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Abstract

This thesis develops new algorithms for object detection in still images. As a start-
ing point the particular case of face detection is investigated seeking improvements
which can be generalized to other object types. For improving face detection, one
possible way is to search for a better representation that is used within the tradi-
tional detection paradigms. However, since face detection research has seemingly
reached a plateau, a more radical approach is pursued here.

The approach of this thesis is to identify, develop and evaluate complementary cues
which can then be combined with traditional face detection methods. Of interest
are cues which help improve detection accuracy and have so far been overlooked or
not evaluated thoroughly. Inspired by the failure analysis of a state-of-the art face
detector we explore two different candidate cues.

The first cue is human skin. The proposed skin detection algorithm combines a com-
prehensive skin color model with shape models using mutual information matching.
An important result is that the combination of color and shape information out-
performs purely color-based approaches. Experiments show that the skin cue is
in fact complementary to traditional appearance-based face detectors. As a result
combinations of the two can significantly improve the detection rate or precision.

The second cue proposed in this thesis is a face’s local context which typically
contains a person’s upper-body silhouette. The most remarkable property of the
developed local context detector is its robustness to resolution degradations. The
detector is shown to yield additional correct face detections which are complemen-
tary to those of traditional face and skin cues.

While the skin cue is rather specific for humans, it turns out that the local context
idea allows for a fruitful generalization to other object classes: just as the local con-
text contributes to the detection at small scales, we can form a set of scale-specific
object parts to accommodate a set of different scales. Such scale-dedicated parts,
in short scaleparts, cover specific parts of the target object at various positions,
extents and resolutions. The proposed scaleparts framework builds on boosted clas-
sifier cascades for implementing fast and highly discriminant part detectors and uscs
Bayesian Networks to combine their outputs. Experiments in face and car detection
demonstrate that the scaleparts approach is robust with respect to a wide range
of resolution situations. A side product is the first local-to-global (entire body)
detector for pedestrians.

From an abstract point of view, the scaleparts framework aims to increase robustness
to resolution changes in object detection by combining several scale-dedicated part
detectors. Its successful application to both faces and cars suggests a potential for
detecting additional object types within the same framework, which may serve as
future research.






Zusammenfassung

In dieser Dissertation werden neue Algorithmen zur Objektdetektion in Einzel-
bildern entwickelt. Objektdetektion ist laengst zu einer Standarddisziplin innerhalb
des wissenschaftlichen Gebiets des maschinellen Sehens geworden. Dies sowohl we-
gen der vielen Anwendungsmoglichkeiten als auch wegen der grossen Bedeutung fiir
die Kiinstliche Intelligenz Forschung.

Die Verfahren werden hierbei ausgehend vom speziellen Teilgebiet der Gesichtsde-
tektion entwickelt und dann auf andere Objektklassen iibertragen (z.B. Personcn
und Fahrzeuge).

Ein moglicher und oft beschrittener Weg besteht darin, nach Verbesserungen in
der Objektreprasentation zu suchen. Is scheint jedoch, dass die Forschung zur
Gesichtsdetekion auf diesem Weg an einem Sattelpunkt angelangt ist, was einen
etwas radikaleren Ansatz rechtfertigen wiirde.

Der prinzipielle Ansatz dieser Dissertation besteht darin, komplementéare Informa-
tionsquellen fiir die Gesichtsdetektion zu identifizieren, zu realisieren und diese
auszutesten. Von Interesse sind Informationsquellen, die die Detektionsgute verbessern
und die bisher nicht oder unzureichend evaluiert wurden. Diese kénnen dann mit
den herkdmmlichen Verfahren zur Gesichtsdetektion kombiniert werden.

Nach ciner Fehleranalyse eines der besten zur Zeit verfiigbaren Gesichtsdetektoren
untersuchen wir zwei Informationsquellen en detail: die eine basiert auf Hautdetek-
tion, die andere berticksichtigt den lokalen Kontext eines Gesichts.

Der in dieser Dissertation entwickelte Algorithmus zur Hautdetektion kombinijert
ein umfassendes statistisches Hautfarbmodell mit cinem Formmodell mittels “mu-
tual information” Maximierung. Ein wichtiges Ergebnis ist dic Uberlegenheit des
kombinierten Ansatzes im Vergleich mit einem rein farbbasierten Ansatz. Dieses
Ergebnis beruht auf umfangreichen Versuchsreihen.

Es wird auch gezeigt, dass die Gesichtsdetektionsrate mittels Hautfarbdetektion
stark verbessert werden kann, dank der Invarianz gegeniiber Kopfneigung und -
drehung. Alternativ kann die Prizision erhoht werden, indem detektierte Gesichter
zusatzlich via Hautdetektor gepriift werden.

Der lokale Kontext eines Gesichts meint dessen nihere Umgebung, die insbesondere
Teile des Oberkorpers enthilt. Ahnlich zu den psychophysiologischen Ergebnissen
von Torralba und Sinha zeigt sich, dass der lokale Kontext auch fiir das maschinelle
oehen effektiv nutzbar ist. Lokaler Kontext ist besonders bei schwierigen Bild-
verhéltnissen von Bedeutung, zum Beispicl bei kleiner Bildauflosung. Aus diesem
Grunde widmet unsere Analyse dem Faktor Bildauflosung besondere Aufmerksamkeit.

Wihrend der Hautdetektor spezifisch fur Gesichts- oder Meschendetektion nutzbar
ist, erlaubt der lokale Kontextdetektor eine crgiebige Verallgemeinerung auf andere
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Objektklassen.  Analog zum lokalen Kontextkonzept fiir geringe Bildauflosungen
lasst sich ein ganzes Set von skalenspezifischen Objektteilen (“scaleparts”) bilden,
um verschiedensten Auflosungssituationen gerecht zu werden. Besonders wichtig
dabei ist die Diskriminanz der Objektteildetektoren, die durch den AdaBoost Algo-
rithmus erreicht wird.

Die Kombination einzelner Objektteile erfolgt mit Hilfe von Bayes’schen Netzen.
Diecse erlauben es, die moglichen Abhingigkeiten und Interaktionen zwischen Ob-
jektteilen automatisch aus Daten zu erlernen. Experimente im Bereich Gesichts-
detektion und Fahrzeugdetektion belegen die Robustheit des Ansatzes iiber weite
Auflésungsbereiche. Als Nebenprodukt entsteht dabei der wohl erste Personende-
tektor, der lokale und globale (ganzer Korper) Objektteile integriert.

Die Anwendung dieses “Scalepart”-Ansatzes auf andere Objektklassen ist Gegen-
stand zukiinftiger Forschung.
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Introduction and Motivation

1.1 Detecting Objects in Still Images

This thesis presents new object detection algorithms and their evaluation in face
detection and car detection tasks. Let us first consider face detection to illustrate
the more general problem of object detection. [Yang et al. | define the face detection
task as follows: “Given an arbitrary still image, the goal of face detection is to
determine whether or not there are any faces in the image and, if present, return
their locations and extents”. This is in contrast to the problem of recognition, where
the goal is to identify specific instances within a certain object class: A face detection
system knows how to differentiate faces from everything else, while a face recognition
system knows the difference between A’s face and B’s face.

Research in computational object detection has a history of more than 30 years —
both as a topic of basic research as well as for specific applications. For example,
it is widely considered a critical component for enabling an “intelligent” machine
understand what it sees and is therefore a traditional topic of basic artificial in-
telligence research. Another example is psychophysics where computational object
detection approaches can be used to assess hypotheses about the functioning of the
human visual system. But equally important, object detection by computers has
many commercial, military and civil applications. Here, some of the most important
application domains are:

Human Computer Interaction: Face detectors are extremely popular compo-
nents in conversational interfaces, for example in robots. Figure 1.1 suggests
future applications in commodity household-robots, which roboticists have
been dreaming about for more than 60 years [Corn 1996). In fact face de-
tectors have been used in museum-tourguide robots to enable meaningful in-
teraction with people [Thrun et al. 2000] as well as in robots that assist the
elderly [Montemerlo et al. 2002]. Similar conversational interfaces appear in
Smart Kiosks, a freestanding computer system capable of social interaction

1



2 Chapter 1. Introduction and Motivation

Figure 1.1: Left: object detection and in particular face detection capabilitics
are critical components for human computer interaction, for example, with a robot.
Right: the Nintendo GameBoy Camera allows the player’s face to be inserted into
a simple game — which involves face detection.

with multiple users [Rehg et al. 1999). Another example is video conferencing
software, where exact knowledge of face positions and sizes helps to optimize
bandwidth allocation. Finally, recent computer games make use of face detec-
tors, too (which is illustrated on the right side of figure 1.1).

Intelligent Driver Assistance: Several computer systems that assist in driving
require object detection capabilities [Ninomiya et al. 1995, Remagnino et al.
1997, Franke et al. 1998]. In this respect the urban traffic environment is
particularly challenging: The leading vehicle must be detected and its dis-
tance, speed and acceleration must be estimated in longitudinal and lateral
direction. The course of the lane must be extracted even if it is not given by
well painted markings. Small traffic signs and traffic lights have to be detected
and recognized in a highly cluttered environment. Different additional traffic
participants like bicyclists or pedestrians must be detected and classified. Fi-
nally, stationary obstacles that limit the available free space e.g. parking cars
must be detected.

Content-based Image Enhancement: Large foto printers of imaging companies
like Kodak, Fuji and Agfa analyze digitized fotos and do certain automatic
corrections — part of the traditional job of a human foto laboratory worker.
Better understanding of the image’s content allow for better corrections re-
sulting in better pictures. As a very specific example, automatically detected
faces can be used as a cue for dctecting and correcting global or local color
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casts. This simply builds on the fact that facial skin color is confined to a spe-
cific chromatographic subspace of the spectrum. Detected faces can also be
used for automatic image derotation. Likewise, automatic object detection is
soon to be integrated in digital cameras. As camera technology changes from
film to digital capture, cameras are becoming part optics and part computer.
Such a camera can automatically focus, color balance, and zoom on a specified
object of interest, in particular a human face.

Image Retrieval: The availability of large digital image collections has grown dra-

matically in recent years. The Associated Press collects and archives an es-
timated 1,000 photographs a day (www.ap.org). The number of images on
the World Wide Web is at least in the hundreds of millions. However, the
usability of these collections is limited by lack of effective retrieval methods.
Currently, to find a specific image in such a collection, we have to search using
text-based captions and low-level image featurcs such as color and texture.
Automatic object detection and recognition could be used to extract more
information from these images and help automatically label and categorize
them. By making these databases easier to search, they will become accessi-
ble to wider groups of users, such as television broadcasters, law enforcement
agencies, medical practitioners, graphic and multimedia designers, book and
magazine publishers, journalists, historians, artists, and hobbyists.

Surveillance: Mounting video cameras is cheap, but finding available human re-

sources to observe the output is expensive. Here object detection technology
plays an important role for constructing a software-based artificial observer
that human security officers can usc as a tool. In addition to the obvious secu-
rity applications, video surveillance technology has been proposed to measure
traffic flow, detect accidents on highways, monitor pedestrian congestion in
public spaces, compile consumer demographics in shopping malls and amuse-
ment parks, log routine maintenance tasks at nuclear facilities, and count
endangered animal species. Object detection is a key component for such ap-
plications, in particular for initializing tracking and to recover from tracking
failure.

Target Acquisition and Tracking: The numerous military applications of com-

putational object detection are often integrated in visual surveillance tasks.
This includes patrolling national borders, measuring the flow of refugees in
troubled areas, monitoring peace treaties, and providing secure perimeters
around bascs and embassies, as in the current DARPA Human ID project (as
a sidenote to stress its importance: this project has been allocated USD 50
million).
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1.2 Challenges in Object Detection

The detection of real-world objects of interest, such as faces, people, and cars, poses
many challenging problems. An ideal detector must be able to differentiate any
instantiation of the target class from everything else in the world. More specifically,
it has to accommodate all possible variations of the target’s appearance, ¢.g. with
respect to color, texture, pose, lighting, and size and at the same time be highly
specific to avoid confusion with complex background clutter. A more general diffi-
culty is the geometric ambiguity which arises from projecting three dimensions of
the world onto two dimensions in the image.

Hence - despite its many applications and the large interest of many researchers --
general object detection by computer is still far from being solved. This is equally
true for the specific case of face detection which is probably the best-studied object
class within object detection research. In the following case study we illustrate some
typical failures of a state-of-the-art face detector. This case study also serves as a
motivation for the specific approach adopted by this thesis.

1.3 Case Study: Real-world Performance of the
Schneiderman-Kanade Detector

According to two recent survey articles on face detection research ([Yang et al. ,
Hjclmas and Low 2001]) the most successful face detectors are all appearance-based
(i.e. they start from a collection of 2D-views). There is a set of canonical challenges
associated with appearance-based detection. Following is a description of typical
challenges with specific examples for faces — but all these issues arc relevant for
detecting other object classes as well.

Pose: Face images vary due to the relative camera-face pose (in-plane and out-of-
plane rotations, frontal, 45 degree, profile, upside down). As a result some
facial features such as an cye or the nose may become partially or wholly
occluded.

Individual Features and Expression: Facial features such as beards, mustaches,
and glasses may or may not be present and there is a great deal of variability
among these components including shape, color, and size. Likewise the ap-
pearance of faces are directly affected by a person’s facial expression (laughing,
smiling, crying etc.).

Occlusion: Faces may be partially occluded by other “objects”. For example in a
group picture some faces or bodies may partially occlude other faces. Also,
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in pictures people regularly occlude parts of their own face with their hands.
This is often a result of a particular gesture or activity such as leaning on a
table and supporting the chin with one hand.

Imaging conditions: When the image is formed, factors such as lighting (spectra,
source distribution and intensity) and camera characteristics (sensor response,
lenses, resolution) affect the appearance of a face.

According to the above mentioned survey articles the face detector due to Schnei-
derman and Kanade [Schneiderman and Kanade 2000] achieves the highest accuracy
levels on a standardized test set of 125 grayscale images. A recurring criticism of
this finding is that this test database has been partially created by the same re-
search group which can result in an unfair bias. However, unlike other competing
approaches (e.g. the more recent work of [Viola and Jones |) Schneiderman also pro-
vides a web-interface to his implementation of the detector where one can upload
one’s own test images'.

We have used this facility to upload a set of 250 vacation snapshots to analyze errors
and their causes. Errors can be either missed detections or false alarms. Since these
are real-world photographs we have no access to the underlying imaging parameters.
This makes inferring the exact cause of an error difficult. However, we can still try
to make an educated guess about what caused a specific error. Since in practice
several error causes coincide (e.g. an occlusion combined with a rare pose) we try
to identify the most important cause.

We have tried to manually group the encountered error cases which resulted in seven
categories: “face-like texture”, “group pictures”, “pose/individual”’, “too small”,
“Image orientation”, “occlusion” and “other” each of which is illustrated by example
images in figure 1.3. Following is a detailed explanation of these categories and the
associated figures 1.2 and 1.3.

Face-like Texture: These are false alarms that frequently occur in complex, highly
structured images (25% of all errors). This is often the case in outdoor im-
ages, for example on trees and bushes. We can further subdivide false alarms
according to their “facencss”. This ranges from random patterns that humans
also might classify as faces and other patterns which humans would definitely
not classify as faces but which are caused by an intrinsic representational mis-
take of the underlying detection algorithm (often these mistakes come from
a simplifying assumption in the model). One other type of false alarms are
inaccurate detections. These detections cover part of a face but their position
and scale is so inaccurate that they are not counted as successful detections.

Thttp:/ /vasc.ri.cmu.edu/cgi-bin/demos/findface.cgi



Chapter 1. Introduction and Motivation

Group Pictures: This is a recurring theme in photography and it usually im-

plies that several people look directly into the camera ). Given a fixed image
resolution and several faces this means that individual faces are necessarily
represented with less detail than say in a portrait situation. Unfortunately,
face detection test databases such as the CMU+MIT data set ([Schneiderman
2000]) avoid this problem: they represent group pictures at high resolution and
portraits as smaller resolution so that (a) the minimum resolution requirements
for the detector are always met and (b) there are no “unnecessary” distracting
background patterns caused by too much image detail. Contrastingly, we have
assumed the same pixel resolution in all images which is more realistic because
it corresponds to the original camera output. However, as a result faces are
often too small to detect (17% of all errors).

Too small: Errors in this category are also caused by too small faces although

the actual scene is not a group picture (16% of all errors). Instead these
are often scenes with greater emphasis on the background (e.g. buildings or
landscapes) and with only few faces in it. For example, the Schneiderman-
Kanade detector requires faces to be at least 24 x 28 pixels in size. Processing
at low resolutions is generally desirable because high resolution images cause at
least two problems: the search becomes slower and the number of false positives
is likely to increase. This is simply because there are more possibilities to make
an error in an exhaustive search. Note that categories “face-like texture”,
“oroup pictures” and “too small” already make up for 57% percent, i.e. more
than half, of all errors.

Pose/individual: In snapshot photography people often do not look directly into

the camera which can result in missed detections (16% of all errors). Their
actual pose can vary greatly. Also pecople’s faces vary individually with respect
to skin complexion, beards or glasses for example which poscs great challenges
to the detector.

Image Orientation: It is natural for photographers to turn the camera once in

a while to make an upright image. Upright images of people will show faces
90 degrees in-plane rotated. Since the Schneiderman-Kanade detector deals
with out-of-plane rotation but not with in-plane rotation this results in missed
detections (15% of all errors). Usuallly upright images have to be derotated
manually by the photographer. Unlike the standardized test sets such as the
MIT4+CMU data set we have not derotated images before testing which we
think is more realistic.

Occlusion: Total or partial occlusion of faces is likely to result in missed detections

(7% of all errors). Clothes are a common source for the partial occlusion of
faces. Also, people often occlude parts of their own face with their hands, for
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s other
occlusion
4%

7%

face—like texture

25%

image orientation

15%
_ group pictures
pose/individual 17%
16%
too small
16%

Figure 1.2: Breakup chart of encountered error types in a representative set of 250
vacation snapshots using the Schneiderman-Kanade face detector. The top three
error sources “face-like texture”, “group pictures” and “too small” account for more
than 50% of all errors. The underlying error cause for the latter two is lack of image
resolution. As a result faces are smaller than the detector’s search window size and
are therefore not found by the detector.

example when leaning on one arm at a table with the hand supporting the
chin.

Other: This final category subsumes various error sources (4% of all errors) such as
illumination problems (where illumination is clearly the predominant problem)
or ambiguous data labeling. Figure 1.3 shows the example of a face drawing
in the lower right corner of the figure. The drawing is not a real human face
— i.e. this is a detection error — but the detector has correctly identified the
facial pattern.

Categories “face-like texture”, “group pictures” and “too small” make up for 57%
percent, i.e. more than half, of all encountered errors. The latter two have the same
cause, that is, insufficient image resolution. The novel face detection cues which
are going to be developed in this thesis are directly inspired by face-like texture
and low resolution errors and the promise is that this will remedy a large fraction
of encountered errors. Ultimately, we not only need to know what types of errors
exist but also how often each of them occurs. This allows us to set priorities and to
define our approach. A breakup quantifying different error sources is given in figure
1.2. Keeping in mind the above mentioned difficulties with this type of analysis the
listed percentages should be seen as a rough approximation.
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face-like texture:

too small:

Figure 1.3: “Face-like texture” (top row) causes false detections which vary with
respect to their actual “facencss”: they can be face-like such as the foilage in the
left picture or they can he less face-like and must therefore be seen as artefacts of a
representational mistake in the detector (such as on the checker board in the right
image). Another common error source is the lack of image detail which results in
missed detections (categories “group pictures” and “too small”). This often occurs
in group scenes (second row) or in scenes with few people and greater emphasis on
the background (e.g. buildings or landscapes as in row three). Details for the less
common crror catcgories “pose/individual”, “image orientation”, “occlusion” and
“other” can be found in section 1.3.
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Two cues are going to be investigated: The first cue employs a combination of color
and shape information to help discriminate against face-like background texture.
Color is not used by the Schneiderman-Kanade detector. Second, for dealing with
the problem of low image resolution we will apply contextual cues which indirectly
hint at the presence or absence of the target object. Since low resolution is the
common error cause for categories “group pictures” and “too small” the promise is
that context will be beneficial for both of these cases.

Though not further investigated in this thesis the following list briefly mentiones
alternative cues or approaches inspired from the remaining error categories “pose/
individual”, “image orientation”, “occlusion” and “other”.

Errors caused by pose/individual face variation can be attributed to the ap-
pearance based approach. As a result, rarely occuring poses or individual
expressions are often not adequately represented in the training data. This
can be remedied by resorting to a model with a stronger geometric flavor where
pose changes can be adressed by a geometric transformation in the model.

In-plane rotated faces in rotated images (category image rotation) can be de-
tected by Rowley’s face detector [Rowley et al. 1998]. However, Rowley’s
detector does not deal with out-of-plane rotations. Within digital photogra-
phy research automatic image derotation has turned into a discipline of its
own. Current approaches use “meta-information” provided by certain camera
models (e.g. coming from a tilt sensor) or they try to infer the true image
orientation directly from the image based on — for example — sky detection or
a holistic low-level feature analysis [Vailaya et al. 1999)].

The common way to deal with partial occlusion is to apply a parts-based
approach — which the Schneiderman-Kanade detector already does. As a result
only 7% of all errors have been attributed to occlusion problems.

Errors of type other are diverse but as an example we can consider the problem
of differentiating a drawing from an actual face. This is a subtle and difficult
problem but one potential cue here might be texture.

1.4 Thesis Outline

In this thesis we want to improve the state of the art in object detection. To this
end we specifically investigate the detection of faces as a test case and guiding
example. The promise is that further improvements in face detection are uscful for
the detection of other object classes as well ~ which in this thesis is tested specifically
for car detection.
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Improving face detection is challenging: the field has reached a performance plateau
in terms of accuracy since the work of [Schneiderman and Kanade 2000] despite the
large interest by many computer vision researchers. Significant improvements have
been made in speed and in making the learning more automatic [Viola and Jones |,
but not in accuracy. This viewpoint is supported by recent comprehensive surveys
on the topic [Yang et al. , Hjelmas and Low 2001].

Given this situation, we expect that more radical approaches have to be explored.
Thus, rather than developing a new representation ecmbedded in the traditional
detection paradigm our approach is to identify and apply complementary cues that
can be combined with traditional face detectors to leverage their accuracy. We
seek complementary cues that help in the detection task and that so far have been
overlooked or not evaluated in combinations of several cues. Given the above case
study on error types we are especially interested in a cue that helps discriminate
face-like texture from faces as well as a cue that allows to detect low resolution faces.
The first cue we propose is based on skin patch detection, the second on using a
face’s local context. The local context concept will then be gencralized for use in
parts-based car detection.

In the following the content of each chapter is summarized.

Chapter 2 reviews rclated work with a focus on publications that had strong in-
fluence on this thesis.

Chapter 3 develops a skin patch detector that can be used as a cue for detect-
ing human body parts — and human faces in particular. It is shown that a
combination of color and simple shape models outperforms a state-of-the art
skin detector which is purely based on color. The proposed algorithm uses the
concept of mutual information for measuring the “agreement” between color
and shape distributions. The approach is thoroughly evaluated on large image
sets. A particular focus is the use of skin patch detection as an auxiliary cue
for face detection and combinations of both cues are analyzed here as well.

Chapter 4 introduces a completely orthogonal cue which is purely based on intensi-
ties and does not require color information. Motivated by psychophysical find-
ings the key idea is to indirectly detect faces by taking into account their local
context. By “context” we mean indirect evidence, that is, features that do not
lie directly on the target object but for example in its close vicinity and thereby
indirectly hint at the target object’s presence. The local context of a face, for
example, includes a person’s full head and upper body silhouette. “Contex-
tual” detection contrasts the predominant “object-centered” paradigm, which
only considers features that occur directly on the target object. The approach
is evaluated on several large image sets using the Schneiderman-Kanade as
well as the Viola-Jones detector architectures as a basis.
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Chapter 5 generalizes the local context idea by introducing “scaleparts”. The key
idea behind scaleparts is to seek for highly discriminant object parts which
accommodate different levels of image detail, or scales. Thus scaleparts serve
as a basis for an object detector that can successfully deal with a wide range
of image resolutions. The approach is implemented using AdaBoost learning.

Chapter 6 develops a scaleparts-based object detector by combining scaleparts
with the help of a Bayesian Network. The Bayesian Network formalism al-
lows for encoding and learning interactions between different part detectors
as well as for inferring a combined answer from all (potentially contradicting)
evidence. The result is a detector that successfully deals with a wide range
of image resolutions. The detector’s ability is demonstrated on a difficult face
detection task.

Chapter 7 applies the scalepart concept to car detection. This demonstrates that
the approach works with other object categories as well.

Chapter 8 draws conclusions and delineates future research.






The State Of the Art

This chapter summarizes briefly some references which have been sources of inspi-
ration for this thesis. Here, we do not aim to give a comprehensive overview of
the numerous object detection algorithms. Instead, we are particularly interested
in state-of-the-art face detection methods as a starting point for our own devel-
opments. Therefore, section 2.1 reviews three state-of-the-art face detectors which
are among the most successful approaches according to the comprchensive survey
articles of [Yang et al. | as well as [Hjelmas and Low 2001]). Since our work also
touches aspects of pedestrian detection (in chapters 4 and 5) and is also applied to
car detection (chapter 7) the section includes these topics as well.

As mentioned in the introduction, our analysis of face detection errors suggests a
potential benefit in using color-based and contextual information. By “context” we
mean indirect evidence, that is, features that do not lie directly on the target object
but for example in its close vicinity and thereby indirectly hint at its presence. This
is in contrast to the predominant “object-centered” paradigm in detection, which
only considers features that occur on the object. Section 2.2 therefore reviews work
on color-based detection of human skin as well as context-supported detection.

