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Abstract

Of the newly-built bridges, cable-stayed bridges are today very common worldwide for

spans ranging between 200 and 900 meters. Being mostly built by the cantilever method,

cable-stayed bridges have to be analyzed separately in every construction stage, taking
into account many load cases. In addition, the forces in the cable stays have to be

determined and possibly changed during construction so as to obtain the desired deck

and mast deflections during service. Some non-linear and execution-dependent effects

- such as concrete creep, shrinkage and locked-in bending in composite steel-concrete

decks - have to be considered in the case of longer spans.

Conventional structural analysis software cannot automatically handle these specific

problems, which today in many cases require the program user to manually process data.

The goal of this project is the development of a specially tailored program for the struc¬

tural analysis of cable-stayed bridges, which automatically handles the aforementioned

problems. The program has been designed to be used in all stages of planning and

construction: preliminary design, detail planning, construction process and retrofitting.
The program BRIDE is characterized by some newly introduced concepts allowing one

to take the aforementioned non-linear effects into account: the chronologically ordered

list of model objects accurately representing the complete construction process, which

has to be defined in the input by the user, and the stage-by-stage iteration in which all

construction stages are simulated in chronological order.

The program's functionality can be summarized as follows: the user first writes a text

input file according to the program's input syntax, which allows programming language¬
like constructs such as variable declarations, for-loops, if-tests, and expression evalua¬

tions for input parameterization. The user then opens the input file from the program

(this file can also be opened while it is being written to check its correctness). All cal¬

culations can then be performed interactively through the user graphic interface. The

model and the results for any desired construction stage appear on the screen in three-

dimensional graphics or text form. Snapshots with both graphics and text showing model

and results can be stored in a highly portable Html-document. Automatic dimensioning
of cables and the calculation of required pre-camber in the deck and mast segments and

of post-tensioning forces in cables are possible. As such calculations change the model

itself, the updated model can be stored in a new input file reflecting the content of the

original one and the changes made to it. All the way from preliminary design to the

construction phase the bridge designer works on the same input file and, as the planning

gets more detailed, refines it either manually or automatically.
As discussed in the conclusions at the end of this thesis the program BRIDE, at least
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in its present form, is not to be viewed as a commercial software product. In fact, the

main scope of this research work was to study original approaches to an important and

non-trivial practical problem.
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Zusammenfassung

Unter den neu gebauten Brücken sind Schrägseilbrücken weltweit sehr beliebt für Spann¬
weiten zwischen 200 und 900 Metern. Solche Brücken werden meistens in Frei-Vorbau

gebaut und müssen deshalb in allen Bauzuständen unter vielen Lastfällen untersucht wer¬

den. Zudem müssen die Kabelvorspannkräfte ermittelt und eventuell während des Baus

geändert werden, um die erwünschte verschobene Lage der Decke und des Mastes im

Gebrauchszustand zu erhalten. Für längere Spannweiten sollen einige nichtlineare- und

ausführungsabhängige Effekte wie zum Beispiel Kriechen, Schwinden und eingefrorene

Anfangsverschiebungen in Verbunddecken berücksichtigt werden.

Konventionelle Baustatikprogramme können solche spezifischen Probleme nicht be¬

handeln, und sie zwingen heutzutage den Benutzer die Daten manuell zu manipulieren.
Das Ziel dieses Projektes ist die Entwicklung eines Programms, das speziell für die stati¬

sche Analyse von Schrägseilbrücken konzipiert ist und welches die erwähnten Probleme

automatisch behandeln kann. Das Programm wurde entworfen um in jeder Planungs¬
und Bauphase eingesetzt zu werden: Entwurf, Detailplanung, Bau und Sanierung.
Das Programm BRIDE ist gekennzeichnet durch einige neu eingeführte Konzepte

welche es erlauben, die erwähnten nichtlineare Effekte zu berücksichtigen: die chrono¬

logisch geordnete Liste von Modellobjekte, welche vom Benutzer in der Eingabedatei
definiert wird, und die schrittweise Iteration über die Bauzustände, die sämtliche Bau¬

zustände in chronologischer Ordnung simuliert.

Die Arbeitsweise des Programms kann wie folgt zusammengefasst werden: der Be¬

nutzer schreibt zuerst eine Textdatei gemäss der Eingabesyntax des Programms, welche

programmiersprachenähnliche Konstrukte wie Variablendeklarationen, for-Schleifen, if-

Prüfungen und Ausdruckevaluationen für die Parametrisierung der Eingabe zulässt.

Danach öffnet er die Eingabedatei vom Programm aus (die Eingabedatei kann auch

geöffnet werden, wenn sie noch nicht fertiggeschrieben wurde, um ihre Korrektheit zu

überprüfen). Sämtliche Berechnungen können interaktiv über die graphische Oberfläche

ausgeführt werden. Das Modell und seine Resultate erscheinen als dreidimensionales Bild

oder als Text für jeden beliebigen Bauzustand und Lastfall auf dem Bildschirm. Schnapp¬
schüsse der graphischen oder der Textausgabe können mit dem Modell und seinen Re¬

sultaten als portables Html-Dokument gespeichert werden. Eine automatische Kabelbe¬

messung und die Ermittlung sämtlicher benötigten Vorspannkräfte und Überhöhungen
können ausgeführt werden. Sofern solche Berechnungen das Modell ändern, kann das

aktualisierte Modell als eine neue Eingabedatei abgespeichert werden, welche der ur¬

sprünglichen Eingabedatei entspricht plus die vom Programm ermittelten Änderungen.
Während des ganzen Prozesses vom Entwurf bis zum Bau arbeitet der Benutzer immer
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mit der gleichen Eingabedatei und, wenn die Planung detaillierter wird, verfeinert er sie

entweder manuell oder automatisch.

Wie in den Schlussfolgerungen dieser Dissertation erwähnt, soll das Programm BRI¬

DE, wenigstens in seiner jetzigen Form, nicht als kommerzielles Produkt angesehen wer¬

den. Das Hauptziel dieser Forschungsarbeit war nämlich, originelle Ansätze für ein

wichtiges und nicht triviales praktisches Problem zu erforschen.
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1. Introduction

1.1. The cable-stayed bridge design problem

In cable-stayed bridges the deck is supported at more or less regular distances by cables

which are fixed to the top or along a mast protruding from the deck plane. In most cases

cable-stayed bridges are self-anchored, i.e. the normal force introduced in the deck by
the cables on one side of a mast is compensated by the normal force introduced on the

other side.

Figure 1.1.: A typical cable-stayed bridge.

The main advantages of cable-stayed bridges are that they can be built with very large

spans (today with a central span of up to 900 meters) by free cantilevering (see figure 1.2),
provide a large stiffness, need little material and can look quite elegant. Despite these

advantages, cable-stayed bridges only became more widespread in the nineteen-fifties

because it was impossible to analyze them with a reasonable effort and a satisfactory

accuracy using the manual methods of pre-computer days.
The reason why the design and erection of cable-stayed bridges is so computationally

intensive is that they are statically indeterminate to a degree which is approximatively
as large as the number of cables and, at the same time, because their displacements
and section forces are adjustable through the post-tensioning of each single cable. In

addition, long span cable-stayed bridges are subject to non-linear phenomena such as

cable sag and concrete creep.

The goal of adjusting the post-tensioning force in each cable and of mounting pre-

cambered mast and deck segments is to have a finished structure which reflects the

planned geometry. Even though cable-stayed bridges are globally very stiff, single mem¬

bers can be quite flexible and produce large displacements, especially during construc¬

tion.
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1. Introduction

the cables are post-tensioned from inside the mast

temporary supports

Figure 1.2.: Bridge erection by free cantilevering (analogous to the Uddevalla bridge on

the cover page).

Once statical analysis for several construction stages and for the final service state

has been carried out, computations might still be needed during erection in combination

with measurements in situ in order to correct alignment errors and to keep the rather

unpredictable behaviour of concrete and supports under close control.

1.2. Use of standard structural analysis software

Cable-stayed bridges can, in principle, be successfully analyzed with standard structural

analysis software. This however is not straightforward. Standard software, in general,
cannot automatically determine the post-tensioning forces needed in the cable-stays or

the pre-camber values for the mast and deck segments. In many cases these still have

to be found by the bridge designer by means of time-consuming and error-prone manual

computation. Here are a few possible strategies:

• Insertion of fictitious hinges in the mast so as to find cable forces for which the

mast is not subjected to bending moments.

• Use of very high artificial stiffnesses for the normal force, to avoid axial displace¬
ments in the deck and the pylons.

• Use of supports instead of cables to obtain the post-tensioning forces from the

support reactions.

• Determination of the bridge's displaced shape caused by a unitary shortening of

every cable and a unitary pre-camber value for every deck and mast segment. For¬

mulation of an equation system (to be solved in an external program) representing
as many compatibility conditions as unitary shortenings and pre-camber values,

allowing one to find the actually needed cable shortenings and pre-camber values

2



1.3. Technical progress of computers

(this is the method adopted in our program BRIDE but implemented in a totally
automatic way).

These computations, when performed either manually or using additional external pro¬

grams, are very time-consuming and inhibit the investigation of several project variants.

1.3. Technical progress of computers

The performance of today's computer technology is impressive: not only the hardware

has become faster, also the available programming techniques have progressed consider¬

ably, allowing one to describe complex systems in a much more compact and expressive

way. Nowadays solution algorithms can be developed which, relying on the computa¬

tional power available on everybody's desk, model the physical phenomena in a more

natural and accurate way than algorithms developed when computational power was

limited.

This opens up new research paths which were technically not conceivable before, al¬

lowing the researcher to be innovative even in an seemingly well-explored field such as

structural analysis.

1.4. The program BRIDE and its special features

The difficulties encountered in the analysis of cable-stayed bridges with standard software

and the opportunity offered by the technical progress in computer hard- and software ap¬

peared to be two good reasons to start the development of a computer program specially
tailored to the requirements of cable-stayed bridge designers.
The fact that a growing number of programs for the analysis of cable- stayed bridges

are now available shows that the time is ripe for fundamental research on this topic: this

can provide a knowledge base for further research in technically newly accessible fields,
assess commercially available programs or as a seed development for new commercial

products.
The program has been called "BRIDE", an acronym for BRIdge DEsigner (it is a

tradition of our institute to give programs romantic names), and its goal is to help the

designer in the following tasks:

• model all kinds of cable-stayed bridges, taking all main non-linear effects into

account in a consistent way,

• easily allow the analysis of each construction stage,

• find all needed post-tensioning forces for the cables and all pre-camber values for

the mast and deck segments in a fully automatic way and

• correct deviations in the geometry measured in situ by changing the cable forces.

