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Abstract

One of the important problems in control theory is the computation of stabilizing

controllers for dynamical systems subject to constraints on states and inputs. Reced¬

ing Horizon Control (RHC), provides a very powerful framework to deal with this

type of problem and has thus received great interest by both industry and academia.

In RHC an objective function is specified and the input sequence which minimizes

the objective and enforces constraint satisfaction over a finite prediction horizon is

computed for the current state. Subsequently, only the first input of that sequence

is applied to the system. At the next time step, the state is measured again and the

procedure is repeated. One of the key problems with RHC is the inherent computa¬

tional complexity of the optimization problem at hand which generally restricts the

application of RHC to relatively slow processes.

This problem has been alleviated to some degree by the recent introduction of

multi-parametric programming to control theory. Thereby, the RHC optimization

problem is solved off-line for all possible initial states. In multi-parametric pro¬

gramming the analytical solution to this infinite-dimensional problem is obtained by

solving a finite dimensional optimization problem. The solution then takes the form

of a piecewise affine state feedback law which can be easily implemented on-line by

the use of lookup tables. This scheme greatly decreases the cost of applying RHC to

industrial systems and makes the on-line computation of the optimal input sequence

significantly simpler. However, multi-parametric programming also suffers from a

serious drawback: the size of the lookup table may grow exponentially with system

size and complexity of the control objective. Therefore the application of multi-

parametric programming in practice is restricted to cases where simple mathematical

models of physical systems are available. The aim of this thesis is to mitigate this

drawback.

When applying multi-parametric programming to control problems, three aspects,

iii



IV Abstract

which influence the overall complexity can be identified: the speed at which the

lookup table is computed, the number of entries in the lookup table and the time

which is required to find the correct entry in the lookup table. All three levers for

complexity reduction are addressed in this thesis and the contributions herein enable

the reduction of the overall complexity by orders of magnitude.

Specifically, various schemes to speed up the explicit controller computations are

introduced. A combination of dynamic programming, infinite-time optimal control

and efficient polytope reduction techniques yields controller computation algorithms

which are significantly faster than prior schemes.

Novel methods to analyze PWA systems with a focus on stability and set invariance

are presented. Special attention is placed on PWA systems which are subject to

bounded additive disturbances. These analysis schemes are subsequently used in

various complexity reduction schemes. The proposed methods yield controllers of

very low complexity by imposing 'simple' control objectives.

In addition, various post-processing schemes are introduced to simplify the feedback

controllers a posteriori. The proposed schemes reduce the necessary storage space

and are able to significantly reduce the time which is required to perform the set

membership test online.

Finally the MPT toolbox is presented. The MPT toolbox for Matlab contains

all of the algorithms presented in this thesis as well as a wide range of additional

algorithms and tools developed by the academic community.



Zusammenfassung

Eines der wichtigsten Probleme der Regelungstechnik ist die Berechnung stabil¬

isierender Regler für dynamische Systeme, dessen Zustände und Eingänge nur eine

begrenzte Wertemenge annehmen dürfen. Receding Horizon Control (RHC) ist

eine sehr mächtige Methode, um Probleme dieser Art zu lösen und hat folglich ein

weitreichendes Interesse in Forschung und Industrie gefunden. Bei RHC wird eine

Zielfunktion festgelegt und die Eingangssequenz, welche diese Funktion minimiert,

wird für den momentanen Zustandswert berechnet. Danach wird der erste Wert der

Eingangssequenz via Aktuator dem System auferlegt. Zum nächsten Zeitpunkt wird

der Zustandswert neu eruiert, und die Prozedur wird wiederholt. Eines der Schlüssel¬

probleme mit RHC ist die inhärente Komplexität der notwendigen Berechnungen.

Dies limitiert die Anwendungsmöglichkeit von RHC auf relativ langsam ablaufende

Prozesse.

Dieser Nachteil wurde zu einem gewissen Grad mit der Einführung von multi-

parametric programming in die Regelungstechnik wettgemacht. Es wurde ermöglicht,

RHC Optimierungsprobleme für alle Initialzustände off-line zu lösen. In multi-

parametric programming wird die unendlich dimensionale Lösung dieses Problems

berechnet, indem ein endlich dimensionales Optimierungsproblem gelöst wird. Die

Lösung zu diesem Problem ist eine abschnittsweise affine Zustandsrückführung,

welche mit Hilfe eines 'Look-Up Tables' implementiert werden kann. Dieser

Lösungsansatz macht den Einsatz von optimaler Regelung billiger und effizien¬

ter, als dies mittels on-line Optimierung der Fall wäre. Die Methode hat jedoch auch

einen signifikanten Nachteil: die Grösse des Look-Up Tables wächst exponentiell mit

der Komplexität des Regelproblems. Deswegen können multi-parametric program¬

ming Methoden nur angewendet werden, wenn ein relativ einfaches mathematisches

Modell des Systems vorliegt. Das Ziel dieser Dissertation ist es, diesen Nachteil so

weit wie möglich zu eliminieren.
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vi Zusammenfassung

Wenn multi-parametric programming im Rahmen der Regelungstechnik angewen¬

det wird, gibt es drei Aspekte welche die Komplexität beeinflussen: die

Geschwindigkeit mit der das Look-Up Table berechnet werden kann, die Anzahl

der Einträge im Look-Up Table und die Zeit die nötig ist, um den korrekten Eintrag

im Look-Up Table zu finden.

Alle drei Aspekte werden in dieser Dissertation behandelt, so dass dessen Kombi¬

nation die Problemkomplexität um mehrere Grössenordnungen reduziert.

Konkret werden mehrere Methoden vorgestellt, um die Berechnung der Zus-

tandsrückführungsregler zu beschleunigen. Im Vergleich zu bisherigen Methoden

beschleunigt eine Kombination von dynamic programming, infinite-time optimal con¬

trol und effizienter Umgang mit Polytopen die Reglerberechnung erheblich.

Neue Methoden um abschnittsweise affine Systeme zu analysieren werden

vorgestellt. Der Fokus liegt hierbei auf Stabilitätsanalyse und Invarianz von Zu-

standsmengen. Die Analysemethoden werden benutzt um Regler von niedriger Kom¬

plexität zu berechnen. Die vorgeschlagenen Methoden liefern einfache Regler durch

einfache Zielsetzungen.

Des weiteren werden zwei Methoden vorgestellt, um die Reglerkomplexität a pos¬

teriori zu verringern. Die beiden Methoden reduzieren den nötigen Speicherplatz und

beschleunigen die Zeit, in der die optimale Zustandsrückführung identifiziert werden

kann.

Am Schluss wird die MPT Toolbox präsentiert. Diese Toolbox für Matlab bein¬

haltet sämtliche Algorithmen, welche in dieser Dissertation vorgestellt wurden sowie

etliche Standardfunktionen der Forschungsgebiete Regelungstechnik und Computa¬

tional Geometry.
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Notation

Logic Operators and Functions

A =$ B A implies B, i.e. if A true then B true

A<$- B A implies B and B implies A, i.e. A true if and only if B true

Sets

R (R+) Set of (non-negative) real numbers

N Set of non-negative integers

Rn Set of real vectors with n elements

RnXm Set of real matrices with n rows and m columns

Algebraic Operators

AT Transpose of matrix A

A-1 Inverse of matrix A

det(A) Determinant of matrix A

Afc) ^0 A positive (semi)definite matrix, xTAx(>) > 0, Vx ^ 0

j4(d) -< 0 A negative (semi)definite matrix, xTAx(<) < 0, Vx ^ 0.

Ai) i-th row of matrix A

*(i) i-th. element of the vector x

|x| Element wise absolute value

INI Any vector norm of x

IWIa Euclidian norm of vector x

IMIi Sum of absolute elements of vector x G Rn, ||x||i :== E"=ik«l

Halloo Largest absolute value of the vector x £ Rn, ||a;||oo := maxie{li...in} \x^

IM|P p-norm of a vector x e Mn, ||x||p := VXXi \x(i)\p

xiii



xiv Notation

Set Operators and Functions

0 The empty set

V n Q Set intersection VC\Q={x\xeV and x e Q}

VUQ Set union PUQ={x|xG7>orxGÔ}

Ure{i K}^r Union of R sets Vr, i.e. (Jre{i h}^ = {x | x G

Po or ... or x G 7>fl}

Pc Complement of the set V, Ve = {x | x £ T3}

P \ Q Set difference P \ Q = {x | x G V and x £ Q}

V CQ The set P is a subset of Q, xeV=> xgQ

"P C Q The set P is a strict subset of Q, x G "P =*> x e Q and

3xG(Q\P)

PDQ The set V is a superset of Q

?DQ The set V is a strict superset of Q

P9Q Pontryagin difference V 0 Q = {x | x + g G "P, Vç G Q}

7> © Q Minkowski sum P©Q = {x + g|xG73, ?Q}

dP The boundary of V

int(P) The interior of V, i.e. int(P) = V\dV

Dynamical Systems

x(A;) Measurement of state x at time k

Xk Predicted value of state x at time k, given a measurement x(0)

x+ Successor of vector x, i.e. if x = x(k) then x+ = x(k + 1)

.Foo Minimal robust positive invariant set

Cqo Maximal robust positive invariant set

Cqo Maximal robust control invariant set

/Coo Maximal robust stabilizable set

£)LQR Maximal positive invariant set Ooo for LTI systems subject

to the Riccati LQR controller

Others

1 Identity matrix

1 Vector of ones, 1 = [1 1
... 1]T

0 Vector of zeros, 0 = [0 0
... 0]r
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BMI Bilinear Matrix Inequality

CFTOC Constrained Finite Time Optimal Control

CITOC Constrained Infinite Time Optimal Control

DP Dynamic Program(ming)
LMI Linear Matrix Inequality

LP Linear Program(ming)

LQR Linear Quadratic Regulator

LTI Linear Time Invariant

MILP Mixed Integer Linear Program

MIQP Mixed Integer Quadratic Program

MPC Model Predictive Control
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Introduction

Outline

The focus of this thesis is on Receding Horizon Control (RHC) and Model Predic¬

tive Control (MPC) of discrete-time linear time invariant (LTI) and piecewise-affine

(PWA) systems. PWA systems represent a powerful modelling tool to capture non¬

linear and hybrid behavior of dynamical systems and have therefore received great

interest in academia and industry. It is well known, that optimal state feedback

controllers for these types of systems can be computed by applying multi-parametric

programming techniques. The resulting controller then takes the form of a feed¬

back law which is affine over polyhedral sets, such that the optimal input becomes

a piecewise affine function of the current state. The necessary on-line effort thus

reduces to identifying which polyhedral set contains the current state and evaluating

the associated affine feedback law. The advantage of this scheme is that no time

consuming on-line optimization is necessary and the control input can be computed

with low hardware cost and small computation time. However, there is a drawback:

the number of control laws grows exponentially with the size of the control problem

and may quickly reach a prohibitive number of elements.

In this thesis, these complexity issues are investigated and numerous methods

for reducing complexity are presented. Specifically, three levers which influence the

overall complexity are investigated:

1. computation of control laws,

2. the formulation of alternate control problems which yield solutions of tractable

complexity and

3. post-processing of the feedback solution such that on-line implementation of

the control law can be performed more efficiently.

xvn



XVlll Introduction

Improvements resulting from the application of all three levers are presented in this

thesis, both for linear time-invariant (LTI) and piecewise affine (PWA) systems. Any

method which is able to influence one of the three levers such that complexity is

reduced, is referred to as efficient.

The thesis is subdivided into five parts, whereby each part is written to be self-

contained. Hence, certain key theorems and definitions are stated more than once

throughout the thesis.

In the first part of the thesis, the necessary background from the field of optimal

control and computational geometry is summarized.

In Part II, various schemes for analysis of PWA systems are presented. Specifi¬

cally, algorithms to compute robust positive invariant sets are given and sufficient

conditions for finite time termination of these algorithms are derived. Furthermore,

various computation schemes to analyze stability of PWA systems are given. It is

shown how the search for a PWA Lyapunov function can be posed as an LP. In

addition, various improvements and extensions to LMI based schemes for identifying

piecewise quadratic Lyapunov functions are given. The results in this part are based

on [GM03, GLPM03, GPM03, RG04a, RGK+04a, GRMM05].

In Part III, various schemes to obtain low complexity feedback control for discrete-

time LTI systems are covered. Specifically, various algorithmic improvements to the

multi-parametric programming solvers are presented, which serve to speed up the nec¬

essary off-line controller computation time. In a next step, it is shown how the stabil¬

ity analysis schemes from Part II can be utilized to obtain feedback controllers of very

low complexity. Finally, two schemes for post-processing the explicit feedback solution

are given. Both schemes reduce the necessary on-line effort and storage space. The re¬

sults in this part are based on [SLG+04,GBTM03,GBTM04,GM03,GPM03,RG04b].

Part IV of this thesis deals with controller construction for PWA systems. First, a

scheme to obtain stabilizing optimal controllers for PWA systems is derived. Then,

a novel controller computation scheme based on dynamic programming is presented.

The proposed algorithm computes the optimal controllers for PWA systems signifi¬

cantly more efficiently than previous methods. In a next step, it is shown how the

stability analysis schemes from Part II can be utilized to formulate control problems
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which yield feedback controllers of very low complexity. The results in this part are

based on [BGBM05,GKBM04a]

In Part V, the Multi-Parametric Toolbox (MPT) is presented. The MPT toolbox

for Matlab contains all the algorithms presented in this thesis as well as a wide range

of additional algorithms and tools developed by the academic community. This part

of the thesis will introduce the reader to MPT, describe the software framework and

provide examples. The content in this part is based on [KGB04].

Contributions

The main contribution of this thesis is a novel way of looking at the interaction

between control objectives and the resulting controller complexity. In classic control

schemes, the aim is to obtain controllers which guarantee constraint satisfaction,

asymptotic stability and optimal performance. For systems subject to constraints,

the disadvantage of these goals is the often prohibitive complexity of the resulting

control laws. In order to obtain simpler controllers, it is necessary to pose simpler

objectives.

Three approaches are conceivable: the requirement for constraint satisfaction can

be dropped when constructing control laws and verified a posteriori [GLPM03].

Constraint satisfaction can be verified by checking if the controlled set is invari¬

ant. This approach is pursued in Chapter 7, where the computation of invari¬

ant sets for piecewise affine (PWA) systems subject to bounded additive distur¬

bances [RG04a,RGK+04a,GRMM05] is investigated. The key contribution here is a

set of sufficient criteria for finite time termination of the maximum robust invariant

set computation.

The second approach is to use a performance objective that is different from stan¬

dard optimal control [GM03,GPM03,GKBM04a]. Defining simpler performance ob¬

jectives will yield simpler control laws. Specifically, 'minimal-time' and 'minimum-

switching' control was investigated. This approach is pursued in Chapters 11 and 16

for LTI and PWA systems, respectively.

The third and most promising approach is to drop the requirement of asymptotic

stability when constructing control laws [GKBM04b,GM04]. By checking asymptotic

stability of the controller a posteriori instead of enforcing it during the controller
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synthesis, very simple control laws can be obtained. For efficient stability analysis,

several contributions are made in Chapter 8 [GKBM04b,GLPM03,BGLM05], where

it is shown how to efficiently compute piecewise affine, piecewise quadratic and piece-

wise polynomial Lyapunov functions for discrete-time PWA systems. The control

schemes to obtain control laws of very low complexity are presented in Chapters 11

and 16 for LTI and PWA systems, respectively.

The second key contribution during my Ph.D. studies is the co-development of

the Multi-Parametric Toolbox which is covered in Part V [KGB04]. By developing

such an extensive software tool, we have made the world of multi-parametric control

accessible to a much larger audience than was previously the case. Hopefully, the

easy access to the latest advances in multi-parametric theory will also lead to more

practical applications in the future.

Finally, this thesis introduces a whole set of additional tools to further simplify the

application of multi-parametric controllers.

• Section 10.2: Speed improvements of multi-parametric programming solvers by

efficient removal of redundant hyper-planes in polytopes [SLG+04].

• Section 10.3: Computation of the constrained infinite-time linear quadratic

regulator [GBTM03.GBTM04].

• Section 12.2: Controller post-processing scheme using interpolation to simplify

feedback laws obtained via multi-parametric quadratic programming [RG04b].

• Section 12.3: Identification of the active feedback law in logarithmic time for

controllers computed via multi-parametric linear programs [JGR04a].

• Chapter 14: Formulation of optimal control problems for PWA systems such

that stability and constraint satisfaction is guaranteed [GKBM04a].

• Chapter 15: Efficient implementation of constrained finite-time optimal control

of PWA systems with linear performance indices [BGBM05].

Note that all the results in this thesis have been obtained in close collaboration

with various colleagues. I have tried to cite all results appropriately and would like
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to point out that some sections of this thesis are based on papers of which I am not

the first author. Hence, the exposition above merely states the contributions of this

thesis and not my work as an individual. Conversely, not all of the results which

were obtained during my graduate studies are contained in this thesis. Please see

Appendix A for a full list of publications.
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1

Standard Optimization Problems

For the sake of completeness, some standard optimization problems and definitions

will first be introduced. For a detailed reference, we refer the reader to the excellent

book [BV04].

A generic optimization problem can be described by the following set of equations.

min f0(x) (1.1a)

subj. to fi(x) < 0, i-l,...,q, (1.1b)

gj{x) = 0, j = l,...,qeq, (1.1c)

with an objective function f0 : Rn —> R and constraint functions /* : R — R,

gj : Rn — R. The variable x is the optimization variable and the solution x* to

optimization problem (1.1) is referred to as optimizer.

Definition 1.1.1 (Convex Function, [Wei]) A convex function is a continuous

function whose value at the midpoint of every interval in its domain does not exceed

the average of its values at the ends of the interval. In other words, a function f(x)

is convex on an interval [a,b] if for any two points X\ and x% in [a,b],

f(l(xi+x2))<\(f(x1) + f(x2))

If f(x) has a second derivative in [a,b], then a necessary and sufficient condition for

it to be convex on that interval is that the second derivative f"(x) > 0 for all x in

[a,b].

3
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If the objective function /0 and the constraint functions fi(x) are convex and the

equality constraints g$ are all affine (i.e. Aeqx = Beq), problem (1.1) is a convex

optimization problem. Although general convex optimization problems can be solved

relatively efficiently it is always advantageous to use dedicated solvers for specific

problems. A number of specific convex optimization problems for which such solvers

exist will be discussed in the following.

Linear Program (LP)

min cTx
X

subj. to Ax < B,

**eqX — -^eq*

A practical algorithm to solve an LP with n variables and s constraints requires

roughly 0((n3 + n2s)y/s) operations on average (see Section 10.2, page 104).

There are two fundamentally different types of algorithms for solving LPs:

simplex and interior-point solvers [VanOl]. The runtime for the simplex method

is exponential in the worst case, while interior-point algorithms have a worst-

case polynomial bound. However, this worst-case bound has little relevance for

practical problems and both schemes are competitive in practice [AM85,Mit99,

Mit04].

Quadratic Program (QP)

mm
X

-x Qx + c x

subj. to Ax < B,

s*eqX = -^eq'

When referring to QPs it is generally assumed that Q y 0, such that the

resulting optimization problem is convex. QPs can be solved with roughly the

same efficiency as LPs, but on average the solvers are approximately 5-times

slower than LP solvers [Neu04, page 37].

Linear Matrix Inequality (LMI) The semidefinite cone F(x) y 0 can be de¬

scribed with LMIs according to

F{x) = F0 + ]T x{i)Fi t0, xe R?, Fi = F?e Rnxn,
i=0
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where X(j) denotes the i-th element of the vector x. LMIs are generally used

when searching for a matrix, for which some linear combination of the matrix is

required to be positive definite, hence the term Linear Matrix Inequality (LMI).

In control for example, LMIs are often used to obtain Lyapunov functions and

stabilizing feedback laws [BGFB94]. Note that an LMI defines a feasible set

and is not an optimization problem as (1.1).

Semidefinite Programming (SDP)

min cTx
X

subj. to F(x) t 0,

**-eqX — *-*eqm

Optimization over the semidefinite cone is called semidefinite programming.

An introduction to SDPs and LMIs can be found in [WSV00, VB96] and a

good overview of the application of SDPs to control problems is also given

in [Löf03, BGFB94]. Although SDPs can be solved in polynomial time, the

associated algorithms are roughly one order of magnitude slower than LP or

QP solvers. The number of required iterations of the associated interior point

methods is roughly the same, but much more work is required for each iteration

when solving an SDP. Note that LPs and QPs can be solved via SDP.

Determinant Maximization (MAXDET)

min cTx — log detG(a;)
X

subj. to F(x) h 0

G(x) y o

ti-eqX -^eq

The so called MAXDET problems have many applications in practice, since G(x)

can be chosen such that log detG(x) is proportional to the volume of an ellipsoid.

MAXDET problems are common in invariant set computations [Löf03].
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Polytopes

Polytopic (or, more general, polyhedral) sets are an integral part of most standard

constrained control problems. For this reason we present some definitions and fun¬

damental operations with polytopes. For additional details on polytope computation

we refer the reader to [Zie94,Grii00,Fuk04c].

2.1 Definitions

Some basic definitions in computational geometry will be introduced in this section.

Definition 2.1.1 (Convex Set, [BV04]) A setC is convex if the line segment be¬

tween any two points in C lies in C, i.e., if for any xi,x2 G C and any real scalar 6

with 0 < 6 < 1, we have Qxx + (1 - 9)x2 G C.

Definition 2.1.2 (Neighborhood, [Wei]) The neighborhood of a point x G Rn

(also called an epsilon-neighborhood or infinitesimal open set) is the set of points

inside an n-ball with center x and radius e > 0.

Definition 2.1.3 (Closed Set, [Wei]) A set S is closed if every point outside S

has a neighborhood disjoint from S.

Definition 2.1.4 (Bounded Set, [Wei]) A set in Rn is bounded if it is contained

inside some ball Br = {x G Rn | ||a:||2 < R} of finite radius R.

Definition 2.1.5 (Compact Set, [Wei]) A set in R is compact if it is bounded

and closed.

7



8 2 Polytopes

Definition 2.1.6 (Polyhedron, [GrüOO]) A convex set S Ç Rn given as an inter¬

section of a finite number of closed half-spaces

S = {xeRn\Sxx< S0}, (2.1)

is called a polyhedron. Here, S0 G R?, Sx G R9Xn where q denotes the number of

half-spaces defining S and the operator < denotes a element-wise comparison of two

vectors.

Definition 2.1.7 (Polytope, [GrüOO]) A bounded polyhedron V C Rn

V = {x G Rn | Pxx < P0}, (2.2)

is called a polytope. Here, P° G R9, Px G M.gxn where q denotes the number of

half-spaces defining V and the operator < denotes a element-wise comparison of two

vectors.

A polytope defined by half-spaces is depicted in Figure 2.1(a).

Definition 2.1.8 (Dimension of Polytope) A polytope V C R" is of dimension

d <n, if there exists a d-dimensional ball with radius e > 0 contained in V and there

exists no (d+ 1)-dimensional ball with radius e > 0 contained in V.

Definition 2.1.9 (Face,Vertex, Edge, Ridge, Facet, [Zie94]) A linear in¬

equality aTx < b is called valid for a polyhedron V if aTx < b holds for all

x G V. A subset T of a polyhedron is called a face of V if it can be represented as

T = V n {x G Rn | aTx = b}, (2.3)

for some valid inequality aTx < b. The faces of a polyhedron V of dimension 0, 1,

(n — 2) and (n — 1) are called vertices, edges, ridges and facets, respectively.

Note that 0 and V itself are also faces of V [Fuk04c].

One of the fundamental properties of a polytope is that it can be described in half-

space representation as in Definition 2.2 or in vertex presentation, as given below,

Vp Vp

V = {x G Rn | x ^j^ctiV®, 0 < ai < 1, J^ai = 1}, (2.4)
i=l t=l
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tion of a polytope V. The half-spaces Pu\X < of a polytope V. The vertices VP',..., Vp

P?%Y i = 1,..., 7 are depicted in bold. are depicted in bold.

Figure 2.1: Illustration of a polytope V in half-space and vertex representation.

where Vp denotes the i-th vertex of V, and Vp is the total number of vertices of V

(see Figure 2.1(b)).

It is obvious from the above definitions that every polytope represents a convex and

compact set. We say that a polytope V C R", V = {x G Rn | Pxx < P0} is full

dimensional if 3i 6 E", e G R such that e > 0 and Px{x+ ö) < P°, V 8 G Rn subject

to ||5|| < e, i.e. it is possible to fit a n-dimensional ball inside the polytope V. A

polytope is referred to as empty if $x G R" such that Pxx < P°. Furthermore, if

\\P(i)\\ = 1> where Pfa denotes i-th. row of a matrix Px, we say that the polytope V

is normalized.

Remark 2.1.10 Note that the MPT toolbox (see Part V or [KGB04]) only deals

with full dimensional polytopes. Polyhedra and lower dimensional polytopes are not

considered, since they are not necessary to formulate realistic control problems, i.e.

it is always possible to formulate the problems using full dimensional polytopic sets

only.

We say that a polytope V C R", V = {x G Rn | Pxx < P0} is in a minimal

representation if the removal of any of the rows in Pxx < P° would change it (i.e.,

there are no redundant half-spaces). The computation of a minimal representation

(henceforth referred to as polytope reduction) of polytopes is discussed in Section 10.2

and generally requires to solve one LP for each half-space defining the non-minimal

representation of V [OSS95,Bon83]. It is straightforward to see that a normalized,
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full dimensional polytope V has a unique minimal representation. This fact is very

useful in practice. Normalized, full dimensional polytopes in a minimal representation

allow us to avoid any ambiguity when comparing them and very often speed up other

polytope manipulations.

Definition 2.1.11 (P-collection) A P-collection is the (possibly non-convex)

union of a finite number of R polytopes TZr, i.e. 72. = Ureli,...,^} ^r-

Note that the polytopes 72r defining the P-collection 72. can be disjoint and/or over¬

lapping.

Remark 2.1.12 Algorithms for all operations and functions described in this chap¬

ter are contained in the MPT toolbox (see Part V or [KGB04])-

2.2 Operations on Polytopes

In this section, some of the basic manipulations on polytopes will be defined.

Chebychev Ball: The Chebychev Ball of a polytope V = {x G Rn | Pxx < P0}

corresponds to the largest radius ball Br{xc) = {x G Rn | |jcc — a;c||2 < R}, such

that Br C P, see Figure 2.2(a). The center and radius of the Chebychev ball

can be easily found by solving the following LP [BV04]

max R (2.5a)
xc,R

subj. to P^xc + R\\P^\\<P^, ViG{l,...,(?}. (2.5b)

The subindex (i) in (2.5) denotes the i-th row of P^ and P,0^, respectively and

V is defined by the intersection of q half-spaces. If the obtained radius R = 0,

then the polytope is lower dimensional; if R < 0, then the polytope is empty.

Note that the center of the Chebychev Ball is not unique, in general, i.e. there

can be multiple solutions (e.g. for rectangles).

Projection: Given a polytope V = {x G Rn,y G Rm | Pxx + P^y < P°} C Rn+m

the orthogonal projection onto the rc-space Rn is defined as

Projz(P) = {x e Rn | 3y G Rmsubj. to Pxx + Pyy < P0}. (2.6)
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(a) Chebychev ball contained in a poly- (b) Projection of a 3-dimensional polytope V

tope V. onto a plane.

Figure 2.2: Illustration of the projection operation and the Chebychev ball.

An illustration of a projection operation is given in Figure 2.2(b). Current pro¬

jection methods can be grouped into four classes: Fourier elimination [Cer63,

KS90], block elimination [Bal98], vertex based approaches and wrapping-based

techniques [JKM04]. For a good introduction to projection, we refer the reader

to [JKM04] and the references therein.

Set-Difference: The Set-Difference of two polytopes V and Q

Tl = V\Q = {xeRn\xeV,x^Q}, (2.7)

is a P-collection 72. = (Jt 7£,, which is easily computed by consecutively inverting

the half-spaces defining Q as described in [BMDP02] (see Figure 2.3). The set

difference between two P-collections C and V can be computed as described

in [BT03,GKBM03,RKM03]. Checking whether C Ç V is easily implemented

since C Ç V O C\V = 0. Similarly C = V is also easily verified since

C = P^(C\P = 0and£>\C = 0).

Remark 2.2.1 The set difference of two closed sets C and V is an open set, if

Cf)T> 7^ 0. In this thesis, we will henceforth only consider the closure ofC\V.

Convex Hull: The convex hull of a set of points V = [vi,..., vP] is defined as

Vp Vp

hull(y) = {re G Rn | x = J2 a»v». 0 < Qi < 1. J2 öt = *}' (2>8)
i=i »=i
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J 1 1 I I 1 1 1 L

"1 *1

(a) Polytopes V and Q (b) Set difference 11 = Uj6{i 4>ft* = 7> \

Q.

Figure 2.3: Illustration of the set-difference operation.

The convex hull operation is used to switch between half-space and vertex rep¬

resentations. The convex hull of a union of polytopes (referred to as Extended

Convex Hull, [FLLOO]) Tlr C Rn, r = 1,..., R, is a polytope

(R
\ R R

{JTlr\ = {x G R" | 3xr G Tlr, x = ^arxr, 0 < ar < 1, ^ar = 1}.
r=l / r=l r=l

(2.9)

An illustration of the convex hull operation is given in Figure 2.4.

A convex hull problem is considered non-degenerate if $ a valid hyperplane h

in Rn containing more than n input vertices. If the convex hull problem is

non-degenerate then the Reverse Search algorithm in [AF96, AviOO] is linear

in the number of output facets. For many degenerate problems, the expected

behavior of the Double Description method [FP96, Fuk04a, MRTT53] is poly¬

nomial. The same holds for the dual Beneath-Beyond method [BDH96]. Al¬

though other efficient methods exist (e.g. [Sei86]) the complexity of all convex

hull computation schemes is exponential in the worst (i.e., degenerate) case.

Envelope: The envelope of two polyhedra P = {x G Rn | Pxx < P0} and Q = {x G

Rn | Qxx < Q°} is given by

env(P, Q) = {x G R" | Pxx < P°, Qxx < Q°}, (2.10)

where Pxx < P° is the subsystem of Pxx < P° obtained by removing all

the inequalities not valid for the polyhedron Q, and Qxx < Q° are defined in
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a similar way with respect to Qxx < Q° and P [BFT01]. The envelope can

analogously be computed for a P-collection or a complex. An illustration of the

envelope operation is depicted in Figure 2.5. The envelope can be computed

by solving c • d LPs where c is the number of input polytopes (here: P and

Q, i.e. c = 2) and d is the total number of facets [BFT01]. It holds that

P U Q C env(P, Q) and that P U Q is convex ^?UQ = env(P, Q). Note

that the envelope of several polytopes can be a polyhedral set or even Rn, e.g.

the envelope of a star shaped object is Rn.

71 1Zo

'

y^ huii(Te)

(a) P-collection ft = LU{i,2} ^t- (b) Convex hull of ft.

Figure 2.4: Illustration of the convex hull operation.

fti n2

(a) P-collection ft = U,{i,2} ^- (b) Envelope env(ft).

Figure 2.5: Illustration of the envelope operation.

Vertex Enumeration: The operation of extracting the vertices of a polytope P

given in half-space representation is referred to as vertex enumeration. This
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operation is the dual to the convex hull operation and the algorithmic imple¬

mentation is identical to a convex hull computation, i.e. given a set of points

V = [vi,...,Vp] it holds that V = vert(hull(V)), where the operator vert

denotes the vertex enumeration.

A vertex enumeration problem is considered non-degenerate, if $ a point x G

Rn lying on the boundary of more than n input half-spaces. If the vertex

enumeration problem is non-degenerate then the Reverse Search algorithm in

[AF96, AviOO] is linear in the number of input vertices. For many degenerate

problems, the expected behavior of the Double Description method [FP96,

Fuk04a, MRTT53] is polynomial. The same holds for the dual Beneath-Beyond

method [BDH96]. Although other efficient methods exist (e.g. [Sei86]) the

complexity of all vertex enumeration computation schemes is exponential in

the worst case.

Pontryagin Difference: The Pontryagin difference (also known as Minkowski-

Difference) of two polytopes P and Q is a polytope

VeQ = {xeRn\x + qev,VqeQ}. (2.11)

The Pontryagin difference can be computed by solving one LP for each half-

space defining P [KG98]. For special cases (e.g. when Q is a hypercube),

even more efficient computational methods exist [KM03]. An illustration of

the Pontryagin difference is given in Figure 2.6(a).

Minkowski Sum: The Minkowski sum of two polytopes P and Q is a polytope

V®Q = {x + qeRn\xeV, qeQ}. (2.12)

If P and Q are given in vertex representation, the Minkowski sum can be

computed in time bounded by a polynomial function of input and output

size [GS93, Fuk04b]. If P and Q are given in half-space representation, the

Minkowski sum is a computationally expensive operation which requires either

vertex enumeration and convex hull computation in n-dimensions or a projec¬

tion from 2n down to n dimensions. The implementation of the Minkowsi sum

via projection is described below.

P = {y G Rn | Pyy < P0}, Q = {z e Rn \ Qzz < Q°},
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(a) Pontryagin difference of two polytopes (b) Minkowski sum of two polytopes V © Q.

pes.

Figure 2.6: Illustration of the Pontryagin difference and Minkowski sum operations.

it holds that

W = P®Q

= jz G Rn | x = y + z, Pyy < P°, Qzz < Q°, y,zE Rn}
= ix G Rn | 3y G Rn, subj. to Pyy < P°, Qz{x -y)< Q0}

= ix G Rn | 3y G Rn, subj. to

{x,yeRn

0 Py

Qz -Qz

= Proj,

0 Py

Qz -Qz
<

X

y

po

Q°

<

»

po

Q°
}

Both the projection and vertex enumeration based methods are implemented

in the MPT toolbox (see Part V or [KGB04]). An illustration of the Minkowski

sum is given in Figure 2.6(b).

Remark 2.2.2 The Minkowski sum is not the complement of the Pontryagin

difference. For two polytopes V and Q, it holds that (P 0 Q) © QQV. This

is illustrated in Figure 2.7.
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», », »,

(a) Two polytopes V and Q. (b) Polytope V and Pontryagin (c) Polytope V Q Q and the set

difference VeQ. (V 9 Q) © Q.

Figure 2.7: Illustration that (?96)©QÇP.

2.3 Operations on P-collections

This section covers some results and algorithms which are specific to operations with

P-collections. P-collections are unions of polytopes and therefore the set of states

contained in a P-collection can be represented in an infinite number of ways, i.e.

the P-collection representation is not unique. For example, one can subdivide any

polytope P into a number of smaller polytopes whose union is a P-collection which

covers P. Note that the complexity of all subsequent computations depends strongly

on the number of polytopes representing a P-collection. The smaller the cardinality

of a P-collection, the more efficient the computations.

The first two results given here show how the set difference of a P-collection and

a P-collection (or polyhedron) may be computed:

Lemma 2.3.1 Let C = \Jj&{i,...,j\Cj be a P-collection, where all the Cj, j G

{1,..., J}, are non-empty polyhedra. If S is a non-empty polyhedron, then C\S =

Uj6{i,.. J}(Cj \S) is a P-collection.

Lemma 2.3.2 Let the sets C = Ujeli,...,./} Ç? an^ ^ ~ Uj,=i,...,r A/ ^e P-collections,

where all the Cj, j G {1,..., J}, and Vy, ye {1,... ,Y}, are non-empty polyhedra.

If So = C and £y = £y-\ \Vy, y G {1,..., Y} then C\V = £y is a P-collection.

The reader is referred to [RKM03] for proofs and comments on computational effi¬

ciency. That C ÇV can be easily verified since C ÇV o-C\V = $, similarly C = V

is also easily verified since

C = X>o(C\P = 0andP\C = 0)
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Next, an efficient algorithm for computing the Pontryagin difference of a P-

collection and a polytope is presented. If S and B are two subsets of Rn it is known

that S 0 B = [Sc © (-B)]c (see for instance [Ser88,Ker00]), where (-)c denotes the

set complement. The following algorithm taken from [RGK+04a] implements the

computation of the Pontryagin difference of a P-collection C = Vje{i,...,j}Cj, where

Cj, j G {1,..., J} are polytopes in Rn, and a polytope B C Rn.

Algorithm 2.3.3 (Pontryagin Difference for P-collections, CQB)

1. Input: P-collection C, polytope B;

2. H = env(C) (or H à hull(C)J;

3. V = H Q B;

4. £ = H\C;

5. r = £® (-B);

6. Ç = V\T;

7. Output: P-collection G=CQB.

Remark 2.3.4 Note that H in Step 2 of Algorithm 2.3.3 can be any convex set

containing the P-collection C. Furthermore, the computation of H is generally more

efficient if the envelope operation is used instead of convex hull.

Remark 2.3.5 It is important to note that (Uie{i,...,J}^i) 0^7^ Ufe{i,...„;}(Çj ©

B), where B and Cj are polyhedra; hence, the relatively high computational effort of

computing the Pontryagin difference of a P-collection and a polytope.

Theorem 2.3.6 (Computation of Minkowski Difference, [RGK+04a]) For

Algorithm 2.3.3, Q = CQB.

Proof It holds by definition that

v = neB = {x\x + wen,yweB},

£ à H\C = {x | x G H and x £ C).
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(a) U,6{i, ,j}Cj andß-

(c)p = Heß.

(b) « = hull(C).

(d)S = W\C.

(e)jF=£e(-z3). (f)ö=2?\^.

Figure 2.8: Graphical illustration of Algorithm 2.3.3.

By the definition of the Minkowski sum:

T = £® (-B) = {x\x = z + w, ze£,w£ (-B)}
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= {x I 3w G (-#), s.t. x + w G £}.

By definition of the set difference:

V \ T = {x | x G V and x £ F}

= {xeV\$weB s.t. x + w G £}

= {xeV\x + w<££, Vu; eB}.

From the definition of the set V:

V \T = {x | a: + w G ft and x + w <£ £, Vw G B}

And from the definition of the set £ and because C Ç 7i:

V\F={x\x + wHimd{x + w<ÊHoT:x + weC)Vw£B}

= {x\x + weC, MweB}

= CeB.

D

Algorithm 2.3.3 is illustrated on a sample P-collection in Figures 2.8(a) to 2.8(f).

Remark 2.3.7 It should be noted that Algorithm 2.3.3 for computation of the Pon¬

tryagin difference is conceptually similar to the one proposed in [Ser88,Ker00,KM02j.

However, the envelope [BFT01] operation employed in step 2 significantly reduces

(in general) the number of sets obtained at step 4, which in turn results in fewer

Minkowski set additions. Since the computation of a Minkowski set addition is ex¬

pensive, a runtime improvement can be expected. The necessary computations can

be efficiently implemented by using standard computational geometry software such

as [Ver03,KGB04].
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3

Multi-Parametric Programming

In this chapter, the basics of multi-parametric programming will be summarized.

For a review of standard optimization techniques, we refer the reader to [BV04]. An

in-depth discussion of multi-parametric programs is given in [Bor03] and [T0nOO].

3.1 Definitions

Consider the following optimization problem

JN(x) = minV(x,UN) (3.1a)
Un

subj. to GUN<W + Ex, (3.1b)

where Un G RN is the optimization variable and x G Rn is the parameter with

G G RqxN, W G Rq and E G RqXn. In multi-parametric programming, the objective

is to obtain the optimizer UN for a whole range of parameters x, i.e. to obtain

UN(x) as an explicit function of the parameter x. The term multi is used to em¬

phasize that the parameter x is a vector and not a scalar. Depending on whether

the objective function V(x, Un) is linear or quadratic in the optimization variable

Un, the terminology multi-parametric Linear Program (mp-LP) or multi-parametric

Quadratic Program (mp-QP) is used. In this chapter we will concentrate on the

multi-parametric Quadratic Program. For a detailed description of mp-LPs, we refer

the reader to [Gal95,BBM00a,BBM00b].

Consider the following quadratic program

JN(x) = min luJ,HUN + xTFUN\ (3.2a)

subj. to GUN < W + Ex, (3.2b)

H y 0, (3.2c)

21
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where the column vector Un G R^ is the optimization vector. The number of con¬

straints q corresponds to the number of rows of W, i.e. W G R?. Henceforth, UN(x)

will be used to denote the optimizer of (3.2) for a given parameter x. For any given

x, it is possible to obtain the optimizer by solving a standard quadratic programming

problem1. Before going further, we will introduce the following definitions.

Definition 3.1.1 (Feasible Set Xn) We define the feasible set Xn Çj Rn as the set

of states x for which the optimization problem (3.2) is feasible, i.e.

XN = {x G Rn\3UN G RN, GUN <W + Ex}. (3.3)

The set Xoo is defined accordingly by X^ = lim^_00 Xn- The set XN can be computed

via a projection operation as in (2.6).

Definition 3.1.2 (Polytopic/Polyhedral Partition) A collection of polytopic

(polyhedral) sets {VT}^-i = {Pi, ..., Vr} is a polytopic (polyhedral) partition2 of

a polytopic (polyhedral) set 0 if (i) |jf=i "Pr = @, (ü) (Pr\dVr) n {Vq\dVq) = 0,

Vr ^ q, where d denotes the boundary.

Definition 3.1.3 (PWA and PWQ) Consider the function f over a polyhedral set

S.

f : S — Rd with d G N+ is piecewise affine (PWA), if a partition {Pr}^=1 of set S

exists, such that f(x) = Lrx + Cr if x G Pr.

f : S t-*R is piecewise quadratic (PWQ), if a partition {Pr}^=1 of set S exists, such

that f(x) — xTQrx + Lrx + Cr ifxE Pr.

Definition 3.1.4 (Active Constraints AN(x)) The set of active constraints

AN(x) at point x of problem (3.2) is defined as

AN(x) = {i G J | G(0Cft(x) - WW - E{i)x = 0}, J = {1,2,..., q],

where G(»), W^), and E^) denote the i-th row of the matrices G, W, and E, respec¬

tively, and q denotes the number of constraints, i.e. W G R9.

1The standing assumption here is that H y 0. The case H h 0 is covered in [TJB03c].
2Note that a partition is a more general structure than a complex (see Definition 12.3.1). For

partitions, more than n — 1 full dimensional polytopes in n dimensions can touch a facet of

another polytope. For a complex, at most n — 1 full dimensional polytopes in n dimensions can

touch a facet of another polytope.
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Definition 3.1.5 (Linear Independence Constraint Qualification, [TJB03b])

For an active set of constraints AN, we say that the linear independence constraint

qualification (LICQ) holds if the set of active constraint gradients are linearly inde¬

pendent ,
i.e. G^n has full row rank.

3.2 Properties and Computation

As shown in [BMDP02,TJB01], we wish to solve problem (3.2) for all x within the

polyhedral set of values Xn, by considering (3.2) as a multi-parametric Quadratic

Program (mp-QP).

Theorem 3.2.1 (Properties mp-QP, [BMDP02,Bor03]) Consider the multi-

parametric Quadratic Program (3.2). Then, the set of feasible parameters Xn is

convex, the optimizer UN : Xn —> R^ is continuous and piecewise affine (PWA), i.e.

UN{x) = Frx + Gr, if xVr = {x£ Rn\Hrx < Kr}, r = 1,..., R, (3.4)

and the optimal value function J* : Xn —* R is continuous, convex and piecewise

quadratic.

Definition 3.2.2 (Region) Each polyhedron Pr of the polyhedral partition {PT}%\

is referred to as a region.

For some mp-QP problem, the region partition {Vr}r=i and PWQ value function

J*(x) is depicted in Figures 3.1(a) and 3.2(a), respectively. Note that the evaluation

of the PWA solution (3.4) of the mp-QP provides the same result as solving the

quadratic program, i.e. for any given parameter x, the optimizer UN(x) in (3.4) is

identical to the optimizer obtained by solving the quadratic program (3.2) for x.

Problem (3.1) with an objective (3.1a) that is linear in the optimizer Un can be

stated as an mp-LP [BBMOOb]. The properties of mp-LP solutions are stated below.

Theorem 3.2.3 (Properties mp-LP, [Bor03, Gal95]) Consider the the opti¬

mization problem (3.1), with a linear objective V(x, Un) = xtcJUn + c\Un- Then,

the set offeasible parameters Xn is convex, there exists an optimizer UN : Xn —> RNm

which is continuous and piecewise affine (PWA), i.e.

UN{x) = Frx + Gr, if xeVr = {xe Rn\Hrx < Kr}, r = l,...,R,
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and the value function JN : Xn —* R is continuous, convex and piecewise affine.

For some mp-LP problem, the region partition {Vr}r=i and PWA value function

J*(x) is depicted in Figures 3.1(b) and 3.2(b), respectively.

Controller partition with 31 regions Controller partition with 80 regions

», »,

(a) mp-QP Partition. (b) mp-LP Partition.

Figure 3.1: Partition {Pr}f=1 for an mp-LP and an mp-QP problem. The constraints

(3.1b) are identical for both problems. Therefore Xn is also identical for

both problems.

Remark 3.2.4 Assume that the origin is contained in the interior of the constraint

polytope (3.1b) in x-Un space. Because the value function for mp-QPs is PWQ, the

origin is always contained in the interior of a single region. Specifically, the origin

is always contained in the unconstrained region, i.e. the set of active constraints

AN{x) = 0 for x = 0. See Figure 3.1.

Remark 3.2.5 In the authors' experience, mp-LP solutions to control problems (see

next chapter) generally comprise more regions than mp-QP problems subject to the

same constraints (e.g., Figure 3.1). This may be because mp-LP problems in control

are subject to more constraints and have optimizers of higher dimensions than their

mp-QP counterparts (see Chapter 9). In addition mp-QPs are less susceptible to

numerical problems since dual degeneracies cannot occur [BorOSj.

A brief outline of a generic mp-QP algorithm will be given next. For a

detailed discussion of mp-QP algorithms we refer the reader to the literature

[BMDP02,TJB03b,Bao02]. An mp-QP computation scheme consist of the following

three steps:
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Figure 3.2: Partition {Pr}r=i and value function J*{x) for an mp-LP and an mp-QP

problem.

1. Active Constraint Identification: A feasible parameter x is determined and

the associated QP (3.2) is solved. This will yield the optimizer UN(x) and

active constraints AN(x) (see Definition 3.1.4).