Ultimately, we are interested in combining all cues into one detector. Among the
many established cue fusion techniques we have been particularly inspired by the el-
egance and versatility of Bayesian Networks. Section 2.2 therefore rewiews Bayesian
Networks as a cue fusion technique which is going to be adopted in chapters 6 and
7.

2.1 Detection of Faces, Pedestrians and Cars

It is important to contrast detection with the problem of recognition, where the
goal is to identify specific instances of a class. A face detection system knows how
to differentiate faces from everything else, while a face recognition system (see for
example {Zhao et al. 2000]) knows the difference between person A’s face and person

13
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B’s face. A typical detection-style algorithm scans the input image at all positions
and scales by classifying each possible subwindow independently. It then reports
the number, positions and sizes of found targets.

The next three sections describe the face detectors of Schneiderman-Kanade (scction
2.1.1), Rowley-Kanade (section 2.1.2) and Viola-Jones (section 2.1.3). While the
Schneiderman-Kanade detector is known for its high accuracy, and the Rowley-
Kanade method for its speed the more recent approach of Viola-Jones performs
comparably under both aspects ! — but builds on quite different algorithms. The
Schneiderman-Kanade approach is, however, the only scheme among these three
which has been shown to work for cars, too.

Section 2.1.4 describes Papageorgiou’s pedestrian detection work along with follow-
up work of other authors. Certain aspects of parts-based pedestrian detection re-
occur in chapters 4 and 5 which develop contextual face detection cues. These
contextual cues are then generalized to a parts-based object detection approach in
chapters 5 and 6 where individual parts cover different extents at various resolutions.
This idea is in a way similar to Vidal-Naquet’s and Ullman’s notion of intermediate
complexity fragments which is summarized in section 2.1.5. Finally, section 2.1.6
describes the car detection work of Agarwal and Roth whose car test data base is
going to be used in chapter 7.

2.1.1 Schneiderman-Kanade

Schneiderman and Kanade [Schneiderman and Kanade 2000] propose a parts-based
object detector. They not only report impressive detection results for face and car
detection but also offer a web-based demo (images are processed over night). Their
system is one of the few appearance-based detectors that successfully deals with
out-of-plane rotation — both for face detection and for car detection.

At the core of the detector is the evaluation of a likelihood ratio term:

H H pr (patterny (z,y) ,i(x), j(y) | object) S0

,i(z) (2.1)
k (patterny (z,y) ,i(x), j(y) | nonobject)

k=1 x,yEregion

Here, the two likclihoods for the positive and the negative class

pi (patterng (x,y) ,i(x), j(y) | object) and px (patterny (x,y),i(x),j(y) | nonobject)
are decomposed over n different feature types and the locations x,y within the de-
tection window. This decomposition is based on the assumption of independence,
i.e. the Naive Bayes assumption. From the above equation follows that the likeli-
hood functions themselves depend on i(x) and j(y) which are coarse quantizations

ICompetitive performance on a benchmark database was shown for frontal face detection only.
This excludes the detection of rotated faces/profiles.
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of feature positions within the detection window. This spatial dependency allows to
capturc the global geometric layout: within the detection windows certain features
might be likely to occur at one place but are unlikely to occur at another place.
There are n = 17 predefined feature types involved. An input instance is first de-
composed by a two-dimensional 3-level wavelet transform using a biorthogonal filter.
Features are then extracted by examining local arrangements of a small number of
wavelet coefficients within one subband or from different subbands. This allows to
capture local dependencies across space (arrangements with different extents), fre-
quency (different wavelet levels) and orientation (subbands with different filtering
directions).

Instead of estimating the above individual likelihoods the decision boundary is di-
rectly approximated using bootstrapping [Sung and Poggio 1998] and a variant of
AdaBoost learning [Schneiderman 2000].

Despite its high classification performance there is not much follow-up work by
other authors. This is probably because the original approach has so many com-
ponents with many hand-tuned parameters and relatively few automatic learning
steps. Also, the authors invest a lot of manual work into tightly controlling the
variation in the positive set (manual lighting correction and landmark-based geo-
metric alignment). Only recently Schneiderman developed a more learning-oriented
formulation [Schneiderman 2003).

2.1.2 Rowley and Kanade

Before the seminal work of Viola and Jones, one of the fastest appearance-based
detectors was Rowley and Kanade’s Neural Network based face detector [Rowley et
al. 1998] which also deals with in-plane rotations.

Rowley’s approach is designed to detect upright faces at any degree of rotation in
the image plane. It is not optimized to deal with out of plane rotations though.
The system consists of a cascade of multiple ncural networks. Its first stage tries
to determine the orientation of the current input window and then forwards this
input to a specialized face classifier. The classifier is a multilayer perceptron that
expects a 20x20 region as input. Rowley performed experiments with both sin-
gle neural networks and modular systems consisting of several neural networks. In
all the algorithms, each 20x20 input region is pre-processed to correct for differ-
ences in lighting conditions: a linear function of intensity is fitted to the region and
subtracted out, then histogram normalization is performed. The neural network
topology used in all experiments consists of one layer of hidden units wherc each
hidden unit has a receptive field of cither 5x5, 10x10, or 20x5 inputs. This particular
network topology emphasizes local features over global ones, since the hidden units
have only local support.
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Rowley’s and Schneiderman’s detectors are compared on the MIT+CMU test set
in [Schneiderman 2000]. On this test data Rowley’s detector has a detection rate
of 86% with 31 false alarms while Schneiderman’s detector has a detection rate of
94% with 65 false alarms. Unfortunately, this comparison is not entirely conclusive
because of the different false alarm levels, however, a more comprehensive analysis
(ROC curves) has not been published.

2.1.3 Viola-Jones and related

Recently Viola and Jones introduced a method for frontal face detection [Viola and
Jones |. They report a detection accuracy that is comparable to the Schneiderman-
Kanade detector on a standardized test set — but with a much faster algorithin
running at 15Hz. For this speced previous approaches had to rely on color or motion
information and were thus restricted to certain types of applications.

The Viola-Jones classifier combines the following three strategies for speed:

fast to compute features

classification based on simple linear thresholds, reminiscent of decision stumps
in decision trees

a cascaded detector whos cascade structure is learned during training

All features are computed as differences of pixel sums (i.c. integrals) over rectangular
regions. These features are simple in the sense that they only capture horizontal
and vertical bars and edges. On the other hand they can be computed at constant
time independent of size and position with the help of summed area tables ( “integral
images”). As a result computing these features at all scales and positions is faster
than computing an image pyramid which is required by Schneiderman-Kanade and
Rowley-Kanade.

AdaBoost [Schapire and Singer 1999] is used both to select features and to train
the actual classifier. AdaBoost is a greedy iterative fitting procedure that in each
round selects the feature which best classifies the training data. It then rewecighs
the training set assigning high weights to misclassified instances. AdaBoost provably
drives the training error to zero cxponentially in the number of rounds and at the
same time achieves large margins rapidly [Schapire et al. 1998]. However, with each
round it also slows down the classifier by increasing its complexity.

Hence, instead of training one monolithic slow-to-evaluate classifier Viola et al. pro-
pose an algorithm for learning a classifier cascade [Fleuret and Geman 2001] where
each cascade stage is trained using AdaBoost. A cascade allows to shortcut the
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computation for almost all negative test instances and only compute all features
for the most promising test candidates. An exhaustive search over a single image
typically means examining several tens of thousands of candidate windows where
only very few ones correspond to targets (“rare event detection”).

The Viola-Jones detector has spawned a flurry of follow-up papers from other au-
thors many of which use other feature types [Garg et al. 2002] or extend the original
feature set [Lienhart et al. 2002b]. Others employ variants of the boosting proce-
dure, like FloatBoost [Z.Q. Zhang and Zhang 2002], LogitBoost or Gentle AdaBoost
to mitigate its greediness. Applications include profile detection of faces, lip tracking
and banner (commercials) detection [Lienhart et al. 2002b).

2.1.4 Papageorgiou et al and related

Papageorgiou et al [Papagecorgiou et al. 1998, Papageorgiou and Poggio 2000] de-
velop a classifier based on a Support Vector Machine (SVM) and Haar wavelet
features and apply it to face, car and pedestrian detection. The features — obtained
from a stationary discrete wavelet transform (DWT) - form an overcomplete dictio-
nary of localized intensity differences at several scales. Coeflicients from two hand
chosen scales are then used for SVM training.

The authors also develop a faster version by making the following simplifications

instead of three wavelet transforms for each color channel they compute one
transform on intensity values

they hand select 29 of the 1326 initial features by considering each coeflicient’s
magnitude and its position on the person.

they compute a reduced sct of synthetic support vectors

they apply a fast global prefilter (“focus of attention”) to identify promising
image regions and to reduce the number of classifier applications

In a similar vein but more learning-oriented [Depoortere et al. 2002] introduce
further speed-ups to the original scheme while maintaining high accuracy levels.

A drawback of Papageorgiou’s original scheme is that because of its global ap-
proach it cannot handle partial occlusion. [Mohan et al. 2001] therefore develop a
parts-based version of Papageorgiou’s pedestrian detector. Instead of using a single
classifier for the whole body, Mohan uses separate SVMs to detect hand-specified
body parts (left arm, right arm, upper body, and legs) and then combine the results
by training a SVM on top of the part classifiers (stacking). The resulting system
outperforms Papageorgiou’s original scheme and achieves a 92% detection rate at
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roughly 1 false positive per image. The authors attribute this improvement to the
fact that the component-based approach uses more prior knowledge, encoded as ex-
plicit knowledge about the geometric properties of the human body and explicitly
allowing for variations in the human form.

2.1.5 Vidal-Naquet and Ullman

Ullman and Vidal-Naquet develop a part-learning approach based on Mutual Infor-
mation [Ullman et al. 2002] for parts-based object detection. They call their parts
“fragments”. Their approach optimizes the position, size and resolution of object
fragments by maximizing their mutual information with the target class. Mutual
Information typically peaked for intermediate complexity fragments: fragments of
intermediate size at high resolution or fragments of larger size at intermediate res-
olution. The superiority of intermediate complexity fragments can be explained as
the interplay of two factors: specificity and relative frequency. For example, a large
face fragment can provide reliable indication of the presence of a face in an image,
although the likelihood of encountering such a fragment in a novel face image is low.
Consequently, the information carried by such a part with respect to the class is
limited. A smaller part has a higher likelihood of appearing in different face images,
but the likelihood of its presence in non-face images is also higher.

Although they use different terminology the approach is essentially discriminative.
A major drawback is its relying on slow normalized cross-correlations coupled with
the combinatorial explosion of possible fragment candidates. To make this computa-
tionally feasible they resort to extremely small training patch resolutions. As a result
extracted fragments (parts) are sometimes as small as 4 x4 pixels [Vidal-Naquet and
Ullman 2003].

2.1.6 Agarwal-Roth and related

[Agarwal and Roth 2002] present another parts-based object detection approach
which builds on an interest point detector. First, small patches around interest
points arc grouped using an agglomerative clustering scheme. Images are then rep-
resented by using parts from these clusters, along with their spatial relations. The
information which parts and which binary spatial relations were observed in the
images arc combined as sparsely coded entries in a very high-dimensional feature
vector. Based on this representation, a SNoW classifier is trained to discriminate
image windows containing the object from negative examples. The authors apply
their method to the problem of detecting side views of cars and make their test
database available to other authors.
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Garg et al [Garg et al. 2002] present an interesting extension which adds a global,
holistic detector based on ICA features to the local part-based approach described
above. Both local and global measurements are fused by supervised learning of a
second order polynomial classifier which uses the outputs of ICA-based classification
and part-based classification as training inputs.

2.2 Color and Context as Cues
in Object Detection

This section is concerned with specific aspects of color and context as cues in object
detection. With respect to color we focus on face detection which boils down to
the detection of human skin using skin color models. Contrastingly, the work on
contextual cues summarized here has been shown to apply to various object classes.
Altogether, the section briefly describes three classes of color-based skin detection
algorithms as well as two contextual detection approaches. Section 2.2.1 describes
comprehensive skin color models which try to capture the true variation of skin ap-
pearance and which are therefore widely applicable. Such a model is going to be used
in the next chapter (chapter 3). Then, section 2.2.2 describes specialized skin color
models which are effective as part of a larger system (such as a face tracker) — but
which are not as versatile as comprehensive skin models. For completeness, physical
models derived from spectrographic analysis are briefly summarized in section 2.2.3.

Compared to skin color modelling the literature on context supported detection is
sparse. Section 2.2.4 summarizes Strat’s seminal work [Strat and Fischler 1991]
which is based on an object-based representation of context. This notion of context
will be adopted by chapter 4. The formal derivation and the term local context
introduced in chapter 4 is, however, more closely related to [Torralba 2001]. Torralba
uses a scene-centered representation of context which is explained in the final section
2.2.5.

2.2.1 Comprehensive Skin Color Models

The most comprehensive skin color model we are aware of is due to Jones and Rehg
[Jones and Rehg 1999]. In their case, a skin color model is learned from a huge
collection of manually segmented web images. A Bayesian classifier for skin color is
then constructed which also incorporates a model of the non-gskin class. They use
4483 training photos which form the non-skin color model and 2339 training photos
which form the skin color model.

Fleck and Forsyth [Fleck et al. 1996, Forsyth and Fleck 1997] as well as Wang et
al. [Wang et al. 1997] propose systems for filtering adult images by finding naked
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people. In the approach by Fleck et al a combination of low-level image filters is
used to extract skin regions. This combination builds on skin color and texture
features. By geometrical analysis, images with at least 30% skin are then searched
for body parts.

Interestingly, Jones and Rehg’s color model by itself leads to comparable perfor-
mance to the system of Forsyth et al which uses the combination of features. This
underlines the importance of appropriate color models for skin detection.

2.2.2 Specialized Skin Color Models

Many systems for tracking or detecting people in user-interface or video-conferencing
applications have employed skin color models. Histogram models are employed by
[Schicle and Waibel 1995] and [Kjeldsen and Kender 1996]. [Yang et al. 1998] model
skin color as a single Gaussian, while [Jebara and Pentland | employ a mixture
density. [Terrillon and Akamatsu 2000} examine Gaussian skin models and compare
nine different color (i.e. feature) spaces. Mottaleb et al. add facial feature detection
and manually defined geometric constraints on top of this [Rein-Lien Hsu 2002].

In all of these systems, the color model is trained on a relatively small number
of example images taken under a set of illumination conditions representative for
the specific task at hand. Most, with the exception of [Kjeldsen and Kender 1996,
Jebara and Pentland ], do not use non-skin models. These color models are effective
in the context of a larger system, but they do not address the question of building
a global skin model which can be applied to a large set of images. Instead they are
specialized to a certain application.

2.2.3 Physical Skin Color Models

[Angelopoulou 2001] and, independently, [Stoerring et al. 1999] use spectrographic
analysis to derive a physical reflectance model of skin. The characteristic human skin
tones are due to light reflectance in a thin surface layer, the epidermis, and a thicker
layer underneath, the dermis. The light absorption in the dermis is mainly due to
the ingredients in the blood such as haemoglobin, bilirubin and beta-carotene which
are basically the same for all skin types. However, skin color is mainly determined
by the epidermis transmittance which depends on the dopa-melanin concentration
and hence varies among human races. Apart from these characteristics the physical
skin reflectance model incorporates both camera and light source parameters. In
uncontrolled scenes, however, these parameters are not known.
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2.2.4 Object-based Representation of Context

[Strat and Fischler 1991] built the CONDOR. system which uses contextual informa-
tion for object recognition. The system is based on a large number of hand-written
rules that constitute the knowledge database of the system. A collection of rules
(“context sets” ) defines the conditions under which it is appropriate to use an oper-
ator to identify a candidate region or object. The candidates are then the inputs for
other rules that will activate other vision routines. The ideal output of the system
is a labeled 3D model of the scene. From a more abstract viewpoint context is de-
fined here as a collection of objects or regions (already recognized or at least given
candidate object labels). Predefined rules about the world in which the system is
expected to operate produce reliable inferences using the candidates as input. As we
will see in chapter 4 the contextual notion in this thesis is also object-based: we seek
to discern specific object instances within the scene to indirectly infer information
about the target object.

2.2.5 Scene-centered Representation of Context

In the real world, there exists a strong relationship between the environment and
the objects that can be found within it. Experiments in scene perception and visual
search [Biederman et al. 1982] have shown that the human visual system makes
extensive use of these relationships for facilitating object detection and recognition
suggesting that the visual system first processes context information in order to
index object properties. In particular, scene recognition experiments suggest that
information about scene identity may be available before performing a more detailed
analysis of the individual objects [Biederman 1987].

[Torralba 2001] applies this finding to computational vision. Accordingly, the con-
text is considered a single entity (“the scene”) that is to be recognized by means of a
scenc-centered representation bypassing the identification of the constituent objects.
They take a probabilistic approach and model the joint probability of scene features
and object-centered features (i.e. features on the target object).

Starting from the traditional object-centered viewpoint this can be formalized using
Bayes’ Rule as follows:

P(VL l O)

P(O|v)=P(O|vy) = P ivy)

P(0) (2.2)
where the image measurements v are local measurements on the target object, that
is v = vi. The object-centered object likelihood is denoted by P (v, | O) and P (O)
is the object specific prior. However, in order to capture dependencies between an
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object and its context the measurement vector can be extended to include features
outside the target object (scene features):

v = {vy,vc} (2.3)

where v are measurements of the object’s context/scene. Applying Bayes Rule
now leads to an expression where all probabilities are conditioned on contextual
information

_P(O,v) P(v;|Ov¢)

PO|v)= P = P vy [ve) P(0O,ve) (2.4)

Based on this, Torralba implements a system which offers a procedure for object
priming, context driven focus of attention and automatic scale-selection on real-
world scenes.

2.3 Cue Fusion using Bayesian Networks

Cue fusion is a recurring theme in pattern recognition (see for example [Kittler et
al. 1998]) and in particular in computer vision. Since we are going to use classifiers
based on various visual cues we will use the terms “classifier combination/fusion”
and “cue combination” interchangeably. In this thesis we will employ Bayesian net-
works, a special type of a graphical model, for cue combination (chapters 6 and 7).
This is the common theme of the three articles summarized in this section which
describe systems of increasing complexity. The following section 2.3.1 describes a
speaker detection scheme combining four visual cues. Here we also list a number
of arguments why Bayesian Networks are an attractive tool for cue fusion in gen-
eral. Then, section 2.3.2 describes follow-up work using Dynamic Bayesian Networks
which also adresses discriminative parameter and structure learning. Finally, section
2.3.3 gives a summary of a different system that uses Bayesian Networks to combine
speech and vision in a human-computer interaction task with a robot.

2.3.1 Rehg, Murphy and Fieguth

[Rehg et al. 1999] use Bayesian networks for visual cue fusion. Four “off-the-shelf”
vision algorithms are combined to enable a smart kiosk detect the presence of a
speaker: skin color, texture, Rowley’s face detector and a mouth motion detector.
The actual cues are kept simple and mainly serve as a means to demonstrate their
use within a Bayesian net. The structure of the network is manually defined. It
encodes the context of the sensing task and knowledge about the operation of the
sensors. Different structures with different capabilitics arc compared in this work.
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The conditional probabilities along the arcs of the proposed network relate the sensor
outputs to the task variables. These probabilities are learned automatically from
training data. The authors admit that their actual test case is rather simple as
illumination is tightly controlled and the background is mostly uniform and static.
Nevertheless the Bayesian Network technique is interesting in several ways:

domain-knowledge about the individual cues and the task can be translated
into the network’s structure

Bayesian networks provide an intuitive graphical framework for expressing con-
textual knowledge, coupled with efficient algorithms for learning and inference
(fusing inputs)

they can represent complex probability models, but their learning rules are
simple closed-form expressions given a fully-labeled data set

contradicting evidence is dealt with in a principled way (the so-called “explaining-
away” mechanism)

2.3.2 Choudhury, Rehg, Pavlovic, Garg, Huang and
Pentland

Several authors propose interesting extensions to the speaker detector network of
[Rehg et al. 1999]. Here we summarize three important extensions proposed by
[Pavlovic et al. 2001] and by [Choudhury et al. 2002]. First, [Pavlovic et al. 2001}
use a Dynamic Bayesian Network — an extension of the original static Bayesian
network which can handle time-evolving random variables and their dependencies.
Typical examples of Dynamic Bayesian Networks include Kalman filters and Hidden
Markov Models. The Dynamic Bayesian Network is used to smooth the outputs of
query variables over time resulting in higher classification stability. Within their own
testing scenario the authors report an improvement of 15% over an averaged 65%
detection rate of the original static Bayesian network. Second, [Pavlovic et al. 2001]
propose a discriminative training procedure for parameter learning in Bayesian Net-
work classifiers. This addresses an important finding of [Friedman et al. 1997] that
the standard parameter learning through density estimation can result in suboptimal
classifiers. The discriminative training is based on the AdaBoost procedure which
reweighs training instances iteratively to generate a classifier ensemble. The authors
report an additional 5-10% improvement in detection rate when using discriminative
training. Third, [Choudhury et al. 2002] address the problem of structure learn-
ing. In the previous approaches the network topology was manually predefined and
fixed. [Choudhury et al. 2002] introduce a new boosted structure learning algorithm
based on AdaBoost. Given labeled data, the algorithm modifies both the network
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structure and parameters so as to improve classification accuracy. Their approach
uses a standard structure learning algorithm as a component (in their case they
use a variant of the K2 algorithm of [Cooper and Herskovitz 1992]). Quantitative
comparisons to both standard structure learning techniques and boosted parame-
ter learning on a fixed structure demonstratec modest performance improvements.
However, the analysis of the learned network structure can give important insights
about the true relationship of variables and helps to uncover wrong assumptions in
a manually defined topology.

2.3.3 Wachsmuth, Socher, Brandt-Pook, Kummert and
Sagerer

[Wachsmuth et al. 2000] develop a system where a human verbally instructs a
robot in a construction task (with “Baufix” toy construction elements). The human
speaker has to specify building blocks in the scene by describing properties of these
objects without knowing the exact terms. Therefore, the system has to interpret
mostly vague descriptions which are then interpreted by a Bayesian network to find
the most plausible interpretation. The system is quite complex and can also generate
new Bayesian networks dynamically from the spoken utterance and the visual scene
representation.



Color-supported Skin and Face
Detection

This chapter investigates skin detection as a complementary cue for finding faces.
The promise is to leverage color and shape information that is currently neglected
by appearance-based, intensity-driven face detectors.

Section 3.1 develops a novel skin detection algorithm which combines color and shape
cues to extract skin patches. The proposed combination scheme uses mutual infor-
mation to register evidence from both cues. The hypothesis is that the combination
of color and shape information outperforms traditional approaches that solely rely
on color. This is tested and confirmed by experimental evaluations in section 3.2.

Then in section 3.3 we specifically investigate the usefulness of the developed skin
detector for face detection. We do this by comparing and combining detections from
two appearance-based face detectors (the Schneiderman-Kanade face detector and
the Rowley-Kanade face detector) with detected skin regions. Finally, section 3.4
summarizes our findings and draws conclusions.

3.1 Using Color and Shape Models
for Skin Detection

Skin detection by computer traditionally relies on color information. The charac-
teristic human skin tones are due to light reflectance in a thin surface layer, the
epidermis, and a thicker layer underneath, the dermis. The light absorption in the
dermis is mainly due to the ingredients in the blood such as haemoglobin, bilirubin
and beta-carotene which are basically the same for all skin types. However, skin
color is mainly determined by the epidermis transmittance which depends on the
dopa-melanin concentration and hence varies among human races [Stocrring et al.
1999).
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Light sources, that is, their intensity, color and location also affect skin appearance.
Other objects within the scene may cast shadows or reflect additional light and so
forth. Unfortunately, there are many other objects in the world which are easily
confused with skin because of their skin-like color such as certain types of wood,
copper, sand as well as clothes. Imaging noise and smoothing artefacts can appear
as speckles of skin-like color, too. As a result, finding skin based on color alone has
many pitfalls.

To further illustrate this, figure 3.1 shows some examples of color based skin detec-
tion. Input images are shown in the top row and the bottom row shows the corre-
sponding skin likelihood map. These likelihood maps are generated by evaluating
each pixel’s likelihood of being skin and are visualized such that high probabilities
appear as white pixels. The leftmost example has been taken with the camera’s

(c)

Figure 3.1: Skin segmentation based on skin color. White pixels in the likelihood
maps (bottom row) indicate high probability. Figure (a) shows specular reflections
on the lady’s hand. JPEG artefacts can cause false negatives and false positives
as in example (b). Example (¢) shows that background objects (in this case the
wooden fence) can have skin-like color toncs.

flash. This causes discontinuities in the skin likelihood map due to specular reflec-
tions which visually appear as “holes” on the lady’s hand. In the example in the
middle the car’s interior has skin tones and is therefore hard to discern from the ac-
tual skin region, i.c. certain portions of the driver’s face. This image also illustrates
JPEG compression and smoothing artefacts (block structure in the upper image re-
gions). Example (¢) shows a wooden fence and a crowd of people to emphasize the
fact that wood (which frequently appears outdoors as well as indoors) is a common
distractor in color-based skin detection.

To overcome color-specific limitations such as those illustrated above the following
sections formulate a probabilistic algorithm which incorporates shape information
in the detection process. The underlying assumption is that skin patches appcar
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as approximately contiguous skin-colored regions of certain shapes such as ellipses.
The following section (3.1.1) shows how to combine color and shape information by
maximizing their mutual information. The key idea is to use mutual information
as an objective function for fitting a shape prior to subregions of a color-based
skin likelihood map as those shown in figure 3.1. Local contiguous image regions —
rather than individual pixels — can then be classified as skin or non-skin based on
the computed mutual information score.

