is the solution.
If δn+1 = 0 (and hence ψn = 0) or δ′n+1 = 0, but yn+1 6= 0, the algorithm breaks down.

end for
In all cases we set ν̇ := n+ 1.

2.1 Basic idea and goals

Let y0 ∈ C
N×s and ỹ0 ∈ C

N×es be two given blocks of vectors. They generate a pair of block Krylov
subspaces which we denote by

B�
n (A,y0) :≡ block span (y0,Ay0, . . . ,A

n−1y0) ⊂ C
N×s,

B̃�
n (A?, ỹ0) :≡ block span (ỹ0,A

?ỹ0, . . . , (A
?)n−1ỹ0) ⊂ C

N×es

for n = 1, 2, . . . . This means that

B�
n (A,y0) =

{
n−1∑

k=0

Aky0γk

∣∣∣ γk ∈ C
s×s

}
,

and an analogous statement holds for B̃�
n (A?, ỹ0). Let

z = [ z(1), . . . , z(s) ] =

n−1∑

k=0

Aky0γk ∈ B�
n (A,y0).

This condition is equivalent to z(j) ∈ Bn(A,y0) for j = 1, . . . , s if we define Bn(A,y0) to be the
subspace of C

N spanned by the columns of y0,Ay0, . . . ,A
n−1y0:

Bn(A,y0) :≡
{
n−1∑

k=0

Aky0βk

∣∣∣ βk ∈ C
s×1

}
=

s∑

i=1

Kn(A, y
(i)
0 ) ⊂ C

N ,

so that B�
n (A,y0) =

∏s
i=1 Bn(A,y0), i.e. B�

n (A,y0) is the direct product of s copies of Bn(A,y0).

The dimensions of Bn(A,y0) and B̃n(A?, ỹ0) are defined as follows:

dimBn(A,y0) ≡: ν(n) ≤ ns,

dim B̃n(A?, ỹ0) ≡: ν̃(n) ≤ ns̃.

Let b ∈ C
N be a column vector. As usual, we denote the grade of b with respect to A by ν̄(b,A) =

min{n | dimKn = dimKn+1 }. Now we define the block grade of y0 with respect to A by ν̄(y0,A) :≡
min{n | dimBn = dimBn+1 }, which implies

ν̄(y0,A) ≤ max{ ν̄(y(i)
0 ,A) | 1 ≤ i ≤ s }.
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Our goal is to construct two nested sequences of normalized bases Yn and Ỹen of Bn(A,y0) and
B̃en(A

?, ỹ0), respectively, which we write columnwise as

Yn = [ y0, . . . , yν(n)−1 ], ‖yi‖2 = 1 (2.1)

Ỹen = [ ỹ0, . . . , ỹeν(en)−1 ], ‖ỹi‖2 = 1

for n = 1, 2, . . . and a sequence of indices 0 ≡: k0 < k1 < k2 < . . . with the property that

Den,n :≡ Ỹ?
enYn = block diag(δ0, . . . , δl−1, δl;en,n) ∈ C

eν(en)×ν(n) (2.2)

if kl + 1 ≤ min{ν(n), ν̃(ñ)}, where δ0, . . . , δl−1 are nonsingular matrices of size ri :≡ ki+1 − ki for
i = 0, . . . , l − 1. So the kl × kl leading principal submatrix of Den,n decomposes into l nonsingular
blocks. In (2.2) the block denoted by δ l;en,n is of size (ν̃(ñ) − kl) × (ν(n) − kl) (which may amount

to an empty matrix), reflecting the fact that the two spaces Bn(A,y0) and B̃en(A
?, ỹ0) usually have

different dimensions. From now on, the indices k0, k1, . . . will be referred to as regular indices. To
complete our notation, we set ν(0) :≡ ν̃(0) :≡ 0 and B0(A,y0) :≡ B̃0(A

?, ỹ0) :≡ {0} which allows us
to define

si :≡ ν(i+ 1) − ν(i) = dim
(
Bi+1(A,y0) 	 Bi(A,y0)

)

s̃i :≡ ν̃(i+ 1) − ν̃(i) = dim
(
B̃i+1(A

?, ỹ0) 	 B̃i(A?, ỹ0)
)

yi :≡ [ yν(i), . . . , yν(i+1)−1 ] ∈ C
N×si

ỹi :≡ [ ỹeν(i), . . . , ỹeν(i+1)−1 ] ∈ C
N×esi

where i = 0, 1, 2, . . . . Now we can rewrite (2.1) as Yn = [y0, . . . ,yn−1 ]1.
The structure of the matrix Den,n suggests another way of partitioning the two vector sequences

{yi}i≥0 and {ỹi}i≥0 which is oriented towards the block biorthogonality. We define

zi :≡ [ yki
, . . . , yki+1−1 ] ∈ C

N×ri , Zl :≡ [ z0, . . . , zl−1 ]

z̃i :≡ [ ỹki
, . . . , ỹki+1−1 ] ∈ C

N×ri , Z̃l :≡ [ z̃0, . . . , z̃l−1 ]

for i = 0, . . . , l − 1 so that the biorthogonality can be written as

z̃?i zj =

{
0 i 6= j

δi i = j
or Z̃?lZl = block diag(δ0, . . . , δl−1). (2.3)

The blocks {yn} and {ỹn} will be referred to as right and left blocks, while {zl} and {z̃l} will be
called right and left clusters, respectively.

We note that from the definitions of si and ri we obtain for i = 0, 1, 2, . . .

ki+1 =
i∑

j=0

rj and ν(i+ 1) =
i∑

j=0

sj.

In order to give an idea of the algorithm, we will now go through a simple example. It is clear
that this simple case does not illustrate all the possible situations that can arise when BlBiO is run
but the reader may still get an idea of the algorithm.

First of all, we need two starting blocks y for the right block Krylov space and ỹ for the left one.
Clearly the columns of the starting blocks must be linearly independent, so we first have to check y
and ỹ for deflation. We denote the resulting blocks by y0 and ỹ0. Consequently, the ranges R(y0)
and R(y) are identical, e. g. the columns of y0 may form an orthonormal basis of R(y). Next, a
value for k1, the first nontrivial regular index, has to be fixed. We want our algorithm to be flexible
with respect to the cluster size, i.e. in theory, it should work with any cluster size. We do not see,
however, a reason to choose k1 larger than s0 so that 1 ≤ k1 ≤ s0. At this point, we do not know
yet whether our choice for k1 works, consequently we say that we have fixed an initial value for k1.
So we now have arrived at step (a).

1From now on we sometimes only write the formulas for quantities related to the right block Krylov spaces. Similar
formulas hold with A, yi, si, etc. replaced by A?, eyi, esi, etc.
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eν(0)=0 eν(1)es0

ey0

k0=0 k1

ν(0)=0 ν(1)s0

y0

Step (a)

eν(0)=0 eν(1)es0

ey0

k0=0 k1

ν(0)=0 ν(1)s0

y0

k2

eν(2)es1

ey1

Step (b)

eν(0)=0 eν(1)es0

ey0

k0=0 k1

ν(0)=0 ν(1)s0

y0

k2

eν(2)es1

ey1

k3

eν(2)es1

ey1

ν(2)s1

y1

Step (c)

Here, the dashed line means that the choice of k1 is not final yet. Our next task is to check whether
the current value for k1 works, which means that we build preliminary clusters z0 = [ y0, . . . , yk1−1 ]
and z̃0 = [ ỹ0, . . . , ỹk1−1 ] and check the nonsingularity of δ0 = z̃?0z0. Assume that δ0 turns out to
be nonsingular (in finite precision arithmetic: well-conditioned). Then we declare k1, z0 and z̃0 as
final and thus have completed the first clusters. Now it has to be noted that since k1 < ν(1) = s0
there are right vectors which are not part of z0; we call them the ungrouped right vectors. Since the
ungrouped right vectors will later become part of a different right cluster, they must be orthogonal
to z̃0, and we have to orthogonalize yk1 , . . . , yν(1)−1 against z̃0. It is not hard to show that this
orthogonalization preserves the linear independency of all the right vectors. Similarly, we can see
from the above figure that k1 < ν̃(1) so that the ungrouped left vectors ỹk1 , . . . , ỹeν(1)−1 have to be
orthogonalized against z0, and the linear independency of the left vectors is thereby not destroyed.

Here we would like to point out that the ungrouped right and left vectors might still be subject
to change when more clusters are completed. Since the next right cluster will contain at least one
vector, the vectors yk1+1, . . . , yν(1)−1 are preliminary at this point, and an analogous statement holds
for the left vectors. So, stricly speaking, the vectors yk1+1, . . . , yν(1)−1 cannot be called right vectors
yet but in this work, for simplicity we will call them so.

Now we turn to the next regular index k2 and fix a preliminary value for it, see step (b) of the
above figure. Here k2 happens to be equal to ν(1) so that there are enough right vectors to form the
preliminary right cluster z1. But we see that k2 > ν̃(1), whence the left block Krylov space has to be
extended before the preliminary left cluster z̃1 can be built. Thus we compute A?ỹ0 and orthogonalize
it against z0, the only right cluster completed so far. We denote the resulting block by ỹtmp. Now
the columns of ỹtmp may be linearly dependent so that we have to check them for deflation. But
here, a little care is needed: it is not enough to check the columns of ỹtmp alone, we need to check the
columns of ỹtmp plus the currently ungrouped left vectors, i.e. the block [ ỹk1 , . . . , ỹeν(1)−1 ỹtmp ] (note
that, at this point, the columns of ỹtmp are not yet left vectors). Since ỹk1 , . . . , ỹeν(1)−1 are already
linearly independent, they will “survive” the deflation checking process and the remaining columns
of ỹtmp form the block ỹ1. From now on, we consider the columns of this new block as left vectors,
and they are now added to the set of ungrouped left vectors, which thus consists of ỹk1 , . . . , ỹeν(2)−1.
Again we incorrectly call all of these vectors “left vectors” despite the possibility that they might
still be subject to change. So at this point, we know that the ungrouped left vectors are linearly
independent and orthogonal to all the completed right clusters, and an analogous statement holds
for the right ungrouped vectors.

To continue, we assume that no columns of ỹtmp need to be deflated so that ν̃(2) > k2 and we now
can form the preliminary cluster z̃1 (now, step (b) shows the current status). As described above
for the case of δ0, it is necessary to check the nonsingularity (or well-definedness) of δ1 = z̃?1z1. Let
us assume that δ1 is nonsingular (well-defined) whence the clusters z1 and z̃1 can be completed. At
this point, there are no ungrouped right vectors due to k1 = ν(1), but some left vectors are left over,
and they now have to be orthogonalized against z1.

By now, the reader has certainly guessed that the following properties always hold:

• The completed right and left clusters satisfy the biorthogonality (2.3) with nonsingular δ l.
• The ungrouped right vectors are linearly independent and orthogonal to all the completed left

clusters.
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• The ungrouped left vectors are linearly independent and orthogonal to all the completed right
clusters.

From these three properties the linear independency of the right and left vectors follows easily and
therefore it is not surprising that they will appear again later (see Lemma 5).

We return to our example and choose a preliminary k3, and since k3 > ν(1), it is necessary that
the right block Krylov space be extended. This is analogous to the extension of the left block Krylov
space outlined above, and we will not dwell on it. For simplicity, we assume that one such extension
yields enough right vectors, i.e. k3 < ν(2), thus arriving at step (c). This time, however, we consider
the case where our current value for k3 leads to a singular matrix δ3. The first thing we can try
now is to replace a vector in the preliminary cluster z̃3 by a column of ỹ1 which is not already in z̃3

(it might be necessary to replace several vectors, depending on the rank deficiency of δ 3). If we are
lucky, the new δ3 will be nonsingular. If this does not help, it is necessary to change our preliminary
value for k3. In the example, we assume that we have to change the value for k3 so that the situation
depicted in step (d) arises.

eν(0)=0 eν(1)es0

ey0

k0=0 k1

ν(0)=0 ν(1)s0

y0

k2

eν(2)es1

ey1

k3

eν(2)es1

ey1

ν(2)s1

y1

Step (d)

eklt+1

eν(0)=0 eν(1)es0

ey0

k0=0 k1

ν(0)=0 ν(1)s0

y0

k2

eν(2)es1

ey1

k3

eν(2)es1

ey1

ν(2)s1

y1

eν(3)es2

ey2

klt+1

Step (e)

We see from the picture that the left block Krylov space has to be extended and assume that after
the extension the clusters z2 and z̃2 can be completed. Now an initial value for k4 is fixed, and
we assume that k4 > ν(2) and that it turns out to be impossible to extend the right block Krylov
space so that the process terminates. Now we set lt = 3, klt+1 = ν(2) and k̃lt+1 = ν̃(3). In other
words, all those right vectors which were ungrouped at termination are put into a final cluster
zlt = [ yk3 , . . . , yν(2)−1 ] and similarly for the left vectors: z̃lt = [ ỹk3 , . . . , ỹeν(3)−1 ]. It follows that
these last clusters contain a different number of vectors, in contrast to all other clusters obtained so
far. Step (e) shows the state after termination.

From this short example, a few conclusions can be drawn: First there are three basic steps which
occur again and again:

• The extension of the left block Krylov space, including deflation of linearly dependent left
vectors.

• The extension of the right block Krylov space, including deflation of linearly dependent right
vectors.

• Checking whether our current value of kl+1 works, including a procedure to be followed if the
current value of kl+1 fails (so that look-ahead is included here).

Formulation of these three steps in such a way that the three properties listed earlier are invariants
lead to the version of BlBiO described in detail in Section 2.2. There is, however, one more
important point to keep in mind: As we ultimately want to solve block systems of linear equations,
we also want recurrences analogous to the nonblock case. More precisely, we must be able to show
the existence of matrices Ti ∈ C

ν(i+1)×ν(i) and T̃i ∈ C
eν(i+1)×eν(i) (which should have a suitable

structure) such that

AYi = Yi+1Ti

A?Ỹi = Ỹi+1T̃i

holds in exact arithmetic for i = 1, 2, . . . .
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2.2 BlBiO and its fundamental properties

The following definitions will be useful for the description of BlBiO. First we set n(i) :≡ min{j |
yi−1 ∈ Bj(A,y0)}, so that n(i) ≥ 1 and

n = n(i) ⇐⇒ yi−1 is a basis vector of Bn(A,y0) 	 Bn−1(A,y0)

⇐⇒ yi−1 is a column of yn−1 ⇐⇒ ν(n− 1) ≤ i− 1 < ν(n).

Furthermore, we define `(i) to be the index of the cluster which contains yi−1. Consequently `(i) ≥ 0
and

l = `(i) ⇐⇒ yi−1 is a column of zl ⇐⇒ kl ≤ i− 1 < kl+1.

Thus `(i) and n(i) are defined for i = 1, 2, . . . .

Now we begin our detailed description of BlBiO, see Algorithms 6 to 8. It consists of three major
steps:

1) Extension of the left block Krylov space (Algorithm 7).
2) Checking whether the next right and left clusters can be completed (Algorithm 6).
3) Extension of the right block Krylov space (Algorithm 8).

The overall structure is covered in Algorithm 6. The first thing to do is to check the input blocks
y and ỹ for deflation; this leads to the starting blocks y0 and ỹ0, respectively. We compute a high
rank revealing QR (HRRQR) factorization to do this check, e. g. for the left starting vectors:

ỹ = [ ỹ0 ỹ4
0 ]

[
ρ̃0 ρ̃�

0

0 ρ̃
4
0

]
π̃>0 ≡: [ ỹ0 ỹ4

0 ]

[
η̃0

η̃
4
0

]
. (2.4)

Let s̃0 = ν̃(1) be the numerical rank of ỹ and s̃40 :≡ s̃− s̃0. Table 1 (with ñ replaced by 0 and s̃−1

replaced by s̃) gives an overview over the matrices appearing in this decomposition. The columns

of ỹ4
0 are discarded. If s0 or s̃0 turns out to be zero, we cannot run the algorithm and have to stop

immediately. This manner of terminating is abnormal, and therefore, when we later use the term
“termination”, we do not refer to this abnormal termination. Next we need to fix the initial choice
for k1 subject to the condition 1 ≤ k1 ≤ ν(1) (step LA1). This completes the initializations, now
the main loop is entered, and first it is necessary that the number of available left vectors be at
least equal to kl+1. When program execution reaches line 10, we already have computed the blocks
y0, . . . ,yn−1 from the right block Krylov space, ỹ0, . . . , ỹen−1 from the left and the regular indices
k0, . . . , kl (this will be proved later, see Proposition 6).

Algorithm 7 shows the extension of the left block Krylov space in more detail. We first compute
A?ỹen−1 and biorthogonalize against z0, . . . , zl−1:

ỹtmp = A?ỹen−1 − z̃l−1τ̃
z
l−1,en−1 − · · · − z̃0τ̃

z
0,en−1 (2.5)

where, for j = 0, . . . , ñ − 1, the matrices τ̃ zi,j ∈ C
ri×esj are given by τ̃ zi,j = δ−?

i z?iA
?ỹj for i =

0, . . . , l− 1. Lines 2 to 4 take care of this biorthogonalization. Then, in line 5, we need to check for
deflation all the ungrouped left vectors, i.e. the columns of ỹtmp and of ỹl−1,en :≡ [ ỹkl

, . . . , ỹeν(en)−1 ].
We do this by first orthogonalizing ỹtmp against ỹl−1,en, which means that we compute ỹtmp−ỹl−1,enα

with

α = (ỹ?l−1,enỹl−1,en)
−1ỹ?l−1,enỹtmp. (2.6)

In Lemma 5, the columns of ỹl−1,en will turn out to be linearly independent, therefore the inverse in
this formula exists. With this orthogonalized block ỹtmp − ỹl−1,enα, we now do a rank revealing QR
factorization and obtain a decomposition as in (2.4) with index 0 replaced by ñ. We define s̃en to be

the number of columns of ỹen and s̃4
en :≡ s̃en−1 − s̃en. See again Table 1. The columns of [ ỹen ỹ4

en ] are
orthonormal and ρ̃en is upper triangular and nonsingular. It should be noted that in exact arithmetic
ρ̃
4
en would be zero, so that the columns of ỹen then form an orthonormal basis of the column space of

[ ỹen ỹ4
en ], but in finite precision arithmetic we only have bounds for ‖ρ̃

4
en ‖2 and ‖η̃4

en ‖2 which depend
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Algorithm 6 BlBiO

Input: Matrix A ∈ C
N×N , block y ∈ C

N×s of right Lanczos vectors, block ỹ ∈ C
N×es of left Lanczos

vectors
1: /* Initializations, including: */
2: Check y and ỹ for deflation → y0, ỹ0, ν(1), ν̃(1), s0, s̃0.
3: if s0 = 0 or s̃0 = 0 then
4: stop /* abnormal termination */
5: end if
6: Set l = 0, n = 1, ñ = 1, k0 = 0.
7: LA1 Fix initial choice for k1 under the condition 1 ≤ k1 ≤ ν(1).
8: loop
9: /* 1) Compute enough ỹ vectors: */

10: Extend left block Krylov space according to Algorithm 7.
11: /* 2) Test whether current value of kl+1 leads to a nonsingular δl: */
12: Set zl = [ ykl

, . . . , ykl+1−1 ], z̃l = [ ỹkl
, . . . , ỹkl+1−1 ] and rl = kl+1 − kl.

13: Compute δl = z̃?l zl and ∆l = rl − rank(δl).
14: if ∆l > 0 then
15: Check whether there is a permutation P of the columns of yn−1 which might cure

the rank deficiency of δl.
16: if there is such a P then
17: Apply P to the columns of yn−1.
18: Adapt the matrix ηn−1 by applying the inverse permutation P ? to its rows.
19: Set zl = [ ykl

, . . . , ykl+1−1 ].
20: Compute δl = z̃?l zl and ∆l = rl − rank(δl).
21: end if
22: end if
23: if ∆l > 0 then
24: Repeat lines 15 to 20 for the left vectors.
25: end if
26: if ∆l > 0 then
27: LA2 Increase kl+1.
28: else
29: Orthogonalize [ ykl+1

, . . . , yν(n)−1 ] against z̃l and [ ỹkl+1
, . . . , ỹeν(en)−1 ] against zl. Renor-

malize the orthogonalized vectors and adapt Tn and T̃en.
30: LA3 Fix new initial choice for kl+2.
31: Set l = l + 1.
32: end if
33: /* 3) Compute enough y vectors: */

34: LA4 Fix minimum number of right vectors → minnum.
35: Extend right block Krylov space according to Algorithm 8.
36: end loop
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Algorithm 7 Extension of left block Krylov space for BlBiO

1: while ν̃(ñ) < kl+1 do
2: Extend the left Krylov space → A?ỹen−1.
3: Determine against which right clusters A?ỹen−1 needs to be orthogonalized.
4: Perform orthogonalization of A?ỹen−1 → ỹtmp.

