
Diss. ETH No. 16020

Combining Static and Dynamic Analysis to Find
Multi-threading Faults Beyond Data Races

A dissertation submitted to the
Swiss Federal Institute of Technology Zurich

ETH Zürich

for the degree of
Doctor of Technical Sciences

presented by
Cyrille Artho

Dipl. Informatik-Ing. ETH
born June 17, 1976

citizen of St. Gallenkappel SG,
Switzerland

accepted on the recommendation of
Prof. Dr. Armin Biere, examiner

Prof. Thomas Gross, co-examiner
Dr. Klaus Havelund, co-examiner

Prof. Dr. Doron Peled, co-examiner

April 2005

c© Cyrille Artho, 2005. All Rights Reserved.

To the memory of Christoph Lehmann

Circumstances, and a certain bias of mind,
have led me to take interest in such riddles,

and it may well be doubted whether human ingenuity
can construct an enigma of the kind

which human ingenuity may not, by proper application, resolve.

— Edgar Allen Poe (1809 – 1849)

Acknowledgements

This thesis would not have been possible without the support of many people. First and
foremost, I would like to thank my advisor, Armin Biere, for his support, his collaboration
on all the papers written, and for letting me work at NASA Ames during two summers.
Furthermore, much of this work, especially experiments using model checking, would not
have been possible without the input and work of Viktor Schuppan.

The two summer projects at Ames were an invaluable source of inspiration for me and
determined the direction of my thesis. I am especially indebted to Klaus Havelund who
supervised my work there, but also to Allen Goldberg and Robert Filman for sharing their
ideas with me. I would also like to thank Saddek Bensalem, whom I also met at Ames, for
inviting me to Verimag in 2003 and developing ideas for more future projects than could
be started within the time of a single thesis.

My thanks also go to Thomas Gross and Doron Peled who agreed to be my co-
advisors. I am thankful for their suggestions and feedback.

Students who worked for the JNuke project also contributed significantly to its suc-
cess. Pascal Eugster, Marcel Baur, Peter Farkas, and Boris Zweimüller all contributed to
vital parts of JNuke. I would also like to thank Horacio Gagliano and Raphael Ackermann
for work on related projects that did not find a way into this dissertation.

Many thanks go to Christoph von Praun for kindly providing his benchmark applica-
tions and for quickly answering questions about the nature of the atomicity violations in
them, and to Robert Stärk for sharing his profound knowledge of the intricacies of byte-
code correctness and his input throughout the work involving bytecode simplification.

Finally I would like to thank all my co-workers at the Computer Systems Institute,
who created a friendly and stimulating environment at work, and especially the secre-
taries, Ruth Hidalgo, Eva Ruiz, and Hanni Sommer, for all their work behind the scenes,
which is often not directly visible.

vii

Table of Contents

1 Introduction 1
1.1 Motivation . 1
1.2 Overview . 2

1.2.1 Concurrent Programming . 2
1.2.2 Software Analysis Techniques 4

1.3 Thesis Statement . 5
1.4 Outlook . 5

2 Background 7
2.1 Terminology . 7
2.2 Analysis Techniques . 8

2.2.1 Static Analysis . 8
2.2.2 Dynamic Analysis . 9
2.2.3 Comparison Between the Different Technologies 11
2.2.4 Possible Application Strategies 13

2.3 Concurrent Programming in Java . 15
2.3.1 Program data . 15
2.3.2 Multi-threading . 16
2.3.3 Thread synchronization . 17
2.3.4 Lock synchronization structure 18

2.4 Concurrency Errors in Software . 19
2.4.1 Low-level Data Races . 21
2.4.2 High-level Data Races . 23
2.4.3 Atomic Sequences of Operations 24

2.5 Summary . 25

3 High-level Data Races 27
3.1 Motivation . 27
3.2 Informal Definition of High-level Data Races 30

3.2.1 Basic Definition . 30
3.2.2 Refinement of Basic Definition 31

3.3 Formal Definition of High-Level Data Races 32
3.3.1 Views . 33
3.3.2 Views in Different Threads . 33
3.3.3 Examples . 34

ix

x Table of Contents

3.3.4 Soundness and Completeness 35
3.4 Summary . 36

4 Block-local Atomicity 37
4.1 Our Data-flow-based Algorithm . 37
4.2 Formalization of Our Algorithm . 39
4.3 Extension to Nested Locks and Recursion 40
4.4 Precision and Limitations of Our Algorithm 41

4.4.1 Soundness and Completeness 41
4.4.2 Comparison to Previous Atomicity-based Approaches 41
4.4.3 Limitations of Atomicity-based Approaches 42
4.4.4 Serializability . 43

4.5 Summary . 43

5 Run-time Verification 45
5.1 Definitions . 46

5.1.1 Preliminaries . 46
5.1.2 Trace generation . 47
5.1.3 Trace monitoring . 49

5.2 Benefits and Limitations of Each Approach 50
5.2.1 Code instrumentation . 50
5.2.2 Wrappers . 50
5.2.3 Custom execution environment 50
5.2.4 On-the-fly vs. off-line trace monitoring 51
5.2.5 Hybrid approaches . 51

5.3 Property Verification . 52
5.3.1 Generic properties . 52
5.3.2 Application-specific properties 53
5.3.3 Steering . 53
5.3.4 Relation to testing . 53

5.4 Existing Work . 54
5.5 Practical Experience . 54

5.5.1 Flexibility . 56
5.5.2 Scalability . 56

5.6 Capabilities and Limits . 58
5.7 Summary . 60

6 Combined Static and Dynamic Analysis 61
6.1 Background and Motivation . 61
6.2 Static Analysis in JNuke . 63

6.2.1 Graph-free abstract interpretation 63
6.2.2 Separation of control flow and bytecode semantics 64
6.2.3 Optimized state space management 65

6.3 Run-time verification in JNuke . 66
6.4 Generic Analysis Algorithms . 66

Table of Contents xi

6.4.1 Context data . 68
6.4.2 Interfacing run-time verification 71
6.4.3 Interfacing static analysis . 72

6.5 Summary . 74

7 Bytecode Inlining and Abstraction 75
7.1 Problems with Bytecode . 75
7.2 Java Compilation with Bytecode Subroutines 76

7.2.1 Java Bytecode . 76
7.2.2 Exception Handlers and Finally Blocks 77
7.2.3 Finally Blocks and Subroutines 78
7.2.4 Nested Subroutines . 79

7.3 Inlining Java Subroutines . 80
7.3.1 Sufficient and Necessary Well-formedness Conditions 82
7.3.2 Control Transfer Targets . 83
7.3.3 Exception Handler Splitting . 87
7.3.4 Exception Handler Copying . 88
7.3.5 Violation of Well-formedness Conditions in JDK 1.4 88
7.3.6 Costs of Inlining . 89

7.4 Abstract, Register-based Bytecode . 90
7.5 Related Work . 92
7.6 Summary . 93

8 Implementation 95
8.1 Overview of JNuke . 95
8.2 Observer Architecture . 96
8.3 VM-based Implementation: JNuke . 97

8.3.1 JNuke VM . 99
8.3.2 Run-time verification API . 100

8.4 Instrumentation-based Implementation: JPaX 101
8.4.1 Java Bytecode Instrumentation 101
8.4.2 Event Stream Format . 102
8.4.3 Observer Architecture . 103

8.5 Module Overview . 103
8.5.1 Description . 105
8.5.2 Module Dependencies . 105

8.6 JNuke’s OO in C . 105
8.6.1 Memory Management . 107
8.6.2 Comparison to Java . 107
8.6.3 Type JNukeObj . 108
8.6.4 Statically Typed Method Calls 111
8.6.5 Polymorphism . 111
8.6.6 Inheritance . 111
8.6.7 Constructor and Destructor . 111

xii Table of Contents

8.6.8 Containers . 114
8.7 Unit tests . 116

8.7.1 Structure . 116
8.7.2 Registering Test Cases . 118
8.7.3 JNukeTestEnv . 118
8.7.4 Log Files . 118
8.7.5 Code Coverage . 119

8.8 Summary . 119

9 Experiments 125
9.1 Applications . 125
9.2 JNuke VM . 126
9.3 JNuke Model Checker . 128
9.4 Eraser . 131
9.5 High-level Data Races . 131

9.5.1 Java Path Explorer . 131
9.5.2 JNuke . 133
9.5.3 View Consistency as a Fault Pattern 135

9.6 Block-local Atomicity . 135
9.6.1 Comparison to Other Atomicity-based Approaches 135
9.6.2 Performance and Results of the Generic Analysis 136
9.6.3 Block-local Atomicity as a Fault Pattern 139

9.7 Summary . 140

10 Related Work 141
10.1 Data Races . 141
10.2 Atomicity of Operations . 141
10.3 Database Concurrency . 143
10.4 Hardware Concurrency . 144
10.5 Stale Values . 145
10.6 Escape Analysis . 145
10.7 Serializability . 145
10.8 Summary . 147

11 Future Work 149
11.1 Dynamic Analysis in JNuke . 149
11.2 Static Analysis in JNuke . 150
11.3 High-level Data Races . 151
11.4 Block-local Atomicity . 151
11.5 Concurrent Programming in the Future 151
11.6 Summary . 152

12 Conclusions 153

Bibliography 155

List of Figures

2.1 Applicability and precision of each technology. 11
2.2 Expressiveness and degree of automation of each technology. 12
2.3 Computational and human power required for each technology. 13
2.4 Application scenarios for different analysis technologies. 14
2.5 A synchronized block. 17
2.6 Nested locking operations. 19
2.7 Generalization to non-nested locking operations. 19
2.8 A low-level data race example. 22
2.9 A high-level data race resulting from three atomic operations. 24
2.10 A non-atomic increment operation. 25
2.11 An atomicity violation that is not a high-level data race. 26

3.1 The Remote Agent Executive . 28
3.2 The task/daemon synchronization inconsistency. 29
3.3 Points with x and y coordinates. 30
3.4 One updating thread and three reading threads. 31

4.1 Intuition behind our algorithm. 38
4.2 The importance of data flow analysis. 42
4.3 A correct non-atomic, non-serializable program. 43

5.1 Comparison of tool architectures. 56
5.2 Aliasing may easily hide faults during testing. 59

6.1 A new tool flow using combined static and dynamic analysis. 62
6.2 Separation of control flow and analysis algorithm. 64
6.3 Run-time verification in JNuke. 66
6.4 Classical approaches duplicate the analysis algorithm. 67
6.5 Running generic analysis algorithms. 68
6.6 Excerpt of the block-local atomicity algorithm (simplified). 70
6.7 Interfacing run-time verification with generic analysis. 72
6.8 Interfacing static analysis with a generic analysis algorithm. 72

xiii

xiv List of Figures

7.1 A simple finally block, its bytecode and its control flow graph. 79
7.2 Breaking out of a subroutine to an enclosing subroutine. 80
7.3 Control flow graph of nested subroutines. 81
7.4 Instruction sequences violating well-formedness conditions. 84
7.5 Inlining a subroutine. 85
7.6 Inlining a nested subroutine: Step 1. 85
7.7 Inlining a nested subroutine: Step 2. 87
7.8 Sizes of subroutines in all JRE packages of Java 1.4.1. 89
7.9 Size increase after inlining all subroutines in each method. 90

8.1 Overview of JNuke. 96
8.2 The generic observer pattern. 96
8.3 Event observers in JNuke. 97
8.4 The observer-based architecture for run-time verification. 97
8.5 Detailed view of run-time verification architecture. 98
8.6 Overview of the key components of the JNuke VM. 99
8.7 Instrumentation-based approach to run-time verification. 101
8.8 Interleaving of light-weight event entries. 102
8.9 Detailed view of instrumentation-based event observers. 104
8.10 Module dependencies. 106
8.11 Dependencies of higher-level modules. 106
8.12 JNuke’s OO model. 108
8.13 The C struct JNukeObj. 108
8.14 Retrieving an object’s instance data. 109
8.15 The type information of each object. 110
8.16 Nested inheritance. 112
8.17 Constructor of the type JNukePair. 113
8.18 An example for using a read-only iterator. 115
8.19 A simple test case. 117
8.20 A construct ensuring maximal coverage. 117
8.21 The struct JNukeTestEnv. 118
8.22 Project size in lines of code. 120
8.23 Uncovered code in percent. 121
8.24 Uncovered lines of code. 122
8.25 Number of files containing uncovered lines. 123

9.1 A false positive resulting from redundant locks. 139

10.1 A non-atomic operation that does not violate view consistency. 142
10.2 A code idiom where block-local atomicity is not applicable. 146

List of Tables

3.1 Examples with two threads. 34
3.2 Examples with three threads. 35

5.1 Existing run-time verification tools. 55
5.2 Memory usage overhead for run-time verification in JNuke. 57
5.3 Run-time overhead of various tools. 57

6.1 Context differences for the static and dynamic version. 69

7.1 A subset of Java bytecode instructions. 77
7.2 Possible successors of Java bytecode instructions. 80
7.3 Number of calls per subroutine. 89
7.4 The benefits of register-based bytecode. 92

8.1 Run-time verification events in JNuke. 100
8.2 Short description of each module. 105
8.3 Replacement (wrapper) functions for memory management. 107

9.1 Benchmark programs. 126
9.2 Benchmarks to evaluate the performance of the VM. 127
9.3 Benchmark results for the JNuke model checker. 129
9.4 Comparison between JNuke and JPF. 130
9.5 Low-level data race analysis results using JNuke. 132
9.6 High-level data race analysis results using JPaX. 133
9.7 High-level data race analysis results using JNuke. 134
9.8 Block-local atomicity: comparison to other approaches. 136
9.9 Benchmark results for the block-local atomicity analysis (RV). 137
9.10 Results for block-local atomicity used in static analysis. 138

xv

Abstract

Multi-threaded programming gives rise to errors that do not occur in sequential programs.
Such errors are hard to find using traditional testing. In this context, verification of the
locking and data access discipline of a program is very promising, as it finds many kinds
of errors quickly, without requiring a user-defined specification.

Run-time verification utilizes such rules in order to detect possible failures, which do
not have to actually occur in a given program execution. A common such failure is a
data race, which results from inadequate synchronization between threads during access
to shared data. Data races do not always result in a visible failure and are thus hard
to detect. Traditional data races denote direct accesses to shared data. In addition to
this, a new kind of high-level data race is introduced, where accesses to sets of data are
not protected consistently. Such inconsistencies can lead to further failures that cannot
be detected by other algorithms. Finally, data races leave other errors untouched which
concern atomicity. Atomicity relates to sequences of actions that have to be executed
atomically, with no other thread changing the global program state such that the outcome
differs from serial execution. A data-flow-based approach is presented here, which detects
stale values, where local copies of data are outdated.

The latter property can be analyzed efficiently using static analysis. In order to allow
for comparison between static and dynamic analysis, a new kind of generic analysis has
been implemented in the JNuke framework presented here. This generic analysis can uti-
lize the same algorithm in both a static and dynamic setting. By abstracting differences
between the two scenarios into a corresponding environment, common structures such as
analysis logics and context can be used twofold. The architecture and other implementa-
tion aspects of JNuke are also described in this work.

xvii

Kurzfassung

Programme mit mehreren Threads erlauben Fehler, die nicht in sequentiellen Program-
men vorkommen. Solche Fehler sind mit traditionellem Testen schwer zu finden. Darum
ist die Überprüfung der Locking- und Datenzugriffsdisziplin eines Programms sehr viel-
versprechend, da es viele Arten von Fehlern schnell findet, ohne eine benutzerdefinierte
Spezifikation zu benötigen.

Run-time Verification benutzt solche Regeln, um mögliche Fehler zu finden, ohne dass
diese tatsächlich in einer gegebenen Programmausführung auftreten müssen. Ein häufiger
solcher Fehler ist ein Date Race, das aus unzureichender Synchronisation zwischen meh-
reren Threads mit gemeinsamen Daten resultiert. Data Races resultieren nicht immer in
einem sichtbaren Fehler und sind darum schwer zu entdecken. Traditionelle Data Races
beziehen sich auf direkte Zugriffe zu gemeinsamen Daten. Darüberhinaus wird eine neue
Art von Data Race eingeführt, wo Mengen von Daten nicht konsistent geschützt sind.
Solche Inkonsistenzen können zu weiteren Fehlern führen, welche nicht durch andere
Algorithmen entdeckt werden können. Schlussendlich lassen Data Races andere Fehler
ausser acht, welche die Atomicity betreffen. Atomicity bezieht sich auf Sequenzen von
Aktionen, die atomar ausgeführt werden müssen, ohne dass ein anderer Thread den glo-
balen Zustand auf eine Art ändert, so dass das Ergebnis einer Operation sich von serieller
Ausführung unterscheidet. Ein data-flow-basierter Ansatz wird hier präsentiert, welcher
Stale Values entdeckt, wo lokale Kopien von Daten veraltet sind.

Letztere Eigenschaft kann effizient statisch analysiert werden. Um einen Vergleich
zwischen statischer und dynamischer Analyse zu erlauben, wurde im JNuke-Framework,
das hier präsentiert wird, eine neue Art von generischer Analyse implementiert. Diese
generische Analyse kann denselben Algorithmus in einem statischen oder dynamischen
Umfeld benutzen. Indem man die Unterscheide zwischen den beiden Szenarien in ein ent-
sprechendes Environment abstrahiert, können gemeinsame Strukturen wie die Analyse-
Logik und der Kontekt doppelt genutzt werden. Die Architektur und andere Implementa-
tionsaspekte von JNuke werden auch in dieser Arbeit beschrieben.

xix

1
Introduction

Multi-threaded programming is very difficult, and can result in errors that cannot be found
through testing as is the case with sequential programs. Due to its scalability, the use of
general-purpose rules to verify the locking and data access discipline of a program is
more promising than systematic exploration of the entire program space. It is difficult to
find such rules, but once found, they can be applied to any program using only a single
program trace and detect errors that cannot usually be found through testing.

JNuke contains a virtual machine for Java bytecode that can execute Java programs
and monitor such general-purpose rules. Furthermore, it is capable of utilizing the same
analysis algorithm statically, “at compile-time”, and dynamically, at run-time. This allows
for new combinations and comparisons of the two techniques. JNuke also offers model-
checking capabilities, in order to explore the full program state space when run-time
verification is not sufficient.

1.1 Motivation

Java [GJSB00] is a very popular programming language. Its built-in support for multi-
threaded programming has been a major factor that made concurrent programming popu-
lar [Lea99]. Multi-threading creates a potential for new kinds of errors that cannot occur
in traditional, sequential programs. Because the thread schedule determines the order in
which thread actions occur, program behavior becomes non-deterministic. Testing be-
comes very ineffective because a test run only covers a single program schedule and
therefore only a small part of the entire potential behavior. Many faults therefore cannot
be found through testing.

Two very common kinds of such faults are deadlocks and data races. In a deadlock,
several threads mutually wait for another thread to perform a certain action. Because
of circular dependencies among these actions, one thread cannot progress without the
other thread releasing a resource, and vice versa. Thus both threads are stuck in a “deadly
embrace” [Dij68]. A data race denotes a scenario where several threads perform an action
without adequate synchronization between threads. If these actions occur concurrently,
the result differs from serial execution of these actions. Unlike deadlocks, data races
are hard to detect because they do not always result in a visible error (such as a halted
program).

1

2 Chapter 1. Introduction

Therefore, simple testing has to be augmented with more refined checks. The idea of
the Eraser algorithm [SBN+97] is to monitor the lock set, the set of locks held, during
each memory access of any thread. If the intersection of all these lock sets ever becomes
empty, this means that no common lock protects that data in memory, and a data race is
possible. Eraser embodies a fault pattern, which is an undesired program behavior that
can result in a run-time failure. The fact that the fault pattern is much easier to detect than
the actual failure and that it is applicable to any program makes it a valuable contribution
to software correctness. Furthermore, it requires no user-defined specification describing
potential outcomes of program runs using corrupted data.

The Eraser algorithm proved to be very useful in practice; however, it only covers data
races at the level of individual data accesses. Such a data race will be denoted low-level
data race here. High-level data races, on the other hand, concern accesses to sets of fields
where a given set is not always accessed consistently [AHB03]. This can lead to further
errors that are not detected by other algorithms. Like low-level data races, high-level data
races can be found effectively at run-time, requiring only a single execution trace.

Finally, data races leave other errors untouched which are concerned with atomicity.
Atomicity denotes the fact that a certain block of code should be executed atomically, with
no other thread changing the global program state in a way such that the outcome differs
from a serial execution. Several approaches to atomicity exist; the approach presented
here, block-local atomicity [ABH04], is data-flow based and detects errors where a local
copy of a value is outdated, or stale [BL02]. Because that property is thread-local, static
analysis can check it very effectively.

Experiments shown in this thesis indicate that method-local properties are better suited
to static analysis while global properties can be checked more efficiently at run-time.
However, so far, no tool has been available to compare the two approaches directly. JNuke
is the first tool that can utilize the same algorithm for both static and dynamic analy-
sis [AB05a] and therefore allows comparing algorithms which are implemented using
this generic framework. Beyond that, JNuke is also able to perform run-time verification
and software model checking for the full Java bytecode instruction set. It can therefore
verify any Java program, as long as all library calls used are implemented.

1.2 Overview

1.2.1 Concurrent Programming

Concurrent programming is a cornerstone of modern software development, allowing
systems to perform multiple tasks at the same time [Tan92]. In recent years, the use
of multi-threaded software has become increasingly widespread. Especially for large
servers, multi-threaded programs have advantages over multi-process programs: Threads
are computationally less expensive to create than processes, and share the same address
space.

Threads are often used in a client-server environment, where each thread serves a
request. Typical applications are servers [AB01] or software frameworks for ubiqui-
tous computing where interaction occurs in a distributed and highly concurrent man-

1.2. Overview 3

ner [BM04]. Java [GJSB00] is a programming language that is widely used for such
applications.

Java is an object-oriented programming language that has enjoyed much success in
the past few years. Source code is not compiled to machine code, but to a different form,
the bytecode. This bytecode runs in a dedicated environment, the virtual machine (VM).
In order to guarantee the integrity of the system, each class file containing bytecode is
checked prior to execution [GJSB00, LY99, Sun04b].

The Java language and its base libraries support multi-threaded or concurrent pro-
gramming. Threads can be created, run, and suspended. For thread communication and
mutual exclusion, locks are used, using the synchronized keyword, offering monitor-
based programming. Locks can also be used for shared conditionals using wait and
notify [Lea99].

The Java language allows each object to have any number of fields, which are at-
tributes of each object. These may be static, i.e., shared among all instances of a certain
class, or dynamic, i.e., each instance has its own fields. Static fields are always globally
visible: They can be accessed by any thread throughout program execution. Dynamic
fields are only accessible through their instance reference. If an instance reference is
accessible to several threads, its fields are shared and can be accessed concurrently. In
contrast to that, local variables are thread-local and only visible within one method.

Some programming languages limit possible concurrency errors by offering only lim-
ited multi-threading constructs, where thread interaction is structured by high-level mech-
anisms such as rendez-vous [Bar97], communication channels in conjunction with non-
deterministic guards [Hoa83, Hol91], or semaphores [Dij68]. Most programming lan-
guages today, though, have the same multi-threading mechanisms that Java offers and
feature explicit thread creation and locking mechanisms that allow developers to control
program behavior precisely. In most operating systems and programming languages avail-
able today, POSIX threads [But97] offer such functionality. These constructs, while very
versatile, also make it easy to introduce faults in the program. Such faults are the sub-
ject of interest in this work. This thesis investigates multi-threaded programs only, where
threads share a common address space; it does not investigate software running as sepa-
rate processes, even though other mechanisms are available to share memory [TRY+87],
or distributed systems which can run on several computers [HV99].

Multi-threaded programming requires a developer to protect a program against uncon-
trolled interference between threads. To achieve this, shared memory can be protected by
locks in order to prevent uncontrolled concurrent access. However, incorrect lock usage
using too many locks may lead to deadlocks. For example, if two threads each wait on
a lock held by the other thread, both threads cannot continue their execution. Therefore
locks should be used sparingly.

On the other hand, if a value is accessed with insufficient lock protection, data races
may occur: two threads may access the same value concurrently, and the results of the
operations are no longer deterministic [SBN+97]. The non-determinism results from the
fact that the thread schedule is chosen by the VM and cannot be controlled by the ap-
plication [LY99]. The result is that application behavior may vary depending on factors
such as system load, and therefore a program that is deterministic when executed serially

4 Chapter 1. Introduction

becomes non-deterministic in concurrent execution. This can make it extremely hard to
find faults in such programs, since a fault may rarely manifest itself as a failure.

Even if no data race occurs, shared data may be used inconsistently. For example, a
data structure representing a coordinate pair may have to be treated atomically. Even if
individual accesses are protected by a common lock, certain operations, such as setting
both coordinates to 0, must be executed without releasing that lock during the opera-
tion. Inconsistent accesses to such sets of shared data will be denoted as high-level data
races [AHB03].

Data races do not cover all kinds of concurrency errors because they do not capture
data flow from shared fields to local variables or stack values. A program may continue
to use these local copies outside a synchronized region. Stale values denote copies of
shared data where the copy is no longer synchronized. This thesis utilizes a data-flow-
based technique to find stale-value errors, which are not found by low-level and high-
level data race algorithms. This property, block-local atomicity, determines the necessary
scope of synchronized blocks in a program that is needed to ensure the absence of stale
values [ABH04].

1.2.2 Software Analysis Techniques

Much effort has gone into automated fault-finding in software, single-threaded and multi-
threaded. The approaches can be separated into static analysis, which checks a program at
compile-time and tries to approximate its run-time behavior, and dynamic analysis, which
tries to catch and analyze anomalies during execution of a concrete program, with its full
semantics and its entire range of operations.

Static analysis approximates the set of possible program states. It includes abstract
interpretation [CC77], where a fix point over abstract states, which represent sets of con-
crete states, is calculated. Static analysis scales well for many properties, as properties
may be modular and thus only require summary information of dependent methods or
modules. “Classical” static analysis constructs a graph representation of the program and
calculates the fix point of properties using that graph [CC77].

An alternative static approach is theorem proving, which uses a series of deductions
in order to determine whether a given property holds for the entire program. One tool that
has successfully implemented an annotation-based, automated approach to check such
properties is ESC/Java [DLNS98].

Dynamic tools have the advantage of having more precise information available in the
execution trace. Run-time verification analyzes application execution. The Eraser algo-
rithm [SBN+97], which has been implemented in the Visual Threads tool [Har00] to an-
alyze C and C++ programs, is such an algorithm that examines a program execution trace
for locking patterns and variable accesses in order to predict potential data races. The
Java PathExplorer tool (JPaX) [HR01] performs deadlock analysis and data race anal-
ysis (both low-level and high-level) on Java programs. JNuke, the tool presented here,
implements these algorithms, which are complemented by block-local atomicity analysis
[ABH04]. It furthermore can use a given algorithm both in static analysis and run-time
verification [AB05a].

1.3. Thesis Statement 5

More heavyweight dynamic approaches include model checking, which explores all
possible schedules in a program. Recently, model checkers have been developed that
apply directly to programs (instead of just models thereof). Such software model checkers
include JNuke [ASB+04], Java PathFinder (JPF) developed by NASA [VHB+03], and
similar systems [BPR01, CDH+00, HS99]. Such systems, however, suffer from the state
space explosion problem: The size of the state space is exponential in the size of the
system state. Therefore techniques have to be employed to reduce the number of states
that have to be explored, by analyzing independent states only, and by removing parts of
the program that are not relevant to the properties checked.

1.3 Thesis Statement

This thesis introduces two new fault patterns, high-level data races and block-
local atomicity. These general-purpose rules can be applied to any multi-
threaded program in order to find errors that are extremely hard to find us-
ing classical testing, while allowing for specificationless, effective checking.
Both properties find errors that are not, or less effectively, found by other
means.
Moreover, this thesis shows that static and dynamic analysis can be combined
by using a software architecture that takes advantage of their common struc-
tures. Such a generic environment allows for integration of static analysis and
run-time verification.

This thesis introduces two new fault patterns, high-level data races and block-local atom-
icity. When run-time verification is used during a test run to check these patterns, find-
ing faults in multi-threaded software is much more effective than with classical test-
ing [BDG+04]. Static analysis can even find certain errors without running tests, in a
partially finished program. Nonetheless, certain multi-threading faults remain which can-
not be captured by such fault patterns. These can be found by exploring the entire program
behavior using software model checking. This thesis shows that both an effective state-
space exploration heuristics and an efficient implementation are crucial for the scalability
of this technology.

1.4 Outlook

Chapter 2 introduces the terminology and technologies referred to in this thesis. The new
concepts, high-level data races and block-local atomicity, are presented in Chapters 3
and 4. Chapter 5 gives a detailed overview of run-time verification, the key technology
used in this work, while Chapter 6 shows a novel concept that allows combining run-
time verification with abstract interpretation. Technical aspects of this thesis, bytecode
simplification through inlining and abstraction, and architectural information about the
implementation, are presented in Chapters 7 and 8. Experimental results are described
in Chapter 9. Related work is discussed in Chapter 10 while Chapter 11 shows possible
areas for future work. Chapter 12 concludes.

2
Background

2.1 Terminology

In software, the term fault denotes an incorrect implementation, introduced by a human
error during development. A fault can eventually lead to a failure, i.e., incorrect behavior
during program execution [IEE83]. Software testing is an established way of detecting
failures in software [Pel01]. In order to execute software tests, a developer tries to create
situations (tests) that discover a fault in the software by choosing a representative set of
inputs (test cases). Finding a fault requires a test case leading to a failure. Usually, test
cases are written to model known or anticipated failures, which explains why tests only
uncover some faults.

Certain sets of faults can be partitioned into equivalence classes, because identical
underlying programming mechanisms are used. The incorrect or incomplete usage of
program constructs results in a possible failure. Classes of equivalent faults therefore
fulfill certain predicates or fault patterns which can serve to classify faults. In this thesis,
fault patterns are primarily used to detect faults of a certain kind.

When an analysis tool is applied to a program, it will issue a number of reports.
These reports each indicate a possible fault in the software. A report that represents a
genuine fault is a true positive, one which cannot be confirmed as such is a false positive
or spurious warning. A fault that does not result in any report is undetected and thus a
false negative. Note that this definition corresponds to classical mathematical sciences
and medicine, but is sometimes reversed in computer science literature.

A proof procedure for a logic is sound if it proves only valid formulae. Possible faults
in the argument therefore always result in the absence of a proof. Hence a sound tool does
not miss any faults. A correct property may still not be provable in such a system. Such a
case corresponds to false positives reported.

In logic, a calculus is complete iff for any statement P, there exists a proof for either
P or ¬P. A system is consistent if there are no contradictions and a proof for both P and
¬P never exists. For an open class of undecidable problems, it is impossible to develop a
formal system that is both consistent and complete [Göd31].

Proof theory uses a different definition of completeness. A formal calculus is complete
if all tautologies can be proven. A complete program prover can therefore always prove a
correct program as such, but may miss faults. A prover that is both sound and complete
cannot exist because this would solve the Halting Problem, which has been proven to

7

8 Chapter 2. Background

be impossible by the Church-Turing thesis [Chu36, Tur37]. In practice, sound tools are
often preferred because once the number of reports is zero, there are no faults left in the
software w.r.t. the properties investigated. Fine-tuning such a tool for a specific domain
can even reduce false positives to zero [BCC+02].

A suppression list is a list of program parts (methods, classes, or packages) that are
to be excluded from analysis. Such parts often have statically been proved safe, either by
previous manual or automatic analysis. Sometimes they are simply excluded because the
code in question is not of interest.

The term design pattern denotes composition of objects in software [GHJV95]. In
this thesis, a different notion of composition is also used. It includes lock patterns and
sometimes only applies to a small part of the program. The term code idiom applies to
that such a context.

An application programming interface (API) provides access to the externally avail-
able functions or methods of a library. The use of an API is also denoted an API call or
library call.

Other terms are defined in the remainder of this chapter, and presented in the context
in which they have emerged or are commonly used.

2.2 Analysis Techniques

Analysis techniques can be categorized into static and dynamic analysis. Static analy-
sis investigates properties “at compile time”, without executing the actual program. It
explores a simplified version of the concrete program, examining the entire behavior. Dy-
namic analysis, on the other hand, actually executes the program (or system under test,
SUT) and verifies properties on an execution trace of that SUT.

2.2.1 Static Analysis

Abstract Interpretation

The two technologies that are traditionally associated with static analysis are abstract
interpretation and theorem proving. Abstract interpretation constructs a mathematical
representation of the program properties and calculates a fix point of properties using
that graph [CC77]. This (abstract) representation of the program often encompasses a
(strictly) wider range of behaviors than the original. Such a conservative static analysis
is sound: Its wider spectrum of behaviors admits any erroneous behavior and thus detects
any possible violation of a given property. The downside are false positives, correct pro-
grams that cannot be proved as such. Careful tuning to a specific domain may eliminate
false positives [BCC+02]. General-purpose static analyzers based on abstract interpreta-
tion may discard soundness in addition to completeness for simplicity and speed [AB01].
Abstract intepretation is used in an unconventional way in this thesis, operating on the
program itself rather than a mathematical model of it. This graph-free analysis [Moh02]
is presented in Chapter 6.

2.2. Analysis Techniques 9

Theorem Proving

Theorem proving is a mathematical program verification and entails the proof of given
properties by a series of proof transformation steps, each of which corresponds to an im-
plication or equivalence. This rigorous mathematical approach is sound and complete, but
typically involves human interaction since the general problem of proving program cor-
rectness is undecidable. Tools to support mathematicians in finding and executing proof
steps exist [Abr96, ABB+00, Sch00] but typically require a strong background in math-
ematics and considerable skill with such proofs [Pel01]. This rigorous approach usually
entails adapting the entire development process to this methodology, because proofs are
usually performed in stages, many of which have to be repeated when the specification or
system architecture changes [Abr96, CTW99].

Theorem proving is sometimes automated and used as a part of a tool chain, the most
well-known example being the Simplify theorem prover, which is the core of the Ex-
tended Static Checking tool for Java (ESC/Java) [DLNS98]. By giving up on soundness
and completness, automation in theorem proving becomes possible. However, the follow-
ing discussion will consider the typical case of theorem proving, where exact results are
sought.

2.2.2 Dynamic Analysis

Dynamic analysis actually executes the system under test, covering the entire behavior,
or at least the part which is relevant for the properties of interest, precisely. Compared
to static analysis, dynamic tools have the advantage of having precise information avail-
able in the execution trace. However, coverage of the complete system behavior is often
untractable.

Run-time Verification

Classical testing executes the SUT given manually or semi-automatically created test
cases and observes its output [Mye79]. This has the drawback that execution of a faulty
SUT must produce an incorrect output (or observable behavior) in order to allow a fault to
be detected. Since the output of multi-threaded systems may depend on the thread sched-
ule [Lea99], the probability that a particular schedule reveals faults in the SUT is very
low [BDG+04], because a test requires a particular “bad” schedule to reveal a failure.

Run-time verification tries to observe properties of the system which are not directly
tested. Instead, stronger properties than the failure itself are checked. A stronger property
is usually independent of scheduling yet a strong indicator that the failure looked for can
occur under a certain schedule [ABG+03]. Therefore even a “good” schedule usually
allows detection of faults in the system, even if no failure occurs. An occurrence of the
failure looked for almost always violates the verification property, but the reverse is not
true. A violated property may be benign and never lead to a failure.

Some fully automated dynamic analysis algorithms only require a single execution
trace to deduce possible errors [AHB03, SBN+97]. This fact is the foundation of run-time

10 Chapter 2. Background

verification [RV04], ameliorating the major weakness of testing, which is the possible de-
pendence of system execution on non-deterministic decisions of its environment, such as
the thread scheduler. Run-time verification infers possible behaviors in other program ex-
ecutions and can thus analyze a larger part of the possible behaviors, scaling significantly
better than software model checking. Run-time verification is the cornerstone technology
used in this thesis and treated more extensively in Chapter 5.

Model Checking

Model checking [CGP99, VHB+03] is often counted towards static analysis methods be-
cause it tries to explore the entire behavior of a SUT by investigating each reachable
system state. This classification is certainly fitting when model checking is applied to a
model of a system, which describes its behavior on a more abstract level. Model check-
ing is commonly used to verify algorithms and protocols [Hol91]. However, more re-
cently, model checking has been applied directly to software, sometimes even on concrete
systems. Such model checkers include the Java PathFinder system [HP00, VHB+03],
JNuke [ASB+04], and similar systems [BPR01, CDH+00, God97, HS99, Sto00]. Due to
this, the distinction between static and dynamic analysis is blurring. Even though model
checkers explore system behavior exhaustively, it can still be hard to find certain multi-
threading failures such as a data race, low-level as well as high-level. In order to find
such a failure, model checking typically requires system exploration to cause a violation
of some explicitly stated property.

Regardless of whether model checkers are applied to models or software, they suf-
fer from the state space explosion problem: The size of the state space is exponential in
the size of the system, which includes the number of threads and program points where
thread switches can occur. This is the reason why most systems are too complex for model
checking. System abstraction offers a way to reduce the state space by merging several
concrete states into a single abstract state, thus simplifying behavior. In general, an ab-
stract state allows for a wider behavior than the original set of concrete states, preserving
any potential failure states. Abstraction of the system by removing unneccesary behavior
is therefore crucial to reduce the state space [BPR01, CDH+00]. For actual system ex-
ploration, a number of partial-order reduction techniques have been proposed which all
have in common that they do not analyze multiple independent interleavings when it can
be determined that their effect is equivalent [Bru99, Hol91].

Finally, model checkers are often classified according to their underlying technology.
Explicit-state model checkers [Hol91] were available first; they store each state directly
in memory and are very fast for systems that fit into available memory. Symbolic model
checkers [BCM+90, McM93] store the system state in a data structure called Binary De-
cision Diagrams (BDDs) [Bry86]. This data structure can share common subexpressions
of a formula denoting a set or property. Finally, bounded model checkers [BCC+03] only
explore a system up to a certain limit, typically using SAT solvers instead of BDDs as
their underlying data structure [BCC+99]. Recently, it has been shown that Craig inter-
polation [Cra57] can bridge the gap between bounded model checking and unbounded
model checking of finite systems [McM03].

2.2. Analysis Techniques 11

2.2.3 Comparison Between the Different Technologies

The four technologies presented, abstract interpretation, theorem proving, run-time ver-
ification, and model checking, are not always used in isolation. For instance, a theorem
prover may be used to provide a correct abstraction of a given predicate [BPR01] which
is then verified using model checking. At the time of writing, the boundaries between
the tools are still fairly clear, with one technology dominating the work flow of a tool
chain and others playing a subsidiary role in it. Therefore tools can still be attributed to a
particular technology, although this distinction is likely going to be blurring in the future.

Strengths and weaknesses of each technology determine their suitability for a particu-
lar project. This section makes an attempt at classifying these, and should be understood
as a guide, not as a final judgement. In each category, there exist tools that work dif-
ferently than their common counterparts. Due to inherent difficulties in classifying such
broad classes of technologies, an attempt is made to characterize certain crucial trade-offs
that each technology offers.

Abstract
Interpretation

Precision

Model

Applicability

Checking

RV

Theorem
Proving

Figure 2.1: Applicability and precision of each technology.

The first property investigated is the quality of the results that a tool can provide within
its domain, and its applicability to a project. Applicability in this context refers to different
kinds and sizes of programs, what models and properties can be verified, and how suitable
a technology is within the context of a given development process. Figure 2.1 summarizes
this trade-off.

Theorem proving is very labor-intensive. For obtaining satisfactory results, it re-
quires an adaptation of the development process to that methodology [Abr96, CTW99].
However, it can give full confidence in all properties verified, and thus is very suitable
for mission-critical software where it is worthwhile spending a significant amount of
money on quality assurance. Model checking is often used in this area, where the goal
is to prevent certain kinds of critical faults [BPR01]. Such projects are most successful
within a specialized domain [HLP01], and while many properties can be checked de-

12 Chapter 2. Background

cisively, the range of such properties is typically not as wide as with theorem proving,
which is better suited to verification of unbounded systems [Pel01]. Run-time verifica-
tion (RV) has the advantage that it is very easily applicable [BDG+04]. The range of
existing tools encompasses verification of hard-coded properties that require no user an-
notation [SBN+97, ASB+04] to verification of temporal properties [ABG+03, Dru03].
RV does not always deliver precise results, which puts it into the same league as cer-
tain abstract interpretation-based tools that sacrifice both completeness and soundness
for scalability and expediency [AB01]. Such simple static checkers can be used in early
stages of a project, where an executable application may not even exist yet. On the other
end of the spectrum of static tools, there are special-purpose tools geared towards a par-
ticular domain, delivering very precise results [BCC+02]. Concerning large systems,
only RV and certain static analyzers have so far successfully scaled up to larger sys-
tems [AB01, EM04, Har00].

Model
Checking

Automation

Theorem

Expressiveness

Proving

RV

Abstract
Interpretation

Figure 2.2: Expressiveness and degree of automation of each technology.

The previous discussion already touched the second issue, which is shown in Fig-
ure 2.2: the degree of automation a tool can provide versus the range of properties that
can typically be expressed. RV is limited to properties that are applicable to (and at least
to some degree verifiable on) a single program trace [ABG+03, NS03], but it is fully auto-
mated. Abstract interpretation can deliver the same degree of automation when verifying
a fixed set of hard-coded properties [AB01]. Commonly, reports issued by a tool require
further inspection due to possible false positives. Thus they can so far not be considered
to be fully automated. Abstract interpretation can verify a larger set of properties if the
tools is carefully tuned for its application domain [BCC+02]. Model checkers typically
are also built as general-purpose tools. Constructing a model of the software can be a
labor-intensive process [HLP01] or also be fully automated [BPR01]. In the latter case,
general-purpose properties were successfully re-used across a variety of device drivers,
increasing automation. For theorem proving, automation is still is biggest weakness, since
carrying out proofs typically requires human interaction.

2.2. Analysis Techniques 13

(skills, time)

Abstract
Interpretation

Model
Checking

Computational

RV

power

Theorem
Proving

Human power

Figure 2.3: Computational and human power required for each technology.

The final comparison is the trade-off between computational and human power re-
quired to use a tool effectively, outlined by Figure 2.3. Human power includes both the
necessary skills and training to use a tool, and time required for extra program annotations
or interaction with a tool. Run-time verification tools typically require very little train-
ing, but incur a certain overhead for program testing. This overhead is still smaller than
for other tools, which has made RV very successful in practice [BDG+04, Har00, NS03,
HJ92]. Abstract interpretation typically requires some insight into the fact that a tool is
imprecise [AB01] or the tool itself in case it is fune-tuned to a specific domain [BCC+02].
Again, this technology covers a wide spectrum. Model checking typically is computation-
ally very expensive [CGP99] and typically requires understanding of temporal logics such
as LTL [Pnu77] in order to be used effectively. It is therefore still typically only used by
highly trained engineers, despite attempts to simplify the complexity of temporal logics
by providing a specification language as a front end [CDHR00]. Theorem proving, fi-
nally, does not only require such a mathematical background but also deep insight into
mathematical proof strategies and capabilities of such a tool, typically requiring months
of experience [Pau03].

2.2.4 Possible Application Strategies

Theorem proving can bring its full strength to bear in a project where it is used throughout
the development process, by well-trained developers that carry out the mathematical work.
Some mission-critical applications have been built successfully by starting with program
proofs from which the final program was iteratively developed (by refinement) [Abr96,
CTW99]. A similar development methodology can be used for model checking as well,
where a model of an application is developed and then implemented once it is found to

14 Chapter 2. Background

satisfy all required properties. This strategy requires that formal verification is part of a
project from its very start, and is thus not applicable to existing systems.

