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Abstract

This Master’s Thesis addresses the question of what is quantum entanglement. This

question is of importance for engineering and information theory because of the pos-

sibility of quantum computing. Key to the answer of this question is the debate

between Einstein and Bohr relating to this subject. Throughout this thesis the view

of Einstein is given special and only consideration. It is appropriate to examine this

view 100 years after Einstein’s famous papers that have laid the foundation and given

the principles for this debate. The thesis examines the key experiments by the Aspect

and Zeilinger groups that purport to give a decision against Einstein and shows that

existing results are far from conclusive. Some of the discussions are built on known

criticisms of the Aspect and Zeilinger experiments some are new, in particularly those

relating to the classical information theory of Shannon.

The Pan et al. realization [1] of the Greenberger-Horne-Zeilinger (GHZ) Gedanken-

experiment is approached here with classical methods.

The quantum mechanical model for the GHZ Gedankenexperiment that was realized

by Pan et al. is generally accepted and it is commonly assumed that classical objec-

tive local theories can not explain the experiment. Pan et al. have presented a local

realistic model and have shown that it does not suffice to explain their experiments.

However, in this thesis it is shown that a modified local realistic model based on

instruction sets can reproduce the experimental results reported by Pan et al. with

a statistically smaller error than the predictions of the quantum mechanical model

presented by Pan et al.. As a consequence, these experimental results can not be

used to prove quantum nonlocality.

In addition to the modified local realistic model an objective local model based on

time and setting dependent equipment parameters is also presented. This model

confirms a fortiori that the Pan et al. realization of the GHZ Gedankenexperiment

can not be used to exclude all classes of objective local models. Therefore the Pan

et al. realization of the GHZ Gedankenexperiment can not be used to prove the

completeness of quantum mechanics or the existence of nonlocalities.
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An objective local model based on a novel version of the detection inefficiency loop-

hole is developed for the Aspect experiments [2, 3, 4] that experimentally realizes

Bohm’s variant of the EPR Gedankenexperiment. It is shown that also the Aspect-

type experiments are not loophole free and that they cannot be used without doubt

to prove the completeness of quantum mechanics.

In the second part of this thesis, Shannon’s classical information theory is applied

to the Pan et al. realization of the GHZ Gedankenexperiment. The entropy anal-

ysis shows that entanglement has a classical information theoretical interpretation

and that the strength of entanglement can be quantified. Furthermore, a generalized

entropic Bell test is defined.
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Introduction Chapter 1

Chapter 1

Introduction

In 1935 Einstein, Podolsky and Rosen (EPR) published a paper about the complete-

ness of quantum mechanics [5]. In a Gedankenexperiment they constructed a paradox

from which they concluded that quantum mechanics is not a complete description of

the physical reality.

The EPR paper resulted in many discussions and papers. One of the first replies

came from Niels Bohr [6].

29 years after the EPR paper, John Bell used the setup of the EPR-Bohm Gedanken-

experiment to derive an inequality based on the assumption that the elements of

reality can be described by hidden parameters [7, 8]. He showed that certain quan-

tum mechanical predictions violate this inequality. Therefore he concluded that no

hidden variable theory can explain the quantum mechanical predictions for the EPR

experiment.

In the following years many theoretical and experimental papers were published.

Most of them supported the quantum mechanical predictions. The most famous

of these papers are the Clauser-Horne-Shimony-Holt generalization of the Bell theo-

rem [9], Mermin’s quantum mechanical operator based Gedankenexperiment [10] and

Alain Aspects experimental realization of the EPR-Bohm Gedankenexperiment [2, 3]

based on delayed choices for the measuring equipment setting.

In 1989 Greenberger, Horne and Zeilinger (GHZ) [11] have constructed a multi-

particle version of the Bell theorem, based on a system containing three or more

correlated spin-1/2 particles. The experimental realization of this Gedankenexperi-

ment was achieved ten years later by Pan et al. [1]. Pan and his co-workers interpret

their findings as the first three-particle test of local realism following the GHZ argu-

ment. In their final analysis they conclude that no objective local model can explain

the experimental results and that quantum nonlocality is therefore proven.

1



Chapter 1 Introduction

Despite these experimental results, many physicists resist to believe in the correct-

ness of these proofs and they doubt that quantum mechanics is a complete theory.

Especially quantum nonlocality that is based on entanglement is strongly doubted

by many physicist. The question whether or not quantum mechanics is a complete

theory is of greatest interest because newly emerging research fields such as quantum

computing and teleportation are based on non-classical phenomena such as entangle-

ment.

In this work, several objective local models are developed to analyze the experimental

realization of the EPR experiment and the GHZ experiment. All investigated models

satisfy the locality condition defined by EPR: “Since at the time of measurement the

two systems no longer interact, no real change can take place in the second system

in consequence of anything that may be done to the first system.” [5]. In addition,

Claude E. Shannon’s classical information theory [12, 13, 14] is used to analyze the

Pan et al. realization of the GHZ Gedankenexperiment.

The aim of this work is to reestablish local realism and to point out that the ex-

periments considered to prove nonlocality have significant loopholes that allow the

development of objective local theories for the observed phenomena.

In the first chapter, a brief history of the completeness discussion of quantum me-

chanics is given. Then the Aspect experiments are analyzed. In the following chapter,

the experimental realization of the GHZ Gedankenexperiment by Pan et al. is in-

vestigated. It is shown that the Pan et al. experiment can not be used to draw

conclusions about the existence of quantum nonlocality. In addition, several objec-

tive local models for the Pan et al. realization of the GHZ Gedankenexperiment are

introduced. In chapter 5, Shannon’s classical information theory is used to derive

conditions that can be used to decide whether or not an experiment can be explained

with random variables that are all defined on one common probability space. At

the end a conclusion of the work is given and possible future research activities are

identified.

2



History Chapter 2

Chapter 2

History

2.1 Introduction

At the beginning of the 20th century several groundbreaking physical theories emerged.

As is well known, Albert Einstein is the father of the special and general relativity

theory that radically changed our space-time picture. Although nowadays most peo-

ple associate Einsteins name with relativity theory, he also contributed some major

ideas to quantum mechanics. In 1905 he explained for example the photoelectric

effect by describing a photon as particle like entity. Although Max Planck used in

his derivation of the black body radiation formula quantized energies, Einstein was

the first to go the full length toward particles of light.

In the following years Louis de Broglie realized that not only photons have a wave-

particle duality but also other elementary particles like electrons. In 1926 Erwin

Schrödinger combined the Helmholtz equation and the de Broglie description of the

electron and derived his famous wave equation1. Heisenberg had given some what

earlier a quantum theory that appeared to be different but it turned out that the two

theories are fully equivalent.

The interpretation of these theories was developed by the Copenhagen school lead

by Niels Bohr. The Copenhagen interpretation is based on the complementary wave

particle picture and on Born’s probability explanation of the absolute square of the

wave function. Bohr maintains that nature exhibits both behaviors (particle and

wave) at the same time and that the act of measurement forces the decision. One

could say that everything in the past is particles and everything in the future waves.

The cornerstone of the quantum description is the quantum state. A measurement

1In his first paper he gave a more complicated derivation.
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Chapter 2 History

results in one single outcome of all the possible outcomes for that quantum state.

The outcomes are equal to eigenvalues of the underlying eigenvalue equation.

One major principle of the Copenhagen interpretation of quantum mechanics was

stated by Heisenberg. He formulated the uncertainty principle. In simple words,

the uncertainty principle states that the exact value of position and momentum of a

particle can not be known at the same time. Niels Bohr first disliked this idea but

accepted it at the end and interpreted it as impossible simultaneous measurability of

the untouched nature (general state before reduction by measurement) [15].

After receiving recognition for this work and the new quantum mechanics, Heisenberg

and Born2 declared in 1927 at the Solvay physics conference in Brussels, Belgium,

that quantum mechanics is complete and irrevocable [15]. Several leading physicists

such as Schrödinger or Einstein disagreed with this Heisenberg-Born statement and

they believed until the end of their lives that it is incorrect. In a joint work with

Podolsky and Rosen, Einstein formulated in 1935 a Gedankenexperiment that should

show that quantum mechanics is not a complete theory.

2.2 The EPR Gedankenexperiment

In 1935 A. Einstein, B. Podolsky and N. Rosen (EPR) published a famous paper

[5] in which they question the completeness of quantum mechanics. They did not

question the usefulness of quantum mechanics as a powerful theory but they conclude

from their Gedankenexperiment that quantum mechanics is not a complete theory

and that there has to be a more fundamental description of the physical reality. In

the following paragraph a short summary of the 1935 paper is presented.

The original question was the following: “Can Quantum-Mechanical Description of

Physical Reality Be Considered Complete?” [5] To answer this question EPR define

a necessary condition for a complete theory: “every element of the physical reality

must have a counterpart in the physical theory” [5]. Besides this completeness con-

dition the term physical reality was defined: “If, without in any way disturbing a

system, we can predict with certainty (i.e., with probability equal to unity) the value

of a physical quantity, then there exists an element of physical reality corresponding

to this physical quantity.” [5]

In the following, EPR state the Heisenberg uncertainty principle: “When the mo-

mentum of a particle is known, its coordinate has no physical reality.” More generally,

if the operators corresponding to two physical quantities do not commute, then the

2Born also gave the probability description of quantum mechanics.
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2.3 Bohr’s Answer Chapter 2

simultaneous knowledge of both physical quantities is not possible. From this general

behavior of quantum mechanics EPR derive two mutually exclusive statements:

INC: “The quantum mechanical description of a system given by the state function

is incomplete”.

NSV: “ Observables represented by noncommuting operators cannot have simultaneous

reality (i.e., cannot have simultaneously sharp values).” [16]

In the following EPR assume that the wave function (or state) of a system contains

a complete description of the physical reality. Together with the reality criterion this

assumption leads to a contradiction3 .

EPR use in their analysis a state of two particles I and II that are known at a certain

time. It is assumed that particle I and II interact during the time interval t = 0...T .

The resulting state created in this interaction is described by the wave packet Ψ.

After t = T the two systems do not interact. Starting from this situation EPR

make two different reductions of the wave packet Ψ. This means that two different

quantities are measured on system I. The two systems (I and II) are so far apart

that no interaction can happen. Nevertheless, the second system (II) is left in states

with two different wave functions. EPR conclude therefore that “it is possible to

assign two different wave functions ... to the same reality” [5]. Subsequently they

show that if two operators corresponding to two different physical quantities do not

commute, the simultaneous knowledge of both quantities is not possible. From this

they conclude that it is indeed possible to assign two different wave functions to the

same reality. But “since either one or the other, but not both of the quantities P

and Q can be predicted, they are not simultaneously real. This makes the reality of

P and Q depend upon the process of measurement carried out on the first system,

which does not disturb the second system in any way.” [5]. Finally they conclude

that the wave function can not provide a complete description of physical reality.

2.3 Bohr’s Answer

In the same year Niels Bohr answered in a paper [6] with the same title as the EPR

paper. Bohr used several experiments in which particles pass through slits in a di-

aphragm to explain the “complementarity principle” and why EPR’s argument is not

3Fine summarizes the reasoning of EPR in a standard logical argument: “The argument develops

in two parts. The first part demonstrates the validity of the disjunction (INC)∨(NSV ). The second

part shows the validity of the conditional ¬(INC) → ¬(NSV ). The authors then conclude from

this that (INC) must hold.” [16]
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Chapter 2 History

appropriate for the Copenhagen interpretation of quantum mechanics.

The basic idea of Bohr’s complementarity principle is the fact that when one entity

of a complementary pair (i.e. momentum or position) is measured, the information

of the other is always destroyed. This means that it is impossible to know everything

about a microscopic physical system, as required by EPR.

Bohr shows in his paper that it is impossible to know at the same time the po-

sition and the momentum of a particle when doing experiments in which particles

pass through slits in a diaphragm. From this he concludes that the experimental

results depend on the measuring equipment and the measured physical quantities.

They are an inseparable entity. For example “if a measurement proves the wave

nature of radiation or matter, then it is impossible to prove the particle nature in

the same measurement, and conversely.” [17] In the 1935 paper Bohr concludes from

his particle-slit experiments that “only the mutual exclusion of any two experimental

procedures, permitting the unambiguous definition of complementary physical quan-

tities, which provides room for new physical laws, the coexistence of which might at

first sight appear irreconcilable with the basic principles of science. It is just this en-

tirely new situation as regards the description of physical phenomena, that the notion

of complementarity aims at characterizing.” [6] The mutually exclusive measurability

of position and momentum (non commuting physical quantities) is therefore the rea-

son why the paradox derived by EPR can be solved by the complementarity principle.

At the end of his paper, Bohr states the importance of complementarity. “In fact

this new feature of natural philosophy means a radical revision of our attitude as

regards physical reality, which may be paralleled with the fundamental modification

of all ideas regarding the absolute character of physical phenomena, brought about

by the general theory of relativity.” [6]

Although Bohr tried in many other attempts to convince Einstein of the complemen-

tarity principle, Einstein always refused to accept it as a principle in a physical sense.

Einstein mainly refused it because of Bohr’s failure to provide a clear formulation

that could be experimentally tested. Besides Einstein, many other physicists did not

agree with the nonlocality predicted by the EPR experiment.

In 1964 John Bell approached this problem. Originally he wanted to show that John

von Neumann’s nonlocality existence proof [18] was deficient. Bell wanted to find a

way to relate such existence proofs to questions of locality. His research resulted in

the famous Bell inequality.
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2.4 The Bell inequality

In 1964 J. S. Bell [7, 8] constructed a mathematical proof that originally intended to

show that a hidden variable theory can exist. Subsequently, however, he showed that

a local theory contradicts the quantum mechanical predictions.

Bell derived his inequality, using the Bohm variant of the EPR Gedankenexperiment

(Figure 2.1). A source sends correlated information to the two independent stations

Figure 2.1: Experimental setup of the EPR-Bohm experiment. A source sends cor-

related information to two independent stations.

S1 and S2. These two stations can have different independent measuring equipment

settings controlled by the setting parameter s in station S1 (As) or in station S2 (Bs).

In the derivation of his inequality, Bell uses the following three assumptions [7].

1. Source Parameter Λ: Suppose a hidden variable Λ exists and is defined on

the probability space Ω. In addition the probability distribution ρ(λ) of Λ is

defined.

Λ = Λ(ω) ω ∈ Ω

P{Λ ∈ F} = P {ω : Λ(ω) ∈ F} =

∫

F
ρ(λ)dλ F ∈ L (2.1)

∫

L

ρ(λ)dλ = 1 (2.2)

Here L is the set of values Λ can assume.

2. The random variables A and B depend only on Λ and on the respective

setting vectors4. They are defined on the same probability space.

A = Aa(Λ) = Aa(Λ(ω)) (2.3)

4The settings in each station are also described by a random variable S. Because the two random

variables S and Λ are stochastically independent they both can be defined on a common product

probability space.

7



Chapter 2 History

B = Bb(Λ)

perfect correlation

↓
= Bb(Λ(ω)) = −Ab(Λ(ω)) (2.4)

3. Equal probability condition of possible outcomes:

P (Aa = +1) = P (Aa = −1) =
1

2
(2.5)

Bell derived from these assumptions his celebrated inequality [7]:

|E(AaBb) − E(AaBc)| ≤ 1 + E(AbBc) (2.6)

or modified by using (Equation 2.4)

|E(AaAb) − E(AaAc)| ≤ 1 − E(AbAc). (2.7)

In addition, Bell shows that quantum mechanics predicts a violation of this in-

equality (2.6) for certain combinations of unitary measuring vector orientations (Fig-

ure 2.2).

Figure 2.2: Orientations for spin measurement in the two particle 1/2-spin experiment

used in Bell’s derivation.

Therefore he concludes that no local hidden variable theory is possible that does not

contradict quantum mechanics. Or stronger, no objective local theory can agree in

all circumstances with the predictions of quantum mechanics.

The Bell paper was a milestone on the way to resolve the dispute between the physi-

cists following Bohr and the local realists inspired by Einstein’s believe in the in-

completeness of quantum mechanics. For the first time in history, the quantum me-

chanical completeness question seemed to be translated to an experimentally testable

relation.

8



2.5 The Clauser-Horne-Shimony-Holt inequality Chapter 2

In the following years, many different versions of Bell type inequalities were devel-

oped whereas the inequality of Clauser, Horne, Shimony and Holt (CHSH)[9] is the

most significant generalization.

2.5 The Clauser-Horne-Shimony-Holt inequality

The CHSH inequality is a generalization of the Bell inequality. The authors aim to

generalize Bell’s theorem such that it can be applied to realizable experiments. In

the following, the main steps in the derivation of the generalized Bell inequality and

the mapping of this inequality to a real experiment are shown.

CHSH use for their derivation of the generalized Bell inequality the experimental

setup seen in Figure 2.3. It is assumed that a source sends correlated information

Figure 2.3: Clauser-Horne-Shimony-Holt setup for the derivation of the generalized

Bell inequality.

to two independent measuring apparatuses. Each of the apparatuses has adjustable

parameters (s1 = a or d and s2 = b or c ). CHSH introduce a set of hidden source

parameters Λ. The probability distribution ρ(λ) of these hidden variables is assumed

to be independent of the setting parameters (s1, s2). Further, it is assumed that

the random variables A(s1, λ) and B(s2, λ) are determined by the setting and source

parameters.

Using these assumptions and some basic calculations [9] CHSH arrive at their well

known inequality:

S = |E(AaBb) − E(AaBc)| + E(AdBb) + E(AdBc) ≤ 2. (2.8)

This inequality is for example suitable for experimental tests with correlated photon

pairs. Because no single photon measurements are yet possible, the following proce-

dure is suggested by CHSH.

For light experiments (with photons), the measuring stations S1 and S2 can consist

of polarizers followed by detectors. The values +1(−1) of the random variables As1

9



Chapter 2 History

and Bs2 denote the transmission (absobtion) of the photons through the polarizer

with orientations s1 and s2 respectively. If the polarizer is removed, the orientation

is defined as si = ∞. It is clear that A∞ = +1 and B∞ = +1. To link (2.8) with the

experiment a last assumption5 is made:“...if a pair of photons emerges from Ia, IIb

the probability of their joint detection is independent of a and b. Then if the flux into

Ia, IIb is a constant independent of a and b, the rate of coincidence detection R(a,b)

will be proportional to w [A(a)+, B(b)+], where w [A(a)±, B(b)±] is the probability

that A(a) = ±1 and B(b) = ±1”6[9]. In the following, CHSH define Ro = R(∞,∞),

R1(s1) = R(s1,∞) and R2(s2) = R(∞, s2) and use

E(Aa, Bb) = w [Aa+, Bb+] − w [Aa+, Bb−] − w [Aa−, Bb+] + w [Aa−, Bb−] (2.9)

and

w [Aa+, B∞+] = w [Aa+, Bb+] + w [Aa+, Bb−] (2.10)

and similar expressions to obtain

E(AaBb) =
4R(a,b)

Ro
− 2R1(a)

Ro
− 2R2(b)

Ro
+ 1. (2.11)

This allows CHSH to express (2.8) in terms of experimental quantities:

S = |R(a,b) −R(a, c)| +R(d,b) +R(d, c) −R1 −R2 ≤ 0. (2.12)

Where it is assumed that R1(a) = R1 and R2(b) = R2 are constant.