3



1. Introduction

Five main ideas determined the design of the program BRIDE and distinguish it from

others programs:

• As the displacements are assumed to be small, which is acceptable since cable-

stayed bridges are very stiff, the behaviour of every segment of a structure modelled

with a finite element can be fully described by the element's local stiffness matrix

plus a set of "initial" displacements. Such an element does not depend on the

global structure and, fully representing the physics of the modelled segment of

the structure, can be added to or removed from the numerical model just as the

corresponding segment can be added or removed in real life.

• Post-tensioning forces or pre-camber values which have to be found automatically

by the program can be formulated as initial element displacements whose magni¬
tudes are found through conditions to be fulfilled.

• The erection of a cable-stayed bridge is an evolutionary process and the simplest

way to describe it with accuracy is with a list of the changes occurring in the

system in chronological order.

• In order to take displacements locked in concrete and creep into account it is

necessary to know the displacements of the structure in the stages prior to the

stage being analyzed.

• The program BRIDE should be sufficiently user-friendly to be applicable both in

the bridge construction industry and for teaching purposes.

1.5. User friendliness: BRIDE vs. commercial software

With programs developed in a research context in computational mechanics it is usual

to concentrate more on the implementation of the computational core than of the user

interface. In this project, however, the goal was set to achieve an acceptable user-

friendliness. For this reason much effort has been invested in the development of a

graphic user interface with a three-dimensional representation of the numerical models.

During the design of the program BRIDE a rigorous transparency has been actively

attempted in the way the program generates the numeric models from the user speci¬
fications and in the way computations are performed. This transparency is a kind of

user-friendliness which many commercial programs do not offer and which, apart from

bridge designers, can be of pedagogical advantage for both teachers and students.

1.6. Structure of this dissertation

Chapter 2 gives an overview of the main features of the program BRIDE. Chapter 3

explains the composite beam element. Chapters 4, 5 and 6 deal in detail with the con¬

tributions to the initial displacements S-miUai discussed in the section 2.1 due to locked-in

4



1.6. Structure of this dissertation

displacements (chapter 4), creep (chapter 5) and shrinkage (chapter 6). Chapter 7 deals

with the computation of the intensities of conditional loads (see subsection 2.2). Chap¬
ter 8 explains the way cable stays are automatically dimensioned. In chapter 9 a practical

example is given. Chapter 10 presents the conclusions. The appendices contain the user

manual of the program BRIDE: in appendix A the input syntax is defined, in appendix B

the graphic user interface is explained, appendix C presents the information technology
tools used to implement the program BRIDE and in appendix D the complete input files

for the model shown in chapter 9 are listed and commented on.
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2. A tour of the program BRIDE

The approach adopted in the development of the algorithms for the program BRIDE

was to keep as close as possible to the physics of cable-stayed bridge construction, so as

to avoid inconsistencies. This lead to an "object-oriented" solution in which the model

consists of a list of data objects representing the different components of the real bridge
ordered with the same chronological order with which their physical counterparts are

added to the real bridge. All needed computations are performed by the program BRIDE

on this chronologically consistent numerical model. This chapter gives an overview of

them.

2.1. Element description through its local stiffness

matrix and a set of initial displacements

Cable-stayed bridges are modelled in the program BRIDE as space frames where 6

displacement parameters (3 displacements and 3 rotations) are introduced in each node.

The geometry of the model is described through the Cartesian coordinates of its nodes

and through the element's incidence nodes. In addition, every element requires section

and material properties. Once the coordinates of the incidence nodes, the material and

the section of the element are defined, its elastic response can be formulated by means

of a local 12x12 elastic stiffness matrix.

If we were to consider an existing bridge already modelled in a simulation program

(see figure 2.1), take a concrete cutter, cut out a segment of the structure modelled with

element used for the thought experiment

Figure 2.1.: Step 1. Choose one element in the numerical model of an existing bridge,

a single finite element (see figure 2.2) and determine its geometry in the unloaded state,

7



2. A tour of the program BRIDE

we would notice that its geometry does not correspond to the geometry of the finite

element. In fact, displacements locked-in during the hardening of the concrete, creep,

shrinkage and the pre-camber would have slightly changed the shape of the cut out and

thus unloaded segment (see figure 2.3).

Figure 2.2.: Step 2. Cut out the structural segment corresponding to the chosen element.

The vector amrfmi of size 12(3 translation and 3 rotation components for each incidence

node) containing the difference between the cut out segment's and the finite element's

geometry can be formulated as follows:

"initial <*h i "-c ash (2.1)

where a/,, is the contribution of the locked-in concrete displacements, acr that of creep

and as/j is that of shrinkage (the pre-camber is not taken into account here because it is

considered as a "conditional load", see section 2.2).

structure segment cut out

finite element used to model the element cut out

Figure 2.3.: Step 3. The geometry of the cut out structural segment and the geometry of

the finite element used to model it differ by the initial displacements amrfmi.

One way to model the cut out segment correctly is to reproduce its displacements by

subjecting the finite element to a set of initial self-equilibrating forces f (see figure 2.4)

8



2.1. Element description through its local stiffness matrix and a set of initial displacements

producing the initial displacements amttm|. The forces f are found by multiplying the

element local stiffness matrix k by S-mitiai'-

f = k • ainitial (2.2)

Figure 2.4.: Step 4. The finite element subjected to the initial self-equilibrating force f

assumes the same geometry as the cut out structural segment.

The components of the vector f, as for any kind of element load, have to be assembled

in the global load vector every time the element is part of the model, its local stiffness

matrix k being assembled in the global stiffness matrix. Being initial, i.e. corresponding
to a deformed but stress-free state, the contribution from f to the section forces has to

be ignored during post-processing, i.e. the section forces induced by f in the element

have to be subtracted from the section forces found from the nodal displacements of the

global solution. The subtraction does not affect the equilibrium of the structure because

f is self-equilibrating: this is a property of local stiffness matrices which, being singular,

always deliver a self-equilibrating forces group if multiplied by any nodal displacement
vector.

cast concrete A
,

It
,
Iz

,
E

,
G

ca' ca ca' ca' ca

Dz

eca

efo

centra id of the cast concrete

centroid of the combined section

centroid of the formwork

formwork Afo, ltfo, lzfo, Efo, Gf,

Figure 2.5.: Section idealization used for cast and composite beam elements.

Initial displacements have to be taken into account in a slightly different way for the

composite beam element specially developed for the program BRIDE, which allows one
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2. A tour of the program BRIDE

to take the bond between concrete and its underlying steel profile into account (see
figure 2.5). The composite beam element, as explained in chapter 3, takes bonding into

account by merging into a single combined section the section of the cast concrete and

the section of the steel profile, which is modelled by a so-called formwork beam (see
section 4.2). For composite beam elements f is found as follows:

f = kco • a- - q£ + kca • (a£ + a£) + k/o • (a£ + a£) (2.3)

where kco is the stiffness matrix computed with the combined section, a£° and q{° are

the displacements and the nodal forces of the formwork beam during the casting stage,

kca and k/0 are the stiffness matrices of the cast concrete part and of the formwork

beam, respectively, with no bond between them, a^, a^, eJc° and &£ are the initial

displacements of the formwork beam and of the cast concrete beam (it is justified to

have in addition initial displacements due to creep and shrinkage for the formwork since

this might be the case in pre-cast concrete). All these forces, stiffness matrices and

displacements are expressed relative to the centroid of the combined section. The element

is then excentrically connected to its nodes.

The fact of not taking bonding into account for kca and kj0 is a obvious simplification
which is acceptable because the self-equilibrating load f is applied to the undisplaced

composite element (whose stiffness takes bonding into account) hence differences between

the initial displacements of the cast concrete a^+a^ and those of the formwork a^+a^
only lead to differences in the section forces but not to bond-producing discontinuities in

the total strain (the elastic and the initial strain summed together). The elastic strain

must compensate any initial strain because in the finite element model the element is

forced into its undisplaced shape for the formulation of global equilibrium conditions.

2.2. Conditional loads

The so-called conditional loads represent the post-tensioning of the cable-stays and the

pre-camber of mast and deck segments. Their intensities are automatically computed

by the program BRIDE.

Both conditional loads and regular loads are model objects to be inserted in the

chronological objects list (see section 2.3). The only differences is that in regular loads

the load intensity is explicitly defined while in conditional loads it is defined through a

condition to be fulfilled, and that conditional loads always belong to the standard load

case load-history (see section 2.4). Their required intensities are found automatically by
the program BRIDE by fulfilling appropriate conditions specified by the program user

(e.g. "post-tension a cable with a force such that its anchoring point on the deck exhibits

no vertical displacement in the final construction stage, taking into account the dead

load and all other conditional loads", see figure 2.6).

10



2.3. Chronological objects list: a full description of the erection process

Figure 2.6.: Deflected shapes of the same model without and with the automatically

computed pre-camber of the deck and mast segments and the post-tensioning
of the cables.

2.3. Chronological objects list: a full description of the

erection process

After some attempts it became clear that the most convenient way to specify the evolving
model of a cable-stayed bridge during construction is a list of all the model's objects

(nodes, elements, supports, forces, ...) ordered in the same chronological order in which

their real counterparts are added to the bridge being constructed. The object "stage" has

been introduced to allow the program user to define a new construction stage whenever

he feels that enough model objects have been added to the model since the last stage

object. The stage objects define the states of the bridge where analysis is possible.

Once the program BRIDE has read the objects list defined by the user, it constructs

a list of data objects representing it.

To build the numerical model of any construction stage, the (object-oriented) program

BRIDE goes through the list of data objects starting from the beginning, sends to each

data object the signal to assemble itself 1
to the actual model and stops when it encoun¬

ters the data object corresponding to the desired construction stage (see figure 2.7).