The reverse direction is deductive verification [Pel01], where an attempt is made to
prove properties in an existing implementation. The most promising aspect is that the
actual implementation of a system (or at least a simplified, abstracted version of it) can
be verified rather than a protocol or design [CP96]. Nonetheless, the complexity of such
a system is so large that theorem proving usually requires too many resources [Pel01]
and more mechanized approaches such as model checking [VHB+03, HLP01] or abstract
interpretation [BCC+02, EM04] are more successful, even though they cannot cover all
aspects of a potentially unbounded system.

Finally, simple, fast static analyzers, such as the use of strict compiler warnings or
dedicated tools [AB01, AH04], can be a valuable tool throughout the development pro-
cess, especially when development is still far from completion or no resources exist to
use a more complex tool. Run-time verification tools typically also fall into that cate-
gory [RV04] but are of course only applicable when a system has already reached the
stage where it becomes testable.

Model
Checking

Effort invested/
level of confidence required
by the user

(Abstr. Interpr.)
Static A.

Theorem
Proving

RV

Complex SA
Simple

Figure 2.4: Application scenarios for different analysis technologies.

Figure 2.4 summarizes this: Simple static analysis tools, based on abstract interpre-
tation or ad-hoc methods, can be a highly useful first step for formal verification. Run-
time verification is also easily applicable once a test suite exists. More complex static
analyzers and model checkers are a good choice if a high degree of confidentiality is
required in a domain where these technologies are well applicable, such as system con-
trollers [BCC+02, VHB+03] or device drivers [BPR01]. Theorem provers require a very
strong commitment to formal verification, but can handle problems where the other tech-
nologies fail. Finally, it should be emphasized that a combination of different tools and
technologies is often more successful than pushing one individual technology to its lim-
its [AB01, BDG+04, EM04].

A possible tool chain combining these technologies could look as follows: a fast static
analyzer is used as a first pass to reduce run-time checks. Remaining cases can be treated
at run-time. This combination is often applied to type checking but can be extended to
other properties. Since run-time checks cannot give full confidence in a system, more
expensive methods such as model checking may be applied to cover the full behavior of
the system.

2.3. Concurrent Programming in Java 15

The reason why model checking or theorem proving is usually not used at the begin-
ning of a project, or for any kind of system, lies in the complexity of these methods. On
larger systems, a major manual effort for specification, abstraction, and manual proving
(in the case of theorem proving) is necessary. When verifying an implementation, it is
therefore recommended to use more light-weight methods such as run-time verification
first and then apply heavy-weight techniques if quality assurance policy requires this.

2.3 Concurrent Programming in Java

A brief introduction to concurrent programming in Java and other programming languages
has been given in Section 1.2. This section describes concurrent programming mecha-
nisms in Java in more detail. Even though this thesis describes concepts and implemen-
tations based on Java programs, the ideas are applicable to any programming language
or environment that supports the same mechanisms, which are standardized by POSIX
threads [But97] and available in many other programming languages such as C and C++.
Java implementations commonly use a POSIX-compliant thread library underneath, even
though this is not mandated by the standard [LY99].

2.3.1 Program data

Java is an object-oriented language where related data is organized in (dynamic) instances
of objects which each have a common type or class. Such a type includes a set of fields,
which are attributes of each object, and methods, which are functions that operate on
instance data. Object instances are dynamically created at run-time. In addition to these
instances, there exists a static class instance for each class [GJSB00]. This instance is
a special instance which has a different set of fields and methods than the dynamic one.
The static instance is a singleton instance [GHJV95] which is created after a class file is
loaded into memory [LY99]. It is always globally accessible through its class name, unlike
dynamic instances, which are only accessible through their instance reference [GJSB00].

Java memory is partitioned into a global heap (sometimes also denoted as main mem-
ory), which holds dynamically allocated data, and a set of stacks, with one stack for each
thread holding method-local, thread-local data. A dynamic class instances is live (not eli-
gible for garbage collection) as long as it is reachable from the stack of at least one active
thread. If such an instance reference is potentially reachable by several threads, its fields
are shared and can be accessed concurrently.

Within each method, Java also offers local variables which are used to store inter-
mediate data that on the current stack frame while the method is executing. Such local
variables are only visible within one method and created for the duration of each method
call. Therefore they are also thread-local, because one such set of local variables will
be created for each method call when several threads call the same method concurrently.
Methods typically also use stack variables which are not available as a Java language con-
struct. They are used to hold intermediate values for operands in Java bytecode [LY99].
Stack variables are also method-local and thread-local. In this thesis, the term register
will denote both stack variables and local variables of the same method.

16 Chapter 2. Background

Even though the techniques in this thesis have been developed for application on
object-oriented programs, the ideas transfer to non-object-oriented languages as well. The
properties which will be defined below deal with atomicity of actions and atomic access
to sets of values. A set of values does not necessarily have to be encapsulated in a single
class and can represent arbitrary memory locations. Atomicity of actions treats thread-
locality of data and actions using data; again, it is irrelevant how that data is organized
within programming language constructs. Because of these reasons, the ideas presented
in this thesis generalize trivially to non-object-oriented languages. This generalization is
not described explicitly in the remainder of this text.

2.3.2 Multi-threading

Java includes multi-threading in its base classes and the language itself, unlike some other
programming languages which use an external library to achieve this [But97]. The explicit
availability of threads and locks as a language construct makes them easier to use and
analyze, since all low-level constructs are standardized [GJSB00]. This overview only
describes concurrency language features of Java which are relevant for this thesis.

Class java.lang.Thread allows creation of new threads at run-time. Several threads
may run concurrently. At the beginning of execution of a Java program, thread main is
started, representing the only active application thread.1 Other threads are typically cre-
ated by instantiating a class that either inherits from java.lang.Thread or implements
interface java.lang.Runnable. In either case, it must implement a run method which
specifies the code to be executed when such a thread instance is started. For practical
purposes, the programmer can assume that the virtual machine runs on only one CPU,
and each thread periodically receives a “time slice” by the scheduler. Note that the of-
ficial Java specification poses no requirement for fair scheduling among threads of the
same priority. This emphasizes once more that the programmer has to take any possible
schedule into account.

Threads share the address space of the virtual machine. It is possible to keep cer-
tain special references thread-local [GJSB00, Lea99], but normally created references are
always shared unless they can be guaranteed to be reachable by only a single thread.
Threads may access the global heap directly, which is always the case for volatile
fields [GJSB00] or in certain JVM implementations [Eug03].

However, in many JVM implementations, every thread also has a working memory
in which it keeps its own working copy of variables that it must use or assign. A thread
then operates on these working copies while the main memory contains the master copy
of every variable. There are rules about when a thread is permitted or required to transfer
the contents of its working copy of a variable into the master copy or vice versa. Most
importantly, acquiring a lock forces a thread to re-read any working copies while releasing
a lock writes any local copies back to main memory [LY99]. This has the consequence
that any operations taking place without using locks may operate on stale data and never

1The Java specification allows for system threads running in the background, for example, as an idle
thread [Eug03], or for garbage collection [PD00]. However, these threads cannot be controlled by the
application and must not interfere with it.

2.3. Concurrent Programming in Java 17

become visible to other threads. This is the reason why correct locking is crucial for
program correctness. Variables of size 32 bits or smaller which are declared volatile
are exempt from this per-thread caching and always accessed atomically [LY99].2

2.3.3 Thread synchronization

Thread synchronization, often achieved through locking, ensures that access to shared
data occurs in a well-defined manner, without any threads using stale data resulting from
thread-local copies in working memory [GJSB00, LY99] or a lack of synchronization
across several operations. Locking is used to prevent two threads from accessing the
same object simultaneously. A lock is any Java object (but not a primitive value such
as an integer) that is used as part of a monitorenter or monitorexit operation [LY99]
which acquires and releases a lock, respectively. While any one thread holds the lock,
another thread requesting it is blocked (suspended) until the first thread has released the
lock. Locks in Java are reentrant: Acquiring the same lock twice has no effect other than
increasing an internal counter; the lock is actually released when the counter is decreased
to zero, i.e., when the number of lock release operations matches the number of previous
lock acquisition operations.

synchronized (lock) { // acquires lock
 /* block of code */
 ...
 /* this sequence of operations is executed
 * while holding the lock */
} // releases lock

Figure 2.5: A synchronized block.

There is only one way in the Java programing language to express lock acquisitions
and releases: the synchronized statement. Using a synchronized block as shown in
Figure 2.5, the current thread blocks until it is able to acquire lock. The lock is held
until the entire block is finished (either when the last statement is executed or the block is
aborted by other means, e.g. break or return statements, or exceptions).

A frequently used case of synchronization is synchronization on the current instance
this, expressed by synchronized(this). If such a block spans an entire method, key-
word synchronized may instead by used to qualify a method. Such a method automat-
ically acquires a lock on this before its body is executed. After method execution, the
lock is released. (If a lock has been held before, acquiring it again simply increases the
corresponding lock counter within the virtual machine, but has no other effect.)

A Java compiler transforms synchronized statements into a pair of bytecode instruc-
tions, monitorenter and monitorexit.3 These instructions take one argument, the lock

264-bit volatile variables are also exempt from being copied to thread-local working memory, but
operations on them are not required to be atomic at the time of writing [LY99].

3Exception handlers may result in several copies of monitorexit instructions corresponding to one

18 Chapter 2. Background

to be acquired and released. A JVM has to implement any possible side-effects such as the
flushing of thread-local copies as described above. Methods declared as synchronized
are not implemented using these two bytecode instructions; instead, the lock on the cur-
rent instance is acquired and released implicitly.

The remaining important synchronization primitives are available by the two methods
wait and notify. If a thread holds a lock on instance resource, and has to wait for a
certain condition to become true, common convention is to call resource.wait() inside
a loop. This causes that thread to “sleep” (block), suspending it from execution. It re-
mains suspended until another thread calls resource.notify(), which “wakes up” one
thread (out of possibly many) waiting on resource. These methods are implemented as
native code in the Java Run-time Environment, as they cannot be expressed by bytecode
sequences [LY99].

Calling notify releases the lock, and causes the original (waiting) thread to re-
acquire it before resuming execution. Normally, that thread has to verify again whether
the condition it is waiting on now holds; hence wait is usually called inside a loop rather
than an if statement. If it cannot be guaranteed that any thread that has just been noti-
fied can actually resume execution, i.e., the condition it is waiting on has become true,
then notifyAll needs to be used instead. This will “wake up” all threads waiting on
that resource (in random order). At least one of them has to be able to continue execu-
tion; otherwise all waiting threads may end up stopped. Potential problems (livelocks and
deadlocks) arising with incorrect use of wait or notify are not part of this thesis but are
documented in previous work [Art01].

2.3.4 Lock synchronization structure

The design of the Java locking primitive using keyword synchronized automatically
guarantees that lock and unlock operations always occur pairwise, even though they may
be nested [Lea99]. An unlock operation therefore must operate on the lock that corre-
sponds to the last lock operation whose lock was not yet released. This thesis assumes
such a symmetrical structure of lock operations for simplicity. However, the ideas pre-
sented here generalize to non-symmetrical locking operations. Such operations are not
possible in the Java programming language but can theoretically be implemented in Java
bytecode [LY99]. The generalization is described here and can be applied to both high-
level data race and block-local atomicity checks.

A Java program that acquires lock a, then b, will release the second lock b first. The
lock operations of such a program are shown in Figure 2.6. After releasing inner lock b,
the lock set again equals {a}, the same as prior to the acquisition of lock b. Therefore
accesses that occur after releasing b but before releasing a affect view or monitor block 1,
the one used to represent actions under lock set {a}.

Figure 2.7 shows how a program that breaks this nesting and releases lock a before re-
leasing b. Because the lock set after releasing the first lock, a, differs from any previously
used lock set, a new view or monitor block is used to represent actions under lock set {b}.
Note that such actions likely lead to low-level data races, which can be detected by the

monitorenter operation. At run-time, exactly one such monitorexit operation is always executed.

2.4. Concurrency Errors in Software 19

Lock operation Lock set Corresponding view
after operation or monitor block

monitorenter a {a} 1
monitorenter b {a,b} 2
monitorexit b {a} 1
monitorexit a {} –

Figure 2.6: Nested locking operations.

Lock operation Lock set Corresponding view
after operation or monitor block

monitorenter a {a} 1
monitorenter b {a,b} 2
monitorexit a {b} 3
monitorexit b {} –

Figure 2.7: Generalization to non-nested locking operations.

Eraser lock set algorithm. That algorithm only uses lock sets and thus is independent of
the order of lock operations [SBN+97]. The need for such non-nested locking is very rare
in practice. In cases where it is desirable, it can be emulated in Java using symmetrical
locking [Lea99].

2.4 Concurrency Errors in Software

Multi-threaded, or concurrent, programming has become increasingly popular in enter-
prise applications and information systems [AB01, Sun05]. Multi-threaded programming,
however, provides a potential for introducing intermittent concurrency errors that cannot
occur in sequential programs and are hard to find using traditional testing. The main
source of this problem is that a multi-threaded program may execute differently from one
run to another due to the apparent randomness in the way threads are scheduled. Since
testing typically cannot explore all schedules, some bad schedules may never be discov-
ered.

Such schedules carry the potential of new sets of program failures. A common prob-
lem that may occur under certain schedules is a deadlock [Lea99]:

Among the most central and subtle liveness failures is deadlock. Without
care, just about any design using synchronization on multiple cooperating
objects can contain the possibility of a deadlock.

Two types of deadlocks are discussed in literature [Kna87, Sin89]: resource deadlocks and
communication deadlocks. In a resource deadlocks, a process or thread must wait until it
has acquired all the requested resources needed for a computation. A deadlock occurs if

20 Chapter 2. Background

several threads request such a resource held by another thread. Efficient algorithms exist
to detect such deadlocks at run-time [BH03]. In communication deadlocks, messages or
shared conditionals are the resources for which threads wait. It is possible that such a
message a thread is waiting for is never sent, and thus that thread can never continue.
Tools exist to show such a lack of progress in a stalled thread [Har00]. This thesis does
not cover deadlocks further; for more information, see [BH03].

Another kind of error that often occurs in multi-threaded programs is a data race,
as defined below. Traditionally this term has denoted unprotected field accesses, which
will be referred to as low-level data races. However, the absence of low-level data races
still allows for other concurrency problems, such as high-level data races [AHB03] and
atomicity violations [FF04, WS03]. Low-level as well as high-level data races can be
characterized as occurring when two or more threads access a shared region simultane-
ously, the definition of region being dependent on what kind of data race is referred to.

Finally, atomicity violations denote actions that do not execute atomically. Atomic
execution of an action, combined with actions from other threads, produce the same
global result in concurrent and serial execution [Fla04]. The block-local atomicity al-
gorithm [ABH04] presented here detects stale-value errors as defined by Burrows and
Leino [BL02] and augments existing approaches concerning low-level and high-level data
races, such that it can be employed in conjunction with these analyses. High-level data
races and previously presented atomicity checks suffer from the fact that they show vio-
lations of common conventions, which do not necessarily imply the presence of a fault.
Data flow between protected regions (synchronized blocks in Java) is ignored. The
block-local atomicity approach analyzes data flow, making it more precise than previ-
ous atomicity-based approaches. It complements low-level and high-level data races by
finding additional errors.

Data races and atomicity violations are extremely hard to detect with traditional test-
ing techniques. Not only does a simultaneous access from two or more threads to a par-
ticular region have to occur, but this should additionally result in corrupted data, which
violate some user-provided assertion. In traditional testing, data races therefore are highly
schedule-dependent and usually harder to detect than deadlocks, which often cause some
visible activity to halt.

The suggested detection algorithms analyze a single execution trace obtained by run-
ning an instrumented version of the program. In this context, single execution means the
program is run once. While running, it emits a series of events which consitute the execu-
tion trace. The analysed properties are, for practical purposes, mostly independent of the
thread interleavings during program execution. Hence the program only needs to be run
once.

Both detection algorithms require no user-provided requirement specification, and
hence are in line with the Eraser algorithm [SBN+97]. This means that the algorithms
are totally automated, requiring no user guidance at all beyond normal input. The algo-
rithms look for fault patterns in the execution trace, and raise a warning in case such are
detected. Such fault patterns denote violations of properties representing programming
policies. Such policies are designed to ensure the absence of an error, such as a data race.
A data race does not have to occur in the run of a faulty program, but its fault pattern can

2.4. Concurrency Errors in Software 21

still be detected. This is why verification of fault patterns is more powerful than traditional
testing techniques.

The high-level data race algorithm is neither sound, nor complete, and may yield false
positives (false warnings) and false negatives (missed errors). However, the increased
probability of detecting errors strongly out-balances this, in particular considering that it
is fully automated. In addition, practice seems to support that the rates of false positives as
well as false negatives are low. The algorithm has been implemented in JNuke [ASB+04]
after a prototype has been implemented the Java PathExplorer (JPaX) tool [ABG+03,
HR01].

The block-local atomicity is sound (not missing errors) but incomplete, producing
warnings that may denote benign usages of stale values. The algorithm is very modu-
lar and thus suitable for static analysis; it has been implemented as a generic algorithm
that can be executed both in static and dynamic analysis [AB05a]. Compared to other
atomicity-based approaches, it is simpler yet more precise because it captures data flow
and thus models the semantics of the analyzed programs more precisely. It is related
to Burrow’s algorithm [BL02] but models the full semantics of Java bytecode, including
arithmetic expressions. The checking algorithm is implemented as a dedicated algorithm
in JNuke [ASB+04], both for static and dynamic analysis. Experiments show that the
static variant is about two orders of magnitude faster than Burrows’ prototype.

Although the algorithms and tools presented here analyze Java programs, the princi-
ples and theory presented here are universal and also apply in full to concurrent programs
written in languages like C and C++ [NBF98].

2.4.1 Low-level Data Races

The traditional definition of a data race is as follows [SBN+97]:

A data race can occur when two concurrent threads access a shared variable
and when at least one access is a write, and the threads use no explicit mech-
anism to prevent the accesses from being simultaneous.

Consider for example two threads, that both access a shared object containing a counter
variable x, and assume that both threads call an increase() method on the object, which
increases x by 1. The increase() method is compiled into a sequence of bytecode instruc-
tions (load x to the operand stack, add 1, write back the result). The Java Virtual Machine
(JVM) executes this sequence non-atomically. Suppose the two threads call increase() at
nearly the same time and that each of the threads execute the load instruction first, which
loads the value of x to the thread-local operand stack. Then they will both add 1 to the
original value, which results in a combined increment of 1 instead of 2. According to the
Java memory model, it is even possible that the effect of a write operation will never be
observed by other threads [GJSB00]. Therefore it is universally agreed that low-level data
races must be avoided.

This traditional notion of data race shall be referred to as a low-level data race, since it
focuses on a single variable. The standard way to avoid low-level data races on a variable

22 Chapter 2. Background

is to protect the variable with a lock: all accessing threads must acquire this lock be-
fore accessing the variable, and release it again after. In Java, methods can be defined as
synchronized which causes a call to such a method to lock the current object instance.
Return from the method will release the lock. Java also provides an explicit statement
form synchronized(obj){stmt}, for taking a lock on the object obj, and executing state-
ment stmt protected under that lock. If the above mentioned increase() method is declared
synchronized, the low-level data race cannot occur.

public void reset {
 synchronized (a) {
 synchronized (b) {
 shared.value = 0;
 }
 }
}

public void inc {
 synchronized (a) {
 shared.value++;
 }
}

public void dec {
 synchronized (b) {
 shared.value--;
 }
}

Figure 2.8: A low-level data race example.

Data races often occur when locking is used incorrectly, as illustrated in Figure 2.8.
It demonstrates how a field of a shared instance (shared.value) is accessed by several
methods. Two locks, a and b, protect access. The first method, reset, uses both locks.
While a given thread is holding both locks a and b, it is therefore not possible that the
synchronized block of reset, inc, or dec, can be executed by another thread at the
same time. However, this lock protection does not apply to mutual exclusion in methods
inc and dec. Assume thread ta calls inc, using lock a. This does not prevent another
thread tb from calling dec at the same time, since lock b is not taken by ta. As described
above, the increment and decrement operations are performed as a sequence of instruc-
tions which load the value on the stack, manipulate it, and write it back. Like in the
scenario given above, there is no mutual exclusion between the two threads. Therefore
the total effect of two threads executing inc and dec concurrently may be a net change of
−1, 0, or +1.

Assume now a correct run, with a given schedule that executes reset before inc,
which terminates before dec is called. The schedule chosen does not execute accesses
to the shared value concurrently, and therefore the net result of all operations is 0, which
is correct. The potential data race under another schedule, which produces an incorrect
result, is missed.

Several algorithms and tools have been developed for analyzing multi-threaded pro-
grams for low-level data races. The Eraser algorithm [SBN+97], which has been first

2.4. Concurrency Errors in Software 23

implemented in the Visual Threads tool [Har00] to analyze C and C++ programs, is an
example of a dynamic algorithm that examines a program execution trace for locking pat-
terns and variable accesses in order to predict potential data races. The Eraser algorithm
maintains a lock set for each variable, which is the set of locks that have been owned by
all threads accessing the variable in the past. Each new access causes a refinement of the
lock set to the intersection of the lock set with the set of locks currently owned by the
accessing thread. The set is initialized to the set of locks owned by the first accessing
thread. If the set ever becomes empty, a data race is possible. The Eraser algorithm is also
implemented for Java by JNuke [ASB+04], JPaX [HR01, Hav00], and JProbe [Sit05],
and in valgrind for C programs [NS03].

In the example of Figure 2.8, Eraser detects the possible data race as follows: During
the first access in reset, the lock set for shared.value is initialized to {a,b}. A sub-
sequent access to inc, with lock set {a}, refines the lock set protecting the shared value
to {a}. Intersecting this lock set with lock set {b} of the final access in dec results in the
empty set. Therefore the Eraser algorithm correctly concludes that in this example, a data
race can occur under certain schedules, even though the given schedule did not reveal an
error.

2.4.2 High-level Data Races

A program may contain a potential for concurrency errors, even when it is free of low-
level data races and deadlocks. Low-level data races concern unprotected accesses to
shared fields. The notion of high-level data races refers to sequences in a program where
each access to shared data is protected by a lock, but the program still behaves incor-
rectly because operations that should be carried out atomically can be interleaved with
conflicting operations [AHB03].

Figure 2.9 shows an example for a high-level data race. It uses a shared coordinate
instance, coord, with two components, x and y. While the swap operation on the two
components x and y is atomic, the reset operation is not. Because the lock is released
after setting x to 0, other threads may observe state 〈0, y〉, an intermediate state, which is
inconsistent. If swap is invoked by another thread before reset finishes, this results in
final state 〈y, 0〉. This is inconsistent with the semantics of swap and reset. The view
consistency algorithm finds such errors [AHB03]. More formal and generic definitions of
view inconsistency are presented in Chapter 3.

Detecting this error using normal testing is very hard since it requires not only to exe-
cute the just described interleaving (or a similar one), but it also requires the formulation
of a correctness property that can be tested for, and which is violated in the above sce-
nario. However, regarding this as a view inconsistency problem makes it possible to find
the error without actually executing this particular interleaving, and without a requirement
specification.

Both aspects are very important. This is confirmed by the success of the Eraser al-
gorithm [SBN+97]. Data races, both low-level or high-level ones, occur only rarely in a
concrete run, because they only appear under a certain schedule. This makes them very
hard to observe using traditional testing. Therefore one tries to observe a policy, such

24 Chapter 2. Background

public void swap() {
 int oldX, oldY;
 synchronized (lock) {
 oldX = coord.x;
 oldY = coord.y;
 coord.x = oldY; // swap X
 coord.y = oldX; // swap Y
 }
}

public void reset() {
 synchronized (lock) {
 coord.x = 0;
 }
 // inconsistent state (0,y)
 synchronized (lock) {
 coord.y = 0;
 }
}

Figure 2.9: A high-level data race resulting from three atomic operations.

as the locking behavior of a program, and infer potential errors from that. The locking
behavior of each thread usually does not change across different schedules (it is only
dependent on the input, which can be automated), and therefore it is a reliable base for
fault-finding algorithms.

Requiring no annotations is not only important when it comes to the usability of a
tool. Tools like ESC/Java suffered from having a high initial overhead due to the required
annotations in a program [DLNS98]. Algorithms that do not require annotations are also
more interesting from a research point of view: It is attempted to extract as much infor-
mation as possible from the program itself rather than having the user specify (possibly
incorrect or redundant) information. Of course such approaches are sometimes inherently
more limited than ones requiring annotations. The goal is to find algorithms that still
capture the underlying problems with sufficient precision.

The algorithm presented in this thesis achieves this to a high degree. In the Eraser
algorithm [SBN+97] for detecting low-level data races, the set of locks protecting a single
variable, referred to as the lock set, is considered. In this thesis this idea is turned upside
down. The variable set associated to a lock is now of interest. This notion makes it
possible to detect what shall be referred to as high-level data races. The inspiration for
this problem was originally due to a small example provided by Doug Lea [Lea00], which
will be presented in Chapter 3.

2.4.3 Atomic Sequences of Operations

The absence of low-level and high-level data races still allows for other concurrency er-
rors. Figure 2.10 shows such an error: The increment operation is split into a read access,
the actual increment, and a write access. Consider two threads, where one thread has just
obtained and incremented the shared field. Before the updated value is written back to the
shared field, another thread may call method inc and read the old value. After that, both
threads will write back their result, resulting in a total increment of only one rather than
two.

The problem is that the entire method inc is not atomic, so its outcome may be unex-
pected. Approaches based on reduction [FF04, WS03] detect such atomicity violations.
The algorithm presented here uses a different approach but also detects the error in the

2.5. Summary 25

public void inc() {
 int tmp;
 synchronized (lock) {
 tmp = shared.field;
 } // lock release
 tmp++;
 synchronized (lock) {
 shared.field = tmp;
 }
}

Figure 2.10: A non-atomic increment operation.

example. Moreover, it is conceptually simpler than previous atomicity-based approaches
and at the same time more precise.

The difference between atomicity violations and high-level data races can be illus-
trated by the example in Figure 2.11. It closely resembles Figure 2.9, but the swap method
has been split up into two synchronized blocks while the reset method is now execut-
ing in a single block. View consistency will not report an error for the faulty swap method,
because its two views both include x and y. However, the new example contains another
error: The shared coordinate may be updated when the lock is released, and the local
copies may contain outdated, stale values [BL02]. Consider the following scenario in
Figure 2.11: Thread t1 calls swap, which executes up to the end of the first synchronized
block. Then another thread t2 calls reset. The thread scheduler lets t2 run, which resets
both coordinates to 0. Then t1 finishes its swap method, using the old values for x and
y in the process. Therefore the call to reset is nullified by the use of stale values in
swap! The block-local algorithm presented here correctly deduces from the data flow in
the swap method that the entire method must be atomic (its synchronized block must be
contiguous). Conversely, the block-local atomicity algorithm could not have detected the
high-level data race in the old reset method (which contained two synchronized blocks).
The reason for this is the absence of data flow in the two assignments to x and y, since the
two values assigned are constants and independent of each other.

2.5 Summary

Software analysis techniques can be categorized into abstract interpretation, theorem
proving, run-time verification, and model checking. Abstract interpretation constructs
a simplified model of the program on which a fix point of given properties is calculated.
Theorem proving applies a sequence of mathematical proof transformation steps to a pro-
gram or a model thereof. Run-time verification supervises additional properties during
test execution, which allow for detection of faults that cannot be found by testing alone.
Model checking explores the entire state space of a program.

26 Chapter 2. Background

public void swap() {
 int oldX, oldY;
 synchronized (lock) {
 oldX = coord.x;
 oldY = coord.y;
 }
 synchronized (lock) {
 coord.x = oldY; // swap X
 coord.y = oldX; // swap Y
 }
}

public void reset() {

 synchronized (lock) {
 coord.x = 0;
 coord.y = 0;
 }

}

Figure 2.11: An atomicity violation that is not a high-level data race.

Java is a multi-threaded programming language offering language constructs for con-
struction of threads and inter-thread synchronization. The focus of this thesis is protection
of data accesses by using synchronized blocks, which only permit the thread holding a
given lock to execute that section of code.

The lack of synchronization can lead to various concurrency failures, which include
data races and atomicity violations. Data races can be categorized into low-level data
races and high-level data races. Low-level data races denote unprotected accesses to
data while high-level data races describe accesses to sets of data where synchronization
of all accesses is not consistent. Atomicity violations describe actions which are not
synchronized during their entire life time. The key difference to high-level data races is
that these are concerned with data accesses while atomicity violations apply to actions
and data flow between accesses.

3
High-level Data Races

Data races are a common problem in multi-threaded programming [Lea99]. Experience
shows that the classical notion of data race is not powerful enough to capture certain types
of inconsistencies occurring in practice. This chapter investigates data races on a higher
abstraction layer. This enables detection of inconsistent uses of shared variables, even if
no classical race condition occurs. For example, a data structure representing a coordinate
pair may have to be treated atomically. By lifting the meaning of a data race to a higher
level, such problems can now be covered. This chapter defines the concepts view and
view consistency to give a notation for this novel kind of property. It describes what kinds
of errors can be detected with this new definition, and where its limitations are. It also
gives a formal guideline for using data structures in a multi-threaded environment.

This chapter is organized as follows. Section 3.1 motivates the problem with a real
error found in a space craft controller. Section 3.2 introduces the problem of high-level
data races. A formal definition of high-level data races is given in Section 3.3. Section 3.4
summarizes this chapter. Related work is discussed in Chapter 10, which includes other
concurrency properties.

3.1 Motivation

A problem that was detected in NASA’s Remote Agent [PGK+97], a space craft controller,
shall serve as a realistic example of a high-level data race situation. The problem was
originally detected using model checking [HLP01]. The fault was very subtle, and was
originally regarded hard to find without actually exploring all execution traces as done by
a model checker. Because only very particular thread interleavings result in a data race
and hence corrupted data, a single execution trace does usually not exhibit this failure. As
it turns out, it is an example of a high-level data race, and can therefore be detected with
the low-complexity algorithm presented here.

The Remote Agent is an artificial-intelligence-based software system for generating
and executing plans on board a space craft. A plan specifies a set of tasks to be executed
within certain time constraints. The plan execution is performed by the Executive. A sub-
component of the Executive, the task manager, is responsible for managing the execution
of tasks, once the tasks have been activated. The data structures used by the task manager
are illustrated in Figure 3.1.

27

28 Chapter 3. High-level Data Races

State
change

interrupt
Task

event
Lock

Lock
property

Control
commands

Monitors
Property lock table

B ON

10A

C 0

Z OFF

Tasks

Daemon

Spacecraft

.

.

false

.

false

true

true

state
System

Figure 3.1: The Remote Agent Executive

The state of the spacecraft (at any particular point) can be considered as consisting
of a set of properties, each being an assignment of a value to a variable corresponding
to a component on board the space craft. The values of variables are continuously read
by sensors and recorded in a system state. A task running on board the space craft may
require that specific properties hold during its execution, and it notifies the task manager
about such requirements before start. That is, upon the start of the task, it first tries to
lock those properties it requires in a lock table, telling the task manager that its execution
is only safe if they hold throughout the execution. For example, a task may require B to
be ON (assuming that B is some system variable). Now other threads cannot request B to
be OFF as long as the property is locked in the lock table. Next, the task tries to achieve
this property (changing the state of the space craft, and thereby the system state through
sensor readings), and when it is achieved, the task sets a flag achieved, associated with that
variable, to true in the lock table. This flag is true whenever the system state is expected
to contain the property. These flags are initially set to false at system initialization, are
set to true in the just described scenario, and are set back to false once the task no longer
requires the property to hold.

A Daemon constantly monitors that the system state is consistent with the lock table in
the sense that properties that are required to hold, as stated in the lock table, are actually
also contained in the system state. That is, it checks that: if a task has locked a value
to some variable, and the corresponding flag achieved is true, then it must be a true
property of the space craft, and hence true in the system state. Violations of this property
may occur by unexpected events on board the space craft, which cause the system state to
be updated. The daemon wakes up whenever events occur, such as when the lock table or

3.1. Motivation 29

the system state are modified. In case an inconsistency is detected, the involved tasks are
interrupted.

Task Daemon
synchronized(table) {
 table[N].value = V;
}

/* achieve property */

synchronized(table) {
 table[N].achieved = true;
}

synchronized(table) {
 if (table[N].achieved &&
 system_state[N] !=
 table[N].value) {

 issueWarning();
 }
}

Figure 3.2: The synchronization inconsistency between a task and the daemon.

The relevant code from the task and the daemon is illustrated in Figure 3.2, using Java
syntax. (The Remote Agent was coded in LISP.) The task contains two separate accesses
to the lock table, one where it updates the value and one where it updates flag achieved.
The daemon on the other hand accesses all these fields in one atomic block. This can be
described as an inconsistency in lock views, as described below, and actually presents an
error potential.

The error scenario is as follows: suppose the task has just achieved the property, and
is about to execute the second synchronized block, setting flag achieved to true. Suppose
now however, that suddenly, due to unpredicted events, the property is destroyed on board
the space craft, and hence in the system state. Assume that the daemon wakes up, and
performs all checks. Since flag achieved is false, the daemon reasons incorrectly that the
property is not supposed to hold in the system state, and hence it does not detect any
inconsistency with the lock table (although conceptually there is one). Only then the task
continues, and sets flag achieved to true. The result is that the violation has been missed
by the daemon. The nature of this error can be described as follows:

The daemon accesses the value and flag achieved in one atomic block, while
the task accesses them in two different blocks. These two different ways of
accessing tuple {value,achieved}, atomically and as a compound operation,
is an inconsistency called view inconsistency.

The seriousness of the error scenario depends on the frequency with which the daemon
gets activated. If events updating the lock table or the system state occur often, the daemon
will just detect the problem later, and hopefully soon enough. However, if such events
are far apart, the task may execute for a while without its required property holding. In
the above example the view inconsistency is in itself not an error, but a symptom that
if pointed out may direct the programmer’s attention to the real problem, that property
achievement and setting the flag achieved are not done in one atomic block. Note that
repairing this situation is non-trivial since achieving properties may take several clock
cycles, and it is therefore not desirable to hold the lock on the table during this process.

30 Chapter 3. High-level Data Races

3.2 Informal Definition of High-level Data Races

Consistent lock protection for a shared field ensures that no concurrent modification is
possible. However, this only refers to low-level access to the fields, not their entire use
or their use in conjunction with other fields. The remainder of this chapter assumes de-
tection of low-level data races is covered by the Eraser algorithm [SBN+97], which can
be applied in conjunction with the analysis described in this chapter. The definition of
high-level data races will be shown by examples before it will be formalized. First a very
basic example is presented, followed by more pathological ones, which at first sight may
appear as high-level data races, but which shall not be classified as such.

3.2.1 Basic Definition

Figure 3.3 shows a class implementing a two-dimensional coordinate pair with two fields
x, y, which are guarded by a single lock.

class Coord {
 double x, y;
 public Coord(double px, double py) { x = px; y = py; }
 synchronized double getX() { return x; }
 synchronized double getY() { return y; }
 synchronized Coord getXY() { return new Coord (x, y); }
 synchronized void setX(double px) { x = px; }
 synchronized void setY(double py) { y = py; }
 synchronized void setXY(Coord c) { x = c.x; y = c.y; }
}

Figure 3.3: The Coord class encapsulating points with x and y coordinates.

If only getXY, setXY, and the constructor are used by any thread, the pair is treated
atomically by all accessing threads. However, the versatility offered by the other accessor
(get/set) methods is dangerous: if one thread only uses getXY and setXY and relies on
complete atomicity of these operations, other threads using the other accessor methods
(getX, setX, getY, setY) may falsify this assumption.

Imagine for example a case where one thread, tr, reads both coordinates while another
thread, tw, sets them to zero. Assume that tr reads the variables with getXY, but that tw’s
write operation occurs in two phases, setX and setY. The thread tr may then read an
intermediate result which contains the value of x already set to zero by tw but still the
original y value (not zeroed yet by tw). This is clearly an undesired and often unexpected
behavior. In this chapter, the term high-level data race will describe this kind of scenario:

A high-level data race is the occurrence of two concurrent threads accessing a
set V of shared variables. That set should be accessed atomically, but at least
one of the threads does not access the variables in V atomically.

3.2. Informal Definition of High-level Data Races 31

In the coordinate pair example above, the set V is {x,y}, and thread tw violates the atom-
icity requirement. Of course, a main question is how one determines whether a set of
variables are to be treated atomically, assuming that the user does not specify that explic-
itly. For now it is assumed that an oracle determines this. In Section 3.3 an approximation
to this oracle will be suggested, which does not require any kind of specification to be
provided by the user. Of course it is an undecidable problem in practice, and furthermore
requires a specification of the expected behavior of the program. For instance, in the
above coordinate pair example, atomicity might not be required at all if the reader only
wants to sample an x value and a y value without them being related.

3.2.2 Refinement of Basic Definition

Although the definition above may be useful, it yields false positives (false warnings).
Using the coordinate example, any use of the methods getX, setX, getY, and setY will
cause a high-level data race. However, there exist scenarios where some of these access
methods are allowed without the occurence of high-level data races. Hence the notion
of high-level data race needs to be refined. This is analog to the refinement in Eraser
[SBN+97] of the notion of low-level data races in order to reduce the number of false
positives.

The refinement of the definition will be motivated with the example in Figure 3.4,
which shows four threads working in parallel on a shared coordinate pair c. Thread t1
writes to c (and is similar to tw from Subsection 3.2.1) while the other threads t2, t3 and t4
read from c (t3 is similar to tr from Subsection 3.2.1). The threads use local variables xi
and yi of type double and di of type Coord, where i identifies the thread.

Thread t1 Thread t2

d1 = new Coord(1, 2);
c.setXY(d1);

x2 = c.getX();
use(x2);

Thread t3 Thread t4

x3 = c.getX();
y3 = c.getY();
use(x3, y3);

x4 = c.getX();
use(x4);
d4 = c.getXY();
x4 = d4.getX();
y4 = d4.getY();
use(x4, y4);

Figure 3.4: One thread updating a pair of fields and three other threads reading fields
individually.

Initially, only threads t1 and t3 are considered. That situation is already described in
Section 3.2.1. Inconsistencies might arise with thread t3, which reads x in one operation

32 Chapter 3. High-level Data Races

and y in another operation, releasing the lock in between. Hence, thread t1 may write to
x and y in between, and t3 may therefore obtain inconsistent values corresponding to two
different global states.

Now consider the two threads t1 and t2. It is not trivial to see whether an access
conflict occurs or not. However, this situation is safe. As long as t2 does not use y as well,
it does not violate the first thread’s assumption that the coordinates are treated atomically.
Even though t1 accesses the entire pair {x,y} atomically and t2 does not, the access to
x alone in t2 can be seen as a partial read access. That is, the read access to x may
be interpreted as reading {x,y} and discarding y. So both threads t1 and t2 behave in a
consistent manner. Each thread is allowed to use only a part of the coordinates, as long as
that use is consistent.

The difficulty in analyzing such inconsistencies lies in the wish to still allow such par-
tial accesses to sets of fields, like the access to x of thread t2. The situation between t1 and
t4 serves as another, more complicated, example of a situation which at first sight appears
to provide a conflict, but which shall be regarded as safe. Regard thread t4 as consisting
of two operations: the first consisting of the first two statements, including use(x4), and
the second operation consisting of the remaining four statements. The second operation
is completely self-contained, and accesses, in addition to y, everything the first operation
accesses (namely x). Consequently, the first operation in t4 likely represents an operation
that does not need y. Therefore, the two operations are unrelated and can be interleaved
with the atomic update statement in t1 without interfering with the operations of t4 on
x and y. On a more formal basis, t4 is safe because the set of variables accessed in the
first operation of t4 is a subset of the set of variables accessed in its second operation; the
variable sets form a chain. When they do not form a chain, they diverge. On the basis of
this example, the definition of high-level data races can be refined as follows:

A high-level data race can occur when two concurrent threads access a set V
of shared variables, which should be accessed atomically, but at least one of
the threads accesses V partially several times such that those partial accesses
diverge.

This definition is adopted for the remainder of this chapter. It can, however, still lead to
false positives and false negatives as is described in Section 3.3.4.

The algorithm presented in the remainder of this chapter does not distinguish between
read and write accesses. This abstraction is sufficiently precise because view consistency
is independent of the whether the access is a read or a write: A non-atomic read access
may result in inconsistent values among the tuple read, because other threads may update
the tuple between reads. A write access that is carried out non-atomically allows other
threads to read partial updates between write operations. Note that it is assumed that at
least one write access occurs; constant values can be ignored in this analysis.

3.3 Formal Definition of High-Level Data Races

This section defines view consistency. It lifts the common notion of a data race on a single
shared variable to a higher level, covering sets of shared variables and their uses. This

3.3. Formal Definition of High-Level Data Races 33

definition assumes that the specification of what fields have to be treated atomically is
not provided by the user. It is instead extracted by program analysis. This analysis turns
the problem of high-level data races into a testable property, using view consistency. The
definition of this analysis is precise but allows for false positives and false negatives. This
is discussed at the end of this section.

3.3.1 Views

A lock guards a shared field if it is held during an access to that field. The same lock may
guard several shared fields. Views express what fields are guarded by a lock. Let I be the
set of object instances generated by a particular run of a Java program. Then F is the set
of all fields of all instances in I.

A view v ∈ P(F) is a subset of F . Let l be a lock, t a thread, and B(t, l) the set
of all synchronized blocks using lock l executed by thread t. For b ∈ B(t, l), a view
generated by t with respect to l, is defined as the set of fields accessed in b by t. The set
of generated views V (t) ⊆ P(F) of a thread t is the set of all views v generated by t. In
the previous example in Figure 3.4, thread t1 using both coordinates atomically generates
view v1 = {x,y} under lock l = c. Thread t2 only accesses x alone under l, having view
v2 = {x}. Thread t3 generates two views: V (t3) = {{x},{y}}. Thread t4 also generates
two views: V (t4) = {{x},{x,y}}.

3.3.2 Views in Different Threads

A view vm generated by a thread t is a maximal view, iff it is maximal with respect to set
inclusion in V (t):

∀v ∈V (t) [vm ⊆ v→ vm = v]

Let M(t) denote the set of all maximal views of thread t. Only two views which have
fields in common can be responsible for a conflict. This observation is the motivation for
the following definition. Given a set of views V (t) generated by t and a view v′ generated
by another thread, the overlapping views of t with v′ are all non-empty intersections of
views in V (t) with v′:

overlap(t,v′)≡ {v′∩ v | (v ∈V (t))∧ (v∩ v′ 6= /0)}

A set of views V (t) is compatible with the maximal view vm of another thread iff all
overlapping views of t with vm form a chain:

compatible(t,vm) iff ∀v1,v2 ∈ overlap(t,vm) [v1 ⊆ v2∨ v2 ⊆ v1]

View consistency is defined as mutual compatibility between all threads: A thread is only
allowed to use views that are compatible with the maximal views of all other threads.

∀t1 6= t2, vm ∈M(t1) [compatible(t2,vm)]

34 Chapter 3. High-level Data Races

In the example in Figure 3.4, the views were

V (t1) = M(t1) = {{x,y}}
V (t2) = M(t2) = {{x}}
V (t3) = M(t3) = {{x},{y}}
V (t4) = {{x},{x,y}}
M(t4) = {{x,y}}

There is a conflict between t1and t3 as stated, since {x,y} ∈ M(t1) intersects with the
elements in V (t3) to {x} and {y}, which do not form a chain. A similar conflict exists
between t3 and t4.