In the last part of their paper, CHSH propose a modified version of an earlier ex-

periment performed by Kocher and Commins [19]. Despite this suggestion for a real

experiment it took more then a decade before the first experimenter succeeded to

test the CHSH inequality.

2.6 The Aspect Experiments

Alain Aspect and his group published between 1981 and 1982 several papers in which

they report about optical experiments, that confirm the quantum mechanical predic-

tions for the EPR-Bohm experiment. In combination with the Bell inequality it is

generally believed that the Aspect experiments prove the non-existence of hidden

variable theories. In the following, two of Aspects papers are summarized. A more

detailed discussion and critics of the experiment will be given in chapter 3.

In [2], Aspect uses the experimental setup seen in Figure 2.4 to measure an experimen-

5This assumption is nowadays known as fair sampling hypothesis.
6In the original paper, Ia and Ib refer to the stations S1 and S2 in this report. A(a) is equal to

As1 and B(b) corresponds to Bs2 in this thesis.

10



2.6 The Aspect Experiments Chapter 2

Figure 2.4: “Experimental setup. Two polarimeters I and II, in orientations ~a and ~b,

perform true dichotomie measurements of linear polarization on photons υ1 and υ2.

Each polarimeter is rotatable around the axis of the incident beam. The counting

electronics monitors the singles and the coincidences.” [2]

tal violation of the generalized Bell inequality (2.8). Aspect uses in his experiment

a calcium-40 source. The calcium atoms are placed into the excited state 4p2 1S0

by two single-mode lasers. The excited valence electron decays in a two step process

(Figure 2.5), releasing a photon at 551.3 nm (green) and a photon at 422.7 nm (blue).

Figure 2.5: “Relevant levels of calcium. The atoms, selectively pumped to the upper

level by the nonlinear absorption of υK and υL, emits the photons υ1 and υ2 correlated

in polarization.” [4]

Because the described process is a (J = 0) → (J = 1) → (J = 0) cascade, the

two emitted photons have correlated polarizations. When a photon arrives at the

polarizing beam splitter (PBS) it is transmitted (+1) with a probability of cos2(α)

where α is the angle between the photon polarization and the principle transmission

direction of the PBS. Otherwise the photon is reflected (−1).

11
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To test the generalized Bell inequality (2.8), Aspect defines

E(AaBb) =
R++(a,b) +R−−(a,b) −R+−(a,b) −R−+(a,b)

R++(a,b) +R−−(a,b) +R+−(a,b) +R−+(a,b)
(2.13)

where R±±(a,b) are four coincidence rates that are defined as follows. If the two

photomultipliers detecting the photons, transmitted through the PBS (in the two

polarimeters I and II), register a photon within a 20 ns time window7 then we have

measured a (Aa = +1,Bb = +1) event and can therefore increase R++(a,b).

Definition (2.13) is allowed because of the assumed validity of the fair sampling theo-

rem. To obtain the maximal violation of (2.8) in optical experiments the polarimeter

orientations have to be chosen as (a,b) = (d,b) = (d, c) = 22.5o and (a, c) = 67.5o

(Figure 2.6). Aspect’s measurement results are Sexpt = 2.697 ± 0.015. This was the

Figure 2.6: Orientations leading to a maximum violation of the generalized Bell

inequalities.

largest violation of inequality (2.8) reported until that time.

Despite of this strong experimental violation of (2.8) many physicists were not yet

convinced and they claimed that the source might be influenced by the polarimeter

orientation and that the violation of (2.8) can therefore be explained classically8.

In the same year (1982) Aspect published a second paper [3] that disproved this

hypothesis. He introduced the method of delayed choice. This means that the polar-

ization orientation of the polarizer is chosen after the source has emitted the photon

pair. The polarizer orientation is changed fast enough by employing a trick. Instead

of rotating the polarizers, the photons are redirected by an optical switch toward

7In this case it is assumed that the two photons are from the same polarization correlated photon

pair.
8This means with an objective local theory

12



2.7 The Greenberger-Horne-Zeilinger Gedankenexperiments Chapter 2

fixed polarizers in different channels. The optical switching of the light is done by

acousto-optical interaction with an ultrasonic standing wave in water [3]. Because the

optical switch has a frequency of around 50 MHz (switching between two channels

every 10 ns), it can safely be stated that the polarizer orientation changes during

the flight of the photons. This means that the polarizer orientation can not have an

influence on the generation process of the correlated photon pair.

In this experiment Aspect tests an inequality similar to (2.12). The measured value

for the quantity S is Sexpt = 0.101±0.020 for the polarizer orientations seen in Figure

2.6. This is a violation of inequality (2.12) of 5 standard deviations. Therefore, no

hidden variable theory can explain the experimental results.

The Aspect experiments are generally accepted as first experimental proof of the

completeness of quantum mechanics. Despite of the fact that the experiments clearly

show a violation of the generalized Bell inequalities, many physicists keep doubting

the consequences connected to the quantum mechanical explanation of EPR type of

experiments. Especially the necessary quantum nonlocality is still alarming many

physicists.

During the years after the Aspect experiments many reasons where found, why the

Aspect experiment can not be taken as ultimate proof for the non-existence of local-

ity. In chapter 3 some of these loopholes will be explained in more details.

In the next section the latest important theoretical contribution to the question

whether or not quantum mechanics is a complete theory is introduced.

2.7 The Greenberger-Horne-Zeilinger

Gedankenexperiments

The GHZ Gedankenexperiments are a set of experiments that analyze quantum me-

chanical systems of three or more correlated spin-1/2 particles. Similar to the Bell

type inequalities, the GHZ Gedankenexperiments try to answer the question whether

or not a hidden variable theory beyond the quantum mechanical theory exists. The

innovative idea in the GHZ experiments is that their arguments only consider perfect

correlations rather than the statistical correlations normally used to demonstrate the

incompatibility of EPR’s propositions with quantum mechanics. Greenberger, Horne,

Shimony and Zeilinger attempt to show in their review paper [20] how the Bell the-

orem can be derived without inequalities. They present two different examples. One

is a four-particle spin-entangled state experiment and in their second Gedankenex-

periment they use a three-particle interferometer.

13
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Figure 2.7: Three-particle interferometric GHZ Gedankenexperiment.[20]

Because in this work the maximum number of entangled particles is limited to

three, only the three-particle entangled state Gedankenexperiment is explained. The

Gedankenexperimental setup used in [20] can be seen in Figure 2.7. It is assumed that

the source in the central region consists of a particle that has a (mean) momentum

of zero. This particle decays in three particles of equal mass (or into three photons).

“If all three particles have the same energy, then, by momentum conservation, they

must be emitted 120o apart. The equal energy requirement can be enforced by plac-

ing energy filters at the detectors. The central source is surrounded by an array of

six apertures, the three particles 1, 2 and 3 must emerge either through a, b, and c

or through a’, b’, and c’.” [20] Therefore, the quantum mechanical description of the

state of the three particles beyond the apertures is

|Ψ〉 =
1√
2

[
|a〉

1
|b〉

2
|c〉

3
+

∣
∣a′

〉

1

∣
∣b′

〉

2

∣
∣c′

〉

3

]
(2.14)

where |a〉
1

stands for particle 1 in beam a, etc. When the transformations9

|a〉
1
→ 1√

2

[
|d〉

1
+ i

∣
∣d′

〉

1

]
(2.15)

and
∣
∣a′

〉

1
→ eiφ1

√
2

[∣
∣d′

〉

1
+ i |d〉

1

]
(2.16)

9These transformations come from the phase shifters φi and 50-50 beam splitters seen in Figure

2.7.
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are applied to the entangled three particle state (2.14) then the measured three-

particle state with eight terms develops. The squared amplitude of the measured

states equal the probabilities of detection for the eight possible measurement results:

PΨ
def (φ1, φ2, φ3) =

1

8
[1 + sin(φ1 + φ2 + φ3)] (2.17)

PΨ
d′ef (φ1, φ2, φ3) =

1

8
[1 − sin(φ1 + φ2 + φ3)] (2.18)

PΨ
de′f (φ1, φ2, φ3) =

1

8
[1 − sin(φ1 + φ2 + φ3)] (2.19)

PΨ
d′e′f (φ1, φ2, φ3) =

1

8
[1 + sin(φ1 + φ2 + φ3)] (2.20)

PΨ
def ′(φ1, φ2, φ3) =

1

8
[1 − sin(φ1 + φ2 + φ3)] (2.21)

PΨ
d′ef ′(φ1, φ2, φ3) =

1

8
[1 + sin(φ1 + φ2 + φ3)] (2.22)

PΨ
de′f ′(φ1, φ2, φ3) =

1

8
[1 + sin(φ1 + φ2 + φ3)] (2.23)

PΨ
d′e′f ′(φ1, φ2, φ3) =

1

8
[1 − sin(φ1 + φ2 + φ3)] (2.24)

To follow the idea of the EPR-Bohm experiment, the result is called +1 (−1) if the

particle is registered by an unprimed (primed) detector. This definition together with

(2.17-2.24) can be used to calculate the expectation value of the product of the three

outcomes:

EΨ(φ1, φ2, φ3) = sin(φ1 + φ2 + φ3) (2.25)

It is then easy to see that “perfect correlations are obtained for the following choices

of angles:” [20]

EΨ(φ1, φ2, φ3) = +1 if φ1 + φ2 + φ3 =
π

2
(2.26)

EΨ(φ1, φ2, φ3) = −1 if φ1 + φ2 + φ3 =
3π

2
(2.27)

These equations (2.26-2.27) are then used by GHSZ to create a new EPR test based

on an idea proposed by Mermin [10]. It is assumed that the results (+1 or −1) of the

measurements in the six stations d, d’, e, e’, f and f’ can be described by the three

random variables D, E and F. As in the derivation of the Bell inequalities, a hidden

source parameter Λ with the possible realization λ is introduced. In addition it is

assumed that the values of D, E and F also depend on φ1, φ2 and φ3 respectively.

This means that the perfect correlation conditions can be rewritten as

Dλ(φ1)Eλ(φ2)Fλ(φ3) = +1 if φ1 + φ2 + φ3 =
π

2
(2.28)

Dλ(φ1)Eλ(φ2)Fλ(φ3) = −1 if φ1 + φ2 + φ3 =
3π

2
. (2.29)
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From these perfect correlations (2.28-2.29) the following 4 relations can be obtained:

Dλ

(π

2

)

Eλ

(π

2

)

Fλ

(π

2

)

= −1 (2.30)

Dλ (0)Eλ (0)Fλ

(π

2

)

= +1 (2.31)

Dλ (0)Eλ

(π

2

)

Fλ (0) = +1 (2.32)

Dλ

(π

2

)

Eλ (0)Fλ (0) = +1. (2.33)

If we assume that λ is the same for all four measurements10 then (2.31), (2.32) and

(2.33) can be multiplied and we obtain:

Dλ

(π

2

)

Eλ

(π

2

)

Fλ

(π

2

)

= +1. (2.34)

But this contradicts the quantum mechanical prediction (2.30). This means that the

GHZ argument “concerns only perfect correlations rather than statistical correlations,

and it completely dispenses with inequalities.” [20]

In the next section the experimental realization of the GHZ Gedankenexperiment is

introduced.

2.8 The Pan et al. realization of the GHZ

Gedankenexperiment

Ten years after the theoretical formulation of the GHZ Gedankenexperiment, Pan

et al. published in 2000 the first experimental test of quantum nonlocality in three-

photon Greenberger-Horne-Zeilinger (GHZ) entanglement [1]. The experimental setup

of the optics based GHZ test of quantum nonlocality can be seen in Figure 2.8. In

their letter Pan et al. show that no local realistic model based on a small number of

elements of reality can explain the measured results.

In [1], the experiment is first analyzed with quantum mechanical methods. It is

assumed that the entangled three-photon GHZ state is:

|ψ〉 =
1√
2

(|H〉
1
|H〉

2
|H〉

3
+ |V 〉

1
|V 〉

2
|V 〉

3
) (2.35)

where H (V ) denotes horizontal (vertical) linear polarization. Then four new polar-

ization directions are introduced. Two of them are linear polarizations along H ′/V ′

10Here it should be emphasized that this is only possible in “Gedanken”, but can never be measured

in a real experiment.
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Figure 2.8: Experimental setup for the Greenberger-Horne-Zeilinger (GHZ) tests of

quantum nonlocality used by Pan et al. [1]. In the actual experiment four polarization

correlated photons are generated. After having propagated through a setup with

several optical elements (wave-plates and beam splitters), the polarizations of three

of the four photons, denoted as photon 1, 2 and 3, are measured by equipments

consisting of polarization analyzers and three detectors D1, D2 and D3. Whenever

detector Di clicks, it is known that the registered photon i features the polarization

indicated by the polarization analyzers in front of the detector. The fourth photon

(registered by detector T) is used to guarantee that photon 1, 2 and 3 are in the

entangled three-photon GHZ state. Only when all four detectors T , D1, D2 and D3

register a photon within a certain time window, it is assumed that the three photons

1, 2 and 3 are in the entangled three-photon GHZ state. This detection of four

photons is called fourfold coincidence.
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(45o/−45o polarization) and the other two are circular polarizations L/R (left-/right-

handed).

∣
∣H ′〉 =

1√
2

(|H〉 + |V 〉) (2.36)

∣
∣V ′〉 =

1√
2

(|H〉 − |V 〉) (2.37)

|R〉 =
1√
2

(|H〉 + i |V 〉) (2.38)

|L〉 =
1√
2

(|H〉 − i |V 〉) . (2.39)

These linear transformations are used to predict the measurement results in the

new basis. The measurement in the linear basis is defined as x measurement and

the measurement in the circular basis is denoted as y measurement. In [1] the yyx

experiment is predicted by the following quantum state:

|ψ〉 =
1

2
(|R〉

1
|L〉

2

∣
∣H ′〉

3
+ |L〉

1
|R〉

2

∣
∣H ′〉

3

+ |R〉
1
|R〉

2

∣
∣V ′〉

3
+ |L〉

1
|L〉

2

∣
∣V ′〉

3
). (2.40)

Besides this state for the yyx experiment they also show the quantum mechanical

prediction for the xxx experiment:

|ψ〉 =
1

2
(
∣
∣H ′〉

1

∣
∣H ′〉

2

∣
∣H ′〉

3
+

∣
∣H ′〉

1

∣
∣V ′〉

2

∣
∣V ′〉

3

+
∣
∣V ′〉

1

∣
∣H ′〉

2

∣
∣V ′〉

3
+

∣
∣V ′〉

1

∣
∣V ′〉

2

∣
∣H ′〉

3
). (2.41)

In addition to this quantum mechanical model, a local realistic model is introduced

by Pan et al.. “The only way then for local realism to explain the perfect correlations

predicted by equation (4) is to assume that each photon carries elements of reality

for both x and y measurements that determine the specific individual measurement

result. For photon i we call these elements of reality Xi with values +1(−1) for

H ′(V ′) polarizations and Yi with values +1(−1) for R(L)...” [1]. Then the quantum

mechanically predicted relations Y1Y2X3 = −1, Y1X2Y3 = −1 and X1Y2Y3 = −1 are

used by Pan et al. to restrict the possible combinations of values for the elements

of reality and to find the local realistic preditions for the xxx experiment: “Because

of Einstein locality any specific measurement for x must be independent of whether

an x or y measurement is performed on the other photon. As YiYi = +1, we can

write X1X2X3 = (X1Y2Y3)(Y1X2Y3)(Y1Y2X3) and obtain X1X2X3 = −1. Thus from

a local realist point of view the only possible results for an xxx experiment are

V ′V ′V ′, H ′H ′V ′, H ′V ′H ′, and V ′H ′H ′.” [1]
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Subsequently Pan et al. show the measurement results for the yyx, yxy, xyy and

also the xxx experiments. These measurement results are reproduced by the green

bars in Figure 4.2.

As it turns out the experimental results [1] do not strictly comply with yyx = −1,

yxy = −1 and xyy = −1. In fact, the measured relative frequency of the states

predicted by quantum mechanics for the GHZ state is only 0.85 ± 0.04, whereas the

so-called spurious events do occur with non-negligible relative frequency of 0.15±0.02.

The measured relative frequency of the states predicted by quantum mechanics for

equation xxx = +1 is 0.87 ± 0.04 with the spurious events occurring with relative

frequency of 0.13 ± 0.02. Because “the sum of the fractions of all spurious events

in the yyx, yxy, and xyy experiments, that is, 0.45 ± 0.03” [1] is significantly less

than 0.87 ± 0.04, the authors interpret their findings as the first three-particle test

of local realism following the GHZ argument. In their final analysis they conclude

that no objective local model can explain the experimental results and that quantum

nonlocality is therefore proven.

The Pan realization of the GHZ Gedankenexperiment will be discussed in great detail

in chapter 4. In the next section of this chapter, the main critique of the theorem of

Bell, worked out by Karl Hess and Walter Philipp, is explained.

2.9 Critique of the Theorem of Bell

During the last five years Karl Hess and Walter Philipp published several papers

about the Bell theorem and the CHSH inequality [21, 22]. Hess and Philipp par-

ticularly show in their work that time and setting dependent equipment parameters

can not be excluded by standard Bell type proofs. Therefore, the Bell and CHSH

inequalities can not be used to decide whether or not local hidden variable theories

can exist.

Another main critique regards the assumption that the source parameter Λ has the

same realization for different measurements. They show in their work, that the Bell

and CHSH inequalities are special cases of a mathematical theorem derived by the

mathematician J. Bass [23] in 195511. The main result of Bass gives conditions un-

der which three pair distributions, defined in the Euclidean plane, can be obtained

from three random variables, defined on a common probability space. Specialized to

Bell’s situation the theorem of Bass states that this can be achieved if and only if the

covariances (σ1, σ2, σ3) of the three given pair distributions, considered as a point in

11Vorobev fully generalized the theorem in 1962 [24].
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R
3 belong to the tetrahedron displayed in Figure 2.9.

Figure 2.9: Tetrahedron defined by the Bass (Bell) inequalities. σi=1,2,3 are the three

covariances defining the joint pair distributions of the random variables A, B and C.

Because in Bell’s and CHSHs’ derivation of their inequalities, the same realization

of the source parameter λ determines the value of the involved hidden variables, all

hidden variables are defined on a common product probability space. Therefore the

famous inequalities of Bell and CHSH are the same as the inequalities derived by

J. Bass. This means that the inequalities are only due to the assumption that all

measured random variables are defined by the same source parameter and therefore

defined on the same probability space. But because in an actual experiment, it is

impossible to measure all random variables at the same time, the inequalities can

not be tested in an actual experiment. This is because the assumption of the same λ

for all measurements does not have to be fulfilled and because the time and setting

dependent equipment parameters can be different for different times.