To analyze the model for a given load case the program BRIDE proceeds in an analo¬

gous way as for the assembling of the finite element model: it goes through the chrono¬

logical objects list from the beginning, takes into account the load objects belonging to

the chosen load case and stops when the stage object corresponding to the stage being

analyzed is encountered (see figure 2.8).

The fact of viewing units of data as active "objects" rather than passive units distinguishes the object
oriented programming paradigm supported by programming languages like Java and C++ from the

traditional imperative paradigm of programming languages such as Fortran, Pascal and C, in which

the units of data are passive and manipulated through procedures not included in their definition.

*-4-
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2. A tour of the program BRIDE

Start from the beginning of
the chronological objects list

Go to the next object

Is this an object representing
the stage to De analyzed?

Is this a model object to be assembled

on the finite element model?

yes

yes
The assembling of the finite element model
for the stage to be analyzed is finished
The load case still has to be chosen
and assembled

Assemble it on the actual model

Figure 2.7.: Flow diagram of the assembling of a construction stage.

2.4. The stage-by-stage iteration: an automatic analysis
of each construction stage in chronological order

To take creep and locked-in concrete displacements in a given construction stage into

account it is necessary to know the initial displacements acr and a/j for every element

(see section 2.1), which, in turn, depend on the displaced shapes of the bridge in all

previous construction stages. Since it is important to allow the user to view the results

of any construction stage immediately, without having to wait for the analysis of all

former stages, the nodal displacements of every construction stage due to all relevant

loads are stored in the corresponding stage data object.
Such nodal displacements are found during what is called stage-by-stage iteration, in

which every construction stage is automatically assembled and analyzed in chronological
order. Figure 2.9 shows the flow diagram of such an iteration.

To denote the load objects which should be taken into account during the stage-by-

stage iteration the standard load case called load-history has been introduced. The

conditional loads are automatically assigned to this standard load case because they are

to be computed during the stage-by-stage iteration. The user, however, is still free to

assign them to other load cases or load combinations.

12



2.4. The stage-by-stage iteration: an automatic analysis ofeach construction stage in chronological order

Start from the beginning of
the chronologicafobjects list

Go to the next object

Is this a stage object representing
the stage being analyzed?

yes Analyze the finite element model
«- according to the options

specifiecTinteractively by the user

Is this a load object belonging to the load

case or load combination chosen?

yes

Take it into account in the analysis

Figure 2.8.: Flow diagram of the selection of the load objects which have to be taken

into account during the analysis.

Start from the beginning of
the chronological objects list

Are there more objects in the list?
One stage-by-stage iteration finished,
the user can look at any construction stage with any
load case and study the result or iterate again

yes

][

Go to the next object

Is this a "construction stage" object?

yes

Assemble the finite element model for the

construction stage represented by the

object just foundand for the load case

"load_history"
Find for every element all initial displacements
Analyze the actual model to find the
conditional loads having a condition to be
fulfilled in the actual stage
Analyze the model again taking the

newly found conditional loads into account

Store the nodal displacements in the

stage object just found

Figure 2.9.: Flow diagram of one stage-by-stage iteration.
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2. A tour of the program BRIDE
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3. Steel-concrete composite beam

elements

Composite beam elements have been specially developed for the program BRIDE to

model steel-concrete composite decks with a shear connection assumed to be rigid taking
locked-in displacement into account. This is generally more important for composite

decks than for plain cast decks (see chapter 4), because the stiffness of the steel profiles
is generally lower than the stiffness of the temporary formworks used for the plain cast

segments.

The main difference between a cast deck and a composite deck is that here the form-

work, i.g. the steel profile, is never removed from the cast section but remains rigidly
bonded to it. A combined model for composite decks has been adopted, which is based

on the assumption that for the force range usually allowed for bridges the behaviour of

composite deck segments remains elastic.

When, during stage-by-stage iteration, a stage is selected in which a new composite

beam is defined, its formwork beam (the beam object used to simulate the steel profile,
see chapter 4) is removed from the model and the properties of the combined section

resulting from the merging of the cast concrete section (defined in the composite beam

object) and the formwork beam section are automatically found by the program BRIDE

and assigned to the composite beam element.

The section properties for the combined section are calculated as follows:

(AE)co = AfoEfo + AcaEca (3.1)

AcaEca Dz

efo = HÄEÜ-
(3-2)

_

AfoEfo -Dz
_

, ,

eca
{AE)co

-Dz- efo (3.3)

(ItG)co = ItJoGfo + It,caGca (3.4)

(lyE)co = (lyjo + Af0efo)Ef0 + (IytCa + Acaeca)Eca (3.5)

(IZE)co = hjoEfo + Iz,caEca (3.6)

where the subscript co
denotes the combined section, fo denotes the formwork beam

section, ca
denotes the cast concrete section, A is the section's area, e is the excentricity

of the centroid of either cast concrete and formwork section from the centroid of the

combined section, E the Young-modulus, G the shear-modulus, It the the torsional

15



3. Steel-concrete composite beam elements

rigidity, Iy and Iz are the moments of inertia with respect to the local y and z axes (see
figure 2.5).
The normal stress distribution along the local z axis in the combined beam is found

by superposing four components (see figure 3.1):

• the normal stresses during the casting stage, where the composite beam section is

unstressed because the concrete is still wet and the formwork beam has its elastic

normal stress

• the elastic normal stresses of the combined beam from the actual global solution

and from the actual local load

• the stresses obtained by subtracting the elastic normal stresses the combined beam

would have if it was subjected to the hardening displacements a^° (see chapter 4)
and to the local load acting on the formwork beam during the casting stage

• the stresses due to creep and shrinkage.

+

normal stress found normal stress from

with the stiffness of creep and shrinkage
the combined section,
the hardening
displacements and
the local load acting
on the formwork beam

during the casting stage

Figure 3.1.: Superposition of the different normal stress components in a concrete-steel

composite beam.

3.1. The excentric local stiffness matrices km and kf0

As mentioned in section 2.1 to compute the self-equilibrating force f needed to take the

initial displacements into account for composite beam elements it is necessary to have

the local stiffness matrix kca for a hypothetical beam having the cast concrete as section

and the stiffness matrix of the formwork element kj0, both as if there was no bond

between formwork and cast concrete and expressed relative to the combined section's

centroid, i.e. excentrically (see eq. 2.3).

normal stress normal stress found
during the with the stiffness of
casting stage the combined section,

the nodal displacements
from the actual global
solution and the
actual local load
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3.1. The excentric local stiffness matrices kca and kj,

kca can be derived as follows: assuming a rigid connection between the formwork beam

and the cast concrete, the displacements aca in the centroid of the cast concrete section

can be expressed as a function of the displacement parameters a of the combined beam:

a (3.7)

or the nodal forces from the centroid of the cast concrete section qca can be transformed

to q, the same forces set but applied to the combined beam:

r1
• nca^ca q (3.8)

With 3 displacement parameters in global X-, Y-, and Z-directions and 3 rotations with

respect to the corresponding coordinate axis introduced (in that order) at each node,
the 12x12 transformation matrix Cca is defined as follows:

a
T 0

0 T

T is the following 6x6 transformation matrix:

1 0 0 0 dz -dy
0 1 0 —dz 0 dx

0 0 1 dy —dx 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1

where dx, dy and dz are the components of the excentricity vector [0,0, eca] expressed
in the global coordinates system.

Since the local stiffness matrix kca)Cerat„c of a beam having the cast concrete section is

known and since:

q **-ca,centric
'

" V""^/

by inserting eq. 3.7 in eq. 3.9 and eq. 3.9 in eq. 3.8 the following relation applies:

^
ca **-ca,centric ^^ca " (3.10)

The resulting stiffness matrix is the excentric stiffness matrix for the cast concrete

section kca:

K-ca ^ca ' K-ca,centric ' ^ca V" 7

kf0 can be derived in a completely analogous way.
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3. Steel-concrete composite beam elements
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4. Locked-in displacements

Any deformation of the formwork remains "stored" in the cast concrete as it hardens.

In contrast to the usual case, where the formwork is stiff enough to avoid excessive

deflections, this has to be taken into account in the case of cable-stayed bridges (espe¬
cially those with a composite steel-concrete deck) because the repetitive, incremental

construction by free-cantilevering can lead to a systematic accumulation of error causing
an important curvature to be locked-in in the deck.

To simulate locked-in displacements two different types of elements have been imple¬
mented: a cast beam for concrete having no shear connection with its formwork and a

composite beam for concrete having a rigid shear connection with a steel profile which

plays the role of non-removable formwork (see chapter 3). In the program BRIDE the

formwork is modelled by a regular beam element.

4.1. Cast beams to simulate locked-in displacements in

concrete cast on an elastic formwork without shear

connection

In a cast beam element, instead of defining the element's incidence nodes the user defines

the beam element representing the formwork and a value Dz (see figure 2.5) representing
the distance between the cast beam and the formwork beam centroids. The cast beam

element retrieves its incidence nodes and orientation from the formwork element and the

initial hardening displacements the formwork beam had during the casting stage - the

stage coming before the one in which the new cast beam is added to the chronological ob¬

jects list - accordingly transformed, contribute to each cast beam's initial displacements

"initial

This is how cast beams are treated numerically:

• The user defines a beam element modeling the formwork (the formwork beam) and

a distributed element force object simulating the weight of the wet concrete.

• The user defines the cast beam object for the construction stage right after the

casting stage.

• While performing the stage-by-stage iteration the program BRIDE checks if in

the stage following the currently selected one new cast beams are introduced in

the model. If this is the case it transforms the displacement parameters of the

corresponding formwork beams to the displacements of the (not yet assembled)

19



4. Locked-in displacements

centroids of the cast beams assuming a rigid connection (analogous to eq. 3.7)
and stores them within the cast beam objects. These transformed displacement

parameters are the locked-in displacements a/j. They represent a contribution to

the cast beam's S-mitiai (see eq. 2.1).

4.2. Composite beams to simulate locked-in

displacements in concrete cast on an elastic

formwork with shear connection

The locked-in displacements for composite beams can be found in the same way as for

cast beams up to a point: the nodal forces of the formwork, which is removed from

the model after the casting stage (since its stiffness is already included in the combined

section's stiffness), have to be subtracted from the initial self-equilibrating forces f after

having been transformed for the centroid of the combined section (see eq. 2.3):

• The hardening displacements a/,, which the formwork beam had during the casting

stage have to be transformed analogously as in eq. 3.7 for the centroid of the

combined section. The transformed hardening displacements are denoted by a£°.