2. Region Computation: The rows indexed by the active constraints AN{x) are

extracted from the constraint matrices G, W and S in (3.2b) to form the ma¬

trices Gan,Wan and San. The matrix 5 is derived from (3.2) by setting

S = E + GH~1FT. Next, it is possible to use the Karush-Kuhn-Tucker [BV04]

conditions to obtain an explicit representation of the optimizer UN(x) which is

valid in some neighborhood of x. Specifically,the optimizer UN(x) is defined by

UN = Frx + Gr (see (3.4)). If the LICQ holds (see Definition 3.1.5), then

Fr = H^G^iG^H^G^)-^^ - H~1FT, (3.5a)

Gr = H-lGT^{GANH-'GTA?)-lWAN. (3.5b)

For a discussion of how to deal with degenerate cases where the LICQ does not

hold, we refer the reader to [Bor03,TJB03b].

In a next step, the set of states is determined where the optimizer UN{x)

satisfies the constraints (3.2b) and is optimal. Specifically, the controller region

Vr = {xG Rn\Hrx < Kr} is computed as in [BMDP02]

Hr —

G(Fr + H~1FT) - S

(GAsH-*GTA„)-lSAN
(3.6a)
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W-GGr

[ -{GANH-^)-'WA?

3. State Space Exploration: Once the controller region is computed, the algo¬

rithm proceeds iteratively until the entire feasible state space Xn is covered

with controller regions Pr, i.e. XN = Ur=i ...R^r-

Remark 3.2.6 The number of rows in Hr is equal to the number of initial constraints

(3.1b), i.e. Hr consists of q rows ifWç. Rq. Therefore, in order to obtain a non-

redundant representation ofVT, it is necessary to solve q LPs (see Chapter 2) for each

region r G {1,... ,R}. In most cases one can increase the computational efficiency

of multi-parametric solvers by computing the non-redundant representation of the

original constraint polytope (3.1b) before solving the multi-parametric program.

(3.6b)



Optimal Control for Linear

Time-Invariant Systems

Consider optimal control problems for discrete-time linear, time-invariant (LTI) sys¬

tems

x{k + l) = Ax(k) + Bu(k), (4.1)

with A G Rnxn and B G Rmxn. Let x(k) denote the measured state at time k and

Xk denote the predicted state at k steps ahead, given the state a;(0). Let Uk be the

predicted input k steps ahead, given x(0). In this chapter we will give a brief overview

of optimal control problems for LTI systems discussed in the literature. The focus

will be on quadratic optimization objectives. For an overview, we refer the reader

to [LS95].

4.1 Unconstrained Finite-Time Optimal Control

Consider the unconstrained finite-time optimal control problem for system (4.1,

,n-i ,

JN(x{0)) = min \ Y] (u%Quuk + xlQxxk) + xNQXNxN \, (4.2a)
U0,...,un-i t £jj J

Qx t 0, QXN h 0, Qu y 0. (4.2b)

The solution to (4.2) can be expressed by the optimal state-feedback control law

[AM71,Ber95]

u*k = Kkxk k = Q,...,N -1,

where the gain matrices Kk are given by the equation

Kk = -(BTPk+1B + Qu)~1BTPk+1A,

27
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and where the symmetric positive semi-definite matrices Pk are given recursively by

the algorithm

TN = Uixrf,

Pk = AT(Pk+1-Pk+1B(BTPk+1B + Qu)-1BPk+1)A + Qx.

The optimal cost is

J*N{x(0)) = x{0)TPQx(0).

4.2 Unconstrained Infinite-Time Optimal Control

Problem

If in (4.2) we set N —> oo, we obtain the following optimal control problem

•0^(0))= min \J2uîQuuk + xlQxxk\,
«o,«1%... [^ J

QxhO, Quyo.

If we assume (A, B) stabilizable, we can express the solution via the state feedback

control law [AM71,Ber95]

u*k = Kxk, k = 0,..., +oo,

where the gain matrix K is given by

K = -{BTPB + QU)-1BTPA, (4.3)

and P is the unique positive semidefinite symmetric solution of the Algebraic Riccati

Equation (ARE)

P = AT(P - PB(BTPB + Qu)~1BP)A + Qx. (4.4)

The optimal cost is

•£(*(())) = x(0)TPx(0). (4.5)

The control law K in (4.3) is often simply referred to as LQR controller. This

abbreviation is used since the dynamic system is Linear, the value function J^(cc) is

Quadratic and the control objective is to Regulate the state to the origin.

Remark 4.2.1 In order for the closed loop system to be asymptotically stable and

the state to be driven to the origin, it is sufficient to select the weight matrix Qx y 0.

Alternatively, setting Qx = CTC with (C, A) detectable is also sufficient.



4.3 Constrained Finite-Time Optimal Control 29

4.3 Constrained Finite-Time Optimal Control

Assume now that the states and the inputs of system (4.1) are subject to the following

constraints

x(k)eXÇRn, u(k) G U Ç Rm, k G {0,... ,N}, (4.6)

where X and U are polyhedral sets containing the origin in their interior1. Now

consider the constrained finite-time optimal control (CFTOC) problem

Jh(x(.Q)) = min \Y2(ulQuuk + xlQxxk)+xNQXNxN\ (4.7a)

subj. to xk G X, ukl G U, Vke{l,...,N-l}, (4.7b)

xN G 7;et, (4.7c)

Xfc+i = Axk + Buk, xq = x(0), (4.7d)

Qu yo, Qxy o, QXN y o. (4.7e)

The terminal set constraint (4.7c) is an additional constraint which is often added

to obtain certain properties (i.e. stability and constraint satisfaction; See Chapter

5.2 for details). Henceforth, we will assume the terminal weight matrix QXN to be

equal to the ARE matrix P given in (4.4). The solution to problem (4.7) has been

studied in [BMDP02]. We will briefly summarize the main results. By substituting

xk — Akx(0) + J2jZo A?Buk-i-j, problem (4.7) can be reformulated as a quadratic

program (QP), i.e.

J*N(x{0)) = x(0)TYx{0) + mmiu^HUN + x(0)TFUN\ (4.8a)

subj. to GUN< W + Ex(0), (4.8b)

H y 0, (4.8c)

where the column vector Un — [uq,...,uN_1]T G RNm is the optimization vector

and H, F, Y, G, W, E are easily obtained from Qx, Qu, QXN, the system (4.1) and

the constraints (4.6) (see [Mac02] for details2).

Remark 4.3.1 The constraints Qu y 0, Qx y 0 and QXN y 0 are imposed in (4.7),

in order to guarantee that H y 0 in (4.8).

^he extension to mixed constraints Cxx + Cuu < C° is straightforward and omitted here.

2For example, Y = (AN)TQXNAN + Zk=o(Ak)TQxAk.
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The optimizer of (4.8) will henceforth be denoted by UN(x). It follows from

Theorem 3.2.1 that UN(x) is a PWA function of the state x, which we can obtain by

solving problem 4.8 as an mp-QP (see Chapter 3 for details).

4.4 Constrained Infinite-Time Optimal Control

If in (4.7) we set N — oo we obtain the constrained infinite-time optimal control

(CITOC) problem:

Jœ(x(0)) = min \ y2ulQuuk + xlQxxk\ (4.9a)

subj. to xk G X, uk G U, Vk > 0, (4.9b)

xk+i = Axk + Buk, xo~x(0), (4.9c)

QxhO, Quy0. (4.9d)

where the infinite dimensional vector Uœ — [uq, u\, ...] is the optimization vector.

We denote by U^ the optimizer of (4.9). The computation of the CLQR will be

covered in detail in Section 10.3. We will merely restate a fundamental theorem here:

Definition 4.4.1 (Maximal LQR Invariant Set C£>QR) For an LTI system

(4.1) subject to the LQR control input u = Kx (4-3), the set Ö^R Ç Rn de¬

notes the maximum invariant set of states which satisfies the constraints in (4.6) for

all time, i.e.,

O^x = {x(0) G Rn\x{k) G X, Kx(k) G U, x(k + 1) = (A + BK)x{k), Vfc > 0}.

(4.10)

The set C?^R is positive invariant containing an open neighborhood of the origin

[SD87], provided the origin is contained in the interior of the set described by (4.6)3.

The following theorem (derived from [CM96,SR98]) summarizes the key point of this

section:

Theorem 4.4.2 (Finite Dimensional Infinite Horizon Optimal Control)

For any given initial state x(f$), the solution to (4-7) with Tset = X and the ARE ter¬

minal weight QXN = P (see (4.4)j, is equal to the initial segment of the infinite-time

3If the origin is not contained in (4.6), no solution to (4.9) exists, since J^o(x(0)) is infinite.
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solution (4-9) if the terminal state Xn of (4-7) lies in the maximal LQR invariant

set QW (xN G ö£r).
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5

Receding Horizon Control

In the previous chapter it was shown how to solve constrained optimal control prob¬

lems for LTI systems. Since it is generally desirable to have feedback control for

all time as well as optimal performance, the infinite-time controllers would seem to

be the preferred choice. However, since the infinite-time optimal control problem is

often too complex to be computationally tractable, it has become common practice

to approximate the infinite-time solution by solving a sequence of finite time optimal

control problems. This strategy is referred to as Receding Horizon Control (RHC)

and is the focus of this chapter. For a more detailed discussion of RHC, we refer

the reader to the review paper [MRRSOO]. For in-depth insights, we recommend the

publications [Mac02,Löf03].

5.1 State Feedback Control of Constrained

Dynamical Systems

Clearly, the most widely applied method of optimal feedback control for dynam¬

ical systems is Receding Horizon Control (RHC). The RHC policy has become

standard practice in modern control applications and besides numerous PhD the¬

ses [MigO2,BorO3,LöfO3,KerOO,T0nOO,SakO4] and survey papers [QB97, MRRSOO,

BM99b,ABQ+99,GPM89,May01,ML99,Raw00], several textbooks [Mac02, Ros03,

CB99,KC01] have been published.

In RHC, a finite-time optimal control problem is solved at each time step to obtain

the optimal input sequence UN. Subsequently, only the first element of that sequence

is applied to the system. At the next time step, the state is measured and the

procedure is repeated from the beginning. The input sequence can be computed by

solving an optimization problem (e.g. (4.8)) on-line at each time step. Alternatively,

33
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it is possible to solve the optimization problem off-line as a multi-parametric program.

Then, the on-line effort reduces to finding the correct feedback law entry in a lookup

table. The RHC scheme is depicted in Figure 5.1.

UN ~ \U0 ' Ul • —' UN-1 i

obtain UKT*
N

optimization
problem

apply uQ*
system

plant state x

—*- output y

Figure 5.1: Illustration of the Receding Horizon Control (RHC) scheme.

RHC obviously provides a control law for all time. However, since only finite-

time optimal control problems are being solved, constraint satisfaction cannot be

guaranteed for all time, i.e. it is possible that the RHC policy will drive the state

outside of the feasible set XN. In addition, RHC does not guarantee stability, unless

a special structure is imposed on the optimization problem. The next section will

show how to formulate a finite time optimal control problem, such that the associated

RHC guarantees stability and feasibility.

5.2 Stability and Feasibility of Receding Horizon

Control

The concepts of feasibility (constraint satisfaction) and stability of RHC are often

misunderstood and some basic facts are often stated in an ambiguous manner. This

section will attempt to make the distinction clear. We will first address the issue of

constraint satisfaction.

Definition 5.2.1 (Feasibility) A system state x is feasible for an optimization

problem of type (3.1), if there exists an input sequence Un which satisfies the con¬

straints (3.1b).



5.2 Stability and Feasibility of Receding Horizon Control 35

Hence, an optimization problem of type (3.1) is feasible if and only if x G Xn-

Definition 5.2.2 (Infinite-Time Feasibility) A system state x(0) subject to re¬

ceding horizon control is infinite-time feasible, if feasibility of the optimization prob¬

lem (3.1) for x(0) implies feasibility of the optimization problem for all time, i.e.

(3.1) is feasible for all x(k), k>0.

Hence, a RHC controller for systems of type (4.1) (subject to constraints (4.6)) can

only be infinite-time feasible if (and only if) x(0) is contained in any control invariant

subset <Sjnv of the feasible set Xn,

«Sinv = {x(0) G XN I Vx(0) G «Sinv, 3w(0) G U,s.t. Ax(0) + Bu(0) G «Sinv}.

Note that invariance of the subset «Sjnv may or may not be enforced by RHC, i.e.

x(0) G «Sinv only implies infinite-time feasibility of RHC, if additional measures are

taken when formulating the control problem (4.7). For instance, the additional con¬

straint Ax(0) + Bu(0) G «Sinv hi (4.7), would trivially imply infinite-time feasibility.

However, the most common approach to guarantee infinite-time feasibility is to add

the constraint xn G 0^R (see Definition 4.4.1) to the problem formulation (4.7), i.e.

Tset = C^R. If a feasible sequence Un = [uq, , uN-i]T is obtained at time k, then it

follows from the terminal set constraint xn G 0^R, that Un = [uj, .., un_x,KxnY
is a feasible sequence1 at time k+1. Therefore feasibility is guaranteed for all time.

Remark 5.2.3 In order to guarantee infinite-time feasibility, it is not necessary for

the terminal set Tset to be equal to the set 0^R in Definition 4-4-1- If %et corre¬

sponds to any control invariant set (see Chapter 7), then infinite-time feasibility is

guaranteed.

Remark 5.2.4 The terminal set %et (4.7c) has a significant impact on the size of

the feasible set Xn. If%et is control invariant (e.g., %et — 0^R), then Xn Q Xn+i-

On the other hand, if%et = X, then Xn 2 Xn+i. The impact ofTset on Xn has been

investigated by numerous authors (e.g., [BCLK03, CKD03, WKOSa]).

Note that infinite-time feasibility does not imply exponential stability. There is

no guarantee that the state will ever enter the terminal set 0^K if RHC is applied,

since the input is recomputed at each time step. The following Theorem is based

on [Vid93, p. 267]:

1Here, K is used to denote the Riccati LQR feedback law (4.3).
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Theorem 5.2.5 (Exponential Stability) The origin x = 0 is exponentially stable

if there exists a function V(x) and scalar coefficients a>0,ß>0,p>0 and p > 1

such that ß\\x\\p > V{x) > a\\x\\P and V{x+) - V{x) < -p\\x\\P, \/x G XN. Here x+

denotes the successor state of the dynamical system and \\ • || denotes a vector norm.

There are several methods for enforcing exponential stability of RHC by modifying

the open-loop optimal control problem (4.7). The most commonly used scheme to

guarantee exponential stability of RHC, is to impose both an invariant terminal set

constraint (e.g. C^R) as well as a terminal cost xnPxn which corresponds to a local

exponential Lyapunov function, i.e. the decay rate of the Lyapunov function must

be bounded by the stage cost (see (5.2)). This approach was motivated by results

in [SD87] and [KG88]. It follows from (4.5) that if x G 0^QR and the input u = Kx

(4.3) is applied to system (4.1), then

xNPxN = xNQxxN + uNQuuN + xN+1PxN+i- (5.1)

For Qx y 0, it directly follows from (4.7a) and (5.1) that 3p > 0 such that

jn(xi) ~ jn(xo) = [ Yl (ulQuuk + xlQxXk) + xN+1PxN+i J (5.2a)

- f XI (u£®uUk + xfc Qx^fc) + xNPxN j (5.2b)

= —

Xq Qxxo — u0 Quito + x^.-^Pxn+i + xnQxxn + unQuun — xnPxn
0

v
' v

^
'

<-*o||| =0

(5.2c)

Therefore, if the terminal cost is chosen as the solution of the ARE (4.4) and the

terminal set constraint xn G 0^R is added to (4.7), the function JN{x) is a Lyapunov

function according to Theorem 5.2.5 and the closed-loop system is exponentially

stable.

Remark 5.2.6 In this section we assume that RHC is applied for quadratic perfor¬

mance objectives. If the control objective is linear, asymptotic stability of RHC can

be guaranteed by selecting the terminal weight matrix P such that

-||Pa;||p + ||PAx||p + ||Qx||p<0.

Here, the subindex p denotes a linear norm (e.g. p — 1 or p = oo,) and P must be

of full column rank. Details on the theoretical background and computation of P for
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linear RHC are given in [BorOS, Section 3.2.3].

Generic conditions on the terminal set constraint xn G 7^eti the feedback law k(x)

(for x G Tset) and the terminal cost V(xn) which guarantee exponential stability of

RHC for general dynamical systems are given in [MRRSOO] and will be restated here:

Al) Constraint Satisfaction: Tset Ç X, k(x) G U,Vx G Tset.

A2) Invariance: x G %et => x+ G Tset.

A3) Stability: 3/> > 0 such that V(x+) - V(x) < -£(x,u), where £(•) denotes the

stage cost (here £(x,u) = xTQxx + uTQuu).

The second most widely used approach to guarantee stability is based on contrac¬

tion constraints. These approaches are based on results in [PY93,dM00,Bla93,Bla94,

Bla95] and add a constraint to the open-loop problem (4.7) which enforces that the

state decreases in some norm (e.g., ||xjfc+i|| < \\xk\\). If the constraint is chosen appro¬

priately, exponential stability can be guaranteed. However, a contraction constraint

does not guarantee infinite-time feasibility.

Note that the conditions which guarantee exponential stability are merely suffi¬

cient, i.e., the closed-loop RHC system may be exponentially stable without satisfying

any of the previously mentioned constraints.

It should be noted that both terminal set- and contraction-based approaches rely

on 'artificial' (user-defined) constraints in order to provide stability guarantees. The

added constraints are not system inherent. Since artificial constraints are added, the

controllable set of states Xn is generally only a subset of the maximum controllable

set of states. Techniques of avoiding this problem are discussed in Section 10.3,

Chapter 11 and Chapter 16.

Example 5.2.7 Consider the double integrator

x(k+i)=^o iW)+(^5W)-
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The task is to regulate the system to the origin while fulfilling the input and state

constraints

-1 < u{k) < 1, Vfc > 0,

(is) s «»* (s) ** L

We consider the quadratic optimization problem (4.7) for a prediction horizon N = 2.

The weight matrices are set to Qx = I and Qu = 1 and P follows from the ARE

(4.4).

Two open-loop trajectories obtained for 7^et = X and Tset = C?^R are shown in

Figure 5.2.

It can be seen that the solution for Tset = X may yield input sequences which lead

to infeasibility (xi ÇÉ XN, see Figure 5.2(a)). In Figure 5.3(a), all initial states which

are infinite-time feasible are depicted, i.e. we have removed all states from Figure

5.2(a), whose closed-loop trajectory exits Xn- One can also see that most feasible

states depicted in Figure 5.2(a) (i.e. all states in the partition) are also infinite-time

feasible. Although this is often the case for Tsei = X, no a priori guarantees can be

given.

If we use the terminal set constraint Tset = Ö^R as in Figure 5.2(b), infinite-time

feasibility is guaranteed. However, the feasible set of states XN is relatively small for

N = 2. If we extract all infinite-time feasible states from Figure 5.2(b), we obviously

obtain the same set again, as is depicted in Figure 5.3(b).
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-10

(a) Controller partition for 7^t = Rn. Not (b) Controller partition for Tset = C&QR. By

all states in the partition are infinite-time construction, all states in the partition are

feasible. infinite-time feasible.

Figure 5.2: Various system trajectories if the optimal input sequence

UN(x(0)) = [uo Ui] is applied in open-loop. The input sequences

were obtained for Example 5.2.7 and N = 2 using the terminal set

constraints Tset = Rn and 7^et = Oo^K, respectively.

-10 -5 0 5 10

X,

(a) Invariant subset of the partition depicted

in Figure 5 2(a), which was obtained for

7^et = X. All states in the partition are

infinite-time feasible.

-10 -5 0 5 10

xi

(b) Invariant subset of the partition depicted

in Figure 5.2(b), which was obtained for

Tset — C^pR. By construction, the invari¬

ant subset is identical to the original parti¬

tion depicted in Figure 5.2(b).

Figure 5.3: The maximal invariant subsets of the controller partitions in Figures

5.2(a) and 5.2(b), i.e. all states in the depicted controller partition are

infinite-time feasible.
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6

Problem Description

Piecewise affine (PWA) systems have attracted much interest in the research com¬

munity since they provide a useful modelling framework for a large class of hybrid

systems. Discrete-time PWA systems are equivalent to interconnections of linear

systems and finite automata [Son96], to linear complementary systems [HSBOl] and

also hybrid systems in the mixed logical dynamical (MLD) form [BM99a]. The MLD

form encompasses a large class of hybrid systems including linear hybrid dynamical

systems, hybrid automata and some classes of discrete event systems. Software for

MLD modelling is available from [TB04] and an algorithm to transform an MLD sys¬

tem into a discrete-time PWA system is given in [BFTMOO, Bem04]. PWA systems

are also a powerful tool for approximating non-linear systems [Son81]. Furthermore,

LTI systems subject to linear or quadratic optimal control correspond to a PWA

system (see Remark 6.1.1 below).

The following two chapters will deal with the analysis of PWA systems. Chapter

7 presents algorithms for computing invariant sets for PWA systems and Chapter

8 introduces various methods for computing Lyapunov functions for PWA systems.

The analysis schemes introduced here will be used in the context of controller syn¬

thesis in subsequent chapters.

In the following, we will deal with two different types of PWA systems, namely,

autonomous PWA systems and PWA systems subject to external inputs. We will

assume that both systems are also subjected to an additive disturbance w(k) as well

as the constraints

x(k) G X, u(k) G U, w(k) G W, V k > 0. (6.1)

The sets X, U and W are compact and polytopic and contain the origin in their

interior.
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44 6 Problem Description

An autonomous PWA system subject to an additive disturbance w(k) can be de¬

scribed by

x(k + l)= fa(x(k),w(k)) = Ärx(k)+gr + w(k), if x(k)eVr, re 71, (6.2)

where the currently active dynamic r is defined by the polyhedron Vr and the index set

7Z = {1,2,..., R}, where R denotes the number of different dynamics. We will denote

the set of states over which the PWA system (6.2) is defined as «Spwa = Uren^r,
where «Spwa is a P-collection (see Chapter 2).

Remark 6.1.1 Note that the autonomous PWA dynamics (6.2) can result from a

constrained LTI system (4.1) subject to linear or quadratic optimal control (u(k) =

Frx(k) + Gr). For these systems Ar = A + BFT, gr = BGr and Spwa = Xn as

defined in Theorems 3.2.1 and 3.2.3.

In addition to the autonomous PWA system (6.2), we will consider PWA systems

subject to the input u(k) and the disturbance w(k),

x(k + l) = fpwA(x(k),u(k),w(k)) (6.3a)

= Arx(k) + Bru(k) + gr + w(k), (6.3b)

if [x(k)T u{k)T]TEVr, reTl, (6.3c)

whereby the dynamics (6.3b) are valid in the polyhedral set Vr defined in (6.3c).

With slight abuse of notation, we will use fp\vA{x{k),u(k),W) to denote the set of

states which is reachable for any w(k) G W, i.e.

fpwA(x(k),u{k),W) à {Arx(k) + Bru{k) + gr + w(k) G Rn | w(k) G W,

\x{k)T u(k)T] G Vr}.

Standing assumption for both PWA system classes is that X Ç \JrenVr- We

furthermore assume that the interiors int(7?r) of the partition {Vr}r=i are disjoint.



7

Computation of Invariant Sets for

Piecewise Affine Systems

This chapter1 will deal with the computation of invariant sets for PWA sys¬

tems of type (6.2) and (6.3) subject to bounded disturbances and is a summary

of [RGK+04a,RG04a,GRMM05]. We refer the interested reader to [KerOO] for an

excellent overview of set-invariance in control.

As stated in Section 5.2, set invariance implies infinite-time feasibility of RHC.

Therefore invariant sets are of great importance when dealing with control of con¬

strained systems. Although computation of invariant sets has garnered great in¬

terest in the control community [GT91, Bla99, KG98, KerOO, Aub91, Bit88], only

few results for obtaining invariant sets for PWA systems have been published,

e.g. [ALQ+02]. This is especially true for PWA systems subject to bounded dis¬

turbances. The results in this chapter are based on the results for linear sys¬

tems in [GT91, KG98, MS97, GM03] as well as recent extensions to PWA systems

in [KM02,GKBM04a]. Additional references include [RKKM03,RKM03].

In this chapter, an algorithm for computing the maximal robust positive invari¬

ant set Ooo is described and sufficient conditions for finite-time termination of this

algorithm are given. It will subsequently be shown how the set Ooo can be used to

initialize an iterative computation scheme which converges to the maximal robust

stabilizable set JCoo(Ooo). A similar scheme is applied to obtain the maximal robust

control invariant set Cx,.

:Note that the content of this chapter is the result of a collaboration with Sasa Rakovic who was

the primary contributor.
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7.1 Definitions

We will first introduce some basic notation and definitions before defining the invari¬

ant sets that we wish to compute.

For any integer k, wk denotes the sequence {w(0),w(l),... ,w(k — 1)} ,
i.e. w^ G

Wfc, and (f>(k;x(0),wk) denotes the solution of x(k + 1) = fa(x{k),w(k)) at time k if

the initial state is x(0) and the disturbance sequence is w^. For the autonomous PWA

system (6.2), we will denote the fc-step reachable set for initial states x contained in

the set «S as

Reach(fc;S, W) â {<£(&; x(0),wfc) e Rn \ x(Q) G «S,wfc G Wfc}.

Furthermore,

Pre(«S, W) ={x G X | 3u G U s.t. fPWA(x, u, W) Ç S} (7.1a)

={x G X | 3u G U s.t. /pwa(z, u, 0) Ç «S 9 W} (7.1b)

will define the set of states which can be robustly driven into the target set «S in one

time step for the PWA system (6.3).

Two different types of sets are being considered in this chapter: invariant sets and

control invariant sets. We will first discuss invariant sets. The invariant sets are

computed for an autonomous system which is not subject to external inputs. These

types of sets are useful to answer questions such as: "For a given linear feedback

controller K (u = Kx), find the set of states whose trajectory will never violate the

system constraints". The following definitions, derived from [KerOO,Bla99,BR71,

Ber71,KG98], introduce the different types of invariant sets.

Definition 7.1.1 (Robust Positive Invariant Set) A set O is said to be a ro¬

bust positive invariant set for the autonomous PWA system in (6.2) subject to the

constraints in (6.1), if Reach(l;0,W) Ç Ö.

Definition 7.1.2 (Minimal Robust Positive Invariant Set .Foo) The set T^

is the minimal robust invariant set2 of the autonomous PWA system (6.2) subject to

the constraints in (6.1), ifOe Too, <7"oo is robust invariant and J^oo is a subset of all

robust invariant sets that contain the origin.

2Also known as infinite-time disturbance response set.
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Definition 7.1.3 (Maximal Robust Positive Invariant Set Ooo) The set O^

is the maximal robust invariant set of the autonomous PWA system (6.2) subject

to the constraints in (6.1), ifOe Ooo, 0^ is robust invariant and Ooo contains all

robust invariant sets that contain the origin.

Remark 7.1.4 The condition that T^ and Ooo rnust contain the origin is added

because PWA systems may have multiple equilibrium points and thus multiple robust

invariant sets which are disconnected (i.e. ^-"oo — $) Furthermore, if these set are

used as a target sets in control problems, they should only contain one equilibrium

point in order to get predictable closed-loop behavior.

Remark 7.1.5 The maximal (robust) invariant sets defined here, are often referred

to as 'maximal admissible sets' or 'maximal output admissible sets' in the literature

(e.g. [GT91]), depending on whether the system state or output is constrained.

We will now discuss control invariant sets. Control invariant sets are defined for

systems subject to external inputs, i.e. for PWA systems as in (6.3). These types of

sets are useful to answer questions such as: "Find the set of states for which there

exists a controller such that the system constraints are never violated". The following

definitions, derived from [KerOO, Bla99,BR71,Ber71,KG98], introduce the different

types of control invariant sets.

Definition 7.1.6 (Robust Control Invariant Set) A set C Ç X is said to be a

robust control invariant set for the PWA system in (6.3) subject to the constraints in

(6.1), iffor every x(k) G C there exists a u(k) G U such that fpwA(x(k),u(k),W) Ç C.

Definition 7.1.7 (Maximal Robust Control Invariant Set Coo) The set Coo is

said to be the maximal robust control invariant set for the PWA system in (6.3)

subject to the constraints in (6.1), if it is robust control invariant and contains all

robust control invariant sets contained in X.

For all states contained in the maximal control invariant set Coo there exists a

control law, such that the system constraints are never violated. This does not imply

that there exists a control law which can drive the state into a user-specified target

set. This issue is addressed in the following by introducing the concept of stabilizable

sets.
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Definition 7.1.8 (AT-Step Robust Stabilizable Set Kn{0)) For a robust con¬

trol invariant target set OCX, the N-step robust stabilizable set JCn(0) of the

PWA system (6.3) subject to the constraints (6.1) is defined as:

)CN(0)±Pre(}CN-i(0),W), JC0(O) = O, NeN+.

Definition 7.1.9 (Maximal Robust Stabilizable Set K.oo{0)) For a robust

control invariant set OCX, the maximal robust stabilizable set ICooiP) for the

PWA system (6.3) subject to the constraints in (6.1) is the union of all N-step

robust stabilizable sets contained in X (N G N).

The set fCoo(0) contains all states which can be robustly steered into the robust

control invariant set Ö and hence K,oo{0) Ç C^.

7.2 The Maximal Robust Positive Invariant Set

We now address the computation of the maximal robust positive invariant set C?oo

for PWA systems around the origin, see Definition 7.1.3. Assume that the origin is

an equilibrium of the nominal system x(k +1) = fa(x(k), 0), where /a(-) is defined as

in (6.2), and that gT = 0 for all r G TZq, where the set of different system dynamics

7ln Ç K = {1,..., R}, is such that

7lo A {r e Tl | 0 G Vr} (7.2)

where 0 is the origin of the state space. We furthermore define

Xo=((JPr)nX. (7.3)

Remark 7.2.1 Note that the assumptions above are made in order to obtain a proof

for finite termination of the algorithm which is presented in this section. The subse¬

quent computations may be applied even if these assumptions do not hold. However,

there will not be any a priori guarantee of finite termination.

For the autonomous PWA system (6.2), we use Pre0(«S) to denote the set of the states

that robustly evolves to «S Ç Xo in one step:

Prea(«S, W) 4 {x e X0 | fa(x, w) G «S, Vw G W}. (7.4)
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The set Prea(«S, W) can be efficiently computed, as shown in the proof of the following

lemma.

Lemma 7.2.2 Let S Ç Xo be a P-collection and let fa{x,w) be an autonomous PWA

system (6.2), then the set Prea(«S,W), defined in (7.4), is a P-collection.

Proof Since «S is a P-collection by properties of the Pontryagin difference, «S* = «S 0

W is also a P-collection so that S* = Uy=i ...,y $y f°r some finite integer Y. It trivially

follows from the definition of fa(x,w) that Prea(«S, W) = \J(yj)£{i,...,Y}xn0 Syji where

Syj = {x G X | AjX G «S*}. Since each Syj is polyhedral, the set Prea(S,W) is a

P-collection. D

The following algorithm provides a procedure for computing the maximal robust

positive invariant subset of Xo [Aub91,Ber71,KerOO].

Algorithm 7.2.3 (Computation of Ooo)

i. n0 = Xo

2. Qk+1 = Pvea{Qk,W)

3. If Qk+i = &k, return; Else, set k = k + 1 and goto 2.

The algorithm generates the set sequence {Qk} satisfying Qk+i Ç Çlk, VA; G N and it

terminates if iïk+i = ük so that ük is the maximal robust positive invariant set 0^-

Otherwise Ooo = rifc>o^fc- If Œ* = 0 f°r some integer A; then the simple conclusion

is that C?«, = 0 [Aub91, Ber71, KerOO, JvdS02].

7.3 Finite Termination of the Computation of the

Maximal Robust Positive Invariant Set

In this section, we isolate a set of conditions that are sufficient to guarantee finite-

time termination of Algorithm 7.2.3. It is very difficult to derive this proof for PWA

systems directly, such that we approximate the PWA system with a switched system,

which we here refer to as 'augmented system'. PWA systems are a subclass of the
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augmented systems considered here, such that all proofs derived for the augmented

systems will also hold for PWA systems.

Our first step is to introduce the set-valued augmented system

x{k+l)eftus(x(k),w{k)) (7.5a)

= {Aausx{k) + w(k) | A&uë G {Âr, r G 7^}}. (7.5b)

This augmented system /aug(x, w) corresponds to the autonomous PWA system (6.2)

with Vi — Rn, i.e. any dynamic r G 7l0 may be active at any time step, whereby

r is random. This system type is often referred to as switched system subject to

arbitrary switching, i.e. the active dynamics cannot be influenced. Let 4>&us(k; Xq, wk)

denote the set of states which is reachable from the initial state Xo in k steps for

x{k + 1) = faUg{x(k),w(k)) and for the disturbance sequence w^. The A;-step robust

reachable set for the augmented system is then given by

Reachaus(A;;«S,W) â {^(k;x0,wk) G En | x0 G «S, wfc G Wfc}

Definition 7.3.1 (Disturbance Response Set Fk) Let the set Tk (J7^) be the

k-step disturbance response for the (augmented) system defined in (6.2) ((7.5)) so

that

.Ffc = Reach(fc;0,W),

^^Reach^^O.W),

and let the set J^oo (T^g) be the infinite-time disturbance response set, i.e. Too =

linw.Ffc ^us = lim^oo^rSi-

Note that the infinite-time disturbance response set .Foo corresponds to the minimal

robust invariant set in Definition 7.1.2. Methods for approximating this set have been

published in [RKKM03] for LTI and in [RG04a] for PWA systems. It follows trivially,

from the definitions of the corresponding sets, that Reachaug(A;; «S, 0) 2 Reach(&; «S, 0),

Reachaug(A:;«S,W) D Reach(fc;«S,W), T^ D Tk and T%* 2 ?<*• As shown in

[RG04a], the set F%* is bounded by a compact set T (i.e. Tk Ç T^ <ZT, VA; > 0),

if the nominal system /aUg(^>0) in (7.5) is asymptotically stable. Furthermore, if

limfc_oo T^g —* F, then T is robust positive invariant for the augmented system

(7.5) and the autonomous PWA system (6.2) [RG04a].
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Theorem 7.3.2 (Finite-Time Termination of Algorithm 7.2.3, [RGK+04a])

Suppose that there exists a compact set T such that T^s C T Ç int(X0) and that

the nominal augmented system (7.5) with W = {0} is asymptotically stable; Then,

Algorithm 7.2.3 terminates infinite time.

Proof First note that the following set inclusion holds [RG04a],

Reach(fc;Xo,W) Ç Reachaug(A;;Xo,0) ® FkUë = Reachaug(A;;Xo,W).

It follows from asymptotic stability of the nominal augmented system (7.5) that

there exists a finite time k* such that Reachaug(A:* + l;Xo,0) Ç Xo 0 T. Let the set

Çlk. Ç Xo, denote the A;*-th term of the set sequence {Qk} generated by Algorithm

7.2.3, so that Qk* denotes the set of states which satisfy Reach(A:*;f2fc»,W) Ç Xo.

Since Î2fc. Ç X0, it follows that Reachaug(A;* + l;fifc.,0) Ç X0 9 Ï which implies

Reach(A;* +1; ftk* ,0) Ç X0 0 T. Hence we have established that Reach(A;*; fi*., W) Ç

Xo and Reach(A:* + 1;fi**»W) Ç X0, which implies that Q&. Ç Qfc»+1.

Since the sequence {£lk} satisfies Clk+i Ç Qk for all k G N it must hold that

^fc* = fifc'+i- This directly implies that Q,k- is the maximal robust invariant set. D

Note that the finite-time termination conditions of Theorem 7.3.2 are less restrictive

than they may seem and are automatically satisfied in various control problems, e.g.

see Chapter 14.

Corollary 7.3.3 Suppose that the nominal autonomous system defined in (6.2) is

asymptotically stable with W = {0} and X is a compact set that contains the origin

in its interior. Then Algorithm 7.2.3 computes the maximal positive invariant set in

finite time.

Remark 7.3.4 A detailed overview of the properties of the disturbance response set

•^"oo (T^g) as well as algorithms to compute T such that T D J7^ are given in

[RG04a].

Remark 7.3.5 Note that finite-time termination of the proposed algorithms is im¬

portant, but should not be overrated. For PWA systems, the computational require¬

ments grow exponentially (in the worst case) from iteration to iteration such that it

is not possible to compute the proposed invariant sets for all types of systems, even

when finite termination can be guaranteed. Even if the algorithm were to terminate
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after 50 iterations, the necessary computation power may be beyond current hardware.

This is not so much an issue for LTI systems, since the computational demand for

those cases remains (relatively) limited because of convexity.

7.4 Maximal Robust Control Invariant Set

This subsection shows how computation of Ooo permits the computation of tC^O^o)

by using projection methods, e.g. [JKM04,KS90,FLL00]. A similar procedure can be

employed for the computation of Coo- The algorithm below describes the computation

scheme for /Coo(Coo) or Cqo, depending on the choice of initial target set «So:

Algorithm 7.4.1 (Computation JC^Ooo) or Cx>)

1. Define a target set «So and set k = 0.

2. Compute «Sfc+i = Pre(«Sfc,W) as in (7.1).

3. If «Sfe+i = «Sfc, return; Else, set k = k + 1 and goto step 2.

The sets «Sfc are P-collections (see (7.1) and Lemma 7.2.2), making Algorithm 7.4.1

computationally demanding. At each time k, the target set SkQW = \JleLk Sk is a

P-collection, where the set Lk has a finite cardinality that changes with time k, so

that

Pre(«Sfc,W) = (JPre(5£,0). (7-6)
l£Lk

where Slk is a polytopic set. Therefore, Pre(«Sfc, W) can be computed via a sequence

of projection operations (see Chapter 2).

Theorem 7.4.2 (Computation of Coo, [RGK+04b]) Suppose that <S0 = X and

that there exists a k* G N such that Sk* = Sk*+i. Then, Algorithm 7.4-1 terminates

and Coo = «Sjt».

Proof It holds that «So = X is the largest feasible set and Sk ~2 Sk+\. ltSk* = Sk*+\

then <S&. is a fixed point of Algorithm 7.4.1 and it is the maximal robust control

invariant set contained in X, i.e. Coo = «Sfc*. Q
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Theorem 7.4.3 (Computation of/C^fO«,), [RGK+04b]) Suppose that «S0 =

Ooo and that there exists a k* G N such that Sk* = Sk*+i. Then, Algorithm 7.4-1

terminates and /Coo(öoo) = Sk*.

Proof It holds that «So is a robust positive invariant set by construction and «S^ Ç

«Sfc+i. If «Sfc. = «Sfc-+i, it follows that there does not exist a state x £ Sk* such that

fpwA(x,u,w) G «Sfc. for any u G U and Vw G W. Therefore /Coo(öoo) = <Sfc» if

«Sfc« = «Sfc'+i- n

Remark 7.4.4 Note that /Coo(Ooo) and/or Coo niay not be finitely determined. It

may therefore be necessary to abort Algorithm 7-4-1 after a predefined maximum

number of iterations or after the state space of interest has been covered.

7.5 Numerical Results

In order to illustrate the proposed procedure we consider two second order PWA

systems.

Example 7.5.1 Our first example is the following 2-dimensional problem adopted

from [MROSJ:

x(k + 1) = Arx(k) + Bru(k) +gr + w(k)

where r = 1 if x^(k) < 1 and r = 2 if X(\)(k) > 1,

(7.7)

Ai =

'

1 0.2

"

0 1

A2 =

"

0.5 0.2

0 1

, £i =

B2 =

0

1
9\

0

0

0

1
, 92 =

0.5

0

and the additive disturbance w(k) is bounded:

w{k) G {wGR2 I UHU < 0.1}.

Here, the subindex in parenthesis is used to denote specific elements of the state vector

x. The system is subject to the constraints —x^)(k) + x^){k) < 15, —3x(i)(A;) —

X{2){k) < 25, 0.2ar(i)(fc) +a?(2)(fc) < 9, x{1){k) > -6, x{1)(k) < 8, and -1 < u(k) < 1.
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We applied Algorithm 7.4.1 to the PWA system (7.7) to obtain the set /C^öoo). The

target set Ooo was obtained by computing the maximal invariant set for the Riccati

LQR feedback controller with the algorithm in [KG98] (see Figure 7.1(a)). The first

iterations of the algorithm are shown in Figure 7.1 and the final result is depicted in

Figure 7.2.

(a) O« (b) /Ci(Ooo) (c) /Cafe«,)

(d) /CsJbo«,) (e) KUCOoo) (0 IC5(Poo)

Figure 7.1: The first iterations of Algorithm 7.4.1 applied to Example 7.5.1.

In the following, we apply the presented algorithm to a switched system. Note that

switched systems are a special class of PWA systems, where each dynamic set Vr = Rn

and the active dynamic r can be selected as an external input. The previously

presented algorithms can be directly applied to this system class. In fact, most

computations become easier and some of the conservative assumptions/conditions

made in the previous section become less restrictive. A detailed discussion of invariant

set computation for switched systems is given in [GRMM05]. We will illustrate the

application of the proposed algorithms on the following numerical example.
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Figure 7.2: fCoo{Ooo) = £is(C?oo) for Example 7.5.1.

Example 7.5.2 Assume a switched system with the following dynamics

A,=

A2 =

The system is subject to the state constraints X = {x G En| ||x||oo < 1}- The

objective of the controller is to satisfy these constraints for all time.

0.8 -1

"

0 0.8

0.8 1

0 0.8

"o"
i/i

0

"

0

"

92 =
0

We will initially consider no additive disturbance, i.e. W = {0}. The maximal

positively invariant set for each of the dynamics is depicted in Figure 7.3(a). Figure

7.3(b) depicts the partition of a switching controller. It is clear from the figures that

an appropriate switching scheme will enlarge the set of controllable states. Let us

now assume that the system is subject to additive disturbance bounded by W =

{w G Rn\ HHloo — 0-1}- For this case, there is no robust invariant subset contained

inside the target box, if we assume no switching occurs. Hence, there is a clear need

to consider dynamic switches. The maximal robust switched invariant set is depicted

in Figure 7.3(c), if we allow for switches.



56 7 Computation of Invariant Sets for Piecewise Affine Systems

Next, we use the maximum robust positive invariant set in Figure 7.3(c) as a target

set for a minimum time controller, i.e. the control objective is to drive the state into

the target set in minimum time. In order to obtain a larger controller partition,

the system constraints were increased to X = {x G En| ||x||do < 10}. Figure 7.4

depicts two different minimum-time state trajectories for the initial state x(0) =

[0 9.5]r as well as the associated switching sequence. Note that the minimum-time

switching sequence is not unique, i.e. both switching in Figure 7.4 yield minimum-

time trajectories.
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-1 -0.5 0 0.5 1

(a) The set Coo for dynamic 1 and 2, re¬

spectively (W = {0}, no switching).

-1 -0 5 0 0.5 1

(c) The set C«, obtained with Algorithm

7.4.1 (W = {w S Rn\ H loo < 0.1}, with

switching).

Figure 7.3: Example 7.5.2: Controllable state space with and without switching, con¬

tained in X = {x G Rn\ ||x||co < 1}. The system subject to disturbances

W = {w G Rn| IHloo < 0.1} is not controllable without switching. The

various shadings in the figures correspond to the feasible dynamics (i = 1,

z = 2oriG {1,2}).
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2.5

2-
r

1.5-

1 «-1

I >*"! IHIIIII

-•-I .........
'

(a) State space trajectory.

0.5
0 5 10 15 20 25 30 35 40 45

(b) Switching law. Dynamics are kept con¬

stant if possible.

(c) State space trajectory.
0 5 10 15 20 25 30 35 40 45

(d) Switching law. Dynamic 1 is used if pos¬

sible.

Figure 7.4: Example 7.5.2: Minimum-time trajectory for different switching regimes

and initial state x(0) = [0 9.5]T (W = {0}, X = {x G Rn| ||x||oo < 10}).

The target set for the minimum-time controller is depicted in Figure

7.3(c).
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Stability Analysis of Piecewise

Affine Systems

8.1 Introduction

In this chapter we will demonstrate how Lyapunov functions which guarantee asymp¬

totic stability can be constructed for autonomous PWA systems of type (6.2). For a

good additional reference on this topic, we refer the reader to [Joh02].

Throughout this chapter we assume that the autonomous PWA system does not

contain overlapping regions Vi, i.e. Vi D Vj = 0 for i ^ j. However, if the system

dynamics are continuous, it is possible for two regions Vi and Vj to share a com¬

mon facet. These conditions are needed to ensure that the state-update equation

is uniquely defined for all states. Furthermore, we assume the PWA partition to be

invariant, since the notion of stability has no practical relevance if the state trajectory

exits the defined state space Ure7j^V> ^ = {!)••» -^}-

For instance, assume ellipsoidal level sets of a Lyapunov function and a feasible

state space corresponding to a hypercube. The hypercube may not be invariant,

hence, successful computation of a Lyapunov function defined over the hypercube

will not imply that all states in the hypercube converge to the origin.

Therefore all following computations will be performed on the maximum robust

invariant subset <Sp"VA of «Spwa = Urg-ft^r °f the autonomous PWA system (6.2), i.e.

4wa = MO) G Spwa | x(k) e «SpwA.VA; > 0, x(k+l) = fa(x(k),w(k)), Vw{k) G W}.

The previously stated assumptions can be summarized as:

59
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Assumption 8.1.1 The assumptions throughout this chapter can be summarized as

follows:

• Vi fi Vj (i ^ j, Vi,Vj Ç Rn) is an empty set or lower dimensional

• SlpwA = $PWA = Ureft^r-

Next we will introduce some basic definitions that will be used in this chapter.

Definition 8.1.2 (Stability, [Kha96]) The equilibrium point x = 0 of a dynamic

system is

• stable, if for each e > 0, there is ö = «5(e) > 0 such that

\\x(0)\\ < 6 => \\x(k)\\ < e, VA;>0.

• unstable, if not stable.

• asymptotically stable if it is stable and 8 can be chosen such that

||x(0)||<*^lim||z(*)||=0.
fc—»00

It directly follows that a stable PWA system will have gr = 0, VPr containing 0. It is

not necessary that 0 G int^r) for some r.

The following theorems are based on [Vid93, p. 267] and have been adapted to

deal with the special case of constrained autonomous PWA systems of type (6.2) (see

also [FTCMM02] for details):

Definition 8.1.3 (Class K Function, [Vid93]) A function a(x) : Rn -> R+ is of

class K if it is continuous, strictly increasing and a(0) = 0.

Theorem 8.1.4 (Lyapunov Stability) The origin x = 0 is stable for the au¬

tonomous PWA system (6.2) if there exists a function V(x) : Spwa —> R+ with

0 G Spwa such that there exists a class K function a(x) such that a(x) < V(x) (with

V(0) = 0) and V(fa(x, 0)) - V(x) < 0. Here, it is assumed W = {0}.