Sections 3.1.2 and 3.1.3 describe the employed probabilistic models of skin color
and shape and section 3.1.4 introduces a gradient ascent method for efficient mutual
information maximization.

3.1.1 Model Combination By
Mutual Information Maximization

Skin patches can be described as contiguous subregions of certain colors and shapes.
Our approach is therefore to combine color with shape information.

input image Uz := p(Z = skin|\) Vi i= p(& = skinly)

Figure 3.2: Maximization of Mutual Information: The observed distribution of
skin pixels is compared to an expected distribution which effectively imposes shape
constraints. The mutual information between the two distributions is computed.
The algorithm maximizes mutual information by gradient ascent on the parameters
v of the expected distribution.

Figure 3.2 is a graphical sketch of the algorithm. For the sake of argument we assume
a parametric color model with parameters A which is applied to each colored pixel
Z of the input image. This results in an observed distribution of skin color:

p(Z = skin|A) (3.1)

which is then combined with the skin-specific ezpected shape distribution. We as-
sume an elliptical shape distribution parameterized by -y which determines its actual
form, location and size:

p(Z = skin|y) (3.2)
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The combination is adaptive, that is, the parameter space of =y is searched to max-
imize mutual agreement among the two distributions in an information-theoretic
sense. The parameters v which maximize mutual agreement thus determine the lo-
cation of a subregion of p(Z = skin|\) that best fulfills the constraints embodied by
the expected distribution p(Z = skin|y). For maximizing mutual agreement between
the two distributions we maximize their mutual information which is a measure of
statistical dependence.

To further undermine the relevance of mutual information in this context, we briefly
refer to the well-known Kullback-Leibler divergence. The KL-divergence between a
probability mass function p(u,v) and a distinct probability mass function ¢(u,v) is
defined as:

Dp(w o)) = 3 plas ) o S22 33)

The KL-divergence (also called relative entropy or information divergence) is often
used as a distance measure between two distributions'. By defining

q(u,v) = p(u)- (v) (3.4)

the mutual information can be written as the KL-divergence between p(u,v) and
p(u) - p(v):

I(U;V) = D(p(u,v)|lp(w) - p(v)) (3-5)

Mutual information therefore measurcs the distance between the joint probability
p(u,v) and the probability ¢(u,v) = p(u) - p(v), which is the joint probability under
the assumption of independence. Conversely, it measures mutual dependency or the
amount of information one distribution contains about another. As a result mutual
information can be used to measure mutual agreement between distributions.

The concept of maximizing mutual information has been previously used in several
vision and machine learning tasks e.g. for feature selection [Lew and Huijsmans 1996,
Colmenzrez and Huang 1997], for determining the most discriminant viewpoints of
objects [Schiele and Crowley 1998] as well as for image registration [Wells III et al.
1996]. An important result of [Viola 1995] is that mutual information outperforms
cross correlation measures when one of the signals is partially occluded. Traditional
correlation is often significantly disturbed by occlusions, since they lead to substan-
tial penalties for disagreement of intensities. The Mutual information measure on
the other hand degrades gracefully when subject to partially occluded imagery. As a
result color and shape distributions can be aligned robustly despite spurious “holes”

'However, in contrast to a “distance” measure the triangle inequation does not hold for a
“divergence”.
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in the skin color distribution caused by specularities, shadows or the eyes, mouth
and beard of a face.

The remainder of this section describes concrete implementations of the skin color
model p(Z = skin|A), the shape model p(Z = skin|y) as well as an cfficient search
technique for mutual information maximization.

3.1.2 Skin Color Model

Evaluating a pixel’s skin probability p(Z = skin|\) requires a statistical skin model
— in this notation represented by parameters A\. Here we introduce two different
variants. The first one is the comprehensive histogram model of Jones and Rehg
[Jones and Rehg 1999), the second one is a compact Gaussian model in HSI color
space.

Non-parametric Models of Skin and non-Skin Color

Jones and Rehg have constructed histogram-based skin color and non-skin color
models from a vast collection of web images (see also chapter 2, section 2.2.1). Us-
ing their annotated data we have reconstructed both proposed histograms with (32°)
bins each (24-bit, i.e. 3 Bytes color depth, RGB). This bin configuration provided
the best empirical results in their evaluations [Jones and Rehg 1999] and also out-
performed a Gaussian mixture model. The histograms model the joint statistics of
RGB values for skin and non-skin, respectively, and are trained from nearly 1 billion
labeled pixels. The underlying training images contain examples of different skin
complexions such as Asian, African and Caucasian. Using this model the likelihood
that a given pixel is skin is approximated by the relative frequency in the corre-
sponding histogram bin. Then following Bayesian Discriminant Analysis the skin
posterior probability for a given pixel rgb can be computed as

p(rgb|skin)
skin) + p(rgb|lnonskin)

p(skin|rgb) = (3.6)

p(rgb
Parametric Likelihood Model

A more compact statistical model can be obtained by using Gaussians instead of
high-dimensional histograms. The resulting parametric model requires less training
data to learn but sacrifices some of the accuracy and versatility of the comprehensive
histogram model described above, e.g. with respect to different skin complexions.

In our casc the model has been trained from a small image collection of Caucasian
facial skin using the Maximum Likelihood Estimator. We transform the RGB values
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Figure 3.3: A statistical model representing Caucasian skin color in HSI space.
The Gaussian on the left represents the hue, the one in the middle is saturation and
the right-most Gaussian models the statistics of intensity values.

to HSI space, where the distribution of skin can be well approximated by three
independent Gaussians, that is the sufficient statistics are A = (un, On, ls, T, iy 05)
which represent the means and standard deviations along the hue (us, 04), saturation
(s, 05) and intensity (u;, 0;) axes. This is because in HSI color space Caucasian skin
pixels approximately fall into a three dimensional upright hyperellipse which justifies
the independence assumption. Figure 3.3 shows a plot of the color model. The
likelihood of skin for a given pixel is then defined by multiplying the probabilities
of the three independent Gaussians.

3.1.3 Skin Shape Model

To model the characteristic shape of skin regions p(& = skin|y) our implementation
uses ellipses as shape primitives. Ellipses are frequently used for modeling the human
body, in particular the head, arms and limbs (see for example [Wren et al. 1997]).
To recall, the shape distribution is parameterized by ~ and represents the expected
shape of an image region that corresponds to a skin patch. It is rcpresented as a
probability distribution with a compact elliptic plateau of high probability which
smoothly decrcase at the boundary (c.f. right side of figure 3.2). Mathematically,
the shape distribution is defined as

w

.. PRRY- RS
f _ ) logistic(a) (re)” 4 W h%:) <1
shape 0 : else
This means v = (z., ¥, w, h), where (z.,y.) denotes the plateau’s center within
the distribution, and (w, h) are the platean’s dimensions, assuming the shape of an
upright ellipse. The actual probabilities come from the logistic function
1
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We choose values of a such that probabilities within the plateau become relatively
high and adapt the parameter towards the plateau’s boundary so that probabilities
decrcase smoothly and eventually reach zero. While our current implementation de-
fines only upright elliptical regions, the extension to tilted regions is straight-forward,
but incurs the cost of increased model complexity of . A possible configuration of
the shape density is visualized on the right side of figure 3.2.

The shape model embodies two important properties about the distribution of skin
color. First, skin is distinguished as a contiguous region and second, skin often
appears in elliptical shapes. The statistical formulation of the algorithm expresses
that these requirements need to be met just in an approximate, statistical sense,
which makes the scheme robust. Thus, only compact regions are regarded valid
while local noise is ignored.

3.1.4 Gradient Ascent For Maximizing Mutual Information

For efficient mutual information maximization we use a form of gradient ascent
on the parameter vector y = (z., ¥, w, h) traversing an adaptive local search grid.
The grid center (z.,v.) is succinctly placed over maxima of the color distribution
p(Z = skin|\) starting at the global maximum of this distribution and proceeding at
other maxima in descending order. In the current implementation the horizontal and
vertical step width (z,,, z,) is initially sct to 1/5 of the image’s width and height (i.e.
for a 150 x 100 image w = 20 and h = 30). At each iteration the algorithm follows the
steepest mutual information gradient by modifying (z.,y., w, h) accordingly. The
search follows a coarse-to-fine strategy, i.e. the step size that affects center points
T.,y. and dimensions w, h is succinctly decreased (e.g. halved after each iteration
step).

Typically, convergence is reached in about 5 to 10 iterations. Once the algorithm has
converged v represents a single computed skin region hypothesis associated with a
mutual information value. The associated mutual information is used as a confidence
value. A high value expresses an agreement between color-based and shape-based
skin models and thus a higher confidence in the skin hypothesis.

For generating multiple hypotheses the skin distribution p(Z¥ = skin|\) is then
reshaped. More specifically, after a hypothesis has been formed the associated region
is first excluded from the original distribution and thereafter, the scheme is repeated.
The value of mutual information is used to decide if a hypothesis is valid and if the
search is to be continued. After a predefined number of examined hypotheses with
a low mutual information value, the algorithm stops.
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3.2 Color + Shape vs. Color alone

This section evaluates the proposed skin detection algorithm and compares it to
purely color-based skin detection. Here we employ the comprchensive histogram
model of Jones and Rehg and the elliptical shape model as described in section
3.1.2. In the comparison we use the original image set of Jones and Rehg and adopt
their training and testing methodology, which is described in section 3.2.1. Apart
from a qualitative analysis of a set of representative examples, we also provide a
comprehensive quantitative comparison of the proposed algorithm in section 3.2.2.

3.2.1 Test Set of Web Images

The data set of Jones and Rehg consists of 13,640 web images 6822 of which are used
for training and the remaining 6818 for testing. We reconstructed the original skin
and non-skin models to allow a direct comparison using their testing methodology:
within the training set 4483 photos are used to fill the non-skin color histogram
and 2339 photos form the skin color histogram. Similarly, in the test set therc are
4482 non-skin and 2336 skin photos. For all skin photos Jones and Rehg provide
manually created skin segmentation masks which allows us to label individual pixels
as either skin or non-skin.

3.2.2 Qualitative and Quantitative Analysis

The Jones and Rehg skin classifier (see section 3.1.2) classifics a particular RGB
value (pixel) as skin by thresholding the posterior probability

p(x = skin|rgb) > 0 (3.8)

where 0 € [0;1] is the threshold. Classifier performance is then quantified by com-
puting the ROC curve (Receiver Operator Characteristic curve) which measures the
threshold-dependent trade-off between recall and precision. “Recall” gives the frac-
tion of pixels labeled as skin that were classified correctly, while “precision” gives
the fraction of pixels classified as skin which had also been labeled as skin:

number of correctly classified skin pixels
recall =

(3.9)

number of pixels labeled as skin

.. number of correctly classified skin pixels
precision = - — _ (3.10)
number of pixels classified as skin

Figure3.4 shows a few example images and their ROC curves of the Jones and
Rehg classifier (in short: “color”, visualized as a dashed curve) versus the proposed



3.2. Color + Shape vs. Color alone 33

approach (in short: “color + shape”, visualized as a solid curve). Precision is shown
on the x-axis, and recall is shown on the y-axis. In these examples the proposed
approach improves the equal error ratc? between 15% as in image (d) and 35%
(3.4 as in image (a). As can be scen the proposed approach is especially effective
in scenes with background clutter (images (a), (c) and (f)) and difficult lighting
situations (note the shadow on the left face half in image (d)). These images also
demonstrate the viability of the underlying skin color model with respect to different
cthnic groups (African, Caucasian, Asian).

The remainder of this section provides a more detailed quantitative and qualitative
account on performance for the entire data set of 6818 test images. To summarize
the performance on an individual image we define two ROC-based measures A,
and p. The first measure, A, integrates over the absolute differences between
ROC p1or and ROCegior+shape- This is equivalent to the total area lying between the
two curves. Note that by definition A, € [0;1].

1
Aabs = / |ROchlor+shape - ROCcolfxrl
0

The sccond measure, p, is defined as the ratio between the areas enclosed by either
ROC curve. That is, it is based on the area under the ROC curve (AUC) which is
a commonly used measure to summarize a classifier’s performance over consecutive
thresholds

fol Roc(:olor+sfzapz . 1 1
Jol ROCootor -1 fO ROCcolor > fO ROCcolor+shape

. / 01 Roccolor
fol_ROCcolar+H}Lape

1-— else

This definition ensures that p € [—1;1]. Positive values of p indicate improvements
through the proposed approach, a value of p = 0 corresponds to about equal perfor-
mance and if p < 0 then the purely color-based approach performs better. The two
measures Agp, and p are then used to index the entire set of test images.

The plot shown in figure 3.5 is a visualization of the relative performance with A,
on the vertical and p on the horizontal axis. In this plot, each of the 3784 test
image is represented by a cross. In 2456 of 3784 test cases (corresponding to 65%)
the proposed skin finder compares favorably, increasing both precision and recall.
This means the combination with shape information turned out to be beneficial in
the majority of cases. The nine images shown on the top and bottom of the plot
are shown at their respective coordinates (Agps, p) and serve to illustrate different
outcomes in relative performance.

2The equal error rate is defined as the curve point where precision and recall are equal. In figure
3.4 this corresponds to the intersection point between ROC curve and the first diagonal (bisecting
line).
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Figure 3.4: Example web images and ROC curves for the proposed skin finder
“color & shape” versus the skin classifier of Jones and Rchg “color”. Using the
proposed algorithm the equal error rate is improved by at least 15% (example d)
and up to 35% (example a). The examples demonstrate the versatility of the skin
detector with regard to different skin tones.
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Figure 3.5: Performance comparison on the entire test set of 6818 images. The
performance measures A.bs and p and p are based on the areas under the ROC
curves of the two competing classifiers. In 2456 of these 3784 test cases the pro-
posed skin finder compares favorably, increasing both precision and recall. The nine
images shown on the top and bottom of this plot illustrate different cases of relative
performance. They are more closely examined in section 3.2.2.

The same images are shown enlarged together with their skin posterior maps in
figure 3.6. The skin posterior maps also show the elliptical skin regions which have
been extracted by the proposed skin detector. They have been grouped according to
the observed relative performance: in images (a)-(c) the purely color-based approach
performs better, approximately equal performance is achieved in images (d)-(f) and
in images (g)-(i) the proposed approach incorporating shape information performs
better.

In cases (a)-(c) the proposed skin detector erroneously hypothesizes that there is no
skin contained in these images and hence there are no ellipses in the associated skin
posterior maps. This is because the examined skin hypotheses only yield low infor-
mation values since they do not conform to the elliptical region constraint. However,
as can be seen from the skin posterior maps, a large proportion of background pixels
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Figure 3.6: These images characterize three different cases when comparing the
purely color based approach (“color”) color is better than color+shape in images
a)-c), both approaches perform about equal in (images d-f) and color+shape outper-
forms pure color in images g)-i). Especially in images g)-i) skin patches can be well
approximated by upright ellipses, their support is large enough and the background
is cluttered with skin-like colors: this is the typical situation where the proposed
scheme provides the largest benefit. Also note that a connected-components ap-
proach would have difficulties with such a situation.

has skin-like colors but the actual skin regions are relatively small. From this point
of view, the proposed algorithm succeeds in avoiding the many false positives in
these images by concluding that there is no skin. Images (d)-(f) are three examples
where p is approximately 1, that is, both approaches perform about equal. In image
(d) not all skin regions are detected (the face is missed) but the proposed algorithm
successfully curbs on the number of potential false positives — the palm tree leaves
in the background have yellow tones and wooden color which are skin-like. Con-
trastingly, in example (e) all skin regions (here: the face) are successfully located.
However, background distractors (the shirt) appear as a contiguous region of skin-
like color that can be approximated with the elliptical shape model. As a result,
both approaches produce similar amounts of true and false positives. Case (f) is
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similar to (d). However, the amount of avoided false positives is slightly larger than
the amount of missed skin pixels resulting in a value of p larger than 1. Finally in
cases (g)-(i) the proposed method clearly improves on purely color-based segmenta-
tion: in image (g) the proposed skin finder extracts both faces which substantially
curbs on the number of false positives from the background. Only a small portion
of the wooden hockey stick in the middle of the skin posterior map is misclassified
as skin. Examples (h) and (i) are particularly hard cases: as can be seen from
their associated skin posterior maps, the majority of pixels is of skin-like color but
the actual skin regions are quite small. This means that any purely color-based
approach has to pay a very high penalty for correctly classifying the contained skin
pixels. The proposed skin detector, however, is able to accurately locate the per-
son’s face and neck in case (h) and likewise the person’s face and arms in case (i).
The skin patches in these images can be well approximated by upright ellipses, their
support is large enough and the background is cluttered with skin-like colors: this
is the typical situation where the proposed scheme provides the largest benefit over
color segmentation. Also note that a connected-components approach would have
difficulties with such a situation.

3.3 Skin Detection vs. Face Detection

This scction investigates the usefulness of skin detection for finding faces. Following
the basic motivation of this thesis the key issue is whether skin detection is a suitable
complementary cue for finding faces or not. The promise of incorporating skin
concepts is to leverage color and shape information that is currently neglected by
appearance-based, intensity-driven face detectors. As has been demonstrated in
the previous sections the proposed skin detector is capable of localizing facial skin
through the assumption of an upright elliptical shape model. In fact, this particular
shape assumption can be seen as a bias for facial skin regions. Hence, we seck
answers to the following two questions: Can we find faces via skin detection that
are missed by current face detectors? And: Can we reduce the number of false
alarms using skin concepts?

To shed light onto these questions, detected skin regions are compared to the detec-
tions of the Schneiderman-Kanade face detector [Schneiderman and Kanade 2000
and to the detections of the Rowley-Kanade face detector [Rowley et al. 1998]. To
recall, the Schneiderman-Kanade detector is able to detect both frontal and out-of-
plane rotated faces (profiles). Contrastingly, the Rowley-Kanade detector detects
frontal and in-plane rotated faces. By considering detections of both face detectors
we can thus better evaluate the true potential and possible complementarity of the
skin cue. It must be emphasized again that both face detectors are intensity-driven
and appcarance-based, they do not use color nor do they use an explicit geometric
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shape model (see chapter 2, sections 2.1.1 and 2.1.2 for their technical summary).
The following section 3.3.1 describes the employed test set with face annotations.
Then, sections 3.3.2 and 3.3.3 present and analyze the obtained qualitative and
quantitative results.

3.3.1 Test Set of Color Consumer Digital Photographs

The following experiments are based on a set of color photos where all human faces
have been manually annotated 3. These annotations will serve as ground truth
for computing the number of hits and false alarms for a given detector. The test
database contains 535 color JPEG images which have been downsampled from a 3.3
Megapixel resolution to 150 x 100 pixels. A subset of these images has been also
used in the error analysis of chapter 1. Most pictures of the test data are snapshots
of one or multiple persons. By this we mean that people are not necessarily looking
directly into the camera like on a portrait. Instead the database contains faces in
many different orientations, at various scales, looking in arbitrary directions. The
total number of faces contained in these photographs is 692. These photos cover a
wide range of real-world situations both indoor and outdoor. For example, indoor
scenes include a number of flash-light photos from meetings and parties. Outdoor
scenes include photos from ski-trips and beach scenes.

3.3.2 Qualitative Analysis

Figures 3.7 and 3.8 show example images with the outputs of the two face detectors
as well as the proposed skin detector’s output. For evaluating Schneiderman’s ap-
proach we accessed his implementation through the provided on-line demo*. Rowley
provided a copy of his system. The 6 images of figure 3.7 illustrate the effccts of scale
and rotation variation, as well as the effects of occlusion, face-like distractors and
complex scenes with many people. Following is a qualitative analysis of these cases
comparing the three detectors. Example (a) illustrates the effect of scale variation.
There are 4 frontal faces in this image (the fourth’s person body is covered by the
left person, but all four faces are at least partially visible). Both face detectors miss
the two small faces in the background since the support regions are too small. Only
the skin detector finds all four faces (the left hypothesis is wider because it actually
contains two faces).

8Current standardized Face Detection Test Databases such as the CMU+MIT test set unfortu-
nately do not provide color information. For this reason we chose to create this new test set.
4http://vasc.ri.cmu.edu/cgi-bin/demos/findface.cgi
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Schneiderman

Figure 3.7: Characterization of appearance-based face detection vs. skin detection.
The first two columns show the face detection results of Rowley and Schneiderman,
row three shows the skin finder’s output. These examples illustrate characteristic
effects of (a) scale, (b) in-plane rotation, (c) out-of-plane rotation, (d) occlusion, (d)
face-like distractors, (f) crowds
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Rowley Schneiderman Skin Detector

Figure 3.8: Imagc gallery showing additional results of appearance-based face
detectors (Rowley, Schneiderman) and the proposed skin detector.
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The next two rows illustrate the effect of rotation. Rowley is able to deal with a 90
degree in-plane rotation in example (b), where Schneiderman fails. The situation
is reversed when presenting an out-of-plane rotated face as shown in example(c).
Again only the skin detector can handle both cases correctly because it is rotation
insensitive. Also note how in image(b) the proposed approach robustly deals with
the specularities on the person’s forehead and cheeks.

Image (d) illustrates the effect of occlusion. The face to the right is only half
visible. Both face detectors fail here even though Schneiderman’s detector is clearly
“parts-based” (in the sense that the modeling is not holistic, but instead local facial
subregions are treated independently). Rowley’s approach misses the other face, too,
because of in-plane rotation. Both faces are detected by the skin-based approach.
In addition, the skin detector is robust to variations in facial expression (in this case
laughing).

Face-like distractors pose additional challenges. Checkered surfaces are likely to
cause false positive detections, especially with Schneiderman’s detector. The pattern
is likely to be confused with facial features like mouth, nose and eyes. It often
appears on shirts and other clothes, in case (e) it appears on a chess board. Both
face detectors falsely detect faces. The skin detector is not misled by this situation.
Note that in this example, the skin detector misses the chess player’s hand. This is a
limitation of the current scheme which is limited to skin regions of upright elliptical
shape.

Finally, case (f) shows a more complex scene with a crowd of people. Faces are
in profile view, some of them are only partially visible. Since the skin detector
allows for discontinuities in the skin color distribution, it also works when people
wear beards, piercings or glasses (as can be observed for the middle person in this
example). Appearance based face detectors are more likely to encounter difficulties
in these cases. Rowley has no detections, Schneiderman can deal with profiles and
returns two faces. The face detector retricves all five faces and some additional skin
regions. Additional result images can be found in figure 3.8. The next section aims
at quantifying the usefulness of skin concepts in face detection.

3.3.3 Quantitative Analysis

To further analyze the potential of a combined scheme building on both skin and
facc concepts we empirically evaluated the performance of the individual detectors
on all 535 images.

Detection rates and false alarm levels for each detector are quoted in table 3.1. As
can be seen, the skin finder returned 74.4% of all faces, whereas Schneiderman’s face
detector has a recall rate of 55.9% and Rowley’s scheme 27.7%. That is, the skin



42 Chapter 3. Color-supported Skin and Face Detection

detector’s recall rate in detecting faces is almost 20% higher than Schneiderman’s
algorithm and 47% higher than Rowley’s approach. As can be expected we found
complementary results for precision. Since the proposed skin detector is designed
to return skin region in general, not just faces, its precision is only 28.3%. Rowley’s
scheme reaches 60.5% and Schneiderman 70.1% on this data set. As precision and
recall rates of skin and face detectors turned out to be complementary we examined
their combinations. When counting all faces found by either Rowley’s scheme OR

tp In fp | precision recall
Schneiderman 387 305 165 | 70.1%  55.9%

skin patch OR Schneiderman | 639 53 1458 | 30.5%  92.3%
skin patch AND Schneiderman | 263 429 12 95.6%  38.0%
Rowley 150 542 94 60.5% 27.7%

skin patch OR Rowley 562 130 1397 { 40.2%  81.2%
skin patch AND Rowley 103 589 2 98.1% 14.9%

Table 3.1: A quantitative account of appearance-based face detection (Schneider-
man, Rowley) and its combination with the proposed skin detector. Results are from
a test set of 411 real-world consumer photographs. Here, Schneiderman’s scheme
compares favorably to Rowley’s. When combining Schneiderman’s face detector with
the proposed skin finder, recall (OR-combination) or precision (AND-combination)
is leveraged to above 90% in both cases.

the skin detector the recall rate is boosted to 81.2% (versus an initial rate of 27.7%).
Precision is raised to 98.1% (versus 60.5%) when counting only those faces found
by BOTH detectors. Results from combining the skin detector with Schneiderman’s
approach reveal the following: precision reaches 95.6% (versus 70.1%) which is com-
parable to the combined performance using Rowley’s approach. Recall is raised to
92.3% using a logical OR combination. This is even higher than the combination
with Rowley’s scheme. Depending on the type of combination Schneiderman’s face
detector in combination with the proposed skin finder reaches precision or recall
rates above 90%.

3.4 Conclusion

This chapter has proposed a novel method for finding skin. There are two main
results:

First, there is a clear benefit in modelling skin as approximately contiguous
regions of certain colors and shapes rather than relying on color alone.
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Second, appearance-based face detectors can benefit from skin detection since
they do have certain complementary strengths and weaknesses.

The skin detection algorithm builds on statistical skin color and shape models which
are combined to extract skin region hypotheses. A novel combination scheme is pre-
sented which draws upon concepts from information theory. The combination is
adaptive in that model parameters are automatically tuned to maximize mutual
agreement among color and shape distributions. Its evaluation is based on a com-
parison with the most comprehensive statistical skin color model we are currently
aware of [Jones and Rehg 1999]. It has also been shown that a face detector’s false
alarms can be greatly reduced based on skin detection. Alternatively, more faces
can be found by including found skin patches. Skin detection thus becomes useful
in these limits of very high recall or very high precision.

