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The History of the Theory of Radial Stellar Pulsations

 Stellar Pulsation Theory
A short look at the long road 

to understand what was seen 

 The History of Radial

A Historical Preludium of a Kind: Over the years, many authors writing on the
history of stellar variability considered it remarkable how long it took astronomers
to accept that variable stars do indeed exist in the sky. They concluded that it cannot
be attributed to sloppy or insufficient observing techniques. It could have been the
conceptual barrier of the Aristotelian totalitarism that dominated the mainstream
of natural philosophy that prevented the acceptance of such a phenomenon. If this
was indeed the case, is unlikely to be ever proofed beyond doubt. In any case, in
Europe, the first testimonies of observations of variable stars – not being novae or
supernovae – date indeed from around the early Copernican-Tychonic era.1 For
detailed historical descriptions of observing records we refer to the Hagen (1921)
and to the historical introductions in Perdang (1985, 1990).

The pulsating variable star that is the prototype for one of the most influential
classes of variable stars in astronomy was discovered in 1784 by Goodricke (1786).
He was the first to observe the periodic and asymmetric light variation of δ Cephei2

in the same year as he discovered the eclipsing binary star β Lyrae. This was only
two years after he discovered the variability of Algol (in the historical literature
Montanari is claimed to have suspected Algol to be variable already in 1672). From
the very beginning, Goodricke attributed Algol’s light variation to eclipses (due to
revolving planets, however). For whatever reason, he did not attribute the same
mechanism to δ Cephei’s variability. In the absence of any other viable ideas on
how to cause stellar variability, Cepheids were interpreted as binaries also for al-
most 130 years.

The situation changed towards the end of the 19th century when also astronomy
experienced the influence of the rapidly evolving physical sciences. Before that, the
study of variable stars amounted mainly to book-keeping of ephemerides and in
phenomenologically classifying the rapidly growing number of variable stars. By
the end of the century, however, there was an attempt to understand stars on the
basis of fundamental physical laws. The various phases of the emerging discipline

1The large-amplitude Mira variables were the variable stars that attracted the astronomers’ atten-
tion first. The Friesean astronomer Fabricius mentioned the variability of o Ceti (i.e. Mira) in 1596 in
a letter to Tycho Brahe. Kirch discovered the variability of χ Cyg (1687), Maraldi that of R Hyd (1704),
and Koch the one of R Leo (1782) (see Hagen (1921)).

2Pigott actually discovered the first Cepheid variable, η Aql, about one month before Goodricke
made his observations of δ Cep (see Gilman 1978).
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of stellar astrophysics can also be traced in the development of the theory of the
intrinsic variability of variable stars. Hence, the story of the appearance of stellar
pulsation theory is also that of understanding the laws and mechanisms that dictate
the stars’ lives.

This historical essay will stop at around 1962. In that year, Baker and Kippen-
hahn (1962) published their numerical solutions and their explanation of Cepheid-
type instability. Thereafter, the use of electronic computers3 became wide-spread.
Accordingly, by the relative ease to obtain numerical solutions for the differential
equations describing stellar pulsations, the literature and the diversity of the re-
search aspects in pulsation theory grew explosively. Today, stellar pulsation theory
is used as an accurate tool to probe many different aspects of stellar physics in al-
most all evolutionary phases. Through the seismological potential of multimode
pulsations they might play an important role in a possible renaissance of stellar as-
tronomy in the future which is clearly necesary if larger-scale astrophysical topics
aim at becoming mature quantitative scientific fields.

Radial Stellar Pulsations: After the discovery of the first variable stars with
asymmetric light curves (as shown for example in Fig.1 and the very early assim-
ilation of the idea of their being binary stars, this attitude remained unchallenged
to the beginning of the 20th century. As late as 1913, Brunt (1913) attributed the
proof of the binary nature of δ Cep to Belopolski (1894) who observed spectroscop-
ically its radial velocity variations. In the year 1899 Schwarzschild (1900) discov-
ered that the light variability of η Aql is accompanied by a continuous change of
the color and hence of the spectral type. The attempt was made to embed this be-
havior in the binary theory, despite the considerable problems it caused. With the
improving quality of variable-star observations and an accumulating number of
different viewpoints of this astronomical problem, increasingly more complicated
orbital constructs of multiple star systems had to be invented to account for the
asymmetries and bumps in the lightcurves of Cepheid variables. It is noteworthy
that – of course – in no case ever was more than one stellar component observed in
the spectrum. Brunt (1913) listed comprehensively the severe problems inherent in
the binary hypothesis. He did not, though, question at all the basic assumption of
two or more stars being involved in this variability phenomenon.

