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Abstract

This work is devoted to the study of characteristic classes of flat bundles from the point of view of

bounded cohomology.
Our main result is a new proof of Gromov's boundedness of primary characteristic classes of

flat bundles which, in contrast to Gromov's original proof, does not rely on Hironaka's resolution

of singularities. Moreover, we point out that a representative for these classes can be found which

in fact only takes a finite set of values (as opposed to merely being bounded) on singular simplices.
The conjectural generalization to secondary characteristic classes of flat bundles is discussed. In

particular, we show that the well known conjecture stating that the simplicial volume of all locally

symmetric spaces of noncompact type is strictly positive would follow from the boundedness of the

secondary characteristic classes of flat bundles.

Résumé

Ce travail consiste en une étude des classes caractéristiques de fibres plats du point de vue de la

cohomologie bornée.

Notre résultat principal est une nouvelle preuve du théorème de Gromov stipulant que les classes

caractéristiques de fibres plats peuvent être représentées par des cocycles bornés. Notre preuve,

contrairement à celle de Gromov, ne se base pas sur la résolution de singularités de Hironaka. De

plus, nous montrons que ces classes peuvent être représentées par des cocycles ne prenant qu'un
nombre fini de valeurs sur les simplex singuliers.

La généralisation conjecturale aux classes caractéristiques secondaires de fibres plats est dis¬

cutée. En particulier, nous montrons que la fameuse conjecture énonçant que le volume simplicial
d'un espace compact localement symétrique de type non compact est strictement positif découlerait

de la généralisation du théorème de Gromov aux classes charactéristiques secondaires.





Introduction

The first milestone in the history of bounded cohomology may very well be Milnor's characteri¬

zation of flat oriented vector bundles over surfaces in terms of their Euler number ([Mi58]), later

generalized to the unoriented case by Wood ([Wo71]).

Theorem 1 (Milnor-Wood inequality) Let £ be a SL2S.-bund.le over a surface T.g of genus

g > 1. The bundle £ is flat if and only if its Euler class e(£) G H2(T.g) satisfies

|e(0[Sfl]|<ff-l.

This result, or more precisely one of its implications, can in a natural way be put in the context

of singular bounded cohomology. Indeed, the Euler class was proven to be bounded by Ivanov

and Turaev in [IvTu82]. (A cohomology class is said to be bounded, if it can be represented by a

cocycle whose set of values on singular simplices is bounded, or equivalently, if its norm H-H^ is

finite. Consult the Appendix for further details.)

Theorem 2 If £ is a flat SLnM.-bundle then

IKON«, < ^-
This bound on the Euler class, together with the knowledge of the 1-norm of the fundamental

class of a surface Ss (also called simplicial volume) implies half of the Milnor-Wood inequality, as

pointed out by Ghys in [Ghys87] (see also [Ghys99] ). It is a simple consequence of the duality of

the two norms.

In his seminal paper [Gr82], Gromov generalized the boundedness of the Euler class of flat

bundles to all characteristic classes:

Theorem 3 Let G be an algebraic subgroup of GLn(M). Then every characteristic class of flat
G-bundle can be represented by a bounded cocycle.

An immediate corollary is that a topological space with amenable fundamental group does not

possess any non trivial characteristic class of flat G-bundle, where G is, of course, an algebraic

subgroup of GLn(R).
Another consequence is the vanishing of all characteristic of flat G-bundles whenever G is an

amenable algebraic subgroup of GLn(R) admitting a cocompact lattice. This was well known for

compact groups, for it follows from the fact that the Chern-Weil homomorphism is an isomorphism.
For solvable groups, it can already be obtained from the following result of Goldman and Hirsch

vu



vm INTRODUCTION

(see [GoHi81]): Every flat principal G-bundle is virtually trivial (meaning that there exists a finite

covering of the base space, such that the pulled back bundle is trivial).
The hypothesis in the above Theorem of Gromov (Theorem 3) that G be algebraic can not

be removed. Indeed, Goldman gives in [G08I] an example of a flat G-bundle over the 2-torus

with nontrivial characteristic class in degree 2. This class can not be bounded since the bounded

cohomology of the torus is trivial. The group G in question is the quotient of the Heisenberg

group H of upper triangular unipotent 3 by 3 matrices with the normal subgroup generated by

any central element, and the characteristic class in H2(BG) is the obstruction to the existence of

a section of the projection H —> G.

We give here a new proof of Gromov's theorem with the advantage that a representative for

every characteristic class of flat bundle can be found whose set of values on singular simplices is

not only bounded, but furthermore finite. We thus prove:

Theorem 4 Let G be an algebraic subgroup of GLn(M). Then every characteristic class of flat
G-bundle can be represented by a cocycle whose set of value on singular simplices is finite.

The first step of the proof, which is common to both Gromov's original proof of Theorem 3

and our Theorem 4, is to reduce to the following simplicial version of the statement:

Theorem 5 Let G be an algebraic subgroup of GLn(M) and ß G Hq(BG) a characteristic class.

There exists a finite subset I ofM. such that for every flat G-bundle £ over a simplicial complex

K, the cohomology class /?(£) G Hq(\K\) can be represented by a cocycle whose set of values on the

q-simplices of K is contained in I.

Again, the case of the Euler class was already well known: Sullivan proved in [Su76] that the

Euler class of any flat SLn (R)-bundle over a simplicial complex can be represented by a simplicial

cocycle taking values in {—1,0,1} and Smillie improved this to { —1/2,0,1/2} in [Sm81].
Let us point out, that both the proofs of the simplicial version of the theorem and the reduction

to it are not only completely different from Gromov's but also much more elementary. It is only a

technical artifice to show how one can reduce to the simplicial version of the theorem. The main

difficulty thus really lies in the proof of this simplicial version. Our main tool is a bounded version

of the existence of a finite triangulation of semi-algebraic sets as developed by Benedetti and Risler

in [BeRi90], whereas Gromov needs Hironaka's deep resolution of singularities.
One possible generalization of Gromov's Theorem 3 (or more generally Theorem 4) is the

following conjecture:

Conjecture 6 Every secondary characteristic class in H2q~1(BG ), for q > 1, can be represented

by a bounded cocycle.

In view of Dupont and Kamber's result that the continuous cohomology of a connected semisim-

ple Lie group with finite center is generated by primary and secondary characteristic classes (see
[DuKa90, Theorem 5.2]), Conjecture 6 immediately implies the following conjecture:

Conjecture 7 Let G be a connected semisimple Lie group. For any n>2, the comparison map

F^(G,R)^FC"(G,R)

is surjectwe.



IX

This question was already raised by Monod and further conjectured in the case of SLnC ([MoOl,
Conjecture 9.3.8]). A straightforward consequence of the latter Conjecture is now a well known

conjecture of Gromov:

Conjecture 8 The simplicial volume of any compact locally symmetric space of non compact type

is strictly positive.

This conjecture is known to hold in the real rank one case, for Thurston proved that a uniform

bound on the volume of geodesic simplices in the corresponding symmetric spaces exists, which

implies both the validity of Conjectures 7 and 8 in this case (see [Th78] and [Gr82]). For locally

symmetric spaces covered by SLnR/SO(n), Conjecture 8 was proven by Savage in [Sa82].
Our exposition is structured as follows: In Chapter 1 we review some elementary notions on

principal bundles and classifying space. Simplicial complexes and their basic properties are exposed
in Chapter 2. Primary and secondary characteristic classes are defined in Chapter 3. The case

of the Euler class is examined there in detail, and the results and conjectures presented in this

introduction are elaborated on. Finally in Chapter 4, after defining semi-algebraic sets and giving
their first properties, we furnish the proof of Theorem 4. Note also that in the Appendix, a quick
review on singular bounded cohomology is given.
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Chapter 1

Bundles

1.1 Principal bundles and classifying spaces

1.1.1 Principal bundles

Let G be a topological group. A topological principal G-bundle £ is a continuous surjective map

P

x

between two topological spaces P and X together with a right continuous G-action P x G —> P

satisfying

• for every x in X, the preimage n^1(x) of x by n is an orbit for the G-action on P,

• for every x in X, there exists a neighborhood U of x and a G-equivariant homeomorphism

tp : 7r_1(£/) —> [/ x G, where the G-action on the product [/ x G is given by the trivial action

on the first factor, and multiplication from the right on the second, such that the diagram

tt-1(Z7) —^-> UxG

TT \ ,/pi

commutes. Of course, the map pi denotes the projection on the first factor. This last

condition is referred to as local triviality and the map tp is a local triviahzation.

The space P is called the total space and X the &ase space of the topological principal G-bundle

£. Assuming that G is a Lie group we define a smooth principal G-bundle to be a topological

principal G-bundle where all the spaces and maps in consideration are moreover assumed to be

smooth, that is, so that the spaces P and X are smooth manifolds, the map n and the G-action

are smooth, and the local trivializations tp are diffeomorphisms. Note that by smooth we always
mean infinitely differentiable. Whenever it will be clear from the context if we mean topological
or smooth principal G-bundle we will simply speak about principal G-bundle.

1



2 CHAPTER 1. BUNDLES

The right translation Rg by any element g of the group G is defined as the map

Rg: P -^ P

u i—> ug.

It is clear that the base space of any G-bundle is homeomorphic to the quotient of the total

space by the action of the group G. Also, if a group G acts freely on a space P, then the quotient

map P —> P/G gives rise to a principal G-bundle.

A bundle map between two topological (smooth) principal G-bundles is a continuous (smooth)
G-equivariant map between the two corresponding total spaces. A bundle map obviously induces

a map between the corresponding base spaces as follows: Let £4 = {nt : Pt —> Xt}, for i = 0 and

1, be a topological (smooth) principal G-bundle, and let / : Pq —> Pi be a bundle map between £o
and £i. Define a continuous (smooth) map / : Xq —> Xi as

f(x) =7Tl (/(«)),

for every x in Xo and m in -Kq (x). As the map / is G-equivariant and the map -k\ is G-invariant,
the map / is well defined. By definition, the diagram

Po -J-^ Pi

TO

x0 —L^ xx

commutes. We say that the map / covers the map /.
A bundle map is an isomorphism if it admits an inverse. Observe that an isomorphism neces¬

sarily covers a homeomorphism of the corresponding base spaces, and conversely, if a bundle map

covers the identity, or more generally a homeomorphism, then it has to be an isomorphism.
The first example of a principal G-bundle is the product bundle

XxG

1

X,

where the bundle map is given by the projection on the first factor, and the action of G on the

product X x G is trivial on X and by right multiplication on G, that is,

(x, h) g= (x, hg),

for every (x, h) in X x G and g in G. A principal G-bundle over a base space X is said to be trivial

if it is isomorphic to the product bundle XxG.

Let £ = {n : P —> X} be a principal G-bundle. A section of £ is a continuous (smooth) map

s : X —> P such that

TT O S = Idx

Lemma 9 A principal G-bundle is trivial if and only if it admits a section.
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Proof. Let Ç = {n : P ^ X} he & trivial principal G-bundle. By definition, this means that there

exists a G-equivariant invertible map

J :X xG—>P

covering the identity. Now the product bundle surely admits a section, for example the trivial

section

s : X —> XxG

x i—> (x, 1G).

Composing this section with / we obtain the desired section of £. Indeed, as n o f is the projection

pi on the first factor of X x G, we have

TV O [f O S) (x) = p\ O s(x) = X.

Conversely, suppose that the principal G-bundle £ = {n : P —> X} admits a section s : X —> P.

Define
_

/ : X x G —> P

(x,g) i—> s(x)-g.

The map / is clearly G-equivariant, and as it covers the identity, it is an isomorphism between the

product bundle and the bundle £.

Transition functions

Let £ = {n : P —> X} be a principal G-bundle. Let {Ut}tej be a covering by open sets of the base

space X so that the bundle £ restricted to any Ut, for i in I, is trivial. For every i in I, let

il>x:ir-l(Ux)^UxY.G

be some local trivializations of the bundle £. For i,j in /, we can now consider the composition

^7 lc/,n!7,xG ., s

V^U-lm n!7,)

[f.nUjxG ————> -n-l{utnUj)
3

: f/,n^x G,

which surely is a G-equivariant homeomorphism and moreover is the identity on its first factor.

Thus it has the form (x,g) i— (x,f(x,g)) for some continuous function / : UtC\Uj x G ^ G.

But from the G-equivariance, it follows that f(x,gh) = f(x,g)h, so that the above composition
of local trivializations actually has the form (x,g) i— (x,f(x, fa)g)- We can now define the so

called transition functions

gl3 -.UiHUj —> G

for every i and j in / by gl3{x) = f(x, Ig). They satisfy the relation

Ai>^~1(x,g) = (x,glJ(x)g),

for every x in Ut n C/j and gr in G, and are moreover clearly completely determined by it. Those

functions are of course dependent on the chosen local trivializations. They further fulfill the

following cocycle relations:

• 9n(x) = Hg, for every «in J and i in [/,,
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• glJ(x)gjk(x) = glk(x), for every i,j, k in L and x in Ut n U3 n C/fc.

Note that from the only knowledge of the covering {£4}îe/ and the transition functions {g!:J},je/
it is possible to recover the original bundle £ = {n : P —> X} up to isomorphism. Indeed, consider

the quotient

p' = m ut xgJ/~
of the disjoint union of the products Ut x G by the equivalence relation

\Jl x G 3 (x,gl3(x)g) ~ (x,g) eU3 x G,

for every i in (7, (1 C/j and g in G. The space P' is endowed with the right action of G induced by
the canonical action of G on the products Ut x G. The projection -k1 : P' —> X is induced from the

projections (J, x G ^ (7, on the first factor. The principal G-bundle £' = {V : P' —> X} is easily
checked to be isomorphic to the original bundle £. Actually, letting

V>, : tt-1^,) -^[/,xG,

for every i in J, be the local trivializations defining the transition functions gl3, an isomorphism
between £ and £' can for example be given by sending any element u in 7r_1(t/j) to the equivalence
class represented by the element tpt(u) in the product Ut x G.

Lemma 10 Let {gtj}t,jei and {htj}t,jei be two families of transition functions relative to the

same open covering {Ut}lEj of some topological space X. Then the two corresponding G-bundles

are isomorphic if and only if there exists maps \t : Ut —> G, for every i in I, such that

gjj(x) = Aj(x)/ijj(x)(Aj(x))_1

for every i,j in L and x inUtC\U'3.

Proof. Let £,(gtJ) and £,(htJ) be the two G-bundles obtained by the above procedure from the

systems of transition functions {gij}i,jei an(l {Kj}i,jei respectively.

Suppose that the two bundles are isomorphic and let the isomorphism be given by a map

J : P(th3) ^ P(gt3).

This map being a G-equivariant map covering the identity, it necessarily has the form

(x,g) i—> (x, \{x)g),

for (x, g) in C/, x G and some map A4 : Ut —> G, when restricted to (/, x G and viewed as a map

from (/, x G to itself. Let x belong to Ut n U3 and let g be a group element. In P(htJ) we then

have

Ut x G 3 (x, hlJ(x)g) ~ (x,g) eU3 x G.

Applying / we thus obtain in P(gtJ) that

UtxG3 f(x,htJ(x)g) = (x, \{x)hl3{x)g) ~ /(x, g) = (x, \3{x)g) £ U3 xG.
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But in P(gt3) we also have that

Ut x G 3 (x,gjj(x)Aj(x)g) ~ (x, Aj(x)g) eU3 x G.

It thus follows that

\t(x)hl3(x) = gl3(x)\3(x).

Conversely, starting with two systems of transition functions for which there exists maps A4 :

Ut —> G satisfying the above equality, we can define a map

UtxG —> UtxG

(x,g) i—> (x, Aj(x)g,

which induces a well defined map between the two total spaces P(hl3) and P(gl3) because of the

equality gl3{x) = Xl(x)hl3(x)(X3(x))^1. This map is further clearly G-equivariant and covers the

identity, so that it lifers the desired isomorphism between the bundles £,{hl3) and £,{gl3).

Pull Backs

Given a principal G-bundle £ = {n : P —> X} and a continuous map / : Y —> X, where y is a

topological space we can consider the pull back of the bundle £ to Y, denoted by /*(£). This is

the G-bundle over Y with total space

f*(P) = {(y,u)eYxP\f(y) = 7v(u)},

and of course the bundle map is simply the projection on the first factor. Observe that a bundle

map / : f*(P) —> P is given by the projection on the second factor.

Lemma 11 Let f : £o — £i &e « bundle map between two principal G-bundles. Denote by f :

Xo —> Xi i/ie corresponding map of the base spaces. Then

£o = f(£i).

Proof. Denote, for i = 0,1, by P4 and 7r4 the total space and bundle map of £4. The isomorphism
is given by

Po -^ f*(Pi)
U I > (7T0(m),/(«)).

Indeed, this map is well defined because the bundle map / commutes with the projections, it is

G-equivariant, because / is, and it obviously covers the identity map.

A fundamental property of the pull back is its invariance under homotopy. More precisely, the

pull backs of some G-bundle by two homotopic maps give rise to two isomorphic bundles. This

is obtained at once as a corollary of the following theorem, the proof of which are, up to small

adaptations, taken from [Hu66] (Chapter 3, Theorems 4.3 and 4.8).

Theorem 12 Let £ be a principal G-bundle over X x [0,1], where X is a paracompact space, with

total space P and bundle map ir. Set

r : X x [0,1] —> X x [0,1]
(x,t) i—> (x, 1).
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Then there exists a bundle map r covering r:

P —^-> P

B x [0,1] —^— B x [0,1].

Proof. For simplicity, and since it will be all what we need in what follows, we restrict ourselves

to the case when there exists a finite covering {Ut}^=1 of X such that the bundle £ restricted to

Ut x [0,1] is trivial. (The proof of the general case, when the covering is only locally finite, is a

straightforward generalization of this one and can be read in [Hu66].) For i G {1,... </}, let

<f>t:n-\Utx [0,1]) -^l/,x [0,l]xG

be the local trivializations. For every i G {1,... </}, choose functions

Vl : X —> R

such that

• supp(z/j) C t/j,

q

• 2_,vi{x) = 1 f°r every x in X.

i=\

For every i G {1,... </}, define

ut: P -^ P

( u if u£ K-l{U% x [0,1]),
u i—> < (f>~ (x,min{t + z/j(x), 1}, g) if u G tt~1(U1 x [0,1]) and

I u = <f>~1(x,t,g).

To see that this defines continuous maps, it is enough to realize, that, the support of vt being
included in Ut, whenever x tends to the boundary of Ut, the value of vt on x tends to zero, and

hence the minimum between t + vt(x) and 1 goes to the minimum between t and 1, which is equal
to t since t belongs to the interval [0,1]. Since those maps are G-equivariant, they are bundle

maps. Let

rt : X x [0,1] —> X x [0,1]
(x,t) i—> (x, min{t + vt(x), 1})

be the corresponding base space maps. We now need to prove that

r = rq o rq-\ o o r-2 o r\.
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Let (x,t) be in X x [0,1] and let us compute the composition of the maps r\ on it:

rq o rq-i o • • • o T2 o ri(x, t) = rq o o rs o r2(x, min{£ + v\{x), 1})

= rqo or3(x,min{£ + ^i(x) + v2{x), 1})

= rqo or4(x, min{t+ ^z/j(x), 1})

= (x,min{£ + v\{x) + ... + vq(x), 1)

= (x,min{£ + 1,1})

= (x,l)

= r(x, t).

The map

M=MgO Wg-1 O • • • O W2 ° ul

is thus a bundle map covering r. m

Theorem 13 Let X and Y be topological spaces, £ a principal G-bundle over X and f c; g : Y —>

X iwo homotopic continuous maps, then

f*(0=9*(0-

Proof. Let h : Y x [0,1] —> X be the homotopy from / to g, so that /i|yx{o} = / an<l fyrxji} = 3-

Then

/*(O = fe*(O|yx{0} and g*(£) = fe*(0|yx{i}-

Apply Theorem 12 to the bundle h*(£) over y x [0,1]. Restricting the bundle map J to n^1(Yx {0})
we obtain a bundle map

u*/u\
r7r-i(rx{o})

,*/m
"- (Plir-^YxM) "- (^^-'(rxii})

B x {0} r-1(yx{0}); P x {1}

covering the identity. It is thus an isomorphism.

Corollary 14 If'£ is a principal G-bundle over a contractible base space, then the bundle is trivial.

Proof. Let X be the contractible base space of £. Then the identity Idx of X is homotopic to

some constant map c : X —> {xo} C X. By Theorem 13 the bundle £ (being the pull back of itself

via the identity map) is thus isomorphic to c*(£), which is the product bundle XxG, since the

condition that c(x) = n(g), for x G X, g G G is empty. (Of course, 7r denotes the projection map

of£.)



8 CHAPTER 1 BUNDLES

Reduction of bundle

Let H and G be two groups and i : H —> G a group homomorphism. Suppose rj = {n^ : Pv —> X}
is a principal P-bundle and £ = {71c : Pc —> X} is a principal G-bundle. The bundle £ is said to be

an extension of 77 (relative to 1), or equivalently rj is a reduction of £ (relative to «), if there exists

a map f : Pv ^ Pc such that

/(7T^1(x)) C 7r7 (x) for every x in X,

f(uh) = f(u)i(h) for every m in P and h in PT.

As a consequence of the fundamental result of Iwasawa ([Iw49]) and Mostow that every con¬

nected Lie group is topologically equivalent to product K x E, where if is a maximal subgroup
and E is contractible, one has:

Theorem 15 Let G be a connected Lie group and K be a maximal compact subgroup. Every

principal G-bundle admits a reduction to K.

1.1.2 Classifying spaces

A principal G-bundle £q = {ttq ' PG —> PG} is said to be universal if for every principal G-bundle

£ = {n : P —> P} there exists a classifying map f : B —> PG, unique up to homotopy such that

the bundle £ is isomorphic to the pull back /*(£g)- The base space PG of the universal bundle £q
is called the classifying space. Somehow the bundle £q is the most complicated G-bundle possible:

taking pull backs only simplifies the bundles.

Various constructions of classifying spaces exist. We will describe here a possible model for

linear groups which we will need in our proof of our main theorem.

Space of frames

Let n and q be positive natural numbers and set N = (q + l)n. The space of n-frames in MN,
which we denote by Frn(RAr), consists of ordered n-tuples of linearly independent vectors in MN.

It is naturally identified with the set of N times n matrices with linearly independent columns.