However, skin detection as discussed in this thesis ultimately requires color informa-
tion which might not always be available. For instance, many surveillance applica-
tions are based on cameras which often do not provide color. Also, color information
can sometimes be too corrupted (c.g. by illumination conditions or sensor noise) to
be useful. Therefore, a completely orthogonal cue solely based on intensity informa-
tion is explored in the next chapter.






Context-supported Face Detection

This chapter investigates the use of a face’s local context as indirect evidence for
face detection. Section 4.1 briefly reviews the concept of local context in its relation
to human vision. It is well known that the human visual system makes heavy
use of local context and contextual cues in general — while computational vision
traditionally does not do so. The section then describes a straight-forward approach
to test the concept of local context within computational face detection. The promise
is to go beyond the detection capabilities of traditional face detectors, especially as
concerns resolution robustness,. This is particularly motivated by the large number
of missed low resolution targets in the error analysis of chapter 1. A proof of
concept is then delivered in section 4.2 which implements a local context detector
within the Schneiderman-Kanade framework. This first version of the local context
detector is evaluated on the standard MIT+CMU image set and a set of vacation
photographs. Then, section 4.3 devclops a much faster version based on Viola-
Jones’ cascade learning algorithm and evaluates the detector on two PETS! video
sequences. Finally, section 4.4 summarizes this chapter’s most important findings.

4.1 The Role of Local Context

Sinha and Torralba [Sinha 2002, Torralba and Sinha 2001] conducted experiments
in which humans were asked to discriminate faces from face-like random patterns.
Classification performance was observed as the resolution of the test images was suc-
cessively decreased. Torralba’s experiments show that as the level of image detail
decreascs humans make increasingly use of the local context, i.e. a local area sur-
rounding the face to help in their decision. As a result the human visual system can
robustly discriminate real faces from face-like patterns at very low resolutions. This
phenomenon is illustrated in figure 4.1 showing a face and its vicinity at decreasing

'Performance Evaluation of Tracking and Surveillance (PETS), International Workshop
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Figure 4.1: A face and its local context. As the image resolution is decreased
(Ieft to right), details such as facial features vanish. However, even at the lowest
resolution humans are still able to infer the presence of a face becausc its context
can be recognized.

resolutions. A human observer can still infer the presence and location of a face at
the lowest resolution shown here because the context can still be recognized.

Computational systems on the other hand traditionally assume that the only image
features that are relevant for the detection of an object at one spatial location are
the features that potentially belong to the object — and not to the background or the
surrounding area. This computational approach is therefore called object-centered.
As a result the robustness of computational detectors with respect to degrading
resolution is much more limited. When comparing object-centered face detectors
with human observers, [Sinha 2002] finds that current computational detectors not
only require a much larger amount of facial detail for detecting faces in real scenes,
but also yield false alarms that are correctly rejected by human observers.

This raises the question whether local context can be effectively employed for com-
putational vision, too. In computational face detection the active use of local context
implies including the target’s close vicinity into the computation as a form of “indi-
rect evidence”. Figure 4.2 illustrates some of the variation contained within the close
surrounding of faces. This may include portions of various types of backgrounds or
parts of other people standing nearby. However, below the target face it is also likely
to contain some parts of the person’s upper body, shoulders, the neck and head con-
tours. Since this is a recurring pattern the hope is to automatically recognize the
local context based on thesc cues. To test the feasibility of the local context idea we
therefore train an object detector with instances that contain a person’s entire head,
neck and part of the upper body. Examples of the training data are shown in figure
4.3 along with instances of the traditional object-centered paradigm for comparison
(bottom row — these examples are taken from the original Schneiderman-Kanade
training sct).

During detection the actual face location is inferred by assuming a fixed position
within the detection window. This is illustrated in figure 4.4. The size and location
of the face (w, h) are set proportionally to the width W and height H of the detected
local context: w = W/2, h = H/2. The offset relative to the upper left corner is
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Figure 4.2: Examples of differcnt faces (inner rectangle) and their local context
(outer rectangle). These images illustrate the great variation contained within the
close surrounding of faces but also demonstrate that a person’s upper body, shoul-
ders, the neck and head contours are strong cues that hint at the presence of a face.
For illustration purposes only one face per image is examined here.

computed as (W/4, H/10). These constants have been estimated from a small set
of example instances of faces within their local context.

4.2 Proof of Concept

This section describes the implementation and evaluation of a face detector which
is based on the concept of local context detection. The actual implementation is
based on the Schneiderman-Kanade face classifier. Section 4.2.1 gives a brief sum-
mary about this classifier. Implementation details have been confined to a separate
section 4.2.2. Then, two sections are devoted to empirical evaluations: section 4.2.3
compares the quantitative performance of the local context detector to the origi-
nal Schneiderman-Kanade detector and to the skin-based face detector developed
in chapter 3. Finally, section 4.2.4 further examines images where faces have been
detected through local context, but were missed by both competing detectors.

4.2.1 Implementation based on Schneiderman-Kanade

The employed appearance-based detector is a modificd version of the Schneiderman-
Kanade approach. The detector runs a detection window over the input image in
an exhaustive search over all positions and scales. Each input instance is classified
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Figure 4.3: Examples of training instances used in the proposed approach based
on local context (top row) versus the traditional object-centered approach (bottom
row). The resolution is 56x48 and 48x56 pixels, respectively.

Figure 4.4: Whenever the local context of a face is detected the actual face location
is inferred by assuming a fixed position within the detection frame. Here w = W/2,
h = H/2 and the offset rclative to the upper left corner is set to (W/4, H/10).

independently based on a likelihood ratio which is computed from face and nonface
probabilities. These probabilities are represented as a function of the observed
features. The features of this detector capture local arrangements of quantized
wavelet coefficients. To illustrate the differences of what is being modeled in the
local context case and in the object-centered case an example training instance is
depicted in figure 4.5 together with a visualization of the corresponding wavelet
decompositions. In the case of local context (right side in the figure), the wavelet
decomposition shows most parts of the upper body’s contours, as well as the collar of
the shirt and the boundary between forehead and hair. The shoulders, for example,
appear in the HL subband (upper right subband) while the upper arms and the
head contour are clearly visible in the LH subband (lower left subband). Also note
that facial parts such as eyes and mouth are hardly discernible in the right wavelet
transform and therefore do not contribute to the modeling of local context. Hence,
this is quite different from data presented to traditional face detectors, where facial
parts are typically the most informative cues. Facial features are clearly visible in
the left wavelet transform: the upper right subband shows eyes and mouth, the
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object—centered

local context

Figure 4.5: This figure illustrates the differences in the features (wavelet coeffi-
cients) that are being modeled in the object-centered case (left box) and in the local
context case (right). In the left wavelet decomposition the facial features such as
eyes and mouth are clearly visible. These can hardly be discerned in the wavelet
decomposition on the right side. However, other features such as the collar of the
shirt, shoulders, head and body contours become visible here which do not exist in
the object-centered case.

lower left subband also shows the eyes as well as the nose.

4.2.2 Implementation Details

The classifier computes a likelihood ratio from the face likelihood and nonface-
likelihood of n feature types pattern, evaluated over all positions z,y within the
detection window

n Pr (patternk ( u) ’1, . J) l Obj(’(’t)
H H pr (patterny (z,y) , (), ( ) | nonobject) >0 (4.1)

k=1 z,yEregion

The decomposition (products) is based on the assumption of independence, i.e. the
Naive Bayes assumption. From the above equation follows that the likelihood func-
tions themselves depend on i(z) and j(y) which are coarse quantizations of the
feature position z,y within the detection window. This spatial dependency allows
to capture the global geometric layout: within the detection windows certain fea-
tures might be likely to occur at one position but unlikely to occur at another.
There are n = 17 different types of features involved. Figure 4.6 describes their
basic concept and shows one particular feature type pattern; for illustration. An
input instance is first decomposed by a two-dimensional 3-level wavelet transform
using a biorthogonal 5/3 filter bank. Features are then extracted by examining lo-
cal arrangements of a small number of wavelet coeflicients (in this cxample eight
coefficients). An arrangement can combine coefficients from one single subband or
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span over different subbands. In the example, four coefficients from the HL subband
and four from the LH subband (both from the first level of the transform) are com-
bined to form one feature value. This way of combining information from different
subbands allows to capture dependencies across space (arrangements with different
extents), frequency (different wavelet levels) and orientation (subbands with differ-
ent filtering directions, i.e. LH and HL). The individual class-conditional likelihoods

input image 3-level wavelet decomposition feature extraction

HL subband

LH subband

Figure 4.6: Feature extraction: local arrangements of quantized wavelet coeffi-
cients are combined to form one single feature value. In this example four coefficients
from the HL subband (upper right subband in the wavelet decomposition) and four
from the LH subband (lower left subband) capture the dependency between hori-
zontal and vertical orientations. Such arrangements are examined over all locations
within the involved subbands (oversampling).

o (patterny (z,y) ,i(z), (y) | object) and py, (patterny (z,y),i(z),j(y) | nonobject)
arc represented by high dimensional histograms. Depending on the feature type
these can have up to 1.1 million bins. 2000 local context examples were collected
for training the positive class. These instances were gathered from the world wide
web and from private foto collections. In order to limit the amount of variation and
hence increase discriminance only frontal views have been used. Further, taking the
shoulders as landmark points the instances have been roughly aligned and vertically
mirrored leading to an effective training set size of 4000 instances. It is very impor-
tant to collect good examples for the nonobject class. Training with random samples
will most likely result in an inaccurately modeled decision boundary. Ideally, the
likelihood should accurately model nonobjccts which are very similar to objects,
i.c. they can accurately represent the decision boundary. For collecting nonobject
instances we apply an algorithm that is sometimes referred to as “bootstrapping”:
an initial version of-the detector is run over images not containing the target object.
Any false alarms are collected as negative training examples. Thesc are then used
to retrain py (patterny (z,v),4(z), j(y) | nonobject) and the algorithms is iterated.
We use a validation set to determine when to stop this iteration. For detecting faces
larger than the detection window the input image is successively downscaled. The
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current implementation uses a scaling factor of 2%, i.e downscaling four times corre-
sponds to reducing the original resolution by a factor of 2. Since the local wavelet
transform is not shift-invariant an overcomplete transform of the entire input im-
age is computed. This allows to apply the classifier at the original image resolution
(except the right and bottom image border which is induced by the size of the detec-
tion window). For example, given a single 180 by 240 image, the detector searches
seven scales, applying the classifier 74144 times altogether. After all positions and
scales have been classified independently, the final detection results are extracted
by an arbitration scheme: the most confident detection is determined and nearby
confidence values (both spatially and in scale) are tagged to belong to this same

detection. This continues as long as the confidence exceeds the current acceptance
threshold 6.

4.2.3 Comparison of Detection Rates of face, skin and local
context detectors

In order to understand the relevance of local context several experiments have been
carried out on two data sets, the MIT+CMU frontal face data set as well as a set
of color vacation fotos. Both data scts are disjoint from the data used for training.
The MIT+CMU data set consists of 125 grayscale images with 448 frontal faces®.
The vacation foto set consists of 535 color images with 901 faces, 388 of which
are profiles. Images in both data sets are upright. Note that the image resolution
of the MIT4+CMU data set is correlated with the image content: portraits have
lower resolution than group pictures which effectively guarantees a certain minimum
resolution for the contained faces. There is no such correlation for the vacation data
set where all images are 180 by 240 pixels.

The left plot in Figure 4.7 shows the face detection performance on the MIT+CMU
data set in terms of the ROC curve. The percentage of retrieved faces is shown
on the vertical axis and the absolute number of false detections on the horizontal
axis with a logarithmic scale. Both the performance of the object-centered and
the local context detector are shown. For the object-centered detector the authors’
original implementation was used which can be accessed through an on-line web
interface 2. Both frontal faces and profile faces can be detected. The threshold
range in this implementation has a lower limit because the detector is cascaded:
only for candidates that make it to the final classifier stage a full confidence score is
computed. This means the ROC curve can be plotted only up to a certain number of
false positives. Note that the local context detector has to infer the actual location

2As in [Schneiderman and Kanade 2000] five images containing drawings of faces have been
removed from the original set of 130 images
3http://www.vasc.ri.cmu.cdu/facedemo/
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of a face indirectly. We do this by assuming a fixed head position within the detected
local context. As can be scen in the left of figure 4.7 the object-centered approach
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Figure 4.7: ROC curve showing the percentage of detected faces (vertical) vs. the
absolute number of false positives (horizontal, logarithmic scale). At the original
image resolution (left plot) the object-centered approach is sufficient to detect 90%
of all faces. When the image resolution is decreased by 50% (right plot) the object-
centered approach by itself retrieves only 55% of the faces. For the object-centered
detector detection rates at higher false alarm levels cannot be computed because
of technical limitations of the web-based implementation. Interestingly, the combi-
nation with detections from the local context cue immediately yields an additional
25% of correct detections, which suggests the local context contributes truly novel
correct detections.

detects 90% of the faces with very few false positive detections. The curve flattens
from thereon not yielding any additional faces. On the other hand the local context
detector produces many false alarms and at 10 reaches a detection rate of 40%.
However, the true potential of local context becomes apparent as the resolution
of the test images is decreased. At half of the original resolution both detectors
individually retrieve about 55% of the faces (right plot). At this reduced resolution,
a large part of labeled faces become smaller than the detection window size of
the object-centered detector — which means that its detection rate cannot further
increase (unless one admits additional random detections). By merging detections
of both object-centered and local context detector, their joint ROC curve can be
computed. Interestingly, the joint detection rate reaches more than 80%. This means
that the joint detection rate surpasses the rates of each individual classifier by more
than 25%. The gain in joint detection rate indicates that object-centered cues and
local context cues arc actually complementary. A look at the images where a face
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was found by one cuc but not by the other revealed two cases: in portrait images
the local context is often not contained. The image is cropped to contain the head
and the neck only but not the full silhouette of the upper body. The object-centered
approach is obviously well suited for this case while the local context cue is not.
On the other hand the decrease in resolution deteriorates some of the facial features
which may lead to failure of the object-centered detector. This case is typically well
suited for the local context cue.

The remainder of this section is concerned with a similar analysis using color im-
ages. The availability of color information allows for an additional comparison to
the skin detector developed in chapter 3. A particularly interesting question is if
the local context cue yields novel detections neither found by the skin detector nor
by the object-centered detector (the local context detector and the object-centered
approach still use only grayscale information). The image set used here contains
535 consumer digital photographs from a single camera covering a wide range of
real world situations both indoor and outdoor (parties, ski-trips, beach scenes etc.).
The left plot in figure 4.8 shows the individual ROC curves of the object-centered
detector, the skin detector and the local context detector when applied to this data
set. The object-centered detector has the steepest slope and reaches a detection rate
of 30% which proves the difficulty of the dataset. The skin detector reaches 40% and
the local context detector 50%. On the right side in the figure the joint performance
of all possible pairs as well as all three cues taken together is evaluated. The joint
detection rate of object-centered and skin detector reaches 60%. Either combina-
tion with the local context detector, however, retrieves even 70% of the faces in the
database. Combining all three cues does not further increase the detection rate (the
curve lies on top of the local context + skin curve and is therefore hard to distin-
guish). This indicates that the 10% improvement between the object-centered+skin
pair and the other two pairs is due to detections from the local context cue. For
this database this means about 90 additionally retrieved faces that otherwise would
have been overlooked.

4.2.4 Analysis of Novel Face Detections

As suggested by the above quantitative results the local context cue yields novel
correct detections. This section gives a qualitative analysis of the specific images
where novel detections occurred. A representative subset of these images is shown
in figure 4.9. Novel detections are visualized as rectangles. The images in the
top row show successful detections of very small faces the smallest being 15 by 20
pixels in size. The object-centered approach requires a higher resolution that is not
available here. This supports the hypothesis that local context is indeed useful in
low resolution cases. A typical example are group pictures where faces naturally
occur at lower resolution than say in portraits. On the other hand group pictures
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Figure 4.8: Performance of the individual cues and their combinations. The 10%
improvement between the object-centered+skin pair and the other two pairs is due
to detections from the local context cue (right plot). For this database this means
about 90 additionally retrieved faces that otherwise would have been overlooked.

provide rich contextual information such as the heads or shoulders of other people
standing nearby. The local context for an individual face is thus affected.

While in these previous examples all the facial details are still visible they are par-
tially concealed in the next few examples shown in row 2. This often happens in
snapshot fotos because of a special facial pose, occlusion or low light. As for facial
pose, an appearance-based object-centered approach could theoretically be trained
accordingly, but in practice acquiring enough of this type of training data is diffi-
cult. Occlusion occurs, for example, because people often lean onto their hands, or
wear sunglasses or beards. The object-centered approach can sometimes overcome
this problem at higher resolutions but fails as resolution decrcases. A particularly
interesting low light situation is shown in the first image of row 5. Due to lack
of contrast this face could not be detected by the object-centered approach even
though the resolution would be well sufficient. Likewise skin color could not be
detected given such difficult illumination. The local context could still be detected.
The inferred face position, however, is not very accurate because a fixed position
within the detected local context is assumed. Alternatively one could issue a local
search for head contours, e.g. within a the upper half of the detected local context.
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Figure 4.9: Novel face detections indirectly inferred from the local context cuc.
The object-centered approach fails on these instances mainly because faces are too
small or because of their specific pose. The skin detector fails on the same instances
mainly because of illumination problems or because the extracted skin region’s size
and location is too inaccurate.
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4.3 A Real-time Local Context Detector

The previous section has demonstrated the feasibility of using local context for com-
putational face detection. In this section we develop a much faster implementation
of the local context detector by learning boosted classifier cascades [Viola and Jones
]. The following section 4.3.1 summarizes the most important facts about integral
image features, AdaBoost and cascade learning. Implementation details are reported
in section 4.3.2. Then, section 4.3.3 evaluates the detector on a standard video se-
quence used in the International Workshop on Performance Evaluation of Tracking
and Surveillance (PETS). This is done without tracking, that is, the detector is
applied independently to each video frame. Finally, section 4.3.4 discusses results
on a second PETS video sequence: an outdoor surveillance scenario.

4.3.1 Implementation based on Viola-Jones

The employed framework is Lienhart’s extended version of the Viola-Jones detector
[Lienhart et al. 2003a). Details about the underlying algorithms, the learning ap-
proach and the parameters are given in a separate section (section 4.3.2). Basically,
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Figure 4.10: Lienhart’s extended integral feature set including rotated features
and center-surround features. These features are rerminiscent of Haar wavelets and
carly features of the human visual pathway such as center-surround and directional
responses.

the features of this detector are weighted differences of integrals over rectangular
subregions. Figure 4.10 visualizes Lienhart’s extended set of available feature types
(figure taken from [Licnhart et al. 2002b]) where black and white rectangles cor-
respond to positive and negative weights, respectively. The feature types consist
of four different edge features, eight line features and two center-surround features.
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The learning algorithm (which is in a way reminiscent of decision-tree learning) au-
tomatically selects the most discriminant features considering all possible feature
types, sizes and locations. Again, we can compare the selected features in case
of the object-centered approach versus the local context approach. Figure 4.11 is
a visualization of the selected rectangle features. Two different training instances
(individuals) are shown in the local context case for illustration purposes. The fea-
tures displayed here are evaluated in the first stage of the detector cascade and can
therefore be regarded as the most important features. There are 9 features in the
object-centered case and 14 features in the local context case (the learning algorithm
determines the number of required features per stage automatically).

In the object-centered case features f1, f2 and f3 capture inner-face regions, in par-
ticular around the eyes and around the mouth and nose by using horizontal and
vertical line features. Additional features are mostly edge features to capture the
contours of the head and chin (f5, {8 and {9 in the figure). Contrastingly, for the
local context case the very first feature f1 extends over the entire patch, i.e. it actu-
ally makes use of the local context. The following features capture head and body
contours (features f2-f5). Other features capture the left and right shoulder (features
f9 and f10 in the example 1, feature f14 in example 2). Hence, the information used
in this local context detector is again quite different from traditional face detectors,
which rely on facial parts alone.

4.3.2 Implementation Details

The employed detector framework is based on the idea of a boosted classifier cascade
(see [Viola and Jones ]) but extends the original feature set and offers different
boosting variants for learning [Licnhart et al. 2002b]. This section summarizes the
most essential implementation details regarding features, learning algorithm and
training parameters. The feature types as depicted in figure 4.10 are reminiscent
of Haar wavelets and early features of the human visual pathway such as center-
surround and directional responses. Their main advantage is that they can be
computed in constant time at any scale. Each feature is computed by summing up
pixels within smaller rectangles

feature; = Z w; * RecSum(r;) (4.2)
iel={1,..,N}

with weights w; € R, rectangles r; and their number N. Only weighted combinations
of pixel sums of two rectangles are considered, that is, N = 2. The weights have
opposite signs (indicated as black and white in the figure), and are used to compen-
sate between differences in area. Efficient computation is achieved by using summed
area tables. Rotated features and center-surround features have been added to the
original feature set of Viola-Jones by Lienhart et al [Lienhart et al. 2002b] using
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rotated summed area tables. Within figure 4.10 the original set consists only of
features (1a), (1b), (2a) and (2c) as well as one diagonal feature which is subsumed
by the rotated features. Lienhart’s augmented feature set has been shown to extend
the expressiveness and versatility of the original features leading to more accurate
detectors. Note again that this feature representation does not require to compute
an image pyramid to search over different scales.

The cascade learning algorithm is similar to decision-tree learning. Essentially, a
classifier cascade can be seen as a degenerated decision tree. For each stage in the
cascade a separate subclassifier is trained to detect almost all target objects while
rejecting a certain fraction of the non-object patterns. That is, an individual stage
is characterized by its false alarm rate f; and its detection rate d;. Taking into
account the entire cascade, the overall false positive rate F' and detection rate D is
then given hy:

K K
F=T]# D =]]d (4.3)
i=1 i=1

For example, if a 20 stage detector is trained such that at each stage 50% of the non-
object patterns are eliminated (target false positive rate) while falsely eliminating
only 0.1% of the object patterns (target detection rate) then the expected overall
detection rate is 0.999%° = 0.98 with a false positive rate of 0.5 =~ 0.9 x 1075
Ultimately, the desired number of stages, the target false positive rate and the
target detection rate per stage allow to trade-off accuracy and speed of the resulting
classifier. This also explains the different numbers of features in the first stage for
the object-centered detector and for the local context detector as shown in figure
4.11.

Individual stages are trained using boosting which combines a set of “weak learners”
into a powerful committee (“strong classifier”). In this case a weak learner is cquiv-
alent to one specific feature and a (automatically learned) threshold on its value.
Each round of boosting selects the weak learner (i.e. feature type and threshold)
that best classifies the weighted training set. The first boosting round assumes a
uniform weighting of the training data while successive stages assign higher weights
to misclassified training instances. This lets the algorithm focus on the “hard”
cases in successive rounds. The different boosting variants Discrete, Real and Gen-
tle AdaBoost offered by Lienhart’s framework mainly differ in how they reweigh
the training data in each round. For details the reader is referred to [Freund and
Schapire 1996]. It has been empirically shown in [Lienhart et al. 2003a) that the
Gentle Adaboost variant outperforms Discrete and Real Adaboost for face detection
tasks both in accuracy and speed. Thus Gentle Adaboost (GAB) has been adopted
throughout this thesis.
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object—centered:
£1 £2 £3 f4 £5 fé6 £7

local context (example 1):
£1

local context (example 2):

f1 £2

£3

f10 fi11 fi2 £13 £14

Figure 4.11: Automatically selected features (first classifier stage) for the object-
centered face detector (9 features overlaid on a random training instance, top row)
and the local context detector (14 featurcs overlayed on two different training in-
stances), bottom two rows - the number of features is automatically determined
by the learning algorithm). In the local context case the first feature (fl) extends
over the entire patch, thus making use of information that is not available in the
object-centered case. In addition, features f9 and f10 as well as feature f14 capture
the left and right shoulder to help in the face detection task.
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Parameter Loc.Context | Obj-centered
Positive examples 960 5000
Negative examples 1232 3000

Stages 21 25

Min hit rate 0.995000 N/A

Max false alarm rate | 0.500000 N/A

Width 20 24

Height 20 24

Table 4.1: Comparison of training parameters for the local context detector and
the object-centered detector. An optimized and pre-built detector of Lienhart et al
was used here for which not all parameters have been reported (N/A in the table).

Finally, we summarize the most important training parameters such as the type and
number of training instances, the target rates and the detection window size. About
1000 local context examples were gathered from the world wide web and from private
photo collections. Only frontal views have been used for training and instances have
been roughly aligned. Each positive example is scaled to 20x 20 pixels. For gathering
negative examples a subset of the WuArchive! image database has been used that
did not contain any people. Similar to the training of the Schneiderman-Kanade
detector, these images are repeatedly scanned by the learning algorithm to search
for object-like patterns (“bootstrapping”). Training the local context detector was
carried out on a 1GHz Pentium III machine with one gigabyte RAM. The training
was stopped after 21 stages had been computed which took about 48 hours (the
time for computing additional stages increases rapidly). Table 4.3.2 compares the
training parameters of the local context detector to Lienhart’s object-centered face
dectector -~ which is also used in the following experiments.