Early Strugglers: In the same year as Brunt’s (1913) discussion of the binary na-
ture of the “short period” variables appeared, Plummer (1913) wrote about serious
problems with the interpretation of the radial velocity data ofζ Gem. Still anchored
in the binary-star picture, he speculated that by tidal effects displacements of the
atmosphere relative to its center might be present. In the following year Plummer
(1914) suggested, without being more specific, a radial pulsation mechanism in sin-

3In the early years of stellar astrophysics human computers or analog integrating devices were
the only means of obtaining numerical solutions. In terms of efficiency, they were, however, much
inferior to their electronic successors. The calculations of whole stellar models and the solution of
stability problems on the grand scale that proved to be necessary and experimentation with detailed
micro-physics had to wait for the development of electric/electronic computing devices. Baker and
Kippenhahn performed their calculations on the “home-grown” computer G2 which was one of a
series of electronic computers designed and built at the Max-Planck-Institut für Physik in Göttingen.
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gle stars as a possible way out of the numerous problems with “certain classes” of
variable stars.4
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Figure 1: Typical variabilty structure of a radially
pulsating star. The top panel shows the temporally
discrete measurements of the pulsators brightness.
The middle panel sketches the the associated radial-
velocity variation as measured by an observer; the cor-
responding radius variation is shown in the lowest
panel. Characteristic magnitudes of the fluctuations
will be mentioned when discussing particular families

of variables.

In his seminal paper, Shapley
(1914) analyzed systematically
the observational situation of
the short-period variables for
which complicated elliptic or-
bits had to be postulated and
criticized the binary-star expla-
nation. He concluded that a
radial pulsation of the atmo-
spheres of single stars would
represent the observed facts
better. In particular, Shap-
ley was able to argue that in
many cases the postulated or-
bits were smaller than the size
of the visible component of
the binary system. This point
questioned most convincingly
the binary hypothesis. The pa-
per by Shapley proposed no
specific physical mechanisms
for the maintenance of stel-
lar pulsations. Surprisingly,
Shapley did not mention the
period – luminosity (PL) re-
lation of Cepheids found two
years earlier by Leavitt (1912).
If he had trusted the obser-
vation that the Cepheids are
not wildly scattered in the gi-
ant region on the Hertzsprung-
Russell (HR) diagram (cf. Rus-
sell (1913)) or had used the pe-
riod – color relation he men-
tioned in the paper of 1914,
he could have provided a
formidable physical explana-
tion of the PL relation with the
help of the period – mean-density relation and hence a strong support for the pul-
sation hypothesis.5

4Shapley (1914) expressed the opinion that Plummer must have had in mind the variable stars
which were classified later as Cepheid-type pulsators.

5Hertzsprung (1913) referred to the PL relation of Leavitt (1912) and used it to estimate (although
incorrectly) the distance to the Small Magellanic Cloud and characterized it as extra-galactic.
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At the time of Shapley’s paper (1914) astronomers were establishing the separa-
tion of stars into dwarfs and giants. The studies of Hertzsprung (1907; 1911; 1913)
and Russell (1913; 1914) showed that stars populate at least two major sequences on
the plane spanned by the spectral class or color index and the absolute magnitude.
The short-period Cepheid stars were recognized as belonging to a group of stars
with small proper motion and small parallaxes and hence of large absolute mag-
nitude. At the same time these stars were not attributed masses that significantly
exceed that of the sun (Hertzsprung 1907, 1913; Russell 1913). These views enabled
Shapley (1914) to make his strongest point against the binary hypothesis: The large
dimensions of the Cepheid stars compared with the postulated binary orbits.

Shapley’s study of 1914 was not the ultimate death-blow for binary theories for
Cepheids. During the 1920s and the 1930s research articles continued to appear,
though at a decreasing rate, defending the binary hypothesis (e.g. Vogt 1921, 1927;
Pannekoek 1922; Hellerich 1925 and references therein). In 1925, for example, the
eminent astronomer Jeans hypothesized that Cepheids and the long-period vari-
ables are binary stars in the process of fission (Jeans, 1925a). Even later, Hoyle
& Lyttleton (1943) revisited Jeans’ proposition and conjectured the Cepheids to be
contact systems with a common envelope that does not partake in the motion of the
embedded binary system. Neither theoretical approach received wide recognition,
however. Enough evidence for an intrinsic pulsational motion had already been
accumulated by then. In particular, Baade (1928) devised a test for the pulsation
hypothesis. The pulsations demand the stellar surface area to change periodically.
This is reflected in the luminosity and temperature changes. The two effects can be
separated and a plot of radius versus phase can be deduced. The radial velocity
curve provides an independent check of the radius variation. Later, the method
was improved by Becker (1940), van Hoof (1943), and Wesselink (1946). Today we
know this approach as the Baade – Wesselink method and it plays an important role
in physically calibrating classical pulsators. Schwarzschild (1938a) chose a different
approach to test the pulsation hypothesis of the Cepheids. He started from the dif-
fusion approximation of radiation to describe the luminosity and its variation at the
stellar photosphere. He further assumed the pulsations to lead to a sequence of adi-
abatic state changes. Eventually, Schwarzschild adopted observed radial-velocity
data with which he reconstructed the luminosity variation. The agreement with
the observed light curve of δ Cephei which he obtained appeared convincing and
clearly supported the pulsation hypothesis.