There is a natural action of GLn(R) from the right (and one of GLjv(R) from the left) simply given

by matrix multiplication, which furnishes a right action of any closed subgroup G of GLnR on the

space of n-frames Frn(RAr). Define

PGq = Frn(Rw) and PGg = PGq/G,

and let ttq ' PGq —> PGq denote the natural projection. We have thus obtained a principal
G-bundle

CqG = {*g : PGq -+ BGq} .

For a frame A in PGq =Frn(RAr), that is, a N times n matrix with at least one of its maximal

minor not zero, we denote by [A] g its equivalence class in the quotient PGq = PGq/G, so that

tvg(A) = [A]g.
Observe that for G =GLn(R), the space PGq is diffeomorphic to the Grassmanian manifold of

n-dimensional vector subspaces of MN, and in general PGq is a fiber bundle over the Grassmanian,
with fiber diffeomorphic to GLn(R)/G.
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The canonical inclusions R9 ^-> R9 x {0} ^-> R9+1 also produce inclusions 1"' ^-> R(«+1) which

in turn induce canonical G-equivariant inclusions PGq ^-> PGq+i. Define PG as the limit

PG = limg^00PGg.

The inclusions being G-equivariant, a right action of G is naturally given on the limit PG. Let

PG be the quotient
PG = PG/G

and denote by ttg ' PG —> PG the natural projection.

Theorem 16 The bundle £q = {^G ' PG —> PG} is a universal G-bundle.

The classifying map

Theorem 17 Let G be a subgroup of GLnM. and £ = \ji : P —> P} be a principal G-bundle.

Suppose that the base space B can be covered by q + 1 open sets Uq, ..., Uq relative to which there

exists a partition of unity, and further that the bundle £ is trivial when restricted to any of the

Ut 's. Then there exists a classifying map f : P —> BGq.

What we mean here by classifying map is really that the bundle £ is isomorphic to the pull
back through / of the approximation £G of the universal bundle. We do not claim that the map

/ should be unique up to homotopy, which is actually false, so that the terminology of classifying

map is presently slightly abusive. However, the composition of / with the canonical inclusion of

PGq in PG is a classifying map in the true sense of the word.

Proof. Let, for every i between 0 and q,

<t>t:ir-\Ut)^UtxG,

be some local trivialization of the bundle £ and

gl3 :UtnU3 —>GLn(R),

be the corresponding transition functions. Recall that those satisfy the defining equality

4>%(f>~x{x,g) = (x,gl3(x)g)

for every x G Ut n U3 and g G G, and further fulfill the cocycle relations

gtl
= Ld\j%,

9ij(x)9jk(x) = gtk(x) for every x G Ut n U3 D Uk.

Let {wj}f=0 be a partition of unity relative to the open covering {Ut}^=0 of P. Thus, ut is, for

every i between 0 and q, a mapping

ut : B -^ [0,1]

whose support is strictly contained in Ut, and for each x in P we have

q

y^ut(x) = 1.

»=0
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For every i between 0 and q, define a continuous G-equivariant map ft : n 1(Ul) —> PGq as

/ u0(n(u))g0l(n(u))g \

/,(«) = ut(ir(u))g„(ir(u))g

\ uq{n{u))gql{n{u))g J

where u belongs to 7r_1(Pj) and the image of u via <f>t is 4>t(u) = (tt(u), g). Of course, the matrix is

to be understood as an X times n matrix consisting of q+ 1 blocks of square matrices. If g3l(n(u))
is not defined, it means that tt(u) does not belong to U3, in which case u3(tt(u)) is zero, so that

we consider u3(ji(u))g3l(ji(u)) as the n times n zero matrix. Observe that this X times n matrix

really represents a frame, since the block Wj(7r(w))gM(7r(w))g has non zero determinant.

We claim that it follows from the cocycle relations that ft = f on tt~1(U1 n U3). To see that,
let u belong to tt~1(U1 n U3) and assume that i < j. We compute

/ u0(n(u))g0l(n(u))g \ I u0(n(u))go3(n(u))g3l(n(u))g \

/,(«) =

Ut(^(u))9tt(K(u))g

u3{Ti{u))g3l{'K{u))g

ul{Ti{u))gl3{'K{u))g3l{'K{u))g

u3{n{u))g33{n{u))g3l{ii{u))g

\ uq{-n{u))gql{-n{v))g j \ uq(ir(u))gq3(ir(u))g3t(ir(u))g J

which is precisely equal to fAu) since

4>3(u) =4>34>-1(n(u),g) = (n(u),g3l(n(u))g).

The maps ft agreeing on their domain's intersection, they induce a continuous G-equivariant

map

J ; p _^ PGq,

Let / : P —> PGq be the corresponding map on the base spaces. By Lemma 11 it now follows that

îh)the pulled back bundle /*(£G) is isomorphic to £.

The classifying map for bundles over simplicial complexes

Let G be, as before, a subgroup of GLnR and suppose that £ = {n : P —> |if|} is a principal
G-bundle over the geometric realization of some (/-dimensional simplicial complex K. (Consult
Chapter 2 for any reminder on the basics on simplicial complexes.) We would like to exhibit

a finite covering of \K\ on which the bundle £ can be trivialized. If we were ready to consider

coverings with arbitrarily many subsets, we could consider the covering

{st'Al{v)}veKa.
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Indeed, the stars being contractible (Lemma 44), the bundle £ is trivial over them, as follows from

Corollary 14. However, we would like to bound the number of sets in the covering independently
of the simplicial complex (but depending on the dimension q), and here of course K° can get as

big as one wants. To do so, we will consider the stars in the first barycentric subdivision of Ä and

take union of stars of barycenters of simplices of Ä of same dimension.

More precisely, let Äbar denote the first barycentric subdivision of Ä, and observe that the

stars in Äbar of two barycenters of simplices of Ä of same dimension are always disjoint. Defining

S\ to be the open subset of |Äbar| consisting of the union of the stars (in Äbar) of aU barycenters
of «-dimensional simplices of Ä,

S* = II starKbar(6s),
sGK,

Dims=î

we conclude that we get a finite covering {Sq, ...,Sq} of |Äbar I — |Ä| such that the bundle £ is

trivial when restricted to any of the S^s.

This covering of |Äbar| is naturally endowed with a partition of unity. Indeed, every point x in

|Äbar | can uniquely be written as

= E^S

where 6s* is the barycenter of the «-dimensional simplex st of Ä, the tt 's are all non negative, and

the sum J2 ~t% is equal to 1. We can thus define, for every i between 0 and q, functions |Äbar| — [0,1]
by sending the point x to its coordinate tt. This is not quite a partition of 1 subordinate to the

covering {So, ...,S'q} of |Äbar| since the support of those functions is not strictly contained in the

corresponding functions. However, since we are in the topological and not the differentiable setting,
the classifying map constructed in the proof of Theorem 17 can be obtained analogously.

Let, for every i between 0 and q,

4>% \s%.

be some local trivialization of the bundle £ and

9w s,ns,

iJn X (_j,

GLn(

be the corresponding transition functions.

From the proof of Theorem 17 we now directly obtain an explicit classifying map for the bundle

e

Theorem 18 Let £ be a principal G-bundle over the geometric realization of some q-dimensional

simplicial complex. Then the map

f \K\

= S*=0t,6'

BGq
togoi(x)

tjd„

^gö'g^l'^/

where i is chosen so that tt ^ 0, is a classifying map for the bundle £.
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1.2 Elements of Differential geometry

We review here the theory of connections and curvatures. Our exposition is strongly inspired from

[KoNo63], where the reader is referred to for further details.

1.2.1 Connections

Let G be a Lie group and £ = {n : P —> M} be a smooth principal G-bundle over a manifold

M. For every u in P, let qu be the subspace of the tangent space TUP at u consisting of vectors

tangent to the fibre through u. We call qu the vertical subspace of TUP.

Definition 19 A connection Y in the principal G-bundle £ = \ji : P —> M} is the choice, for each

u in the total space P, of a horizontal subspace Hu of the tangent space TUP at u such that

1- J-uP = Qu © Bu,

2. Hug = (Rg)*Hu, for geG,

3. Hu depends differentially onu, that is, the assignmentu i—> Hu, viewed as a map P ^Grr(TP),
where Grr(TP) is the Grassmanian bundle over P consisting of r-planes in TUP (for every

u in P) and r is equal to the dimension of P minus the dimension of G, is required to be

smooth.

Each vector X in TUP has a unique decomposition X = Xq + Xh, where Xq G Qu and

Xu G Hu. We call Xq vertical, and X# horizontal.

Let £ and £' be two principal G-bundles and denote by P and P' their respective total spaces.

Let / : £' —> £ be a bundle map. Any connection T on £ pulls back, via /, to a connection on £'.

Indeed, if P„ is, for m in P the horizontal space of the connection Y, then define H'v for ever v in

P' as follows:

H'v = {X G T„P' | T/(X) G P/(M)}.

The so defined connection is denoted by /*(r).
To each connection Y, one can now assign a connection 1-form u> in the following way:

Definition 20 The connection form u> G A1(P,q) is defined, for each u in P and for each X in

TUP as luu(X) = A G Q, where A is the unique element in Q satisfying (A*)u = Xq-

Note that for every u in P and X in TUP we have that u>u(X) = 0 if and only if X is horizontal.

When no confusion can occur, we sometimes omit the subscript u and write u>(X) instead of u>u(X).

Proposition 21 Let £ be a principal G-bundle and lu a connection form on £. The following hold:

1. uj(A*) = A, for every A in Q,

2. (Rg)*uj = Ad(g_1)ct;7 for every g in G.

Conversely, any 1-form u> G A1(P,q) satisfying the two above conditions uniquely determines a

connection Y whose connection form is lu.
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For a proof, we refer the reader to Proposition 1.1 of Chapter 2 in [KoNo63]. We would just
like to point out, that given a 1-form u> G A1(P, g) satisfying the conditions of the proposition, the

horizontal spaces Hu of the connection Y are given, for every u in P, as

Hu = {X G TUP | w(X) = 0}.

We have thus established the equivalence between the knowledge of a connection and a 1-form

in A1 (P, q) satisfying the conditions of Proposition 21. For this reason, we will later call connection

forms simply connections. There is one further useful equivalent notion which we will now describe.

Consider the bundle

Proj(P)
Proj(£)= |

P,

where the total space Proj(P) over a point u of P is defined to be the space of projectors TUP —>

TUP with kernel equal to the vertical space qu. Endow it with the following natural right action

of G:

Proj(P) x G —> Proj(P)
(Kg) '— hg,

where hg is defined as follows: If h is a projector of TUP, for some u in P, then hg is a projector
of TugP which is defined as

(hg)(X)=Rg-i,(hug-i(Rg*X)),

for every X in TugP. This indeed defines an action on Proj(P), since for every h : TUP —> TUP in

Proj(P) for some u in P, and for every gi,g2 in G, we have, for X in Tugig2P,

((h9l)g2)ugig2(X) = Rg-i.((hgi)ugIi(Rg2*X))
= Rg-1*Rg-1*(h(ug-1)g-1)(R9i*R92*X)
= Rg^g^*(hug^g^)(R{gig2)*X)
= R{gi92)-1*(hu{g1g2)-i){R{g1g2)*X).

Observe that the projection map n :Proj(P) —> P of the bundle Proj(£) is G-equivariant.

Proposition 22 There is a one-to-one correspondence between connections on £ and smooth G-

equwariant sections of the bundle Proj(£).

Proof. We only indicate the correspondence, and leave the details to the reader. Given a connec¬

tion r on £ one defines the section of the bundle Proj(£) to be, on every point u of P the projector

(along qu) with image equal to the horizontal space Hu of the connection I\ Conversely, starting
with a section of the bundle Proj(£),

h :P —>Proj(P),

define a connection Y to have horizontal space Hu, for every u in P, to be equal to the image of

the projector h(u) : TUP —> TUP. m
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It is now natural to wonder how one goes (directly) from the connection form to a smooth

G-equivariant section of the bundle Proj(£) and conversely. Starting with a connection form u>,

define a section

h:P —>Proj(P)

as

x -^ x-K(x));,

for every m in P. Conversely, starting with a section h of the bundle Proj(£), define a connection

form u>, for every u in P and X in TUP, as u>u(X) = A, where A is the unique element of g for

which the following equality holds:

{A*)u=X-hu{X).

To summarize, we have thus established, for every principal G-bundles, the following corre¬

spondence:

{Connection

forms "1
, „ .

f
.

I G-equivariant

^*)and ^ s«*tio

(Ps)*. = Ad(g-> J I °fPr0j(e)

The horizontal spaces of a connection Y are the kernel, respectively the image, of the corresponding
connection form, respectively section of Proj(P). The relation between connection forms and

section of Proj (P) is understood from the formula

fc„(i) = i-M;,

where u belongs to P.

With this correspondence in mind, it is now easy to prove the following useful lemma.

Lemma 23 Let lüq and <jj\ be two connection forms with corresponding projectors ho and h\. Let

moreover lu be any connection form. Then

ujiJiQ — h\) = uj\ — ujq.

Proof. We have

(w(h0 - h1))u (X) = uu{h0u{X) - hlu{X))

= uu((X - uou(X)*u) - (X - ^„(X)„))

= w„((wi„(X) - w0m(X))* )

= (wi„ -wo«) (X),

where the last equality follows from the first assertion of Proposition 21.
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The product bundle

Consider the trivial principal G-bundle G —> {*} over a point. Since for every point g in G the

tangent space TgG is actually equal to the vertical space through g, there can exist only one

connection Y on the latter bundle, namely the one assigning the zero subspace of TgG to any point

g of G.

More generally, consider the product bundle

MxG

I
M.

The Maurer-Cartan connection is defined to be the pull back of the unique connection on the

trivial G-bundle over a point via the bundle map

MxG —> G

I I
M —> {*}

given by the projection M x G —> G on the second factor. The horizontal spaces P(XiS) are then

given, for every (x, g) in the total space M x G, by the canonical direct sum decomposition of

T(M x G) = TM x TG. More precisely, the vertical space Q(x,g) corresponds to TgG, and the

horizontal space H^xg-j to TXM.

Existence of connections

Let us recall some elementary facts on projectors sharing the same kernel.

Lemma 24 Let V be a vector space. If'p, q : V —> V are two projectors with the same kernel, then

p o q = p.

Proof. For any v in V the vector q(v) — v belongs to Ker(</):

q(q(v) - v) = q2{v) - q{v) = q{v) - q{v) = 0.

But since Ker(</) = Ker(p), it follows that

p(q(v) -v) =0,

and hence

p o q(v) = p{v)

as claimed.

Lemma 25 Let V be a vector space andpo,p\ :V^V two projectors with the same kernel. For

any t in M., the convex linear combination of po and pi,

(l-t)Po+tPl :V^V,

is again a projector.
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Proof. We have

((1 - t)po + tVlf = ((1 - t)po + tPl) ((1 - t)po + tPl)

= (1 - tfpl + (1 - t)tpopl + t(l - t)plpo + t2p\
= (1 - t)2Po + (1 - t)tPo + t(l - t)Pl + t2Pl
= (1 -t)p0 +tpi,

where of course we have used Lemma 24 and the fact that po and p\ are projectors.

It now follows from Lemma 25, that we can more generally form the convex linear combination

of any two sections

h0,h, :P^ Pioi(P)

of the bundle Pr oj (£) and obtain a section

(l-t)/l0+^i:P^Proj(P),

for every t in R. Also, if ho and h\ are chosen to be smooth and G-equivariant, the convex linear

combination will enjoy the same properties. We now claim that the corresponding connection form

is given as

(1 -t)uj0 +tujly

where of course ujq and lo\ are the connection forms corresponding to the smooth G-equivariant
sections ho and h\ respectively. To see that, denote by ujt the connection form obtained from

(l—t)ho +th\ and let A in g be such that (ujt)u(X) = A. Using the above correspondence between

connections forms and sections of the bundle Proj(£), we have, for every u in P and X in TUP,

A*u = X-({l-t)h0 + th1)u(X)
= (1 - t)(X - (h0)uX) + t(X - (hOJ)

= (i-()H„(i): + (W„(i);

= ((i-t)uo + tu1)u(xyu,

and hence

(wt)„ = ((1 - t)uj0 + tuJi)u

as claimed. We have thus proven the following proposition:

Proposition 26 Any convex linear combination of connection forms is again a connection form.

From the existence of a connection on the trivial bundle and Proposition 26, a standard argu¬

ment using partition of unity (see for example Theorem 2.1 of Chapter II in [KoNo63]) now leads

to:

Corollary 27 Any principal G-bundle over a paracompact manifold admits a connection.
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1.2.2 Curvature

Let £ = {n : P —> M} be a principal G-bundle endowed with a connection form u>. Let /i be the

corresponding section of the bundle Proj(£) = {Proj(P) —> P}, so that hu : T„P —> PMP is, for

every m in P, the projection along the vertical space qu onto the horizontal space Hu defined by
the connection form u>. The exterior covariant differentiation D : Aq(P, V) —> Aq+1(P, V), where

V is any (real) vector space, is then defined as follows: for every (/-form a G Aq(P, V) define Da

by

(Da)u (Xi,...,Xq+i) = (do.)u(hXu ...,hXq+1),

for every u in P and Xi, ...,Xq+i in T„P.

Definition 28 The curvature il G A2(P, g) of the connection form u> is defined as

Q = Duj.

Note that il is a so called horizontal form, which means that il(X, Y) = 0 whenever X or y is

vertical.

Also observe that the pull back of a curvature is the curvature of the pull back of the starting
connection.

Proposition 29 (Structure equation) Let £ = {n : P —> M} be a principal bundle endowed

with a connection form lu. Denote by il its corresponding curvature. Then for every u G P and

every X, Y G TUP the following equality holds:

MX,Y) = -±[u(X)MY)]+n(X,Y).

For a proof, see for example Theorem 5.2 of Chapter II in [KoNo63]. As an immediate conse¬

quence of the structure equation we obtain:

Corollary 30 Let X, Y be two vectors in TUP. If X and Y are horizontal, then

u;([X,Y}) = -2Q(X,Y),

and if X or Y is vertical, then

MX,Y) =-±[u(X)MY)].

Proposition 31 (Bianchi's identity) Let £ = {n : P —> M} be a principal G-bundle endowed

with a connection form lu, and corresponding curvature Q. Then

DQ = 0.

The proof of Bianchi's identity can be found in [KoNo63], Theorem 5.4 of Chapter II.

Lemma 32 Let V be a (real) vector space and £ = P —> M be a principal G-bundle endowed with

a connection Y, so that covariant differentiation is defined. If a Ci Aq(P,V) is in the image of

k* :A*{M,V) —> A*{P,V)

then

da = Da.
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Proof. Let a G Aq(M, V) be such that ir*(a) = a. Let m be a point in P and Xi,..., Xq+i G TUP

be tangent vectors at u. The main point is that da is horizontal, that is, (da)u(Xi,... ,Xq+i)
vanishes whenever one of the Xj's is vertical. Indeed, suppose that Xt is vertical, then using that

tt*(Xj) = 0 we compute

{da)u{Xi, ..,Xj, ..,Xq+1) = {d-K*{a))u{Xi, ..,Xt, ..,Xq+1)
= (ir*d(a))u(Xu ..,Xt, ..,Xq+1)
= (rf(ä))w(„)(7r*(Xi),..,0, ..,7T*(X9+i))
= 0.

It now follows by multilinearity of da, that for arbitrary X\,..., X2q+i G TUP we have

{da)u{Xi, ..., Xq+i) = {da)u{hXi, ..

., hXq+1),

which proves the lemma, since the latter expression is the very definition of (Pa)„(Xi,..., Xq+i).
m

Lemma 33 Let lüo,uji be two connection forms on some principal G-bundle £. For any t G R

denote by ujt the following connection form:

LOt = (1 —t)iüo +tLÜ\.

Then the curvature ilt of ujt is given as

Ut = (1 -t)il0 +til1 + -{t2 -t)[iüi - w0,wi -uj0].

Proof. First note that we know from Proposition 26 that ujt is indeed a connection form. Its

corresponding projector is given as

fet = (l-*)/io+*fci,

where of course ho and h\ are the projectors obtained from coq and uj\ respectively. Now let u be

a point in P and X, Y vectors in TUP. Let us compute the value of the curvature ilt on (X, Y):

ilt(X,Y) = (du;t)(htX,htY)

= (1 - t)duj0(htX, htY) + tduj^htX, htY)

= (1 - t)ilo(htX, htY) + til^htX, htY)

- ^((l-t)[u;o(htX),u;o(htY)}+t[u;1(htX),u;1(htX)}),
where the last equality follows from the structure equation (Proposition 29). From Lemma 24 we

have hoht = ho and h\ht = hi so that

ilo(htX,htY)=ilo(X,Y) and il^X, htY) = il^X, Y).

Also, since ujq vanishes on horizontal vectors, one computes

uj0{htX) = cu0(htX - h0htX)

= w0((l - t)h0X + thxX - h0X)

= tuJo{hxX - h0X)

= t{ioo - u-CjX,
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where the last equality holds by virtue of Lemma 23. Similarly, one obtains

Lül(htX) = (l-t)(iül-Lüo)X.

We thus have

-^((l-t)[cüo(htX),cüo(htY)}+t[cüi(htX),cüi(htX)})
= -\ ((1 - t)t2[(iü0 - ui)X, (w0 - wx)X]

+t(l-t)2[(w1-w0)X,(w1-w0)X])

= -(t - l)t[{uJo - UJl)X, {ujo - UJl)X],

so that

ilt(X,Y) = (l-t)ilo(X,Y)+tili(X,Y)

+ l-{t2 - t)[(w0 ~ *i)(X), (w0 ~ ui)(Y)},

which finishes the proof of the lemma.

Lemma 34 Let ilt be as in the previous lemma, then

—ilt = Dt(uji - w0).
at

Proof. From Lemma 33 above it follows that

— ilt = Hi - il0 + (t - „H^i -wo,wi -w0].

Also, we have

Pt(wi - w0) = d(u\ - uj0)ht

= d(ioi - w0)((l - t)h0 + thi)

= (1 — t)duJiho — (1 — t)ilo + t^li — tdujohi.

From the trivial relation ho = hi + (ho — hi) we obtain

dujiho = du>i(hi + (ho — hi))

= ili- -[uJi(h0 - hi),uji(h0 - hi)},

where the last equality follows from the second assertion of Corollary 30. As from Lemma 23 we

know that uJi(ho — h{) = wi —

wo, we have

diviho = ili - ~[wi _ w0, wi - w0],
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and by symmetry also

dioohi = O0 - -[w0 - Wi, w0
- Wi]

= ^o -

x [^i ~ ^o, wi - w0].