4.3.3 Results on the FGNET video conference data

To understand the relevance of local context, several experiments have been carried
out on PETS video sequences, namely the FGNET video conference data from PETS
2003 and the parking lot sequence from PETS 2000. Both data sets are disjoint
from the data used for training. From the FGNET video conference data every
100th frame from sequences A, B, and D (cameras 1 and 2) is used in the following
experiments®. This results in a total of 502 frames containing 1160 faces, 160 of
which are profiles (about 14%). Each frame has a resolution of 720 x 576 pixels and

4http://wuarchive.wustl.edu/
54 similar subset was used in [Cristinacce and Cootes 2003]. However, in this paper we have
included frames 21900-22300 as well
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Figure 4.12;: FGNET sequence, face pose changes: The left plot shows detections
of the local context of faces while the right plot shows the output of the object-
centered detector. The lattcr misses two faces because it is restricted to frontal
view detection. While an additional specialized side-view detector could be trained
(assuming the object-centered paradigm) this would at least require to gather a
large amount of additional training data of profile views. Contrastingly, the local
context approach does not require such specialized training and is robust to face
posc changes.

faces are about 48 x 64 pixels large. The sequences show a conference room across
either side of a desk with people occasionally entering and leaving the room. The
left plot in figure 4.13 shows the face detection performance on the FGNET data
set in terms of the ROC curve. The percentage of retrieved faces is given on the
vertical axis and the number of false positives per frame is shown on the horizontal
axis. Points on the curve are sampled by varying the detection threshold b of the
final stage in the detector cascade:

K
H = sign [Z hi + b] (4.4)
g==1

where H is the output of the final classifier, and h; denotes the individual stages.
The cascade is successively cropped in order to yield additional detections. Both
the performance of the object-centered and the local context detector are shown.
For the object-centered version the face detector by Lienhart et al. has been used®.
The detector has been shown to yield excellent performance comparable to the
Schneiderman-Kanade detector [Lienhart et al. 2003a]. As can be seen in the left
plot of figure 4.13 at 5 false alarms the object-centered detector retrieves 80% of
the faces and the curve flattens from thereon. Contrastingly, the local context
detector vields 95% of the faces at the samc level of false alarms. This can be
explained by profile views of faces contained in the data which are not detected by
the object-centered detector used here. The local context, however, is not affected
by face pose changes and can thus detect both frontal and side-views. An example
frame containing side-views is shown in figure 4.12 also showing the outputs of both

6this face detector is now part of the Open Computer Vision Library, www.sourceforge.net
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Figure 4.13: Detection accuracy on the FGNET data set. Each plot shows the
percentage of detected faces (vertical) vs. the number of false positives per frame
(horizontal). The ROC curves show the performance of the object-centered detector
and the local context detector. Note that the frame resolution is decreased from the
left plot to the right plot. At the original resolution shown on the right side, the local
context detector dominates already because it is more robust to face pose changes.
At lower frame resolutions (middle plot and right side plot) facial details deteriorate
and the object-centered approach becomes unreliable. The local context on the
other hand is not affected. Since the local context detector can operate robustly
at very low frame resolutions it actually runs 15 times faster than the traditional
object-centered approach at the same level of accuracy.

detectors. In the object-centcred approach one would have to separately collect
profile instances and train a specialized detector in order to achieve a comparable
performance level. However, it has also been found in [Schneiderman and Kanade
2000, Z.Q. Zhang and Zhang 2002] that profile detection generally tends to be more
error-prone because important discriminant cues (such as the eye-to-eye symmetry
in frontals) are missing. The local context detector overcomes these difficulties
successfully.

Another concern is the available image resolution which has already been shown to
be an important parameter when comparing object-centered and contextual cues
(section 4.2.3). To examine effects of resolution degradation for this video sequence,
each frame is downsampled from the original resolution (720 x 576 which approxi-
mately corresponds to PAL resolution) to 360 x 288 (“half-PAL”) and to 180 x 144
pixels (“quarter-PAL”). This means, the available face resolution decreases from
48 x 64 to 24 x 32 and to 12 x 16 pixels approximately. Figure 4.14 shows an exam-
ple frame where each row corresponds to a different resolution (all frames have then
been resized for visualization purposes). The left column shows detections based on
local context, the right column is from the object-centered approach. At half-PAL
resolution (middle row) the object-centered detector apparently becomes less tol-
erant to variations in facial appearance, in this casc caused by slight pose changes
of the middle and right person. As a result it fails to detect these faces at lower
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local context:

obj.-centered:

Figure 4.14: FGNET sequence, resolution changes: Each row of this figure corre-
sponds to a different frame resolution (frame resolution decreases from the top to
the bottom row). The images have been rescaled to the same size only for illustra-
tion purposes. The lcft column shows detections based on local context, the right
column is from the object-centered approach. This example illustrates that as facial
details degrade the object-centered approach misses actual faces. The local context
cue is much less affected by resolution changes. It consistently retrieves all three
faces at all tested resolutions, while the object-centered approach does so only for
the highest frame resolution.

resolutions. The local context detector on the other hand does not rely on facial
details alone and can still locate all faces successfully. The situation aggravates for
the object-centered approach as resolution is further decreased. At quarter-PAL
resolution it does not return any detections in this example while the local context
approach again detects all faces.

A quantitative account of this experiment is given by the plots in the middle and
to the right of figure 4.13 showing the ROC curves of both detectors when applied
to the downsampled data sets. At half-PAL rcsolution (middle plot) the object-
centered detector yields about 70% of the faces at 5 false alarms which is a 15% drop
compared to the full resolution. It is directly affected by the decrease in available
facial detail. Contrastingly, the local context detector’s performance remains stable
at 95% given the same number of false alarms. This effect becomes even stronger at
quarter-PAL resolution. The corresponding ROC is shown to the right in the same
figure. In the quarter-PAL casc the object centered approach detects only 10% at 1
false alarm per frame while the local context detector succeeds for more than 90%
of the faces. Overall the local context detector provides improvements in detection
rates by 15%, 25% and 80% at corresponding levels of false alarms.

The possibility to robustly operate at low resolutions can provide a significant speed-
up in face search. For illustration, consider the case where we want to obtain 80%
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of the faces with less than 5 false positives per frame. Using the face detector this
is only possible at the highest frame resolution (full-PAL), where processing of a
single frame takes 1.2 seconds. Contrastingly, the local context detector achieves
this accuracy already at the quarter-PAL resolution within 0.08 seconds per frame.
This corresponds to a 15-fold speedup. It must be emphasized here that the local
context detector was not systematically optimized (e.g. by testing different training
parameters) and thus the rcported results could probably be further improved.

4.3.4 Results on Outdoor Surveillance Data

For investigating their suitability to surveillance both detectors were applied to the
parking lot test sequence of PETS 2000. This video sequence shows a parking lot
from a single static camera looking from above. The video shows cars and people
entering and exiting the scenc. Every 10th frame was used which results in 146
frames containing 210 faces. Each frame has a resolution of 756 x 576 pixels. Faces
are as small as 12 x 14 pixels. Figure 4.15 shows an example frame of the sequence

Parking Lot Sequence

0.8
0.6

0.4r

0.2
[ —— local context

0 5 10 15 20

Figure 4.15: In the parking lot sequence at least 1°000°000 candidate subregions per
frame (cxample frame shown on the left) had to be correctly rejected. The situation
is much more demanding than the FGNET scenarios because of the perspective
(downward looking camera) and the background clutter. The ROC curve (right)
shows the performance of the local context detector. The object-centered approach
fails because faces are too small in this sequence, so its ROC is not shown. The local
context detector retrieves about 756% of the actual faces at 7 false alarms per frame.
This clearly indicates that the local context detector goes beyond the capabilities of
ohject-centered face detectors.

with detections of the local context detector (left side in the figure). The situation
is much more difficult than in the video conference setting: the background is more
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complex which inevitably lcads to more false alarms. Moreover, the perspective is
difficult as the camera is looking downward and people occasionally turn their upper
bodies to the side. The maximum total area covered by faces is only about 0.1%
per frame compared to about 2% in the indoor sequence. This means that at least
1°000°000 candidate subregions per frame have to be correctly rejected to yield an
acceptable falsc alarm rate. Note that the legs of people in this sequence are some-
times occluded, for instance when they walk in between parking cars. This makes
the scenario difficult for pedestrian detection approaches such as [Papageorgiou et
al. |. However, their upper bodies are permanently visible which effectively allows
local context detection.

The ROC curve for the local context detector is shown on the right side of figure
4.15. The object-centered approach fails completely on this sequence: it would
require about twice the available image resolution to detect any faces. Hence only
the ROC of the local context detector is visible here. As can be seen, it retrieves
about 75% of the actual faces at 7 false alarms per frame. This alrecady shows
that the local context detector goes beyond the capabilities of object-centered face
detectors. Moreover, in a surveillance application one could further reduce the
number of false alarms for example by using background subtraction ([Cristinacce
and Cootes 2003)).

4.4 Conclusion

It has been shown by quantitative and qualitative analyses that the detection of
the local context of faces in grayscale images is feasible. This is in contrast to the
traditional object-centered approach to face detection where the role of local context
has so far been neglected. However, experimental results indicate that using local
context yields correct detections that are beyond the scope of the classical object-
centered approach and even beyond those of less specific cues such as skin detectors.
This holds not only for low resolution cases but also for difficult poses, occlusion
and difficult lighting conditions. Unlike the skin detector the local context detector
does not require color which makes it widely applicable.

The real-time implementation based on the Viola-Jones framework was evaluated
in a video conferencing and in a surveillance setting. It has been shown by ROC
analysis that the local context cue consistently outperforms the competing object-
centered face detector. This is mainly due to its greater robustness to pose changes,
to variation in individual appearance as well as to low image resolutions. Robust
operation at low resolutions not only speeds up the search process but is also of
particular interest for surveillance where close up shots of people are often not
available. The analysis of the outdoor sequence shows that the local context detector
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goes beyond the capabilities of object-centered face detectors and correctly infers
the locations of human faces as small as 9 x 12 pixels.



From Local Context to Scaleparts

As has been shown in the previous chapter, faces can be detected indirectly by
detecting their local context. The particular aspect of local context that we chose
to model was a face’s close vicinity which contains the upper body. In particular
it has been shown (section 4.2.3 of chapter 4) that local context is useful for facc
detection in low resolution images.

In this chapter, we generalize the local context concept to what we shall call scaleparts.
Scaleparts are object parts suiting different levels of available image detail (“scales”).
We will develop and evaluate this idea for face detection first, and show its applica-
bility to other object classes — in this case cars — in chapter 7.

Section 5.1 introduces the gencral idea behind scaleparts and scalepart-based object
detection. Then in section 5.2 we train two new detectors using AdaBoost: for a
person’s lower body and for the full body silhouette. Analogous to the previous
chapter, the promise is that these body parts will allow for indirectly detecting faces
at even lower resolutions.

Ultimately, the promise is that by combining detectors for face, upper, lower and full
body one can reliably detect faces over a wide range of scales. After analyzing the
individual performance of these four detectors in section 5.3 and a brief discussion
in section 5.4 their actual combination is covered in chapter 6.

5.1 Scalepart-based Object Detection

The concept of “scaleparts” emerges from a straight-forward generalization of the lo-
cal context idea of chapter 4. In the following section 5.1.1 we describe the scalepart
concept by considering face detection as a case study. Then, in section 5.1.2 the
scaleparts approach is described more generally and with respect to other types of
target objects.

67
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5.1.1 Body Scaleparts for Contextual Face Detection

In chapter 4 the particular aspect of local context that we chose to model was a
face’s close vicinity which contains the upper body. The key insight is that upper
body detection succeeds at lower image resolutions than traditional face detection.
This is because of the difference in features used: face detection mostly relies on the
inner facial features such as eyes, mouth and nose which become indiscernible at
lower resolutions. Upper body detection on the other hand mostly uses silhouette
characteristics. As a natural extension we can build additional detectors for other
body parts such as the lower body or the full body silhouette and use them in
conjunction with the face and upper body detectors as cues for faces. If we look at an
image of a human body over consecutive scales, e.g. through an image pyramid, then
the face is best distinguishable at a higher pyramid level (large scale). Contrastingly,
the full body silhouette remains distinguishable at lower pyramid levels (small scale).
This is the original motivation behind the term “scaleparts” because these parts can
accommodate different resolution situations or “scales”. Figure 5.1 illustrates the

Figure 5.1: Set of body “scaleparts”: object parts suited to different levels of image
detail. For example, scalepart a) captures more facial detail than scalepart b) which
in turn includes shoulder features. Likewise, scalepart c) captures leg details more
accurately than scalepart d) which in turn encompasses the entire body silhouette.

four different body scaleparts that we are going to use for face detection: face, upper
body, lower body and full body. This specific choice of scaleparts, their positions,
resolutions and cxtents is not uniquely defined but clearly motivated by the need to
accomodate different levels of available image detail: the face detector captures more
facial detail than the upper body detector which in turn includes shoulder features.
Likewise, the lower body detector captures leg details more accurately than the full
body detector which in turn encompasses the entire body silhouette. A particular
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promise is that by combining all four scaleparts one obtains a detector which is
robust to resolution changes. Intuitively, the face detector will be most effective in
portrait situations, whereas the full body detector can contribute at full distance
shots. The actual implementation of lower and full body detectors is described in
section 5.3. The following section discusses the scaleparts approach within a more
general setting.

5.1.2 General Scaleparts-based Object Detection

As stated previously, the specific choice of scaleparts, their positions, resolutions and
extents is driven by the need to accomodate different levels of available image detail.
For illustration figure 5.2 shows scalepart candidates for sideviews of motorbikes,
jumbos and cows which we have chosen by hand. Parts are sorted from left to
right according to their extent and resolution. In general we model parts that cover
large extents of the object (e.g. the entire cow) at a relatively low resolution and
smaller parts (e.g. the cow’s head) at a relatively high resolution. Interestingly, such
“intermediate complexity” parts were found to be most discriminant ( “informative”)
for a given object class with respect to background clutter by [Ullman et al. 2002).
The superiority of intermediate complexity parts can be explained as the interplay
of two factors: specificity and relative frequency. Considering faces as an example,
a large facc part can provide reliable indication of the presence of a face in an
image, although the likelihood of encountering such a part in a novel face image
is low (because of appearance variation within the face class). Consequently, the
information carried by such a part with respect to the class is limited. A smaller
part has a higher likelihood of appearing in different face images, but the likelihood
of its presence in non-face images is also higher.

From a machine learning point of view “intermediate complexity” parts result in
an efficient use of a fixed and limited number of training data: a higher resolution
model might be theoretically better but will require more training data. Conversely,
a lower resolution model will potentially omit discriminant and therefore important
part details. Ideally, scaleparts themselves and their number would emerge directly
from the training data using an appropriate learning algorithm. However, the space
of possible parts is vast: it contains (for all training instances) every possible part
position, extent and resolution. This space can be reduced by only considering
intermediate complexity parts as mentioned above. However, given the relatively
large number of training instances and target resolutions that we seek to achieve,
a greedy search within this reduced space still remains impractical. Therefore, we
currently choose scaleparts manually as rectangular regions.

Following is a list of important terms related to the scalepart framework:

Scaleparts are object parts suiting different levels of image detail (“scales”).
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motorbike scalcparts:

cow scaleparts:

Figure 5.2: Scalepart candidates for sideviews of motorbikes, jumbos and cows.
Parts are sorted from left to right according to their extent and resolution. The
specific choice of parts is not uniquely defined but clearly motivated by the need to
accomodate different levels of available image detail. In general, parts that cover
small extents of the object are modelled at a relatively high resolution and larger
parts at a relatively low resolution.

Scalepart detectors are used to locate scaleparts within complex images. In the
concrete implementation of this thesis this means running a detection window
over all positions and scales of the input image, classifying each window inde-
pendently as containing or not containing the specific scalepart. The two terms
“scalepart” and “scalepart detector” are going to be used interchangeably.

Scalepart-based object detectors combine a set of scaleparts into a single ob-
ject detector that can operate over a wide range of image resolutions. The
combination mechanism is explained in chapter 6.

As a summary, figure 5.3 shows a three-step procedure for learning a scalepart-based
object detector. In step one individual scaleparts are defined and according detectors
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1. for all scaleparts:

(a) initialize scalepart position, extent and resolution

(b) learn scalepart detector using AdaBoost
2. construct Bayesian Net to capture scalepart dependencies

3. learn node conditional probability distributions

Figure 5.3: Learning a scalepart-based object detector. This chapter deals with
step 1. Steps 2 and 3 are covered in the next chapter.

are learned from data which is the topic of the following section. The second and
third step in the procedure combine a set of scaleparts into one detector (chapter
6). The remainder of this chapter deals with the learning of two new body scalepart
detectors and their evaluation on independent test data.

5.2 Learning Individual Scaleparts: Lower and
Full Body

This section describes the training of two new body scaleparts: one is a detector for
the lower body, the other for the full body — both seen from the front. Section 5.2.1
summarizes their learning as boosted classifier cascades. This classifier architecture
has been successfully applied already in the previous chapter demonstrating both
high accuracy in detection and fast execution. Then, section 5.2.2 presents an
analysis of the features which have been automatically selected by the AdaBoost
training procedure. The fact that the two detectors rely on different features is a
first sign for their complementarity and motivates their combination.

5.2.1 Scalepart training

Both detectors are trained using the CBCL data set ! which consists of 924 pedes-
trians. For training, these have been downsampled from their original resolution of
64 x 128 pixels: lower body patches are downsampled to a resolution of 19 x 23
and full body patches are resized to 14 x 28 pixels which maintains their original
aspect ratio. Sample instances of the original set are depicted in figure 5.4 whereas

Lhttp://www.ai.mit.edu/projects/chel/software-datasets /
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Parameter Full Body | Lower Body
Width 14 19

Height 28 23

Positive examples 924 924
Negative examples 2000 2000

Stages 30 27

Min hit rate 0.995000 | 0.995000
Max false alarm rate | 0.500000 | 0.500000
Training Time 1 week 1 week

Table 5.1: AdaBoost learning parameters for the full and lower body detectors.

figure 5.5 shows cropped lower body instances slightly enlarged. These images con-
tain frontal and back views of people, but no side views. Also, these instances have
been aligned with respect to their height and width. They have not been tightly
segmented to ensure that the entire body silhouette is fully visible in all training
instances. Especially at small image resolutions resolutions we expect the body sil-
houette to be an important and discriminant cue. The same holds for leg contours
in the case of the lower body detector.

...

Figure 5.4: Examples of full body training instances from the original CBCL
data set. These images contain frontal and back views of people, but no side views.

Figure 5.5: Examples of lower body training instances cropped from the CBCL
data set.

Thesc sample training instances also show the variation in appearance as concerns
people’s clothing, the form of the body, the actual position of legs, where they look
and what they carry and so forth. As a final note, faces within this data are only 15
x 15 pixels which is too small for training an effective face detector. For training the
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two scalepart detectors we have to strike a compromise between a limited amount of
training data, the required level of detail that capture a specific part’s characteristics
and the expected AdaBoost training time. The latter is directly dependent on the
training patch size which determines the number of integral image features that
are examined within AdaBoost. During training, the cascade learning algorithm
continuously monitors the discriminance level on the training set in terms of hit
rate and false alarms. One way to optimize a scalepart’s extent and resolution is
to train separate detector candidates and choose the one which best performs on
the training sct (positive and negative training instances). If the training set is
large then such a detector is likely to yield the best generalization performance as
well, which can be explained by AdaBoost’s relationship to margin maximization
[Schapire et al. 1998]. If the training set is rather small then a high training set
accuracy is more likely to indicate overfitting. With roughly 1000 training instances
available, the best results were obtained with a training patch size of about 400 pixels
square. Interestingly, this corresponds to the finding of [Lienhart et al. 2002a] in
their empirical comparison of input sizes ranging from 18 x 18 to 32 x 32 pixels,
despite the fact that this analysis used more training data (5000 instances) and was
specific to face detectors (no other object types or parts). Table 5.1 summarizes
the most important parameters for the AdaBoost training procedure analogous to
table 4.3.2 of chapter 4. As can be seen, lower body patches are downsampled to a
resolution of 19 x 23 and full body patches are resized to 14 x 28 pixels. As in the
previous chapter, negative instances are drawn from the WuArchive image database.
After a total training time of about 1 week on a 1GHz dual processor Pentium III
machine (1 GB RAM - important for storing feature precomputations) 30 stages
were completed for the full body detector and 27 stages for the lower body detector
(trained on two separate machines). The features that AdaBoost has selected to
differentiate full and lower body patterns from background patterns are examined
in the following section.

5.2.2 Analysis of Features Selected by AdaBoost

Both full and lower body detectors are compared in this section by visualizing the
first fow learned features. Due to the detector’s cascade structure these can be
seen as the most important features. Figure 5.6 is a visualization of the full body
detector’s first two cascade stages (out of 30 stages) which hold 9 and 15 features, re-
spectively. The feature visualization (black and white boxes) is analogous to chapter
4 figure 4.10. Feature “la” refers to stage “17, first feature (“a”). When examining
the occuring feature types, their positions and extents, it turns out that first stage
features in the full body detector capture the entire person’s silhouette (features
la, 1c) and torso (features 1d, 1f, 1i). The second cascade stage also has a number
of torso-related features (2i, 21, 2m, 20) but also seems to look at a more detailed
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level such as arms (features 2b, 2¢) and legs (2a, 2f, 2h). Interestingly, among these
most important features there are none which are exclusively dedicated to the upper
body or to the head. This justifics having a separate upper body detector which
represents shoulder features at a higher resolution. In contrast to the full body

stage 1

Figure 5.6; Full body features selected by AdaBoost. The figure shows the first
two out of 30 stages of the learned cascade. Many features sit on the silhouette
and torso, but also on arms and legs. Interestingly, among these most important
features there are none which are exclusively dedicated to the upper body or to
the head. This justifies having a separate upper body detector which reprecsents
shoulder features at a higher resolution.

detector, the lower body detector (figure 5.7) has lcarned to distinguish legs, that
is, both legs seen together (1a, 1m) as well as individual legs (1b, 1c, 1k).

There is also a number of features in both detectors that sit on the background.
They seem to capture the horizon line (1b, 2e, 2j, 2k in the full body detector) and
a global illumination gradient (1g, 1h, 2e, 2g, 2m as well as 1o 1p 1q in the lower
body detector, figure 5.7) which can be seen as contextual cues.

5.3 Scaleparts Detection Performance

In the following tests, a person has to be detected in indoor and outdoor video
sequences. The test data is illustrated and described in the next section 5.3.1. This
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(%1

stage 1
a

Figure 5.7: Lower body features selected by AdaBoost. The figure shows the
first stage of the learned cascade. This detector allocates many more features to
individual legs than the full body detector.

is followed by a detection performance analysis for each individual body scalepart
detector: full body, lower body, upper body and face. The analysis has two parts:
In section 5.3.2 each detector is tested only on “compatible” video frames where the
respective target is visible at sufficient resolution. For example, the face detector
is evaluated on those frames where the face size is at least 20 x 20 pixels — which
is the image patch size this detector has been trained with. This is only a lower
bound: larger instances are detected by successive downscaling of the input image.
Testing on compatible frames is suited to highlight the particular challenges of the
two test sequences. To directly compare the different scaleparts, they are evaluated
in a common task in section 5.3.3. The task is face detection which for the upper,
lower and full body means that their detections are converted to face coordinates.

5.3.1 Indoor and Outdoor Test Sequence

Two independent test scenarios are considered in which a camera zooms in and out
on a person’s face. This specifically allows to analyze effects of resolution changes. In
reality a similar situation occurs, for example, when a person is to be automatically
spotted at a larger distance and then identified via face recognition.

Figures 5.8 and 5.9 illustrate the indoor and the outdoor scenario with a few repre-
sentative frames and a visualization of the actual face height over the entire sequence.



76 Chapter 5. From Local Context to Scaleparts

Each frame has a resolution of 360 by 280 pixels (indoor) and 320 by 240 pixels (out-
door), respectively. Since each frame is scanned over all positions and scales, each
detector examines about 25’000 subwindows per frame (at a downscaling factor of
1/1.2) — and ideally rejects all but a single one since there is exactly one face per
frame. In the indoor sequence face heights range from 246 pixels in close-up shots
(frame 42) to 16 pixels in distant shots (frame 111), likewise in the outdoor sequence
the range is from 100 pixels (frame 57) to 8 pixels (frame 30).

The outdoor sequence is more difficult in several regards: first, the person’s head is
moving as can be seen in frames 30, 65 and 72. Second, the background is much
more complex and cluttered, it contains a house front with many windows and a
tree branch (upper left of frame 30), for example. The sequence is shorter with 76
frames versus 616 frames because it has been more coarsely subsampled from the
original video stream.