Theorem 8.1.5 (Asymptotic Stability) The origin x = 0 is asymptotically sta¬

ble for the autonomous PWA system (6.2) if there exists a function V(x) : Spwa —+

R+ with 0 G Spwa and scalar coefficients a > 0, ß > 0, p > 0 such that

ß\\x\\ > V{x) > a\\x\\ andV(fa(x,0))-V{x) < -p\\x\\, Vx G SPWA. Here,

|| • || denotes a vector norm and it is assumed W = {0}.



8.2 Computation of PWA Lyapunov Functions for PWA Systems 61

Theorem 8.1.6 (Exponential Stability) The origin x = 0 is exponentially sta¬

ble for the autonomous PWA system (6.2) if there exists a function V(x) : Spwa —>

R+ with 0 G Spwa and scalar coefficients a>0, ß>0, p>0 and p > 1 such that

ß\\x\\p > V(x) > a||x||*> and V(fa(x,0)) - V(x) < -p||x|p>, Vx G SPWA. Here, \\ ||

denotes a vector norm and it is assumed W = {0}.

In the following sections, we will introduce various methods to construct Lyapunov

functions which prove asymptotic and/or exponential stability of autonomous PWA

systems (6.2). In Section 8.5, methods for analyzing robust convergence of PWA

systems subject to additive uncertainty will be presented. In Section 8.7, an extensive

case study is given, where the various stability analysis techniques are compared with

respect to likelihood of successful analysis and runtime.

8.2 Computation of PWA Lyapunov Functions for

PWA Systems

It will be shown in the following how to formulate the search for a PWA Lyapunov

function guaranteeing asymptotic stability for nominal autonomous PWA systems

as a linear program (LP). The results in this section are based on [GKBM04b].

Specifically, we will consider nominal autonomous PWA systems (6.2) with W = {0},

i.e.

x(k + 1) = Ärx(k) + gT, if x(k) eVT, re 71.

The search for a PWQ Lyapunov function is conservative, since the associated SDP

formulation utilizes the S-procedure, which is not lossless for the cases considered

[BGFB94]. This issue will be discussed in detail in Section 8.3. Therefore, instead

of searching for a PWQ Lyapunov function via SDP, we show here how to construct

a PWA Lyapunov function via LP. The proposed scheme is based on results for

continuous time systems which were published in [Joh02].
The computation scheme for the PWA Lyapunov function is non-conservative (i.e.

if a PWA Lyapunov function over the given partition exists, it will be found) such

that it may succeed when no PWQ Lyapunov function can be found with the schemes

in [FTCMM02, Fen02, GLPM03].

Remark 8.2.1 Note that the scheme is non-conservative for a given partition. If

no function is found, there may still exist a PWA Lyapunov function which is defined
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over a different partition than the partition defining the PWA system.

Since we are searching for a PWA function V(x), the explicit representation of the

decay rate V(x(k + 1)) — V(x(k)) depends on the regions Vi, Vj which contain x(k)

and x(k + 1), respectively. Therefore, a region transition map needs to be created

in order to formulate the LP problem. For computational efficiency, this reachability

computation is split into two parts: First, the feasible transitions from region i to j

are identified and subsequently the set of states Vij which actually undergo such a

transition are computed.

Specifically, a transition map T is first created Vi, j G {1,..., R} according to

f 1, if 3xeint(Vi), s.t. ÄiX + gieVj,

\ 0, otherwise,

where int(-) denotes the strict interior of a set. The matrix T is then used to construct

the set T = {i,j e 71 \ T(i,j) = 1}. Only the interior of the dynamic Vi is

considered in the transition map in order to guarantee that the transition set Vij is

full dimensional.

Remark 8.2.2 In principle, one LP needs to be solved for each element of the tran¬

sition map T, i.e. a total of R? LPs, where R denotes the total number of system

dynamics. However, instead of solving LPs directly, it is advisable to first compute

bounding boxes (hyper-rectangles) for each region Vr (r G 71). In addition, a bound¬

ing box of the affine map of the region Vf = {Arx + gr G Rn| x G Vr} needs to

be computed. The number of LPs which need to be solved in order to compute the

bounding box is linear in the number of regions R and state space dimension n. This

computation is tractable even for very complex partitions. The bounding boxes can be

efficiently checked for intersections, such that certain transitions i —> j can be ruled

out. In our experience, the bounding box implementation is the most effective way to

compute T for complex region partitions.

In a second step, the transition sets Vij for system (6.2) are explicitly computed for

all i,j eT:

Vij = {x e Rn\ x e Vi, Ätx + ~Qi G Vj} (8.1a)

= {x G Rn| Hij x < Kij}. (8.1b)

If T(i,j) = 0, then Vij = 0. In addition, the vertices of the transition sets (vert(7^))

and the original PWA sets (vert('Pj)) are computed. The problem of finding a PWA
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Lyapunov function,

PWAr(x) = V^x + V}°\ if x G Vr, r G 71,

for the autonomous PWA system (6.2) such that the conditions in Theorem 8.1.5 are

satisfied can now be stated as

ß\\x\\i > PWAr(x) > a||x||i, a,ß > 0, Vx G vert(7?r), Vr G 71,

(8.2a)

PWA^iiX + gi) - PWAi(x) < -p\\x\\i, p > 0, Vx G vert(7>y). Vi, j G T. (8.2b)

Since the vertices of all sets Vi and Vij are known, the resulting problem is linear in

Vr ,Vr and can therefore be solved as an LP. Note that it is possible to replace

the 1-norm in (8.2) with any other linear norm, e.g. the oo-norm.

Theorem 8.2.3 (Asymptotic Stability Guarantee via LP, [GKBM04b]) If

the LP (8.2) associated with the autonomous PWA system (6.2) is feasible, then this

system is asymptotically stable.

Proof First note that any linear norm is convex. Since the function PWAr(x), r eTZ

is piecewise affine, it follows that satisfaction of (8.2a) for all vertices of Vr implies

that the inequalities in (8.2a) will also hold Vx G Vr. Furthermore, if (8.2b) holds

for all vertices of Vij, it follows from linearity of the system dynamics (6.2) that the

inequality will hold for all states x G Vij. Since the partition <Spwa is invariant, it

follows that «Spwa = Ureft^ = UtjeT^V Therefore, the inequalities in (8.2a) and

(8.2b) hold Vx G «SpwA sucn that the conditions in Theorem 8.1.5 are satisfied, i.e.

feasibility of (8.2) implies asymptotic stability of the autonomous PWA system (6.2).

D

It should be noted that the required computation time may become large due

to the extensive reachability analysis, vertex enumeration and size of the final LP.

Specifically, the LP (8.2) introduces one constraint for each vertex of each region

Vr, Vr G 71 (see (8.2a)) and one constraint for each vertex of each Vij, Vi, j G T

(see (8.2b)). The number of variables is (n + 1)R, where R denotes the number of

dynamics and n the state space dimension.
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However, in the authors experience, the computational effort for constructing PWA

Lyapunov functions via LP is comparable to the required effort for constructing PWQ

Lyapunov functions via SDP [FTCMM02,Fen02,GLPM03] (see Section 8.7).

Remark 8.2.4 It follows from the constraints (8.2a) (i.e. V(0) = 0) that the PWA

Lyapunov function will have no offset term for all regions containing the origin, i.e.

V}0' = 0, Vi G 7Zo- Since the Lyapunov function is PWA for the remainder of the

state space, there will always exist a parameter ß bounding the Lyapunov function

from above. Hence, the 'upper bound' constraint ß\\x\\\ > PWAi(x) does not need

to be enforced when solving the LP (8.2).

Remark 8.2.5 Note that it is not possible to find a PWA Lyapunov function if there

exists a region Vr such that 0 G int^r), where int(-) denotes the strict interior of

a set. For this region, the function would have to be strictly linear (Remark 8.2.4)

such that it would assume negative values in some neighborhood of the origin, thus

violating (8.2a). Note that mp-QP partitions always contain regions containing the

origin in their interior, provided the system constraints (6.1) contain the origin in

their interior1. On the other hand, the equivalent mp-LP solution will never comprise

regions containing the origin in their interior.

Remark 8.2.6 A standing assumption throughout this section is that Spwa =

&
PWA

= UijT ^u- This assumption may not hold in all cases. If the partition is not

invariant, it may still be desirable to refrain from computing SlpWA for computational

reasons (see Chapter 7). It then holds that Spwa = Uieft.^3« an<^ $pwa => Uijer ^v»
such that conservativeness is introduced to the formulation (8.2). However, if the LP

analysis (8.2) over Spwa is feasible, this directly implies stability of the setS%pWA. It

does not, however, imply invariance of the set Spwa-

8.3 Computation of PWQ Lyapunov Functions for

PWA Systems

It was shown how to use SDPs to construct PWQ Lyapunov functions for continuous-

time systems in [JR98, Joh02] and for discrete-time systems in [FTCMM02,Fen02].

:It would be possible to artificially split the region containing the origin, such that a PWA Lya¬

punov function can be constructed. However, it is not obvious how select a suitable splitting

scheme.
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The contribution of this section is based on [GLPM03] and consists of a modification

to the stability analysis method in [FTCMM02,Fen02], which makes the computation

less conservative.

Specifically, we will consider nominal autonomous PWA systems (6.2) with W =

{0}, i.e

x(k + 1) = Ärx(k) + gr, if x(k) eVr, re 71.

Since we are searching for a PWQ function V(x), the explicit representation of the

decay rate V(x(k + 1)) — V(x(A;)) depends on the regions Vi, Vj which contain x(k)

and x(k + 1), respectively. Therefore, a region transition map needs to be created in

order to formulate the subsequent SDP problem. The construction of the transition

set T and the reachable sets Vij is described in Section 8.2.

The problem of finding a PWQ Lyapunov function, such that exponential stability

according to Definition 8.1.6 is guaranteed can now be formulated as an SDP by

applying the 5-Procedure as done in [FTCMM02, Fen02, JR98]. In each polyhedral

cell Vr, the function PWQ(x) will be defined by PWQr(x) = xTVr{2)x+xTVrW+Vr(0).

It should be pointed out that the PWQ Lyapunov function is allowed to be discon¬

tinuous and/or non-convex, since we are dealing with discrete-time systems.

The following constraints are now imposed on the function PWQ(x) in order to

obtain a PWQ Lyapunov function:

ßxTx > PWQr(x) > axTx, a,ß>0, Vx G Vr, Vr G 71, (8.3a)

PWQ^iiX + gt) - PWQi(x) < -pxTx, p > 0, Vx G Vij, V i,; G T. (8.3b)

Although the formulation in (8.3) is similar to the procedure applied in

[FTCMM02, Fen02], there is a subtle but important difference. Specifically, the

transitions sets V^ were not considered in [FTCMM02, Fen02] and the constraint

(8.3b) was required to hold for all x G Vi, if T(i,j) = 1 for any j G 7£. This is

always more conservative than requiring the constraint to hold only for all x G Vij,

if T(i,j) = 1, as is proposed here, since Vij Q Vi-

Problem (8.3) can be formulated as an SDP as will be shown in the following.

Let Gij(x) = Kij — HijX (recall the notation in (8.1)) and AVtj(x) = PWQ^-AjX +

gi) — PWQi(x). By applying the 5-procedure2 [BGFB94], we can conservatively

2f(x) > 0 Va; : gi(x) > 0 is conservatively replaced with the sufficient condition
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approximate (8.3b) with

BNij > 0 : AVij(x) < -pxTx - G^N^G^x), (8.4)

where p > 0 and JVy is an arbitrary symmetric matrix consisting of non-negative

elements only. With x = [x l]r and x G Vij, we arrive at the following inequality

from (8.3b) [JR98.FTCMM02]:

AV^x) = PWQ,(iiX + gi) - PWQ^x),

= x x

<xT[ -

M AV(1)

\V{0)

Nij[-Hij Kij]-p

Aiyjpr ùv®

-HT.

KT
J

I 0

0 0
x,

r(2) r(l)

< —pxTx,

(0)

(8.5a)

(8.5b)

(8.5c)

(8.5d)

where
AV^;, AVß1', Al$" are given by

AVf = ÄTv^Äi-V,

^t = l{üJvVgi + ÄivM-VM),
AVf = gJV^gi + V^+gfV^-V^.

The 5-procedure is applied in (8.5c). The matrix Nij consists of arbitrary non-

negative elements only and the matrices //*,-, K^ are defined by (8.1). Note that the

term in (8.5c) is smaller than the term in (8.5d), if the state x is inside the set Vij.

This follows from (8.1).

Remark 8.3.1 Ideally we would want AVi,(x) < —pxTx, Vx G V^ and AV^-(x)

arbitrary for x $. V%j. Since this constraint is non-convex, we relax this condition by

imposing that AV^(x) < —pxTx for all x in a quadratic surface containing Vij in

(8.5c). This constraint can be made convex by applying the S-procedure [BGFB94]-
Since the only constraint on Ny in (8.5c) is the non-negativity of its elements, the

shape of this quadratic surface can be (almost) arbitrarily chosen.

3Xi>0:f(x)>^Xigi(x).
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It is now possible to pose the SDP associated with (8.3):

y

y

find PWQr, Nr, Ntj, p, e, s.t. Vr G 71, Vi,jeT, subj. to

-AV^-pI -AVf
. -A(Vff -AVf

vP-el ±K(1)

I(K(i))T vm

Nij > 0, Nr> 0,

Nr = N?tNreRdrXdr1

-HT

l\ij [ hij liij\,

Nr [~Hr Kr],

y(°) = o, K(1) = 0 6ln, VqeTlo,

KT

p > 0, e > 0,

Nij = NT,NijeRd»xd'

7l0±{re7l\oe Vr}.

(8.6a)

(8.6b)

(8.6c)

(8.6d)

It follows from (8.5) that (8.6a) induces AVij(x) < —pxFx. Inequality (8.6b) as¬

certains that the PWQ Lyapunov function is bounded from below by a quadratic

function and (8.6c) ensures that all elements of Nr and Ny are nonnegative while dr

and dij denote the number of rows of Hr and H^, which are defined by Vr = {x G

R" | Hr x < Kr} and (8.1). As elaborated in Remark (8.2.4) for PWA functions,

the quadratic upper bound on the PWQ function does not need to be enforced here,

since the Lyapunov function is quadratic around the origin (see (8.6d)) and PWQ on

the rest of the state space.

Note that equation (8.6a) is sufficient (not necessary) for AVij(x) < —pxTx as

follows from (8.5). Hence, the SDP formulation is still conservative and may not

yield a solution even if it exists. The scalar parameters e and p are arbitrarily

small and greater than zero in order to enforce a strictly positive PWQ function and

exponential stability, respectively.

Theorem 8.3.2 (Exponential Stability Guarantee via SDP, [GM04]) // the

SDP (8.6) associated with an autonomous PWA system of type (6.2) is feasible, then

this system is exponentially stable.

Proof The conditions in (8.3) are sufficient for exponential stability according to

Definition 8.1.6, since SPA = Uijer^O' = Uisrc^t according to Assumption 8.1.1.

We therefore need to show that (8.6) implies (8.3). It follows from (8.5) that (8.6a)

implies (8.3b). Furthermore (8.6b) implies that there exists a lower quadratic bound

on the PWQ Lyapunov function. A quadratic upper bound exists automatically due

to (8.6d). Hence, (8.6) implies (8.3). D
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When computing a common quadratic Lyapunov function xTV^x the problem

formulation (8.6) can be drastically simplified. Specifically it is sufficient to impose

find V{2) y 0, p > 0,

AjV^Ar-V^ + pI A?VWg,

(ATVWgr)T gJWgr

-HT

(8.7a)

>-

KT
Nr \-Hr Kr], Vr G 71,

Nr > 0, Nr = ATrr, ATr G
T) Clr X Ctr

(8.7b)

(8.7c)

where Hr and Kr are defined by the controller region r (i.e. Vr = {x G R" | Hrx <

Kr}) and (8.7c) is used to enforce that each element of the matrix Nr is non-negative.

In (8.7), the number of constraints is linear in the number of regions R while they

are quadratic in (8.6), when searching for a PWQ Lyapunov function.

8.4 Computation of Piecewise Polynomial

Lyapunov Functions for PWA Systems

It will be shown in the following how to formulate the search for a polynomial

or piecewise polynomial Lyapunov function guaranteeing asymptotic stability for

autonomous PWA systems by using sum-of-squares (SOS) methods [Par03]. This

problem has been investigated for continuous time PWA systems in [PP03].

Before describing the use of SOS for Lyapunov functions, a brief introduction to

SOS theory is in order. A multivariate polynomial p(x) is a sum of squares if there

exist polynomials pi(x).. .pm(x) such that p(x) = YaLiP1(x). Equivalently,

p(x) = Z{x)TQZ{x), (8.8)

where Z(x) is a vector of monomials (e.g. x G R2 and Z(x) of order k = 2 implies

Z(x) = [1 Xi xi x\X2 x\ xl]T) and Q is a positive semi-definite matrix. Being a sum of

squares immediately implies non-negativity of p(x), a condition that otherwise is very
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hard to prove3. The computation of an SOS decomposition can be through a semi-

definite program, which can be solved efficiently. These properties lend themselves

very conveniently to the construction of Lyapunov functions. As we move to higher

order polynomials, there are more degrees of freedom to choose for the Lyapunov

function and this implies that there is a higher probability of finding a Lyapunov

function, if one exists. It is also possible to use SOS techniques when applying the

S'-procedure, e.g. it is possible to replace each element in the matrix Nr in (8.6b) with

an SOS function. Higher order functions allow better approximations of the polytopic

regions over which the Lyapunov function constraints are imposed, hopefully leading

to a further reduction in conservativeness.

Specifically, we aim to find a piecewise polynomial (PWP) Lyapunov function

PWP(x) of degree k, where A; is a positive even number, defined by polynomials

PWPr(x) over each polytopic region Vr. In the same vein as for the piecewise

quadratic case, define AVij = PWPj(AiX + gi) — PWPj(x). For a stability certificate,

we need

PWPr(x) > axTx Vx G 7>r,Vr G 71, (8.9a)

AV^(x) < -pxTx, Vx G Vij,Vi,j G T. (8.9b)

In the following, let G(x) = K — Hx and G(,)(x) denote the ith row of G(x).

Here, H and K define a polytopic set V = {x G Rn | Hx < K}. As in the piecewise

quadratic case, we can use the S'-procedure to eliminate the polytopic regions, i.e. add

terms of the type G^)(x)N^j)Gçj)(x) to the constraints. However, nothing prevents

us from using higher order multipliers N^, i.e. parameterize the elements N^j)(x)
as positive polynomials. To allow for even more degrees of freedom, we can also add

terms of the form G(i)(x)Gy)(x)G(k)(x)G^(x) and so on.

To calculate a piecewise polynomial Lyapunov function, we apply a higher order

S'-procedure to (8.9) and replace non-negativity constraints with SOS constraints.

The SOS program will be

PWPr(x) - axTx = Sr(x) MreTZ, (8.10a)

- pxTx - AVij(x) = Sij{x), Vi, j G T. (8.10b)

3Non-negativity does however not imply that the polynomial can be written as a SOS. It is only

a sufficient condition for non-negativity.
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The S'-procedure terms Sq(x) are defined by

m m

Sg(x) = FS(x) + Y,H 4W^)WG(i2)W + • •.

»1= 1 »2=1

mm m

+ EE • • • E ni,..ik(x)G(n)(x)G(i2)(x)... GfloOO, (8.11)
i'l=l«2=l ijfc=l

where F0(x) is an SOS polynomial of degree k, Fili2(x) of degree k — 2 and so on and

the functions Gik (x) are defined by the sets Vr and Vij respectively. By constraining

all functions F9(x) to be SOS, we can ensure that Sq(x) is non-negative if x G Vq-

This is a more powerful condition compared to the SDP based S'-procedure described

in the previous section.

The SOS problem for a common polynomial function can be formulated along

the same lines as the common quadratic function scheme described in Section 8.3.

We will refrain from a detailed discussion here since the modifications to (8.7) are

straightforward.

Regarding complexity, each SOS condition of degree k involves a vector of mono¬

mials Z(x) (see (8.8)) from degree 1 to d, where d — |. For an n dimensional prob¬

lem, the total number of monomials is (n^d). This translates to solving an SDP of

size (nJd) x (nJd) [Par03]. Every positivity constraint for a region (8.10a) or decay

constraints between two regions (8.10b) is a single such SOS constraint of degree k.

Furthermore, each SOS multiplier condition F9(x) (see (8.11)) of degree I =

0,2... k adds a semi-definite constraint with the size determined by I. Consider

a constraint of the type (8.10a) or (8.10b) over a polytope defined by m half-spaces.

There would be (fcj) SOS multipliers of degree I for this single constraint correspond¬

ing to different combinations of Gi1(x)Gi2(x)... Gj,(x), each of which corresponds to

a semi-definite constraint of size ("*') x ("+'). Note that there is no benefit in choos¬

ing the S'-procedure terms to be of higher order than the Lyapunov function V(x).

Ideally, they are of equal order. The rapid growth in problem size places a practical

limit on the order of Lyapunov functions (8.10) and the order of the S'-procedure

terms (8.11) which can be computed for medium sized PWA systems (i.e. several

hundred regions).
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8.5 Robust Convergence of Piecewise Affine

Systems Subject to Bounded Disturbances

The contribution of this section is a method for testing robust convergence of PWA

systems to the minimal robust invariant set. To the authors' knowledge, there are

no previous results in the literature which address the topic of robust convergence

analysis of PWA systems.

Specifically, we will consider the autonomous PWA systems (6.2), i.e

x(k + l)= fa(x(k),w(k)) - Ärx(k) + gr + w(k), if x(k)eVr, re 71,

with w(k) G W, where W is a polytope.

8.5.1 Conditions for Robust Convergence

This section will introduce the definitions and the key theorem which will be applied

in the subsequent section.

Since it is not possible for any dynamical system subject to additive uncertainty

to exhibit robust asymptotic stability, we aim to show that all feasible states x G Xn

converge to the minimal robust invariant set .F«, (see Definition 7.1.2) for all possible

disturbance sequences. This behavior is here referred to as Robust Convergence and

is defined by the following:

Definition 8.5.1 (Robust Convergence) The autonomous PWA system (11-4) is

robustly convergent on the set Xn Q Rn, if xn G Xn implies dn{xN, Too) ~~> 0 for

N —* oo. Here, dn{-,-) denotes the Hausdorff distance and Too the minimal robust

invariant set of system (11.4)-

Definition 8.5.2 (Hausdorff Distance) // Ü and $ are two non-empty, compact

sets in Rn, then the Hausdorff Distance is defined as

d"H(Q,$) = max{supd(<£,ft), sup d(u,$)}

where

d(x,A) = inf ||x-y||p



72 8 Stability Analysis of Piecewise Affine Systems

20

15

10

5

*" 0

-5

-10

-15-

20

15

10

5

W" 0

-5

-10

-15

-20 -10 0 10 20 30 ~?30 -20 -10 0 10 20 30

x1 x1

(a) Original partition {Pr}>=i obtained for (b) The region containing the origin is divided

Example 11.4.1 in Section 11.4 by solving an into the maximal robust control invariant set

mp-QP for N = 1. ooo Q Pi and a finite number of other convex

sets into a new partition Xn \ O^ = {Vr}f=1

(total of 8 regions).

Figure 8.1: Procedure of extracting a robust invariant set from the partition. The

partition was obtained from Example 11.4.1 in Section 11.4 for additive

noise w G R2
, HHU < 1-6-

In order to prove robust convergence, we will show that it is sufficient to find a

function V(x) which satisfies the following constraints,

ß\\x\\p > V(x) > a||xf,

V(fa(x,w))-V(x)<-p\\x\\P,

a,ß>0,p>l, VxeXN\ö, (8.12a)

Vx G XN \ O, Vu; G W, (8.12b)

where O is a robust invariant set with 0 G int(ö). Since Xn is bounded and robust

invariant, the existence of such a function will directly imply that all states x G Xn

enter the robust invariant set Ö in finite time. Note that (8.12) is defined only over

Xn\0, because the condition in (8.12b) cannot be satisfied for all x G O, e.g. assume

x = 0 and w ^ 0. Hence, when searching for V(x) it is necessary to remove the set of

states for which (8.12b) cannot be satisfied. In practice, we recommend to apply the

algorithm in [KG98] to remove the maximal robust invariant set oœ Ç Vi around

the origin from the partition Xn = Ur=i ...R^r, as is depicted in Figure 8.1.

Remark 8.5.3 There is no guarantee that the maximal robust invariant set con¬

tained in V\ is non-empty. If Ooo Q V\ is empty, one can attempt to find invariant

sets which are subsets of multiple regions indexed by 71, i.e. find Ooo Q Ureft^V
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with the methods in Chapter 7. If this is not possible for any index set 71, no robust

invariant set around the origin exists and hence the system is unstable.

Theorem 8.5.4 (Robust Convergence Conditions, [GM04]) Consider an au¬

tonomous PWA system (11.4). Assume Xn is bounded and robust invariant and a

function V(x) exists such that (8.12) holds. Then there exists a finite time k* such

that x(0) G Xn => x(k*) G Ö. Furthermore, if the system is nominally stable on the

robust invariant set O with 0 G int(ö), then the system is robust convergent.

Proof It follows from (8.12b) and 0 G int(C?) that the decay rate in the function

V(x) is bounded by —p||x||p (p > 1) and is thus finitely determined, i.e. its absolute

value cannot be arbitrarily small. Since the robust invariant set Xn and the function

V(x) are bounded, it follows that the state must enter Ö in a finite number of steps.

Finally, if the nominal system is asymptotically stable on O, it follows from [KG98]

(see also Theorem 7.3.2) that the state will converge to the minimal robust invariant

set ^"oq. D

8.5.2 Robust Convergence via Quadratic Functions

In this section we will show how to construct a quadratic function V(x) such that

the constraints in (8.12) are satisfied.

The constraints on the decay function V(x) in (8.12) are infinite dimensional,

i.e. it is necessary to impose them for all possible combinations of uncertainties

and disturbances. In such cases it is common to only consider the vertices of the

disturbance/uncertainties (e.g. [KBM96]). However, in order for such a formulation to

imply that the conditions in (8.12) hold for all disturbance/uncertainty combinations,

it is necessary for V(x) to be convex. Hence, it is not possible to search for a PWQ

function V(x) as in Section 8.3. Therefore, we will show here how a convex quadratic

function V(x) = xtPlX which satisfies the conditions in (8.12) can be found by

solving an SDP.

Since the quadratic function V(x) is globally defined, no reachability analysis needs
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to be performed and we can directly formulate the SDP:

find PL y 0 (8.13a)

s.t. x\Phxx - xTPLx0 < -p||x0||2, (8.13b)

xi = fa{xo, w), Vx0 G XN \ O, Vu; G vert(W), p > 0. (8.13c)

Theorem 8.5.5 (Robust Convergence via Quadratic Function, [GM04])

Consider an autonomous PWA system (11.4). Assume Xn is bounded and robust

invariant and a quadratic matrix Pl satisfying (8.13) is found. Then there exists a

finite time k* such that x(0) G Xn => x(k*) G Ö. If the system is nominally stable

on the robust invariant set Ö with 0 G int((9) then the system is robust convergent

and all states will enter the set O in finite time.

Proof We only need to show here that (8.13) implies (8.12).

The function V(x) = xtPlx is guaranteed to decrease for all extreme distur¬

bance/uncertainty combinations and for all x G Xn- Furthermore, the function

V(x), the system dynamics (11.1) as well as all constraints are convex. Therefore,

each state will remain in the convex hull of the extreme disturbance / uncertainty

combination considered in (8.13) at the next time step. Hence, (8.13b) is sufficient

for (8.12b). Furthermore, condition (8.13a) is trivially sufficient for the positivity

constraint (8.12a). Therefore the rest of the proof follows directly from Theorem

8.5.4. D

Obviously, the use of a quadratic function V(x) is very restrictive. However, if a

quadratic function V(x) satisfying (8.12) exists, formulation (8.13) is guaranteed to

yield a solution. Furthermore, it is straightforward to extend the stability analysis

scheme presented here to search for general convex polynomial functions V(x) by

applying sum-of-squares methods [Par03].

Remark 8.5.6 If the SDP (8.13) is infeasible, it is advisable to re-solve the problem

for a different robust invariant set Ö. Slight modifications to the set Ö may make

the subsequent stability analysis feasible.
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8.6 Tuning Parameters

As stated in the previous sections, the complexity of the various Lyapunov func¬

tion computation schemes can be prohibitive for large partitions. This will also be

illustrated by the case study in Section 8.7. Hence, this section will discuss modifica¬

tions to the previously introduced problem formulations which make the associated

computations more efficient.

Fixed Exterior Ellipsoids: The standard S'-procedure described in Section 8.3

achieves the objective of ensuring positivity over a particular region by ap¬

proximating that region with a quadratic surface (see (8.5c)). This version of

the S'-procedure is not lossless [BGFB94], but the shape of the quadratic sur¬

face is a degree of freedom in the solution. As an alternative, it is possible to

fix the surface a priori, e.g. by selecting it to be the minimal volume ellipsoid

containing the region. The associated S'-procedure is lossless and the degrees

of freedom in the SDP are significantly reduced. The new problem formulation

is given by

V(x) - t(1 - (x - x0)TE(x - x0)) > 0

where the minimum volume exterior ellipsoid is defined by (x—Xq)tE(x—x0) <

1. Here, there is just one free variable r, compared to the m\m~1) free variables

in (8.5c), where m is the number of half-spaces defining the polytope.

However, as stated in [Joh02], using the exterior ellipsoid is always more con¬

servative than using the S'-procedure in (8.5c). Therefore, for simple partitions,

the ellipsoidal approach may be more of a liability due to the effort required

for the calculation of the exterior ellipsoid and the increased conservâtiveness.

The computational advantages are more discernible for partitions with a large

number of regions, for which a significant reduction in the number of decision

variables is achieved.

Upper Bound Constraints: The upper bound constraints (V(x) < /?||x||p) in

Theorems 8.1.5 and 8.1.6 can be omitted by enforcing a certain structure upon

the Lyapunov function around the origin. For example, when searching for

PWQ functions it is sufficient to enforce that the function has no linear and

offset terms (Lr = 0, Cr = 0) for the regions containing the origin (0 G Vr)
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Figure 8.2: Illustration of two feasible solutions (dashed lines) according to Theorem

8.1.6, if no lower bound constraint is imposed on the Lyapunov function.

Note that positivity around the origin is always enforced (constraint de¬

picted in bold).

and for PWA functions it is sufficient to enforce that the function has no offset

terms (Cr = 0) for the regions containing the origin (see Remark 8.2.4). If this

structure is imposed, it follows trivially that an upper bound on V(x) exists,

and the associated constraints can be omitted.

Lower Bound Constraints: In many practical cases, it is advisable to completely

discard the lower bound constraint (o;||x||p < V(x)) for regions that do not

contain the origin [Joh02]. Fewer constraints will result in fewer S'-procedure

variables and faster runtime. For asymptotically stable systems, the decay

constraint will directly imply that a lower bound exists (see Figure 8.2(b)).

Since this is not true for unstable systems (see Figure 8.2(a)), it is still necessary

to check the existence of a lower bound, i.e. after solving the Lyapunov SDP,

a second SDP needs to be solved to verify that a lower bound exists. Since the

complexity of SDP solvers is polynomial this 'divide-and-conquer' approach will

typically result in faster runtime.
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Degree of SOS Multipliers: In SOS-schemes, the degree of the polynomial func¬

tions is a crucial influence on the likelihood of finding a Lyapunov function. In

order for the constraints in (8.10) not to be too conservative, it is advisable

to select the Lyapunov polynomial to be of the same order as the associated

S'-procedure terms. However, as we increase the degree of the SOS functions,

the number of variables in the associated SDP problem increases fast4, placing

a practical limit on tractable problem sizes. Hence, it may sometimes be advis¬

able to select the S'-procedure multipliers of a lower order than the associated

Lyapunov function, in order to keep the degrees of freedom limited.

8.7 Case Study

8.7.1 Problem Setup

The aim of this case study is to gain insights on the efficiency of the various stability

analysis schemes. To this end, it is necessary to consider a broad class of PWA

systems in our analysis. We will describe the PWA systems which were investigated

and then motivate their selection towards the end of this section. All results in this

section are taken from the survey [BGLM05],

The systems considered in our case study are constrained LTI and PWA systems

subject to optimal PWA state feedback control. The LTI systems were selected as

open-loop stable and unstable systems of order 2 and 3 with one input. The selected

PWA systems were of order 2 with one input. The PWA systems were created

by assuming random dynamic matrices5 defined over four random non-overlapping

polytopes, whose union covers the feasible state space. The elements of the dynamic

matrices for LTI and PWA systems were assigned random values between —2 and

+2. For both LTI and PWA systems the system inputs and states were constrained

to

Hfc)||oo < 1 and IMA:)!!«, < 10, VA; > 0. (8.14)

In a second step, these systems were subjected to optimal PWA feedback control

4Depending on the specific problem formulation the complexity is either roughly (jnrp ~ 7^i)n'2d
or M!«M Par03].

5Analyzing the stability of generic PWA systems is an NP-hard problem [BGT00]. Hence, it is

impossible to construct random open-loop stable and unstable PWA systems.
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(see Remark 6.1.1 or Chapter 3 for details), such that an autonomous PWA system,

x(k + 1) = Ärx(k) + gr, if x(k) eVr, re 71,

is obtained. The control objective was defined by

N-\

J*(x(k)) = J2 min \\Qxx(k + l)\\p + \\Quu(k)\\p (8.15)

using both the standard squared Euclidean norm (p = 2) and linear norms (p = 1

and p = oo). To make things interesting, the weights in (8.15) were set to Qu = 10/

and Qx = I, such that the expensive control action may easily lead to unstable

closed-loop behavior.

In order to ascertain that the closed-loop system is invariant, the control schemes

in [GM03, GKBM04a] (see Chapter 11 and 16, respectively) were applied. In

[GM03,GKBM04a], control invariance is achieved by posing a receding horizon con¬

trol problem with an invariance constraint on the first state, i.e. the state at time

k + 1 is restricted to be contained inside the maximal control invariant set.

Although the resulting PWA partitions are guaranteed to be invariant, there

is no guarantee of asymptotic stability. Therefore, the design schemes in

[GM03, GKBM04a] rely heavily on the stability analysis of PWA systems inves¬

tigated here and the stability results are of practical relevance.

The PWA partitions6 considered here were obtained for prediction horizons N =

1,3,5. The partitions consisted of 9 to 201 regions with 9 to 515 associated transitions.

We chose relatively small systems since this allowed us to perform the case study on

a large number of systems within a reasonable amount of time.

All computations were carried out on Pentium IV driven PCs, running Matlab,

the Multi-Parametric Toolbox [KGB04], YALMIP [Löf04] and SOSTools [PPSP04].

Note that YALMIP and SOSTools are currently the only available solvers for SOS

problems.

Finally, we will now motivate our selection of systems which we analyzed. The

choice of systems was mainly driven by two objectives: the stability analysis must

have practical relevance and the PWA partition must be invariant (Assumption 8.1.1).

6All of the systems considered here can be downloaded from [KGB04].
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Both of these objectives are naturally met by the controller partitions considered

here. Finally, the scheme in [GM03, GKBM04a] yields PWA systems of relatively

low complexity. Therefore, the systems used in this case study are a good choice for

the stated reasons of invariance, practical relevance and low complexity. Note that

it is not possible to consider random bounded PWA partitions directly since these

will not be invariant, in general.

8.7.2 Numerical Results - Specific Systems

Before presenting the results of the random system case study in Section 8.7.3, we will

focus on specific systems which exhibit certain properties that we wish to highlight.

Example 8.7.1 Consider the unstable 2nd order system with one input defined by

V ' [ 0 1.2

The system is subject to the constraints ||x(fc)||oo < 5 and ||u(fc)ll°o < 1, Vfc > 1.

The control objective in (8.15) is defined by the 2-norm and the weights Qx — I and

Q„ = l.

If we apply an optimal controller as in [GM03] with prediction horizon AT = 1 to

Example 8.7.1, all stability analysis schemes considered here (PWA, PWQ, piecewise

SOS up to fourth order) fail. When simulating closed loop trajectories, one can

observe that the system converges to the origin if the initial state is close to the

origin, see Figure 8.3(a). However, if the initial state is further away, the system

reaches a limit cycle, as is depicted in Figure 8.3(b). Hence, the system is indeed not

asymptotically stable.

If we increase the prediction horizon to N = 3, the convergent closed-loop trajec¬

tories in Figure 8.3(c) are obtained. However, none of the techniques considered here

succeeds in finding a Lyapunov function. If the prediction horizon is increased to

N = 5, the system is stable as can be seen from the trajectories in Figure 8.3(d). For

the resulting partition, it is not possible to find common quadratic or common quartic

Lyapunov functions, while piecewise quadratic and piecewise quartic functions can

be constructed.

x(k) +
1.0

0.5
u{k). (8.16)
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(a) N = 1, Initial state is close to origin- (b) N = 1, Initial state is far from origin

Convergent Trajectories Limit Cycle Trajectories

Figure 8 3 Closed-loop trajectories for Example 8.7.1 for various prediction horizons

N.

This simple example clearly illustrates the conservativeness of certain types of

Lyapunov functions as well as the impact of the controller prediction horizon N on

stability of the closed-loop system.

Figure 8.4 shows different Lyapunov functions for the PWA partition which is

obtained when applying the control scheme in [GM03] with prediction horizon N = 1

to the following stable LTI system*

x(k +1) =
0.4734 0 6756

0 7353 -0.1321
x(fc) +

0.4776

0.4459
u(k). (8.17)
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-100 -15

(a) PWA (b) Quadratic

.it» -l»

(c) PWQ (d) Common SOS order 4

0 -M -loo _a»
-w

(e) Piecewise SOS order 2 (f) Piecewise SOS order 4

Figure 8.4: Different Lyapunov functions for same controller.
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8.7.3 Numerical Results - Random Systems

The results in this section were obtained by considering 100 random PWA systems

and 200 random LTI systems subject to the control scheme in [GM03, GKBM04a]

for prediction horizons N = 1,3 and 5. Specifically, the likelihood of successfully

computing a Lyapunov function as well as the associated computation time are given

in Tables 8.1-8.3.

The solution time corresponds to the time spent in computing the solution to the

problems as described in the previous sections. The setup time refers to the time

required to do the pre-processing (e.g. reachability analysis, vertex enumeration)

and actual setup of the constraints. All the SOS data provided in the following

tables were obtained with YALMIP [Löf04]. See the discussion in Section 8.7.4 for

details on the choice of solvers. Note that we have also used the SOS based code

to construct both common quadratic and PWQ Lyapunov functions, for verification

reasons. The computation times and success rates were consistent with the results

obtained with the methods in Section 8.3 and are therefore not restated here.

If no Lyapunov function could be found with any method, we analyzed the cor¬

responding partition through exhaustive simulation. For all LTI systems which ex¬

hibited convergent trajectories, we were able to construct Lyapunov functions. For

the PWA systems however, we were able to find Lyapunov functions for only slightly

more than 90% of all systems that exhibited convergent trajectories. An intuitive

explanation for this behavior is the fact that PWA systems subject to control gener¬

ally exhibit more complex closed-loop vector fields than their LTI equivalents. In the

cases considered here, the PWA systems even exhibit discontinuous behavior across

the dynamic boundaries. Hence, it is to be expected that Lyapunov functions are

harder to find for PWA systems.

8.7.4 Discussion of Results

Construction of Lyapunov Function

• When the control scheme in [GM03] was applied to LTI systems (Tables 8.2 and

8.3), the stability analysis of the resulting PWA systems was always successful.

• The stability analysis of the PWA systems generated by using the control
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Partitions obtained for 2nd order PWA systems, control scheme [GKBM04a], N = 1

50 Systems, oo norm objective 50 Systems, 1 norm objective

Method Success

Rate

Solution

Time

Setup

Time

Success

Rate

Solution

Time

Setup

Time

Quadratic

Piecewise Affine

Piecewise Quadratic

Common SOS order 4

Piecewise SOS order 4

22/45

42/45

43/45

22/45

36/45

1.0 sec.

0.9 sec.

5.4 sec.

6.9 sec.

54.7 sec.

0.6 sec.

7.7 sec.

9.5 sec.

4.1 sec.

25.7 sec.

9/46

40/46

38/46

8/46

22/46

1.2 sec.

1.9 sec.

7.0 sec.

7.7 sec.

57.5 sec.

0.7 sec.

13.1 sec.

10.7 sec.

4.3 sec.

27.2 sec.

Table 8.1: The number of regions were between 29 and 201 with 63-515 transitions.

'Success' denotes the number of Lyapunov functions found out of the total

number of systems with convergent trajectories, the 'Solution Time' is the

average cpu-time required to solve the associated optimization problem

and 'Setup Time' is the average time needed to pre-process the problem.

Partitions obtained for 3rd order LTI systems, 2 norm objective, control scheme [GM03]

50 Stable Systems, N = 1 50 Unstable Systems, N = 1

Method Success

Rate

Solution

Time

Setup

Time

Success

Rate

Solution

Time

Setup

Time

Quadratic

Piecewise Quadratic

Common SOS order 4

Piecewise SOS order 4

49/50

50/50

50/50

39/50

0.6 sec.

2.1 sec.

2.7 sec.

8.5 sec.

0.2 sec.

1.1 sec.

1.4 sec.

4.0 sec.

47/50

50/50

47/50

13/50

0.6 sec.

3.2 sec.

3.8 sec.

22.9 sec.

0.02 sec.

1.8 sec.

2.0 sec.

9.2 sec.

Table 8.2: The number of regions were between 9 and 15 with 9-47 transitions. 'Suc¬

cess' denotes the number of Lyapunov functions found out of the total

number of systems with convergent trajectories, the 'Solution Time' is the

average cpu-time required to solve the associated optimization problem

and 'Setup Time' is the average time needed to pre-process the problem.
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Partitions obtained for unstable 2nd order LTI systems, oo norm objective

50 Systems, N = 3 50 Systems, N = 5

Method Success

Rate

Solution

Time

Setup

Time

Success

Rate

Solution

Time

Setup

Time

Quadratic

Piecewise Affine

Piecewise Quadratic

Common SOS order 4

Piecewise SOS order 4

28/28

28/28

28/28

28/28

24/28

1.1 sec.

4.8 sec.

6.8 sec.

5.7 sec.

47.9 sec.

0.9 sec.

22.6 sec.

12.2 sec.

4.2 sec.

27.7 sec.

17/23

17/23

17/23

17/23

16/23

2.1 sec.

10.3 sec.

10.6 sec.

8.7 sec.

109.1 sec.

1.4 sec.

45.5 sec.

23.9 sec.

7.2 sec.

63.0 sec.

Table 8.3: For N = 3 the number of regions was between 40 and 72 with 56-154

transitions. For N = 5 the number of regions was between 70 and 184 with

100-363 transitions. 'Success' denotes the number of Lyapunov functions

found out of the total number of systems with convergent trajectories, the

'Solution Time' is the average cpu-time required to solve the associated

optimization problem and 'Setup Time' is the average time needed to pre-

process the problem.

scheme in [GKBM04a] for PWA systems has a higher possibility of failure (Ta¬

ble 8.1). The failure rate of common quadratic and higher order polynomial

approaches is the highest. It is much easier to find a Lyapunov function using

piecewise techniques. This behavior coincides with our expectations, since the

likelihood of finding a common Lyapunov function over completely different

dynamics is relatively low.

• As expected, there were some cases where the PWA approach failed but the

PWQ approach succeeded. On the other hand, we have also observed cases

where the PWA approach succeeded while the PWQ approach failed.

• It is interesting to observe that the number of convergent closed-loop systems

resulting from unstable LTI systems is much lower for linear performance ob¬

jectives, even though the associated prediction horizons are much larger than

for the quadratic objectives (see Tables 8.2 and 8.3). The cause of this may

be the fact that the terminal weight QXN was selected as the infinite horizon

Riccati solution for quadratic objectives while QXN = Qx for linear objectives.
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Thus, the terminal cost was much higher for quadratic objectives.

• The large number of convergent closed-loop systems which were obtained by

controlling PWA systems (see Table 8.1) is attributable to the fact that not

all of the random PWA systems were unstable. Note that it is impossible

to generate random PWA systems that are guaranteed to be unstable, since

there is no easy way of confirming instability of a PWA system7, apart from

exhaustive simulation.

• The large number of constraints involving strict inequalities (e.g. p > 0) result

in severe numerical problems for all analysis schemes. While it is relatively easy

to 'patch' the standard LP or SDP approaches (e.g. PWA or PWQ Lyapunov

functions) to deal with this issue by adding strictly positive slack variables

to the constraints, this is not possible for SOS based approaches. This is

mainly due to the fact that it is not obvious how to pose problem constraints

which provide a result that remains an SOS function, even if the individual

solution parameters are slightly perturbed, i.e. it is not obvious how to to add

reasonable slack variables which ensure a solution in the strict interior of the

feasible solution space.

• Theoretically, a higher order ^-Procedure for piecewise Lyapunov functions as

illustrated in (8.11) should have a positive influence on the likelihood of suc¬

cessful analysis, since it allows for higher order approximations of the polytopic

regions. In practice, however, higher order multipliers result in more frequent

numerical problems and the likelihood of successful analysis is decreased. The

numerical problems associated with the SOS approaches occur regardless of

SOS [Löf04, PPSP04] and SDP [Stu99, TTT99] solver. In hundreds of simu¬

lations we have not been able to find a PWA partition where the piecewise

SOS approaches outperform the lower order piecewise SDP schemes. This

observation does not hold for common Lyapunov functions.

7If each individual dynamic of a PWA system is unstable, this does not imply that the PWA system

as a whole is unstable. The objective in this chapter is to find simple ways of ascertaining stability

of PWA systems. In general, this problem is NP-hard [BGT00].
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• Using the minimum volume exterior ellipsoids to reduce the number of vari¬

ables has a surprisingly strong negative impact on the likelihood of successful

analysis, i.e. it is much harder to find Lyapunov functions.

• Overall, we are able to give the following recommendations for the analysis of

PWA systems: first try to construct a common quadratic Lyapunov function,

since the associated computation is very cheap. Second, attempt to construct

a PWQ function and finally, if the previous approaches fail, try constructing a

PWA function.

Computation Time

• The overall computation time correlates directly with the number of regions

and, more importantly, with the number of transitions, which occur between

regions. In general, unstable LTI systems result in more complex partitions

such that the associated stability analysis is more time consuming.