Putting all this together, we can finally conclude that

Pt(wi - w0) = (1 -1) ( Qi - - [wi - w0, wi
- w0] ) - (1 - t)il0

+ tili - t f ilo - - [wi - w0, wi
- w0]

= ill - il0 + (t - x)^1 ~

wo, wi - w0],

which was to be proven.

1.3 Flat bundles

1.3.1 Definition

Let us start straightaway with the definition of flat bundle:

Definition 35 Let £ be a smooth principal G-bundle. A connection on £ is said to be flat if its

curvature form vanishes identically. A smooth G-principal bundle is called flat if it can be endowed

with a flat connection.

Since any convex linear combination of (non necessarily flat) connections is again a connection

(see Proposition 26) it follows that the space of all connections is an affine subspace of A1(P,g).
The geometry of its subspace of flat connections is however a much more complicated. (As a simple

example, the convex linear combination of two flat connections is in general not flat, as can easily
be concluded from Lemma 33.) In order to understand the space of flat connections, we are going
to give various equivalent definitions of flat bundles and translate the notion of being in the same

path connected component in those new settings. Observe that those equivalent definitions will all

make sense in the topological case, so that it will be possible to extend the definition of flat bundles

to topological bundles. Before proceeding, let us give some trivial examples of flat bundles.

1. The Maurer-Cartan connection wq on the trivial G-bundle over a point,

G

I

is flat since there are no non trivial horizontal vectors.
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2. The Maurer-Cartan connection on the trivial product bundle

MxG

I
M

is flat since it is the pull back of the Maurer-Cartan connection wq G A1 (G, g) through the

projection map
MxG —>G,

and obviously, being flat is invariant under taking pull backs.

1.3.2 Transition functions

In this section we explain the interpretation of flat connection in terms of transition functions. The

following theorem together with its corollary can be found in [Du78] (Theorem 3.21 and Corollary

3.22).

Theorem 36 A connection lu in a principal G-bundle

P

£= ITT

M

is flat if and only if for every x in M there exists a neighborhood U of x and a trwialization ofP\u
such that the restriction of w to P\u is induced by the Maurer-Cartan connection in U x G.

Corollary 37 Let £ be a principal G-bundle over some manifold M. Are equivalent:

1. the bundle £ can be endowed with a flat connection,

2. there exists a covering of M and a set of transition functions for £ which are locally constant,

3. the bundle £ has a reduction to G
.

We will restrict to the proof of the equivalence (1) -<=> (2) and refer the reader to [Du78] for

a complete proof.
Proof. (1) =>• (2): Let £ be a G-bundle endowed with a flat connection w. By Theorem 36, the

manifold M has an open covering {Ut}tej for which there exists trivializations

h : P\u. -^UtxG

such that the flat connection w on P\u% is induced from the Maurer-Cartan connection on the

product bundle Ut x G. The relation

4>31(x,gl3(x)g) = 4>^1(x,g),

for every x in Ut n U3 and g in G, defining the transition functions

gl3 :Utr\U3 —>G,
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is summarized in the diagram

P\u.uu, —^ (UtnU3)xG

Id

P\u.nu, —^ (UtnU3)xG,

where the map F is defined, for every x in Ut n Pj and every g in G as

F(x,g) = F(x,gtJ(x)g).

Since the flat connection w on P\u%nu is induced from the flat Maurer-Cartan connection on

UtC\U3 x G via 4>t, but also via <f>3, it follows that the map F must send the Maurer-Cartan

connection to itself. Equivalently, this means that the induced map between the corresponding

tangent bundles

TF :T(UtC\U3)xTG —> T (Ut n U3) x TG,

as it need to preserve the horizontal spaces, sends T(Ut P\U3) x {0} to itself. Viewing the tangent

space as equivalence classes of curves, we obtain that, for any curve v : [—e,e] —> Ut n U3, passing

through the point vq at time 0, and for any g in G, the image via TF of the curve (v(t),g) C

UtC\U3 x G is equal to

(v(t),gl3(v(t))g),

and thus the second coordinate must be constant. As this is valid for any curve v(t) it follows that

the gjj's must be locally constant.

(2) =>• (1): Let {Ut}tej be an open covering of M, and

4>t : P\Ut -^UtxG

local trivializations of the bundle £ for which the corresponding transition functions

gl3 :UtC\U3 —> G

are locally constant. Let ujt be the flat connection on P\uz which is the pull back by (f>t of the

Maurer-Cartan connection on Ut x G. We claim that the connections ujt and uj3 agree on P\uznu
This is equivalent to saying that the Maurer-Cartan flat connection on the product bundle over

Ut n U3 is equal to the pull back of the Maurer-Cartan connection via the map

([/,nf/3)xG —> (UtC\U3)xG
(x,g) i—> (x,gl3(x)g).

Assume without loss of generality, that Ut n U3 is connected, and since the transition functions

are locally constant, we can define gtJ := gl3(x), for some x in UtP\U3. Now, the Maurer-Cartan

connection is induced by the projection on G from the Maurer-Cartan flat connection wq on the

trivial bundle G —> {*}. By definition we have

UJG = L*g^G,

where Lg% : G —> G stands for the left multiplication by gl3. The claim now follows and we can

thus define a global flat connection w on £ as w = ujt on £\u%
Note that conditions (2) and (3) of the above corollary also make sense for topological principal

G-bundles. We can thus, as promised, extend the definition of flat bundles to them:

F
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Definition 38 Let G be a topological group. A topological principal G-bundle is said to be flat if
it has a reduction to G

.

Another useful consequence of Corollary 37 is the following:

Corollary 39 Let £ be a principal G-bundle over some manifold M endowed with a flat connection.

Then any covering {Ut}tej of M satisfying iri(Ut) = 1 for every i in L admits a set of transition

functions for £ which are locally constant.

It follows from Corollary 37 that to any flat connection on a flat bundle, we can associate a set

of locally constant transition functions, and conversely, given such a family of transition functions,
it uniquely determines a flat connection. It is now easy to see that two families of locally constant

transition functions {gtJ} and {hl3} relative to the same open covering {Ut} of the base space will

determine the same flat connection if and only if there exists locally constant maps \ : Ut —> G

such that

9ij = \ hl3\3.

Actually, this is Lemma 10 in the case where the topological group is Gs : Indeed, a locally constant

map Aj : Ut —> G is nothing else than a continuous map A4 : Ut —> Gs.

Assuming for simplicity that the group G is connected, we can also conclude that the two flat

connections obtained from the two families of locally constant transition functions {gt3} and {hl3}
lie in the same path connected component of flat connections if and only if there exists a family of

homotopies

Hl3 :UtC\U3x [0,1] —> G

between gtJ and hl3 such that for each fixed t G [0,1], the family {HtJ(.,t)} is a system of locally
constant transition functions.

1.3.3 The space of representations

Let X be a connected topological space for which the covering theory applies. The canonical

example of flat bundle is the following (for the justification of the term "canonical" see Proposition
40 below): Let h : ^i(X) -^Gbea group homomorphism. There is a natural left diagonal action

of the fundamental group of X on the product XxG given by

7ti(X)x(XxG) —> XxG

(l,(x,9)) '— (l-x,h(l)9)-

The group G still acts (from the right) on the quotient 7Ti(X)\(X x G), and it is easy to check

that the G-bundle
_

7,i(X)\(XxG)
6i = I

x

is flat.

Proposition 40 Every flat principal G-bundle over X is isomorphic to a bundle of the form £h,

for some homomorphism

h-.TTl(X) >G.
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This is standard. We refer the reader to [Mi58] (Lemma 1) for a proof. Observe that the

statement of the proposition can even be strenghtened to: Every principal G^-bundle over X is

isomorphic, as a Gs-bundle, to a bundle of the form £h-
Note that it follows that if the fundamental group of X is trivial, then there can exist no non

trivial flat bundles over X. This is the case for all spheres of dimension greater or equal to 2.

For example the frame bundles associated to their tangent bundles (and thus the tangent bundles

themselves) can not be flat.

Denote by Rep(7Ti(X), G) the space of all homomorphisms from iii(X) to G and endow it with

the compact-open topology. The following proposition is easy:

Proposition 41 If ho and hi are in the same path connected component in Rep(ni(X), G), then

the corresponding flat bundles ^0 and ^n are isomorphic.

The idea of the proof is that any representation h : tti(X) —> G gives rise to a canonical map

X —> PG classifying the bundle ^. Now, a path between two representations in Rep(7Ti(X), G)
will automatically produce a homotopy between the corresponding classifying maps, so that the

induced bundles will be isomorphic. Note that this isomorphism is really an isomorphism of G-

bundles, and certainly not of G^-bundles in general.
If the fundamental group of X is finitely generated, then it admits a presentation of the form

7Ti(X) = (si, ...Sfc | rt(si,..., sk) = 1, tel).

It is thus only natural to view the space of representations as

Rep(7ri(X),G) = {(gi, ...,gk) G Gk \ rt(gi, ...,gk) = 1G, i e I}.

Assuming further that G is an algebraic group, the space Rep(7Ti(X), G) can naturally be endowed

with the structure of an algebraic variety. It consequently only has finitely many path connected

component and, as pointed out by Lusztig, we immediately obtain:

Corollary 42 If tti(X) is finitely generated and G is algebraic, then there exists only finitely many

isomorphism classes of flat bundles over X.

Consider on the space of representations Rep(7Ti(X), G) the natural equivalence relation given

by conjugation. More precisely, two homomorphisms ho and hi are equivalent (denoted ho ~ hi)
if and only if there exists g in G such that

ho(l) =ghi(-f)g~1

for every 7 in 7Ti(X).
Now if the base space is a smooth connected manifold, say M, there is a one to one correspon¬

dence between flat connections w and equivalence classes of homomorphisms [h] in Rep(7Ti(X), G)/ ~

Assuming again for simplicity that G is connected, it is clear that two equivalent homomorphisms

ho ~ hi are in the same path connected component of Rep(7Ti(X), G). Observe further that two

arbitrary homomorphisms ho and hi are in the same path connected component of Rep(7Ti(X), G)
if and only if the corresponding flat connections lie in the same path connected component in the

space of flat connections.



Chapter 2

Simplicial complexes

2.1 Definitions

Let V be a set. A simplicial complex K consists of a family of non empty subsets of V, called the

simplices of Ä, satisfying the two following properties:

• For every v in V, the set {v} belongs to Ä.

• If k belongs to Ä, then so does any subset of k.

A face of a simplex A; is a simplex k' which is contained in k, in which case we write k' < k. If

k' is strictly contained in k, then it is said to be a proper face of k and we write k' < k.

The set V is denoted by Vert(Ä). Its elements are identified with the corresponding singletons
of Ä and are called the vertices of Ä. A simplex of Ä containing precisely q + 1 distinct vertices

is a q-simplex and is said to have dimension q.

A subcomplex of a simplicial complex Ä is a subset of Ä which is itself a simplicial complex.
The union of all simplices of a simplicial complex Ä of dimension smaller or equal to q forms a

subcomplex of Ä, called the q-skeleton of Ä and denoted by Kq.

We say that a simplicial complex Ä is finite if its vertex set is finite. The dimension of Ä

is equal to the maximal dimension of its simplices. The simplicial complex Ä is said to be finite
dimensional if its dimension is finite. In this case, Kq = K for some q < oo. A simplicial complex
is further of finite type if all its (/-skeletons are finite.

A simplicial map between two simplicial complexes Ä and P is a map

Lp : Vert(Ä) —> Vert(P)

such that if the subset k = {vq, ,vq] of Vert(Ä) is a simplex of Ä, then the subset <f(k) =

{<f(vo),..., <f(vq)} of Vert(P) is a simplex of P. Observe that if A; is a (/-simplex of Ä then <f(k) is

a simplex of L of possibly smaller dimension, for the set <f(k) does not necessarily consists of q+1
distinct points.

25
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Geometric realizations

Define Äor to be the set of all ordered simplices of Ä. For every simplex k = {vq, ,vq] of Ä

denote by [vq, ,vq] the ordered simplex in Äor obtained from k and the ordering of the v^s by
their numbering.

To every simplicial complex Ä one can associate its geometric realization \K\ which is a topo¬

logical space constructed as follows: For every ordered (/-dimensional simplex k = [vq, ,vq], let

Aqk be a copy of the standard (/-dimensional simplex

Aq=l(to,...,tq)e:

The space |Ä| is defined as the quotient

q

E'«
t=0

1, tt > 0

/

lÄl II K
keKOI

k=[v0, ,vq

Dimfc=q /

where the equivalence relation ~ is defined as follows: Let k = [vq, ..., vq] and k' = [wq, ...,wp] be

ordered simplices of dimension q, respectively p, of Ä. Two points (to, •••, tq) G Aqk and (ro,..., rp) G

Apk, are equivalent if and only if the (unordered) simplex underlying k' is a face of the simplex

underlying k, or in other words {wq, ..., wp} is contained in {vq, ,vq], and moreover, letting

«o, •••, ip be the integers between 0 and n satisfying vH = w^, the requirements

tt = 0 if i <£ {'to, ...,ip},
t%o =r3 if i = i3 for j G {0, ...,p},

are fulfilled. Note that because the vertices of k and k' are all distinct, the assignment £ i—> «£ is a

bijection between the sets {0, ...,£>} and {«o, •••, i-P} C {0,..., (/}. Each copy of a standard (/-simplex
comes with the induced topology of R9+1, and the space |Ä| is naturally endowed with the quotient

topology. It is compact if the simplicial complex Ä is finite.

If k = {vq, ,vq] is a (/-dimensional simplex of Ä, we write

EtÄ
î=0

for the image of the point (to i ('o G A* in \K\ For every (/-dimensional simplex k of Ä, denote

by \k\ the image of A^ in |Ä|. Recall that the interior int(A9
as

of the standard (/-simplex is given

int(A«) = {(t0,...,tg)G J2tt = 1, tt> 0}.
»=0

Define the interior int(k) of k as the image of int(A|) in |Ä|. Note that int(k) is in general not

open in |Ä|: It is only open as a subset of \k\. The space |Ä| is easily shown to be equal to the

disjoint union of the interior of all its simplices.
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Suppose now that Ä is a simplicial complex with countable vertex set Vert(Ä) = {vi,v2,...}.
It is then possible to visualize |Ä| as a subspace of lim^^ooR9, where the limit is obtained from the

canonical inclusion R9 ^-> R9 © {0} ^-> R9+1. Let {ei, e2,...} be the canonical basis of linig^ooR9.
The geometric realization |Ä| can naturally be identified with the union of the convex hull of all

points {el0,..., et } whenever {sl0,..., st } is a simplex of Ä. The topology on |Ä| agrees with the

induced topology of liniq^ooR9.
A simplicial map <p : K —> L induces a continuous map

M \K\ — \L\,

which is defined as follows: For every point X^=o^w* °f l^1> where {vq, ,vq] is a (/-simplex of Ä

,
the sum 5^?=o ^ ^s equal to 1 and the tt 's are all greater or equal to zero, define

m EtÄ =E*^W-
\î=0 / î=0

Note that this is well defined since <p being a simplicial map, the vertices <f(vo), ,<f(vq) of L

span a simplex in L so that the right hand side of the previous equality makes sense.

The geometric realization of a simplicial complex is of course quite rigid since it consists of

piecewise linear pieces. The following definition allows us to consider homeomorphy classes of

geometric realization of simplicial complexes, so that for example smooth manifolds can then be

considered.

Triangulations and refinements

A topological space X is said to be a polyhedron if there exists a simplicial complex Ä and a

homeomorphism
h:X —> \K\.

The pair (Ä, h) is called a triangulation of X.

Observe that it is obviously possible to glue triangulations in the following sense: Let X be

a topological space which is the union of two subsets Xi U X2. Let (Ki,hi) and (K2,h2) be

triangulations of Xi and X2. Suppose that there exists subcomplexes Pi of Äi and P2 of Ä2 and

an isomorphism <p : Pi —> P2 such that the diagram

Xi n x2 -^ Pi

\ I

L2

commutes. A simplicial complex Ä is then obtained as follows: Define Ä as the quotient of the

disjoint union Ä1TJÄ2 by the equivalence relation k\ ~ k2 if ki, respectively k2, belongs to Äi,

respectively Ä2, and k2 = <p(k\). The map (hi, h2) : |Äi|TJ|Ä2| —> X factors through |Ä|, so that

we obtain the desired triangulation of X.

It is often very useful to triangulate simplicial complexes themselves, or more precisely their

geometric realizations. Of course, we do not want to triangulate them arbitrarily, for we would

like the triangulation to restrict to a triangulation of each simplex of the simplicial complex. This

is the purpose of the next definition.
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A refinement of a simplicial complex Ä is a pair (L, r) consisting of a simplicial complex L and

a homeomorphism

r:\K\^\L\

satisfying

r(Kq) C Kq

for every q > 0. The mdex of a refinement (P, r) of a simplicial complex Ä, which we denote by

[P : Ä], is the maximal number of simplices in the triangulation of L restricted to any simplex of

Ä. More precisely, we have

[P : Ä] = maxfceKÖ l ?

Similarly, we define the index of degree d of a refinement, to be

[P : K]d = maxfceKÖ < ?

The most important example of refinement is the barycentric subdivision Äbar of a simplicial

complex: Let Ä be a simplicial complex. Define the simplicial complex Äbar to have vertices

Vert(Äbar) = {k G Ä | the vertices of k are all distinct}, and {ko, ...,kq} is a simplex of Äbar if

and only if ko <
...
< kq. It is clear that we have thus defined a simplicial complex. The inverse of

the homeomorphism r : \K\ —> |Äbar| is most easily defined as

|Äbar| -^ \K\
yq + h.

i
. yq + hk*

where if k = {vo,..., vq} is a (/-dimensional simplex of Ä, its barycenter bk G \k\ C |Ä|, is given as

bk = -—vo + • • • + ~—vq.
q+1 q+1

It was believed for quite some time that two triangulations of the same space always admitted

a common refinement. This problem, named Hauptvermutung or Principle Conjecture can more

precisely be formulated as follows: If (Ä, h) and (Ä', h') are two triangulations of some topological

space X, then there exists a simplicial complex L and refinements (L, r) of Ä and (L,r') of K'.

It was proven to be true for n = 3 by Moise ([Mo52]), but counterexamples were constructed by
Milnor for every n > 6 ([Mi61]). Observe that in the semi-algebraic setting the Hauptvermutung
holds (see the remark after Theorem 88).

Stars

Let Ä be a simplicial complex and A; be a simplex of Ä. Define the star of k by

star(fc) = |J{Int(t) | k < t} C |Ä|.

The following lemmas on stars are obvious.

r-^KDcl^l,
the vertices of £ are distinct

r-\\£\)<z\k\,
£ contains d+1 distinct vertices
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Lemma 43 Let K be a simplicial complex, and k, £ two simplices of K. Then k is a face of k' if
and only if star(k) Dstar(k').

Proof. The simplex A; is a face of k' if and only if

{£ | k < £} C {£ | k' < £},

which is equivalent to

star(fc) = IJ Int(£) D |J Int(^) = star(fc').
{£ | k<£} {£ | k'<£}

Lemma 44 Let K be a simplicial complex. The family

{star(v)}vVert{K)

furnishes a covering of \K\ by open and contractible sets.

Lemma 45 Let K be a simplicial complex and vo,...,vq in Vert(K). The set {vo, ...,vq} is a

simplex of K if and only if
q

f]star(Vl) + Z.

»=0

2.2 Examples

We give here three examples of triangulations in increasing difficulty. The last example will be

important for the proof of our main theorem, or more precisely for the proof of the Technical

Lemma 91.

1. Let k = {vo, ,vq] be a (/-dimensional simplex and let us exhibit a simple triangulation of

\k\ x [0,1]. Define, for every i between 0 and q,

at = (et,0) and bt := (et, 1) G Aq x [0,1].

Define a simplicial complex with vertex set {at, 6j}î=o, q
and simplices

{a0, ..

., at, bt,.. ., bq}, Vi = 0,...,q,

and all their subsets. The homeomorphism between the geometric realization of the just de¬

scribed simplicial complex and |A;| x [0,1] is given by sending the simplex {ao,... ,at,bt,..., bq}
to the convex hull of the corresponding points in |A;| x [0,1]. This triangulation contains pre¬

cisely q + 1 simplices of dimension q+1.

2. Let now Ä be a (/-dimensional simplicial complex with countable vertex set, and let us

generalize the example above to a triangulation of |Ä| x [0,1]. Put an order < on the vertices

of Ä. Define a simplicial complex with vertex set

{(v, 0),(v,l)}veVeltK
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and simplices

{(vo,0), , K,0), (vt, 1),.., (vq+i, 1)},

where {vq, .., vt,.., vq+i} is a simplex of Ä with vq < < vt < ..vq+i, for some i G {0,..., q+1},
and all their subsets. This gives a triangulations of |Ä| x [0,1] whose number of (q + 1)-
dimensional simplices is precisely

(q + 1) t({(/-dimensional simplices of Ä}.

3. Let finally (L, r) be a refinement of the (/-dimensional simplicial Ä with countable vertex set

and let us exhibit a triangulation (T, h) of |Ä| x [0,1],

h:\K\x[0,l}^\T\,

having the properties that

• (T, h) restrict to a triangulation To, respectively ï\, of |Ä| x {0}, resp. |Ä| x {1},

• there exists an isomorphism

(fo T0 —> K

such that the composition of the maps

\K\^\K\x{0} -^U \To\ -^ \K\

is the identity on |Ä|,

• there exists an isomorphism

cpi : Ti —> L

such that the composition of the maps

|P| -^ \K\ ^ \K\ x {1} ^^ |Ti| -^U \L\

is the identity on |P|,

• the number of (q + l)-dimensional simplices in T is bounded by

(q + 1) [L : K]q {({(/-dimensional simplices of Ä}.

Let T be the simplicial complex with vertex set

VertT = {(v,0)}veVeltK U {(w, l)}„,eVertL

and simplices

{(vo,0), , (vt, 0), (w0,1), ..(wq-l+1,1)}

whenever there exists a simplex {vq, ,vl, vl+i,..., vq} of Ä with vt < v3 whenever i < j and

such that

r^1(\{wo, ...,wq-l+1}\) C \{vt,...,vq}\.
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The inverse of the homeomorphism h : |Ä| x [0,1] —> |T| is obtained as follows: Let x be a

point in the geometric realization of some simplex {(vo, 0),.., (vt,0), (wq, 1), ..(wq_l+i, 1)} of

T. The point x can be written uniquely as

x = (1 - t)(x0,0) +t(xi, 1),

where xo belongs to \{vq, ..., vt}\ and x\ belongs to |{wo,..., wq_î+i}|. Define a map h! :

|T| —> |Ä| x [0,1] by sending the point x to

((l-t)xo+tr-\xi),t) G |Ä| x [0,1].