The idea that stars pulsate was not completely terra incognita by the time of Shap-
ley’s paper (1914): Robert Emden (1907) discussed comprehensively the theory of
polytropes that came to play an important role in physically modeling the structure
of stars in his famous monograph “Gaskugeln”. In the same publication, Emden
extensively reviewed and re-did the astronomically relevant parts of the analyses
of Ritter. August Ritter, professor for mechanics at the polytechnical university at
Aachen, published a series of 19 articles on the behavior of gaseous bodies between
1878 and 1889. In the sixth article of the series, Ritter (1879) addressed the problem
of radially pulsating spheres of constant density. He showed that the pulsation pe-
riod is proportional to the inverse square-root of the density: the period – density
relation. Towards the end of the article, Ritter considered the application of his cal-
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culations to stars. He concluded that since the physical origin of the variable stars
was not known one might assume that they are pulsating gas spheres. The tem-
perature change during a pulsation cycle would then cause a luminosity change.
Unfortunately, these propositions were made long before the photographic work
of Schwarzschild (1900) and of the realization that giant stars with mean densities
much lower than that of the sun exist. Except for the review in Emden’s book,
Ritter’s work seems not to have had any impact on the astronomical community.
Indeed, none of the issues of the Vierteljahresschrift der Astronomischen Gesellschaft
contains an obituary or a notice of Ritter’s death in 1908.

Figure 2: Sir Arthur Stanley Eddington
1882 � 1944

In 1917, Eddington, who was to play a
key role in establishing the theory of stel-
lar pulsations, entered the field with a short
article on stellar pulsations. He realized
that pulsating stars should be considered
as thermodynamical engines for which en-
ergy gain and dissipation are compensat-
ing each other. Therefore, infinitesimal per-
turbations that initially grow could even-
tually be limited by the action of viscosity,
i.e. the entering of a limit cycle behavior
was considered possible; this insight is very
important since hitherto only rather violent
events, such as collisions were thought to
be able to initiate stellar oscillations, which
thereafter die out on a long time-scale. Ac-
tually, the maintenance of stellar pulsations
was already recognized by Eddington in
this first paper as a major problem for the
theory. Without the necessary physics at
hand, and indeed stellar astrophysics was
far from having developed enough at the
time, Eddington imagined a variable transparency of the stellar matter to be a suit-
able mechanism to temporally modulate the energy flux. In the first extensive for-
mal theoretical paper (Eddington, 1918), stellar pulsation theory was treated in
the adiabatic approximation and periods for polytropic gas spheres were calcu-
lated. Furthermore, Eddington addressed the question of the ratios of the specific
heats in stars. The particular values of the theoretically derived pulsation periods
turned out to depend on the particular choice of this ratio. Very little was known
then about the constitution of stellar material. Eddington assumed the value of
γ

� cP
�
cV to vary between 5

�
3 and 4

�
3. Some examples with γ � 1.429 were cal-

culated. This particular choice might have been motivated by the realization that a
value for γ � 5

�
3 results in significantly too short a period for δ Cephei so that a

value closer to 4
�
3 was to be preferred. An ideal mono-atomic gas admits γ � 5

�
3

whereas a radiation pressure dominated configuration, which is only marginally
stable as pointed out already by Ritter, has γ � 4

�
3. As the role of radiation pres-

sure was an important stellar physical ingredient for Eddington, he also believed it
to be important for Cepheid variables. He concluded, though, that his analyses did
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not depend explicitly on the radiation pressure as long as the total pressure was
used in the derivation of the dynamical equations. Eventually he evaluated the pe-
riod – density relation, which he formulated in terms of the central density for his
polytropic models. The list of observed Cepheid variables included in the paper
(Eddington, 1918)were found to obey the relation well. The second formal paper
of Eddington was devoted exclusively to stellar pulsation theory (Eddington, 1919)
wherein he discussed the problem of dissipation of pulsation energy. He observed
that the pulsation modes cannot live on energy extracted from contraction (which
was thought by then to be the major energy source of the stars and the driving force
behind stellar evolution); otherwise the period change due to the resulting density
increase would have to be observable within a human lifetime.

Another important point which appears in the 1919 paper of Eddington was the
discussion of the origin of the phase lag. It is observed (as shown in Fig.1) that
the maximum brightness does not occur at maximum compression of the star but
it is delayed to approximately maximum outward expansion velocity. If the mo-
tion of the pulsating star is expressed in a sinusoidal form, then the phase shift
amounts to about 90 � . In nonlinear reality, the shift is less than 1

�
4 of a period.

Eddington attributed the phase lag to nonadiabatic effects. He argued that in an
adiabatic motion, the temperature fluctuation has to be in phase with the density
fluctuation and hence with the radius/velocity variation. If, by some unspecified
nonadiabatic effect, the energy flux is being dammed in the outermost regions this
will cause a delay in the luminosity variation relative to the dynamical motion.
Due to the complexity of the equations he did not succeed, however, in quanti-
tatively reproducing the quarter-period lag deduced from Cepheid observations.
Later, Schwarzschild (1936; 1938b) hypothesized that running waves in the out-
ermost regions of Cepheids can be regarded as the origin of the observed phase
lag. With his semi-empirical approach he indeed succeeded well in achieving cor-
respondence between observation and his computations. Later on, more realistic
simulations showed that the acoustic modes in Cepheids are described rather well
by standing waves, so that Schwarzschild’s approach had to be dismissed. Edding-
ton (1941) reconsidered the phase-lag problem after hydrogen had been established
as a major constituent of stellar material. He attributed the phase lag to the action of
the hydrogen ionization zone at an appropriate depth of the Cepheid envelopes, re-
alizing that the hydrogen ionization zone in stars can lead to any amount of phase
lag depending on the mass depth of this layer. In the case of Cepheids the loca-
tion of this region is just optimal to minimize dissipation so that the phase lag is
roughly 90 � . Although this reasoning was not completely right (Rosseland, 1950),
Castor (1968), also presented in Cox (1980), established quantitatively, in a now
generally accepted model, that the very narrow H-ionization region is indeed the
origin of the phase lag between light and radial-velocity curve.