2.10 Conclusion

As history shows, the question of the completeness of quantum mechanics has been of

great interests for many decades. Especially the existence of the quantum mechanical

nonlocality (due to entanglement) has deep impact on current research topics such

as quantum teleportation or quantum computing that are based on the existence of
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entanglement.

In the following chapters the Aspect experiment and the Pan et al. realization of the

GHZ experiment are discussed.
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Chapter 3

Analysis of the Aspect

Experiments

3.1 Introduction

As described before, Alain Aspect showed for the first time in a series of experiments

[2, 3, 4] an experimental violation of the Bell inequalities. The principle experimental

setup used by Aspect has been explained in section 2.6. The Aspect experiments are

often considered as proof of quantum nonlocality and the nonlocal nature of entan-

glement. Although the non-intuitive results and explanations are widely accepted,

many researchers doubt either the correctness of the experiments [25] or the signifi-

cance of the inequalities used to rule out local hidden variable theories [21, 22].

Many highly recognized physicists (Einstein, Schrödinger,...) felt, that locality is one

of the most important principles not to be violated. This chapter aims to reiterate

that the Aspect experiments are not loophole free and that an objective local model

may be established which is as plausible as quantum nonlocality (spooky action at a

distance).

The model introduced in this chapter shows a modified version of the known detection

inefficiency loophole.

3.2 Objective Local Model based on Detection

Inefficiency

In this section, an objective local model based on the detection inefficiency loophole

(OLMDI) is described. OLMDI was developed on the basis of Maxwell’s electromag-
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netic wave theory and the well know Jones matrices.

Jones matrices describe how optical elements transform a polarized incident light

beam

Ei =

(

EH
i

EV
i

)

into the transmitted beam

Et =

(

EH
t

EV
t

)

.

Here EH
i (EV

i ) is the horizontal (vertical) component of the electric field of the

incident beam and Ei is the Jones vector of the incident beam. The Jones matrix

T is a 2x2 matrix. The transmitted beam can be related to the incident beam as

follows [26]:
(

EH
t

EV
t

)

= T

(

EH
i

EV
i

)

=

(

t11 t12

t21 t22

)(

EH
i

EV
i

)

. (3.1)

In the next subsections, the optical devices used in the Aspect experiments are de-

scribed. Then, the simulation results are shown and finally, the significance of OLMDI

is discussed.

3.2.1 Optical Elements, Source and Detectors

The experimental setup used by Aspect consists mainly of five different types of

devices. A photon source (Calcium-40), photon-detectors, polarizing beam splitters,

frequency filters and a complex counting electronics.

Calcium-40 Source

As already described in section 2.6, Aspect uses in his experiment a calcium-40 source.

Because the described cascade is a (J = 0) → (J = 1) → (J = 0) cascade, the two

resulting photons are correlated in polarization. In the OLMDI model, each photon

is described by two 2-dimensional vectors:

(

EH
i

EV
i

)

=

(

Enormcos
(
αE

i

)
ejγi

Enormsin
(
αE

i

)
ejγi

)

(3.2)

(

HV H
i

HV V
i

)

=

(

HVnormcos
(
αHV

i

)
ejγi

HVnormsin
(
αHV

i

)
ejγi

)

(3.3)

where i can assume the values A or B. One vector describes the polarization of the

photon and the other vector describes a hidden parameter vector (Figure 3.1). We
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Figure 3.1: The Calcium-40 source used in the Aspect experiments [2, 3, 4] produce

two correlated photons A and B.

denote the photon that goes to station S1 and S2 (Figure 2.4) as photon A and B

respectively. In the actual simulation, αE
A = αHV

A = αE
B = αHV

B = α. γA, γB and α

are uniformly distributed over 0 − 2π, Enorm = 1 and HVnorm = 1

2
.

Polarizing Beam Splitter

The polarizing beam splitter (PBS) is a non-absorbing optical element. The proba-

bility of transmission for a photon is

ptrans = cos2(β) (3.4)

where β is the angle between the principle transmission direction of the PBS and the

polarization of the incident photon.

When the photon is transmitted, then the unitary polarization vector Ei (i = A or

B) of the transmitted photon has the same orientation as the principle transmission

direction of the PBS. If the incident photon is reflected, the reflected photon has an

unitary polarization vector perpendicular to the principle transmission direction of

the PBS.

The effect of the PBS on the second (hidden) parameter is rather complicated and it

depends on the amount of photons and also the closeness in time and space of these

incident photons.

In the Aspect experiments it is assumed that we have only one incident photon per

time interval. Therefore, the hidden parameter vector HVi of the incident photon is
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either transformed by

TPBS = aPBS

(

1 0

0 0

)

(3.5)

where it is assumed that the principle direction of transmission of the PBS is parallel

to the horizontal axis H.

If the incident photon is reflected, then the resulting value of HVout
i is obtained by

multiplying HVi with

RPBS = aPBS

(

0 0

0 i

)

. (3.6)

From a basic energy conservation calculation for the hidden variables1 we obtain

aPBS = 2√
3
.

Narrow Bandwidth Filters

The filters seen in Figure 2.4 only allow the transmission of one of the two wavelengths

551.3 nm (green) or 422.7 nm (blue). Thus, the filters guarantee that only green

(blue) photons reach the detector in path A (B). The narrow bandwidth filters also

help to reduce the environmental noise.

Photodetectors

In optical experiments, silicon avalanche photodiodes are the most common choice. In

OLMDI, the detection inefficiency loophole is used to explain the experimental results

[2]. Although it is possible to assign a detection inefficiency to the narrow bandwidth

filters, in OLMDI the detection inefficiency is assumed to be due to inefficient silicon

avalanche photodiodes.

From biological experiments with organic single photon detectors or in other words

rods2, it is known that the detection probability is intensity dependent [27]. From

these biological experiments it is also known that the intensity versus detection-

probability curve has an S-shape (Figure 3.2) that can be described by

pdetect =

∞∑

n=δ

e−αI

n!
(αI)n. (3.7)

1(aPBS)2
∫

2π

0
cos2(δ)
︸ ︷︷ ︸

Ptransmit

1

4
cos2(δ)

︸ ︷︷ ︸

Energyhidden

+ sin2(δ)
︸ ︷︷ ︸

Preflect

1

4
sin2(δ)

︸ ︷︷ ︸

Energyhidden

dδ = 1

4
2π ⇒ aPBS = 2√

3

2Photo receptors in human eyes.

26



3.2 Objective Local Model based on Detection Inefficiency Chapter 3

Figure 3.2: ”Probability of seeing a flash plotted against the logarithm of the number

of photons incident on the front of the eye for several flash strengths.”[27]

Here α is a proportionality factor and I denotes the light intensity.

In the Aspect experiments, it is assumed that single indivisible photons hit the de-

tectors. In the presented model, relation (3.7) is used to describe the behavior of the

avalanche photodiode detectors. The parameters in (3.7) are interpreted as follows.

Instead of the beam intensity, the square of the amplitude of the hidden parameter

vector HVi is identified with I. In the simulation, the proportionality factors are

α = 36.5 and δ = 7 (Figure 3.3).
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Figure 3.3: Detection probability of a single photon depending on the product of the

amplitude square of the hidden parameter vector I = |HVi|2 and the proportionality

factor α.
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Counting Electronics

The fourfold coincidence counting electronics in the Aspect experiments is used to

distinguish between uncorrelated single photon counts (104s−1) and the true coin-

cidences of correlated photon pairs (0 − 40s−1 where the accidental rates of around

10s−1 is already subtracted). The coincidence window is about 20 ns long. Because

this is large compared to the lifetime of the intermediate state of the cascade (5

ns), it is assumed that all true coincidences are registered [2]. The significance of

the counting electronics will be discussed in section 3.2.3. For the simulation it is

assumed that only correlated indivisible photon pairs are generated and that the

counting electronics has an efficiency of 100%. This means that only one of the two

detectors3 on each side (A and B) can fire. Whenever detectors on both sides A and

B fire simultaneously (within the coincidence time window) a coincidence count is

registered4.

In the next subsection, the main simulation results for the Aspect experiments based

on OLMDI are discussed.

3.2.2 OLMDI Simulation Results

In this subsection, the simulation results of the two main experiments of Aspect [2, 3]

are discussed. In July 1982 Aspect published a paper that shows a violation of the

CHSH inequality (2.8). He used a fourfold coincidence technique, to measure the four

coincidence rates R±± (a,b). As described in section 2.6, the correlation coefficient

along a and b can be defined as:

E(AaBb) =
R++(a,b) +R−−(a,b) −R+−(a,b) −R−+(a,b)

R++(a,b) +R−−(a,b) +R+−(a,b) +R−+(a,b)
. (3.8)

Using this relation (3.8) and the OLMDI model described in subsection 3.2.1, the

simulation results shown in Figure 3.4 are obtained.

It can be seen that the simulation comes close to the quantum mechanical prediction

3If the detector that registers the transmitted photons fires, then a +1 is assigned to the random

variable at the measured side A or B. If the detector in the reflected path fires, then a −1 is

registered.
4It is assumed that the detection inefficiency, which can be a sum of the filter and detector

inefficiencies, could also be interpreted such that the magnitude of the hidden variable parameter is

inverse proportional to the delay between the impact of the photon on the detector and the time

when the photon is really registered by the avalanche diode. If the photon on one side is registered

after a long delay (longer than the coincidence time window) compared to the photon on the other

side, two singles instead of a correlated pair are registered.
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Figure 3.4: Correlation of polarizations as a function of the relative angle between

the polarimeters. The simulation with OLMDI is close to the measured results and

is clearly a local model that violates the generalized Bell inequality [9]. For each

simulated point 30000 correlated photon pairs are generated.
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cos (2θ) 5 and it also agrees well with the measured results.

It can easily be verified that OLMDI predicts the experimentally observed rotational

invariance of the Aspect experiment. It was also confirmed that the expectation value

for the measurements in each station is zero. This means that the two measurement

results +1 and −1 are registered with equal rates on each side.

The simulation of the value S, defined by the CHSH inequality (2.8), for the four

polarizer orientations (Figure 2.6) resulting in the greatest conflict between (2.8) and

the quantum mechanical predictions, gives Ssim = 2.8136.

The simulation also showed that 72.25% of the photons emitted in the direction of

one side are registered by one of the detectors (+1 or −1). Because the PBS is

non-absorbing, the detector efficiency is 72.25%. Before the simulation results are

discussed two more simulations using the OLMDI model are carried out.

In [3], the generalized Bell inequality in the form of (2.12) is tested. The mea-

surements show a violation of the inequality S ≤ 0 by 5 standard deviations. The

measured value is Sexpt = 0.101 ± 0.020. The simulation for the setup given in [3]

calculates a value of Ssim = 0.0748. This value is clearly above the classically al-

lowed maximum of 0. The simulation results of the normalized coincidence rate as a

function of the relative orientation of the polarizers are shown in Figure 3.5.

In the following subsection, the simulation results are discussed. It is shown that

the detection inefficiency used in OLMDI is within the normally observed detection

inefficiencies.

3.2.3 Significance of the Results

First of all it is important to realize that in the Aspect experiments only a small

fraction of the observed photons are registered as coincidence counts. The single rate6

(104s−1) is much higher than the measured “true coincidence rates” (0 − 40s−1).

Let us assume that the measured coincidence rate 80s−1 of the sum of the four

coincidence rates R±± (a,b) represents only a small fraction of the emitted correlated

photon pairs. We can use OLMDI to calculate the actual rate of emitted correlated

photon pairs. If the detector efficiency is 72.25% and the measured coincidence rate is

80s−1, then the true rate of polarization correlated photon pairs emitted by the source

must be 80s−1

0.72252 ≈ 154s−1. From this rate we can calculate the single rate at each

5The quantum mechanical prediction and the simulation assume perfect polarizing beam splitters.

In the real experiment, the transmittances are ǫi
M ≈ 0.97 and ǫi

m ≈ 0.0285
6One station measures a photon but within a given time window , no photon is registered by the

other station.
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Figure 3.5: Normalized coincidence rate as a function of the relative polarizing beam

splitter orientation. The OLMDI simulation and the quantum mechanical prediction

assume perfect PBS. The measurement approximation is extracted from [3]. For each

simulated point, 100000 correlated photon pairs are generated.
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station due to the generated correlated pairs RA = RB = 0.7225 · 154s−1 ≈ 111s−1.

This rate is at least two orders of magnitude smaller than the measured single rate.

Therefore, it is easily possible that 154 correlated photon pairs are generated per

second. But because of the detection inefficiency only a summed coincidence rate of

80s−1 is measured [28].

The author realizes that OLMDI relies on the detection inefficiency loophole and the

detection probability enhancement by the polarizing beam splitter7. Especially the

experimental results shown in Figure 3.5 required the enhancement property of the

polarizing beam splitter.

The detection inefficiency loophole is and was often considered as a minor problem,

especially because it is assumed that future experiments will close this loophole. But

inspite of many elaborated experiments since Aspect’s first papers, it was so far

not possible8 to confirm the quantum mechanical predictions with highly efficient

detectors [29]. Kwiat reports for example in [30] that the maximum transmission

of the interference filters was 65%. Additionally, he reports an efficiency of the

silicon avalanche photodiodes in the Geiger mode of 65%. The combined efficiency

of the filters and photodetectors are much smaller than the efficiency assumed in the

OLMDI model. Weihs states in his 1998 paper [31]: “..., we agree that an ultimate

experiment should also have higher detection/collection efficiency, which was 5% in

our experiment.” Therefore, the suggested OLMDI model is a plausible model for the

actual experiments.

3.3 Conclusion

In summary, it was shown that the measurements reported by Aspect are not loophole

free. Simulations of some of the actual experiments with the OLMDI model showed

that the measured results can be explained without spooky action at a distance

(quantum nonlocality).

In the next chapter the Pan et al. realization of the GHZ experiment is discussed.

7The PBS increases on average the magnitude of the hidden variable vector and increases therefore

the detection probability of a single photon.
8At least to the best knowledge of the author.
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Chapter 4

The Pan et al. Realization of

the GHZ Gedankenxperiment

4.1 Introduction

Pan et al. [1] published in 2000 the first experimental proof of quantum nonlocality

based on three photon Greenberger-Horne-Zeilinger (GHZ) entanglement. The basic

ideas of GHZ and the main results of the Pan et al. measurements have been pre-

sented in section 2.7 and in section 2.8 respectively. The GHZ Gedankenexperiment

is considered as one of the best experiments to test quantum mechanics versus local

realism. Additionally, the experimental realization by Pan et al. is regarded as a

very important contribution to the establishment of quantum nonlocality.

In this chapter it is shown that the experimental results reported by Pan et al. can

not be used to decide whether an objective local model or the quantum mechanical

model gives a better fit for the observed data. We will use an objective local model

based on elements of reality1 as did Pan et al.. A minor modification of the assump-

tions in the objective local model (local realistic model) of Pan et al. results in a

modified local realistic model2 that gives predictions that are statistically closer to

the experimental results than the predictions of the quantum mechanical model.

Additionally, a model based on time coordinated equipment parameters (section 4.3)

1EPR define an element of physical reality as follows: “If, without in any way disturbing a system,

we can predict with certainty (i.e., with probability equal to unity) the value of a physical quantity,

then there exists an element of physical reality corresponding to this physical quantity.”[5]
2This modified local realistic model (local instruction-set model) was developed with the help

of an extended objective local model based on the detection inefficiency loophole. This model is

explained in appendix A.
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is introduced and applied to the experimental realization of the GHZ Gedankenex-

periment.

4.2 Local Instruction-Set Model

Pan et al. studied in their work the three-photon entangled state also known as

’Greenberger-Horne-Zeilinger’ state [11]. The experimental setup used by Pan et al.

can be seen in Figure 4.1. The main results of the theoretical analysis given by Pan

et al. are summarized in section 2.8.

Figure 4.1: Experimental setup for Greenberger-Horne-Zeilinger (GHZ) tests of quan-

tum nonlocality used by Pan et al.. The interesting case of fourfold coincidences are

indicated by the four photons T, 1, 2 and 3. Because in the path of the trigger photon

T , no quarter-wave (λ/4) plate and polarizer are placed, it will be detected by detec-

tor T independently of its polarization. For photon i = 1, 2 or 3, the two elements

of reality Xi and Yi are introduced by Pan et al.. In a local realistic theory these

elements of reality are used to decide whether the photon is absorbed or transmitted

by the analyzing polarizer (POL).
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Recapitulating it was shown by Pan et al. that quantum mechanics predicts yyx =

−1, yxy = −1, xyy = −1 and xxx = +1. Here x refers to a photon polarization

measurement in the linear polarization basis H ′ = +1/V ′ = −1 (45o/−45o polariza-

tion) and y denotes a measurement in the circular polarization basis R = +1/L = −1

(right-handed/left-handed). The yyx experiment means that for photon 1 and 2, the

circular polarizations and for photon 3 the linear polarization are evaluated. The

quantum mechanical predictions are shown by the blue bars in Figure 4.2.

The local realistic model introduced by Pan et al. predicts for yyx, yxy and xyy the

same results as the quantum mechanical model. But it predicts xxx = −1 whereas

the quantum mechanical model predicts the opposite. The predications of the local

realistic model are reproduced by the red bars in Figure 4.2.

Because the experimental results (green bars in Figure 4.2) are in significantly bet-

ter agreement with the quantum mechanical predictions than with the local realistic

predictions, Pan et al. interpret their findings as the first three-particle test of local

realism following the GHZ argument. In their final analysis they conclude that no

objective local model can explain the experimental results and that quantum nonlo-

cality is therefore proven.

However, there exists a logical problem in the assumptions introduced by Pan et al.

for the local realistic model. Pan et al. derive their local realistic model based on

the predictions of the competing QMM. Before the relations yyx = −1, yxy = −1

and xyy = −1 are experimentally verified, it is assumed that the local realistic model

must also predict these relations. But this procedure conflicts with the basic ideas of

a fair scientific comparison between two independent competing models.

In the following a modified local realistic model, based on elements of reality, is pre-

sented. This model was developed with an extended objective local model based on

detection inefficiencies (EOLMDI). The details of this EOLMDI model can be found

in appendix A. The modified local realistic model produces theoretical predictions

that are closer to the results of the actual experiment than the predictions of the

quantum mechanical model.

We use instruction sets carried by the particles from the common source and therefore

guarantee locality while at the same time extending the model of Pan et al.. These

instruction sets are given in Table 4.1. We only list the combinations of elements

of reality that are assigned a non-zero probability. For example, the instruction set

(H ′
1R1|H ′

2R2|H ′
3L3) means that the photon going toward detector D1 (photon 1) has

the values X1 = H ′
1 and Y1 = R1 for the two elements of reality representing the lin-

ear and the circular polarization of that photon, respectively. Photon 2 has X2 = H ′
2
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Figure 4.2: All outcomes for the yyx, yxy, xyy and xxx experiments. The blue

bars represent the quantum mechanical predictions, the green bars reproduce the

experimental results measured by Pan et al. and the red bars are the fractions

obtained by Pan et al.’s local realistic model.
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Figure 4.3: All outcomes for the yyx, yxy, xyy and xxx experiments. The blue bars

represent the quantum mechanical predictions, the green bars are the experimental

results measured by Pan et al. and the red bars are the fractions obtained by the

instruction set for the elements of reality shown in Table 4.1.

and Y2 = R2 and photon 3 has X3 = H ′
3 and Y3 = L3.