This is well defined since there exists a simplex of Ä containing both (1 — t)xo and £r_1(xi).

2.3 Simplicial approximation

Let Ä and L be simplicial complexes, <p : K —> L a simplicial map, and / : |Ä| —> |P| a continuous

map. The map ip is said to be a simplicial approximation to / if

/(star(-y)) C stax(ip(v))

for every -y in Vert(Ä).
Somehow, if a simplicial map <p is a simplicial approximation to some continuous map /, it

means that the geometric realization \<p\ and the map / are not so far away from each other. We

see for example from the next lemma that the image of any point by the map / always lies in the

same simplex than its image by \<p\.

Lemma 46 Let K and L be simplicial complexes, ip : Ä —> L a simplicial map, and f : |Ä| —> |P|
a continuous map. Then ip is a simplicial approximation to f if and only if for every x in \K\, if
x belongs to Int(£), for some simplex £ of L, then |y|(x) lies in £.

Proof. Suppose that <p is a simplicial approximation to /. Let x be a point in |Ä|, belonging to

IntA;, for some uniquely determined simplex k = {vq, ..., vq} of Ä. The image f(x) of x belongs to

Int^, for some uniquely determined simplex £ of P. Since <p is a simplicial approximation to / we

have

/(x) G /(n*=0stan;,) C n*=0/(staxu,) C n*=0stax(¥j(u,)),

and as the latter intersection is a disjoint union of interior of simplices containing f(x) which

belongs to the interior of £ it follows that, for every i between 0 and q,

mtl. C st&i((f(vt)),

which is equivalent to <p(vt) G £. Now, since <p(x) is a convex linear combination of the y>(vj)'s,
which all belong to £, it follows that x also belongs to £.

Conversely, suppose that for every x in |Ä|, if x belongs to Int(^), for some simplex £ of L, then

|y|(x) lies in £. Let v be a vertex of Ä. For every x in star«, the image f(x) of x belongs to the

interior of a simplex <p(x) belongs to, and thus <p(v) belongs to. It follows that

/(stare) = f(Uvekintk) = Uvekf(intk) C U^^int^ = star(y>(v)),

so that <p is a simplicial approximation to /.
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Lemma 47 Let K and L be simplicial complexes, ip : Ä —> L a simplicial map, and f : |Ä| —> |P|
a continuous map. If ip is a simplicial approximation to f, then the (positive) linear convex

combination of f and \ip\ is well defined and provides a homotopy between the maps f and \ip\.

Proof. By Lemma 46 the image |y|(x) of any point x of |Ä| lies in the smallest simplex f(x)
belongs to, say I. It follows that for every t G [0,1], the point

(l-t)/(x)+tM(x)

is well defined and belongs to I. The map

|Ä|x[0,l] -^ |P|
(x,t) ^ (l-t)/(x)+tM(x)

is the desired homotopy between / and \<p\.
It follows from Lemma 47 that not every continuous map between the geometric realization of

two simplicial complexes admits a simplicial approximation: there are in general infinitely many

homotopy types of continuous maps / : |Ä| —> |P| whereas the simplicial maps <p : K —> L are in

finite number as soon as Ä and L are finite. One useful criterion for a simplicial approximation to

exist is the following easy consequence of Lemma 46:

Proposition 48 Let K and L be two simplicial complexes and f : |Ä| —> |P| a continuous map

such that for every simplex k of K, there exists a simplex £ of L with f(Int(k)) Glnt(t). Then

there exists a simplicial approximation to f.

Proof. Define a map <p :Vert(Ä) ^Vert(P) as follows: Let v be a vertex of Ä, then by the

assumption of the proposition there exists a simplex £v of L which contains f(v). Let <p(v) to be

any of the vertex of lv.
Let us check that <p actually is a simplicial map. Let k = {vo,...,vq} be a simplex of Ä

and let £t, for every i between 0 and q, be the simplex of L for which f(vt) Gint4, which is the

smallest simplex of L containing f(vt). Now, let £ be the simplex of L satisfying f(intk) Cint^.

By continuity of / it follows that /(|A;|) C |^|. As f(vt) belongs to |^| for every i between 0 and q,

it follows that £t < £. For every i in {0,..., 1} the vertex <p(vt) belongs to £t and thus to £, so that

{<p(vo),..., <p(vq)} is a subset, and hence a face of I.

By construction, the simplicial map <p satisfies the hypothesis of Lemma 46, so that it is a

simplicial approximation to /.
As pointed out earlier, simplicial approximation of continuous maps / : |Ä| —> |P| do not

always exist. However, it is in any case possible to find a refinement of Ä for which the map /
admits a simplicial approximation (see Theorem 49 below). In certain cases, for example in the

semi-algebraic setting, one can refine the simplicial complex Ä sufficiently for the hypothesis of

Proposition 48 to be satisfied by pulling back, by the continuous map /, all the simplices of L, and

finding a refinement of Ä, which restricts to a triangulation of all the f~x(£) n k, for every £ in L

and k in Ä. We will use this argument in the proof of our main theorem. In general this method

does not work, but we nevertheless have:

Theorem 49 (Simplicial Approximation) Let K and L be simplicial complexes and f : \K\ —>

|P| a continuous map. Then there exists a refinement (K',r) of K and a simplicial approximation

cp-.K'^Ltofor-1: \K'\ - \L\.

As we do not need the Simplicial Approximation Theorem 49 in any of our proofs, we refer the

interested reader to [Ro88, Theorem 7.3].



2.4. SIMPLICIAL COHOMOLOGY 33

2.4 Simplicial cohomology

Definitions

Let Ä be a simplicial complex. Recall that Äor is defined as the set of all ordered simplices of

Ä. We denote by [vq, ,vq] the ordered simplex in Äor given by the simplex {vq, ,vq} and the

ordering obtained from the numbering of the v^s. It is also convenient to define Kqr, where q

is any non negative integer, as the subset of Äor consisting of ordered simplices containing q+1
vertices (not necessarily distinct).

Define the space Cq(K) of simplicial q-chains of Ä to be the (real) vector space generated by
the family of oriented (/-simplices Kqr and satisfying the relations

[v0,...,vq] = sign(a)[va(0), ...,va(q)]

for every [vq, ..., vq] G Kqr and every permutation a in Sq+i. Observe that if the vertices vq, ..., vq

are not all distinct, then [vq, ..., vq] = 0. In particular, we see that Cq(K) = 0 whenever q is strictly

bigger than the dimension of Ä. The boundary operator

d:Cq(K)^Cq_i(K)

is defined on the generators of Cq(K) as

d([vo,...,vq]) = J2(-l) [uo,...,vl,...,vq\,

for every [vq, ..., vq] in Kqr, and extended linearly to the whole of Cq(X). It is easy to check that

d2=0.

The space G'im .(Ä) of simplicial q-cochams of Ä is defined to be the algebraic dual of the

space Cq(K) of simplicial (/-chains, so that

ClnpiW = {c : Cq(K) -+ R | c is linear}.

The boundary operator d has for dual the coboundary operator

t--Cqsimpl(K)^C^pl(K)

given, for every c in G|im .(Ä) and z in Gq+i(Ä) as

5c(z) = d*c(z) = c(dz).

Since d2 = 0 it clearly follows that 52 = 0.

We can now of course consider the homology and cohomology of the chain and cochain com¬

plexes (Cq(K), d) and (Gs9lmpl(Ä), 6). As usual, we define Zq(K) =Ker<9 C Cq(K) and Zs9lmpl(Ä) =Kerc5 C

C'im .(if) to be the vector spaces of simplicial q-cycles, respectively q-cocycles, and their subspaces

Bq(K) =Im<9 and B^ ^(K) =\m5 to be the spaces of simplicial q-boundaries, respectively q-

coboundaries. The q-th simplicial homology and cohomology of Ä are then defined as the quotients

Hq(K) = Zq(K)/Bq(K)
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and

Hqsim^K) = Zqimpl(K)/Bqsimpl(K).
Let Ä and L be two simplicial complexes, and let <p : K —> L be a simplicial map between

them. The map <p naturally induces a map <p* : Cq(K) —> Cq(L) between the corresponding spaces

of (/-chains: If [vq, ,vq] is an oriented simplex, then

tp([vo,...,vq]) = [f(v0),...,f(vq)}.

The map <p* is easily checked to be a chain map (i.e. d<p* = <p*d). Its dual we denote by

<p* : Cgimpi(P) —> Cjj j(if). It is then of course a cochain map, so that it induces a well defined

map, which we still denote by <p*, in the corresponding cohomologies:

^Hqsimpl(L)^Hqimpl(K).

On the space of simplicial cochains Ä we can define a simplicial norm as follows:

IMIsimpi = sup{c(A;) | k an ordered (/-simplex of Ä},

for every simplicial cochain c G G^ ,(Ä). If Ä is finite, then the simplicial norm also is. In

cohomology we then have

IIWIlLpl = inf{||c'||lpl |[c'] = [c]}.

Simplicial versus singular cohomology

Let Ä be a simplicial complex. Every oriented (/-dimensional simplex k = [vo,..., vq] in K£T clearly
determines a singular simplex on |Ä| as follows: Define ak G Gq(|Ä|) as

°k : Aq -^ \K

tq)
i—

(t0,...,tq(t0,...,tq)
^

(i0, ...,*,) e A*.

As the equality k = [vq, ,vq] =sign(T)[wT(0), ...,vT^] =sign(r) (t • k) holds in the space simplicial
chains Cq(K) on Ä, but the corresponding equality ak =sign(r)aTk is in general false in the space

of singular chains Gq(|Ä|) on the geometric realization of Ä, we need to alternate over the possible

ak to obtain a well defined linear map

Idf : Cq(K) -^ Cq(\K\),

which sends the oriented (/-dimensional simplex k = [vq, ,vq] in Kqr to the alternating sum

^2 sign(r)aTk.
r£Sq+1

The map Id^ is easily checked to be a chain map. It induces a cochain map

bK:GZng(\K\)^GZmpl(K),
which in turns determines a map

bK : Hqng(\K\) ^ Hqimpl(K),

which we still denote by Id1^- between the singular cohomology of the topological space |Ä| and

the simplicial cohomology of Ä.
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Theorem 50 The map \âK : H11 (\K\) —> Hqlmpi(K) is an isomorphism for all q > 0.

The homological case of this theorem is theorem 7.22 of [Ro88].
More generally, a continuous map h : \K\ —> X between the realization of a simplicial complex

Ä and a topological X induces a map between the alternating singular cochains of X and the

simplicial cochains of Ä. Indeed, define

hb--Cqsmg(X)^GZmpl(K)

as the composition of the map

h*--Cqsmg(X)^CZng(\K\)

and the map

UbK:Clng(\K\)^CZmpl(K).
The induced map h} is a chain map, since both h* and \o^K are, and hence induces a map, which

we denote again by h}', between the singular cohomology of X and the simplicial cohomology of

Ä:

hb H!mg(X) ^ msimpl(K).
The invariance by homotopy now is a straightforward consequence of the analogous result in the

topological setting. More precisely:

Theorem 51 Let /i ~ / : |Ä| —> X &e continuous homotopic maps, then the induced maps

h" = f: Hlmg(X) — Kmpl(K)

are equal.

Proof. By definition we have h = LdK o h* and / = LdK o f*, but as h and / are homotopic, it

follows that the induced maps

h* = f* HLg(X) ^ Hqmg(\K\)

are equal, so that h} = /b as claimed.

From the very definition of the induced map h} we now obtain the following easy relation at

the cochain level:

Lemma 52 Let K be a simplicial complex, X, Y topological spaces, and h : \K\ —> X and f : X —>

Y continuous maps. Then

hbof = (fo hf : Clmg(Y) -^ Clmpl(K).

Proof. We have

hbof* = (LctKoh*)of =LctKo(h*of)=LctKo(foh)* = (foh)\

which finishes the proof of the lemma.



36 CHAPTER 2. SIMPLICIAL COMPLEXES

Lemma 53 Let K and L be simplicial complexes, and ip : Ä —> L a simplicial map. Then the

diagram

CLe(\L\) — Clmpl(L)

m <p

CLg(\K\) -^ GsVpl(Ä)
commutes.

Proof. Let c be a singular cochain in G' (|P|) and [vq, ,vq] an oriented simplex in Kqr. We

have

(^olâ\)(c)([vo,...,vq]) = (lâ\)(c)(^(vo),...,^(vq)^
= E sign(T)c([^(wT(0)),...,^K(g))])

tES,+i

= E sign(T)^*(c)(K(0),...,wT(g)])
tES,+i

= (ldbKo^(c)([vo,...,vq]),
which proves the lemma.

Lemma 54 Let K and L be simplicial complexes, X a topological space, h : \L\ —> X a continuous

map, and ip : Ä —> L a simplicial map. Then

V*ohb = \V\b o h* : Clng(X) -^ Clmp,(K).

Proof. By the very definition of h we have

ip* ohb =cp* oldbLoh*,

which by Lemma 53 is equal to

Id^o|^|*o/i* = \f\b oh*,

as desired.

Refinements

It is in general not possible to induce a canonical simplicial chain map starting from a continuous

map h : |Ä| —> |P| between the realizations of two simplicial complexes. However, if (L, h) happens
to be a refinement of Ä, so that the map h maps the (/-skeleton of Ä into the (/-skeleton of L for

every q > 0, we can define a map /ij : Cq(K) —> Cq(L) inductively as follows: For q = 0, define

MM) = IHv)]

for every vertex v of Ä. This is well defined since h(Yert(K)) cVert(P). Suppose now that the

map /ij is defined on the (q — l)-chains. Let A; be a (/-simplex of Ä, and k G Cq(K) the simplex



2.4. SIMPLICIAL COHOMOLOGY 37

k together with the choice of an ordering of its vertices. Let £i,...,£r be distinct (/-simplices of L

such that

fe(i*D = u:=1iAi.

For every i between 1 and r let lt G Gq(L) be the simplex £t together with a choice of ordering of

the vertices of £t such that
r

J2dl = hs(dk).

Finally, define
r

h(k) = jy*-
i=i

By definition, /ij is a chain map, so that its dual h} is a cochain map and hence defines a map

h« Kmpl(L) ^ Himpl(K)

in cohomology which we still denote by h}.

Observe that arbitrary maps h : |Ä| —> |P| can now be handled by passing to a refinement of

Ä on which a simplicial approximation to h can be found.

Proposition 55 Let K be a simplicial complex, and (L, r) a refinement of K. Then for any

\\rKc)\\^<\L:K\q\\c\\Lnmvl.
Moreover, the same inequality holds m cohomology:

llH(c)]||fmpl<[i:Ä]g||[C]||f;mpi.

Proof. For the first inequality, we have

llr*(c) llfmpi = maxse«r Mc(s)| by definition,
= |r"c(so)| f°r some so G K£T,

__ | v-r
, s

|
where h(s) = U[=0^

-|2.,=i<WI andr<[P:Ä]g,
<ax!E{1] ,q}\c(tt)\
<[L--K]q\\c\\^mpl.

The second inequality then follows by a standard argument:

II H(c)] IlLp, = inf{|| 6 ||£mpl| b G Z*mpl(K), [6] = h}(c)}

<inf{||r»(c')||fmpl|c'G^impl(i), [c] = [c']}

<inf{[L:X],||c'||L|c'GZ8*impl(L)) [c] = [c']}

by the first inequality,

= [P:Ä]g||c||^mpl.

More generally, one can similarly show:
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Proposition 56 Let K be a simplicial complex, and (L, r) a refinement of K. Let c be a simplicial
cochain in Cq% ,(L) and denote by L the subset o/R consisting of the image by c on all oriented

q-simphces of L,
L = {c(£) | £ G Lqor},

Then the cochain r^(c) takes values in

nte L, r < [L : K]En»
t=i

on oriented q-simphces of K.

Let now (L, r) be a refinement of the simplicial complex Ä. It is in general not true that

h$o!dbL =fdbK o h* : G' (|P|) —> G'im .(Ä). However the equality holds at the cohomology level:

Proposition 57 Let (L, r) be a refinement of the simplicial complex K. Then

r» o LdbL = LdbK o r* : Hlmg(\L\) - Hlmpl{K).

Proof. Recall that two cochains are cohomologous if and only if they agree on all cycles. Let

c G Zl (\L\) be a singular cocycle and z G Zq(K) a simplicial cycle. Let us compute, on one hand

rKubL(c)(z) = UbL(c)(ri(z)),

and on the other hand

ldbK or*(c)(z) = r*(c)(az) = c(r*(az)).

The desired equality now follows from the fact that r$(z) — r*(az) is a boundary in the singular
chain complex Gq(|P|) so that, as c is a cocycle, c(r^(z) — rt(az)) = 0.

Proposition 58 Let X be a topological space, (L, r) a refinement of the simplicial complex K,
and f : \L\ —> X a continuous map. Then

(f or)b =rK fb : Hlmg(X) ^ Hlmpl(K).

Proof. This is an immediate consequence of Proposition 57:

(/or)b=Id^o(/or)*
= k4or*of
= r» o LctL o f*

= rtl o/b.
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Characteristic classes

3.1 Primary Characteristic classes

Let G be a topological group. A characteristic class c assigns to any principal G-bundle £ over a

topological space P a cohomology class c(£) G Hq(B) such that if / : B' —> P is a continuous map

then c(/*(0) = /*WO) #*(#')•
Characteristic classes are easily seen to be in one to one correspondence with the cohomology of

some (and hence any) classifying space PG. Indeed, a characteristic class c in particular assigns to

the universal principal G-bundle £q over the classifying PG the cohomology class c(£a) £ Hq(BG).
Conversely, if cq is a cohomology element in Hq(BG) define a characteristic class as follows: For

every principal G-bundle £ over P, let / : P —> PG be a classifying map for £, and define the value

c(£) of the characteristic class on £ as

C(£) = r(cG)GP9(p).

This is well defined since the classifying map / is uniquely defined up to homotopy, and two

homotopic maps induce the same map in cohomology. Also, if furthermore g : B' —> P is a

continuous map, then fog : B' —> PG is a classifying map for the bundle <?*(£), so that c(<?*(£)) =

g*(c(£)) as desired.

If G is a Lie group, a standard way to compute characteristic classes is via the Chern-Weil

homomorphism whose description is the object of the next section.

3.1.1 The Chern-Weil homomorphism

Let G be a Lie group with Lie algebra q. Define

Lq(G) = {/:fl<8>---<8>0—>C|/ linear and G-invariant},

where the action of G is induced by the adjoint representation Ad: G —>GL(g). More precisely for

every g in G, define

g f(vi <g> • • • <g> vq) = f(Ad(g-1)vi <g> • • • <g> Ad(g-1)vq)

39
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for every vi,... ,vq in g and / : g (£> (£> g —> C linear. One can naturally define a multiplication

Lq(G)(E)Lp(G) —>Lq+p(G)

turning

P(G) = Ug>o/9(G)

into a graded algebra, the algebra of invariant polynomials on g.

The idea of the Chern-Weil theory is to assign to any differentiable principal G-bundle over

some smooth manifold M a homomorphism from the algebra of invariant polynomials on g to the

cohomology of the base space M,

wç :L*(G) —> H*(M),

with all the desirable naturality properties.
Let / G Lq(G) be an invariant polynomial, P a smooth manifold, and «i,..., aq differentiable

forms with coefficient in g on P of degree %i, ...,iq respectively (so that a3 G A%3 (P, g) for every j

in {1,..., (/}). A complex valued differential form /(«i A
...
A aq) of degree d = i\ + ... + iq on P is

naturally defined as follows: For every u in P and Xi, ...,Xd define

f(ai A
...
A cg„(Xi, ...,Xd) = f((ai A

...
A aq)u(Xi, ...,Xd)) G Ad(P,C).

Let now £ = {n : P —> M} be a differentiable principal G-bundle endowed with a connection

form u>. (Such a connection exists by virtue of corollary 27.) Denote by il G A2(P,g) the corre¬

sponding curvature. By the above described procedure, we obtain from any invariant polynomial

/ G Lq(G) a complex valued differential form of degree 2q on P which we denote by f(il) as

f(il) = f(ilq) = f(il A ...
A il) G A2q(P, C).

We now want to show that

1. f(il) descends to a 2ç-form f(il) G A2q(M,C) on M,

2. the form f(il) is closed,

3. the cohomology class [/(^)] is independent of the choice of the connection form.

From this we will obtain at once the desired conclusions. Let us thus prove those three asser¬

tions.

1. This is obvious. Indeed, since il is horizontal, f(il) surely also is, and il being equivariant
and / invariant, f(il) is an invariant horizontal 2(/-form so that it is the lift of a 2(/-form
on M, which is unique since n being surjective, the induced map n* : A*(M) —> A*(P) is

injective. We denote it by f(il) G A2q(M).

2. Since the map tt* : A*(M,C) —> A*(P,C) is injective, it is enough to show that f(il) G

A*(P,C) is closed. Indeed, if df(il) = 0, then

7T*(dJ(äj) = d(7T*(J(äj)) = df(il) = 0,
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and thus df(il) = 0. By Lemma 32 we know that df(il) = Df(il) so that

df(il) = Df(il)

= qf(DilAilq-1)
= 0,

where the last equality follows from Bianchi's identity Dil = 0 (Proposition 31).

3. Let loo and loi be two connection forms on £. Define cot to be the connection form consisting
of the convex linear combination of coq and loi. More precisely,

LOt = (1 ~t)iOo +tLOl,

for every t G R. Denote by ilt the corresponding curvature. Define a (2q— l)-form Tf(ioo, loi)
on P as

Tf(LO0,LOi) = q f f((coi - coo) Mir^dt e A2q-\P,C).
Jo

Being G-equivariant and horizontal, the form Tf(coo,coi) descends to a unique form on M

which we denote by Tf(coo,coi) G Ä2q^1(M,C). The assertion follows at once from the

following proposition.

Proposition 59 Let f G Lk(G) be an invariant polynomial and loq, u>i two connection forms

on £ with corresponding curvature ilo,ili. Then f(ilk) and f(ilk) differ by a coboundary.
More precisely,

dTf(LOo,LOi) =7M) -1W)-

Proof. By the injectivity of tt* : A*(M,C) —> A*(P,C) it is enough to show that

dTf(LO0,LOl)=f(ilk)-f(ilk).