Edgar (1933) discussed the possibility that first overtone modes are also excited in
stars, not only fundamental modes.6 He calculated fundamental and first overtone

6Jeans criticized the stellar pulsation theory with the argument that in principle not only the fun-
damental mode but also higher overtones are possible solutions to the equations. Since there was,
at that time, no evidence for such modes being excited in variable stars, Jeans concluded that the
pulsation hypothesis had to be dismissed.
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solutions for the standard model as defined in the ICS (Eddington, 1926). Edgar
performed a factorization of the temporal dependence into exp

�
iσkt � where σk de-

notes the oscillation frequency of the kth mode. In general,σk is a complex quantity,
with the imaginary part measuring the damping or growth time for the particular
mode. Eventually, Edgar arrived at an integral formula for this imaginary part
based on what we would call today a quasi-adiabatic approximation. He used the
adiabatic eigensolution to express the thermodynamic perturbation quantities. The
particular integral formulation was used for a long time thereafter, and it is actually
encountered even these days. Edgar did not know what destabilizes the stars, but
he found that the first overtone modes were strongly damped, more so than the
fundamental. In the conclusions Edgar (1933) speculated that a varying index in
the power-law representation of the opacity function, which indeed varies strongly
in the case of partial ionization of chemical species, for example, might provide a
source to destabilize stars vibrationally. At the time of his article, the true elemen-
tal composition and the ionization profiles obtaining in a star were not known in
sufficient detail.

Figure 3: Svein Rosseland: 1894 �
1985

By the end of the 1920s it became clear that
nuclear transmutation can serve as a viable
source of energy to explain the age of the stars
and of the universe as a whole. Atkinson &
Houtermans (1929) showed that hydrogen can
be transformed into helium inside stars. The
nuclear energy generation rate ε in an element
of stellar matter can then be parameterized by
the state variables density and temperature in
the form 7 ε � ρm � Tn. Once nuclear fusion
appeared to be responsible for the stars’ lumi-
nosities the question of stability of such stel-
lar models was of eminent importance. Ed-
dington (1926) had already shown in his mono-
graph that a rapid increase of ε with tempera-
ture, i.e. a large enough n, contributes to pulsa-
tional destabilization of nuclearly active layers.
The outer regions withε � 0, on the other hand,
were always damping pulsations. The global
stability property is determined by the relative
weights of driving and damping regions throughout the star. Hence, not only the
exponent of the nuclear energy generation rate itself but also the structural details
of the star, in this case those influenced by the nuclear energy generation, are im-
portant in the stability analyses.

The ideas of Eddington (presented in detail in ICS 1926, after having been out-
lined in 1917) concerning the inner workings of the stars already contain the whole
success story without, however, identifying the physical sources. He considered

7This particular form of parameterizing the energy generation rate was used in the theory of stel-
lar structure even before the physical origin was known. Often, “radioactive” processes of some
unknown sort were invoked, see e.g. Jeans (1925b).
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the stars as thermo-mechanical engines that could, under favorable circumstances,
pulsate self-excitedly. He thought of two different possibilities for this to happen.
One, the classical approach, which works in any engine, is to modulate the heat
input during a working cycle. In stars, this corresponds to an increased rate of
energy liberation by ‘sub-atomic’ sources during the compression phase. The in-
genious idea, which appears as the second suggestion: “...fantastic in an ordinary
engine but not necessarily so in the star...” is the valve mechanism. In this picture
the heat transfer is temporarily modulated so that even a constant heat input into
the engine could maintain its working if the valve were to appropriately modify the
energy flux: at maximum compression the heat leak must be minimal. For stars,
this means that opacity should be largest during the compression phase.