• The nodal forces q/0 applied by the formwork beam to its incidence nodes during
the casting stage as a result of its elastic deformation are found as follows:

q/o = kfo ah (4.1)

where k/0 is the formwork's (centric) stiffness matrix.

• analogous to eq. 3.8, q/0 is transformed for the centroid of the combined section

and denoted by qf0.

• the initial self-equilibrating force f/j)CO needed to take the locked-in displacements
in the composite beam, which is the first term of eq. 2.3, is found as follows:

fh>co = kco • a- - qc/0 (4.2)
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5. Creep

Concrete creep often has to be taken into account in the analysis of wide-span cable-

stayed bridges. According to [CEB/FIP, p. 46] in the range of service stresses, i.e.

c < 0.4/cm1, concrete may be considered as an ageing linear viscoelastic material. In

the program BRIDE only the linear viscoelastic behaviour has been taken into account,

while ageing (i.e. changing of material characteristics over the time) has been ignored2.
The creep behaviour of materials is usually described by the creep factor (pit) which

is the ratio between the elastic component eei and the creep component ecr of strain

in an uniaxial stress-strain state. In the program BRIDE <p>(t) is approximated by the

following hyperbolic function:

4>(t) = 0oo • tanh(t
aTCtan (°"5)) (5.1)

where 4>oo is the maximum asymptotic value of (p and £2 is the number of days in which

half the maximum asymptotic value (p^ is reached. Both (p^ and £2 have to be specified
as input parameters in the material object (see subsection A.1.7). The graph for <p>(t) is

shown in figure 5.1.

The values for (p^ and £2 should be obtained from the corresponding design code in

which the age of concrete when it is loaded can also be taken into account. Typically

(poo has a value around 2 and t2 a value around 40 days. The time t (see figure 5.1) is

measured from the day the concrete first comes under stress.

5.1. Hereditary creep behaviour of concrete

According to [Wittmann, IV.9] and [Shaw and Whiteman, p. 185] hereditary creep be¬

haviour for viscoelastic materials such as concrete can be taken into account by assuming
that a Boltzmann superposition of stress can be applied, where these stress increments

are related by Hooke's law to corresponding strain increments. If a uniaxial stress-strain

state is considered, the stress tensor a%J and the strain tensor e%J are reduced to a scalar

and Hooke's law can be expressed as follows:

ait) = D{t) e(t0) (5.2)

1
fem is the mean value of the cylinder compressive strength of concrete fc at an age of 28 days, a is

the normal tension.

2This is a constraint due to the adoption of Boltzmann's superposition principle explained in sec¬

tion 5.1.
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5. Creep

^(t)=^.tanh(t-arctyh(a5);

.12

time

Figure 5.1.: Function <p>(t) used to approximate the creep factor.

where a time dependence has been introduced in D(t) which is a smooth monotonically

decreasing function of t. The loss of tension over time due to the decreasing of D(t) with

a constant e(t) = e(t0) is known as stress relaxation.

Let us denote by an increasing index i all the construction stages since the assembling
of a new element, starting with i = 0 for the stage in which the element has been assem¬

bled. If we assume that the nodal displacements and thus the strain e remain constant

between one stage and the next, the strain e(t) in the element can be approximated by
the step function e(t):

e{t) = e{U) in[ti,ti+i[fori = 0,1,2,...,

Each strain increment

Ae(£i+i) = e(ti+i) - e(U)

induces a stress increment according to Hooke's law:

Aa(U, tj) = D(U - tj) Ae(tj) for0<j <i

(5.3)

(5.4)

(5.5)

where Aa(ti,t0) and Ae(£0) represent the stress and the strain increments at time t0

when the element passes from not being assembled (a stress and strain free state) to

being assembled. Notice that each of these stress increments also relaxes according to

the time dependence of D(t). The total stress at time U is now given by superposition:

3=0 j=0

(5.6)

In a material subject to the constant strain e(t0) the sum of the elastic and the creep

components of strain eei(t) and ecr(t) is constant and must equal e(t0):

e(to) = £ei(t) + £cr(t) = constant (5.7)
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5.1. Hereditary creep behaviour of concrete

since (p(t) is the ratio between eei(t) and ecr(t), ecr(t) can be eliminated from eq. 5.7:

e(to) = eei(t) (1 + <f>(t)) = constant (5.8)

the elastic strain eei(t) can be formulated as a function of the elastic stress a(t) and the

Young's modulus E:

Sel{t) = ^ (5.9)

hence for to, when the relaxation has not yet taken place, the elastic stress a (to) can be

formulated as follows:

a(t0) = e(t0) E (5.10)

and as follows for t > 0:
E e(tp)

a{t) =
YTW)

( }

the ratio between a(t) and a (to) is the relaxation factor ip(t) (see figure 5.2):

m =

TTW)
<5'12)

With help of eq. 5.12 for uniaxial stress-strain states D(t) can be determined as follows:

D(t) = E-ip(t) (5.13)

Eq. 5.6 can be written as follows:

i

a(tt) = Y,E-4>(tt-tJ)Ae(tJ) (5.14)
3=0

Ignoring the contribution to creep from the element's local load, the relationship of

eq. 5.14 can be generalized for the nodal forces q, since Ae(t3) is proportional to the

difference between the nodal displacements Aa(tJ) of two subsequent stages numbered

j — 1 and j:
i

q(tt) = ^2k-iP(tt-t3)-Aa(t3) (5.15)
3=0

where k is the element's local stiffness matrix and the difference Aa(t,) is found as

follows:

Aa(ij) = (a(t3) - a.sh(t3) - auser(t3)) - (a(i,_i) - ash(t3-i) - auser(t3-i)) (5.16)

where a(t) is the vector of the nodal displacements from the global solution, ash(t) is the

vector of the initial displacements due to shrinkage and auser(t) is the vector of the initial

displacement defined by the user (e.g. to model a pre-camber or a cable post-tensioning).
a(t_i), ash(t-i) and aMser(£_1) needed to find Aa(£0) are zero vectors representing the

unloaded state of the element before it is assembled in the structure.
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5. Creep

AI

0(00)

o(0)(l-v(t))

time

Figure 5.2.: Relaxation in a bar lengthened by A/ at the time t0.

Every geometry and load change in the structure occurring between the stages j — 1

and j induces a change Aa(t,) which is found by solving the global equation system. The

increment of the nodal forces Aq(tj) related to the increment in the nodal displacements

Aa(tj) is computed as follows:

Aq(t3) = k Aa(t3) (5.17)

From eq. 5.17 and eq. 5.15 we can show that the loss of magnitude of Aq(t,) due to

relaxation can be expressed as follows:

Aqcr(t3) = k Aa(t3) (1 - tP(tt - tj))

which corresponds to an initial displacement

Aacr(tt, Aq(t3)) = (1 - iP(U - tj)) Aa(t3) (5.18)

the total initial displacement acr (see eq. 2.2 and 2.3) needed to take creep into account

is a superposition of all Aacr(ti, Aq(t,)):

acr(tt) = Y,^acr(U,Aq(t3)) = Y, Aafe) • (1 " 4>{U ~ tj)) (5.19)
3=0 3=0
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5.2. Approximation in the computation of creep in structures with a varying strain

5.2. Approximation in the computation of creep in

structures with a varying strain

While creep is considered exactly with eq. 5.19 for systems having a constant strain,
for system having a varying strain an error is introduced because the contributions to

acr from the nodal displacements due to creep between subsequent stages are ignored.
However this approximation has proved to be good and to improve rapidly if the time is

subdivided in more steps through the definition of more possibly fictitious construction

stages.
The increase of the displacements due to creep in a statically determinate model (the

extreme case for varying strains) having a single material and in which all load is applied

at once at the time to can be summarized with the factor 4>b(U) = a7ta\ ,
where a is

any component of the displacements vector a.

The factor (pß(ti) implicitly found by the program BRIDE during the stage-by-stage
iteration can be formulated as follows:

(pß(ti) = YSl'a ' ~~ l

va=0

(5.20)

where:

Si.O — 1 Sl,l = 1 -ipih -t0) (5.21)

i-2

y^ Si-2,a
• (1 - 1p(U ~ U-i)

a=0

(5.22)

"3,3
(i - V(*. - *j-i) (5.23)"^

1 " ^(t3 ~ *,-l)

This complicated formulation, which exactly expresses what happens during the stage-

by-stage iteration, can be visualized for four construction stages by means of the following
table:

S*,J 3=0 3 = 1 3 = 2 3 = -i

1 = 0 1

1 = 1 1 l-V(*i-*o)

1 = 2 1 l-V(*2-*0) (i-V(*i--t0))(l-V'(i2--tl))

i = 2 1 l-V(*3-*0) (i-V(*i--t0))(l-ip(t3--h))

((1-^2 _to)) + (l_

*0))(l-^(*2-*l))-(l-

to)) U-V>te-t2))

- ^(*i -

-V(ti-

The relative error r(tt) which occurs between the function (p(t) adopted to approximate
the creep function and the actual (pß(t) can be expressed as follows:

r(ti)
4>b(U) - 4>(U)

<KU)
(5.24)
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5. Creep
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Figure 5.3.: Relative error between (pB(t) and (p(tt) with different subdivisions of time

and for a material having a (p^ = 2 and a £2 = 100 days.

and its magnitude can be controlled numerically. Figure 5.3 shows a chart of r(tt) for

different subdivisions of time: with an increasing subdivision, (p(t) converges towards

the exact solution and for subdivision into 32 steps r(tt) has a magnitude comparable
to the approximation in the estimation of 0oo and £2 in the design codes.
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6. Concrete shrinkage

Concrete shrinkage is difficult to predict but has to be taken into account for wide span

cable-stayed bridges. The program BRIDE allows one to introduce empirical values in

the model in a simple and effective way exploiting the advantage of knowing when each

element has been added to the structure thanks to the chronological object list.

For our purposes this complex phenomenon can be simplified to a time-dependent
initial strain approximated with the same function as for creep:

£sh(t) = £shoo tanh(t
arctanh(0.5)

(see figure 6.1) defined in the material object (see A.1.7) by two values: the maximum

asymptotic value £shoo and the number of days £2 in which it reaches half the maximum

asymptotic value. The time £, however, has to be measured from the day the concrete

hardens (even if it is not stressed, which is the case when prefabricated panels are used).