It can easily be checked that this table results in a maximum randomness for any

individual or two-photon joint measurement.

If we use the instruction sets of Table 4.1 to evaluate the yyx, yxy, xyy and xxx

experiments, we obtain the results shown as the red bars in Figure 4.4. It can clearly

be seen that the predictions of the modified local realistic model are on average closer

to the measurement results of the actual experiment than the quantum mechanical

predictions based on the GHZ state.

We have also computed the results for the xxy, xyx, yxx and yyy experiments. For all

of these experiments it follows from Table 4.1 that all the eight events (i.e. H ′
1H

′
2R3,

H ′
1H

′
2L3,...,V

′
1V

′
2L3 in the xxy experiment) occur with equal probability 1

8
. This is

in agreement with the predictions of the quantum mechanical model of Pan et al..

It is realized that a complete analysis of all aspects of the Pan et al. experiment may
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Table 4.1: Instruction sets for the elements of reality Xi and Yi. Each of the 32 com-

binations occurs with equal probability ( 1

32
). Shaded entries indicate the relevant

elements of reality for the yyx experiment. For example, when the RRV ′ measure-

ment is carried out, the following photon triples would result in a fourfold coinci-

dence count (assuming trigger T clicks): (H ′
1R1|H ′

2R2|V ′
3L3), (H ′

1R1|V ′
2R2|V ′

3R3),

(H ′
1R1|V ′

2R2|V ′
3L3), (V ′

1R1|H ′
2R2|V ′

3R3), (V ′
1R1|H ′

2R2|V ′
3L3) and (V ′

1R1|V ′
2R2|V ′

3R3).

Adding the probabilities yields 6

32
. On the other hand, when the RRH ′ measure-

ment is performed, then the photon triples, which would give fourfold coincidences

are (H ′
1R1|H ′

2R2|H ′
3L3) and (V ′

1R1|V ′
2R2|H ′

3R3). The sum of the probabilities of

these combinations is 2

32
.

38



4.2 Local Instruction-Set Model Chapter 4

RRV‘ RRH‘ LRH‘ LRV‘ RLH‘ RLV‘ LLV‘ LLH‘
0

0.05

0.1

0.15

0.2

0.25
a

F
ra

ct
io

n

yyx Experiment

RV‘R RH‘R LH‘R LV‘R RH‘L RV‘L LV‘L LH‘L
0

0.05

0.1

0.15

0.2

0.25
b

F
ra

ct
io

n

yxy Experiment

V‘RR H‘RR H‘LR V‘LR H‘RL V‘RL V‘LL H‘LL
0

0.05

0.1

0.15

0.2

0.25
c

F
ra

ct
io

n

xyy Experiment

V‘V‘V‘ H‘V‘V‘ H‘H‘V‘ V‘H‘V‘ H‘V‘H‘ V‘V‘H‘ V‘H‘H‘ H‘H‘H‘
0

0.05

0.1

0.15

0.2

0.25
d

F
ra

ct
io

n

xxx Experiment

Figure 4.4: All outcomes for the yyx, yxy, xyy and xxx experiments. The blue bars

represent the quantum mechanical predictions based on the GHZ state, the green

bars are the experimental results measured by Pan et al. and the red bars are the

fractions obtained by the instruction sets for the elements of reality shown in Table

4.1.
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also need to include other observations such as the influence of delays imposed on the

photons by the experimental setup. Such delays influence the observed correlations.

More general time dependencies are also possible. Nevertheless, the modified local

realistic model based on elements of reality can explain the main results reported in

[1] with a statistically smaller error than the quantum mechanical model. Therefore,

the Pan et al. experiment can not be used to draw conclusions about the existence

of quantum nonlocality. Moreover, the question whether or not quantum mechanics

is a complete theory can not be answered from the reported experimental results

because, as we have shown for this particular experiment not even the class of local

realistic models based on a small number of instruction sets representing elements of

reality can be excluded.

Given this situation, in the following section, another objective local models for the

Pan et al. realization of the GHZ experiment is presented.

4.3 Time Coordinated Measuring Equipments

From many optical experiments it is well known, that the exact spacial adjustment of

the optical elements is crucial for the success of the experiment. In optical measure-

ments investigating entanglement, this spacial coordination has to be in the µm range

[1]. In most optical experiments it is assumed that only the transversal alignment is

of importance and that the longitudinal alignment3 is of minor significance. In the

Pan et al. realization of the GHZ Gedankenexperiment this general behavior is not

true. To guarantee that the analyzing polarizers and detectors in the different paths

do not influence each other, the measurements in the involved paths have to be within

a specified time window. Otherwise, the possible results are distinguishable and no

more entangled. In the time coordinated measuring equipment (TCME) model it is

assumed that all entangled photon pairs are registered (no detection inefficiency) and

that not only the transversal alignment is very important but also the longitudinal

alignment.

4.3.1 The TCME Model

The TCME model consists of three main components. The source produces similarly

to the model described in section 4.2 certain combinations of photons, each with two

elements of reality Xi and Yi (i = 1, 2, 3). The used source can produce eight different

3The transversal alignment denotes the alignment of the optical elements perpendicular to the

light beam. The longitudinal alignment is the alignment in the direction of the light beam.
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combinations (Table 4.2) that are generated all with equal probability 1

8
.

Table 4.2: Instruction sets for the elements of reality Xi and Yi produced by the

source. Each of the eight combinations occurs with equal probability 1

8
. Shaded

entries indicate the relevant elements of reality for the yyx experiment.

The polarization analyzers consist only of polarizers for the case of Xi measurements

and of λ/4-wave plates followed by polarizers for the Yi measurements (Figure 4.1).

In the TCME model, the measuring equipment parameters λXi and λY i are described

by the time dependent instructions sets shown in Table 4.3. The evaluation of the

source parameters depends on the value of the time dependent measuring equipment

parameters that can have two different realizations.

When the measuring equipment behaves (n)ormal, the photon is transmitted through

the measuring equipment if the setting of the equipment is equal to the value of the

elements of reality associated to the incident photon. For example, if we make a x

measurement, and the value of the element of reality Xi is V ′
i then the measured

result is V ′
i .

On the other hand, if for the measuring equipment parameter an (i)nverse behavior

is indicated by Table 4.3, measuring results are opposite to the values of the elements

of realities associated to the measured photon. For example, if the element of reality

associated to the photon has the value V ′
i , the measured value will be H ′

i. Table

Table 4.3: Time and setting dependent measuring equipment parameters λX and λY .

’n’ denotes the normal reading of the respective element of reality sent by the source

(i.e. V ′
i → V ′

i ). ’i’ means that the received element of reality is read inversely (i.e.

V ′
i → H ′

i) by the measuring equipment.

4.3 is only an example of possible time dependent equipment parameters. It is as-
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sumed that the measurement time can be divided in short periods of finite durations.

For simplicity, it is assumed that the behavior of the time dependent equipment pa-

rameters is periodic and that the sequences described in Table 4.3 are periodically

repeated.

It is now shown how this model could relate to the Pan et al. experiment. It is

well known that optical experiments measuring entanglement are not only expensive

but also require great experimental skills. They are so difficult because the exact

adjustment (positioning, coordination of the phases of different photons,...) of the

involved optical elements is crucial for a successful experiment. In the following, it

is shown how the experimental results could be explained with an objective local

theory. It is shown that a model based on time coordinated equipment parameters

could explain the experimental results reported by Pan et al. in [1] even better than

the time independent model presented in section 4.2.

Although in [1] the xxx experiment is presented last, it is assumed that in practice,

the experimental setup is first adjusted using the xxx experiment. I assume this

because the xxx experiment has the smallest number of optical elements4. Therefore

this experiment seems to be the most natural choice to start with. It is also assumed

that in the actual experiment, all optical elements such as the beta-barium borate

crystal (BBO), polarizing beam splitters (PBS), beam splitters (BS), narrow band-

width filters (F), λ/2-plate and detectors Di
5 are mounted at a fixed position on an

experimental table.

Let us additionally assume, that the analyzing polarizers are also fixed in the longi-

tudinal direction6 and that the polarizers are only rotated around an axis parallel to

the longitudinal direction when the settings (i.e. V ′
i or H ′

i for the Xi measurement)

are changed. It is assumed, that this rotation perpendicular to the longitudinal di-

rection does not influence the longitudinal time coordination (phase shift introduced

in Table 4.4) between the three polarization analyzers 1, 2 and 3. As seen in Table

4.4, the general λX equipment parameter behavior described in Table 4.3 is applied

to the three x measurements in the three paths 1, 2 and 3 (Figure 4.1). As can be

seen, the measuring equipment in the three paths are time coordinated. The measur-

ing equipment in path 2 has for example a positive phase shift of T
8
, where T is the

duration of the time interval of one period, with respect to the measuring equipment

in path 1. Path 3 has a positive phase shift of 7T
8

with respect to the measuring

4To change from a x measurement to a y measurement, only a correctly adjusted λ/4-plate has

to be placed in front of the analyzing polarizer.
5The general behavior of these elements is explained in great details in appendix A.
6The direction in which the photons are traveling in each path.
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Table 4.4: Time coordinated instuction sets of the time and setting dependent equip-

ment parameters λX and λY for the four experiments xxx, xyy, yxy and yyx. λX(txi)

and λY (tyi) refers to the general x and y measurement behavior described in Table

4.3. k is an integer multiple of 8.
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equipment in path 1.

When the eight measurements for the xxx experiment are finished, λ/4-plates are

placed in front of the analyzing polarizers (for the yyx, yxy and xyy experiments)

and adjusted (for example the orientation of the optical axis is adjusted and the

measuring equipments are time coordinated). It is assumed that this adjustment of

the equipment causes the time dependences shown in Table 4.4 7.

In the following subsection, the simulation results for the above model are discussed.

4.3.2 Simulation Results and Discussion

The simulation of the Pan et al. realization of the GHZ Gedankenexperiment with

the TCME model results in the fractions shown by the red bars in Figure 4.5. The

number of generated photon pairs was adjusted such that the average number of

simulated fourfold coincidences was 133 (19) for the quantum mechanically desired

(undesired) states8. It can be seen that the fluctuation around these mean values is

similar to the fluctuations measured in the actual experiments [1] in which roughly

the same amount of fourfold coincidences are reported.

An additional simulation with the TCME model shows that the quantum mechani-

cally desired states are observed in a fraction of 0.875 of all cases while the quantum

mechanically undesired states occur only in a fraction of 0.125 of all cases. Thus, the

predictions of the objective local TCME model for the quantum mechanically desired

states reproduce the measured values 0.85± 0.04 and 0.87± 0.04 for the experiments

yyx, yxy, xyy and xxx respectively, within the range of experimental errors. The

TCME model predictions of 0.125 for the quantum mechanically undesired states are

within the reported measurement errors for the xxx experiment 0.13±0.02. Further-

more, the fraction 0.125 is only 0.005 away from the smallest values contained in the

measuring tolerance interval 0.85 ± 0.04.

Simulations with the TCME model also confirmed that a maximum randomness for

any individual or two-photon joint measurement is guaranteed.

Pan et al. show in their paper an additional measurement result. They report that

7In Table 4.4 it is arbitrarily assumed that for all experiments in which y measurements are

involved, all y equipment parameters need to be readjusted when changing to a new experiment (i.e.

from the yyx to the yxy experiment). It is of course also possible to create a table for the four

experiments in which the xxx experiment is first measured and then for each of the experiments

yyx, yxy and xyy the two components that change from experiment to experiment are adjusted.
8The term quantum mechanically desired state denotes the experimental outcomes that fulfill the

quantum mechanical predictions xyy = −1, yxy = −1, yyx = −1 and xxx = +1. The quantum

mechanically undesired states describe all other outcomes.
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Figure 4.5: All outcomes for the yyx, yxy, xyy and xxx experiments. The blue

bars represent the quantum mechanical predictions, the green bars reproduce the

experimental results measured by Pan et al. and the red bars are the fractions

obtained by a simulation with the TCME model.
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a translation of the final polarizing beam-splitter introduces a delay between photon

1 and 2 at this final polarizing beam splitter (Figure 4.1). ”At large delay, that is,

outside the region of coherent superposition, the two possibilities HHH and V V V

are distinguishable and no entanglement results.”[1] (Figure 4.6).

Figure 4.6: yyx experiment measuring circular polarization on photons 1 and 2 and

linear polarization on photon 3. The variation of the delay between photons 1 and

2 at the final polarizing beam splitter influences the fourfold coincidences. This is

demonstrated on the example of RRV ′ and RRH ′ measurements. For more details

refer to [1].

The TCME model gives an intuitive explanation of the observed influence of delays

imposed on the photons by the experimental setup. The delay between photon 1 and

2 at the final polarizing beam splitter represents the strength of uncoordination be-

tween the different time coordinated measuring equipments. The larger the delay the

bigger the uncoordination. A simulation implementing this delay-dependent strength

of uncoordination9 results in a delay dependent fourfold coincidence count behavior

as shown in Figure 4.7. It can be seen that the simulation results agree with the

experimental results obtained by Pan et al. (Figure 4.6).

So far, it has been shown that the TCME model can be used to explain the measured

results for the four experiments yyx, yxy, xyy and xxx and also the delay dependence

9In the simulation, the strength of uncoordination (randomness) in the measurement time t (Table

4.4) is linearly proportional to the delay introduced by the final polarizing beam splitter. Maximum

randomness is assumed, when the delay between the photons is bigger than the spacial extension

(3 · 108 m
s
· 200fs = 60µm) of the short pulse of ultraviolet light producing the correlated photons.
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Figure 4.7: Delay dependent fourfold coincidences. The generated number of corre-

lated two photon pairs is adjusted such that at zero delay around 120 (20) fourfold

coincidences are registered for the RRV ′ (RRH ′) measurements.

of the entanglement. Therefore, the TCME model can be considered as a plausible

model.

In the following, additional experimental observations are pointed out. These exper-

imental results are intended to highlight the extreme sensitivity of entanglement to

longitudinal adjustments (delay coordiantion).

One of the strongest indications of the necessity of very careful time delay adjustments

is given in [32]. The experimental setup and the significant experimental results are

shown in Figure 4.8. It can be seen that the number of coincidences depends strongly

on the introduced time delay. Therefore by means of this particular entanglement

experiment it becomes clear that the optical elements have to be extremely well ad-

justed to get the observed results.

Despite of the fact that the experimental setup in [32] is different from the setup

used in [1], we use the results for the following speculations. Especially because the

experiments were done by the same group and with the same optical equipment .

First of all it is interesting to realized that the envelop of the graph a) seen on the

right side of Figure 4.8 has a similar shape as the curve seen in Figure 4.6. This

means that the coherence region is similarly long in both experiments.

Additionally, the fast fluctuation of the coincidence rate shown in Figure 4.8 a) is

noteworthy. A more precise measurement (graph b on the right side in Figure 4.8)

reveals that the coincidence rate depends sinusoidally on the time delay. This means
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Figure 4.8: Left: Experimental setup for entanglement purification. Right: a)

Twofold coincidences per second between the output modes a4 and b4 depending

on the delay ∆1. “The envelope of the observed twofold coincidence varies indicating

the visibility of the two-photon coherence.”[32] Outside of the coherence region, the

components of the Bell states 1√
2

(|H〉a |H〉b ± |V 〉a |V 〉b) are distinguishable. There-

fore no interference occurs. b) A detailed look at the influence of the time delay

shows that the twofold coincidence rate varies with a frequency of about 4 times the

photon frequency (788nm). It should be emphasized, that the experimental results

are extremely delay sensitive. More information can be found in [32].
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that a minor change of the time delay (position change in nm range) causes the mea-

surement results to change significantly10.

In the Pan et al. realization of the GHZ Gedankenexperiment, λ/4-plates have to be

added in front of the analyzing polarizers to change from a x to a y measurement. It

is well known that λ/4-plates consist of birefringent materials. Therefore they cause

a photon delay. All these observations give us some freedom for speculations and

questions.

• Does the time delay introduced by the λ/4-plate for the y experiment change

the outcomes of the Pan et al. measurements such that the three experiments

yyx, yxy and xyy are on similar probability spaces (all have two λ/4-plates)

but the xxx experiment is on a different probability space?

• Do the experiments in [32] confirm the suggested TCME model, that requires

extremely careful adjustments of the involved measuring equipment? The

TCME model requires an adjustment of the measuring equipment before each

of the four experiments yyx, yxy, xyy and xxx. The above observations make

it plausible that these adjustments are indeed necessary and done in the actual

experiment. Especially because the time delay introduced by the λ/4-plate has

to be taken into account. Finally, does this mean that the careful adjustments

before each of the four experiments is the reason why the quantum mechanically

predicted results are observed?

• Could a temperature change in the laboratory have changed the equipment

coordination?

Of course, we are aware that the above are only speculations and I emphasize that

the aim of this project is not to doubt quantum mechanics. However, the questions

above show that the introduction of time dependent equipment parameters raises the

bar of requirements that are necessary to show nonlocality.

Considering as example the Pan et al. realization of the GHZ Gedankenexperiment,

the TCME model shows that time and setting dependent source parameters can re-

produce the experimentally observed results within the measuring error. We do not

claim, that the TCME model is the objective local model that perfectly describes

10This can also explain the irritating observation, that in [33] a ratio of 12:1 between the quantum

mechanically desired and undesired states was observed whereas in [1] a ratio of about 11:2 is

reported. This can be explained by a better adjustment (resulting in a higher visibility) of the

optical elements in [33] compared to the adjustments done in [1].
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nature but it gives us some hints how such an objective local hidden variable theories

could look like.

As pointed out by Hess and Philipp [34], the major problem of all popular non-

existence proofs of local hidden variable theories is the assumption that all measure-

ments/experiments are based on one common probability space. It will be shown in

chapter 5 that the theoretical reasoning by Pan et al., why no local realistic model

is possible, is also based on this common-probability-space assumption.

4.4 Conclusion

As a summary of this chapter it can be stated that the original conclusion of Pan et

al. is based on a simple local realistic model based on elements of reality. A small

modification in the assumptions11 for the local realistic model results in predictions

for the four experiments xyy, yxy, yyx and xxx that are statistically closer to the

reported experimental observations than the quantum mechanical predictions [1].

Additionally, it was shown that a time and setting dependent equipment parameter

model can even explain the experimental results within the statistical measurement

error. The only requirement for this TCME model is that the four experiments are

defined on different probability spaces. It is speculated that this is achieved by ad-

justing the experimental setup for each experiment. Recently published experimental

results [32] show that these adjustments might indeed be required.