The above definition of view consistency uses three concepts: the notion of maximal
views, the notion of overlaps, and finally the compatible notion, also referred to as the
chain property. The chain property is the core concept. Maximal views do not really
contribute to the solution other than to make it more efficient to calculate and reduce the
number of warnings if a violation is found. The notion of overlaps is used to filter out
irrelevant variables.

3.3.3 Examples

Thread ta Thread tb Incompatible views

1
V (t) {x},{y} {x},{y}

none
M(t) {x},{y} {x},{y}

2
V (t) {x,y} {x},{y} {x}= {x,y} ∩ {x}∈M(ta)∩V (tb)
M(t) {x,y} {x},{y} {y}= {x,y} ∩ {y}∈M(ta)∩V (tb)

3
V (t) {x,y},{x},{y} {x},{y} {x}= {x,y} ∩ {x}∈M(ta)∩V (tb)
M(t) {x,y} {x},{y} {y}= {x,y} ∩ {y}∈M(ta)∩V (tb)

4
V (t) {x,y,z} {x,y},{x}

none
M(t) {x,y,z} {x,y}

Table 3.1: Examples with two threads illustrating the principle of view consistency. The
set of views generated by each thread, V (t), is given in the first line of each example, the
set of maximal views, M(t), in the second line.

A few examples help to illustrate the concept. Table 3.1 contains examples involving
two threads. Note that the outermost brackets for the set of sets are omitted for better
readability. Example 1 is the trivial case where no thread treats the two fields {x} and
{y} atomically. Therefore there is no inconsistency. However, if thread ta treats {x,y} as
a pair, and thread tb does not, there is a conflict as shown in example 2. This even holds
if the first thread itself uses partial accesses on {x} or {y}, since this does not change its
maximal view. Example 3 shows that case. Finally, example 4 illustrates the case where
thread ta uses a three-dimensional coordinate set atomically and thread tb reads or updates
different subsets of it. Since the subsets are compatible as defined in Section 3.3.2, there
is no inconsistency.

3.3. Formal Definition of High-Level Data Races 35

Thread tc Thread td Thread te Incompatible views

5
V (t) {x,y} {x} {x},{y} {x}= {x,y} ∩{x}
M(t) {x,y} {x} {x},{y} {y}= {x,y} ∩{y}

6
V (t) {x,y} {x} {y}

none
M(t) {x,y} {x} {y}

7
V (t) {x,y},{x},{y} {y,z},{y},{z} {z,x},{z},{x}

none
M(t) {x,y} {y,z} {z,x}

8
V (t) {x,y},{x},{y,z} {y,z},{y},{z} {z,x},{z},{x} {y}= {y,z} ∩{y}
M(t) {x,y},{y,z} {y,z} {z,x} {z}= {y,z} ∩{z}

Table 3.2: Examples with three threads illustrating the principle of view consistency.

Table 3.2 shows four cases with three threads. The first entry, example 5, corresponds
to the first three threads in Figure 3.4. There, thread te violates the assumption of tc about
the atomicity of {x,y}. Example 6 shows a “fixed” version, where te does not access {x}.
More complex circular dependencies can occur with three threads. Such a case is shown
in example 7. Out of three fields, each thread only uses two, but these two fields are
not always used atomically. Because the accesses of any thread only overlap in one field
with each other thread, there is still no inconsistency. This example only requires a minor
change, shown in example 8, to make it faulty: Assume the third view of tc were {y,z}
instead of {y}. This would contribute another maximal view {y,z}, which conflicts with
the views {y} and {z} of td .

3.3.4 Soundness and Completeness

By collecting views, this approach tries to infer what the developer intended when writing
the multi-threaded code. The sets of shared fields which must be accessed atomically are
not directly available in the program code. Therefore views are used to detect the most
likely candidates, or maximal views. View consistency is used to detect violations of
accesses to these sets. The underlying assumption behind the algorithm is that an atomic
access to a set of shared fields is an indication of atomicity. Under this assumption, a view
consistency violation indicates a high-level data race.

However, sets of fields may be used atomically even if there is no requirement for
atomic access. Therefore, an inconsistency may not automatically imply a fault in the
software. An inconsistency that does not correspond to a fault is referred to as a false
positive (spurious warning). Similarly, lack of a reported inconsistency does not automat-
ically imply lack of a fault. Such a missing inconsistency report for an existing fault is
referred to as a false negative (missed fault).

False positives are possible if a thread uses a coarser locking than actually required by
operation semantics. This may be used to make the code shorter or faster, since locking
and unlocking can be expensive. Releasing the lock between two independent operations
requires splitting one synchronized block into two blocks.

False negatives are possible if all views are consistent, but locking is still insufficient.
Assume a set of fields that must be accessed atomically, but is only accessed one element

36 Chapter 3. High-level Data Races

at a time by every thread. Then no view of any thread includes all variables as one set,
and the view consistency approach cannot find the problem. Another source of false
negatives is the fact that a particular (random) run through the program may not reveal
the inconsistent views, if the corresponding code sections are not executed even once.

The fact that false positives are possible means that the solution is not sound. Simi-
larly, the possibility of false negatives means that the solution neither is complete. This
may seem surprising, but actually also characterizes the Eraser low-level data race detec-
tion algorithm [SBN+97] implemented in the commercial Visual Threads tool [Har00],
as well as the deadlock detection algorithm also implemented in the same tool. The same
holds for the similar algorithms implemented in JPaX. For Eraser, it is very hard to de-
termine automatically whether a warning is a false positive or a false negative [Bur00].
Furthermore, it is an unsolved problem to prove soundness and completeness properties
about the Eraser algorithm. In real software programs, there are always situations where
having program threads use inconsistent values is acceptable. For example, a monitoring
thread may just “sample” a value at a given time; it is not crucial that this value is obtained
with proper synchronization, because it does not have to be up-to-date.

The reason for the usefulness of such algorithms is that they still have a much higher
chance of detecting an error than if one relies on actually executing the particular in-
terleaving that leads to an error, without requiring much computational resource. These
algorithms are essentially based on turning the property to be verified (in this case: no
high-level data races) into a more testable property (view consistency). This aspect is
discussed in more detail in [BH03] in relation to deadlock detection.

3.4 Summary

Data races denote concurrent access to shared variables with insufficient lock protection,
leading to a corrupted program state. Classical, or low-level, data races concern accesses
to single fields. The notion of high-level data races deals with accesses to sets of related
fields which should be accessed atomically.

View consistency is a novel concept considering the association of variable sets to
locks. This permits detecting high-level data races that can lead to an inconsistent pro-
gram state, similar to classical low-level data races. Experiments, which are described
in Chapter 9, have shown that developers follow the guideline of view consistency to
a surprisingly large extent. Thus view consistency captures an important idea in multi-
threading design.

4
Using Block-local Atomicity to

Detect Stale-value Errors

Data races do not cover all kinds of concurrency errors. This chapter presents a data-flow-
based technique to find stale-value errors, which are not found by low-level and high-level
data race algorithms. Stale values denote copies of shared data where the copy is no longer
synchronized. The algorithm to detect such values works as a consistency check that does
not require any assumptions or annotations of the program. It has been implemented as
a static analysis in JNuke. The analysis is sound and requires only a single execution
trace if implemented as a run-time checking algorithm. Being based on an analysis of
Java bytecode, it encompasses the full program semantics, including arbitrarily complex
expressions. As will be shown, related techniques are more complex and more prone to
over-reporting.

Section 4.1 gives the intuition behind our algorithm. Section 4.2 formalizes the prop-
erty to be checked, and Section 4.3 extends the algorithm to nested locks and recursion.
The precision of this new algorithm is discussed in Section 4.4. Section 4.5 summarizes
this chapter. Related work is discussed in Chapter 10, which includes other concurrency
properties.

4.1 Our Data-flow-based Algorithm

The intuition behind this algorithm is as follows: Actions using shared data, which are
protected by a lock, must always operate on current values. Shared data is stored on the
heap in shared fields, which are globally accessible. Correct synchronization ensures that
each access to such shared fields is exclusive. Hence shared fields that are protected by
locks always have current values.

Shared values are accessed by different threads and may be copied when perform-
ing operations such as an addition. Storing shared values in local variables is common
practice for computing complex expressions. However, these local variables retain their
original value even when a critical (synchronized) region is exited; they are not updated
when the global shared field changes. If this happens, the local variable will contain a
stale value [BL02] which is inconsistent with the global program state.

Figure 4.1 shows how such an error is discovered by our new algorithm. A shared field
is assigned to a local variable tmp, which is again used later, outside the synchronized

37

38 Chapter 4. Block-local Atomicity

st
al

e
va

lu
e

local data is
used in another
shared operation

shared data is
used locally

public void inc() {
 int tmp;
 synchronized (lock) {
 tmp = shared.field;
 } // lock release
 tmp++;
 synchronized (lock) {
 shared.field = tmp;
 }
}

cu
rr

en
t

va
lu

e

Figure 4.1: Intuition behind our algorithm.

block. The value of the shared field thus “escapes” the synchronized block, as indicated
by the first arrow. While the lock is not held, other threads may update the shared field.
As soon as the original thread continues execution (in computations, method calls, or as-
signments), effects of its actions may depend on a stale value. The second arrow indicates
the data flow of the stale value.

Note that we use an uncommon notion of escape analysis. Usually escape analy-
sis is concerned with references escaping from a certain scope or region [Bla99, BH99,
CGS+99, WR99]. In our algorithm, escaping values are considered, not just references,
and the scope of interest are synchronized blocks.

The lack of a single synchronization scope for the entire sequence of operations is
responsible for having stale values in this example. Hence, if the entire method had been
synchronized, it would have consisted of a single block, which would have executed
atomically. Our algorithm uses existing synchronized blocks to verify whether shared
data escapes them. It therefore requires synchronization to be present for accesses to
shared fields. The assumption that each field access itself is properly guarded against
concurrent access can be verified using Eraser [SBN+97].

Like Eraser and the high-level data race algorithm [AHB03], our new algorithm only
requires one execution trace if implemented as a run-time verification algorithm. Fur-
thermore, the property is entirely thread-local. A static implementation of the algorithm
is therefore straightforward. If aliases of locks are known, method-local static analysis
can verify the desired property for each method while requiring only summary informa-
tion about other methods. Static analysis has the advantage of being able to symbolically
examine the entire program space.

A dynamic analysis on the other hand has precise information about aliases of locks.
However, a particular execution typically cannot cover the entire behavior of a program.
Even though the probability of actually observing erroneous states in a multi-threaded
program is small, dynamic analysis algorithms are often capable of detecting a potential
error even if the actual error does not occur [AHB03, SBN+97]. The reason is that the
property which is checked against (such as locking discipline) is stronger than the desired
property (e.g. the absence of a data race). The algorithm presented here also falls into
that category.

4.2. Formalization of Our Algorithm 39

4.2 Formalization of Our Algorithm

This section gives a precise formalization of our algorithm. The algorithm is explained
without going into details about nested locks and method calls. These two issues are
covered in the next section.

In Java, each method invocation frame contains an array of variables known as its
local variables and a fixed-size stack holding its stack variables. These two kinds of
variables are always thread-local [GJSB00]. Both kinds of variables will be referred to
as registers r. A shared field f will denote a field of a dynamic object instance which is
accessed in a shared context, using lock protection.

A monitor block encompasses a range of instructions: Its beginning is the lock acqui-
sition (monitorenter) of a new lock. Its end is marked by the corresponding lock release
(monitorexit). It is assumed that lock acquisitions and releases are nested as required by
the Java semantics [GJSB00]. Non-nested locking mechanisms can be treated as well, as
described in Section 2.3.4. Each monitor block has a unique ID b distinguishing individ-
ual lock acquisitions. Reentrant lock acquisitions and releases have no effect on mutual
exclusion and are ignored.

A register is shared when it contains the value of a shared field f and unshared oth-
erwise. When shared, the monitor block in which the shared value originated is also
recorded. The state s(r) = 〈sh,b〉 of a register comprises its shared status sh ∈ {0,1} and
its monitor block ID b. The current monitor block bcurr is the block corresponding to the
latest non-reentrant lock acquisition.

At the beginning of execution, all registers are unshared. There are two possibilities to
obtain a shared value: First, a getfield instruction within a monitor block will produce
a shared value. Second, a method invocation may return a shared value. Shared values
have state 〈1,bcurr〉. We will use two auxiliary functions returning the first and second
part of a state s, respectively: shared(s) and monitorblock(s).

Each assignment of a value will carry over the state of the assigned value. Operations
on several values will result in a shared value if any of the operands was shared. A
register r is used by an instruction i, r ∈ used(i), if it is read by it. If r is a stack element,
the corresponding stack argument is consumed when it is read, according to the Java
bytecode semantics [GJSB00]. If r is a local variable, reading it does not have any further
effect. Note that this definition of usage includes expressions and arithmetic operations.
In expression tmp2 = tmp1 + tmp0, the result tmp2 is shared if any of the operands
tmp1 or tmp0 is shared.

A stale value is a value of a shared register that originated from a different monitor
block than where it is used. This can be formalized as follows: A program uses no stale
values iff, for each program state and each register r used by current instruction i, the
following holds: monitor block of that register, s(r), must be equal to the current monitor
block:

∀i, r · (r ∈ used(i)∧ shared(s(r))→ (monitorblock(s(r)) = bcurr)

If a single operation uses several shared values with different monitor block IDs b,
then at least one of them must be a stale value. This property is then violated, and the

40 Chapter 4. Block-local Atomicity

result of that operation is again a shared value.1 We will refer to this property as block-
local atomicity. If it holds for the entire program, then actions based on shared data will
always operate on current data.

4.3 Extension to Nested Locks and Recursion

The assumption behind dealing with nested locks is that any locks taken beyond the first
one are necessary to ensure mutual exclusion in nested synchronized blocks. This is a
natural assumption arising from the program semantics: nested locks are commonly used
to access shared fields of different objects, which use different locks for protection. Let
louter and linner denote an outer and an inner lock, respectively. Assume a thread acquires
linner when already holding louter. It then accesses a shared field f holding both locks.
After releasing linner, the shared field is no longer protected by that nested lock and may
thus be updated by other threads. Any usage of stale values outside the nested lock linner
violates block-local atomicity.

Low-level data race detection like Eraser misses this error, because each field access
operation is properly protected. Block-local atomicity detects that the shared value be-
comes stale outside the inner monitor block. The following treatment of nested locks
covers such errors: The algorithm declares a separate monitor block for each nested lock.
If any operation outside the inner block uses a shared value such as f , this will be detected
by the consistency check defined in the previous section.

Using the shared data from f outside the inner block would only be safe if linner was
superfluous: If linner was always used only in conjunction with louter, then linner would not
contribute to protection against concurrent access. Instead the extra lock would constitute
an overhead that should be eliminated, and the warning issued by our algorithm can help
to identify this problem.

Because a new monitor block is used with each lock acquisition, the total number of
locks held when acquiring a new lock linner is not relevant. Thus the idea generalizes to a
set of outer locks Louter instead of a single outer lock louter.

When dealing with method calls, only the effect of data flow and synchronized
blocks has to be considered. In run-time analysis, this is implemented trivially as method
calls do not have to be treated specially.2 In static analysis, method calls are essentially
inlined, using only summary information of callees. If no new synchronization is used by
the callee, the method call has no special effect and behaves like a local operation. Oth-
erwise, if a new (non-reentrant) lock is used by the callee, the return value will be shared
with a new unique monitor block ID. Hence the return value of a call to a synchronized
method is shared, unless the caller itself used the same lock during the call, which would
make the inner lock merely reentrant.

Because of this treatment of nested locks, handling inter-method data flow is quite
natural and very efficient. The analysis does not have to consider calling contexts other

1In our implementation we marked the result of any such operation as unshared. The operation already
generates a warning. Resetting the state of that register prevents generating more than one warning for any
stale value.

2A call to a synchronized method is treated like a block using synchronized(this).

4.4. Precision and Limitations of Our Algorithm 41

than the lock set held. A context-insensitive variant of the algorithm is easily created:
One can simply assume that any locks used in called methods are distinct. The algorithm
will still be sound but may emit more false warnings. The same assumption can be used
if the effect of a called method is unknown, e.g. when a method is native.

Finally, in a static implementation of the algorithm, the temporary lock release in
a wait() operation has to be modeled explicitly [BL02]. For run-time verification in
JNuke [ASB+04], the lock release event is implicitly generated by its run-time verification
API [ASB+04].

4.4 Precision and Limitations of Our Algorithm

If a program is free of data races, our algorithm finds all stale values but may issue false
warnings. Atomicity-based approaches, including this one, are sometimes too strict be-
cause certain code idioms allow that the globally visible effect of a non-atomic operation
corresponds to an atomic execution. Serializability is a more precise property, but even
non-serializable programs can be correct.

4.4.1 Soundness and Completeness

Our algorithm assumes that no low-level data races are present. This kind of error can be
detected by algorithms like Eraser [SBN+97]. If a program is free of (low-level) data races
then our static analysis algorithm is sound; no faults are missed. In a static approximation
of this analysis, however, the alias information about locks is not always known. If one
assumes each lock acquisition utilizes a different lock, the algorithm remains sound but
becomes more prone to overreporting. Furthermore, soundness is also preserved if it is
assumed that any unknown method called returns a shared value belonging to a monitor
block of its own. If the algorithm is implemented dynamically, then soundness depends
on the quality of a test suite and can usually not be guaranteed.

False positives may be reported if too many distinct monitor blocks are created by the
analysis. A possible reason is the creation of more locks than actually necessary to ensure
mutual exclusion. However, assuming that synchronization primitives are only used when
necessary, then the algorithm will not report false positives, in the following sense: each
reported usage of a shared value in a different monitor block actually corresponds to the
use of a stale value.

4.4.2 Comparison to Previous Atomicity-based Approaches

Block-local atomicity is more precise than method-level atomicity as used by previous
approaches [FF04, FQ03, vPG03, WS03]. These approaches check for the atomicity of
operations and assume that each method must execute atomically. This is too strict. Non-
atomic execution of a certain code block may be a (welcome) optimization allowing for
increased parallelism. Our algorithm detects whether such an atomicity violation is be-
nign or results in stale values. Furthermore, it does not require assumptions or annotations
about the desired scope of atomicity.

42 Chapter 4. Block-local Atomicity

Our algorithm uses data flow to decide which regions must necessarily be atomic.
At the same time, the analysis determines the size of atomic regions. Therefore block-
local atomicity reports any errors found by earlier atomicity-based approaches but does
not report spurious warnings where no data flow exists between two separated atomic
regions.

void sensorDaemon() {
 while (true) {
 synchronized (lock) {
 value = shared.field; // acquire latest copy
 value = func (value);
 shared.field = value; // write back result
 }
 sleep(1000); // wait
 }
}

Figure 4.2: The importance of data flow analysis for synchronized blocks.

Figure 4.2 shows an example that illustrates why our algorithm is more precise. As-
sume the program consists of several threads. The one shown in the figure updates a
shared value once a second. For instance, it could read the value from a sensor and av-
erage it with the previously written value. It then releases the lock, so other threads can
access and use this value. A reduction-based algorithm will (correctly) conclude that this
method is not atomic, because the lock is released during each loop iteration. However,
as there is no data flow between one loop iteration and the next one, the program is safe.
In fact, an atomic implementation which does not release the lock inside the loop would
result in a livelock.

Block-local atomicity analyzes the program correctly and does not emit a warning.
Other approaches which assume that each method must be atomic will report a false
positive [FF04, FQ03, vPG03, WS03]. While it is common in practice that the scope
of synchronization coincides with method boundaries, this is not always the case. Our
algorithm offers better precision without extra complexity.

4.4.3 Limitations of Atomicity-based Approaches

The strict semantics of atomic operations and block-local atomicity are not always re-
quired for a program to be correct. This creates a potential for warnings about benign
usages of stale values. An example is a logging class using lax synchronization: It writes
a local copy of shared data to its log. For such purposes, the most current value may not
be needed, so block-local atomicity is too strict.

Finally, conflicts may be prevented using higher-level synchronization. For instance,
accesses can be separated through thread start or join operations [Har00]. This is
the most typical scenario resulting in false positives. Note that other atomicity-based

4.5. Summary 43

approaches will always report a spurious error in such cases as well. The segmentation
algorithm can eliminate such false positivies [Har00].

4.4.4 Serializability

Even without higher-level synchronization, block-local atomicity is sometimes too strong
as a criterion for program correctness. Serializability is a weaker but still sufficient cri-
terion for concurrent programs [Fla04]. Nevertheless, there are cases involving container
structures where a program is correct, but neither atomic nor serializable. Consider Fig-
ure 4.3, where a program reads from a buffer, performs a calculation, and writes the result
back. Assume buffer.next() always returns a valid value, blocking if necessary. Af-
ter a value has been returned, its slot is freed, so each value is used only once. Method
buffer.add() is used to record results. The order in which they are recorded does not
matter in this example.

The reason why the program is correct is because the calculation does not depend on
a stale shared value; “ownership” of the value is transferred to the current thread when
it is consumed by calling buffer.next(). Thus the value becomes thread-confined and
is no longer shared. This pattern is not captured by our data flow analysis but is well-
documented as the “hand-over protocol” [Lea99]. It could be addressed with an extension
to the approach presented here, which checks for thread-local confinement of data.

public void work() {
 int value, fdata;
 while (true) {
 synchronized(lock) {
 value = buffer.next();
 }

 fdata = f(value); // long computation

 synchronized(lock) { // Data flow from previous block!
 buffer.add(fdata); // However, the program is correct:
 } // The buffer protocol ensures that the
 } // returned data remains thread-local.
}

Figure 4.3: A correct non-atomic, non-serializable program.

4.5 Summary

We have presented a data-flow-based algorithm to detect concurrency errors that cannot be
detected by low-level [SBN+97] or high-level [AHB03] data races. Previous atomicity-
based approaches were entirely based on the atomicity of operation sequences, but ig-
nored data flow between synchronized blocks [FF04, vPG03, WS03]. This results in

44 Chapter 4. Block-local Atomicity

cases where correct non-atomic methods are reported as faulty. The algorithm presented
in this chapter detects stale values [BL02]. This conceptually simpler and more precise
property captures data flow between synchronized blocks. The property can be checked
in a thread-modular, method-local way. It can be implemented as a static analysis or as a
run-time checking algorithm.

5
Approaches to and Limitations

of Run-time Verification

A program is typically tested by manually creating a test suite, which in turn is a set of
test cases. An individual test case is a description of a single test input to the program,
together with a description of the properties that the corresponding output is expected
to have [Mye79]. Tools exist to make creation and evaluation of such a test suite fairly
efficient [LF03].

Test cases are typically written as additional program code for the system under test.
This has two major limitations: Code redundancy and limited testing capabilities. The
nature of input generation and output evaluation code leads to a lot of shallow code that
often instantiates variations of the same data structure. Such code typically contains re-
dundancies that makes it hard to maintain unit tests [vDMvdBK01]. Furthermore, only
observable output, such as return values, global data structures, or file contents can be
verified; observing the internal state is not directly possible with testing.

Run-time verification (RV) takes care of observation of the system under test. Prop-
erties that have to hold for specific inputs or the entire program can be specified in a
more generic way than with testing. Furthermore, the entire internal state of the pro-
gram is available for checking properties, which allows more efficient modelling of such.
Finally, higher-level constructs such as contracts [Mey97, vdBJ01], data races [AHB03,
SBN+97], or linear temporal logic (LTL) properties [Pnu77] are typically offered by run-
time verification packages, allowing to express program properties more succinctly, im-
proving their maintainability.

Note that in run-time verification of multi-threaded software, only a single run pro-
duced by a single schedule is usually taken for analysis. This contrasts with software
model checking [VHB+03], where all necessary schedules are enumerated to analyze the
entire possible behavior of an application.

Typically run-time verification is still used in conjunction with manual testing. The
test suite is applied to the program, which executes and generates an execution trace.
The observer module checks the trace against a given set of properties. Hence, it takes
the execution trace and the set of properties as input. This chapter describes how the
execution trace can be generated and what kind of properties can be verified with existing
tools.

45

46 Chapter 5. Run-time Verification

This chapter is organized as follows: Section 5.1 defines commonly used terms that
are not yet all consistently used in the community. Inherent advantages and limitations
of each approach are given in Section 5.2. Different types of properties to be verified
are shown in Section 5.3. Section 5.4 describes existing tools and what approaches they
use. Practical experience with some of these tools is described in Section 5.5. Section 5.6
shows what inherent limitations exist in RV. Section 5.7 concludes.

5.1 Definitions

5.1.1 Preliminaries

The system under test (SUT) is the software to be analyzed. It may encompass an entire
application or running process, or a set of smaller units, typically public classes, that can
be tested individually using unit testing. The test suite is part of the SUT and comprises
a set of individual tests; the test harness runs the test suite with given input data, and
thus attempts to simulate the behavior of the SUT after deployment [LF03]. Normally
the test suite is fully automated, with deterministic input. The environment includes the
execution environment (for Java, a virtual machine), system libraries and a scheduler that
is used to determine which thread to run in a multi-threaded environment. By default, the
scheduler is assumed to be non-deterministic and cannot be influenced by the SUT or its
test harness.

The system state encompasses everything that is part of the SUT, i.e., directly influ-
enced by its execution, but not its test harness. This view is directly applicable in practice
when the test harness is an external application, such as a shell or expect [Lib91] script.
In unit testing, the test harness is usually linked to the SUT and therefore executes as one
application [LF03]. However, since the test harness is a separate library, independent of
the test suite, state changes inside it can be ignored and seen as invisible state transitions.
Therefore the system state includes public and private data of the SUT and also state in-
formation that is not directly available to the SUT, such as the program counter, current
thread ID, or lock set. Indirectly manipulated data is managed by the execution environ-
ment, which may allow partial access to this data to the SUT. External components of
the system state are a subset of the entire state, including all data that is visible by the
environment, such as shared memory [TRY+87], or public data in the case of unit testing.

The system under test starts in an initial state s0 and then executes, producing a transi-
tion through a series of system states 〈s0, . . . ,sn〉. A system trace is defined as a sequence
of events emitted by the SUT 〈e0, . . . ,em〉. An event ei corresponds to a change in the ex-
ternal component of a system state, e.g. side-effects of a system call such as I/O. Note that
a single event ei may correspond to several states, since state transitions may be invisible
from outside the system. However, each system state transition from one state s j to an-
other state sk can emit at most one event.1 Program analysis usually ignores most events
and is only concerned with a small subset of them, e.g. all modifications to a certain file.

1This is conceptually the case but may not be literally true for an implementation. For instance, JNuke
generates two events for execution of a monitorenter bytecode: An event for bytecode execution and an
event for lock acquisition [AB05a]. However, these events are simply two views of the same system event,
and therefore can be conceptually seen as one.

5.1. Definitions 47

The trace generated by the default execution environment is usually not sufficient
for a meaningful program analysis. Therefore a verification environment complements
the execution environment. The task of the verification environment is to interface with
system behavior, allowing the observation of a trace where previously internal events are
externalized. Such events can be part of the execution environment (such as thread context
switches) or the SUT (such as field accesses).

5.1.2 Trace generation

Traces can be generated in several ways: by instrumentation, which changes the code
of the SUT; by wrappers, which add event generation to external (system) libraries; or
by a customized execution environment, which replaces a conventional one by a new one
which generates events.

Code instrumentation

Code instrumentation achieves event generation by injecting additional code into the SUT.
The additional code is responsible for event generation but must not interfere with the
SUT. Instrumentation is thus defined as a set of changes C to the SUT, based on a rule set
R, such that C does not alter the internal functionality of the SUT. Instead, it generates
events that are transparent to the SUT but visible to the verification environment. This
means that C must not produce any side-effects in the SUT and must not generate events
that do not correspond to a state change in the SUT.

Rule set R contains pairs of predicates P and actions A. Whenever a predicate evalu-
ates to true, its corresponding action defines the change c ∈C to apply to the SUT. Note
that P in this chapter is only concerned with rules that can be evaluated statically (at in-
strumentation time). If event generation is dependent on run-time data, then the dynamic
part of it is part of A, reflected in the inserted code in C [GH03].

Instrumentation can happen at source code or byte (machine) code level. Source code
instrumentation (obviously) takes place prior to compilation while bytecode instrumenta-
tion can be performed as a post-compilation stage or at load time. The instrumentation
process instr(R,SUT) takes R and the SUT as input, producing C. Each rule can lead to
any number of changes, i.e., |R| ≥ 1, ∀r ∈ R · |instr({r},SUT)| ≥ 0. In general, it is desir-
able to keep R small to ensure its correctness, in particular, non-interference of C with the
normal functionality of the SUT.

The simplest way of instrumentation is to add manual changes to the program source
code, which can be expressed as |R| = |C| = 1. In that sense, adding debugging output
to the program to generate a trace of events that would otherwise be invisible (without a
debugger) constitutes an ad-hoc form of run-time verification. However, even in ad-hoc
approaches, simple scripts (such as search/replace patterns) are often used, corresponding
to the common case |R| ≥ 1, |C| ≥ |R|.

Source code instrumentation without the help of tools quickly becomes impracti-
cal. Therefore a tool-based approach is usually taken. Two directions are prevalent
for source code instrumentation: Aspect-oriented programming (AOP), implemented in

48 Chapter 5. Run-time Verification

toolkits such as AspectJ [KHH+01], and compiler back ends, for instance, array bounds
checking for GCC [JK97]. In AOP, P corresponds to the concerns used, and A corre-
sponds to the advice.

Compiler back ends typically operate on an abstract syntax tree of the program, which
is then analyzed by an instrumentation module. Such an analysis can therefore use special
source-level constructs, but the result of the analysis is not necessarily modified source
code. C could instead contain intermediate code which is then included in the generated
executable SUT at a subsequent machine code generation stage.

Because the syntax of modern programming languages is fairly complex, many instru-
mentation approaches work on compiled code, which can be bytecode or machine code.
The process of code instrumentation is the same. The only difference to source code in-
strumentation is that the actual code changed is not directly human-readable. Thus rule
set R typically contains more complex expressions (requiring some assembly-like lan-
guage or data structures representing the low-level code), even though the resulting code
modifications are usually more concise. Code instrumentation packages for Java bytecode
include the BCEL [Dah03] and JTrek [Coh01].

Wrappers

Wrappers follow the Decorator pattern [GHJV95] and add extra functionality to objects,
or, in this context, library calls. Library functionality is extended with event generation
code and sometimes even replaced with an entirely new implementation. The libraries
are assumed to be part of the execution environment, not the application itself. Other-
wise, code replacement would occur inside the SUT and correspond to instrumentation.
Wrapping has the advantage that the border between modified and original code is clearly
defined. The changes all lie outside the application and can be tested separately. Further-
more the provided functionality can be used for several SUT without a need to change
them.

Wrapper code can replace the original API transparently if the execution environment
allows for exchanging libraries at load time [Roy02]. The additional library code could
already be part of the library and be activated by a special API call or environment vari-
able [JK97]. Alternatively, the compilation or linking process of the SUT may have to
be adapted in order to use a new library, which often uses the original one underneath to
provide its functionality [Roy02].

Custom execution environment

A custom execution environment replaces the entire execution environment with a new
implementation. This new implementation can either emit a trace directly [ASB+04]
or allow for on-the-fly code instrumentation (instrumentation at load time rather than
at compile time) [NS03]. The specialized execution engine allows to monitor low-level
events such as changes to certain memory locations. It is usually combined with wrappers
to allow generating high-level events more easily, e.g. events concerned with certain
library calls.

5.1. Definitions 49

5.1.3 Trace monitoring

Monitoring a trace that is generated at run-time includes receiving the event trace and
evaluating it against a given set of properties. This task can be performed in two possible
ways: on-the-fly and off-line. In on-the-fly monitoring, the monitoring code is embedded
in the SUT or the execution environment and executed inside the application immedi-
ately after an event is generated. Off-line monitoring, on the other hand, only embeds
event logging or event transmission code in the SUT. Events are either written to a file
or directly communicated to an analyzer application or thread. The analyzer, also called
observer [GH03], evaluates the properties either during execution of the SUT or after its
termination.

Different ways of distinguishing trace monitoring approaches have been proposed by
Chen et al. [CdR04]. They define “in-line” and “out-line”, “on-line” and “off-line” (post-
mortem) monitoring. In that terminology, in-line monitoring means that the monitor runs
in the same resource space as the program, while out-line monitoring refers to the fact that
monitoring takes place in another process or on another processor. The terms “on-line”
and “off-line” then refer to whether monitoring occurs while running the SUT or after-
wards. In our terminology, “on-the-fly” monitoring refers to in-line, on-line monitoring,
while off-line monitoring refers to out-line monitoring.

We argue that our definition is more practical; the distinction whether monitoring takes
place during or after execution of the SUT is not important for the design of the system.
In out-line monitoring, the means of communication employed between the SUT and the
monitoring process are easily exchangeable, being commonly pipes, files, or sockets. The
choice usually depends on whether the trace should be stored for later reference and on
performance characteristics. Whether the monitoring process receives input data before
the SUT finishes may even be scheduler-dependent. Finally, the combination “in-line,
off-line” cannot exist, since an in-line monitoring process always runs together with the
SUT. Chen’s definition of an “in-line, off-line” monitor is a monitor that merely logs
relevant states; actual trace evaluation is then performed on the log, off-line [CdR04].
However, such a system is a combination of two monitors, on-the-fly (for logging events)
and off-line (for evaluation), as discussed below. Therefore, only three out of the four
combinations make sense. We believe the distinction between on-line and post-mortem
monitoring is possible, but not important. Thus the three variants can be reduced to on-
the-fly (in-line, on-line) and out-line, which we call off-line.

Chen [CdR04] furthermore distinguishes synchronized on-line monitors from asyn-
chronous ones. Synchronized monitors block execution of the SUT until an event is
evaluated. This is relevant for in-line monitors, where an asynchronous monitor runs
in a separate thread. This may be advantageous if several processors are available but
does not otherwise affect the design of the system. Event data received by such an asyn-
chronous monitor must not contain data writeable by the SUT since this can lead to data
races. Therefore an asynchronous monitor uses its own event data (copies of data of the
SUT) and thus effectively becomes an off-line (out-line) monitor. Chen also uses a sec-
ond meaning for synchronization, extending it to evaluation of entire properties rather
than single events. Under that definition, synchronized monitors can be rather restricted

50 Chapter 5. Run-time Verification

for formulae such as future-time LTL, and an asynchronous variant is obviously more
efficient [CdR04]. This chapter does not distinguish this property further as it is covered
by our on-the-fly/off-line notation in sufficient detail.

5.2 Benefits and Limitations of Each Approach

5.2.1 Code instrumentation

Instrumentation has the advantage that it requires no changes in the execution environ-
ment. The verification environment only modifies the SUT and possibly runs extra pro-
cesses together with the execution environment. Therefore even proprietary execution
environments can be used, and any optimizations available (such as JIT compilers) can be
fully taken advantage of.

The main disadvantage of instrumentation is that it does not have full state access
to the system. For instance, in Java, the thread ID is a private field. This made sense
when Java was originally designed, because no application should be dependent on thread
ID values. However, for event generation, the thread ID is essential. Therefore an
instrumentation-based approach has to construct its own thread ID map by mapping thread
objects to integers [AHB03]. This duplication is unavoidable because current VMs do not
allow ignoring the “private” attribute.

Another disadvantage of instrumentation is that due to the architecture of byte or
machine code, the instrumentation specification can be quite complex. The instrumented
code may have to allocate extra local variables to store register data because these registers
are needed to create an event record. Furthermore, the verification process is somewhat
cumbersome to add to the build tool chain, because it usually requires a post-compilation
stage and changes in linking or in the order in which classes are loaded. The latter is
necessary such that instrumented and unmodified object or class files can be used together.

5.2.2 Wrappers

The main advantage of wrappers is their conceptual elegance. The locations of event
generation are outside the SUT and clearly defined: They always occur inside wrapped
library calls and therefore always correspond to an external action of the SUT. The main
disadvantage is the inability to access (even public) data of the SUT unless it is provided
to a library call. If a wrapper for a certain method is supposed to be entirely transparent, it
cannot take extra arguments that could provide more information for run-time verification;
thus wrappers used in isolation are fairly limited. However, for specific purposes such
as detection of memory leaks, they still are the most elegant approach. A considerable
practical advantage of this technique is the fact that the development environment remains
unchanged, requiring no additional steps tool chain [NS03, Roy02].

5.2.3 Custom execution environment

A custom execution environment has full access to the entire state and can monitor indi-
vidual data structures and operations. Usually the number of different operations mon-

5.2. Benefits and Limitations of Each Approach 51

itored is relatively small; therefore listeners to handle such events are not hard to write.
Conversely, monitoring library calls is somewhat cumbersome in that scenario. The size
of the library can be much larger than the number of primitive operations, making this
approach, if used in isolation, less useful for such a task.

5.2.4 On-the-fly vs. off-line trace monitoring

On-the-fly monitoring has the advantage that it has full access to available data of the
SUT. Data which is not provided in the event record itself may be obtained from the veri-
fication environment through callbacks [AB05a]. The drawback of on-the-fly monitoring
is that any algorithmic computations of the verification algorithm occur inside the SUT
and therefore slow down test execution.

This slow-down is the motivation for off-line monitoring, where the verification algo-
rithm can run on another processor or even post mortem, after test execution. In addition
to that, it is simple to distribute events to several analysis algorithms [ABG+03]. On the
other hand, off-line monitoring is restricted to data provided in the event record. Call-
backs to the SUT are not possible since it continues to run in parallel with the analyzer
after event generation, or may even have terminated when an event is processed. Because
of this parallelism, only data from the current event is known to be consistent, while other
event data may be stale. For example, the exact program location may only be reported
from time to time, as generating an event for each line of code would cause too much of an
overhead. This may lead to incorrect locations in reports generated. Off-line monitoring
also requires a more complex architecture involving at least two processes, the SUT and
the analysis application, and an I/O mechanism (such as files, pipes or sockets) to com-
municate events between the SUT and the analyzer. Therefore the testing environment
becomes a lot more complex compared to running the unmodified SUT or using on-the-
fly monitoring. The I/O required for off-line monitoring is also a major source of potential
overhead [AHB03], the lack of which makes on-the-fly monitoring more light-weight and
often faster.

5.2.5 Hybrid approaches

Because individual event generation approaches all have limitations, they are hardly ever
used in isolation. Instead, a combination of two technologies usually eliminates the weak-
nesses of either approach while preserving their strengths. For instance, purify uses wrap-
ping to monitor calls to the malloc memory library and instrumentation to check invidid-
ual memory operations (such as pointer dereferences) [HJ92]. JNuke uses wrappers for
the Java foundation library and a custom environment to generate events for bytecode
operations such as lock acquisitions [ASB+04]. Valgrind relies on instrumentation and
its VM for execution of machine code, replacing direct execution on hardware [NS03]:
First, machine code is converted to valgrind-specific intermediate code. Then this code is
instrumented and run in the VM of valgrind.

For trace monitoring, a combination of on-the-fly and off-line monitoring is thinkable
but has, to our knowledge, not yet been implemented. If properties are complex enough

52 Chapter 5. Run-time Verification

to require off-line processing, a first on-the-fly stage may be used to reduce the data
required for the second off-line phase. This would cut down on the data communicated
and likely speed up analysis. However, not all monitoring algorithms are amenable to
such a reduction.

5.3 Property Verification

Tested properties can either be written as black-box properties, without knowledge of the
implementation, or as implementation-dependent white box properties [Mye79]. Run-
time verification can cover both kinds of properties; therefore this chapter makes no dis-
tinction between them.

Run-time verification is by definition incomplete, because a test suite can never cover
the entire behavior of a non-trivial SUT. Therefore it is not crucial for verification algo-
rithms to be totally accurate. In practice, achieved accuracy is usually quite high, with
few false alarms (false positives) and missed errors (false negatives). This sounds surpris-
ing because many faults only manifest themselves as failures when a particular schedule
is executed, which is only rarely the case in practice. Run-time verification is successful
because it usually does not try to find such failures directly. Instead, stronger proper-
ties than the failure itself are checked. A stronger property is usually independent of
scheduling yet a strong indicator that the failure looked for can occur under a certain
schedule [ABG+03]. An occurrence of the failure looked for almost always violates the
verification property, but the reverse is not true. A violated property may even be benign
and never lead to a failure. For instance, when looking for low-level data races, the Eraser
algorithm does not directly check for data corruption but verifies locking discipline, the
absence of which often but not necessarily leads to data races [SBN+97].

5.3.1 Generic properties

The Eraser algorithm is an example for a generic property that is applicable to a single
class of faults: data races [SBN+97]. The success of such algorithms comes from the fact
that such faults can appear in any program and are very hard to find using conventional
means; thus the relatively large investment into buildling a fault-detection tool for a single
class of faults is worthwhile. This branch of run-time verification is sometimes referred
to as algorithm-based run-time verification. This thesis focuses on this branch.

Many successful algorithms that verify generic, hard-coded properties exist. It is usu-
ally agreed on that violation of such a property signifies a high potential of a critical
failure. Such properties include memory corruption (illegal addresses, memory leaks
etc. [HJ92, NS03]), low-level data races [SBN+97], high-level data races [AHB03] and
stale values [ABH04]. Despite their success, such properties can only cover certain errors.
In many cases, they need to be complemented with application-specific properties.

Generic properties properties take a high-level requirement (the absence of certain
kinds of data corruption) and translate it into an implementation-specific low-level re-
quirement (locking patterns). The initial requirement is a black-box property while the

5.3. Property Verification 53

property checked against is a white-box property. This fine point is another reason why
this distinction is rarely made in practice.

5.3.2 Application-specific properties

Properties specific to the SUT can be either expressed directly in the SUT, e.g. by using
assertions, or outside, with the help of the verification environment. Many such properties
can be expressed by contracts [Mey97]. Contracts have become a very widespread way
of specifying external properties of public methods. In the Eiffel programming language,
they are embedded in the language and the execution environment [Mey97]. Third-party
tools can provide the same functionality for other languages [CL02, vdBJ01].

Temporal logics, such as LTL [Pnu77], allow to express certain safety and liveness
properties succinctly. Efficient monitoring tools for certain subsets of temporal logics
exist. They include Temporal Rover, which can monitor limited-future time and past-time
LTL properties [Dru03], or JPaX for past-time LTL [HR02]. EAGLE is a framework for
defining and implementing finite-trace monitoring logics, including not only past-time
and future-time LTL but also other logics [BGHS04]. The term specification-based run-
time verification refers to verification of application-specific properties.

5.3.3 Steering

An alternative approach is to use few or no correctness properties beyond test results
which are already part of unit tests. Instead, steering is used to perturb the application
schedule in a way that is most likely to provoke potential failures. The simplest way how
this can be achieved is through random scheduling [Sto02]. After insertion of random
delays at critical points, the environment is very likely to switch thread contexts in code
sections that are normally executed atomically under the default schedule. Newer tools
use heuristics to make this search for faults more efficient [BAEF03, FNU03]. Some-
times steering is also used to alter general program properties according to a user-defined
script [KKL+01].

5.3.4 Relation to testing

Above approaches all use a manually specified test suite to run the SUT, with the intention
to achieve high behavioral coverage that allows run-time verification to detect a large
number of failures in the system. Properties verified against are correct output (part of
the unit test suite), generic and specific properties. Specific properties are commonly also
written manually. Reasons for this large amount of manual work are the needed human
insight into system-specific details and the fact that existing systems to specify system
properties require languages that are close to programming languages in their expressive
power [BS03]. Therefore it is common to use the programming language of the SUT to
write test and output specifications [LF03].