5: Check the vectors [ ỹkl
, . . . , ỹeν(en)−1, ỹtmp ] for deflation → s̃en, ỹen, ν̃(ñ+1), s̃4

en , ỹ4
en , ν̃4(ñ+1)

6: if s̃en = 0 then
7: Set lt = l, nt = n, ñt = ñ, klt+1 = ν(nt), k̃lt+1 = ν̃(ñt), l = l + 1.
8: Set zlt = [ yklt

, . . . , yν(nt)−1 ], z̃lt = [ ỹklt
, . . . , ỹeν(ent)−1 ] and δlt = z̃?lt z̃lt .

9: stop
10: end if
11: Set ñ = ñ+ 1.
12: end while

Matrix Size Remarks

[ ỹen ỹ4
en ] N × s̃en−1 columns orthonormal

ỹen N × s̃en new left block

ỹ4
en N × s̃4

en orthogonal to ỹen

π̃en s̃en−1 × s̃en−1 permutation matrix

ρ̃en s̃en × s̃en upper triangular, nonsingular

ρ̃�

en s̃en × s̃4
en

ρ̃
4
en s̃4

en × s̃4
en almost zero

η̃en s̃en × s̃en−1 η̃en :≡ [ ρ̃en ρ̃�

en ] π̃>
en

η̃
4
en s̃4

en × s̃en−1 η̃
4
en :≡ [0 ρ̃

4
en ] π̃>

en

Table 1: Matrices involved in HRRQR

on the particular algorithm used to compute the HRRQR factorization (see [3] for more details).
This implies

ỹtmp − ỹl−1,enα = ỹenη̃en + ỹ4
en η̃

4
en .

In the case where no deflation occurs, we have s̃en = s̃en−1 and so the matrices ỹ4
en , ρ̃�

en , ρ̃
4
en , η̃

4
en

are all empty. On the other hand it may also happen that s̃en = 0, which means that ỹen ≈ 0 and
consequently the left block Krylov space is exhausted.

By using (2.5) and setting τ̃
y
l−1,en−1 :≡ α, we arrive at the following recursion:

ỹenη̃en = A?ỹen−1 − ỹl−1,enτ̃
y
l−1,en−1 − z̃l−1τ̃

z
l−1,en−1 − · · · − z̃0τ̃

z
0,en−1 − ỹ4

en η̃
4
en .

For later reference, it is useful to rewrite this recursion in slightly different form by observing that
the inequality kl ≤ ν̃(ñ) < kl+1 holds. (If the first inequality was false, we would have kl > ν̃(ñ) or
kl − 1 ≥ ν̃(ñ) so that the block ỹen would have been computed before the completion of z̃l−1. The
second inequality is just the condition in the while loop.) This implies that ỹeν(en) is a column of z̃l
so that l = `(ν̃(ñ) + 1) according to the definition of the function `(i). If we define

`1(ñ) :≡ `(ν̃(ñ) + 1) − 1 = l − 1,

we have ỹl−1,en = ỹ`1(en),en = [ ỹk`1(en)+1
, . . . , ỹeν(en)−1 ] and write the recursion as

ỹenη̃en = A?ỹen−1 − ỹ`1(en),enτ̃
y
`1(en),en−1 − z̃`1(en)τ̃

z
`1(en),en−1 − · · · − z̃0τ̃

z
0,en−1 − ỹ4

en η̃
4
en

2 (2.7)

By now the columns of [ ỹl−1,en ] are the ungrouped left vectors that can be used for the next cluster.
Here it must be noted that the block ỹen may be changed later as more clusters are completed and

2If `1(en) = −1, no clusters have been completed yet. In this case ey−1,en = [ eyk0
, . . . , eyeν(en)−1 ] and there are no terms

ezi in this recursion. In the future, we will not mention this or similar exceptional cases any more.
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some part of ỹen is orthogonalized against them. The number s̃en, however, will remain unchanged
because the later orthogonalizations will retain the linear independency of the columns of ỹen (see
Lemma 5). Strictly speaking, the columns of ỹen are not yet left vectors, but as we pointed out in
Section 2.1, for simplicity we will not distinguish between final and preliminary left vectors and call
them all “left vectors”. The final form of the recurrence (2.7) will be obtained in equation (2.14).

If this does not yield enough left vectors to build the next preliminary cluster, we have to cycle
again through the while loop on line 7.1. Continuing this way the algorithm either terminates
because some A?-invariant subspace has been found or generates enough left vectors. In the latter
case, the variable ñ has the value ñ(kl+1) (so that ỹkl+1−1, the last left vector which will become
part of the temporary cluster z̃l, is a column of ỹen−1) and the left blocks ỹ0, . . . , ỹen−1 have been
computed.

Now we return to Algorithm 6 and continue with step 2). This step consists of checking whether
our current temporary kl+1 works. Since at this point n = n(kl+1) (this follows from Definition 3
below) and ñ = ñ(kl+1), we know that ykl+1−1 is a column of yn−1 and ỹkl+1−1 is a column of ỹen−1.
We are now able to build temporary clusters zl and z̃l as in line 6.12 and need to compute the rank
of δl obtained in line 6.13. If δl turns out to be singular, we can first try to apply a permutation to
the right or left vectors to obtain a new δ l. Since both cases are largely analogous, we will describe
the process only for the right vectors. Thus we want to replace columns of yn−1 which are part of
zl by other columns of yn−1 which are not contained in zl. It would be necessary to exchange ∆l of
them, and to check whether this is possible, the following two cases have to be considered (see the
following Figure and recall that the columns of zl are ykl

, . . . , ykl+1−1): In case A, the first vector
in zl is either identical to the first vector of yn−1 or “to the left” of it. So the vectors numbered
ν(n− 1), . . . , kl+1 − 1 are columns of both zl and yn−1, while those with indices kl+1, . . . , ν(n) − 1
(if there are any) are in yn−1 but not in zl. In case B, however, index kl lies to the right of index
ν(n− 1) so that we are free to replace any vector of zl.

yn−2 yn−1

ν(n−1) ν(n)−1

zl−1 zlkl kl+1−1

≥∆l!︷ ︸︸ ︷ ≥∆l!︷ ︸︸ ︷

Case A: kl ≤ ν(n− 1)

yn−2 yn−1

ν(n−1) ν(n)−1

zlkl kl+1−1

≥∆l!︷ ︸︸ ︷

Case B: kl > ν(n− 1)

Now we formulate the conditions for the existence of a permutation P as in line 6.15.

• There must be at least ∆l columns of zl which are also columns of yn−1. In case A, this implies

∆l ≤ (kl+1 − 1) − ν(n− 1) + 1 = kl+1 − ν(n− 1),

while it is always satisfied in case B. We note that in both cases, this condition may be formulated
as

∆l ≤ kl+1 − max{kl, ν(n− 1)}. (2.8)

• There must be at least ∆l columns of yn−1 which are not already contained in zl. Thus we need

∆l ≤
(
ν(n) − 1

)
− (kl+1 − 1) = ν(n) − kl+1. (2.9)

If conditions (2.8) and (2.9) are satisfied, we can go on to find a permutation P . For example,
an HRRQR decomposition might be used to check the nonsingularity of δ l in line 6.12, and this
information can be used to find a permutation of the right vectors as follows. Define π δ,l to be
the column permutation computed by the HRRQR algorithm so that δ lπδ,l = z̃?l (zlπδ,l). We know
that the last ∆l columns of δlπδ,l are linearly dependent on the earlier ones whence we set pi :≡
π−1
δ,l (rl − ∆l + i) + kl − 1 for i = 1, . . . ,∆l, where πδ,l denotes the permutation represented by the

matrix πδ,l. At this point, we are led to another condition (apart from (2.8) and (2.9)) which must
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be satisfied: All the indices p1, . . . , p∆l
must lie in the part of zl which may be removed from zl, or

as a formula:

min{ p1, . . . , p∆l
} ≥ max{kl, ν(n− 1)}. (2.10)

As can be seen from the preceding figures, this condition is always satisfied in case B but not
necessarily in case A. If (2.10) is also fulfilled, we may choose for P any permutation which exchanges
the right vectors yp1 , . . . , yp∆l

with any ∆l columns of yn(kl)−1 which are not simultaneously columns
of zl. For example, P might permute ykl+1

, . . . , ykl+1+∆l−1 into the cluster zl. The application of this
permutation P changes the recursion of the block yn−1 only in a trivial way (the rows of ηn−1 get
permuted by the inverse permutation P ?, see line 6.18) and may overcome the problem of singular
δl. If the problem still persists, we may repeat the same procedure with δ?l in place of δl, which
possibly yields a permutation P̃ of the left vectors to be tried out.

In case the above conditions are not fulfilled or if the singularity cannot be removed, then in line
6.26 ∆l will be positive, and the choices of kl+1, zl and z̃l have to be changed. So in this case, a look-
ahead procedure has to be started. Different look-ahead procedures are possible and characterize
different variants of the algorithm.

Remark 1. At this point, we stress again that, in theory, the need for look-ahead only arises when
δl is singular and there is no permutation of basis vectors of yn−1 or ỹen−1 leading to a nonsingular
matrix δl. In practice, however, it is cumbersome to try out several permutations so we may choose
to start a look-ahead procedure if one permutation fails. Nevertheless we expect that look-ahead
will occur less often than with the vectorwise approach as used in [1]. ©

Assuming that we have found a regular index kl+1, the set of ungrouped left vectors is set to
{ỹkl+1

, . . . , ỹeν(en)−1}. Now it is necessary to orthogonalize the ungrouped vectors against zl in order
to enlarge the zero matrices in (2.2) (and similarly for the right vectors, we will describe the process
only for the left vectors because the extension of the left block Krylov space has already been
described). For the following considerations, it might be helpful to keep a picture like the following
in mind.

eν(en−1)

eyen−1

eν(en)

kl kl+1 kl+2 kl+3

ez`1(en−1) ezl ezl+1 ezl+2

So the left cluster z̃l has just been completed. Consequently we can write ỹen−1 = [ ỹin ỹl,en ] where
ỹin :≡ [ ỹeν(en−1), . . . , ỹkl+1−1 ] (these vectors will not change any more) and ỹl,en = [ ỹkl+1

, . . . , ỹeν(en)−1 ].
If ỹl,en is nonempty, then its columns have to be orthogonalized against the recently completed right
cluster zl. So we compute ỹl,en − z̃lδ

−?
l z?l ỹl,en and this implies the following update of ỹen−1

ỹen−1 = [ ỹin ỹl,en − z̃lδ
−?
l z?l ỹl,en ] = ỹen−1 − [0N×(kl+1−eν(en−1)) z̃lδ

−?
l z?l ỹl,en ]

= ỹen−1 − z̃l [0rl×(kl+1−eν(en−1)) δ−?
l z?l ỹl,en ]. (2.11)

Now if ñ > 1 we have to investigate the influence of this orthogonalization on the recurrence (2.7).
To this end we multiply both sides of the above equation from the right by η̃en−1 and use (2.7) with
ñ replaced by ñ− 1:

ỹen−1η̃en−1 = A?ỹen−2 − ỹ`1(en−1),en−1τ̃
y
`1(en−1),en−2

− z̃`1(en−1)τ̃
z
`1(en−1),en−2 − · · · − z̃0τ̃

z
0,en−2

− ỹ4
en−1η̃

4
en−1 − z̃l [0rl×(kl+1−eν(en−1)) δ−?

l z?l ỹl,en ] η̃en−1.

Recall that ỹ`1(en−1),en−1 = [ ỹk`1(en−1)+1
, . . . , ỹeν(en−1)−1 ] are those left vectors which were ungrouped

when the block ỹen−1 was obtained first, and at that point, the left clusters z̃0, . . . , z̃`1(en−1) were
completed. By setting

τ̃ zl,en−2 :≡ [0rl×(kl+1−eν(en−1)) δ−?
l z?l ỹl,en ] η̃en−1 (2.12)
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we obtain

ỹen−1η̃en−1 = A?ỹen−2 − ỹ`1(en−1),en−1τ̃
y
`1(en−1),en−2 − z̃lτ̃

z
l,en−2 − · · · − z̃0τ̃

z
0,en−2 − ỹ4

en−1η̃
4
en−1. (2.13)

At this point, we also have to renormalize those vectors which have been changed by the orthogo-
nalization, which means that the corresponding rows of η̃en−1 have to be scaled.

As more clusters are completed, the block ỹen−1 may be updated again. Consider the example
shown in the preceding figure. Here, when cluster z̃l+1 is completed, the block ỹen−1 is still not
exhausted because kl+2 < ν̃(ñ) so that at least one column of ỹen−1 has to be orthogonalized against
zl+1. By repeating the preceding argument we see that this orthogonalization leads to an additional
term −z̃l+1τ̃

z
l+1,en−2 in (2.13). But for the next regular index we have kl+3 ≥ ν̃(ñ) so that no

column of ỹen−1 needs to be orthogonalized against zl+2. Since ỹeν(en)−1 is a column of z̃l+2, it follows
that l + 2 = `(ν̃(ñ)), and the last update of ỹen−1 happens when cluster `(ν̃(ñ)) − 1 is completed.
Consequently, if we define

`2(ñ) :≡ `(ν̃(ñ+ 1)) − 1,

the final recurrence may be written as follows (as in (2.7), we write ñ instead of ñ− 1):

ỹenη̃en = A?ỹen−1 − ỹ`1(en),enτ̃
y
`1(en),en−1 − z̃`2(en)τ̃

z
`2(en),en−1 − · · · − z̃0τ̃

z
0,en−1 − ỹ4

en η̃
4
en . (2.14)

So far, we have considered the recursion for a block which has to be updated according to (2.11)
at least once. But what if there is no such update and (2.7) is already the final recurrence? This
happens if and only if kl+1 ≥ ν̃(ñ) for the final choice of kl+1. In this case, (2.14) is still valid since
the vectors ỹeν(en−1) and ỹeν(en)−1 both belong to cluster z̃l so that `1(ñ− 1) = `2(ñ− 1).

Remark 2. Equation (2.14) gives the final form of the recursion for any left block. But we actually
have shown more: Assume that at some point l clusters have been completed and s̃0, . . . , s̃en−1 have
been computed. Then for 0 ≤ j ≤ ñ− 1 there are two cases:

• ν̃(j + 1) ≤ kl: Then all columns of the block ỹj are part of a cluster. Since the completion of
the next and all subsequent clusters will not affect its columns it will not change any more. So
if j > 0 the recursion for ỹj is given by (2.14).

• ν̃(j+1) > kl: In this case we only have a preliminary block ỹj at our disposal. As more clusters
are completed, some of its columns may be changed due to the necessary orthogonalization of
the ungrouped vectors. For the sake of simplicity, this preliminary block is also denoted by ỹj ,
and if j > 0 then its preliminary recursion is given by

ỹjη̃j = A?ỹj−1 − ỹ`1(j),j τ̃
y
`1(j),j−1 − z̃l−1τ̃

z
l−1,j−1 − · · · − z̃0τ̃

z
0,j−1 − ỹ4

j η̃
4
j . ©

At step 3) the right block Krylov space is to be extended, but it first has to be decided how many
vectors we need, which depends on the look-ahead strategy. Therefore we have to choose a value
minnum at step LA4 (line 6.34). After that we proceed as described for the left blocks (see Algorithm
8) and end up with a (final) recurrence analogous to (2.14).

ynηn = Ayn−1 − y`3(n),nτ
y
`3(n),n−1 − z`4(n)τ

z
`4(n),n−1 − · · · − z0τ

z
0,n−1 − y4

n η4
n , (2.15)

where

`3(n) :≡ `(ν(n) + 1) − 1,

`4(n) :≡ `(ν(n+ 1)) − 1.

Furthermore, if the first proposition for a look-ahead strategy is used (Section 2.3), then we can fix
a value for kl+1 only at step LA5.

Definition 3. A look-ahead strategy for BlBiO consists of

• A specification of the steps LA1 to LA5 in Algorithms 6 and 8. The rule for choosing the
variable minnum in step LA4 must ensure that the variable n has the value n(kl+1) if the
condition of while loop in line 8.1 becomes false.
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Algorithm 8 Extension of right block Krylov space for BlBiO

1: while ν(n) < minnum do
2: Extend the right Krylov space → Ayn−1.
3: Determine against which left clusters Ayn−1 needs to be orthogonalized.
4: Perform orthogonalization of Ayn−1 → ytmp.

5: Check the vectors [ ykl
, . . . , yν(n)−1,ytmp ] for deflation → sn, yn, ν(n+1), s4n , y4

n , ν4(n+1).
6: if sn = 0 then
7: Set lt = l, nt = n, ñt = ñ, klt+1 = ν(nt), k̃lt+1 = ν̃(ñt), l = l + 1.
8: Set zlt = [ yklt

, . . . , yν(nt)−1 ], z̃lt = [ ỹklt
, . . . , ỹeν(ent)−1 ] and δlt = z̃?lt z̃lt .

9: stop
10: end if
11: Set n = n+ 1.
12: LA5 Fix value for kl+1 (changed or initial value).
13: end while

• An algorithm for computing the rank of the matrices δ l (to be used in lines 6.13 and 6.20).

The restriction on the rule for step LA4 in the first item of this definition just ensures that we only
compute as many new right blocks as necessary. For the left blocks the analogue is automatically
true, as was pointed out on page 16.

The process may terminate at lines 7.9 or 8.9 if one of the Krylov spaces is exhausted. We define
the values of the indices n, ñ and l at termination as nt, ñt and lt, respectively. This definition
implies that the last right and left blocks are given by ynt−1 and ỹent−1, respectively. On the other
hand, the remaining y and ỹ vectors are put into clusters zlt and z̃lt , and if both of these final
clusters are nonempty, then a final delta matrix δ lt can be computed (lines 7.8 and 8.8). In contrast
to all the other right and left clusters, these last clusters zlt and z̃lt do not necessarily contain the
same number of vectors. We denote the number of columns of zlt by rlt and the number of columns
of z̃lt by r̃lt so that the matrix δlt is of size r̃lt × rlt .

Remark 4. It may be worth mentioning that the matrix Dent,nt
= block diag(δ0, . . . , δlt−1, δlt) ∈

C
eν(ent)×ν(nt) is of slightly varying form, depdending on whether rlt and r̃lt are zero or not. We

consider the following cases:

• rlt = 0 and r̃lt > 0: Then we have

ν(nt) = klt = klt+1,

ν̃(ñt) = k̃lt+1 = klt + r̃lt

and

Dent,nt
=




δ0

. . .

δlt−1

0erlt×ν(nt)


 .

• rlt > 0 and r̃lt = 0: Then we have

ν(nt) = klt + rlt ,

ν̃(ñt) = k̃lt+1 = klt

and

Dent,nt
=




δ0

. . . 0eν(ent)×rlt
δlt−1


 .
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• rlt = 0 and r̃lt = 0: Then we have ν(nt) = ν̃(ñt) = klt and Dent,nt
= block diag(δ0, . . . , δlt−1).

©

At this point, a few fundamental properties of BlBiO which do not depend on the particular look-
ahead strategy can be stated. We first prove a key property of BlBiO, namely the three properties
listed on page 12.

Lemma 5. Assume that BlBiO is run with an arbitrary look-ahead procedure according to Definition
3. Then the following three properties always hold:

For 0 ≤ i, j ≤ l − 1: z̃?i zj =

{
0, i 6= j

δi, i = j
(2.16a)

For i = 1, . . . , l − 1:

{
{yj}j≥kl

⊥ z̃i

{ỹj}j≥ekl
⊥ zi

(2.16b)

The vectors {yj}j≥kl
are linearly independent.

The vectors {ỹj}j≥ekl
are linearly independent.

}
(2.16c)

Here it is understood that k̃i :≡ ki for i = 0, . . . , lt. After termination, (2.16) holds with l − 1 = lt.

So property (2.16a) means that all clusters which have been completed so far obey the biorthogo-
nality, while (2.16b) states that those right and left vectors which have not yet been grouped into a
cluster are already orthogonal to all the available left and right clusters, respectively. The last item
(2.16c) states that all the ungrouped right vectors are linearly independent and the same for the left
ones.

Proof. It is clear that these three properties hold when the main loop in line 6.8 is reached for the
first time since (2.16a) and (2.16b) are empty at this point and the columns of y0 and ỹ0 are linearly
independent.