In conclusion, it is believed that the Pan et al. experiment can not be used to

draw conclusions about the existence of quantum nonlocality. Moreover, the ques-

tion whether or not quantum mechanics is a complete theory can not be answered

from the reported experimental results because as shown in section 4.2 not even the

class of local realistic models based on a small number of instruction sets representing

elements of reality can be excluded. It was also shown that it is possible to reproduce

the experimental results reported by Pan et al. with objective local models.

In the following chapter, the Pan et al. realization of the GHZ Gedankenexperiment

is investigated with the tools of classical information theory.

11The objective local model does not have to fulfill the quantum mechanical predictions xyy = −1,

yxy = −1 and yyx = −1.
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Chapter 5

Entropy Analysis of the

Pan et al. Experiment

5.1 Introduction

Information theory or the mathematical theory of communication was developed in

the 1940’s by Claude E. Shannon. In 1948 and 1959 Shannon published two classi-

cal papers [12, 13] that build the foundation of modern communication theory. The

information theory introduced by Shannon is often called classical information the-

ory. Although Shannon was mainly concerned with problems related to electronic

communication, his theory can be used in any classical communication problem. In-

formation theory can be viewed as a branch of applied probability theory.

Because quantum mechanics is in principle a probability theory we can ask the ques-

tion whether Shannon’s classical information theory can be used to analyze quantum

mechanical communication problems such as teleportation. However, it was stated

in previous works [35] that Shannon’s classical information theory can not be used

for quantum mechanical phenomena like entanglement and superdense coding. This

is because negative entropy1 values are obtained, which are forbidden in Shannon’s

classical information theory.

It has already been realized by Schumacher [36] that the von Neumann entropy has

an information-theoretical meaning. Von Neumann defined the entropy of a quantum

state described by the density operator ρ as S(ρ) ≡ −tr(ρ · log2(ρ)). Von Neumann’s

entropy is currently the entropy of choice to describe conditional entropies in quan-

1Entropy is the quantity of information. It is proportional to the amount of uncertainty or freedom

of choice of a system. Shannon defined entropy as H =
∑

i
pilog2(pi) where pi is the probability of

an event i the occur.
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tum entangled systems such as the Bell state or the entangled three-photon GHZ

state. This because the von Neumann entropy is allowed to assume negative values.

Despite of the fact that Shannon’s classical information theory is considered to be

inadequate for quantum mechanical information analysis, in this chapter, the clas-

sical information theory is used to analyze the entangled three-photon GHZ state.

Especially the question whether or not the four experiments yyx, yxy, xyy and xxx

of the Pan et al. implementation of the GHZ Gedankenexperiment can be defined on

one common probability space is of main interest. This question is answered using

standard probability theory and Shannon’s classical information theory.

In the first section, Shannon’s information theory is introduced. Based on this, sev-

eral entropy values of the single experiments yxy are calculated. In section 5.4 the

four experiments yyx, yxy, xyy and xxx are considered together. The entropies of

different classical and quantum mechanical theories for the GHZ Gedankenexperi-

ment are calculated and entropy limits are defined. These limits have to be fulfilled

to allow classical information theoretical interpretations and more importantly sim-

ple classical models based on elements of reality defined on one common probability

space. In the following section, a simple proof based on standard probability theory

is used to show that the contradiction between the local realistic model described in

[1] and the quantum mechanical model is due to the assumed definition of all four

experiments yyx, yxy, xyy and xxx on one common probability space. At the end,

the findings are summarized.

5.2 Shannon’s Information Theory

Claude E. Shannon published in 1948 a key paper about information theory. In

this paper he considers the fundamental problem of communication, which is to use

a signal that is produced at point A and to reproduce it at a remote point B. He

explains his theory using the example of a simple communication system shown in

Figure 5.1. This general communication system consists of five parts:

1. “An information source which produces a message or sequence of messages to

be communicated to the receiving terminal.” [14]

2. The transmitter converts the message into a signal suitable for transmission

over the communication channel.

3. The channel is the medium (i.e. coaxial cable) used to transmit the signal from

the transmitter to the receiver.
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Figure 5.1: Schematic diagram of a general communication system [14].

4. The receiver is the inverse of the transmitter.

5. The destination is the intended receiver of the message.

Shannon classifies in his historic paper three different categories of communication

systems: discrete, continuous and mixed [14]. For the analysis of the three-photon

Greenberger-Horne-Zeilinger entanglement only the discrete communication theory

in which the message and the signal consist of discrete symbols is required.

In the following some definitions are introduced to make the reader familiar with the

major concepts of Shannon’s information theory.

An ensemble X: Consists of a random variable X with a set of possible outcomes

ΩX = {b1, b2, ..., bI}, having probabilities {p1, p2, ..., pI}, with P (x = bi) = pi,

pi ≥ 0 and
∑I

i=1
pi = 1

Entropy: The concept of entropy is the basis of classical information theory. En-

tropy describes the quantity of information in communication theory. Entropy

is often associated with the amount of freedom of choice when selecting or con-

structing a message. In physics, entropy denotes the degree of randomness or

uncertainty.

H(X) denotes the entropy of the random variable X. The entropy of the set

of probabilities p1, ..., pn for a random variable is defined as2

H = −
n∑

i=1

pilog2(pi). (5.1)

2H is maximized when the freedom of choice is at a maximum. This means that H is maximized

when all probabilities pi are equal. The convention 0 · log2(0) = 0 is used in entropy calculations.
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Capacity of a Channel: Defines the maximum amount of information that can

be transmitted over an information channel within a given time. Capacity is

normally measured in bits per seconds.

Discrete Source: Generates successive symbols chosen from a finite set according to

certain probabilities (stochastic process) depending often on preceding choices

as well as the particular symbols in question.

Markoff Process=Markoff Chain: A stochastic process in which the probabili-

ties depend on the previous events [14].

Ergodic Process: Special class of Markoff processes. In an ergodic process, any

large enough sample of a sequence of symbols tends to have the same statistical

behavior as the sequence as a whole.

Equivocation: Entropy of the message relative to the signal. It measures the aver-

age uncertainty in the message when the signal is known.

Joint entropy: The joint entropy of the random variables X and Y is defined as

H(X,Y ) = −
∑

x,y∈ΩX ,ΩY

p(x, y)log2(p(x, y)). (5.2)

Here p(x, y) is the probability of joint occurrence of x and y. The joint entropy

of X and Y is smaller than the sum of the individual entropies X and Y . Only

when the random variablesX and Y are independent, H(X,Y ) = H(X)+H(Y )

is valid [37].

Conditional Entropy: The conditional entropy is a measure of how uncertain we

are, on average, about the value of X when Y is known. The conditional

entropy of X on knowing Y is therefore defined as

H(X|Y ) = −
∑

x,y∈ΩX ,ΩY

p(x, y)log2(p(x|y))

= H(X,Y ) −H(Y ) (5.3)

where p(x|y) is the probability distribution of x conditional on knowing y [38].

Mutual Information: The mutual information between X and Y measures how

much information X and Y have in common. The mutual information of X

54



5.2 Shannon’s Information Theory Chapter 5

and Y is obtained as follows [39]:

I(X : Y ) = H(X : Y ) = H(X) −H(X|Y )

= H(X) +H(Y ) −H(X,Y ) (5.4)

Shannon introduced in his extensive paper many other definitions and proved 23

theorems (i.e. the Noisy Channel Coding Theorem). For the analysis of the three-

photon Greenberger-Horne-Zeilinger entanglement the above definitions are sufficient.

Before the classical information theory is applied to the Pan et al. realization of the

GHZ Gedankenexperiment, one of the most useful tool for entropy calculations, the

entropy Venn diagram [35, 40] is introduced. In classical information problems, Venn

diagrams can be used to quickly find relations between different entropies. Consider

for example the binary entropy Venn diagram for the two random variables X and

Y seen in Figure 5.2. Each area corresponds to a specific entropy. Relations between

Figure 5.2: Binary entropy Venn diagram for the random variables X and Y . All

terms H(•) denote non-negative entropies in the sense of classical Shannon informa-

tion theory.

entropies can be found by simply adding or subtracting the areas corresponding to

the different entropies. Using this simple method, the following entropy relations for

the two random variables X and Y can be found:

H(X) = H(X|Y ) +H(X : Y ) (5.5)

H(Y ) = H(Y |X) +H(X : Y ) (5.6)

H(X,Y ) = H(X) +H(Y ) −H(X : Y ). (5.7)

In the next sections, the classical Shannon information theory is applied to the Pan et

al. realization of the GHZ Gedankenexperiment. It is clear that classical information

theory results in forbidden negative entropies3 when applied to quantum entangled

3In classical Shannon information theory, mutual entropies of three or more random variables can

be negative [41, 42] but conditional entropies are positive semidefinite [43].
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systems. It is also known [35] that such quantum mechanical systems can be analyzed

with quantum (von Neumann) conditional entropies S(ρ) ≡ −tr(ρ · log2(ρ)) 4. Never-

theless, an information theoretical analysis based on Shannon’s classical information

theory can give interesting theoretical results such as the entropic Bell inequalities

described in [41].

5.3 Entropy of Single Experiment

Pan et al. report in their paper [1] measurements for four different experiments. To

start the information theoretical analysis of the Pan et al. realization of the GHZ

Gedankenexperiment, only one of the four experiments is considered. Since all four

experiments have a similar probability distribution, the following analysis of the yxy

experiment can easily be adapted to the yyx, xyy and xxx experiments.

For each of the experiments, it is assumed that the measurement result is deter-

mined by an element of reality. The element of reality determining the result of

the x (y) measurement in path i, is denoted as Xi (Yi). The elements of reality

Xi (Yi) can assume the values +1/−1 for H ′/V ′ (R/L) polarizations. Thus, eight

different realizations are possible for the triple Y1X2Y3. Because the eight settings

of one experiment (i.e. yxy) can be measured by simply rotating the polarizers but

without adding new optical elements to the experimental setup, it is assumed that

measurements for all eight settings can be defined on one common probability space

(classical system). Therefore an entropy Venn diagram can be used to find the en-

tropy relations for the three random variables Y1, X2 and Y3 (Figure 5.3).

Before any entropy for the entangled three-photon GHZ state is calculated, the in-

volved entropies and their relations are defined:

H(Y1) = −p(R1) · log2(p(R1)) − p(L1) · log2(p(L1)) (5.8)

H(X2) = −p(H ′
2) · log2(p(H ′

2)) − p(V ′
2) · log2(p(V ′

2)) (5.9)

H(Y3) = −p(R3) · log2(p(R3)) − p(L3) · log2(p(L3)) (5.10)

(5.11)

H(Y1, X2) = −
∑

Y1∈{R1,L1}
X2∈{H′

2
,V ′

2
}

p(Y1, X2)log2(p(Y1, X2)) (5.12)

H(Y1, Y3) = −
∑

Y1∈{R1,L1}
Y3∈{R3,L3}

p(Y1, Y3)log2(p(Y1, Y3)) (5.13)

4Von Neumann entropies can assume negative values.
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Figure 5.3: Ternary entropy diagram for the three random variables Y1, X2 and Y3.

α, α, β, β, γ, γ, δ are defined in the text.

H(X2, Y3) = −
∑

X2∈{H′
2
,V ′

2
}

Y3∈{R3,L3}

p(X2, Y3)log2(p(X2, Y3)) (5.14)

H(Y1, X2, Y3) = −
∑

Y1∈{R1,L1}
X2∈{H′

2
,V ′

2
}

Y3∈{R3,L3}

p(Y1, X2, Y3)log2(p(Y1, X2, Y3)) (5.15)

γ + δ = H(Y1 : X2) = H(Y1) +H(X2) −H(Y1, X2) (5.16)

α+ δ = H(X2 : Y3) = H(X2) +H(Y3) −H(X2, Y3) (5.17)

β + δ = H(Y1 : Y3) = H(Y1) +H(Y3) −H(Y1, Y3) (5.18)

α = H(Y1|X2, Y3) = H(Y1, X2, Y3) −H(X2, Y3) (5.19)

β = H(X2|Y1, Y3) = H(Y1, X2, Y3) −H(Y1, Y3) (5.20)

γ = H(Y3|Y1, X2) = H(Y1, X2, Y3) −H(Y1, X2) (5.21)

α = H(X2 : Y3|Y1) = H(Y1, X2) +H(Y1, Y3)

−H(Y1) −H(Y1, X2, Y3) (5.22)

β = H(Y1 : Y3|X2) = H(Y1, X2) +H(X2, Y3)

−H(X2) −H(Y1, X2, Y3) (5.23)

γ = H(Y1 : X2|Y3) = H(Y1, Y3) +H(X2, Y3)

−H(Y3) −H(Y1, X2, Y3) (5.24)

δ = H(Y1 : X2 : Y3) = H(Y1) +H(X2) +H(Y3) −H(Y1, X2)
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−H(Y1, Y3) −H(X2, Y3) +H(Y1, X2, Y3) (5.25)

For a classical system it is known that all Shannon entropies except δ are non-

negative.

Quantum mechanical entanglement is one of the most interesting phenomena cur-

rently under investigation in physics. Entanglement is so important to understand

because it forms the basis of quantum teleportation and certain quantum computa-

tional algorithms. To the author’s best knowledge, no general information theoretical

interpretation of quantum entanglement has been developed.

Quantum entanglement is strongly related to nonclassical correlations between sepa-

rated quantum systems. Practically, this means that the measurement of an entangled

state in station A influences5 the possible outcome of a remote measurement in sta-

tion B. This correlation between measurement outcomes of classically independent

observers can be expressed in the language of information theory. It is expected that

the mutual information of three independent observers A, B and C is different from

the mutual information obtained when the observers measure an entangled system.

Such an entangled system is, for example, described by the entangled three-photon

GHZ state.

In Table 5.1 and 5.2, the entropies for the yxy experiment respectively the entangled

three-photon GHZ state measured in the H-V basis are listed. From these tables,

several interesting results can be derived.

• The entropy calculation for the transformed entangled three-photon GHZ state6

|ψ〉 =
1

2
(|R〉

1

∣
∣V ′〉

2
|R〉

3
+ |L〉

1

∣
∣H ′〉

2
|R〉

3

+ |R〉
1

∣
∣H ′〉

2
|L〉

3
+ |L〉

1

∣
∣V ′〉

2
|L〉

3
) (5.26)

results in different entropy values than the entropy calculation for the original

entangled three-photon GHZ state7

|ψ〉 =
1√
2

(|H〉
1
|H〉

2
|H〉

3
+ |V 〉

1
|V 〉

2
|V 〉

3
) . (5.27)

As required by the second law of thermodynamics, the joint entropies (uncer-

tainties) of the transformed state are larger than the joint entropies of the origi-

nal state. Another interesting observation is the change of the mutual informa-

tion between two random variables. For the original state, the mutual informa-

tion of two random variables (elements of reality) isH(Xo1 : Xo2)=H(Xo1 : Xo3)=

5The entangled state is reduced.
6In the following referred to as transformed state.
7In the following denoted as original state.
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Table 5.1: Single and joint entropies for the original entangled three-photon GHZ

state |ψ〉 = 1√
2

(|H〉
1
|H〉

2
|H〉

3
+ |V 〉

1
|V 〉

2
|V 〉

3
) and for the yxy experiment. All

models require a maximum randomness for any individual or two-photon joint mea-

surement. QM (Y1X2Y3 = −1): Elements of reality Xi and Yi have to fulfill the quan-

tum mechanical predictions. Rademacher functions: Y1 = −r1(t), Y2 = r1(t)r3(t) and

Y3 = r3(t) where rk(t) = sign
[
sin

(
2kπt

)]
. Max. H(•) for Y1, X2, Y3: Joint prob-

ability spaces of the three random variables Y1, X2, Y3 are such that a maximum

entropy results. LIS: Values of the elements of reality are assigned according to the

rules of the local instruction-set model (section 4.2). TCME: Values of Xi and Yi

are assigned according to the TCME model (section 4.3). Four equipment parameter

combinations (nnn, iii, nii and iin) are possible for the yxy experiment. The overall

TCME entropy calculation considers the distribution of the values of elements of re-

ality in the long run. Experiment (Pan et al.): Entropies for the measurement results

reported by Pan et al..
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Table 5.2: Conditional entropies (α, β, γ), conditional informations (α, β, γ) and

mutual information δ for the original entangled three-photon GHZ state |ψ〉 =
1√
2

(|H〉
1
|H〉

2
|H〉

3
+ |V 〉

1
|V 〉

2
|V 〉

3
) and the yxy experiment. QM (Y1X2Y3 = −1):

Elements of reality Xi and Yi have to fulfill the quantum mechanical predictions.

Rademacher functions: Y1 = −r1(t), Y2 = r1(t)r3(t) and Y3 = r3(t) where

rk(t) = sign
[
sin

(
2kπt

)]
. Max. H(•) for Y1, X2, Y3: Joint probability spaces of

the three random variables Y1, X2, Y3 are such that a maximum entropy results.

LIS: Values of the elements of reality are assigned according to the rules of the local

instruction-set model (section 4.2). TCME: Values of Xi and Yi are assigned ac-

cording to the TCME model (section 4.3). Four equipment parameter combinations

(nnn, iii, nii and iin) are possible for the yxy experiment. The overall TCME en-

tropy calculation considers the distribution of the values of elements of reality in the

long run. Experiment (Pan et al.): Entropies for the measurement results reported

by Pan et al..
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H(Xo2 : Xo3) = 1 while it is H(Y1 : X2)=H(Y1 : Y3)= H(X2 : Y3) = 0 for the

transformed state. Consequently, the transformation reduces the information

shared by two variables. In terms of quantum mechanics this means that a

measurement at one detector reduces the original state such that the outcomes

at the other detectors are known (H(Xo1, Xo2|Xo3) = H(Xo2, Xo3|Xo1) =

H(Xo1, Xo3|Xo2) = 0). Whereas for the transformed state, measurements

at two detectors are required, to determine the result of the third detector

(α = β = γ = 0 but H(Y1, X2|Y3) = H(X2, Y3|Y1) = H(Y1, Y3|X2) = 1). The

change of the mutual information between the three random variables can also

be seen when comparing δ and δo. The mutual information in the case of the

original state is δo = 1 (1. order entanglement) while we obtain δ = −1 for

the transformed state (2. order entanglement). Thus H(Y1 : X2 : Y3) can be

negative [42].

Some may not be comfortable with this fact because it is difficult to inter-

pret H(Y1 : X2 : Y3) < 0 as a measure of information. Nevertheless, if the

definition H(Y1 : X2 : Y3) = H(Y1 : X2) − H(Y1 : X2|Y3) is used to inter-

pret a negative mutual entropy of three random variables, then it means that

H(Y1 : X2) < H(Y1 : X2|Y3). Therefore, the mutual information of three vari-

ables can only be negative, when the knowledge of i.e. Y3 causes an increase in

the conditional mutual information between Y1 and X2 compared to the mutual

information of Y1 and X2 not knowing Y3.

The difference between δ = −1 for the transformed state and δo = 1 for the

original state can be explained as follows.

When a measurement at one detector (i.e. D1) is done for the original state,

then it is known from quantum mechanics that the act of measurement reduces

the entangled quantum mechanical state to a uniquely defined quantum state

|H〉
1
|H〉

2
|H〉

3
or |V 〉

1
|V 〉

2
|V 〉

3
. Therefore, when knowing the measurement

result in one station, the outcome in the second station is uniquely defined.