Recent projects try to leverage the versatility of model ckecking to generate both the
input and the property to be tested [ABG+03]. The idea is to explore the behavior of the
model of the SUT by exploring specific executions. Thus one obtains, for each execution

54 Chapter 5. Run-time Verification

trace, a valid program input, and an instance of each applicable model property, specific
to that trace. The entire set of input/property specifications is then applied to the SUT,
making test case generation and property specification automatic, once a model is given.

5.4 Existing Work

A variety of run-time verification tools for different languages and purposes exists. An
overview of important current projects is shown in Table 5.1. As outlined in the pre-
vious section, the common approach in run-time verification is monitoring of (higher-
level) properties. The majority of tools follows this direction. The alternative, steering
in the form of schedule perturbation, is implemented by the tools ConTest [FNU03] and
raceFinder [BAEF03].

In property monitoring, one can distinguish between hard-coded (but usually widely
applicable) properties and user-defined, application-specific ones. The mcheck exten-
sion of the GNU C library [JK97], JNuke [ASB+04], mpatrol [Roy02], purify [HJ92],
and valgrind [NS03] all monitor several generic properties. Tools written to monitor
user-defined properties typically verify contracts [CL02, Mey97], LTL-based specifica-
tions [BGHS04, Dru03, HR01] or similar properties [KKL+01].

Code instrumentation, sometimes combined with wrapping, is the prevalent approach
for trace generation; only JNuke [ASB+04] and valgrind [NS03] use a custom execution
environment designed for trace generation and observation. Many tools still use off-
line monitoring [BGHS04, HR01, KKL+01]; however, there is a trend towards the more
efficient on-the-fly monitoring [Dru03].

5.5 Practical Experience

This section is an initial attempt to investigate benefits and drawbacks of each approach.
Two questions are the focus:

1. Which approach makes it easier to implement new properties in the analyzer? This
question can of course not be answered quantitatively.

2. What approach scales best? Compared are on-line vs off-line monitoring, and
whether a high-level API impacts performance of verifying the SUT.

Figure 5.1 compares the architectures of the tools investigated. It emphasizes two as-
pects: the event monitoring technique (on-the-fly vs. off-line) and whether a high-level
API exists. Tools have been chosen to represent each category. The main differences
between the tools are that JNuke and valgrind use on-the-fly monitoring while JPaX eval-
uates its events off-line. Both JNuke and the new version of JPaX allow specification of
events in a high-level programming language, while valgrind needs the verification to be
part of the instrumentation specification. The diagram summarizes these design differ-
ences but does not include one other architectural difference: Both JNuke and valgrind
use their own execution environment while JPaX uses code instrumentation. However,

5.5. Practical Experience 55

Tool Trace generation Mon. Properties
ConTest none (schedule steering) – none (requiring test suite)
[FNU03]
EAGLE bytecode instrumentation off-l. user-defined (in EAGLE logic)
[BGHS04]
Eiffel compilation (contracts o-t-f contracts
[Mey97] are integrated in Eiffel)
GNU C lib. wrapping, o-t-f memory allocation
[JK97] manual instrumentation
JML bytecode instrumentation o-t-f contracts written in JML
[CL02, vdBJ01]
JNuke custom execution o-t-f data races, stale values
[ASB+04] environment, wrapping
JPaX bytecode instrumentation off-l. data races
[HR01]
MaC bytecode instrumentation off-l. user-defined (scripting language)
[KKL+01]
MOP source code both LTL, contracts, user-defined
[CdR04] instrumentation
mpatrol wrapping o-t-f memory allocation and C string
[Roy02] function usage
purify wrapping, machine code o-t-f memory allocation and usage
[HJ92] instrumentation
raceFinder none (schedule steering) – none (requiring test suite)
[BAEF03]
Temporal source code o-t-f LTL with additional constraints
Rover [Dru03] instrumentation
valgrind custom environment, o-t-f several “skins” with hard-coded
[NS03] instrum. of interm. code properties (such as mem. check)

Table 5.1: Existing run-time verification tools. Monitoring approaches, where applicable,
are categorized into “off-line” (off-l.) and “on-the-fly” (o-t-f).

56 Chapter 5. Run-time Verification

at the current stage of each project, this factor does not yet make the major difference
in performance. Of course this difference makes the evaluation less precise. However,
no single tool currently implements, to our knowledge, several approaches that could be
used interchangeably; therefore the approaches cannot be compared on a single platform.
Because of this, we had to resort to using different tools to compare different approaches.

(new)

event monitoring
technique

(old)

JPax

API

JNuke

high−level

on−the−fly off−line

valgrind

JPax

low−level

Figure 5.1: Comparison of tool architectures.

5.5.1 Flexibility

The question about the flexibility of each design with respect to writing verification al-
gorithms seems to be easier to answer. Both JNuke and JPaX offer listener-based APIs
that make it fairly simple to write verification algorithms. As long as the necessary data is
available, the user only has to write the logics of the verifier. The API of JPaX has mainly
been designed during recent work [ABG+03], where it has been observed that verification
engineers had to write a lot of common low-level code for each algorithm. The new archi-
tecture included such generic code, reducing development effort of verification algorithm
to about half of what it was before. Performance had not been impacted by this design
change [AHB03].

The other tool that is considered here, valgrind [NS03], uses its own intermediate code
for both the SUT and the verification algorithm. Therefore writing such an algorithm re-
quires learning and working with this code, which is certainly more difficult than working
with a high-level programming language. Since the goal was to implement only a few
generic verification algorithms, this drawback is not severe.

5.5.2 Scalability

A series of benchmarks was used to answer the second question and compare tools for
detecting multi-threading errors in Java [ASB+04, HR01] with valgrind [NS03], which

5.5. Practical Experience 57

detects memory allocation errors when using C libraries incorrectly. As a base for ex-
periments on Java code, benchmarks cited by recent publications were taken [ASB+04,
AB05a]. Tests for C programs consisted of executing a subset of the currently roughly
1800 unit tests for JNuke [ASB+04], which corresponds to practical usage of valgrind by
our group. The unit tests encompass a wide range of functions, from testing container
classes to running a virtual machine for Java bytecode, to static analysis, and therefore
represent a variety of programming problems.

Memory overhead could only be measured for JNuke and was usually within a factor
of two, as summarized by Table 5.2. Execution times could be used to compare all tools.
Table 5.3 shows the run-time overhead of different RV algorithms on JNuke, JPaX and
valgrind. For JNuke and valgrind, “RV overhead” means the overhead of running the
verification algorithm compared to using the custom VM with no verification algorithm
running. Numbers given represent the ratio between the two execution times. The total
overhead compares running the SUT under an (optimizing) virtual machine or directly
on a processor, respectively. For JPaX, the ratio between executing the instrumented
code compared to the uninstrumented version on an optimizing Sun VM is given. The
best and worst ratios are given along with the geometric mean, so large benchmarks are
given the same weight as smaller ones. It was not possible to precisely measure the
amount of memory used by other verification environments, so these columns are omitted.
The distinction between “RV overhead” and “execution overhead” shows that both the
valgrind and the JNuke VM are still about 5 – 8 times slower in the average case than an
optimized VM. Because of this, performance using run-time verification was compared
both to the tool itself and to an “optimal” environment.

Tool Best Worst Geometric mean
JNuke (stale values) [ABH04] 1.00 1.91 1.27
JNuke (Eraser) [ASB+04] 1.00 4.53 1.88
JNuke (VC) [ASB+04] 1.00 2.59 1.28

Table 5.2: Memory usage overhead for run-time verification in JNuke.

Tool RV overhead Total overhead
Best Worst GM Best Worst GM

JNuke (stale values) [ABH04] 1.19 5.64 2.15 2.90 555.63 28.29
JNuke (Eraser) [ASB+04] 1.42 8.29 3.33 2.50 253.75 24.31
JNuke (VC) [ASB+04] 1.57 12.82 4.14 1.83 240.88 30.28
JPaX (VC/Eraser) [AHB03] N/A N/A N/A 4.50 1386.87 76.75
valgrind (memcheck) [NS03] 2.39 13.78 6.49 11.60 61.44 31.27

Table 5.3: Run-time overhead of various tools.

It is obvious that the run-time overhead for JNuke is much smaller than the one for
JPaX, which can mainly be attributed to off-line verification used in JPaX. In certain

58 Chapter 5. Run-time Verification

examples, this slowed down execution tremendously because data-intensive applications
generated very large log files. Even for small applications, the overhead of JPaX was very
considerable. The problem is somewhat ameliorated by the fact that the same log file
could be re-used for several analysis algorithms. On the other hand, the same optimization
is also possible in the other architectures: several event listeners could run in parallel. This
would cut down the overhead of running the application itself for each analysis.

The poor performance of JNuke in some cases is mainly due to the lack of optimiza-
tion in some data structures, where there have been no resources available so far to replace
correct but slow placeholders. The smaller variation in the run times of valgrind indicate
that it is already more mature and optimized.

Unlike valgrind, JNuke has not yet taken advantage of just-in-time compilation, which
can improve the performance of Java bytecode significantly. It is not clear to what extent
JNuke could be optimized to achieve a performance close to Sun’s VM using no verifi-
cation, because much of architecture of JNuke has been designed to allow for an elegant
implementation of verification algorithms. Sun’s VM would likely become more heavy-
weight and slower if run-time verification was a requirement. The same reasoning applies
to valgrind, the “skinnable” design of which allows multiple verification algorithms to run
on the same platform. This flexibility incurs some extra overhead. Overall, performance
of JNuke and valgrind indicate that the custom execution environment is not severely
penalized by the fact that not many (complicated) code optimizations are possible.

Both JNuke and valgrind have their own execution environment; however, while
JNuke offers a high-level event API, the algorithms for valgrind have to be written in
low-level code. Initial observations indicate no major drawback for having a rich API
other than the fact that it makes the design of the VM less elegant. So far, however, the
number of “API hooks” in the JNuke VM is small, and does not impact its maintainability.

In trace observation, on-the-fly verification certainly pays off for simpler, generic
properties. The simpler architecture incurs no communication overhead, compensating
for additional algorithmic computations added to the execution of the SUT.

5.6 Capabilities and Limits

‘Program testing can be used to show the presence of bugs, but never to show
their absence!’ [Dij72].

This dogma has stigmatized testing for a long time, despite its success in industry. The
reason behind this statement is the fact that testing only executes a small subset of all
program behaviors [Mye79]. It can help to increase confidence in a system, but never
fully verify it. Nonetheless, it is the prevalent technology used in practice because testing
is simple and effective at uncovering certain failures [Pel01]. Concurrent programming,
though, threatens to render testing futile, since thread scheduling introduces a source of
non-determinism that is outside the control of a programmer.

In the area of these hard-to-find concurrency faults, run-time verification can be the
crucial component to bring test execution back to a level of confidence that can be ob-
tained for sequential programs. By obeying certain design guidelines concerning concur-

5.6. Capabilities and Limits 59

rent data access, the absence of certain concurrency failures can be ensured [ABG+03].
Such guidelines may prevent certain optimizations but are typically acceptable in practice,
as most programs already fulfill them in order to avoid errors. It certainly is not very con-
straining to use sufficient locking to avoid low-level and high-level data races [AHB03,
SBN+97]. The use of stale values may be a possible optimization in certain programs;
work still has to be done to investigate this further [ABH04, BL02].

If run-time verification confirms the absence of certain fault patterns, one can conclude
that certain faults (such as data races) are also absent, provided that lock usage and data
access patterns have been fully covered by the test suite executed. Most commercial
programs prevalently use static locks [AB01], which makes it trivial to confirm the first
part of that assumption. In traditional software testing, coverage metrics such as statement
coverage [Pel01] have been used to determine the effectiveness of a test suite. Statement
coverage returns information on how many times each statement has been executed by a
test suite. When using static locks, full statement coverage will thus execute each lock
and data access at least once and provide full “lock coverage”, use of all possible locks
within the test suite, as well.

static Object lock1, lock2;
/* two distinct locks */

void possibleDataRace(Data x, Data y) {
/* can be called concurrently */
 synchronized (lock1) {
 x.value++;
 /* lock1 protects x */
 }
 synchronized (lock2) {
 y.value++;
 /* lock2 protects y */
 }
}

Figure 5.2: Aliasing may easily hide faults during testing.

A test suite providing full statement coverage is very effective at finding failures but
not sufficient, as Figure 5.2 demonstrates. Assume class Data to denote shared data of
which field value can be used by multiple threads. In the example, there are two locks
protecting data access: lock1 and lock2. Some convention could always clearly define
the lock to be used for data access. For instance, in an array, lock1 could protect all array
elements with an odd index while the other ones could be protected by lock2. Therefore
the example program could be data race free. However, assume that there cases where
the two arguments to method possibleDataRaces are aliased, i.e., x = y. Since the two
locks are distinct, there is no common lock protecting data access, and a low-level data
race occurs. It could of course be easily possible that a test suite only includes safe uses of
this method, and never cause the possible data race to occur. Nevertheless, such constructs

60 Chapter 5. Run-time Verification

are extremely rare in practice, and it has been demonstrated that data race analysis finds
faults very effectively [BDG+04].

In the given example, if one requires that lock protection for data is known statically
(for instance, by a statically known type), then one can prevent the aliasing of the two
method arguments. In such a scenario, simple statement coverage will suffice to pre-
vent data races. Thus there are certainly cases where run-time verification yields no false
negatives and is sound. In the area of concurrency errors, the domain covered by this
thesis, many properties only depend on locks used and fields accessed. Data access pat-
terns within a lock are usually independent of program input and can usually be tested
effectively; yet there is no notion to make the assurance gained by such testing a guaran-
tee. This observation should encourage research for future programming languages that
enforce such notions of tying locks to data; also see Section 11.5.

The second multi-threading property investigated in this thesis [ABH04] considered
atomicity of actions. Because this property only depends on intra-method data flow, it is
much easier to test. For such properties, edge coverage seems to be sufficient, combined
with a loop coverage criterion demanding at least zero and one loop executions. Given
that coverage, data flow within the current stack and register frame is fully covered. How-
ever, block-local atomicity still requires all individual data accesses to be race-free, which
cannot guaranteed as easily, as described above.

Still, these observations suggest that there exists a reasonably large class of programs
where the absence of certain faults can be proved by sufficient testing. It remains to be
seen how such coverage metrics and tools will be developed.

5.7 Summary

Run-time verification distinguishes itself from testing by the fact that a much larger part
of a program behavior can be monitored, in a systematic way. Monitored properties can
be categorized into application-specific properties, and generic ones that should apply
to any program. Application-specific properties are often specified as contracts or as
temporal logic formulae. Generic properties are commonly built into the verification tool
and include the absence of memory corruption (invalid pointers) and data races. Current
tools are usually specialized for one category.

Several techniques exist to generate and monitor a trace. Trace generation can be done
by instrumentation, which injects event generation code into the application. Alternative
approaches are based on either wrapping system libraries or providing an entirely new
execution environment. The latter is the most flexible one but sacrifices optimizations
available in standard execution environments. Trace monitoring is independent of the
trace generation technique used. It can occur within the application, on the fly, or as a
separate process, off-line. Initial experiments indicate that the communication overhead
of off-line monitoring outweighs its benefits.

6
Combined Static and Dynamic

Analysis

Static analysis is usually faster than dynamic analysis but less precise. Therefore it is
often desirable to retain information from static analysis for run-time verification, or to
compare the results of both techniques. However, this requires writing two programs,
which may not act identically under the same conditions. It would be desirable to share
the same generic algorithm by static and dynamic analysis. In JNuke, a framework for
static and dynamic analysis of Java programs, this has been achieved. By keeping the
architecture of static analysis similar to a virtual machine, the only key difference between
abstract interpretation and execution remains the nature of program states. In dynamic
analysis, concrete states are available, while in static analysis, sets of (abstract) states are
considered. Our new analysis is generic because it can re-use the same algorithm in static
analysis and dynamic analysis. This chapter describes the architecture of such a generic
analysis. To our knowledge, JNuke is the first tool that has achieved this integration,
which enables static and dynamic analysis to interact in novel ways.

Section 6.1 gives some background and motivation. Section 6.2 introduces graph-free
static analysis as used in JNuke. Section 6.3 describes run-time verification. Generic
analysis algorithms, applicable to both a static and dynamic context, are described in
Section 6.4. Section 6.5 summarizes this chapter.

6.1 Background and Motivation

Originally JNuke was designed for dynamic analysis, encompassing explicit-state soft-
ware model checking [ASB+04, Eug03, VHB+03] and run-time verification [ASB+04,
RV04]. For generic run-time verification, the engine executes only one schedule defined
by a given scheduling algorithm. An observer interface provides access to events occur-
ring during program execution. Event listeners can then query the virtual machine for
detailed data and thus implement any run-time verification algorithm.

Static analysis was added to JNuke at a later stage. In the initial version, static analysis
in JNuke could not handle recursion and required algorithms to be targetted to a static
environment [ABH04]. This chapter describes the solution for recursion and furthermore
allows sharing of algorithms in a static and dynamic environment.

61

62 Chapter 6. Combined Static and Dynamic Analysis

JNuke’s generic analysis framework allows the entire analysis logics to be written
such that they are agnostic of whether the “environment” is a static or dynamic analysis.
Both versions require only a simple wrapper that converts environment-specific data into
a form that a generic algorithm can use.

Even a fast execution environment is greatly slowed down by run-time verification
and thus needs support from a static data flow analysis in order to reduce the amount of
data to be monitored at run-time. Ideally this functionality is pluggable in the class loader.
Because the entire framework is integrated, conversion of static information for dynamic
analysis is not necessary.

It is not always certain whether it is beneficial to implement a static or a dynamic
analysis for a specific property. Static analysis can scale easily to a million lines of code
per minute or more [AB01, ABH04] if it does not require complex pointer aliasing infor-
mation. The block-local atomicity analysis algorithm [ABH04] seemed to be most suit-
able for static analysis because the property checked is context-insensitive (method-local).
However, accuracy depends heavily on the quality of the pointer analysis used [WL04].
Imprecise lock information may generate spurious warnings. Therefore it is interesting to
see whether a dynamic version of the same algorithm produces better results.

Furthermore, the fact that the algorithm itself is identical for static and dynamic analy-
sis allows a novel kind of combined analysis for fault detection, as outlined in Figure 6.1.

Counter−

Report

Test case(s)

add to suppression list

no

yes

Static Analyzer

Run−time Verification Confirmed?
example

Figure 6.1: A new tool flow for fault detection using combined static and dynamic anal-
ysis.

A static analyzer looks for faults. Reports are then analyzed by a human, who writes
test cases for each kind of fault reported. Run-time verification will then analyze the
program using the dynamic version of the same algorithm, possibly confirming the fault
as a failure or counterexample. Confirmed faults are repaired; unconfirmed faults can be
investigated further using more tests.

If a failure is not confirmed, even after multiple iterations of creating test cases, given
reports can be suppressed in future runs of the static analyzer. Of course this particular
methodology gives up soundness. However, it still facilitates fault finding, as current
approaches only offer a manual review of reports. The generic algorithm is shared by both
tools, which is our contribution and enables this tight integration of static and dynamic
analysis.

6.2. Static Analysis in JNuke 63

6.2 Static Analysis in JNuke

Static analysis approximates the set of possible program states. Such an approximated
state encompasses a set of concrete program states and will be denoted an abstract state
in this chapter. Static analysis iterates over these abstract states until a fixpoint is reached
or a certain limit, such as a second loop execution, is reached.

Static analysis scales well for many properties, as certain properties may be modular
and only require summary information of dependent methods or modules. “Classical”
static analysis constructs a graph representation of the program and calculates the fix
point of properties using that graph [CC77].

This is very different from dynamic analysis, which evaluates properties against an
event trace originating from a concrete program execution. Using a graph-free analy-
sis [Moh02], static analysis is again close to dynamic execution. In this chapter, a graph-
free static analysis is extended to a generic analysis which is applicable to dynamic anal-
ysis as well.

In JNuke, static analysis works in a way which is very similar to dynamic execution.
An environment treats control flow semantics and implements non-deterministic control
flow. The analysis algorithm models the semantics of the set of abstract states at each lo-
cation, from which the values of program properties can be deduced. In such a graph-free
data flow analysis [Moh02] data locality is improved because an entire path of computa-
tion is followed as long as valid new successor states are discovered. Each Java method
can be executed in this way. The abstract behavior of the program is modelled by the user.
The environment runs the analysis algorithm until an abortion criterion is met or the full
abstract state space is exhausted.

6.2.1 Graph-free abstract interpretation

Abstract interpretation of a program involves computation of the least or greatest fix point
of a system of semantics of the form:

x1 = Φ1(x1, . . . ,xn)
...

xn = Φn(x1, . . . ,xn)

where each index i∈C = [1,n] represents a location of the program, and each function
Φi is a continuous function from Ln to L. L is the abstract lattice of program properties.
Each function Φi computes the property holding at i after one program step executed.
Applying the equations iteratively therefore computes the solution eventually, but is in-
efficient [Bou93]. A well-established speed-up technique consists of widening [CC77],
where some equations for xi are replaced with xi = xi OΦi(x1, . . . ,xn), operator O being
a safe approximation of the least upper bound such that the iteration strategy eventually
terminates. For optimal performance, widening operators should be tuned for a specific
iteration strategy [Bou93].

In graph-free abstract interpretation [Moh02], the properties xi at each program loca-
tion i are represented by an abstract state, representing a set of concrete states S. Compu-

64 Chapter 6. Combined Static and Dynamic Analysis

tation of these properties from the abstract state is quite straightforward and can be done
uniformly for all locations, by using a property predicate P:

x1 = P(S1)
...

xn = P(Sn)

The central problem is computation of the fix point of all abstract states Si:
S1 = absexec(1,S1)

...
Sn = absexec(n,Sn)

Since this technique already uses an execution environment, control flow structures
are evaluated correctly and efficiently [Moh02]. Whenever a new abstract state S′i is com-
puted, the effects of the instruction at i are calculated based on the semantics of the ab-
stract domain: S′i = absexec(i,Si). The difference to dynamic execution therefore lies in
the nature of an abstract state Si which can represent several concrete states {s j, . . . ,sk},
some of them possibly unreachable in real execution. Function absexec may also over-
approximate its result S′i, which can be compared to widening as described in Section 6.4.

6.2.2 Separation of control flow and bytecode semantics

The fix point of all possible program behaviors is calculated by iterating over the set of all
reachable abstract program states. In JNuke, iteration over the program state space is sep-
arated from analysis logics. A generic control flow module controls symbolic execution
of instructions, while the analysis algorithm deals with the representation of (abstract)
data and the semantics of the analysis. The control flow module implements a variant of
priority queue iteration [HDT87], executing a full path of computation as long as succes-
sor states have not been visited before, without storing the flow graph [Moh02]. Abstract
states S as used in this algorithm refer to a set of program states at a single location l. A
single abstract state at l thus usually represents a set of concrete states at that location.

 − merge with state queue

− updates of abstract state

− verification of program properties

1. get analysis state at next instruction

2. run analysis algorithm

Analysis algorithm (specific)

3. for control flow,

Control flow (generic)

 − clone state for each new target

Figure 6.2: Separation of control flow and analysis algorithm.

6.2. Static Analysis in JNuke 65

Figure 6.2 shows the principle of state space exploration: The generic control flow
module first chooses an instruction to be executed from a set of unvisited abstract states.
It then runs the specific analysis algorithm on that unvisited abstract state. That algorithm
updates its abstract state and verifies the properties of interest. After evaluation of the
current instruction, the control flow module adds all valid successor states to the queue
of states to visit, avoiding duplicates by keeping a set of seen states. When encountering
a branch instruction such as switch, all possible successors are added to the state space.
Furthermore, each possible exception target is also added to the states that have to be
explored.

It is up to the specific analysis algorithm to model data values. At the time of writing,
the block-local atomicity analysis for stale values [ABH04] is implemented. This analysis
tracks the state of each register (whether it is shared and therefore possibly stale) and
includes a simple approximation of lock identities (pointer aliasing [WR99]). It does not
require any further information about the state of variables, and thus chooses to execute
every branch target. Due to the limited number of possible states for each register, the
analysis converges very quickly.

6.2.3 Optimized state space management

After the specific algorithm has calculated the outcome of the current abstract state, the
control flow algorithm evaluates all possible successor instructions. To achieve this, the
current abstract state is cloned for each new possible successor state. The control flow
module then adds this state to the queue of states to visit. This corresponds to a ba-
sic model-checking algorithm [Hol91] but is not the most efficient way to perform static
analysis for software. The observation was that a lot of states were stored and then imme-
diately re-fetched in the next cycle of the main loop. This is because many instructions
in Java do not affect control flow. Therefore the above algorithm from Figure 6.2 was
modified to only store a state if (a) it generates multiple successor states or (b) another
state with the same program counter had been visited before. This has the effect that the
major part of a method is executed “linearly” without storing the current state. Only if a
branch instruction occurs, the state is cloned and stored.

The reason why this optimization works well is that many Java bytecode instructions
do not affect control flow. Therefore our algorithm does not store the current state if a
unique immediate successor instruction is eligible. A state is only stored if it is target of
a branch instruction. This reduces memory usage [Moh02] but may visit a state twice:
If an instruction ib is the target of a backward jump, such as in a while loop, it is only
recognized as such when the branch instruction is visited, which usually occurs after ib
has been visited before. However, this overhead is small since it only occurs during the
first iteration. As an example, assume some execution visits states 1 – 5 and then branches
back to state 3. No state is stored until state 5 is reached. The current abstract state at 5
is stored since its code consists of a branch instruction. States 3 and 4 are then re-visited
because the algorithm has not stored them during its first iteration. During the second
iteration, state 3 is stored because it is now known to be the target of a backward jump.
Therefore, if the abstract program state at 3 does not change during future loop iterations,
that state is not re-visited anymore.

66 Chapter 6. Combined Static and Dynamic Analysis

6.3 Run-time verification in JNuke

JNuke implements a virtual machine that can execute the full set of Java bytecode instruc-
tions [LY99] and therefore any Java program given an implementation of the native code
used by it. An application programming interface (API) allows event listeners to connect
to any action of interest and query the VM about its internal state, thus implementing any
analysis algorithm of choice.

algorithm

Bytecode

Run−time verification

RV API

Virtual Machine

Figure 6.3: Run-time verification in JNuke.

Prior to execution, the class loader transforms the Java bytecode into a more ab-
stract, RISC-like version containing only 27 instructions, which is then transformed into
a register-based version [AB05b]. Execution of the program generates a series of events,
denoted by an event trace. During execution, the run-time verification API (RV API)
allows event listeners to capture this event trace. Such listeners are used to implement
scheduling policies and run-time verification algorithms. The algorithm is responsible to
copy data it needs for later investigation, as the VM is not directly affected by the listen-
ers and thus may choose to free data not used anymore. Figure 6.3 shows an overview
of the JNuke VM and how a run-time verification algorithm can be executed by callback
functions in the VM. For simplicity, the figure omits the fact that some communication
from the RV algorithm back to the VM actually occurs in the presence of garbage collec-
tion. In such a situation, the RV algorithm must instruct the VM to suppress collection
of data it is still using, in order to prevent access to memory locations that are already
freed or reallocated for other data [Far04]. Such a protection applies to all algorithms that
use references to identify data. This chapter focuses on generic analysis, while Chapter 8
describes the JNuke VM and its RV API in more detail.

6.4 Generic Analysis Algorithms

The goal of this extension to JNuke was to be able to use generic analysis algorithms.
These algorithms should work equally in both a static environment (using abstract inter-
pretation) and a dynamic environment (using run-time verification). The problem is that

6.4. Generic Analysis Algorithms 67

the environments are quite different: the VM offers a single fully detailed state. Abstract
interpretation [CC77], on the other hand, deals with sets of states, each state containing
imprecise information that represents several concrete states. The challenge was to rec-
oncile the differences between these two worlds and factor out the common parts of the
algorithm.

Run−time Verification Static Analysis

algorithm

Bytecode

Run−time verification

RV API

Virtual Machine Control flow

Static analysis

iterator (generic)

algorithm

Bytecode

Figure 6.4: Classical approaches duplicate the analysis algorithm for the dynamic and
static case.

Figure 6.4 illustrates the problem: The analysis algorithm is duplicated for both anal-
ysis scenarios. Much genericity and flexibility is already gained by utilizing a generic
observer-based run-time verification interface [ABG+03] and a generic iteration module
which analyzes control flow [AB05a]. However, the final property-specific part still has
to be written twice, adapted to each scenario. This is even though the analysis clearly
represents the same rules. The goal is therefore to have a generic analysis. The design
that allows to achieve this is the key contribution of this chapter.

A generic analysis represents a single program state or a set of program states at a
single program location. It also embodies a number of event handlers that model the
semantics of bytecode operations. Both static analysis and run-time analysis trigger an
intermediate layer that evaluates the events. The environment hides its actual nature (static
or dynamic) from the generic algorithm and maintains a representation of the program
state that is suitably detailed.

Figure 6.5 shows the principle. Run-time verification is driven by a trace, a series
of events e emitted by the run-time verification API. An event represents method entry
or exit, or execution of an instruction at location l. Conventional run-time analysis ana-
lyzes these events directly. The dynamic environment, on the other hand, uses the event
information to maintain a context c of algorithm-specific data before relaying the event to
the generic analysis. This context is used to maintain state information s that cannot be
updated uniformly for the static and dynamic case. It is updated similarly by the static
environment, which also receives events e, determining that successor states of abstracts
states at l are to be computed.

68 Chapter 6. Combined Static and Dynamic Analysis

Context

e

e
Bytecode

e

e

Dynamic

s | S

environment

SA (Iteration)

Virtual Machine

RV API

S

s

Generic
analysis

Static
environment

Figure 6.5: Running generic analysis algorithms in a static or dynamic environment.

The key difference for the static environment is that its updates to c concern sets
of states S. Sets of states are also stored in components used by the generic algorithm.
Operation on states (such as comparisons) are performed through delegation to component
members. Therefore the “true nature” of state components, whether they embody single
concrete states or sets of abstract states, is transparent to the generic analysis. It can thus
be used statically or dynamically.

Existing work in software model checking by the Java PathFinder (JPF) project also
concerned the relation between abstract and concrete program states: Their way of obtain-
ing a feasible counter-example trace is by using only deterministic choices during state
space exploration [PDV03]. This technique corresponds to reducing a set of (abstract)
states to a concrete state.

However, property verification algorithms as in run-time verification have so far not
been applied to the resulting concrete states. This is because in the JPF/Bandera tool
chain, the counter-example trace is already known to be concrete at that stage. Instead,
the counter-example trace is used for abstraction refinement [PDV03].

In our generic analysis, the abstract domain is chosen based on the features required
to evaluate given properties. Both the domain and the properties are implemented as an
observer algorithm in JNuke. Future algorithms may include an interpreter for logics such
as LTL [Pnu77]. Interpretation of events with respect to temporal properties would then
be encoded in the generic analysis while event generation would be implemented by the
static and dynamic environment, respectively.

6.4.1 Context data

Context data c has to be applicable to static and dynamic analysis. The dynamic envi-
ronment maintains a single (current) context c while the static one maintains one context
per location, cl . In a static environment, certain data may not be defined precisely; for
instance, in a field access, the static environment often cannot provide a pointer to the
instance of which the field was accessed. There are two ways to deal with this problem:
The generic analysis must not require such data, or the static layer must insert artificial
values.

6.4. Generic Analysis Algorithms 69

The latter was used for modeling static lock sets, where the static layer uses symbolic
IDs to distinguish locks, rather than their pointers. On each lock acquisition, the lock set
in cl is updated with a new such lock ID. The generic analysis may only read locks or
perform non-destructive, abstract tests, such as testing set intersections for emptiness.

Due to polymorphism (in the implementation) of the actual set content, the generic
analysis therefore never becomes aware of the true nature of the locks. The environment
also maintains contextual information for each lock, such as the line number where it
was acquired. Again, polymorphism allows lookup from locks to line numbers without
revealing the content of the lock.

In general, the environment must create suitable representations of state information
used by the generic analysis. The generic analysis only operates on such data. The en-
vironment thus acts as a proxy [GHJV95] for the virtual machine, if present, or replaces
that data with appropriate facsimiles in static analysis. These facsimiles have to be con-
ceptually isomorphic with respect to concrete values obtained during run-time analysis.
Distinct objects have to map to distinct representations. Of course, true isomorphism is
only achieved if pointer analysis is absolutely accurate.

The proxy objects implemented so far incur little overhead but are rather specialized
and may only be re-used if another algorithm has equivalent requirements. For example,
if the alias information of two locks is not known, one can either assume they are equal
or different. The conservative approximation of a lock set depends on the algorithm used.
A static version of a low-level data race algorithm [SBN+97] can safely assume that all
locks are different, but this will likely lead to many false positives since the intersection
of different lock sets is always going to be empty in such cases. The same assumption
holds for the high-level data race [AHB03] and block-local atomicity [ABH04] algo-
rithms. Other algorithms may have the reverse requirement, i.e., two locks of which the
alias information is unknown have to be treated as equal locks.

Context data Type Content for static analysis Content for dynamic analysis
Current Integer Integer reflecting approximated True count of the total
monitor non-reentrant lock acquisitions number of lock acquisitions
block (ID) so far
Registers Array Abstract entries containing Shadow values reflecting
(“stack only information about sets property of interest (exact
frame”) of possible register properties status of each register)
Lock set Set Integer descriptors for each lock True lock set
Lock context Map Map of integers to locations Map of locks to locations

Table 6.1: Context differences for the static and dynamic block-local atomicity analysis.

The generic block-local atomicity algorithm [ABH04] has the property that it is agnos-
tic to certain concrete values (such as the values of integers) but needs relatively precise
information about others (locks). It thus provides a good example of a generic analysis
algorithm, as other ones are expected to show similar differences. Table 6.1 gives an
overview of the differences between the static and dynamic versions of the algorithm.

70 Chapter 6. Combined Static and Dynamic Analysis

void atGetField(Bytecode bc) {
 /* Compute effect of GetField instruction w.r.t. stale values. */
 /* Potential data races with the reference to the object instance
 * are discovered by the Eraser lock set algorithm, which monitors
 * individual field accesses. */

 /* Check block-local atomicity property for arguments consumed by
 * this instruction */
 checkRegisters(bc);
 StackElement result = newData(); /* possibly shared, see below */
 localvars.set(bc.getResultRegister(), result); /* store result */
}

StackElement newData() {
 /* Generic case where new data is obtained from a possibly shared
 * field. If data is shared, set correct monitorBlock etc. */

 StackElement data = new StackElement(); /* unshared by default */
 if (context.getLockSet().count() > 0) {
 data.setShared(true);
 data.setMonitorBlock(context.getCurrentMonitorBlock()));
 }
 return data;
}

void checkRegisters(Bytecode bc) {
 /* Check each local variable for local atomicity violation. */

 for (int i = 0; i < bc.getNumRegs(); i++) {
 int idx = bc.getRegisterIndex(i);
 if (registerIsLocalVariable(idx)) {
 StackElement data = localvars.get(idx);
 if (data.getShared() &&
 (data.getMonitorBlock() != getCurrentMonitorBlock()))
 /* report error */
 }
 }
}

Figure 6.6: Excerpt of the block-local atomicity algorithm (simplified).

6.4. Generic Analysis Algorithms 71

In the block-local atomicity algorithm, the static environment approximates the lock
set, representing it with proxy objects; the dynamic environment simply queries the VM.
The property check itself is completely independent of the environment, as it refers to
“shadow data” which reflects the status of each register, i.e., whether their value is stale
or not. In the static case, the semantics of sets of states are reflected by approximating the
set of all possible values in the operations on registers. Figure 6.6 shows an excerpt of
this generic algorithm. Its code has been simplified for clarity, using Java-like syntax and
ignoring registers with a size of 64 bits. It contains the essence of the idea outlined above:
Class context stores the lock set, which is updated by the environment and queried by
context.getLockSet(). Context data is therefore updated with each evaluation step,
and queried on demand. A static environment approximates the lock set using proxy ob-
jects. Note that the approximation can be made conservative if pointer alias information
is imprecise [ABH04]. The dynamic environment simply queries the VM to obtain the
real, concrete lock set. The property check itself is completely independent of the envi-
ronment, as localvars refers to “shadow data” which reflects the status of reach register,
i.e., whether their value is stale or not [ABH04]. In the static case, the semantics of sets
of states are reflected by approximating the set of all possible values in the operations on
localvars (such as get and set shown here). Therefore the generic algorithm performs
the same operations on concrete states as on sets of abstract states.

6.4.2 Interfacing run-time verification

Many run-time verification algorithms, such as Eraser [SBN+97], are context-sensitive
and not thread-local. Such an algorithm receives events from all threads and methods. A
run-time variant of such an algorithm therefore requires only a single instance of object
holding analysis data. In such a case, creating a static variant is less interesting since the
dynamic algorithm, if used with a good test suite, yields excellent results [BDG+04].

Conversely, a context-insensitive (method-local), thread-local property is more ame-
nable to static analysis, but actually makes run-time analysis more difficult. This is
counter-intuitive because such properties are conceptually simpler. The block-local atom-
icity algorithm serves as an example here, being both thread-local and method-local. For
run-time verification, a new instance of this analysis has to be created on each method
call and thread. Instances of analysis algorithms then correspond to stack frames on the
program stack.

Figure 6.7 shows a UML diagram [RJB98] depicting how the dynamic environment
creates instances of an analysis algorithm as needed. The first layer, class thread split-
ter, splits events according to their thread ID, creating a separate instance of class dy-
namic analysis as needed, one for each thread. The second layer, driven by class dynamic
analysis, creates a new instance of class analysis algorithm for each stack frame, at the
beginning of each method call.

Each new analysis instance is completely independent of any others, except for a
shared, global context (such as lock sets, which are kept throughout method calls) and
return values of method calls. The dynamic environment maintains the shared context
and relays return values of method calls to the analysis instance corresponding to the

72 Chapter 6. Combined Static and Dynamic Analysis

DynamicAnalysis

AnalysisAlgorithm

RV API

ThreadSplitter

Dynamic
environment

Figure 6.7: Interfacing run-time verification with a generic analysis algorithm.

caller. In this case, lock set information is already available by the RV API and does not
have to be managed separately. Other global data can be managed by an extra listener
that evaluates events before relaying them to class thread splitter. The thread-specific
instances of dynamic analysis deal with communicating return values from an “inner”
instance, corresponding to the callee, to the “outer” one, referring to the caller.

6.4.3 Interfacing static analysis

Static analysis calculates the set of all possible program states. Branches (test nodes) are
treated non-derministically by considering all possible successors and copying (cloning)
the current state for each outcome. Junction nodes denote points where control flow of
several predecessor nodes merges [CC77]. In this chapter, the operation that creates a
new set of possible states at a junction node will be called merging.

The key is that the generic algorithm is not aware that static analysis requires copying
and merging operations. To achieve this, the capabilities of the generic analysis must be
extended with the Mergeable interface. The extended class inherits the algorithm and
delegates cloning and merging states to the components of a state, as shown in Figure 6.8.

RecursionMergeable

Static
StaticAnalysisenvironment ControlFlow

AnalysisAlgorithm

Figure 6.8: Interfacing static analysis with a generic analysis algorithm.

By merging states, sets of states are generated. Computations of state components
must therefore support set semantics for static analysis. What is important is that the

6.4. Generic Analysis Algorithms 73

analysis logics are unchanged: the generic algorithm is still unaware that cloning, merg-
ing, and set operations happen “behind the scenes” and implements its property checking
as if only a single state existed. In some cases, static analysis may converge slowly; con-
vergence is improved by using a widening operator [CC77] which can be implemented
by the merge operation.1

In dynamic analysis, only one program location l is active (per thread), corresponding
to a single program state s. This current state s is updated and the result assigned to suc-
cessor state s′; the original state s is then discarded. In static analysis, abstract states Si
at all program locations i are being analyzed. The abstract states are analyzed in an itera-
tive way, and thus the abstract states at each program location are retained until iteration
terminates. Each abstract state Si is represented by an instance of the generic algorithm.
The type of operation performed to model the semantics of each instruction remains the
same for static and dynamic analysis.

In our framework, the successor states of one set Si are calculated in each iteration
step. The choice of i is implemented by a control flow module, as described in Sec-
tion 6.2. This covers intra-method analysis, leaving open the problem of method calls.
It is desirable that the entire statically reachable call graph is traversed so each reachable
method in a program is analyzed. A recursion class solves this challenge. It expands
a method call by starting a new instance of the control flow class. Figure 6.8 shows an
overview of these connections. The recursion class starts with the main method and cre-
ates a new instance of the control flow class for each called method. The control flow
class performs intra-method analysis and delegates method calls back to the recursion
class, which also handles multi-threading by exploring the behavior of threads when en-
countering a thread start point, e.g. a run method. This way, the algorithm explores the
behavior of all threads.

This leaves open the problem of self-recursion or mutual recursion. It is not possible
to model the effects of a recursive method that calls another method higher up in its stack
frame using this algorithm. This is because the precise effect of that method call depends
on itself.2 Therefore the static analysis class has to implement a summary method, which
models method calls without requiring knowledge about the effects of a method. Such a
summary method can conservatively assume the worst possible outcome or provide more
precise information.

The result of each evaluated method call is stored as a summary. Context-sensitivity is
modeled by evaluating each method call once for each possible call context. For a context-
insensitive analysis, an empty call context is assumed. Context sensitivity therefore does
not directly have an effect on the fact that each method call requires a new instance of
control flow and analysis objects. However, once summaries are available, their informa-
tion will act as a cache. For context-insensitive analysis, the empty call context always
matches for a given method, and thus each method call is only evaluated once.

1In our block-local atomicity analysis, the only case where widening is applied is the merging of two
shared data elements from different monitor blocks. The widening takes one of the two block IDs and
discards the other one. This has no effect on the analysis result but discards one possible error trace, thus
always reducing the set of error traces to a singleton set.

2A bounded expansion of recursion is possible, approximating the unbounded behavior.

74 Chapter 6. Combined Static and Dynamic Analysis

In principle, every analysis algorithm can be split up into a generic algorithm and
its environment. Most data flow problems can be seen as set-theoretic or closure prob-
lems [MR90] and their nature will affect how the merge operation is implemented. Pre-
cision of the analysis will depend on the approximation of pointer aliasing [WR99]. If
accurate information about data values is needed or when environment-specific optimiza-
tions are called for, the generic part of an algorithm may become rather small compared to
the size of its (static or dynamic) environment. However, with the block-local atomicity
algorithm, it has been our experience that the generic algorithm does indeed embody the
entire logics and thus is not just a negligeable part of the whole. Notably, adapting a static
algorithm for dynamic analysis is greatly facilitated with our approach.

6.5 Summary

Static and dynamic analysis algorithms can be abstracted to a generic version, which can
be run in a static or dynamic environment. By using a graph-free analysis, static analysis
remains close enough to program execution such that the algorithmic part can be re-used
for dynamic analysis. The environment encapsulates the differences between these two
scenarios, making them completely transparent in the evaluation of the generic algorithm.
This way, the entire analysis logics and data structures can be re-used, which allows for a
comparison of the two technologies with respect to precision and efficiency. Experiments
with JNuke, summarized in Section 9.6, have shown that the static variant of a stale-value
detection algorithm is significantly faster but less precise than the dynamic version. This
underlines the benefit of using static information in order to reduce the overhead of run-
time analysis. The fact that both types of analysis share the algorithm also allows for
combining them in a tool that applies run-time verification to test cases resulting from
static analysis reports.