Next we have to show that (2.16) forms an invariant of the loop starting at line 6.8. Assume that
(2.16) holds at the beginning of the main loop. If Algorithm 7 is entered, the while loop on line 7.1
is executed. We assume that the three properties are valid at the beginning of the while loop. The
block ỹtmp is orthogonalized against all available right clusters so that (2.16b) still holds when line
7.6 is reached, while (2.16a) is not touched so far. In line 7.5, ỹtmp is first orthogonalized against
ỹ`1(en),en = [ ỹk`1(en)+1

, . . . , ỹeν(en)−1 ]. As the columns of ỹ`1(en),en are just the ungrouped left vectors, we
know by (2.16c) that they are linearly independent, and so the inverse in (2.6) exists. Now, after
checking the columns of ỹtmp for deflation, new left vectors (namely the columns of ỹen) are obtained
and added to the set of ungrouped vectors, which now consists of ỹk`1(en)+1

, . . . , ỹeν(en+1)−1 (i.e. the
columns of ỹ`1(en),en and ỹen). But since the blocks ỹ`1(en),en and ỹen are orthogonal, the ungrouped
vectors are still linearly independent and (2.16c) remains valid. We conclude that all three properties
are still valid when line 7.6 is reached.

If s̃en is zero, we exit the algorithm by creating the two final clusters zlt and z̃lt . Consequently, at
line 7.9, (2.16a) holds with l − 2 = lt − 1 in place of l − 1, but due to (2.16b) and the definition of
δlt , (2.16a) also holds for l− 1 = lt. Due to the definitions of the last regular indices klt+1 and k̃lt+1,
the sets {yj}j≥kl

and {ỹj}j≥ekl
are empty. So we have shown that if BlBiO stops at line 7.9, then

(2.16) holds with l = lt + 1.

Assuming that BlBiO continues, it follows that (2.16a) to (2.16c) are still valid at the end of the
while loop 7.1 and therefore also at the end of Algorithm 7. Next, lines 6.12 to 6.22 do not affect
the three properties since the clusters zl and z̃l obtained in line 6.12 are preliminary and application
of a permutation P in line 6.17 does not influence the linear independency of the right vectors. In
the if statement on line 6.26, new clusters are completed in the else branch, but due to line 6.29
(the remaining vectors are orthogonalized against the new clusters), both (2.16a) and (2.16b) are
still valid at line 6.32. Thus we have to show that (2.16c) also remains valid at line 6.32, which
amounts to showing that it is not destroyed at line 6.29. Here, for the left vectors, an update of the
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form (2.11) is done, and if we first set ỹ′
⊥ :≡ ỹl,en − z̃lδ

−?
l z?l ỹl,en, the assertion is that the columns of

ỹ′
⊥ are linearly independent. Let t⊥ ∈ C

eν(en)−kl+1 and consider

0 = ỹ′
⊥t⊥ = ỹl,ent⊥ − z̃lδ

−?
l z?l ỹl,ent⊥ = ỹl,ent⊥ + z̃lt⊥ = [ ỹkl

, . . . , ỹeν(en)−1 ]

[
t⊥
t⊥

]

where t⊥ :≡ −δ−?
l z?l ỹl,ent⊥. Now we note that ỹkl

, . . . , ỹeν(en)−1 are just the ungrouped vectors before
completion of z̃l, so we may apply (2.16c) to obtain that they are linearly independent, whence
t⊥ = 0, which proves the assertion. The normalization of the columns of ỹ′

⊥ is harmless and
therefore (2.16c) is also valid after line 6.29.

A similar argument as above shows that the extension of the right block Krylov space (if done)
does not change the validity of (2.16). Therefore, the properties (2.16) are valid at line 6.36 if the
algorithm does not terminate and hold with l = lt + 1 after termination of BlBiO.

As a corollary of this Lemma, we obtain the assertion made in the paragraph after equation (2.7).
But the Lemma also enables us to establish some more basic properties of BlBiO:

Proposition 6. Assume that BlBiO is run with an arbitrary look-ahead procedure according to
Definition 3. Then we have

(i) All y and ỹ vectors are of unit length.
(ii) Outside of step 3), the number of (possibly preliminary) y vectors computed so far is given by

ν(n), while outside of step 1), the number of (possibly preliminary) ỹ vectors computed so far
is ν̃(ñ). In other words, the right blocks y0, . . . ,yn−1 are available outside of step 3) and the
left blocks ỹ0, . . . , ỹen−1 are available outside of step 1), and the blocks yn−1 and ỹen−1 may be
preliminary.

(iii) Outside of step 2), the right clusters z0, . . . , zl−1 and the left clusters z̃0, . . . , z̃l−1 have been
completed.

(iv) After termination, (ii) and (iii) hold with n = nt, ñ = ñt and l = lt + 1, and all computed
right and left vectors are grouped into a cluster.

(v) The right and left clusters zi and z̃i both have ri columns for i = 0, . . . , lt − 1. The last right
and left clusters contain rlt and r̃lt vectors, respectively. Additionally, the biorthogonality (2.3)
holds for 0 ≤ i, j ≤ lt.

(vi) In exact arithmetic an with a zero deflation tolerance, the right and left vector sequences form
nested bases of Bn(A,y0) and B̃n(A?, ỹ0), respectively. In particular, the columns of yn span
Bn+1(A,y0) 	 Bn(A,y0) (n = 0, . . . , nt − 1), while the columns of ỹen span B̃en+1(A

?, ỹ0) 	
B̃en(A

?, ỹ0) (ñ = 0, . . . , ñt − 1).
(vii) When clusters zl−1 and z̃l−1 are completed, the variables n and ñ have the values n(kl) and

ñ(kl), respectively. In other words, BlBiO only computes as many right and left blocks as
necessary for testing regular indices.

Proof. (i) follows from the fact that a QR decomposition is used as deflation checking procedure so
that normalized vectors are generated and that in line 6.29, the orthogonalized vectors are again
normalized. The assertions (ii) and (iii) follow readily from Algorithms 6 to 8. (iv) and (v) follow
easily from Lemma 5, observing that after termination, the sets {yj}j≥kl

and {ỹj}j≥kl
are empty.

Next, we show assertion (vi) only for the right vectors. From the construction of the right vec-
tors, it follows that Bi(A,y0) = span (y0, . . . , yν(i)−1) for i = 1, . . . , nt. To show that the vectors
{y0, . . . , yν(i)−1} are linearly independent, we temporarily define l :≡ `(ν(i)) and then take a linear
combination of the zero vector with complex coefficients λ0, . . . , λν(i)−1:

0 =

ν(i)−1∑

k=0

λkyk =

kl−1∑

k=0

λkyk +

ν(i)−1∑

k=kl

λkyk =

l−1∑

n=0

zntn +

ν(i)−1∑

k=kl

λkyk

where tn :≡ (λkn
, . . . , λkn+1−1)

>. Using the biorthogonality relations (2.16a) and (2.16b), we get for
j = 0, . . . , l − 1:

0 = z̃?j

ν(i)−1∑

k=0

λkyk = δjtj ,
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s0×s0 s0×s1 . . . s0×si−1

s1×s0 s1×s1 s1×si−1

s2×s1 ...

si−1×si−1. . .
si×si−1

Figure 1: Block Hessenberg structure of Ti

which implies tj = 0. Now we look at the vectors ykl
, . . . , yν(i)−1 and note that they are precisely

the ungrouped vectors after cluster zl−1 has been obtained because the definition of l above implies
that they are not changed any more when clusters zl and z̃l are completed. So we may apply
(2.16c), which yields that these vectors are linearly independent and consequently the remaining
coefficients λkl

, . . . , λν(i)−1 also must be zero. This completes the proof of (vi). Finally, (vii) follows
from Algorithm 7 and Definition 3.

As a corollary of this proposition, we also obtain the recursions (2.14) and (2.15), and Remark
2. Our next goal is to write the recursions in matrix form, which we carry out only for the right
vectors. An analogous statement holds for the left vectors.

Proposition 7 (Recursions). Assume that the right vectors y0, . . . , yν(p+1)−1 (that is, the blocks
y0, . . . ,yp) have been grouped into a cluster3. The recursions (2.15) lead to the matrix relation

AYi = Yi+1Ti + Y4
i+1T

4
i i = 1, . . . , p, (2.17)

where the matrix Ti ∈ C
ν(i+1)×ν(i) is of upper block Hessenberg structure (see Figure 1), and we set

ν4(i+ 1) :≡
i∑

j=0

s4i ,

Y4
i :≡ [y4

0 , . . . ,y
4
i−1 ] ∈ C

N×ν4(i),

T4
i :≡




0
s40 ×s0

η
4
1 0

s41 ×s1
. . .

. . .

. . . 0
s4i−1×si−1

η
4
i



∈ C

ν4(i+1)×ν(i).

After termination of BlBiO, (2.17) holds with p = nt − 1. In the case of exact arithmetic and with
the deflation tolerance set to zero, we get

AYi = Yi+1Ti i = 1, . . . , p. (2.18)

Proof. Let 0 < j ≤ p and consider the (final) recursion for the block yj, which is given by (2.15)
with n replaced by j. We can easily rewrite the right-hand side of (2.15) without explicit reference
to the right clusters. To this end we set for 0 ≤ i ≤ `4(j)

Szi :≡




0ki×ri�
ri

0(ν(j+1)−ki+1)×ri


 ∈ R

ν(j+1)×ri

3This assumption is not necessary to show the assertion, but it makes the proof a little easier, and only this case will
be needed later.
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so that zi = Yj+1S
z
i for 0 ≤ i ≤ `4(j). Furthermore, we set

S`3(j),j :≡



0k`3(j)+1×(ν(j)−k`3(j)+1)

�

ν(j)−k`3(j)+1

0sj×(ν(j)−k`3(j)+1)


 ∈ R

ν(j+1)×(ν(j)−k`3(j)+1)

so that y`3(j),j = [ yk`3(j)+1
, . . . , yν(j)−1 ] = Yj+1S`3(j),j. And finally

Sj :≡
[
0ν(j)×sj

�
sj

]
∈ R

ν(j+1)×sj

so that yj = Yj+1Sj. Substituting these definitions into the recursion (2.15) yields Ayj−1 =

Yj+1Fj + y4
j η

4
j with

Fj :≡ Sjηj + S`3(j),jτ
y
`3(j),j + Sz`4(j)τ

z
`4(j),j−1 + · · · + Sz0τ

z
0,j−1 ∈ C

ν(j+1)×sj−1 .

If we denote the rows ν(i) + 1, . . . , ν(i+ 1) of Fj by τ i,j−1 for i = 0, . . . , j, we obtain

Ayj−1 = yjτ j,j−1 + yj−1τ j−1,j−1 + · · · + y0τ 0,j−1 + y4
j η

4
j .

The recursion for yj determines columns ν(j − 1) + 1, . . . , ν(j) of Tj and the nonzero elements in
these columns are given by Tj(1 : ν(j +1), ν(j − 1) +1 : ν(j)) :≡ [ τ ?0,j−1, . . . , τ

?
j,j−1 ]?. Consequently

we now obtain (2.17). After termination, the same argument works for any j ∈ {1, . . . , nt − 1}.

The following proposition shows that, at least in the case of exact arithmetic, these recurrences
do not involve all the previously computed right and left clusters. It also gives a criterion for the
matrix coefficients τ zi,n−1 and τ̃ zi,en−1 in (2.14) and (2.15) to be zero. For the sake of brevity, we only
give the formulation for the right blocks.

Proposition 8. Assume exact arithmetic and a zero deflation tolerance and set l :≡ `
(
min{ν(nt −

1), ν̃(ñt−1)}
)
. Now we define ψ̃(j) :≡ k`(eν(j))+1 and compute sequences {bi}i≥1, {ij}j≥2 by Algorithm

9. Finally, we set
φ(i) :≡ kbq if ψ̃(iq) < i ≤ ψ̃(iq+1).

Then from the relations (2.18) and the analogue for the left vectors it follows

(i) In column i of Tnt−1 the elements 1, . . . , φ(i) and ν(n(i)+2)+1, . . . , ν(nt) are zero. If φ(i) = 0,
then there may not be any zeros above the main diagonal in column i.

(ii) In (2.15), for n > 0, the matrix coefficient τ zi,n−1 is zero if ki+1 ≤ φ(ν(n− 1) + 1).

Algorithm 9 Auxiliary indices for φ

1: j = 1, a1 = 2, b1 = 0
2: for k = 2, 3, . . . do
3: ak = max{ i | ψ̃(i) = ψ̃(ak−1) }
4: b = max{ l | kl ≤ ν̃(ak − 1) }
5: if b > bj then
6: j = j + 1
7: bj = b, ij = ak
8: end if
9: end for

Proof. It follows from the block Hessenberg structure of Tn that elements ν(n(i) + 2) + 1, . . . , ν(nt)
of column i are zero. Now we set p :≡ nt − 1 and q :≡ ñt − 1 and multiply (2.18) from the left by
Ỹ?
q and the recursion for the left vectors by Y?

p, which yields

Ỹ?
qAYp = Ỹ?

qYp+1Tp = Ỹ?
q

[
Yp, yp

]
Tp =

[
Dq,p | ?eν(q)×sp

]
Tp

Y?
pA

?Ỹq = Y?
pỸq+1T̃q = Y?

p

[
Ỹq, ỹq

]
T̃q =

[
D?
q,p | ?ν(p)×esq

]
T̃q
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


δ0

δ1

. . . 0kl×sp

δl−1

δl;q,p ?eν(ent−1)−kl×sp




ν(2)

ν(3)

ν(j0−1)

ν(j0)

ν(nt)

ν(1) ν(j0−3) ν(j0−2)

kl

Figure 2: Left hand side of (2.19)

ψ(2)

ψ(j0−1)

eν(q)

ν(j0−2) ν(p)

=

eν(q)

eψ(2)

eψ(e0−1)

ν(p)

eν(e0−1)

Figure 3: Nonzero patterns in (2.19)

and therefore
[
Dq,p | ?eν(q)×sp

]
Tp = T̃

?

q

[
Dq,p

?esq×ν(p)

]
. (2.19)

We first consider the left hand side of this equation, see Figure 2. The first kl rows of Tp are
multiplied by δ0, . . . , δl−1 while the rest of of Tp is multiplied by δl;q,p and the starred part of the
left factor. First we consider the columns 1, . . . , ν(1) of the product matrix. In the corresponding
columns of Tp, the rows ν(2) + 1, . . . , ν(nt) are zero, and we see that the matrices δ0, . . . , δ`(ν(2))
contribute to the product so that the nonzero pattern is extended as shown in the following figure,
where the shaded area marks the additional nonzero elements.

s0

ν(2)

ψ(2)

In an analogous way, we consider columns ν(i) + 1, . . . , ν(i + 1) ≤ ν(j0 − 2) of the product, where
j0 = n(kl). Now the nonzero elements are extended until row ψ(i + 2). Finally we turn to the
remaining columns, i.e. ν(j0 − 2) + 1, . . . , ν(p). Since the shaded area of Tp is multiplied by δl;q,p
and the starred part of the left factor, we get in general fill in until the last row. Therefore the left
hand side of (2.19) has a nonzero pattern as shown in the left part of Figure 3. The same argument
as above shows that the nonzero pattern of the right-hand side of (2.19) is given by the right part
of Figure 3. Now we know that l − 1 < lt so that the matrices δ0, . . . , δl−1 are all nonsingular, and
from this we can derive that Tnt−1 has a nonzero pattern as illustrated by Figure 4. Writing the
number of leading zeros in column i as a formula leads to the step function φ(i) as defined above.
Algorithm 9 computes a sequence i2, i3, . . . such that the number of leading zeros of Tn increases
at column ψ̃(ij) + 1. To this end, we first have to find out where ψ̃(i) jumps, and the sequence

a1, a2, . . . stores this information. But even if ψ̃(i) increases, this does not necessarily mean that
the number of leading zeros of Tn also increases. Instead, in line 9.4, we know that there are at
most ν̃(ak − 1) zeros in column ψ̃(ak) + 1, and we need to check whether more clusters fit into rows
1, . . . , ν̃(ak−1). If the condition b > bj is true, we have a step in the matrix Tn at column ψ̃(ak)+1,
with the new number of zeros being given by kbj .
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Figure 4: Nonzero structure of Tnt−1
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Figure 5: Absolute values of entries of T7 (left) and of right-hand side of (2.19) (right)

This shows assertion (i) of the proposition. We note that in practice, we cannot compute the
maximum in line 9.3 but need to estimate it. So if really large clusters extending over several blocks
occur, it may happen that we do superfluous orthogonalizations.

The last vector of the cluster zi is yki+1−1 while the first columns of τ 0,n−1, . . . , τ n,n−1 are part
of column ν(n − 1) + 1 of Tn. So in equation (2.15) the coefficient τ zi,n−1 is zero if the index
ki+1 falls into the upper band of zeros of column ν(n − 1) + 1 of Tnt−1, and we get the inequality
ki+1 ≤ φ(ν(n− 1) + 1) as a condition for τ zi,n−1 to be zero.

Example 9. It may be a good point here to take a look at two examples. We take a 100 × 100
matrix of random entries and use the first variant of look-ahead strategy discussed in Section 2.3.
Furthermore, full orthogonalization is performed whenever a new block has to be orthogonalized
against the available clusters. The right and left starting blocks contain ten random vectors each,
and one look-ahead step is forced artificially when regular index k4 is preliminary. Since neither
further look-ahead nor deflation occurred until completion of z6 and z̃6, z3 and z̃3 contain 20 vectors
while all the other clusters contain 10. The structure of T7 is shown in the left part of Figure 5.
The absolute values of the matrix elements are plotted according to the colorbar on the right, with
a logarithmic scale being used. In this case, the right-hand side of (2.19) looks as in the right part
of Figure 5.

If deflation occurs, then the matrix T in general does not exhibit such a regular lower band
structure as in the previous case. For example, take the same matrix A but this time, the right
starting block is

y0 = [Ay7 y1 . . . y7 ]
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Figure 6: Elements of T5 with absolute value larger than 10−8

where y1, . . . , y7 ∈ C
100 are random vectors. As in the previous example, the left starting block

contains ten random vectors, and full orthogonalization was done. Figure 6 shows those elements
tij of T5 for which |tij| > 10−8.

This example illustrates that as long as neither deflation nor permutations occur, the matrix Tn

has lower bandwidth s0+1 (an analogous statement holds for T̃en). To prove this, we consider matrix
ηn and show that the band structure is not destroyed when some columns of the preliminary block
yn have to be orthogonalized against some left cluster z̃l. Consider the analogue of (2.12) for the
right blocks. Since ηn is upper triangular, the first kl+1 − ν(n) columns of τ zl,n−1 are zero. Now we
note that the first row of ηn affected by τ zn−1 is kl + 1 − ν(n) (see the following figure), and in this
row, the first kl − ν(n) elements are zero. As kl − ν(n) < kl+1 − ν(n), we get the assertion.

ν(n)+1

ν(n+1)

ηn
kl+1

kl+1

Remark 10. It should be emphasized that we do not make any assumptions about the matrices
δ0, . . . , δlt−1 except that they are nonsingular. In particular, they need not be diagonal. It is

in general not possible to find vector sequences {wi}ν(nt)−1
i=0 and {w̃j}eν(ent)−1

j=0 with the following
properties:

1) The columns of Wn :≡ [w0, . . . , wν(n)−1 ] span Bn(A,y0), n = 1, . . . , nt while the columns of

W̃en :≡ [ w̃0, . . . , w̃eν(en)−1 ] span B̃en(A
?, ỹ0) for ñ = 1, . . . , ñt.

2) If we set wl :≡ [wkl
, . . . , wkl+1−1 ] (with an analogous definition for the w̃ vectors) for l =

0, . . . , lt, then the biorthogonality becomes

w̃?
iwj =

{
0 i 6= j

δwi i = j

with diagonal ri × ri matrices δwi if 0 ≤ i ≤ lt − 1. The matrix δwlt is of size r̃lt × rlt and if it
is nonempty, then it has nonzeros only on the main diagonal.

To prove this we derive from 1) that Yn = WnUn with some block upper triangular matrix Un

with blocks of size si × si on the diagonal for i = 0, . . . , n− 1. This implies

Dent,nt
= Ỹ?

ent
Ynt = Ũ?

ent
W̃?

ent
WntUnt . (2.20)

Such a decomposition of Dent,nt
may not exist, however, as can be seen from the following simple

example: Assume that we only have one right and left starting vector, i.e. s0 = s̃0 = 1. Then we
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have si = 1 for i = 0, . . . , nt− 1 and s̃j = 1 for j = 0, . . . , ñt− 1. Thus Unt as well as Ũent
are upper

triangular matrices so that (2.20) amounts to a (possibly rectangular) LDU decomposition of Dent,nt
.