The values £shoo and £2 should be obtained from the relevant design code. Typically
the value for eshoo is around 0.0005 and the value for £2 is between 30 days and 2 years.

time

Figure 6.1.: Function esh(t) used to approximate the initial strain due to shrinkage.
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6. Concrete shrinkage

6.1. Initial displacements a./, needed to take concrete

shrinkage into account

In contrast to locked-in displacements and creep, shrinkage does not need the stage-by-

stage iteration to be computed because it depends only on the time £0 the concrete was

cast. In the case of cast and composite beams the time to corresponds to the day number

of the casting stage, otherwise it corresponds to the day number of the construction stage
in which the material (a model object as any other) has been defined. However, it is

necessary to take shrinkage into account during the stage-by-stage iteration because it

affects the displaced shape which, in turn, affects locked-in displacements, creep and

conditional loads.

The initial displacements ash needed to take shrinkage into account (see eq. 2.1 and 2.3)
are obtained from the nodal displacements the shrinkage-affected element would have if

it was fully clamped in the first node and free to move in the second. For this reason

ash is a vector in which the only non-zero component is the component

d.sh,tx,2 = £.sh(t — to) I

corresponding to the translation in the longitudinal direction of the second incidence

node, where £0 is the time at which creep begins, £ is the analysis time and / is the

element length.
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7. Conditional loads

In most structures the displacements are so small that they do not cause an excessive

deviation from the planned geometry. Quite contrary to this rule, displacements play
a major role in cable-stayed bridges and are usually corrected by post-tensioning the

cables and by mounting mast and deck segments with a pre-camber. Such adjustments
in geometry can be simulated with initial displacements whose magnitude is found au¬

tomatically by the program BRIDE and which are denoted as conditional loads.

Conditional loads are load objects (see subsections A.1.12 and A.1.13) to which a

condition to be fulfilled has been appended (see subsection A. 1.14). These are a few

examples of the statements which can be formulated in the program input with such

conditions:

• The initial displacement of the cable specified in the load object to which the

condition is appended should have a value such that the vertical displacement of

the anchoring point of the cable equals zero in the "last" construction stage, under

the load case "loacLhistory" and taking all other conditional loads into account

whose intensity are also found in the "last" construction stage.

• The initial displacement of the cable specified in the load object to which the

condition is appended should have a value, such that the rotation of the deflected

shape of the formwork beam to which the loaded cable is anchored is equal at the

formwork beam's beginning and ending during the formwork's casting stage1, under

the load case "loacLhistory" and taking all other conditional loads into account

whose intensity are also found in the formwork's casting stage.

• The initial force acting on the deck segment specified in the load object to which

the condition is appended and modelling the deviation of the real creep from the

assumptions made at input should have a value such that the vertical displace¬
ment of the deck at the measurement point equals the measured value in a given
construction stage (the stage corresponding to the measurement day), under the

load case "loacLhistory" and taking all other conditional loads into account whose

intensity are also found in that construction stage.

The imposition of absolute displacements and section forces are not the only conditions

which can be formulated. The program BRIDE also allows relative and "same factor as"

conditions (see section A. 1.14).

1This condition can be used to avoid the accumulation of locked-m bending in composite decks, as

explained in [Schlaich]
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7. Conditional loads

A typical case in which a "same factor as" condition should be used is the one in

which two symmetric cables, both anchored to the ground on the same anchor block

but one on the right and the other on the left of the carriageway, and both reaching the

top of the same mast, have to be post-tensioned to avoid a longitudinal displacement
of the mast's top. This should be formulated using an absolute condition for one cable

(i.e. "post-tension the first cable in such a way that the top of the mast does not move

longitudinally") and a same factor condition for the second cable (i.e. "post-tension the

second cable so as to have the same conditional factor as for the first cable").
For the definition of a conditional load the following is needed:

•

•

•

A load object whose correct intensity is not yet known and thus still arbitrary:
the arbitrary intensity load object. During the stage-by-stage iteration the correct

intensity is automatically found by the program BRIDE in the form of a conditional

factor with which the load represented by the arbitrary intensity load object is

multiplied. Actually after such multiplication the arbitrary intensity load object
does not deserve the adjective "arbitrary

"

anymore, because its intensity has been

computed; however we keep calling them an arbitrary intensity load object because

this computed intensity is used to perform the influence matrix algorithm (see
section 7.1) in the following stage-by-stage iterations in the same way it was used

in the first stage-by-stage iteration, when it really was arbitrary.

A condition to be fulfilled whose definition is appended to the definition of the

arbitrary intensity load object (see subsections A. 1.12 and A. 1.13) and contains

three bits of information (see subsection A.1.14):

— a condition parameter specifying which displacement or section force has to

assume the condition value at a given point of the structure

— a condition value specifying the absolute or relative value the condition pa¬

rameter has to assume

— a condition stage in which the condition has to be fulfilled.

From an algebraic point of view it would not be strictly necessary to couple the

conditions to an arbitrary intensity load. This coupling however is reasonable

because it makes sure that in the input there are always as many conditions as

arbitrary intensity loads to be updated in a given stage. This forces the user to

think about the influence of the arbitrary intensity load on the condition parameter

(reducing the risk that a non-solvable equation system is formulated) and allows

the program to check that all arbitrary intensity loads are activated before or

during, but not after, the condition stage.

A fixed load consisting of all loads active during the condition stage belonging to

the load case load-history excluding those whose intensity is being computed in

the same condition stage.
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7.1. The influence matrix algorithm

7.1. The influence matrix algorithm

The linearity of first order static models allows the superposition of displacements and

section forces: knowing the displacements and the section forces caused by given loads

one can find the displacements and the section forces caused by any linear combination

of those loads just by combining the respective displacements and section forces with

the same linear factors used to combine the loads.

Conversely, knowing the displacements and the section forces caused by n loads of ar¬

bitrary intensity and having n conditions to fulfil in the form of prescribed displacements
and section forces, one may find the linear factors needed for a conditions-fulfilling load

combination. These linear factors are called conditional factors and they are found au¬

tomatically by the program during the stage-by-stage iteration with the influence matrix

algorithm developed in this project.
This is how the influence matrix algorithm works if all condition values are absolute:

1. During the stage-by-stage iteration, given n arbitrary intensity loads associated to

n conditions having as a common condition stage, the stage actually selected by
the stage-by-stage iteration, the nxn influence matrix N has to be built, where Nl3
is the value assumed by the condition parameter defined in the condition i under

the arbitrary intensity load j.

2. The nxl vector L has to be built, where Lt is the value assumed by the condition

parameter of condition i under the fixed loads.

3. The nxl vector C has to be built, where Ct is the required condition value of

condition i.

4. The following equation system has to be built and solved to find the vector F

containing all the conditional factors:

NF + L = C ^F = N"1(C-L) (7.1)

Relative conditions state that the conditional load i has to induce a value of the condition

parameter which is not absolute, but a portion of a section force or displacement at

another point of the structure (e.g. "post-tension the cable with an intensity, such that

the bending moment here is half the bending moment there"). If the condition is relative

the corresponding factors for the matrices of eq. 7.1 are found as follows:

• Nl3 is the difference between the value assumed by the condition parameter asso¬

ciated to the conditional load i (i.e. "the bending moment here") and the other

section force or displacement multiplied by the proportion factor (i.e. "half of the

bending moment there") under the arbitrary intensity load j.

• Lt is the difference between the value assumed by the condition parameter asso¬

ciated to the conditional load i (i.e. "the bending moment here") and the other

section force or displacement multiplied by the proportion factor (i.e. "half of the

bending moment there") under the fixed load.
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• C\ is set to 0.

The "same factor as" condition is used to avoid more conditional loads having the same

condition parameter by stating that the conditional load i must have the same condi¬

tional factor as another conditional load j (Ft = F3). Such conditions are expressed as

follows in the influence matrix:

• on the i-th row of N; Nn and Nl3 are set to 1 and -1 respectively,

• all other factors on the row i inclusive of L% and C% are set to 0.

7.2. The need to perform the stage-by-stage iteration

repeatedly to find the conditional loads

As explained in the introduction to this chapter a conditional load is constituted by
an arbitrary intensity load coupled with a condition. The conditional factor needed to

multiply this load is found with the influence matrix algorithm when, during stage-by-

stage iteration, the condition stage specified in the condition is selected (see section 7.1).
Frequently the condition stage does not correspond to the activation stage of the

conditional load (i.e. the stage in which the conditional load is added to the chronological

objects list and begins to act on the structure) but it is a posterior one, e.g. often a cable

has to be tensioned during construction to avoid a vertical displacement of its anchoring

point on the deck in the final stage. If the condition does not correspond to the activation

stage there are stages in between (activation stage included) in which, during the stage-

by-stage iteration, the conditional load is already acting on the structure but with its

still unmodified arbitrary intensity.
If the conditions of all conditional loads have to be fulfilled in the same stage or

if new conditional loads are inserted in the chronological objects list after the stage

objects representing the condition stages of all conditional loads formerly defined, the

conditional factors found with the first stage-by-stage iteration are the correct ones

because no conditional load of unmodified arbitrary intensity was considered as part of

the fixed load.

By contrast, if conditions have to be fulfilled for an earlier stage in which other con¬

ditional loads whose condition has to be fulfilled in a later stage are already active, the

factors of the conditional loads computed in the earlier stage are incorrect after the first

stage-by-stage iteration because they have been computed with a fixed load containing
also the still arbitrary intensity of the conditional loads determined at a later stage.
When during the stage-by-stage iteration conditional factors are found, they are im¬

mediately used to correct the arbitrary intensity of the arbitrary intensity loads they are

associated to; hence the influence matrix algorithm can converge if the whole stage-by-

stage iteration is performed repeatedly (leaving out the case in which locked-in displace¬
ments are taken into account explained in subsection 7.3.2) because the errors manifest

themselves as wrong values of the vector L and are compensated in the next stage-by-

stage iteration (see equation 7.1).
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A practical example of such a situation is given by bridges with composite decks in

which the cables are post-tensioned twice: the first time to induce a given deflected

shape in the formwork element during the casting stage and a second time for the final

construction stage (see [Schlaich] for more details). In this case the arbitrary intensity of

the conditional loads with the condition to be fulfilled in the final stage, being considered

as part of the fixed load, induce an error in the conditional factors of the conditional

loads with a condition to be fulfilled during the casting stage and it is necessary to repeat

the stage-by-stage iteration two or more times.