7
Bytecode Inlining and

Abstraction

In Java bytecode, intra-method subroutines are employed to represent code in “finally”
blocks. The use of such polymorphic subroutines within a method makes bytecode anal-
ysis very difficult. Fortunately, such subroutines can be eliminated through recompilation
or inlining. Inlining is the obvious choice since it does not require changing compilers or
access to the source code. It also allows transformation of legacy bytecode. However, the
combination of nested, non-contiguous subroutines with overlapping exception handlers
poses a difficult challenge. This chapter presents an algorithm that successfully solves
all these problems without producing superfluous instructions. Previous algorithms were
either not published and verified, or had shortcomings such as generating excess instruc-
tions. Furthermore, inlining can be combined with bytecode simplification, using abstract
bytecode. We show how this abstration is extended to the full set of instructions and how
it simplifies static and dynamic analysis.

Section 7.1 shows problems with existing Java bytecode using subroutines. Sec-
tion 7.2 gives an overview of Java compilation and treatment of exception handlers. The
inlining algorithm is given in Section 7.3. Section 7.4 describes conversion to abstract,
register-based bytecode. Section 7.5 describes differences between our work and related
projects, and Section 7.6 summarizes this chapter.

7.1 Problems with Bytecode

In general, a program written in the Java programing language is compiled to Java byte-
code, a machine-readable format which can be loaded and executed by a Java Virtual
Machine (VM) [LY99]. Prior to execution, such bytecode must pass a well-formedness
test called bytecode verification, which should allow a regular Java program to pass but
also has to ensure that malicious bytecode, which could circumvent security measures,
cannot be executed. The Java programming language includes methods, which are rep-
resented as such in bytecode. However, bytecode also contains subroutines, functions
inside the scope of a method. A special jump-to-subroutine (jsr) instruction saves the
return address on the stack. A return-from-subroutine (ret) instruction returns from a
subroutine, taking a register containing the return address as an argument. This artefact
was originally designed to save space for bytecode, but it has three unfortunate effects:

75

76 Chapter 7. Bytecode Inlining and Abstraction

1. It introduces functionality not directly present in the source language.

2. The asymmetry of storing the return address on the stack with jsr and retrieving it
from a register (rather than the stack) greatly complicates bytecode analysis.

3. A subroutine may read and write local variables that are visible within the entire
method, requiring distinction of different calling contexts.

The second and third effect have been observed by Stärk et al. [SSB01], giving numer-
ous examples that could not be handled by Sun’s bytecode verifier for several years. The
addition of subroutines makes bytecode verification much more complex, as the verifier
has to ensure that no ret instruction returns to an incorrect address, which would com-
promise Java security [LY99, SSB01]. Therefore subroutine elimination is a step towards
simplication of bytecode, which can be used in future JVMs, allowing them to dispense
with the challenge of verifying subroutines.

Correct elimination of subroutines can be very difficult, particularly with nested sub-
routines, as shall be shown in this chapter. Furthermore, considering the entire bytecode
instruction set makes for very cumbersome analyzers, because it encompasses over 200
instructions, many of which are variants of a base instruction with its main parameter
hard-coded for space optimization [LY99]. Therefore we introduce a register-based ver-
sion of abstract bytecode which is derived from [SSB01]. By introducing registers, we
eliminate the problem of not having explicit instruction arguments, simplifying analysis
further.

Bytecode was the chosen input format because it allows for verification of Java pro-
grams without requiring their source code. Recently, compilers for other programming
languages have been developed which use Java bytecode as their output format. This
includes jgnat for Ada [Bri99] and kawa for Scheme [Bot98]. However, bytecode sub-
routines and its a very large, stack-based instruction set make static and dynamic analysis
difficult. JNuke eliminates subroutines and simplifies the bytecode instruction set.

7.2 Java Compilation with Bytecode Subroutines

7.2.1 Java Bytecode

Java bytecode [LY99] is an assembler-like language, consisting of instructions that can
transfer control to another instruction, access local variables and manipulate a (fixed-
height) stack. Each instruction has a unique address or code index. Table 7.1 describes
the instructions referred to in this chapter. In this table, r refers to a register or local
variable, j to a (possibly negative) integer value, and a to an address. The instruction at
that address a will be denoted as code(a), while the reverse of that function, index(ins)
returns the address of an instruction.

The maximal height of the stack is determined at compile time. The type of instruction
argument has to be correct. Register indices must lie within statically determined bounds.
These conditions are ensured by any well-behaved Java compiler and have to be verified

7.2. Java Compilation with Bytecode Subroutines 77

Instruction Description
aload r Pushes a reference or an address from register r onto the stack.
iload r Pushes an integer from register r onto the stack.
astore r Removes the top stack element, a reference or address, storing it in r.
istore r Removes the top stack element, an integer, storing it in register r.
goto a Transfers control to the instruction at a.
iinc r j Increments register r by j.
ifne a Removes integer j from the stack; if j is not 0, transfers control to a.
jsr a Pushes the successor of the current address onto the stack

and transfers control to a.
ret r Loads an address a from register r and transfers control to a.
athrow Removes the top stack element, a reference,

“throwing” it as an exception to the caller.
return Returns from the current method, discarding stack and local variables.

Table 7.1: A subset of Java bytecode instructions.

by the class loader of the Java Virtual Machine (VM) during bytecode verification [LY99],
the full scope of which is not discussed here.

7.2.2 Exception Handlers and Finally Blocks

The Java language contains exceptions, constructs typically used to signal error condi-
tions. An exception supercedes normal control flow, creates a new exception object e on
the stack and transfers control to an exception handler. The range within which an excep-
tion can be “caught” is specified by a try block. If such an exception e occurs at run-time,
execution will continue at the corresponding catch block, if present, which deals with the
exceptional program behavior. An optional finally block is executed whether an excep-
tion occurs or not, but always after execution of the try and catch blocks. Therefore,
the presence of a finally block creates a dualistic scenario: in one case, an exception
occurs, which requires both the catch and finally blocks to be executed. In the ab-
sence of an exception, or if an exception occurs that is not within the type specification of
the catch block, only the finally block has to be executed. Because of this, a default
exception handler is required to catch all exceptions that are not caught manually.

In the following text, lower case letters denote single values. Monospaced capital
letters such as C will denote control transfer targets (statically known). Capitals in italics
such as I denote sets or ranges of values. In Java bytecode, an exception handler h(t, I,C)
is defined by its type t, range I, which is an interval [iα, iω],1 and handler code at C.
Whenever an exception of type t or its subtypes occurs within I, control is transferred to
C. If several handlers are eligible for range I, the first matching handler is chosen. If, for

1In actual Java class files, handler ranges are defined as [iα, iω[and do not include the last index of the
interval, iω. This is only an implementation issue. For simplicity, this chapter assumes that handler ranges
are converted to reflect the above definition.

78 Chapter 7. Bytecode Inlining and Abstraction

an instruction index a, there exists a handler h where a lies within its range I, we say that
h protects a: protects(h,a)↔ a ∈ I(h).

As specified by the Java language [GJSB00], a finally block at F always has to
be executed, whether an exception occurs or not. This is achieved by using an un-
specified type tany for a default handler hd(tany, Id,F). If a catch block is present in a
try/catch/finally construct, the exception handler h′(t ′, I′,C′) specified by the catch
clause takes priority over default handler hd . Handler code at C′ is only executed when
an exception compatible with type t ′ is thrown. In that case, after executing the catch
block, a goto instruction is typically used to jump to the finally block at F. Because
this mechanism is a straightforward augmentation of catching any exception by hd , this
causes no new problems for subroutine inlining and verification. Hence catch blocks are
not discussed further in this chapter.

7.2.3 Finally Blocks and Subroutines

A finally block can be executed in two modes: either an exception terminated its try
block prematurely, or no exception was thrown. The only difference is therefore the
“context” in which the block executes: it possibly has to handle an exception e. This lead
to the idea of sharing the common code of a finally block. Thus a Java compiler typically
implements finally blocks using subroutines.2 A subroutine S is a function-like block
of code. In this chapter, S will refer to the entire subroutine while S denotes the address
of the first instruction of S. A subroutine can be called by a special jump-to-subroutine
instruction jsr, which pushes the successor of the current address onto the stack. The
subroutine first has to store that address in a register r, from which it is later retrieved by a
return-from-subroutine instruction ret. Register r cannot be used for computations. Java
compilers normally transform the entire finally block into a subroutine. This subroutine
is called whenever needed: after normal execution of the try block, after exceptions have
been taken care of with catch, or when an uncaught exception occurs.

The example in Figure 7.1 illustrates this. Range R which handler h(t,R,C) protects
is marked by a vertical line. The handler code at C first stores the exception reference in
a local variable e. It then calls the finally block at S. After executing S, the exception
reference is loaded from variable e and thrown to the caller using instruction athrow. If
no exception occurs, S is called after the try block, before continuing execution at X.
Note that the subroutine block is inside the entire method, requiring a goto instruction to
continue execution at X, after the try block. In the control flow graph, S can be treated
as a simple block of code which can be called from the top level of the method (main) or
exception handler code C. In the first case, S will return (with ret) to instruction goto X,
otherwise to the second part of the handler ending with athrow.

2Sun’s J2SE compilers, version 1.4.2 and later, compile finally blocks without subroutines. However,
in order to ensure backward compatibility with legacy bytecode, the bytecode verifier still has to deal with
the complexity of allowing for correct subroutines. This underlines the need for subroutine elimination, as
commercial libraries often do not use the latest available compiler but can still be used in conjunction with
programs compiled by them. This chapter lays the groundwork for inlining subroutines in legacy bytecode,
allowing bytecode verifiers in future VMs to ignore this problem.

7.2. Java Compilation with Bytecode Subroutines 79

int m(int i) {
 try {
 i++;
 } finally {
 i--;
 }
 return i;
}

 | iinc i 1
 |
(h) | jsr S
 |
 | goto X
 C: astore e
 jsr S
 aload e
 athrow
 S: astore r
 iinc i -1
 ret r
 X: iload i
 ireturn

main

goto X

S

C

C: athrow

X

return

Figure 7.1: A simple finally block, its bytecode and its control flow graph.

7.2.4 Nested Subroutines

The example in Figure 7.2 from [SSB01, Chapter 16] illustrates difficulties when dealing
with subroutines. It contains a nested finally block with a break statement.3 The com-
piler transforms this into two exception handlers h1(t1,R1,C1) and h2(t2,R2,C2) using two
subroutines S1 and S2, where it is possible to return directly to the enclosing subroutine
from the inner subroutine, without executing the ret statement belonging to the inner
subroutine. Letter e denotes a register holding a reference to an exception, r a register
holding the return address of a subroutine call.

The corresponding control flow graph in Figure 7.3 is quite complex. Its two exception
handlers h1 and h2 contain one finally block each. The first finally block contains
a while loop with test W and loop body L . If the loop test fails, S1 returns via X to
the successor of its caller. This may be the second instruction, or code after C1, which
throws exception e1 after having executed S1. Loop body L contains in inner try/finally
statement, compiled into exception handler h2. Execution of L results in calling inner
finally block at S2, again prior to the return statement. This block will test b and
break to the outer subroutine, which is represented by connection S2 → X. If b was false,
the inner subroutine would return normally using its ret instruction at Y. There, control
will return to the inner return statement within L, which then returns from the method.
Both try blocks are also protected by default exception handlers, where the control flow
is similar. The main difference is that an exception will be thrown rather than a value
returned.

3The body of the method does not contain any semantically relevant operations for simplicity. The
resulting code, compiled by Sun’s J2SE 1.3 compiler, includes a handler protecting a return statement,
even though that instruction cannot throw an exception. The handler may come into effect if the try block
contains additional instructions. Therefore it is preserved in this example.

80 Chapter 7. Bytecode Inlining and Abstraction

static void m(boolean b) {
 try {
 return;
 } finally {
 while (b) {
 try {
 return;
 } finally {
 if (b) break;
 }
 }
 }
}

 | jsr S1
(h1) |
 | return
 C1: astore e1
 jsr S1
 aload e1
 athrow
 S1: astore r1
 goto W
 | L: jsr S2
(h2) |
 | return
 C2: astore e2
 jsr S2
 aload e2
 athrow
 S2: astore r2
 iload b
 ifne X
 Y: ret r2
 W: iload b
 ifne L
 X: ret r1

Figure 7.2: Breaking out of a subroutine to an enclosing subroutine.

7.3 Inlining Java Subroutines

Once all subroutines with their boundaries have been found, they can be inlined. Inlining
usually increases the size of a program only sightly [Fre98] but significantly reduces the
complexity of data flow analysis [Fre98, SSB01].

Table 7.2 defines potential successors of all bytecode instructions covered here. With-
out loss of generality, it is assumed that instructions are numbered consecutively. Thus
pc +1 refers to the successor of the current instruction, pc−1 to its predecessor. Condi-
tional branches (ifne) are treated non-deterministically. The jsr instruction is modeled
to have two successors because control returns to pc + 1 after execution of the subrou-
tine at a. Certain instructions leave the scope of the current method (return, athrow) or
continue at a special address (ret).

Instruction (at address pc) Addresses of
possible successors

aload, iload, astore, istore, iinc {pc+1}
goto a {a}
ifne a, jsr a {a, pc+1}
ret, athrow, return {}

Table 7.2: Possible successors of Java bytecode instructions.

7.3. Inlining Java Subroutines 81

C1: athrow C2: athrowmain: returnS1: return

main

S1

W

L

X

S2

Y

C1

C2

Figure 7.3: Control flow graph of nested subroutines.

82 Chapter 7. Bytecode Inlining and Abstraction

The first instruction of a method is assumed to have code index 0. A code index i
is reachable if there exists a sequence of successors from instruction 0 to i. S is a sub-
routine iff i is reachable and code(i) is jsr S. A code index X is a possible return from
a subroutine if code(S) is astore r, code(X) is ret r, and X must be reachable from S

on a path that does not use an additional astore r instruction. A code index i belongs
to subroutine S, i ∈ S, if there exists a possible return X from that subroutine S such that
S ≤ i ≤ X. The end of a subroutine S, eos(S), is the highest index belonging to S. Note
that this definition avoids the semantics of nested exception handler ranges, thus covering
each nested subroutine individually.

For the purpose of inlining, we also need the following definitions: The body of a
subroutine is the code which belongs to a subroutine S, where for each code index i,
S < i < eos(S) holds. This means the body does not include the first instruction, astore
r, and the last instruction, ret r. A subroutine S2 is nested in S1 if for each code index
i which belongs to S2, i ∈ S1 holds. From this, S1 < S2 and eos(S1) > eos(S2) follows.
Furthermore, code(S2 − 1) must be instruction goto eos(S2) + 1. A subroutine S1 is
dependent on a (possibly nested) subroutine S2, S1 ≺ S2, if there exists an instruction
jsr S2 which belongs to subroutine S1, where S2 6= S1. Dependencies are transitive.

A subroutine S1 which depends on S2 must be inlined after S2. When S1 is inlined
later, the calls to S2 within S1 have already been replaced by the body of S2. Other than
that, the order in which subroutines are inlined does not matter. During each inlining step,
all calls to one subroutine S are inlined.

7.3.1 Sufficient and Necessary Well-formedness Conditions

Java bytecode can only be inlined if certain well-formedness conditions hold. A set of
necessary conditions is given by the specification of bytecode verification, which includes
that subroutines must have a single entry point and that return addresses cannot be gen-
erated by means other than a jsr instruction [LY99]. Beyond these given conditions,
extra conditions have to hold such that a subroutine can be inlined. Note that it is not
possible that programs generated by a Java compiler violate these conditions, except for
a minor aspect concerning JDK 1.4, which is described below. Furthermore, artificially
generated, “malicious” bytecode that does not fulfill these well-formedness criteria will
likely be rejected by a bytecode verifier. Bytecode verification is in essence an undecid-
able problem, and thus verifiers only allow for a subset of all possible bytecode programs
to pass [LY99, SSB01].

One extra condition not described here arises from the current artificial size limit of
65536 bytes per method [LY99]. Other limitations are structural conditions that bytecode
has to fulfill. Given here is an abridged definition taken from [SSB01]:

Boundary. Each subroutine S must have an end eos(S).
If subroutine S does not have a ret statement, then all instances of jsr S can be
replaced with goto S, and no inlining is needed.

No recursion. A subroutine cannot call itself.

7.3. Inlining Java Subroutines 83

Correct nesting. Subroutines may not overlap:
@S1,S2 ·S1 < S2 < eos(S1) < eos(S2).

No mutual dependencies. If Si ≺ S j, there must be no dependencies such that S j ≺ Si.
Note this property is not affected by nesting.

Exception handler containment. If code C of a handler h(t,R,C) belongs to S, then its
entire range R must belong to S as well: ∀h(t,R,C),S · (C ∈ S → R⊆ S).

Handler range containment. If any i ∈ R of a handler h(t,R,C) belongs to S, then its
entire range R must belong to S: ∀h(t,R,C),S · (∃i ∈ R · i ∈ S → R⊆ S).

Subroutine containment in handler range.
If the entire range R of a handler h(t,R,C) belongs to S, then any instructions jsr S
must be within R: ∀h(t,R,C),S · (R⊆ S → (∀i · code(i) = jsrS→ i ∈ R)).

For the last six conditions, Figure 7.4 shows an example violating it. Existing Java com-
pilers do not violate them except as described in Subsection 7.3.5.

7.3.2 Control Transfer Targets

When inlining subroutines, the body of a subroutine S replaces each subroutine call jsr S.
This part of inlining is trivial, as shown by the example in Figure 7.5. The two inlined
copies of S which replace the jsr instructions are shown in bold face. Difficulties arise
with jump targets, which have to be updated after inlining. Inlining eliminates jsr and
ret instructions; therefore any jumps to these instructions are no longer valid.

Furthermore, there can be jumps inside a subroutine to an enclosing subroutine or the
top level of the code. Such a case is shown in Figure 7.6, which depicts the inlining of
the nested subroutines in Figure 7.2. Therefore, the inlining algorithm has to update jump
targets during several inlining steps and also to consider copies of instructions, for each
instance of a subroutine body that gets inlined.

The algorithm uses two code sets, the current set B and the new set B′. During each
inlining step, all instructions in B are moved and possibly duplicated, creating a new set
of instructions B′ which becomes input B of the next inlining step.

Each address in B must map onto an equivalent address B′. Each possible execution
(including exceptional behavior) must execute the same sequence of operations, excluding
jsr and ret, in B and B′. Code indices in B referring to jsr or ret instructions must
be mapped to equivalent indices in B′. The most straightforward solution is to update
all targets each time after inlining one instance of a given subroutine. This is certainly
correct, but also very inefficient, because it would require updating targets once for each
jsr instruction rather than each subroutine.

Instead, our algorithm inlines all instances of a subroutine in one step, with the inner-
most subroutines being inlined first. Instructions not belonging to the subroutine which
is being inlined and which are not a jsr S operation are copied over from B to B′. Each
occurrence of jsr S is replaced with the body of S. In order to update code addresses, the

84 Chapter 7. Bytecode Inlining and Abstraction

 S: astore r
 ...
 jsr S
 ...
 eos(S): ret r

 S1: astore r1
 ...
 S2: astore r2
 ...
eos(S1): ret r1
 ...
eos(S2): ret r2

No recursion. Correct nesting.

 S1: astore r1
 ...
 jsr S2
 ...
eos(S1): ret r1
 ...
 S2: astore r2
 ...
 jsr S1
 ...
eos(S2): ret r2

 | :
 |
 h | ...
 |
 | :
 ...
 S: astore r
 ...
 C:
 ...
 eos(S): ret r

No mutual dependencies. Exception handler
containment.

 | :
 |
 | ...
 |
 h | S: astore r
 |
 | ...
 |
 | :
 ...
 eos(S): ret r
 ...
 C:

 jsr S
 ...
 | :
 |
 | ...
 |
 h | S: astore r
 |
 | ...
 |
 eos|(S): ret r
 |
 | ...
 |
 | :

Handler range Subroutine containment
containment. in handler range.

Figure 7.4: Instruction sequences violating well-formedness conditions.

7.3. Inlining Java Subroutines 85

 | iinc i 1
 |
(h) | jsr S
 |
 | goto X
 C: astore e
 jsr S
 aload e
 athrow
 S: astore r
 iinc i -1
 ret r
 X: iload i
 ireturn

(h1) | iinc i 1
 iinc i -1
(h2) | goto X
 C: astore e
 iinc i -1
 aload e
 athrow
 X: iload i
 ireturn

Figure 7.5: Inlining a subroutine.

 | jsr S1
(h1) |
 | return
 C1: astore e1
 jsr S1
 aload e1
 athrow
 S1: astore r1
 goto W
 | L: jsr S2
(h2) |
 | return
 C2: astore e2
 jsr S2
 aload e2
 athrow
 S2: astore r2
 iload b
 ifne X
 Y: ret r2
 W: iload b
 ifne L
 X: ret r1

 | jsr S1
(h1) |
 | return
 C1: astore e1
 jsr S1
 aload e1
 athrow
 S1: astore r1
 goto W
 L: iload b
 ifne X
(h2) | return
 C2: astore e2
 iload b
 ifne X
 aload e2
 athrow
 W: iload b
 ifne L
 X: ret r1

Figure 7.6: Inlining a nested subroutine: Step 1.

86 Chapter 7. Bytecode Inlining and Abstraction

algorithm uses a mapping M, a relation I× I′ of code indices mapping an index i ∈ I to
a set of indices {i′0, i

′
1, . . . , i

′
k} ∈ I′. This relation, initially empty, records how an address

in B is mapped to one or several addresses in B′. Each time an instruction at index i is
moved or copied from the current code set B to the new code set B′ at index i′, i 7→ i′ is
added to the mapping.

The key to handling jumps to ins j, the jsr S instruction itself, and to insr, the ret in-
struction in the subroutine, is adding two extra entries to M. The first one is i j → i′0 where
i j = index(ins j) and i′0 = M(S), the index where the first instruction of the subroutine has
been mapped to. The second one is ir → i′r where ir = index(insr) and i′r = M(eos(S)+1),
the index of the first instruction after the inlined subroutine.

In the following discussion, a forward jump is a jump whose target code index is
greater than the code index of the instruction. Similarly, a backward jump is a jump
leading to a smaller code index. If bytecode fulfills the correctness criteria described
above, the correctness of the algorithm can be proved as follows:

• A target outside S is mapped to a single target and therefore trivially correct.

• A target in the body of S is mapped to several targets in the inlined subroutines S′,
S′′ etc., one for each jsr S in B. Let a jump instruction in B be at code index i and
its target at a. Given i′, the index of the jump instruction in B′, the nearest target in
the current mapping has to be chosen which still preserves the fact that a jump is
either a forward or backward jump.
For a forward jump, index mina′ ·(a 7→ a′ ∈M)∧ (a′ > i′) is the correct index. This
can be shown as follows: Address a is either outside S, in which case the code(a)
has not been duplicated and there is only one a′ ·a 7→ a′ ∈ M. If a is inside S, a′ is
necessarily the nearest target to i′ in that direction: The code at index a has been
copied to a′ during the inlining of S to S′. The first instruction of the inlined copy of
S′ is at index S′α and the last instruction is at S′ω. Since i belongs to S, S′α ≤ i′ ≤ S′ω
holds. No other code than S′ has been copied to positions inside that interval, and
S′α ≤ i′ < a′ ≤ S′ω holds because a belongs to S and the jump is a forward jump.
Any other copies of the instructions at a are either copied to an index a′′ < S′α, and
therefore a′′ < i′, or a′′ > S′ω, and therefore a′′ > a′. Backward jumps are treated
vice versa.

• A jump to a jsr S instruction in B indirectly executes code at S. Mapping it to the
S′α preserves the semantics.

• A jump to the last instruction in a subroutine will return to the successor of its
jsr S instruction. Therefore mapping the code index of the ret instruction to the
successor of the last inlined instruction of the body of S produces the same effect
in the inlined code. Note that there always exists an instruction following a jsr
instruction [LY99], such as return.

Two of these cases are shown in the second inlining step of the nested subroutine, shown
in Figure 7.7. In both inlined instances of S1, the outer subroutine, there is a jump to W

7.3. Inlining Java Subroutines 87

inside the subroutine and to X, the index of the ret instruction of S1. By inlining S1, both
code indices are mapped to two new indices, {W1,W2}, and {X1,X2}, respectively. The
semantics of jumps are preserved as described above.

 | jsr S1
(h1) |
 | return
 C1: astore e1
 jsr S1
 aload e1
 athrow
 S1: astore r1
 goto W
 L: iload b
 ifne X
(h2) | return
 C2: astore e2
 iload b
 ifne X
 aload e2
 athrow
 W: iload b
 ifne L
 X: ret r1

 goto W1
 L1: iload b
 ifne X1
(h21) | return
 C21: astore e2
 iload b
 ifne X1
 aload e2
 athrow
 W1: iload b
 ifne L1
(h1) | X1: return
 C1: astore e1
 goto W2
 L2: iload b
 ifne X2
(h22) | return
 C22: astore e2
 iload b
 ifne X2
 aload e2
 athrow
 W2: iload b
 ifne L2
 X2: aload e1
 athrow

Figure 7.7: Inlining a nested subroutine: Step 2.

7.3.3 Exception Handler Splitting

If a jsr S instruction ins j is protected by an exception handler h(t,R,C), where R = [rα,rω]
does not extend to the subroutine itself, then that handler must not be active for the inlined
subroutine. A simple example is shown in Figure 7.5, where the jsr instruction is in the
middle of the exception handler range. Therefore, to solve this problem, the exception
handler must be split into two handlers h1(t,R1,C′) and h2(t,R2,C′). The new ranges are
R1 = [r′a,rβ] and R2, with r′α = M(rα) and rβ = M(index(ins j)− 1), the mapped code
index of the predecessor of the jsr instruction. In R2 = [rγ,r′ω], rγ = M(index(insr)), the
mapped code index of the successor of the last instruction of the inlined subroutine body,
and r′ω = M(rω).

Splitting handlers is necessary to ensure correctness of the inlined program. There
exist cases where R1 or R2 degenerates to an interval of length zero and can be removed

88 Chapter 7. Bytecode Inlining and Abstraction

altogether. This is the case in Figure 7.7 where handler h1 does not protect any instructions
prior to the jsr instruction. Splitting may increase the number of exception handlers
exponentially in the nesting depth of a subroutine. This depth is almost never greater than
one, though, and only few exception handlers are affected by splitting.

7.3.4 Exception Handler Copying

If a subroutine S, but not the jsr S statement, is protected by an exception handler, this
protection also has to be ensured for the inlined copy of the subroutine. Therefore, all
exception handlers protecting subroutine S have to be copied for each inlined instance of
S. Figure 7.7 shows a case where inlining the outer subroutine S1 causes the exception
handler h2 inside that subroutine to be duplicated.

Note that this duplication does not occur if both the jsr instruction and the subroutine
are protected by the same handler. In this case, the inlined subroutine is automatically
included in the mapped handler range. Copying handlers may increase the number of
handlers exponentially, which is not an issue in practice because the innermost subroutine,
corresponding to the innermost finally block, is never protected by an exception handler
itself, reducing the exponent by one.

7.3.5 Violation of Well-formedness Conditions in JDK 1.4

The original implementation exhibited problems with some class files compiled with
Sun’s JDK 1.4 compiler. The reason were changes in the compiler, designed to aid the
bytecode verifier of the VM in cases where older versions used to reject correct programs
generated by Sun’s own compiler.

When compiling the program from Figure 7.1 with JDK 1.4 instead of 1.3, the re-
sulting instructions are the same, but the exception handlers are different: The original
handler covered three instructions, the initial increment instruction, the jsr, and the goto
which jumps to the end of the program. The handler from the 1.4 compiler does not pro-
tect the goto instruction. This does not change the semantics of the code because the
goto instruction cannot raise an exception.

However, a second handler h is installed by the newer compiler, which covers the
first two instructions of the exception handler code (at label C), astore e and the second
instance of jsr S. The situation is exacerbated by the fact that h is recursive; the handler
code has the same address as the first instruction protected by it. This could (theoretically)
produce an endless loop of exceptions. The result of inlining h is a handler covering
only the astore instruction (since the inlined subroutine is outside the handler range).
Fortunately, the astore instruction cannot throw an exception, so no changes are needed
in the VM to avoid a potentially endless loop.

Newer JDK compilers (1.4.2 and later) generate subroutines in-place. The result is
identical, including spurious handler h, to code from JDK 1.4 where our inlining algo-
rithm has been applied.

7.3. Inlining Java Subroutines 89

7.3.6 Costs of Inlining

Inlining subroutines increases code size only slightly. Subroutines are rare. In Sun’s Java
run-time libraries (version 1.4.1), out of all 64994 methods from 7282 classes (ignoring
980 interfaces), only 966 methods (1.5 %) use 1001 subroutines. None of them are nested.
Table 7.3 shows that subroutines are usually called two to three times each, with a few
exceptions where a subroutine is used more often.

Number of calls 1 2 3 4 5 6 – 10 11 – 20 28
Number of subroutines 1 783 173 23 9 8 3 1

Table 7.3: Number of calls per subroutine, determining how often its code is inlined.

 0

 20

 40

 60

 80

 100

 0 5 10 15 20 25 30 35 40

N
um

be
r

of
 m

et
ho

ds

Size in bytes

Size of subroutines in JRE packages

Figure 7.8: Sizes of subroutines in all JRE packages of Java 1.4.1.

The histogram in Figure 7.8 shows that most subroutines measure only between 8
and 12 bytes; 626 subroutines were 9 bytes large, hence that entry is off the scale. No
subroutine was larger than 37 bytes. Inlining usually results in a modest code growth
of less than 10 bytes. This is shown by the histogram in Figure 7.9 where entries with
an even and odd number of bytes are summarized in one bucket. Entries off the scale

90 Chapter 7. Bytecode Inlining and Abstraction

are values 0 (64041 methods, including those without subroutines) and 2, representing
571 methods where code size increased by 2 or 3 bytes. 10 methods grew by more than
60 bytes, 186 bytes being the worst case. Inlining all subroutines of JRE 1.4.1 would
result in a code growth of 5998 bytes, which is negligible compared to the entire run-time
library, measuring 25 MB.

 0

 20

 40

 60

 80

 100

 120

 140

 0 10 20 30 40 50 60

N
um

be
r

of
 m

et
ho

ds

Growth in bytes

Growth of code size after inlining (JRE)

Figure 7.9: Size increase after inlining all subroutines in each method.

7.4 Abstract, Register-based Bytecode

Java bytecode contains 201 instructions [LY99], many of which are variants of the same
type. For instance, 25 instructions load a register on the stack. Variants include several
instructions for each data type, one generic variant (e.g. iload r) and short variants like
aload_0, where r is hard-coded. A reduction of the instruction set is an obvious simpli-
fication. We use abstract bytecode [SSB01] as the reduced format, where argument types
and hard-coded indices are folded into the parametrized version of a generic instruction.
For instance, aload_0 becomes Load “ref” 0. This reduction is independent of byte-
code inlining. The previous section described inlining using normal bytecode to allow for
stand-alone inlining algorithms.

7.4. Abstract, Register-based Bytecode 91

Instructions not implemented in [SSB01] include arithmetic instructions. Implemen-
tation of these instructions is straightforward. Unsupported instructions are switch (for
control flow), monitorenter and monitorexit (for multi-threading), and the wide in-
struction that modifies the parameter size of the subsequent instruction. The first three
instructions have to be implemented according to the standard bytecode semantics [LY99]
while the wide instruction is an artefact of the fact that Java bytecode was initially tar-
getted to embedded systems with little memory for instructions. In our implementation
[ASB+04] of the abstract bytecode instruction set, we extended the size of any instruc-
tion parameters to four bytes and thus could eliminate the wide instruction trivially, by
converting all instruction arguments to a four-byte format.

Abstract bytecode only has 31 instructions, which is already a great simplification of
the original instruction set. However, the usage of a (fixed-size) stack makes data flow
analysis needlessly difficult, since the exact stack height at each index, though known
at compile-time, has to be computed first after loading a class file. This computation is
normally part of bytecode verification in the class loader. Furthermore, the treatment of
stack and local variables (registers) results in pairs of instructions that essentially perform
the same task: load pops the top element from the stack while store pushes a register
onto the stack. Finally, 64-bit values are treated as a single stack element, but as a pair
of local variables. This creates a need for case distinctions for many instructions [LY99].
The specification requires that the second slot of the local variables holding a 64-bit value
is never used, and that the stack semantics are preserved when pushing a 64-bit value onto
it.

Because the height of the stack is statically known for each instruction, we converted
the stack-based format of abstract bytecode to a register-based representation where each
stack element is converted to a register. When using registers, stack elements and local
variables can be treated uniformly, merging Load and Store into a Get instruction, and
eliminating more instructions such as Pop, Swap, or Dup.

Of all conversions, converting the Dup instruction was the only non-trivial one and
actually proved to be quite difficult. Some variants of this instruction do not only copy
the top element(s) of the stack, but insert it “further down”, below the top element. There
exist six variants of Dup instructions, and the treatment of data flow requires up to four
case distinctions per instruction variant, due to 64-bit values [LY99]. We convert all Dup
instructions into an equivalent series of Get instructions. This unfortunately introduces
sequences of instructions that corresponds to only one original instruction, which makes
further treatment slightly more complex; but it still eliminates the case distinctions for
64-bit values, which is the greater overhead.

The conversion to abstract, RISC-like instructions reduces the size of the final instruc-
tion set to only 25 instructions. The final instruction set comprises (for the exact seman-
tics, refer to [LY99, SSB01]): ALoad, AStore, ArrayLength, Athrow, Checkcast, Cond,
Const, Get, GetField, GetStatic, Goto, Inc, Instanceof, InvokeSpecial, Invoke-
Static, InvokeVirtual, MonitorEnter, MonitorExit, New, NewArray, Prim, Put-
Field, PutStatic, Return, Switch. This instruction set was used in JNuke and has
been tested in over 1,000 unit and system tests using static analysis, run-time verification,
and software model checking [AB05a, ABH04, ASB+04].

92 Chapter 7. Bytecode Inlining and Abstraction

Bytecode variant Java Abstract Register-based
[LY99] [SSB01]

Instruction set size 201 31 25
Variants (type/index) per instruction up to 25 1 1
Bytecode subroutines yes yes no
Wide instructions yes not impl. eliminated
Special treatment of 64-bit values yes not impl. eliminated
Register location implicit implicit explicit

Table 7.4: The benefits of register-based bytecode.

7.5 Related Work

Previous work has investigated difficulties in analyzing Java bytecode arising from its
large instruction set and subroutines. Inlining bytecode subroutines has been investigated
in the context of just-in-time-compilation [LYK+00] or as a preprocessing stage for theo-
rem proving [Fre98]. The latter paper also describes an alternative to code duplication for
inlining: by storing a small unique integer for each subroutine call instruction in an extra
register, subroutines can be emulated without using a jsr instruction. However, the size
saving by this strategy would be small, and bytecode verifiers would again have to ensure
that the content of this extra register is never overwritten inside the subroutine, leaving
one of the major problems in bytecode verification unsolved. Therefore this direction was
never pursued further.

Challenges in code analysis similar to those described here occur for decompilation,
where the structure of subroutines must be discovered to determine the correct scope of
try/catch/finally blocks. The Dava decompiler, which is part of the Soot framework,
analyzes these structures in order to obtain an output that correctly matches the original
source program [MH02]. Soot also eliminates jsr instructions through inlining [VR00].
However, no algorithm is given. Details on how to handle nested subroutines are missing.

As a part of work on µJava [KN03], another project also performs a kind of subroutine
inlining called subroutine expansion [Wil02]. The main difference is that the expanded
code still contains jsr instructions, making it easier to ensure correctness of the inlined
code, but still posing a certain burden on the bytecode verifier that our work eliminates.
The inlining algorithm differs in several points. First, it uses “complex addresses” to track
code duplication. Second, it does not inline subroutines in the order of their nesting. This
has two side-effects: treatment of nested subroutines creates a very complex special case,
and the expanded code may be larger than necessary [Wil02]. Our algorithm uses a simple
mapping instead of complex addresses, which, together with inlining subroutines in the
order in which they are nested, greatly simplifies the adjustment of branch targets and
exception handler ranges. Furthermore, with nesting taken care of by inlining subroutines
in nesting order, no special treatment of nested subroutines is necessary in the inner loop
that performs the actual inlining.

Instruction set reduction on Java bytecode has been performed in other projects in
several ways. The Carmel [Mar01] and Jasmin [MD97] bytecode instruction sets both

7.6. Summary 93

use a reduced instruction set similar to abstract bytecode [SSB01]. The Bytecode En-
gineering Library (BCEL) does not directly reduce the instruction set but features an
object-oriented representation of bytecode instructions where super classes combine re-
lated instructions [Dah03]. The project most similar to ours with respect to instruction
abstraction is Soot. The Jimple language from Soot is a bytecode-like language using
3-address code instead of stack-based instructions, making it suitable for analysis and
optimization [VRHS+99].

7.6 Summary

Java bytecode is far from ideal for program analysis. Subroutines, a construct not avail-
able in the Java language but only in Java bytecode, make data flow analysis very complex.
Eliminating subroutines is difficult because subroutines can be nested, and they can over-
lap with exception handlers. In practice, inlining does not increase program size much,
while greatly simplifying data flow analysis. This is especially valuable as subroutines
are disappearing in modern compilers but still have to be supported by virtual machines
for backward compatibility.

Abstracting sets of similar instructions to a single instruction greatly reduces the in-
struction set. Converting the stack-based operation semantics to a register-based one
makes computational operands explicit and further reduces the instruction set. Finally,
eliminating certain bytecode-specific issues, such as wide instructions and differences of
64-bit variables and stack elements, simplifies the code even further. The resulting instruc-
tion set was successfully used in the JNuke framework for static and dynamic analysis,
which greatly benefits from the simplified bytecode format.

8
Implementation

This chapter describes the implementation-specific parts of this work, focusing on archi-
tectural aspects. Due to its novely, static analysis using a generic algorithm has been
described in a previous chapter, Chapter 6. Section 8.1 gives an overview of all compo-
nents present in JNuke. The idea of the observer architecture is described in Section 8.2.
Two possible ways to implement this architecture, based on technologies described in
Chapter 5, are shown here: A VM-based architecture, as used in JNuke, is documented in
Section 8.3 while Section 8.4 outlines an instrumentation-based implementation, as used
by JPaX [HR01, GH03]. The remainder of this chapter focuses on technical aspects of
JNuke. Section 8.5 shows the division of JNuke into modules. How object-orientation in
C was achieved is explained in Section 8.6 while Section 8.7 shows the testing environ-
ment used and experience gained with it.

8.1 Overview of JNuke

Figure 8.1 shows an overview the entire functionality implemented in JNuke. Its class
loader takes well-formed Java bytecode [LY99] as input and allows execution in the
JNuke Virtual Machine (VM).1 The default scheduling policy of that VM may be re-
placed with a special scheduler that performs model checking. The model checker uses
milestones to save the state of the VM in order to allow exploration of all possible suc-
cessor states at locations where different thread switches may lead to different results in
the program [ASB+04, Eug03]. Schedules leading to an incorrect result can be used to
instrument the original program, such that it will exhibit this particular faulty behavior
when run again in a normal debugger [SBB04].

Alternatively, run-time verification (RV) algorithms may be used to operate on a sin-
gle program trace. Dynamic analysis requires an execution environment, such as a Java
Virtual Machine (VM). However, typical Java VMs only target execution and do not of-
fer all required features, in particular, full state access. Code instrumentation, used by
JPaX [HR01], can solve this problem to some extent only [GH03].

JNuke contains a specialized VM allowing for both backtracking and full state ac-
cess [ASB+04]. Custom checking algorithms can be implemented using an API that
allows an algorithm to register for any event of interest. Finally, a static analysis module

1Malformed bytecode is recognized as such by the bytecode verification pass in the class loader, and
rejected.

95

96 Chapter 8. Implementation

RV

Bytecode

InstrumenterSA Loader

Generic
VM

Analysis

Model Checker

Figure 8.1: Overview of JNuke.

has been added to JNuke [ABH04] and subsequently been augmented to a generic anal-
ysis, which can be used in a static or dynamic context [AB05a]. That aspect has been
covered in Chapter 6. The remainder of this chapter focuses on the observer architecture
and implementation aspects that apply to the entire project.

8.2 Observer Architecture

An observer-based architecture [GHJV95] was chosen to allow several run-time verifi-
cation modules to supervise the same program trace. Furthermore, this architecture de-
couples event generation from event interpretation, which is crucial because the run-time
environment is typically unaware of whether and how a program trace generated by it is
interpreted.

for all o in observers {
 o−>update()
}

Subject

detach(Observer)
event()

update()

Observer

attach(Observer)

Figure 8.2: The generic observer pattern.

Figure 8.2 outlines the principle of this design pattern: An observer implements a
certain interface which allows notification of events updates. Such an update method may
be polymorphic and take different kinds of events. In JNuke, the approach of having a
larger interface was chosen, where an entire set of events is covered by it. This eliminates
the requirement of writing one observer for each event type, of which there are currently
ten, which are documented in Section 8.3. Figure 8.3 shows the slightly adapted design
pattern. Note that it is not necessary to allow an observer to detach itself from the subject,

8.3. VM-based Implementation: JNuke 97

as a run-time verification algorithm typically runs until a program has terminated. Instead,
there is an event to notify the listener about program termination, in order to allow the
verification algorithm to issue a final report and release internal resources.

for all o in observers {
 notify event listener
}

...

register(Observer) atFieldAccess()

Observer

atLockAccess()event()
atMethodStart()

Subject

Figure 8.3: Event observers in JNuke.

Strictly speaking, the event observer as shown here is an fact the second stage of a
two-stage observer. Low-level events are directly emitted by the JNuke VM. However,
they do not have a consistent API and are directly tied to the issuing module of the VM
(such as the lock manager for lock events). This is useful for implementing low-level
functionality such as a modified scheduler but cumbersome for run-time verification.

Observer

RVJNuke
VM

Interpretation
analysis
EventEvents

API

Figure 8.4: The observer-based architecture for run-time verification.

Figure 8.4 illustrates the two-stage approach to alleviate this problem: The first stage
of the observer converts events to the format given by the RV API, while the second
stage, event interpretation, acts as the observer shown in Figure 8.3. For full flexibility,
the event observer consists of two stages: event analysis, which preprocesses events, and
event interpretation, which contains the actual run-time verification algorithm.

8.3 VM-based Implementation: JNuke

As explained above, the goals of JNuke’s run-time verification architecture are primarily
twofold. The first goal is to decouple verification algorithms from the internal structure
of the VM. This is achieved by using the observer design pattern. The second goal is to
allow to use generic algorithms, which can also be used in a static context. This idea is
described in detail in Chapter 6.

Figure 8.5 shows the scenario when using such a generic algorithm for run-time ver-
ification: An event analysis layer prepares data for the generic analysis algorithm. The
dynamic environment maintains context data, which is updated internally (and invisibly
to the generic algorithm). The generic algorithm is only notified of events it has explicitly

98 Chapter 8. Implementation

Model

Context

Result

API
RVJNuke

VM
Interpretation

analysis
EventEvents

Observer

Other events

Dynamic environment

R
eo

rd
er

in
g

Generic algorithm

Event analysis

Events

Figure 8.5: Detailed view of run-time verification architecture.

8.3. VM-based Implementation: JNuke 99

subscribed to. It uses context data provided by the dynamic environment to obtain its of
model of the properties to be verified.

At the time of writing, only the block-local atomicity algorithm [ABH04] is imple-
mented as such a generic algorithm. The other algorithms were implemented earlier.
Therefore the Eraser low-level data race algorithm [SBN+97] and the high-level data race
algorithm [AHB03] are both implemented as “classical” run-time verification algorithms
obtaining data directly from JNuke’s RV API. When considering Figure 8.5 for the case
of a classical run-time algorithm, the event analysis layer only consists of some generic
helper modules that track history information, such as thread names or the last location
where a certain lock was acquired. In that mode, the event analysis module therefore does
not have the same format as the dynamic environment described in Chapter 6.