But if look-ahead occurs, then we may get a matrix δ l which does not have an LU decomposition
without pivoting (independently of the look-ahead strategy chosen), and therefore the rectangular
LDU decomposition of Dent,nt

may not exist.
Thus the conditions 1) and 2) can not always be fulfilled. With our definition of the right and

left clusters, we have chosen to give up condition 2) above as is common if look-ahead is used. But
in contrast to the algorithm presented in [1], our algorithm may generate nondiagonal δ l matrices
even if no look-ahead occurs (this depends on the look-ahead strategy used, see Section 2.3). ©

2.3 Look-ahead strategies

The BlBiO algorithm as outlined in the previous section does not involve a choice of a look-ahead
strategy. This allows us to consider various possibilities and then to test which of them leads to the
best performance. In this subsection we deal with the question whether we should aim for clusters
of size one if possible (as the authors do in [1]) or whether larger clusters should be preferred. Two
variations with differring emphasis are discussed.

2.3.1 Rank computations

According to Definition 3, every look-ahead strategy for BlBiO incorporates an algorithm for com-
puting the rank of the matrices δ l. We always use an HRRQR decomposition for these rank compu-
tations because it also yields some useful information for doing permutations in case a rank deficient
δl matrix occurs.

2.3.2 First variant: large clusters

One possibility of a look-ahead procedure is to proceed in a way analogous to the case of one right
and left starting vector [13, Section 19.1]. That is, we intend to choose kl = ν(l) for l = 0, 1, 2, . . .
if possible. If this was always possible we would have zi = yi (but not necessarily z̃i = ỹi). So we
construct a sequence 0 ≡: n0 < n1 < . . . with the property kl = ν(nl). If we assume that an index
nl has already been fixed, the goal is to find an index nl+1 ∈ N as small as possible such that

zl = [ynl
, . . . ,ynl+1−1 ] = [ yν(nl), . . . , yν(nl+1)−1 ],

z̃l = [ ỹν(nl), . . . , ỹν(nl+1)−1 ].

The indices {ni}i≥0 will be called cluster indices. Clearly, the choice of the cluster indices also
implies a choice for the regular indices. Steps LA1 to LA5 of BlBiO now can be formulated more
precisely for this look-ahead procedure as outlined in Algorithm 10. So at step LA1, the value ν(1)

Algorithm 10 First variant of look-ahead strategy for BlBiO

Choose an algorithm for computing rank(δ l).
LA1) Set n0 = 0, n1 = 1 and k1 = ν(1).
LA2) Set nl+1 = nl+1 + 1.
LA3) Set nl+2 = nl+1 + 1.
LA4) Set minnum = ν(n) + 1.
LA5) Set kl+1 = ν(n).

is assigned as the first choice of k1. Step LA2 specifies how a new candidate for kl+1 is found if the
current value of kl+1 has to be changed, which here just amounts to increasing the current value of
nl+1 by one. Consequently, a new right block is appended to zl. Then in step LA3, a first choice for
nl+2 is fixed in the obvious way. Step LA4 consists of making sure that the while loop in line 8.1
will be executed exactly once. Finally, at step LA5 the value of kl+1 is known.

In theory, this variant of the Lanczos process only breaks down in the case that there exists
nl ∈ N such that for every n > nl the choice nl+1 = n leads to a singular matrix δl. This situation
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is called an incurable breakdown. In practice, however, this look-ahead strategy may fail due to
limited storage because it allows only a limited control over the cluster size rl. Since the cluster size
may become relatively large and the matrices δ l may be far from diagonal, the work involved in the
singularity checks in Algorithm 6 may increase a lot.

On the other side, this look-ahead strategy leads to a form of the block Lanczos process which
incorporates block operations whenever possible and therefore achieves one of our goals set out in
Section 0. Furthermore, we also expect less reorthogonalizations of type (2.11) to happen, and so
the risk that the matrix ỹ?l−1,enỹl−1,en in (2.6) might get ill-conditioned is reduced.

2.3.3 Second variant: small clusters

Now the goal is to form clusters containing only one vector, if possible. So the first choice for k1

is one (step LA1), and if a new value for kl+1 is needed, it is incremented only by ∆l (step LA2),
which is the minimum needed to obtain a nonsingular larger δ l. Step LA3 now consists of fixing
the smallest possible initial choice for kl+2 while in step LA4 we make sure that at least kl+1 right
vectors will be computed by the while loop on line 8.1. With this look-ahead strategy, step LA5 is
empty.

Algorithm 11 Second variant of look-ahead strategy for BlBiO

Choose an algorithm for computing rank(δ l).
LA1) Set k1 = 1.
LA2) Set kl+1 = kl+1 + ∆l.
LA3) Set kl+2 = kl+1 + 1.
LA4) Set minnum = kl+1.

If this algorithm is combined with BlBiO, we expect the matrix Dkl+1,kl+1
= Z̃?lZl to be almost

diagonal, similar to [1, Figure 2], and it is indeed diagonal if no look-ahead occurs. So the cluster sizes
are likely to be much smaller than with Algorithm 10. On the other side, although the singularity
checks may involve much less work, orthogonalizations against clusters are now vectorwise operations,
in contrast to the first variant. Additionally, the risk that the matrix α in (2.6) might get ill-
conditioned increases, a problem which could be eliminated by reorthogonalizing the ungrouped
vectors after each operation of type (2.11). In our implementation, however, we did not do this.

Although we can hardly expect satisfactory results with this look-ahead strategy, in Subsection
3.4, we will compute several examples with both variants to see the difference in performance.

Remark 11. It is clear that Algorithms 10 and 11 are indeed look-ahead strategies in the sense of
Definition 3. Furthermore, in the nonblock case s0 = s̃0 = 1 they amount to the same. It schould be
noted, however, that our look-ahead strategy may not optimal in the nonblock case, see [13, p. 381]
for more information. ©

2.4 BlBiOC

We introduce a new pair of vector sequences {vi}i≥0 and {ṽi}i≥0, which we want to be linked to the
sequences of the right and left vectors as follows: Let

Vn :≡ [ v0, . . . , vν(n)−1 ],

Ṽen :≡ [ ṽ0, . . . , ṽeν(en)−1 ].

Then we request that there be nonsingular upper triangular matrices Un ∈ C
ν(n)×ν(n) and Ũen ∈

C
eν(en)×eν(en) such that

Yn = VnUn (2.21a)

Ỹen = ṼenŨen (2.21b)
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for every n = 1, . . . , nt and ñ = 1, . . . , ñt. Note that Un and Ũen are not allowed to be block upper
triangular. The reason for this restriction is that the above equations allow us to express z l as a
linear combination of v0, . . . , vkl+1−1 (and similarly for the left vectors), which will be used in the
derivation of orthogonality relations below and in some proofs. It will turn out later that we may
require Un and Ũen to be upper triangular and still do permutations to avoid immediate look-ahead.

It also follows from (2.21) that the columns of Vn form a basis of Bn for n = 1, . . . , nt, and
similarly for Ṽen. The regular indices {ki}i≥0 will be chosen such they also allow us to partition the
sequences {vi}i≥0 and {ṽi}i≥0 in a way which shows the A biorthogonality: Let

wl :≡ [ vkl
, . . . , vkl+1−1 ], Wl :≡ [w0, . . . ,wl−1 ],

w̃l :≡ [ ṽkl
, . . . , ṽkl+1−1 ], W̃l :≡ [ w̃0, . . . , w̃l−1 ].

The blocks vi :≡ [vν(i), . . . , vν(i+1)−1] and ṽi :≡ [ṽeν(i), . . . , ṽeν(i+1)−1] will be referred to as right and
left direction blocks, while {wj} and {w̃j} will be called right and left direction clusters, respectively.
We will continue to refer to {zl} and {z̃l} as right and left clusters. As in the case of the right and
left clusters, the last direction clusters are special, and we adopt the analogous definitions for w lt

and w̃lt as for zlt and z̃lt .
Now the right and left direction blocks are A orthogonal:

w̃?
iAwj =

{
0 if i 6= j

δ′
i if i = j

, (2.22)

where δ′
j is of size rj × rj and nonsingular if 0 ≤ j < lt, while δ′

lt is of size r̃lt × rlt
4.

It follows from (2.21a) that there is an upper block Hessenberg matrix Ln ∈ C
ν(n+1)×ν(n) (with

block structure as shown in Figure 1) such that

AVn = Yn+1Ln. (2.23)

Now we consider the last block column of (2.21a) and the nth block column of (2.23)

yn = Wlgn + vl−1,ngn;l + vnun,n, (2.24)

Avn−1 = Zlfn−1 + yl−1,nfn−1;l + ynγn. (2.25)

Here, the following definitions are understood:

l = `(ν(n) + 1) − 1 = `3(n),

vl−1,n = [ vkl
, . . . , vν(n)−1 ],

and un,n is a nonsingular upper triangular matrix of size sn × sn. Recall further that yl,n =
[ ykl+1

, . . . , yν(n)−1 ].
Next we derive orthogonality relations which follow from (2.21), (2.22) and (2.23). First, it follows

from the definition of `3(n) that
Avn ⊥ w̃0, . . . , w̃`3(n), (2.26)

and now (2.21b) implies
Avn ⊥ z̃0, . . . , z̃`3(n). (2.27)

The analogous relation for the left vectors is A?ṽen ⊥ z0, . . . , z`1(en). Another orthogonality relation
can be established by starting from the fact that yn is orthogonal to the left clusters z̃0, . . . , z̃`3(n)

(note that this orthogonality relation holds even if we do not have the final block yn yet; the first
version of yn already satisfies it). See also Figure 7. Since the last ỹ vector of z̃`3(n) has number
k`3(n)+1 − 1, we consider ỹk`3(n)+1

, which is a column of ỹen(k`3(n)+1+1)−1. It follows that

yn ⊥ ỹ0, . . . , ỹen(k`3(n)+1+1)−2.

4From now on, we will usually write the formulas only for the right vectors if the ones for the left vectors are obvious.
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ewè?(n)

eyen(k`3(n)+1+1)−3 eyen(k`3(n)+1+1)−2

ez`3(n)

yn

Figure 7: Orthogonality relation obeyed by yn

Now we consider ỹen(k`3(n)+1+1)−3. The last column of this block has number ν̃(ñ(k`3(n)+1+1)−2)−1,
so we define

˜̀?(n) :≡ `(ν̃(ñ(k`3(n)+1 + 1) − 2) + 1) − 1.

Then

yn ⊥ A?w̃i for i = 0, . . . , ˜̀?(n). (2.28)

An analogous argument shows

ỹen ⊥ Awi for i = 0, . . . , `?(ñ), (2.29)

`?(ñ) :≡ `(ν(n(k`1(en)+1 + 1) − 2) + 1) − 1.

Note that by a similar argument as above we can show

z̃l ⊥ Aw0, . . . ,Aw`′(l) (2.30)

`′(l) :≡ `(ν(n(kl + 1) − 2) + 1) − 1.

In the sequel, we describe an algorithm which yields (2.21), (2.22) and (2.23). Then we can use
the above orthogonality relations to show that the recursions (2.24) and (2.25) are short. It has to
be pointed out, however, that our algorithm will only lead to these recursions in exact arithmetic
and with a zero deflation tolerance. In particular, it will turn out that if inexact deflation is done,
then in (2.23), an additional term resulting from deflation will appear.

The main part of BlBiOC is given in Algorithm 12, while the extensions of the two block Krylov
spaces are again formulated separately, see Algorithms 13 and 14. We will focus on those aspects of
BlBiOC which are different from BlBiO.

During the initializations, we also have to fix (preliminary) blocks v0 and ṽ0 and compute their
products with A and A?, respectively, so that regular index k1 can be tested if necessary. The main
loop starts at line 12.10 and is similar to the main loop of BlBiO. So the first issue is the extension
of the left block Krylov space (if necessary), see Algorithm 13. At line 13.2, the block A?ṽen−1 is
available, and according to the analogue of (2.27) for the left vectors, it is already orthogonal to
z0, . . . , z`1(en−1), which means that we only need to orthogonalize it against z`1(en−1)+1, . . . , z`1(en).
The block resulting from these orthogonalizations is denoted by ỹtmp. At this point, the following
recursion holds:

ỹtmp = A?ṽen−1 −
`1(en)∑

j=`1(en−1)+1

z̃j f̃en−1,j , (2.31)

where f̃en−1,j = δ−?
j z?jA

?ṽen−1 for j = `1(ñ−1)+1, . . . , `1(ñ). Note that, at this moment, `1(ñ) = l−1
is the number of completed right and left clusters. Next we need to check for deflation the ungrouped
left vectors ỹl−1,en = [ ỹkl

, . . . , ỹeν(en)−1 ] together with the columns of ỹtmp, which we do again by first
orthogonalizing its columns against the columns of ỹl−1,en and then doing a rank revealing QR
factorization. This leads to

ỹtmp − ỹl−1,enα
′ = ỹenη̃

′
en + ỹ4

en η̃
′4
en
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Algorithm 12 BlBiOC

Input: Matrix A ∈ C
N×N , block y ∈ C

N×s of right Lanczos vectors, block ỹ ∈ C
N×es of left Lanczos

vectors
1: /* Initializations, including: */
2: Check y and ỹ for deflation → y0, ỹ0, ν(1), ν̃(1), s0, s̃0.
3: if s0 = 0 or s̃0 = 0 then
4: stop /* abnormal termination */
5: end if
6: Set v0 = y0, ṽ0 = ỹ0.
7: Compute Av0 and A?ṽ0.
8: Set l = 0, j = 0, n = 1, ñ = 1, k0 = 0.
9: LA1 Fix initial choice for k1 under the condition 1 ≤ k1 ≤ ν(1).

10: loop
11: /* 1) Compute enough ỹ vectors: */
12: Extend left block Krylov space according to Algorithm 13.
13: /* 2) Now we test the current value of kl+1: */
14: Execute lines 12 to 25 of Algorithm 6.
15: if ∆l > 0 then
16: LA2 Increase kl+1.
17: else
18: /* First test passed, now do second test: */
19: Set wl = [ vkl

, . . . , vkl+1−1 ], w̃l = [ ṽkl
, . . . , ṽkl+1−1 ].

20: Compute δ′
l = w̃?

lAwl and ∆′
l = rl − rank(δ′

l).
21: if ∆′

l > 0 then
22: Check whether there is a permutation P of the columns of vn−1 which might cure the

rank deficiency of δ′
l.

23: if there is such a P then
24: Apply P to the columns of yn−1 and vn−1 and adapt the recursions for the right

vectors.
25: Set wl = [ vkl

, . . . , vkl+1−1 ].
26: Compute δ′

l = w̃?
lAwl and ∆′

l = rl − rank(δ′
l).

27: end if
28: end if
29: if ∆′

l > 0 then
30: Repeat lines 22 to 26 for the left direction vectors.
31: end if
32: if ∆′

l > 0 then

33: LA2’ Increase kl+1.
34: end if
35: if ∆l = 0 and ∆′

l = 0 then
36: Orthogonalize [ vkl+1

, . . . , vν(n)−1 ] against A?w̃l and [ ṽkl+1
, . . . , ṽeν(en)−1 ] against Awl.

Renormalize the orthogonalized vectors and adapt the recursions for the right vectors.
37: Orthogonalize [ ykl+1

, . . . , yν(n)−1 ] against z̃l and [ ỹkl+1
, . . . , ỹeν(en)−1 ] against zl. Renor-

malize the orthogonalized vectors and adapt the recursions for the left vectors.
38: LA3 Fix new initial choice for kl+2.
39: Set l = l + 1.
40: end if
41: end if
42: /* 3) Compute enough y vectors: */

43: LA4 Fix minimum number of right vectors → minnum.
44: Extend right block Krylov space according to Algorithm 14.
45: end loop
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Algorithm 13 Extension of left block Krylov space for BlBiOC

1: while ν̃(ñ) < kl+1 do
2: Orthogonalize A?ṽen−1 against z`1(en−1)+1, . . . , zl−1 → ỹtmp.
3: Orthogonalize ỹtmp against ỹl−1,en.

4: Check ỹtmp for deflation → s̃en, ỹen, ν̃(ñ+ 1), s̃4
en , ỹ4

en , ν̃4(ñ+ 1)
5: if s̃en = 0 then
6: Set lt = l, nt = n, ñt = ñ.
7: Set klt+1 = ν(nt), k̃lt+1 = ν̃(ñt), l = l + 1.
8: Set zlt = [ yklt

, . . . , yν(nt)−1 ], z̃lt = [ ỹklt
, . . . , ỹeν(ent)−1 ] and δlt = z̃?lt z̃lt .

9: Set wlt = [ vklt
, . . . , vν(nt)−1 ], w̃lt = [ ṽklt

, . . . , ṽeν(ent)−1 ] and δ′
lt = w̃?

lt
Awlt.

10: stop
11: end if
12: Set ṽen = ỹen and orthogonalize it against Aw`?(en)+1, . . . ,Awl−1.
13: Normalize columns of ṽen.
14: Compute A?ṽen.
15: Set ñ = ñ+ 1.
16: end while

with α′ = (ỹ?l−1,enỹl−1,en)
−1ỹ?l−1,enỹtmp (it will follow from Lemma 14 that the inverse in this formula

exists). Substituting (2.31) yields

ỹenη̃
′
en = A?ṽen−1 −

`1(en)∑

j=`1(en−1)+1

z̃j f̃en−1,j − ỹl−1,enα
′ − ỹ4

en η̃
′4
en .

At this point, the columns of ỹen are preliminary versions of new left vectors. As in the case of
BlBiO, when more clusters are completed, we will have to orthogonalize some part of ỹen against
recently completed right clusters, see line 12.37, and the final version of ỹen is obtained when clusters
`2(ñ) are completed. Therefore its final recursion is

ỹenη̃
′
en = A?ṽen−1 −

`2(en)∑

j=`1(en−1)+1

z̃j f̃en−1,j − ỹ`1(en),enα
′ − ỹ4

en η̃
′4
en , (2.32)

where

f̃en−1,j =

{
δ−?
j z?jA

?ṽen−1 for j = `1(ñ− 1) + 1, . . . , `1(ñ)

[0rj×(kj+1−eν(en)) δ−?
j z?j ỹj,en+1 ] η̃′

en for j = `1(ñ) + 1, . . . , `2(ñ),

and ỹj,en+1 = [ ỹkj+1
, . . . , ỹeν(en+1)−1 ] denotes the part of ỹen which has to be modified. So we can

write

A?ṽen−1 = Ỹen+1


S̃enη̃

′
en +

`2(en)∑

j=`1(en−1)+1

S̃zj f̃en−1,j + S̃`1(en),enα
′


 + ỹ4

en η̃
′4
en

≡:

en∑

i=0

ỹĩli,en−1 + ỹ4
en η̃

′4
en .

Here, we denote by l̃i,en−1 rows ν̃(i) + 1, . . . , ν̃(i + 1) of the matrix in the braces (i = 0, . . . , ñ), and

S̃en, S̃zj , S̃`1(en),en are the analogues of the matrices defined in the proof of Proposition 7. From this
we conclude that

A?Ṽen = Ỹen+1L̃en + Ỹ4
en+1T

′4
en (2.33)
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with L̃en = (̃lij) ∈ C
eν(en+1)×eν(en) and

Ỹ4
en+1 :≡ [ ỹ4

0 , . . . , ỹ
4
en ] ∈ C

N×ν4(i)

T′4
en :≡




0
s40 ×s0

η
′4
1 0

s41 ×s1
. . .

. . .

. . . 0
s4i−1×si−1

η
′4
i



∈ C

ν4(i+1)×ν(i).

So (2.33) leads to (2.23) as long as no deflation occurs or if only exact deflation is done.
Now we assume that s̃en > 0 so that the left block Krylov space has successfully been extended.

Then we immeditately compute a first version of ṽen (line 13.12) by orthogonalizing ỹen against
Aw0, . . . ,Awl−1. According to (2.29), ỹen is already orthogonal to Aw0, . . . ,Aw`?(en) so we have
the following recursion

ṽenũ
i
en,en = ỹen −

i∑

j=`?(en)+1

w̃jg̃
i
en,j (2.34)

with i = `1(ñ) = l − 1 and g̃i
en,j = δ′−?

j w?
jA

?ỹen for j = `?(ñ) + 1, . . . , i. The matrix ũi
en,en is diagonal

and nonsingular and ensures that the columns of ṽen have unit norm (it follows from Lemma 14
below that the normalization is always possible). Whenever a new regular index is fixed, however,
both ỹen and ṽen possibly need to be changed due to the additional orthogonality constraints. Our
next task is therefore to investigate the influence of new orthogonality conditions on (2.34).

Proposition 12. Assume that `1(ñ) < `2(ñ). Then (2.34) holds for all `1(ñ) ≤ i ≤ `2(ñ) with ũi
en,en

diagonal and nonsingular. The blocks ỹen and ṽen are in their final form if and only if i = `2(ñ).