This means that two random variables (i.e. Xo1 and Xo2) have a mutual infor-

mation H(Xo1 : Xo2) = 1. On the other hand side, if the measurement result

in a third station is known (i.e. Xo3), then the measurement results for the

remaining variables are known. This means that the additional knowledge of

Xo1 does not increase the information known about Xo2 when Xo3 is known.

Therefore H(Y1 : X2|Y3) = 0 and H(Y1 : X2 : Y3) = 1.

A similar analysis for the transformed state shows that the knowledge of the

measurement result of one random variable (i.e. Y1) does not determine the
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measurement result of the another random variables (i.e. X2). Therefore, the

two individual measurements are completely independent H(Y1 : X2)=

H(Y1 : Y3) = H(X2 : Y3) = 0.

On the other hand side, if a third random variable (i.e. Y3) is know, then the

measurement of one of the two remaining random variables (i.e. Y1 or X2)

reduces the state such that the value of the third random variable is uniquely

defined due to entanglement. Therefore, the conditional information for the

transformed state in the yxy experiment is H(Y1 : X2|Y3) = H(Y1 : Y3|X2) =

H(X2 : Y3|Y1) = 1 and H(Y1 : X2 : Y3) = −1.

Because the predicted outcomes for the eight settings of the yxy experiment

are the same for the quantum mechanical model and the model based on

Rademacher functions, the entropies are the same in both cases. Thus the

above analysis for the transformed state is also valid for the Rademacher func-

tion model.

In conclusion, it was shown that in general, a negative mutual information

H(X : Y : Z) = H(X : Y )−H(X : Y |Z) means that the two random variables

X and Y have more mutual information when a third random variable Z is

know than when the random variable Z is not known. For the given example,

it means that a measurement of the original state at one station determines

the outcomes at the other two detectors whereas in the case of the transformed

state, the knowledge of two random variables is required to uniquely determine

the outcome at the remaining detector. This can be interpreted as a reduction

of entanglement between the random variables by the linear transformations

(2.36 - 2.39).

• The comparison of the entropies for the transformed quantum mechanical state

and the maximum joint entropy of three random variables case shows that the

quantum mechanical condition Y1X2Y3 = −1 only reduces the joint entropy

H(Y1, X2, Y3). A maximum randomness destroys all conditional informations α,

β and γ and the mutual entropy δ = 0. Additionally, the conditional entropies

α = β = γ = 1 are maximized for the case of maximum randomness.

• The information theoretical analysis of the predictions of the TCME model for

the yxy experiment shows a very interesting property of the entropies of time

and setting dependent equipment parameter model. As described in section

4.3, the measuring equipments are adjusted such that the equipment parameter

combination is 5

8
of the time nnn and 1

8
of the time iii, nii or iin, respectively.
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For each of these combinations, the entropy values are the same as for the

transformed entangled three-photon GHZ state8. An analysis of the overall

(over a long period of time) distribution for the yxy experiment, obtained by the

simulation with the TCME model shows (Figure 4.5) that the overall entropies

are not weighted averages of the single time entropies. This can for example be

seen when considering α in Table 5.2. The weighted average of the four entropies

αnnn = 0, αiii = 0, αnii = 0 and αiin = 0 is zero and not αoverall = 0.54. This

behavior is mathematically expressed in the following remark.

Remark 5.1 The random variable A with values {a1, a2, ..., aN} is given. It is

assumed that the time t ∈ {t1, ...tM} can be divided into M different intervals

ti. pi = P (t = ti) is the probability that the random variable A is measured

during the time interval ti. Additionally, the probabilities pi satisfy
∑M

i=1
pi = 1.

It is also assumed that A is at each time ti defined on a certain probability

space. Therefore the conditional probability distribution of (A|t) has to fulfill
∑N

i=1
p(ai|t) = 1 at any time t.

The entropy of A at a given time t is defined as

H(A|t) = −
N∑

i=1

p(ai|t)log2(p(ai|t)). (5.28)

The entropy of A over all t is

H(A) = −
N∑

i=1

(
M∑

k=1

p(tk)p(ai|tk)log2
(

M∑

k=1

p(tk)p(ai|tk)
))

. (5.29)

It can easily be checked that this is in general 9 not equal to

Hta(A) = −
M∑

k=1

p(tk)

[
N∑

i=1

p(ai|tk)log2 (p(ai|tk))
]

=
M∑

k=1

p(tk)H(A|tk). (5.30)

(5.28) and (5.29) and accordingly (5.29) and (5.30) are only equal when the

probability distribution for A is the same at all times t

p(A|t) = p(A). (5.31)

8During the times t = k + 4, the only possible values for the elements of reality predicted by the

TCME model for the yxy experiment are Y1X2Y3 = {R1H
′
2R3, R1H

′
2L3, L1V

′
2L3, L1H

′
2R3}.

9For example: Assume p(A = a1|t1) = 1

4
, p(A = a2|t1) = 3

4
, p(A = a1|t2) = 1

2
, p(A = a2|t2) = 1

2
,

p(t1) = 1

2
and p(t2) = 1

2
. Then, H(A) = 0.95 6= Hta(A) = 0.91.
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Remark 5.1 is important because of the following reason. In [41], the authors

derive the CHSH inequality for mutual entropies

H(Aa : Bb) −H(Aa : Bc) +H(Ad : Bb) +H(Ad : Bc) ≤ 2. (5.32)

This inequality is only valid when the four random variables Aa, Ad, Bb and

Bc are defined for all times on the same common probability space. If the

four variables are defined on different probability spaces at different times and

settings, inequality (5.32) can be fulfilled at each time t but violated for the

overall experiment. Therefore, any entropic Bell inequalities can be violated

by the long run distributions, but remain valid at discrete times t. Thus, from

an overall violation of entropic Bell inequalities, no conclusion about locality

can be drawn. It can only be checked whether or not the overall experimental

results can be explained by a model that has all measurements defined on one

common probability space.

• The Pan et al. measurement results for the yxy experiment show that the exper-

imental entanglement is not as pure as quantum mechanical predicted. When

considering δ as a measure of entanglement, it means that the measured value

of δexp = −0.39 is between the perfectly entangled transformed state δQM = −1

and δmax = 0 when the three variables Y1, X2 and Y3 are independent.

In conclusion, it was shown that the mutual information δ = H(A : B : C) of three

random variables A, B and C can be interpreted with the definition H(A : B : C) =

H(A : B) −H(A : B|C). A value of δ 6= 0 denotes systems for which the knowledge

of one random variable changes the mutual information between the other random

variables compared to the mutual information of these two random variables not

knowing the value of the third random variable. Additionally, a comparison of the

entropies at a given time t and the overall entropies showed that the overall entropy

can in general not be used to determine the values of the individual entropies and vis

versa.

In the following section, classical information theory is used to answer the question

whether or not all four experiments yyx, yxy, xyy and xxx can be defined on one

common probability space.

5.4 Generalized Entropic Bell Test

In this section, a generalized entropic Bell test is developed and applied to the Pan

et al. realization of the GHZ Gedankenexperiment. For the derivation of the gener-
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alized entropic Bell test, Shannon’s classical information theory is used.

The generalized entropic Bell test states necessary conditions for the existence of a

local realistic model for the experiment under investigation. The generalized entropic

Bell test can be used to check whether or not local realistic models based on source

(elements of reality) and setting parameters defined on one common probability space

can exist. The test is based on the following idea.

At the beginning it is assumed that all investigated experiments can be explained

with a local realistic model with all random variables defined on one common prob-

ability space. If this assumption is correct, classical Shannon information theory can

be applied and non of the calculated entropies should contradict the non-negativity

theorem for certain entropies. Therefore, if any of these entropies is negative it is

known that the assumption was incorrect and the experiments can not be explained

with a local realistic model based on source and setting parameters defined on one

common probability space.

Therefore, the question whether or not an observed probability distribution for ran-

dom variables can be explained by a local realistic model defined on one probability

space can be reduced to the sign test of the generalized entropic Bell test. For ex-

ample, a negative value of H(A : B|D) for the four random variables A, B, C and

D indicates, that the experiment can not be explained by a local theory that is only

based on source (elements of reality) and setting parameters.

In the following, the generalized entropic Bell test is applied to the experimental

results obtained by Pan et al.. The four experiments measured in [1] are considered

to be described by four random variables:

A = Y1Y2X3 ∈ {R1R2V
′
3 , R1R2H

′
3, L1R2H

′
3, L1R2V

′
3 ,

R1L2H
′
3, R1L2V

′
3 , L1L2V

′
3 , L1L2H

′
3} (5.33)

B = Y1X2Y3 ∈ {R1V
′
2R3, R1H

′
2R3, L1H

′
2R3, L1V

′
2R3,

R1H
′
2L3, R1V

′
2L3, L1V

′
2L3, L1H

′
2L3} (5.34)

C = X1Y2Y3 ∈ {V ′
1R2R3, H

′
1R2R3, H

′
1L2R3, V

′
1L2R3,

H ′
1R2L3, V

′
1R2L3, V

′
1L2L3, H

′
1L2L3} (5.35)

D = X1X2X3 ∈ {V ′
1V

′
2V

′
3 , H

′
1V

′
2V

′
3 , H

′
1H

′
2V

′
3 , V

′
1H

′
2V

′
3 ,

H ′
1V

′
2H

′
3, V

′
1V

′
2H

′
3, V

′
1H

′
2H

′
3, H

′
1H

′
2H

′
3} (5.36)

As can be seen, for each random variable the sample space consists of 8 possible

events. Additionally, the four random variables are based on the same six elements

of reality Xi and Yi (i = 1, 2, 3). Therefore, the four random variables A, B, C

65



Chapter 5 Entropy Analysis of the Pan et al. Experiment

and D are not independent. When the four experiments can be explained with a

local realistic model based on elements of reality defined on one common probability

space, the classical information theoretical analysis of the four experiments should

result in values for the entropies H(A : B), H(A : B|C), H(A : B|C,D), H(A|B),

H(A,B|C), H(A,B,C, |D), H(A|B,C), H(A,B|B,C) and H(A|B,C,D) that are all

non-negative.

Because it is assumed, that Shannon’s classical information theory is valid, the qua-

ternary entropy Venn diagram (Figure 5.4) can be used to derived the relations

Figure 5.4: Quaternary entropy diagram for the four random variables A, B, C and

D.

between different entropies:

H(A : B|C) = H(A,C) +H(B,C) −H(C) −H(A,B,C) ≥ 0 (5.37)

H(A : B|C,D) = H(A,C,D) +H(B,C,D)

−H(C,D) −H(A,B,C,D) ≥ 0 (5.38)

H(A : B : C|D) = H(A,D) +H(B,D) +H(C,D)

+H(A,B,C,D) −H(D) −H(A,B,D)

−H(A,C,D) −H(B,C,D) (5.39)

H(A : B : C) = H(A) +H(B) +H(C) +H(A,B,C)
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−H(A,B) −H(A,C) −H(B,C) (5.40)

H(A : B : C : D) = H(A) +H(B) +H(C) +H(D)

−H(A,B) −H(A,C) −H(A,D)

−H(B,C) −H(B,D) −H(C,D)

+H(A,B,C) +H(A,B,D) +H(A,C,D)

+H(B,C,D) −H(A,B,C,D) (5.41)

H(A|B,C) = H(A,B,C) −H(B,C) ≥ 0 (5.42)

Here, the joint entropies of A, B, C and D are defined similarly to (5.8-5.15). The

strong subadditivity theorem [43] of the classical Shannon information theory states

that the conditional informations (5.37) and (5.38) are non-negative. The mono-

tonicity of Shannon entropies implies that conditional entropies (i.e. H(A|B,C)) are

positive semidefinite [43]. Thus, if the strong subadditivity condition is violated, it

is known that the analyzed system is not on one probability space. This generalized

entropic Bell (sign) test of H(A : B|C), H(A : B|C,D) or H(A|B,C) is a simple

method to decide whether the Pan et al. realization of the GHZ state can be ex-

plained by a simple local realistic model with parameters defined on one common

probability space or if different probability spaces are required 10.

The main entropies for different classical models used in the generalized entropic Bell

test of the Pan et al. realization of the GHZ Gedankenexperiment are summarized

in Table 5.3 (a detailed calculation of the listed entropies is given in appendix B).

All simple classical models assume that the source parameters (elements of reality)

and the measuring equipment settings are defined for all four experiments A, B, C

and D on one common product probability space. As can be seen, the conditional

information H(D|A,B) is negative for the local elements of reality model that allows

only the quantum mechanically predicted result D = X1X2X3 = +1. Therefore, the

quantum mechanical predictions derived in [1] can not be explained with a classical

model that is only based on source and setting parameters defined on the same com-

mon probability space at all times t.

To check the generalized entropic Bell test, the conditional entropies for the distri-

butions given by the local realistic model introduced by Pan et al. (POLT) and the

local instruction-set (LIS) model are calculated. It is expected that all conditional

informations are non-negative because the models are based on source and setting pa-

rameters that are for all four experiments defined on one common probability space.

10In the language of quantum mechanics it reduces to the question whether or not quantum

nonlocality is required to explain the experimental results.
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Table 5.3: Conditional and mutual informations for different models based on ele-

ments of reality (EoR). The local EoR model with A = Y1Y2X3 = −1, B = Y1X2Y3 =

−1, C = X1Y2Y3 = −1 and D = X1X2X3 = −1 is the local realistic model in-

troduced by Pan et al. (POLT). The local EoR model with A = Y1Y2X3 = −1,

B = Y1X2Y3 = −1, C = X1Y2Y3 = −1 and D = X1X2X3 = +1 is a local model

that is based on the same source parameters as POLT. The only difference is that

the allowed outcomes are not only for the A, B and C experiment restricted to the

quantum mechanically predicted states but also the D experiment is restricted to

the quantum mechanically desired states D = X1X2X3 = +1. The LIS model is

explained in section 4.2
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The calculated entropies for POLT and the LIS model (Table 5.3) confirmed that the

necessary conditions of the generalized Bell test are fulfilled for both models.

In conclusion, it was shown that the non-negativity of certain Shannon entropies

(5.37,5.38,5.42) is a necessary condition for the existence of local realistic models

based on elements of reality defined on one common product probability space. This

generalized entropic Bell test was used to show that the quantum mechanical pre-

dictions for the Pan et al. realization of the GHZ Gedankenexperiment can not be

explained by a simple local realistic model only based on elements of reality defined

on one common probability space.

In the following section, another simple test to check whether or not all four experi-

ments yyx, yxy, xyy and xxx reported by Pan et al. can be explained by source and

setting parameters defined on one common probability space is presented.

5.5 Non-Existence of one Common Probability Space

In the last section it was shown how the generalized entropic Bell test can be used

to decide if a physical experiment can be explained with a theory based on one

common probability space for all measurements. In this section, a similar test based

on an idea of Jean Bass[23] is applied to the Pan et al. realization of the GHZ

Gedankenexperiment. In [34] the authors show that the celebrated theorem of Bell

is only a special case of a theorem of Bass. The authors show that given certain

joint distributions for the three pairs (A,B), (A,C) and (B,D) of random variables,

“it is not possible to find three random variables A, B and C, defined on a common

probability space” [34].

In this section it is assumed that the four experiments yyx, yxy, xyy and xxx can

be defined as random variables A = Y1Y2X3, B = Y1X2Y3, C = X1Y2Y3 and D =

X1X2X3. We show with basic probability theory that these four random variables

can not be defined on one common probability space while fulfilling the quantum

mechanically predicted relations A = Y1Y2X3 = −1, B = Y1X2Y3 = −1, C =

X1Y2Y3 = −1 and D = X1X2X3 = +1 [1].

When the four experiments xyy, yxy, yyx and xxx can be defined on one common

probability space theorem 5.1 has to be fulfilled.

Theorem 5.1 The random variables A, B, C and D can be defined on one common
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probability space if and only if
∑

a ∈ A
b ∈ B
c ∈ C

P (a, b, c, d) = P (d) (5.43)

is valid. The joint probability of the four random variables A, B, C and D is given

by P (a, b, c, d). P (d) defines the probability distribution of the random variable D.

The probabilities P (X1X2X3) can be obtained from the quantum mechanical predic-

tion given by Pan et al.

|ψ〉 = 1√
2

(
∣
∣H ′〉

1

∣
∣H ′〉

2

∣
∣H ′〉

3
+

∣
∣H ′〉

1

∣
∣V ′〉

2

∣
∣V ′〉

3

+
∣
∣V ′〉

1

∣
∣H ′〉

2

∣
∣V ′〉

3
+

∣
∣V ′〉

1

∣
∣V ′〉

2

∣
∣H ′〉

3
). (5.44)

From this quantum mechanical state (5.44) we obtain

P (X1X2X3 = −1) = 0 (5.45)

P (X1X2X3 = +1) =
1

4
. (5.46)

To calculate the joint probabilities of the four experiments A, B, C and D, the

following definition based on conditional probabilities is used

P (a, b, c, d) = P (d|c, b, a) · P (c|b, a) · P (b|a) · P (a). (5.47)

We know from Pan et al. that the three experiments A, B and C can be defined

on one probability space while also fulfilling the quantum mechanical relations A =

Y1Y2X3 = −1, B = Y1X2Y3 = −1 and C = X1Y2Y3 = −1. Additionally, whenever

the values of the elements of reality of the three experiments A, B and C are known,

the result of the D experiment is also known11. Therefore P (d|a, b, c) = 1 for d ∈
{X1X2X3 = −1} and P (d|a, b, c) = 0 for d ∈ {X1X2X3 = +1}. When assuming that

the measurement results are determined by the elements of reality associated with

the photons 1, 2 and 3 (see section 4.2) it can easily be checked that

P (R1R2V
′
3) = P (L1R2H

′
3) = P (R1L2H

′
3) = P (L1L2V

′
3) =

1

4
(5.48)

P (R1V
′
2R3|R1R2V

′
3) = P (R1H

′
2L3|R1R2V

′
3) =

P (L1H
′
2R3|L1R2H

′
3) = P (L1V

′
2L3|L1R2H

′
3) =

P (R1V
′
2R3|R1L2H

′
3) = P (R1H

′
2L3|R1L2H

′
3) =

P (L1H
′
2R3|L1L2V

′
3) = P (L1V

′
2L3|L1L2V

′
3) =

1

2
(5.49)

11It is assumed that for all experiments the same values for the elements of reality are evaluated.

This method is known as counterfactual reasoning.
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P (V ′
1R2R3|R1V

′
2R3, R1R2V

′
3) = P (H ′

1R2L3|R1H
′
2L3, R1R2V

′
3) =

P (V ′
1R2R3|L1H

′
2R3, L1R2H

′
3) = P (H ′

1R2L3|L1V
′
2L3, L1R2H

′
3) =

P (H ′
1L2R3|R1V

′
2R3, R1L2H

′
3) = P (V ′

1L2L3|R1H
′
2L3, R1L2H

′
3) =

P (H ′
1L2R3|L1H

′
2R3, L1L2V

′
3) = P (V ′

1L2L3|L1V
′
2L3, L1L2V

′
3) = 1 (5.50)

when A = Y1Y2X3 = −1, B = Y1X2Y3 = −1 and C = X1Y2Y3 = −1 are fulfilled.