8.3.1 JNuke VM

Figure 8.6 shows the key components of the VM [Eug03]. The core parts are subsumed by
the run-time environment, which controls the execution and effects of single instructions.
It also loads classes on demand (using a linker module which is not shown in the figure).
After each instruction, an exchangeable scheduler decides whether a thread switch should
occur. If this is the case, the run-time environment puts the current thread to sleep and
enables a new one. This action may involve updates on the lock sets of each thread, which
is done via the lock manager. Inter-thread communications are queued by the waitset
manager, while any heap content is updated by the heap manager. The heap manager
allocates and frees data and is partially accessed directly by the run-time environment,
partially by the garbage collector. The run-time environment can run with or without
garbage collection, which was added at a later stage [Far04].

JNuke VM

manager
Garbage
collector

Run−time environment

Lock

Scheduler

manager
Waitset

manager
Heap

Figure 8.6: Overview of the key components of the JNuke VM.

This modularization of the VM allows for a more flexible design. After an initial
implementation, each module was augmented with a rollback capability which allows
storing and restoring the entire state of the VM. This can be used to explore each possi-
bility in the presence of non-determinism, such as non-determinism arising from thread
switches [Bru99]. A special scheduler uses this to perform explicit-state model checking

100 Chapter 8. Implementation

for Java programs [ASB+04, Eug03]. These interfaces also ensure that native methods
needed to perform system calls operate in a well-behaved manner and do not corrupt the
Java heap.

8.3.2 Run-time verification API

The run-time verification API (RV API) allows algorithms to register listeners for events
of interest, such as lock acquisition. These listeners are notified through an observer
interface [GHJV95] whenever such an event occurs. After registering all event handlers,
the virtual machine is started as usual. It will call the registered listeners whenever an
event of interest occurs. The call includes light-weight event data, containing the exact
type of event and a pointer to the run-time environment. The first part of the data is used
to distinguish subclasses of events. For instance, read and write accesses may share the
same event handler, but the handler may still need to know the exact nature of the access
in one decision. The second part of event data serves to query the virtual machine about
more information, such as the exact state of each thread. Some events include certain
information which is certainly used in any case for efficiency. This allows to eliminate
queries for basic information that is always needed when an event occurs (for instance,
which lock was used in a lock release).

Event Subclasses (if available) Purpose/possible checks
Field access Read/write access Locking discipline (e.g. Eraser)
Lock event Lock acq./release Locking (e.g. deadlock detection)
Method event Method start/end Call graph construction
Thread creation – Recording thread name and type
Bytecode execution Events for all 25 Modelling of instruction-specific

abstract instructions properties
Caught exception – Exception handler coverage
Program termination – Final report, cleaning up RV data

Table 8.1: Run-time verification events in JNuke.

Events are separated into different classes, as shown in Table 8.1. This allows RV
algorithms to install generic event handlers to deal with common aspects of a super class
of events, which then delegates fine points to particular subclasses. These event handlers
may also have to perform event re-ordering, because one instruction may generate sev-
eral events, which do not necessarily occur in the right order. For instance, entry to a
synchronized method causes three events: the lock acquistion on method entry, method
entry itself, and the first bytecode instruction of the method. Certain algorithms may re-
quire these events to occur in a certain order in order to work properly. For simplicity, the
current API does not allow for specifying the order in which such simultaneous events are
received. However, this minor problem, which does not occur often, can be easily solved
in the listener implementation.

The RV API itself builds on low-level listeners provided by the VM. The low-level
listeners are embedded in the reponsible module: field access events are treated by the

8.4. Instrumentation-based Implementation: JPaX 101

heap manager while the lock manager deals with lock events. Other events are issued
by the run-time environment itself, such as bytecode execution events. The RV API was
created to provide a single front end to all these different event callbacks. It also allows
to activate certain auxiliary listeners that log history information as the program executes.
This is very useful for printing more detailed trace information. These two features, a
simple front end and history information, greatly reduce the amount of work required for
implementing a new run-time verification algorithm.

8.4 Instrumentation-based Implementation: JPaX

This section describes an alternative implementation approach for run-time verification,
using the Java Path Explorer (JPaX) [HR01, GH03]. Initial experiments concerning high-
level data races were carried out with JPaX [AHB03]. It consists of two parts: the instru-
menter and the observer. The instrumenter produces an instrumented version of the pro-
gram, which when executed, generates an event log with the information for the observer
to determine the correctness of examined properties. Figure 8.7 illustrates the situation.

Observer

Instrumented Event
Interpretation

analysis

Events

program

Figure 8.7: Instrumentation-based approach to run-time verification.

The observation of events generated by the instrumented program is divided into two
stages: event analysis and interpretation of events. The former reconstructs the context
required for event interpretation. The latter contains the actual observation algorithms.
The observer used here only checks for high-level data races. For these experiments, a
new and yet totally un-optimized version of JPaX was used. It instruments every field
access, regardless of whether it can be statically proven to be thread-safe. This is the
reason why some data-intensive applications created log files which grew prohibitively
large (> 0.5 GB) and could not be analyzed.

8.4.1 Java Bytecode Instrumentation

Part of JPaX is a very general and powerful instrumentation package for instrumenting
Java bytecode [GH03]. The requirements of the instrumentation package include power,
flexibility, ease of use, portability, and efficiency. Alternative approaches were rejected,
such as instrumenting Java source code, using the debugging interface, and modifying the
Java Virtual Machine because they violated one or another of these requirements.

It is essential to minimize the impact of the instrumentation on program execution.
This is especially the case for real-time applications, which may particularly benefit from
this approach. Low-impact instrumentation may require careful trade-offs between the

102 Chapter 8. Implementation

local computation of the instrumentation and the amount of data transmitted to the ob-
server. The instrumentation package allows such trades to be made by allowing seamless
insertion of Java code at any program point.

Code is instrumented based on an instrument specification consisting of a collection
of predicate-action rules. A predicate is a filter on source code statements. These pred-
icates are conjunctions of atomic predicates including predicates that distinguish state-
ment types, presence of method invocations, pattern-matched references to fields and lo-
cal variables, etc. Actions are specifications describing the inserted instrumentation code.
Actions are inserted where predicates evaluate to true. Actions include reporting the pro-
gram point (method, and source statement number), a time stamp, the executing thread,
the statement type, the value of variables or an expression, and invocation of auxiliary
methods. Values of primitive types are recorded in the event log. If the value is an object,
a unique integer descriptor of the object is recorded.

The instrumentation has been implemented using Jtrek [Coh01], a Java API that pro-
vides lower-level instrumentation functionality. In general, use of bytecode instrumen-
tation, and use of Jtrek in particular, has worked out well, but there are some remaining
challenges with respect to instrumenting the concurrency aspects of program execution.

8.4.2 Event Stream Format

All operations in the instrumented application which write to the event log have to be
as fast as possible. Among other factors, light-weight locking, incurring as little lock
contention as possible, helps achieving this goal. When several pieces of information are
logged by the instrumentation, they are therefore recorded separately, not atomically. As
a result of this, one event can generate several log entries. Log entries of different threads
may therefore be interleaved, as shown in Figure 8.8.

Thread 1

Thread 2

Thread 2

Thread 1

Program instruction Reported action

Location L2
monitorenter

Location L1

Location L2

Thread 2Thread 1

Program instruction Reported action

getfield

Location L1

Action "monitorenter"

Action "getfield"

Action "monitorenter" Action "getfield"

Figure 8.8: Interleaving of light-weight event entries.

8.5. Module Overview 103

The example shows two events that each result in two log entries: The action itself,
and the location where it occurred. The events of each thread are streamed individually,
which preserves the total order of events within a thread. In order to allow a faithful
reconstruction of the events, each log entry includes the hash code of the active thread
creating the log entry. Therefore the events can all be assigned to the original threads.
The contextual information in events includes thread names, code locations, and reentrant
acquisitions of locks (lock counts). The event analysis package maintains a database
with the full context of the event log. It is not desirable that each single low-level event is
visible to the event interpretation algorithm, which is described below. Because contextual
data for an event is only complete after the event location is updated, an intermediate layer
maintains run-time context data and only relays events when that data with is consistent
respect to the current thread.

8.4.3 Observer Architecture

As described above, run-time analysis is divided into two parts: instrumenting and run-
ning the instrumented program, which produces a series of events, and observing these
events. The second part, event observation, can be split into two stages: event analysis,
which reads the events and reconstructs the run-time context, and event interpretation (see
Figure 8.9). Note that there may be many event interpreters.

Reusing the context reconstruction module allows for writing simpler event inter-
preters, which can subscribe to particular event types made accessible through an observer
interface [GHJV95] and which are completely decoupled from each other.

Each event interpreter builds its own model of the event trace, which may consist of
dependency graphs or other data structures. It is up to the event interpreter to record all
relevant information for keeping a history of events, since the context maintained by the
event analysis changes dynamically with event evaluation. Any information that needs
to be kept for the final output, in addition to context information, needs to be stored by
the event interpreter. If an analysis detects violations of its rules in the model, it can then
show the results using stored data.

Besides clearly separating two aspects of event evaluation, this approach has other
advantages: Many algorithms dealing with multi-threading problems require similar in-
formation, namely lock and field accesses. If a log generated by an instrumented program
includes this information, then several analysis algorithms can share the same events. Fur-
thermore, splitting event observation into two steps also allows writing an event analysis
front-end for event logs generated by tools other than JPaX, reusing the back-end, event
interpretation.

8.5 Module Overview

The remainder of this chapter focuses again on JNuke and describes architectural and
implementation-specific design decisions taken. It uses the following notational conven-
tion: Names written in typewriter font represent variable names, file names, or com-
mands. Names written in italicized typewriter font denote placeholders that
have to be replaced with actual names.

104 Chapter 8. Implementation

Model

Context

Observable events

Internal events

Event analysis

F
ilt

er
in

g

Result

Instrumented
program

Event
analysis

Interpretation

Observer

Events

Interpretation

Events

Figure 8.9: Detailed view of instrumentation-based event observers.

8.6. JNuke’s OO in C 105

8.5.1 Description

Table 8.10 gives a brief overview of each module. Each module resides in its own di-
rectory and contains at least one header file, m/m.h, declaring data types and interfaces.
Most modules use additional header files, which are needed when using functionality that
it outside the core scope of a module, or used when certain code is generated automati-
cally.

Module Purpose
algo Generic software analysis algorithms
cnt Container classes
jar Reading and writing of jar files
java Classes representing Java data; Java class loader
rv Run-time verification algorithms
sa Static analysis algorithms
sys Low-level classes encapsulating system dependencies
test Test driver
vm JNuke Virtual Machine

Table 8.2: Short description of each module.

8.5.2 Module Dependencies

A module corresponds to a directory in the file layout. A module (or package) is declared
in its header file m/m.h. Dependencies arise if the implementation (any C file) includes
other header files (such as test.h).

Figure 8.10 shows dependencies between JNuke packages. Each node represents a
module; an arrow between nodes represents a module being dependent on the one the
arrow points to. The modules at the bottom contain the fewest dependencies.

Each module is dependant on both sys and test, which have been omitted for sim-
plicity. The goal was to calculate only “true” dependencies arising from the imple-
mentation. When computing module dependencies (using scripts util/moddep.sh and
util/moddep.pl), test code has been omitted since some white-box tests may access
implementation-specific details.

Even then, the graph is somewhat cluttered. Figure 8.11 shows dependencies of mod-
ules which are on a higher level than test, sys, cnt, and pp. It shows clearly how algo,
the module for generic analysis algorithms, is independent of run-time verification (rv)
and static analysis (sa). Like the virtual machine (vm), it uses module java in order to
handle class file data and class loading.

8.6 JNuke’s OO in C

In order to avoid some problems with C++ and to get a better performance than in Java, it
was decided to create our a custom, simple OO extension for C. It lacks some “syntactic

106 Chapter 8. Implementation

cnt pp

algo

java

jar

rv

vm

sa

Figure 8.10: Module dependencies.

jar

java

algo

rv

vm

sa

Figure 8.11: Dependencies of higher-level modules.

8.6. JNuke’s OO in C 107

sugar” of “true” OO languages but does not need a special preprocessor. This section
describes this OO extension.

Beyond performance reasons the C programming language [KR88] was chosen be-
cause it is far easier to master and more portable than C++, and more stable than the Java
language which is still evolving [GJSB00]. Furthermore, common C compilers are about
an order of magnitude faster than their C++ and Java counterparts, which leads to a much
faster edit → compile → debug cycle than with other programming languages.

8.6.1 Memory Management

For a better separation of control of memory management and potential future use of
multi-threading within JNuke itself, a special variable JNukeMem * is always used when
allocating memory. The standard memory allocation functions have been superseded
counterparts as shown in Table 8.3. The common difference to their standard counter-
parts from stdlib.h is that they all require an explicit pointer to the heap that the thread
is using (JNukeMem *).

Original function Replacement in JNuke
void * void *
malloc (int) JNuke_malloc (JNukeMem *, int)
void * void *
realloc (void *, int) JNuke_realloc (JNukeMem *,

void *, int, int)
void void
free (void *) JNuke_free (JNukeMem *, void *, int)

Table 8.3: Replacement (wrapper) functions for memory management.

Furthermore, the functions JNuke_realloc and JNuke_free expect as an extra argu-
ment the size of the currently allocated block at the address the pointer refers to. When
compiling JNuke with the standard options, the size of each allocated memory block is
stored internally and validated when it is reallocated or freed. When compiling optimized
code, that validation is turned off, resulting in a performance improvement over the stan-
dard memory allocation library, which does not include the size as a parameter for free
but maintains that data on its own.

8.6.2 Comparison to Java

The OO model in JNuke is semantically very similar to the one used in Java or C++, but
there are a few differences and restrictions. Figure 8.12 shows a comparison between
Java’s and JNuke’s OO model.

1. In JNuke, any object is generically declared as JNukeObj *. There is no possibility
to explicitly declare a (statically type safe) object of a specific type.

108 Chapter 8. Implementation

Java JNuke (in C)
(1) Integer Num; (1) JNukeObj *Num;

int value; int value;
(2) Num = new Integer(8); (2) Num = JNukeInt_new (mem);

JNukeInt_set (Num, 8);
(3) value = Num.getInteger(); (3) value = JNukeInt_value (Num);

(4) JNukeObj_delete (Num);

Figure 8.12: JNuke’s OO model.

2. The two constructors are very similar. JNuke lacks some syntactic sugar, so the new
operand is written as a function, which is given by the type with _new appended to
it. Each constructor explicitly requires the memory manager as its single argument.
In C, it is not possible to have several functions with the same name, but different
signatures. Therefore, optional arguments in constructors are not possible. This
choice was taken to make serialization and deserialization simpler [Bau02].

3. Method calls to most methods work by appending _methodname to the class
name (which begins with JNuke to ensure uniqueness). The object instance itself
(this in Java) is always written explicitly as the first argument of the method. Static
methods do not need that argument. Unlike in Java, there is no syntactic sugar
hiding the type (which may not be known statically in Java) and the this parameter.

4. Unlike in Java but like in C++, a destructor is required for each class. This method
is polymorphic and is wrapped with JNukeObj_delete. That function resolves the
dynamic type and calls the appropriate destructor, which has been set in the type
information of the object instance in the constructor.

8.6.3 Type JNukeObj

Each object has associated with it a type information, its memory manager, and the (pri-
vate) instance data; see Figure 8.13. The latter is a generic pointer which has to be cast to
a (private) struct type which contains all the fields of the object.

struct JNukeObj
{
 JNukeType *type; /* type information */
 JNukeMem *mem; /* memory manager */
 void *obj; /* object instance */
};

Figure 8.13: The C struct JNukeObj.

The callee has to retrieve and convert the this->obj pointer to access the data struc-
ture. A macro JNuke_cast (Type, ref) does this and also performs a type check on

8.6. JNuke’s OO in C 109

the data used. An example of how the private data is “unpacked” from the struct is given
in Figure 8.14, where the class JNukePair returns the second field of the pair. First, the
pointer to the private data is re-cast to the record containing the data (JNukePair). Then,
the field of JNukePair (in this case, first) can be accessed by normal C struct access.
In very rare cases, where type checking needs to be disabled for the cast of this->obj,
the macro JNuke_fCast can be used. Such cases include access to subclasses, where the
simple JNuke_cast macro fails because it can only cast an instance to a single type.

JNukeObj *
JNukePair_first (const JNukeObj * this)
{
 JNukePair *pair;
 assert (this);
 pair = JNuke_cast (Pair, this);
 return pair->first;
}

Figure 8.14: Retrieving an object’s instance data.

Each type in JNuke contains a fixed set of information: the type itself, stored as a
string constant, and a set of function pointers to polymorphic functions (see Section 8.6.5).
Note that type comparison works by comparing the addresses of statically allocated type
structs, not type name strings. It is therefore very fast. Figure 8.15 shows the declaration
taken from sys/sys.h. Further extensions via subtypes are supported by an extra pointer
and described below.

Type comparison

Since every type has a unique string with the type name associated to it, types can
be compared quickly using the pointer values of this type name string. The operation
JNukeObj_isType encapsulates this for all objects. It returns 1 if types match:

if (JNukeObj_isType (ref, UCSStringType))
 /* object "ref" is of type UCSString */

This function is hardly ever used, though, because the JNuke_cast macro (see above)
itself checks for the correct type, so a manual check is hardly ever needed. For type
checking purposes, all object types must be public and declared in the corresponding
header files. The convention for type declarations is to include them before listing the
object methods:

extern JNukeType JNukeThreadType;
JNukeObj *JNukeThread_new (JNukeMem * mem);

110 Chapter 8. Implementation

struct JNukeType
{
 /* name of object type as a string */
 const char *name;

 /* returns a deep copy of the instance */
 JNukeObj *(*clone) (const JNukeObj *);

 /* deletes instance of object */
 void (*delete) (JNukeObj *);

 /* returns comparison result as in strcmp(3); the result
 * only needs to be defined for objects of same type;
 * otherwise, pointer value is used (no true polymorphism)
 */
 int (*cmp) (const JNukeObj *, const JNukeObj *);

 /* returns hash code of object */
 int (*hash) (const JNukeObj *);

 /* returns new string with string representation of the
 * current instance */
 char *(*toString) (const JNukeObj *);

 /* clears object data (only used for containers: calls
 * delete for each element. "Deep" (recursive) clears
 * have to be done manually, but occur rarely in practice.
 */
 void (*clear) (JNukeObj *);

 /* allow for subtyping */
 void *subtype;
};

Figure 8.15: The type information of each object.

8.6. JNuke’s OO in C 111

8.6.4 Statically Typed Method Calls

Statically typed method calls have been shown in Figure 8.12. To reiterate, the lack of
preprocessing means that the entire “ugly” syntax with all parameters is required, such
as in JNukeInt_set (Number, 8). Modern object-oriented languages usually hide the
static type and use the first parameter as the invocation target. In Java-like syntax, the
above call would be written Number.set(8). In JNuke, each type is prefixed with JNuke,
and the function name which uniquely identifies the statically known method call consists
of this prefixed type, an underscore, and the method name.

8.6.5 Polymorphism

Functions which are part of struct JNukeType (see Figure 8.15) can be called poly-
morphically. For example, calling toString on a container will result in the recursive
pretty-printing of all the data that the container holds at the moment. Containers may be
nested like in other OO languages.

8.6.6 Inheritance

Inheritance in the first level is achieved through pointer subtype in struct JNukeType.
This step is necessary so the “primitive” type is always available for direct comparison in
JNuke_cast. For nested subtyping, this extra indirection is not necessary. Therefore the
struct of the super type can be used directly (without a pointer) in nested subtypes. This
leads to nested C structs, as shown in Figure 8.16.

8.6.7 Constructor and Destructor

Each class has to declare its type statically. This is done by a global struct JNukeType in
each class, which contains the given values for all the fields. The first part of Figure 8.17
shows this static variable. Note that the C keyword static refers to the visibility of the
global variable, which is only visible in the current source file. Static memory allocation
is in fact determined by the compiler and not expressed by the keyword static. Further-
more, the fields are not set as constants by the C compiler, but considered to be read-only
as a convention.

The duties of the constructor entail:

• Allocation of the JNukeObj record itself.

• Setting the fields of the JNukeObj record. This includes setting type informa-
tion, private data, and the memory manager, since the certain operations such as
delete have to use the same memory manager.2 In order not to have to create new
type information for each object instance, the constructor simply assigns this pre-
initialized common static type to the type information of each instance, thus sharing
type information.

2The equality of memory managers may be a non-trivial requirement for certain interactions between
objects. Such a case is given in java/bctrans.c.

112 Chapter 8. Implementation

/* in header file */
struct JNukeSubType JNukeSubType;

struct JNukeSubType
{
 ... (*method1);
 ... (*method2);
};

struct JNukeSubSubType
{
 JNukeSubType super;
 /* inheritance of super class methods */
 ... (*method3);
};

/* in C file, implementation */
/* sub class of JNukeType */
static JNukeSubType JNukeSubImplementation = {
 method1,
 method2
};

static JNukeSubSubType JNukeSubSubImplementation = {
 { &JNukeSubImplementation },
 method3
};
/* note the nested curly braces */

Figure 8.16: Nested inheritance.

8.6. JNuke’s OO in C 113

/*--*/
/* type declaration */
/*--*/

static JNukeType JNukePairType = {
 "JNukePair",
 JNukePair_clone,
 JNukePair_delete,
 JNukePair_compare,
 JNukePair_hash,
 JNukePair_toString,
 NULL
};

/*--*/
/* constructor */
/*--*/
JNukeObj *
JNukePair_new (JNukeMem * mem)
{
 JNukePair *pair;
 JNukeObj *result;

 assert (mem);

 result = JNuke_malloc (mem, sizeof (JNukeObj));
 result->mem = mem;
 result->type = &JNukePairType;
 pair = JNuke_malloc (mem, sizeof (JNukePair));
 result->obj = pair;
 pair->type = JNukeContentObj;
 pair->isMulti = 0;
 pair->first = NULL;
 pair->second = NULL;

 return result;
}

Figure 8.17: Constructor of the type JNukePair.

114 Chapter 8. Implementation

• Initialization of private data. This always includes allocating the record which holds
the private data. In some cases, reasonable default values are set for data, although
the programmer should not rely on that behavior for non-container objects holding
data.

The destructor has to free all the memory that was allocated in the constructor.

8.6.8 Containers

JNuke includes some container classes, which store a number of other objects (including
containers), pointers or integers. Note that the three types of data cannot be mixed, and
only objects can contain other objects recursively.

8.6.8.1 Data Types

The three data types are declared in type enum JNukeContent in cnt/cnt.h. Each
container defaults to JNukeContentObj, storing objects. For efficiency, most containers
also support direct storage of integers or pointers, through method JNukeType_setType
(JNukeObj *, JNukeContent). In that case, the content of that data is never accessed,
and recursive operations are not possible.

8.6.8.2 Reference Semantics

With the exception of the object pool JNukePool, most containers have a reference se-
mantics for most operations. While clone will perform deep cloning for object data,
delete will not recursively delete the content in order to allow sharing of objects. There-
fore, the content of a container has to be deleted with JNukeType_clear. In containers
supporting deep cloning, cloning of each data object can be suppressed by temporarily
changing the container data type to JNukeContentPtr for the clone operation.

8.6.8.3 The JNukePool Object Pool

Class JNukePool implements a special container. Its purpose is to implement a separate
memory management pool that automatically destroys all objects it contains upon dele-
tion. This is achieved by inserting clones of objects when insert is called. The pool
afterwards only operates on the clone and destroys the clone upon deletion, not the origi-
nal. The pool keeps a reference count of each object used, cloning the inserted object only
when it is inserted for the first time. The test whether a new copy of the object should be
inserted is based on the equality function JNukeObj_cmp.

Sometimes it is known when insert is called that the original instance should be
deleted in any case. In such a scenario, the method insertThis can be used. That method
inserts the reference itself, not a clone of the instance the reference points to. It returns
the resulting valid reference in the object pool. If the same object already exists, then the
given argument is deleted and the pool reference is returned. This ensures consistency.

8.6. JNuke’s OO in C 115

The caller must therefore always use the return value of the insertThis call instead of
the reference passed to it after the call! A typical call looks as follows:

instance = JNukePool_insertThis (pool, instance);
/* updates instance such that reference from pool
 * is used; return value may be discarded iff
 pointer "instance" is not used again */

8.6.8.4 Iterators

JNuke contains two types of iterators: a read-only iterator and a read-write iterator.
Both are semantically similar to C++ STL or Java iterators. Only the read-only iterator,
JNukeIterator, is described in detail. The second iterator is called JNukeRWIterator,
and its usage is very similar. Both types are polymorphic and declared in header file
cnt/iterator.h.

The read-only iterator can be initialized from any container object. Three operations
are used for read-only iterators:

1. Initializing the iterator. Each type has a method JNukeTypeIterator to initial-
ize an iterator. Since an iterator is usually stack-allocated, these methods do not
allocate memory for it.

2. Checking for completion: Method JNuke_done returns true when there are no more
elements accessible by the iterator in that container.

3. Accessing the next field. For the read-only iterator, this operation will automatically
advance the iterator as well. This updates the iterator state and makes the iterator
point to the next element, although the current element is returned. Therefore no
other operation is needed before checking again for termination of the iterator.

JNukeIterator it;
JNukeObj *data;

(1) it = JNukeVectorIterator (vector);
(2) while (!JNuke_done (&it))

{
(3) data = JNuke_next (&it); /* STL: *(it++) */

/* do something */
}

Figure 8.18: An example for using a read-only iterator.

The read-write iterator works similarly, with two differences:

1. All operation names are capitalized, i. e., iterator methods are called JNuke_Done,
JNuke_Next, etc.

116 Chapter 8. Implementation

2. JNuke_Next moves the iterator forward, but does not return the element; this is
done with JNuke_Get, which does not affect the position of the iterator. An element
the iterator points to can be deleted with JNuke_Remove after processing.

JNuke_Remove allows the deletion of elements, if supported by the container used. Note
that this will set the iterator back to the previous element (or a sentinel at the beginning of
the iteration), so JNuke_Next has to be called to obtain a valid iterator again. (Therefore
JNuke_Next has to be called regardless of whether an element was removed or not.)

8.7 Unit tests

Unit tests are the core of the quality assurance effort which tries to keep JNuke as reliable
as possible while making it easy to change its design or implementation (by refactoring).
As shown by statistics below, work on JNuke was not continuous due to varying student
participation and work at NASA during summer 2002 and 2003; overall, about three man-
years of work went into producing JNuke and its unit tests.

8.7.1 Structure

The unit tests are organized in several test suites. Each package has its own test suite.
Test suites are divided into test groups, where there is normally one group for each class.
Within a class, several tests can be registered for each group.

Each class (each C source file) has a section

#ifdef JNUKE_TEST
/* Unit tests */
...
#endif

which contains all the test code of a class. For some classes, the test code is longer than
the actual implementation itself.

Each unit test is a function of the format JNuke_pkg_class_num. Figure 8.19
shows the code of a simple unit test which creates a JNuke_Int object and deletes it
again, checking the class against simple memory leaks. Each test case is a function taking
a single JNukeTestEnv * argument and returning an integer. One of the members of the
JNukeTestEnv struct is the pointer to the memory manager, env->mem. The return value
is non-zero for a successful test and zero for a failed one.

Typically, a test starts by initializing an integer res to 1 or a different value that
indicates success or failure. Then, the tests are run, where the result variable res is
updated each time a condition is checked. Note that the idiom res = res && cond
ensures that the variable is set to 0 upon failure. If it is not possible to express cond in a
single line, a construct like the one in Figure 8.20 should be used. This ensures that there
are no statements which are skipped when the test case is successful and makes it possible
to achieve 100 % code coverage for a successful test. Code like if (!cond) res = 0;
will have the second statement uncovered in case of success, and will result in a statement
coverage lower than 100 % if the second statement is not on the same line.

8.7. Unit tests 117

int
JNuke_sys_JNukeInt_0 (JNukeTestEnv * env)
{
 /* creation and deletion */
 JNukeObj *Int;
 int res;

 Int = JNukeInt_new (env->mem);
 JNukeInt_set (Int, 1 << 31);
 res = (Int != NULL);
 res = res && (JNukeInt_value (Int) == 1 << 31);
 if (Int != NULL)
 JNukeObj_delete (Int);

 return res;
}

Figure 8.19: A simple test case.

if (res)
 {
 res = 0;
 if (cond)
 {
 /* do something conditionally */
 ...
 /* perhaps more checks */
 res = 1;
 }
 }

Figure 8.20: A construct ensuring maximal coverage for successful test cases.

118 Chapter 8. Implementation

8.7.2 Registering Test Cases

Each test case has to be registered for the test driver. This is done in special files in
each package, usually black.c, sometimes white.c. Inside each such file, macro SUITE
registers the entire test suite for that package. The developer usually only has to register
new classes as a new test group with macro GROUP("string") and add new test cases
for a class with macros FAST and SLOW. Both macros take the same three arguments:
package name, class name, and test case number. By convention, fast test cases do not
take more than 0.01 s to run on an unloaded “fast” workstation (such as the ones in the
research labs). This ensures that a large subset of all unit tests can be run quickly even
when extra checking tools, such as valgrind [NS03], are active.

Note that the package and class names are not quoted for the FAST and SLOW macros
but only for the GROUP and SUITE macros.

8.7.3 JNukeTestEnv

Figure 8.21 shows the entire environment which is available to test cases, taken from
test/test.h. It should be noted that tests which write to the standard error channel
(stderr) will have their output automatically redirected to the error output file when in
test mode.

struct JNukeTestEnv
{
 FILE *in, *log, *err;
 /* input stream, log stream, error output stream */
 int inSize; /* size of input stream */
 const char *inDir;
 /* input directory where tests read or write files */
 JNukeMem *mem; /* memory manager */
};

Figure 8.21: The struct JNukeTestEnv.

8.7.4 Log Files

The success of a test case is determined by its return value. In addition to that, the output
of the standard error channel and log files written can also be used to determine correct-
ness of a unit test. In this case, if a given output file (template) exists, the output of a test
will be compared to this file after execution. If the outputs do not match or the current
test produced no output where an output was expected, the test fails.

The log files are stored in directory log/pkg/class. Each test case can write to
env->log, which is directed to log file num.log in the directory of that class. A template
log file is stored under num.out. The standard error output is directed into num.err,
and its template is in num.eout, respectively.

8.8. Summary 119

8.7.5 Code Coverage

The aim of the testing process was to achive 100 % code (statement) coverage, in order
to find most errors early and to avoid dead code. This goal was almost achieved, with
over 99.9 % code coverage in general and 100 % coverage for those modules that are
considered finished. The only exception is the instrumentation package, where an ineffi-
cient loop in the code was never fixed. That loop lead to poor performance in pathological
cases.

Figure 8.22 shows how the project has grown over the nearly four years so far, plotting
the overall size of the code against the number of test cases, where about 1800 test cases
were used at the end of the project. While unit testing was part of the project from its
very start, code coverage was initially not measured. Later on, the goal was to have full
code coverage in order to avoid “surprises” later on in development, when previously
unused code would be executed for the first time, usually producing a failure. Locating
such faults can be very costly in older code, which may have been developed by people
who no longer participate at the project. Therefore we strongly believe that the effort of
preventing such failures pays off in the long term. Figures 8.23 and 8.24 show that only
after a bit more than a year, towards late 2002, a serious attempt was made to achieve
(and hold) the goal of full code coverage. Continued development afterwards introduced
a few lines in some files that had not yet been fully tested. Sometimes successes in quality
assurance were quickly thrown back by this. Figure 8.25 illustrates this fact. Nonetheless,
towards the end of development of a certain module, care was taken to finish that project
with a suite of test cases that achieves full code coverage.

8.8 Summary

This chapter described the implementation of dynamic part of JNuke, its VM and RV
API. It covered the principle of the observer architecture and its application in the context
of run-time verification. As an alternative approach, instrumentation-based analysis using
JPaX was outlined. Technical aspects included the organization of JNuke into modules,
an object-oriented layer in C, and unit tests.

120 Chapter 8. Implementation

 0

 20000

 40000

 60000

 80000

 100000

 120000

 140000

07/01 01/02 07/02 01/03 07/03 01/04 07/04 01/05 07/05

LO
C

Date

JNuke: total size in LOC, number of test cases

Figure 8.22: Project size in lines of code (solid) and number of test cases (dashed).

8.8. Summary 121

 0.01

 0.1

 1

 10

 100

07/01 01/02 07/02 01/03 07/03 01/04 07/04 01/05 07/05

%

Date

JNuke: Uncovered lines [%], number of test cases

Figure 8.23: Uncovered code in percent (solid) and number of test cases (dashed).

122 Chapter 8. Implementation

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 4000

 4500

 5000

07/01 01/02 07/02 01/03 07/03 01/04 07/04 01/05 07/05

LO
C

Date

JNuke: Uncovered LOC, number of test cases

Figure 8.24: Uncovered lines of code (solid) and number of test cases (dashed).

8.8. Summary 123

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

07/01 01/02 07/02 01/03 07/03 01/04 07/04 01/05 07/05

fil

es

Date

JNuke: Files not fully covered, number of test cases

Figure 8.25: Number of files containing uncovered lines (solid) and number of test cases
(dashed).

9
Experiments

This chapter describes experiments carried out with JNuke and JPaX using the algorithms
presented in this thesis. First, an overview is given of all benchmark applications which
were used to evaluate the effectiveness of the fault patterns described in this thesis. Sub-
sequent Sections illustrate experiments carried out. In all experiments, multiple warnings
for the same field or set of fields were counted as a single warning, because they all refer
to the exact same artifacts in source code. Such duplicates can easily filtered out, the
process of which is outlined in Chapter 11. An overhead given in percent denotes the
extra run time (or memory) required when compared to the base setting. Therefore an
overhead of 0 % corresponds to the same resource usage as in the base case, while 100 %
corresponds to twice the original number.

9.1 Applications

Table 9.1 summarizes benchmark applications used to evaluate the different tools. These
applications will be referred to throughout the entire chapter. Some other applications
or variants thereof were used for parts of the experiments only. (For instance, single-
threaded, serial applications were only used as part of the performance evaluation of the
JNuke VM.)

Certain applications are part of a multi-threaded benchmark suite that has recently
been initiated [EU04]. Several multi-threaded applications were included in the exper-
iments listed here, which contain seeded concurrency faults. They are described under
Bank, Deadlock, Lottery, Shop, and TicketOrder.

The Daisy application implements a very simple multi-threaded file system [FQ04].
It only includes a minimalistic test suite, so its unit tests do not execute enough code
to find many faults in the system. Furthermore, it implements its own locking scheme
on top of Java locks; in order to detect lock problems on that higher abstraction layer,
rules of checking tools have to be adjusted accordingly. This was not done for JNuke.
The Dining Philosopher application [Eug03] is a correct implementation of a well-known
problem. The implementation avoids a cyclic deadlock by having a different lock acqui-
sition order for one of the threads representing a philosopher. The hedc tool [vPG01]
accesses astrophysics data from web sources and models the processes of a Data Mining
tool. Our line count drastically differs from the one given in other publications because
unused concurrency library classes [Lea99] and given copies of standard Java library

125

126 Chapter 9. Experiments

Benchmark Size Description
[LOC]

Bank [EU04] 150 Bank w. frequent transfers but no synchr.
Daisy [FQ04] 1,900 Multi-threaded (simulated) file system
Deadlock [EU04] 250 Worker thread sim. w. deadlock detection
DiningPhilo [Eug03] 100 Dining Philosophers (3 threads, 5,000 it.)
hedc [vPG01] 8,900 Data Mining tool
JGFCrypt [BSW+99] 1,700 Large cryptography benchmark
JGFMontecarlo [BSW+99] 3,600 Montecarlo simulation
JGFSparseMult [BSW+99] 300 Sparse matrix multip. (50000×50000)
Lottery [EU04] 400 Assign a random number to each user
mtrt [Cor98] 11,300 Multi-threaded ray-tracing program
ProdCons [Eug03] 100 Producer/Consumer sim. (12,000 it.)
Santa [Tro94] 300 Santa Claus problem
Shop [EU04] 300 Shop sim. with customers and suppliers
SOR [vPG01] 250 Successive Over-Relaxation (2D grid)
TicketOrder [EU04] 200 Flight ticket order simulation
TSP [vPG01] 700 Travelling Salesman Problem
Web server [Sun97] 500 Simple multi-threaded HTTP server

Table 9.1: Benchmark programs.

classes were not included in the line count. The Java Grande Forum (JGF) benchmarks in-
cludes various multi-threaded benchmarks modelling cryptographic and scientific calcu-
lations [BSW+99]. The mtrt program [Cor98], a ray-tracer, also performs many calcula-
tions using multiple threads. What makes it relatively large is the large number of classes
used for the test harness and the use of its own wrapper classes for input/output. The
Producer/Consumer program [Eug03] simulates several threads using a common queue.
The Santa Claus program [Tro94] was implemented as a part of the unit tests for JNuke’s
garbage collector [Far04]. SOR [vPG01] implements a multi-threaded, iterative algo-
rithm on a 250 × 250 floating point matrix, using barriers [Lea99] to coordinate work
between threads. The TSP program [vPG01] features a main thread, which reads map
data from a file and then spawns a given number of worker threads to solve the problem
exactly (which of course is only feasible for small maps). Finally, the Web server [Sun97]
is a functional web server supporting HTML documents and images, written as a multi-
threaded Java application in order to demonstrate different concurrency mechanisms in
Java. It requires client requests and therefore was only used for testing correctness of the
implementation, but not for measuring performance.

9.2 JNuke VM

The goal of these experiments was a comparison between JNuke’s VM and the one pub-
lically available by Sun, which is highly optimized [Sun04b]. Most benchmarks were

9.2. JNuke VM 127

Benchmark Description Sun’s VM JNuke’s VM
Time Time Mem.

[s] [s] [MB]
Array (Test3) 10,000,000 array accesses 0.50 96.04 38.3
Bank Bank with frequent transactions 1.11 2.29 1.7
BubbleSort 10,000 array elements 0.57 176.64 0.5
Daisy Simple file systems 0.24 6.40 16.9
Deadlock Worker thread simulation 0.15 0.17 1.6
Dining Phil. 3 philosophers, 3,000 iterations 0.68 52.68 51.5
DoubleOp (Test8) 10,000,000 double operations 7.78 33.20 0.1
IOBenchmark1 100 threads writing 5 KB each 0.15 1.51 3.0
IOBenchmark2 100 threads reading 50 KB each 0.17 0.28 20.4
IOBenchmark3 1 thread writing 0.5 MB, 100 it. 0.25 1.95 2.5
IOBenchmark4 1 thread reading 0.5 MB, 100 it. 0.22 1.41 2.5
Iteration (Test) Empty loop with 10 million iter. 0.25 42.05 0.1
Jaspa (MccaJaspa) Sparse matrix multiplication 0.31 37.74 12.6
JGFCrypt (20 thr.) IDEA encryption algorithm 1.93 177.09 35.7
JGFSeries (20 thr.) Fourier coefficient series 22.49 566.72 1.4
JGFSparseMatmult Sparse matrix multiplication 1.38 461.12 9.9
(20 threads)
Lottery Random number assignment 0.21 1.20 3.4
MethodInvocation 4,000 invocations of 0.42 10.57 2.0
(Test7) 400 methods
MultiArray (Test5) Six-dim. array, 106 entries 1.23 31.09 84.9
Producer/Consumer 120,000 it., 1 + 1 threads 3.31 28.04 32.1
Producer/Cons.a 120,000 it., 1 + 100 threads 226.87 47.70 25.7
ReadManyFields 200 iter. w. 5,000 field accesses 0.38 24.46 10.6
Santab Santa Claus problem 6.15 0.20 1.3
Shop Shop simulation 0.21 0.12 1.6
SOR 1 iteration, 3 threads 0.16 1.64 2.7
TicketOrder Flight ticket order simulation 0.13 5.80 1.8
TSP Map size 10, 3 threads 0.17 0.95 3.2
TSP Map size 15, 3 threads 0.17 12.22 3.2
Geometric mean of all execution times 0.66 8.72

aThe overhead is primarily caused by an inefficient pThreads implementation in the 2.4 Linux kernel,
scaling poorly to 100 threads as used in this benchmark [Eug03].

bThe JNuke VM skipped idle periods caused by all threads sleeping.

Table 9.2: Benchmarks to evaluate the performance of the VM. If a benchmark name in
brackets is given, it refers to the Java program in the JNuke test suite.

128 Chapter 9. Experiments

taken from the original implementation used to evaluate the initial version of the JNuke
VM [Eug03]. In the meantime, advances in Sun’s VM have made it a little faster while the
usage of the older gcc-2.95.4 compiler under Debian 3.0 (stable) and run-time verification
extensions in the JNuke VM have slowed it down by about 10 %. The I/O Benchmarks
have been run according to the documentation in [Zwe03], where experiments were run
on a Pentium III with a clock frequency of 733 MHz and 256 KB of level II cache. Ad-
vances in processor technology have meanwhile resulted in very small execution times,
so the benchmark sizes were scaled up by at least one order of magnitude for each I/O
benchmark. Table 9.2 shows the results from running the experiments again on a Pen-
tium 4 with a clock frequency of 2.8 GHz and 1 MB of level II cache. Garbage collection
in JNuke [Far04] was disabled for these experiments, because memory usage was low
enough not to require it. The first two columns describe the benchmark used. The third
column gives the run time for Sun’s VM while the fourth one shows the one of JNuke.
Memory consumption in JNuke is given in the last column. This figure could not be eval-
uated for Sun’s VM, which only allows to set an upper limit to memory consumption but
not to measure the actual amount of memory used.

Results are still similar to the original findings [Eug03] but the overhead of the JNuke
VM is aggravated slightly. One should note that the numbers for Sun’s VM benefitted
a lot from its just-in-time (JIT) compiler, which JNuke does not have. Especially for
applications performing a lot of computations in small loops, such a JIT compiler is in-
dispensable for obtaining a performance that can approach the one of a compiled program.
While the lack of such a compilation step is a slight advantage in the small benchmarks,
it results in a slowdown of a factor greater than 300 in pathological cases. In order to get
an overall comparison, the geometric mean of execution times was chosen. Unlike the
arithmetic average, it does not skew results towards a few long-running benchmarks. The
average slowdown thus computed amounts to only a factor of 13, which is partially due to
the two examples where JNuke runs faster than Sun’s VM (101 threads and excessive use
of sleep). Without these examples, the average slowdown increases to a factor of 20, and
38 for benchmarks running for at least 0.5 s under Sun’s VM. This is slightly higher than
previous results which used an older version of Sun’s VM, containing a less optimized
JIT compiler [Eug03].

9.3 JNuke Model Checker

Complex properties are usually not only application-specific, but even local to a specific
module [ABG+03, Mey97], and still require a user-defined specification and full state
space exploration in order to ensure that they are fulfilled by a given program. There-
fore model checking for software is gaining popularity as its tools become more ma-
ture [BPR01, Pel01, VHB+03].

The JNuke VM has been designed with model checking in mind, and thus efficient
storage and access to the state space is crucial. Experiments carried out with the JNuke
model checker aimed at evaluating the performance of the underlying engine, rather than

9.3. JNuke Model Checker 129

the state space exploration heuristics [ASB+04]. Therefore correct, relatively small in-
stances of the Dining Philosophers and Producer/Consumer example programs [Eug03]
were chosen. Because the programs do not violate any assertions and produce no dead-
locks, the entire state space has to be explored exhaustively by the model checker. JNuke
offers the ExitBlock and ExitBlock/RW (EB and EB/RW, [Bru99]) heuristics to reduce
the state space. They both rely on lock releases as boundaries of atomic blocks. The
ExitBlock/RW heuristics also takes advantage of the fact that two atomic blocks that have
no data fields in common can be treated independently. This additional partial-order re-
duction requires data-race freedom, which can be verified at run-time [SBN+97].