In the 1930s, when the first stability studies of nuclear-burning stars were per-
formed, the two aspects of energy-flux modulation were still treated separately.
This was certainly also technically motivated as self-consistent calculations even
of simple stellar models were still out of reach. Cowling (1934) derived a critical
exponent n � 7 � 8 above which energy generating layers become convectively
unstable. This result is in good agreement with present-day beliefs. Additionally,
Cowling relaxed the constraint of homologous radial displacements (as used before
by Jeans (1925b), where he found rather low values of the characteristic exponents
to ensure pulsational stability for the stars). Indeed, the radial displacements were
found to vary considerably as a function of radius, allowing a broader stability do-
main in terms of n than derived before. In particular, Cowling (1934) concluded
that all stars that are convectively stable (convective instability is induced by nu-
clear burning in his models) are also pulsationally stable as long as γ � 1.38. A
more consistent treatment of the convectively unstable central regions in the pul-
sation equations was presented by Cowling (1935). He realized that the convective
instability of nuclear-burning regions did not necessarily influence the pulsational
(in)stability of the star. Hence, the large temperature and density exponents of nu-
clear burning rates need not destabilize a star, thus making it more plausible that
such burning is indeed the source of stellar radiation. In none of his models did
Cowling (1934; 1935) consider radiation pressure to be important. Therefore, his
limiting n for pulsationally stability turned out to be rather large. Ledoux (1941)
included the effects of radiation pressure not only in the pulsation analysis but also
in the structure of the stellar model. The stellar model was still not self-consistently
calculated but rather composed of a point-source envelope which floated on a con-
vective core. Assuming an exponent of n � 16 in the nuclear energy generation
rate and a Kramers-type opacity law throughout the star, Ledoux derived an up-
per mass limit of about 100M � for pulsationally stable chemically homogeneous
stars. As the stellar mass increases, the central parts with nuclear energy genera-
tion gain weight in the work integral which sums up positive and negative (damp-
ing) contributions throughout the star. Eventually, the growing amplitude of the
relative radial displacement in the centermost regions due to the influence of radi-
ation pressure on the stratification of the star overcomes the radiative damping in
the envelope. Analyses after Ledoux’s (1941) study reduced the critical mass some-
what when implementing more realistic constitutional physics; the general picture
did not change, however. Even now, the onset of pulsational instability above a
critical stellar mass is frequently considered to be the mechanism limiting the mass
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function at its upper end.

Figure 4: Paul Ledoux 1914 � 1988

An interesting sidelight which illustrates the
potential power of stellar pulsation theory
concerns the pulsating white-dwarf stars that
were discovered only by the middle of the
1970s. Before then, their absence led Ledoux &
Sauvenier-Goffin (1950) to indirectly (and cor-
rectly) conclude that white dwarfs must extract
the energy for their luminosity from sources
different from nuclear burning. Otherwise,
in particular due to their compact structure,
the effect of nuclear reactions would pulsation-
ally destabilize such stars. Although pulsat-
ing white dwarfs are known today, their pulsa-
tional instabilities are attributed to mechanisms
acting in their envelopes very similar to those
in Cepheids, possibly on different chemical ele-
ments.

The discussion of the upper end of the mass
function of main-sequence stars and its relation
to stellar stability was the first partial success of excitation physics acting in pulsat-
ing stars to explain observed astronomical facts. Nonetheless, the agent maintain-
ing Cepheid pulsations – the original goal – continued to remain in the dark.

Exciting Cepheids: At present we are beginning to appreciate that many dis-
joint areas of the HR diagram are populated by classes of pulsating stars that are
destabilized by different mechanisms. It seems that most of the major phases of
stellar evolution host some kinds of stellar pulsation, so that the class of the Cepheids
is only one of a number of different families of pulsating variable stars on the HR
diagram. Derived from their influence in many areas of modern astronomy they
remain, however, the most prominent representatives of regular variable stars. The
Cepheids are known to be confined along a line (Eddington 1941, Rosseland 1949)
or better a narrow strip which is referred to now as the classical instability strip
(Sandage 1958)8 on the HR diagram. The distinct locus they trace out on the HR
diagram was a key element that was to be explained by any successful theory of
pulsations of Cepheids. Pulsational variability seems hence to require very specific
envelope conditions which can be fulfilled only within a narrow, almost vertical
strip on the HR diagram.

In the paper of 1941, Eddington came back to his earlier hypothesis that a vari-
able transmissivity for photons might influence pulsational instability in at least
some variable stars. As it was broadly accepted by then that the stellar material

8Sandage deduced the finite extension in color of the instability strip for Cepheids by analogy
with the RR Lyrae instability gap on the horizontal branches of globular clusters. He supported his
hypothesis by referring to (by then) unpublished data from Small Magellanic Cepheids analyzed by
Arp which indicated a spread of � (B-V) = 0.2 at comparable periods.
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consisted mostly of hydrogen, Eddington (1941) suggested that the partial ioniza-
tion zone of hydrogen can minimize dissipation in the non-adiabatic outer layers
of stars in such a way that the nuclear driving of the central regions could overcome
the otherwise overwhelming dissipation in the envelopes. Despite his deep insight
into the essential influence of the envelope on stellar pulsations and the ingenious
concepts concerning the workings of thermo-mechanical engines elaborated on in
the ICS monograph, Eddington (1941) did not abandon the idea that nuclear en-
ergy sources were exclusively responsible for maintaining the oscillatory motion of
pulsating stars. He positively rejected the valve-mechanism as the source of stellar
pulsations.

Figure 5: John Paul Cox 1926 � 1984

One reason that nuclear driving of the pulsa-
tions remained attractive for such a long time
was the insufficient understanding of the struc-
ture of giant stars. As complete stellar models
were not calculated before the 1950s it was not
appreciated that these stars show a very strong
central mass concentration. Its usual measure,
the ratio of the central to the mean stellar den-
sity: ρC

���
ρ � exceeds 105 in giant models which

suitably describe Cepheid variables. Sen (1948)
pointed out explicitly that centrally concen-
trated models seem to be required to explain the
asymmetric velocity curves and the amplitudes
in Cepheids. He suggested a polytropic index
of 4 to be appropriate. The resulting value of
ρC