Proof. We use induction on i. First, we already have shown the assertion for i = `1(ñ). So we assume
that the assertion holds for i = `1(ñ), . . . , p − 1 < `2(ñ) with p > `1(ñ) (induction hypothesis).
Consequently, we can write

ṽenũ
p−1
en,en = ỹen −

p−1∑

j=`?(en)+1

w̃jg̃
p−1
en,j . (2.35)

Now assume that clusters zp and wp are completed. On one hand, some part of ỹen (namely ỹp,en+1)
has to be orthogonalized against zp and then the changed columns have to be renormalized. These
two operations lead to a new block which we temporarily denote by ỹ′

en:

ỹ′
enγ̃en,p = ỹen − z̃pτ̃

z
p,en (2.36)

with τ̃ zp,en = [0rp×(kp+1−eν(en)) δ−?
p z?pỹp,en+1 ]. The matrix γ̃en,p is due to the renormalization and is

therefore diagonal and nonsingular. On the other hand, some part of ṽen (namely ṽp,en+1) has to
be orthogonalized against Awp and then the changed columns have to be renormalized. These two
operations lead to a new block which we temporarily denote by ṽ′

en:

ṽ′
enγ̃

′
en,p = ṽen − w̃pβ̃p,en (2.37)

with β̃p,en = [0rp×(kp+1−eν(en)) δ′−?
p (Awp)

?ṽp,en+1 ]. The matrix γ̃ ′
en,p is diagonal and nonsingular. Now

we substitute (2.36) and (2.37) into (2.35) and obtain

(ṽ′
enγ̃

′
en,p + w̃pβ̃p,en)ũ

p−1
en,en = ỹ′

enγ̃en,p + z̃pτ̃
z
p,en −

p−1∑

j=`?(en)+1

w̃jg̃
p−1
en,j .

The next step is to eliminate z̃p from this recursion. To this end, we write z̃p = w̃`?(en)+1ũ
z
`?(en)+1,p +

· · · + w̃pũ
z
p,p (according to (2.30) we have

z̃p ⊥ Aw0, . . . ,Aw`′(p)
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and therefore z̃p ⊥ Aw0, . . . ,Aw`?(en) since kp ≥ k`1(en)+1). Now we define

ũp
en,en :≡ γ̃ ′

en,pũ
p−1
en,en γ̃−1

en,p (2.38)

g̃p
en,j :≡ (g̃p−1

en,j − ũzj,pτ̃
z
p,en)γ̃

−1
en,p for `?(ñ) + 1 ≤ j ≤ p− 1

g̃p
en,p :≡ (β̃en,pũ

p−1
en,en − ũzp,pτ̃

z
p,en)γ̃

−1
en,p (2.39)

and drop the primes in ỹ′
en and ṽ′

en. Then we obtain

ṽenũ
p
en,en = ỹen −

p∑

j=`?(en)+1

w̃jg̃
p
en,j.

By the induction hypothesis, ũp−1
en,en is diagonal and nonsingular so that due to (2.38), the same holds

for ũp
en,en.

From this proposition, we conclude that the length of the recursion (2.34) does not increase when
new clusters are completed.

Proposition 13. If no permutations occur in BlBiOC, then relation (2.21b) holds with a nonsin-
gular, upper triangular matrix Ũen ∈ C

eν(en)×eν(en).

It will be shown below that permutations do not destroy the upper triangular structure of Ũen.

Proof. The assertion is clearly true when the main loop of BlBiOC is reached (line 12.10). If the
left block Krylov space has to be extended, then only the strict upper triangular part of Ũen is
modified since we orthogonalize at most against z`1(en). The next modification of Ũen happens when

new clusters have been completed, and the only contributions to the lower triangular part of Ũen

might come from (2.38) and (2.39). But ũp
en,en is diagonal, and the first kp+1 − ν̃(ñ) columns of τ̃ zp,en

as well as β̃p,en are zero, and therefore, the upper triangular structure of Ũen is preserved (this is
the same type of argument which was used in Example 9; see the figure there). If no permutations
occur, then the matrix does not change any more.

For the orthogonalization (2.34), no matrix vector products have to be computed because Awi

and A?w̃i are already available (all the products A?ṽi are computed during the extension of the left
block Krylov space, see line 13.14, and are updated whenever the ungrouped left direction vectors
change, and similarly for the right vectors, see below).

After the extension of the left block Krylov space, we are in a position to test the current value
of kl+1. In contrast to BlBiO, there are now two tests because both δ l and δ′

l have to be well-
conditioned. The first test is the same as for BlBiO, and if it is passed, then the second test starts
at line 12.19. Since we always construct temporary direction blocks whenever a new preliminary
left or right block is available, we are able to form preliminary versions of wl and w̃l so that a
temporary δ′

l can be computed in line 12.20. If this matrix turns out to be numerically singular,
we go on to check whether a permutation of the right vectors is possible and if so, a new δ ′

l can be
tested in line 12.26. The same process is repeated for the left vectors with δ ′ ?

l in place of δ′
l if the

numerical singularity still persists. In contrast to the procedure for the right vectors, we now also
have to compute the HRRQR decomposition of δ ′ ?

l to get some information about how to choose a
permutation.

Since we always want the recursions (2.21) and (2.23) to be valid, we have to show that they are
not changed when a permutation occurs. Assume that we have a permutation P which should be
applied to the columns of yn−1. As every permutation can be written as a product of transpositions
(i.e. permutations which only interchange two elements), we may assume without loss of generality
that P is a transposition. Let P denote the matrix of order ν(n) representing P . Then we want to
multiply (2.21a) by P from the right, which yields

YnP = VnUnP = VnPP?UnP = VnPU′
n
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Figure 8: Example nonzero pattern of Un

with U′
n :≡ P?UnP = PUnP since P? = P−1 = P. So we have to show that U′

n is also upper
triangular. Consider the structure of Un at this point, see Figure 8 for an example. Now, if P
interchanges columns i and j, then i, j ≥ kl because we can only permute ungrouped vectors. In the
example shown in Figure 8, we have kl = 11. Consequently, the matrix P acting from the left on
Un interchanges two rows whose only nonzero is the diagonal element, and it is easy to verify that
by P acting from the right, the two diagonal elements are again moved to the main diagonal (uii is
now the jth diagonal element and vice versa). We conclude that U′

n is again upper triangular.
It follows that in order to preserve (2.21a), it is necessary to permute both yn−1 and vn−1 even if

we originally only intended to permute yn−1. On the other hand, the above argument also works if
we originally wanted to permute vn−1, and therefore we may conclude that (2.21a) is not destroyed
by a permutation of the right vectors. Together with Proposition 13, we obtain that (2.21) holds
with Un and Ũen upper triangular.

Next, we consider the other recursion, equation (2.23). Here, we only need to apply the inverse
of our permutation to the rows of ln−1,n−1 since Avn−1 will only be needed when yn is computed.
So (2.23) is also preserved by a permutation. The argument for the left vectors is the same.

In case no permutations are possible or they are not successful, a new value has to be assigned
to kl+1 (step LA2’). It is supposed that the same rule for finding a new value is applied at step
LA2’ as at step LA2. If, on the other hand, δ ′

l is numerically nonsingular, then the current value of
kl+1 is final, and we turn to the possible orthogonalizations of ungrouped vectors (lines 12.36 and
12.37). The effects of these operations on the recursions have already been described earlier in this
subsection.

Termination of BlBiOC is the same as for BlBiO except that we also have to form the last
direction clusters (lines 14.9 and 13.9).

Now we fill in the remaining gaps in the proof of Proposition 12.

Lemma 14. Assume that BlBiOC is run with an arbitrary look-ahead procedure according to Def-
inition 3 (and with the same rule applied in step LA2’ as in step LA2). Then properties (2.16) are
invariants as well as the following:

For 0 ≤ i, j ≤ l − 1: w̃?
iAwj =

{
0, i 6= j

δ′
i, i = j

(2.40a)

For i = 1, . . . , l − 1:

{
{vj}j≥kl

⊥ A?w̃i

{ṽj}j≥ekl
⊥ Awi

(2.40b)

The vectors {vj}j≥kl
are linearly independent.

The vectors {ṽj}j≥ekl
are linearly independent.

}
(2.40c)

Recall that k̃i :≡ ki for i = 0, . . . , lt and k̃lt+1 = ν̃(ñt). After termination, (2.16) and (2.40) hold
with l − 1 = lt.
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Algorithm 14 Extension of right block Krylov space for BlBiOC

1: while ν(n) < minnum do
2: Orthogonalize Avn−1 against z̃`3(n−1)+1, . . . , z̃l−1 → ytmp.
3: Orthogonalize ytmp against yl−1,n.

4: Check ytmp for deflation → sn, yn, ν(n+ 1), s4n , y4
n , ν4(n+ 1)

5: if sn = 0 then
6: Set lt = l, nt = n, ñt = ñ.
7: Set klt+1 = ν(nt), k̃lt+1 = ν̃(ñt), l = l + 1.
8: Set zlt = [ yklt

, . . . , yν(nt)−1 ], z̃lt = [ ỹklt
, . . . , ỹeν(ent)−1 ] and δlt = z̃?lt z̃lt .

9: Set wlt = [ vklt
, . . . , vν(nt)−1 ], w̃lt = [ ṽklt

, . . . , ṽeν(ent)−1 ] and δ′
lt = w̃?

lt
Awlt.

10: stop
11: end if
12: Set vn = yn and orthogonalize it against A?w̃è?(n)+1

, . . . ,A?w̃l−1.

13: Normalize columns of vn.
14: Compute Avn.
15: Set n = n+ 1.
16: LA5 Fix value for kl+1 (changed or initial value).
17: end while

Proof. It is clear that (2.16) and (2.40) hold when the main loop in line 12.10 is reached for the first
time since (2.16a), (2.16b), (2.40a) and (2.40b) are all empty at this point and the columns of y0,
ỹ0, v0 and ṽ0 are linearly independent.

Next we have to show that (2.16) and (2.40) form an invariant of the loop starting at line 12.10.
Assume that (2.16) and (2.40) hold at the beginning of the main loop. If Algorithm 13 is entered,
the while loop on line 13.1 is executed. We assume that the six properties are valid at the beginning
of the while loop. As in the case of BlBiO, we can show that the inverse in the expression for α ′

above exists and that all six properties are still valid when line 13.5 is reached.
If s̃en is zero, we exit the algorithm by creating the two final clusters zlt and z̃lt and also the

two final direction clusters wlt and w̃lt. Consequently, at line 13.10, (2.16a) and (2.40a) hold with
l− 2 = lt − 1 in place of l− 1, but due to (2.16b), (2.40b) and the definitions of δ lt and δ′

lt , (2.16a)

and (2.40a) also hold for l − 1 = lt. The definitions of the last regular indices klt+1 and k̃lt+1 imply
that the sets {yj}j≥kl

, {ỹj}j≥ekl
, {vj}j≥kl

and {ṽj}j≥ekl
are empty. So we have shown that if BlBiOC

stops at line 13.10, then (2.16) and (2.40) hold with l = lt + 1.
In line 13.12, a first version of ṽen is computed by first orthogonalizing ỹen against Aw0, . . . ,Awl−1,

and these vectors are added to the set of ungrouped left direction vectors. We temporarily denote
by ṽ′

l−1,en :≡ [ ṽ′kl
, . . . , ṽ′

eν(en)−1 ] the ungrouped left direction vectors after line 13.12. Assume now

that the columns of ṽ′
l−1,en are linearly dependent. Then there is a vector t ∈ C

eν(en)−kl \ {0} such
that ṽ′

l−1,ent = 0. But all the columns of ṽ′
l−1,en were obtained from the currently ungrouped left

vectors ỹl−1,en by orthogonalization against Aw0, . . . ,Awl−1 so that there are matrices h̃l−1
en,j for

j = 0, . . . , l − 1 such that

ṽ′
l−1,en = ỹl−1,en −

l−1∑

j=0

w̃jh̃
l−1
en,j ,

which according to (2.21b) also leads to a relation of the form

ṽ′
l−1,en = ỹl−1,en −

l−1∑

j=0

z̃jh̃
′l−1
en,j ,

and we conclude that 0 = ỹl−1,ent −
∑l−1

j=0 z̃jtj (where tj :≡ h̃′l−1
en,j t). By (2.16b), the block ỹl−1,en is

orthogonal to z0, . . . , zl−1 whence tj = 0 for j = 0, . . . , l−1. Then we derive from (2.16c) that t = 0,
in contradiction to the above assumption. Consequently, the ungrouped left direction vectors are
linearly independent when line 13.12 has been executed. This also means that the normalization of
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the columns of ṽen is possible (compare (2.34) and line 13.13). We conclude that all six properties
are still valid after the left block Krylov space has been extended.

Next, lines 6.12 to 6.22 are executed, which does not influence the validity of our assertion,
and neither do lines 12.15 to 12.33. As in the case of BlBiO, it is quite easy to show that the
orthogonalizations in lines 12.36 and 12.37 preserve linear independency of the corresponding vector
sequences and therefore, all the six assertions are still valid when the right block Krylov space is
extended. A similar argument as outlined above for the left block Krylov space shows that the
assertions are still true at the end of the main loop of BlBiOC.

Some properties of BlBiOC which follow immediately from the previous lemma are summarized
in the following proposition.

Proposition 15. Assume that BlBiOC is run with an arbitrary look-ahead procedure according to
Definition 3 (and with the same rule applied in step LA2’ as in step LA2). Then in addition to the
statements of Proposition 6, the following holds:

(i) All right and left direction vectors are of unit length.
(ii) Outside of step 3), the number of (possibly preliminary) v vectors computed so far is given by

ν(n), while outside of step 1), the number of (possibly preliminary) ṽ vectors computed so far
is ν̃(ñ). In other words, the right direction blocks v0, . . . ,vn−1 are available outside of step 3)
and the left blocks ṽ0, . . . , ṽen−1 are available outside of step 1), and the blocks vn−1 and ṽen−1

may be preliminary.
(iii) Outside of step 2), the right direction clusters w0, . . . ,wl−1 and the left direction clusters

w̃0, . . . , w̃l−1 have been completed.
(iv) After termination, (ii) and (iii) hold with n = nt, ñ = ñt and l = lt + 1, and all computed

right and left direction vectors are grouped into a direction cluster.
(v) The right and left direction clusters wi and w̃i both have ri columns for i = 0, . . . , lt − 1. The

last right and left direction clusters contain rlt and r̃lt vectors, respectively. Additionally, the
biorthogonality (2.22) holds for 0 ≤ i, j ≤ lt.

(vi) In exact arithmetic an with a zero deflation tolerance, the right and left direction vectors
form nested sequences of bases of Bn(A,y0) and B̃n(A?, ỹ0), respectively. In particular, the
columns of vn span Bn+1(A,y0)	Bn(A,y0) (n = 0, . . . , nt− 1), while the columns of ṽen span
B̃en+1(A

?, ỹ0) 	 B̃en(A
?, ỹ0) (ñ = 0, . . . , ñt − 1).

(vii) When direction clusters wl−1 and w̃l−1 are completed, the variables n and ñ have the values
n(kl) and ñ(kl), respectively. In other words, BlBiOC only computes as many right and left
direction blocks as necessary for testing regular indices.

The proof of this proposition is very similar to the case of BlBiO and is therefore omitted. The
next proposition gives some information about the structure of Ln which will be useful for the
construction of block Krylov space methods.

Proposition 16. Assume exact arithmetic and a zero deflation tolerance. Then the matrix Ln is
lower block triangular, see Figure 9.

Proof. From the definition of Ln, we know that it is block upper Hessenberg. Now we multiply
(2.23) by Ỹ?

en from the left and get

Ỹ?
enAVn = Ỹ?

enYn+1Ln = Ỹ?
en

[
Yn yn

]
Ln =

[
Den,n ?eν(en)×sn

]
Ln.

On the other hand, (
AVn

)?
Ỹen =

(
AVn

)?
ṼenŨen = (D′

en,n)
?Ũen,

where
D′

en,n :≡ Ṽ?
enAVn = block diag(δ ′

0, . . . , δ
′
l−1, δ

′
l;en,n) ∈ C

eν(en)×ν(n),

where kl + 1 ≤ min{ν(n), ν̃(ñ)}, so that
[
Den,n ?eν(en)×sn

]
Ln = Ũ?

enD
′
en,n,

where the matrix on the right-hand side is block lower triangular with diagonal blocks of size r i× ri.
This shows the assertion.
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Figure 9: Nonzero pattern of Ln

large clusters small clusters
Orthogonalization full local full local
lt + 1, ν(nt), ν̃(ñt) 5, 50, 50 5, 50, 51 50, 50, 50 60, 60, 60

N 2.80 · 10−14 2.79 · 10−14 2.49 · 10−14 2.52 · 10−14

B
l
B

iO

Ñ 5.79 · 10−15 9.02 · 10−15 1.47 · 10−14 1.48 · 10−14

lt + 1, ν(nt), ν̃(ñt) 5, 50, 50 5, 50, 51 50, 50, 50 58, 58, 60
N1 1.71 · 10−14 1.70 · 10−14 6.57 · 10−14 9.64 · 10−14

N2 3.31 · 10−14 1.31 · 10−14 1.88 · 10−14 3.25 · 10−14

Ñ1 5.42 · 10−15 5.71 · 10−15 8.15 · 10−14 7.06 · 10−15

B
l
B

iO
C

Ñ2 1.17 · 10−13 4.03 · 10−7 2.80 · 10−14 1.85 · 10−14

Table 2: Results for 50 × 50 random matrix

2.5 Numerical examples

As described on page 13, a check for deflation in Algorithm 6 involves a (high) rank revealing QR
factorization. In our Matlab implementations of BlBiO and BlBiOC, we use the algorithm which
was developed by Chan [3] based on earlier work by Foster [7]. A reference implementation of the

Chan-Foster HRRQR Algorithm can be found in [5]. For this algorithm, the quantity ‖ρ4
en ‖2 can be

bounded as in [3, Theorem 3.1].
Now we present a few test examples. They all have been carried out with Matlab 7 on a

PC with a 2.8GHz Pentium IV processor. First we choose the tolerance for the singularity tests
tolsing = toldefl = 10−6. Now take as matrix A a 50 × 50 random matrix generated by the Matlab
commands rand(’seed’,0) (to reset the pseudo random number generator to its initial state) and
rand(50,50). As right input block 10 random vectors were taken and three random vectors formed
the left input block. Now BlBiO and BlBiOC were run with different options (large/small clus-
ters, full/local orthogonalization). Look-ahead never occurred in this experiment and therefore no
permutations either. With small clusters and full orthogonalization, BlBiO stopped at line 8.9 (i.e.
an A-invariant subspace was found) when z49 and z̃49 were completed. When local orthogonaliza-
tion was used, the iteration continued instead until the maximum number of right and left vectors
(which here was 60) was reached. On the other hand, with large clusters and local orthogonalization,
we obtained 50 right and 51 left vectors which were grouped into 5 clusters containing 10 vectors.
Consequently, one left vector remained ungrouped at the end. For checking the BlBiO recursions,
Table 2 gives the two norms

N :≡ ‖AYnt−1 −YntTnt−1 −Y4
nt

T4
nt−1‖2

Ñ :≡ ‖A?Ỹent−1 − Ỹent
T̃ent−1 − Ỹ4

ent
T̃

4

ent−1‖2,

and we see that the BlBiO recursions are satisfied up to rounding errors. The BlBiOC recursions
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Figure 10: Loss of biorthogonality with small clusters and with full (left) and local orthogonalization
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Figure 11: Loss of biorthogonality with larger clusters and with full (left) and local orthogonalization

are verified by computing the norms

N1 :≡ ‖AYnt−1 −YntLnt−1 −Y4
nt

T4
nt−1‖2

N2 :≡ ‖Ynt −VntUnt‖2

Ñ1 :≡ ‖A?Ỹent−1 − Ỹent
L̃ent−1 − Ỹ4

ent
T̃

4

ent−1‖2

Ñ2 :≡ ‖Ỹent
− Ṽent

Ũent
‖2.

Concerning the relatively large value of Ñ2 in the case of large clusters and local orthogonalization,
we remark that cancellation occurred when the relation Ỹen = ṼenŨen was adapted after completion
of z4 and z̃4. So we conclude that the BlBiOC recursions are also satisfied up to rounding errors.

To check the biorthogonality we show the absolute values of the inner products Ỹ?
ent

Ynt in Figure
10 for small and in Figure 11 for large clusters. Here the scale on the z axis is logarithmic with
base 10. As was to be expected, in Figure 10 local orthogonalization leads to global biorthogonality
being lost quickly but there is still fairly good local biorthogonality. A similar statement also holds
for the A biorthogonality in the case of BlBiOC, see Figure 12.