Consider the (2q — l)-form f((ooi — loq) A ilq~ ) on P. It is G-equivariant and horizontal.

Hence it descends to a (2q — l)-form on M so that by Lemma 32,

df((coi - coo) a nr1) = Dtf((coi - coo) a nr1).

Recalling Bianchi's identity Dtilt = 0 (proposition 31) and the equality -^Ht = Dt(^i — wo)
(Lemma 34) we compute

qdf((coi - loo) a nr1) = qDtf((Loi - loo) a at1)
= qf(Dt(ui -w0) AS),

= qf(±iltAiir1)

9-lï
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and finally conclude

dTf(co0, LOi) = q f (df((LOi - loo) A iirl))dt
Jo

= f„im)dt
=/(fii)-/(n0).

We have thus constructed a map

wç : L*(G) —> H*(M)
f — mm

which is easily checked to be a homomorphism (even an algebra homomorphism). This is called

the Chern- Weil homomorphism.

Universal Chern-Weil homomorphism

The Chern-Weil homomorphism can be extended to the universal case, so as to obtain a map

Lq(G) —>H2q(BG).

Observe that some care is needed since the classifying space PG is not a manifold. This can be

handled in various ways: One can consider PG as a limit of manifolds, in which case the existence

of the Chern-Weil homomorphism in the universal case follows from the stability properties of the

cohomology of the limit. Alternatively, the classifying space PG can be viewed as a simplicial
manifold and as the Chern-Weil theory has been extended to simplicial manifolds by Dupont in

[Du76], the existence of the universal Chern-Weil homomorphism follows.

Note that the problem of understanding characteristic classes does not reduce to a mere de¬

scription of the algebra of invariant polynomials L*(G) since the Chern-Weil homomorphism is in

general not an isomorphism: For example, it is not surjective for SLnR whenever n is even, for, as

we shall see later, the Euler class e G P2n(PSLnR) is not in its image, and it is not injective for

GLnC However, for compact groups it was proven by Cartan that:

Theorem 60 IfK is a compact Lie group, then the Chern- Weil homomorphism L* (K) —> H2* (BK)
is an isomorphism.

Observe that since every principal G-bundle, where G is a Lie group with finitely many con¬

nected components, admits a reduction to any of its maximal compact subgroup (see Theorem

15), the classifying spaces PG and PÄ are homotopically equivalent, so that their corresponding

cohomologies are isomorphic. The cohomology of PG is thus isomorphic to L*(K):

Lq(G) > H2q(BG)

Lq(K) —^ H2q(BK).
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3.1.2 Characteristic classes of flat bundles

If a principal G-bundle £ happens to be flat, it can, by definition, be endowed with a connection

with vanishing curvature, so that the image of the Chern-Weil homomorphism is trivial This in

turn implies that the composition

Lq(G) — H2q(BG) — H2q(BGs)

is the zero map

In particular, the well known Chern and Pontrjagin classes are trivial for flat bundles Also,
if the Chern-Weil homomorphism is surjective, there can be no nontrivial characteristic classes of

flat bundles This is the case for compact groups (Theorem 60), for GLn(R) when n odd (which is

generated by the Pontrjagin classes), GLn(C) (generated by the Chern classes), etc

Observe that even though the triviality of the Chern and Pontrjagin classes is almost a tautology
in the differential setting, it is nevertheless a difficult result when using the topological definition

of the Chern and Pontrjagin classes (see [KaTo68] and [KaTo75])
Fortunately, there are nontrivial characteristic classes of flat bundles The first examples of

both nontrivial flat bundles and non trivial characteristic classes were given by Milnor in [Mi58],
where flat bundles over surfaces are characterized in terms of their Euler class We will examine

the example of the Euler class carefully below

More characteristic classes of flat bundles were exhibited by Dupont in [Du78, Chapter 9] The

author considers the commutative diagram

Lq(G) —> H2q(BG) —> H2q(BGs)
I I

Lq(K) —> H2q(BK),

where Ä is a maximal compact subgroup of G As mentioned earlier the lower horizontal arrow is

an isomorphism (because Ä is compact), and also the cohomologies of PG and PÄ are isomorphic
The map H2q(BG) —> H2q(BGs) is thus completely equivalent to the homomorphism Lq(K) —>

H2q(BGs), which is explicitly described by Dupont, and provides us with concrete non trivial

characteristic classes of flat bundles For example if G is the real symplectic group

G =
L G GL2nR

then any maximal compact subgroup Ä is isomorphic to the unitary group U(n), and the Chern

polynomials in L*(K) lead to non trivial characteristic classes in H2q(BGs) In particular for n = 1,
the symplectic group is isomorphic to SL2R, the first Chern polynomial in /1(P(1)) is sent to the

Euler class in P2(PSL2R'5) and the very description of the homomorphism Lq(K) —> H2q(BGs)
allows Dupont to give a new proof of Milnor's inequality

3.1.3 The Euler class

The Euler class is a cohomology class e in Pn(PSLnR) Of course it is only non trivial when n is

even, since characteristic classes always live in even degree Let thus n = 2m The Euler class is

most easily described as the image, via the isomorphism Tm(SO(2m)) —> P2m(PSL2mR) described

gt{-l 1)9={-1 o)}'
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above, of the ad(SO(2m))-invariant Pfaffian polynomial Pf G Tm(SO(2m)) defined as

Pf(A) =
22mTTmm\ ^ Sign(cr)a<r(l)<r(2) •

•-

•

«<x(2m-l)<x(2m),
'

cres2m

were A = (a%3) belongs to so(2m) = {A G M2mR | TrA = 0, A = A1}.
In the topological setting, the Euler class can be defined as follows: Let £ be a SLnR-bundle over

the geometric realization |Ä| of a simplicial complex Ä. Then the Euler class is the obstruction

to the existence of a nowhere vanishing section on the n-skeleton of Ä in the associated vector

bundle £r.
To see still another definition of the Euler class, and proofs that those definitions are all equiv¬

alent, the reader is invited to consult the excellent [MiSt79, §9 and Appendix C].
Using the definition of the Euler class as an obstruction class, Sullivan could easily show in

[Su76] our simplicial version (Theorem 5) for the Euler class:

Theorem 61 Let£ be a flat SLr(R-bundle over a finite simplicial complex K. Then the (simplicial)
Euler class e(£) G Ht t(K) can be represented by a cocycle whose evaluation on the n-simplices

of K takes value in { — 1,0, 1}.

Proof. First observe that we can without loss of generality assume that the dimension of the

simplicial complex Ä is equal to n. Consider the covering of |Ä| given by the sets Uk defined

for every n-dimensional simplex k of Ä to be a small neighborhood of \k\. Since the P^'s are

contractible there exists local trivializations <pk : ^\uk — Uk x R of the associated vector bundle

£r such that the corresponding transition functions gkk', relative to this open covering, are locally
constant and thus constant.

Choose for every vertex v of Ä a point s(v) G £r in the fiber over v in such a way that if

vq, •••, vn-\ generate an (n — l)-dimensional simplex of Ä then the convex hull of the projection to

R of the points <pk(s(vo)),..., <pk(s(vn_i)), where k is any n-dimensional simplex of Ä containing

vq, ...,vn-\, does not contain 0. This is, from dimension considerations, always possible. Define

now local sections S£ : £ —> £r|£ for each (n — 1)-dimensional simplex £ of Ä as the composition
of (pk ,

where k is an n-dimensional simplex containing I, and the obvious convex linear combi¬

nation of the points <pk(s(vo)),..., <pk(s(vn-i)). Since the transition functions correspond to linear

transformations this defines a global section s : Än_1 —> CrIk-1-
By definition of the Euler class as an obstruction class, we now obtain a (simplicial) cocycle e

representing the class e(£) G iT j(Ä) as follows: the evaluation of e on an n-dimensional simplex
k of Ä is the homotopy class in 7rn_i(Rn\{0}) = Z of the map <pk o s\gk —> dk x R composed
with the second projection. Since it is linear on each face of dk, it is either trivial, or one of the

generators of 7rn_i(Rn\{0}) = Z
,
thus proving the Theorem.

By the following slight modification of Sullivan's argument, Smillie was capable to improve
the bound to 1/2 for n even, and 0 for n odd (see [Sm81]): Consider the 2n+1 sections on an

n-dimensional simplex of Ä constructed as above from their vertices value

±cpk(s(v0)),..., ±cpk(s(vn)).

Exactly two of those sections will give a non trivial value for the above given corresponding repre¬

sentative for the Euler class. In odd dimension, respectively even dimension, they will have opposite

sign, resp. identical sign. Averaging over all such possible sections, Smillie's result follows.
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The singular version of the Theorem for the Euler class was then obtained in [IvTu82] by Ivanov

and Turaev

Theorem 62 Let £ be a flat SLr(R-bundle over a topological space Then

IKON«, < ^
The idea of the proof is to average, not only on a finite number of possible sections as was done

by Smillie, but on all admissible sections This leads to the cocycle E G Zn(SLnM.6) representing

the Euler class in Hn(BSLnRs) = Hn(SLnRs) defined as

E (SL„R)n —> [-1/2, 1/2] CR

(gi, ,9n) '—> f(O^n+it(v0,givi, ,gnvn)dv0 dvn,

where t(vo, ,vn) is equal to 1 if the convex hull of the vectors vq, ,vn contain 0 and {vi, ,vn}
are positively oriented, —1 if the convex hull of the vectors vq, , vn contain 0 and {vi, , vn} are

negatively oriented, and 0 otherwise The cocycle E is easily checked to be bounded, but note that

it is by no means finite, for it takes, when n is even, all possible values in the interval [—1/2, 1/2]
As observed by Ghys in [Ghys87] (see also [Ghys99]), it is now easy to show one part of Milnor-

Wood inequality namely

Corollary 63 Let £ be a flat SLnM.-bundle over a surface Yig of genus g > 1 Then

|e(0[Sfl]|<ff-l

Proof. Let X be a topological space, z G Zq(X) a (/-cycle and c G Zq(X) a (/-cocycle By the very

definition of the 1-norm and oo-norm on the space of chains and cochains one has the inequality

l^)l<l|c|UNIi,

which induces the corresponding inequality

|cMI<l|[c]IUIHHi

in cohomology whenever ||[-z]||i is not zero

The simplicial volume of surfaces is easily computed (see for example [Gr82]), and is equal to

IIPs]|li=4(/-4

Together with Ivanov and Turaev's Theorem 62 we can now conclude that

k(e)Ps]i<ii[£(e)]ii00iiPs]ii1<^(4(/-4) = (/-i

The other implication of Milnor-Wood's inequality is proven by exhibiting, for every claimed

possible value of the Euler number, a flat bundle with this Euler class This proves the assertion

since isomorphy classes of bundles over surfaces are completely determined by their Euler class

Also, this gives the first examples of non trivial flat bundles and non trivial characteristic classes

of flat bundles We refer the reader to the original paper [Mi58] for more details
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3.1.4 Characteristic classes in degree 2 when ui{G) = Z

Let G be a topological group whose fundamental group 7Ti(G) is isomorphic to Z. Denoting by G

the universal cover of G, we obtain a short exact sequence

0 > Z —l-^ G —p-^ G > 1

which is such that the image of Z by i is contained in the center of G. It is a standard fact,
that there is a one to one correspondence between isomorphy classes of central extensions of G

by Z and cohomology classes in H2(G, Z). Recall that any cocycle representing the cohomology
class corresponding to the above central extension can be obtained in the following way: Pick

a fundamental domain D C G for G and let s : G —> G be the unique set theoretic section of

p : G —> G satisfying Ims = D. Define

c:GxG—>Z

by

i-(c(g,h)) = s(g)s(h)s(gh) 1,

for every g, h in G.

The cohomology class [c] G H2 (G, Z) =H2(BGS, Z) is in fact a primary characteristic class, by
which we mean that it is in the image of the natural map

P2(PG,Z) —>H2(BGS,Z) =H2(G,Z).

In the simplicial case, this characteristic class is most easily described as the obstruction to the

existence of a section of the G-bundle restricted on the 2-skeleton.

It is clear that if we can choose the fundamental domain D such that D D is contained in a

finite union of translates of D, then the cocycle c(D) is a bounded cocycle. Let us examine a few

examples:

• If G is compact, then this is always the case. However nothing new is gained since we already
know that there exists no non trivial characteristic class for flat G-bundles whenever G is

compact.

• Let G =SL2R (or more generally Homeo+(S1), the group of orientation preserving homeo¬

morphism of the circle) the characteristic class corresponding to the central extension

0 —> Z —> Sl7(R) —> SL2(R) —>1

is precisely the Euler class e G H2(SL2(R)) =H2(B(SL2R) ). In this case, Ghys exhibited

in [Ghys87] and [Ghys99] a canonical fundamental domain D with the property that D D

is the union of D and the translate of D by the positive generator of Z. It follows that the

Euler class can be represented by a cocycle taking values in {0,1}.

• This example is due to Golman [Go81]. Let G be the quotient of the Heisenberg group

H x,y,z G
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of upper triangular unipotent 3 by 3 matrices by the normal subgroup generated by the

central element

'10 1

T= | 0 1 0

0 0 1

Of course, H can be taken as the universal cover of G Consider the fundamental domain

D = x,y G R, 0 < z < 1

It is easy to show that D D is not contained in a finite union of translates of D For example,
let n be an arbitrary integer Then

1 n °\ /1 0 0

0 1 0 0 1 1

0 0 i / V o 0 1

belongs to TnD, even though the two matrices on the left hand side of the equality belong
to D The corresponding cocycle

c GxG—>Z

is thus unbounded

Let n be an arbitrary integer Define a representation

hn Z © Z —>G

by sending the two canonical generators a and b of Z © Z to the respective projections onto

G of the matrices
'

1 0 0 \ / 1 n 0

A=\ 0 1 -1 and P= 0 1 0

0 0 1/ \ 0 0 1

of H This is well defined since ABA^1P_1 is equal to T Now, because the evaluation

of the 2-cycle [a, b] — [b, a] on c is equal to n, it follows that the representations hn induce

infinitely many non isomorphic flat G-bundles over the 2-torus It thus follows from Lusztig's

Corollary 42 that G can not be algebraic

Furthermore, because the class /i^([c]) G P2(Z© Z, R) is non trivial for n different from 0,
it can not belong to the image of

{0} = P62(Z©Z,R) —>P2(Z©Z,R),

so that the primary characteristic class [c] itself can impossibly belong to the image of

P62(G,R) —>P2(G,R)
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3.1.5 Finiteness properties

Let us recall our main result:

Theorem 64 Let G be an algebraic subgroup of GLn(M). Then every characteristic class of flat
G-bundle can be represented by a cocycle whose set of value on singular simplices is finite.

This generalizes Gromov's Theorem 3, which admits the following reformulation:

Theorem 65 Let G be an algebraic subgroup of GLn(M). Then the image of the map H*(BG) —>

H*(BG ) is contained in the image of the comparison map H£(BG ) —> H*(BG ).

As mentioned in the introduction, an immediate corollary is now:

Corollary 66 Let G be an algebraic subgroup of GLn(M) and X a topological space with amenable

fundamental group. Then X does not possess any non trivial characteristic class of flat G-bundle.

Proof. It is well known that the bounded cohomology of topological spaces with amenable fun¬

damental group is trivial. The corollary thus follows from Theorem 65 and the commutativity of

the following diagram:

H*(BG) —> H*(BGS) <— H*(BGS)
X I I

H*(X) ^- P*(X) = {0}.

Observe that it is necessary to assume, in Gromov's Theorem 65 (and also in our Theorem 64),
that the group G is algebraic. For example, if G is the quotient of the Heisenberg group by any

central element, it was pointed out by Goldman in [Go81] that the primary characteristic class in

H2(G, R) obtained from the central extension given from the universal covering of G is not in the

image of

P62(G,R) —>P2(G,R).

The details of this counter-example are given above.

Let us point out that our Theorem 64 is really a strengthening of Gromov's Theorem 65. More

information is gained from knowing that a cohomology class can be represented by a finite cocycle.

Indeed, if we define finite group cohomology H*AG, R) analogously to bounded group cohomology
from the subcomplex consisting of cochains taking only finitely many values, then it is so that

H*f(G,R) ^H*b(G,R)

in general. For example H2AZ,R) is not zero, whereas P^(Z, R) is trivial since Z is amenable. To

see that, consider the following diagram where the horizontal lines are short exact sequences

Q/Z = pi(Z,R/Z) > H2(Z,Z) > H2(Z,R)^0

R/Z = P6i(Z,R/Z)
~

; H2(Z,Z) > H2(Z,R)=0.
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3.2 Secondary characteristic classes

In this chapter we define the secondary invariants of Cheeger-Simons following the original paper

of Cheeger and Simons ([ChSi85]). Those depend on an invariant polynomial / G Lq(G,¥), where

F is either R or C, and a cohomology class [u] G H2q(BG,A) for some discrete subring A < F,

satisfying wa(f) = r([u]), where r : H2q(BG,A) —> H2q(BG,¥) is induced from the inclusion

of coefficients. In the introduction we asserted there existence in the case of bundles endowed

with a flat connection. However, it is both natural and convenient to define them more generally
for any connection. We define below the ring of differential characters, which contains the usual

cohomology ring, where the secondary invariants S^/,«) find there natural receptacle.

3.2.1 Differential characters

Let M be a smooth connected manifold. Recall that by smooth we really mean infinitely differen¬

tiable. Denote by G* (M, Z) the complex of smooth singular chains on M (with integer coefficients),
and let Z*(M, Z) be its subcomplex of smooth singular cycles. Let F denote either R or C, and

write C*(M, F) for the complex of smooth singular cochains on M with coefficients in F, that is,

G*(M,F) =Homz(G*(M,Z),F).

Let A*(M,¥) denote the complex of smooth differential forms on M with coefficients in F. There

is a natural inclusion of A*(M, F) in C*(M, F) given by integrating differential forms over smooth

chains. Observe that Stoke's theorem is equivalent to saying that this inclusion is a chain map. The

induced map in cohomology is the de Rham isomorphism between the de Rham cohomology and

the singular cohomology of the manifold M. Let A be a discrete subring of F (typically, A = {0}
or Z). Composing the integration with the reduction modulo A we obtain a map

la : Aq(M,¥) —> Cq(M,¥/K)

defined by

tA(a)(a)

where a is a differential (/-form, and a : Aq —>

Lemma 67 The map l\ is injective.

Proof. Put on the set of smooth singular (/-chains Sq(M) = {a : Aq —> M | a is smooth}
the compact-open topology. Since M is connected, it is also path connected (recall that M is a

manifold). We claim that Sq(M) is also path connected. To see that, we show that any a : Aq —> M

can be connected to some constant map ao(t) = xq, for some fixed xq G M. Since Aq is contractible,
there exists a homotopy between the identity of Aq and some constant map, say

H:Aqx [0,1] — Aq,

with H(t, 0) =IdA9 and H(t, 1) = to for some to in Aq. Now, as M is path connected, there exists

a path 7 : [0,1] —> M with 7(0) = a (to) and 7(1) = xq- Finally define

P : Aq x [0,1] —> M

a(H(t,2s)) ifs<\,
7(2s-l) if s > |.

«modA,

M is a smooth simplex.

(t,s)
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Now any differential form a in Aq(M, ¥) defines, by integration, a continuous map a : Sq(M) —> F.

But if if^(a) = 0, we have that the image of a is equal to A. Since Sq(M) is connected per arc, its

image by a is also, and as it contains zero and A is discrete, it must be equal to zero.

Definition 68 Let M be a smooth manifold. The group of differential characters of degree q on

M is defined by

Hq(M,¥/k) = {/ G Y±om(Zq(M,Z),¥/k) \ Of e t.A(Aq+1(M,¥))}.

The first examples of elements of Hq(M, F/A) are cohomology classes in Hq(M, F/A). Indeed,
let [c] belong to Hq(M, F/A), and let c be a cocycle representing it. Then of course Sc lies in the

image of l\ since it is zero, so that we obtain a differential character by restricting c to the cycles
of M. Observe that c being a cocycle, its value on any cycle of M only depends on the cohomology
class [c], so that we have defined a homomorphism

Hq(M,¥/K) —> Hq(M,¥/K)
M '—> c\Zq{M),

which will easily be checked, in Lemma 69, to be an injection.
Define now Aq (M) to be the set of closed differential (q + 1)-forms on M with periods in A,

that is,

Aq0+1 = {aeAq+1(M,¥) | da = 0 and / a G A Vz G Zq+1(M)}.
J z

We can define a map, which we denote by ö thereby slightly abusing notation, by

5:Hq(M,¥/K) —> Aq0+1(M)
f ' > OL,

where a is the (unique) differential form such that öf = u\a. Let us check that this is well defined.

That such a differential form exists follows from the definition of differential characters. It is unique

by injectivity of l\. Using Stoke's theorem and the injectivity of l\ it is easy to see that it is closed:

i\(da)(a) = / damodA = / amodA = i\a(da) = S2f(a) = 0,
J a J da

for every smooth singular simplex a : Aq+2 —> M. It remains to check that it has its periods in A.

Let z be a smooth singular q + 1-cycle on M, then

amodA = t^(a)(z) = 5f(z) = f(dz) = 0.

Putting those two maps together, we obtain the nice following lemma (Theorem 1.1 of [ChSi85]):

Lemma 69 There is a short exact sequence

0 —> Hq(M,¥/K) —> Hq(M,¥/K) —> Aq0+1(M) —> 0.