• In general, the linear cost objectives generate partitions comprising more re¬

gions than those obtained for quadratic cost objectives. Hence, the associated

analysis is more time consuming.

• It was observed that YALMIP [Löf04] has much shorter setup times than

SOSTools [PPSP04] and is equally reliable in terms of numerical robustness.

Hence, YALMIP was used for the case study.

• Although the runtime of all schemes grows polynomially with the partition

size, the order of growth is very large. Hence, the limit of applicability is

quickly reached for the current software implementations. We have been able

to construct PWQ Lyapunov functions for 4th order PWA systems with 400

regions. The associated computations took several hours.
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• Neglecting the lower bound constraints in the problem formulation as described

in Section 8.6 leads to large speedups, especially in the SOS based cases.

• Exterior Ellipsoids: For the partition sizes considered here, no runtime benefit

was obtained by computing the exterior ellipsoids a priori. A benefit may result

for larger partitions.

8.8 Conclusion

An extensive survey of various methods of constructing Lyapunov functions for

discrete-time PWA systems was presented in this chapter. First, the basic build¬

ing blocks (e.g. reachability analysis) and assumptions (e.g. set invariance) were

established. Second, it was shown how to construct PWA, PWQ and higher order

piecewise polynomial Lyapunov functions for discrete-time systems. Subsequently,

it was shown how to analyze robust convergence properties of autonomous PWA

systems subject to additive disturbances.

Finally, the results of an extensive case study are given. The case study illus¬

trates that simple Lyapunov functions (i.e. quadratic, PWA or PWQ) are generally

sufficient for analyzing discrete-time PWA systems of the type considered here. Fur¬

thermore, we did not find a single PWA partition where the higher order piecewise

SOS Lyapunov functions succeeded and the other methods failed.

All tools as well as the random systems considered in the case study can be down¬

loaded from [KGB04].
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Problem Description

This part of the thesis will address the topic of efficient feedback control of discrete-

time, linear, time-invariant (LTI) systems subject to constraints. Here, the term

efficient refers to any scheme which is able to simplify or speed-up the process of

controller design and/or application, compared to current techniques. A general

introduction to feedback control of constrained LTI systems was given in Chapter 4.

We will briefly recap the key issues, before giving an overview of the content of the

next chapters.

Consider the LTI system

x(k + l) = Ax(k) + Bu(k), (9.1)

subject to the constraints

x(k) e X Ç Rn, u{k) euer, k> 0. (9.2)

Remark 9.1.1 For ease of notation, we restrict ourselves to separate constraints on

state and input in (9.2). It is straightforward to modify all algorithms in this chapter

to deal with systems subject to mixed constraints, i.e. Cxx(k) + Cuu(k) < Cc, Vfc > 0.

We are interested in two types of regulation problems: problems with linear and

quadratic objectives. The linear regulation problem

7V-1

JN{x{0))= min V] (||Qu«fc||i,oo + ||Qx^fc||i,oo) + HQ^^atIIi.oo, (9-3a)
u0,...,Hjv-i

*—*

fc=0

subj. to xk e X, uk-i eU, Vfc {1,..., N}, (9.3b)

xN e %et, (9.3c)

xk+1 = Axk + Buk, Xo = x(0), (9.3d)

91
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with the optimizer Un = [uT,... ,uN_^]T can be recast as an LP [BBMOOb,Bor03,

RR00,ZM95,GN93,CM86] by substituting xk = Akx(0) + Y^Zl AkBuk.1.j. Remark

5.2.6 provides sufficient conditions on the selection of the terminal weight matrix QXN

such that (9.3) applied in Receding Horizon Control (RHC) yields asymptotically

stable trajectories.

For the || • ||oo norm,

N-l

JnW)) =

„

min y"(efc + 4)+7 (9.4a)
äo.—<SN-1>1 ^=0

subj. to GUN <W + Ex(0), (9.4b)

QuUk < lefc, -QuUk < let, fc = 0,...,Ar-1, (9.4c)

Qxxk < lôk, -Qxxk <l6k, k = 0,...,N-l, (9.4d)

QxNxN < l7, ~Qxnxn < 17- (9-4e)

Constraint (9.4b) corresponds to (9.2) and constraints (9.4c)-(9.4e) are used to de¬

scribe the linear objective function.

Quadratic regulation problems such as

,n-i ,

JN{x(0)) = min \ V" {uÎQuUk + xlQxxk) + xNQXNxN > (9.5a)
UQ,...,UN-l I f—( I

v k=0 '

subj. to xk e X, uk-i e U, ke{l,...,N}, (9.5b)

xn e %et, (9-5c)

xk+i = Axk + Buk, xo = x(0), (9.5d)

Qx h 0, QXN y 0, Qu ^ 0, (9.5e)

can be reformulated as a QP by substituting a;^ = Akx(0) + X)j=o ^-Bitfc-i-j so that

J^(a;(0)) = x(0)rYa;(0) + min|c/^/fJ7^ + a;(0)TF(7^| (9.6a)

subj. to GUN<W + Ex(0). (9.6b)

It was shown that the optimal feedback controller for problems of type (9.4) and

(9.6) is PWA and defined over convex polyhedra which will henceforth be referred

to as regions (see Theorems 3.2.1 and 3.2.3). See Chapter 5 for a discussion on

sufficient conditions on (9.5), such that the associated RHC yields asymptotically
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stable trajectories.

The quadratic control problem has found more widespread application than the

linear equivalent because of its natural analogy to energy functions and because

closed-loop stability can easily be enforced for quadratic RHC [SR98,Mac02,Bor03,

BMDP02, CM96, GBTM03]. Note that tracking problems can easily be recast as

regulation problems (e.g. see [PK03] for offset-free tracking strategies).

The input sequence for (9.3) and (9.5) can be obtained by solving an optimization

problem (i.e. linear or quadratic program) on-line at each time step or by evaluating

the optimal piecewise affine (PWA) feedback law, which can be pre-computed off-line.

The explicit feedback solution of linear optimal control for constrained linear systems

was introduced in [BBMOOb, BBMOOa] (see Section 3 on multi-parametric program¬

ming) and the quadratic counterpart was presented in [BMDP02]. The results were

later extended to tackle robustness for linear cost objectives in [BBM03,KM04a] and

quadratic cost objectives in [KM03].

We will now discuss in detail what we mean by efficient control of constrained LTI

systems. The complexity of the control schemes given here can be subdivided into

three components: the runtime required to compute the controller, the size of the

resulting controller partition (number of regions) and the time required to apply the

controller in real-time. Here we refer to these three components as the 'three levers'

(see Figure 9.1) for complexity reduction, i.e. to arrive at efficient controllers.

Lever 1 - Controller Computation: The aim here is to reduce the time required

to compute a feedback controller for constrained LTI systems, i.e. to speed-up

solvers for multi-parametric programs. Specifically, the aim here is to reduce

the computation time that is needed to construct a single controller region.

This topic is covered in Chapter 10.

Lever 2 - Partition Complexity: The aim here is to reduce the partition com¬

plexity of PWA state feedback controllers, i.e. to reduce the number of con¬

troller regions. There are two ways to achieve this: either formulate the control

problem such that the resulting controller is simple or process complex par¬

titions a posteriori to reduce the number of regions. Lever 2 only deals with
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Controller

Computation
M.JÜ"

Region
Identification

Partition Complexity-

Plant State x

Control u

> Output y

Figure 9.1: Illustration of the three levers for complexity reduction in receding hori¬

zon control.

the first aspect. All post-processing schemes are part of Lever 3. Lever 2

complexity reduction is covered in Chapter 11.

Lever 3 - Region Identification: The aim here is to reduce the runtime necessary

to find the active feedback law for a given controller partition, i.e. all of the

schemes investigated here process an existing controller partition such that the

necessary on-line effort is reduced. This topic is covered in Chapter 12.
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Efficient Computation of

Multi-Parametric Programs in

Control

This chapter will address the first lever for complexity reduction. Namely, the efficient

computation of explicit control laws.

Controller

Computation

©_

d>
Region

Identification

Partition Complexity

•u 4 t

Control tt'

Fiant State x

»LANT *• Output y

Figure 10.1: Illustration of the three levers for complexity reduction in receding hori¬

zon control. The first lever, which is the focus of this chapter, is high¬

lighted.

We will first analyze the complexity of multi-parametric solvers in Section 10.1.

Based on the gained insights, we will introduce improvements to multi-parametric

solvers in Sections 10.2 and 10.3.
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10.1 Analysis of Multi-Parametric Programs in

Control

As stated in Chapter 3, many different algorithms for solving multi-parametric pro¬

grams have been proposed [TJB03a,Bao02,BMDP02,BBM00b]. Despite their dif¬

ferences, the key aspects which determine solver runtime remain the same for all

approaches. Specifically, all algorithms work along the following lines (see Section

3.2 for details)

1. Determine the active constraints An{x) for a given state x and determine the

optimizer UN(x) as an explicit function of x.

2. Compute the polyhedral set Vr of states where UN(x) is optimal and satisfies

constraints.

3. Proceed iteratively until the entire feasible state space Xn is covered.

Since the basic structure is the same for all solvers, the runtime of a generic multi-

parametric solver can be given by

Total Runtime = # Regions x Runtime per Region + Overhead.

These three key aspects, which determine the total off-line controller computation

time, are discussed in the following:

# Regions: The number of regions R in the solution partition is clearly the single

most important factor influencing the time that is required to solve a multi-

parametric program. The number of regions correlates closely with the number

of facets c of the original constraint polytope GUn < W + Ex (see (9.4b) or

(9.6b)) in x-C/^-space. Specifically, an upper bound on the number of regions

« „e 6,en by U <_ S=0 Q - , (BMDP02]. No, a- tMs ,—,

upper bound can only be reached if the dimension mu of the optimizer Un

is equal to the number of constraints c. This condition is very unrealistic for

practical control problems (typically mu «C c), such that this upper bound is

very conservative. Instead of the number of constraints c, it is the dimension

mu of the optimizer Un which is the key influence on the number of active

constraint combinations which occur in realistic control problems. Assuming
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non-degeneracy (see [Bor03]), a bound on the number of regions can be given

by R < ES

For quadratic control problems, the dimension mu of Un is equal to Nm (i.e.

mu = Nm), where N is the prediction horizon and m the input dimension

for the LTI system (9.1). Hence, the x-C/^-polytope is in dimensions n + Nm

(x e Rn, u e Rm). Since the number of controller regions is strongly correlated

with the dimension of the constraint polytope, the prediction horizon N is the

single most important factor determining the number of regions in the solution

partition {Vr}R=v

Runtime per Region: The runtime per region is almost entirely determined by

the time required to obtain the minimal representation of a controller region.

Once an active set An(x) has been determined, it is necessary to compute

the associated region Vr (see (3.6)) in minimal representation (see Chapter

2). It is important to obtain the non-redundant representation of each Vr

for two reasons. First, the necessary storage effort for the solution partition

would be considerable if every Vr were stored in redundant form. Second

and more importantly, the minimal representation is vital for the algorithms

[TJB03a,Bao02,BMDP02,BBM00b] to guarantee that the entire feasible state

space Xn will be covered, i.e. that there will be no 'gaps' in the partition.

When solving mp-QPs, in order to obtain a non-redundant representation of Pr,

it is necessary to solve c LPs, where c corresponds to the number of constraints

in (9.6b), i.e. W e Rc (see Remark 3.2.6). For instance, assume an optimization

problem for a second order SISO system with prediction horizon AT = 10 and

min-max constraints on all states and inputs. This would yield c = 60 half-

spaces1 for the initial representation of each controller region. For mp-LPs,

the number of LPs which need to be solved per region vary. Specifically, it

is necessary to solve one LP for each constraint which is not contained in the

active set associated with region Vr [Bor03,Gal95].

Overhead: The overhead of all multi-parametric solvers is almost exclusively deter¬

mined by active set management. Active set management involves the identifi-

1Two states with xmjn < xk < xmax and k = 0,...,9 yields 40 half-spaces. One input with

Umin < Ufc < «max and fc = 0,..., 9 yields 20 half-spaces.
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cation of active sets An{x) and the guarantee that all optimal active sets will

be found.

The first time consuming aspect is the identification of active sets. Depending

on the specific multi-parametric solver, the identification of an optimal active

set requires the solution of up to 2 LPs. Specifically, one LP is required to

obtain a point x* in the 'uncharted' part of the state-space and an additional

LP is required to identify the active set An(x*) for that point [Bao02]. The

scheme in [TJB03a] is more efficient and identifies active sets without solving

LPs in the non-degenerate case. In case of degeneracy however, the solver

in [TJB03a] also requires the solution to 2 LPs, as in [Bao02].

The second time consuming aspect lies in ascertaining that the entire feasible

state space is covered by the controller partition and that no duplicate regions

are computed. Using the scheme in [Bao02], it is necessary to check whether

a newly obtained state x* is already contained in a previously computed con¬

troller region, before computing the associated active set An(x*). Although

this operation is not very expensive as such, it is performed once for every

facet of every region Vr such that the total runtime can be considerable. Note

that the algorithm in [TJB03a] requires only a simple string comparison for the

general (non-degenerate) case.

The computational burden of active set management has been somewhat alleviated

by the algorithm in [TJB03a] and the computation of simple controller partitions will

be addressed in Chapter 11. We will therefore focus on the efficient polytope reduc¬

tion in the following sections. Section 10.2 will introduce an efficient algorithm for

obtaining the minimal representation of general polytopes. Although the algorithm

can be applied to any polytope, it is specifically well suited for the type of polytopes

which appear in the context of multi-parametric programming. In Section 10.3, an

algorithm will be introduced which computes the infinite-time constrained LQR (see

Section 4.4). As it turns out, the proposed scheme can be applied even for finite

time optimal controller computation and has the intrinsic advantage of reducing the

necessary effort of polytope reduction for certain classes of problems.
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10.2 Efficient Computation of Minimal

Representations of Polytopes

A detailed introduction to polytopes and the terminology used throughout this section

is given in Chapter 2. The results of this section2 have been published in [SLG+04].
As stated in the previous section, polytope reduction is important for the compu¬

tational speed of multi-parametric solvers. However, when multi-parametric solvers

are used in the context of controller computation for piecewise affine (PWA) systems,

the importance of polytope reduction is even greater. In optimal control of PWA

systems, it is necessary to intersect a large number of controller regions in order

to obtain the feedback law which optimizes the cost objective [BCM03b,BBBM03].

Furthermore, it is often necessary to check whether two unions of polytopes are

equal, which again requires extensive polytope computations [GKBM04a, BT03].

These issues are discussed in detail in Part IV. In this section, a polytope reduction

method will be presented which can be used to efficiently obtain the minimal rep¬

resentations of polytopes which arise in the context of multi-parametric programming.

10.2.1 Efficient Polytope Reduction in Multi-Parametric

Programming

Computing the minimal representation of polytopes has turned out to be a bottle neck

in many multi-parametric programs solved by the Multi Parametric Toolbox [KGB04],
and has been reported to be an issue also in other implementations [TJB01]. The

standard approach to detect if the jih constraint in the set

(10.1)Hx < K,

H = hi /12 . • • K
T

K = ki k2 . Kc

T

is redundant, is to define a new polyhedron with the jth constraint removed,

H - h\ hj—i Aij+i... hc

2The content of this section is the result of a collaboration with Johan Löfberg who was the

primary contributor.
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K — ki fcj-i kj+i... kc ,

and maximize hjx in the reduced polytope Hx < K

max hjx (10.2a)
X

J

I Hx<K. (10.2b)

If the optimal objective value of this problem is less than or equal to kj, the constraint

is redundant and can be removed [Fuk04c,OSS95].
To detect and remove all redundant constraints, the algorithm requires the solution

of c LPs with, in the worst-case, c — 1 constraints and n variables. To improve the

performance of this algorithm, we need to reduce the number of LPs to be solved,

and preferably also their size. Our approach to do this is to perform an initial,

computationally cheap, pre-solve analysis to detect a sub-set of the redundant and

non-redundant constraints.

10.2.2 Detecting Non-Redundant Half-Spaces

By detecting some of the non-redundant constraints, we can reduce the number of

LPs that have to be solved to derive the minimal representation of a polytope. We

first propose the application of a simple randomized ray-shooting approach [Bon83].

1. Initialize the set of non-redundant constraints Jn = 0-

2. Calculate an interior point x-ilA, Hxmt < K.

3. Generate a random direction d e Rn.

4. Calculate intersections between the line Xint+Ud and the hyper-plane hfx = ki,

giving ti = k-^ff±.
5. Find the closest intersecting hyper-planes along positive and negative direction

d, corresponding to smallest positive and largest negative t respectively. Let

the corresponding indices to these hyper-planes be ip and in. These constraints

are non-redundant such that Jn '•= Jn U iP U in.

6. Let the mid-point of the line between the two intersection points x-mt + tpd and

2

£int + tnd serve as a new interior point, x-mt := xmt +
'p

2

'" d.
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7. Repeat from 3).

An illustration of this algorithm is given in Figure 10.2. The algorithm requires an

interior point to begin with in step 2. To find one, we calculate the Chebychev center

of the polytope, requiring the solution of one LP (see (2.5)).

Remark 10.2.1 Note that the active constraints (see Definition 3.1.4) which are

obtained when solving the Chebychev-Ball problem can also be used to initialize the

set of non-redundant constraints Jn- Obviously, all half-spaces which are 'touched'

by the ball are non-redundant, provided all duplicate half-spaces have been removed.

Of-course the number of ray-shooting iterations is an important parameter. In the

current implementation, [c/2] iterations are performed. This value was heuristically

determined by numerous simulation runs.

Although there is no guarantee that we find all, or even a significant part of the

non-redundant half-spaces, the algorithm is simple enough to motivate its use. Note

that the algorithm is most efficient when the fraction of redundant constraints is low.

10.2.3 Detecting Redundant Half-Spaces

By detecting redundant half-spaces, we not only reduce the number of LPs that have

to be solved in (10.2), but we also reduce the size of these LPs, since the corresponding

constraints can be removed.

Detecting redundant constraints in LPs is a standard problem, and is done in most

LP solvers during a pre-solve analysis of the problem. The key idea in pre-solve

algorithms is to exploit variable bounds L < x < U to detect obviously redundant

constraints [Gon97].
To detect if hfx < ki, hi hn hi2 ... h(r, is redundant, each term in hjx is

individually maximized to obtain an upper bound on hfx
n

~^2hiXi< ^2 hijUj+ ]T] h-ijLj. (10.3)
J=1 j£{j:hij>0} je{j:hij<0}

If the right-hand side of (10.3) is less than ki, the constraint is redundant and can be

removed. Hence, the set of redundant constraints detected in the pre-solve analysis

is defined by

Jn=lie{l,...,c}\ J2 hvUi + Yl hvLi <k\- (10-4)
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«i «i «,

(a) Half-spaces defining the (b) Obtain interior point x;nt by (c) Create random ray emanat-

polytope. computing the Chebychev ball. ing from x;nt.

(d) Compute intersection of ray

with closest half-spaces (bold cir¬

cles). These half-spaces are non-

redundant.

(e) Compute new interior point

2-int-

(f) Create random ray emanat¬

ing from xint.

(g) Compute intersection of ray

with closest-half spaces (bold cir¬

cles).

Figure 10.2: Illustration of the scheme to detect non-redundant half-spaces. Here,

all non-redundant constraints happen to be identified by computing the

Chebychev ball (see Remark 10.2.1).

Tight variable bounds L and U are crucial for this pre-solve algorithm to be efficient.

In a pre-solver used in an LP solver, crude bounds are typically given by a priori

knowledge, and by applying a more advanced pre-solve algorithm iteratively, the

bounds can in some cases be improved upon by inferring more information from the
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constraints.

The standard pre-solve analysis that is applied before solving an LP is required to

be cheap in order to actually yield runtime benefits, since the LP itself can be solved

efficiently. In contrast, we are here solving a total of c LPs for polytope reduction.

Hence, we can spend a lot more effort on a pre-solve analysis since it benefits each

of the c LPs.

Since tight lower and upper bounds are crucial for the detection of redundant

constraints using (10.3), we solve 2n LPs (x e Rn) to derive exact lower and upper

bounds on x in the polytope Hx < K. Specifically we solve the following LP for all

i e{l,...,n}:

min ±a?(j) (10.5a)

| Hx<K, (10.5b)

where X(q denotes the i-th element of the vector x e Rn. Of-course, spending the

effort of solving 2n LPs to find the bounding box of a polytope, to be used in the

possibly inefficient algorithm (10.3), is only reasonable if the expected number of

detected redundant constraints is large and n is sufficiently small compared to c.

This is generally the case if multi-parametric programming is used in the context of

controller computation. An illustration of the bounding box computation is given in

Figure 10.3.

10.2.4 Complete Algorithm

Putting the two parts together, we obtain the reduction algorithm.

Algorithm 10.2.2 (Efficient Polytope Reduction)

1. Calculate upper and lower bounds using (10.5).

2. Apply (10.4) to remove redundant constraints Jr.

3. Compute the Chebychev ball to find interior points and a subset Jc of non-

redundant constraints.

4. Find a subset Jn of the non-redundant constraints using ray-shooting on the

constraints J /Jr.
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-10 -5 0 5 10

Figure 10.3: Illustration of a bounding box. If the bounding box does not intersect

a hyper-plane, it is redundant.

5. Check redundancy of remaining unresolved constraints hTx < kt, Vi G J /(JrU

Je U Jn) by solving the LP (10.2).

Observe that the ray-shooting algorithm is efficient for polytopes with few redun¬

dant constraints, while the bounding box method is most useful for polytopes with

many easily detected redundant constraints. Hence, the two pre-analysis algorithms

together cover many levels of redundancy.

The expected computational gains from the two pre-solve steps can be estimated if

we take the computational complexity of solving an LP into account. A rough com¬

plexity analysis of a modern interior-point algorithm to solve an LP with n variables

and s constraints would typically give 0((n3 + n2s)\/s) operations3 [dH94]. Hence,

a polytope reduction algorithm, solving s LPs, will have super-quadratic complexity

with respect to the number of constraints in the original polytope. Consequently, the

effect of removing redundant constraints by using the bounding box approach will be

super-quadratic, i.e. removing half of the constraints will reduce the computational

3The main computational burden in each interior-point iteration is the calculation of the Schur-

matrix HTDH and factorization of this matrix (D is a diagonal matrix which depends on the

particular algorithm). Creating the Schur-matrix requires 0(n2s) operations and the factoriza¬

tion 0(n3). Additional computations also have linear complexity in s. The number of iterations

can be bounded by 0((n3 + n2s)y/s), but is typically between 5 and 50.
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effort by more than a factor of four. The impact of the ray-shooting scheme on the

total runtime will however only be linear, since the size of the remaining LPs are

unaffected, only the number of LPs is reduced.

Remark 10.2.3 It should be noted that the proposed method may not be suitable

for all types of polytope reduction problems. Polytopes which arise in the context of

multi-parametric programs in the field of control typically have a specific structure

(limited number of facets) and are in low dimensions (e.g., below 10j.

10.2.5 Other Usage of Bounding Boxes

Outer box approximations defined by (10.5) can be efficiently used in many problems

arising in fields of reachability analysis for hybrid systems, approximate projections

and computation of explicit control laws for hybrid systems.

For instance in reach-set computation for hybrid systems [Tor03], bounding boxes

can be used to decrease memory requirements by keeping only two extreme points

of a bounding box instead of storing the complete half-space representation of a

polytope Hx < K. This is mainly important because of the explosion of the number

of polytopes at each step of the iterative exploration procedure.

As already indicated, bounding boxes can be effectively used in the area of multi-

parametric programming for PWA systems. Optimal control problems for PWA

systems are generally solved in a dynamic programming fashion [BCM03b, BCM03a,

KM02]. At each step of the dynamic program, the cost expression associated with a

polytope over which the control law is defined needs to be compared to the cost of

each other region which intersects the first one. To avoid unnecessary computation,

it is useful to detect any possible intersections before further processing. This feature

is also relevant in the context of stability analysis of PWA systems, since answering

the question if two boxes intersect reduces to a simple set of IF-THEN statements

(see Remark 8.2.2). Despite the over-approximation nature of bounding boxes this

method performs very well in practice.

Furthermore, search tree structures can be created more efficiently using the box

approximations of polytopes [GTM04, TJB03b]. Search trees are important in the

on-line implementation of the results of a multi-parametric program and will be

briefly discussed in Chapter 12. Since the optimizer UN(x) is piecewise-affine over a

polyhedral partition Urçrc^r> the procedure to obtain the control action for a given

state x reduces to a simple membership test. Without a search tree, one would need
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to check every region Vr, r e 71, which could be expensive when the number of

regions becomes very large. In such search trees, each node of the tree consists of

a hyperplane and a list of regions which satisfy this inequality and a list of regions

which do not. Bounding boxes are a very effective tool in deciding to which list a

region belongs to. Again, the speedup results from the fact that such an evaluation

has to be performed only on two extreme points of the box, without the need to

compute extreme points of the original polytope, which requires the solution to an

LP. Hence, the construction of such search trees can be speeded-up significantly by

the use of bounding boxes.

The computation of outer box approximations (10.5) in the algorithm described in

the previous section is therefore not a one-purpose operation. The boxes can be stored

along with the original polytope to significantly speed up subsequent operations, some

of which were mentioned in this section.

10.2.6 Numerical Results

The computational improvements of the proposed pre-solve approach depend strongly

on the multi-parametric problem being solved. To find a general trend for problems

typically solved using multi-parametric techniques, 10 random stable systems with

n = 3 states and m = 2 inputs were generated. The mp-QPs arising in optimal control

problems with prediction horizons N = 2,4,6,8 and 10 where solved. Averaged

results for the proposed polytope reduction algorithms are depicted in Figure 10.4.

The experiments indicate that the impact of efficient polytope reduction is increas¬

ing with the prediction horizon N. This was to be expected from the construction of

the controller regions in (3.6), i.e. as N increases, the number of initial half-spaces

grows. On the other hand it has been observed that, in general, the number of

half-spaces defining the controller regions grows sub-linearly. Therefore, the fraction

of redundant half-spaces grows with increasing prediction horizon. As we described

earlier, the computational efficiency of the bounding box approach grows quadrati-

cally with respect to the fraction of detected redundant constraints, so an improved

performance for longer horizons is to be expected.

The impact of ray-shooting is less impressive. In the multi-parametric application,

most half-spaces are redundant, hence few non-redundant half-spaces will be found.

The number of solved LPs is decreased by the ray-shooting, but the cost to find

the small number of non-redundant half-spaces is comparable to the cost of solving
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Figure 10.4: Comparison of average time spent and average number of LPs solved for

various polytope reduction schemes (noBB : standard polytope reduc¬

tion, BB : polytope reduction using bounding boxes, BB-RS : polytope

reduction using bounding boxes and ray-shooting)

the additional LPs, at least with the current implementation of the ray-shooting

algorithm.

10.3 Computation of the Constrained

Infinite-Time Linear Quadratic Regulator

In this section an algorithm to compute the explicit Infinite-Time Constrained LQR

(CLQR) controller will be presented. This section is based on the publications

in [GBTM03.GBTM04]. We refer the reader to Chapter 4 for an overview of general

optimal control problems. The primary contribution of this section is an algorithm

to compute the CLQR. However, for certain types of problems, the proposed scheme

also has the intrinsic advantage of reducing the necessary effort for computing the

minimal representation of controller regions. Therefore, the CLQR is covered in this

chapter.

It is current practice to approximate the CLQR problem by receding horizon control
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(RHC, see Chapter 5). For RHC, a finite horizon problem is solved at each time step,

and then only the initial element of the optimal input sequence is applied to the plant.

The main problem of RHC is that it does not, in general, guarantee stability. In order

to make RHC stable, conditions have to be added to the original problem which may

result in degraded performance [RM93,MRRSOO].

A return to the infinite-horizon formulation is required to produce stabilizing con¬

trol laws which guarantee global optimality [RBW90]. However, rather than address

the CLQR problem, all Receding Horizon Control (RHC) variants [MRRSOO], with

few exceptions [SR98,CM96,SD87], rely on approximations. Sznaier and Damborg

[SD87] showed that a finite horizon optimization over a horizon N can provide the

solution to the infinite-horizon constrained optimal control problem. However, there

is no technique to compute N for compact sets of points apart from the conservative

upper bound in [CM96].
The contribution of this section is a novel approach to compute the piecewise affine

(PWA) state feedback solution to the CLQR problem. The presented algorithm com¬

bines multi-parametric quadratic programming [BMDP02] with reachability analysis

to obtain the infinite-time optimal PWA feedback law. The algorithm reduces the

time necessary to compute the PWA solution for the CLQR when compared to other

approaches [Bao02,BMDP02]. Furthermore, the algorithm does not rely on estimates

of N but instead computes N for compact sets. Thus, the on-line computation of the

control action can be reduced by either evaluating the PWA solution or by solving

the finite horizon problem for a horizon of N = N.

We will now briefly recap the results of Section 4.4 before introducing the proposed

algorithm.

10.3.1 Problem Statement

If in (4.7) we set N = +oo, we obtain the infinite-time constrained LQR (CLQR)

problem:

J^(x(0)) = mjn \ YlulQuuk + xlQxxk\, (10.6a)
*•

fc=o
J

subj. to xkeX, ukeV, A; {0,1,...}, (10.6b)

xk+i = Axk + Buk, x0 = x(Q), (10.6c)
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Qx to, Quy o, (io.6d)

where the infinite dimensional vector Uoo — [uq, uT, .. .]T is the optimization vector.

We denote by U^ the optimizer of (10.6). In order to show the equivalence of the

finite time optimal control problem (4.7)(A" < oo) and the infinite-time optimal

control problem (10.6)(A7' = +oo) we also define the following vector:

U*(x(0),N) = [U*N(x(0)), KxN, Kxn+i,Kxn+2, • • •], (10.7)

where K is the unconstrained optimal feedback law (4.3) obtained from the Algebraic

Riccati Equation (4.4).

Next, some of the definitions and theorems required in this section will be restated.

We refer the interested reader to Section 7.1 for detailed discussion of various invariant

sets and simply state the key definitions:

Definition 10.3.1 (Maximal LQR Invariant Set 0^QR) Ö^R C R» denotes

the maximal invariant set of states for which the unconstrained LQR control law

K obtained from the ARE satisfies the constraints in (9.2) for all time, i.e.,

ö^QR ={x{0) e Rn\x(k) e X,Kx(k) e U,Vfc > 0,

x(k + l) = {A + BK)x(k)},

where 0^K is a positive invariant set containing an open neighborhood of the origin

[SD87], provided the origin is contained in the interior of the set described by (9.2)
4

Definition 10.3.2 (Maximal Stabilizable Set /Coo(0^QR)) For the control in¬

variant set O^QR Ç X, the maximal stabilizable set K,oo{0^R) for the LTI system

(9.1) subject to the constraints in (9.2) is the union of all N-step stabilizable sets

contained in X (N e N+J.

The following theorems are derived from [CM96, SR98] and establish the solutions

properties of the CLQR:

Theorem 10.3.3 (Infinite-Horizon Optimization for Initial State, [GBTM03],

[GBTM04]) Assume an optimal control problem (4.7) is posed for an LTI sys¬

tem (9.1) with a terminal cost QXN equal to the ARE solution (4.4). Then there

4If the origin is not contained in (9.2), no solution to (10.6) exists, since J^,(a;(0)) is infinite.
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exists a finite horizon N(x(0)) such that /7^(a:(0)) = U*(x(0),N(x(0))) for any

x(0) e K,oo(0%QR). The maximum stabilizable set K,oo{0%®R) is described in Defini¬

tion 10.3.2. The equality also holds for all horizons N > N(x(0)).

Definition 10.3.4 (Horizon N(x) of State x) We define N(x(0)) to be the min¬

imal horizon satisfying Theorem 10.3.3, i.e., C/^(a;(0)) = U*(x(0),N(x(0))) and

U^(x(0))^U*(x(0),N(x(0))-l).

Lemma 10.3.5 (Horizon N$ of Set <S) Consider a compact set S Ç RN of initial

conditions x(0). If the feasible set Sf = S D K,oo{0^R) is closed, then there exists a

finite horizon Ns defined as

Ns= max N(x(0)),

x(0)esF
K K "

such that t/^,(a;(0)) = U*{x{Q),N$) for any x(0) e Sf- The equality also holds for

all horizons N > Ns- If Sf is not closed, N(x(0)) may be unbounded.

Theorem 10.3.6 (Properties of Infinite-Time Quadratic Optimal Control,

[GBTM03,GBTM04]) Consider a compact set S CRn of initial conditions x(0).

If the feasible set Sp = S D JCoo(Oj^R) is closed, then the horizon Ns is finite and

therefore the state feedback solution U^ = U*(x(0),Ns) of problem (10.6) defined

over Sf is PWA over a finite number of polytopic regions R, in particular

U*Ns(x{0)) = Frx(0) + Gr if s(0) e Vr, (10.8a)

Vr = {x e Rn\Hrx < Kr}, r = 0,...,R. (10.8b)

Proof Follows directly from Lemma 10.3.5 and Theorem 3.2.1 for N = Ns. Conse¬

quence of the results in [BMDP02]. D

Remark 10.3.7 The cumbersome definition of the compact setSp in Lemma 10.3.5

and Theorem 10.3.6 is necessary to avoid the case where the maximal stabilizable set

/Coo is bounded but has open boundaries. As the state x approaches an open boundary

ofJCoo, N(x) — oo.
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Remark 10.3.8 For any initial state x(0) e Koo the following holds: If a PWA

control law according to Theorem 10.3.6 is applied in a RHC manner, the resulting

state trajectory is identical to that which is obtained if the infinite-time input sequence

(10.7) is applied in open-loop [CZ99a].

In view of the results of the previous section and Theorem 10.3.3, the implementation

of CLQR can be performed either by solving the finite horizon optimization problem

(4.7) for a given x(0) with N = N(x(Q)), or in a given compact set S of the initial

conditions by solving the mp-QP (4.7) for N > Ns-

Various methods have been proposed in the literature for the computation of

N(x(0)) [SR98] and the estimation of Ns [CM96]. Note that Ns is required for

the computation of the infinite-time PWA solution presented in Theorem 3.2.1, using

the techniques in [BMDP02].
Chmielewski and Manousiouthakis [CM96] presented an approach that provides a

conservative estimate A^t of the finite horizon Ns for a compact set S (Nest > Ns).

They solve a single, finite dimensional, convex program of known size to obtain

Aest- Their estimate can be used either to compute the PWA solution of (10.6)

for an arbitrary set «S or, alternatively, a quadratic program with horizon Nest for

any initial state x(0) <S. Chisci and Zappa [CZ99a] presented a fast algorithm

which is capable of speeding up the computation time for the CLQR problem by a

factor of &&, where n is the number of states. The procedure involves the solution

of a QP as in (4.7) with horizon Nest. For a given initial state x(0), Scokaert and

Rawlings [SR98] presented an algorithm that attempts to identify N(x(0)) iteratively.

The key theorem is reformulated here for completeness.

Theorem 10.3.9 (Equality of Finite and Infinite Optimal Control, [SR98])

For any given initial state x(0), the solution to (4.7) is equal to the infinite-time

solution (10.6), i.e., JN(x(0)) = J^>(x{.0)) and U^(x(0)) = U*(x(0),N), if the ter¬

minal state xn of (4-7) lies in the unconstrained positive invariant set 0^R and no

terminal set constraint is applied in (4.7c), i.e. the state 'voluntarily' enters the set

Ö^R after N steps.

The method in [SR98] solves (4.7) for an initial horizon N = N0. Then, until the

final state lies in Ö^R, N is increased according to a predefined iteration law. The

iteration variable c is initialized to c = 0 and incremented by 1 at each iteration step.

One iteration scheme is to increment N by c (N = N0 + c) at each iteration step,
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which yields the minimal horizon N such that xn e Ö^R, i.e., A^st = N(x(Q)). An

alternative is to increase A7" by a factor of 2 at each iteration, i.e., N = 2CN0, which

results in fewer QPs to be solved at the cost of a larger A^t (Aest > N(x(0))). Note

that this approach cannot be used to compute the PWA solution in Theorem 3.2.1

because it does not yield the horizon Ns for a compact set S.

10.3.2 Comparison of Available Techniques

In this section we will discuss and compare available methods for solving CLQR and

some of the drawbacks of the approaches of Scokaert and Rawlings in [SR98] and

Chmielewski and Manousiouthakis in [CM96], that were mentioned in the previous

section, will be illustrated.

Example 10.3.10 Consider the system [BMDP02]

„ 1N
/0.7326 -0.086l\

.,,
/o.0609\

.,,

x(k+l)= )x(k)+ u(k).v '

^0.1722 0.9909 J
K '

y0.0064y
v '

The task is to regulate the system to the origin while fulfilling the input constraint

-2 < u(k) < 2, Vfc > 0,

We will solve this example in a set S of interest defined as

S = {xeR2\\\x\\oo<10Q0}.

Note that this is not a constraint but merely an artificial bound on the state-space to

be explored. The cost on the state is set to Qx = I and the input-cost is Qu = 0.01.

Applying the approach in [CM96] to Example 10.3.10, we obtain A^st = 1-5 • 107

while the true minimal horizon is Ns = 71. An algorithm for computing Ns will be

provided in Section 10.3.3. The optimization approach in [SR98] is well suited for

small Ns(x(0)). However, in general, if a large section of the state-space is to be

covered, this implies a large Ns(x(0)). Therefore, the approach in [SR98] will require

a large number of iterations and runtime. For random values of x(0) G /C00(C>^R)
in Example 10.3.10, the run-times of the algorithm in [SR98] are presented in Table

10.1.
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Example 10.3.10 Average-Case (100 runs) Worst-Case

N = N0 + c

N = 2CN0

N = NS

5.29 sec

0.80 sec

0.47 sec

10.13 sec

2.48 sec

0.56 sec

Table 10.1: Time to compute the optimal control input on a 1.2 GHz PC with the

approach in [SR98]. N0 is set to 1 and c is incremented by 1 at each

iteration. The analysis is based on 100 random initial states.

10.3.3 CLQR Algorithm

In this section we will provide an efficient algorithm to compute the PWA solution to

the CLQR problem in (10.8) for a given set S of initial conditions. As a side product,

the algorithm also computes Ns defined in Lemma 10.3.5.

The key idea of the algorithm is described next. For the optimization problem in

(4.7), we choose the terminal set constraint Tset = Rn (i.e. no terminal set constraint)

and terminal cost QXN = P, where P is the solution to the ARE 4.4 and solve an

mp-QP with prediction horizon N. From Theorem 10.3.9 we can conclude that for all

states which enter the invariant set Ö^R introduced in Definition 10.3.1 in N steps,

the infinite-horizon problem has been solved. Therefore the associated feedback law is

infinite-horizon optimal. For the sake of clarity, we will first introduce our algorithm

by applying it to a generic example, before we conclude this section with a more

general description. We denote the set of feasible initial conditions of problem (10.6)

inside the compact set S as Sp = «Sn/C0o(C^QR). The user defined set S is introduced

as an artificial bound on the state-space to make sure Sp is bounded. In practice, <S

should be chosen to be very large.

We start the procedure by computing the positive-invariant unconstrained set Ö^R
introduced in Definition 10.3.1. The polyhedron 0^QR = V0 = {x G Rn\H0x < K0}

can be computed as in [GT91]. Figure 10.5(a) depicts Ö^K. Then, the algorithm

finds a point x by stepping over a facet / of C^R with a small step e, as de¬

scribed in [Bao02]. If (4.7) is feasible for horizon N — 1 (terminal set constraint

7^et = R-n, terminal cost QXN = P and x(0) = x), the active constraints Ai(x(0))

will define the neighboring polyhedron Vi = {x G Rn\Hix < K\} (x G Vi, see Fig¬

ure 10.5(b)) [BMDP02]. In order to avoid redundant exploration, one should keep

track of the facets already explored. By Theorem 10.3.9, the finite time optimal so-
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lution computed above equals the infinite-time optimal solution if xn G Ö^R (here

N = 1). Therefore we extract from Vi the set of points that will enter 0^K in

N = 1 time-steps, provided that the optimal control law associated with Vi (i.e.,

UN = Frx(0) + Gr; Here, r = 1 and N = 1) is applied. The Infinite-Time Polyhedron

(1TV) is therefore defined by the intersection of the following two polyhedra:

xn G C4QR, (10.9a)

Xq e Vr. (10.9b)

Equation (10.9a) is the reachability constraint and (10.9b) defines the set of

states for which the computed feedback law is feasible and optimal over N steps

(see [BMDP02] for details). Note that Xn can be described as a linear function of x0

by substituting the feedback sequence5 UN = Frx0+Gr into the LTI system dynamics

(9.1).

The identified region will be referred to as TTV^ (ITVq = 0^QR, see Fig¬

ure 10.5(c)) according to the following convention.

Definition 10.3.11 (Infinite-Time-Polyhedron 1TVN) We define the r-th

Infinite-Time-Polyhedron TTVr as follows:

Vx G ITVr, Ar(x) = constant,

and the reachability condition (10.9a) holds. The optimal feedback law for TTV^
is defined by A^f [BMDP02] and ensures that Xn G Ö^R. Once all redundant

inequalities have been removed, this polyhedron has two types of facets:

Type I: The facet originated from constraint restrictions in (10.9b).

Type II: The facet originated from reachability restrictions in (10.9a).

The procedure for identifying the adjacent ITVs is repeated for all facets / not pre¬

viously explored, which originate from constraint restrictions (Type I). If a facet orig¬

inates from the reachability restriction (Type II), we can conclude that the infinite-

horizon optimal input sequence will not drive the states 'on the other side' of the facet

into Ö^K in N steps. This distinction is depicted in Figure 10.5(d). As depicted in

Figure 10.5(d), Type I facets are shared by all V and their associated reachability

5 The optimizer {7jy can be represented by the time-varying feedback Fr, Gr whereby the dimension

of UN is a function of the input dimension m of the LTI system and the prediction horizon N

which was used to compute Fr,Gr.
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subsets TTV, while all other facets are of Type II. Also note that we define all facets

of TTVo = (9^QR to be of Type I, i.e., all facets of C^QR are explored at the first

iteration (see Algorithm 10.3.12).

Once all facets have been explored for the finite horizon N, the horizon is in¬

creased to N +1 and the entire procedure is repeated. For all regions that have been

computed for a smaller N, only facets of Type II are considered while for all newly

identified regions, only facets of Type I are examined. This procedure is not applied

to the facets which have already been explored. Note that the distinction between

Type I and Type II facets merely serves to speed up the exploration procedure. It

is not necessary for the algorithm to work correctly. The algorithm terminates as

soon as all facets / of all TTVs have been explored. A facet / is considered to be

explored if the state x beyond / provides an TTV region or an infeasible problem

(10.6) results for x(0) = x. The presented procedure is summarized for a general

problem in the following algorithm:

Algorithm 10.3.12 (CLQR Computation)

1. 1TV°0 = 0^R, N = 0,r = l,C = {},Z = {};

2. C = CU {ITVl F0 = KLQR, Go = 0};

3. repeat:

4. N = N+l

5. forall (ITVl eCkq<N), explore(TTV\, Type II);

6. forall (ITVl eCkq = N), explore(1TV\,Type I);

7. until: all facets f of all ITVj G C are contained in Z;

8. Ns = N; return C;

function explore(TTV\,facetType);

1. forall (f G facetsßTVi) & f i Z) ,

2. if facet type of f is not facetType, goto 1;

3. Z = ZU{f};
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4- step over f and get x;

5. if 3 1TV? e C — x G TTV?, return;

6. solve (4-7) for x(0) = x with horizon N;

if infeasible, return;

7. computeTTVr according to (10.9b) and (10.9a);

8. IfXTVr = 0, goto 1;

9. Use A^ to compute Fr and Gr according to [BMDP02];

10. C = CU{ITV?,Fr, Gr}; r = r + 1;

11. end forall.

As before, N denotes the horizon for solving (4.7) and the integer r is a counter

for the region number. The generated structure C is a list of all regions with their

associated control law as well as a list containing all explored facets.

Theorem 10.3.13 (Finite-Time Convergence of Algorithm 10.3.12,

[GBTM03], [GBTM04]) Algorithm 10.3.12 always converges infinite time, pro¬

vided Sp is bounded and closed.

Proof If /Coo(ö£QR) is compact, a finite Ns exists [CM96]. For a finite prediction

horizon, the number of possible active constraint combinations is also finite. Since a

region is uniquely identified by the active constraints, the associated region partition

will consist of a finite number of regions. Since the algorithm increases the horizon N

if no more regions are identified, the prediction horizon will eventually reach Ns. At

this point, Algorithm 10.3.12 is identical to the one in [BMDP02] and will therefore

converge in finite time. D

It should be noted that in theory, Ns and the convergence time might not be finite

if Sp is open or unbounded. However, in practice this is not an issue. First, there will

always exist a compact set S to make Sp bounded. Second, if Sp has open boundaries,

accumulation points will occur near those boundaries, i.e. an infinite number of

regions will be located in a bounded subset of the state-space. Since the step-size

e which is taken in the algorithm is finite, the point x will not provide a feasible

solution to (4.7) once the regions are close to the open boundaries. The resulting
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partition will be an inner approximation of /Coo(C^R), whereby the accuracy of the

approximation can be adjusted by choice of the step-size e. Therefore in practice the

algorithm always converges in finite time, though not the entire set /Coo(C^R) may

be covered by ITVs if /Coo(0^QR) has open boundaries, i.e. \}XTVr C /Coo(0^QR).
Theorem 10.3.14 shows that each state x G /Coo(C?^QR) is unambiguously associated

with one TTV.

Theorem 10.3.14 (Non-Overlapping ITVs, [GBTM03,GBTM04]) The in¬

tersection of the interior ofXTVi
and XTVj1 is non-empty, if and only ifi — j and

N = M.

Proof "4=" trivial.

"=*>", from Theorem 10.3.9, (10.9b) and (10.9a), we can conclude that the XTV

region partition is identical to the finite-time region partition computed for a horizon

of N > Ns- Therefore each region has a distinct set of active constraints and from

[BMDP02] we can conclude that if two XTVs have a non-empty intersection then

they are identical. D

The following Theorems state some properties of the solution provided by Algo¬

rithm 10.3.12.

Theorem 10.3.15 (Exact Computation of Äs, [GBTM03,GBTM04]) // we

explore any given compact set S with Algorithm 10.3.12, the largest resulting horizon

is equal to Ns, i.e.,

Ns = max N.