7.3. Convergence of the influence matrix algorithm with

non-linear models

As shown in the practical example of chapter 9 the influence matrix algorithm does

not need to converge for non-linear models to be applicable, since the conditional load

intensities found with a linear model are exact enough and lead to acceptable values of

the conditional parameters even if non-linear effects are taken into account.

However, the convergence behaviour of the influence matrix algorithm combined with

the repeatedly performed stage-by-stage iteration has been studied and the following
sub-sections explain the results of this investigation.

7.3.1. Creep and shrinkage

The influence matrix combined with the stage-by-stage iteration converges quickly also

if concrete creep and shrinkage are being taken into account, because these phenomena
do not change the material stiffness. The errors they induce in the values assumed by
the condition parameters appear in the vector L and are also automatically corrected by
the influence matrix algorithm when performed during the next stage-by-stage iteration.

7.3.2. Locked-in displacements

During the stage-by-stage iteration it is possible to take locked-in displacements into

account and to compute the conditional factors, and it may happen that the condition

stage of every conditional load is not always the same as its activation stage but a later

one. In this case (once the stage-by-stage iteration reaches the condition stage) a new

intensity is assigned to the conditional load which would have affected the locked-in

stresses found in all stages between the activation stage and the condition stage. The

consequence of this is that at the end of such a stage-by-stage iteration the model is in

a physically inconsistent state, because the locked-in displacements do not reflect the

newly found conditional load intensities.

This physical inconsistency leads to the necessity of always performing the stage-

by-stage iteration twice (which is automatically done by the program BRIDE) when

computing the conditional factors taking locked-in displacements into account:
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7. Conditional loads

1. During the first stage-by-stage iteration locked-in displacements are considered and

the intensities of the conditional loads are computed.

2. During the second stage-by-stage iteration just locked-in displacements are consid¬

ered while the intensities of the conditional loads are kept unchanged. In this way

the locked-in displacements are updated to the new intensities of the conditional

loads.

There is another curious effect which impedes the convergence of the influence matrix

algorithm when repeatedly performing the stage-by-stage iteration.

Locked-in displacements amplify the effect on the deflected shape caused by the

changes of the conditional load intensities between subsequent stage-by-stage iterations

in such a way that the self-correcting behaviour of the influence matrix algorithm ex¬

plained in section 7.2 cannot take place. In other words, when taking locked-in dis¬

placements into account the structure "over-reacts" to the changes in the conditional

load intensities which occur when the stage-by-stage iteration is performed repeatedly
and in each stage-by-stage iteration the conditional factors are computed again: instead

of converging to the condition values the values of the condition parameters oscillate

around the condition values with growing distance. This fact can be observed by the

user with the graphic representation of the deflected shape which is updated every time

a stage-by-stage iteration is completed.
The error feed-back factor a ranging from 0 to 1 has been introduced to avoid such

oscillation and has to be set interactively by the user when the stage-by-stage iteration is

repeatedly performed on the basis of the observed variation of the deflected shape. Let's

call R the residuum affecting the condition parameters after a stage-by-stage iteration,
the residuum R multiplied with the feed-back factor a is added as follows to the right
side of eq. 7.1 in the next stage-by-stage iteration:

NF + L = C + R-a (7.2)

If a is set to 0 eq. 7.2 equals the self-correcting eq. 7.1. If a is set to 1 F cannot

change, hence the (error-affected) solution is stabilized. Any value of a between 0 and

1 makes the influence matrix algorithm converge more or less quickly. While repeatedly

performing the stage-by-stage iteration computing both conditional loads and locked-in

displacements the user should keep a as close as possible to 0 but big enough to avoid

the oscillation of the values of the condition parameters about the condition values.

7.3.3. Second order effects and cable sag

Second order effects and cable sag2 are stiffness changing phenomena which transform

eq. 7.1 as follows:

2The cable sag is taken into account in the program BRIDE using the parabola-based formula for the

tangent Young's modulus Etan derived in [Gimsing, p. 141]:

~/2l2E
12<r3
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(N + AN)F + L = C (7.3)

where AN is the change in the influence matrix due to a change in the stiffness of the

structure.

This stiffness change can be taken into account by computing the influence matrix

using the updated stiffness of the structure.

If locked-in displacements are not taken into account (hence abrupt changes of the

conditional factors between subsequent stage-by-stage iterations do not cause the over-

reaction of the structure explained in section 7.3.2) the result F can be improved by

performing a final stage-by-stage iteration in which the error R is subtracted from the

condition values (in eq. 7.2 this would correspond to a = —1). With this last iteration

the error in the newly computed conditional factors is reduced dramatically. This is

what happens numerically:

1. In the last stage-by-stage iteration, once the error has stabilized itself, instead of

explicitly finding N + AN we can assume that ANF equals the residuum R, being
ANF the only term in eq. 7.3 differing from eq. 7.1

.

2. The correct F can be found by re-formulating equation 7.3 as follows:

NF + L = C - R (7.4)

which is what is done in the last stage-by-stage iteration if the user has chosen this

option.

7.4. Conclusions regarding the conditional loads

Not every conditional load leads to a solvable equation system: if the user tries to induce

a displacement with an arbitrary intensity load j having no influence on the condition

parameter i (i.e. Nl3 = 0), it is quite possible that the matrix N is going to be singular.
Another unsolvable situation is given if the same condition parameter is used more than

once, as this leads to two identical rows in N (which should be avoided using a "same

factor as" condition). More generally it can be said that the major problem in the

formulation of conditional loads is that the user has to have a good understanding of

the behaviour of the structure.

The important aspect to be considered when formulating an arbitrary intensity load is

not its absolute intensity which can be corrected in a few linear stage-by-stage iterations

even if it is very different from the appropriate value, but the way the arbitrary intensity
load influences the static system and specially the condition parameter.

Another problematic aspect of the influence matrix algorithm is that condition pa¬

rameters representing section forces (and not displacements) can lead to near-singular

where E is the Young's modulus and 7 is the weight per unit volume of the cable's material, / is the

cable's length and a the stress in the cable.
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7. Conditional loads

influence matrices not delivering the conditional factors exact condition fulfilment. Also

in this case a good understanding of the structure's behaviour is required from the

user, who, in some cases, might be forced to choose alternative conditions prescribing

displacements.
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8. Automatic cable dimensioning

Automatic cable dimensioning has been implemented in the program BRIDE. In fact,
cable dimensioning is a tedious and time-consuming task if performed manually.
To perform an automatic cable dimensioning the user has to specify the cable dimen¬

sioning objects (see subsection A.1.15) in the chronological objects list and simply click

on a button of the graphic user interface.

8.1. Cable dimensioning algorithm

When the user clicks on the cable dimensioning button the program finds for every cable

to be dimensioned the smallest sections which resist all normal forces experienced by
the cables in every construction stage and load combination pair specified in the cable

dimensioning objects.
To dimension a cable it is necessary to know its normal force which can be found only

by means of structural analysis. In turn, structural analysis can be performed only if

a section has already been assigned to the cable. Thus the cable sections cannot be

dimensioned directly but only iteratively by first adopting an approximative section. If

this is very different from the adequate one it may be necessary to iterate (by simply

clicking the cable dimensioning button) two or three times. In addition sections must

be chosen from an appropriate pool of predefined cable types.
This is how the section re-dimensioning problem has been solved:

1. Every section object is assigned to a section group with an identifier (see subsec¬

tion A.l.6).

2. As for all other elements the user has to define a section for every cable, even if

they are going to be re-dimensioned (see subsection A. 1.5).

3. While performing the automatic cable dimensioning the program uses the section

specified by the user as the initial approximative section and looks for the smallest

section under the sections belonging to the same section group.
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9. Example of an input file for the

program BRIDE

In this chapter an example of a computation performed with the program BRIDE is

discussed. The model used for the computation has been freely obtained by merging
different models used to test the program during its development so that it can show

all implemented features.

Our imaginary bridge is symmetric and has been defined using two files. At the

beginning of the main file (see section D.l and figure 9.1) all materials and sections

needed are defined. After the material and section definitions, a second input file (see
section D.2 and figure 9.2) in which one half of the model is defined keeping the signs
of the X and Y coordinates and all identifiers dependent on a single variable "s" (to
be defined before inclusion, as mentioned in figure 9.1) is included twice (once for each

model side). Between the first and the second file inclusion instruction a restart object
is inserted. After this double inclusion all objects needed to join together the two halves

and to dimension the cables are defined.

joints joining together the two bridge halves

second bridge half (the variable "s" is set to 2)
first bridge half (the variable "s" is set to 1 )

Figure 9.1.: The two bridge halves joined together in the main file.
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9. Example of an input file for the program BRIDE

Figure 9.2.: Half bridge defined in the included file with the convention used to define

the identifiers: the objects on a dashed line have the letter assigned to that

line and a number growing along the line in the direction of the arrow in

the identifier. Notice that the formwork beams in the middle of the mid-

span (where the letters "c", "d" and "e" are) have not been merged yet with

the composite beams which are defined in the outer file, hence they appear

excentric relatively to the other's composite beams.

This definition with two files has the advantage of allowing an easy formulation of the

model for a single side (which is useful during construction, see section 9.2) and to keep
a better overview of the way the two sides are joined together.
The model has a composite deck modelled with composite beams (see figure 9.3).

Another example with cast beams instead of composite beams is not shown because

the use of composite and cast beams is fully analogous. In fact a model with cast

beams instead of composite beams can be obtained from the model by simply replacing
all occurrences of the keyword "CompositeBeam" with the keyword "CastBeam" (see
figure 9.4).

9.1. Analysis strategy

After having completed the writing of the input file(s) the user has to open it with the

program BRIDE (actually it is advisable to open the input file also when it is not yet

completed, so as to track all errors as soon as possible using the error messages from the

program).
As mentioned in chapter 7, the stage-by-stage iteration does not always converge

when taking all non-linear effects into account. However, it has been observed that such

convergence is actually not necessary since the intensities of the conditional loads found
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Figure 9.3.: The model listed and commented in appendix D with its composite deck.