Proof. We have:



3 2 SECONDARY CHARACTERISTIC CLASSES 51

• Injectivity of Hq(M, F/A) —> Hq(M, F/A) a cocycle vanishing on all cycles represents the

zero class

• Im(Hq(M, F/A) - P9(M, F/A)) cKei(Hq(M, F/A) - Ag+1(M) for a differential character

/ defined as the restriction of a cocycle, we surely have öf = 0 = (-a(O)

• Im(iT«(M,F/A) - Hq(M,¥/X)) DKei(Hq(M,¥/A) -> Aq0+1(M) if a differential character

/ is such that öf = (-a(O) = 0, we claim that we can extend it to a cocycle on M To see that

observe that the quotient Cq(M, Z)/Zq(M, Z) is a free Z-module since it is isomorphic to its

image in Gq_i(M, Z) by the boundary operator d, and thus a submodule of a free Z-module

It follows that

Cq(M,Z)=Zq(M,Z) + F,

for some free Z-module P We can hence define a cocham / on M as /(c) = /(c) if c is a

cycle, /(c) = 0 for c in P, and extend it A-lmearly to Cq(M, Z) Of course, the cochain / is

actually a cocycle

• Surjectivity of Hq(M, F/A) —> Aq (M) Let a be a closed differential form with periods in

A The form a in particular defines, by integration, a map a from the smooth cycles on M

to A By the same argument as above, we can extend a to a cocycle in Cq+1(M, A), which

we still denote by a Let r(a) be the image of a by the injection Cq+1(M, A) —> G9+1(M, F)
induced by the inclusion of coefficients A ^-> F Observe that a — r(a) is zero when evaluated

on cycles, and thus is a coboundary, so that

a — r(a) = öf,

for some / in Cq(M, F) Finally define / to be the restriction of / modulo A to the cycles of

M, and conclude that

öf = tA(a),

since r(a) modulo A vanishes

We see in particular, that cohomology with coefficients in F/A can indeed be considered as a

subgroup (actually even a subring) of the differential characters

Let us now investigate the relation of the ring of differential characters with the Bockstem map

b Hq(M,¥/A) —> Hq+1(M, A) associated to the short exact sequence of coefficients A ^-> F -»

F/A Let / G Hq(M, F/A) be a differential character with öf = i\(a) As in the proof of the

above lemma, we can extend / to a F/A-valued singular cochain / There clearly exists a cochain

c G Cq(M, ¥) with / = cmodA Since the reduction modulo A of the cocycle a — öc G Cq+1(M, ¥)
is zero, it follows from the exactness of the sequence

0—>Cq+1(M,A) —>Cq+l(M,¥) —>Cq+l(M, F/A) —>0

that there exists a A-valued cocham u G Cq+1(M, A) such that r(u) = a — öc, where r stands

for the inclusion r Cq+1(M,A) —> Cq+1(M, ¥) The cocham u necessarily is a cocycle, again by
exactness The only choice involved in this construction is the choice of cocham c G Cq(M, ¥) with

/ = cmodA Suppose thus that c' G Cq(M,¥) is another cocham satisfying / = c'modA and let
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u' G Cq+1(M, A) be obtained as above. Since the reduction modulo A of c — c' is zero it follows

that there exists v G Cq(M, A) with r(v) = c — c'. But then surely

r(öv) = öc — öc = a — r(u) — (a — r(u )) = r(u ) — r(u),

so that by injectivity of r the cocycles u and u' differ by a coboundary. It follows that we have

defined a map

Hq(M,¥/A) —>Hq+1(M,A),

and as by construction it agrees with —b on Hq(M, F/A), we abuse notation and denote it by —b.

Lemma 70 There is a short exact sequence

0 — Aq(M, ¥)/Aq(M) — Hq(M, F/A) — Hq+1(M, A) — 0.

3.2.2 The definition of the secondary invariants

From now on, and until the end of the chapter, let / G Lq(G,¥) be an invariant polynomial,
where we recall that F is either R or C, and [u] G H2q(BG,A) a cohomology class satisfying

wa(f) = r(M)) with r : H2q(BG,X) —> H2q(BG,¥) induced from the inclusion of coefficients.

Theorem 71 For every smooth principal G-bundle £ over a smooth manifold M endowed with a

connection form lo, there exists a unique differential character

S{Lu)(^,co)eH2q-1(M,¥/A)

satisfying

. OS{M(C,L0)=LA(Cq(il)),

. -bSUtU)(Ç,Lo) = [u(0},

• the assignment (£,u>) i—> <S,(/jM)(C, w) is natural in the sense that if </> : X —> M is a smooth

map, then .%,„)(</>*(£), </>*M) = </>*(<%,«)(£,^))-

The original proof of Cheeger and Simons (Theorem 2.2 in [ChSi85]), as most of their proofs,

goes via the universal bundle classifying both bundle and connections, which was shown to exist by
Narasimhan and Ramanan in [NaRa61] and [NaRa63]. We present in the next section an alternative

constructive proof in the case of the Chern class which was already sketched in [ChSi85] and is

very well explained in [DuHaZuOO].

3.2.3 A direct proof of the existence and uniqueness of the Cheeger-
Chern-Simons classes

Recall that the Chern polynomials Cq G T*(GLn(C)) are defined by the relation

n

det(AId„ - —A) = Y/Cq(Aq)\n-q.
2lTT z—'

q=0
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Also, there exists for every q, a unique class [cq] G P2q(PGL„(C),Z) satisfying

r([cq})=wGLn{c)(Cq) G H2q(BGLn(C),R).

Define for any principal GLn(C)-bundle £ endowed with a connection lo the Cheeger-Chern-Simons

class cq G H2q~1(M, C/Z) to be the secondary invariant associated to the couple (Cq, [cq]), that

is, cq(£,u>) = S(c ,[c ])• Observe that from the unicity of [cq] it follows that the condition that

—b(cq(£,u>)) = [cq(£)] is superfluous in Theorem 71.

There exists an explicit construction for the Cheeger-Chern-Simons classes, which we will de¬

scribe in this section, thereby giving a direct proof of Theorem 71 in this particular case. (See the

original version in [ChSi85, § 4] or a more detailed one in [DuHaZuOO, § 3.5].)
Consider the Stiefel manifold Vn-q+i(Cn) consisting of (n — q+l)-tuples of linearly independent

vectors in C. It is elementary to observe that Vn-q+i(Cn) is homotopically equivalent to its sub-

manifold U(n)/U((/ — 1). One now obtains the homology of the Stiefel manifold by classical means

of computation. (See for example [St51], § 25.7, for the analogous statement for the homotopy

groups of the Stiefel manifold.)

Proposition 72 One has

Ht(Vn_q+i(Cn))
0 if i < 2q- 1,

Zifi = 2q-1.

Moreover, the (2q — l)-th homology group H2q-i(Vn-q+i(Cn)) is generated by the cycle S2q 1
=

U(q)/U(q-1).

Let £ = P —> M be a principal G-bundle over a smooth manifold M. Suppose the bundle £ is

endowed with a connection form lo and denote by il the corresponding curvature form. Let

Vn-q+l(P)

It

M

be the corresponding Stiefel bundle with fiber Vn-q+i(Cn). (The total space is Vn-q+i(P) =

l/n-g+i(C") XqP.) We can now compute the Serre exact sequence of this fibration and in particular
obtain that the following sequence is exact (see [McClOl], example 5.D):

H2q-i(Vn_q+i(Cn)) -^ H2q_i(Vn_q+i(P)TT*H2q_i(M) -^ 0. (*)

Consider now the pull back of £ by the bundle map tt of the Stiefel bundle:

TT*(P) P

1 1

rn-q+l(P) ~- M.

Lemma 73 The bundle tt*(Ç) admits a reduction to GTq_i(C).

We hence have that

[TT*(Cq(il))} = [Cq(TT*(il))} = 0 G H2q(Vn_q+l(P)),
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and it thus follows that the form Cq(TT*(il)) G A2q(Vn-q+i(P)) is exact. Of course, we would now

like to choose a form whose differential is Cq(TT*(il)) in a natural and canonical way. As we will

soon prove this choice is possible, however only up to exact reminder.

We obtain a connection coq on 7r*(£) by extending to it the connection tt*(lo) restricted to

the GLq_i(C) reduction. Note that coq depends on the decomposition tt*(P) = n © e~9+1. By

Proposition 59 we have

dTT^(TT*(cü),Cüo)=Cq(TT*(il))-Cjih).

But by construction of coq, the form Cq(ilo) G A2q(Vn-q+i(P)) vanishes identically.
The following proposition (which is Proposition 3.8 in [DuHaZuOO]) shows that, up to exact

reminder, we had no choice for the form TCq(TT*(co),coo).

Proposition 74 The form TCq(TT*(co),coo) G A2q~1(Vn-q+i(P)) is uniquely determined, up to

exact reminder, by naturahty and the relation

dTC~q(TT*(co),CO0) = Cq(TT*(il)).

It follows that the only way to define the Cheeger-Chern-Simons class on the bundle 7r*(£)
endowed with the connection tt*(lo) is:

cq(TT*(0,^%^))=TZ\(TT*(co),LOo)modZ\z^_1(Vn_q+i(p)y

This is clear from the requirement that öcq(-TT*(£), tt*(co)) = L%(Cq(ilq)) and Proposition 74.

Theorem 75 With the notation as above, the Cheeger-Chern-Simons class cq(£,co) is defined, on

every cycle z G Z2q-i(M, Z), as

cq(ï,Lo)(z) = cq(TT*(ï),TT*(Lo))(z) + Cq(Çlq)(y)modZ,

where z = TTt(z) +dy, for some cycle z G Z2q-i(Vn-q+i(P)) and chain y G C2q(M).

Proof. We need to prove that this expression is well defined and that it satisfies the desired

properties of Theorem 71 for the Cheeger-Chern-Simons class.

To see that it is well defined, first observe that since the map

H2q_i(Vn_q+i(P)) —^ P2g-i(M)

is surjective, it follows that for any cycle z G Z2q_i(M) there exists a cycle z in Z2q_i(Vn_q+i(P))
such that [z] = [tt*(z)] G H2q-i(M). There thus exists a chain y G C2q(M) with z = Tr*(z) + dy.

Secondly, if z = tt*(z) + dy = tt*(z') + dy' for some cycles z,z' G Z2q-i(Vn-q+i(P)) and chains

y, y' G C2q(M) we need to show that

cq(n*(0,7T*(co))(z) + Cq(ilq)(y)rnodZ=cq(TT*(0,7T*(co))(z') (**)

+ Cq(ilq)(y')modZ.

It follows from the exact sequence (*) above, that the class [z — z1] belonging to H2q-i(Vn-q+i(P))
is in the image of the map H2q_i(Vn_q+i(Cn)) i* H2q_i(Vn_q+i(P)). There thus exists a cycle

v G Z2q-i(Vn-q+i(Cn)) and a chain w G G2q(l/n,_q+i(P)) such that

z — z' = itfV + dw.
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We claim that cq(7r*(£), tt*(lo))(i*v) is equal to zero. Assuming this for a moment, we see that the

desired equation (**) reduces to

Cq(Qq)(y')modZ-Cq(Qq)(y)modZ=cq(TT*(C),TT*(co))(dw)
= 5cq(TT*(£),TT*(co))(w)
= Cq(TT* (il)q)(w)modZ
= Cq(ilq)(TTtw)modZ,

where the last equality follows from the naturality of the Chern form Cq. Observe that d(y' — y) =

tt*(z — z') = TT*(i*v + dw) = d(TT*w), so that TT^w + y
— y' is a 2(/-cycle on M and therefore Cq(ilq)(

tt*w + y
— y') belongs to Z thus proving the equality (**).

As for the claim that

Cq(TT*(0,7T*(cü))(ttv)=0,

we do not know how to prove this without using the universal bundle. Let [v] = S*29-1 be a

generator of H2q-i(Vn-q+i(Cn)). Its image i*v is then a cycle which necessarily is a boundary
since H2q-i(Vn-q+i(U)) = H2q-i(B) = 0. Let b G C2q(Vn-q+i(U)) be such that db = i*v. Then

7T*(5) is a cycle on the base space of the universal bundle since tt^i^v = 0. But now we have

TG^»,^o)= fcq(TT*(il)q)= f QÂ^eZ,
Jb Jir*(b)

which finishes the proof of the claim.

Finally, let us check that the so defined cq satisfies the properties of Theorem 71:

• Let c G G2g(M,Z) be a chain on M. Then

ÖCq(i, L0)(C) = Cq(i, L0)(dc) = Cq(ilq)(c),

since the cycle de has the form de = tt*(0) + dc

• Let / : X —> M be a smooth map. We need to show that

Cq(f*(i),f*(L0))(z) = f*Cq(tL0)(z)

for every cycle z G Z2q-i(N, Z). We have the commutative diagram

Vn-q+i(f*(0) -^-+ N

f f

Vn-q+i(0 -^-^ M

Let z be a (2q — l)-cycle on X. There exists a cycle z G ^2g-i(l/n-g+i(/*(£))) and a chain

V ^ G2q(N) such that

z = (TTN)*z + dy.

By definition of cq we have on one hand

cg(r(e),rH)(^) = ?g(^(r(e)),^(rH))(io+cg(r(^)9)(y)modz

= cq(T(7T*N(0)J*(^(^))^+Cq(f*(il)q)(y)modZ,
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and on the other hand,

f*(cq(Ç,co))(z)=cq(Ç,co)(U(z))

= cq(TT*M(C,TT*M(co))(f^ + Cq(üq)(f,y)modZ,

since f*z = f*((TTN)*z + dy) = (7I"m)*(/*2:) + d(f*y) The naturality of the Chern form Cq
implies that

Cq(f*(il)q)(y)=Cq(ilq)(Uy)

It remains to show that

This is clear from the naturality of the form TCq and the fact that if coq1 is some connection

chosen as above, then we can take coq = f coq1

m

It is now easy to give a direct and constructive proof of Theorem 71 for the Cheeger-Chern-
Simons class

Proof of Theorem 71 for the Cheeger-Chern-Simons class. The existence of the Cheeger-
Chern-Simons class follows from Theorem 75 We thus just need to prove the uniqueness It follows

from Lemma 69, that the horizontal sequences of the following diagram are exact

H2q-1(M,C/Z) ^ H2q-1(M,C/Z) -» A20q(M)

H2q-1(V(P),C/Z) ^ H2q-1(V(P),C/Z) -» A20q(V(P)),

where we have written V(P) for the frame bundle Vn-q+i(P) The right and left vertical arrows

are mjective, so that, by the five lemma, the middle one is also mjective Now, we have seen from

the above discussion, that the requirement that öcq(TT*(^), tt*(co)) = —L%Cq(TT*(il)q) gave no choice

for the Cheeger-Chern-Simons class cq(-TT*(£), tt*(co)) g H2q~1(V(P),C/Z), which m turn proves

the uniqueness of the Cheeger-Chern-Simons class since by naturality we have

Cq(TT*(0,7T*(Lo))=TT*(cq(Ç,LOJ)

3.2.4 Dependency on the connection

Let us now return to the general setting It is essential to understand how the secondary invariants

of Cheeger-Simons vary when we change the connection Let £ be a principal G-bundle endowed

with two connections coq and loi We then clearly have

-b(S{fu)(Ç,LOl)) + b(S{fu)(Ç,LOo)) = u(0 - u(0 = 0,

and it thus follows from the short exact sequence of Lemma 70 that the difference of the two

secondary invariants can be given by a differential form modulo A, that is

<%«)(£,<^i) -%«)(£> w0) = tA(a)
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for some form a G A* (M, F), uniquely determined up to an element of Aq(M). Keeping in mind

that any two connections can be joined by a smooth path of connections, we can even exhibit such

a differential form.

Proposition 76 Let£ = P —> M be a principal G-bundle and cot be a smooth 1-parameter family

of connection on Ç, with t G [0, 1], then

<%,«)(£, wi) -S(/i„)(£,w0) = I.A ( q j f(-^uJt AS]? l)dt ] |z2,_1(M)-

Recall our notational convention that if a G A*(P,¥) is in the image of tt* : A*(M,¥) —>

A*(P, ¥), where tt : P —> M is the bundle map, we write ä G A* (M, F) for the unique form on M

satisfying tt*(o) = a.

Proof. Let thus z G Z2q_i(M, Z) be a smooth cycle on M. It should be clear that there exists a

(2(/)-chain z on M x [0,1] such that

dz = (ii)*(z) - (io)*(z),

where ik, for k = 0,1, stands for the canonical inclusion

ik : M ^ M x {k} C M x [0,1].

Consider now the principal G-bundle

P x [0,1]

f = I*

Mx[0,l],

where of course, Tr(u,t) = (n(u),t). Notice that, for k = 0,1,

£ = »*(£)•

At any point (u, t) G P x [0,1] in the total space of £, the tangent space at (u, t) naturally

decomposes in the direct sum of the tangent space of u in P and the one of t in [0,1] C R, that is,

T(„jt)(Px[0,l]) = T„P©R.

For any X in T^ut)(P x [0,1]), let us write Xp for the orthogonal projection of X onto TUP. Let

Lot be a smooth path of flat connections. Define on £ a form lo g A1(P x R, g) by

£(„,t)(X) = w(t)„(XP),

for every (w, t) G P x [0,1] and X G T(„t)R. It is straightforward to check that the form lo actually

defines a connection on £. Notice that, for k = 0,1, we have

t*k(ù) = cokeA1(P,g).



58 CHAPTER 3 CHARACTERISTIC CLASSES

Using the naturality of the secondary invariants, we can now compute the difference of the two

differential characters in consideration evaluated on the cycle z:

#(/,«)(£,wi)(z) -SUtU)(Ç,LO0)(z) =SUtU)(Ç,t*i(Ld))(z) -SçftU){Ç,i*0{û)){z)

= ï*i(S(f,u)(Zù))(z) -t*0(S{ftU)(Ç,à))(z)

= S(f,u)(î,^)((n)*(z) - (io)*(z))

= s{f,u)(ï,ù)(dz)
= ssU,u)(£,û)(z)

f(ilq)modA,

where il is the curvature form associated to lo. Since tt* : A*(M) —> A*(P) is injective, the

proposition will now follow from

l

f(Ûq) = J qjf(jfL0(t) Ail^-^dt.
0

To show this, we start by computing the curvature il and its powers: Let (u, t) be in P x [0,1]
and X,Y in T{u^(P x [0,1]). We have

~ dco
il = dtA — +ilf

dt

We now claim that

Qq = q(dtA^Aiir1) + ilq.

To see that, assume by induction that it is true for q
— 1, and compute

= ((q ~ l)(dt A ^ A ilq-2) + Qp1) A (dt A ^ + ilt.)

=
(q-l)(dtAdtA^A^A ilq-2) + q(dt A ^ A il^1) + ilq,
v /v

dt dt
* '

dt
* ' *

which proves the claim since the first summand vanishes as dt A dt does. We now have

dco
f(ilq) = J f(q(dt A — A iir1) + J f(ilq).

Observe that since there is no dt in f(ilq) the last summand must necessarily vanish. As for the

first, we have

f(q(dt A ^ A iir') = fqf1 /(^? A fif ')dt
dt

l '

./. Vo dt

which finishes the proof of the proposition.

Taking the path joining the two connections coq and loi to be the convex linear combination

Lot = (1 —t)coo +tcoi and recalling how the curvature of cot is computed (Lemma 33) we obtain the

following proposition as an immediate corollary of Proposition 76.
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Proposition 77 Let £ = P —> M be a principal G-bundle and coq, loi two connections on £. Then

Cq(L Wl) - C9(£, W0) = «-A ( <7 / /(Wl - CO0A

o

((1 - t)il0+tili + hfi - t)[coi - loo, wi
- wo])*-1)*) U2,_!(M)-

Proposition 76 is useful whenever the two connections considered are flat and can be joined by
a path consisting of flat connections (whereas the convex linear combination of two flat connections

is in general not flat as can be seen from Lemma 33), since in this case the right hand side of the

conclusion of the proposition is zero as soon as q is strictly greater than one, as the curvature

il(t) vanishes identically for every t. Sometimes however, it is more convenient to have a concrete

description of the difference, as in Proposition 77, which only depends on the connections coo and

coi, but not on any choice of path.

3.2.5 Flat bundles

Let co be a flat connection form on some principal G-bundle £ = P —> M. Then the associated

curvature form il of course vanishes identically, so that in particular f(il) = 0 in A2q(M, ¥). It

follows thus from the short exact sequence of Lemma 69 that any secondary invariant SyjU) is in

the image of the injective map

H2q-1(M,F/A) <-> H2q-1(M,¥/A).

Let us abuse notation, and write SyjU) for the corresponding cohomology class in H2q~1(M, F/A).

Theorem 78 (Rigidity) Let £ be a principal G-bundle over M, a smooth manifold, coo,coi two

flat connections on £ in the same path connected component of flat connection and q > 1 a positive

number. Then

S{f,u)(£;wo) = #(/,«)(£, Wl).

Proof. From Proposition 76 we obtain that the difference of the two differential characters is

equal to

l

iA I ?//(^(t)AQ(t^1)(it I lz^-i(M)'

where co(t) is any path of connections joining coo to coi. But since the two flat connections are in

the same path connected component (in the space of flat connections) we can take co(t) to be flat

for every t, so that il(t) vanishes for every t, and thus Q(t)9-1 = 0 whenever q is strictly greater

than 1.

3.2.6 Boundedness properties

Conjecture 79 If q > 1, then every secondary characteristic class SV/iM) m H2q~1(BG ) can be

represented by a bounded cocycle.
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Note that the assumption q > 1 is necessary, since for q = 1 the secondary characteristic

class ci G H1(BGS,C/Z) = Hl(G6, C/Z) can be represented in the Eilenberg-MacLane group

cohomology as

9 -^ ^-log(tr(ff)) G C/Z.
2tti

Dupont showed in [Du76] that primary and secondary classes admit explicit representatives by
continuous cocycles in the Eilenberg-MacLane group cohomology H*(GS) = H*(BGS) and asked

in [Du78] whether those cocycles are moreover bounded. On the other hand, from Theorem 3 and

the hypothetical Conjecture 79 it would follow that primary and secondary can be represented

by bounded cocycles. It is only natural to ask if those classes can further be represented by

cocycles which are both continuous and bounded. This is surely the case if Conjecture 79 holds

and G admits a cocompact lattice, as we see from the argument in the proof that Conjecture 79

implies Conjecture 80. More generally, in view of Dupont and Kamber's result that the continuous

cohomology of a connected semisimple Lie group with finite center is generated by primary and

secondary characteristic classes (see [DuKa90, Theorem 5.2]), Conjecture 79 immediately implies

Conjecture 80 below. This question was raised by Monod in [MoOl, p.126].

Conjecture 80 If G is a connected semisimple real algebraic Lie group, then the comparison map

P^(G,R)^PC"(G,R)

is surjective.

In degree 2, it was proven by Guichardet and Wigner that H2(G,R) is either trivial or one

dimensional, according to the associated symmetric space being of Hermitian type or not. In the

case where H2(G,R) = R, an explicit bounded generator can be exhibited, so that the comparison

map

P26(G,R)^P2(G,R)

is surjective in degree 2.