ITV? r=0,...,R

Proof Since Ns is defined as Ns = maxxmsF N(x(0)) with SF = S n £oo(ö^QR),

we need to show that

max N(x(0)) = max N.
x(o)esF xrv r=o r

We will denote the maximum horizon of all XTVs as Nmax. Consider an initial

feasible state x e S which reaches Ö^R in exactly Ns steps if the optimal PWA

control law is applied. This state would not be covered by any XTV, if A^ax < Ns,

since (10.9a) would be violated. Since Algorithm 10.3.12 always converges, the entire



10.3 Computation of the Constrained Infinite-Time Linear Quadratic Regulator 119

feasible set JCoo{0^R) is covered by XTVs and therefore Nmax > Ns. However,

Amax can only be greater than Ns if a region with horizon N = Ns is bounded by

a reachability facet (Type II). Only then would the algorithm increase AT further;

otherwise all facets would be covered for a horizon N — Ns and the exploration

would end. Since, by definition, all x G fcoo{0)£R) can reach Ö^R in at most Ns

steps, a region with horizon N = Ns cannot be bounded by a Type II facet. These

states have no impact on the result because N{x) is not defined for infeasible states

(i.e., xe{S\Koo{0)gR))). Therefore Nmax = Ns. D

Lemma 10.3.16 In the infinite-horizon polyhedral state-space region partition a

state can only remain within one region for at most one time step (except for Ö^R).

Proof Follows from Remark 10.3.8 and the implementation of Algorithm 10.3.12.D

Theorem 10.3.17 (Invariance of Feasible Set, [GBTM03,GBTM04]) The

union of all XTVs computed with Algorithm 10.3.12 is positive invariant if Sf is

bounded and closed.

Proof Follows from Lemma 10.3.16 and Theorem 3.2.1 and 10.3.13. The state

will always move to a region with horizon N — 1 at the next time step until the

unconstrained region ö)£R is reached. D

Remark 10.3.18 As previously stated, \jXTVr C Koo{0^R) if fCoo{0^R) has

open boundaries or S C K.oo(0^R). The union of all regions is generally not in¬

variant in this case. However, the union of regions can easily be made invariant by

modifying the on-line application of the feedback law. If the trajectory enters part

of the state space where no region was found, the open loop solution of the previ¬

ous region is applied. Since the open-loop is equal to the RHC closed-loop solution

for the infinite-horizon controller (see Remark 10.3.8), optimality and invariance is

preserved.
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For certain classes of problems Algorithm 10.3.12 is more efficient than standard

multi-parametric solvers, even if finite horizon optimization problems are being solved.

The initial polyhedral representation Vr contains redundant constraints which need

to be removed in order to obtain a minimal representation of the controller region.

As stated in Chapter 9, the number of initial half-spaces grows linearly with the

prediction horizon. Hence, if a standard algorithm is used to compute the CLQR, it

is necessary to compute the solution for a fixed horizon N = Ns-

In the CLQR algorithm presented here, the number of initial half-spaces for each

XTVN (10.9) grows linearly from iteration to iteration. Specifically, the number of

half-spaces in (10.9a) are constant and the number of half-spaces in (10.9b) grow

linearly with N, i.e. (10.9b) is obtained for N, whereby N is increased at each

iteration and takes on values between 1 and Ns. Therefore, the traditional multi-

parametric solver needs to compute the minimal representation of (10.9b) for a fixed

N = Ns, whereas the CLQR algorithm proposed here needs to compute the minimal

representation of (10.9) for varying N. It is therefore not possible to draw general

conclusions on the efficiency of the two schemes. It is easy to come up with examples

where either one outperforms the other.

It is possible to extend Algorithm 10.3.12 to speed up the identification of the

active PWA feedback law for a given :r(0). Since the closed-loop solution is equal to

the open-loop solution (see Remark 10.3.8) and a state only remains in one region

for one time-step (see Lemma 10.3.16), it is possible to merge regions according

to [BFT01,GTM04,GTM03]. With this method, regions with the same PWA control

law on the first input are joined. If this procedure is applied to the PWA controller

partition obtained for Example 10.3.10, the number of regions is reduced from 185

to 45 (see Figure 10.6).

It should be noted that the PWA controller may consist of a very large number

of regions. The resulting partition may therefore be computationally prohibitive for

on-line implementation in the form of a look-up table. However, as the next section

will show, the CLQR obtained with Algorithm 10.3.12 may also be of relatively low

complexity. Furthermore, the procedure described in Algorithm 10.3.12 can easily be

adjusted to compute the finite horizon controller which may yield an off-line speedup

compared to other algorithms [BMDP02,Bao02].
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located on the thin diagonal slab).

Figure 10.6: Infinite-Time Region partitions obtained by applying Algorithm 10.3.12

on Example 10.3.10.

Algorithm 10.3.12 22.43 sec

mp-QP [Bao02], N = NS = 71 37.99 sec

Table 10.2: Comparisons of computation times to compute the PWA solution for

Example 10.3.10 on a Pentium III, 1.2 GHz. The solution consists of 185

regions.

10.3.4 Numerical Results

In this section, we will compare the computation time needed to obtain the PWA

solution using Algorithm 10.3.12 to other approaches. Subsequently, we will compare

the necessary effort to identify the active feedback law with the time needed to solve

a QP. The region partitions that were obtained for Example 10.3.10 can be seen

in Figure 10.6(a). The times needed to compute the PWA solution for Examples

10.3.10 using various algorithms are given in Table 10.2. The abbreviation mp-QP

in Table 10.2 signifies that (4.7) is solved explicitly for horizon AT = Ns; Note that

there is currently no algorithm to compute Ns. Also note that the run-time for

both algorithms could be further reduced by almost 50% by taking into account that

symmetric constraints produce symmetric region partitions [TJB01]. To the authors'
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Example 10.3.10 Average-Case Worst-Case

N = N0 + c 5.29 sec 10.13 sec

N = 2CN0 0.80 sec 2.48 sec

N = NS 0.47 sec 0.56 sec

Algorithm 10.3.12 (185 regions) 0.0042 sec 0.0056 sec

Table 10.3: Comparisons of the computation time necessary to identify the optimal

input on a Pentium III, 1.2 GHz. Ao is set to 1 and c is incremented by

1 at each iteration. The analysis is based on 100 random initial states.

knowledge, all comparable algorithms which were published to date, have larger run¬

times, even under the assumption that the horizon Ns is known. This is shown in

Table 10.2 and was verified on numerous other examples.

Assuming the PWA controller partition has been computed, we will now compare

the on-line times necessary to extract the PWA feedback law with the iterative QP

algorithm of Scokaert and Rawlings [SR98] which was presented in Section 10.3.2.

Also note that the PWA solution can give hard bounds on the worst case run-time

whereas a QP based solution cannot provide such a bound without knowledge of Ns.

A scheme to decrease the time necessary to find the PWA feedback law further,

was published in [BBBM01]. The authors use a cost-function to identify the optimal

feedback law, greatly decreasing the required storage-space and additionally reducing

identification times for the controller by a factor of 2 for the examples given here.

This and various other schemes to speed up the set membership test will be discussed

in Chapter 12. Note that, according to Theorem 10.3.15, Algorithm 10.3.12 can be

used to compute Ns exactly. As an alternative to the look-up table, this value could

subsequently be used to speed up the algorithm in [SD87,SR98].

10.4 Conclusions

Section 10.2 presented computationally cheap algorithms to reduce the computation

effort of polytope reduction in multi-parametric programs. Computational experi¬

ments show that the time spent in polytope reductions may be reduced, leading to

overall time savings of the multi-parametric programs, in general. A side-effect of

the polytope reduction is that a bounding box is obtained. This bounding box can
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be used in other parts of the multi-parametric algorithms to speed up some polytopic

manipulations, leading to dramatic gains for some problems.

Section 10.3 presented an efficient algorithm for solving the infinite-horizon con¬

strained linear quadratic regulator (CLQR) problem. The algorithm is based on

multi-parametric quadratic programming and reachability analysis. When compared

to on-line computation procedures, the time necessary to obtain the optimal input

was significantly decreased, making CLQR an attractive solution even for fast pro¬

cesses. In addition, a method to compute the horizon Ns for compact sets has been

presented. Exact knowledge of Ns can serve to improve the performance of a wide

array of algorithms presented in the literature.
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11

Robust Low Complexity Feedback

Control of Constrained Systems

This chapter will address the second lever for complexity reduction. Namely, the

computation of controller partitions consisting of few regions.

Figure 11.1: Illustration of the three levers for complexity reduction in receding hori¬

zon control. The second lever, which is the focus of this chapter, is

highlighted.

As repeatedly stated in previous chapters, the complexity of multi-parametric pro¬

gramming solutions is the major bottle-neck in practical applications. The issue of

complexity has been addressed in the literature mainly by reducing the storage space

requirements for the solution and speeding up the on-line set-membership test neces¬

sary to find the active feedback law [BBBM01,TJB03b,RG04b,BBBM01]. However,

because the initial computation grows exponentially with the problem size, these

125
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methods do not make large problems tractable, since the initial computation is al¬

ready prohibitive. Other procedures such as [BF01,GLPM03] may directly provide

solutions of lower complexity (no post-processing), but a reduction is by no means

guaranteed and, even when present, is not sufficient to make practical problems

tractable.

There are numerous other (efficient) ways to obtain low complexity feedback con¬

trollers, but most of these schemes (e.g., [TJ02,RKC01,CKD03, JG03,KM04b]1) do

not meet the objectives considered in this section, namely, providing robust feedback

control for all controllable states with guaranteed robust stability and constraint

satisfaction.

In this section it will be shown how invariant set computation schemes [Bla92,Bla94,

KG98,Bla99] can be combined with multi-parametric programming to simultaneously

compute robust control invariant sets and the associated state-feedback controller.

Furthermore, a computation scheme is presented which yields the linear feedback

controller which produces the largest ellipsoidal robust invariant set for the closed-

loop system. The results are derived from the publications in [GM03,GPM03].

Subsequently, it is shown how the controller computations may be combined with

the stability analysis schemes presented in Section 8 to obtain feedback controllers

of very low complexity. Specifically, the computation of a robust minimum-time

controller and a so called 'N'-step controller is presented. Both controllers guarantee

robust constraint satisfaction and robust convergence. In an extensive case study

we demonstrate that, in general, the controller complexity for these controllers is

orders of magnitude smaller than what is obtained by computing stabilizing optimal

controllers which rely on terminal set constraints. The numerical results furthermore

suggest a negligible performance decrease relative to linear and quadratic optimal

control.

Definition of Systems with Uncertainties

In this chapter, we will consider systems subject to time-varying polytopic uncertainty

and additive disturbances of the form

x{k + l) = A(r)(k))x(k) + B(T](k))u{k) + w(k), (11.1)

Specifically, these schemes do not guarantee that the resulting controller will cover the maximum

controllable set of states.
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with

w{k)eW, x(k)eX, u(k)eV, Vfc>0, (11.2)

where the sets W, X and U are polytopic and 0 G int(W), 0 G int(X), 0 G int(U). In

addition,

L

[A(r))\B(V)] = 2>(l)[^(°|£*(0]> r]eA,V=[r]U,...,r](% (11.3a)

L

A â {v g RL | Y,V{1) = 1
, VW > 0}, (H.3b)

z=i

n â {[A(r)))\B(V)] Rn^n+m) | 77 G A}. (11.3c)

The set n is assumed to be polytopic. Furthermore, (11.1) can be written as

x(k + l)e f(x(k),u(k), A, W) = {A(r](k))x{k) + B{r){k))u{k) + w{k),

r](k) e A, w(k) G W},

where /(•) is a set-valued function. If (11.1) is subject to an optimal (PWA) feedback

law as given in Theorem 3.2.1, the following autonomous PWA system is obtained

x(k+l) = Ar(r](k))x(k)+gr(r]{k))+w(k), rj(k) G A, w(k) G W, x(k) G Vr, (11.4)

with Ar = A(rj(k)) + B(rj(k))Fr and gr{ri{k)) = B{rj{k))GT whereby Fr and Gr are

defined in Theorem 3.2.1. The set-valued equivalent to (11.4) can now be stated for

x(k) G Vr-

x{k + l)e /pwaMAO, A, W) = {Ar{v(k))x{k) + gr(v(k)) + w(k),

rj{k) e A, w(k) e W}.

Here, x(k) G Vr defines the active dynamics r.

11.1 Invariant Set Computation

Invariant sets were covered in-depth in Chapter 7. We will briefly restate the main

definitions and algorithms here:

Definition 11.1.1 (Maximal Robust Control Invariant Set Coo) The set Coo

is said to be the maximal robustly control invariant set for the linear system in (11-1)

subject to the constraints in (11.2) if it is robust control invariant and contains all

the robustly control invariant sets contained in X.



128 11 Robust Low Complexity Feedback Control of Constrained Systems

Definition 11.1.2 (Robust 1-step Set Pre($)) Given the set $ Ç X the robust

one step set Pre($) for system (11.1) subject to the constraints in (11.2) is

Pre($) = {x e X | 3u G U s.t. f(x,u, A,W) Ç $}.

Definition 11.1.3 (Maximal Robust Stabilizable Set /Coo(^)) For a robust

invariant target set $ Ç X, the N-step robustly stabilizable set /Cjv(^) for system

(11.1) subject to the constraints in (11.2) is defined by the set sequence Kc

JCC à Pve(fCc-i), /Co = $, c G {1,..., N},

where Pre(-) is defined in Definition 11.1.2. The maximal robust stabilizable set

/Coo(^) is the union of all N-step stabilizable sets.

The set /C00(^>) Q C^ contains all states which can be robustly steered into the robust

invariant set $ and can be computed as follows (cf. [Bla99,Ber72]):

Algorithm 11.1.4 (The Maximal Robust Stabilizable Set /C00($))

1. K.Q = <&, where $ is robust invariant.

2. Kc+i = Pre(£c).

3. If tCc+i — K,c, then /C00(<J>) = Kc, return; Else, set c = c-f 1 and goto 2.

Since $ is robust invariant, it holds Vc G N that /Cc($) is robust control invariant

and K,c Ç JCc+i. Note that Algorithm 11.1.4 is not guaranteed to terminate in finite

time.

The maximal control invariant set Coo can be computed as follows (cf. [Bla94]):

Definition 11.1.5 (A Scaled Polytope) We define the X Scaled Polytope XV

(XeR, OeV) as

XP = {Ax G Rn | x G V}.

Algorithm 11.1.6 (The Maximal Robust Control Invariant Set C^)

1. C0 = X.

2. Cc+1 = Pre(ACc).
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3. If Cc Ç Cc+i, then C^, = Cc+i, return; Else, set c = c+ 1 and goto 2.

All intermediate sets Cc+i (i.e. Cc $£ Cc+i) in Algorithm 11.1.6 are not robust control

invariant. If A is chosen as 0 < A < 1, then Algorithm 11.1.6 will converge to a robust

invariant subset C£> ÇJ Coo in finite time2 [Bla94].

The invariance properties of the intermediate sets in Algorithm 11.1.4 as well as the

finite time termination of Algorithm 11.1.6 are relevant for the controller computation

methods described in Section 11.3.

Remark 11.1.7 Although JCC($) andC^ can be computed in finite time, the sets may

become arbitrarily complex even for problems of low dimensions, placing a practical

limit on the number of iterations which are tractable in Algorithms 11.1.4 and 11.1.6.

11.2 Computing PWA Controllers that Enforce

Set Invariance

This section will illustrate how polytopic robust control invariant sets along with an

associated PWA control law can be constructed. The traditional method to achieve

this task is based on projection and triangulation and will be discussed in Section

11.2.1. In Section 11.2.2, we will demonstrate how multi-parametric programming

can be used to simultaneously obtain robust control invariant sets and the associated

PWA feedback controllers. Finally, a case study to compare the two approaches is

presented in Section 11.2.3.

11.2.1 PWA Control via Triangulation

In most control schemes based on set invariance, the computation of the invari¬

ant set and the associated control law are dealt with separately (e.g. [MS97, Bla94,

GWKM04]).

Specifically, the sets Koo or C^ are computed by applying projection algo¬

rithms (e.g., [JKM04]) in Step 2 of Algorithms 11.1.4 and 11.1.6. Subsequently,

the robust invariant set is divided into simplices using triangulation methods

2In order to obtain C» exactly, it is necessary to set A = 1. For A = 1 there is no finite time

termination guarantee.
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[MS97, Bla94, GWKM04]. Finally, in order to obtain a feedback law, control se¬

quences are computed for each vertex of each simplex. The linear interpolation of

these input sequences yields an affine feedback law over each simplex. The input

resulting from this controller is therefore a PWA function defined over a simplex

partition of the robust invariant sets Koo or Coo-

In our experience [GWKM04], triangulation is ill suited for control problems due

to the inherent computational complexity of the off-line computations. For instance,

the most established triangulation method, the Delaunay Triangulation, requires

vertex enumeration and subsequent convex hull computation in a higher dimensional

space [Zie94,Fuk04c], which is very expensive.

Furthermore, in on-line application, triangulation based controllers generally need

to rely on open loop control in order to provide stability guarantees [GWKM04,

WK03b] (this is not true for the minimum-time controller proposed in [MS97]). In

addition, the triangulation based controller does not guarantee optimal performance.

11.2.2 PWA Control via Multi-Parametric Programming

The contribution of this section is to establish that multi-parametric programming

can be used to simultaneously obtain the sets Koo or Coo and a PWA feedback law

which makes these sets robust invariant. Unlike the methods in [Bla92,Bla94,MS97],
there is no separation between set and controller computation in the scheme proposed

here.

We will now show how to compute Pre(>) in Step 2 of Algorithms 11.1.4 and 11.1.6

via multi-parametric programming. This computation will yield both the set Pre(%et)

along with a PWA feedback controller which will robustly drive all states into the

target set, i.e. xk G Pre(7^et) => xk+i G 7^et- Problem (11.5a) can be reformulated as

Ji(x(0)) = mm(uoQuuo + xTQxx0 + xTQXNx\) (11.5a)

s.t. ijexew, x[ g Tset e w, u0 e u, (n.5b)

x[ = A^xo + B^uo, xo = x(0)yie{l,...,L}, (11.5c)

x\ = Äxq + Buq, xq = x(0), (11.5d)

Qx h 0, QXN to, Quy 0. (11.5e)

Here, Ä and B denote the nominal dynamics of the system. The feasible set Xx (here

N =1) is obtained by solving (11.5) as an mp-QP and Pre(%et) = X\ (see (11.5b)).
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It follows from Theorem 3.2.1 that the mp-QP will also yield the PWA feedback

law which will robustly drive all states in X\ into Tset in one time step. Hence, by

applying multi-parametric programming techniques in Step 2 of Algorithm 11.1.4

(Tset = fCc) or Algorithm 11.1.6 (Tset = Cc) both the robust control invariant set and

the associated control law are obtained. Note that this result is independent of the

objective (11.5a), i.e. it would also be possible to use linear objectives.

11.2.3 Triangulation versus Multi-Parametric Programming

In this section, multi-parametric controllers will be compared with the only other

established method, triangulation, to obtain explicit state feedback controllers which

cover the maximal control invariant (or stabilizable) set Coo (°r ^oo)-

The focus of the comparison is on controller complexity, i.e. how many affine

feedback laws define the PWA controller. For triangulation-controllers, the number

of simplex regions depends only on the complexity of Coo (or K-oo) and not on the

control objective, as is the case for multi-parametric programming.

The number of regions obtained with multi-parametric programming is compared

to the number of regions of a simplex-controller in Figure 11.2. Specifically, 20 random

stable systems with n = 4 states and m = 2 inputs were generated. Subsequently,

both the infinite horizon optimal solution with the multi-parametric algorithm in

[GBTM04] and a triangulation controller [GWKM04] were computed for different

cost objectives in (11.5a). The systems considered here are nominal, i.e. W = {0}.

The number of simplices given in Figure 11.2 was obtained by applying the Delaunay

triangulation [Zie94] to the maximal robust stabilizable set /Coo(0).

Although the suboptimal triangulation based controller may consist of fewer regions

than the infinite horizon optimal multi-parametric counterpart, we will show in this

chapter that controller computation based on parametric programming can be far

superior if the only objective is to enforce robust set invariance. It trivially holds

that a simplex partition of a robust invariant set will always consist of more (or an

equal number of) control laws than the simplest polytopic partition of the same set.

Section 11.3 will illustrate how polytopic controller partitions of low complexity can

be obtained and in Section 11.4 these methods are applied to the systems considered

in this section (i.e. in Figure 11.2).
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Figure 11.2: Number of controller partitions mp-QP [GBTM04] vs. Triangulation

[GWKM04] for different cost objectives in (11.5a). The same systems

were used for the two cost objectives.

11.3 Computing Robust Low Complexity

Controllers

This section will illustrate how the set computation algorithms in Section 11.1 and

the stability analysis schemes in Chapter 8 can be combined to obtain feedback

controllers of very low complexity. Before giving an outline of this section, we will

describe the control objectives that are pursued:

1. Constraints Satisfaction: The controller covers all states /Coo(Ooo) or C^

and constraint satisfaction is guaranteed for all time for those states.

2. Convergence: The closed-loop system is robust convergent (see Definition

8.5.1).

3. Low Complexity: The PWA controller partition {Vr}R=i consists of few re¬

gions (R is small).

Remark 11.3.1 Since the set K-oo or Coo may not be computable in finite time, we

will only consider the finite time computable sets K-n and C^ (0 < X < 1) in this

section.
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In Section 11.3.1, we will first present a method to compute the linear feedback

controller that is associated with the largest volume ellipsoidal robust invariant set

of an LTI system. This computation is crucial for the computation of the minimum-

time feedback controller which is subsequently presented in Section 11.3.2. Finally,

the computation of a so-called W-step' controller is presented in Section 11.3.3.

11.3.1 Computing Linear Controllers for Enforcing Set

Invariance

The contribution of this section is the introduction of an algorithm for computing

the linear feedback controller which produces the largest ellipsoidal robust invariant

set for uncertain linear systems of type (11.1).

We will first motivate the need for this section, before describing the proposed

computation scheme in detail. The algorithms presented in the subsequent sec¬

tions are closely correlated with Algorithm 11.1.4, which computes the maximal

stabilizable set /C^. If Algorithm 11.1.4 is initialized with a robust invariant set

$, all sets obtained at subsequent iterations are robust invariant, which is of great

importance, since finite time termination of Algorithm 11.1.4 cannot be guaran¬

teed and the iteration may have to be aborted after a finite number of steps. The

initialization set $ is also crucial for minimum-time control, as will be illustrated

in the next section. Furthermore, if the set $ is large in volume, the subsequent

iteration scheme converges more quickly. Hence, the problem of finding a robust

invariant set or even the largest volume robust invariant set is of great interest, in

practice. Although we are dealing with polytopic sets, it is safe to assume that the

feedback law associated with the largest volume invariant ellipsoids will also yield

large (though not necessarily the largest) polytopic invariant sets. This assump¬

tion is sound since the polytopic invariant set will always be larger in volume than

the associated ellipsoidal invariant set for the problem setup described in this section.

In [Löf03, Appendix 5], it was shown how to apply LMI techniques to find the

largest robust invariant ellipsoid for systems of type (11.1) subject to additive dis¬

turbances bounded by an ellipsoid. Here we will extend that concept by considering

additive disturbances bounded by a polytope. Furthermore, we require the ellipsoid

to be contractive for the nominal system, i.e. if no uncertainty is present the closed-
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loop system is asymptotically stable in the ellipsoid. This is crucial for the robust

convergence proof in Theorem 11.3.5.

The search for the maximal volume robust invariant ellipsoid £ = {x G

Rn | xTPx < 1} and the linear feedback law F (u = Fx) can be posed as:

mindet(-P), suchthat, (11.6a)

xk+i = {A(r]) + B(ï])F)xk + wk, FxkeV, (11.6b)

xk G £ =* xk+i G £, Vwk e W, V[A(r?) | B(rj)] e II, £ C X. (11.6c)

We assume W to be a polytope with 0 G int(W). The invariance condition in (11.6c)

can be posed as an LMI by applying the S-procedure [BGFB94]:

/(A« + B^FfP(A^ + B®F) (AW + B®F)tPw<p)\ f-P o\

\ (wW)TP(AU + B®F) (wM)TPwM -lJ+T\0 l) ~ '

(11.7)

V[AW I Bm] G vert(n), Vw(p) G vert(W),r G R+.

(p~l o\
A congruence transformation with I I and subsequent Schur complement

turns (11.7) into:

/ rZ 0 {A®Z + B®K)T\
0 1-T (w^f tO, (11.8a)

VA»Z + 5«A: u)W Z /

V[A« | Bw] G vert(n), Vw(p) G vert(W), (11.8b)

where Z = P~x and K = FP~l. Furthermore, we will require the feedback law to

stabilize the system if no additive uncertainty is present. Again, this can be written

as an LMI [BGFB94]:

/ Z (A®Z + BWK)t Z Kt\
A®Z + B®K Z 0

Z 0 Q-1 0

\ k oo Q-y

^0, Vf e {!,...,£}, (11.9)

where QX and Qu are defined in (11.5a). Condition (11.9) is crucial for the robust

convergence proof in Theorem 11.3.5 to hold. Furthermore, if the obtained feedback
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law F satisfies (11.9), we can apply the methods in [KG98] to obtain ö^ in finite time,

since A® + B^F is Hurwitz V7 G {1,..., L} and there exists a common Lyapunov

function (see (11.9)).

Although problem (11.8) is bilinear (rZ), it can be efficiently solved by doing a

bisection on the scalar 0 < r < 1 (follows from element [2,2] in (11.8) and r G R+),

so that we can now solve our original problem in polynomial time by using standard

Semi-Definite Programming (SDP) software [Löf04,Stu99], i.e.,

maxdet(Z), such that (11.2), (11.8), and (11.9) hold. (11.10)

The state and input constraints (11.2) can easily be posed as an LMI [KBM96].

Remark 11.3.2 If the control input u is constrained by symmetric lower and upper

bounds, i.e. \\u\\oo < umax and ||x||oo < xmaX) then the constraints can be imposed in

a non-conservative manner. If this is not the case, conservative approximations of

the constraints sets U and X are needed [KBM96], such that no solution to the SDP

(11.10) may exist. In such cases, it is advisable to remove the system constraints

from (11.10) and solve the relaxed problem instead3. The subsequent computation of

Ooo with the method in [KG98] will yield a robust invariant set satisfying the original

problem constraints u G U and x eX, if it exists. However, the volume of that set

may be very small.

11.3.2 Minimum-Time Controller

The contribution of this section is the introduction of an algorithm for the construc¬

tion of minimum-time state feedback controllers of low complexity.

A constructive algorithm for computing a minimum-time controller was first pre¬

sented in [KG87] and the concepts therein were later extended to uncertain systems

in [Bla92]. A robust minimum-time state feedback controller not relying on on-line

optimization was first presented in [MS97].

The difference between the approach proposed here and the scheme in [MS97] is

in the construction of the state feedback controller and in the the structure of the

feedback law. In [MS97], the authors proposed an implementation of Algorithm

3In order to obtain a bounded result, it is advisable to add 'artificial' constraints HuHoo < umax

and ||x||oo < Zmax, with umax and xmax such that the artificial constraints encompass the sets

U and X.
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11.1.4 which required all polytopes Kc to be available in both half-space and vertex

representation. In addition, the authors relied on triangulation to obtain the feedback

controllers which is computationally very expensive as pointed out in Section 11.2.1.

Furthermore, it is necessary to triangulate each set /Cc obtained at Step 2 of Algorithm

11.1.4, such that the final controller complexity is much higher than indicated by

Figure 11.2.

Off-Line Computation

The controller computation proposed here is based on multi-parametric programming

and works as follows:

Algorithm 11.3.3 (Minimum-Time Controller: Off-Line Computation)

1. Compute a linear feedback controller F such that the nominal system is asymp¬

totically stabilized and the maximal robust invariant set Ooo is non-empty (see

Section 11.3.1 for details).

2. Compute Ooo for the closed-loop system (xk+\ = (A + BF)xk) according to

[KG98J.

3. Compute JCn{Ooo) according to Algorithm 11.1.4 using multi-parametric pro¬

gramming and store all controller partitions computed at intermediate iteration

steps.

In Algorithm 11.3.3, the first two steps are needed to obtain the target set Ooo,

while the iterative computation occurs in Step 3 (see Figure 11.3). Instead of solving

one multi-parametric program for prediction horizon N, Step 3 in Algorithm 11.3.3

solves N multi-parametric programs for prediction horizon 1. Since, the overall

complexity of a multi-parametric program is exponential in N [BMDP02], this scheme

can be expected to yield controllers of lower complexity than standard optimal control

schemes (e.g. [BMDP02,Bao02]), in general.

On-Line Computation

Since numerous multi-parametric programs are solved in Algorithm 11.3.3, several

controller regions may overlap. In order to guarantee robust convergence and feasi¬

bility, the feedback law associated with the region computed at the smallest iteration

number c, is selected for any given state x,
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Figure 11.3: Illustration of Algorithm 11.3.3 applied to Example 5.2.7. The target

sets Tset are depicted by bold outlines and the controller partitions are

shaded.

Algorithm 11.3.4 (Minimum-Time Controller: On-Line Application)

1. Obtain state measurement x.

2. Find controller partition cmm = niinc{o,...,iV} c, s.t. x G fCc.

3. Find controller region r, such that x G V^"1 and compute Uq = FrZmmx + G$mm.

4- Apply input uq to system and go to Step 1.

Here the sets Kc are defined as in Algorithm 11.1.4 and {Vr}RL\ is the controller

partition computed at iteration c, consisting of Rc regions. Note that the region

identification for this type of controller partition is much more efficient than simply

checking all the regions. Steps 2 and 3 in Algorithm 11.3.4 correspond to two levels of
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a search tree, where the search is first performed over the feasible sets K.c and then over

the controller partition {V?}^. Furthermore, one may discard all regions Vr which

are completely covered by previously computed controllers (i.e. V\ Q Uje{i,...,i-i} ^i)
since they are not time optimal.

Theorem 11.3.5 (Properties of Minimum-Time Control, [GM04,GM03])

If the feedback law obtained with Algorithm 11.3.3 is applied as in Algorithm 11.3.4

to system (11.1), then the closed-loop system is robust convergent on K.n{Ooo)- In

addition, the constraints (11.2) will be satisfied for all time.

Proof If the partitions obtained with Algorithm 11.3.3 are applied as in Algorithm

11.3.4, any state x G Kc \ Kc-\ will be robustly driven into the set K,c-\ \ K-c-2 in

one time step. Since Algorithm 11.3.3 terminates in finite time, the state will enter

the robust invariant set Ooo in finite time. Once the state enters the robust invariant

set Ooo, the trajectory will converge to the minimal robust invariant set ^-"oo because

the nominal closed-loop system in C?oo is asymptotically stable (see Section 11.3.1,

(11.9)) [KG98]. Constraint satisfaction is trivially guaranteed by the mp-QP (11.5)

and the initialization /Co = Coo of Algorithm 11.3.3. D

11.3.3 JV-Step Controller

The contribution of this section is the introduction of a control scheme which sepa¬

rately deals with the issues of robust constraint satisfaction and robust convergence.

For small prediction horizon N, the resulting controllers are of very low complexity,

as will be illustrated in Section 11.4.2.

In most receding horizon control schemes closed-loop stability is guaranteed by

imposing an 'artificial' terminal set constraint with an associated cost on the final

state [MRRSOO]. This terminal constraint generally requires the use of large predic¬

tion horizons N which in turn results in significant computational complexity. The

scheme proposed in this section does not rely on any artificial terminal set constraints,

such that the use of large prediction horizons is not necessary. Specifically, we will

present a controller computation scheme where robust constraint satisfaction is en¬

forced by construction and robust stability is analyzed a posteriori. Since stability is

analyzed a posteriori, there is no a priori guarantee that a stabilizing controller will

be obtained.
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The cornerstone of the proposed algorithm is the following mp-QP:

N-l

JN{x(0)) = min Y] (ulQuuk + xlQxxk) + xTNQXNxN (11.11a)
«o,->"jv-i r—;*

fc=0

s.t. x^ec^ew, vzg{i,...,l}, (n.iib)

xkeX, ufc-iGU, Vfce{l,...,Jv*}, (11.11c)

x[° = A^o + B(0uo, 4°=^(0), (ll.lld)

Xfc+i = Äxk + Buk, x0 = x(0), (ll.lle)

Qx h 0, QXN h 0, Qu y 0. (ll.llf)

Here, Ä and B denote the nominal system dynamics. In (11.11) robust constraints

are enforced on the first time step (11.11b), but only nominal constraints are enforced

for future time steps (ll.lle), as in [CZ99b,KerOO]. This implementation is necessary

to avoid problems of infeasibility which may occur when solving robust optimization

problems in open-loop. The PWA state-feedback controller which is obtained when

solving the mp-QP (11.11) will cover the maximal robust control invariant set (i.e.

Xn = C£>) and keep the receding horizon control (RHC) state trajectories within C£>
for all time.

The proposed algorithm can now be stated:

Algorithm 11.3.6 (N-Step Controller Design)

1. Compute C£> according to Algorithm 11.1.6 using projection methods (e.g.,

[JKM04J).

2. Solve (11.11) as an mp-QP to obtain a PWA feedback control law.

3. Compute a robust invariant set Ö with 0 G int((9).

4- Analyze asymptotic stability (see Theorem 8.1.5) of the nominal system (9.1)

on the set Ö and analyze robust convergence (see Theorem 8.5.4) °f system

(11.1) on the set XN \ O (see Chapter 8 for details).

The advantage of computing C^, instead of /Cqo($) in Step 1 of Algorithm 11.3.6 is

that we do not require the computation (or even existence) of a robustly stabilizing

linear feedback controller F as was the case in Algorithm 11.3.3. Furthermore, finite

time convergence of Algorithm 11.3.6 is guaranteed by the scaling with 0 < À < 1,
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as was illustrated in Section 11.1. Although the closed-loop system is guaranteed to

remain within the bounded control invariant set C£>, asymptotic stability still needs

to be verified in Step 3. of Algorithm 11.3.6.

Theorem 11.3.7 (Properties of AT-step Control, [GM04,GM03]) // the sta¬

bility analysis in Algorithm 11.3.6 is successful and the feedback law obtained in Step

2 of Algorithm 11.3.6 is applied to system (11.1) in a RHC fashion, then the closed-

loop system is robust convergent on C^. In addition, the constraints (11.2) will be

satisfied for all time.

Proof The PWA controller obtained in Step 2 of Algorithm 11.3.6 ensures that

C^ is control invariant, since the constraint x[' G C^ in (11.5b) is imposed on the

mp-QP (11.11). This guarantees constraint satisfaction for all time if x(0) G C^ and

RHC is applied. Since the stability analysis in Step 4 was successful the rest of the

proof follows directly from Theorem 8.5.5. D

Remark 11.3.8 Note that the controller computed in Algorithm 11.3.6 is not subject

to any artificial constraints (e.g., terminal set constraint or contraction constraints)

since the constraints in (11.11) are non-restrictive, i.e. they are met by all controllers

which satisfy Objective 1 (controller covers C^J in Section 11.3.

Remark 11.3.9 // the stability analysis in Step 4 of Algorithm 11.3.6 fails, it is

advisable to solve the mp-QP in Step 2 of Algorithm 11.3.6 using different weights

Qx, Qu, QxN and/or a different prediction horizon N. Alternatively, a different robust

invariant set Ö in Step 3 can be computed. Slight modifications in Step 2 or 3 may

make the subsequent stability analysis feasible.

Remark 11.3.10 // a system is not subject to uncertainty, it is advisable to select

Ö = 0 which will make the implementation of Algorithm 11.3.6 significantly easier.

11.4 Numerical Results

In this section we will first compare the controller complexity obtained with Algo¬

rithms 11.3.3 and 11.3.6 with other comparable controllers published in the litera¬

ture. In Section 11.4.2 we will present a large number of random systems on which
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we have tested the algorithms presented in this chapter and we will illustrate how

controller complexity is drastically reduced compared to standard constrained finite

time optimal control via mp-QP [BMDP02,TJB03a,GBTM04].

11.4.1 Construction of Robust Control Laws

In this section we will demonstrate that the controller complexity obtained with

Algorithm 11.3.6 is significantly lower than the controller complexity obtained with

other robust multi-parametric computation procedures published in the literature

[KM04a,BBM03].

Example 11.4.1 Consider the second order system in [KM04a]

x(k+i) = rQ °0%(k)+r)u(k).
The task is to regulate the system to the origin while fulfilling the constraints

\\u{k)\\oo < 3, ||a;(A;)||oo < 10, VA; > 0. The weight on the state is set to Qx = I

and the input-weight is Qu = 1. The terminal weight QXN is the solution to the

algebraic Riccati equation.

Parametric Uncertainty

We will assume a simple type of parametric uncertainty given by L = 2 and 5 = 0.4:

[AW\bW] = [(1 - S)A | B] [AMIE®] = [(1 + 6)A | B]. (11.12)

The algorithm in [BBM03], computed a robust controller for Example 11.4.1 in 35

seconds and 154 regions covering Coo were obtained. Using N = 1 in Algorithm

11.3.6, the computation took under 3 seconds and 3 regions were obtained using a

quadratic objective4. Using an infinity-norm objective and N = 3, GA regions were

computed using the proposed 'AT-step' controller. Note that although we have focused

on quadratic objectives in this section, all methods are directly extendable to linear

objectives in (11.11a).
The controllers obtained with the two algorithms both cover Coo and guarantee

robust convergence and feasibility. The approach in [BBM03] enforces robust perfor¬

mance (i.e., min-max optimal for linear objective) whereas the algorithm presented

4Both simulations were run on a 2.2GHz Pentium III, with the NAG Library LP solver [Num02]
and the SeDuMi [Stu99] LMI solver.
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here only enforces nominal performance for prediction horizon N = 1. For a perfor¬

mance analysis, we refer the reader to Section 11.4.2 where a detailed comparison of

Algorithm 11.3.6 with other methods in the literature is given.

Additive Uncertainty

We will assume additive uncertainty according to (11.1) as W = { w \ \\w\\oo < 7}.

With the LMI in (8.13), robust convergence on the maximal robust control invariant

set Cqo can be shown for |^y| < 0.7 in Example 11.4.1, using an A^-Step controller

with N=l. In [KM04a], Example 11.4.1 was solved for 7 = 0.1, horizon AT = 2 and

71 regions were obtained. The maximal robust invariant set Cqo was not covered

by the 71 regions. Using N = 1 in Algorithm 11.3.6, it was possible to compute 3

regions covering the entire set Coo with robust convergence and feasibility guarantees.

For a performance analysis, we refer the reader to Section 11.4.2 where a detailed

comparison of Algorithms 11.3.6 with other methods in the literature is given.

11.4.2 Case Study on Nominal Systems

In this subsection we give a detailed comparison of Algorithms 11.3.3 and 11.3.6

versus the finite- and infinite-horizon optimal controllers in [Bao02] and [GBTM04].
All controllers considered here cover the largest stabilizable set K.oo(Ooo) and provide

stability and feasibility guarantees. The set Ooo was computed for the optimal LQR

feedback law using the invariant set computation algorithm in [GT91]. Hence it

is only necessary to compare complexity and performance. We will first study the

influence of constraints (i.e., the volume of /Coo(Coo)) on complexity before showing

more general results for randomly selected systems.

Example 11.4.2 Consider the second order system with two inputs and outputs:

„ 1N
Zo.7326 -0.086l\

.,.
/0.0609 o\

.,,

x(k + l) = x(k)+ u(k).v '

\0.1722 0.9909 y
KJ

\ 0.064 1)
w

The task is to regulate the system to the origin while fulfilling the constraints

||^(&)||oo
—

5> ||a:(A;) lloo < c> Vfc > 0, where the parameter c is used to change the

volume of KooiOoo). The weight on the state is set to QX = I and the input-weight

is Qu = 0.017. The terminal weight QXN is the solution to the algebraic Riccati

equation.
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Figure 11.4: For Example 11.4.2 a controller which covers /Coo^oo) is computed with

the methods in [Bao02], [GBTM04] and Algorithms 11.3.3 and 11.3.6

(for N = 1). The abscissa represents the varying constraints on the

system state (||x(A;)||oo < c), i.e. the volume of the maximal robust

invariant set is continually increased.

We will now compare Algorithm 11.3.3 and 11.3.6 with the infinite-horizon algorithm

presented in [GBTM04] and a terminal set constrained algorithm [Bao02,MRRSOO],

where the terminal set was chosen to be Cqo- Figure 11.4 depicts the results for

various values of the constraint parameter c in Example 11.4.2.

As can be seen from Figure 11.4, Algorithms 11.3.3 and 11.3.6 outperform the other

algorithms in solution complexity (number of regions) and necessary computation

time. It might be surprising that the infinite horizon algorithm in [GBTM04] is faster

than the standard finite horizon solutions with terminal set constraints [Bao02]. We

refer the reader to Section 10.3 for a detailed discussion of this property.

Having established the infinite-horizon algorithm in [GBTM04] as a valid basis

for comparison, we will now examine the complexity decrease and degradation in

performance incurred by Algorithms 11.3.3 and 11.3.6 based on 40 random stable

systems with n = 3 to 4 states and m — 2 inputs. The inputs for all systems

were constrained to im&)ll°o < 1 and the states were limited to ||^(fv)||oo < 10,
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VA: > 0. Two different performance objectives in (11.5a) were considered: small

and large weights on the input, i.e. Qu = 0.1/ and Qu = 101. QX = I was used

throughout. As can be gathered from Figures 11.5 and 11.6, the decrease in controller
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Figure 11.5: Complexity reduction versus the infinite horizon optimal controller in

[GBTM04]. The results for 40 random systems with n = 3 to 4 states

and m = 2 inputs for varying cost objectives in (11.5a) are given. Pre¬

diction horizon N = 1 was used in Algorithm 11.3.6.

complexity is substantial (e.g. Figure 11.5(c), system 9: R = 22529 for [GBTM04] vs.

R = 2021 for Algorithm 11.3.3 vs. R = 85 for Algorithm 11.3.6). The LMI analysis

in Algorithm 11.3.6 always succeeded in finding a PWQ Lyapunov function. Figure

11.5 indicates that the relative complexity decrease incurred by both Algorithms

11.3.3 and 11.3.6 grows with problem size. On average, Algorithm 11.3.3 decreases
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Figure 11.6: Performance decrease vs. [GBTM04]: Results for 40 random systems

with n = 3 to 4 states and m = 2 inputs for varying cost objectives in

(11.5a). Prediction horizon N = 1 was used in Algorithm 11.3.6.

complexity versus [GBTM04] by a factor of 10 and Algorithm 11.3.6 for N = 1 by

a factor of 100 for the fourth order systems. At the same time, the average closed-

loop performance is only 1% below the infinite-time optimal controller [GBTM04].

Performance was measured by gridding the state space and computing the closed-loop

trajectory cost to the origin.

Since the methods presented in this chapter can easily be combined with the im¬

proved set-membership tests in [TJB03b,BBBM01,RG04b], on-line complexity may

be decreased even further.

Remark 11.4.3 It may seem surprising that the performance degradation is greater

if the weight on the input is small (see Figure 11.6). Small weights on inputs would
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(a) Cheap control action, R = 0.1. (b) Expensive control action, R = 10.

Figure 11.7: Two partitions obtained for a randomly generated LTI system with R =

0.1 and R = 10, respectively. The maximum admissible set for the

LQR controller is depicted in yellow. See Remark 11.4.3 for a detailed

discussion.

seem to indicate that the minimum-time controller in Algorithm 11.3.3 is optimal.

However, small weights on the input inherently result in smaller invariant LQR sets

Ooo, thus the degradation in performance. This is illustrated in Figure 11.7. For

large weights on the input, almost no degradation is incurred with Algorithm 11.3.6

forN=l.

Remark 11.4.4 The random systems selected here are all stable such that the poly¬

topic constraints (11.2) imply that the sets ^Coo(C^oo) and Coo are bounded and closed.

This will guarantee finite time termination of Algorithms 11.3.4 and 11.3.6. For

unstable systems, the sets K,oo{Ooo) may have open boundaries such that the the as¬

sociated numerical issues make unstable systems ill-suited for large-scale case studies.

In our experience, larger prediction horizons (N > 1) are generally needed to

stabilize an unstable system with the N-step control scheme. However, the incurred

complexity reduction versus quadratic optimal control is still significant.

11.5 Conclusion

In this chapter, methods for computing polytopic robust invariant sets along with

the associated feedback controllers are presented and novel schemes for combining



11.5 Conclusion 147

these methods with stability analysis of piecewise affine systems (see Section 8) are

introduced.

Based on these tools, algorithms for the computation of two different robust feed¬

back controllers for systems subject to polytopic and additive uncertainty are given

(minimum-time and AT-step controller). The extensive numerical examples clearly

indicate that the complexity of the resulting controllers is generally orders of magni¬

tude lower than that obtained with comparable algorithms. The results also indicate

that the relative complexity decrease grows with the problem size, thus making

large problems tractable. The difference in the solution complexity is mainly due to

the choice of different control objectives. However, the proposed algorithms incur

only a negligible penalty in terms of performance with respect to traditional control

methods for the presented examples. The infinite-time stabilizable set JC^Ooo)

is covered by all controllers presented in this chapter and robust convergence and

robust feasibility guarantees are given.

The presented algorithms are part of the MPT toolbox [KGB04] and can be down¬

loaded from http://control.ee.ethz.ch/~mpt.
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12

Efficient Set Membership Tests

12.1 Introduction

Figure 12.1: Illustration of the three levers for complexity reduction in receding hori¬

zon control. The third lever, which is the focus of this chapter, is high¬

lighted.

This chapter will address the third lever for complexity reduction. Namely, efficient

identification of the currently active feedback law.

As stated in Chapter 9, identifying which region a given state is contained in,

is one of the key aspects determining the efficiency of explicit feedback controllers.

This section will illustrate how controller partitions obtained via multi-parametric

programming can be post-processed, such that the set-membership test can be per¬

formed efficiently. The aim is to reduce the data storage requirements as well as the

on-line implementation time for the optimal control algorithms. Several authors have

149
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investigated these issues although little has yet appeared in the published literature

which gives significant reductions in complexity and is applicable to large controller

partitions (i.e. several thousand regions).

In [BBBM01] the authors exploit the convexity properties of the piecewise affine

(PWA) value function associated with linear MPC problems to solve the point location

problem efficiently. Instead of checking whether the point is contained in the interior

of a polyhedral region, each affine element of the value function is evaluated for a

given state x. Since the value function is PWA and convex, the region containing x

is associated with the affine function which yields the largest value for the state x

(see Section 12.3 for details). Although this scheme is efficient and reduces storage

space and region identification time, it is still linear in the number of regions R.