If we take the same matrix but only one right and left starting vector (which again are random
vectors) then there is no difference between the two look-ahead strategies and since no look-ahead
occurred, the matrices Tnt−1 and T̃ent−1 computed by BlBiO are tridiagonal. To check this, we
set the elements of Tnt−1 on the main and on the first upper and lower codiagonal to zero, and the
resulting matrix (which should be zero) had a 2-norm of 3.9·10−10, and the norm of the corresponding
matrix resulting from T̃ent−1 was 4.0 · 10−11. The following table gives some additional information
about this experiment:
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Figure 12: Loss of A biorthogonality in BlBiOC for small (left) and large (right) clusters (local
orthog.)

Orthogonalization full local
lt + 1, ν(nt), ν̃(ñt) 50, 50, 50 60, 60, 60

N 2.61 · 10−15 1.94 · 10−14

B
l
B

iO

Ñ 5.92 · 10−15 1.79 · 10−14

lt + 1, ν(nt), ν̃(ñt) 50, 50, 50 60, 60, 60
N1 2.85 · 10−15 3.67 · 10−15

N2 1.49 · 10−15 3.16 · 10−14

Ñ1 5.94 · 10−15 5.91 · 10−15

B
l
B

iO
C

Ñ2 2.45 · 10−15 2.29 · 10−14

In all the examples described so far, look-ahead never occurred, whence we now turn to a more
realistic problem. Our matrix is now Arc130 from the Original Harwell sparse matrix test collection
[16]. This matrix has order 130 and is fairly ill-conditioned (its 2-norm condition number is of order
1010). The starting blocks contained 5 right and 3 left random vectors. For the small clusters we get

Orthogonalization full local
lt + 1, ν(nt), ν̃(ñt) 24, 133, 133 13, 123, 123

N 2.76 · 10−10 2.67 · 10−10

B
l
B

iO

Ñ 5.45 · 10−11 5.45 · 10−11

lt + 1, ν(nt), ν̃(ñt) 7, 68, 69 7, 58, 60
N1 6.00 · 10−11 5.98 · 10−11

N2 6.69 · 10−12 1.10 · 10−11

Ñ1 3.37 · 10−11 3.37 · 10−11

B
l
B

iO
C

Ñ2 5.08 · 10−15 3.68 · 10−15

So we see that with full orthogonalization BlBiO only managed to complete 24 clusters although
133 right and left vectors were computed, and similarly with local orthogonalization. The values of
the regular indices were

BlBiO k0, . . . , k8 k9 k10 k11 k12 k13 k14 k15, . . . , k24 k̃lt+1

full orth. 0, . . . , 8 113 114 115 116 117 123 124, . . . , 133 133

local orth. 0, . . . , 8 113 114 115 116 117 123 123

We see that the clusters z8 and z̃8 both contain 105 vectors irrespective of whether full or local
orthogonalization was used. In both cases, the singularity of δ8 was removed by a permutation. With
local orthogonalization, 123 right and left vectors were computed and 117 of them were grouped into
a cluster when the algorithm terminated. On the other hand, with full orthogonalization, 133 right
and left vectors were computed and all of them were grouped into clusters at termination. The
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biorthogonality is lost quickly, even with full orthogonalization. We note that with this matrix the
ordinary Lanczos process with look-ahead also has troubles: If random vectors are used as starting
vectors it only manages to complete two pairs of Lanczos vectors and then starts a cluster which
keeps growing until the iteration limit of 200 steps is reached.

3 Three Lanczos process based block Krylov space methods

In this section we turn to the task of solving multiple systems of linear equations,

Ax(j) = b(j), j = 1, . . . , s (3.1)

with the same nonsingular coefficient matrix A ∈ C
N×N but different right-hand sides b(j) ∈ C

N . It
is always assumed that all right-hand side vectors b(j) are available simultaneously so that (3.1) is
equivalent to the block system

AX = B (3.2)

where B = [ b(1), . . . , b(s) ] and X = [x(1), . . . , x(s) ]. The goal of the present section consists in
constructing block Krylov space methods on the basis of the BlBiO and BlBiOC algorithms
outlined in the previous section. To this end, we will proceed in a way similar to [13] and [4]. Since
the analysis of effects resulting from finite precision arithmetic is anyway far beyond the scope of
this work, we usually assume exact arithmetic and for simplicity also a zero deflation tolerance
for BlBiO(C).

3.1 Fundamentals of block Krylov space methods

For any block X0 of initial guesses for the exact solution X of (3.2) we can form the block of
corresponding initial residuals R0 = B−AX0. Now we define

Definition 17. An iterative procedure is called a block Krylov space method if it generates a sequence

of block iterates Xn = [x
(1)
n , . . . , x

(s)
n ] for n = 0, 1, . . . such that Xn ∈ X0 + B�

n (A,R0) ⊂ C
N×s or

equivalently

x(i)
n ∈ x

(i)
0 + Bn(A,R0), i = 1, . . . , s. (3.3)

Let Rn :≡ B− AXn = [ r
(1)
n , . . . , r

(s)
n ] be the block of residuals corresponding to Xn. From (3.3)

we conclude

r(i)n ∈ r(i)0 + ABn(A,R0), i = 1, . . . , s.

So we use the BlBiO(C) algorithm with y = R0 to get a basis of Bn(A,R0). In line 6.2 or 12.2,
the block R0 is checked for deflation, and s0 is defined to be its numerical rank:

R0 = [y0 y4
0 ]

[
η0

0s−s0×s

]
= y0η0. (3.4)

From this, it follows that Bn(A,R0) = Bn(A,y0), whence (3.3) may be replaced by

x(i)
n ∈ x

(i)
0 + Bn(A,y0), i = 1, . . . , s.

From (3.4), we can also find a basis γ1, . . . , γs−s0 of ker(η0) (where γi = (γi,1, . . . , γi,s)
> ∈ C

s). Since
R0γi = 0, we know the solutions of the systems Axγi

= Bγi where xγi
:≡ X0γi for i = 1, . . . , s. By

multiplying (3.2) by γ1 we get AXγi = Bγi = Axγi
, and if ji is an index such that γi,ji 6= 0, then

at the end of the iteration, we can compute the solution vector x(ji) via

x(ji) =
1

γi,ji

(
xγi

−
s∑

j=1
j 6=ji

x(j)γi,j

)
. (3.5)
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So it is, in general, not necessary to keep all the iterate vectors for all iterations of the block Krylov
method, and every block Krylov method should eliminate the superfluous iterate vectors. We first
introduce some convenient notation and then turn to an algorithm for this elimination.

As in [8], we denote by Xcr
n ∈ C

N×mcr the block of iterates which are retained at step n, after
deflation, for subsequent iterations. Let Jn :≡ {i1, . . . , imcr} be the set containing the column indices

of those linear systems in (3.1) that are present in Xcr
n so that Xcr

n = [x
(i1)
n , . . . , x

(imcr )
n ]. The subset

of linear systems in (3.1) that correspond to the columns of the currently active block Xcr
n can be

written as AXcr = Bcr, where Xcr = [x(i1), . . . , x(imcr ) ] and similarly for Bcr and any other matrix

with superscript cr. In particular, we have Rcr
j = Bcr −AXcr

j = [ r
(i1)
j , . . . , r

(imcr )
j ] for j = 0, 1, . . . .

Now we derive an algorithm which eliminates s − s0 linear systems from the iteration. We first
choose j1 = max1≤j≤s |γ1,j| and remove column j1 from all matrices superscripted cr. Assuming
s− s0 > 1 and using the fact that

r
(j1)
0 = − 1

γ1,j1

s∑

j=1
j 6=j1

r
(j)
0 γ1,j,

we get for 2 ≤ i ≤ s− s0

0 = Rcr
0 γi =

s∑

j=1
j 6=j1

r
(j)
0

(
γi,j −

γi,j1
γ1,j1

γ1,j

)
= Rcr

0 γ̃i,

where

Rcr
0 :≡ [ r

(1)
0 , . . . , r

(j1−1)
0 , r

(j1+1)
0 , . . . , r

(s)
0 ]

γ̃i :≡
(
γi,l −

γi,j1
γ1,j1

γ1,l

)

l=1,...,j1−1,j1+1,...,s

.

So we have eliminated column j1, and ker(Rcr
0 ) is of dimension s− s0 − 1. Furthermore, the vectors

γ̃2, . . . , γ̃s−s0 are elements of ker(Rcr
0 ). Now we show that they are linearly independent. To this

end, assume the contrary so that 0s−1 =
∑s−s0

i=2 λiγ̃i with complex numbers λ2, . . . , λs−s0 which are
not all zero. Now define

γ̃′i :≡




γi,1 − γi,j1
γ1,j1

γ1,1

...

γi,s − γi,j1
γ1,j1

γ1,s


 = γi −

γi,j1
γ1,j1

γ1 ∈ C
s

so that γ̃ ′i is the same as γ̃i except that at position j1, a zero has been inserted. Therefore we obtain

0s =

s−s0∑

i=2

λiγ̃
′
i =

s−s0∑

i=2

λiγi −
( s−s0∑

i=2

λi
γi,j1
γ1,j1

)
γ1,

but as γ1, . . . , γs are linearly independent, it follows that λi = 0 for i = 2, . . . , s− s0. We conclude
that the vectors γ̃2, . . . , γ̃s−s0 form a basis of ker(Rcr

0 ).
This whole process may be repeated if s− s0 − 1 > 1 until we arrive at a block Rcr

0 ∈ C
N×s0 with

full rank s0. From (3.4), it follows that we can write Rcr
0 = y0η

cr
0 where ηcr

0 is nonsingular.
In a similar way, if n > 0, we may determine a basis of ker(Rcr

n ) which enables us to eliminate
further linear systems by using an analogue procedure as described above. As a result, we obtain
mcr ≤ sn. The details of the deflation of Rcr

n for n > 0 depend on the block Krylov method used
and so we will come back to this point later.

BlBiO(C) also requires that we choose some left starting block ỹ, which might be a block of
random vectors with the same number of columns as R0. Now we know from Proposition 6, part
(vi), that for n > 0, the columns of Yn form a basis of the space Bn(A,R0) and consequently (3.3)
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implies the existence of a vector k
(i)
n ∈ C

ν(n) such that x
(i)
n = x

(i)
0 + Ynk

(i)
n (i ∈ Jn), and by setting

kcr
n :≡ [ k

(i1)
n , . . . , k

(imcr )
n ] ∈ C

ν(n)×mcr we obtain

Xcr
n = Xcr

0 + Ynk
cr
n , n = 1, 2, . . . , (3.6)

so that together with Proposition 7 it follows for the corresponding residual blocks

Rcr
n = Rcr

0 −AYnk
cr
n = Rcr

0 −Yn+1Tnk
cr
n . (3.7)

Next we define e0 :≡ [
�
s0 0s0×(ν(n+1)−s0) ]> ∈ C

ν(n+1)×s0 , which yields Rcr
0 = Yn+1e0η

cr
0 , and (3.7)

becomes
Rcr
n = Yn+1(e0η

cr
0 −Tnk

cr
n ). (3.8)

Different block Krylov methods differ in the way the matrix kcr
n ∈ C

ν(n+1)×mcr is determined. We
first turn to BlQMR and then to BlBiCG.

3.2 BlQMR

The idea behind BlQMR is very similar to the nonblock case considered in Subsection 1.3 We
would like to choose the matrix kcr

n in such a way that ‖Rcr
n ‖2 is minimized. In general, however,

the columns of Yn+1 are not orthonormal, so this would be too expensive. We choose to minimize
the quasi-residual, that is

‖e0η
cr
0 −Tnk

cr
n ‖2 = min

kcr∈Cν(n)×mcr
‖e0η

cr
0 −Tnk

cr‖2. (3.9)

Recall that according to Proposition 6, part (i), the columns of Yn+1 are normalized to one so that
(3.9) means that all vectors y0, . . . , yν(n+1)−1 are treated with equal weight in the quasi-minimization.

To perform this quasi-minimization we first need to prove the following fact.

Proposition 18. The matrix Tn generated by BlBiO has full column rank, i. e. rank(Tn) = ν(n).

Proof. Assume that rank(Tn) < ν(n). Then there is a vector x ∈ C
ν(n), not equal to the zero

vector, such that Tnx = 0. Using Proposition 7 we obtain AYnx = Yn+1Tnx = 0, but since A is
nonsingular, this yields Ynx = 0. Now from Proposition 6, part (vi), we know that the columns
of Yn are linearly independent, so that we get x = 0, a contradiction to the assumption made
above.

Let n > 0 and

Tn = Qn+1R
QR
n = Qn+1

[
RQR
n

0sn×ν(n)

]
(3.10)

be a QR decomposition of Tn where Qn+1 ∈ C
ν(n+1)×ν(n+1) is unitary and RQR

n ∈ C
ν(n)×ν(n) upper

triangular. Proposition 18 implies that RQR
n is nonsingular, whence the least squares problem (3.9)

has a unique solution. If we define
[
tcr
1

tcr
2

]
:≡ Q?

n+1e0η
cr
0 , tcr

1 ∈ C
ν(n)×mcr , tcr

2 ∈ C
sn×mcr

it follows that kcr
n = (RQR

n )−1tcr
1 , and equations (3.6) and (3.8) become

Xcr
n = Xcr

0 + Yn(R
QR
n )−1tcr

1 (3.11)

Rcr
n = Yn+1Qn+1

[
0ν(n)×mcr

tcr
2

]
. (3.12)

Equation (3.11) still needs to be transformed into a recursion. To do this, we first have to introduce
an updating scheme for the QR decomposition of Tn (see next subsection). Using the fact that
‖Yn‖2 ≤

√
ν(n) we obtain from (3.12)

‖Rcr
n ‖2 ≤

√
ν(n+ 1) ‖tcr

2 ‖2.
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A program implementing our BlQMR algorithm might thus monitor the quantity on the right-hand
side of this estimate until it becomes comparable to the desired convergence tolerance and then start
computing true residuals for the last few iterations.

Another consequence of (3.12) is that we may determine a basis of ker(Rcr
n ) by computing a basis

of ker(tcr
2 ). This allows us to give a complete statement of the deflation of Rcr

n in the case of BlQMR,
see Algorithm 15. It is formulated in such a way that the case n > 0 is also covered. In this case,

Algorithm 15 Deflation of block X of iterates

Input: Index n, block X of iterates
if n = 0 then /* X = X0. */

Initialize all matrices superscripted cr, including Xcr
0 = X, Rcr

0 = R0.
mcr = s, d = s− s0
Find basis γ1, . . . , γd of ker(η0).

else /* Now X = Xcr
n . */

d = dim(ker(tcr
2 ))

Find basis γ1, . . . , γd of ker(tcr
2 ).

end if
for i = 1, . . . , d do

Determine ji such that |γi,ji | = max1≤k≤mcr |γi,k|.
for k = i+ 1, . . . , d do

gl = γk,l − γi,lγk,ji/γi,ji for l = 1, . . . , ji − 1, ji + 1, . . . ,mcr

γk = [ g1, . . . , gji−1, gji+1, . . . , gmcr ]
end for
Eliminate column ji from all matrices superscripted cr.
mcr = mcr − 1

end for

the block Xcr
n is passed in place of X, and in view of (3.12), we have to determine a basis of ker(tcr

2 ).
In any case, after termination we have mcr ≤ sn.

3.2.1 Block QR decomposition

An important feature of BlQMR is the fact that the QR decomposition appearing in (3.10) can be
updated as n increases. In this subsection we present an algorithm based on Householder reflections
which was outlined in [19] for the case where the coefficient matrix A is hermitian.

We first write down the matrix Tn in a form more convenient for our current task. To this end we
note that when the right block yj (where 1 ≤ j ≤ n) is computed, the coefficients τ 0,j−1, . . . , τ j,j−1

form columns ν(j−1)+1, . . . , ν(j) of Tn. So in the first of these columns the elements 1, . . . , φ(ν(j−
1)+1) are zero according to Proposition 8. Hence element φ(ν(j−1)+1)+1 in column ν(j−1)+1
is the first to lie within the nonzero pattern of Tn as shown in Figure 4, and if we define m(p) :≡
n(φ(ν(p)+1)+1)−1 for 0 ≤ p ≤ nt−2 (since Tnt−1 has nt−1 block columns), we obtain τ i,j−1 = 0
for i = 0, . . . ,m(j − 1) − 1. Now we set n0 :≡ min{n | m(n) > 0}, so that we have

Tn =




τ 0,0 . . . τ 0,n0−1 0ν(m(n0))×sn0
. . . 0ν(m(n−1))×sn−1

τ 1,0
... τ

m(n0),n0
τ

m(n−1),n−1

. . .
...

...
...

τ n0,n0−1
...

...
τ n0+1,n0 τn−1,n−1

τn,n−1




Our goal is to determine the unitary matrix Qn+1 in its factored form. With Q1 :≡ �
s0 we introduce

the recurrence relation

Qn+1 :≡
[

Qn 0ν(n)×sn

0sn×ν(n)
�
sn

]
Un
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for n = 1, 2, . . . , where

Un :≡
[ �

ν(n−1) 0ν(n−1)×sn−1+sn

0sn−1+sn×ν(n−1) U′
n

]
= block diag(

�

ν(n−1),U
′
n).

Here U′
n is a unitary matrix of size sn−1 + sn. Consequently we can write

Qn+1 =

[
Qn(:, 1:ν(n− 1)) Qn(:, ν(n− 1) + 1:ν(n))U′

n(1:sn−1, :)
0sn×ν(n−1) U′

n(sn−1 + 1:sn−1 + sn, :)

]
. (3.13)

Assume for the moment that we are given a sequence of such unitary transformations U ′
1, . . . ,U

′
n.

Then Qn+1 can be computed by the scheme shown in Algorithm 16. Now the effect of Q?
n is to

Algorithm 16 Computation of Qn+1

Input: Unitary matrices U′
1, . . . ,U

′
n, where U′

i is of order si−1 + si.
Qn+1 =

�

ν(n+1)

for i = 1, . . . , n do
Qn+1(1:ν(i), ν(i − 1) + 1:ν(i+ 1)) = Qn+1(1:ν(i), ν(i− 1) + 1:ν(i))U′

i(1:si−1, :)
Qn+1(ν(i) + 1:ν(i+ 1), ν(i − 1) + 1:ν(i+ 1)) = U′

i(si−1 + 1:si−1 + si, :)
end for

annihilate all subdiagonal elements of Tn except those in the last sn−1 columns:

block diag(Q?
n,

�
sn)Tn =




θ0,0 . . . θ0,n0−1 0ν(m(n0)−1)×sn0
. . . 0ν(m(n−2)−1)×sn−2

0ν(m(n−1)−1)×sn−1

. . .
... θ

m(n0)−1,n0
θ

m(n−2)−1,n−2 θ
m(n−1)−1,n−1

θn0−1,n0−1
...

...
...

θn0,n0

...
...

θn−2,n−2 θn−2,n−1

τ ′
n−1,n−1

τ n,n−1




Here θi,j ∈ C
si×sj , the blocks θi,i are upper triangular and some (or even all) of the zero matrices

in the first row may be empty. The last block column of this matrix is obtained as follows:




θ
m(n−1)−1,n−1

...
θn−2,n−1

τ ′
n−1,n−1


 =block diag(

�
s
m(n−1)−1+s

m(n−1)+···+sn−3 ,U
′ ?
n−1)

block diag(
�
s
m(n−1)−1+···+sn−4 ,U

′ ?
n−2,

�
sn−1) . . .

block diag(U′ ?
m(n−1),

�
s
m(n−1)+1+···+sn−1)




0s
m(n−1)−1×sn−1

τ
m(n−1),n−1

...
τn−1,n−1


 .

Now we have to construct U′
n such that

[
τ ′
n−1,n−1

τ n,n−1

]
= U′

n

[
θn−1,n−1

0sn×sn−1

]
(3.14)

where θn−1,n−1 ∈ C
sn−1×sn−1 is upper triangular. Before describing the construction of U′

n, however,
we state the algorithm for updating the QR factorization of Tn , see Algorithm 17.
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Algorithm 17 Updating the QR factorization of Tn

Input: QR decomposition of Tn−1: Tn−1 = QnR
QR
n−1.

Output: QR decomposition of Tn: Tn = Qn+1R
QR
n .

/* Initializations: */
for i = m(n− 1), . . . , n− 1 do

θi,n−1 = τ i,n−1

end for
if m(n− 1) > 0 then

θ
m(n−1)−1,n−1 = 0s

m(n−1)−1×sn−1

first = m(n− 1) − 1
else

first = 0
end if
/* Apply U′

first, . . . ,U
′
n−1 to the last block column of Tn: */

for i = first, . . . , n− 2 do[
θi,n−1

θi+1,n−1

]
= U′ ?

i+1

[
θi,n−1

θi+1,n−1

]

end for
τ ′
n−1,n−1 = θn−1,n−1

Compute U′
n and the new θn−1,n−1 according to Algorithm 19.