In the case where G has real rank one, the surjectivity of the comparison map follows from the

existence of a uniform bound on the volume of geodesic simplices in the corresponding symmetric

spaces (see [Th78] or [Gr82]).
Proof that Conjecture 79 implies Conjecture 80. As mentioned in the introduction, Dupont
and Kamber showed that the continuous cohomology of a connected semisimple Lie group is gen¬

erated by primary and secondary characteristic classes. Together with Conjecture 79, this means

that any cohomology element in the continuous cohomology of G can be represented by a (not nec¬

essarily continuous) bounded cocycle in the Eilenberg-MacLane cohomology of the group. It thus

only remains to show that this cohomology element moreover admits a continuous and bounded

representative.
It is well known, that G contains a cocompact lattice, say Y. It is standard that there exists a

map P*(r) —> H*(G) such that the composition

H*(G) —> H*(Y) —> H*(G)

is the identity, and that the same holds in bounded cohomology. Chasing in the diagram

JT*(G) ^ jT*(r) <— H*(GS)
T T T

H*cfi(G) ±i H*b(Y) ^- H*b(Gs)
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leads to the desired conclusion.

A straightforward consequence of Conjecture 80 is the following conjecture of Gromov:

Conjecture 81 The simplicial volume of any compact locally symmetric space of non compact

type is strictly positive.

The real rank one case is again due to Thurston, and simply follows from Conjecture 80 being
valid for real rank one semi-simple Lie groups.

Savage proved in [Sa82] the existence of a uniform bound on the volume of certain top di¬

mensional geometric simplices in SLnR/SO(n), which in turn proves Conjecture 81 for locally

symmetric spaces covered by SLnR/SO(n).
Proof that Conjecture 80 implies Conjecture 81. Let M = Y\G/K be a compact locally

symmetric space of dimension n. Upon replacing T by a finite index subgroup, we can suppose

that G is equal to the connected component of the identity Isom(M)0 of the isometries group of

the universal cover of M. Note that by doing so, we replace M by a finite covering of itself, which

has no effect on the non vanishing of the simplicial volume, since the two seminorms differ by the

index of the covering. We claim that the simplicial volume of M is strictly positive if and only if

the comparison map

p(r) — p(r)

is surjective. To see that, firstly observe that since M is a K(Y, 1), both the usual and the

bounded cohomologies of M are canonically isomorphic to the corresponding group cohomologies
of the fundamental group Y of M, so that by the commutativity of the following diagram

H£(T) —> Hn(Y)

H£(M) —> Hn(M)

the surjectivity of the above given comparison map amounts to the surjectivity of the comparison

map

H%(M) —> Hn(M).

Secondly, let ß G Hn(M) be the dual of the fundamental class [M] G Hn(M) of the compact
manifold M. The following easy relation was first proven by Gromov ([Gr82, page 17])

Halloo

Thus, the simplicial volume of M is strictly positive if and only if the cohomology class ß admits

a bounded representative, which is equivalent to saying that ß is in the image of the comparison

map Hb(M) — Hn(M). The claim is hence proven since Hn(M) is generated by ß.
Consider now the commutative diagram

p(r) —> Hn(Y)
T T

Hlb(G) -^ H?(G),

and note that the theorem follows from the surjectivity of the lower horizontal and of the right
vertical maps. Let us thus finish by proving this.
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Surjectivity of H"b(G) —> H"(G) The group G = Isom(M)0 is connected, and M being of

non-compact type, it is moreover semisimple and has finite center, so that it is real algebraic
and hence satisfies the assumptions of Conjecture 80 Note that if M were of Euclidean type

this would not be so since the group G would then not be semisimple

Surjectivity of H"(G) —> Hn(Y) As Y is a cocompact lattice in G, by integrating over G/Y,
one obtains a map P*(r) —> H*(G), and it is well known that the composition

H*(G) —> H*(Y) —> H*(G)

is equal to the identity Now, since Hn(Y) is one dimensional, the surjectivity of the map

H"(G) —> P(r) reduces to the non triviality of Hn(G) Since G is semi-simple it admits a

compact form U, and the continuous cohomology is computed as

H*C(G) = H*(U/K),

where the latter cohomology is the de Rham cohomology of the manifold U/K Note that

the compact group K can in our case be chosen to be the same as the original group K

(from Y\G/K), since it needs to be a maximal (non necessarily proper) compact subgroup
of G, and as the latter is non compact K is equal to the maximal proper compact subgroup
of G This is not the case when M is of compact type The dimension of M is equal to the

dimension of its universal cover G/K so that

n = Dimg — Dim!

Since the dimension of the Lie algebra g of G and the Lie algebra u of P agree, it is also true

that

Dim(P/X) = Dimu — Dim! = Dung — Dim! = n,

so that Hn(U/K) is one dimensional and thus

h:(g) ± {o},

which was to be proven



Chapter 4

The proof of the main Theorem

4.1 Semi-algebraic sets

The aim of this section is to introduce all standard results on semi-algebraic sets which we will

need for our proof of Theorem 5. For the sake of conciseness, we omit most proofs, and invite the

interested reader to consult Chapter 2 of the book [BeRi90] by Benedetti and Risler.

Definitions and first properties

A subset X of R is said to be semi-algebraic if it admits a representation of the form

X = f\s=i u;Li {x = (xi, ...,xn) G R | Pt,3(x) > 0},

where PtJ(Ti, ...,Tn) is a polynomial in n variables belonging to Rp\, ...,Tn] for every i and j.
Such a representation is by no means unique as will soon be clear.

Note that semi-algebraic sets are closed under finite unions, finite intersections and comple¬
mentation.

We can surely measure the complexity of a semi-algebraic set X in terms of the dimension of

the affine space X belongs to, and the minimal number and degree of the polynomials involved in

a representation of X. More precisely, let R be a representation as above of some semi-algebraic
set. Define

s

C(R) =Vr, and D(R) = max{deg(P„)}.
—J

%>3
'

t=l

Let n, c, d G N and set

X is semi-algebraic and admits "1

a representation R with >
.

C(R) < c and D(R) <d J

We say that a semi-algebraic set X is of complexity S(n,c,d) if X belongs to S(n,c,d). Some

examples are in order:

S(n, c, d) x c

63
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1. Algebraic sets are surely semi-algebraic. In particular, the affine space R is semi-algebraic,
and belongs to S(n,0,0).

2. The standard (/-simplex

Aq = {(h, ...,tq) G Rq | tt > 0, 1 - E*=1t, > 0}

belongs to S(q, q + 1,1),

3. More generally, any finite simplicial complex K is semi-algebraic of complexity S(n,c, 1),
where n and c depend on the number of simplices of K.

4. Observe that the minimal complexity of a semi-algebraic set is not well defined: the semi-

algebraic set

{x G R | x2 > 1} = {x G R | x < -1} U {x G R | x > 1}

is both of complexity S(l, 1, 2) and S(l, 2,1).

Lemma 82 IfXi,...,X^ are semi-algebraic sets of complexity S(n,c,d), then the intersection

n^=1Xj is semi-algebraic of complexity S(n,£c,d).

Lemma 83 Let X and Y be two algebraic subsets o/R. If X and Y are of complexity S(n, c, d)
then their join

X*Y = {t(x,0) + (l -t)(y,l) | 0 <t < 1, xgX, y eY} C R xR

is semi-algebraic of complexity S(n + 1, C, D), where C and D depend only on n, c and d.

Let X C R, Y G Rm be semi-algebraic. A map / : X —> Y is called semi-algebraic if it is

continuous and its graph is a semi-algebraic subset ofR xR\ It is moreover called semi-algebraic

of complexity S(n, c, d) if its graph is semi-algebraic of complexity S(n, c, d).
Before enumerating some further useful properties of semi-algebraic sets and maps which we will

need in the proof of our Theorem 5, let us introduce some convenient notation. Let n\,..., nq and

n be natural numbers (or more generally functions or various objects). We write n <\ (ni, ...,nq)
if the number n is bounded by a number depending only on rii,...,nq. As an example, given a

polynomial / G R[T], denote by r(f) the number of roots of /, and by deg(/) the degree of /, then

r(f) <deg(/).

Theorem 84 (Tarski-Seidenberg) Let n, rn, c, d be natural numbers. Then there exists G, D <

n + m, c, d such that for every semi-algebraic sets X G R, Y G Rm and for every semi-algebraic

map f : X —> Y
, if A G X is a semi-algebraic set of complexity S(n, c, d) and f is of complexity

S(n + rn, c, d), then f(X) G Y is a semi-algebraic subset ofRm of complexity S(m, G, D).

Corollary 85 Let X G R and Y G Rm be semi-algebraic sets, f : X —> Y a semi-algebraic

map of complexity S(n + m,c,d). Suppose that A G Y is a semi-algebraic subset of complexity

S(m, c, d), then f^1(A) G X is semi-algebraic of complexity S(n, C, D), where G, D <\ n, rn, c, d.

Corollary 86 Let X G Rn, Y G Rm and Z G Rp be semi-algebraic sets, f : X -> Y and

g : Y —> Z semi-algebraic maps. Suppose that f is of complexity S(n + rn, c, d) and g of complexity

S(m + p, c, d). Then the map g o f : X —> Z is semi-algebraic of complexity S(n +p, G, D), where

c,d<]n, m,p, c, d.
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Another maybe less obvious consequence of Tarski-Seidenberg's Theorem 84 is that closures,
interiors and boundaries of semi-algebraic sets are semi-algebraic:

Proposition 87 Let X be a semi-algebraic set. Then its closure X, its interior Int(X) and its

boundary dX = X\Int(X) are semi-algebraic.

Proof. Let X be a semi-algebraic subset of R. Since dX = X\Int(X) and semi-algebraic sets

are closed under taking complements, it is enough to show that X and Int(X) are semi-algebraic.

Consider the two following semi-algebraic subsets of R x R x R:

X' = {(x, y, t) G R x R x R | r < 0, y G X}

U{(x, y, t) G R x R x R | \x - y|2 - r < 0, y G X}.

and

X" = {(x,y,t) GR xR xR I r > 0}

U{(x, y, t) G R x R x R | \x - yf - r > 0}
U{(x, y, t) G R x R x R j y G X}.

Let p' and p" be the two following canonical projections

p' : R x R x R —> R x R

(x,y,t) i—> (x,y)

and

p" : R x R —> R

(x,y) i—> x.

Note that

X = p"(Rn x RV(R x R x R\X'))

and

Int(X) =p"(Rn x R"V(R x R x R\X"))

so that it follows from 84 that X and Int(X) are semi-algebraic.

Triangulations of semi-algebraic sets

Theorem 88 below is the most technical tool which we need for our proof of Theorem 5. It is

a bounded version of the existence of semi-algebraic triangulations of semi-algebraic sets. The

unbounded version (that is, the existence of a semi-algebraic triangulation with no bound on the

number or on the complexity of the simplices) was proven by Hironaka in [Hi74] following the

analogous result by Lojasiewicz for semi-analytic sets. It was then observed by Benedetti and

Risler, that one straightforwardly obtains the corresponding bounded version, by bounding every

step of the constructive proof of Hironaka, as detailed in [BeRi90, Theorem 2.9.4].
Let X be a semi-algebraic set. A triangulation h : X —> |X| of X is said to be a semi-algebraic

triangulation if the homeomorphism h between X and the geometric realization of the simplicial

complex K is semi-algebraic.
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Theorem 88 For every compact semi-algebraic set X and every semi-algebraic subsets X\, ..

.,
Xg G

X, if Xi, ..., Xi and X are of complexity S(n, c, d) then there exists a semi-algebraic triangulation

h:X —>\K\

such that

1. Xj is a finite union of h^1(s) for some simplices s of K, for every i between 1 and £;

2. the number of simplices of K is bounded by k, where k < (n, c, d, £);

3. for every simplex s of K the set h^1(s) is semi-algebraic of complexity S(n, G, D), for some

C, D < (n,c,d,£).

Observe that it follows from Theorem 88 that the Hauptvermutung holds in the semi-algebraic

setting. Indeed, given two finite triangulations of some semi-algebraic set, apply Theorem 88 to

all the simplices appearing in both triangulations in order to obtain a common refinement.

Corollary 89 Let X be a semi-algebraic set. Then every connected component of X is semi-

algebraic.

Proof. Upon successively embedding X in a projective space and affine space of appropriate
dimensions we can without loss of generality assume that X is compact. By Theorem 88, X

admits a triangulation by semi-algebraic simplices, in such a way that X is a finite union of

semi-algebraic simplices. In particular, every connected component of X is a finite union of semi-

algebraic simplices, and thus is semi-algebraic.

Semi-algebraicity of the classifying space and classifying map

In the sequel we examine the question of semi-algebraicity for the classifying space PGq and the

classifying map /, which we defined in Section 1.1.2, in the case where the bundle in consideration

is flat.

The classifying space Let us first examine the case of the space of n-frames Frn(RAr). Recall

that it is naturally identified with the set of all X times n matrices with linearly independent
columns. The latter condition being equivalent to the non vanishing of at least one of the maximal

minor, it is immediate that the space Frn(RAr) can be viewed as a semi-algebraic subset of RNn.

Let G be an algebraic subgroup of GLnR and let us show that PGq is semi-algebraic. The

main point is that PGq can in a natural way be viewed as a homogeneous space. Indeed, consider

the action of GLatR on PGq (where, as in Section 1.1.2, X = (q + l)n) given by left matrix

multiplication

The stabilizer of the point
In

0

P(R) =

yj[j]\rM.X Hù-q > £>Grq

(A,[X]G)^[AX]G.

G PGq is easily checked to be

G

={(s :)^gl-w geC
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Our space PGq is thus diffeomorphic to the homogeneous space

GLjv(

Since G is algebraic, it is clear that P(R) is a real algebraic subgroup of GL^R It is a consequence

of a well known theorem of Chevalley that the homogeneous space

Y(C) = GLN(C)/H(C)

of the corresponding complex algebraic groups is a complex quasi-projective variety (see [Bo91], §6
or more precisely Theorem 6 8) However, it is m general false that the real points Y(R) of Y(C)
form the homogeneous space GLat(R)/P(R) To see that let us consider the following examples

• The quotient of GLi(C) by its finite subgroup {+1, —1} can naturally be identified with

GLi(C) m such a way that the quotient mapping is given by

GLi(C) —> GLi(C)
Z I—> zz

But m the real case, the quotient GLi(R)/{+l, —1} is of course not diffeomorphic to GLi(R)
Actually, it is diffeomorphic to one connected component of GLi(R)

• More generally, the quotient of GLn(C) by its orthogonal subgroup 0(n, C) is naturally iden¬

tified with the space of non degenerated quadratic forms over C, or equivalently, the space

of symmetric non degenerated complex valued (n x n)-matnces But the non degenerated

quadratic forms over R, contranly to the complex case, are not all equivalent, so that the

action of GLn (R) is not transitive it has precisely n + 1 orbits corresponding to the signa¬

ture of the non degenerated symmetric matrices The homogeneous space GLn(R)/0(n, R)
actually is diffeomorphic to the orbit of the identity that is the set of symmetric real valued

(n x n)-matnces for which all eigenvalues are strictly positive It can thus be viewed as a

semi-algebraic set

The problem m the two above examples is that the projection map

GLW(C) — GLN(C)/H(C) = Y(C),

which is defined over R, is not surjective anymore when restricted to the underlying real varieties

GLW(R) —>Y(R)

Equivalently, the action of GL^R on Y(R) is not transitive

Let 1 denote the image of the identity via the projection map GLat(C) — Y(C) and let X(R)
be its orbit m Y(R) under the action of GLat(R) The stabilizer of 1 is then clearly

H(C) n GLN(R) = H(R),

so that

PGq == GLjv
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Because X(R) is a finite union of connected components of y(R), it is semi-algebraic by Corollary
89.

Observe that we recover that the space of n-frames is semi-algebraic since Fr^R^ is nothing
else than P{1„}at, where {1„} of course stands for the trivial group (in GLnR). In this case the

homogeneous space Y(C) is equal to the space Frn(CAr) of complex n-frames, so that its space of

real points Y(R) is precisely Fr^R^. The space X(R) is here thus the whole y(R).
For further use, define n(BGq) to be equal to the dimension of the affine space that PGq

belongs to. (In particular, PGq then belongs to S(n(BGq), c, d) for some c, d.)

The projection map Let us now show that the natural projection ttq : PGq —> PGq is a

semi-algebraic map. Because of the universal property of the quotient (see [Bo91], §6), there exists

a unique algebraic map tt :ft„(C") —> Y(C) defined over R, such that the following diagram
commutes:

GLW(C) — Y(C)
I /*

Fr„(Cw)

Restricting the map tt to the real point of the corresponding varieties, we obtain an algebraic map
tt :Fr„(lAf) —> y(R). But the commutativity of the diagram implies that the image of tt is equal to

X(R). The map tt, viewed as a map from Frn(RAr) = PGq to X(R) = PGq is thus semi-algebraic,
and by unicity it is the natural projection.

The classifying map Let K be a (/-dimensional simplicial complex. Recall (see Section 1.1.2)
that any flat principal G-bundle over |X| can be obtained as the pull back of the classifying map

/: \K\ -^ BGq
togoi(t)

tq9qi(i) J q

where i is chosen so that tt ^ 0, and the g^s are constant on star(6s*)nstar(6S3). As in Section

1.1.2, Sj always denotes an «-dimensional simplex of K, and 6s* is its barycenter in Äbar- Let

k = {bs°,..., bSq} be a (/-dimensional simplex of K^al and, slightly abusing notation, let us denote

by 9i0 G the value of the transition function g%o on star(6s*)nstar(6s°). The classifying map
restricted to |A;| can then be given as

î\\k\ \k\ -^ BGq
to

tigm(x)

tqgqo(x) J r

-jJ=oL^

= s?= UbaOH
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Note that f\\k\ is really well defined on the whole of |A;| and not only those points for which to ^ 0.

The map f\\k\ is now clearly equal to the composition of the map

/ 1*1 N\

X — Zjj=gtjO

PGq = Frn

/ *o \
tigw(x

\ tqgqo(x) j

and the natural projection

kg : PGq BG„

We have already seen that the latter map is semi-algebraic. Its complexity depends of G and q.

We claim that the map / is also semi-algebraic, of complexity depending only on n and q.

Indeed, its graph admits the representation

Graph(/) = |((t0, ...,*,), («),..., (x%))) G Rq+1 x (r2)"+1
Sfc=o*fc = 1, tk > 0 Vk, xk3 -tk(gko)%3 =0 V i,j,k} ,

so that it belongs to

S(((/ + l)(l+n2),l + ((/+l) + ((/ + l)n2,l)

It follows by Corollary 86 that the classifying map is, when restricted to any simplex of K, of

complexity depending only on G and q.

4.2 The simplicial version

In this section, we will start by proving the simplicial version of our main theorem. However, to

easily deduce the main theorem from its simplicial version we will need a slightly stronger form of

the latter, which we will state and prove below.

Theorem 90 Let G be an algebraic subgroup of GLn(R) and ß G Hq(BG) be a characteristic

class. There exists a finite subset Ici such that for every flat principal G-bundle £ over a finite

simplicial complex K the cohomology class /?(£) G Hqtmvi(K) mn be represented by a cocycle whose

set of value on the q-simplices of K is contained in L.

Note that this is exactly Sullivan's Theorem (the Theorem 61 here) for the Euler class. The

finite subset obtained by Sullivan in this case is I = { — 1,0,1} and is improved by Smillie to

I = { — 1/2, 0,1/2}. Our method will not produce such accurate bounds.

Proof. First observe that it is enough to prove the theorem for simplicial complexes of dimension

smaller or equal to q. Indeed, a simplicial (/-cocycle is defined on the (/-dimensional simplices and

two (/-cocycles represent the same cohomology class if they differ by a coboundary, which also only

depends on the (/-skeleton.

Now, any principal G-bundle over a (/-dimensional simplicial complex, can be obtained as the

pull back of the approximation to the universal bundle PGq, where PGq is as in Section 1.1.2.
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The space PGq was shown to be semi-algebraic in Section 4.1, so that in particular its closure

PGq admits, by Theorem 88, a finite semi-algebraic triangulation

h:BGq —> \T\.

Observe that whenever the space PGq is non compact (which is the general case), its triangulation
T will have simplices in the boundary of PGq. Upon replacing T by its first barycentric subdivision

we can however require that any open simplex contained in PGq has at least one of its vertex in

PGq. Also the classifying map / : \K\ —> PGq exhibited in Section 1.1.2 was proven in Section

4.1 to be semi-algebraic, and furthermore of complexity bounded independently of the bundle £ or

even the multi-simplicial complex K, when restricted to any simplex of K. Indeed the complexity
of the classifying map was then shown to only depend on the dimension q and the group G.

Our next aim is to find a simplicial approximation of the classifying map ho f : \K\ —> PGq —>

|T| (or to be very accurate, actually an approximation to the map ho f : \K\ —> PGq —> |T|, where

/ : \K\ —> PGq is a map homotopic to /). Of course it is a well known fact (see Theorem 49) that

upon passing to an arbitrarily fine subdivision of K this is always possible. Our main point is now

precisely that we only need to refine K in a uniformly bounded way. This will follow at once from

the following Technical Lemma.

Lemma 91 (Technical Lemma) There exists a refinement (L, r) of K and a continuous map

f : \K\ —> BGq homotopic (in BGq) to f such that

• the index of the refinement satisfies the inequality

[L : K]q < m,

where m depends only on q and G.

• the interior of every simplex £ of L is mapped by f inside the interior of some simplex tofT
whose interior is contained in BGq, or more precisely, for every simplex £ of L there exists

a simplex t of T such that h~1(Int(t)) G BGq and

J^-^Int^))) G h^1 (Lnt(t)) .

We postpone for the time being the proof of the Technical Lemma and show how the theorem

is now easily proved. We exhibit a simplicial approximation <p to the continuous map h o f o r_1 :

|P| —> |T| by an argument almost identical to that of Proposition 48. The difference lies in the fact

that some care is needed in order for our simplicial approximation not to land in the boundary
of PGq. Let To be the biggest subcomplex of T such that /i_1(|Tb|) C PGq. For every vertex v

of P, define <p(v) G T° to be any vertex of the only open simplex of T containing f(v). By the

assumption made on T that any open simplex contained in PGq has at least one vertex inside

PGq, we can moreover assume that <p(v) is contained in To. That this indeed defines a simplicial

map

cp:L —>T

which is a simplicial approximation to feo/or1 now follows exactly as in Proposition 48.

Let b G Zq(BGq) be an alternating cocycle representing the cohomology class corresponding to

the characteristic class ß. We have

/?(£) = \fb(b)} = \f\b)} G Ps9impl(X),
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since the maps / and / are homotopic. Let

ho : |To| BG„

denote the restriction of h 1
to |To|. Observe that the diagram

\K\ J--U BGq

\L\

commutes up to homotopy. We thus have

\T\

/?(£) = [(h0o M or)b(b)}.