The box shape of the element only shows the maxima and the minima of

the element's section and has nothing to do either with its stiffness or its

self-weight.

with a linear model lead to a satisfactory precision in the conditional parameters also

when, after having found the conditional loads linearly, non-linearities are taken into

account in the model. This is plausible since otherwise it would be incomprehensible
that cable-stayed bridges could be successfully built with the manual methods listed in

section 1.2. For this reason a two step strategy has been used:

• All model-changing computations such as the computation of the conditional load

intensities and the cable dimensioning are first performed using a linear model.

The model modified by the computation of the conditional loads and of the cable

sections is then stored as an expanded input file (i.e. an input file without pre¬

processor instructions and in which the intensities of the conditional loads and the

cable sections have been updated, see figures from 9.5 to 9.10).

• The stored model is opened with the program BRIDE. All non-linear phenomena1
such as second order, cable sag, shrinkage, locked-in displacements and creep are

taken into account with a stage-by-stage iteration, during which the intensities of

the conditional loads are left unchanged (see figures from 9.11 to 9.14).

1Tension/compression-only behaviour is not taken into account at this stage of the analysis since the

engineer is asssumed to have designed the structure m such a way that an unforseen construction-

history- relevant loss of contact of a support and the loss of tension m a cable, respectively, does not

occur
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Figure 9.4.: The model listed and commented in appendix D where its composite beams

are substituted by cast beams simply by replacing all occurrences of the

keyword "CompositeBeam" with the keyword "CastBeam" in the input files.

9.2. Monitoring the bridge erection by keeping the input

file up-to-date

During the construction of the bridge the input file has to be kept up-to-date with

the events in situ: if a cable has been post-tensioned with its intensity found using a

conditional load, this conditional load definition in the input file has to be transformed

into a regular load by removing the condition and by substituting the computed intensity
with the intensity measured while post-tensioning the cable.

If a deviation from the planned geometry is observed, e.g. due to an unforseen creep

behaviour of concrete, the engineer on site should update the input file by producing
this deviation in the model by means of a conditional load. Once the deviation has been

introduced into the model the engineer can investigate which adjustments have to be

undertaken, e.g. introducing additional conditional loads.

At the end of construction such an input file kept up-to-date also represents a detailed

report of all relevant events that occurred during the erection of the bridge.

42



9.2. Monitoring the bridge erection by keeping the input hie up-to-date
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Figure 9.5.: Step 1. The file listed in appendix D is opened and its displaced shape in

the last construction stage and under the load-history load case is presented.
A displaced node in the middle of the mid-deck has been selected and its

displacement values are displayed in the text panel (the units are meters and

radians). The model has no pre-camber, no post-tensioning and the cables

are too flexible thus the displacements are obviously too big.
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Figure 9.6.: Step 2. One linear stage-by-stage iteration (i.e. not taking non-linearities

into account) is performed in which the conditional loads are found.
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Figure 9.7.: Step 3. The cables are dimensioned. The change of stiffness of the cables

makes the conditional loads out of date.
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Figure 9.8.: Step 4. Another linear stage-by-stage iteration is performed in which the

conditional loads are updated to the new stiffness of the cables.
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Figure 9.9.: Step 5. With this model, after having updated the conditional loads the

cables need to be dimensioned another time, which makes the conditional

loads being out of date again.
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Figure 9.10.: Step 6. A last linear stage-by-stage iteration is performed in which the

conditional loads are updated to the new cable stiffnesses. Now the cable

sections are the right ones and are no longer changed by the program even

if the button for the cables dimensioning is pressed again.
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Figure 9.11.: Step 7. The model with the dimensioned cables and the updated condi¬

tional loads is saved as a new input file.

Figure 9.12.: Step 8. The original file is closed with no changes and the file stored in

step 7 is opened instead.

46



9.2. Monitoring the bridge erection by keeping the input hie up-to-date

'& i, <%»*% ###-#s IIIM«f"«f s >

! • --- 4
.

f,s
i -Tv ,;<"

/ i ^ ' > i •

-«.^-^Ä v T «r ', TU.! T If ^-TT-i' i« Kï^tï^^ ^

-Ç

-f

m»l imn ^<Tii-^«5BiS^ttoHii'iraiilBS'TSr5—BSiT

Figure 9.13.: Step 9. The slight differences with respect to the nodal displacements in

step 6 are due to the rounding of numeric values when writing the stored

file to disk.
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Figure 9.14.: Step 10. Finally, a stage-by-stage iteration taking all non-linearities into

account and not updating the conditional loads can be performed. The

biggest displacements can be checked. In fact, they should be in an accept¬

able range (here a node at the centre of the deck close to the right anchor

blocks has been selected).
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10. Conclusions

In its present form the program BRIDE has not yet reached the maturity required for

commercial use. Nevertheless, it represents a prototype with which original approaches
to the important and non-trivial practical problem of the design, erection and retrofitting
of cable-stayed bridges could be developed.

Three concepts have been introduced and developed which allow one to model a cable-

stayed bridge in a very effective way:

Chronological objects list: when describing the construction of a cable-stayed bridge
not only the information about which parts are added to the structure, but also

the information about when they are added to the structure is important. The

chronological object list concept allows one to include this information in the input

file, i.e. in a natural way.

Stage-by-stage iteration: creep and locked-in displacements at a given time depend
on the structure's previous deflected shape. Or, for the same reason, having an

influence on the deflected shape, they are also going to have an influence on all

subsequent deflected shapes. The stage-by-stage iteration allows one to take all

these phenomena into account in a simple but effective way by modelling all con¬

struction stages in chronological order and by retrieving the effects of creep and

locked-in displacements from the deflected shapes of previous construction stages.
The adoption of the stage-by-stage iteration also allowed the development of quite
innovative ways of taking creep and locked-in displacements into account.

Conditional loads: pre-camber and post-tensioning can be modelled as initial displace¬

ments, but how large should be such initial displacements? The newly introduced

conditional loads are an elegant solution to this problem, in which the user does

not specify the absolute intensity of loads explicitly but through a condition to be

fulfilled.

Since the program BRIDE allows one to accurately plan and optimize the post-tensioning

schedule, the added value deriving from its use may extend not only to the time saving for

the civil engineer responsible for design and construction but possibly also in a reduced

number of times the forces in the cables need to be readjusted.
The rather interdisciplinary nature of this project (structural engineering, materials,

information technology) required a very summarizing approach from the author. Now

that the project's skeletal structure has been established, it would be desirable that

further research and validation work on the individual aspects and assumptions of the

developed solution algorithms were performed. Such research would also be helpful for
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the consolidation of the approach developed in this project which, despite its promising

effectiveness, still needs from the user a good understanding for the static system's inner

logic.
The program BRIDE has been implemented for the simulation of three-dimensional

models. However, for preliminary design a two-dimensional analysis is often sufficient.

This restriction would allow to simplify the graphic user interface and the computation
in such a way that a much higher degree of user interaction could be reached than with

a three-dimensional program. It is the opinion of the author that the development of a

two-dimensional but highly interactive program implementing the original approach to

the analysis of cable-stayed bridges adopted for the program BRIDE would be welcome

to many users.
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A. How to define a numerical model

for the program BRIDE

In the former chapters it has often been mentioned that the numerical models in the

program BRIDE consist of a chronological list of model objects specified by the user,

but it was not explained how the user is supposed to specify them. This appendix closes

this gap.

Every numerical simulation program needs an input produced by the user for de¬

scribing the model to be analyzed. Depending on the program, this may be specified

interactively through a graphical user interface or in written form as a text file using a

problem-specific input language. Both alternatives have advantages and disadvantages.
A graphical input is more intuitive for the inexperienced user but less transparent than

a text input which allows the experienced user to have full control of the model.

There are also solutions which are a combination of graphical and text input. Such

solutions offer both user friendliness and transparency and consist mostly of a graphical

preprocessor which generates the text input to be read by the main program. Even if

the user inputs graphically, the generated text input remains accessible for correctness

checks and for the re-editing of some details.

For the program BRIDE the text input solution has been chosen because of its trans¬

parency. In addition, a text input allows the implementation of programming-language-
like constructs by means of a preprocessor (see section A.2).

In the program BRIDE to every model object there corresponds a text instruction in

the input file defining it. These are called model instructions. The type of model objects
defined in the input file can alternately be free, provided they all belong to the same

construction stage. This has two important advantages:

• It allows to group together the information belonging together (for example by

putting a new node used in a new element right before the new element) so that it

is not necessary to search the whole input file for already defined information while

writing it. This principle has been borrowed from modern programming languages
like C++ or Java, which for the same reason allow one to declare a variable where

it is needed in the code and not, like in older programming languages, at the

beginning of a block.

• It allows one to write an input file which contains the information about the con¬

struction chronology just by inserting the different model objects in the input file

in the same sequence in which their physical counterpart are built in the real world.

Such an input file appears like a construction schedule, which is the clearest and

simplest way to specify the complex chronology of the construction process.
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A. How to dehne a numerical model for the program BRIDE

A finite element model needs the following information:

1. Nodes: each node is defined by an identifier and by its spacial coordinates. In each

node six displacement parameters are introduced.

2. Elements: each element is defined by an identifier, by its physical attributes (like
section and material) and by the identifiers of the two nodes to which the element

is connected ("incidence nodes").

3. Supports: supports are similar to elements, but they have just one incidence node.

4. Loads: typically loads can act on elements or directly on nodes.

The syntax for the model instructions is constituted following this schema:

1. A keyword uniquely defining the type of the object (e.g Node, Support, ...).

2. An identifier uniquely defining the object consisting of letters, digits and the un¬

derscore character (e.g. deck-node-1, eastsupport ,...). The first character must

be a letter. The identifier is case- sensitive and may not conflict with the keywords
of the text preprocessor (see section A.2).

3. The information building the content of the object1.

4. A semicolon ends the input object.

Blanks and end of lines are treated as separators.