Compute Qn+1 according to Algorithm 16.

r =
[
0>
ν(first)×sn−1

θ>
m(n−1)−1,n−1 . . . θ>

n−2,n−1

]>

RQR
n =

[
RQR
n−1 r

0sn−1×ν(n−1) θn−1,n−1

]

Our next task is to find a recursion for Xcr
n which is to be used instead of (3.11). First we set

[
t′ cr1

t′ cr2

]
:≡ Q?

ne0η
cr
0 , t′ cr1 ∈ C

ν(n−1)×mcr , t′ cr2 ∈ C
sn−1×mcr . (3.15)

Here e0 = [
�
s0 0s0×ν(n)−s0 ]>. The reader will have noted that the symbol e0 was previously defined

to have ν(n + 1) rows rather than ν(n), but since it is clear from the context how many rows the
matrix e0 has, we will use the same symbol for both cases. Now, using relation (3.13), we get

Q?
n+1e0η

cr
0 =

[
Q?
n(1:ν(n− 1), :) 0ν(n−1)×sn

U′ ?
n (:, 1:sn−1)Q

?
n(ν(n− 1) + 1:ν(n), :) U′ ?

n (:, sn−1 + 1:sn−1 + sn)

]
e0η

cr
0

=

[
Q?
n(1:ν(n− 1), 1:s0)η

cr
0

U′ ?
n (:, 1:sn−1)Q

?
n(ν(n− 1) + 1:ν(n), 1:s0)η

cr
0

]
.

The second equality follows from the fact that the first update happens when n = 2 so that ν(n) > s0.
Comparing this with (3.15), it follows that

[
tcr
1

tcr
2

]
=

[
t′ cr1

U′ ?
n (:, 1:sn−1)t

′ cr
2

]
,

which may also be written as

tcr
1 =

[
t′ cr1

U′ ?
n (1:sn−1, 1:sn−1)t

′ cr
2

]

tcr
2 = U′ ?

n (sn−1 + 1:sn−1 + sn, 1:sn−1)t
′ cr
2 (3.16)

So the first ν(n − 1) components of tcr
1 are not changed. For n ≥ 1, we now define Pn :≡
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[p0, . . . , pν(n)−1] :≡ Yn(R
QR
n )−1 so that (3.11) can be rewritten as

Xcr
n = Xcr

0 + Pnt
cr
1 = Xcr

0 + [Pn−1 pn−1 ]

[
t′ cr1

U′ ?
n (1:sn−1, 1:sn−1)t

′ cr
2

]

= Xcr
n−1 + pn−1U

′ ?
n (1:sn−1, 1:sn−1)t

′ cr
2 . (3.17)

Here by pn−1 we denote the last sn−1 columns of Pn. In order to perform this update, we need first
need to compute pn−1. Considering the last block column of the equation PnR

QR
n = Yn we get

Pn




0ν(m(n−1)−1)×sn−1

θ
m(n−1)−1,n−1

...
θn−2,n−1

θn−1,n−1




= yn−1

and therefore

pn−1 =


yn−1 −

n−2∑

j=max{m(n−1)−1,0}

pjθj,n−1


θ−1

n−1,n−1. (3.18)

This recurrence is short in the sense that the blocks p0, . . . ,pm(n−1)−2 are not needed.

Now we insert some remarks about complex Householder transformations [10, 19]. Let y =
(ξ1, . . . , ξn)

> be a complex vector. We look for a unitary matrix U ∈ C
n×n such that Uy = αe1

where α ∈ C. If ξ2 = · · · = ξn = 0 we set U =
�
n and are done. Otherwise, as U is unitary, it

follows that |α| = ‖y‖2. For v ∈ C
n the matrix

Hv =
�
n − 2

vv?

〈v, v〉 =
�
n + βvv?

where 〈v, w〉 :≡ v?w and β = −2/〈v, v〉 ∈ R is called a Householder reflection. The matrix Hv

describes a reflection on the hyperplane of C
n orthogonal to v. We note that Hv is hermitian and

unitary, i. e. H?
v = Hv and HvH

?
v =

�
n. Application of Hv to a vector y gives Hvy = y + β〈v, y〉v.

According to our goal, given y we want to find a v ∈ C
n such that Hvy = αe1. This yields

y − αe1 = −β〈v, y〉v (3.19)

so in particular v ∈ span{y−αe1}. Since Hv = Hλv for every λ ∈ C\{0}, we may choose v = y−αe1.
Now

〈v, y〉 = 〈y − αe1, y〉 = ‖y‖2
2 − αξ1.

On the other hand, (3.19) becomes v = −β〈v, y〉v, which gives

〈v, y〉 = −β−1 ∈ R.

Let ξ1 = |ξ1|eiθ and α = ‖y‖2e
iθα . Then

〈v, y〉 = ‖y‖2
2 − ‖y‖2|ξ1|ei(θ−θα)

Since 〈v, y〉 must be real, we are left with the two following choices:

• α = −‖y‖2e
iθ, then the first component of v and β are given by

ξ1 − α =
(
|ξ1| + ‖y‖2

)
eiθ

β = −〈v, y〉−1 =
−1

‖y‖2

(
‖y‖2 + |ξ1|

) .
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• α = +‖y‖2e
iθ, now the first component of v is

ξ1 − α =
(
|ξ1| − ‖y‖2

)
eiθ =

|ξ1|2 − ‖y‖2
2

|ξ1| + ‖y‖2
eiθ =

−
(
|ξ2|2 + · · · + |ξn|2

)

|ξ1| + ‖y‖2
eiθ (3.20)

where the last expression prevents cancellation. The formula for β is now

β = −〈v, y〉−1 =
−1

‖y‖2

(
‖y‖2 − |ξ1|

) =
−

(
|ξ1| + ‖y‖2

)

‖y‖2

(
|ξ2|2 + · · · + |ξn|2

) . (3.21)

The second choice has the property that if α is real, then it is also positive, and so we adopt it
in Algorithm 18, which is similar to [10, Algorithm 5.1.1]. We note that in line 18.2, a scaling
should first be applied in order to prevent a possible overflow. In line 18.18 we ensure that the first

Algorithm 18 [v, β] = house(y)

Input: Vector y ∈ C
n

Output: Vector v ∈ C
n with v(1) = 1 and β ∈ R such that Hvy = αe1.

1: n = length(y)
2: σ = y(2:n)?y(2:n)

3: v =

[
1

y(2:n)

]

4: if σ = 0 then
5: /* Nothing to do, so set Hv to the identity: */
6: β = 0
7: else
8: µ =

√
|y(1)|2 + σ. /* µ = ‖y‖2 */

9: if y(1) 6= 0 then
10: θ = arg(y(1)).
11: else
12: θ = 0.
13: end if
14: /* Now compute v(1) according to (3.20). */

15: v(1) =
−σ

|y(1)| + µ
eiθ

16: /* Compute β via (3.21). */
17: β = −

(
|y(1)| + µ

)
|v(1)|2/(µσ)

18: v = v/v(1)
19: end if

component of v is one, which allows us to replace the zeroed elements of a matrix by the essential
part of v.

The next step is to outline the computation of U′
n on the basis of Algorithm 18. As an example,

assume that sn−1 = 4 and sn = 3. According to (3.14), we consider the matrix

[
τ ′
n−1,n−1

τ n,n−1

]
=




◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦
◦ ◦ ◦ ◦




.

Now we have to find Householder matrices H1,n, . . . ,Hsn−1,n with the property that

[
θn−1,n−1

0sn×sn−1

]
= Hsn−1,n . . .H1,n

[
τ ′
n−1,n−1

τ n,n−1

]
= U′ ?

n

[
τ ′
n−1,n−1

τn,n−1

]
,
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in particular U′
n = H1,n . . .Hsn−1,n. In the above example, assume that the matrices H1,n und H2,n

have been determined so that

H2,nH1,n

[
τ ′
n−1,n−1

τn,n−1

]
=




◦ ◦ ◦ ◦
◦ ◦ ◦

• ◦
• ◦
• ◦
• ◦
• ◦




.

The highlighted vector now determines the next Householder matrix H3,n = block diag(
�

2,H
′
3,n).

To get H′
3,n we run Algorithm 18 with the highlighted vector as input. The resulting algorithm is

formulated as Algorithm 19. After termination, in the preceding example, the matrix M has the
structure shown in the following Figure, where the bullets mark the matrix θn−1,n−1. Additionally,
the stars represent the essential part of the Householder vector of H′

3,n.




• • • •
◦ • • •
◦ ◦ • •
◦ ◦ ? •
◦ ◦ ? ◦
◦ ◦ ? ◦
◦ ◦ ? ◦




Algorithm 19 Computation of U′
n

Input: Matrices τ ′
n−1,n−1 and τ n,n−1

Output: Matrix containing θn−1,n−1 in the upper triangle and the essential parts of the Householder
vectors of H1,n, . . . ,Hsn−1,n in the (strictly) lower triangle.
/* Initialization: */

M =

[
τ ′
n−1,n−1

τ n,n−1

]

for i = 1, . . . , sn−1 do
[β, v] = house(M(i:sn−1 + sn, i))
/* Now H′

i,n =
�
sn−1+sn−i+1 + βvv?. */

M(i:sn−1 + sn, i:sn−1) = M(i:sn−1 + sn, i:sn−1) + βvv?M(i:sn−1 + sn, i:sn−1)
/* Save essential part of v in the lower triangle of M: */
M(i+ 1:sn−1 + sn, i) = v(2:sn−1 + sn + i+ 1)

end for

3.2.2 Statement of BlQMR

In the preceding subsections, all the low level operations involved in the BlQMR algorithm have
been described so that we now turn to a high level description of BlQMR, see Algorithm 20, thereby
concentrating on points not already covered in the previous subsections. First, we need a variable
to store the index of the matrix Tn which has been QR decomposed; we call it nqr. Since T1 is the
first matrix which is decomposed, nqr is initialized to zero. If nqr > 0, then the QR factorization of
Tnqr

has been computed.
When new clusters have been built, we check whether this has lead to new right blocks being

available. At line 20.22, the number of the last available right block is computed (recall that at this
point, kl is the last final regular index, so if nmax > 0, then ynmax−1 is the last right block which will
not change any more). If new blocks turn out to be available, the for loop on line 20.23 is executed
and performs one or several updates of the solution block Xcr

i . Then the convergence is checked,
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which means that we either estimate or compute the maximal relative unpreconditioned residual
norm. If the convergence criterion is satisfied, it is necessary to restore the eliminated solutions
according to (3.5). Finally, at line 20.29, we check whether some columns of Xcr

i can be eliminated.

Algorithm 20 BlQMR

Input: Matrix A ∈ C
N×N , block B′ ∈ C

N×s′ of right-hand sides
1: Check B′ for deflation → B, s.
2: Choose block X0 ∈ C

N×s of initial guesses and compute initial residuals R0 = B−AX0.
3: Check R0 for deflation → y0, ν(1), s0.
4: Choose block ỹ ∈ C

N×s of left Lanczos vectors and check it for deflation → ỹ0, ν̃(1), s̃0.
5: Execute Algorithm 15 with n = 0 and X = X0.
6: /* Initializations, including: */
7: l = 0, n = 1, ñ = 1, k0 = 0, nqr = 0.

8: LA1 Fix initial choice for k1 under the condition 1 ≤ k1 ≤ ν(1).
9: loop

10: /* 1) Compute enough ỹ vectors: */
11: Extend left block Krylov space according to Algorithm 7.
12: /* 2) Test whether current value of kl+1 leads to a nonsingular δl: */
13: Set zl = [ ykl

, . . . , ykl+1−1 ], z̃l = [ ỹkl
, . . . , ỹkl+1−1 ] and rl = kl+1 − kl.

14: Compute δl = z̃?l zl and ∆l = rl − rank(δl).
15: Execute lines 14 to 25 of Algorithm 6.
16: if ∆l > 0 then
17: LA2 Increase kl+1.
18: else
19: Orthogonalize [ ykl+1

, . . . , yν(n)−1 ] against z̃l and [ ỹkl+1
, . . . , ỹeν(en)−1 ] against zl. Renor-

malize the orthogonalized vectors and adapt Tn and T̃en.
20: LA3 Fix new initial choice for kl+2.
21: Set l = l + 1.
22: Compute nmax = max {n | ν(n) ≤ kl}.
23: for i = nqr + 1, . . . , nmax do
24: Obtain QR decomposition of Ti according to Algorithm 17.
25: Compute pi−1 via (3.18).
26: Xcr

i = Xcr
i−1 + pi−1U

′ ?
i (1:si−1, 1:si−1)t

cr
2

27: tcr
2 = U′ ?

i (si−1 + 1:si−1 + si, 1:si−1)t
cr
2

28: Check convergence
29: Execute Algorithm 15 with n = i and X = Xcr

i .
30: end for
31: nqr = nmax

32: end if
33: /* 3) Compute enough y vectors: */

34: LA4 Fix minimum number of right vectors → minnum.
35: Extend right block Krylov space according to Algorithm 8.
36: end loop

3.3 BlBiCG

In this part, we construct a version of BlBiCG based on the variants of the block Lanczos process
developed in the first section of this work. In contrast to the algorithms presented in [17, 20],
deflation of right or left Lanczos vectors does not lead to a restart of the process, and we also have
a procedure for overcoming (near) breakdowns at our disposal. As outlined in [13] for the nonblock
case, there are also several variants of the BlBiCG method of which we consider BlBiORes and
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BlBiOMin. We first give some remarks which apply to both of them.
As in the nonblock case, BlBiCG is based on a Galerkin condition. Let Z̃l :≡ span{ỹ0, . . . , ỹkl−1}

and assume that there is an index n such that kl = ν(n). If

C
N = ABn ⊕ Z̃⊥

l (3.22)

we may conclude by [4, Lemma 2.2] that the oblique projection onto ABn along Z̃⊥
l exists. So in

this case there is a unique block kcr
n ∈ C

ν(n)×sn such that Rcr
n = Rcr

0 −AYnk
cr
n satisfies the Galerkin

condition Rcr
n ⊥ Z̃l. It follows that r

(i)
n ∈ Bn+1 	 Bn for i ∈ Jn and by (3.8)

0
!
= Z̃?lR

cr
n = Z̃?lYn+1(e0η

cr
0 −Tnk

cr
n )

=




δ0

. . . 0kl×sn

δl−1


 (e0η

cr
0 −Tnk

cr
n ) = e0η

cr
0 −Tnk

cr
n ,

where Tn denotes the first ν(n) rows of Tn. As kcr
n is uniquely determined by the above Galerkin

condition, the system
Tnk

cr
n = e0η

cr
0 (3.23)

must have a unique solution and hence Tn is nonsingular. If, on the other hand, condition (3.22) is
not satisfied, then Tn may be singular and it may happen that no approximate solution Xn exists
at this step.

The solution of (3.23), if it exists, is done by combining the computation of the LU decomposition
of Tn with updating the blocks of the solution vectors and the residuals. First, this process is
described for BlBiORes.

3.3.1 BlBiORes

Since BlBiORes is based on BlBiO, we need a procedure for updating the LU decomposition of
Tn. By making use of the structure of Tn, we are lead to a slight modification of the standard block
LU decomposition [10, Section 3.2.10] which incorporates pivoting within the block rows of Tn. This
makes sure that the length of the recursions for updating the blocks of iterates and residuals is not
increased by pivoting. We first describe the details of this process and then its limitations.

The first LU decomposition is done when T1 = τ 0,0 is available, and we use pivoting here; therefore
we have π0τ 0,0 = L1U1 with a permutation matrix π0 of order s0. Next we assume that we already
have computed an LU decomposition of Tn, namely PnTn = LnUn. We split Tn+1 as follows

Tn+1 =

[
Tn t1

t2 τn,n

]

where

t1 =




0ν(m(n))×sn

τ
m(n),n

...
τ n−1,n


 , t2 =

[
0sn×ν(n−1) τ n,n−1

]
.

According to our requirements about pivoting, we have the following ansatz for the permutation
matrix Pn+1

Pn+1 =

[
Pn 0ν(n)×sn

0sn×ν(n) πn

]
= block diag(π0, . . . ,πn)

with permutation matrices πi ∈ R
si×si . By partitioning Ln+1 and Un+1 in the same way, we get

Tn+1 = P?
n+1Ln+1Un+1 =

[
P?
n 0ν(n)×sn

0sn×ν(n) π?n

] [
Ln 0ν(n)×sn

L21 L22

] [
Un U12

0sn×ν(n) U22

]

=

[
P?
nLnUn P?

nLnU12

π?nL21Un π?
nL21U12 + π?

nL22U22

]
.
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So we obtain P?
nLnU12 = t1 and need to solve the triangular system

LnU12 =




0ν(m(n))×sn

π
m(n)τm(n),n

...
πn−1τ n−1,n


 (3.24)

for U12. The next step is to solve π?
nL21Un = t2 for π?

nL21 (the permutation matrix πn is not
known at this point). The lower right part yields π?

nL22U22 = τ n,n − π?
nL21U12, i. e. we have

to find an LU decomposition (with pivoting) of the matrix on the right-hand side. Finally, L21 is
computed.

The LU decomposition with this sort of pivoting works as long as Tn is nonsingular. If Tn is
singular, we get a singular matrix Un, and then every Un′ with n′ > n computed by the above
scheme is also singular. So if m is the smallest index greater than n such that Tm is nonsingular,
then the above scheme fails to produce an LU decomposition of Tm. Consequently, BlBiORes
breaks down as soon as a singular Tn occurs.

Now we turn to the derivation of the recursions for the iterate and residual blocks. If we define

k′
n :≡ Unk

cr
n , then (3.23) becomes Lnk

′
n = Pne0η

cr
0 . Since k′

n may be partitioned as k′
n =

[
k′
n−1

k′
n−1,n

]
,

where k′
n−1,n is of size sn−1 × sn, we get from Lnk

′
n = Pne0η

cr
0

k′
1 = L−1

1 P1e0η
cr
0 ,

k′
n−1,n = −l−1

n−1,n−1ln−1,n−2k
′
n−2,n−1 for n ≥ 2. (3.25)

Here, k′
n−2,n−1 denotes the last sn−2 rows of k′

n−1. Next, we have to derive the recursion for the
block Xcr

n of iterates:

Xcr
n = Xcr

0 + Ynk
cr
n = Xcr

0 + YnT
−1
n e0η

cr
0 = Xcr

0 + YnU
−1
n k′

n

= Xcr
0 + Vnk

′
n (3.26)

with Vn :≡ YnU
−1
n . If we partition Vn in the usual way as Vn = [v0, . . . ,vn−1 ], then we obtain

v0 = y0u
−1
0,0

vn =
(
yn −

n−1∑

j=m(n)

vjuj,n

)
u−1
n,n for n ≥ 1,

(3.27)

where all the linear systems which have to be solved involve upper triangular matrices. Now, using
(3.25), we may write (3.26) as

Xcr
n = Xcr

n−1 − vn−1l
−1
n−1,n−1ln−1,n−2k

′
n−2,n−1.

By multiplying (3.27) with A, we obtain

Av0 = Ay0u
−1
0,0

Avn =
(
Ayn −

n−1∑

j=m(n)

Avjuj,n

)
u−1
n,n for n ≥ 1,

(3.28)

and since the matrix vector products Ayi have to be computed anyway, we may use (3.28) to
compute Avi, which allows us to update the residual block according to

Rcr
n = Rcr

n−1 −Avn−1l
−1
n−1,n−1ln−1,n−2k

′
n−2,n−1.

Once the residuals are computed, we need to check whether some columns of Xcr
n (which at this point

has sn−1 columns) can be deflated. If sn < sn−1, we have to find sn−1 − sn elements of ker(Rcr
n ),

which can be done by computing sn−1−sn left singular vectors of Rcr
n corresponding to zero singular

values. See Algorithm 21 for a statement of BlBiORes.
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Algorithm 21 BlBiORes

Input: Matrix A ∈ C
N×N , block B′ ∈ C

N×s′ of right-hand sides
Check B′ for deflation → B, s.
Choose block X0 ∈ C

N×s of initial guesses and compute initial residuals R0 = B −AX0.
Check R0 for deflation → y0, ν(1), s0.
Choose block ỹ ∈ C

N×s of left Lanczos vectors and check it for deflation → ỹ0, ν̃(1), s̃0.
Execute Algorithm 15 with n = 0 and X = X0.
/* Initializations, including: */
l = 0, n = 1, ñ = 1, k0 = 0, nlu = 0.
LA1 Fix initial choice for k1 under the condition 1 ≤ k1 ≤ ν(1).
loop

/* 1) Compute enough ỹ vectors: */
Extend left block Krylov space according to Algorithm 7.
/* 2) Test whether current value of kl+1 leads to a nonsingular δl: */
Set zl = [ ykl

, . . . , ykl+1−1 ], z̃l = [ ỹkl
, . . . , ỹkl+1−1 ] and rl = kl+1 − kl.