���
ρ � � 632 is still much lower than that used

by Epstein (1950) in the first pulsation analy-
sis (2.1 � 105 � 2.4 � 107) using the most re-
alistic stellar structure integrations of the time
(calculated around M. Schwarzschild on the the
ENIAC in Princeton). Before Epstein’s paper,
the ratio of the central displacement amplitude to that of the surface was many or-
ders of magnitudes too large. Hence, the influence of the nuclear driving was heav-
ily overestimated. Epstein realized that the displacement in the centermost regions
(i.e. in the nuclear active regions) was about 10 � 6 of that at the surface. Epstein’s
main concern in his seminal paper was focused on the pulsation periods of his stel-
lar models rather than on their excitation. By approximating the eigenfrequencies
for the stellar models with the help of a variational principle he introduced the no-
tion of the weight function. With this concept at hand he was able to quantify the
importance of those regions in the stellar interior that determined the magnitude
of the oscillation period. The weight function clearly proved that the pulsation pe-
riods were mostly influenced by the outer envelope regions of the giant stars and
that the regions close to the center have a only marginal effect.

John Cox, for his PhD thesis at Indiana University, used Epstein’s models to study
their pulsational stability (Cox, 1955). He included the nonadiabatic effects in the
pulsation treatment. The models, however, did not include ionization zones of hy-
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drogen and helium, so the outer regions only damped the pulsations. On the other
hand, Cox included the exciting contribution (“ε-mechanism”) from the CNO-cycle
of hydrogen burning in the centermost regions.9 The very small amplitudes of the
radial pulsations close to the stellar center led to an accordingly small driving ef-
fect in the work integral which was overwhelmed by the radiative damping in the
nonadiabatic part of the envelope. Cox found that pulsations in his models were
dying out on a time-scale of 10 days. This value is very much shorter than the
thousands of years which were adopted hitherto (cf. Rosseland 1949). Eventually,
Cox had to conclude that the improved stellar modeling of Cepheids led to more
pronounced difficulties than ever before to account for the observed pulsations of
these stars. Despite his failure to locate the driving agent he could, nevertheless,
restrict considerably the choice of possible mechanisms that remained to be con-
sidered for the explanation of stellar pulsations. The sought-for source had to be
located within the outermost 15 % of the stellar radius – nuclear driving was at
last positively out of discussion. In a later paper, Cox (1958) tried to more closely
identify the driving mechanism by studying the nonadiabatic flux perturbation in
schematic models. By studying the induced phase lags, which should be in ac-
cordance with observed pulsating variables, he derived conditions about the spa-
tial variation of the energy flux perturbation. Cox concluded that the ionization
of a predominant element would be a natural source. This conclusion was based
on a result of Schatzman (1958) who had found clear drops in the flux perturba-
tions in regions of partial ionization of abundant chemical elements. The paper of
Cox (1958) mentioned the work of Zhevakin (to be discussed below) but did not
adopt Zhevakin’s finding of He � ionization to be the driving agent in Cepheids.
In the same year, Cox & Whitney (1958) inferred, after developing a chain of semi-
theoretical arguments to derive a P-L relation, that only partial ionization of He �
provides quantitative agreement with the empirical P-L relation. It is noteworthy
that the identification of the driving mechanism happened without actually com-
puting corresponding work integrals. The reference to the observed phase lags,
which only much later were found to be due to the hydrogen ionization zone, led
Cox & Whitney (1958) to identify the He � partial ionization zone as the driving
agent. This approach stimulated rather harsh critique by Zhevakin (1961; 1963a)
who considered the Cox & Whitney (1958) work to rely on fallacious assumptions.
In 1960, having access to a IBM 704 computer, Cox eventually evaluated work inte-
grals for model systems including He � partial ionization. He indeed encountered
strong excitation in the appropriate layers. Still, Cox was not yet able to reach defi-
nite conclusions about the pulsational stability properties of the global systems due
to significant damping even close to the inner boundary of the employed models.
Furthermore, Cox’s models did not include hydrogen and first helium ionization
in the outermost regions so that their expected positive contributions could not be
evaluated.

A different approach to solving the excitation problem of stellar pulsations was
chosen by Zhevakin in the Soviet Union. In 1948 he submitted his candidate’s the-

9Note that in 1955 the evolutionary status of Cepheids had not yet been clarified. Cepheids are
now generally accepted to be helium core-burning stars performing blueward loops on the HR dia-
gram during which they cross the instability strip several times.
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sis on “Cepheids as Thermodynamic Auto-Oscillation Systems” in Leningrad. In
1952, he introduced a one-zone approximation of stellar models to study their pul-
sation properties (Zhevakin, 1952). Therein, he arrived at the conclusion that nu-
clear processes were insufficient to maintain stellar pulsations. In a quasi-adiabatic
analysis of stellar envelopes including a zone of partial He � ionization, Zhevakin
(1953) found significant driving that led him to postulate this zone as essential to
overcoming the usually dominating dissipation in the stellar envelopes.