But by Proposition 58 the simplicial cocycle (ho o \ip\ or)b(b) is cohomologous to r" o (ho o \ip\)b(b).
Applying successively Lemma 52 and Lemma 54 we obtain

r» o (h0 o \<p\)b(b) = rö o \<p\b o h*0(b) = r» o <p* o hb0(b).

Define b

T h» e Zqimpl (To). Since the simplicial cocycle Td is finite, the simplicial cocycle b?

takes, when evaluated on (/-dimensional simplices of To, a finite number of values. Let J be the

finite subset of R consisting of all those possible values. The cocycle <p*(bT) now surely also takes

its values in J when evaluated on (/-dimensional simplices. Finally, it follows from Proposition 56

that the cocycle r" o ip* o hb0(b) takes its values in the following finite subset of R:

t=i

eJ,r<[L: K\

which finishes the proof of the theorem.

Of course, the so obtained bound is absolutely out of proportions. Observe that it is composed
of two parts: the possible values of a cocycle on PGq = |T| representing the characteristic class

ß evaluated on the fixed triangulation T, and the amount of simplices (the m from the Technical

Lemma 91) needed to refine the simplicial complex K so as to have a simplicial approximation of

the classifying map. The latter bound is effective and could actually be computed, even though
not accurately.
Proof of the Technical Lemma 91. To simplify the notation we will identify the classifying

space PGq with the geometric realization of T. Also, we will systematically identify the geometric
realization of any simplicial complex with that of its refinements.

We will prove the Lemma inductively by showing that for every 0 < i < q there exists constants

Cj, dt and mt depending only on i, the group G and the dimension q of the simplicial complex, a

refinement Lt of the «-skeleton Kl of K and a continuous map ft : \K\ —> |T| = PGq homotopic

(in BGq) to / such that

1. [Lt : K% < m„

2. the image by ft of the interior of every simplex of Lt is contained in the interior of some

simplex t of T,
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3. every simplex £ of Lt is semi-algebraic of complexity S(i,ct,dt),

4. the map ft restricted to any simplex of Kl is semi-algebraic of complexity S(i+n(BGq), ct, dt).

The two first properties are exactly the conclusion of the Technical Lemma for i = q, and the

two last ones are added for inductive purposes. For « = 0, there is nothing to prove: Take /o = /
and Po = K° (so that co = n(BGq), do = 1 and mo = 1). Let us thus assume that a refinement

Pj_i of the (i — l)-skeleton of K and a continuous map /4_i : \K\ —> |T| satisfying the above

properties are given.
The strategy of the proof is the following: We are going to triangulate each «-dimensional

simplex k of K in such a way that the triangulation on the boundary dk of k is precisely the first

barycentric subdivision of Pj_i, so that we obtain a triangulation of the «-skeleton of K. To do so,

we subdivide every «-dimensional simplex k in two subsets A;mt and A;ext. After defining the map

/j and checking that it satisfies the above property 4 we prove that there exists triangulations of

kmt and A;ext which agree on kmt n A;ext and correspond to the first barycentric subdivision of Pj_i

on dk. We show that both the triangulation of A;mt and A;ext satisfy the above properties 1, 2 and

3, thus proving the Technical Lemma.

The subsets kmt and A;ext. Let k be an «-th dimensional simplex of K and consider the two

following subsets of its geometric realization: Choose e with 0 < e < 1 and define

fcmt= { J2f3V3
3=0

tt > —— V 3 = 0,..., i,

and

3 3 G {0,...,«} with tj <
e

1 + «
'

where of course vq, ,vl are the vertices of k. The subset A;ext is the closure of some sufficiently
small neighborhood of the boundary of k so that A;ext is homotopically equivalent to dk. The subset

A;mt is the closure of k\kext, that is, a homothetic copy of k centered at the barycenter of k and

contraction factor strictly smaller than 1.

The map ft. Define a continuous map ak : \k\ —> \k\ to be, on A;mt the natural affine homothety
between A;mt and k, and on A;ext the projection from the barycenter of k onto the boundary dk.

More precisely, we have

if J2]=ohV3 ^ fcmt,

0+l)mm0<j<mt/(;J
if z2j=0t3V3 G ^ext •

Clearly ak is well-defined, continuous and semi-algebraic. Also, since for every «-dimensional

simplex k, the map ak is the identity on dk, it defines a continuous map a : \Kl\ —> \Kl\.
Furthermore, it is obvious that it extends to a continuous map \K\ —> \K\, still denoted by a,

which we can moreover assume to map every simplex of K to itself and to be semi-algebraic of

complexity S(2q, ca,da), when restricted to any simplex of K, where the constants ca and da do

not depend on anything else than « and q. Such a map a is clearly homotopic to the identity.
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Define

fl = fl_ioa:\K\^\T\=BGq.

Since /4_i is homotopic (in PGq) to /, the same is true for ft and by Corollary 86, the map ft

is, when restricted to any simplex of K, semi-algebraic of complexity S(q + n(BGq), ct, dt), where

Cj, dt < q, n(BGq), ca, da, Cj_i, (4-i, and thus ct, dt < q, G, «.

The triangulation of kmt. The map a is, when restricted to kmt a homothety from klnt

to k. Thus the first barycentric subdivision (Pj_i)bar of the triangulation Pj_i restricted to the

boundary of k naturally induces, via a, a triangulation by semi-algebraic simplices of complexity

S^nj-i, Cj_i, (4_i) of the boundary of A;mt. We would now like to have a semi-algebraic triangulation
of A;mt agreeing with the following two families of semi-algebraic subsets:

• The simplices of the triangulation of dkmt induced by (Pj_i)bar-

• The pull back by ft of the simplices of T.

We are of course going to apply Theorem 88 to kmt and those two families of semi-algebraic

subsets, so let us first check that the above sets all are of uniformly bounded complexity, and in

uniformly bounded quantity. Note that A;mt is of complexity S(i, « + 1,1).

• Since each simplex of Pj_i is, by induction, of complexity S(i — 1, Cj_i, (4-i), it follows that

each simplex of (Pj_i)bar is of complexity S(i — 1, Cj_i, (4-i), and the same is true for the

corresponding simplices in dklnt.

There are at most (« + 1) • m,_i • «! such simplices.

• Since the semi-algebraic triangulation T of PGq is finite, any simplex t of T is of complexity

S(n(BGq),CT,dT), for some ct,oIt depending only on G and q. By Corollary 85 it follows

that /~ (t) is semi-algebraic of complexity S(q, C, D), where C,D <\ q, n(BGq), ct, dt, ct, dr,
thus C,D <\ q,G,i. By Lemma 82 we now obtain that /j_1(t) n kmt is semi-algebraic of

complexity S(i, 2max{« + 1, G},max{l, D}) for every simplex t of T.

Of course, the number of such sets is majorized by the number of simplices of T, which only

depends on q and G.

Let us now apply Theorem 88 to kmt and its two above given families of semi-algebraic subsets.

We thus obtain a semi-algebraic triangulation Pmt of A;mt fulfilling the following properties:

1. • The triangulation Pmt restricted to the boundary of kmt is a refinement of the trian¬

gulation corresponding to the first barycentric subdivision of the triangulation Pj_i

restricted to dk.

• For every simplex t of T, the semi-algebraic set /~ (t) n A;mt is a finite union of simplices
of Pmt, so that the image by ft of the interior of any simplex of Pmt is contained in the

interior of some simplex of T.

2. The number of simplices of Pmt is bounded by mmt, where mmt is a constant depending only
on q, G and i.

3. each simplex of Pmt is semi-algebraic of complexity S(n, cmt, dlnt), where clnt,dlnt are con¬

stants depending only on q, G and i.
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The triangulation of A;ext. It now remains to triangulate A;ext in such a way that the

triangulation agrees with the first barycentric subdivision of Pj_i on dk and with the triangulation

Pmt on A;ext n A;mt = dkmt. This triangulation should of course also enjoy the desired properties.
To do so, we consider the homeomorphism between A;ext and dk x [0,1] given by

ß : A:ext -^ dkx [0,1]
x = Y!J=ot3v3 '—> (a(x),^min{t0,...,tj).

The boundary dk G kext is thus mapped by ß to dk x {0}, and A;ext n kmt = dkmt to dk x {1}.
We are now exactly in the situation of the last example in 2.2: We have a refinement Pmt|dfclr,t^dfc

of the triangulation Lt-i\gk of the (« — l)-dimensional simplicial complex dk, and we can, by the

example, find a triangulation Pext of \dk\ x [0,1] having the property that it agrees on |<9A;| x {0},
respectively |<9A;| x {1}, with the triangulation Lt-i\gk of \dk\, resp. Pmt|ôfclr,t=ôfc °f l^mtl — \dk\.
Moreover we have:

1. A bound for the number of «-dimensional simplices of Pext is

« • [Pmt : ij_i]j_i • t){(« — l)-dimensional simplices of Pj-i}.

Note that as Pj_i is a triangulation of dk we have

[Pmt : Pj-i]j-i < [Pmt : dk]t-i
< [Ant : k]i
< mmt.

As for the number of (« — l)-dimensional simplices in the triangulation Pj_i restricted to dk,
it is clearly bounded by the number of faces of dk times the index [Pj_i : if!_1],_i, the latter

number being, by induction hypothesis bounded by m,_i. We thus obtain that the amount

of simplices of Pext is bounded by

mext = *2-mmt.mî_i.

2. Observe that the diagram

A:ext -JL^ dk X [0,1]

A ProJi

\T\ J---- dk,

where of course proji stands for the projection on the first factor, is commutative. The

interior of any simplex of Pext is by construction mapped inside the interior of some simplex
of Pj_i and as by induction the image by /4_i of the interior of any simplex of Pj_i and hence

also of (Pj-i)bar is contained in the interior of some simplex of T the conclusion follows.

3. By induction hypothesis, the simplices of Pj_i are all semi-algebraic of complexity S(i —

l,Cj_i,(ij_i). Also, the simplices of the triangulation Pmt on dkmt = dk are semi-algebraic
of complexity S(i — 1, cmt, dlnt). By Lemma 83, the join of any simplex of Pmt|dfclr,t=ôfc and

Pj_i, and thus any simplex of Pext is semi-algebraic of complexity S(i, cext, dext), where

cext,4xt < Cj_i, (4-i, cmt, dmt and thus cext,4xt < *, G, q.
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Before stating the slight generalization of Theorem 5 from which it will be easy to obtain at

once our main Theorem, let us recall that a cohomology class in H*(BGS) is said to be a primary
characteristic class if it is contained in the image of the natural map H*(BG) —> H*(BGS).

Theorem 92 Let G be an algebraic subgroup of GLnR and ß G Hq(BG ) a primary characteristic

class. Then there exists a finite subset IcE such that for every finite simplicial complex K and

every continuous map a : \K\ —> BG
,

there exists a cocham b G Cq (BG) such that the

simplicial cocham o (b) G Gq% ,(K) is a cocycle representing a (ß) and taking values in L when

evaluated on q-simplices.

The only difference with Theorem 5 is that given any classifying map a : \K\ —> BG6 we

require the cocycle representing the desired characteristic class to be in the image of the induced

map ab : Cq (BGS) —> Cqlmpl{K). This will greatly simplify our life when taking inverse limit, in

the next section, over all couples of the form (K,a) as above.

Proof. The proof really relies on the proof of Theorem 5. The idea is quite simple: If a is injective

on (/-simplices in the sense that for any two simplicial isomorphisms rt : Aq —> kt, for « = 1, 2,
where the A;j's are oriented (/-dimensional simplices of K, if <jot\ = aor2 then k\ = k2 and t\ = t2,

then there is not much to do. Indeed, letting b G Z^ {(K) be the simplicial cocycle obtained in

Theorem 5, define a singular cochain b' G Gq X(BG6) as

,. ,. j b(r(Aq)) if a' = a o t for some map t : Aq — K,
' { arbitrarily otherwise,

for every singular simplex a' : Aq —> BGS. Observe that thanks to our injectivity condition, b' is

well defined. Also, it is alternating and surely ab(b') = b as desired.

In the case where our injectivity condition is not fulfilled, we will show that the cocycle b G

Zqlmpi(K) constructed in the proof of Theorem 5 can actually be chosen such that b(ki) =sign(r)b(k2),
whenever there exists a simplicial isomorphism t : k\ —> k2 between the two oriented (/-simplices

ki and k2 such that a or = a\kl. From such a cocycle, one can then define a well defined singular
cochain b' G Gq X(BG6) as above and obtain, once again, the desired conclusion.

Consider the covering of \K\ by the sets {So,...,Sq} exhibited in Section 1.1.2. We claim

that locally constant transition functions relative to the covering {So, ,Sq} can be found such

that for every x G S\ P\ Sj belonging to the connected component star(6s*)nstar(6S3) for some

«-simplex st and j-simplex s3 of K, the value of the transition function gtJ on x (and hence on

star(6s*)nstar(6S3)) only depends on the image by a of the one dimensional simplex (bSz,bSl) of

Xbar. To see that, choose, for every vertex 6s of Xbar, a point u(bs) in the fiber over 6s or

equivalently, in the fiber over o"(5s), and define gtJ(x), for x in star(6s*)nstar(6S3), as the difference

between the parallel transport of the point u(bSz) along the simplex (6s*, bSl) and the point u(bSl).
It is readily seen that this defines transition functions with the desired property.

It now follows that if there exists a simplicial isomorphism t : k\ —> k2 such that a o t = a\kl
then the classifying map obtained in the proof of Theorem 5 also satisfies

f°r = f\kl.

But the refinement P of K of Theorem 5 being defined inductively on the skeleton of K in such a way

that it depends only on the classifying map /, we can choose P and the simplicial approximation
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<p : L —> T of Theorem 5 so that the class <p* (6^) is such that if there exists a simplicial isomorphism
t : ki —> k2 such that a o t = a\kl then

ip*(bT)(ki) = sign(r)ip* (bT)(k2).

4.3 Proof of the singular version

We are now almost ready to give a proof of Theorem 4 stating that primary characteristic classes of

flat bundles can be represented by cocycles taking only finitely many values on singular simplices.
The theorem will be a simple consequence of its simplicial version (Theorem 92) by an argument

of inverse limit. Before attacking the proof, we recall the elementary definitions of inverse systems

and limits.

4.3.1 Inverse limits

• A directed set is a non-empty, partially ordered set (A, >) such that

VA,jueA, 3 v e A with v>\, v > \i.

• An inverse system (Xa,7tma) of sets over a directed set A is a family of sets (Xa)agA together
with maps tt^x ' X\ — X^ whenever A > /x satisfying the two following conditions:

-

ti"aa = IdxA,
-

7iVM7i>A = tiVa, for A > fj, > v.

• The inverse limit of the inverse system (Xa,7tma) is defined as

limXA = {(gx) ^^\xx\ ttma(0a) =9mVA>/j}.
AeA

Proposition 93 If (Xa,7Tma) ** o/n inverse system of non empty compact spaces over a directed

set A, then

lim XA + %.

Proof. For every finite subset S G A, define

Hs) '= {(xx) Y\_ Xx | K^xxx = xl_t\/X,/j,eS,X> fj,},
AeA

and write P := ÜagA Xx-

The set L(S) is closed in P and non empty. It is non empty since as S is a finite subset of a

directed set 3 v G A such that v > A for every A G S. Now choose some xv G Xv ^ 0, and define

(xx) G L(S) by

{xu
e Xu if A = v

KxvXv G Xa VA g S

xx G Xa arbitrary VA ^ 5 U {v{
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By Tychonov's theorem P is compact since it is a product of compact spaces. Set P = P\{L(S) |
S G A, S finite}. If P were empty, it would mean that the intersection over only a finite set of

finite subsets of A is already empty. But clearly,

rrt=1L(st) = L(u:=iSt),

for S\ finite subsets of A. But as P(Uj=1S'j) is non empty, as we have just seen, it follows that P

is non empty. But now, P is exactly lim^_ Xa .

Our main example of directed set. Let X be a non empty topological space and let P be

the full simplicial complex over the canonical basis of R°°, that is P° = {ei, e2,... } and every set

of vertices in P° generates a simplex of P. Set

A= \(K,a)
K G L finite simplicial complex,
a : \K\ —> X continuous

It is non empty since X is non empty. Put the following partial order on A: Let (K\, <ti), (K2, a2) G

A, then

(K2,a2) > (Xi,<7i) if 3 a simplicial injection « : Ki —> K2

such that a2 o |«| = <j\.

It is readily seen that A is a directed set. Indeed, let (K\,o\), (K2,a2) be in A. As K\ is a finite

simplicial complex, K\ G R for some n G N. Define a simplicial map tn : L —> P by tn(et) = el+n.

It is clear that tn is an injection. Observe that K\ and tn(K2) are disjoint subcomplexes of P.

Define K = KiUtn(K2) and a : \K\ - X by

<ti, =ffi and ai, , s

= an o |t„ I-
.

Notice that the last expression makes sense, since as |tn| is injective, it is bijective on its image.

Obviously, taking « to be the canonical inclusion of K\ in K we get (K,a) > (Xi,<ti), and

(K, a) > (K2,a2) since tn : K2 —> K is a simplicial inclusion and a o \tn\ = a2 by definition of a.

Our main example of inverse system. Let X be a topological space, ß G H^ (X) a

singular cohomology class on X and I a compact subset of R. For every (K, a) in A, define

Y{K,,) = \beZqimpl(K)
[b]=ab(ß), beab(Cqsmg(X)),
b(k) G I V (/-simplex k G K

If (Xi,<7i) < (K2,a2), the simplicial inclusion « : Ki —> X2 induces a map

** : ^(k2,<72) — ^(a:i,<7i)-

Note that from the requirement that any cocycle of Y^Ka^ belongs to the image of a* it follows that

the map «* does not depend on the choice of simplicial injection 1. Indeed, suppose 3 : Ki —> K2

is another simplicial injection with a2 o \j\ = o\ = a2 o |«|, then

1* oa2 = (a2 o |*|)* =o-*i = (a2 o \j\)* =3* oa2,

so that «* and 3* agree on the image of a2 in which Y^2,a2) is contained. Observe moreover that

• for every (K,a) in A, the map Y^Ka^ —> Y^Ka^ is the identity since it is induced by the

identity on K,
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• if (Xi,<7i) < (K2,a2) < (X3,<73) with simplicial injections « Ki —> K2, 3 K2 —> K3, then

W J\Y(K3<r3) V J >\Y(K3<r3) \Y(K2 v2) J\Y(K3<r3)

We have thus proven that {Y(K CT)} forms an inverse system over A

4.3.2 Proof of Theorem 4

Let G be an algebraic subgroup of GLnR and ß G Hq(BGs) a primary characteristic class Let

A be the directed set constructed above for X = BGS, and {7^,)} the inverse system obtained

from X = BGS, ß G Hq(BGs) and the compact subset I of R from Theorem 92 The conclusion of

Theorem 92 is exactly equivalent to that Y^K CT) is non empty for every (K, a) in A Moreover, the

Y(k v)'3 are compact Indeed, for every (K,a) in A, the space Y^k a) ls the subspace of the finite

dimensional vector space Z^ {(K) formed of the intersection of an affine subspace (the image of

the coboundary ö), a linear subspace (the image of a*), and a compact subset (from that b takes

its values in the compact set I) It now follows from Proposition 93, that the inverse limit of the

inverse system {Y(K CT)} is non empty

0 ± hmY{K a)

Let thus (b(x CT)) be an element in the inverse limit, and define a singular cocham b G Gq (X) by

b(a) = 6(A9 <j)(A9), for every singular simplex a Aq —> X It is clear from the definition of b, that

the cocham b takes its values in I on singular simplices
It remains to show that the cocham 6 is a cocycle representing ß Let thus c be an arbitrary

cocycle representing ß It is now enough to show that b and c agree on singular cycles Let thus

z = T.atat G Zq(X) be a singular cycle on X Up to rescalmg z we can suppose that the coefficients

at he in Z It is clear that to this cycle corresponds a continuous map

a \K\^X,

whose restriction to any (/-dimensional simplex of the simplicial complex K is either degenerated
or corresponds to one of the singular simplices at appearing in the decomposition of z Of course,

the simplicial complex K can be chosen to be closed Let us abuse notation and write K for the

corresponding simplicial cycle Then

c(z) = a*(c)(K)

and

b(z)=a*(b)(K) = b{Ka)(K)

Comparing those two equalities, we conclude from the fact that K is a cycle, and that by definition

of Y(x CT)
the simplicial cocycles a*(c) and b^K CT) are cohomologous, the equality

c(z) = b(z)

holds as desired



Appendix A

Bounded cohomology

Let X be a topological space. The space Cq(X) of singular (/-chains on X is defined to be the (real)
vector space over the basis of singular simplices Sq(X) = {a : Aq —> X | a is continuous}, where

the standard simplex Aq is the convex hull of the canonical basis of Rq+1
.
The space of chains is

endowed with a natural boundary operator d : Cq(X) —> Gq_i(X) defined as da = T.q=0( — l)lat,
where at : A9-1 —> X is the composition of the inclusion of A9-1 in the «-th face of Aq and a.

As d2 = 0 we can consider the homology of the complex (G*(X),<9), which is called the singular

homology of X. The space Cq(X) of singular (/-cochains is defined to be the algebraic dual of

Cq(X). It is endowed with the adjoint operator ö = d* : Cq(X) —> Cq+1(X). The homology of the

complex (C*(X), ö) now gives the singular cohomology of X.

The 1-norm with respect to the canonical basis Sq(X) of Cq(X) can be considered:

N|1= ]T \za\, for z = 5>ff<7 C,pQ.
a a

This norm induces a semi-norm on the homology of X. If X is a compact manifold, the 1-norm of

its fundamental class [X] G PdhhX(X) is called the simplicial volume of X. We can now of course

consider the topological dual of the normed space Cq(X) which we denote by Cq(X) and name

the space of (singular) bounded cochains on X, so that

Cq(X) = {ceCq(X)\ ||c||oo<oo},

where

l|c||00=sup{|c(z)||zGGg(X), |N|1 = 1}

= sup{|c(a)| \aeSq(X)}.

The boundary operator ö restricts to bounded cochains, so that we can define the (singular)
bounded cohomology Hb(X) of the space X to be the homology of the complex (Cb(X), ö). Note

however, that this is not a cohomology theory: the excision axiom does not hold.

We will say that a cohomology class [c] G Hq(X) is bounded if it can be represented by a

bounded cocycle, or equivalently, if it is contained in the image of the comparison map

Hq(X) -^ Hq(X),

79
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where the latter map is of course induced by the inclusion Cq(X) ^-> Cq(X) Note that the

comparison map is in general neither mjective nor surjective
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