These results together with (5.47) give

P (a, b, c, d) =
1

8
if d ∈ {X1X2X3 = −1} (5.51)

P (a, b, c, d) = 0 if d ∈ {X1X2X3 = +1}. (5.52)

Finally, we can use theorem 5.1 to check if all four experiments A, B, C and D can

be defined on one common probability space and at the same time fulfill the quantum

mechanical relations A = Y1Y2X3 = −1, B = Y1X2Y3 = −1, C = X1Y2Y3 = −1 and

D = X1X2X3 = +1. From (5.43) and (5.52) we obtain for example P (H ′
1V

′
2V

′
3) = 0.

But this contradicts (5.46). Therefore, the four experiments A, B, C and D can not

be defined on one probability space when they have to fulfill the quantum mechanical

predications.

Theorem 5.1 was also used to check whether the four experiments A, B, C and D

can be defined on one common probability space or not, when the fractions predicted

by the LIS model (section 4.2) have to be reproduced. The calculations confirmed

that for the distributions predicted by LIS, all four experiments can be defined on

the same probability space.

5.6 Conclusion

It was shown that classical Shannon information theory is helpful to analyze entan-

glement of quantum states. The entangled three-photon GHZ state was used as an

example for this entanglement analysis. The information theoretical analysis of the

yxy experiment showed that the linear transformations (2.36-2.39) change the mu-

tual information between the three random variables (Y1, X2 and Y3) of the original

state and the transformed state. This change can be interpreted as a change in the

strength of the entanglement between the three random variables. Additionally it

was demonstrated that an entropy analysis of a specific physical experiment can not

exclude local realistic models that are based on different time dependent probability

spaces.
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In this chapter, the generalized entropic Bell test and a theorem based on basic prob-

ability theory were introduced. Both tests applied to the four experiments measured

by Pan et al. showed that the quantum mechanical predictions for the four experi-

ments yyx, yxy, xyy and xxx can not be explained by a local realistic model based

on elements of reality that are defined on one common probability space. However,

time dependent multi-probability space models that still are local realistic are, at

least from the view point of mathematics, possible.
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Chapter 6

Conclusion and Future Work

In this Master’s Thesis, the experimental realization of the GHZ Gedankenexperi-

ment by Pan et al. was studied in great detail, resulting in a modified local realistic

model based on elements of reality that can explain the actual experimental results

reported in [1] with a statistically smaller error than the quantum mechanical model.

Therefore, it is believed that the Pan et al. experiment can not be used to draw con-

clusions about the existence of quantum nonlocality. Moreover, the question whether

or not quantum mechanics is a complete theory can not be answered from the re-

ported experimental results because, as it is shown for this particular experiment not

even the class of local realistic models based on a small number of instruction sets

representing elements of reality can be excluded.

Because the presented modified local realistic model can not exactly explain the ob-

served results, two other models were developed. The time coordinated measuring

equipments (TCME) model uses the idea of time and setting dependent equipment

parameters. It was shown that the experimental data can be obtained when the

four experiments yyx, yxy, xyy and xxx are defined on different probability spaces.

The proposed time coordinated equipment parameters seem to be plausible because

similar entanglement experiments [32] indicate that the exact coordination of the

optical elements is required to observe the quantum mechanically expected data. In

addition, the TCME model can even explain the influence of delays imposed on the

photons by the experimental setup. Such delays are reported [1] to influence the

entanglement.

A third objective local model for the Pan et al. experiment, which was used for the

development of the instruction-set model, is explained in appendix A. This model

is based on the known detection inefficiency loophole. The extended objective local

model based on detection inefficiency (EOLMDI) uses several unproven speculations.
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Therefore, it is believed that EOLMDI could have physical weaknesses. Neverthe-

less, it does not contradict important postulates such as the indivisibility of photons.

Thus, EOLMDI is an interesting variation of the detection inefficiency loophole espe-

cially because the basic version of this model (the OLMDI model) can also reproduce

the experimental data measured by Aspect and his group. The EOLMDI model

shows how difficult it is to implement a loophole free experimental proof of quantum

nonlocality.

In summary it has been shown in the first part of this work, that the Pan et al. exper-

iment can not be used to prove the existence of quantum nonlocality. Additionally,

several objective local models were proposed. These models suggest future directions

in the quest for an objective local explanation of quantum mechanical phenomena

such as entanglement or quantum nonlocality.

In chapter 5 an information theoretical analysis of the Pan et al. experiment was

presented. It was shown that classical entropies can be used as a measure of entan-

glement. The generalized entropic Bell test was defined and applied to the Pan et al.

experiment. This test and a theoretical analysis based on basic probability theory

were used to prove that the four experiments yyx, yxy, xyy and xxx measured by

Pan et al. can not be defined on one common probability space when they have to

fulfill the quantum mechanical predictions.

The results of this thesis show that the use of more sophisticated local hidden variable

theories [21, 44] will be absolutely necessary when the question of quantum nonlocal-

ity versus objective local explanations is addressed. The past attempts to prove the

completeness of quantum mechanics with Bell type inequalities were useful to exclude

certain classes of objective local models. However, time dependent models on more

than one probability space appear possible. The search for a theory that goes beyond

the quantum mechanical model might benefit from improved future quantum optical

experiments based on single photons.
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Appendix A

Extended Objective Local Model

based on Detection Inefficiency

The extended objective local model based on detection inefficiency (EOLMDI) is an

extension of OLMDI. It is based on many unproven speculations such as a new photon

property that is described by a hidden parameter vector and certain manipulations

of this hidden photon parameter by optical elements. However, the EOLMDI model

does not contradict important postulates such as the indivisibility of photons or the

observed detection inefficiency of these optical experiments. Therefore the EOLMDI

model should be seen as an interesting alternative to objective local models that

assume 100% detection efficiencies. The model might be used as guideline for more

elaborated local models.

In general, the behavior of the detectors, filters, polarizers and source in the EOLMDI

model is the same as in the OLMDI model. In the following section A.1, previously

discussed optical elements are repeated and the additional elements used in the Pan

et al. experiment are introduced. At the end of this appendix, the EOLMDI imple-

mentation and simulation results are presented.

A.1 Linear Optical Elements

Most of the optical elements used in the Pan et al. realization of the GHZ Gedanken-

experiment (Figure A.1) can be described with Jones matrices.

The Jones matrix of a linear optical element describes how a polarized incident light

beam

Ei =

(

EH
i

EV
i

)
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Figure A.1: Experimental setup for Greenberger-Horne-Zeilinger (GHZ) tests of

quantum nonlocality [1].

is transformed by that linear optical element into the transmitted beam

Et =

(

EH
t

EV
t

)

.

Here EH
i (EV

i ) is the horizontal (vertical) electrical field component of the incident

beam and Ei is the Jones vector of the incident beam. The Jones matrix T is a 2x2

matrix. The transmitted beam can be related to the incident beam as follows [26]:

(

EH
t

EV
t

)

= T

(

EH
i

EV
i

)

=

(

t11 t12

t21 t22

)(

EH
i

EV
i

)

. (A.1)

Jones matrices describe how the photons are manipulated on average by the corre-

sponding linear optical elements.

For the mathematical description of a physical problem, a reference coordinate sys-

tem is required. To describe the polarization and other photon parameters, the global

reference system seen in Figure A.2 is define. This reference system is the same as

the one used by Pan et al.. For the computer simulation it is assumed that all trans-

formation matrices of the linear optical elements are given in the H-V basis.

In modern optical quantum experiments, it is assumed that single photons are cre-

ated and measured. The experimental definition of a single photon is strongly related
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Figure A.2: Global Reference Coordinate System.

to intensity. At light intensities below a certain threshold, it is assumed that single

photons (one frequency, short pulse length, ...) are created. It is not in the scope of

this project to solve the question what a single photon is. Nevertheless, a mathemat-

ical description of single photons is necessary to described the Pan et al. experiment.

In the EOLMDI model, it is assumed that all emitted photons have the same fre-

quency. Furthermore, we assume that all optical elements are designed to work most

efficiently for this frequency (λ = 788nm). In [1], the authors report that they mea-

sure single photons. Therefore, the EOLMDI model has to have indivisible photons.

This means that at each optical element it has to be decided whether the photon is

transmitted, reflected or absorbed.

In the EOLMDI model, each photon is described by two 2-dimensional vectors1

Ei =

(

EH
i

EV
i

)

=

(

Ei
normcos

(
αE

i

)

Ei
normsin

(
αE

i

)

)

(A.2)

HVi =

(

HV H
i

HV H
i

)

=

(

HV i
normcos

(
αHV

i

)
ejγi

HV i
normsin

(
αHV

i

)
ejγi

)

. (A.3)

Ei denotes the polarizations of photon i and HVi is a hidden parameter vector

assigned to photon i. αE
i and αHV

i measure the angle of the hidden parameter or

polarization vectors in anti-clockwise direction with respect to the horizontal axis H.

Ei
norm = 1 and γi is a random phase that can assume any value between 0 and 2π

with equal probability. HV i
norm is a real number.

In the following, the optical elements used in the Pan et al. realization of the GHZ

Gedankenexperiment are described.

1This was already described in section 3.2.
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A.1.1 Quarter-Wave Plate

A quarter-wave plate (QWP) consists of a birefringent material. The thickness of

this plate is adjusted such that the light component polarized in the direction of the

larger index of refraction is retarded by π/2 in phase (λ/4) with respect to the light

component associated with the smaller index.

The Jones matrix for a quarter-wave plate, which has its fast axis oriented in V

(vertical) direction2 is [26]

ΛV
4

=

(

1 0

0 −i

)

. (A.4)

This means that the horizontal, electrical beam component obtains a relative phase

shift of π/2 with respect to the vertical component. It can easily be confirmed that

a quarter-wave plate transforms circular (linear) polarized light into linear (circular)

polarized light.

In the Pan et al. experiment, the quarter-wave plate is oriented such that right (left)

circularly polarized light is transformed into H ′/V ′ (+45o/− 45o) polarized light.

When a photon transmits through a quarter-wave plate, both 2-dimensional vectors

Ei and HVi are transformed (multiplied) by ΛV
4

.

A.1.2 Half-Wave Plate

A half-wave plate (HWP) consists of a carefully adjusted thickness of a birefringent

material such that the light component polarized in the direction of the larger index

of refraction is retarded by an odd multiple of π in phase (λ/2) with respect to

that associated with the smaller index. The unitary Jones matrix associated with a

half-wave plate is [45]

Λ2 (θ) =

(

cos(2θ) sin(2θ)

sin(2θ) − cos(2θ)

)

. (A.5)

Where θ is the angle between the H (horizontal) axis and the fast optical axis of

the half-wave plate measured in anticlockwise direction. Half-wave plates are mainly

used to rotate linear polarized light by an angle of 2θ 3.

In the simulation of the Pan et al. experiment, two half-wave plates are used. The

one shown in Figure 1 in [1] has its fast optical axis at an angle of θ = 22.5o (Figure

A.1), measured anticlockwise from the H (horizontal) axis. This half-wave plate is

2As it is used in the Pan et al. experiment
3Half-wave plates can also be used to transform right (left) circular polarized light into left (right)

circular polarized light
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used to rotate light that is V (vertically) polarized into light, polarized in V ′ (−45o)

direction (V (vertical) and H (horizontal) components have equal amplitudes).

The second half-wave plate is placed directly after the beam splitter (BS) (Figure

A.1) and is used to rotate the photon polarization Ei and HVi by 90o 4. Therefore,

a photon that was horizontally (vertically) polarized will after the half-wave plate

be vertically (horizontally) polarized. This half-wave plate is used because the state

directly after the ploarizaing beam splitter (PBS) and BS is

|ψ〉 =
1√
2

(|H〉
1
|H〉

2
|V 〉

3
+ |V 〉

1
|V 〉

2
|H〉

3
) (A.6)

but the state analyzed in [1] is

|ψ〉 =
1√
2

(|H〉
1
|H〉

2
|H〉

3
+ |V 〉

1
|V 〉

2
|V 〉

3
) . (A.7)

There are two possibilities to transform (A.6) into (A.7). Either a half-wave plate,

oriented at θ = 45o is placed directly after the BS in the path of D3 (this method is

used in this work) or it can be assumed that the polarization at D3 is defined at right

angles relative to the other stations. This latter method was used by Pan et al..

When a photon transmits through a HWP, the two 2-dimensional vectors Ei and

HVi of this photon are multiplied by the HWP Jones matrix (A.5).

A.1.3 Polarizing Beam-Splitter

The general behavior of the non-absorbing polarizing beam-splitter (PBS) was al-

ready discussed in section 3.2. Additionally, the behavior for the special case of a

single incident photon was shown in the same section. Because EOLMDI is an ex-

tension of OLMDI (section 3.2) and not a completely new model, in the following,

only the model extensions are discussed.

To apply the PBS model to the Pan et al. realization of the GHZ Gedankenexperi-

ment, the PBS behavior for coherent photon pairs has to be defined.

For the case of multiple incident photons overlapping5 in the PBS it is assumed that

all incident photons influence the emitted photons or in simpler words, the PBS ma-

nipulates the photons such that the emitted photons have hidden parameter values

that are the averages of the hidden parameter values of the incident photons.

To explain the Pan et al. experiment, only a few special cases have to be considered.

4This means that the fast optical axis of the half-wave plate is oriented at an angle of θ = 45o

measured anticlockwise from the H (horizontal) axis.
5This means that two or more photons are at the same time in the PBS.
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As will be explained later, only H (horizontally) or V vertically polarized photons

are emitted by the source. This means that the two photons traveling along path a

or path b (Figure A.1) are either vertically or horizontally polarized. As explained in

[1] only the case when the two photons in each path are different is of interest. In this

case it is guaranteed that the horizontally polarized photon in path a is transmitted

and the vertically polarized photon is reflected6. Therefore, these two photons prop-

agate after the first PBS in different directions.

In the EOLMDI model, it is assumed that the hidden parameter vectors HVi and

HVk of the two incident photons i and k respectively are influenced by the PBS such

that the two resulting photons have hidden parameter values that are averages of the

two hidden parameter vectors HVi and HVk. Mathematically, this transformation

can be described as follows.

Assume the hidden parameter vectors of the two photons propagating along path a

are defined as

HV1a =

(

HV 1a
norme

jγ1acos
(
αHV

1a

)

HV 1a
norme

jγ1asin
(
αHV

1a

)

)

(A.8)

HV2a =

(

HV 2a
norme

jγ2acos
(
αHV

2a

)

HV 2a
norme

jγ2asin
(
αHV

2a

)

)

(A.9)

where αHV
1a = π/2 and αHV

2a = 0 or αHV
1a = 0 and αHV

2a = π/2 respectively and

HV 1a
norm = HV 2a

norm = HVnorm.

The vector HVT of the transmitted photon propagating after the first PBS toward

detector T is

HVT =

(

1 0

0 0

)(

HV 1a
norme

jγ1acos
(
αHV

1a

)

HV 1a
norme

jγ1asin
(
αHV

1a

)

)

+

(

1 0

0 0

)(

HV 2a
norme

jγ2acos
(
αHV

2a

)

HV 2a
norme

jγ2asin
(
αHV

2a

)

)

(A.10)

and the vector HVλ/2 of the reflected photon propagating toward the λ/2-plate

(Figure A.1) is

HVλ/2 =

(

0 0

0 i

) (

HV 1a
norme

jγ1acos
(
αHV

1a

)

HV 1a
norme

jγ1asin
(
αHV

1a

)

)

+

(

0 0

0 i

) (

HV 2a
norme

jγ2acos
(
αHV

2a

)

HV 2a
norme

jγ2asin
(
αHV

2a

)

)

. (A.11)

6The decision whether the photon is transmitted or reflected is also in the multi-photon case

made according the ptrans = cos2(β) relation.
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The relevant case for the final PBS (Figure A.1) is when one photon arrives from

the path with the λ/2-plate and the other from the beam-splitter (BS) and when the

two emitted photons propagate toward different detectors (D1 and D2). Using the

description of the HWP (A.5) and the BS (subsection A.1.4) it can easily be confirmed

that the amplitudes of the horizontal and vertical components of the vector HVi of

the incident photons have amplitudes of |HVnorm|√
2

.

When we assume that the hidden parameter vector of the photon arriving from the

BS is HV
ref
BS and HVLPBS for the photon arriving from the λ/2-plate, the vectors

HVi of the photons propagating toward detector D1 and D2 can be defined as

HVD1 =

(

0 0

0 i

)

HVLPBS +

(

1 0

0 0

)

HV
ref
BS (A.12)

HVD2 =

(

1 0

0 0

)

HVLPBS +

(

0 0

0 i

)

HV
ref
BS . (A.13)

It can easily be checked that the ’energy’ of the hidden parameters is conserved in

this two photon case7.

A.1.4 Beam-Splitter

The beam-splitter (BS) has a similar behavior as the PBS. When a photon arrives at

the BS, it is either reflected or transmitted with probability 1

2
. The transmission or

reflection probability is independent of the photon polarization. The polarization of

the transmitted/reflected photon is equal to the polarization of the incident photon

(same orientation and amplitude).

If the two photons arrive simultaneously at the BS and when they have perpendicular

polarizations (as assumed in [1]) then the hidden parameter vector of the transmitted

photon is the weighted average of the hidden parameter vectors of the two incident

photons

HVtrans
BS =

1√
2

(

1 0

0 1

)(

HV 1b
norme

jγ1bcos
(
αHV

1b

)

HV 1b
norme

jγ1bsin
(
αHV

1b

)

)

+
1√
2

(

1 0

0 1

)(

HV 2b
norme

jγ2bcos
(
αHV

2b

)

HV 2b
norme

jγ2bsin
(
αHV

2b

)

)

. (A.14)

7The ’energy’ of the hidden parameter is defined as |HVi|
2. The energy conservation law requires

that the energy of the hidden parameter of the incident photons is on average equal to the hidden

parameter energy of the transmitted photons.
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The hidden parameter vector of the reflected photon can be calculated with the

following relation:

HV
ref
BS =

1√
2

(

i 0

0 i

) (

HV 1b
norme

jγ1bcos
(
αHV

1b

)

HV 1b
norme

jγ1bsin
(
αHV

1b

)

)

+
1√
2

(

i 0

0 i

) (

HV 2b
norme

jγ2bcos
(
αHV

2b

)

HV 2b
norme

jγ2bsin
(
αHV

2b

)

)

. (A.15)

This means that the transmitted and reflected photons have the same hidden param-

eter vector except for a phase shift of π/2.