Figure 6: Sergei Aleksandrovich
Zhevakin 1916 � 2001

In nonadiabatic calculations on a four-zone
“discrete stellar model” Zhevakin (Zhevakin,
1954) reiterated his previous conclusion that the
He � ionization zone plays the decisive role in
driving Cepheid-type pulsations. Pulsational
instabilities were, however, encountered for
rather high helium abundances only. Assum-
ing standard population I heavy-element con-
centration, instabilities were confined to helium
mass fractions Y � 0.43. This unusually high
value might be connected with the inadequa-
cies of the quasi-adiabatic analysis. Later stud-
ies confirming this result were based on dis-
crete models which were tuned to optimally re-
produce quasi-adiabatic pulsations of the cor-
responding continuous model. A considerable
number of papers was published by Zhevakin
in subsequent years attempting to encompass
the different phenomenological properties and
variabilities in other types of pulsating stars
with his approach (see e.g. Zhevakin (1963a) for
the extensive list of his references). All of Zhe-
vakin’s studies were based essentially on the
discrete model approach. At the beginning, his
work does not seem to have had much influence in the west – which can be at-
tributed to the fact that his publications appeared in Russian only and that the cold
war was in a very cold phase. Furthermore, his discrete models involved rather
elaborate tuning of the free parameters when making the transition to the discrete
approximation of the pulsation equations. This might have caused researchers who
had failed to explain the Cepheids to attribute little weight to results based on such
a description. Zhevakin received eventually considerable international recognition
when he was invited contribute his understanding of stellar pulsation theory to the
first volume of the Annual Review of Astronomy and Astrophysics (Zhevakin, 1963b).

The approach of the discrete stellar model differed conceptually from the previ-
ously used “Woltjer method”. In the latter, the nonadiabatic differential equations
describing the pulsation problem were treated as an iteratively solved perturbation
problem to the adiabatic problem. Usually only one iteration step was performed
where the adiabatic solutions were used in the nonadiabatic flux perturbation part;
this approach is also known as the quasi-adiabatic approximation. The spatial
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structure of the underlying stellar model is treated as continuously as possible. Of
course, if the the differential equations were solved numerically then some sort of
discretization was still used, but the spatial mesh could be thought of as arbitrarily
dense, as required by the numerical analysis tool. In contrast, the discrete model
was an a priori slicing of the stellar model into a small number of discrete shells.
The differential operators were translated into difference quotients so that a small
set of coupled (linear or nonlinear) equations resulted. To study the method and the
accuracy of discrete approaches Whitney & Ledoux (1957) appear to have been the
first to numerically calculate periods for linear adiabatic stellar pulsation problems
with finite difference schemes in the way it is done today. Since Ledoux & Whitney
had access to computers they set out, from the very beginning, to formulate the
problem for n shells where n can be arbitrarily chosen. Their test computations on
simple stellar models usually used 25 shells. Since they distributed the gridpoints
equally spaced in radius, 5 � 10 % deviation of the lowest order eigenfrequencies
were found when compared with the then customary Woltjer method. In this re-
spect it is noteworthy that Zhevakin solved the system of equations he obtained
in his discretization manually. Only in the mid-sixties did Aleshin publish results
from numerical realizations of Zhevakin’s method to electronic computers.

The detailed computational studies of Baker & Kippenhahn (1962) brought the
final recognition for partial He � ionization as the driving agent of Cepheid-type
variables. They performed, on the G2 computer of the Max-Planck-Institut für
Physik, self-consistent numerical computations of stellar envelopes with detailed
spatial ionization structure. Relying on a shooting approach, Baker & Kippenhahn
obtained low-order solutions of the radial pulsation equations. Based on observa-
tions, they assumed a pulsation period (i.e. a real part of the oscillation frequency)
and modeled the stellar envelopes. The integration of the pulsation equations led
to perturbed physical quantities which were assumed to be close to eigenfunctions
so that the integral work performed by the particular oscillation mode could be
computed. The sign of the work integral tells if a mode is excited or damped in
time. A number of models studied by Baker & Kippenhahn with choices of lu-
minosity, effective temperature, and mass assumed to be appropriate for δ Cephei
were found to have pulsationally unstable fundamental modes. Confirmation of
the appropriateness of these parameters by stellar evolution computations still had
to wait a few years.

The frequent reference to particular models of electronic computers throughout
this text are deliberate and should emphasize the strong influence numerical cal-
culations always had in the subject of stellar astrophysics. The first time we en-
countered in the literature (concerning our particular topic here) results from the
use of automatic machine computations was in a paper of Schwarzschild (1941),10

where he computed the first 4 radial overtone modes in n � 3 polytropes (results
that were frequently referred to for a long time; see e.g. Ledoux & Walraven (1958),
p. 472). A great proliferation of numerical papers occurred in the 1960s when the

10Schwarzschild, then at Rutherford Observatory of Columbia University, refers to the punched-
card machine of the Thomas J. Watson Astronomical Computing Bureau.
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first mainframe computing machines became available in large research institu-
tions. Thereafter, detailed stellar stability studies became increasingly a matter of
routine.