Compute δl = z̃?l zl and ∆l = rl − rank(δl).
Execute lines 14 to 25 of Algorithm 6 (BlBiO).
if ∆l > 0 then

LA2 Increase kl+1.
else

Orthogonalize [ ykl+1
, . . . , yν(n)−1 ] against z̃l and [ ỹkl+1

, . . . , ỹeν(en)−1 ] against zl. Renormal-

ize the orthogonalized vectors and adapt Tn and T̃en.
LA3 Fix new initial choice for kl+2.
Set l = l + 1.
Execute Algorithm 22.

end if
/* 3) Compute enough y vectors: */

LA4 Fix minimum number of right vectors → minnum.
Extend right block Krylov space according to Algorithm 8.

end loop

53



Algorithm 22 Updating solutions and residuals in BlBiORes

Compute nmax = max {n | ν(n) ≤ kl}.
for i = nlu + 1, . . . , nmax do

if i = 1 then
Compute LU decomposition of τ 0,0 with pivoting: π0τ 0,0 = L1U1.

else
Solve (3.24) (with n replaced by i− 1) for U12.
Solve tUi−1 = t2 for t.
Compute LU decomposition of τ i−1,i−1 − tU12 with pivoting: π?

i−1L22U22 = τ i−1,i−1 −
tU12.
Compute L21 = πi−1t.

end if
Compute vi−1 via (3.27).
if i = 1 then

Solve L1k
′ = π1e0η

cr
0 for k′.

else
Solve li−1,i−1k

′ = −li−1,i−2k
′ for k′.

end if
Xcr
i = Xcr

i−1 + vi−1k
′

Compute Avi−1 via (3.28).
Rcr
i = Rcr

i−1 −Avi−1k
′

Check convergence
if si − si−1 > 0 then

Compute si − si−1 elements of ker(Rcr
i ).

Eliminate si − si−1 columns from Xcr
i .

end if
end for
nlu = nmax
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3.3.2 BlBiOMin

Another option for implementing the BlBiCG method is to start from BlBiOC instead of BlBiO.
This means that we already have the LU decomposition of Tn. Consequently, we only need to outline
how to update the block k′

n. Algorithm 23 gives the statements which are executed in addition to
BlBiOC.

Algorithm 23 BlBiOMin

1: During the initializations:
2: Set nsol = 0, nreg = [ 0 ], lreg = [ 0 ].
3: After line 12.39:
4: Check if there is an index i such that kl = ν(i).
5: if there is such in index i then
6: nreg = [ nreg i ]
7: lreg = [ lreg l ]
8: end if
9: tmp = find(nreg > nsol & nreg < n)

10: if tmp is nonempty then
11: ind = tmp − 1 /* nreg(ind) = nsol */
12: if nsol = 0 then
13: Compute η0 such that R0 = y0η0.

14: rhs =

[ �
s0

0ν(nreg(2))−s0×s0

]
η0

15: kpr = 0ν(nreg(2))×mcr

16: start = 0
17: shift = 0
18: else
19: rhs = 0ν(nreg(ind+1))−ν(nsol)×mcr

20: Set kpr to the last snsol−1 rows of kpr.
21: start = ν(nsol − 1)
22: shift = ν(nsol)
23: end if
24: for j = lreg(ind), . . . , lreg(ind + 1) − 1 do
25: tmp1 = L(kj + 1:kj+1, start + 1:kj)
26: tmp2 = L(kj + 1:kj+1, kj + 1:kj+1)
27: Solve tmp2 t = rhs(kj + 1 − shift:kj+1 − shift, :) − tmp1 ∗ kpr(1:kj − start, :) for t →

kpr(kj + 1 − start:kj+1 − start, :).
28: end for
29: for j = nsol, . . . ,nreg(ind + 1) − 1 do
30: Xcr

j+1 = Xcr
j + vjkpr(ν(j) + 1 − start, ν(j + 1) − start, :)

31: Rcr
j+1 = Rcr

j −Avjkpr(ν(j) + 1 − start, ν(j + 1) − start, :)
32: Check convergence.
33: Check Xcr

j+1 for deflation.
34: nsol = nreg(ind + 1)
35: lsol = lreg(ind + 1)
36: end for
37: end if

During the initializations, we execute line 23.2. The variable nsol gives the largest n such that Xcr
n

has been computed. Then there are two new arrays nreg and lreg which save all the indices i and
l such that ν(i) = kl. Since ν(0) = k0 = 0, they initially both contain zero. Lines 23.4 to 23.37 are
executed whenever new clusters have been completed. Our first task then is to check whether there
is an index i with kl = ν(i), and if yes, arrays nreg and lreg are enlarged. The statement in line
23.9 checks whether the solution Xcr

nsol can be updated, which is the case if and only if some element
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ν(nsol)+1 ν(nreg(ind+1))

Lν(nsol) 0

start snsol−1

shift

Figure 13: Structure of Lν(nreg(ind+1))

of nreg is larger than nsol and smaller than n. The latter of these two conditions is necessary
because at this point, Tn−1 ∈ C

ν(n−1)×ν(n−1) has been computed so we can at most compute Xcr
n−1.

But kl might be equal to ν(n), and in this case, we have to prevent n from being added to tmp.
When line 23.9 has been executed, tmp is an array containing all those indices i such that nreg(i)
satisfies the two conditions.

It is not hard to see that tmp actually contains at most one element. For if there were two different
elements i1 and i2 of tmp, then index i1 would already have been treated at the latest when the
regular index klreg(i2) was fixed and then nsol would have been set at least to i1.

If nsol is still zero, we compute k′
nreg(2) by solving

Lnreg(2)k
′
nreg(2) =

[ �
s0

0ν(nreg(2))−s0×s0

]
η0

in the for loop starting in line 23.24. The zero matrix in the right-hand block may be empty. The
block k′

nreg(2) allows us to compute Xcr
1 , . . . ,X

cr
nreg(2), see the loop in line 23.29.

In case nsol is positive, we have computed k′
nsol and want to obtain k′

nreg(ind+1) where ind is

chosen such that nreg(ind) = nsol. The two variables start and shift are chosen as shown in
Figure 13. We see that only the last snsol−1 rows of k′

nsol are still needed whence start (which will
be used with kpr) must be set to ν(nsol− 1). Similarly, only rows ν(nsol) + 1 to ν(nreg(ind + 1)) of
rhs are needed for the present update (and these rows are all zero) so that shift obtains the value
ν(nsol). Finally, when k′

nreg(ind+1) is computed, we may compute Xcr
nsol, . . . ,X

cr
nreg(ind+1).

3.4 Numerical experiments

All the experiments described in this subsection have been carried out with Matlab 7 on a PC with
a 2.8GHz Pentium IV processor running Linux. The following preconditioners have been used:

• The SSOR preconditioner where the preconditioned system ÂX̂ = B̂ was given by

Â :≡ M−1
1 AM−1

2 , X̂ :≡ M2X, B̂ :≡ M−1
1 B,

where

M1 :≡ (D + L)D−1/2, M2 :≡ D−1/2(D + U)

if we temporarily denote the diagonal, strictly lower and strictly upper triangular parts of A by
D, L and U, respectively. This preconditioner was used for all experiments shown in Table 4.

• An incomplete LU factorization as computed by the Matlab command [L,U] = luinc(A,’0’).
The Matlab Help says that the first output argument is a matrix L of the form L = PL̃ with
a permuation matrix P and a lower unit triangular matrix L̃. The second output is an upper
triangular matrix U. The sparsity patterns of L, U and A are not comparable, but LU agrees
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with A over the sparsity pattern of A. If U is well-conditioned the preconditioned system
ÂX̂ = B̂ is now given by

Â :≡ L−1AU−1, X̂ :≡ UX, B̂ :≡ L−1B.

In Table 5, this preconditioner will be denoted by “ILU(’0’)”.
• Incomplete LU factorization with drop tolerance (ILUT) d =

√
ε where ε ≈ 2.2 · 10−16 is

the machine epsilon. According to Matlab’s help, this factorization is computed in the same
(column-oriented) manner as the LU factorization except after each column of L and U has
been calculated, all entries in that column which are smaller in magnitude than the local drop
tolerance, which is d · ‖A(:, i)‖, are dropped from L or U. The diagonal elements of U are
not affected by this rule so that we also replace zero diagonal entries of U by the local drop
tolerance. The matrices L and U can be computed in Matlab by first defining a structure opt

as follows

opt.udiag = 1;

opt.droptol = sqrt(eps);

Then [L,U] = luinc(A,opt) yields the two factors.

For the convergence tests, we always computed the maximum unpreconditioned residual norm relative
to the initial residual, i.e.

max
1≤i≤s0

‖r(i)n ‖2

‖r(i)0 ‖2

, (3.29)

where r
(i)
n is the unpreconditioned residual of system i. Convergence was achieved if this maximum

was at most 10−6. In all the plots below, the above maximum is plotted on the y axis.
In order to avoid extremely large clusters, we limited the cluster size to 3s0 in all experiments

described in this subsection. This means that if a cluster contained 3s0 or more vectors, it was
completed irrespective of the condition of the corresponding δ l (and δ′

l in the case of BlBiOMin).
Moreover, the maximum number of right and left Lanczos vectors was limited to 100s0 (200s0 for
matrix Memplus) so that the iteration stopped whenever ν(n) or ν̃(ñ) got larger than this limit.
Finally, for all methods, the deflation tolerance used in the HRRQR decomposition was set to 10−6.

A Matlab implementation of the block QMR algorithm developed in [8] (denoted FM–BlQMR
from now on) can be found on the website [21]. It turns out, however, that this program has the
following features:

• It does not contain look-ahead and is therefore susceptible to the Lanczos breakdown.
• Although the FM–BlQMR algorithm allows the blockwise computation of the matrix vector

products (MVs), this is not implemented. Instead, all MVs are computed vectorwise.
• For the convergence checks, true residuals are always computed. As the block Krylov spaces

used in [8] can be augmented vector by vector, the convergence can be checked whenever
the dimension of the block Krylov spaces increases by one. In contrast, with the algorithms
developed in this work, a convergence check can only be done when a whole right block has
been obtained in its final form (and if look-ahead occurs, even then not always). So although
we also used true residuals for checking the convergence, this leads to a lot more additional
MVs in the FM–BlQMR program than in the other programs.

For these reasons, it is not entirely straightforward to compare the performance of the FM–BlQMR
algorithm with our algorithms. The second and third point lead to more time being spent for the
computation of MVs for FM–BlQMR. Therefore, we think that the following correction of the total
CPU time for FM–BlQMR may be adequate

tFM
c = tFM − tFM

MV +
NFM

MV

NBl
MV

tBl
MV, (3.30)

where Table 3 gives the definitions of the quantities in this equation. So if the ratio N FM
MV/N

Bl
MV

is about one, we replace the time needed by FM–BlQMR for the MVs by the time needed by
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NFM
MV number of MVs for building the block

Krylov spaces for FM–BlQMR

NBl
MV number of MVs for building the block

Krylov spaces for BlQMR

tFM
c corrected CPU time for FM–BlQMR

tFM measured CPU time for FM–BlQMR

tFM
MV total time for MVs (also for checking the

convergence) in FM–BlQMR

tBl
MV total time for MVs (also for checking the

convergence) in BlQMR

Table 3: Quantities appearing in (3.30)
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Figure 14: First example with 5 right-hand sides

BlQMR for the MVs. This reflects the fact that with both methods, the MVs can be computed
equally efficiently.

Our first experiment is taken from [8, Example 7.1]. We consider the differential equation

−∇ · (exy∇u) + 25(x+ y + z)
∂u

∂x
+

(
1 +

1

1 + x+ y + z

)
u = f (3.31)

on the unit cube in R
3 with homogeneous Dirichlet boundary conditions. Centered differences on a

uniform 15× 15× 15 grid are used to discretize the left hand side of (3.31). The resulting matrix A
is real nonsymmetric and of order 3375. The function f appearing on the right-hand side of (3.31)
is not specified; instead we use a block B̂ of five right-hand sides as follows:

B̂ =
[
b1 b2 b3 b4 Â3b1

]
,

where b1, . . . , b4 are random vectors. The last vector Â3b1 ensures that at least one right Lanczos
vector (and consequently also one linear system) has to be deflated during the solution. The initial
guess X0 was the zero matrix, and five random vectors were used as left starting block. The
convergence curves are given in Figure 14. On the x axis, the CPU time as returned by Matlab’s
cputime function is plotted. Table 4 gives some more information: the first column gives the CPU
time for the whole iteration, the second column contains for FM–BlQMR the dimension of the left
block Krylov space at the end and for the methods developed in this work the number ν̃(ñt), the
final number of left vectors. The third column shows the analogue information for the right spaces,
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Figure 15: First example with 10 right-hand sides

the fourth the total time for MVs with Â, the fifth the same for Â? (in the case of FM–BlQMR:
with Â>) and the next the total time for all MVs. Finally, the corrected time for FM–BlQMR
according to (3.30) is also given.

It can be seen that FM–BlQMR needs only ldim + rdim − s̃0 = 137 MVs to build the two
final block Krylov spaces while with larger clusters, BlQMR needs 141 and BlBiORes 145. Since
tFM
c = 1.81, we conclude that in this example, the FM–BlQMR algorithm is about as fast as
BlQMR.

Next we take the same example but 10 right-hand sides instead of five. So

B̂ =
[
b1 b2 . . . b9 Â3b1

]
,

where b1, . . . , b9 are random vectors. This time FM–BlQMR stops at iteration 106 with a Lanczos
breakdown. Table 4 therefore gives the results for the other methods and Figure 15 shows the
convergence curves. We see that in this example, BlBiORes and BlBiOMin generate the same
residual norms.

The next examples are from set QCD found at [16]. In all these examples, the matrix A has
order 3072 and is of the form A =

� − kD with 0 ≤ k < kc where kc represents a critical parameter
depending on the matrix D. The first 12 standard unit vectors of C

3072 form the right-hand sides B
and 12 random vectors are taken as left starting block. We take the matrices conf5.0-00l4x4-1000,
conf5.0-00l4x4-1800 and conf6.0-00l4x4-3000 which are all complex nonsymmetric. This time, the
corrected times for FM–BlQMR are clearly higher than the corresponding runtimes for BlQMR.
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large clusters small clusters

CPU ldim rdim MV Â MV Â? MV tot tFM
c CPU ldim rdim MV Â MV Â? MV tot

Example 1 with 5 rhs

FM–BlQMR 3.48 71 71 2.12 0.78 2.90 1.81 3.26 71 71 2.17 0.72 2.89

BlQMR 1.85 75 71 0.79 0.48 1.27 1.73 75 71 0.77 0.43 1.20

BlBiORes 1.78 75 75 0.41 0.46 0.87 1.73 75 75 0.40 0.44 0.84

BlBiOMin 1.62 75 71 0.44 0.49 0.93 1.71 75 75 0.44 0.47 0.91

Example 1 with 10 rhs

BlQMR 3.37 150 147 1.57 0.83 2.40 4.10 150 147 1.62 0.85 2.47

BlBiORes 3.36 150 147 0.80 0.83 1.63 4.10 150 147 0.80 0.83 1.63

BlBiOMin 2.94 150 147 0.95 0.97 1.92 4.43 140 147 0.92 0.86 1.78

conf5.0-00l4x4-1000

FM–BlQMR 117.61 335 335 64.06 25.19 89.25 41.83 120.20 335 335 65.57 25.92 91.49

BlQMR 18.66 324 324 7.97 5.05 13.02 28.05 336 336 8.25 5.25 13.50

BlBiORes 17.71 336 336 4.18 5.25 9.43 26.27 336 336 4.18 5.27 9.45

BlBiOMin 17.24 336 336 4.59 5.64 10.23 35.14 336 336 4.48 5.55 10.03

conf5.0-00l4x4-1800

FM–BlQMR 58.96 170 170 32.09 12.69 44.78 20.91 58.96 170 170 32.51 12.69 45.20

BlQMR 9.38 168 168 4.11 2.54 6.65 14.85 180 180 4.37 2.72 7.09

BlBiORes 9.22 180 180 2.27 2.71 4.98 13.95 180 180 2.23 2.71 4.94

BlBiOMin 8.95 180 180 2.52 2.98 5.50 18.32 180 180 2.49 2.97 5.46

conf6.0-00l4x4-3000

FM–BlQMR 76.64 218 218 41.61 16.57 58.18 27.14 76.75 218 218 41.88 16.54 58.42

BlQMR 12.18 216 216 5.29 3.31 8.60 18.94 228 228 5.57 3.48 9.05

BlBiORes 11.19 216 216 2.71 3.30 6.01 16.93 216 216 2.74 3.34 6.08

BlBiOMin 10.79 216 216 2.93 3.61 6.54 22.13 216 216 2.95 3.56 6.51

Table 4: Results, part 1 (SSOR preconditioning)
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Figure 16: Sherman5 with 20 starting vectors

Next we turn to some Harwell-Boeing matrices [16]. Here we take s0 = 5, 10, 15 and 20 random
vectors as (preconditioned) right-hand sides. These experiments were only run with the larger
clusters. See Table 5. In this table, an asterisk * means that the method did not converge but
managed to reduce the quantity (3.29) at least to 10−3. A bar — indicates failure to reach 10−3 and
LB means that FM–BlQMR stopped with a Lanczos breakdown.

For Add20, BlBiOMin always failed because it could not complete a cluster so that the maximum
cluster size 3s0 was reached and the cluster was completed despite a possible rank deficiency. The
rounding errors introduced in this way seem to have spoiled the convergence. A similar problem
occurred in the case of Memplus. For matrix Sherman5, FM–BlQMR failed to converge for 15
and 20 starting vectors. Figure 16 shows that in the latter case, FM–BlQMR did not reach 10−4.
Concerning Watt1 with 15 rhs, FM–BlQMR almost converged, see Figure 17.
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Figure 17: Watt1 with 15 starting vectors
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# rhs 5 10 15 20

CPU tFM
c CPU tFM

c CPU tFM
c CPU tFM

c

add20 (SSOR)

FM–BlQMR 12.62 5.86 37.41 13.77 69.58 24.03 LB —

BlQMR 5.46 8.23 11.09 13.98

BlBiORes 5.43 8.63 11.72 16.36

BlBiOMin — — — —

memplus (SSOR)

FM–BlQMR 199.22 80.32 1051.38* 292.77 LB — LB —

BlQMR 137.05* 128.45 175.36 200.52

BlBiORes — 142.67 231.58 288.34

BlBiOMin — — — —

orsreg1 (ILU(’0’))

FM–BlQMR 14.89 5.72 37.07 10.60 81.65 21.12 112.64 30.01

BlQMR 5.03 7.75 9.13 10.14

BlBiORes 4.70 7.11 8.39 9.93

BlBiOMin 4.38 6.47 7.55 8.42

pores2 (ILUT)

FM–BlQMR 1.91 0.43 6.32 0.89 13.23 1.76 22.13 2.84

BlQMR 0.36 0.61 0.84 1.43

BlBiORes 0.30 0.51 0.72 1.22

BlBiOMin 0.37 0.55 0.79 1.26

psmigr3

FM–BlQMR 22.82 4.76 58.41 7.95 110.68 13.13 176.39 21.56

BlQMR 4.22 6.24 8.36 10.39

BlBiORes 4.06 6.35 8.26 12.36

BlBiOMin 3.86 6.36 7.49 10.49

sherman5 (ILU(’0’))

FM–BlQMR 19.79 7.10 56.51 14.08 323.58* 70.83 572.71* 123.01

BlQMR 6.57 8.91 15.85 17.52

BlBiORes 6.49 8.13 14.95 16.71

BlBiOMin 8.06 10.01 11.56 15.12

watt1 (ILU(’0’))

FM–BlQMR 5.35 2.72 11.59 4.44 112.66* 41.59 44.76 17.64

BlQMR 1.73 2.86 3.98 4.91

BlBiORes 1.73 3.06 3.95 5.35

BlBiOMin 1.50 2.72 3.34 4.48

west1505 (ILUT)

FM–BlQMR 1.36 0.39 4.67 0.87 9.39 1.64 15.44 2.75

BlQMR 0.32 0.75 0.84 1.14

BlBiORes 0.28 0.65 0.75 1.03

BlBiOMin 0.31 0.67 0.79 1.03

Table 5: Results, part 2
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3.5 Conclusions

We are aware that much more experience is needed to evaluate the performance of the algorithms
developed in this thesis. Still, the numerical experiments presented in the last subsection show the
following tendencies:

• If more than five right-hand sides were used, then the vectorwise approach followed in FM–
BlQMR leads to slow convergence.

• As was to be expected, large clusters lead to better performance for BlQMR, BlBiORes and
BlBiOMin.

• Concerning the performance of BlQMR, BlBiORes and BlBiOMin relative to each other,
there seems to be no clear winner.
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