5.3.2 Body Scalepart Detection on Compatible Frames

This section compares the performance on the two sequences for each individual
scalepart detector. Figures 5.10, 5.11, 5.12 and 5.13 show ROC curves with the
absolute number of false alarms on the x-axis and the detection rate on the y-axis.
Each figure is dedicated to one of the four body scalepart detectors and shows two
ROC plots (for indoor and outdoor test frames). The ROC curves evaluate the
performance on compatible frames where the respective target is visible at sufficient
resolution. This means cach scalepart detector has to fulfill its own specific task
on a specific subset of video frames. For example, the face detector is evaluated
on those frames where the face size is at least 20 x 20 pixels — which is the image
patch size this detector has been trained with. Likewise the full body detector is
evaluated only on frames that actually contain the entire body at a resolution of at
least 14 x 28 pixels. Thus, ground truth is specific for each scalepart and defined
analogous to figure 5.1. The number of compatible frames is printed in the lower
right corner of each ROC plot. Within one figure we can now compare a detector’s
performance on the indoor sequence (left) versus the outdoor sequence (right). As a
common reference point each plot also shows a dashed vertical line which correponds
to a false alarm level of 1 false alarm every 10th frame. For example, in the left plot
of figure 5.10 there are 367 compatible indoor frames on which the face detector has
been tested. With 1 false alarm every 10th frame this amounts to 37 false alarms
(rounded from 36.7) which is the reference point indicated by the dashed vertical
line.
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Figure 5.8: Indoor test sequence. Each of the 616 frames is 360 x 280 pixels and
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Figure 5.9: Outdoor test scquence. Each of the 76 frames is 320 x 240 pixels and
contains one face. The video sequence has been subsampled more coarsely than the
indoor sequence and also shows much more clutter.
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At this reference point the face detector? (figure 5.10) reaches a 90% detection rate
indoors whereas it returns only about 40% in the outdoor sequence. This differ-
ence is because of head movement in the outdoor sequence and the face detector’s
restriction to frontal faces. Note again that the remaining cues are invariant to
head movement. Overall the ROC curves are quite flat and stay at their 90% and
40% levels continuously almost from their beginning: at zero false positives the face
detector still finds 87% of all faces indoors and 38% outdoors.

face/indoor face/outdoor
1 - J— y
U
0.8[ 0.8
o8 | 0.6
o4r | 0.4f e
02l 02
: test frames: 367 test frames: 40
% 100 200 300 T 20 30 40

Figure 5.10: ROC performance of the face detector on frames of the indoor and
outdoor sequence in which the face is sufficiently large (“compatible frames”). The
number of test frames is shown in the bottom right corner of the plot. The dashed
vertical line serves as a reference point for comparisons and corresponds to 1 false
alarm every 10th frame. The curve shows a much better performance indoors be-
cause in these frames the face is always in a frontal pose. In the outdoor sequence,
however, the face turns occasionally (head movement) which leads to missed detec-
tions.

Figure 5.11 shows ROC curves for the upper body detector. At the reference point
(dashed line) the upper body detector reaches 90% indoors but only 80% outdoors.
The indoor curve raises steeply from 85% at zero false positives to almost 100% at
214 false positives which corresponds to one false positive every other frame. In
the outdoor case the upper body detector starts from about 72% and raises slowly
to a detection rate of 90% at 40 false alarms (which in this case corresponds to
about 6 false alarms per 10 frames). Even at 1 false alarm per frame the outdoor
curve does not increase beyond 90%. This corresponds to the intuitive effect of the
more complex background which makes additional correct detections more costly
resulting in a flatter ROC curve.

For the same reason the outdoor ROC curves for the lower and full body detectors in
figures 5.12 and 5.13 are flatter than the indoor curves. This highlights the difficulty
of the outdoor dataset. In case of the lower body detector the performance at the

2This is Lienhart’s best-performing 20 x 20 face detector [Lienhart et al. 2003a).
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Figure 5.11: ROC performance of the upper body detector indoors (left) and
outdoors (right). Unlike the face detector the upper body detector is not aftected by
head movements which results in high detection rates for both sequences. However,
the indoor ROC curve is much steeper than the outdoor curve. This corresponds to
the intuitive effect of the more complex background in the outdoor sequence where
higher detection rates come at a higher price (false alarms).

reference point is similar for both detectors and around 92%. The curves, however,
are rather different: in the indoor sequence the detection rate rises steeply from 81%
at zero false alarms and attains a 100% detection rate at about 1 false alarm every
4th frame. In case of the outdoor sequence the detection rate is almost constantly
at the 92% level from the beginning and stays there even when admitting 1 false
alarm in every frame.
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Figure 5.12: The lower body detection rate on compatible frames is at 92% at
1 false alarm every 10th frame (dashed vertical line in each plot). This detection
rate is roughly constant in the outdoor case. In the indoor case the detection rate
increases to 100% at about 1 false alarm every 4th frame.

For the full body detector as displayed in figure 5.13 the detection rate at the
reference point (dashed line, corresponding to 1 false alarm every 10th frame) is
better outdoors (72%) than indoors (40%). However, the indoor curve again rises
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much faster than the outdoor curve: it starts at 16% (zero false alarms) and reaches
90% at 110 false alarms — which corresponds to 1 false alarm every other frame. The
outdoor ROC curve on the other hand starts at a higher detection rate of 68% but
reaches 90% only if allowing almost one false alarm in every frame.
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Figure 5.13: Compared to the other detectors the full body detector reaches high
detection rates (90%) only at a relatively high number of false alarms — about 1 false
alarm every other frame. The flatter curve to the right is again due to the more
complex background of the outdoor sequence which attracts more false positive
detections.

In summary face, upper and lower detectors reach about 80% to 90% in detection
rates at a single false alarm every 10th frame. Only the full body detector achieves a
lower level of discriminance than the other scaleparts which for the indoor sequence
means 1 false alarm every other frame for a 90% detection rate. The analysis also
highlight the increased difficulty of the outdoor sequence caused by head movement
and the more complex background. The latter also accounts for the flatter ROC
curves. It is also noteworthy that subsets for lower body and full body are similar
but not identical: both are visible at the same time in these sequences but the
resolution requirement for the lower body is obviously tighter, that is, the full body
detector also sees test frames that are too small for the lower body detector.

5.3.3 Body Scaleparts for Face Detection

This section directly compares the individual body scaleparts by applying them to
face detection. More precisely, scalepart detectors are now applied over all positions
and scales to locate faces of the indoor and outdoor test sequence. Unlike the
previous section this section applies these detectors to all frames regardless of their
resolution “compatibility”. Also, any detections of the upper, lower or full body
detectors are immediately converted into face coordinates. Figure 5.14 illustrates
this conversion for full body and lower body detections which assumes a fixed relative
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Figure 5.14: Inferring the face position from full (left) and lower (right) body
detections. Similar to chapter 4 we assume a fixed position of the person’s face
relative to the detection frame. For lower body detections the estimated face position
actually lies outside the detection frame.

position within the original detection frame. The procedure is analogous for upper
body detections and has been already introduced in the previous chapter 4, section
4.1.

The detection performance for both sequences is shown in figure 5.15. The ROC
plot on the left side shows the performance on the indoor sequence, the right plot
shows the outdoor performance. Each plot shows four curves corresponding to the
four detectors. The x-axis shows the absolute number of false alarms limited to 60
(indoor, left plot) and 8 (outdoor, right plot) which in both cases corresponds to
about 10% of the sequences’ lengths for easier comparison.

In case of the indoor sequence the best-performing face detection cue is the upper
body which is then followed by the face cue, while lower and full body cues have
similar but lower ROC curves. The upper body cue is so successful because it is
more often visible at sufficient resolution than any other scalepart: the face detector
is ideal for close-ups and the full and lower body detectors arc well suited after fully
zooming out — for everything in between the upper body works best. Its ROC curve
is flat, stays around 65% in detection rate from the beginning and is shorter than
the other curves®. The face detector curve is also flat and stays around 52% from
the beginning. Lower and full body detectors on the other hand have slowly rising
ROC curves: they rise from 2% (zero false positives) to about 30% (right border of
the plot corresponding to about 1 false alarm every 10th frames). The lower body
curve is consistently above the full body curve with a difference of 2% to 10%, but

3The upper hody curve (left plot) would actually decrease at higher false alarm rates but due
to the way the curve is computed only the monotonically increasing part is plotted. As a result,
certain curves can be shorter than others. Curves decrease when correct detections become too
inaccurate (see also [Cristinacce and Cootes 2003]).
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this gap is gradually closing at higher false alarm levels.

In the outdoor sequence (right plot) the upper body cue also performs best, but the
face cue is now only as good as lower and full body cues. This is mainly because
the face detector cannot cope with the head movement within this sequence. The
upper body’s ROC curve slowly rises from 65% to 70% which is slightly better than
indoors. All other three curves reach detection rates of about 20% to 22% — which
is almost 10% less then indoors. This was to be expected given the more difficult
sequence. Also, the full body’s ROC curve is consistently above the lower body’s
curve whercas the opposite is true in the indoor sequence. The reason behind this
is that the full body is detectable in more frames than the lower body because of its
weaker resolution requirements. In other words, there are more “compatible” frames
for full body than for lower body detection. As a final result of this quantitative
analysis even the best single detector misses almost one third of the faces (detection
rates are limited to some 65% or 70%) — this is even though a human observer will
not have any problems to locate all the target faces at even the smallest resolution
occuring here. However, the promise is that by combining all four cues one can do
better.
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Figure 5.15: Individual Scalepart Performance for face detection on the indoor
sequence (left plot) and outdoor sequence (right plot). Detection rates are shown
on the vertical axis, the absolute number of false alarms is shown on the horizontal
axis. No single cue can detect more than 70% of the faces at a precision level of 1
false alarm every 10th frame - which motivates their combination.
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5.4 Discussion

This chapter has introduced the concept of scaleparts. The scaleparts approach is
motivated by the need to accomodate different levels of available image detail and
can be seen as a generalization of the local context concept of the previous chapter.
Accordingly, scaleparts are defined as object parts suiting different levels of available
image detail — or “scales”.

In addition to the upper body detector of the previous chapter a lower body and
a full body detector are developed and evaluated. In this, one has to take into
account the available limited amount of training data, the required level of detail
that capture a specific part’s characteristics and the expected AdaBoost training
time. The latter is directly dependent on the training patch size which determines
the number of integral image features that are examined within AdaBoost

Test results on indoor and outdoor situations demonstrate the complementarity of
the developed body scaleparts with respect to different resolutions. The promise is
that their combination will allow for “contextual” face detection robust to resolution
changes. This is covered in the next chapter.



Scaleparts-based Face Detection

This chapter is concerned with the development of a scaleparts-based face detector.
The detector combines the four body scaleparts of chapter 5 with the aim to over-
come their individual limitations. For scalepart combination, this chapter employs
Bayesian Networks which provide an elegant and eflicient means for probabilistic
cue fusion based on learning and inference.

Section 6.1 develops a Bayesian Network topology that implements the scaleparts-
based face detector. Then, section 6.2 focuses on how to learn the conditional
probability distributions in the observed network nodes. These distributions model
the interactions between scaleparts taking into account their individual reliabilities.
The combined face detector is tested in section 6.3 and compared to the performance
of each individual cue. Conclusions are drawn in section 6.4.

6.1 Cue Combination with a Bayesian Network

Bayesian Networks graphically encode the joint probability distribution of a set of
random variables. The graph theoretic side of Bayesian Networks provides both
an intuitively appealing interface by which humans can model highly-interacting
sets of variables as well as a data structure that lends itself naturally to the design
of efficient learning and inference algorithms. A particular application of Bayesian
Networks is cue fusion as used, for example, by [Rehg et al. 1999] whos work has been
an important source of inspiration (see chapter 2, section 2.3 for additional related
work on Bayesian Networks for cue fusion). Note that, despite the name, Bayesian
networks do not necessarily imply a commitment to Bayesian methods; rather, they
are so called because they use Bayes’ rule for inference. The particular focus of
this section is the development of a suitable network topology. Figure 6.1 shows
an example topology with parent node V' (“visible”) and child nodes f (“face”), u
(“upper body”), 1 (“lower body”) and b (“full body”) corresponding to the body
scaleparts of the previous chapter. In this case, every node is a binary random

85
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Figure 6.1: “Naive Bayes” topology with parent node V (“visible”) and children
f (“face”), u (“upper body”), | (“lower body”) and b (“full body”) which refer to
the body scaleparts of chapter 5. In this special case, the obscrved nodes (shaded)
are conditionally independent given the parent node.

variable X; (with i = 1..5) which can take upon the values 0 or 1. The values of nodes
f, u, | and b are directly observed by applying the respective scalepart detector. To
recall, each body scalepart is implemented as a boosted classifier cascade:

K
H = sign [Z h;+b
j=1

where h; denote the individual cascade stages and H is the classifier’s binary output
which in the original formulation corresponds to the sign of the expression and which

(6.1)

is converted here to values 0 and 1:

1 iff partidetected
X = (6.2)
0 else

Ultimately, we are interested in the value of the parent node V' which indicates the
presence of a face given all evidence. The distribution over the possible values of V
is inferred from the observed evidence and since we are querying V’s value, V' is also
called a query node. This is in contrast to the observable nodes (f, u, I, b - shaded
in figure 6.1) whos values are directly observed by cvaluating the underlying body
scaleparts.

The directed arcs from V' to all other nodes imply that V' causes observations f,
u, |, and b. The causal interpretation of Bayesian nets is an important advantage
because it lets one encode prior knowledge in a straight-forward manner. The graph
structure also expresses conditional independence of certain variables. Specifically,
the graph in figure 6.1 implics that all observed nodes are conditionally independent
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given the parent node (and is therefore referred to as the Naive Bayes case). In a
more general notation this corresponds to the following factorization:

P(Xy,...,X,) = ﬁ P(X;|parents(X;)) (6.3)

i=1

If we take the logarithm of this equation then the product on the right side turns
into a sum and we obtain the standard vote accumulation scheme with weighted
votes:

10g P(Xla cey Xn) = 10g H:':l P(Xz 'pm‘e?'LtS(Xi))
(6.4)
= Y log P(Xi|parents(X;))

The problem is, however, that this does not take into account dependencies among
the observed evidence. For example, for face detection in small images there is a
dependency between face and full body observations: a small image can either show
a close-up shot of a face with all facial details visible or a more distant shot where
the entire body is visible — but not both at the same time. In conclusion, a different
network topology is required which is capable of modelling such dependencies among
observed variables.

Such a network is depicted in figure 6.2. The network splits up the parent node into
two separate nodes C (“close”) and F' (“far”) which indicate the presence of a face
in a close-up shot (C = 1,F = 0) or at a distance (C = 0, F = 1). This network
is capable of accurately representing the mentioned cue dependencies: intuitively,
a close-up view of a face may cause face and upper body observations which is
expressed by the dirccted arc from C to F' and from C to w. But neither lower
nor full body are visible then. Conversely, a far-away face causes observations of a
full and a lower body but the resolution situation does not allow to observe a face
directly. The upper body, however, can possibly be observed in both situations. This
causal dependency is reflected by the parent-child relationship, i.e. the network’s
arcs and their directions.

6.2 Learning and Inference

In order to infer the posterior distributions P(F|f,u,1,b) and P(C|f, u, [, b) which let
us decide over the most probable values of C' and F', we need to know the probability
densities of each observed node conditioned on these two variables. These as well as
the prior probabilities P(C') and P(F') are learned from data which is discussed in
section 6.2.1. Then, section 6.2.2 explains how the classifier accumulates evidence
from the individual scaleparts in order to infer a single, consistent classification
ouput value.
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Figure 6.2: Bayesian Net Topology for face detection with query nodes C' and F
to distinguish close-up and far shots of faces. According to this topology, a close-up
face causes an observation of face and possibly upper body but neither lower nor full
body are visible then. Conversely, a far-away face causes observations of a full and
a lower body but the resolution situation does not allow to observe a face directly.
The upper body, however, might be visible in both situations.

6.2.1 Learning Conditional Probability Densities

In a discrete-node Bayesian Network the probability densities associated with each
node can be efficiently represented using Conditional Probability Tables (CPTs)
(equivalent to histograms, i.e. non-parametric density estimates). Since in our case
all variables are binary we only have to estimate entries of small CPTs. As training
data we use every second frame of the indoor sequence introduced in chapter 5,
figure 5.8 which amounts to 308 training frames. In frames where the camera has
zoomed out, the person’s kneces or feet become visible as in frame 280 of figure 5.8.
These frames are labeled “far” (C = 1, F = 0), all other frames are labeled “close”
(F = 0,C = 1). The entries of the CPTs (tables 6.1 to 6.4) arc then learned from

C | P(f=0|C) P(f=1[C)
0 | 0.8520 0.1480
110 1

Table 6.1: The learned CPT for the face node in network 6.2

the labeled data using maximum likelihood estimation:

- ~ NXi Pa(X;
O pacx) = DXl Pa(Xi)) = = (6.5)

Pa(X;)
Here, &) X:|Pa(x;) denotes the table entry for the observed node X; conditioned on
its parents Pa(X;). The corresponding probability estimate H(X;|Pa(X;)) is ob-
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C F|Pu=0|C,F) Plu=1|C,F)
0 0 ]0.9951 0.0049
1 0 |0.6653 0.3347
0 1]0.0187 0.9812
1 1 10.5000 0.5000

Table 6.2: The learned CPT for the upper body node in network 6.2

F|P(l=0F) P(I=1]F)
0 [0.7256 0.2744
1 | 0.3563 0.6438

Table 6.3: The learned CPT for the lower body node in network 6.2

tained through frequency counting: Ny, pa(x,) is the fraction of detections (or non-
detections, respectively) of scalepart X; for the possible values of its parents Pa(X;)
In network 6.2 both query nodes C and F are root nodes. They are not associated
with a CPT but instead with a prior probability which is also estimated from data:

0 = 5(Q) = s (6.6)

with Np, being the number of labels (“close” or “far”) where query node @; = 1.

We can now examine the CPT entries more closely to see what has been learned.
The probabilities P(f = 1|C = 1) and P(f = 1|C = 0) in table 6.1 correspond to
estimates of the true positive and false positive rates of the face detector in a close-
up situation. In a similar way, the other two probabilities are estimates of the true
negative P(f = 0|C = 0) and false negative rates P(f = 0{C = 1). Basically, for
close-ups, the learned numbers express a very high confidence in the face detector’s
output with a true positive ratc of 1 and a false positive rate of 0.15.

The upper body CPT (table 6.2) is the only one with a fan-in (i.e., the number of
incoming arcs/parents) greater than one. The CPT shows a much higher confidence
in upper body detections at distant shots with P(u = 1|F = 1,C = 0) = 0.98 than
in close-ups: P(u = 1|F = 0,C = 1) = 0.34. This is because in a relatively large
number of training frames only the face itself is visible. The value pair C' =1 and
F = 1 never occurs in the data because it is illegal: the semantics of both query
nodes independently decide about a face’s presence and the same face cannot be
“close” (C = 1) and “far” (F = 1) at the same time. However, both query nodes
can agree that there is no face at the examined location (C'= 0 and F' = 0). Lower
and full body detectors (tables 6.3 and 6.4) attain lower true positive rates than the
other two cues (0.62 and 0.46). It turns out that many detections overlap with the
person but are not accurate enough to be counted as true positive.
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F|Pb=0F) Pb=1F)
0 | 0.8786 0.1214
1 | 0.5437 0.4562

Table 6.4: The learned CPT for the full body node in network 6.2

Generally, for counting true positives and false alarms we adopt the matching rules
of [Lienhart et al. 2003a). A true positive is declared if and only if:

the Euclidean distance between the center of a detected and actual target’s
center is less than w x targetwidth (the latter is referring to the true width of
the target) and

the width (i.e. size) of the detected target is within 44 x targetwidth.

The parameters were left at w = 0.6 and 6 = 0.6 for all evaluations.

Relatively speaking, the face detector achieves the highest true positive rate followed
by upper, lower and full body detectors. The lowest false positive rate is achicved
by the upper body detector followed by face, full and lower body detectors.

6.2.2 Evidence Accumulation, Inference and Classification

In the implementation all scalepart detectors are applied independently over all
positions and scales. The next step is to find sets of overlapping detections. Each
such set forms a face hypothesis that contains one to four detections from the four
employed body scaleparts (evidence accumulation).

Then, for each of these face hypotheses the posterior probabilities of both query
nodes C' and F are computed via Bayesian inference. We use the standard junction-
tree inference algorithm [Cowell et al. 1999]. A combined face hypothesis is then
assigned the resulting maximum posterior probability:

P(FACE) = maz{P(C), P(F)} (6.7)

For classifying a given face hypothesis as either face or non-face, the probability
P(FACE) is thresholded. The analysis in the following section uses ROC curves to
examine the detection accuracy at all possible thresholds.

6.3 Face Detection with the Combined Detector

This section empirically analyzes the performance of the learned Bayesian Network-
based classifier. To this end, the classifier is applied to image frames not scen during
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training. The first test sequence consists of the remaining 308 frames from the indoor
sequence of chapter 4 (figure 5.8), the second test sequence consists of all 76 frames
from the outdoor sequence (figure 5.9).

Section 6.3.1 is an ROC analysis of both test sets, comparing the Bayesian Network
classifier of figure 6.2 to the naive Bayes network of figure 6.1 as well as to the four
individual scalepart detectors. The next three sections investigate the components
and mechanisms of the classifier at work: section 6.3.2 looks at the evidence nodes,
examining which scaleparts contribute to correct detections. Section 6.3.3 provides a
detailed analysis of the inferred query node values. At the core of this section is is a
case-based analysis relating the inferred query node posteriors to different detection
constellations. Certain constellations exhibit contradicting evidence which Bayesian
Networks can “explain away” — a mechanism that is further illustrated in section
6.3.4.

6.3.1 Performance of the Scaleparts-based Face Detector

This section compares the Bayesian Network classifier of figure 6.2 to the Naive
Bayes classifier of figure 6.1 and to the individual scalepart detectors. ROC curves
for the indoor sequence are displayed in figure 6.3. The discrimination task has
been made more difficult by including simulated false alarms, because the scalepart
detectors hardly cause any false alarms in these images '. The “Bayesian Net” and
“Naive Bayes” curves are computed by thresholding P(FACE) or P(V = 1{f,u,[,b),
respectively, for all possible thresholds. Since both classifiers operate on four binary
observed nodes their value range is theorctically limited to 16 different posterior
values. This makes the ROC curves look edgy. Smoother curves could be obtained
by adopting continuous nodes or by smoothing posteriors over time using Dynamic
Bayesian Networks (as explained in chapter 2, section 2.3.2). As a first result,
scalepart combination in indoor and outdoor test frames (figure 6.4) is able to yield
detection rates beyond 95% — compared to a maximum of 70% of the best individual
scalepart detector (upper body). Generally, the Bayesian Network yields high detec-
tion rates with less false alarms than the Naive Bayes classifier. This is an effect of
the difference in assumed (in)dependencies. For example, in the Naive Bayes case,
an overlap of all four scaleparts results in the highest possible confidence score. The
same constellation implies a case of contradicting evidence in the Bayesian network:
the face scalepart is associated with “close” situations, and the full body scalepart
with “far” situations resulting in a lower confidence score and better scparability
with respect to correct detections.

In the indoor case (figure 6.3) the best-performing scalepart detector (upper body)

IThe false alarm situation is much more challenging in chapter 7 were an analogous ROC
analysis is presented for car detection without simulated false positives.



92 Chapter 6. Scaleparts-based Face Detection

reaches its maximum detection rate of 656% from the beginning at 0 false alarms.
The Naive Bayes classifier reaches the same detection rate at 10 false alarms and at
45 false alarms its detection rate jumps beyond 95%. The Baycsian Network attains
the same detection rates at fewer false alarms: 65% at 1 false alarm and beyond
98% at 33 false alarms.

In the outdoor sequence the best-performing scalepart detector’s curve rises from
65% at 0 false alarms to 70% at 9 false alarms. The Naive Bayes classifier performs
worse if only 9 false alarms or fewer are admitted, retrieving not more than 5% of
the faces. At 12 false alarms it reaches a detection rate of 88%. Again, the Bayesian
Network is able to reach high detection rates at low false alarm levels: at O false
alarms 64% and at 3 false alarms 80% which already outperforms the upper body
scalepart by more than 10% in detection rate.

It is worth noting that in about half of the test frames the face height is less than
20 pixels. This means that a traditional face detector that does not incorporate
contextual information is extremely unlikely to achicve a detection rate on these
test sets which is greater than 50% (the smallest sized face detector we are aware of
is [Sung and Poggio 1994] with 19 x 19 pixels).
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Figure 6.3: Indoor test: ROC curves comparing the Bayesian Network of figure 6.2
to the Naive Bayes classifier of figure 6.1 and to the individual scalepart detectors.
The Bayesian Network retrieves 98% of the faces with 33 false alarms which exceeds

the detection rate of the best-performing individual scalepart (upper body) by more
than 20%.
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Figure 6.4: Outdoor test: ROC curves comparing the Bayesian Network of figure
6.2 to the Naive Bayes classifier of figure 6.1 and to the individual scalepart detectors.
Again, the Bayesian Network outperforms the Naive Bayes classifier which reaches
comparable detection rates only at higher false alarm levels.

6.3.2 Analysis of Evidence Node Values

In our discrete-node model we can easily monitor the activitiy in the cvidence nodes
to find out which scaleparts contribute to correct detections. For the indoor test
sequence figure 6.5 visualizes whether or not a cuc has successfully detected the
face per test frame (“cue activation chart”). This chart shows the frame numbers
on the horizontal axis and the names of the individual scaleparts on the vertical
axis. A black dot in the chart implies that the corresponding scalepart detector
contributes to a correct detection (these dots lie so closely that they form contiguous
line segments in the chart). Figure 6.6 shows the corresponding chart for the outdoor
test sequence.

In the indoor chart in figure 6.5 the complementarity of face versus lower and full
body cues is clearly visible. One can also see that the upper body detector is active
in many “far” frames (for example frames 100-200) supported by lower and full body
detections.