Nonlinear Thoughts: Even a superficial look at the light or radial-velocity curves
of pulsating stars convinces us that linear pulsation theory can at best provide par-
tial explanations. The temporal asymmetry (see Fig. 1) of the observables can not be
accounted for by the sinusoidal solutions resulting from the linear approximation.
Linear theory is appropriate to explain under which conditions arbitrary small per-
turbations can grow but it fails to describe the finite amplitude state of well devel-
oped oscillations. For many years it remained even unclear what effect nonlineari-
ties have on the periods. Rosseland (1943) argued by comparing the mathematical
with the physical pendulum that the asymmetry of the velocity curve lets us infer
the lengthening of the nonlinear period relative to the one derived from linear the-
ory. To support his pulsation theory of stars, Eddington (1919) attempted to model
the asymmetries of the velocity curves of Cepheids by extending the perturbation
equations to second order terms in the disturbances, a study which was extended
to more detail by Kluyver (1935a). In his George Darwin Lecture, Rosseland (1943)
elaborated on the nonlinear stellar pulsation problem by using the Hamiltonian
approach which had been introduced to pulsation theory a few years before by
Woltjer (1935). In the second-order approximation, the form of the velocity curve
depends on two parameters only, viz. the period and the ratio of the radius ampli-
tude of the pulsation to the stellar radius. Rosseland (1943, Appendix) could repro-
duce asymmetries in the velocity curves which were comparable with observations
only for much too large displacement amplitudes. He expected that higher-order
coupling terms might change the results considerably. The problem was, however,
actually associated with the constant-density models which were called upon to
describe the interior structure of stars. Schwarzschild & Savedoff (1949) indeed
pointed out that in their standard model (n � 3 polytrope) the nonlinear pulsation
period was essentially the same as in the linear approximation.

When studying arbitrary pulsational displacementsξ in a star one can attempt to
separate the temporal (t) and the spatial contributions (parameterized by the mass
at radius r: Mr) in the form

ξ
�
Mr, t � � ∑

i
fi

�
Mr � � qi

�
t � . (1)

Eddington (1919) assumed the time dependence to be describable by suitable math-
ematical functions. The displacement was expanded in a Fourier series which was,
to keep the problem tractable, terminated at the second order terms. He eventually
ended up with differential equations for the spatial coefficients. Woltjer (1935), on
the other hand, favored the approach of adopting a complete set of spatial functions
fi

�
Mr � and solving for the unknown time coefficients. In the adiabatic approxima-

tion, the resulting equations can be transformed into canonical Hamiltonian form.
As a complete spatial basis set of functions f i, Woltjer chose the eigenfunctions of
the linear, adiabatic boundary – eigenvalue problem. His approach can be consid-
ered as a starting point to present-day’s amplitude equation formalisms which are
fashionable in mostly formal analyses of nonlinear pulsation problems.
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Woltjer (1935) applied his method of incorporating nonlinearities to the study of
the effects of close resonances between eigenmodes of the stellar models. The par-
ticular dealing with resonances in the equations is reminiscent of methods which
are encountered in celestial mechanics. Some of the RR Lyrae variables show mod-
ulations of their light-curves on a time-scale of weeks to months, a phenomenon
known as the Blazhko effect. Kluyver (1935b) attempted to explain the Blazhko
phenomenon as the beat period arising from the nonlinear coupling of two radial
pulsation modes. She emphasized this hypothesis with the results from the stan-
dard model and a ratio of the specific heats of γ � 20

�
13 for which the fundamental

and the second overtone modes are close to commensurability. A persistent prob-
lem with the close-resonance picture was that for its applicability two simultane-
ously – and not only one – excited pulsation modes must be present. At that time,
though, no excitation mechanism at all was known for the stellar pulsations. Later,
Woltjer returned to this nagging problem (Woltjer, 1943a; Woltjer, 1943b; Woltjer,
1946) and expanded the formalism without however achieving satisfactory solu-
tions.

As seen above, the most accessible nonlinear problem is the study of the asymme-
try of the pulsational velocity curve; this can be addressed with a nonlinear adiabatic
description. The reproduction of lightcurves, on the other hand, needs the treat-
ment of the full nonadiabatic system of equations. Hence, it took much longer be-
fore significant progress emerged. Schwarzschild (1938a) adopted a semi-empirical
description of the photospheric density variation. His arbitrary adjustable coef-
ficients allowed the luminosity change to be in phase with velocity rather than
with radius variation. Despite a satisfactory functional form for the lightcurve, the
physical reason for the particular phase relation between luminosity and velocity
remained obscure.

Long before the true excitation mechanism of stellar pulsations was uncovered
considerable research efforts were directed towards the amplitude limitation mech-
anisms, assuming linearly unstable modes to be present; much of Woltjer’s work
(1937; 1943a; 1943b; 1946) concentrated on this aspect. In his nonlinear mode-
coupling formalism, modes with nearly commensurable frequencies can exchange
energy. If one of them only is pulsationally excited, some of its energy can be
drained in the resonantly coupled companion so that eventually the amplitude lev-
els off after initial growth. But more than the saturation of the temporal evolution
of the amplitudes was attacked with nonlinear mode coupling. The same approach
was adopted for decades when trying to arrive at some understanding of the ori-
gin of bumps and other irregularities encountered in the observed velocity- and
light-curves of pulsating variable stars.
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Most physically relevant nonlinear pulsation configurations are not accessible to
an analytical or even semi-analytical treatment. Therefore, projects attempting to
understand or at least reproduce in detail observed properties of pulsating vari-
ables emerged only after the advent of electronic computers. Even today, research
continues in attempting to satisfactorily simulate the lightcurves of observed pul-
sating stars to understand their features and to eventually link them with the rele-
vant stellar physical processes.

Alfred Gautschy

CH-4052 Basel, 2003
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