A different direction is taken in [TJB03b], where the authors propose to construct

a bilinear search tree over the polyhedral state-space partition. Therein, auxiliary

hyper-planes are used to subdivide the partition at each tree level. Note that these

auxiliary hyper-planes may subdivide existing regions. The necessary on-line identi¬

fication time is logarithmic in the number of subdivided regions, which may be signif¬

icantly larger than the original number of regions. Although the scheme works very

well for smaller partitions, it is not applicable to large controller structures due to

the prohibitive pre-processing time. If R is the number of regions and F the average

number of facets defining a region, then the approach requires the solution to R2 • F

LPs1. However, the scheme in [TJB03b] is applicable to any type of closed-form

MPC controller, whereas the algorithms proposed in this chapter are only applicable

to controllers which have been obtained for LTI systems.

A similar approach was taken in [GTM04,GTM03]. Instead of computing a search

tree with minimal depth as in [TJB03b], the authors compute the search tree with

the minimal number of nodes, leading to significantly reduced storage complexity.

Again, the necessary computations quickly grow prohibitive such that this approach

cannot be applied to partitions consisting of several hundred regions2.

Two alternative schemes for complexity reduction are proposed in this chapter.

The first approach will henceforth be referred to as Interpolation mp-QP (IMPQP)

*It is possible to improve the pre-processing time at the cost of lest efficient (non-logarithmic)

on-line computation times.

2It is possible to significantly improve on this limit at the cost of larger search-trees.
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control [RG04b,RG05]. IMPQP is based on interpolation (e.g. [MKR00,RKC01]) of

input sequences which provides feasibility and stability for the closed-loop system.

The applied interpolation scheme allows for the removal of a certain number of regions,

such that both storage space and region identification time is reduced.

The second approach is based on power-diagrams (extended Voronoi Diagrams)

and combines the advantages of value function identification in [BBBM01] with the

search tree in [TJB03b] to yield a region identification scheme which runs in 0(log(R))

time, where R is the number of controller regions [JGR04b]. The two approaches are

discussed in Sections 12.2 and 12.3, respectively, before concluding this Chapter in

Section 12.4.

12.2 The IMPQP Algorithm

In this section3, a novel interpolation scheme, Interpolation mp-QP (IMPQP), will

be presented. The results in this section are derived from [RG04b,RG05].

The IMPQP scheme takes a controller partition (e.g., a partition computed with

the methods in Chapter 11) as an input, and processes that partition in such a

way that the number of controller regions is reduced, i.e. several regions are simply

removed from the partition. In order to have a control law for the now 'missing'

regions, an interpolation scheme is applied. IMPQP makes use of two interpolations:

the first interpolation enforces infinite time feasibility while the second guarantees

stability. We address each of the two schemes separately in the following subsections

before concluding with an overview of the properties of IMPQP control.

Consider the quadratic optimal control problem

JN(x(0)) = min \ V] (ulQuuk + xlQxxk) + xNQXNxN \ (12.1a)
U0,...,UN-l I f—' I

*• fc=0 '

subj. to xkeX,ukeV, ke{0,...,N-l}, (12.1b)

xN e TseU (12.1c)

xk+i = Axk + Buk, x0 = x(0), (12.1d)

Qx h 0, QXN to, Quy 0. (12.1e)

3Note that the content of this section is the result of a collaboration with Anthony J. Rossiter who

was the primary contributor.
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Assumption 12.2.1 The standing assumption throughout this section will be that

the optimization problem (12.1) is posed such that stability and infinite-time feasibility

are guaranteed for RHC (see Chapter 5), i.e. a terminal set constraint Tset — 0^R
and appropriate terminal cost QXN are imposed.

For convenience [RRK91], the free inputs uk will be reformulated in terms of a new

variable ck

uk = -Kxk + ck, k = 0,...,N-l, (12.2)

where K denotes the Riccati LQR feedback (4.3). Hence the MPC optimization

problem (12.1) can be written as:

J*N(x) = min CNSCN (12.3)
cN

s.t. GCN<W + Ëx{0), Cn = [cT,...,cn_1]t.

Details of how to derive the positive definite matrix S and matrices G, W and E

from (12.1) are omitted (see e.g. [Mac02,RRK91] for details).

12.2.1 IMPQP: Interpolation Guaranteeing Feasibility

The first level of IMPQP computes an input sequence C^ = [cT, c\,..., cN_^r by

optimizing the scalar interpolation parameter a between two input sequences CN

and CN' according to,

JN(x{0)) = min(C^as)T5C^as (12.4a)
a

s.t. GC^^W+ Éx, x = x{0), (12.4b)

C^M = (l-a)Cg) + aC{?). (12.4c)

The input sequences CN and CN are selected, such that we can always guarantee the

existence of a feasible interpolation parameter a. We furthermore want to ascertain

an acceptable performance (i.e. small JN(X)) for the resulting control scheme.

Specifically, the first input sequence, CN ,
is obtained by assuming that the optimal

Riccati LQR feedback law is applied for N steps to the system, i.e. it follows from

(12.2) that CJJ) = 0 and therefore Cjf3 = aCJ^. The second sequence, C$, is

obtained by first projecting the current state x onto the nearest facet of the feasible
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set Xn, such that x e OXn is obtained. The state x can be computed by intersecting

the line touching the origin and x with the boundary of the feasible set OXn- The

optimal constrained input sequence in (12.3) for x corresponds to CN .
Note that

the sequence CN' is optimal for the origin and C^ is optimal for x and the current

state x lies on the line intersecting the origin and x. The purpose of this section is

to find the optimal interpolation parameter a such that Cjvas is obtained for x.

The following lemma can be used to establish the nearest facet of Xn for a given

state x e Xn-

Lemma 12.2.2 (i) Assume Xn is compact and contains the origin in it's interior,

(ii) Normalize the inequalities defining Xn according to

Xn — {x e | Hx < K}; K H =

hT

(12.5)

(ii) Compute the value 7 = maxjhjx and corresponding integer j. Then if x e Xn,

it follows that ^ is located on the j-th facet of Xn-

Proof The state ^ corresponds to the intersection of a ray emanating from the origin

and moving through x, with the boundary of the set Xn- Hence, we are looking for

the biggest scaling parameter A and associated facet j, such that hjf = 1. Therefore,

7 = maxj hjx is the maximum scaling factor. D

Theorem 12.2.3 (Existence of Feasible Parameter a, [RG04b,RG05])

Given x e Xn and 7 = maxjhjx, find the optimal control sequence in (12.3)

for the scaled state x = ^, i.e. CN' = C*N{z). Then the interpolated control move

Gn = lGN satisfies the constraints (12.4b) for x and therefore a = 7 is a feasible

solution to the interpolation problem (12.4).

Proof It holds by construction of (12.3) that

GCff -Éx<W.

Because 0 < 7 < 1, this directly implies

7 (gcS) - Éxj = G^Cff - Ê~fx = GC^ -Éx<W.
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Hence, a = 7 is a feasible solution to the interpolation problem (12.4). D

While theorem 12.2.3 shows that a feasible solution to (12.4) exists (i.e. a = 7),

we will show in the following how the optimal interpolation can be obtained. We will

now introduce the first interpolation of the proposed IMPQP control procedure.

Algorithm 12.2.4 (Feasibility Interpolation)

/. Off-Line: Solve (9.6) as an mp-QP (e.g. Figure 12.2(a)) and remove all regions

not sharing a facet with Xn (e.g. Figure 12.2(b,c)).

2. On-Line: For an initial state x(k), compute 7 = maxj[hjx(k)] and the corre¬

sponding j, as in (12.5).

3. On-Line: The state x(k)/'y is located on the j-th facet of Xn- From all con¬

troller regions Vi sharing that facet, find i such that x(k)/j e Vi and evaluate

the associated PWA feedback law to obtain Cjj/.

4. On-Line: Interpolate between the LQR sequence CN = 0 and the constrained

sequence CN The following minimization optimizes* the predicted performance

over the interpolation C^ = aC^', i.e. we can restate (12.4) as

.

j GiaCff) <W + Ëx(k)
min a s.t. < (12.6)

\ 0<Q!< 1
v '

It follows from Theorem 12.2.3 that a feasible solution to (12.6) will be found.

5. We obtain the sequence C^ = aCN{x(k)) which will be used in the next sec¬

tion.

Remark 12.2.5 The resulting closed-loop sequence has the property of infinite-time

feasibility because satisfaction of (12.6) directly implies that the state will remain

within Xn, where a feasible interpolated sequence can be found according to Theorem

12.2.3.

4The objective is to 'push' the interpolated input sequence as far towards the LQR sequence

CN' = 0 as possible. Since the objective in (12.4) is convex in Cjv, minimizing a will thus

always yield the optimal interpolation, e.g. in the case a = 0 and we obtain the optimal LQR

control law.
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IJr - 15r

"l », «,

(a) mp-QP regions. (b) IMPQP regions. (c) Closeup of IMPQP regions.

Figure 12.2: Controller partition for a standard controller compared to the IMPQP

controller.

In the next section we add a second interpolation which will guarantee the closed

loop system is asymptotically stable.

12.2.2 IMPQP: Stability Interpolation

The classic RHC approach of 'shifting' the input sequence of the previous time step

in order to prove stability [MRRSOO] does not apply here [RBC03] (see Chapter 5).

Without the 'tail' in the class of possible predictions, one cannot easily argue that the

cost JN is monotonically decreasing in time and in fact one can easily find simulations

corresponding to the IMPQP feasibility interpolation (Algorithm 12.2.4) where JN

does not decrease monotonically.

Lemma 12.2.6 Let CN(x(k)) = [cT,cj,... ,c^_1]T be the input sequence that is

obtained at time k and that satisfies Assumption 12.2.1. If the input sequence

[cj,...,cN_i,0]T is feasible at time k + 1 for (12.6), this is sufficient to guarantee

stability in the nominal case.

The result of this Lemma is well known in the literature (see Section 5.2) and ap¬

plies to the optimization problem (12.3) satisfying Assumption 12.2.1. Obviously,

Algorithm 12.2.4 does not necessarily satisfy Lemma 12.2.6, since the input sequence

CN and therefore the optimization problem (12.6) change at each time step, i.e. at

time k + 1 there may not exist an interpolation parameter a which yields the shifted

sequence (i.e. [cT,..., cjf^, 0]T).
The proposal here is to add a second degree of freedom (e.g. [MKROO]) which

corresponds to an interpolation of the input sequence Cjy08 of Algorithm 12.2.4 and
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the 'tail' of the input sequence which was obtained at the previous time step. This

second interpolation guarantees that the shifted sequence will be feasible at time k+l

and that Lemma 12.2.6 applies to the IMPQP scheme. Next, the IMPQP Algorithm

is introduced.

Algorithm 12.2.7 (IMPQP Algorithm)

/. At time k, store the input sequence C^ = [cT, cj,..., Cn_i]t obtained with

Algorithm 12.2.4 as

3^= tf, <£,..., <&-i,0]r. (12.7)

2. At time k + 1, define a linear interpolation between C^ obtained by Algorithm

12.2.4 and the tail C^a

Cff* = (1 - ß)C$* + ßCff1, 0 < ß < 1. (12.8)

3. Minimize the predicted cost over the prediction class in (12.8).

min J = {CNlix)TSCNlix = ß2f + 2ßg (12.9)

s.t.

0 < /? < 1

/ = [c#« - C^]TS[C^ - cJh

k
9 = [C^-C^*\TSC^

4- Implement the control law u = —Kxk + eTC^11, where K is the Riccati LQR

feedback law and ei = [/ 0 • • • 0] is used to extract only the first element of
imi:

JNCmix

Note that ß will be zero unless the solution obtained with Algorithm 12.2.4 can be

improved upon by moving towards C]^1.

12.2.3 Complexity and Properties of IMPQP Control

Some of the properties of IMPQP control are stated next.

Theorem 12.2.8 (Stability and Feasibility of IMPQP, [RG04b,RG05])

Algorithm IMPQP guarantees both infinite-time feasibility and stability in the nomi¬

nal case.
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Proof By definition both Cjjj38 and Cff1 are feasible and therefore, from convexity

arguments, C$ix in (12.8) must also be feasible. It follows from feasibility of Cjy,

that the predicted state xn will be contained in the target set 7^et = 0^R. Therefore,

Assumption 12.2.1 is satisfied and Lemma 12.2.6 applies to optimization (12.9), and

hence comes the guarantee of stability. D

The on-line computational burden of IMPQP control is significantly smaller than

that of comparable methods.

• It is only necessary to store controller regions which lie on a facet of Xn, thus

reducing the storage effort.

• A simple lookup table which associates facets of Xn to the controller regions

sharing that facet can be created, such that the number of set-membership

tests is reduced significantly.

• The additional on-line computations in (12.6) and (12.9) are also negligible since

the implied minimizations are over scalars and thus are easy to implement.

12.2.4 Numerical Results

This section presents an extensive comparison of the IMPQP algorithm with tra¬

ditional mp-QP controllers. The infinite horizon controller in Section 10.3 (i.e.

[GBTM03,GBTM04]) is used as a basis for comparison. Both controllers cover the

feasible set Xn and provide stability and feasibility properties. Hence it is necessary

only to compare complexity and performance.

The comparison is based on 20 random systems with 3 and 4 states and 2 inputs

(total of 40 systems). The inputs for all systems were constrained to [|u||oo < 1 and

the states were limited to ||a;||oo < 10.

Two different variations of the performance objective of (12.1a) were considered:

that is the cases of small and large weights on the input, i.e. in (12.1a) the weights

Qu = 0.1/ and Qu = 101 were applied. Qx — I was used throughout. For consistency

with other work, the cases considered are identical to those presented in [GLPM03,

GM03].
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Figure 12.3: Comparison of IMPQP complexity versus infinite-horizon optimal con¬

trol [GBTM04] for 40 random systems. The z-axis serves as index for

the dynamic systems (20 for 3 and 4 states, respectively) and the y-axis

indicates the number of regions obtained for each system.

Complexity comparisons

Figure 12.3 gives a comparison of the controller complexity of IMPQP versus the

controller in [GBTM04]. The figure displays the number of regions which need to

be stored for [GBTM04] and IMPQP respectively The on-line effort for the set-

membership test in [GBTM04] is proportional to the total number of regions whereas

the IMPQP only needs to check the regions associated with the facet identified in

step 3 of Algorithm 12.2.4 Hence for IMPQP, the dashed line is an indication of

the storage space and the dotted line denotes the worst case on-line computational
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Figure 12.4: Comparison of IMPQP performance versus infinite-horizon optimal con¬

trol [GBTM04] for 40 random systems. The rc-axis serves as index for

the dynamic systems (20 for 3 and 4 states, respectively) and the y-axis

indicates the performance decrease with respect to [GBTM04].

effort.

• The average storage requirements for the IMPQP algorithm is 50% of the mp-

QP.

• The average on-line computational effort associated with set membership iden¬

tification for the IMPQP algorithm is 10% of the requirement for the mp-QP

solution (reduction by a factor of 10).
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Performance comparisons

Figure 12.4 gives a comparison of the performance (calculating JN of (12.1a) for the

closed-loop trajectories) of IMPQP versus the controller in [GBTM04]. Performance

was evaluated by gridding the feasible state space and summing up all the closed

loop trajectory costs. The average performance decrease over all runs is 2%.

Summary of comparison

As can be gathered from Figures 12.3 and 12.4, IMPQP control exhibits a sig¬

nificant decrease in complexity in storage and set-membership test at very little

cost in terms of performance. Furthermore, other post-processing schemes (e.g.

[TJB03b, BBBMOl]) may be used in combination with IMPQP to obtain an even

greater reduction in complexity. However, similar to other simplification techniques

(e.g. [TJB03b, BBBMOl]), the IMPQP procedure relies on the a priori computation

of the explicit control law, which may be prohibitive for large problems.

12.3 A Logarithmic Solution to the Point

Location Problem for mp-LPs

The complexity of solving the set membership test (point location problem) as it

occurs in explicit MPC formulations is clearly dependent on the number of regions

in the solution. The number of regions is known to grow very quickly and possibly

exponentially, with horizon length and state/input dimension [BMDP02]. The com¬

plexity of the solution therefore implies that an efficient method for solving the point

location problem is needed.

As stated in the introduction to this chapter, the key contributions to this end have

been made in [TJB03b] and [BBBMOl]. In this section5, we combine the concept

of region identification via the value-function [BBBMOl] with the construction of

search trees [TJB03b], by using the link between parametric linear programming,

Voronoi Diagrams and Delaunay triangulations, recently established in [RGJ04]. We

demonstrate that the PWA cost function can be interpreted as a weighted power

diagram, which is a type of Voronoi diagram, and exploit the results in [AMN+98]

5Note that the content of this section is the result of a collaboration with Colin Jones and Sasa

Rakovic [JGR04b].
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to solve the point location problem for Voronoi diagrams in logarithmic time at the

cost of very simple pre-processing operations on the controller partition.

We focus on MPC problems with 1- or co-norm objectives and show that evaluating

the optimal PWA function for a given state can be posed as a nearest neighbor search

over a finite set of points. In [AMN+98] an algorithm is introduced that solves the

nearest neighbor problem in n dimensions with R regions in time 0(Cnien log R) and

space 0(dR) after a pre-processing step taking 0(dRlogR), where Cn)£ is a factor

depending on the state dimension and an error tolerance e. Hence, the optimal control

input can be found on-line in time logarithmic in the number of regions R.

The remainder of this section is organized as follows. In Section 12.3.1 the basic

MPC problem is formulated, the structure of the closed-form solution is discussed

and the problem addressed in this section is formulated. Section 12.3.2 demonstrates

that the point location problem can be posed as a nearest neighbor search over R

points. Section 12.3.3 provides a brief overview of the logarithmic nearest neighbor

algorithm from [AMN+98]. Section 12.3.4 provides numerical examples and com¬

pares the approach to the current state of the art. Finally, conclusions are given in

Section 12.4.

12.3.1 Problem Formulation

The problem formulation for linear performance objectives has been described in

Chapter 9 such that we merely restate some of the notation here. If the linear p-

norm used is the 1- or the co-norm, then (9.3) can be re-written as a linear program

(LP):

JN{x)= min cTy (12.10a)
y

s.t. (x,y) eZ, (12.10b)

by introducing an appropriate set of I slack variables (dim(y) >dim(£//\r)). The

polytope Z is closed and bounded and incorporates all system constraints (i.e., see

(9.3)). The interested reader is referred to [Bor03, BBMOOa] for details on how to

compute an appropriate polytope Z and cost csuch that (12.10) is equivalent to (9.3).

The first Nm elements of the optimizer y*(x) of LP (12.10) define the optimal con¬

trol sequence UN(x) = [uq(x)t, ..., u*N_1(x)T]T for the optimal control problem (9.3).

In MPC, the problem (9.3) is solved at each sampling instant, and the control law
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rv(-) is defined as the first element in the optimal input sequence:

k(x) = Uq(x).

Solution Structure

Since the problem (12.10) is an LP, it can be solved off-line as a multi-parametric

linear program (mp-LP). See, for instance, [Bor03] for an algorithm for computing the

solution to an mp-LP. First, we need to restate the notion of a complex of polytopes

from Section 2:

Definition 12.3.1 (Complex, [GrüOO]) A finite family ff of polytopes inl" is a

complex if

• Every face of a member of ^ is itself a member of ff

• The intersection of any two members of ff is a face of each of them

If a polytope Q is a member of a complex ff we call Q a face of ff and write Qeff.

Faces of dimension n are called cells of the complex. A controller partition obtained

via multi-parametric programming is a complex. We introduce the concept of a

'complex' here in order to draw parallels to the computational geometry literature.

A basic result on the nature of the solution to a parametric linear program is given

next:

Theorem 12.3.2 (Solution to an mp-LP, [Bor03])

Let Z C M""1""» be a polyhedron and

tt(Z) = {x e Rn | By e Rny such that (x,y) e Z}.

For each x in v(Z), let

JN(x)±ini{cTy\(x,y)eZ}, (12.11)
y

where ceRny.

Then JN(~) ' Rn —* R is a convex, piecewise affine function defined over a complex

të whose cells partition ir(Z). Furthermore, there exists a continuous, piecewise affine

function6 v(-) : Rn — Rny such that cTv(x) = JN(x) for every x e 7r(-Z).

6Note that in general, the optimizer of (12.11) is set-valued.
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Thus by Theorem 12.3.2, the optimal cost of (12.10) is a convex, piecewise

affine function of the state x, taking R" to R and is defined over a complex

ff = {Vi,...,VR}:

JN{x) = aTx + ßr, iîxeVr, reTl, (12.12)

where each cell Vr is a polytope and 71 = {1,..., R} is the index set for the regions.

Furthermore, the optimizer of LP (12.10) is a piecewise affine function of x taking

Rn to RJV(m+') as is the control law «(), which takes Rn to Rm and is defined over

the same complex:

k(x) = Mq(x) = FTx + Gr, ilxeVr, re 71.

1 *S

(a) Continuous and convex PWA value func- (b) Continuous PWA control law k(x)

tion JN(x)

Figure 12.5: Illustration of the value function JN(X) and control law k(x) for a ran¬

domly generated mp-LP.

Point location problem

In on-line application of PWA controllers the following problem statement defines

the active feedback law:

Given a measured state x and complex ff = {Vi,... ,Vr}, determine any integer7

7The state may be on the boundary of several regions.
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\(x) eTZ such that polytope V,(X) contains x.

The function i(x) defines the control law k(x) as

k(x) — u*Q{x) = F\(X)X + Gi(x).

As JN{x) is convex, the calculation of \(x) can be written as [BBBMOl]:

Ux) = &rgmax{oilx +ßr} . (12.13)
reu

As was proposed in [BBBMOl], i(x) can be computed from (12.13) by simply

evaluating the cost aTx + ßT for each r e 71 and then taking the largest. This

procedure requires 2nR floating point operations and has a storage requirement of

(n + 1)R real numbers.

In the following sections we will show that with a negligible pre-processing step,

(12.13) can be computed in logarithmic time.

12.3.2 Point Location and Nearest Neighbors

In this section we show that for mp-LPs, the point location problem can be written

as an additively weighted nearest neighbor search, or a search over R points in Rn to

determine which is closest to the state x.

Consider the finite set of points called sites S = {si,--.,sr} and the weights

W = {iui,..., wR}, where (sr, wr) Rn x R, Vr 6 71. Given a point x in Rn, the

weighted nearest neighbor problem is the determination of the pair (sr,wr) that is

closest to x. Associated with each site is a set of points Cr C Rn such that for each

x e Cr, x is closer to (sr, wr) than to any other site:

2 2

jCr-{x\\sr-x +wr<\sj-x\ +Wj,\fje7l}. (12.14)

Note that the sets Cr form a complex ffy — {£>i, , £r} [Aur91]. If the weights wT

are all zero, then the sets Cr form a Voronoi diagram, otherwise they are called a

power diagram [Aur91], An example Voronoi diagram is shown in Figure 12.6 for a

random set of sites. We now state the following result:

Theorem 12.3.3 (Existence of Power Diagram, [JGR04b]) Ifff is a solution

complex of an arbitrary parametric linear program, then there exists a power diagram

with the solution complex ff'.
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-10 -8 -6 6 8 10

Figure 12.6: Example of a Random Voronoi Diagram

Proof It suffices to show that it is possible to define a set of sites and weights

such that their power diagram is the solution complex of mp-LP (12.10), ff =

{Vi,...,VR}.
It follows from Theorem 12.3.2 and (12.12)-(12.13) that x is contained in cell Vr

if and only if

aTx + ßr > OjX + ßj,

or equivalently, if and only if:

—ajx — ßr < —Oijx — ßj,

Define the R sites and weights as:

Vi 71,

Vj 6 71.

Wr = -ßr ~ = -ßr~

For all r G 71 and a given x it follows that:

2

-f- Wr = —

Ctr X
— ßr + X

(12.15)
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Recalling the definition of LT in (12.14) we obtain to following:

2

CT = < x e Rn

xe

+ wr

Sj X<

-aTx - ßr +

2 Vj e 71

+ Wj,

X

X

2 Vjeft
< -a]x - ßj +

= {x e Rn | -aTx -ßT< -aTx - ßj, Vj e Te}
= {x e Rn | aTx + ßT> aTx + ßj, Vj e 71}
= Vr.

Thus the equivalence of the power diagram of the set of sites and weights (12.15) and

the solution complex ff of a corresponding mp-LP is established. D

A very important consequence of Theorem 12.3.3 is the point location prob¬

lem (12.13) can be solved by determining which site sr is closest to the current

state x:

2

\{x) = < r e 71
+ wr <

+ Wj,

Vjeft

= argmm
r&n

Since this problem has been well studied in the computational geometry literature

we propose to adapt an efficient algorithm introduced in [AMN+98] that solves the

nearest neighbor problem in logarithmic time and thereby solves the point location

problem in logarithmic time.

Note that a necessary prerequisite for this approach to succeed is, that the state

x is contained in the complex, i.e. x eff. If x $. ff, the nearest neighbor search will

yield a solution even though none exists (there does not exist an integer i such that

x e Vi). For practical control problems this is not an issue, since the correct solution

will be found if a solution exists.

The next section will give a brief introduction to the algorithm introduced

in [AMN+98].
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Remark 12.3.4 In [Aur87] it was shown that a complex is a power diagram if and

only if there exists a piecewise affine, continuous and convex function in Rn+1 such

that the projection of each affine piece of the function from Rn+1 to Rn is a cell in

the complex. This piecewise affine function is called a lifting of the complex. From

the proof of Theorem 12.3.3, it is clear that the solution complex of every mp-LP has

a lifting.

Remark 12.3.5 If a quadratic norm is used in the formulation of the MPC problem

(e.g., see (12.1)^ then the resulting solution complex may or may not have a lifting.

Although it is not difficult to find problems for which a lifting does not exist, general

conditions for the existence of a lifting for quadratic costs are not known. See [Aur91,

Ryb99] for details on testing when a complex has an appropriate lifting.

12.3.3 Approximate Nearest Neighbor: Logarithmic

Solution

In this section, the key aspects of the approximate nearest neighbor search algorithm

presented in [AMN+98] will be restated. Given a point q Rn, a positive real e and

a set of R points in R, the point p is a (1 + e)-approximate nearest neighbor of q, if

its distance from q is within a factor of (1 + e) of the distance from the true nearest

neighbor.

Remark 12.3.6 The e error is required in order to prove the logarithmic search

time [AMN+98j. As the optimal feedback k*(x) is continuous (see Theorem 12.3.2)

this error in determining the region translates into a maximum error in the input that

is proportional to e. Therefore, the error in the control input can be made arbitrarily

small with an appropriate selection of e.

As shown in [AMN+98], it is possible to pre-process the R data points in 0(nR logR)

time and 0(nR) space, such that the approximate nearest neighbor can be identified

in 0(Cnt(\ogR) time, where c„)e is a factor depending only on state-space dimension

n and accuracy e.

The authors in [AMN+98] propose to construct a so called balanced box-

decomposition tree or BBD-tree. The BBD-tree is a hierarchical decomposition

of the state-space into hyper-rectangles (cells) whose sides are orthogonal to the

coordinate axes. The BBD tree has two key properties which are vital in obtaining
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the logarithmic runtime bounds. Namely, as one descends the BBD-tree, the number

of points associated with each cell decreases exponentially and the aspect ratio (ratio

of longest to shortest side of each cell) is bounded by a constant.

The BBD-tree is constructed through the repeated application of two operations,

splits and shrinks. A split subdivides a cell into two equally sized children by adding

an axis-orthogonal hyperplane. This operation guarantees the exponential decrease

in the number of points associated with each cell but it cannot give bounds on the

aspect ratio. The shrink, partitions a cell into two subcells by using a hyper-rectangle

which is located in the interior of the parent cell. The shrink operation corresponds

to 'zooming in' to regions where points are highly clustered. A simple strategy to

construct the BBD-tree is to apply splits and shrinks alternately. This procedure is

repeated until the number of points associated with each cell is at most one.

In order to describe the on-line search, we will introduce the following definition:

the distance between a point q and a cell is the closest distance between q and any

part of the cell (Hausdorff distance, see Definition 8.5.2). Given a query point q, the

algorithm first identifies the associated leaf cell by a simple descent through the tree

in 0(log R) time. It is then possible to enumerate the c cells closest to q in increasing

order in 0(cn log R) time [AMN+98]. The necessary number of cells c is bounded by

a constant which can be determined without constructing the BBD-tree [AMN+98].
Each cell is then visited (closest cell first) and the closest point seen so far is stored

as p. As soon as the distance from a cell to q exceeds dist(p,q)/(l + e), it follows

that the search can be terminated and p can be reported as the approximate nearest

neighbor [AMN+98].

12.3.4 Numerical Results

In this section we consider various systems and compare the on-line calculation

times of the method proposed in this section to the scheme in [BBBMOl]. Although

the scheme in [TJB03b] may lead to more significant runtime improvements than

[BBBMOl], the necessary pre-processing time is prohibitive for large partitions and

we therefore refrain from a comparison to that scheme.
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(a) Controller partition with (b) Lifting of the controller parti- (c) Cells of the search tree associ-

R = 65 regions. tion (see Remark 12.3.5). ated with the lifting.

Figure 12.7: Search tree construction for Example 12.3.7.

Double Integrator

Example 12.3.7 Consider the double integrator

xM = r JU+LW
The task is to regulate the system to the origin while fulfilling the input constraint

H^fclloo < 1 and state constraint ||^fc||oo < 5.

For Example 12.3.7, we consider the optimization problem (12.10) with a 2-norm

objective for a prediction horizon N = 10. The objective weight matrices are set to

Qx = QxN = I and Qu = L For this example, there exists a lifting according to

Remark 12.3.5 such that it is possible to construct the associated search tree. The

construction process for Example 12.3.7 is depicted in Figure 12.7.

Large Random System

Example 12.3.8 Consider the following 4-dimensional LTI system:

xk+i

0.7 -0.1 0 0

0.2 -0.5 0.1 0

0 0.1 0.1 0

0.5 0 0.5 0.5

xk +

0 0.1

0.1 1

0.1 0

0 0

Uk-

Subject to constraints ||ufc||oo < 5 and ||£fc||oo < 5.
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Example 12.3.8 was solved for the infinity norm p = oo, prediction horizon N = 5 and

for weighting matrices Qx = I and Qu = I. The resulting controller partition consists

of R = 12290 regions. The construction of the search tree required 0.03 seconds. In

comparison, the approach in [TJB03b] would require the solution to approximately

151'000'000 LPs, which is clearly prohibitive. For e = 0.01, the average and worst-

case input computation times for ANN [MA98] are 29'450 and 36'910 floating point

operations respectively8. In comparison, the approach in [BBBMOl] always takes

exactly 160'000 operations.

Randomly Generated Regions

In this section we compare the computational complexity of the approach presented

in this section with that discussed in [BBBMOl] for very large systems. The currently

available multi-parametric solvers [KGB04] produce reliable results for partitions of

up to approximately 30'000 regions [GM03]. However, methods are currently being

developed that will provide solutions for much larger problems. Therefore, in order

to give a speed comparison we have randomly generated vectors ar and ßr in the form

of (12.12). The code developed in [AMN+98], which is available at [MA98], was then

used to execute 1000 random queries and the worst-case is plotted in Figure 12.8.

For all of the queries the error parameter e was set to zero and therefore the solution

returned is the exact solution. It should be noted that the preprocessing time for one

million regions in dimension 20 is merely 22.2 seconds.

Figure 12.8 shows the number of floating point operations (flops) as a function of

the number of regions for the two approaches and the dimension of the state-space.

Note that both axes are logarithmic.

A 3.0GHz Pentium 4 computer can execute approximately 800 x 106 flops/second.

It follows that for a 10 dimensional system whose solution has one million regions,

the control action can be computed at a rate of 20kHz using the proposed method,

whereas that given in [BBBMOl] could run at only 35Hz.

It is clear from Figure 12.8 that the calculation speed of the proposed method

is very good for systems with a large number of regions. Furthermore note that

controller partitions where ANN does worse than [BBBMOl] are virtually impossible

to generate, i.e. a partition in dimensions n = 10 with less than R = 100 regions is

8It us possible to derive hard upper bounds for the number of floating point operations. However,

due to limited insights into the ANN code, we have refrained from doing so here.
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Figure 12.8: Comparison of the nearest neighbor search [AMN+98] with the set

membership-test proposed in [BBBMOl].

very difficult to contrive. Hence, it can be expected that in practice the proposed

scheme will always result in a significant increase in speed. Since explicit feedback

MPC is generally being applied to systems with very fast dynamics, any speedup in

the set-membership test is useful in practice.

12.4 Conclusion

Two different post-processing schemes to simplify the set-membership test for a given

partition have been introduced in this chapter. The first scheme (IMPQP, Section

12.2) can be applied to controller partitions which result from control problems with

quadratic performance objectives. The second approach (nearest neighbor search,

Section 12.3) is primarily applicable to controller partitions which result from control

problems with linear performance objectives.

A novel interpolation based control scheme (IMPQP) was presented in Section
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12.2, which allows for significant simplification of the on-line set-membership test

necessary for mp-QP control for the nominal case. The main algorithm is based on

two interpolations, the first of which aims at feasibility while the second guarantees

stability. In extensive simulations it was shown that the procedure can reduce the

necessary on-line effort by a factor of 10 with very little performance degradation,

making it an attractive option for fast processes.

In Section 12.3 a method of solving the point location problem for linear-cost RHC

problems was presented. If the controller partition exhibits a specific structure, the

proposed scheme can also be applied to quadratic-cost RHC problems. It has been

shown that the method is linear in the dimension of the state-space and logarithmic

in the number of regions. Numerical examples have demonstrated that this approach

is superior to the current state of the art.

The schemes proposed in this chapter are expected to significantly increase the

sampling rates by which explicit feedback MPC can be applied.



Part IV

EFFICIENT CONTROL OF PWA

SYSTEMS
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13

Problem Description

13.1 Introduction

This part of the thesis will address the topic of efficient feedback control of discrete-

time, time-invariant, piecewise affine (PWA), systems subject to constraints. Here,

the term efficient refers to any scheme which is able to simplify or speed-up the

process of controller design and/or application, compared to current techniques.

Optimal control of PWA systems has garnered increasing interest in the research

community since this system type represents a powerful tool for approximating non¬

linear systems and because of its equivalence to many classes ofhybrid systems [Tor03,

HSBOl,Son96,Son81,Bem04]. The optimal control inputs for PWA systems may be

obtained by solving mixed-integer optimization problems on-line [BM99a, MR03],

or as was shown in [BCM03a,BBBM03,KM02,Bor03,DP00], by solving a number

of multi-parametric programs off-line. Additional methods for controlling hybrid

systems are reported in [LR03,MR03,KA02,MR02,BZ00,LTS99,TLS00].
In their pioneering work [BMDP02] the authors show how to formulate an optimal

control problem for constrained linear discrete-time systems as a multi-parametric

program (by treating the state vector as a parameter) and how to solve such a program

(see Chapter 3). Basic ideas from [BMDP02] for linear systems were extended to

PWA systems in [BCM03a,BBBM03,KM02,Bor03]. The associated solution (optimal

control inputs) takes the form of a PWA state feedback law. If the control objective

is linear, the state-space is partitioned into polyhedral sets and for each of these sets

the optimal control law is given as an affine function of the state. For quadratic

objectives the state space partition is not polyhedral, in general [BBBM03].

In the on-line implementation of these explicit controllers, input computation re¬

duces to a simple set-membership test. Even though the approaches in [BCM03a,
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BBBM03,KM02,Bor03] rely on off-line computation of a feedback law, the computa¬

tion quickly becomes prohibitive for larger problems. This is not only due to the high

complexity of the multi-parametric programs involved [GM03,BMDP02], but mainly

because of the large number of multi-parametric programs which need to be solved

when a controller is computed in a dynamic programming fashion [BBBM03,KM02].
In addition, there are few results in the literature which explicitly address the issue

of computing feedback controllers which provide stability guarantees. The few pub¬

lications which address this issue (e.g., [MR03]) assume the the origin is contained in

the interior of one unique dynamic or rely on end-point constraints (e.g., [BBMOOc]).
The only exception is the infinite horizon solution proposed in [BCM03b], which is

computationally intractable for large problems.

The subsequent chapters will deal with the following issues

Chapter 14: Posing an optimization problem such that receding horizon control of

a PWA system guarantees stability and constraint satisfaction.

Chapter 15: Efficient computation of explicit feedback controllers for PWA sys¬

tems.

Chapter 16: Problem formulations which yield low complexity feedback controllers

for PWA systems.

13.2 Background and Definitions

A a detailed overview of multi-parametric programming principles is given in Chapter

3 and Receding Horizon Control (RHC) of linear time-invariant systems is addressed

in Chapter 9. We will give a basic introduction to RHC of PWA systems

It was shown in [BBBM03,KM02,BBM00b] how to compute the optimal explicit

feedback controller for PWA systems of the form

x{k + l) = fPWA(x{k),u{k))^Aix(k) + Biu{k) + fi, (13.1a)

if [x{k)T u{k)T]T eVu ieT, (13.1b)

where x e Rn is the state vector, u Rm is the control vector and {Dji=1 is a

bounded polyhedral partition of (x, u) C Rn+m space. For simplicity, the sets Vi here
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define both regions in which a particular state update equation is valid as well as the

constraints on the state and input variables. The set T is defined as J = {1,2, ...,D}

where D denotes the number of different dynamics. We will henceforth assume that

the sets Vi are non-intersecting.

Henceforth, we will abbreviate (13.1a) and (13.1b) with x(k + l) = fpwA(x{k), u(k)).

The optimization problem considered here is thus given by

N-l

JN(x) = min Yl (\\Quuk\\p + \\Qxxk\\p) + \\QxNxN\\p (13.2a)
Uo,...,UAT_i f—f

fc=0

subj. to xn e Tset, (13.2b)

xk+i = fpwA(xk,uk), x0 = x, (13.2c)

using either the standard squared Euclidean norm (p = 2) or linear norms (p = 1

and p = oo).

Definition 13.2.1 (Feasible Set XN) We define the N-step feasible set XN Q Rn

as the set of initial states x0 for which the optimal control problem (13.2) is feasible,

i.e.

XN={x0 eRn\3UN = [uT,...,uN_1]T, s.t. xNeTset, xk+i = fP\VA(xk,uk)}.

In [BCM03a, KM02], multi-parametric Linear Programs (mp-LP) were solved in a

dynamic programming fashion to obtain the feedback solution to (13.2). It was shown

that the resulting feedback law is piecewise affine over polyhedra. In [BBBM03], the

feedback solution to (13.2) with a quadratic objective in (13.2a) was computed by

solving a sequence of multi-parametric Quadratic Programs (mp-QP) in a dynamic

programming fashion. It was shown that the resulting feedback law is piecewise affine

over (possibly) non-convex sets bounded by quadratic surfaces. Various additional

methods to obtain explicit feedback solutions to linear or quadratic optimization

problems for PWA systems are given in [Bor03,MR03,BCM03b,KM02].
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Construction of Stabilizing

Controllers for Piecewise Affine

Systems

A large part of the literature has focussed on end-point constraints to guarantee

asymptotic stability of the closed-loop system (e.g., [Bor03,BBM00c,BM99a]). This

type of constraint generally requires the use of large prediction horizons for the

controller to cover the maximal attractive set (see Definition 7.1.9), such that the

computational complexity quickly becomes prohibitive. Other methods (e.g., [MR03])

only provide stability guarantees if the origin is contained in the interior of one of

the dynamics V^. In this section, a method is presented for obtaining stabilizing

controllers for generic PWA systems. The results in this section are derived from

[GKBM04b]1.
For any dynamical system, stability is guaranteed if an invariant set is imposed as a

terminal state constraint in (13.2b) and the terminal cost in (13.2a) corresponds to a

Lyapunov function for that set. In addition, the decay rate of the 'terminal Lyapunov

function' must be greater than the stage cost (see Section 5.2). Here we show how to

compute a control invariant set C^VA with the associated Lyapunov function such

that stability and constraint satisfaction of RHC is guaranteed. The scheme is based

on the results in [MFTMOO, RGK+04a] and was first published in [GKBM04a].

Remark 14.1.2 We here cover the case where the origin is located on the bound¬

ary of multiple dynamics Vi. The case where the equilibrium point is located on the

boundary of multiple dynamics is by no means a pathologically rare case. Many phys¬

ical systems exhibit a change in their dynamic behavior when certain states change

their sign.

*Note that identical results were simultaneously obtained by others in [LHWB04].
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Before introducing the computation scheme, some of the assumptions must be

stated. First, we require that the system dynamics Vi in (13.1b) are defined over the

x-space only. Considering cc-u-partitions would make the proposed scheme conserva¬

tive to such an extent that the practicality of the approach proposed here becomes

questionable. Specifically, it would be necessary to require that the feedback law Fi

associated with each dynamic Vi satisfy the input constraints over the entire state

space, i.e. Kx U, Vx G Uiez^-
We are furthermore assuming that the origin is an equilibrium state of the PWA

system and hence the closed loop dynamics /* = 0, \/i To (see (13.1)). If this

assumption is not satisfied, the approach proposed here will fail.

We will now show how terminal set 7^et and cost QXN can be computed such that

stabilizing RHC controllers can be constructed for generic PWA systems. In a first

step, we select all dynamics i e Xo which contain the origin, i.e.

lo = {iel\0e Vi}.

The search for stabilizing piecewise linear feedback controllers Fi and an associated

common quadratic Lyapunov function V(x) = xTPx can now be posed as

xTPx > 0, Vx e X,

xT(Ai + BiFi)TP(Ai + BiFi)x - xTPx < -xTQxx - xTF?QuFiX, Vx e Vu Vi J0.

If we relax this condition by setting Vi — Rn, Vi e X0, the problem can be rewritten

as an SDP by using Schur complements and introducing the new variables Yj = FjZ

and Z = iP"1 (see [BGFB94,KBM96,MFTM00] for details),

min 7, s.t.
, (14.1a)

l«i-Z.7

Z y 0, (14.1b)

Z (AiZ + BiYi) (Q°X5Z)T {Q^Yif

{AiZ + BiYif Z

(Q°X5Z) 0

WW) 0

0 0

7/ 0

0 7J

hO, Wie To- (14.1c)

where the scalar 7 is introduced to optimize for the worst case performance, whereby

the 'worst case' corresponds to an arbitrary switching sequence. Note that it may
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not be possible for the worst case switching sequence considered in (14.1) to occur

in practice, since not all dynamics i are defined over the entire state space.

Remark 14.1.3 // (14.1) is posed for an LTI system (i.e. J0 = 1), the optimal

LQR state feedback solution K and the solution to the Algebraic Riccati Equation P

is recovered.

Alternatively, one can solve a MAXDET problem (see Chapter 1) to obtain the

largest invariant ellipsoidal target set [BGFB94] . Large target sets generally make

the subsequent controller computations simpler, since fewer iterations are required

to cover the state space of interest. Note however, that the feedback laws associated

with the maximal volume invariant ellipsoidal set may not yield the maximal volume

invariant polytopic set.

In a second step, the maximal admissible set 0A of the PWA system subject to

the feedback controllers F» can be computed with the algorithm in [RGK+04a] (see

Chapter 7), which is guaranteed to terminate in finite time for the problem at hand,

since the closed loop system is asymptotically stable.

The proposed computation scheme is summarized in the following algorithm:

Algorithm 14.1.4 (Computation of Maximal Admissible Set 0A)

1. Identify all dynamics i which contain the origin, i.e. i J0 = {i N+ | 0

Vi}.

2. Solve (14.1) for all i e Jo, to obtain Fi and P. If (14.1) is infeasible, abort the

algorithm.

3. Compute the maximal output admissible set ÖPJVA corresponding to the closed

loop system x+ = (Ai + BiFi)x, if x eVi with the method in [RGK+04aJ (see

Chapter 7).

4- Return the target set OP0WA, the feedback laws Fi and the associated matrix P.

Theorem 14.1.5 (Exponential Stability of RHC for PWA Systems,

[GKBM04a, GKBM04b]) Assume the optimization problem (13.2) is given with

a quadratic objective, i.e. (13.2a) corresponds to

N-l

JN(x(0)) = min Y] (ulQuuk + xlQxxk) + xNQXNxN
Uo,...,UN-i

* '

fc=0

s.t. Qx y 0, QXN hO, Quy 0,
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the terminal set is Tset = 0P^WA and the terminal cost is QXN = P (obtained with

Algorithm 14-1.4)- If this problem is solved at each time step for the PWA system

(13.1) and only the first input is applied (Receding Horizon Control as described in

Chapter 5), then the closed loop system is exponentially stable.

Proof Algorithm 14.1.4 trivially satisfies the conditions for exponential stability

in [MRRSOO, Section 3.3] (also given in Section 5.2). D

Note that we only need to consider a single convex terminal set for linear systems

[GT91, MRRSOO] whereas for PWA systems, the terminal set 0A is given as a

union of several convex sets 0A = {JXi. If the union \jXi is convex, the regions

can be merged with the method in [BFTOl]. Convexity of the target set is a desirable

property since simpler target sets %et generally lead to reduced algorithm run-time

and solution complexity for the type of optimization problem given in (13.2).

Remark 14.1.6 The procedure described in this section is merely sufficient for

asymptotic stability. We cannot guarantee that the Lyapunov function and the asso¬

ciated state feedback laws will be found in the suggested manner. However, we have

observed in an extensive case study that the approach works very well in practice.

Short of the computationally very demanding construction of the infinite horizon so¬

lution proposed in [BCMOSbJ, there is currently no alternative method for guaran¬

teeing closed-loop stability for control of generic PWA systems. Furthermore, the

method we propose here can easily be combined with most other controller computa¬

tion schemes (e.g., [BBBM03,MR03,KM02,BCM03aJ).
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Optimal Controller Computation

for Piecewise Affine Systems

This chapter will address the first lever1 for complexity reduction. Namely, the

efficient computation of explicit control laws.

Control u*

«»•Output y

Figure 15.1: Illustration of the three levers for complexity reduction in receding hori¬

zon control. The first lever, which is the focus of this chapter, is high¬

lighted.

In the following, a novel algorithm for the computation of explicit optimal control

laws for piecewise affine (PWA) systems with linear performance indices is presented.