Unlike in the original publication [ASB+04], when the garbage collector for JNuke
was not available yet [Far04], garbage collection was enabled for these experiments.
Garbage collection resulted in reducing memory usage by about 15 % while not increas-
ing the run time measurably (only by about 2 – 3 %).

Application JNuke (EB/RW) JNuke (EB)
Time Mem. #ins #ins/s Time Mem. #ins #ins/s

[s] [MB] [s] [MB]
DP 2 10 2.65 19.4 292 110 3.64 26.6 502 138
DP 3 1 0.10 1.4 5 50 0.69 5.1 89 129
DP 3 2 2.05 15.5 196 96 8.25 49.7 1,060 128
DP 3 3 15.91 80.5 1,271 80 47.76 209.4 4,620 97
PC 100 40.50 4.6 97 180 0.55 4.6 117 213
PC 1000 8.74 37.8 1,161 132 9.81 38.4 962 98
Geo. mean 1.85 13.4 185 100 4.18 25.1 539 129

Table 9.3: Benchmark results for the JNuke model checker. The number of instructions
is given in thousands.

Table 9.3 shows the results. In the first column, application “Dining Philosophers”
is abbreviated as “DP”, followed by the number of threads and iterations. Application
“Producer/Consumer” is labelled “PC”, followed by the number of iterations. The two
available partial-order reduction heuristics ExitBlock and ExitBlock/RW are compared.

It is clear that the ExitBlock/RW heuristics is very effective at reducing the search
space. In the average case, the state space (number of instructions) is reduced by 66 %,
improving memory usage by 49 %. However, the resulting computational overhead of the
heuristics amounts to 23 %, which results in fewer instructions per second handled. Thus
overall computation time drops by 57 % when using the better heuristics.

For comparison, the same tests were run on Java PathFinder (JPF) 3.1.1. This older
version does not yet use thread reachability information for partial-order reduction, which
is very effective at pruning the search space [VHB+03]. This is not a problem in this
evaluation because it does not emphasize search heuristics.

It should be noted that JPF run times do not include the time to load the class files,
because this is handled by Java itself. Furthermore, memory used to store JPF and appli-

130 Chapter 9. Experiments

cation class files is not measured. In JPF, memory usage is given after garbage collection,
because the value prior to garbage collection was not consistent between runs.

Application JNuke (EB/RW) JPF (lines)
Time Mem. #ins #ins/s Time Mem. #ins #ins/s

[s] [MB] [s] [MB]
DP 2 10 2.65 19.4 292 110 21.41 2.6 503 23
DP 3 1 0.10 1.4 5 50 7.76 1.8 151 19
DP 3 2 2.05 15.5 196 96 41.47 3.5 1,112 27
DP 3 3 15.91 80.5 1,271 80 151.23 8.0 3,670 24
PC 100 40.50 4.6 97 180 12.78 2.5 279 22
PC 1000 8.74 37.8 1,161 132 98.92 12.2 2,795 28
Geo. mean 1.85 13.4 185 100 33.11 4.0 539 24

Table 9.4: Comparison between JNuke and JPF. The number of instructions is given in
thousands.

The results are summarized by Table 9.4. Results of these experiments underline
the importance of effective state-space reduction methods. The ExitBlock/RW algo-
rithm [Bru99] is already quite an improvement over the original ExitBlock algorithm.
Because the given JPF version only uses single lines as an atomic block, direct run time
comparisons are misleading. The number of instructions executed per second gives a
much more accurate measure, showing that JNuke’s model checking engine is roughly
four times faster than JPF’s, or over five times faster when the simpler heuristics in JNuke
(EB) is taken for comparison. However, data structures in JNuke require about 3.4 times
more memory.

This is partially because JNuke’s low-level data structures are optimized for portability
across different hardware architectures, introducing some redundancy in its data structures
to ensure a consistent iteration order for hash tables regardless of insertion order or mem-
ory layout. Furthermore, data structures are optimized for fast access through uniform
memory alignment for all register types, which results in an overhead of at worst a factor
of two on 64-bit architectures [Eug03].1 Most importantly, the depth-first ExitBlock/RW
state space exploration is not efficient with respect to garbage collection, because only a
small percentage of references can be collected at any given time, resulting in a relatively
high peak memory usage [Far04].

Experiments have shown that model checking of small Java programs is feasible, mod-
elling the entire semantics of bytecode. However, even with a fast core engine, only very
small programs can be explored exhaustively with model checking. More effective state
space reduction methods are needed to make this technology scale better. Furthermore,
program abstraction is crucial for achieving a better performance, but not yet automated
in JNuke. Chapter 11 describes future work for the model checker in more detail.

1Java has originally been designed for 32-bit architectures, which is the reason why references are
treated as if they occupied 32 bits in memory [LY99].

9.4. Eraser 131

9.4 Eraser

For performance evaluation and comparison against other tools [ASB+04], the well-
known Eraser algorithm [SBN+97] has been implemented in JNuke. Table 9.5 sum-
marizes the results. Running the Eraser algorithm in addition to the application on the
JNuke VM results in an overhead of 262 % for our Eraser implementation, which is quite
encouraging. However, the slowdown compared to a JIT-enabled VM is still around a
factor of 25, which is comparable to other checking tools [NS03] but still offers room for
improvement.

The reports can be explained as follows: The benchmark collection (Bank, Deadlock,
Lottery, Shop, TicketOrder) containing seeded faults [EU04] gives rise to many reports,
as was to be expected. These reports are true positives. In the JGFCrypt and Santa
benchmarks, four warnings each refer to instances “leaked” by the constructor, i.e., made
accessible to other threads before the constructor has finished execution. This is not part of
the original Eraser algorithm but an extension that is a very strong indicator of a possible
fault [Lea99, vPG01].

An implementation of thread segmentation [Har00] could yield a definite answer for
these cases: If higher-level synchronization is used, then the accesses are safe. The final
case reported for Santa is a plain low-level data race. The data races reported for the
TSP application reach report one field. The different reports refer to four methods where
accesses are not properly protected by locks. In these cases, other mechanisms such as
thread-locality [tl] of data ensure thread safety [Lea99].

9.5 High-level Data Races

9.5.1 Java Path Explorer

Initial work on high-level data races, including the first implementation, was carried out
at NASA Ames using the Java Path Explorer (JPaX) [AHB03]. The JPaX RV tool uses
bytecode instrumentation to verify properties such as view consistency, and is described
in Section 8.4.

Before analyzing applications, the implementation of the algorithm was tested using
ten hand-crafted programs exhibiting different combinations of tuple accesses, such as the
ones shown in Section 3.3.3. The test set included applications which contain high-level
data races and others that do not. The primary purpose of this test set was to test the
implementation of the view consistency algorithm. Furthermore, the tests served to fine-
tune the output so it is presented in an easily readable manner. This makes evaluation of
warnings fairly easy, as long as the semantics of fields used in conflicting views is known
and it can be inferred whether these fields have to be used as an atomic tuple or not.

Once these tests ran successfully, four real applications were analyzed with JPaX. In
addition to some of the applications described above, a Java model of a NASA planetary
rover controller, named K9, was analyzed. The original code is written in C++ and con-
tains about 35,000 lines of code, while the Java model is a heavily abstracted version with
7,000 lines. Nevertheless, it still includes the original, very complex, synchronization
patterns.

132 Chapter 9. Experiments

Application Sun’s JNuke VM
VM No check Eraser

Time Time Mem. Reports Time Mem.
[s] [s] [MB] [s] [MB]

Bank 1.11 2.29 1.7 3 [1 race, 6.40 1.7
2 cons]

Daisy 0.24 6.40 16.9 0 9.14 22.8
Deadlock 0.15 0.17 1.6 2 [cons] 0.50 1.7
Din. Phil. (5000 it.) 0.31 5.90 10.8 0 8.03 10.8
JGFCrypt (3 threads) 1.99 176.75 36.6 4 [cons] 786.82 36.9
JGFSparseMatmult 1.66 447.72 9.9 0 3723.96 9.9
(3 threads)
Lottery 0.21 1.20 3.4 5 [cons] 24.17 3.8
Prod./Cons. 0.50 2.76 4.0 0 4.01 4.1
(12,000 iterations)
Santaa 6.15 0.20 1.3 5 [1 race, 0.29 1.6

4 cons]
Shop 0.21 0.12 1.6 5 [1 race, 0.12 1.6

4 cons]
SOR (1 iteration, 0.16 1.64 2.7 0 10.03 2.7
3 threads)
TicketOrder 0.13 5.80 1.8 4 [1 race, 62.62 4.8

3 cons]
TSP (size 10, 0.17 0.95 3.2 5 [tl] 4.56 5.3
3 threads)
TSP (size 15, 0.17 12.22 3.2 9 [tl] 101.35 5.5
3 threads)
Geometric mean 0.41 3.17 11.46

aThe JNuke VM skipped idle periods caused by all threads sleeping.

Table 9.5: Low-level data race analysis results using JNuke.

9.5. High-level Data Races 133

Note that all Java foundation classes were excluded from the analysis. This would
have increased the overlapping sets to a point where the analysis would have produced
too many warnings: Every print statement using System.out would have resulted in
overlapping sets with any other view containing an access to System.out.

Application Run time [s], Run time [s], Log size Warnings
uninstr’d instrumented [MB] issued

Elevator 16.7 17.5 1.9 2 [cond]
SOR 0.8 343.2 123.5 0
TSP, small run (4 cities) 0.6 1.8 0.2 0
TSP, larger run (10 cities) 0.6 28.1 2.3 0
K9 Rover controller – – – 1 [opt]

Table 9.6: High-level data race analysis results using JPaX.

Table 9.6 summarizes the results of the experiments. All experiments were run on a
Pentium III with a clock frequency of 750 MHz using Sun’s Java 1.4 Virtual Machine,
given 1 GB of memory. Only applications which could complete without running out of
memory were considered. It should be noted that the overhead of the built-in Just-In-
Time (JIT) compiler amounts to 0.4 s, so a run time of 0.6 s actually means only about
0.2 s were used for executing the Java application. The Rover application could not be
executed on the same machine where the other tests were run, so no time is given there.

It is obvious that certain applications using large data sets incurred a disproportion-
ately high overhead in their instrumented version. Many examples passed the view consis-
tency checks without any warnings reported. For the elevator example, two false warnings
referred to two symmetrical cases. In both cases, three fields were involved in the conflict.
In thread t1, the views V (t1) = {{1,3},{3},{2,3}} were inconsistent with the maximal
view vm = {1,2,3} of t2. While this looks like a simple case, the interesting aspect is
that one method in t1 included a conditional access to field 1. If that branch had been
executed, view {2,3} would actually have been {1,2,3}, and there would have been no
inconsistency reported. Since not executing the branch corresponds to reading data and
discarding the result, both warnings are false positives.

One warning was also reported for the NASA K9 rover code. It concerned six fields
which were accessed by two threads in three methods. The responsible developer ex-
plained the large scope of the maximal view with six fields as an optimization, and hence
it was not considered an error. The Remote Agent space craft controller was only avail-
able in LISP, so it could not be directly tested. However, the tool used was successfully
applied to test cases reflecting different constellations including the particular high-level
data race presented in Chapter 3.

9.5.2 JNuke

After the initial implementation of view consistency in JPaX [AHB03], the same algo-
rithm was implemented in JNuke in order to allow running more benchmarks and for

134 Chapter 9. Experiments

performance comparison [ASB+04]. In the experiments given here, analysis of individ-
ual array element accesses was disabled. This setting sacrifices little precision but can
speed up run-time analysis significantly for programs using large arrays. It corresponds
to the configuration used in JPaX. Given a time-out of one hour, JNuke was capable of
running more benchmarks successfully than JPaX, allowing to get a broader evaluation
of the novel high-level data race algorithm. Table 9.7 summarizes the results from using
JNuke. The most remarkable result is the fact that several examples resulted in reports due
to conditional accesses. All such conditional view consistency violations are benign, and
the warnings are spurious. In the TSP example, such an access pattern was only present
for the second, larger test run, with size 15. The views involved in these runs were rather
large, with up to 13 fields per view. The smaller test run with size 10 did not execute the
code in a way that would violate view consistency.

Application Sun’s JNuke VM
VM No check High-level data races

Time Time Mem. Reports Time Mem.
[s] [s] [MB] [s] [MB]

Bank 1.11 2.29 1.7 0 5.86 1.7
Daisy 0.24 6.40 16.9 0 12.76 27.6
Deadlock 0.15 0.17 1.6 0 0.44 2.0
Din. Phil. (5000 it.) 0.31 5.90 10.8 0 14.06 27.7
JGFCrypt (3 threads) 1.99 176.75 36.6 0 557.29 36.9
JGFSparseMatmult 1.66 447.72 9.9 0 2198.40 9.9
(3 threads)
Lottery 0.21 1.20 3.4 0 33.59 5.3
Prod./Cons. 0.50 2.76 4.0 0 4.48 7.0
(12,000 iterations)
Santaa 6.15 0.20 1.3 1 [cond] 0.35 1.6
Shop 0.21 0.12 1.6 0 0.12 1.6
SOR (1 iteration, 0.16 1.64 2.7 0 7.60 2.7
3 threads)
TicketOrderb 0.13 0.13 1.8 0 0.98 1.7
TSP (size 10, 0.17 0.95 3.2 0 3.61 3.2
3 threads)
TSP (size 15, 0.17 12.22 3.2 2 [cond] 83.94 3.2
3 threads)
Geometric mean 0.41 2.42 8.35

aThe JNuke VM skipped idle periods caused by all threads sleeping.
bA smaller data set was chosen because the efficient lock set implementation was not available yet at the

time of writing, the lack of which would have skewed the benchmark for large data sets.

Table 9.7: High-level data race analysis results using JNuke.

Performance wise, the view consistency algorithm performs well as a run-time verifi-
cation algorithm, with an average run-time overhead of 246 %. However, as shown above,

9.6. Block-local Atomicity 135

the additional overhead of the JNuke VM incurs an extra overhead compared to the fully
optimized VM from Sun. The total overhead is acceptable for programs that do not per-
form a lot of computations, but still too high for applications performing many numerical
computations.

9.5.3 View Consistency as a Fault Pattern

Experiments indicate that experienced programmers intuitively adhere to the principle of
view consistency. Violations can be found, but are not very common, as shown in the
experiments. Some optimizations produce warnings that constitute no error. The fact that
almost all false positives result from conditional accesses show that the definition of view
consistency still needs some refinement. If one takes this into account, then the view
consistency property can be seen as a very effective way of inferring atomic sets of data.
The fact that most programs did not show any violations underlines this. It is therefore a
fault pattern that can be applied in practice, without requiring annotations. User-defined
annotations may serve to describe atomic sets of data, increasing precision even further,
at the cost of requiring manual specification.

9.6 Block-local Atomicity

9.6.1 Comparison to Other Atomicity-based Approaches

The block-local atomicity algorithm analyzes method-local data flow, checking for copies
of shared data (stale values) that are used outside the critical section in which shared
data was read [BL02]. Initial experiments aimed at comparing our approach to previ-
ously published atomicity-based algorithms [FF04, vPG03]. For this, a preliminary ver-
sion of a static analyzer that checks for block-local atomicity has been implemented in
JNuke [ASB+04] and later extended to handle method calls. This extension lead to the
creation of generic analysis algorithms [AB05a], which allowed more benchmarks be an-
alyzed. Run times of our tool were faster than Praun’s figures but in the same order of
magnitude [vPG03] and are given below. Most of the analysis time of Praun’s tool oc-
curred in general-purpose symbolic execution while symbolic execution in our analysis
was optimized for the block-local atomicity property. Flanagan’s run-time verification
tool was a lot slower than static analysis but its performance is comparable to our run-
time analysis tool. Due to the small number of benchmarks available and differences in
hardware, an exact comparison is not possible.

Table 9.8 shows the results of our experiments. The applications analyzed do not
exhibit atomicity violations, except for the hedc benchmark, where a hash table is used to
store data. Individual accesses to the hash table are synchronized, but the use of the data
from it is not. This is a classical atomicity violation. However, it is possible that higher-
level synchronization prevents actual failures when using that data; our knowledge of that
program is too limited to judge this. In fact, one publication counted these warnings as
benign [vPG03] while another one did not [FF04].

136 Chapter 9. Experiments

Benchmark Method views Reduction-based Block-local
[vPG03] atomicity [FF04] atomicity

DiningPhilo 0 not available 0
Elevator 2 2 2 [double check]
hedc 5 4 3 [hash table]
JGFCrypt 0 not available 0
JGFMontecarlo 0 1 1 [segmentation]
mtrt 3 6 1 [cache]
SOR 0 0 0
TSP 1 7 0

Table 9.8: Comparison of the block-local atomicity algorithm to other atomicity-based
approaches: Number of warnings reported.

Other warnings issued are false positives: In the elevator example, the two warnings
refer to a case where a variable is checked twice, similarly to the example in Figure 10.2.
In the JGFMontecarlo benchmark, only one thread is active where a potential fault was
reported. This corresponds to higher-level synchronization, known as thread segmenta-
tion [Har00]. Praun’s case study either missed that report or counted it towards the Java
library itself [vPG03]. For mtrt, the false positive is a case where a cache structure is
used. Information is only written once to that cache, but this code idiom is not accounted
for by our static analyzer.

The approach presented here necessarily reports fewer atomicity violations than the
run-time checker from Flanagan and Freund [FF04]. This can be expected since block-
local atomicity implies method-local atomicity, and thus the number of violations of
method-local atomicity constitutes an upper bound to the number of block-local atomicity
violations. The number of warnings is usually the same as for Praun’s approach [vPG03],
but is smaller for benchmarks shown in bold face.

Compared to a previous prototype checker for stale values [BL02], our checker is
significantly faster. Burrows reported 2000 source lines (LOC) per minute on unspecified
hardware. JNuke checked a binary resulting from 500 lines in 0.02 s, on a Pentium 4
with a clock frequency of 2.8 GHz. Accounting for different hardware, a difference of
about two orders of magnitude remains. Results show that while the method is useful for
finding errors, thread locality and thread segmentation have to be taken into account to
make the analysis more precise. These two properties can be implemented statically or
dynamically.

9.6.2 Performance and Results of the Generic Analysis

The block-local atomicity algorithm [ABH04] has been adapted as a generic algorithm
that can be used to compare static and dynamic analysis. This analysis only requires
reference alias information about locks, making it a suitable candidate for both static and
dynamic analysis.

9.6. Block-local Atomicity 137

The static analysis module includes a suppression list to avoid a few common cases of
false positives. The list contains several methods which return thread-local information,
corresponding to the hand-over protocol for return data [Lea99]. In addition to such
methods, it contains various native methods that do not use multi-threading, but which
have to be suppressed because the static analyzer cannot interpret native code. Mostly
due to native methods, the suppression list has grown with each program analyzed.

Benchmark Run-time verification
Reports No ch. Time Mem.

[s] [s] [MB]
Bank 0 2.29 4.19 1.7
Daisy 0 6.40 11.03 23.9
Deadlocka 0 0.25 0.33 1.8
DiningPhilo 0 5.90 9.45 20.4
JGFCrypt 0 176.75 1127.92 36.6
JGFSparseMat. 0 447.72 2102.97 9.9
Lottery 0 1.20 3.89 3.8
ProdCons 1 [buf] 2.76 4.35 7.0
Santa 0 0.20 0.25 1.4
Shop 0 0.14 0.14 1.6
SOR 0 1.64 32.95 2.5
TicketOrder 0 5.80 13.20 8.9
TSP, size 10 0 0.95 2.76 3.2
TSP, size 15 0 12.22 48.62 3.2
Geometric mean 3.25 8.49

aA different setting had to be chosen due to an implementation problem in the RV listener.

Table 9.9: Benchmark results for the block-local atomicity analysis used in run-time
verification. Column “No ch.” lists execution times in the JNuke VM with no run-time
verification running.

All experiments were run on a Pentium 4 with a clock frequency of 2.8 GHz and
1 MB of level II cache. Table 9.9 shows the results of run-time verification, Table 9.10 for
static analysis. Both for run-time verification and static analysis, the number of reports
(warnings), run time, and memory consumption are given.

Some benchmarks could only be run for static analysis because not all Java library
classes used were implemented in the JNuke run-time library. They are listed in Table 9.10
only. Static analysis was applicable in cases where very few classes were missing, which
did not depend on other classes and did not influence the analysis result. Such missing
classes had to be investigated manually. The analysis time for hedc is rather small because
a part of the application could not be analyzed with the current version of the analyzer
due to the lack of full support for polymorphism. Again, missing classes were checked
manually. The table omits experiments based on about 30 small programs used for testing,
which were all verified correctly.

138 Chapter 9. Experiments

Benchmark Static analysis
Reports Time Mem.

[s] [MB]
Bank 0 0.07 1.0
Daisy 3 [ro, tl, tl] 0.15 1.9
Deadlock 0 0.06 0.9
DiningPhilo 0 0.02 0.3
Elevator 2 [dc] 0.01 0.1
hedc 3 [hash tbl.] 0.18 2.0
JGFCrypt 0 0.10 1.3
JGFMontecarlo 1 0.17 2.1
JGFSparseMat. 0 0.02 0.3
Lottery 0 0.06 0.8
mtrt 1 [cache] 0.34 3.7
ProdCons 1 [buf] 0.01 0.2
Santa 0 0.03 0.4
Shop 0 0.08 1.4
SOR 0 0.08 1.1
TicketOrder 0 0.08 1.1
TSP 0 0.09 1.1

Table 9.10: Results for block-local atomicity used in static analysis.

Run times for dynamic analysis are excellent, with an average overhead of 161 %
compared to normal execution in the JNuke VM. This is even though Java foundation
methods have been omitted from being monitored. A very effective optimization would
therefore exclude any methods that can be statically proven to be safe.

Given warnings are all false positives, except for the hedc benchmark, which is ex-
plained above.2 Those spurious warnings which are not explained above include Daisy,
where they were caused by read-only [ro] and thread-local [tl] values. For the Prod-
Cons benchmark, the stale value comes from a synchronized buffer [buf] and is thread-
local [Lea99]. These warnings can be filtered out easily by method-local reference anal-
ysis. Such a method-local pointer analysis will greatly decrease the number of spurious
warnings.

However, pointer alias analysis is an unsolvable problem in general and therefore
can never prevent all possible spurious warnings. An example where static analysis
would then still provide a false positive because of lock aliasing can be constructed eas-
ily. Figure 9.1 shows a contrived example where two nested locks are used. Assume
that getLock() is too complex for a precise pointer analysis. Then static analysis will
conservatively assume the two locks are different and report the use of a stale value at
statement tmp++. However, run-time analysis will only use a single monitor block, since

2A more precise pointer analysis could suppress most of these warnings. Run-time verification would
never report false positives concerning thread-local data, such as in the five cases in Daisy and TSP, due to
fully accurate pointer information.

9.6. Block-local Atomicity 139

Object getLock() {
 /* assume some really complex obfuscated code here */
 return this;
}

void correctMethod() {
 Object lock1, lock2;
 int tmp;
 lock1 = getLock();
 lock2 = getLock();
 synchronized (lock1) {
 synchronized (lock2) {
 tmp = getData();
 }
 tmp++;
 }
}

Figure 9.1: A false positive resulting from redundant locks.

the two locks are equal, and not report a false positive. This scenario has been outlined
before [ABH04].

The overall experience shows that the approach using generic analysis algorithms
works as envisioned. Experiments clearly indicate that static analysis is a lot faster, while
being less precise. The staggering difference in execution times for the two analysis types
is easily explained: for SOR, for instance, the dynamic version generates many thousands
of objects, on which a series of mathematical operations is performed. Therefore a test
suite that only aims at verifying block-local atomicity should be designed for smaller test
runs; also see Section 5.6 for coverage criteria that may be sufficient for certain multi-
threaded properties. In the static version, each method is only executed once, because
the algorithm is context-insensitive. This by itself reduces complexity by many orders
of magnitude. In summary, given experiments show that the framework is fully applica-
ble to real-world programs, analyzing them both statically or dynamically depending on
whether one requires a fast analysis or high precision.

9.6.3 Block-local Atomicity as a Fault Pattern

The danger of possible atomicity violations in concurrent programs is undisputed [BL02,
FF04, vPG03]. Nonetheless, experiments have shown that many correct programs vi-
olate atomicity by using code idioms such as thread-local data [Lea99]. By including
information about thread locality and thread segmentation, it will be possible to reduce
the number of spurious warnings significantly. Even at the current state, the block-local
atomicity algorithm is already very useful in practice due to its speed and the difficulty
of finding atomicity violations by testing. Other means of finding such failures, namely
model checking, do not scale up to larger programs [Fla04].

140 Chapter 9. Experiments

9.7 Summary

Building a custom VM requires a lot of effort if a performance comparable to the one of
commercial VMs should be achieved. JNuke’s VM is getting towards such a point, but
still requires more optimization. Nonetheless, it is a very competitive run-time verifica-
tion and model checking engine and performs better than comparable tools in both areas.
Because model checking is still not feasible for large programs, run-time verification has
been the focus of this thesis. JNuke’s RV API allows for an efficient implementation
of common verification algorithms, which only slow down execution about three or four
times, compared to normal execution in the JNuke VM. This performance makes JNuke
a useful tool for applying its run-time verification algorithms to automated test suites.

All run-time verification algorithms presented here embody fault patterns, which are
applicable to general-purpose software. They do not require manual annotations or human
interaction, and deliver only few false positives. At the same time, they find errors quickly
which are very hard to detect with other technologies, making these algorithms a very
valuable contribution.

10
Related Work

As described in Chapter 2, view consistency was partially inspired by the Eraser algo-
rithm [SBN+97]. Beyond this algorithm, related work does not only exist in software
analysis, but also in database and hardware concurrency theory. Stale-value errors also
cover detection of errors not found by data race analysis. The algorithm is related to pre-
vious work on atomicity violations but is an independent approach to that problem. The
data flow analysis used in our algorithm is at its core an escape analysis, although it uses
different entities and scopes for its analysis. Finally, atomicity is related to serializability,
a weaker property that is more difficult to verify.

10.1 Data Races

Low-level data races denote access conflicts when reading or writing individual fields
without sufficient lock protection [SBN+97]. For detecting data races, the set of locks
held when accessing shared fields is checked. High-level data races turn this idea up-
side down and consider the set of fields accessed when holding a lock. View consistency
serves as a consistency criterion to verify whether these accesses are semantically com-
patible [AHB03].

Block-local atomicity is a property which is independent of high-level data races.
Figure 2.9 in Chapter 2 showed that certain faults result in high-level data races but do
not violate block-local atomicity. However, the reverse is also possible, as shown in
Figure 10.1, where no high-level data races occur, but stale values are present in the
program. Hence the two properties are independent [WS03].

Both high-level data races and block-local atomicity build on the fact that the program
is already free of underlying low-level data races, which can be detected by lock set
algorithms such as Eraser [SBN+97]. The intent behind block-local atomicity is to use it
in conjunction with low-level and high-level data race analyses, because these notions do
not capture atomicity violations.

10.2 Atomicity of Operations

High-level data races cover inconsistencies in value accesses. Another kind of fault that is
closely related to high-level data races is the idea of atomicity of sequences of operations,
such as an entire method [FQ03]. Atomicity of operations is not directly concerned with

141

142 Chapter 10. Related Work

data accessed within individual critical (synchronized) regions, but with the question
whether these regions are sufficiently large to guarantee atomic execution of certain op-
erations. Atomicity is a desirable property in concurrent programs [FF04, FQ03, vPG03,
WS03]. In conjunction with the absence of data races, program correctness with respect
to concurrently accessed data can be guaranteed.

synchronized(lock) {
 tmp = x.getValue();
}
tmp++;
synchronized(lock) {
 x.setValue(tmp);
}

Figure 10.1: A non-atomic operation that does not violate view consistency.

The key idea of the most common approach to atomicity checking is the reduction of
sequences of operations to serializable (atomic) actions based on the semantics of each
action with respect to Lipton’s reduction theory [Lip75]. In Figure 10.1, the actions of the
entire increment method cannot be reduced to a single atomic block because the lock is
released within the method. The reduction-based atomicity algorithm verifies whether an
entire shared method is atomic. A static analysis algorithm checking an implementation
against an atomicity specification is presented in [FQ03]. Recent work includes a run-time
checker that does not require annotations [FF04].

A different approach to verify the atomicity of methods is based on the high-level data
race algorithm. It extends the views used therein with an extra view containing the fields
accessed within each method [vPG03]. The idea behind this method view assumes that all
shared fields accessed within the scope of a method should be used atomically. For each
method call m by thread t, its view Vm(t) consisting of all fields accessed by m are added
to the views of thread t. The intuition behind this is that synchronized blocks within
a method generate views that may be in conflict with Vm(t). In addition to this, several
method calls result in several views. This can detect inconsistencies between invididual
method calls (where a different control flow results in different fields being used).

High-level data races (if used without method views) do not cover such atomicity vi-
olations, although it is possible that an atomicity violation can lead to a high-level data
race. Figure 10.1 shows a possible scenario where reading the value, performing an oper-
ation using it, and writing the result back are not carried out atomically. The result will be
based on a possibly outdated value, because other threads may have updated the shared
field, x, in the meantime. Because view consistency deals with sets of values, it cannot
capture this kind of error, as shown by Wang and Stoller [WS03]. Only full knowledge
about the desired atomicity can achieve this. Theoretically, view consistency could be
augmented with such information to improve its precision. However, requiring a list of
allowed views for each thread would defeat the purpose of requiring no user specification.

10.3. Database Concurrency 143

Instead, block-local atomicity is the ideal property to cover such errors. It is more
precise than such previous approaches, as shown in Section 4.4. At the same time it is
conceptually simpler, because modeling the data flow of instructions is much simpler than
deciding whether a sequence of instructions is atomic. Atomicity by itself is not sufficient
to avoid data corruption.1 However, augmenting data race checks with view consistency
and our atomicity algorithm finds more errors than one approach alone.

10.3 Database Concurrency

In database theory, shared data is stored in a database and accessed by different pro-
cesses. Each process performs transactions, sequences of read and write operations,
on the data. A sequence of these operations corresponding to several transactions is
called a history. Based on this history, it can be inferred whether each transaction is
serializable, i.e., whether its outcome corresponds to having run that transaction in isola-
tion [Pap79, BHG87]. Database accesses try to avoid conflicts by construction, by struc-
turing operations into transactions. The view consistency approach attempts to analyze
behavior patterns in multi-threaded programs and to verify a similar behavior in an exist-
ing program.

There are several parallels to multi-threaded programs, which share their data in mem-
ory instead of in a database. Data races on shared fields in a multi-threaded program can
be be mapped to database access conflicts on shared records. Lock protection in a multi-
threaded program corresponds to an encapsulation of read and write accesses in a trans-
action. The key problem addressed by this thesis, having intermediate states accessible
when writing non-atomically a set of fields, maps to the inconsistent retrieval problem in
databases. In such a history, one transaction reads some data items in between updates
of another transaction on these items. A correct transaction scheduler will prevent such
an access conflict, as long as the accesses of each process are correctly encapsulated in
transactions.

High-level data races concern accesses to sets of fields, where different accesses use
different sets. Similar problems may be seen in databases, if the programmer incorrectly
defines transactions which are too fine-grained. For example, assume a system consists
of a global database and an application using reading and writing threads. The writing
threads use two transactions to update the database, the reading threads access everything
in a single transaction. Here, the reader’s view is inconsistent, since it may read an inter-
mediate state of the system. If the writer uses a single transaction, the fault is corrected. It
is likely that the abstraction provided by database query languages such as SQL [CB74]
prevents some of these problems occurring.

Meanwhile, concurrency theory as used for databases and transaction systems has
been moving towards richer semantics and more general operations, which are called
activities [SABS02]. Activities are atomic events in such a system. Like in classical

1Flanagan and Qadeer ignored the Java memory model when claiming that low-level data races are
subsumed by atomicity [FQ03].

144 Chapter 10. Related Work

transactions, low-level access conflicts are prevented by a scheduler which orders these
operations.

Finally, database theory also uses the term view under different meanings. Specifi-
cally, the two terms view equivalence and view serializability are used [BHG87]. These
two terms are independent of view consistency as defined in this thesis.

So far, only single database systems have been covered. In distributed databases,
the virtual partitioning algorithm exhibits a problem very similar to the view consistency
problem presented here: Each transaction on an item operates on a set of entries, the set
of all database entries for a single item, which is distributed on different sites. A view in
this context is the set of sites with which a transaction is able to communicate [BHG87].
Ideally, a transaction has a view including all sites, so all updates are “atomic” on a global
scale. However, communication delays and failures prevent this from being a practical
solution. The virtual partitioning protocol [ASC85] ensures that all transactions have
the same view of the copies of data that are functioning and those that are unavailable.
Whereas a view in a distributed database corresponds to one data item which should be
accessed atomically, a view as described in this thesis encompasses sets of distinct data
items. The applicability of ideas from this protocol to the view consistency model in the
multi-threading domain looks promising.

10.4 Hardware Concurrency

In hardware design and compiler construction, Lamport has made a major step towards
correct shared memory architectures for multiprocessors [Lam79]. He uses sequential
consistency as a criterion for ensuring correctness of interleaved operations. It requires all
data operations to appear to have executed atomically. The order in which these operations
execute has to be consistent with the order seen by individual processes.

Herlihy and Wing use a different correctness condition which they call linearizabil-
ity [HW90]. It provides the illusion that each operation applied by concurrent processes
takes effect instantaneously at some point between its invocation and response. Lineariz-
ability is a stronger property than sequential consistency and has the advantage that it
preserves real-time ordering of operations. Although the theory is very general, it is
geared towards hardware and compiler construction because it allows exploiting special
properties of concurrent objects where transactions would be too restrictive. However, it
is not directly applicable to multi-valued objects and seems to be incapable of capturing
such high-level problems.

Lamport’s notion of sequential consistency is rather restrictive and can be relaxed such
that processors are allowed to read older copies of data as long as the observed behavior is
indistinguishable from a conventional shared memory system [ABM93]. Mittal and Garg
extended this work and Herlihy’s linearizability [HW90] to multi-object operations, such
as double-register compare and swap operations [MG98]. Problems occurring with such
multi-object operations are very much alike to high-level data races. Unlike the approach
shown in this thesis, which deals with access patterns, their approach is concerned with
the interleaving of operations and based on histories as known in database literature.

10.5. Stale Values 145

10.5 Stale Values

The kind of error found by our algorithm corresponds to stale values as defined by Bur-
rows and Leino [BL02] but is an independent approach to this question. Our algorithm
compares IDs of monitor blocks to verify whether a register contains stale shared data. It
has the advantage that these IDs can be used to track the source of a stale value, which
is crucial when showing a failure trace to the programmer. Burrows’ algorithm uses two
flags stale and from_critical instead, which must by updated whenever a register changes.
Unlike their approach, which is based on source code annotation, we model the seman-
tics of Java bytecode directly. This covers the full semantics of Java, including method
calls and arithmetic expressions, and allows us to discover potential non-determinism in
program output, when registers are written to an output. Burrows’ approach misses such
an error as it involves the use of a register in a method call. Furthermore, we have a
dedicated checker for this property, which is orders of magnitude faster [ABH04] than
Burrows’ prototype which uses the ESC/Java [FLL+02] framework that was targeted to
“more heavy-weight checking” [BL02].

10.6 Escape Analysis

The data flow analysis used for block-local atomicity is related to pointer escape analysis,
see [Bla99, BH99, CGS+99, WR99] and the more recent [Bla03], in the sense that it
determines whether some entity escapes a region of interest. In our case entities are
values (primitive as well as references), and the regions are synchronization sections.

For example, if the content of a field x is 5 and this value is read inside a synchronized
section, and then later used outside this region, then that value has escaped. In traditional
escape analysis on the other hand, typically entities are references to heap-allocated ob-
jects (not primitive values, such as an integer) and regions are methods or threads. In our
case, the analysis is simpler because modeling the effect of each instruction on the stack
and local variables is straightforward.

10.7 Serializability

Atomicity is sometimes too strong as a desired property, because it requires that the ef-
fect of an atomic sequence appears as a single action to the global system. Serializability
is less strict; actions of one thread may be interleaved with actions of another one, if
the result always corresponds to serial (atomic) execution. Atomic blocks are always
serializable, but the reverse is not true. Correct programs may be serializable but not
atomic [Fla04]. Serializability, while weaker than atomicity, still suffices to guarantee the
consistency of thread-local and global program states. Code idioms exist where opera-
tions are performed on outdated values but still yield the same result as if they had been
performed on the current value, because of double-checking.

Figure 10.2 derived from [Fla04] shows a code idiom suitable for long computations:
A shared value is read and stored locally. A complex function is then computed using the

146 Chapter 10. Related Work

public void do_transaction() {
 int value, fdata;
 boolean done = false;
 while (!done) {
 synchronized (lock) {
 value = shared.field;
 }

 fdata = f(value); // long computation

 synchronized (lock) {
 if (value == shared.field) {
 shared.field = fdata;
 /* The usage of the locally computed fdata is
 * safe because the shared value is the same as
 * during the computation. Our algorithm and
 * other atomicity-based approaches report an
 * error (false positive). */
 done = true;
 }
 }
 }
}

Figure 10.2: A code idiom that cannot be analyzed with block-local atomicity.

10.8. Summary 147

local copy. When the result is to be written back, the writing thread checks whether the
computation was based on the current value. If this was the case, the result is written;
otherwise the computation is repeated with a new copy of the shared value. Note that
even in a successful computation, the shared value may have been changed in between
and re-set to its original value. Thus this operation is non-atomic but still serializable, and
therefore correct.

Atomicity-based approaches, including the one presented in this thesis, will report
an error for this example [FF04, vPG01, WS03]. Flanagan’s definition of atomicity
only entails visible effects of an operation; in this sense, the program is atomic but ir-
reducible [Fla04]. On the other hand, the program violates block-local atomicity because
its action is not atomic. It is merely wrapped in a (potentially endless) loop that creates
the impression of atomicity. There is currently no approach other than model check-
ing [VHB+03] to decide whether a program is serializable. This observation does not
diminish the value of our algorithm because model checking is still much too expensive
to be applied to large programs [ASB+04, Fla04, VHB+03].

10.8 Summary

This work was inspired by low-level data races, which can be discovered without a user-
defined specification using the Eraser lock set algorithm. The goal of this thesis was to
extend low-level data races with additional fault-finding algorithms. High-level data races
were our first such contribution, which extends the idea of unprotected data accesses to
sets of fields. Possible faults thus detected in software are comparable to problems arising
in parallel data bases and multi-object operations in hardware.

Unlike the notion of high-level data races, which focuses on sets of data accessed,
other related work in software focuses on the atomicity of actions. Various kinds of
atomicity definitions have been described, denoting actions which are not synchronized
during their entire life time. Many approaches verify atomicity on a method level, which
is fairly accurate in practice but does not take data flow into account. Our algorithm,
block-local atomicity, is data-flow based and therefore more accurate than method-local
atomicity. As an alternative to atomicity-based algorithms, the serializability property
offers a weaker correctness property and thus an even more precise approach. However,
it can so far only be verified through model checking, which is a severe drawback.

11
Future Work

11.1 Dynamic Analysis in JNuke

Future work in dynamic analysis can be categorized into model checking and run-time
verification. For model checking, including more partial-order reduction ideas will reduce
the number of paths explored. The key is taking advantage of the garbage collector during
model checking because garbage collection can yield a canonical state space representa-
tion [IS00]. Further reductions can be achieved by including reachability information
from the mark phase in partial-order reduction [VHB+03]. Finally, the number of Java
classes that can support rollback operations has to be increased. In cases where rollback is
not feasible or computationally too complex, automated abstraction could be included in
the tool flow to eliminate such functionality prior to model checking [BPR01, CDH+00].

In run-time verification, the segmentation algorithm [Har00] can reduce false posi-
tives across all given algorithms. The main potential for optimization, however, lies in the
combination with static analysis. Static identification of thread-safe fields will speed up
run-time analysis. Furthermore, many method calls occur in the same context or a context
similar enough to have no influence on the state of the analysis algorithm. If such equiv-
alent contexts can be identified quickly and soundly at run time, further analysis can be
suppressed. One may even give up soundness by only analyzing the first few invocations
of each method, thus considerably reducing verification overhead.

The algorithms presented in this thesis, high-level data races and block-local atomic-
ity, have shown that large classes of faults can be covered by fault patterns. Such patterns
may exist for other kinds of multi-threading faults, or other widespread system operations.
The success of existing fault patterns, towards which memory management checks can be
counted as well, is an inspiration for searching for more such algorithms.

Other challenges exist in making the analysis output more readable. When handling
data, the current version reports the same conflict for each instance of a given class (object
type) that violates a certain property. This may result in a large error log, which contains
redundant information. Suppressing such duplicate output would not only reduce the
number of warnings issued but also offers an opportunity for analysis optimization.

The applicability of generic analysis algorithms in this context also has to be investi-
gated further. Finally, combinations of on-the-fly and off-line trace generation technolo-
gies promise to eliminate weaknesses without compromising on their advantages.

149

150 Chapter 11. Future Work

On the implementation side, future work includes a just-in-time compiler, because a
lot of execution time is still spent in the main loop of the VM. Futhermore, it has become
obvious that building a custom execution environment is an enormous task. Despite its
advantages, alternative approaches may achieve the goal of a functional tool more quickly
for future projects. Many native methods are not implemented yet in JNuke; a bridge that
can include third-party native libraries could help to reduce this implementation effort.

Because of these difficulties, other implementation approaches may be reconsidered.
Instrumentation-based approaches or the use of the Java Debugging Interface [Sun04b]
can take advantage of the full foundation library without having to support native methods
by rewriting or wrapping them. It remains to be seen how fast optimized implementations
of such architectures can be.

11.2 Static Analysis in JNuke

On the technical side, static analysis sometimes still generates more reports than neces-
sary. The problem is similar to multiple reports (one per object instance) issued in run-
time verification: Several reports may be issued for the same stale local variable, because
several paths may lead to the same problem. In such cases, a single warning is usually
sufficient.

Furthermore, the summary method for obtaining information when recursion is present
is currently implemented in an ad-hoc way. The evaluation logic is not re-used, and the
information obtained is not as precise as it could be. The design of the current imple-
mentation already has anticipated summary methods, so it will not be very hard to re-use
the standard analysis while suppressing recursion. In principle, method call operations
will be overridden such that recursive calls are treated as having an unknown result, while
inheriting the rest of the analysis logics from the original algorithm.

Other future work includes porting more analysis algorithms to the generic anal-
ysis framework. This does not only include other fault pattern algorithms described
here, but also general static checks such as static null pointer checks implemented in
Jlint [AB01]. In general, static analysis in JNuke is still limited by the lack of a precise
pointer analysis [WR99, WL04]. Lock approximations are currently very simple but usu-
ally accurate because most lock objects are allocated during class initialization and never
changed [AB01].

In this context, the applicability of code idioms to reduce false positives looks to be
promising [AH04]. Finally, visualizing potential faults found in static analysis is still
an unsolved challenge; experience has shown that a simple textual output can be very
hard to understand. Existing work in the field of program visualization covers visualizing
event traces of distributed programs [Har00, HE91, LR85]. This is not directly applicable
to static analysis, because a result from static analysis may not yet be concretized to a
particular (single) trace, which poses additional challenges for visualization. It may or
may not be useful to show a set of possible error traces to a developer, who is more
accustomed to reasoning about a single trace.