A graphical illustration of the four possible outcomes when two photons arrive at

the same time at a beam splitter are shown in Figure A.3. Each photon can be

Figure A.3: In the case of two incident photons on a beam splitter, four different

outcomes are possible. The shading of the photon (circle) represents the value of the

hidden parameter. The arrow represents the photon polarization. It can be seen,

that the polarizations of the photons are independent. But the hidden parameter

values of the emerging photons are a mixture of the two hidden parameter values of

the incident photons.
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transmitted or reflected with probability 1

2
. The photons emitted by the BS have

the same polarizations as the incident photons. The hidden variable parameters of

the emerging photons are statistical mixtures (A.14, A.15) of the incident hidden

parameters8.

It can also be confirmed that on average no hidden parameter energy is absorbed by

the BS.

A.1.5 Polarizer

In the Pan et al. experiment, linear polarizers (POL) are used to analyze the polar-

ization of the photons. The polarizers are either adjusted in +45o (H’) or −45o (V’)

orientation (Figure A.2).

The polarizer behaves similar to a PBS9 except that it absorbs photons that are not

transmitted. The decision whether a photon is absorbed or transmitted depends only

on the angle α between the principle transmission direction of the polarizer and the

polarization direction of the photon. As in the PBS case, the probability of trans-

mission is ptrans = cos2(α). The polarization of the transmitted photon is parallel to

the orientation of the polarizer.

In [1], two different coordinate systems for linear polarization measurements are used.

The original state (2.35) is defined in the H-V coordinate system10. For the measure-

ments reported in [1], the analyzing polarizers are oriented either in the H’ or in the

V’ direction11.

The value of the hidden parameter does not have any influence on the transmission

probability. But the polarizer transforms the hidden parameter. When transmitting

through the polarizer, the hidden parameter vector HVi is transformed (multiplied)

by the Jones matrix corresponding to the analyzing polarizer orientation:

If the polarizer is adjusted in +45o (H’) orientation, the Jones matrix is

POL (+45o) =
BPOL

2

(

1 1

1 1

)

. (A.16)

8We are aware that such a manipulation of the photons by the BS is strongly speculative and

we are not claiming that this is connected to the processes that happen in nature. But because the

whole exercise serves the purpose to show that local theories are difficult to exclude it is a useful

assumption.
9The relevant case in the Pan et al. realization of the GHZ experiment is the single photon case

described in subsection 3.2.1.
10Measurement results in this basis are described in [33].
11The orientation of the analyzing polarizer for the R (L) measurements are the same as for the

H’ (V’) measurements.
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If the polarizer is oriented in −450 direction,

POL (−45o) =
BPOL

2

(

1 −1

−1 1

)

(A.17)

has to be used. For H and V measurements

POL (H) = BPOL

(

1 0

0 0

)

(A.18)

and

POL (V ) = BPOL

(

0 0

0 1

)

(A.19)

respectively are the Jones matrices to be used. For the simulation of the Pan et

al. realization of the GHZ Gedankenexperiment we use BPOL = 2√
3
. This value

originates from similar ’energy’ considerations as described in section 3.2.

A.1.6 Narrow Bandwidth Filter

The narrow bandwidth filter (NBF) is used to stretch the coherence time. From

the Heisenberg uncertainty principle it is known that a particle has either a known

frequency or a precisely determined location. Analytically, this can be derived with

a Fourier analysis. When a Fourier transformation is applied to a delta-function

(describing for example a particle at one location) the resulting spectrum is a white

noise. Reverse, if a single frequency is inverse Fourier transformed, its location can

not be defined.

The narrow bandwidth filters are used to narrow the frequency range of the detected

light beam. This is equivalent to a stretch of the coherence time. A narrow bandwidth

filter also helps to reduce the noise.

Although narrow bandwidth filters do normally not have a maximum transmission

of 100% [30], for the EOLMDI model a maximum transmission of 100% is assumed.

Therefore, the narrow bandwidth filter can be described by an identity matrix12.

A.2 Detector

It is assumed that the detectors are cooled silicon avalanche photodiodes operated

in the Geiger mode [46]. The detectors in the EOLMDI model are supposed to work

equal to the detectors described in subsection 3.2.1.

12Here it is assumed, that the generated photons have only one frequency that is equal to the

transmission frequency of the NBF.
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A.3 Source

The source consists of a single nonlinear beta-barium borate (BBO) crystal that

down-converts the short UV-pump-laser pulses ( 200fs, λ = 394nm) to polarization

entangled photon pairs. The photons are distributed in two cones of different polar-

izations. The horizontally polarized and vertically polarized cones intersect at two

points. In the experiment, photons from these cone intersections are used as polar-

ization entangled photon pairs.

In the simulation it is assumed that the photons emitted by the BBO crystal are per-

fectly H (horizontally) or V (vertically) polarized. In addition, whenever the photon

in path a is polarized in V (H) direction then the entangled photon of the same pair

in path b is H (V ) polarized. Further, it is assumed that the four photons triggering

a fourfold coincidence count are generated simultaneously. Mathematically, the four

photons of a two-photon-pair are described as follows:

Photon 1 in path a:

E1a =

(

EH
1a

EV
1a

)

=

(

E1a
normcos

(
αE

1a

)

E1a
normsin

(
αE

1a

)

)

(A.20)

HV1a =

(

HV H
1a

HV H
1a

)

=

(

HV 1a
normcos

(
αHV

1a
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Photon 2 in path a:
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Photon 1 in path b:
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Photon 2 in path b:
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. (A.27)
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γ1a, γ1b, γ2a and γ2b denote the phases of the four photons. In EOLMDI all four

phases are independent of each other and can assume any value in the range of

0 − 2π with equal probability. It is also assumed that the photons generated by the

BBO crystal have αE
i = αHV

i = αi where αi = mπ
2

with m = 0, 1, 2, 3. All of the

possible values of αi can be assumed with equal probability. The source is adjusted

such that the polarizations of the photon propagating in path a and the photon in

path b (belonging to one entangled photon pair) are entangled at an angle of π
2

[47].

Therefore the relations

α1b = α1a +
π

2
(A.28)

α2b = α2a +
π

2
(A.29)

have to be fulfilled by all two photon pairs. In the implementation of the EOLMDI

model, we use Ei
norm = 1 and HV i

norm = 0.5.

In the next section, several simulation results of the EOLMDI model are discussed.

A.4 Simulation Results and Discussion

The simulation results of the four experiments yyx, yxy, xyy and xxx are shown by

the red bars in Figure A.4. The simulation shows that the EOLMDI model can not

only explain the experimentally measured results for the yyx, yxy and xyy experi-

ments but also for the xxx experiment. Because the amount of fourfold coincidences

was adjusted such that about the same number of fourfold coincidences13 were ob-

served in the simulation as measured in the actual experiment, a similar variation for

the fractions as for the experimental result is observed. The simulation shows that

the GHZ terms predicted by quantum mechanics occur in a fraction of 0.75± 0.02 of

all cases and the undesired states are observed in a fraction of 0.25 ± 0.02.

Although the general behavior of the simulated results is similar to the measured

fourfold coincidence fractions, the simulation shows a statistically significantly larger

fraction for the quantum mechanically undesired states (0.25± 0.02) than the actual

experiment (0.15 ± 0.02). One reason for this disagreement between the simulation

results and the experimental results might be an inaccurate description of the BBO

source. So far, we have assumed that the BBO source has a similar behavior as

the calcium-40 source used in the Aspect experiments (section 3.2). But the two

sources are physically different. In the experiments carried out by Aspect and his

co-workers, a calcium-40 source is used whereas in the Pan et al. experiment, a BBO

13132 for quantum mechanically desired states and 44 for quantum mechanically undesired states.
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Figure A.4: All outcomes for the yyx, yxy, xyy and xxx experiments. The blue bars

represent the quantum mechanical predictions, the green bars are the experimental

results measured by Pan et al. and the red bars are the fractions from simulations

with the EOLMDI model. The number of generated photons (150000) was adjusted

such that for each quantum mechanically undesired (desired) state around 44 (132)

fourfold coincidences were registered.
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crystal is employed as photon source. Using this fact, we can assume that the correct

value HV i
norm for the BBO source in the EOLMDI model is HV i

norm = 0.4 instead of

HV i
norm = 0.5. The simulations with the modified EOLMDI model result in distribu-

tions for the four experiments yyx, yxy, xyy and xxx that predict for the quantum

mechanically undesired states a total fraction of 0.11 ± 0.02 and for the quantum

mechanically desired states a total fraction of 0.89 ± 0.02 (Figure A.5).
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Figure A.5: All outcomes for the yyx, yxy, xyy and xxx experiments. The blue

bars represent the quantum mechanical predictions, the green bars reproduce the

experimental results measured by Pan et al. and the red bars are the fractions from

a simulation with EOLMDI (HV i
norm = 0.4). The number of generated photons

(900000) was adjusted such that for each quantum mechanically undesired (desired)

state around 17 (125) fourfold coincidences were counted.

In conclusion, it was shown that EOLMDI is able to explain the measured results

reported in [1].

To check the model, two additional simulations were carried out. Figure A.6 shows

the simulation results of the four experiments yxx, xyx, xxy and yyy not reported

by Pan et al.. It can be seen in Figure A.6 that the EOLMDI model predicts on
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Figure A.6: All outcomes for the yyy, xxy, xyx and yxx experiments. On average 85

fourfold coincidences were registered for each setting. A longer simulation confirmed

that the EOLMDI model predicts for all outcomes a fraction of exactly 1

8
.
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average a fraction of around 1

8
for all eight possible setting combinations of each

experiment14. This prediction is in agreement with the predictions of the quantum

mechanical model of Pan et al. that is based on the entangled three-photon GHZ

state

|ψ〉 =
1√
2

(|H〉
1
|H〉

2
|H〉

3
+ |V 〉

1
|V 〉

2
|V 〉

3
) (A.30)

and the transformations (2.36-2.39).

Finally, the simulation of the fourfold coincidences in the H-V basis (Figure A.7)

confirmed the plausibility of the EOLMDI model. It is shown in Figure A.7 that

EOLMDI predicts the experimentally observed entangled three-photon GHZ state[33]

correctly.
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Figure A.7: All outcomes for the xoxoxo experiment measured in the H-V basis.

A closer look at the EOLMDI model shows that two model components are vital to

explain the experimental results presented by Pan et al..

Hidden Parameter Vector: In the EOLMDI model, it is assumed that photons

do not only have a polarization, frequency or phase but also a hidden parameter

associated with them. It is also assumed that different photons can interact with

14In other words, within a given time period, equally many fourfold coincidences are counted for

all eight possible settings of one experiment.
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each other. Of course we are aware that photons do not interact in free space.

Therefore, in the EOLMDI model it is assumed that the photons influence

the values of the hidden parameter vector of each other with the help of optical

elements such as polarizing beam splitters or beam splitters. The exact physical

process that is responsible for the suggested hidden parameter averaging in

the PBS or BS is not known. But such an interaction seems to be plausible.

Especially because it is known that quantities such as the polarization or the

phase of a photon can be influenced by optical elements.

Additionally, the idea of information exchange between spatially close photons

does not contradict the measured dependence of the fourfold coincidences on

the delay between photon 1 and 2 at the final polarizing beam splitter (Figure

4.6). It can be seen that at a large delay of more than 60µm no entanglement

is observed. This result is normally interpreted as an experimental evidence,

that at a delay larger than 60µm, the two photons are no more coherent. It

is interesting that the 60µm are equal to the spacial length of the pump pulse

(200fs ∗ 3 · 108 m
s = 60µm). Using EOLMDI to interpret this observation, it

means that the amount of exchanged information is proportional to the spacial

overlap of the involved photons in the PBS/BS. Only when the photons overlap

in the PBS/BS and exchange information, entanglement can be observed.

Detection Inefficiency Loophole: The second important model component is the

detection inefficiency loophole. The plausibility of this loophole was already

discussed in section 3.2.3.

It is realized that the EOLMDI model is a highly simplified description of the com-

plex processes that go on in nature. Nevertheless, EOLMDI does not contradict the

known behavior of the optical elements and has therefore to be considered as a plau-

sible model.

Although most scientists working in the area of quantum nonlocality consider the

detection inefficiency loophole as insignificant it is noteworthy that despite of many

improved experiments it has not yet been possible to close this loophole. It is also

interesting to realize that within the last decades no significant improvement in the

detection efficiency was achieved [30]. The failure of improving the detection effi-

ciency in optical experiments might be based on physical restrictions on the detection

efficiency imposed by hidden parameters.
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Entropy Calculations for

Objective Local Models

In section 5.4, the generalized entropic Bell test is explained. To check this test,

several entropies for three objective local models for the Pan et al. realization of the

GHZ Gedankenexperiment are used. In the following the detailed entropy calculations

for these three models are carried out.

Local EoR model with A = B = C = D = −1: This model is the local realistic

model based on elements of reality introduced in section 4.2 and denoted as

POLT. Each photon i has two elements of reality Xi for the linear polarization

in the H ′ − V ′ basis and Yi for the circular polarization in the R − L (right-

handed - left handed) assigned. In POLT, it is assumed that the following eight

combinations of source parameters are possible:

Λ = X1Y1X2Y2X3Y3 ∈ {H ′
1R1H

′
2R2V

′
3L3, H

′
1R1V

′
2L2H

′
3R3,

H ′
1L1H

′
2L2V

′
3R3, H

′
1L1V

′
2R2H

′
3L3,

V ′
1R1H

′
2L2H

′
3L3, V

′
1R1V

′
2R2V

′
3R3,

V ′
1L1H

′
2R2H

′
3R3, V

′
1L1V

′
2L2V

′
3L3}. (B.1)

Each of the four random variables A, B, C and D represent one of the four

experiments measured by Pan et al. (5.33-5.36). From the definition of the

four random variables and the source parameter Λ it is clear that the four

random variables are not independent of each other. In the following, the

entropies listed in Table 5.3 are calculated for POLT. Because for each of the

four random variables A, B, C and D four different realizations (i.e. A ∈
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{R1R2V
′
3 , L1R2H

′
3, R1L2H

′
3, L1L2V

′
3}) with equal probability 1

4
are possible,

the entropy for the individual random variables are

H(A) = H(B) = H(C) = H(D) = −4 · 1

4
log2

(
1

4

)

= 2. (B.2)

For the calculation of the joint entropy of two experiments, the following rela-

tion (Theorem 1.4.4 in [39])

H(A,B) = H(A|B) +H(B) (B.3)

is used. The knowledge of one experimental result (i.e. A = R1R2V
′
3 , reduces

the freedom of choice for the second experiment to two possible outcomes (i.e.

B ∈ {R1H
′
2L3, R1V

′
2R3}) 1. Therefore H(B|A) = 1 and H(A,B) = 3. Because

of symmetry, H(A,C) = H(A,D) = H(B,C) = H(B,D) = H(C,D) = 3.

Similar calculations are used to obtainH(A,B,C) = H(A,B,D) = H(B,C,D) =

H(A,B,C,D) = 3. For the calculation of the remaining entropies listed in Ta-

ble 5.3, equations (5.37-5.42) are used.

Local EoR model with A = B = C = −1, D = +1: This model is based on the

same source (B.1) as the previously discussed POLT model. The only difference

to the above analysis concerns the allowed outcomes for the xxx experiment

represented by the random variable D. Instead of the local realistic predic-

tions for the xxx experiment, only the quantum mechanically predicted results

H ′
1H

′
2H

′
3, H

′
1V

′
2V

′
3 , V

′
1H

′
2V

′
3 and V ′

1V
′
2H

′
3 are allowed. But because the elements

of reality defined by the source parameter (B.1) and the quantum mechanical

predictions are mutually exclusive, the event D=+1 is impossible. Thus we

know with certainty2 that for the experiment D and any joint distributions of

the four experiments which include D, has only the outcome of the impossible

event. Therefore

H(D) = H(A,D) = H(B,D) = H(C,D) = H(A,B,D)

= H(A,C,D) = H(B,C,D) = H(A,B,C,D) = 0. (B.4)

Individual and joint distributions not including the random variable D are the

same as for the previously discussed POLT model. This is because the source

and also the allowed outcomes A = B = C = −1 are the same in both models.

All the other entropies shown in Table 5.3 are calculated with the relations of

1It is assumed that the measurement is performed on the same source parameter λ.
2With probability equal to unity.
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equations (5.37-5.42). It can be seen that H(D|A,B) = −3 contradicts the

monotonicity of Shannon entropies, which implies that conditional entropies

such as H(D|A,B) are non-negative. Under the condition that the given joint

entropies are correct3 and the fact that the conditional entropy H(C|A,B) = 0,

we can conclude that experiment D can not be defined on the same probability

space as the other three experiments.

LIS: The local instruction-set model based on elements of reality is explained in

section 4.2. The source can produce 32 different combinations (Table 4.1) of

the six elements of reality Xi and Yi (i = 1, 2, 3). As can be seen in Figure

4.4 the LIS model predicts the quantum mechanically desired states and the

undesired states in a ration of 3:1 for all four experiments A, B, C and D.

Therefore, the entropies for the individual experiments are

H(A) = H(B) = H(C) = H(D)

= −4

(
1

16
· log2

(
1

16

)

+
3

16
· log2

(
3

16

))

= 2.26. (B.5)

The joint entropy of two experiments that are performed on the same source

parameter λ are best calculated by using the joint probability distribution of

the joint ensemble of the two investigated experiments (i.e. AB)4. With Table

4.1 it can easily be checked that the joint ensemble of two experiments can have

24 different outcomes (i.e. AB with A = R1R2V
′
3 and B = R1H

′
2L3). 16 of

these outcomes can occur with a probability of 1

32
and the remaining eight with

a probability of 1

16
. Therefore the joint entropies of two experiments are

H(A,B) = H(A,C) = H(A,D) = H(B,C) = H(B,D) = H(C,D)

= −16 · 1

32
· log2

(
1

32

)

− 8 · 1

16
· log2

(
1

16

)

= 4.5. (B.6)

The joint entropies of the joint ensembles for the three and four joint experiment

ensembles ABC, ABD, BCD and ABCD are calculated with the same method.

Finally, for the calculation of the remaining entropies seen in Table 5.3 the

relations (5.37-5.42) are applied.

3The definition (B.4) for joint entropies including the random variable D is considered to be the

most intuitive. It seems to be a simple and reasonable approach to perform the generalized entropic

Bell test. Because the relations (5.37-5.42) are only valid under the condition that all random

variables can be defined on one common probability space unintuitive entropies might occur when

the condition is not valid.
4Because of symmetry, each of the possible joint ensembles AB, AC, AD, BC, BD and CD have

the same joint probability distribution.
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Appendix C

List of Abbreviations

BS Beam Splitter

CHSH Clauser-Horne-Shimony-Holt

EOLMDI Extended OLMDI

EPR Einstein-Podolsky-Rosen

GHSZ Greenberger-Horne-Shimony-Zeilinger

GHZ Greenberger-Horne-Zeilinger

HWP Half-Wave Plate

LIS Local Instruction-Set

NBF Narrow Bandwidth Filter

OLMDI Objective Local Model based on Detection Inefficiency

PBS Polarizing Beam Splitter

QWP Quarter-Wave Plate

TCME Time Coordinated Measuring Equipments
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