The algorithm is based on dynamic programming (DP) and represents an extension

of ideas initially proposed in [KM02,BCM03a]. Specifically, it will be shown here

how to exploit the underlying geometric structure of the control problem in order to

1See Chapter 9 for a discussion of the three levers for complexity reduction.
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significantly improve the efficiency of the off-line computations. An extensive case

study is provided, which clearly indicates that the algorithm proposed in this chapter

is preferable to other schemes published in the literature. The results given here are

derived from [BGBM05].

15.1 Introduction

Constrained finite time optimal control (CFTOC) of PWA systems has been widely

addressed in the literature, e.g. [Bor03, KM02,BCM03a, MR02]. The explicit off¬

line solution to the CFTOC problem can be obtained by solving a multi-parametric

mixed-integer linear program (mp-MILP) for linear performance indices [DPOO], or

a multi-parametric mixed-integer quadratic program (mp-MIQP) for a quadratic

cost [BM99a]. In [Bor03], the author proposed a computational scheme for obtaining

quadratic optimal controllers for PWA systems which was based on dynamic program¬

ming (DP). For PWA systems and linear performance indices, a DP-based approach

was introduced in [KM02], where the authors consider the optimal control of PWA

systems affected by bounded disturbances. The scheme proposed in [KM02] uses a

series of multi-parametric linear programs (mp-LPs) instead of one mp-MILP. An

implementation of the DP-based algorithm in [KM02] for performance indices based

on 1 and oo norms is described in detail in [BCM03a]. Practical experience with

these computation schemes shows that for PWA systems of higher dimensions and

a large number of affine dynamics, the off-line computation of the explicit optimal

control law may become too demanding to be applicable in practice.

Therefore, in this chapter, we address the efficiency of the off-line computation

of the CFTOC law. We show how to exploit problem convexity, such that fewer

mp-LPs need to be solved. For this new formulation, we show how to reduce the

number of constraints defining polyhedral critical regions in the explicit control law

by exploiting region adjacency information. Finally, we present an extensive case

study in which we compare the runtime of the algorithm in [KM02, BCM03a] with

the runtime of the algorithm proposed here.
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15.2 Problem Statement and Preliminary Results

In this section we will define the CFTOC problem and give preliminary results which

characterize its explicit solution. Also, we will shortly describe the DP-based algo¬

rithm in [BCM03a,KM02].

15.2.1 Problem Statement and Properties of the Solution

Consider the PWA system (13.1) and the following cost function:

N-l

J(Uo,x(0)) := \\QXNx(N)\\t + J2 \\Qxx(k)\\t + \\Quu(k)\\t, (15.1)
fc=0

where N is the time horizon, QXN is a matrix defining the weight on the ter¬

minal state x(N), \\ • ||^ denotes the vector norm with I e {l,oo} and Uq =

[uT{0),..., uT(N - 1)]T e RmN is the vector of control inputs. The goal of CFTOC

is to minimize the cost function (15.1), i.e.:

(J*)W(x(0)) := min J{N}{U0, x(0)) (15.2a)
Uq

subj.to
J *(* + !) = W*(*W*)),

(15.2b)
\ x(N) e Tseu

V '

where 7^et is a terminal set, i.e. the set of admissible states at the final time instance

N. The following theorem characterizes the solution of the CFTOC problem (13.1)-

(15.2).

Theorem 15.2.1 (CFTOC Solution Properties, [Bor03]) The solution to the

optimal control problem (13.1)-(15.2) with £ e {l,oo} is a polyhedral piecewise

affine (PPWA) (affine in every polyhedron) state feedback control law of the form

u*(k)=FrWx{k) + Glk} ifx(k)e7lW, (15.3)

where VJf-
,
r = 1,..., R^ are polyhedra defining a polyhedral partition of the set

XW of feasible states x(k) at time step k = 0, ...,
AT — 1.

The PPWA solution to the CFTOC problem can be obtained by formulating the

problem as a DP and solving a number of mp-LPs [KM02,BCM03a]. In each mp-LP,

the state vector x is considered to be a vector of parameters and the control input u

is the optimization variable. For further discussion, we will need the following result

related to the character of the solution of an mp-LP:
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Theorem 15.2.2 (mp-LP Solution Properties, [Bor03]) Consider the mp-LP:

J*(x) = min J(z, x) = cTz, subj. to Gz<Sx + W, (15.4)

where z eRs is a vector of optimization variables, x e Rn is a vector of parameters,

J(z,x) : Rs x Rn -» R is the objective function and G e Rqxs, S e Rqxn, W e Rq.

Let V* be the set of parameters x for which the linear program (15.4) has a finite

optimal solution. Then:

1. V* is a closed polyhedral set in Rn,

2. The value function J*(x) is convex and PPWA over V*, i.e.

J*(x) = a{x + ßi, if xe CTZi, (15.5)

where {CTZi}i=1, are polyhedra and V* = \Ji=iCTZi.

Polyhedra CTZi, defining the partition of the feasible set of parameters V*, are known

in the theory of parametric programming as critical regions. To make a clear distinc¬

tion between the solution of a single mp-LP and the general solution to a CFTOC

problem (13.1)-(15.2), i.e. between critical regions CTZi, and regions 72.,- in Theo¬

rem 15.2.1, we will refer to TZ\ '
as controller regions. Note also that the convexity

results given in Theorem 15.2.2 are valid only for the solution of a single mp-LP. The

set of feasible parameters and the value function of the CFTOC problem (13.1)-(15.2)

are in general non-convex. For more details about the theory of mp-LP, the reader

is referred to Chapter 3.

15.2.2 DP-Based Algorithm with Affine "Cost-To-Go"

In this subsection we briefly describe the DP-based algorithm previously published

in [KM02,BCM03a]. Problem (15.2) can be stated as an equivalent dynamic program:

(7*)«(a:(fc)):=min||Qxx(A:)||, + ||QXfc)lk + (^){fc+1}(/pwA(x(fc),n(A;))) (15.6a)
u{k)

s.t. fPMx{k),u(k)) e *{fc+1>, (15.6b)

for k = N — 1, ..., 0, with boundary conditions

XW = Tset, and (J*){N}(x) = \\QXNx\\e,
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where

#<*> = {x e Rn | 3u, /pwaM G *<fc+1>} , (15.7)

is the set of all initial states for which the problem (15.6) is feasible. The term

(J*){k+1}(x(k + 1)), representing the cost of all future control actions, is commonly

referred to as "Cost-To-Go". Since the set X^+V and (J*)^+1^{x(k + 1)) are in

general non-convex for PWA systems, mp-LP solvers cannot be applied directly to

solve (15.6). Instead, the non-convex problem (15.6) is split into a number of convex

sub-problems by formulating one mp-LP for each controller region obtained at the

previous iteration of the DP:

(J*)w(x(fc)) := min\\Qxx(k)\\t + \\Quu(k)\\e + alk+1^x(k + 1) + #fc+1} (15.8a)
u(k)

s.t. x{k + 1) = fpwA(x(k),u{k)) e TZlk+1\ (15.8b)

In (15.8) the non-convex PWA "Cost-To-Go" has been replaced by the affine term

(J*){*+!} = ark+1}x{k + 1) +/?r{fc+1}. This way, problem (15.8) needs to be solved for

TZÏ
+ '\ and all dynamics {Vi}f=v The result of each of

J r=l

ß{fc+!} . d mp-LPs (15.8) is a closed polyhedral partition V\ ,
the union of which

is the set of feasible parameters in step k, i.e. X^ = (Ji=1
'

V} .
Note that the

partitions V} ' will overlap, in general. In order to obtain a suitable target partition

for the next step of the DP, it is therefore necessary to compare the cost (J*)^(x)
wherever controller regions overlap and to remove the controller regions which are

not cost optimal. Detection of overlapping critical regions within partitions V\
and comparison of the cost are done by solving a (possibly large) number of LPs

( [GKBM03] or [Bor03], pg. 158-160). The computational complexity of removing

overlaps grows exponentially with the number of regions covering any given state x.

As the number of mp-LPs solved in one step of the DP grows with each iteration of

the DP, the number of overlaps grows as well. Thus, a significant amount of time is

spent on the removal of overlaps.

15.3 Dynamic Programming with Convex PWA

"Cost-To-Go"

In this section, the main contribution of this chapter is presented. It is shown how to

reformulate the DP problem presented in the previous section such that the number
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of mp-LPs which need to be solved is reduced. Before stating the algorithm formally,

a simple example to illustrate the key ideas is provided.

Consider a one-dimensional PWA system and a single DP iteration of the CFTOC

problem for the i—th dynamic of the system:

(J*)<fc>(x(fc)) := min(J*)^k+^(x{k + 1)) (15.9a)
u(fc)

s.t. x(k + 1) = fpwA{x{k), u(k)) e #{fc+1}. (15.9b)

For the sake of simplicity, we consider only the minimization of the "cost-to-go"

(J*)(k+1}(x(k + 1)). The target set X^k+1^ is assumed to be convex and consisting of

two subsets (see Fig. 15.2):

X}k+1} := {x\xeX^Ax<xc},
X2{k+1} := {x\xeX^Ax>xc}.

We further assume that (J*){fc+1l is non-convex on X^k+1^ and affine in each of the

subsets. The constraints (15.9b) define a polyhedron U in (x, u) space (Fig. 15.2), the

projection of which to the x space defines the set of parameters (system states) V for

which the optimization problem (15.9) is feasible. We split this non-convex problem

into two subproblems by considering each segment of the target set separately, as

explained in Subsection 15.2.2. A cut x(k + 1) = xc in (x, u)—space separates poly¬

hedron II into two polyhedra LTi and II2 (see Fig. 15.2). Projections of these poly¬

hedra to a;—space define sets Vi and V2, which represent sets of feasible states for

each mp-LP subproblem. In general, the cut introduced by the additional constraint

x{k + 1) = xc separates the polyhedron II in such a way that the sets V\ and V2

overlap. On the other hand, if (J*)^fc+1^ is convex PWA in X^k+1^, one can formulate

the problem as a single mp-LP and obtain the solution as a set of non-overlapping

critical regions whose union is V. This will be shown in the following section.

15.3.1 Dynamic Programming with Convex PWA

"Cost-To-Go"

Consider the DP formulation of the CFTOC problem (15.6) and assume that a

terminal set is given by:

xW=Tset= (J 7>W, (15.10)
c=l
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(j*){*+l}

x(k + 1)

i f x(k)

Figure 15.2: DP-based algorithm with affine "cost-to-go": for two adjacent target

sets, two overlapping partitions V\ and V2 are generated.

where Vc are closed polyhedral sets. Furthermore, assume that the value functions

(J*)^^ defined over each subset Vc are convex PPWA, i.e.:

(J*c)W(x) = ar,cx + ßr,c, iixeTZW, (15.11)

where r = 1,..., i?| 'is the number of polyhedral regions in Vc — Uf=i ^r,c •

Being convex and PWA affine, each (J*)^ can be written as [Sch87]:

(J*){N}(x)= max ar,cx + ßr,c,
r{l,...,fi|N>}

and the problem:

min (J*JNHx), s.t. i6^,
X

can be equivalently formulated as:

min 7, s.t. aTfix + ßr<c < 7,
r,7

(15.12)

(15.13)

where r = 1,..., Re .
This well-known principle is also applied in Section 12.3.

By taking into account Theorem 15.2.2, the non-convex problem (15.6) can be split



190 15 Optimal Controller Computation for Piecewise Affine Systems

into a number of c = 1,..., Clfc+1l mp-LP subproblems of the following form

(j;){N}(x) := min \\Qxx\\t + \\Quu\\t + 7 (15.14a)
u,7

s.t. fpwA(x(k),u(k))) e Pf+1>, (15.14b)

ar,cx(fc + l)+/3r,c<7, Vr{l,...,ß|fc+1}}, (15.14c)

where C^fe+1^ denotes the number of polyhedral target partitions Vc from iteration

k + 1 and Re corresponds to the number of polyhedral regions in Vc
+

- Hence,

it is necessary to solve C^ = C^k+1^ • D mp-LPs in order to obtain the solution to

(15.14). The CV°} resulting partitions will overlap, in general, and a comparison of

the mp-LP solutions needs to be performed in order to get the solution of the original

CFTOC problem, i.e. it is still necessary to remove overlaps in the partitions. So far,

the only difference to the scheme described in Section 15.2.2 is that we consider only

large convex controller partitions Vc as target sets, instead of the smaller convex

controller regions. In order to avoid exponential growth of the number of partitions

Vc with each iteration (mp-LPs which need to be solved in each step of the DP), it

is advisable to remove partitions which do not contain any optimal critical region, i.e.

if for all x e Vk there exists a partition Vk and a corresponding value function

(J^)W such that x T>£} and (J*(x)){fe} > (J^(x))W, then the partition vik}

can be removed. Detection of suboptimal partitions can be done by using the value

functions («/£)^ as a selection criterion and solving a (possibly large) number of LPs.

Note that in the worst-case, it may not be possible to discard any partitions.

Comparing the new algorithm (15.14) to the approach in Section 15.2.2, it is obvious

that the mp-LPs in (15.14) are more complex, since the number of constraints is

(considerably) higher due to the introduction of value function constraints (15.14c).

As a remedy, we propose the following scheme based on region adjacency information.

15.3.2 Constraint Reduction Using Adjacency List

Using algebraic manipulations, the mp-LP (15.14) can be put into the form (15.4).

For further discussion we will need the notion of active constraints.

Definition 15.3.1 (Active Constraints) The set of active constraints A(x) for a
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given state x of problem (15.4) *s defined as2:

A(x) :={iel\Vz : jW{x,z) = (J*){k}(x), G(i)z - S^x - W{i) = 0} , (15.15)

where G({), S^ and W^ denote the i—th row of matrices G,S and W respectively,

andl = {1, ...,q}.

Critical regions, defining the solution of the mp-LP, are constructed as follows. For

a given state (parameter) x* an LP is solved and a set of active constraints A{x*) is

identified. For the construction of the critical region, the set of inactive constraints

N(x*) = T\A(x*) is used, defining q^ half-spaces whose intersection describes the

polyhedral critical region, i.e. the cardinality of A/" is qjj. In order to obtain the

minimal representation of the critical region, all redundant half-spaces need to be

removed, so that the final representation of the critical region is defined as an in¬

tersection of qfr < qx half-spaces. This procedure requires the solution to qx LPs

per critical region [Bor03]3. In our case, qx increases with the number of value func¬

tion constraints, i.e. the number of critical regions in the target partitions from the

previous step of the DP, which may grow exponentially with each DP iteration. In

the following we show how to reduce the number of initial half-spaces <£v by exploit¬

ing region adjacency information, and thus significantly decrease the number of LPs

which need to be solved per mp-LP subproblem.

Before proceeding further, it is necessary to point out that, in the strict sense,

critical regions are open sets. However, for any practical computation and analysis, a

critical region is usually replaced by its closure. In the rest of the text, when speaking

of a critical region, we will consider its closure.

Definition 15.3.2 (Adjacent Regions) Polyhedral critical regions CTZi and CTZj

are called adjacent if they share a common facet.

In the following, the term adjacent constraints will be used for value function con¬

straints (15.14c) which correspond to adjacent critical regions. Let A{x*) be a set of

active constraints for a given x* e CTZ\ ,
where CTZ\ ' is the critical region whose

polyhedral representation we want to compute. The critical region CTZ\ '
can be

2We here use the variable z instead of the input U because mp-LP problem formulations addition¬

ally introduce slack variables (see Chapter 9).

3Assuming the improved scheme proposed in Section 10.2 is not applied.
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obtained as a projection from (x, z)-space to z-space of the polyhedron defined by:

G(i)Z-S(i)X = W{i), ieA{x*), (15.16a)

Gwz-Swx < W{j), jeN{x*). (15.16b)

Theorem 15.3.3 (Using Adjacency in Region Computation, [BGBM05])

The representation of the critical region CTZ\ * (i.e. the projection of (15.16)) re¬

mains the same if the set J\f is reduced to those constraints which become active on

the facets of the region CTZ\ '.

Proof Consider only the value function constraints (15.14c), and, for the moment,

assume that only one value function constraint is in the set of active constraints.

When computing a critical region CTZ\ ,
the active value function constraint is known

and enforced in (15.16a). This active value function constraint directly identifies

the region CTZ]..+C ' containing the state at time k + 1. All inactive value function

constraints are forced to be inactive by (15.16b). Geometrically, the value function

constraints in (15.14c) represent a polyhedron in (a:,u,7)-space, whereby the active

value function constraint in (15.16a) defines one of it's facets. It now follows directly

from convexity of the value function (J*)^fc+1^, that all value function constraints

which do not originate from regions adjacent to this facet (which corresponds to

region CTZ\.\ '), are redundant (e.g., see also (15.13)). Hence, it is sufficient to

consider only the value function constraints in (15.16b) which originate from regions

adjacent to CTZrk+1}. D

A list of adjacent regions for every critical region can be obtained when solving an

mp-LP at no additional computational cost [Bor03]. An example of the solution of

an mp-LP and the constructed adjacency list is shown on Fig. 15.3. The approach

described above is easily extended to cases where more than one value function con¬

straint is active. It is then sufficient to consider only those value function constraints

in A/", which are adjacent to at least one of the active value function constraints.

15.3.3 A Note on Complexity

No tight bounds on the computational complexity of solving multi-parametric pro¬

grams exist. Hence, it is not possible to perform a detailed complexity comparison
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region adjacent regions
1 6

2 6

3 4.6

4 3.7

5 7

6 1.2.3.7

7 4.5.6

Figure 15.3: Critical regions and the corresponding adjacency list

of the two algorithms described here. Instead we will discuss the two most crucial

aspects of complexity from an intuitive point of view.

Using an affine cost-to-go as in Section 15.2.2, the CFTOC computation requires

the solution to i?^fc+1^ • D mp-LPs, while the proposed algorithm with a piecewise

affine cost-to-go solves C^k+1^ • D mp-LPs, with an additional variable 7 and con¬

siderably more constraints. If the adjacency scheme in Section 15.3.2 is applied,

the run times for solving the mp-LPs do not differ significantly for the two ap¬

proaches. It always holds that C^k+1^ < R^k+1^ and in practice it generally holds

that C*fc+1} <3C R^k+1K Hence, fewer mp-LPs need to be solved for our algorithm,

i.e. the PWA cost-to-go approach.

The other critical component of the CFTOC algorithms in terms of overall runtime

is the removal of overlapping partitions, i.e. associating the unique optimal feedback

law to each state. On one hand, the affine cost-to-go algorithm solves more mp-LPs

and is hence likely to produce more controller regions and thus more overlaps. On

the other hand, our algorithm solves mp-LPs for larger volume target sets, leading to

larger volume partitions. Thus, it is possible that more controller regions will cover

any given state. Therefore, we cannot draw theoretical conclusions on the complexity

of overlap removal, although extensive simulations clearly suggest the PWA cost-to-go

approach to be superior.
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15.4 Numerical Results

In order to demonstrate the efficiency of the proposed algorithm, we show the results

of an extensive case study. An oo-norm performance objective with Qx = QXN = I

and Qu = I was used in formulating the CFTOC problem. The total computation

run times were measured for the proposed algorithm and the algorithm presented

in Section 15.2.2. Both algorithms are implemented using the Multi Parametric

Toolbox [KGB04] for Matlab. The explicit control laws were computed for 20

randomly generated 2D PWA systems with 4 affine dynamics and for 20 randomly

generated 3D PWA systems with 6 affine dynamics. The horizons N = 7 and N = 3

were used for 2D and 3D systems respectively. The results are shown on Figure 15.4

for computations run on a Pentium 4 PC, 3GHz, using Matlab 6.5 [The03] and the

NAG LP solver [Num02].

15.5 Conclusion

In this chapter, a novel algorithm was proposed to solve CFTOC problems for

discrete-time PWA systems. The algorithm exploits problem structure (i.e. region

adjacency information and convexity) to yield faster run times than previously pub¬

lished algorithms. For the analyzed 3rd order PWA systems, the speedup with the

new algorithm is typically of one order of magnitude. We cannot claim that the

proposed algorithm will outperform alternative schemes in every case, though it was

true for all examples studied.



15.5 Conclusion 195

1E+05

1E+04

I 1E+03

1E+02

1E+01

1E+05

affine cost-to-go I

PWA cost-to-go I

5 10 15

system

(a) 2D PWA systems with 4 affine dynamics.

20

»
1E+04

<D

E

Q.

E

1E+03

1E+02

affine cost-to-go MM

PWA cost-to-go çzz^j

10

system

15 20

(b) 3D PWA systems with 6 affine dynamics.

Figure 15.4: Total computation time for various random PWA systems. Note that

the plots are in log-scale.
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16

Low Complexity Feedback Control

of Piecewise Affine Systems

This chapter will address the second lever1 for complexity reduction. Namely, the

computation of controller partitions consisting of few regions.

Controller

Compulation

Region
Identification

Çtrr.
Partition Complexity

Control if

Plant State x

PLANT -*»-Output ii

Figure 16.1: Illustration of the three levers for complexity reduction in receding hori¬

zon control. The second lever, which is the focus of this chapter, is

highlighted.

It will be shown in the following how to compute low complexity controllers for

piecewise affine (PWA) systems which provide stability guarantees, even if the origin

is located on the boundary of multiple dynamic regions. The schemes presented in

this chapter are basically identical to those presented in Chapter 11, except that they

are applied to PWA systems.

1See Chapter 9 for a discussion of the three levers for complexity reduction.

197
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Without loss of generality, we restrict ourselves to the regulation problem, i.e.

how the state x(k) can be steered to the origin without violating any of the system

constraints along the closed loop trajectory. General tracking problems can easily

be formulated as regulation problems by augmenting the state space appropriately

(e.g. [PK03]).

One of the key problems in control of PWA systems is the lack of convexity in the

controlled sets, which produces a significant computational overhead. Furthermore,

the complexity of the cost-to-go function in the dynamic programming approach

in [BBBM03, KM02] makes it necessary to explore an exponentially growing number

of possible target sets during the iterations. The algorithms presented here avoid these

issues to some extent by considering 'simpler' control objectives (e.g. minimum-time

control). However, all controllers presented here guarantee constraint satisfaction for

all time as well as asymptotic stability.

The rest of this chapter is structured as follows: In Section 16.1, the computation of

a minimum-time feedback controller is presented which drives the system state into a

pre-specified target set in minimum time. Section 16.2 will introduce a control scheme

which aims at obtaining a low (but not necessarily minimal) number of switches in the

system dynamics. In Section 16.3, we show how controllers of even lower complexity

can be obtained by separately dealing with the issue of constraint satisfaction and

asymptotic stability. As the final Section 16.4 will show, the resulting controllers are of

such low complexity compared to the traditional methods [BCM03a,BBBM03,KM02]

that a whole new class of problems becomes tractable.

16.1 Minimum-Time Controller

A minimum-time controller aims at driving the system state x(k) into a pre-specified

target set (here Ö^R) in minimum time. Unlike the approaches in [BBBM03], the

cost-to-go for the minimum-time controller assumes only integer values. Because of

the 'simple' cost-to-go, the target sets which need to be considered at each iteration

step are larger and fewer in number than those which would be obtained if an optimal

controller with a different cost objective were to be computed [BBBM03,BCM03b].

Thus, both the complexity of the feedback law as well as the computation time are

greatly reduced, in general.

A minimum-time controller computation scheme for PWA systems was first in-
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troduced in [KM02], using projection methods. Though giving general ideas about

the computation concept and the character of the minimum-time solution, com¬

putational issues are not addressed in detail. A detailed algorithmic implemen¬

tation of the minimum-time algorithm will be described in the following, using

multi-parametric programming2. For a comparison of projection based controller

computation with multi-parametric programming, we refer the reader to Section 11.2.

When the minimum-time algorithm terminates, the associated feedback controller

will cover the AT-step stabilizable set 1CNWA(Ö^R).

Definition 16.1.1 (AT-step stabilizable set K.NWA{Ö^K)) ThesetJCNWA{ö^R)
denotes the N-step stabilizable set for a PWA system (13.1), i.e., it contains all states

which can be steered into Ö^R in N steps. Specifically,

^nva(0^r) = {x{0) e Rn | 3u(k) e Rm, s.t. x(N) e ö^QR,

x(k+l) = fpwA(x(k),u(k)), Vfce{0,...,iV-l}}.

Accordingly, the set JCPJirA(0^R) denotes the maximal stabilizable set for N — oo.

16.1.1 Minimum-Time Controller: Off-Line Computation

An algorithm for computing the minimum-time controller will be presented in this

section. The computation scheme is based on solving a sequence of multi-parametric

programs at each iteration step. The number of iterations corresponds to the number

of time steps which are needed to reach the target set. At each iteration, a controller

partition is computed which drives the state into the partition that was obtained in

the previous iteration. The scheme is illustrated in Figure 16.2.

Before presenting the algorithm, some preliminaries will be introduced. Assume a

P-collection 5° of L° polytopes 5j\ i.e. S° = \Jlec0 Sf, where £° â {1,2,..., L°}. In

the following, the set <S without subscript will be used to denote P-collections while

the subscript is used to denote polytopes. All states which can be driven into the set

2Multi-parametric programming can be seen as a form of projection and thus the content of this

section can be viewed as a special case of [KM02].



200 16 Low Complexity Feedback Control of Piecewise Affine Systems

(a) Target Set <P^R. (b) Iteration 1: states which can (c) Iteration 2: states which can

be driven into Q^R in one step, be driven into C^R in two steps.

(d) Iteration 3: states which can

be driven into 0£°-R in three

steps.

(e) Iteration 4: states which can

be driven into C?^R in four

steps.

(f) Iteration 5: states which can

be driven into ö£QR in five steps.

Figure 16.2: Minimum-time controller computation for Example 16.4.3. The con¬

troller partitions for the first five iterations are shown. Different colors

are used to depict different control laws.

5° for the PWA system (13.1) are defined by:

Pre(<S°) = {x e Rn \ 3u e Rm, /pwa(x,u) 5°}

= U U \x e Rn I 3u e E ^ uT]T e P" A>x + B*u + /* Si]
= U ^.r

For the feasible set Xit3, the subindex 1 denotes that the set was obtained for a

prediction horizon of 1 (see Definition 13.2.1). The second subindex, j, is used to

access the different feasible sets which are obtained for various combinations of active

dynamics and target sets. The index set J° contains all valid values for j in X\^.

For a fixed i and I, the target set <Sf is convex and the dynamics affine, such

that it is possible to apply standard multi-parametric programming techniques to
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compute the set of states which can be driven into Sf [BMDP02]. Therefore the

set Pre(<S°) is a union of polytopes and can be computed by solving J° = D • L°

multi-parametric programs, where D denotes the number of dynamics and L° is the

number of polytopes which define <S°. Each of these multi-parametric programs will

yield a controller partition {Vjr}R=i consisting of R controller regions whose union

covers the feasible set Xij = Ur=i... h ^j.r (see Definition 13.2.1). Since the set

Pre(«S°) is computed via multi-parametric programming, we also obtain an associ¬

ated feedback law u(x) which provides feasible inputs as a function of the state (see

Theorem 3.2.3). Note that the various controller partitions may overlap, but that

each controller will drive the state into <S° in one time step, i.e. fp\vA(x,u(x)) e S°.

Henceforth, we will use the notation Siter+1 = Pre(«S"er) = [jjejiter+i Sfer+1.

In the following, the algorithm for computing the minimum-time controller for

PWA systems will be introduced.

Algorithm 16.1.2 (Minimum-Time Controller Computation)

1. Compute the invariant set Ö^R around the origin (see Figure 16.3(a)) as well

as the associated Lyapunov function V(x) = xTPx and feedback laws Fi as

described by Algorithm 14-1-4-

2. Initialize the set list <S° = 0^R and initialize the iteration counter iter = 0.

3. Compute Siter+1 = Pre(«S"er) = \Jjej«*r+i Sj"*1 > by solving a sequence of

multi-parametric programs (see Figure 16.3(b)). Thus, a feedback controller

partition {Vf^r+l}f=i is associated with each obtained set Sjter+1. Obviously,

the number of regions R of each partition is a function of iter and j.

4. ForallfeJ^: IfS?r+lc\\JjeJiter+lxmSf^}u {Ui6{1 ^yS*},
then discard Spr+1 from Siter+1 and set Jiter+1 = Jiter+l \ {j*} (see Figures

16.3(c) and 16.3(d)).

5. If S%teT+l 7^ 0, set iter = iter + 1 and goto step 3.

6. For all k e {1,... ,iter — 1} and r e N+ discard all controller regions Vjf1
for which Vk^ Ç Uie{i,...,jt} $% since the associated control laws are not time-

optimal and will never be applied.
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(a) Invariant target set C^K = S? U &j b) Set of states SL which enter «Su in one

time step. The individual controller parti¬

tions defining S1 are not depicted.

vt Vj

1^1
s1

(c) The transition partition does not expand (d) The transition controller expands the con-

the controlled set of states. The individual trollable set of states. The individual con-

controller partitions defining Sl are not de- troller partitions defining S1 are not depicted,

picted.

Figure 16.3: Description of Algorithm 16.1.2.

The index iter corresponds to the number of steps in which a state trajectory will

enter the terminal set C?^R if a receding horizon control policy is applied. If the

algorithm terminates in finite time, then the set Slter is the maximum controllable

set KA(0^R) as given in Definition 16.1.1.

Remark 16.1.3 Note that Algorithm 16.1.2 may not terminate in finite time (e.g.

if states are unbounded). This is a problem inherent property and not a result of the

computation scheme. It is therefore advisable to specify a maximum step distance

N which can be used as a termination criterion in step 5 of Algorithm 16.1.2. The
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resulting controller computation will then terminate in finite time and the feedback

controller will cover K,NWA{0^R).

Remark 16.1.4 The implementation of Algorithm 16.1.2 requires a function that

can detect if a convex polyhedron Vo is covered by a finite set of non-empty convex

polyhedra {Vr}R=i> i-e- ifVo Q Ure{i,...,j?} ^V- For instance, this operation is needed to

check if two unions ofpolyhedra cover the same non-convex set [RGK+04a] (e.g., Step

5 of Algorithm 16.1.2). We refer the reader to [BT03], where an efficient algorithm

is given to perform this task.

16.1.2 Minimum-Time Controller: On-Line Application

In the minimum-time algorithm presented in this paper, we can take advantage of

some of the algorithm features to speed up the on-line region identification procedure.

We propose a three-tiered search tree structure which serves to significantly speed

up the region identification. Unlike the search tree proposed in [TJB03b], the tree

structure proposed here is computed automatically by Algorithm 16.1.2, i.e. no

post-processing is necessary. The following algorithm illustrates how the controller

obtained with Algorithm 16.1.2 can be applied, such that the resulting closed-loop

trajectories are minimum-time optimal.

Algorithm 16.1.5 (On-Line Application of Minimum-Time Controller)

1. Identify the active dynamics i, such that x eVit i eT (see Figure 16.4(a))3.

2. Identify controller set SfeT associated with dynamic i which is 'closest' to the

target set S°, i.e. min;ter)j iter, s.t. x Sfer, j e Jltev (see Figure 16.4(b)).

3. Extract the controller partition {73j**r}£=i w^th the corresponding feedback laws

Fr,Gr and identify the region r which contains the state x e Vf^ (see Figure

16.4(c)).

4- Apply the control input u = Frx + Gr- Goto 1.

3 Note that once the control law has been computed, a unique dynamic i can be associated with

each state, even if the original PWA system was defined in x-u-space.
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(a) Identify dynamics T>i con- (b) Identify feasible controller set (c) Extract controller par-

taining the state3. Xjter containing the state that tition {Vfrr}R=i associated

has the smallest value for iter. with feasible set Sfer and

identify region VfrT contain¬

ing the state.

Figure 16.4: Illustration of Algorithm 16.1.5.

Note that the association of controller partitions Sfer to active dynamics in step 2

is trivially implemented by building an appropriate lookup-table during the off-line

computation in Algorithm 16.1.2.

A minimum-time control scheme for PWA systems based on projection was pro¬

posed in [KM02]. The on-line application of that scheme is similar to Algorithm

16.1.5, except that in Step 3, the authors need to find an interior point to a polytope

in 2>£/jv-space. Depending on the number of controller regions R, the interior point

approach may or may not be faster than the algorithm proposed here.

Theorem 16.1.6 (Properties of Minimum-Time Control, [GKBM04a]

[GKBM04b]) The controller obtained with Algorithm 16.1.2 and applied to a PWA

system (13.1) in a receding horizon control fashion according to Algorithm 16.1.5,

guarantees asymptotic stability and feasibility of the closed loop system, provided

x(0)elCNWA(O^R).

Proof Assume the initial state x(0) is contained in the set Slter with a step distance

to Ö^R oiiter. The control law at step 4 of Algorithm 16.1.5 will drive the state into

a set S%ter~l in one time step (see step 3 of Algorithm 16.1.2). Therefore, the state

will enter Ö^R in iter steps. Once the state enters 0^R the feedback controllers

associated with the common quadratic Lyapunov ensure stability. D
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16.2 Reduced Switching Controller

In general, it is possible to obtain even simpler controllers and faster computation

times by modifying Algorithm 16.1.2. Instead of computing a minimum-time con¬

troller, an alternative scheme which aims at reducing the number of switches can

be applied. A change in the active system dynamic Vi —> Vj, (i =£ j) is referred

to as a switch. The proposed procedure does not guarantee the minimum number

of switches, though straightforward modifications to the algorithm would yield such

a solution. The "minimum number of switches" solution is not pursued here since

computation time is the primary objective.

The proposed reduced switch controller will avoid switching the active dynamics

for as long as possible. We will introduce the following operator for i e X:

Prei(Sfer) ={x e Rn \ 3u Rm, [xT uT]T e V{, AiX + BiU + fi e Sfer}.

Once the j — th controller set Sfer obtained at iteration iter is computed (see Algo¬

rithm 16.1.2, step 3) for dynamics i, the set is subsequently used as a target set for

as long as the controllable set of states can be enlarged without switching the active

dynamics i. With this scheme, the total number of convex sets needed to describe the

controlled set <S,ter remains constant while the size of «SIter increases. Therefore, this

scheme generally results in significantly fewer sets during the dynamic programming

iterations compared to Algorithm 16.1.2. Specifically, the algorithm works as follows:

Algorithm 16.2.1 (Computation of Controller with Reduced Number of

Switches)

1. Compute the invariant set 0^R around the origin (see Figure 16.5(a)) as well

as the associated Lyapunov function V(x) = xTPx and linear feedback laws Fr

as described by Algorithm 14-1-4-

2. Initialize the set list S° = 0^R — U,Gl7° $j an^ initialize the iteration counter

iter = 0.

3. Initialize Slter+1 = 0 and execute the following for all dynamics i e T and

set-indices j e JlteT' :

a) Initialize counter c = 0 and set C° = «Sjter.
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b) Compute Cc+1 = Prej(Cc) (see Figure 16.5(b)) by using multi-parametric

programming and store the associated controller partition. Thus, a feed¬

back controller partition {Vj^1'Uer}R=zl is obtained.

c) IfCc C Cc+1 (see Figure 16.5(c)), set c = c + 1 and goto step 3b.

d) Set Siter+1 = Siter+1UCc (see Figure 16.5(d)).

4. ifSiter+1 ^ Siter, set iter = iter + 1 and goto 3.

5. For all k e {1,..., iter — 1}, c e N and r e N+ discard all controller regions

Vj'r+1 for which Vj'r
+

C U»e{i,... k\
$l since the associated control law has a

non-minimum number of switches and will never be applied.

The on-line computation is identical to the scheme described in Section 16.1.2 and

the same finite time termination conditions as in Remark 16.1.3 apply.

Remark 16.2.2 In Algorithm 16.2.1 the counter 'iter' associated with the control

sets Süer corresponds to the number of dynamic switches which will occur before the

target set Ö^R is reached.

Remark 16.2.3 If we always have Cc (ji Cc+1 in step 3c of Algorithm 16.2.1, then

Algorithm 16.2.1 is identical to Algorithm 16.1.2. However ifCc C Cc+1, it is possible

to perform a large part of the computations on convex sets, which makes Algorithm

16.2.1 more efficient than Algorithm 16.1.2, in general.

Theorem 16.2.4 (Properties of Minimum-Switch Control, [GKBM04a]

[GKBM04b]) A controller computed according to Algorithm 16.2.1 and applied to a

PWA system (13.1) according to Algorithm 16.1.5, guarantees stability and feasibility

of the closed loop system, provided x(0) e JCNWA(Ö^R).

Proof Follows from Theorem 16.1.6. D

16.3 iV-step Controller

In the previous sections, stability was guaranteed by imposing an appropriate terminal

set constraint. In order to cover large parts of the state space, this type of constraint
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(a) Invariant target set Sj. b) Set of states C1 which enter Sj in one

time step.

(c) Iteratively proceed exploring as long as (d) Stop the exploration if Cc <£ Cc+1. Return

CCCCC+1. Cc in such case.

Figure 16.5: Description of Algorithm 16.2.1.

generally entails the use of large prediction horizons which results in controllers with

a large number of regions.

In this section, instead of enforcing asymptotic stability with an appropriate ter¬

minal set constraint (and the associated cost), we propose to enforce constraint sat¬

isfaction only. This can be easily achieved by imposing a set-constraint on the first

predicted state in the MPC formulation. Hence, the terminal-set constraint (13.2b)

becomes superfluous and we do not need to rely on large prediction horizons. Asymp¬

totic stability is analyzed in a second step. This scheme is inspired by promising

complexity reduction results for LTI systems in [GPM03,GM03].
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16.3.1 Constraint Satisfaction

If the constrained finite time optimal control problem ((13.2)) is solved via multi-

parametric programming for any prediction horizon N' < N with xN> e Tset = Rn in

(13.2b) and the additional constraint xx e £^WA(Ö^QR), the resulting MPC controller

guarantees that the state remains within /C^WA(0^R) for all time. The set constraint

on the first step guarantees that the resulting controller partition will be positive

invariant, which directly implies feasibility for all time [Bla99,KerOO]. The set Ö^R
can be computed as described by Algorithm 14.1.4 and K.NWA(Ö^R) can be obtained

by applying Algorithm 16.1.2.

Note that this allows us to control large volume sets JCNWA(0^R) with short

prediction horizons N', i.e. N' <C N. Although we have set N —> oo for the examples

provided in Section 16.4, the set JCP^/A(Ö^R) was always finitely determined. This

is not always the case such that in practice it is advisable to limit AT to be a large

but finite value.

Since the target set JCA(®^R) = Uce{i,...,c} ^lo ^ non-convex in general (i.e. a

union of C polytopes /C^,) a controller partition can be obtained by solving a sequence

of C • D multi-parametric programs, e.g. (9.4) or (9.6), where D corresponds to the

total number ofdifferent dynamics. Specifically, the A-step controller can be obtained

by solving C • D multi-parametric programs (e.g., (9.4) or (9.6)) for an arbitrary AT'

with Tset = /C^ in (13.2b) (C different sets) and for D different dynamics in (13.1).

The smaller N' the lower the controller complexity. However, N' has no impact on

the size of the controlled set.

16.3.2 Stability Analysis

The controller partition obtained in the previous subsection will generally contain

overlaps such that the closed-loop dynamics associated with a given state x(0) may

not be unique. It is therefore not possible to perform a non-conservative stability

analysis of the closed-loop system. However, by using the PWA value function JN(x)

in (13.2a) as a selection criterion it is possible to obtain a non-overlapping partition

( [GKBM03] or [Bor03], pg. 158-160) by solving a number of LPs, i.e. only the cost

optimal controller is stored.

The resulting controller partition is invariant and a unique controller region r

(x e Vr) and unique dynamics l (x e V{) is associated with each state x, i.e. the
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closed loop system corresponds to an autonomous PWA system

Xk+i = (At + BiFr)xk + BiGr + fi, xkeVrn Vt (16.1a)

= ÄrXk + fr, Xk e Vr- (16.1b)

Since every controller region Vr is only contained in one unique dynamic V\, the

update matrix AT and vector fr are uniquely defined. The search for a Lyapunov

function which guarantees asymptotic stability of the closed-loop PWA system can

now be performed as described in Chapter 8.

16.3.3 iV-step Controller Computation

The A-step control scheme utilizes tools from invariant set computation and sta¬

bility analysis in order to compute controllers with small prediction horizons which

guarantee constraint satisfaction as well as asymptotic stability. The basic proce¬

dure consists of two main stages. In the first stage, a A-step optimal controller is

computed which guarantees constraint satisfaction for all time. Since constraint sat¬

isfaction does not imply asymptotic stability, it is necessary to analyze the stability

properties of the closed-loop system in a second stage. Specifically, the algorithm

works as follows.

Algorithm 16.3.1 (A-step Controller Computation)

1. Compute the invariant set Ö^R around the origin and an associated Lyapunov

function as described by Algorithm 14-1-4-

2. Compute the set JCNWA(0^R) = Ue{i,...,c}&N (N -» °°) bV applying Algo¬

rithm 16.1.2.

3. Solve a sequence of C • D mp-LPs (9.4) for prediction horizon N' with Tset =

fCcN, Vc G {1,..., C} in (13.2b), affine dynamics i eT = {1,... ,D} in (13.1)

and N' < N.

4- Remove the region overlaps by using the PWA value function Jn(x) as a selec¬

tion criterion (see [GKBM03] or [BorOS] for details).

5. Attempt to find a PWA or PWQ Lyapunov function as described in Chapter 8.
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There is no guarantee that step 2 of Algorithm 16.3.1 will terminate in finite time

or that a Lyapunov function can be found in step 5. The finite time termination

conditions are discussed in Remark 16.1.3. If no Lyapunov function is found, the

resulting controller is guaranteed to satisfy the system constraints for all time, but

no proof of asymptotic stability can be given. However, it always holds that the state

of the closed-loop system cannot become arbitrarily large, since it is guaranteed to

remain within a bounded invariant set.

Theorem 16.3.2 (Properties of N-step Control, [GKBM04a,GKBM04b])

// the stability analysis in Step 5 of Algorithm 16.3.1 is successful and the feedback

law obtained in Step 4 is applied to system (13.1) in a RHCfashion, then the closed-

loop system is exponentially stable on KNWA{Ö^R) and the system constraints are

satisfied for all time.

Proof The partition computed in Step 4 is invariant by construction, hence con¬

straint satisfaction is guaranteed. Exponential stability follows trivially from the

successful stability analysis in Step 5. D

Remark 16.3.3 // the stability analysis in Step 5 of Algorithm 16.3.1 fails, it is

advisable to recompute the controller in Step 3 using different weights Qu,Qx,QxN

and/or a different prediction horizon N' in (13.2). Slight modifications in these

parameters may make the subsequent stability analysis in Step 5 feasible.

16.4 Numerical Results

As was shown in [GM03,GPM03] and will also be illustrated in this section, algorithms

of type 16.1.2-16.3.1 generally yield controllers of significantly lower complexity than

those which are obtained if a linear norm-objective is minimized as in (13.2) [BCM03b,

BCM03a,KM02].

Example 16.4.1 Consider the 2-dimensional problem adopted from [MR03],

x(k) +
1

u(k) + if x{i){k) < 1

05 1
x(k) +

"

u(k) +
'

if x{1)(k) > 1

x(k + l)= <

1 0.2

0 1

0.5 0.2

0 1

(16.2)
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subject to constraints —X(i)(fc) + x^)(k) < 15, —3x(i)(k) — X(2)(k) < 25, 0.2j;(i)(â;) +

X(2)(k) < 9, X(i)(k) > —6, X(i)(k) < 8, and — 1 < u(k) < 1. Weight matrices in the

cost function were chosen as QX = I and Qu = 0.1 in (13.2).

Example 16.4.2 Consider the 3-dimensional PWA system introduced in [MR03],

x(k+l)= <

1 0.5 0.3

0 1 1

0 0 1

1 0.2 0.3

0 0.5 1

0 0 1

'

o'
'

0~

x(k) + 0 u(k) + 0

r-l

O

_0_
"0.3

-

x(k) + 0 u{k) + 0.5

_

1
_

0

if x(2){k) < 1

if x{2){k) > 1

(16.3)

subject to constraints —10 < x^)(k) < 10, —5 < X(2)(k) < 5, —10 < x^(k) < 10,

and — 1 < u(k) < 1. Again, weights in the cost function are Qx = I, Qu = 0.1.

Example 16.4.3 Consider the 4-dimensional PWA system introduced in [MR03],

x{k + l)

1 0.5 0.3 0.5

0 111

0 0 11

0 0 0 1

1 0.2 0.3 0.5

0 0.5 1 1

0 0 11

0 0 0 1

"0"
'

0'

x(k) +
0

0
u(k) +

0

0

.
1. .0

.

if x{2){k) < 1

"

0
' '

0.3
"

x(k) +
0

0
u(k) +

0.5

0

.

1. 0

if X(2){k) > 1

(16.4)

subject to constraints —10 < X(i)(k) < 10, —5 < £(2)(&) < 5, —10 < x^(k) < 10,

—10 < X{i)(k) < 10, and — 1 < u(k) < 1. Weighting matrices in the cost function

are Qx = I, Qu = 0.1.

Once the set Ö^R is computed, Algorithms 16.1.2-16.3.1 are applied to Examples

16.4.1 - 16.4.3. A runtime comparison of the computation procedures as well as

complexity of the resulting solutions are reported in Table 16.1.

Controller regions for Example 16.4.2 are depicted in Figures 16.6(a)-16.6(c).

In order to compare low complexity control strategies discussed in this paper with

the cost optimal approach of [BCM03b], we generated 10 random PWA systems
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Alg. 16.1.2 Alg. 16.2.1

t #R

Alg. 16.3.1

t 1#Ä
Alg.

t

BCM03b]

#J2

Ex. 16.4.1

Ex. 16.4.2

Ex. 16.4.3

61 sec.

1153 sec.

92 h

279

1519

7894

40 sec.

755 sec.

2.2 h

186

1044

2434

53 sec.

286 sec.

t

61

522

t

5.5 h

*

1413

Table 16.1: Off-line CPU-time t and number of controller regions #i2 for different

algorithms. The CPU-time for Algorithm 16.3.1 includes the stability

analysis. The * denotes that the computations were not completed after

7 days. The f symbol denotes that the stability analysis procedure failed.

The computation was run on a 2.8GHz Pentium IV CPU running the

Windows version of MATLAB 6.5 along with the NAG foundation LP

solver.

*. «i »i

(a) Final controller partition (b) Final controller partition (c) Final controller partition

(cut on 2(1) = 0). (cut on xp) = 0)- (cut on x^ = 0).