11.3. High-level Data Races 151

11.3 High-level Data Races

When the view consistency algorithm generates a view within the scope of each lock, it
is not yet fully understood how to properly deal with nested locks. The views of the inner
locks cause conflicts with the larger views of outer locks. These conflicts are spurious.
Moreover, the elevator case study has shown that a control-flow independent definition of
view consistency is needed. Finally, there is a need to study the relationship to database
concurrency and hardware concurrency theory in more detail.

11.4 Block-local Atomicity

Future work includes investigating the relationship to Burrows’ algorithm in more depth.
Our algorithm currently issues a warning when a stale register is used even though the use
of such a snapshot may be benign. Burrows’ more relaxed reporting could be more useful
for practical purposes. Extensions to the algorithm include coverage of thread-locality of
data and higher-level segmentation [Har00] of events. Such an algorithm would ideally
be implemented in a generic way such that it can also be used statically and dynamically.

11.5 Concurrent Programming in the Future

As shown in this thesis, common programming languages today permit large classes of
subtle multi-threading failures that can be very hard to detect. Future programming lan-
guages should aim at eliminating the potential of such errors without reducing flexibility
and performance.

In the Java library, a small step towards this has been taken by including some well-
established concurrency utility classes [Lea99] to its run-time library [Sun04a]. However,
the use of such classes does not automatically avoid the fault patterns presented here,
because the run-time environment allows these high-level components to be mixed with
low-level multi-threading constructs.

Instead, the compiler and its run-time environment should be able to strictly enforce
lock protection on given data sets and actions. Thus, the programmer could specify
what sets of data must be treated atomically, and which actions form atomic blocks.
The former would avoid low-level and high-level data races while the latter would pre-
vent stale-value errors. In a first step, the developer may still have to specify locking,
but could be supported by an environment that ensures that this locking is always suffi-
cient to avoid concurrency errors. The long-term goal is to have to avoid explicit spec-
ification of locking altogether, using a compiler to generate any thread-specific code.
This goal has been reached for some special-purpose domains such as parallel compu-
tations [BG03, CDK+01, DM98]. It remains to be seen whether it can be expanded to
more general programming constructs.

152 Chapter 11. Future Work

11.6 Summary

Support for more library classes is at the core of future work for the JNuke VM. Work for
the model checker includes better partial-order reduction techniques, while run-time ver-
ification would benefit from combinations of currently implemented analysis algorithms
with other properties, in order to increase speed and precision.

Reporting can still be improved for both static and dynamic analysis. Furthermore,
only few verification algorithms have been implemented so far, leaving many opportuni-
ties for future work. Such work includes the search for new fault patterns.

The high-level data race property needs to be extended to a version which is inde-
pendent of control flow. This presents quite a challenge for current run-time verification
techniques. For block-local atomicity, no such major extension seems to be necessary.

Finally, this thesis has shown that going beyond low-level data races allows entirely
new, large classes of faults to be detected. This raises the question whether current pro-
gramming languages implement concurrency in the right way, leaving correctness of al-
most all critical properties up to the developer. It would be preferrable to have a program-
ming language that allows specification of concurrency properties rather than concurrent
program code. Parallel program structures would then be synthesized by a compiler. So
far, this has only been achieved for limited domains. Future work should extend this idea
to more general concurrent programs.

12
Conclusions

Concurrent or multi-threaded programming is very difficult and allows for subtle errors
that do not occur in sequential programs and are unlikely to be found through traditional
testing. Each alternative has its own weaknesses: Abstract interpretation does not always
approximate information with sufficient accuracy. Model checking can produce exact
results but does not yet scale to large software applications. Theorem proving is too labor-
intensive for most projects. Facing these problems, run-time verification has established
itself as an approach that can ameliorate the problem of schedule non-determinism in
testing because it can verify many classes of faults on a single execution trace.

Verification of general-purpose properties is highly useful because they do not require
a user-defined specification, nor does the failure looked for actually have to occur in a
given execution trace. This thesis investigated such general-purpose rules, or fault pat-
terns, that allow detection of synchronization defects. It went beyond date races, which
denote access conflicts on shared fields. High-level data races are a new kind of access
conflict concerning sets of data where each individual access is protected, but the entire
data set is not accessed consistently. In addition to such data races, atomicity violations
must be avoided as well, because they allow for further failures which are not covered by
the other algorithms. This thesis presented a data-flow-based approach to detect stale val-
ues, which are outdated local copies of shared data. Unlike reduction-based approaches,
the approach presented here is more precise because it does not require an entire method
to be atomic.

The analysis algorithms presented here have been implemented in JNuke, which can
analyze Java programs statically and dynamically. The viability of the given fault patterns
has been demonstrated on a large set of benchmark applications. The architecture of
JNuke is also capable of utilizing generic analysis algorithms, which can be used in both
a static and dynamic setting. Differences between the two environments are abstracted
into an intermediate layer, and common structures such as analysis logics and context are
shared. This allows for novel combinations and interactions between static and dynamic
analysis.

153

Bibliography

[AB01] C. Artho and A. Biere. Applying static analysis to large-scale, multi-
threaded Java programs. In Proc. 13th ASWEC, pages 68–75, Canberra,
Australia, 2001. IEEE Computer Society Press.

[AB05a] C. Artho and A. Biere. Combined static and dynamic analysis. In Proc.
1st Intl. Workshop on Abstract Interpretation of Object-Oriented Lan-
guages (AIOOL 2005), ENTCS, Paris, France, 2005. Elsevier Science.

[AB05b] C. Artho and A. Biere. Subroutine inlining and bytecode abstraction
to simplify static and dynamic analysis. In Proc. 1st Workshop on
Bytecode Semantics, Verification, Analysis and Transformation (BYTE-
CODE 2005), ENTCS, pages 98–115, Edinburgh, Scotland, 2005. Else-
vier Science.

[ABB+00] W. Ahrendt, T. Baar, B. Beckert, M. Giese, E. Habermalz, R. Hähnle,
W. Menzel, and P. Schmitt. The KeY approach: Integrating object ori-
ented design and formal verification. In Proc. 7th European Workshop
on Logic in Artificial Inteligence (JELIA 2000), volume 1919 of LNCS,
pages 21–36, Málaga, Spain, 2000. Springer.

[ABG+03] C. Artho, H. Barringer, A. Goldberg, K. Havelund, S. Khurshid,
M. Lowry, C. Pasareanu, G. Roşu, K. Sen, W. Visser, and R. Washington.
Combining Test Case Generation with Run-time Verification. ASM issue
of Theoretical Computer Science, 2003. To appear.

[ABH04] C. Artho, A. Biere, and K. Havelund. Using block-local atomicity to
detect stale-value concurrency errors. In Proc. 2nd Intl. Symposium on
Automated Technology for Verification and Analysis (ATVA 2004), vol-
ume 3299 of LNCS, pages 150–164, Taipei, Taiwan, 2004. Springer.

[ABM93] Y. Afek, G. Brown, and M. Merritt. Lazy Caching. ACM Transactions on
Programming Languages and Systems (TOPLAS), 15(1):182–205, 1993.

[Abr96] J.-R. Abrial. The B-Book: Assigning Programs to Meanings. Cambridge
University Press, 1996.

[AH04] C. Artho and K. Havelund. Applying Jlint to space exploration software.
In Proc. 5th Intl. Conf. on Verification, Model Checking and Abstract
Interpretation (VMCAI 2004), volume 2937 of LNCS, pages 297–308,
Venice, Italy, 2004. Springer.

155

156 Bibliography

[AHB03] C. Artho, K. Havelund, and A. Biere. High-level data races. Journal
on Software Testing, Verification & Reliability (STVR), 13(4):220–227,
2003.

[Art01] C. Artho. Finding faults in multi-threaded programs. Master’s thesis,
ETH Zürich, 2001.

[ASB+04] C. Artho, V. Schuppan, A. Biere, P. Eugster, M. Baur, and B. Zweimüller.
JNuke: Efficient Dynamic Analysis for Java. In Proc. 16th Intl. Conf. on
Computer Aided Verification (CAV 2004), volume 3114 of LNCS, pages
462–465, Boston, USA, 2004. Springer.

[ASC85] A. Abbadi, D. Skeen, and F. Cristian. An Efficient, Fault-Tolerant Pro-
tocol for Replicated Data Management. In Proc. 4th ACM SIGACT-
SIGMOD Symposium on Principles of Database Systems (PODS 1985),
pages 215–229, Portland, USA, 1985. ACM Press.

[BAEF03] Y. Ben-Asher, Y. Eytani, and E. Farchi. Heuristics for finding concurrent
bugs. In Proc. Workshop on Parallel and Distributed Systems: Testing
and Debugging (PADTAD 2003), page 288a, Nice, France, 2003.

[Bar97] J. Barnes, editor. Ada 95 Rationale, The Language, The Standard Li-
braries, volume 1247 of LNCS. Springer, 1997.

[Bau02] M. Baur. Pretty printing for JNuke. Technical report, ETH Zürich,
Zürich, Switzerland, 2002.

[BCC+99] A. Biere, A. Cimatti, E. Clarke, M. Fujita, and Y. Zhu. Symbolic
model checking using SAT procedures instead of BDDs. In Proc. 36th
ACM/IEEE conference on Design Automation (DAC 1999), pages 317–
320, New Orleans, USA, 1999. ACM Press.

[BCC+02] B. Blanchet, P. Cousot, R. Cousot, J. Feret, L. Mauborgne, A. Miné,
D. Monniaux, and X. Rival. Design and Implementation of a Special-
Purpose Static Program Analyzer for Safety-Critical Real-Time Embed-
ded Software. In T. Mogensen, D. A. Schmidt, and I. H. Sudborough,
editors, The Essence of Computation: Complexity, Analysis, Transfor-
mation. Essays Dedicated to Neil D. Jones, volume 2566 of LNCS, pages
85–108. Springer, 2002.

[BCC+03] A. Biere, A. Cimatti, E. Clarke, O. Strichman, and Y. Zhu. Bounded
Model Checking, volume 58 of Advances in Computers. Elsevier, 2003.
To appear.

[BCM+90] J. Burch, E. Clarke, K. McMillan, D. Dill, and L. Hwang. Symbolic
Model Checking: 1020 States and Beyond. In Proc. 5th Annual IEEE
Symposium on Logic in Computer Science (LICS 1990), pages 1–33,
Washington, D.C., USA, 1990. IEEE Computer Society Press.

[BDG+04] G. Brat, D. Drusinsky, D. Giannakopoulou, A. Goldberg, K. Havelund,
M. Lowry, C. Pasareanu, W. Visser, and R. Washington. Experimental

Bibliography 157

evaluation of verification and validation tools on Martian rover software.
Formal Methods in System Design, 25(2):167–198, 2004.

[BG03] D. Bik and M. Girkar. Inside the Intel compiler. Linux Journal, 106:91–
94, 2003.

[BGHS04] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-based run-
time verification. In Proc. 5th Intl. Conf. on Verification, Model Checking
and Abstract Interpretation (VMCAI 2004), volume 2937 of LNCS, pages
44–57, Venice, Italy, 2004. Springer.

[BH99] J. Bogda and U. Hölzle. Removing unnecessary synchronization in Java.
In Proc. 14th ACM SIGPLAN Conf. on Object-Oriented Programming
Systems, Languages & Applications (OOPSLA 1999), pages 35–46, Den-
ver, USA, 1999. ACM Press.

[BH03] S. Bensalem and K. Havelund. Deadlock Analysis of Multi-Threaded
Java Programs. To be published, 2003.

[BHG87] P. Bernstein, V. Hadzilacos, and N. Goodman. Concurrency Control and
Recovery in Database Systems. Addison-Wesley, 1987.

[BL02] M. Burrows and R. Leino. Finding stale-value errors in concurrent pro-
grams. Technical Report SRC-TN-2002-004, Compaq SRC, Palo Alto,
USA, 2002.

[Bla99] B. Blanchet. Escape analysis for object-oriented languages: application
to Java. In Proc. 14th ACM SIGPLAN Conf. on Object-Oriented Pro-
gramming Systems, Languages & Applications (OOPSLA 1999), pages
20–34, Denver, USA, 1999. ACM Press.

[Bla03] B. Blanchet. Escape analysis for Java, theory and practice. ACM Trans-
actions on Programming Languages and Systems (TOPLAS), 25(6):713–
775, 2003.

[BM04] J. Bohn and F. Mattern. Super-distributed RFID tag infrastructures. In
Proc. 2nd European Symposium on Ambient Intelligence (EUSAI 2004),
volume 3295 of LNCS, pages 1–12, Eindhoven, The Netherlands, 2004.
Springer.

[Bot98] P. Bothner. Kawa — compiling dynamic languages to the Java VM.
In Proc. USENIX 1998 Technical Conf., FREENIX Track, New Orleans,
USA, 1998. USENIX Association.

[Bou93] F. Bourdoncle. Efficient chaotic iteration strategies with widenings. In
Proc. Formal Methods in Programming and their Applications, volume
735 of LNCS, pages 128–141, Novosibirsk, Russia, 1993. Springer.

[BPR01] T. Ball, A. Podelski, and S. Rajamani. Boolean and Cartesian Ab-
stractions for Model Checking C Programs. In Proc. 7th Intl. Conf.
on Tools and Algorithms for the Construction and Analysis of Systems

158 Bibliography

(TACAS 2001), volume 2031 of LNCS, pages 268–285, Genova, Italy,
2001. Springer.

[Bri99] E. Briot. JGNAT: The GNAT Ada 95 environment for the JVM. In Ada
France, Brest, France, 1999.

[Bru99] D. Bruening. Systematic testing of multithreaded Java programs. Mas-
ter’s thesis, MIT, 1999.

[Bry86] R. Bryant. Graph-based algorithms for Boolean function manipulation.
IEEE Transactions on Computers, C-35(8):677–691, 1986.

[BS03] E. Börger and R. F. Stärk. Abstract State Machines — A Method for
High-Level System Design and Analysis. Springer, 2003.

[BSW+99] J. Bull, L. Smith, M. Westhead, D. Henty, and R. Davey. A methodology
for benchmarking Java Grande applications. In Proc. ACM Java Grande
Conference, pages 81–88, San Francisco, USA, 1999.

[Bur00] M. Burrows. Personal communication, 2000.

[But97] D. Butenhof. Programming with POSIX Threads. Addison-Wesley,
1997.

[CB74] D. Chamberlin and R. Boyce. SEQUEL: A structured English query
language. In Proc. First ACM SIGFIDET (now SIGMOD) workshop on
Data description, access and control, pages 249–264, Ann Arbor, USA,
1974. ACM Press.

[CC77] P. Cousot and R. Cousot. Abstract interpretation: a unified lattice model
for static analysis of programs by construction or approximation of fix-
points. In Proc. 4th ACM Symposium on Principles of Programming Lan-
guages (POPL 1977), pages 238–252, Los Angeles, USA, 1977. ACM
Press.

[CDH+00] J. Corbett, M. Dwyer, J. Hatcliff, C. Pasareanu, Robby, S. Laubach, and
H. Zheng. Bandera: Extracting finite-state models from Java source
code. In Proc. 22nd Intl. Conf. on Software Engineering (ICSE 2000),
pages 439–448, Limerick, Ireland, 2000. ACM Press.

[CDHR00] J. Corbett, M. Dwyer, J. Hatcliff, and Robby. A language framework for
expressing checkable properties of dynamic software. In Proc. 7th Intl.
SPIN Workshop (SPIN 2000), volume 1885 of LNCS, pages 205–223,
Stanford, USA, 2000. Springer.

[CDK+01] R. Chandra, L. Dagum, D. Kohr, D. Maydan, J. McDonald, and
R. Menon. Parallel programming in OpenMP. Morgan Kaufmann Pub-
lishers, Inc., 2001.

[CdR04] F. Chen, M. d’Amorim, and G. Roşu. A formal monitoring-based frame-
work for software development and analysis. In Proc. 6th Intl. Conf.
on Formal Engineering Methods (ICFEM 2004), volume 3308 of LNCS,
pages 357–372, Seattle, USA, 2004. Springer.

Bibliography 159

[CGP99] E. Clarke, O. Grumberg, and D. Peled. Model checking. MIT Press,
1999.

[CGS+99] J. Choi, M. Gupta, M. Serrano, V. Sreedhar, and S. Midkiff. Escape anal-
ysis for Java. In Proc. 14th ACM SIGPLAN Conf. on Object-Oriented
Programming Systems, Languages & Applications (OOPSLA 1999),
pages 1–19, Denver, USA, 1999. ACM Press.

[Chu36] A. Church. An unsolvable problem of elementary number theory. Amer-
ican Journal of Mathematics, 58:345–363, 1936.

[CL02] Y. Cheon and G. Leavens. A run-time assertion checker for the Java
Modeling Language. In Proc. Intl. Conf. on Software Engineering Re-
search and Practice (SERP 2002), pages 322–328, Las Vegas, USA,
2002. CSREA Press.

[Coh01] S. Cohen. JTrek, 2001. Developed by Compaq, now discontinued.

[Cor98] Standard Performance Evaluation Corporation. SPEC benchmarks,
1998. http://www.spec.org/.

[CP96] C.-T. Chou and D. Peled. Verifying a model-checking algorithm. In
Proc. 2nd Intl. Conf. on Tools and Algorithms for the Construction and
Analysis of Systems (TACAS 1996), volume 1055 of LNCS, pages 241–
257, Passau, Germany, 1996. Springer.

[Cra57] W. Craig. Linear reasoning. A new form of the Herbrand-Gentzen theo-
rem. Journal of Symbolic Logic (JSL), 22(3):250–268, 1957.

[CTW99] M. Chaudron, J. Tretmans, and K. Wijbrans. Lessons from the Applica-
tion of Formal Methods to the Design of a Storm Surge Barrier Control
System. In Proc. World Congress on Formal Methods in the Develop-
ment of Computing Systems II (FM 1999), volume 1709 of LNCS, pages
1511–1526, Toulouse, France, 1999. Springer.

[Dah03] M. Dahm. BCEL, 2003. http://jakarta.apache.org/bcel/.

[Dij68] E. Dijkstra. Cooperating sequential processes. In F. Genuys, editor,
Programming Languages: NATO Advanced Study Institute, pages 43–
112. Academic Press, 1968.

[Dij72] E. Dijkstra. Notes on structured programming. Structured Programming,
1972.

[DLNS98] D. Detlefs, R. Leino, G. Nelson, and J. Saxe. Extended Static Check-
ing. Technical Report 159, Compaq Systems Research Center, Palo Alto,
USA, 1998.

[DM98] L. Dagum and R. Menon. OpenMP: An industry-standard API for
shared-memory programming. IEEE Computation in Science and En-
gineering Magazine, 5(1):46–55, 1998.

160 Bibliography

[Dru03] D. Drusinsky. Monitoring temporal rules combined with time series.
In Proc. 15th Intl. Conf. on Computer Aided Verification (CAV 2003),
volume 2725 of LNCS, pages 114–118, Boulder, USA, 2003. Springer.

[EM04] D. Engler and M. Musuvathi. Static analysis versus software model
checking for bug finding. In Proc. 5th Intl. Conf. on Verification, Model
Checking and Abstract Interpretation (VMCAI 2004), volume 2937 of
LNCS, pages 191–210, Venice, Italy, 2004. Springer.

[EU04] Y. Eytani and S. Ur. Compiling a benchmark of documented multi-
threaded bugs. In Proc. 18th Intl. Parallel & Distributed Processing Sym-
posium (IPDPS 2004), page 266a, Santa Fe, USA, 2004. IEEE Computer
Society Press.

[Eug03] P. Eugster. Java Virtual Machine with rollback procedure allowing sys-
tematic and exhaustive testing of multithreaded Java programs. Master’s
thesis, ETH Zürich, 2003.

[Far04] P. Farkas. Garbage Collection for JNuke, a Java Virtual Machine for Run-
time Verification and Model Checking. Master’s thesis, ETH Zürich,
2004.

[FF04] C. Flanagan and S. Freund. Atomizer: A Dynamic Atomicity Checker
for Multithreaded Programs. In Proc. 31st ACM Symposium on Princi-
ples of Programming Languages (POPL 2004), pages 256–267, Venice,
Italy, 2004. ACM Press.

[Fla04] C. Flanagan. Verifying Commit-Atomicity using Model-Checking. In
Proc. 11th Intl. SPIN Workshop (SPIN 2004), volume 2989 of LNCS,
pages 252–266, Barcelona, Spain, 2004. Springer.

[FLL+02] C. Flanagan, R. Leino, M. Lillibridge, G. Nelson, J. Saxe, and R. Stata.
Extended static checking for Java. In Proc. ACM Intl. Conf. on Pro-
gramming Language Design and Implementation (PLDI 2002), pages
234–245, Berlin, Germany, 2002. ACM Press.

[FNU03] E. Farchi, Y. Nir, and S. Ur. Concurrent bug patterns and how to test
them. In Proc. 20th IEEE Intl. Parallel & Distributed Processing Sym-
posium (IPDPS 2003), page 286, Nice, France, 2003. IEEE Computer
Society Press.

[FQ03] C. Flanagan and S. Qadeer. Types for atomicity. In Proc. ACM Intl. Work-
shop on Types in Language Design and Implementation (TLDI 2003),
pages 1–12, New Orleans, USA, 2003. ACM Press.

[FQ04] S. Freund and S. Qadeer. Checking concise specifications for multi-
threaded software. Journal of Object Technology (JOT), 3(6):81–101,
2004.

[Fre98] S. Freund. The costs and benefits of Java bytecode subroutines. In For-
mal Underpinnings of Java Workshop at OOPSLA, Vancouver, Canada,
1998.

Bibliography 161

[GH03] A. Goldberg and K. Havelund. Instrumentation of Java bytecode for run-
time analysis. In Proc. 5th ECOOP Workshop on Formal Techniques for
Java-like Programs (FTfJP 2003), volume 408 of Technical Reports from
ETH Zürich, pages 151–159, Darmstadt, Germany, 2003. ETH Zürich.

[GHJV95] E. Gamma, R. Helm, R. Johnson, and J. Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley Pro-
fessional Computing Series. Addison-Wesley Publishing Company, New
York, USA, 1995.

[GJSB00] J. Gosling, B. Joy, G. Steele, and G. Bracha. The Java Language Speci-
fication, Second Edition. Addison-Wesley, 2000.

[Göd31] K. Gödel. Über formal unentscheidbare Sätze der Principia Mathemat-
ica und verwandter Systeme I. Monatshefte für Mathematik und Physik,
38:173–198, 1931. English translation: On formally undecidable propo-
sitions of Principia Mathematica and Related Systems I, Oliver & Boyd,
London, UK, 1962.

[God97] P. Godefroid. Model checking for programming languages using
VeriSoft. In Proc. 24th ACM Symposium on Principles of Programming
Languages (POPL 1997), pages 174–186, Paris, France, 1997. ACM
Press.

[Har00] J. Harrow. Run-time checking of multithreaded applications with Visual
Threads. In Proc. 7th Intl. SPIN Workshop (SPIN 2000), volume 1885 of
LNCS, pages 331–342, Stanford, USA, 2000. Springer.

[Hav00] K. Havelund. Using run-time analysis to guide model checking of Java
programs. In Proc. 7th Intl. SPIN Workshop (SPIN 2000), volume 1885
of LNCS, pages 245–264, Stanford, USA, 2000. Springer.

[HDT87] S. Horwitz, A. Demers, and T. Teitebaum. An efficient general iterative
algorithm for dataflow analysis. Acta Informatica, 24(6):679–694, 1987.

[HE91] M. Heath and J. Etheridge. Visualizing the performance of parallel pro-
grams. IEEE Software, 8(5):29–39, 1991.

[HJ92] R. Hastings and B. Joyce. Purify: Fast detection of memory leaks and
access errors. In Proc. Winter USENIX Conf. (USENIX 1992), San Fran-
cisco, USA, 1992. USENIX Association.

[HLP01] K. Havelund, M. Lowry, and J. Penix. Formal Analysis of a Space Craft
Controller using SPIN. IEEE Transactions on Software Engineering,
27(8):749–765, 2001. An earlier version occurred in the Proc. 4th Intl.
SPIN workshop, 1998, Paris, France.

[Hoa83] C. Hoare. Communicating sequential processes. Communications of the
ACM, 26(1):100–106, 1983.

[Hol91] G. Holzmann. Design and Validation of Computer Protocols. Prentice-
Hall, 1991.

162 Bibliography

[HP00] K. Havelund and T. Pressburger. Model checking Java programs using
Java PathFinder. Intl. Journal on Software Tools for Technology Transfer
(STTT), 2(4):366–381, 2000.

[HR01] K. Havelund and G. Roşu. Monitoring Java programs with Java PathEx-
plorer. In Proc. 1st Intl. Workshop on Run-time Verification (RV 2001),
volume 55 of ENTCS, pages 97–114, Paris, France, 2001. Elsevier.

[HR02] K. Havelund and G. Roşu. Synthesizing monitors for safety properties.
In Proc. 8th Intl. Conf. on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS 2002), volume 2280 of LNCS, pages
342–356, Grenoble, France, 2002.

[HS99] G. Holzmann and M. Smith. A practical method for verifying event-
driven software. In Proc. 21st Intl. Conf. on Software Engineering
(ICSE 1999), pages 597–607, Los Angeles, USA, 1999. ACM Press.

[HV99] M. Henning and S. Vinoski. Advanced CORBA programming with C++.
Addison-Wesley Longman Publishing Co., Inc., 1999.

[HW90] M. Herlihy and J. Wing. Linearizability: A Correctness Condition for
Concurrent Objects. ACM Transactions on Programming Languages and
Systems (TOPLAS), 12(3):463–492, 1990.

[IEE83] IEEE. IEEE Standard 729: Glossary of software engineering terminol-
ogy, 1983.

[IS00] R. Iosif and R. Sisto. Using garbage collection in model checking. In
Proc. 7th Intl. SPIN Workshop (SPIN 2000), volume 1885 of LNCS,
pages 20–33, Stanford, USA, 2000. Springer.

[JK97] R. Jones and P. Kelly. Backwards-Compatible Bounds Checking for Ar-
rays and Pointers in C Programs. In Proc. 3rd Intl. Workshop on Au-
tomated and Algorithmic Debugging (AADEBUG 1997), pages 13–26,
Linköping, Sweden, 1997. Linköping University Electronic Press.

[KHH+01] G. Kiczales, E. Hilsdale, J. Hugunin, M. Kersten, J. Palm, and W. Gris-
wold. An overview of AspectJ. LNCS, 2072:327–355, 2001.

[KKL+01] M. Kim, S. Kannan, I. Lee, O. Sokolsky, and M. Viswanathan. Java-
MaC: a run-time assurance tool for Java programs. In Proc. 1st Intl.
Workshop on Run-time Verification (RV 2001), volume 55 of ENTCS,
pages 115–132, Paris, France, 2001. Elsevier.

[KN03] G. Klein and T. Nipkow. Verified bytecode verifiers. Theoretical Com-
puter Science, 298(3):583–626, 2003.

[Kna87] E. Knapp. Deadlock detection in distributed databases. ACM Computing
Surveys, 19(4):303–328, 1987.

[KR88] B. Kernighan and D. Ritchie. The C Programming Language. Prentice-
Hall, 1988.

Bibliography 163

[Lam79] L. Lamport. How to Make a Multiprocessor that Correctly Executes
Multiprocess Programs. IEEE Transactions on Computers, 9:690–691,
1979.

[Lea99] D. Lea. Concurrent Programming in Java, Second Edition. Addison-
Wesley, 1999.

[Lea00] D. Lea. Personal e-mail communication, 2000.

[LF03] J. Link and P. Fröhlich. Unit Testing in Java: How Tests Drive the Code.
Morgan Kaufmann Publishers, Inc., 2003.

[Lib91] D. Libes. expect: Scripts for controlling interactive processes. Comput-
ing Systems, 4(2):99–125, 1991.

[Lip75] R. Lipton. Reduction: a method of proving properties of parallel pro-
grams. Communications of the ACM, 18(12):717–721, 1975.

[LR85] R. LeBlanc and A. Robbins. Event-driven monitoring of distributed
programs. In Proc. 5th Intl. Conf. on Distributed Computing Systems
(ICDCS 1985), pages 515–522, Denver, USA, 1985. IEEE Computer So-
ciety Press.

[LY99] T. Lindholm and A. Yellin. The Java Virtual Machine Specification, Sec-
ond Edition. Addison-Wesley, 1999.

[LYK+00] S. Lee, B. Yang, S. Kim, S. Park, S. Moon, K. Ebciolu, and E. Altman.
Efficient Java exception handling in just-in-time compilation. In Proc.
ACM Java Grande Conference, pages 1–8, San Francisco, USA, 2000.
ACM Press.

[Mar01] R. Marlet. Syntax of the JCVM language to be studied in the SecSafe
project. Technical Report SECSAFE-TL-005-1.7, Trusted Logic SA,
Versailles, France, 2001.

[McM93] K. McMillan. Symbolic Model Checking. Springer, 1993.

[McM03] K. McMillan. Interpolation and SAT-based model checking. In Proc.
15th Intl. Conf. on Computer Aided Verification (CAV 2003), volume
2725 of LNCS, pages 1–13, Boulder, USA, 2003. Springer.

[MD97] J. Meyer and T. Downing. Java Virtual Machine. O’Reilly & Associates,
Inc., 1997.

[Mey97] B. Meyer. Object-Oriented Software Construction. Prentice-Hall, 2nd
edition, 1997.

[MG98] N. Mittal and V. Garg. Consistency conditions for multi-object dis-
tributed operations. In Proc. Intl. Conf. on Distributed Computing
Systems (ICDCS 1998), pages 582–599, Amsterdam, The Netherlands,
1998. IEEE Computer Society Press.

164 Bibliography

[MH02] J. Miecznikowski and L. Hendren. Decompiling Java bytecode: Prob-
lems, traps and pitfalls. In Proc. 11th Intl. Conf. on Compiler Construc-
tion (CC 2002), volume 2304, pages 111–127, Grenoble, France, 2002.
Springer.

[Moh02] M. Mohnen. A graph-free approach to data-flow analysis. In Proc. 11th
Intl. Conf. on Compiler Construction (CC 2002), volume 2304, pages
46–61, Grenoble, France, 2002. Springer.

[MR90] T. Marlowe and B. Ryder. An efficient hybrid algorithm for incremen-
tal data flow analysis. In Proc. 17th ACM Symposium on Principles of
Programming Languages (POPL 1990), pages 184–196, San Francisco,
USA, 1990. ACM Press.

[Mye79] G. Myers. Art of Software Testing. John Wiley & Sons, Inc., 1979.

[NBF98] B. Nichols, D. Buttlar, and J. Farrell. Pthreads Programming. O’Reilly,
1998.

[NS03] N. Nethercote and J. Seward. Valgrind: A program supervision frame-
work. In Proc. 3rd Intl. Workshop on Run-time Verification (RV 2003),
volume 89 of ENTCS, pages 22–43, Boulder, USA, 2003. Elsevier.

[Pap79] C. Papadimitriou. The Serializability of Concurrent Database Updates.
Journal of the ACM (JACM), 26(4):631–653, 1979.

[Pau03] C. Paulson. Mechanizing compositional reasoning for concurrent sys-
tems: Some lessons. Technical Report UCAM-CL-TR-573, Computer
Laboratory, University of Cambridge, Cambridge, UK, 2003.

[PD00] T. Printezis and D. Detlefs. A generational mostly-concurrent garbage
collector. In Proc. 2nd international symposium on Memory management
(ISMM 2000), pages 143–154, Minneapolis, USA, 2000. ACM Press.

[PDV03] C. Pasareanu, M. Dwyer, and W. Visser. Finding feasible abstract
counter-examples. Intl. Journal on Software Tools for Technology Trans-
fer (STTT), 5(1):34–48, 2003.

[Pel01] D. Peled. Software Reliability Methods. Springer, 2001.

[PGK+97] B. Pell, E. Gat, R. Keesing, N. Muscettola, and B. Smith. Plan Execution
for Autonomous Spacecrafts. In Proc. Intl. Joint Conf. on Artificial Intel-
ligence (IJCAI 1997), pages 1234–1239, Nagoya, Japan, 1997. Morgan
Kaufmann Publishers, Inc.

[Pnu77] A. Pnueli. The temporal logic of programs. In Proc. 17th Annual Sympo-
sium on Foundations of Computer Science (FOCS 1977), pages 46–57,
Rhode Island, USA, 1977. IEEE, IEEE Computer Society Press.

[RJB98] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified Modeling Lan-
guage Reference Manual. Addison-Wesley Object Technology Series,
1998.

Bibliography 165

[Roy02] G. Roy. mpatrol — A library for controlling and tracing dynamic mem-
ory allocations, 2002.
http://www.cbmamiga.demon.co.uk/mpatrol/.

[RV04] 1st, 2nd, 3rd and 4th Intl. Workshops on Run-time Verification (RV 2001
- RV 2004), volume 55(2), 70(4), 89(2), 113 of ENTCS. Elsevier Science,
2001 – 2004.

[SABS02] H. Schuldt, G. Alonso, C. Beeri, and H.-J. Schek. Atomicity and Isola-
tion for Transactional Processes. ACM Transactions on Database Sys-
tems (TODS), 27(1):63–116, 2002.

[SBB04] V. Schuppan, M. Baur, and A. Biere. JVM-independent replay in Java.
In Proc. 4th Intl. Workshop on Run-time Verification (RV 2004), volume
113 of ENTCS, pages 85–104, Málaga, Spain, 2004. Elsevier.

[SBN+97] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and T. Anderson.
Eraser: A dynamic data race detector for multithreaded programs. ACM
Transactions on Computer Systems, 15(4):391–411, 1997.

[Sch00] J. Schumann. Automated Theorem Proving in Software Engineering.
Springer, 2000.

[Sin89] M. Singhal. Deadlock detection in distributed systems. IEEE Computer,
22(11):37–48, 1989.

[Sit05] Sitraka. JProbe, 2005. http://www.quest.com/jprobe/.

[SSB01] R. Stärk, J. Schmid, and E. Börger. Java and the Java Virtual Machine.
Springer, 2001.

[Sto00] S. Stoller. Model-Checking Multi-threaded Distributed Java Programs.
In Proc. 7th Intl. SPIN Workshop (SPIN 2000), volume 1885 of LNCS,
pages 224–244, Stanford, USA, 2000. Springer.

[Sto02] S. Stoller. Testing concurrent Java programs using randomized schedul-
ing. In Proc. 2nd Intl. Workshop on Run-time Verification (RV 2002),
volume 70(4) of ENTCS, pages 143–158, Copenhagen, Denmark, 2002.
Elsevier.

[Sun97] Sun Microsystems. A simple multithreaded web server, 1997.
http://java.sun.com/developer/technicalArticles/Networking/Webserver/.

[Sun04a] Sun Microsystems, Santa Clara, USA. Java 2 Platform Standard Edition
(J2SE) 1.5, 2004. http://java.sun.com/j2se/1.5.0/.

[Sun04b] Sun Microsystems, Santa Clara, USA. Java 2 SDK, Standard Edition
Documentation, 2004. http://java.sun.com/j2se/1.4/docs/.

[Sun05] Sun Microsystems, Santa Clara, USA. Java 2 Platform Enterprise Edi-
tion Specification, 2005. http://java.sun.com/j2ee/.

[Tan92] A. Tanenbaum. Modern operating systems. Prentice-Hall, 1992.

166 Bibliography

[Tro94] J. Trono. A new exercise in concurrency. SIGCSE Bulletin, 26(3):8–10,
1994.

[TRY+87] A. Tevanian, R. Rashid, M. Young, D. Golub, M. Thompson,
W. Bolosky, and R. Sanzi. A UNIX interface for shared memory and
memory mapped files under mach. In Proc. Summer USENIX Conf.
(USENIX 1987), pages 53–68, Phoenix, USA, 1987. USENIX Associ-
ation.

[Tur37] A. Turing. On Computable Numbers, with an Application to the
Entscheidungsproblem. Journal of the London Mathematical Society,
42(2):230–265, 1937.

[vdBJ01] J. van den Berg and B. Jacobs. The LOOP compiler for Java and JML.
In Proc. 7th Intl. Conf. on Tools and Algorithms for the Construction
and Analysis of Systems (TACAS 2001), volume 2031 of LNCS, pages
299–312, Genova, Italy, 2001. Springer.

[vDMvdBK01] A. van Deursen, L. Moonen, A. van den Bergh, and G. Kok. Refactoring
test code. In Proc. 2nd Intl. Conf. on eXtreme Programming and Flexi-
ble Processes in Software Engineering (XP 2001), Cagliari, Italy, 2001.
University of Cagliari.

[VHB+03] W. Visser, K. Havelund, G. Brat, S. Park, and F. Lerda. Model check-
ing programs. Automated Software Engineering Journal, 10(2):203–232,
2003.

[vPG01] C. von Praun and T. Gross. Object-race detection. In Proc. 16th ACM
SIGPLAN Conf. on Object-Oriented Programming Systems, Languages
& Applications (OOPSLA 2001), pages 70–82, Tampa Bay, USA, 2001.
ACM Press.

[vPG03] C. von Praun and T. Gross. Static detection of atomicity violations in
object-oriented programs. In Proc. 5th ECOOP Workshop on Formal
Techniques for Java-like Programs (FTfJP 2003), volume 408 of Techni-
cal Reports from ETH Zürich, pages 99–108, Darmstadt, Germany, 2003.
ETH Zürich.

[VR00] R. Vallée-Rai. Soot: A Java bytecode optimization framework. Master’s
thesis, McGill University, Montreal, 2000.

[VRHS+99] R. Vallée-Rai, L. Hendren, V. Sundaresan, P. Lam, E. Gagnon, and P. Co.
Soot – a Java optimization framework. In Proc. CASCON 1999, pages
125–135, Toronto, Canada, 1999.

[Wil02] M. Wildmoser. Subroutines and Java bytecode verification. Master’s
thesis, Technical University of Munich, 2002.

[WL04] J. Whaley and M. Lam. Cloning-based context-sensitive pointer alias
analysis using binary decision diagrams. In Proc. ACM Intl. Conf. on
Programming Language Design and Implementation (PLDI 2004), pages
131–144, Washington D.C., USA, 2004. ACM Press.

Bibliography 167

[WR99] J. Whaley and M. Rinard. Compositional pointer and escape analysis for
Java programs. In Proc. 14th ACM SIGPLAN Conf. on Object-Oriented
Programming Systems, Languages & Applications (OOPSLA 1999),
pages 187–206, Denver, USA, 1999. ACM Press.

[WS03] L. Wang and S. Stoller. Run-time analysis for atomicity. In Proc. 3rd Intl.
Workshop on Run-time Verification (RV 2003), volume 89(2) of ENTCS,
pages 224–242, Boulder, USA, 2003. Elsevier.

[Zwe03] B. Zweimüller. I/O Erweiterung für die JNuke Virtual-Machine (I/O
extension for the JNuke Virtual Machine). Technical report, ETH Zürich,
Zürich, Switzerland, 2003.

Curriculum Vitae

Cyrille Artho

June 17, 1976 Born in Zurich, Switzerland
1983 – 1988 Primary School, Zufikon
1988 – 1992 Bezirksschule Bremgarten
1992 – 1996 Gymnasium Wohlen, Type C (Sciences)
1996 – 2001 Studies in Computer Science, ETH Zurich
1998 – 1999 Exchange Studies,

University of Strathclyde, Glasgow, UK
1999 Internship at Unitek Engineering AG, Zurich
2001 Completion of Master’s Thesis,

ETH Zurich and Trilogy Software, Austin, USA
2001 – 2005 Research and Teaching Assistant,

Computer Systems Institute, ETH Zurich
2002 and 2003 Research collaboration with Klaus Havelund and the

Automated Software Engineering (ASE) Group,
NASA Ames Research Center, Moffett Field, USA

2005 Completion of Ph.D. Thesis, ETH Zurich

169

	Introduction
	Motivation
	Overview
	Concurrent Programming
	Software Analysis Techniques

	Thesis Statement
	Outlook

	Background
	Terminology
	Analysis Techniques
	Static Analysis
	Dynamic Analysis
	Comparison Between the Different Technologies
	Possible Application Strategies

	Concurrent Programming in Java
	Program data
	Multi-threading
	Thread synchronization
	Lock synchronization structure

	Concurrency Errors in Software
	Low-level Data Races
	High-level Data Races
	Atomic Sequences of Operations

	Summary

	High-level Data Races
	Motivation
	Informal Definition of High-level Data Races
	Basic Definition
	Refinement of Basic Definition

	Formal Definition of High-Level Data Races
	Views
	Views in Different Threads
	Examples
	Soundness and Completeness

	Summary

	Block-local Atomicity
	Our Data-flow-based Algorithm
	Formalization of Our Algorithm
	Extension to Nested Locks and Recursion
	Precision and Limitations of Our Algorithm
	Soundness and Completeness
	Comparison to Previous Atomicity-based Approaches
	Limitations of Atomicity-based Approaches
	Serializability

	Summary

	Run-time Verification
	Definitions
	Preliminaries
	Trace generation
	Trace monitoring

	Benefits and Limitations of Each Approach
	Code instrumentation
	Wrappers
	Custom execution environment
	On-the-fly vs. off-line trace monitoring
	Hybrid approaches

	Property Verification
	Generic properties
	Application-specific properties
	Steering
	Relation to testing

	Existing Work
	Practical Experience
	Flexibility
	Scalability

	Capabilities and Limits
	Summary

	Combined Static and Dynamic Analysis
	Background and Motivation
	Static Analysis in JNuke
	Graph-free abstract interpretation
	Separation of control flow and bytecode semantics
	Optimized state space management

	Run-time verification in JNuke
	Generic Analysis Algorithms
	Context data
	Interfacing run-time verification
	Interfacing static analysis

	Summary

	Bytecode Inlining and Abstraction
	Problems with Bytecode
	Java Compilation with Bytecode Subroutines
	Java Bytecode
	Exception Handlers and Finally Blocks
	Finally Blocks and Subroutines
	Nested Subroutines

	Inlining Java Subroutines
	Sufficient and Necessary Well-formedness Conditions
	Control Transfer Targets
	Exception Handler Splitting
	Exception Handler Copying
	Violation of Well-formedness Conditions in JDK 1.4
	Costs of Inlining

	Abstract, Register-based Bytecode
	Related Work
	Summary

	Implementation
	Overview of JNuke
	Observer Architecture
	VM-based Implementation: JNuke
	JNuke VM
	Run-time verification API

	Instrumentation-based Implementation: JPaX
	Java Bytecode Instrumentation
	Event Stream Format
	Observer Architecture

	Module Overview
	Description
	Module Dependencies

	JNuke's OO in C
	Memory Management
	Comparison to Java
	Type JNukeObj
	Statically Typed Method Calls
	Polymorphism
	Inheritance
	Constructor and Destructor
	Containers

	Unit tests
	Structure
	Registering Test Cases
	JNukeTestEnv
	Log Files
	Code Coverage

	Summary

	Experiments
	Applications
	JNuke VM
	JNuke Model Checker
	Eraser
	High-level Data Races
	Java Path Explorer
	JNuke
	View Consistency as a Fault Pattern

	Block-local Atomicity
	Comparison to Other Atomicity-based Approaches
	Performance and Results of the Generic Analysis
	Block-local Atomicity as a Fault Pattern

	Summary

	Related Work
	Data Races
	Atomicity of Operations
	Database Concurrency
	Hardware Concurrency
	Stale Values
	Escape Analysis
	Serializability
	Summary

	Future Work
	Dynamic Analysis in JNuke
	Static Analysis in JNuke
	High-level Data Races
	Block-local Atomicity
	Concurrent Programming in the Future
	Summary

	Conclusions
	Bibliography