When comparing figures 6.5 and 6.6 two differences can be observed between the
indoor and the outdoor test cases: First, in the indoor case, there are always two
or three cues which overlap, i.e. they are simultaneously active. In the outdoor
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Figure 6.5: Indoor cue activation chart showing frame numbers on the horizon-
tal axis and individual scaleparts on the vertical axis. A black dot in the chart
implies that the corresponding scalepart detector contributes to a correct detection
(these dots lie so closely that they form contiguous line segments in the chart). The
complementarity of face versus lower and full body cues is clearly visible here.
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Figure 6.6: Outdoor cue activation chart. The detection task is generally harder
in this sequence which can be seen from the “holes” in the line segments.

sequence the overlap is between 0 and 3 cues, meaning that in certain frames the
face is missed. Second, in the indoor case the cue activations are quite continuous
(resulting in continuous line segments within the chart) while in the outdoor case
some cues exhibit “jittering” (as in frames 15-40). The jitter is caused by the coarse
subsampling of video frames: this means fewer frames and in particular greater
differences between two consecutive frames - such that the conditions for scalepart
detection arc subject to greater changes, too. Also the detection task is gencrally
harder in this sequence. '

6.3.3 Analysis of Query Node Values

This section provides a detailed analysis of the inferred values in query nodes C and
F for both test sequences.
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Indoor Sequence

On the left side of figure 6.7 are three plots which for all frames (frame numbers are
given on the x-axis) visualize the inferred posterior probabilities P(C' = 1|f,u,[,b),
P(F = 1|f,u,1) and P(FACE = 1) on the y-axis. The plot in the bottom left corner
P(FACE = 1) also shows the annotation of frames as either “close” or “far” on the
x-axis (for example, frames 95-299 are “far” and frames 300-500 are “closc”). As

can been seen in this plot we generally have (with very few exceptions):
P(FACE=1)>0.5
which is equivalent to
P(FACE = 1) > P(FACE = 0)

In other words, the detector classifies the face correctly in almost all frames: overall
this value has been correctly estimated for about 95% of all test frames (both test
sequences show a face in every frame, so ideally, we would have P(FACE = 1) > 0.5
for all frames). Similarly, one can compare the estimated values of C' and F' with
the scquence annotation. For the indoor sequence, C' and F' have been correctly
estimated in 99% and 96% of the cases.

Following is a a case-based analysis relating the inferred query node posteriors to
the underlying detection constellations. In figure 6.7 the two posterior plots P(C =
1|f,u,1,b) and P(F = 1|f,u,[) contain reference numbers from 1 to 10 which index
different situations (test frames) shown on the right half of the figure. For example,
plot P(C = 1|f,u, 1, b) has a reference number “1” at probability 0.84. This reference
number refers to the image frame labeled “situation 1” (frame 3) depicted in the
upper right half of the figure. All images also show the frame number as well as the
names of active body scalepart detectors: in situation 1 only the face detector has
detected the target face.

Following is a discussion of 10 situations which illustrate the mechanisms in the
Bayesian Network classifier:

Situation 1: (frame 3) is a portrait situation which can be handled only by the
face scalepart detector. The high posterior valuc of 0.84 for ¢ = 1 can be
directly attributed to the high confidence of P(f = 1|C = 1) = 0.85 learned
for this scalepart detector. The upper body scalepart can not be detected
since for example the shoulders arc not visible. The posterior for F' = 1 is
as low as 0.17, but not zero, because there is a non-zero probability that the
other scaleparts have false negatives.
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Figure 6.7: Case-based analysis of the indoor test sequence relating the inferred
query node posteriors (plots on the left side) to the underlying detection constella-
tions (images in the right half).
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Situation 2: In frame 78 the shoulders become visible and the upper body scalepart
fires correctly. This increases the posterior probability for “close” to 0.9. How-
ever, it also raises the posterior for a “far” situation since the upper body con-
tributes to both cases. The resulting probability of 0.41 for F' = 1, however,
is much lower than 0.9 for C = 1.

Situation 3: In frame 103 facial details are no longer distinguishable for the face
scalepart and the only detecting cue herc is the upper body. This makes
F = 1 more likely than C = 1 with a posterior of 0.98 vs. 0. The high
posterior for “far” directly results from the upper body’s CPT (table 6.2)
where P(u|C = 0,F = 1) = 0.97. The non-detection of the face cue further
supports the “far” hypothesis. The posterior for C = 1 collapses which can be
attributed to the learned zero false negative rate for “close” situations, that
is, P(f = 0|C =1, F = 0) = 0 according to table 6.1.

The information flow between nodes F' and C' is due to the “explaining away”
phenomenon in Bayesian networks which is discussed separately in section
6.3.4.

Situation 4: The posterior for F' = 1 is raised from 0.98 to 0.99 in situation 4
(frame 109) through the detection of the lower body: lower and upper body
both support this hypothesis. Because of “explaining away” this would actu-
ally lower the posterior for C = 1. However, its posterior has already reached
Zero.

Situation 5: With an additional detection by the full body scalepart, the posterior
for F = 1 reaches a maximum of 0.9967 in situation 5 (frame 112). For the next
few frames this posterior slightly oscillates as individual scalepart detectors hit
or miss the target. However, these deviations are extremely small (1% or less)
as long as the upper body cue is detecting correctly.

Situation 6: In frame 171 (situation 6) only lower and full body scaleparts help de-
tect the face but not the upper body cue. Since their reliabilities are relatively
low (0.63 and 0.46 according to tables 6.3 and 6.4) the posterior for F' = 1
drops to 0.19 (versus zero for C' = 1). The low posterior can also be attributed
to the high trust placed in the upper body scalepart which has hardly missed
any “far” face during training. From this point of view, the isolated detections
of lower and full body are “suspicious”.

Situation 7: In situation 7 (frame 173) the upper and lower body scaleparts detect
the face which raises the posterior for F' = 1 again. There is an additional
person in the background walking from right to left whos face has not been an-
notated because of the sideview perspective. The person causes a small amount
of false alarms (the upper body detector seems to be mislead here sometimes,
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because the backpack which the person is wearing creates a silhouette similar
to a frontal upper body).

Situation 8: Only the lower body detects the face in situation 8 (frame 177). The
confidence in this detection is, however, quite low: the posterior probability is
0.04 for F' = 1 (versus zero for C = 1) because the lower body scalepart has
been learned not to be very reliable according to table 6.3.

Situation 9: is analogous to situation 2: the camera has zoomed in again onto the
face, resulting in detections of face and upper body scaleparts. The other two
scaleparts cannot contribute because the lower and full body are not visible.
This constellation correctly favors C' = 1 with a posterior of 0.89 over F' =1
whos posterior probability is 0.41.

Situation 10: The face scalepart fails on frame 294 but the upper body scalepart
still works correctly. Situation 10 is thus analogous to situation 3.

Outdoor Sequence

Analogous to the above analysis of the indoor sequence, figure 6.8 shows the cor-
responding plots and images for the outdoor sequence. Here, the value of FACE
is correctly estimated in about 83% of the cases. Variables C' and F' have been
correctly estimated for 50% and 68% of all test frames. The estimation of C' is not
very accurate because from the indoor training subset we have learned to trust the
face detector — ignoring possible head movements (which occur only in the outdoor
sequence). Likewise, no detections or few detections of “unreliable” cues (such as
lower or full body) will result in zero or low posterior values. This causes the same
“jitter” in the probability plot which has also been observed in the cue activation
charts of section 6.3.2.

Following is a case-based analysis of 10 situations indexed in the two plots P(C =
1|f,u,1) and P(F = 1|f,u,1):

Situation 1: The face scalepart fires in frame 1 (situation 1) which is a rare event
in the outdoor sequence because of small face sizes and head movement. This
means that for the majority of frames the Bayesian network has to overcome
missing detections of the face scalepart which has been learned to be highly
reliable.

Situation 2: Analogous to the indoor sequence the joint detection of face and upper
body scaleparts in frame 3 increascs the posterior for C' = 1.
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Figure 6.8: Case-bascd analysis of the outdoor test sequence analogous to figure
6.7.
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Situation 3: In frame 5 the target face is already too small for the face scalepart.
The upper body, however, detects the face despite its non-frontal pose. This
situation is another example of “explaining away” in the Bayesian Net: the
decrease of P(C = 1|f,u,l,b) caused by the now missing face detection causes
an increase in the posterior probability for F' = 1.

Situation 4: Upper, lower and full body scaleparts deliver correct detections in
frame 15 and cause a sharp increase in the posterior of F' = 1. This also
causes the posterior of C' = 1 to decrease, again because of “explaining away” .

Situations 5,6,7,8: These four situations illustrate the difficulty of the sequence
resulting in missed detections. In principle, the resolution and visibility in
these frames allow for detections of upper, lower and full body. However, in
frame 31 for example, the upper body is turned away from the camera in a
“far” situation (pose change). The only detection in this frame is due to the
lower body which, however, is too inaccurate and counted as a false alarm.

Situations 9, 10: These are two additional hard cases: in situation 9 (frame 63)
both upper body and face are turned away from the camera. In situation 10
(frame 72) the upper body scalepart correctly infers the presence of a face
despite the difficult pose.

6.3.4 Explaining Away

A particular property of Bayesian network models is their ability to explain away
competing evidence. In the proposed Bayesian Network classifier of figure 6.2, the
two query nodes C' and F can compete in explaining the observed evidence, which
has been discovered in situations 3 and 4 of both test sequences in the case-based
analysis (section 6.3.3). This section enlarges upon situation 3 of the indoor se-
quence, illustrating the explaining away mechanism in more detail.

In figure 6.9 all observed nodes have been instantiated with the current evidence,
that is the output of the scalepart detectors. In this situation only the upper body
detector hints at the presence of a face. The inferred query node posteriors take
upon values P(C = 1|f,u,[,b) = 0 and P(F = 1|f,u,l,b) = 0.9855, respectively.

Now the situation changes in figure 6.10 where the face detector indicates the pres-
ence of a face, too. The observed node changes its value from 0 to 1 and the posterior
of C' =1 jumps from 0 to 0.89 — this is because in a “close” situation, a detected
face is the strongest possible evidence.
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Figure 6.9: Conditional dependence: Query nodes are shaded, observed nodes are
black if their value is zero or white otherwise. Since the observed nodes have been
instantiated (their values have been observed and are fixed) the two query nodes
become conditionally dependent. Here, the node values reflect the accumulated
evidence on the actual face (f =0,u=1,1=0,b=0).

query node: C F
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node value: 1 1 0 0
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Figure 6.10: Explaining Away: The posterior of query node C' changes from 0 to
0.89 because of new cvidence from the face detector (f =1, u=1,1=0,b=0).
This initiates an information flow (red/light gray arrows) via the upper body node,
and results in a decrease of node F'’s posterior to 0.41.
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The two parents of the upper body node now compete in explaining the observation
of the upper body. Node C “explains away” this observation because it is consistent
with the observed face scalepart. This results in a decrease of the posterior for F' = 1
from 0.9855 to 0.4129.

6.4 Conclusion

In this chapter we have applied a discrete-node Bayesian Network for fusing scalepart
detectors. Bayesian Networks allow for encoding scalepart interactions in terms
of causality (parent-child relation) and conditional independence. The individual
node distributions have been learned from data via maximum likelihood estimation.
Bayesian Networks are a particular family of graphical models for which exist many
efficient learning and inference algorithms. The power of this formalism makes our
approach scalable to include many more evidence nodes (additional scaleparts, global
context cues, other modalities like range information etc.) with continuous and/or
discrete evidence. The experimental evaluations have shown that the combination
— in this case resulting in a scaleparts-based face detector — clearly goes beyond the
capabilities of individual scaleparts — with improvements of up to 20% in detection
rate at a similar level of false alarms. This is despite the fact that the face height is
less than 20 pixels in about half of the test frames.

As a final remark, the proposed implementation of the scaleparts-based face detector
unifies discriminative (AdaBoost) and generative (Baycsian Nets) techniques. Seen
as a hierarchy, AdaBoost selects low-level visual features such as edges and bars
to discriminate certain object parts from background clutter. These parts arc then
combined in a Bayesian Network where we can use prior knowledge about part
interactions in designing the network topology.



Scaleparts-based Car Detection

The previous chapter has successfully applied a scalepart-based object detector to
face detection. Scaleparts corresponded to a person’s face, upper, lower and full
body. They were used to indirectly infer the presence of a face, especially at low
image resolution. This can be seen as an example of context-supported detection
because it considers information (the upper, lower and full body) which is located
outside the actual target (the face).

In this chapter we switch back to the traditional object-centered detection paradigm
where all considered features sit on the target. The purpose of this chapter is to
show that the scaleparts idea is applicable to other types of objects as well. Here,
we are specifically looking at car detection in cluttered images.

More specifically, a scalepart-based detector for side views of cars is developed and
evaluated. Section 7.1 discusses the learning of car scaleparts. The detection per-
formance for the individual car scaleparts is then investigated in section 7.2 and a
Bayesian combiner is introduced and evaluated in section 7.3. Section 7.4 discusses
results and delineates possible extensions.

7.1 Learning Individual Scaleparts

This section is concerncd with the learning of car scaleparts. The set of scaleparts
proposed here consists of a full car, a “half car” and wheels. First, section 7.1.1
describes the employed training data of sideviews of cars as well as the training
parameters for AdaBoost learning. Then, section 7.1.2 analyzes the features which
were automatically selected during training and compares them among the three car
scaleparts.

103
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7.1.1 Training Data

We choose three scaleparts for detecting sideviews of cars: the full car, a “half car”
and a single wheel. Following the rationale of the scalepart framework (see chapter
5, section 5.1) this choice of parts is motivated by the need to accomodate different
levels of available image detail.

As a starting point we use the 550 training images of side views of sedan type cars of
[Agarwal and Roth 2002]. Since the integral image features considered by AdaBoost
are highly localized the training data has been further refined in several ways. First,
the variation in appearance has been reduced by flipping all cars so that they all face
the same direction. Second they have been aligned using manually defined landmark
points. Third, the training data has been annotated to allow for extracting half cars
and individual wheels. As a final preprocessing step, training instances with partial
occlusions have been removed.

Figure 7.1: Preprocessed instances for scaleparts training (rows): full car, half
car and wheels. These have been extracted from the training set of [Agarwal and
Roth 2002]. Training instances with partial occlusions have been removed.

Figure 7.1 shows example training instances for full cars (in total 429 instances), for
half cars (in total 429 instances) and for wheels (in total 805 instances). For half
cars we have tested both frontal (left-facing in our case) and rear halves and have
achieved slightly better results with the former. However, when downscaled to the
actual training resolutions, the sedan car type appears quite symmetric anyway. As
a result, both the half and full car scaleparts are not limited to the orientation they
were trained with. They do show a certain bias towards the trained orientation but
frequently detect the opposite orientation as well, as we will see in section 7.2.1.

The training resolutions for full, half and wheel are shown in table 7.1 which sum-
marizes the most important learning parameters. For each detector, multiplying the
training instance’s width and height amounts to about 400 pixcls square — the same
rule of thumb, born out of experiments, was used in chapter 5. Note that compared
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Parameter Full Car | Half Car | Wheel
Width 14 19 20
Height 28 23 20
Positive examples 429 429 805
Negative examples 2000 2000 2000
Stages 30 27 14

Min hit rate 0.995000 | 0.995000 | 0.995000
Max false alarm rate | 0.500000 | 0.500000 | 0.500000
Training Time 1 week 1 week 1 week

Table 7.1: Car scaleparts learning parameters. As a rule of thumb, born out of
experiment the product of width and height is about 400 pixels square. Compared
to the training of full and lower body there is only half the amount of training data
available here for full car and half car training instances. The WuArchive image
database was used as negative image sct.

to the training of full and lower body there is only half the amount of training data
available here for full car and half car training instances. The WuArchive image
database was used as negative image set as in chapter 5.

7.1.2 Selected Features

It is interesting to examine the specific features that have been found to be discrim-
inant for wheels, half cars, and full cars, respectively.

The first 5 stages of the learned full car detector are visualized in figure 7.2. Again,
the feature visualization (black and white boxes) is analogous to chapter 4, figure
4.10. Feature “la” refers to stage “1”, first feature (“a”). According to the figure the
most important features in full car detection scem to be the car’s front mudguard
and the ground shadow from the chassis. They already appear in the first cascade
stage (1a and 1b) and occur again in later stages. For example, additional mudguard
features are (2a, 3a) and additional ground shadow features are (3b, 3e, 4b, 5d).
Other features are dedicated to car doors (2b,2¢,3d) and wheels (4a). It is interesting
that among the first 20 features shown here, there are only two which contain parts
of the windows (5b, 5e). All other features are strictly confined to the lower chassis
and ground.

As shown in figure 7.3, the half car detector’s first feature (1a) is also covering parts
of the mudguard, but sits slightly higher: unlike the full car detector it excludes the
wheel axle — which appears as the brightest spot within the wheel. Compared to
the full car cascade the half car detector seems to pay more attention to the wheels
manifested in a higher number of according features (1b, 2a, 2e, 3a, 3c). Other
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Figure 7.2: Full car features selected by AdaBoost. The figure shows the first few
stages of the learned cascade. A full car is distinguished by the car’s ground shadow
from the chassis and the frontal mudguard also including part of the wheel.

features cover the lower chassis (2d, 3d, 3e) — but unlike the full car detector only
few touch the ground shadow.

For the wheel detector (figure 7.4) certain features cover almost the entire rim and
tyre (1a, 1b, 3a). Other, smaller features pick up on the tyre boundary alone (2b,
2d, 2e and most features of stage 4). This is also an example of the usefulness of
the center-surround feature (3a) and rotated features (4a) which help approximate
the circular wheel shape.
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stage 1

Figure 7.3: Half car features selected by AdaBoost. The figure shows the first
few stages of the learned cascade. A half car is recognized by the region around
mudguard and wheel. Generally this detector pays more attention to the wheel
than the full car detector.
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Figure 7.4: Wheel features selected by AdaBoost. The figure shows the first few
stages of the learned cascade. The wheel detector uses rotated and center-surround

features to capture parts of the rim, and the tyre as well as the specific contrast
betwecen axle and tyre.
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7.2 Scalepart Detection Performance

Each learned detector is evaluated on Agarwal and Roth’s test database. This
database consists of 170 grayscale images containing 200 sideviews of cars. Most of
these cars are of the sedan type, they come in different “colors” (i.e. gray levels) and
can face left or right. In the original test images all cars arc of the size of 100 x 40
pixels. We will refer to this set of images at their original resolution as “original”.

Agarwal and Roth only consider detection at a single scale. Instead, we are especially
interested in performance over a wide range of scales. Therefore, we additionally
create a lower and a higher resolution version of the data using bicubic interpolation.
This results in 200 cars at 60 x 24 pixels ( “lores” ), 200 at the original resolution 100
x 40 pixels (“original”) and 200 at 250 x 100 pixels (“hires”). This is equivalent to
scaling factors of 0.6, 1.0 and 2.5.

Each scalepart detector is applied independently over all positions and scales to these
test images. The following section 7.2.1 discusses a set of representative detections.
ROC curves arc then examined in section 7.2.2.

7.2.1 Qualitative Analysis of Detected Car Scaleparts

Figure 7.5 shows the detected car scalcparts in 7 test scenarios at the three differcnt
resolutions “lores”, “original” and “hires”. As in chapter 5 each car scalepart detec-
tor is applied independently over all positions and scales with a downscaling factor
of 1/1.2. Input images vary in size, but each detector generally has to examine at
least several tens of thousands of subwindows for “lores” and “original” resolution
images or even several hundred thousand subwindows for “hires” images. For exam-
ple, “hires” image (a) in the top row of figure 7.5 is 765 x 365 pixels which means
that 779’289 subwindows have to be classified. The detection arbitration procedure
is identical to the one used in previous chapters: overlapping detections are merged
and their positions and sizes are averaged resulting in the detections shown in 7.5.

Full car detections are shown with a continuous line bounding box, half cars have
dashed lines, and wheel detections have lines of dashs and dots. The different line
styles also help to identify the responsible cue in case of false alarms.

Each column in the figure corresponds to a specific image resolution and car size. To
recall, within each column the car size is actually constant, but the images have been
rescaled for better visualization. Each row shows a particular test image to allow
for observing resolution-dependent changes. Generally, images have been rescaled
for visualization only, in fact their true sizes vary by a factor of 4.16 = é% between
“hires and “lores”.
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Figure 7.5: Detection of car scaleparts in difficult test instances. Each scalepart
detector searches over all positions and scales. Columns represent the different test
image resolutions, each row shows a particular test image. The figure illustrates
correct detections of cars that vary in appearance, size and orientation, as well as
occlusion handling, missed detections and background distractors.
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In the following we discuss the examples of figure 7.5 in more detail. Example (a)
shows the detection of three parking cars within one image. The full car detector
finds all cars irrespective of the actual resolution. However, the detection of the
car in the middle gets more accurate at resolutions “original” and “high” — which
is also generally the case. The half car detector detects but one car irrespective of
the actual resolution and all wheels are found in the “hires” version. Wheels at the
lower two resolutions are too small to be detected: the wheel detector size is 20 x 20
pixcls, “lores” wheels are 7 x 7 pixels). A false positive full car detection appears at
resolution “hires”.

In example (b) a right-facing car is detected by the full car detector at resolutions
“original” and “hires”. At “hires” the rear of the car is detected by the half car
detector. This can be explained by the symmetry of the sedan car type and the low
training resolution. Note how the left wheel is detected but the right wheel is not —
probably for its unusually dark color. A rather difficult test instance is (c) because
the car is occluded by the fence and slightly in-plane rotated since it is going up-
hill. The car is detected at the original resolution via the full car scalepart. At the
next higher resolution this detection is suppressed by an overlapping smaller and
unfortunately much more inaccurate detection. This is an effect of the detection ar-
bitration scheme which fuses overlapping detections by averaging their positions and
sizes. Several spurious “wheels” appear in these images, too. However, given that
detectors operate entirely locally these types of false alarms seem quite reasonable.

Example (d) of figure 7.5 is a “hidden” car with weak contrast which is successfully
detected by half and full car detectors at resolutions “original” and “hires”. At the
lowest resolution the car could not be detected.

Rows (e)-(g) are all examples for partial occlusion which can be resolved in cases (e)
and (f) at the highest resolution but not at lower resolutions. The wheel detector
obviously plays an important role in these cases. In (g) wheels are also partially
occluded.

Figure 7.6: In case of the full car detector admitting low confidence detections
results in many false alarms.

For this visualization a threshold has been set and fixed for each detector. For wheel
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and half car detectors this threshold is always the same. For the full car detector
the threshold is the same for all “lores” detections. However, a more conservative
threshold has been used for displaying “original” and “hires” detections, because
at higher resolutions the full car detector produces many false alarms. This is
illustrated in figure 7.6 which shows image (a) “hires” with the full car detector set
to the “lores” threshold.

7.2.2 ROC Analysis
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Figure 7.7: Individual car scalepart performance (wheel, half car and full car)

This section compares the contributions of full car, half car and wheel scaleparts for
car detection at different resolutions. ROC curves for test sets “lores”, “original”
and “hires” are shown in figure 7.7 in order of increasing image resolution.
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In the “lores” case the full car is the best-performing scalepart: its curve is con-
sistently above the other two and rises from a detection rate of about 50% at 10
false alarms to 65% at 20 false alarms and eventually reaches about 80% at 170 false
alarms. The half car detector retrieves up to 65% of the cars at 110 false alarms.
At 20 false positives it finds about 40%. Actual wheels at his resolution are less
than half the size of the wheel detector’s search window and can therefore only be
detected “accidentally” at extremely low thresholds. The detection rate therefore
stays below 10% even at 200 false alarms.

At the “original” resolution both half and full car scaleparts exhibit high detection
rates. At 10 false alarms both retrieve about 50% of the cars, then at 20 false alarms
the half car detector reaches 70% versus 55% of the full car. At higher false alarm
rates the half car curve rises faster and is consistently above the full car curve but
does not exceed a detection rate of 85% at 110 false alarms. The full car curve,
however, reaches up to 90% at about 190 false positives. Wheels at this resolution
are still beyond the wheel scalepart’s reach: their size is about 12 x 12 pixels.

In the “hires” case wheel and half car scaleparts both have steep ROC curves: at 20
false alarms each of them finds close to 80% of the cars. From then on both curves
rise slowly and reach a detection rate of up to 95% at 190 false alarms. The full car
scalepart has a flatter curve reaching about 55% at 20 false alarms and 85% at 190
false alarms.

Interestingly, the half car detector slightly outperforms the wheel detector at the
highest resolution and not vice versa. This is surprising because wheels are the
most detailed scalepart among the three and therefore particularly suited to the high
resolution case. However, there seem to be more wheel-like background distractors
in these images which result in a slower rising curve for “wheels” than for “half
car’. Also, half car and wheel detectors continuously improve their detection rates
as resolution increases. The full car detector, however, evokes an increasing number
of false alarms and reaches high detection rates only at increasing false alarm levels.

7.3 A Scaleparts-based Car Detector

This section develops and analyzes a scaleparts-based detector for sideviews of cars.
First, a Bayesian Network for scalepart combination is introduced in section 7.3.1.
As a proof of concept, the network parameters arc manually instantiated to allow
a first evaluation of the combined detector in section 7.3.2. Experimental results
merging “lores”, “original” and “hires” test images into onc test set are discussed
in section 7.3.3.
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7.3.1 Bayesian Network Topology

We consider the Naive Bayes case as a starting point for a Bayesian Net-based
combined part detector. This network is displayed in figure 7.8.
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Figure 7.8: Naive Bayes combination of car scaleparts.

The parent node car causes observations of a full and a half car and of wheels. In
this network the absence of wheels will effectively lower the confidence of any car
hypothesis. However, this is inappropriate for low image resolutions were the level of
image detail is not sufficient for detecting wheels. Also, a topology with “close” and
“far” nodes analogous to chapter 6 is not applicable here: this topology for body
detection encodes the assumption that certain scaleparts cannot occur together (in
particular fullbody and face scaleparts). In the car images at “original” and “hires”
resolutions, however, all three car scaleparts frequently coincide.

Ideally, one would estimate the global resolution situation of the test image first to
modulate the influence of individual scaleparts. The proposed topology in figure
7.9 therefore conditions the wheel node on a new observed node lores which takes
upon the value “1” for a low resolution image. Likewise the full car detector is
conditioned on that same variable. The wheel and full car node now have the two
common parents car and lores. With the instantiation of lores the two observed
nodes wheel and full car become conditionally dependent. This triggers a similar
information flow and “explaining-away” behavior as in section 6.3.4 of the previous
chapter.