Figure 16.6: The controller partition obtained by applying Algorithm 16.1.2 on Ex¬

ample 16.4.2. The actual partition is three dimensional (see (16.3)), but

only the axis intersections are shown.

with 2 states, 1 input and 4 piecewise-affine dynamics. All elements in the state

space matrices were assigned random values between [—2,2] (i.e., stable and unstable

systems were considered). Each of the random PWA systems consists of 4 different

affine dynamics which are defined over non-overlapping random sets whose union

covers the square X = [—5,5] x [—5,5]. The origin was chosen to be on the boundary

of multiple dynamics. All simulation runs as well as the random system generation

were performed with the MPT toolbox [KGB04]4.

4For random PWA systems mpt-randPWAsys of the MPT toolbox [KGB04] was called.
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Algorithms 16.1.2, 16.2.1 and 16.3.1, as well as the cost-optimal strategy

of [BCM03b] were applied to these systems. Complexity of the resulting solu¬

tion and run time of each algorithm are depicted graphically in Figures 16.7(a)

and 16.7(b).
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stability analysis.

Figure 16.7: Complexity and runtime for 10 random PWA systems.

To further investigate the behavior of different control strategies, another test on

a set of 10 random PWA systems was performed to show how the complexity of

Algorithms 16.1.2, 16.2.1 and 16.3.1 scales with increasing volume of the exploration

space. A comparison with the approach in [BCM03b] is depicted in Figures 16.8(a)

and 16.8(b). For the random systems considered here, the necessary runtime is

reduced by two orders of magnitude and the solution complexity is reduced by one

order of magnitude, on average. In addition, these differences become larger with

increasing size of the state constraints. Although we have not come across any

examples where the proposed schemes are inferior to the approaches in [BBBM03,

KM02], we are not able to proof that no such cases exist.

However, none of the algorithms presented in this paper guarantee optimal closed-

loop performance in the sense of the cost-objective (13.2). In order to assess the degra¬

dation in performance, equidistantly spaced data points inside the set /C^WA(Ö^QR)

were generated as feasible initial states. Subsequently, the closed-loop trajectory cost

for these initial states was computed according to the performance index (13.2a).

The average decrease in performance with respect to the cost-optimal solution

of [BCM03b] is summarized in Figures 16.9(a) and 16.9(b). It can be seen that
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Figure 16.8: Complexity and runtime versus size of exploration space (average over

10 random PWA systems).

closed-loop performance gets better with increasing size of the exploration space.

The intuitive explanation of this observation is as follows: if the state is far away

from the origin, going at "full throttle" will be the optimal strategy, since the con¬

tribution of the state penalty term in (13.2a) is much higher than the term which

penalizes the control action. Therefore almost the same performance is achieved

with low complexity strategies as with cost-optimal algorithms for a majority of the

controllable state-space, resulting in good average performance.

16.5 Conclusion

In this chapter, three novel algorithms to compute low complexity feedback controllers

for constrained PWA systems are presented. All controllers guarantee constraint

satisfaction for all time as well as asymptotic stability. The proposed computation

scheme iteratively solves a series of multi-parametric programs such that a feedback

controller is obtained which drives the state into a target set in minimum time.

An alternative controller which aims at reducing the number of switches between

different dynamics is also presented and the provided examples suggest that this

approach may further reduce complexity. Furthermore, a search tree for efficient

on-line identification of the optimal feedback law is automatically constructed by
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Figure 16.9: Performance degradation with respect to cost-optimal solution

of [BCM03b]. The performance of Algorithm 16.3.1 can be improved

by increasing AT.

both algorithms. A third computation scheme (referred to as AT-step control) is

also presented, which separately deals with the requirement of constraint satisfaction

and asymptotic stability. In the AT-step scheme, stability is not enforced but merely

verified a posteriori. While the resulting controller is of even lower complexity than

the previous two (for N = 1), there is no a priori guarantee that the closed-loop

system will be asymptotically stable. In addition, the closed-loop performance may

not be satisfactory (see Figure 16.9).

An extensive case study is provided which clearly indicates that all three algorithms

reduce complexity versus optimal controllers [BBBM03, KM02] by several orders of

magnitude, in general. The proposed procedures make problems tractable that were

previously too complex to be tackled by standard methods.
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Overview of The Toolbox

Optimal control of constrained linear and piecewise affine (PWA) systems has gar¬

nered great interest in the research community due to the relative ease with which

complex problems can be stated and solved. The aim of the Multi-Parametric Tool¬

box (MPT)1 is to provide an efficient computational means to obtain the explicit

solutions to these types of constrained optimal control problems. The MPT toolbox

is implemented in a MATLAB [The03] programming environment and consists of three

software-blocks:

• Polytope Library

• Multi-Parametric Programming Solvers

• Computation of Feedback Controllers for Constrained Systems

Specifically, the toolbox contains efficient implementations of all polytope- and P-

collectionoperations described in Chapter 2. In addition, efficient mp-LP and mp-QP

solvers are provided and various feedback control schemes which rely on the previous

two software-blocks are contained in MPT. In short, MPT contains a large part of

all algorithms which were developed at the Automatic Control Laboratory (ETH

Zürich) during the last two years as well as a plethora of standard functions which

are often needed in the context of controller computation for constrained systems.

Furthermore, the MPT software package includes several state of the art solvers

(CDD [Fuk04a], ESP [Jon04], SeDuMi [Stu99], Yalmip [Löf04]) such that the toolbox

is truly 'unpack and use'. In addition to these freeware solvers which are distributed

as part of MPT, several additional solvers are also compatible. Namely Matlabs

xThe MPT toolbox is the result of a close collaboration with Michal Kvasnica and Mato Baotic.

For a full list of contributors, see the acknowledgement at the end of this chapter.

219
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linprog and quadprog, the LP and QP solvers of the Numerical Algorithms Group

(NAG) [Num02] as well as the CPLEX [ILO03] and GLPK [MakOl] solvers. Aside

from the functionality, a lot of work has gone into making the toolbox easily accessi¬

ble, so that people with little background in control will (hopefully) be able to apply

it without too many difficulties.

The MPT toolbox is available from

http://control.ee.ethz.ch/~mpt

and is updated on a regular basis. For an in-depth introduction to MPT, we refer

the reader to the MPT web-page, where a detailed software manual is available for

download.

17.1 Classes and Basic Polytope Manipulations

The toolbox defines a new class polytope inside the Matlab programming envi¬

ronment along with overloaded operators which are presented in Table 17.1. The

functions for polytope manipulations are given in Table 17.2.

Note that MPT does not handle polyhedral sets and is designed for use with

bounded sets only. All functions take either polytopes or P-collections as an input

argument which is illustrated in the following example:

Example 17.1.1

» P=polytope([eye(2);-eye(2)] ,
[1 1 1 1]'); '/.Create Polytope P

» [r,c]=chebyball(P) /.Chebychev ball inside P

r=[0 0]'

c=l

» W=polytope([eye(2);-eye(2)] ,0.1*[1 1 1 1]'); '/.Create Polytope W

» DIF=P-W; '/.Pontryagin difference P-W

» ADD=P+W; '/.Minkowski addition P+W

» plot(ADD, P, DIF, W); '/.Plot P-collection
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Constructor for creating the polytope

V = {xeRn\Pxx< Pc};
Access internal data of the polytope,

e.g. [Px,Pc]=double(P);

Displays details about the polytope V;

Returns dimension of a given polytope V;

For a polytope V = {x G Rn | Pxx < Pc} returns number

of constraints of the Px matrix (i.e. number of rows);

Horizontal concatenation of polytopes into an array,

e.g. PA=[P1,P2,P3];

Subscripting operator for P-collections,

e.g. PA(i) returns the i-th. polytope in PA;

Returns number of elements in a P-collection Va',

Indexing function which returns the final element

of a P-collection;

Check if two polytopes are equal (V = Q);

Check if two polytopes are not-equal (V =£ Q);

Check if V 3 Q;

Check if V C Q;

Check if V D Q;

Check if V C Q;

Intersection of two polytopes, V fl Q;

Union of two polytopes, PL)Q. If the union is convex,

the polytope V U Q is returned, otherwise

the P-collection (polytope array) [V Q] is returned;

P + Q Minkowski sum, V © Q;

P - Q Pontryagin difference, V Q Q;

P \ Q Set difference operator. Works with polytopes

and P-collections;

Table 17.1: Short overview of overloaded operators for the class polytope.

P=polytope(Px,Pc)

double(P)

display(P)

nx=dimension(P)

nc=nconstr(P)

[
,

]

( )

length(PA)

end

P == Q

P — Q

P >= Q

P <= Q

P > Q

P < Q

P & Q

P I Q

The resulting plot is depicted in Figure 17.1. When a polytope object is created, the

constructor automatically normalizes its representation and removes all redundant
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B=bounding_box(P)

[c,r]=chebyball(P)

V=extreme(P)

E=envelope(PA)

[c,r]=facetcircle(P,i)

P=hull(PA)

P=hull(V)

bool=isfulldim(P)

bool=isinside(P,x)

plot(P)

P=range(Q,A,f)

P=domain(Q,A,f)

Computes minimal hyper-rectangle containing a

polytope V;

Returns center c and radius r of the Chebychev ball

inside V;

Computes extreme points (vertices) of a polytope V;

Computes envelope £ of a P-collection Va',

Computes the center c and radius r of the largest

lower dimensional ball inside facet i of polytope V;

Computes hull of a P-collection Va',

or hull of an array of vertices V;

Checks if polytope V is full dimensional;

Checks if x e V. Also works for P-collections.

Plots a given polytope or P-collection in 2D or 3D;

Affine transformation of a polytope

V = {Ax + feRn\xeQ};

Compute polytope that is mapped to Q

V = {xeRn\Ax + feQ};

Table 17.2: Functions defined for class polytope.

constraints. Note that all elements of the polytope class are private and can only be

accessed as described in the tables. Furthermore, all information on a polytope is

stored in the internal polytope structure. More functions on polytopes are given in

Table 17.2 and are illustrated in the following example.

Example 17.1.2

» P=polytope([eye(2);-eye(2)] , [1 1 1 1]'); '/.Create Polytope P

» Q=polytope([eye(2);-eye(2)] ,0.1*[1 1 1 1]'); '/.Create Polytope Q

» D=P\Q; '/.Compute set difference between P and Q

» length(D) */,D is a P-collection with 4 elements

ans=4

» U=D|Q; '/.Compute union of D and Q

» length(U) '/.Union is again a polytope

ans=l
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Figure 17.1: The result of the plot call in Example 17.1.1

» U==P

ans=l

'/.Check if two polytopes are equal

(a) The sets V and Q in Example 17.1.2.
1.5 -1

(b) The sets V \ Q in Example 17.1.2.

The polytopes V and Q are depicted in Figure 17.1. The following will illustrate the

hull and extreme functions.
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Example 17.1.3

» P=polytope([eye(2);-eye(2)] , [0 1 1 1]'); '/.Create Polytope P

» Q=polytope([eye(2);-eye(2)] , [1 1 0 1]'); '/.Create Polytope Q

» VP=extreme(P) ; '/.Compute extreme vertices of P

» VQ=extreme(Q); '/.Compute extreme vertices of P

» Dl=hull([P Q]); '/.Create convex Hull of P and Q

» D2=hull([VP;VCl]); '/.Create convex Hull of vertices VP and VQ

» D1==D2 '/.Check if hulls are equal

ans=l

The hull function is overloaded such that it takes both elements of the polytope

class as well as matrices of points as input arguments.

17.2 Control Functions

This section will give a brief overview of the main control functions which are provided

with the MPT toolbox. All controller computation algorithms may be called by using

the accessor function

[ctrlStruct] =mpt_Control (sysStruct.probStruct, Options)

which takes the structures defined in Chapter 20 as parameters and automatically

calls one of the functions described below depending on the parameters which were

passed. Every function returns a P-collection which contains the regions over which

the feedback law is unique, i.e. u = Frx + Gr if x Vr. The different functions for

obtaining these solutions are:

[ctrlStruct]=mpt_optControl(sysStruct,probStruct,Options):

This function solves a constrained finite-time optimal control problem as de¬

fined in (4.7) for linear and quadratic cost objectives and for linear systems.

See [Bao02,BBM00b] for additional details.

[ctrlStruct] =mpt_optControlPWA(sysStruct,probStruct, Options) :

Calculates a solution to the constrained finite-time optimal control problem

for linear cost objective and PWA system. See Section 15 or [BCM03a] for

additional details.
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[ctrlStruct] =mpt_optInfControl (sysStruct,probStruct, Options):

This function computes a solution to the constrained infinite-time optimal con¬

trol problem for quadratic cost objective and linear systems. See Section 10.3

or [GBTM03, GBTM04] for additional details.

[ctrlStruct] =mpt_optInfControlPWA(sysStruct,probStruct, Options):

Solution to the constrained infinite-time optimal control problem for linear cost

objective and PWA system. See [BCM03b] for details.

[ctrlStruct] =mpt_iterative(sysStruct.probStruct, Options) :

This function applies the minimum-time computation scheme described in

[GM03] to linear systems. See Chapter 11.3.2 or [GPM03] for additional details.

[ctrlStruct] =mpt_iterativePWA(sysStruct »probStruct, Options) :

This function implements the minimum-time or N-step controller computation

schemes described in [GKBM04a], depending on the Options setting. A sta¬

bilizing 'A-step' or minimal-time control is returned (see Chapter 16). This

scheme can also be used to obtain robust solutions for PWA systems affected

by additive disturbance by setting the appropriate flags [KM02].

As mentioned before, the solution to an optimal control problem is obtained by

a call to the mpt.control function. This function takes the system and problem

description as input arguments and calls one of the functions above to calculate the

state feedback controller. There is no need to call the individual functions directly.

The function mpt_control returns the control structure ctrlStruct which encom¬

passes the control law u = Frx + Gr as well as the polyhedral partition {Vr}R=1 over

which this PWA control law is active. Consult Chapter 20 for a detailed description

of the mentioned structures.

17.3 Analysis Functions

Various scripts which serve to plot the obtained results as well as analysis functions

are included in the toolbox. Some of these function are vital for obtaining low

complexity controllers (see Chapters 11 and 16). The most important functions are

given in the following Table:
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mpt_getPWALyapFct Computes a PWA Lyapunov function for a given

closed-loop system;

mpt_getPWQLyapFct Computes a PWQ Lyapunov function for a given

closed-loop system;

mpt_getCommonLyapFct Computes a common quadratic Lyapunov function

for a set of linear systems;

mpt.infset Calculates the maximal (robust) positively

invariant set for an LTI system;

mpt.inf setPWA Computes the maximal (robust) positive

invariant subset for PWA systems;

mpt_maxCtrlSet Computes the maximal (robust) stabilizable set

JCoo or the maximal (robust) controllable set C^

for LTI and PWA systems;

mpt_plotPartition Plots controller partitions of type ctrlStruct.

mpt.plotTrajectory Graphical interface for plotting closed-loop

trajectories in state-space;

mpt_plotTimeTrajectory Plots closed-loop trajectories of states, inputs

and outputs as a function of time;

mpt_plotU Plots the value of the control input over

the controller partition;

mpt_plotPWA Plots a PWA function in 3D;

mpt.plotPWQ Plots a PWQ function in 3D;

mpt_plotArrangement Plots a hyperplane arrangement of a polytope

in half-space representation;
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MPT in 15 minutes

This short introduction is not meant to (and does not) replace the MPT manual. It

serves to clarify some key points of Model Predictive Control and application thereof

within the framework of the MPT toolbox. Specifically, the main problems which

arise in practice are illustrated in a concise manner without going into the technical

details.

18.1 First Steps

Before reading the rest of this chapter, have a close look at the provided demon¬

strations and go through them slowly. At the Matlab command prompt, type

mpt_demol, mpt_demo2, ..., mpt_demo6. After completing the demos, run some ex¬

amples by typing runExample at the command prompt. Finally, for a good overview,

type help mpt and help mpt/polytope to get the list and short descriptions of

(almost) all available functions.

Guidelines for Modelling a Dynamical System

Before actually computing a controller, the first step is to obtain a suitable system

representation. The most important aspects in system modelling for MPT are given

below:

1. Always make sure your dynamic matrices and states/inputs are well scaled.

Ideally all variables exploit the full range between ±10. See [SP96] for details.

2. Try to have as few different dynamics as possible when designing your PWA

system model. If possible, use an LTI model.

227
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3. The fewer states and inputs your system model has, the easier all subsequent

computations will be.

4. Use the largest possible sampling time when discretizing your system.

18.2 State Regulation Problems

In this section the regulation problem is discussed, i.e. the objective is to drive the

state to the origin. See the subsequent section for the special case of tracking. In

order to compute a controller, only one function call is needed:

ctrlStruct = mpt_control(sysStruct,probStruct)

For a detailed description of how to define your system sysStruct and problem

probStruct, see Chapter 20, the MPT manual or type help mpt_sysStruct and

help mpt.probstruct. We also suggest you examine the m-files in the 'Examples'

directory of the MPT toolbox and take a close look at the RunExample.m file. Addi¬

tional examples for controller computations are provided in Section 20.4.

Computing explicit state feedback controllers via multi-parametric programming

may easily lead to controllers with prohibitive complexity and the following is in¬

tended to give a brief overview of the existing possibilities to obtain tractable con¬

trollers for the problems MPT users may face. Specifically, there are three controller

properties which are important in this respect: performance, stability and constraint

satisfaction.

Infinite-Time Optimal Control: [GBTM03, BCM03b] [see Section 10.3]

To use this method, set probStruct.N=Inf. This will yield the infinite time

optimal controller, i.e., the best possible performance for the problem at hand.

Asymptotic stability and constraint satisfaction are guaranteed and all states

which are stabilizable will be covered by the resulting controller. However, the

complexity of the associated controller may be prohibitive.

Finite-Time Optimal Control [BMDP02,BCM03a,Bor03,MRRSOO] [see Chap¬

ter 5]
To use this method, set probStruct.N N+ and probStruct.subopt_lev=0.

This will yield the finite time optimal controller, i.e. performance will be
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N-step optimal but may not be infinite horizon optimal. The complexity of

the resulting controller depends strongly on the prediction horizon (large N =>

complex controller). It is furthermore necessary to differentiate the following

cases:

probStruct.Tconstraint=0: No terminal set constraint. The controller will

be defined over a superset of the maximum controllable set, but no guaran¬

tees on stability or closed-loop constraint satisfaction can be given. As the

prediction horizon N is increased the feasible set of states will converge to the

maximum controllable set Coo from 'the outside-in', i.e. the controlled set will

shrink as N increases (see Remark 5.2.4 and Theorem 7.4.2). To extract the set

of states which satisfy the constraints for all time, call mpt_infsetPWA. To ana¬

lyze these states for stability, call mpt_getPWALyapFct or mpt_getPWQLyapFct.

Note that the analysis functions may have prohibitive run times for large par¬

titions.

probStruct.Tconstraint=l: A stabilizing terminal set is automatically com¬

puted. The resulting controller will guarantee stability and constraint satis¬

faction for all time, but will only cover a subset of the maximum stabilizable

set of states JCoo- By increasing the prediction horizon, the controllable set

of states will converge to the maximum controllable set from 'the inside-out',

i.e. the controlled set will become larger as A^ increases (see Remark 5.2.4 and

Theorem 7.4.3).

probStruct.Tset=T: User defined terminal set. Depending on the properties

(e.g., invariance, size) of the target set T, any combination of the two cases

previously described may occur.

Minimum-Time Control [GM03, GKBM04a] [see Sections 11.3.2 and 16.1]

To use this method, set probStruct.subopt_lev=l. This will yield the min¬

imal time controller with respect to a target set around the origin, i.e. the

controller will drive the state into this set in minimal time. In general, the

complexity of minimum time controllers is significantly lower than that of their

1/2/oo-norm cost optimal counterparts. The controller is guaranteed to cover

all controllable states and asymptotic stability and constraint satisfaction are
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guaranteed. Note that if you choose to manually define your target set by

setting probStruct.Tset=T, these properties may not hold.

AT-step Control [GM03.GPM03] [see Sections 11.3.3 and 16.3]

To use this method, set probStruct. subopt_lev=2. This will yield a con¬

troller for prediction horizon N, with additional constraints which guarantee

asymptotic stability and constraint satisfaction in closed-loop. The controller

covers all controllable states. The complexity of this A"-step controller is gen¬

erally significantly lower than all other control schemes in MPT which cover

the maximal controllable set. However, the computation of the controller may

take a long time.

Conclusion

The key influence on controller complexity are as follows

1. Prediction horizon AT

2. Number of different dynamics of the PWA system

3. Dimension of state and input.

4. Type of control scheme.

Furthermore, 2-norm objectives generally yield controllers of lower complexity than

their 1/oo-norm counterparts. Therefore, we suggest you try the control schemes in

the following order to trade-off performance for complexity

1. Finite Horizon Optimal Control for small N (i.e., N = 1,2);

probStruct.Tconstraint=0

2. N-step Control

3. Minimum-Time Control

4. Finite Horizon Optimal Control for large N

probStruct.Tconstraint=l

5. Infinite Horizon Optimal Control

Note that for a specific system, the order of preference may be different, so it may

yet be best to investigate all methods.
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18.3 State Tracking Problems

When solving tracking problems, computation schemes become more complex com¬

pared to the standard regulation problems covered in the previous section. It is

necessary to differentiate between the case of constant reference tracking (reference

state is fixed a priori) and time varying reference tracking (user defined reference is

arbitrarily time varying).

For constant reference tracking (probStruct. xref G Rn), the problem setup re¬

duces to a normal regulation problem where all of the observations from the previous

section hold.

Time varying reference tracking (probStruct.tracking=l) is implemented for

both LTI and PWA systems. For time varying reference states, it is necessary to

augment the state space matrices. The process of augmenting the state update equa¬

tions is performed automatically by MPT, the following exposition is intended to

give you some flavor of what is going on.

First the state vector x is extended with the reference state vector xref, i.e. the

reference states are added to the dynamical model. The input which is necessary

such that the state remains at the reference is not generally known. Therefore the

state update equations are reformulated in Au-form. In this framework the system

input at time k is Au(k) whereby u(k — 1) is an additional state in the dynamical

model, i.e. the system input can be obtained as u(k) = u(k — 1) + Au(k). The state

update equation is thus given by

a:(Jb + l) \ (A B 0\ ( x(k) \ /b\

u(k) = 0 / 0 u(fc -1) + J Au(fc).

Xref(k+l)J \0 0 IJ \Xref(k)J \0 J

Assume a 3rd order system with 2 inputs. In Ait-tracking formulation, the resulting

dynamical model will have 8 states (3 system states x e R3 + 3 reference states

Xref 6R3 + 2 input states u(k - 1) e R2) and 2 inputs (Au(A;) R2). If we solve the

regulation problem for the augmented system (see Section 18.2) we obtain a controller

which allows for time varying references. For control purposes, the reference state

xref is imposed by the user, i.e. xref is set to a specific value. By choosing appropriate
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objective weights, e.g. Qu >- 0 and

the regulation controller automatically steers the state x to the reference state xref-

Note that time varying tracking problems are generally of high dimension, such

that controller computation is expensive. If the control objective can be reduced

to a regulation problem for a set of predefined reference points, we suggest to solve

a sequence of fixed state tracking problems instead of the time varying tracking

problem. None of the control schemes in MPT enforce offset free control in case of

persistent disturbances. However, this type of control can be achieved by appropriate

modification of the system model (e.g., [PK03]).
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Polytope Library

As already mentioned in Chapter 2, a polytope is a convex bounded set which can

be represented either as an intersection of a finite number of half-spaces or as the

convex hull of a set of points. Both representations are supported in MPT and it

is possible to switch between the two. Note however, that internally MPT performs

almost all computations on half-space representations of polytopes.

19.1 Creating a polytope

A polytope in MPT is created by a call to the polytope constructor as follows

P = polytope(H,K)

where the matrices H and K describe the polytope V = {x e Rn \ Hx < K}.

The constructor automatically computes the polytope V in non-redundant form. In

addition, center and diameter of the Chebychev ball (see Chapter 2) are computed

and the half-space representation is normalized. The constructor then returns a

polytope object. A polytope can also be defined by its vertices :

P = polytope(V)

where V is a matrix which contains vertices of the polytope in the following format:

"

«1,1 • • • V\,n

'

v= ; ; ; (19.1)

.
vkii ... vk>n

_

where k is the total number of vertices and n is the state dimension. Hence, vertices

are stored row-wise. Before the polytope object is created, the vertex representation

is first converted to half-space description by computing the convex hull. The extreme

vertices are stored in the polytope object and can be returned upon request without

additional computational effort.
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19.2 Accessing data stored in a polytope object

Each polytope object is internally represented as a structure, but because of the

object-oriented approach, this information cannot be directly obtained by using

structure referencing through the
. (dot) operator. Special functions have to be

called in order to retrieve individual fields.

In order to access the half-space representation of the polytope V = {x e Rn \ Hx <

K}, one has to use the command double as described below.

[H.K] = double(P)

The center and radius of the Chebyshev ball can be obtained by:

[xCheb, RCheb] = chebyball(P)

The polytope is bounded if

flag = isbounded(P)

returns 1 as the output. Dimension of a polytope can be obtained by

d = dimension(P)

and

nc = nconstr(P)

will return number of constraints (i.e. number of half-spaces) defining the given

polytope P. The vertex representation of a polytope can be obtained by:

V = extreme(P)

which returns vertices stored row-vise in the matrix V. As enumeration of extreme

vertices is an expensive operation, the computed vertices can be stored in the polytope

object. To do this, the function must be called as

[V,P] = extreme(P)

which returns the vertices V and the updated polytope object P with the stored

vertices. To check if a given point x lies in a polytope P, use the following call:
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flag = isinside(P,x)

The function returns 1 if x V, 0 otherwise. If P is a P-collection (see Chapter 2),

the function call can be extended to provide additional information:

[flag, inwhich, closest] = isinside(P.x)

which returns a 1/0 flag which denotes if the given point x belongs to any polytope in

a P-collection P. If the given point is contained in more than one polytope, inwhich

contains the indices of the regions which contain x. If there is no such region, the

index of the region which is closest to the given point x is returned in closest. A

more detailed overview of the polytope library is given in Table 19.1.

P=polytope(H,K)

P=polytope(V)

double(P)

display(P)

nx=dimension(P)

nc=nconstr(P)

[
,

]

( )

length(PA)

end

[c,r]=chebyball(P)

V=extreme(P)

bool=isfulldim(P)

bool=isinside(P,x)

Constructor for creating the polytope

V = {x e Rn | Hx < K};

Constructor for creating the polytope out of extreme points;

Access internal data of the polytope, e.g. [H,K]=double(P);

Displays details about the polytope V;

Returns dimension of a given polytope V;

For a polytope V = {x e Rn \ Hx < K} returns number of

rows of the H matrix;

Horizontal concatenation of polytopes into an array,

e.g. PA=[P1,P2,P3];

Subscripting operator for polytope arrays,

e.g. PA(i) returns the i-th polytope in PA;

Returns number of elements in a polytope array Px,

In indexing functions returns the final element of an array;

Returns center c and radius r of the Chebychev ball of V;

Computes extreme points (vertices) of a polytope V;

Checks if polytope V is full dimensional;

Checks if x e V. Works also for polytope arrays;

Table 19.1: Functions defined for class polytope.
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19.3 P-collections

Polytope objects can be concatenated into arrays and it does not matter if the ele¬

ments are stored row-wise or column-wise. A P-collection is created using standard

Matlab concatenation operators [,], e.g. A = [BCD].

It does not matter whether the concatenated elements are single polytopes or P-

collections. To illustrate this, consider the polytopes PI, P2, P3, P4, P5 and P-

collections A = [PI P2] and B = [P3 P4 P5]. Then the following P-collections M

and N are equivalent:

M = [AB]

N = [PI P2 P3 P4 P5]

Individual elements of a P-collection can be obtained using the standard referencing

(i) operator, i.e.

P = M(2)

will return the second element of the P-collection M which is equal to P2, in this case.

More complicated expressions can be used for referencing:

Q = M([l,3:5])

Here, Q is a P-collection which contains PI, P3, P4, P5.

If you want to remove some element from a P-collection, use the referencing com¬

mand as follows:

M([l 3]) = []

which will remove the first and third element from the P-collection M. If some element

of a P-collection is deleted, the remaining elements are shifted towards the start of

the P-collection. This means that for N = [PI P2 P3 P4 P5], the command

N([l 3]) = []

will yield the P-collection N = [P2 P4 P5] and the length of the array is 3. No empty

positions in a P-collection are allowed. Analogously, empty polytopes are not being

added to a P-collection.

A P-collection is still a polytope object, such that all functions which work on

polytopes also support P-collections. This is a key feature of MPT. All functions
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automatically adapt to the type of input (i.e. polytope or P-collection) provided by

the user.

The length of a given P-collection is obtained by

1 = length(N)

For additional information on polytopes and P-collections in MPT, we refer the reader

to the manual.



238 19 Polytope Library
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Control Functions, Structures and

Objects

As indicated in Section 17.2, the solution to an optimal control problem can be

obtained by a simple call to mpt_control. The general syntax is given below:

ctrlStruct = mpt_control(sysStruct, probStruct, Options)

Based on the system definition sysStruct and problem description probStruct, the

main control routine mpt_control automatically calls one of the functions reported in

Section 17.2 to calculate the explicit solution to a given problem. Once the control law

is calculated, the solution is returned in form of the controller structure ctrlStruct.

The system-, problem- and control- objects will be discussed in this chapter.

MPT provides a variety of control routines which are being called from

mpt.control. Solutions to the following problems can be obtained

A. Constrained Finite-Time Optimal Control (CFTOC) Problem for LTI and

PWA systems,

B. Constrained Infinite-Time Optimal Control Problem (CITOC) for LTI and

PWA systems,

C. Constrained Minimum-Time Optimal Control (CMTOC) Problem for LTI and

PWA systems,

D. A"-step controller scheme for LTI and PWA systems

The problem which will be solved depends on parameters of the system and problem

structure, namely on type of the system (LTI or PWA), prediction horizon (finite or

infinite) and the level of sub-optimality (optimal solution, minimum-time solution,
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System N Problem Function Reference

LTI

LTI

LTI

LTI

N

Inf

N/ Inf

N/ Inf

CFTOC

CITOC

CMTOC

AT-step

mpt_optControl

mpt-optInfContro1

mpt_iterative

mpt_oneStepCtrl

[Bao02,Bor03]

[GBTM03]

[GM03,GPM03]

[GM03.GPM03]

PWA

PWA

PWA

PWA

N

Inf

N/ Inf

N / Inf

CFTOC

CITOC

CMTOC

A"-step

mpt.optControlPWA

mpt_optInfControlPWA

mpt_iterativePWA

mpt_iterativePWA

[BBBM03]

[BCM03b]

[GKBM04a]

[GKBM04b]

Table 20.1: List of control strategies applied to different system and problem defini¬

tions.

A'-step controller). Different combinations of these three parameters lead to different

optimization procedures, as reported in Table 20.1. See the documentation of the

individual functions for implementation details.

20.1 System Structure sysStruct

The system object sysStruct is a structure which describes the system to be con¬

trolled. MPT can deal with two types of systems:

1. Discrete-time linear time-invariant (LTI) systems

2. Discrete-time piecewise affine (PWA) systems

Both system types can be subject to constraints on control inputs, system states

and/or outputs. In addition, constraints on the slew rate of the control inputs can

also be given.

LTI systems

In general, a constrained linear time-invariant system is defined by the following

relations:

x(k + l) = Ax(k) + Bu{k)

y(k) = Cx(k) + Du(k)
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subj. to

2/rom S 2/l,"v — Umax

tlmin
— U\K) S ^max

Such an LTI system is defined by the following mandatory fields:

sysStruct.A = A;

sysStruct.B = B;

sysStruct.C = C;

sysStruct.D = D;

sysStruct.ymax = ymax;

sysStruct.ymin = ymin;

sysStruct.umax = umax;

sysStruct.umin = umin;

Constraints on the slew rate of the control input u(k) can also be imposed by:

sysStruct.dumax = dumax;

sysStruct.dumin = dumin;

which enforces Aitm;n < u(k) — u(k — 1) < Aumax. In order to deactivate a

certain constraint, simply set the associated limiter to Inf. An LTI system subject

to parametric uncertainty and/or additive disturbances is described by the following

set of relations:

x(k + 1) = Auncx(k) + Buncu{k) + w(k)

y{k) = Cx(k) + Du{k)

where w(k) is an unknown, but bounded additive disturbance, i.e.

w{k) e W Vfc e N

To specify an additive disturbance, set sysStruct.noise = W where W is a polytope

object bounding the disturbance. Parametric uncertainty can be specified by a cell

array of matrices Aunc and Bunc as follows:

sysStruct.Aunc = {Al, ..., An};

sysStruct.Bunc = {Bl, ..., Bn};

where Aunc and Bunc denote the vertices of the polytopic uncertainty as described

in (11.3).
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PWA Systems

PWA systems are widely used to model hybrid and non-linear systems. The dynam¬

ical behavior of such systems is captured by relations of the following form:

x(k + l) = Aix{k) + Biu(k) + fi

y{k) = dx{k) + Diu(k) + g{

subj. to

Umin ^ y{k) 'S Umax

"U-min -i U\K) S: Umax

Atimin < u(k) - u(k - 1) < Aumai

Each dynamic i is active in a polyhedral partition Vi bounded by the so-called

guardlines:

Vi = {[xT uT]T e Rn+m | guardXix{k) + guardU^k) < guardd},

which means dynamic i will be applied if the state/input is contained in V^ Fields

of sysStruct describing a PWA system are listed below:

sysStruct.A = {Al, ...,
AR}

sysStruct.B = {Bl, ...,
BR}

sysStruct.C = {CI, ....
CR}

sysStruct.D = {Dl, ...,
DR}

sysStruct.f = {fl, ...,
fR}

sysStruct.g = {gl, .... gR}

sysStruct.guardX = {guardXl, . .., guardXR}

sysStruct.guardU = {guardUl, . .., guardUR}

sysStruct.guardC = {guardCl, . .., guardCR}

Note that all fields have to be cell arrays of matrices of compatible dimensions, R

denotes the total number of different dynamics. If sysStruct. guardU is not provided,

it is assumed to be zero. The system constraints are defined by:

sysStruct.ymax = ymax;

sysStruct.ymin = ymax;
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sysStruct.umax = umax;

sysStruct.umin = umin;

sysStruct.dumax = dumax;

sysStruct.dumin = dumin;

Constraints on slew rate are optional and can be omitted. MPT is able to deal

also with PWA systems which are affected by bounded additive disturbances:

x(k + 1) = Aix(k) + Biu{k) + /< + w(k)

where the disturbance w(k) is assumed to be bounded for all time instances by

some polytope W. To indicate that your system is subject to such a disturbance, set

sysStruct.noise = W;

where W is a polytope object of appropriate dimension. Polytopic uncertainty in

the dynamics cannot be treated by the control schemes for PWA systems. We leave it

up to the user to implement the scheme in [RKM03], if this functionality is required.

Mandatory and optional fields of the system structure are summarized in Tables 20.1

and 20.1, respectively.

A, B, C, D, f, g State-space dynamic matrices for LTI (4.1)

and PWA (6.3b) systems.

Set elements to empty if they do not apply;

umin, umax Bounds on inputs umin < u(k) < umax;

ymin, ymax Constraints on the outputs ymin < y(k) < ymax;

guardX, guardU, guardC Polytope cell array defining where the dynamics

are active (for PWA systems).

Vi = {(x,u) | guardX{i} x + guardU'{i} u

< guardC{i}};

Table 20.2: Mandatory fields of the system structure sysStruct.

20.2 Problem Structure probStruct

The problem object probStruct is a structure which defines the optimization problem

to be solved by MPT. The probStruct object contains all information which does
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dumin, dumax Bounds on dumin < u(k)-u(k-l) < dumax;

noise A polytope bounding the additive disturbance;

Aunc, Bunc Cell arrays containing the vertices of the polytopic uncertainty;

Pbnd Polytope limiting the state-space of interest,

i.e., the defining the exploration space;

Table 20.3: Optional fields of the system structure sysStruct.

not directly originate from the dynamical system (e.g. control objective, etc.). Let

us recall a standard finite time optimization problems as described in Chapter 9:

N-l

J*N(X) = min ||PjVz(AO||norm + Y, ||Äu(*)llnarm + \\Qx(k)\ |„Orm(20.1a)

subj. to (20.1b)

x{k + 1) = fdyn(x(k), u{k), w(k)), x(0) = x, (20.1c)

Umin < u(k) < umax (20. Id)

dumin < u(k) - u(k - 1) < dumax (20.le)

Vmin < 9dyn(x(k),u(k)) < ymax (20.1f)

x(N) e Tset (20.1g)

The function fdyn(x{k),u(k),w(k)) is the state-update function as defined in Sec¬

tion 20.1 and gdyn{x{k),u(k)) yields the system output as a function of state and

input. Here,

N prediction horizon

norm objective norm, can be 1, 2 or Inf

Q weighting matrix on the states

R weighting matrix on the manipulated variables

Pn weight imposed on the terminal state

Tset terminal set constraint

are parameters which do not originate from the system dynamics and are defined in

the probStruct object. Note that the entries N, norm, Q and R are mandatory.

Optional fields are summarized in Table 20.4.
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probStruct.yObounds

probStruct.tracking

probStruct.P_N

probStruct.Tset

probStruct.Tconstraint

probStruct.feedback

probStruct.FBgain

probStruct.xref

probStruct.uref

Boolean variable. If false, no constraints are im¬

posed on the initial output y(0) (default is 0);
Boolean variable, if set to 1, the problem will be

formulated as a state-tracking problem (default is

o);
Weight on the terminal state. If not specified, it

is assumed to equal to the ARE solution (4.4) for

quadratic cost, or Pn = Q for linear cost;

Polytope object describing the terminal set. If not

provided and probStruct.norm is 2, the LQR set

around the origin will be calculated automatically

to guarantee stability properties (see Chapter 5.2);
An integer (0, 1, 2) denoting which auxiliary stabil¬

ity constraint to apply. 0 - no terminal constraint,

1 - LQR terminal set 2 - user-provided terminal set

constraint. Note that if probStruct .Tset is given,

Tconstraint will be set to 2 automatically;
Boolean variable, if set to 1, the problem is aug¬

mented such that U = Kx + c where K is a state-

feedback gain (typically an LQR controller) and

the optimization aims to identify the proper offset

c (default is 0);
If the former option is activated, a specific state-

feedback gain matric K can be provided (otherwise

a LQR controller will be computed automatically);

By default, the toolbox designs a controller which

forces the state vector to converge to the origin.

If you want to track some a priori given reference

point, provide the reference state in this variable.

probStruct.tracking has to be 0 (zero) to use

this option;
A reference point for the manipulated variable (i.e.

the equilibrium u for state probStruct. xref can

be specified here. If it is not given, it is assumed

to be zero;

Table 20.4: Optional field of the probStruct structure.
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MPT provides different control strategies with different levels of optimality. Specif¬

ically, it is possible to trade off controller performance for controller complexity by

manipulation of the
. subopt_lev field, as described in the following:

1. The cost-optimal solution leads to a control law which minimizes a given per¬

formance index. This strategy is enforced by

probStruct.subopt_lev = 0

2. Another possibility is to use the minimum-time solution, i.e. the control law will

drive a given state into an invariant set around the origin as quickly as possible

(see Sections 11.3.2 and 16.1). This strategy usually leads to simpler control

laws (i.e. less controller regions are generated). This approach is enforced by

probStruct.subopt_lev = 1

3. The last option is to use a A-step control scheme (see Sections 11.3.3 and 16.3).

This approach constructs an A'-step solution (default N = 1) and subsequently

attempts to verify stability by constructing a PWA or PWQ Lyapunov function.

The approach generally results in a small number of regions and asymptotic

stability as well as closed-loop constraint satisfaction is guaranteed. In order

to compute this type of controller, use:

probStruct.subopt_lev = 2

An overview of the implications of the subopt_lev field is given in Table 20.1.



20.3 Controller Structure ctrlStruct 247

20.3 Controller Structure ctrlStruct

The Controller structure is an object which includes all information obtained while

solving a given optimal control problem. In general, it describes the obtained control

law and can be used both for analysis of the solution, as well as for implementation

of the control law. The fields of the structure are summarized in Table 20.3.

Pn The polyhedral partition over which the control law is defined is

returned in this field. It is, in general, a polytope array;

Fi, Gi The PWA control law for a given state x(k) e Vr is given by u =

Fi{r} x(k) + Gi{r}. Fi and Gi are cell arrays;

Ai, Bi, Ci The value function JN(x) is returned in these three cell arrays and

for a given state x(k) can be evaluated as J(x) = x(k)' Ai{r}

x(k) + Bi{r} x(k) + Ci{r} where the prime denotes a transpose

and r is the index of the active region (i.e. the region of Pn containing

the given state x(k));
Pf inal In this field, the feasible set Xn is returned (see Definition 3.1.1). For

LTI systems, Xn corresponds to the convex union of all polytopes

in Pn. For PWA systems, Xn is a P-collection;

dynamics A vector which denotes which dynamics is active in which region of

Pn (only relevant for PWA systems);

overlaps Boolean variable denoting whether regions of the controller partition

overlap;

sysStruct System description in the sysStruct format;

probStruct Problem description in the probStruct format;

details More details about the solution (e.g. total run time);

Table 20.5: Fields of the controller structure ctrlStruct.

20.4 Examples

In order to obtain a feedback controller, it is necessary to specify both the system as

well as the control problem. We now illustrate the computation procedure in MPT
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with a simple second-order double integrator, with bounded scalar input |u| < 1 and

output \\y\\oo < 5:

Example 20.4.1

» sysStruct.A=[l 1; 0 1];

» sysStruct.B=[0 1];

» sysStruct.C=[l 0; 0 1];

» sysStruct.D=[0;0];

'/,x(k+l)=Ax(k)+Bu(k)

*/.x(k+l)=Ax(k)+Bu(k)

•/.y(k)=Cx(k)+Du(k)

%y(k)=Cx(k)+Du(k)

» sysStruct.umin=-l;

» sysStruct.umax=l;

» sysStruct.ymin=[-5 -5]';

» sysStruct.ymax=[5 5]';

'/.Input constraints umin<=u(k)

'/.Input constraints u(k)<=umax

'/.Output constraints ymin<=y(k)

'/.Output constraints y(k)<=ymax

For this system we will now formulate the problem with quadratic cost objective

in (20.1) and a prediction horizon of N = 5:

» probStruct.norm=2;

» probStruct.q=eye(2);

» probStruct.R=l;

» probStruct.N=5;

» probStruct.subopt_lev=0;

If we now call

'/.Quadratic Objective

'/.Objective: min_U J=sum x'Qx + u'Ru...

'/.Objective: min_U J=sum x'Qx + u'Ru...

'/....over the prediction horizon 5

'/.Compute optimal solution

» ctrlStruct=mpt„Control(sysStruct,probStruct) ; '/.Compute controller

» mpt_plotPartition(ctrlStruct); '/.Plot controller partition

the controller for the given problem is returned and plotted (see Figure 20.1(a)),

i.e., if the state x e PA(r), then the optimal input for prediction horizon N = 5 is

given by u = Fi{r}x + Gi{r}. If we wish to compute a A'-step controller with N = 1

(see Section 11.3.3), we can run the following:

» probStruct.subopt_lev=2; '/.Compute N-step controller

» [ctrlStruct] =mpt_Control(sysStruct,probStruct); '/.Compute controller

» mpt_plotPartition(ctrlStruct) '/.Plot controller partition

» Q = ctrlStruct.details.lyapQ; '/.Extract Lyapunov Function

» L = ctrlStruct.details.lyapL; '/.Extract Lyapunov Function

» C = ctrlStruct.details.lyapC; '/.Extract Lyapunov Function

» mpt_plotPWQ(ctrlStruct.f inalPn,Q,L,C) ; '/.Plot Lyapunov Function
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The resulting partition and Lyapunov function is depicted in Figures 20.1(b) and

20.1(c) respectively. In the following we will solve the PWA problem introduced

in [MR03] by defining two different dynamics which are defined in the left- and right

half-plane of the state space respectively.

Example 20.4.2

» H=[-l 1; -3 -1; 0.2 1; -1 0; 1 0; 0 -1];

» K=[ 15; 25; 9; 6; 8; 10];

'/.Polytopic state

'/.constraints Hx(k)<=K

» sysStruct.C{1} = [10];

» sysStruct.D{1} = 0;

» sysStruct.g{l} = [0];

» sysStruct.A-(l} = [0.5 0.2; 0 1] ;

» sysStruct.B{1} = [0; 1];

» sysStruct.f{l} = [0.5; 0];

» sysStruct.guardA{i} = [1 0; H];

» sysStruct.guardC-Cl} = [ 1; K] ;

'/.System Dynamics 1:

*/.y(k)=Cx(k)+Du(k)+g

'/^System Dynamics 1:

*/.x(k+l)=Ax(k)+Bu(k)+f

'/.Dynamics 1 defined

'/.in guardA x <= guardC

» sysStruct.C{2} = [10];

» sysStruct.D-(2} = 0;

» sysStruct.g{2> = [0];

» sysStruct.A{2} = [0.5 0.2; 0 1] ;

» sysStruct.B{2} = [0; 1];

» sysStruct.f{2} = [0.5; 0];

» sysStruct.guardA{2} = [-10; H] ;

» sysStruct. guardC-[2} = [ -1; K] ;

'/.System Dynamics 2:

'/.y(k)=Cx(k)+Du(k)+g

'/.System Dynamics 2:

y.x(k+l)=Ax(k)+Bu(k)+f

'/.Dynamics 2 defined

'/.in guardA x <= guardC

» sysStruct.ymin = -10;

» sysStruct.ymax = 10;

» sysStruct.umin = -1;

» sysStruct.umax = 1;

'/.Output constraints

'/.for dynamic 1 and 2

'/.Input constraints

'/.for dynamic 1 and 2

we can now compute the A'-step feedback controller (see Section 16.3) by defining

the problem

» probStruct.norm=2; '/^Quadratic Objective
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» probStruct.Q=eye(2); '/^Objective: min_U J=sum x'Qx + u'Ru...

» probStruct.R=0.1; '/.Objective: min_U J=sum x'Qx + u'Ru...

» probStruct.subopt_lev=l; '/.Compute N-step controller

and calling the control function,

» [ctrlStruct]=mpt_Control(sysStruct,probStruct);

» mpt_plotPartition(ctrlStruct)

The result is depicted in Figure 20.2.
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(b) AT-step controller for the double integra¬

tor.

(c) Lyapunov function for the iV-step con¬

troller.

Figure 20.1: Results obtained for Example 20.4.1.
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Figure 20.2: Controller partition obtained for Example 20.4.2.
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