Let F, C, L be the binary random variables for the full car, car and lores nodes.
Then by conditioning on L the probability P(F = 1|{C = 1, L = 1) can be different
from P(F = 1|C = 1,L = 0). This condtioning enables adjusting the influence of
wheel and full car nodes in the network for different resolution situations.

A pragmatic implementation for computing the value of lores is to use any wheel
detections as an indicator for lores == 0 and set lores == 1 otherwise. Note that
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Figure 7.9: The additional node lores adjusts the influence of full car and wheel
for a given hypothesis with respect to the resolution of the image.

this means wheel detections within the entire image whereas all other observations
are strictly local to the current hypothesis. Thus after applying the individual
scalepart detectors the value of lores has to be computed only once for the entire
image.

All conditional probability tables (CPTs) can be learned as described in chapter 6,
section 6.2. The learning entails labelling training data with the desired values of C
(car) and L (lores), followed by maximum likelihood estimation of the table entries.
The following section 7.3.2 describes a simplified approach with manually chosen
CPT entries which is sufficient to deliver a proof of concept for the feasibility of
scaleparts-based car detection.

7.3.2 Conditional Probability Tables For Car Detection

This section explains the manually estimated entries for the conditional probability
tables (CPTs) of network 7.3. Automatic learning of CPTs using Maximum Like-
lihood estimation is covered in chapter 6, section 6.2. Table 7.2 shows the CPT
associated with the full car node F. Here, probabilities are conditioned on variables
CAR and LORES. Since rows must sum up to 1 we only need to estimate 4 table
entries:

P(F = 1]CAR = 0, LORES = 0) = 0.8 is the estimated false alarm rate for
high resolution images. It is higher for the full body scalepart then for any
other detector.

P(F =1|CAR = 1,LORES = 0) = 0.5 is the estimated true positive rate in
high resolution images. Since wheel and half car scaleparts arc estimated to
be more reliable at higher resolutions this value is also set conservatively.
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P(F = 1|CAR = 0, LORES = 1) = 0.1 is the estimated false alarm rate for
low resolution images. This low number as well as the following

P(F = 1|CAR = 1,LORES = 1) = 0.8 cxpresses the high confidence put
in the full car scalepart. It often is the only working cue in low resolution
situations.

CAR LORES | P(F =0|CAR,LORES) P(F =1|CAR,LORES)
0 0 0.2 0.8
1 0 0.5 0.5
0 1 0.9 0.1
1 1 0.2 0.8

Table 7.2: The CPT for the full car node in network 7.9

The half car node (CPT shown in table 7.3) has only one parent, variable “CAR”.
P(H = 1|CAR = 0) = 0.1 expresses its low expected false alarm rate and P(H =
1|CAR = 0) = 0.7 its relatively high true positive rate.

Finally, the wheel node is again conditioned on two variables analogous to the full
car node. However the table entries are almost complementary to those of the full
car CPT.

P(W = 1|/CAR = 0,LORES = 0) = 0.1 is the estimated false alarm rate for
high resolution images which is low.

P(W =1|CAR =1, LORES = 0) = 0.7 is the estimated true positive rate in
high resolution images. This relatively high number expresses that wheel and
half car scaleparts are most important for high resolution detection.

P(W =1|CAR = 0,LORES = 1) = 0.01 is the estimated false alarm rate for
low resolution images. The wheel detector is very specific and indeed produces
extremely few false alarms in low resolution images. This is also why it was
chosen for estimating the value of variable “lores” which indicates the global
resolution situation of the image.

P(W = 1|CAR = 1,LORES = 1) = 0 basically says that the wheel detector
is to be switched off completely in low resolution situations.

7.3.3 Results Over All Resolutions

Applying the Naive Bayes classifier of figure 7.8 and the Bayesian Network of figure
7.9 to all 510 = 3 x 170 test images (“lores”, “original” and “hires” taken together)



7.3. A Scaleparts-based Car Detector 117

CAR | P(H =0|CAR) P(H =1|CAR)
0 |09 0.1
1 |03 0.7

Table 7.3: The learned CPT for the half car node in network 7.9

CAR LORES | P(W = 0|CAR, LORES) P(W = 1|CAR, LORES)
0 0 |09 0.1
1 0 |03 0.7
0 1 1099 0.01
1 1|1 0

Table 7.4: The learned CPT for the wheel node in network 7.9

results in the ROC curves shown in figure 7.10. These curves are “edgy” because
the classification function is computed from four binary input nodes which limits
the number of possible posteriors to 16.

In this plot, the Naive Bayes classifier’s detection rate does not exceed 60% but
reaches this detection rate at only 20 false alarms. At this low false alarm level it
improves over the Bayesian Network which reaches 27%. However, at higher false
alarm levels (390 false positives which corresponds to less than 1 false alarm every
other image), the Bayesian Network is able to retrieve 492 out of 600 cars, or 82%
which clearly improves over the Naive Bayes classifier’s performance. It is important
to note that for exceeding a detection rate of 67%, some of the 200 smallest cars
(“lores”, 60 x 24 pixels) must be correctly detected. Since for finding these small
cars the combined detectors have to heavily rely on the “full car” scalepart, the
number of false alarms is relatively high.

We also tried to compare these results directly to those of other authors, for exam-
ple to [Agarwal and Roth 2002]. However, there is no evaluation in the literature
which mixes different resolutions of the input images to obtain a larger test set with
different car sizes. We therefore restricted the car search to a single scale (because
[Agarwal and Roth 2002] do not search over multiple scales). When applying the
Bayesian Network to the original resolution images, the resulting detection rates
were only slightly lower but incurred more false alarms. However, one would have
to subject the competing approaches to the same test set containing different car
sizes for a meaningful comparison. We conjecture that especially in the limit of
very low image resolutions the scaleparts-based approach will prove most effective
because unlike other approaches it also incorporates holistic information (the full
car scalepart was shown to be important for low resolution detection).
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Figure 7.10: Car detection at all resolutions (“lores”, “original” and “hires”
images combined, containing 600 cars). The ROC curves are based on the Naive
Bayes classifier of figure 7.8 and the Bayesian Network of figure 7.9. Using the
Bayesian Network, 82% of all cars could be found at a cost of about 390 false
positives. This corresponds to less then 1 false alarm every other image. Finding
the 200 smallest cars (60 x 24 pixels) in this data set is especially hard, but necessary
to exceed a detection rate of 2/3, i.e. 67%. The Naive Bayes classifier’s detection
rate stays continuously below 60%.

7.4 Discussion

This chapter has introduced a scaleparts-based car detector for the detection of
sideviews of cars based on the scalepart framework of chapters 5 and 6. Individual
scaleparts have been lcarned as wheel, half car and full car detectors using AdaBoost.
In case of the full car, the most important selected features seem to be the car’s
ground shadow from the chassis and the frontal mudguard also including part of the
wheel. The half car is mainly detected again through features on mudguard and
wheel but the detector generally pays more attention to wheels. The wheel detector
uses rotated and center-surround features to capture parts of the rim, and the tyre
as well as the specific contrast between axle and tyre. Interestingly, all detectors
even at the smallest resolution incorporate wheel parts in early cascade stages but
they do not include regions of the upper car half, such as windows or roof.

The detection capabilities of these car scaleparts show complementary strengths
with regard to different image resolutions. However, they also exhibit differences
in discriminance levels. Half car and wheel detectors cause significantly fewer false
alarms than the full car detector. However, the latter is the most important cuc at
low image resolutions. The combined detector — again based on a Bayesian Network
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— therefore adjusts the influence of individual scaleparts depending on the estimated
global resolution situation of the current image.

It is likely that a more discriminant full car detector can be trained especially when
using a higher training resolution. However, initial experiments indicate that this
also requires a much large number of preprocessed high quality training data. Also,
it might be helpful to add additional complementary cues that can support the full
car detector at low resolutions. These could be scene-triggered contextual priors
[Torralba 2001], or other contextual cues, such as “streets”. To smooth the classifi-
cation function represented by the Bayesian Network, one would have to introduce
discrete value ranges (instead of binary nodes) or resort to continuous node repre-
sentations. One could imagine a hybrid Bayesian Network where all observed nodes
are continuous and the query node is binary to indicate the presence or absence of
the target object.
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Conclusion and Perspective

This thesis has developed new approaches and algorithms for object detection. Ob-
ject detection is a standard discipline in computer vision both for its many appli-
cations and for its important role in artificial intelligence research. Nevertheless
object detection capabilities in machines are far from being comparable to human
or mammal vision.

This is equally true for the specific task of face detection — even though within
computational object detection research it is probably the most advanced subfield.
The general guideline for this thesis was to look for new ways to improve face
detection first and then try to generalize to other object classes. For improving face
detection one possible way is to search for a better representation that can be used
within the traditional detection paradigm. However, since research on face detection
has seemingly reached a plateau the quest for improvements seems to call for a more
radical approach.

The approach taken in this thesis was to first identify, develop and evaluate comple-
mentary cues for face detection. Of interest are cues which successfully contribute
to the detection task and have so far been overlooked or not evaluated thoroughly.
They can then be combined with traditional successful face detection methods. Two
cues are closely investigated, one is based on finding skin patches the other is based
on finding a face’s local context.

While the skin patch detector is rather specific to human and face detection it
turns out that the local context detector allows for a fruitful generalization to other
object classes. As has been shown empirically in this thesis local context becomes
particularly useful as the level of available image detail decreases. Thus, just as
local context contributes to detection at a smaller scale we can form a whole set of
scale-dedicated object parts to accommodate different situations of available image
detail.

Such scale-dedicated object parts, in short scaleparts, can be efficiently detected us-
ing boosted classifier cascades trained from data using AdaBoost. A scalepart-based
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object detector can then be learned which combines individually detected scaleparts.
This thesis proposes to use Bayesian Networks for the mentioned combination and
evaluates the approach in face and car detection tasks.

8.1 Contributions

This thesis contributes to the field of object detection in three distinct ways.

Skin Patch Detection In skin patch detection the combination with shape out-

performs purely color-based approaches.

Chapter 3 has developed a novel skin patch detector based on a combination
of color and shape models. Empirical cvaluations on a large body of data
demonstrate the detector’s effectiveness. In particular, these evaluations show
that the combination with shape outperforms purely color-based approaches.
These results are based on a comprehensive statistical skin color model which
captures the variation of different skin complexions. The additional shape
constraints help increase the discriminance with respect to background of skin-
like color.

Another important result concerns the relation between skin patch detection
and appcarance-based face detection. It turns out that the skin cue can in-
crease the face detection rate significantly due to its strong invariance to pose
changes. Alternatively, it can greatly improve precision when used to post-
filter face hypotheses that have been extracted based on appearance.

Local Context Inspired by Torralba and Sinha’s experiments with human indi-

viduals chapter 4 has demonstrated the effectiveness of using local context for
computational vision.

The importance of local context increases as imaging conditions dcteriorate.
The presented analysis has focused on available image resolution where local
context increases detection robustness at small image scales. Robust operation
at low image resolutions (i.e. small images) is also attractive because it greatly
reduces object scarch time. And unlike skin detection, the approach does not
require color information which makes it widely applicable.

Scalepart-based Object Detection Robust detection over wide resolution ranges

can be achieved using scale-specific parts (“scaleparts”) that cover various ex-
tents of the target object.
The concept of scaleparts (chapter 5) is directly motivated by the local context

concept in connection with smaller image scales. The specific choice of parts is
not uniquely defined but motivated by the nced to accomodate different levels
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of available image detail. The approach emphasizes that individual scaleparts
be discriminant with respect to the background which is implemented using
AdaBoost. Part combination is implemented using Baycsian Networks which
allow for learning part interactions from data. A side product is the first local
to global (entire body) detector for pedestrians (for cars, such a global to local
detector has been proposed by [Garg et al. 2002)).

8.2 Additional Remarks

A number of additional insights have been gained from this work which could be
useful for other researchers in the field.

First, our experiments in face and car detection heavily rely on fast-to-compute
integral image features. In particular the same feature types are used for all part
detectors developed in chapters 5 and 7. Despite their simplicity we found that these
features coupled with AdaBoost learning yield remarkably discriminant classifiers
for parts as diverse as faccs, car wheels, lower bodies or car halves. We believe that
this feature set is quite rich and will be dircctly applicable to many other object
classes.

Second, we noticed that the local context detector (chapter 4) which detects upper
bodies of people is of immediate use for many popular vision applications. This
ranges from conversational interfaces, to head-tracking in video-conferences to peo-
ple detection in surveillance videos. The local context detector is also distinguished
by its high level of discriminance. The achieved discriminance level seems to out-
perform Mohan’s upper body detector [Mohan et al. 2001]. In their work the upper
body was the least discriminant cue of all detected body parts.

Third, the implementation of the scaleparts idea in chapter 5 brings together two
successful Machine Learning techniques: AdaBoost learning and Bayesian Networks.
In this marriage of a discriminative and generative method we aim at combining the
best of both worlds. The promise of discriminative learning is to make the best use of
a limited amount of training data by directly focusing on the decision boundary. For
cue combination Bayesian Networks provide an intuitive, interpretable and modular
way both for encoding expert domain knowledge and for learning cue interactions
from data.

8.3 Perspective

There are several natural extensions of this work:
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Other Object Classes It would be interesting to test the generality of scalepart-
based object detection by applying it to other rigid objects such as motorbikes,
boats, airplanes, etc.

Cue Fusion The current combiner is based on a discrete-node Bayesian Network.
This is motivated by the original AdaBoost formulation which returns discrete
class labels. However, AdaBoost variants with confidence-rated predictions
and a Bayesian Network with continuous nodes might lead to more accurate
detection.

Learning At least three additional learning problems naturally arise from this
work:

First, our scalepart learning currently relies on the user for initializing the
number of parts and their coarse positions and extents. We can as well imagine
an unsupervised algorithm where scaleparts emerge directly from the training
data. Clustering would be a natural way but the difficulty is in the complexity
of the data which is governed by the large number of training instances and
the possible resolutions, positions and sizes of part candidates.

Second, in the current scheme each scalepart detector cascade is individually
learned and applied. A more efficient way would be to learn a classification
tree which shares features among scaleparts in the first cascade stages and
differentiates between different scaleparts at later stages.

Third, instead of separately learning part detectors and part integration one
could try and learn everything at the same time. A successful example of
such simultaneous learning is [Viola et al. 2003]. In this work, they integrate
motion features with appearance in one learning loop.

Features Integral image features so far have been successfully applied for the de-
tection of cars (side views), pedestrians (frontal), faces (frontals and profiles),
facial features (for mouth tracking) [Lienhart et al 2003b] and brand logos
[Licnhart et al. 2003a]. It would be interesting to empirically investigate the
limitations of these features. One could try to detect wiry objects [Carmichael
and Hebert 2003], desk items [Mahamud and Hebert 2003] or animals, for
example and try to push the limits by adding new fast-to-compute feature

types.

Context In this work, we have focused on local context. Contrastingly, [Torralba
2001] have proposed global contextual cues based on a holistic image analy-
sis. These concepts could be easily integrated for scaleparts as new observable
nodes within the Bayesian Network. There might also exist intermediate con-
textual levels between global and local which are useful for object detection.
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Left: object detection and in particular face detection capabilities are
critical components for human computer interaction, for example,
with a robot. Right: the Nintendo GameBoy Camera allows the
player’s face to be inserted into a simple game - which involves face
detection.

Breakup chart of encountered error types in a representative set of
250 vacation snapshots using the Schneiderman-Kanade face detec-
tor. The top three error sources “face-like texture”, “group pictures”
and “too small” account for more than 50% of all errors. The un-
derlying error cause for the latter two is lack of image resolution. As
a result faces are smaller than the detector’s search window size and
are therefore not found by the detector. .

“Face-like texture” (top row) causes false detections which vary with
respect to their actual “faceness”: they can be face-like such as the
foilage in the left picture or they can be less face-like and must there-
fore be seen as artefacts of a representational mistake in the detector
(such as on the checker board in the right image). Another com-
mon error source is the lack of image detail which results in missed
detections (categories “group pictures” and “too small”). This of-
ten occurs in group scenes (second row) or in scenes with few people
and greater emphasis on the background (e.g. buildings or land-
scapes as in row three). Details for the less common error categories
“posc/individual”, “image orientation”, “occlusion” and “other” can
be found in section 1.3.

Skin segmentation based on skin color. White pixels in the likelihood
maps (bottom row) indicate high probability. Figure (a) shows spec-
ular reflections on the lady’s hand. JPEG artefacts can cause false
negatives and false positives as in example (b). Example (c) shows
that background objects (in this case the wooden fence) can have
skin-like color tones.
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Maximization of Mutual Information: The observed distribution of
skin pixels is compared to an cxpected distribution which effectively
imposes shape constraints. The mutual information between the two
distributions is computed. The algorithm maximizes mutual informa-

tion by gradient ascent on the parameters v of the expected distribution. 27

A statistical model representing Caucasian skin color in HSI space.
The Gaussian on the left represents the hue, the one in the middle
is saturation and the right-most Gaussian models the statistics of
intensity values. .

Example web images and ROC curves for the proposed skin finder
“color & shape” versus the skin classifier of Jones and Rehg “color”.
Using the proposed algorithm the equal crror rate is improved by
at least 15% (example d) and up to 35% (example a). The exam-
ples demonstrate the versatility of the skin detector with regard to
different skin tones. .

Performance comparison on the cntire test set of 6818 images. The
performance measures A,bs and p and p are based on the areas under
the ROC curves of the two competing classifiers. In 2456 of these 3784
test cases the proposed skin finder compares favorably, increasing
both precision and recall. The nine images shown on the top and
bottom of this plot illustrate different cases of relative performance.
They are more closely examined in section 3.2.2. . . .

These images characterize three different cases when comparing the
purely color based approach (“color”) color is better than color+shape
in images a)-c), both approaches perform about equal in (images d-f)
and color+shape outperforms pure color in images g)-i). Especially
in images g)-i) skin patches can be well approximated by upright
cllipses, their support is large enough and the background is cluttered
with skin-like colors: this is the typical situation where the proposed
scheme provides the largest benefit.  Also note that a connected-
components approach would have difficulties with such a situation.

Characterization of appcarance-based face detection vs. skin detec-
tion. The first two columns show the face detection results of Rowley
and Schueiderman, row threc shows the skin finder’s output. These
examples illustrate characteristic effects of (a) scale, (b) in-plane rota-
tion, (¢) out-of-plane rotation, (d) occlusion, (d) face-like distractors,
(f) crowds

Image gallery showing additional results of appearance-based face de-
tectors (Rowley, Schneiderman) and the proposed skin detector.
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4.1

4.2

4.3

4.4

4.6

A face and its Jocal context. As the image resolution is decreased
(left to right), details such as facial features vanish. However, even
at the lowest resolution humans arc still able to infer the presence of
a face because its context can he recognized.

Examples of different faces (inner rectangle) and their local context
(outer rectangle). These images illustrate the great variation con-
tained within the close surrounding of faces but also demonstrate
that a person’s upper body, shoulders, the neck and head contours
are strong cues that hint at the presence of a face. For illustration
purposes only one face per image is examined here.

Examples of training instances used in the proposed approach bascd
on local context (top row) versus the traditional object-centered ap-
proach (bottom row). The resolution is 56x48 and 48x56 pixels, re-
spectively.

Whenever the local context of a face is detected the actual face lo-
cation is inferred by assuming a fixed position within the detection
frame. Here w = W/2, h = H/2 and the oftset relative to the upper
left corner is set to (W/4, H/10).

This figure illustrates the differences in the features (wavelet coeffi-
cients) that are being modcled in the object-centered case (left box)
and in the local context case (right). In the left wavelet decompo-
sition the facial features such as eyes and mouth are clearly visible.
These can hardly be discerned in the wavelet decomposition on the
right side. However, other features such as the collar of the shirt,
shoulders, head and body contours become visible here which do not
exist in the object-centered case. .

Feature extraction: local arrangements of quantized wavelet coefli-
cients are combined to form one single feature value. In this exam-
ple four coefficients from the HL subband (upper right subband in
the wavelet decomposition) and four from the LH subband (Jower
left subband) capture the dependency between horizontal and verti-
cal orientations. Such arrangements are examined over all locations
within the involved subbands (oversampling).
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4.9
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411

ROC curve showing the percentage of detected faces (vertical) vs. the
absolute number of false positives (horizontal, logarithmic scale). At
the original image resolution (left plot) the object-centered approach
is sufficient to detect 90% of all faces. When the image resolution 1s
decreased by 50% (right plot) the object-centered approach by itself
retrieves only 55% of the faces. For the object-centered detector de-
tection rates at higher false alarm levels cannot be computed because
of technical limitations of the web-based implementation. Interest-
ingly, the combination with detections from the local context cue
immediately yields an additional 25% of correct detections, which

suggests the local context contributes truly novel correct detections.

Performance of the individual cues and their combinations. The 10%
improvement between the object-centered+skin pair and the other
two pairs is due to detections from the local context cue (right plot).
For this database this means about 90 additionally retrieved faces
that otherwise would have been overlooked.

Novel face detections indirectly inferred from the local context cue.
The object-centered approach fails on these instances mainly because
faces are too small or because of their specific pose. The skin detector
fails on the same instances mainly because of illumination problems or
because the extracted skin region’s size and location is too inaccurate.

Lienhart’s extended integral feature set including rotated features
and center-surround features. These features are reminiscent of Haar
wavelets and early features of the human visual pathway such as
center-surround and directional responses.

Automatically selected features (first classifier stage) for the object-
centered face detector (9 features overlaid on a random training in-
stance, top row) and the local context detector (14 features overlayed
on two different training instances), bottom two rows - the number
of features is automatically determined by the learning algorithm).
In the local context casc the first feature (fl1) extends over the en-
tire patch, thus making use of information that is not available in
the object-centered case. In addition, features f9 and f10 as well as
feature fl14 capturc the left and right shoulder to help in the face
detection task. .

o4
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4.12

4.13

4.14

FGNET sequence, face posc changes: The left plot shows detections
of the local context of faces while the right plot shows the output of
the object-centered detector. The latter misses two faces because it
is restricted to frontal view detection. While an additional special-
ized side-view detector could be trained (assuming the object-centered
paradigm) this would at least require to gather a large amount of ad-
ditional training data of profile views. Contrastingly, the local context
approach does not require such specialized training and is robust to
face pose changes.

Detection accuracy on the FGNET data set. Each plot shows the
percentage of detected faces (vertical) vs. the number of false posi-
tives per frame (horizontal). The ROC curves show the performance
of the object-centered detector and the local context detector. Note
that the frame resolution is decreased from the left plot to the right
plot. At the original resolution shown on the right side, the local
context detector dominates already because it is more robust to face
pose changes. At lower frame resolutions (middle plot and right side
plot) facial details deteriorate and the object-centered approach be-
comes unreliable. The local context on the other hand is not affected.
Since the local context detector can operate robustly at very low
frame resolutions it actually runs 15 times faster than the traditional
object-centered approach at the same level of accuracy.

FGNET sequence, resolution changes: Each row of this figure cor-
responds to a different frame resolution (frame resolution decreases
from the top to the bottom row). The images have been rescaled
to the samec size only for illustration purposes. The left column
shows detections based on local context, the right column is from
the object-centered approach. This example illustrates that as facial
details degrade the object-centered approach misses actual faces. The
local context cue is much less affected by resolution changes. It con-
sistently retrieves all three faces at all tested resolutions, while the
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object-centered approach does so only for the highest frame resolution. 63
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5.11

In the parking lot sequence at least 1’000°000 candidate subregions
per frame (example frame shown on the left) had to be correctly re-
jected. The situation is much more demanding than the FGNET
scenarios because of the perspective (downward looking camera) and
the background clutter. The ROC curve (right) shows the perfor-
mance of the local context detector. The object-centered approach
fails because faces are too small in this sequence, so its ROC is not
shown. The local context detector retrieves about 75% of the actual
faces at 7 false alarms per frame. This clearly indicates that the local
context detector goes beyond the capabilities of object-centered face
detectors.

Set of Body Scalcparts
Object Scaleparts .

Learning a scalepart-based object detector. This chapter deals with
step 1. Steps 2 and 3 are covered in the next chapter.

full body training images .
lower body training images .
Full body teatures .

Lower body features

Indoor test sequence
QOutdoor test sequence

ROC performance of the face detector on frames of the indoor and
outdoor sequence in which the face is sufficiently large (“compatible
frames”). The number of test frames is shown in the bottom right
corner of the plot. The dashed vertical line serves as a reference point
for comparisons and corresponds to 1 false alarm every 10th frame.
The curve shows a much better performance indoors because in these
frames the face is always in a frontal posc. In the outdoor sequence,
however, the face turns occasionally (head movement) which leads to
missed detections. .

ROC performance of the upper body detector indoors (left) and out-
doors (right). Unlike the face detector the upper body detector is
not affected by head movements which results in high detection rates
for both sequences. However, the indoor ROC curve is much steeper
than the outdoor curve. This corresponds to the intuitive effect of
the more complex background in the outdoor sequence where higher
detection rates come at a higher price (false alarms).
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The lower body detection rate on compatible frames is at 92% at 1
false alarm every 10th frame (dashed vertical line in each plot). This
detection rate is roughly constant in the outdoor case. In the indoor
case the detection rate increases to 100% at about 1 false alarm every
4th frame. . . . . . e e 80

Compared to the other detectors the full body detector reaches high
detection rates (90%) only at a relatively high number of false alarms
- about 1 falsc alarm every other frame. The flatter curve to the right
is again due to the more complex background of the outdoor sequence

which attracts more false positive detections. . . . . . . . .. .. ... 81
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