In the following sub-sections the explanation of the syntax for the model instructions

is limited to those parts of the railroad diagrams2 which are not self-explanatory.
In this project a further formalism has been introduced for the railroad diagrams:

1
Internally the program does not transform the values found in the input file in order to change
their units. The only constant used in the program with predefined physical units is the gravity
acceleration of 9.81 ^ acting in the negative global Z-direction. The set of metric units which has

been taken into account during program development is the following:

length meter m

force kilo newton kN

mass ton t

stress kilo Pascal kPa

The user is assumed to know the physical meaning of the values he defines in the input file, and

thus to transform them accordingly whenever needed.
2 Railroad diagrams are used to graphically represent a syntax and consist of a line (the track) in¬

terrupted by stations representing the so-called "tokens" and the switches representing alternatives

routes. To define an object it is necessary to read its diagram from the upper left corner, to copy

to the input file the tokens encountered and to insert the numeric values required along the track.

When a switch is encountered, the user can choose one direction to continue following the diagram.
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A.l. Syntax for the dehnition of model objects

• bold is used for keywords with a predefined semantic meaning (they do not need

to be written completely: one or more characters from the keyword's beginning
are enough as long as they unequivocally define it),

• italic is used for user-defined tokens (in most cases identifiers or numbers in integer
or floating-point notation), the italic text explains which information is required,

• boxes refer to other railroad diagrams which, ideally, have to be inserted at the

position of the box.

A.l. Syntax for the definition of model objects

A. 1.1. Stage object

In the chronological objects list the stage object signalizes when a new stage has been

reached and gives it an identifier and a day number. The day number is necessary for

the calculation of time-dependent effects and for the merging of many object lists using
the Restart object (see subsection A. 1.2).
The syntax for a stage object is:

Stage stage_identifier DayNumber day_number ;

The day number must be positive and bigger than the day number of the former stage

(unless it is the first stage coming after a restart object). It specifies the day when the

construction stage is reached.

A. 1.2. Restart object

The Restart object allows one to merge many objects lists and belongs at the beginning
of a chronological objects list, being appended to an already defined one. This should

be used for structures consisting of different sub-structures which stand alone before

being joined together at the end of construction (typically the cantilever portions of a

cable-stayed bridge attached to different pylons). It allows one to keep the input files

for the sub-structures in different smaller files first - as long the sub-structures are not

joined together - and then to easily merge them.

The syntax for a Restart object is:

Restart ;

The merging of different input files is best done by writing an additional short input
file containing just the Restart object(s), the input files for each sub-structure being in¬

serted using the preprocessor statement Include (see subsection A.2.6) and the additional

objects needed to specify the junction elements between the sub-structures.
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A. How to dehne a numerical model for the program BRIDE

A.1.3. Remove object

The Remove object allows one to detach single model objects so as to simulate the re¬

moval from the real structure of temporary members (e.g. formwork), supports or loads.

This is its self-explanatory syntax:

Remove Element element_identifier

^ Support support_identifier

Joint jomt_identifier

*- NodeLoad node_load_identifier

^-ElementLoad element load identifier

A.1.4. Nodes

Each node is defined by an identifier and its spacial coordinates. Syntax for a node object:

Node node identifier X coordinate Y coordinate Z coordinate ;

• The three numeric values X-Coordmate, Y-Coordmate, and Z-Coordmate are the

absolute coordinates of the node's location in the program's arbitrary Cartesian

system with the Z axis pointing upward (see figure A.3).
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Figure A.L: A snapshot of the program BRIDE showing the nodes of a cable-stayed

bridge model with their identifiers.
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A.l. Syntax for the dehnition of model objects

A.1.5. Elements

Elements are three dimensional straight bar elements connecting two nodes. Each el¬

ement is defined by an identifier, its physical attributes and the identifiers of the two

nodes to which the element is connected. Possible element types are:

• Truss elements: transmit only a normal force along the element's axis, with no

bending stiffness

• Cable elements: same as truss elements, but they can be automatically re-dimensioned

by the program. They take tension-only response and sag into account.

• Beam elements: transmit bending and shear forces in two directions, torsion and

a normal force. They correspond to the classical model for slender beams ignoring
shear deformations.

• Cast beam elements: same as beam elements but allow the consideration of locked-

in deformations of cast concrete.

• Composite elements: same as cast beam elements, but allow the consideration of

the bond between the concrete and the steel profile.

The following syntax is used to define a truss, a cable, or a beam element:

-Truss —r element identifier

Cable -

Beam —

-Nodes node identifier-* 7-node identifier
^

7-
noae_iaenLirier -y-

^Excentricity dXdYdZ-^ ^
ty dX dY dZJ ^Excentricity dX dY dZ-

^ Section section identifier

YOrientation X Y Z-

• The two node identifiers define the nodal incidences.

• The three numeric values after the optional "Excentricity" keyword are the com¬

ponents of a vector starting from the incidence node and pointing to the element

start- or end- point defining an excentric, rigid connection of the element relative

to the incidence node.

• The section identifier after the "Section" keyword defines the section properties
which are assumed to be constant over the length of the prismatic element.

• The optional three numeric values after the "YOrientation" keyword allow one to

prescribe explicitly the orientation of the element's local coordinates system. Their

numeric values give the direction of a vector co-planar to the local x axis, which

is always on the element's axis, and the local x-y plane (see figure A.3). If the

user does not prescribe the orientation of the element's local coordinates system
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A. How to dehne a numerical model for the program BRIDE

explicitly the program assumes that the local y axis is parallel to the global X-Y

plane and, if the element is vertical, that it is parallel to the global Y axis.

The following syntax is used to define a cast or a composite beam, whose idealization is

represented in figure 2.5:

v—CastBeam
j- element_identif1er -n

^
CompositeBeam

-^ I

^FormworkBeam formwork_beam_identifier Dz Dz Section section_identifier —;

• Cast and composite beams must be coupled to a previously defined beam element

(formwork-beam-identifier) which is intended to model the structural behaviour of

the formwork or of the steel profile of a composite section. The incidence nodes

and the orientation of the local coordinates system are the same for both formwork

and cast/composite beams, and so do not have to be specified.

• Dz is the distance between the axis of the formwork beam and the axis of the

cast/composite beam in the local z coordinate.

• The section specified is that of the cast/composite beam alone, regardless of the

fact that the section of composite beams is automatically merged by the program

with their formwork section into a single combined section.

If a cast beam is defined, the cast concrete and formwork sections are kept separated

using two different beams with no shear connection between them but a rigid excentric

connection of their incidence nodes. If a composite beam is defined, its cast concrete

section (the section specified in the definition of the composite beam) is merged together
with the formwork section in a single combined section carrying the identifier of the

composite beam, while the formwork beam is removed from the model after the activation

of the composite beam. This allows one to take into account the shear connection

between cast concrete and steel, which is always assumed to be rigid.

A.1.6. Sections

Several elements often have the same section, so for this reason the section definition is

decoupled from the element definition. A complete section specification is needed for all

the implemented element types even if it makes little sense to define e.g. a non-vanishing

bending stiffness for a cable as the program would ignore it in the calculation.

The syntax to define an element section is:

— Section section_identifier SectionGroup section_group_identifier A A It It Iy Iy Iz Iz~^.
(
v yMax y_max yMin y_mm zMax z_max zMin z_mm Material material_identifier ;

The section-group-identifier is used to define sets of sections belonging to the same

section group. This is needed when re-dimensioning the cable sections as the program
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A.l. Syntax for the definition of model objects
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Figure A.2.: A snapshot of the program BRIDE showing the elements of a cable-stayed

bridge model.

only searches among the sections belonging to the same group as the section of the cable

being substituted. The local y- and z-maxima and minima are needed for the volumetric

element representation and to find the normal stress distribution along the local z-axis.

A.1.7. Materials

As many sections usually have the same material, the material definition was separated
from the section definition. The syntax to define a material is:

— Material material_identifier E E SigMax sigma_max G G Rho Rho~*

^
MaxCreepFactor max_creep_factor DaysForHalfCreep days_for_half_creep -\

^
MaxShrinkageS train max_shrinkage_stram DaysForHalfShrinkage days_for_half_shrmkage ;

E is the Young's modulus, SigMax is the value of the maximum tension which is

used for cable re-dimensioning, G is the shear modulus used to determine the torsional

stiffness, Rho is the density (mass per unit volume). The development of both creep and

shrinkage over time, being approximated by a hyperbolic tangent, have to be specified
with two values each: the maximum asymptotic value for t = 00 and the number of days
needed to reach half the maximum asymptotic value (see the chapters 5 and 6).
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Figure A.3.: A snapshot of the program BRIDE showing an element modelling a can¬

tilever (represented by a dashed line) with its support, its local coordinates

system and the global coordinates system.

A.1.8. Joints

Joints are zero-length elements used to connect two nodes which are in the same location

(element incidence nodes in the same location are not allowed because they would lead

to an element of zero length and infinite stiffness).
The syntax for the definition of a joint is:

-Joint joint_identifier Nodes node_identifier node_identifier

^
Sti

3

ffness tx ty tz rx ry rz-

XOrientation X Y Z YOrientation X Y ZJ \~ xNoTension J

-yNoTension

^ zNoTension

• The two node identifiers define the joint's incidences.

• tx, ty, and tz are the stiffnesses of the springs connecting the translational degrees
of freedom of the two nodes, expressed in local coordinates.

• rx, ry, and rz are the stiffnesses of the springs connecting the rotational degrees of

freedom of the two nodes, expressed in local coordinates.

• An orientation of the local coordinates system differing from the global one has

to be defined explicitly. The three numeric values after the keyword YOrientation
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A.l. Syntax for the dehnition of model objects

give the direction of a vector co-planar to the local x axis, defined immediately

beforehand, and the local x-y plane.

• The keywords xNoTension, yNoTension, and zNoTension allow one to define a

contact connection in one of the three local directions, in which the nodes can

separate freely. This represents another non-linear effect the program can deal

with.
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Figure A.4.: A snapshot of the program BRIDE showing the joints of a cable-stayed

bridge model with their identifiers and the elements in a wire-frame repre¬

sentation.

A.1.9. Supports

Supports are similar to joints but with a single incidence node: they represent a con¬

nection between this single incidence node and the ground. Supports are necessary in a

static model because they anchor it in space making it stable.

The syntax for the definition of a support is:

-Support support_identifier Node node_identifier

Stiffness tx ty tz rx ry rz-s

- XOrientation X Y Z YOrientation X Y ZJ \~ xNoTension

-yNoTension

zNoTension
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A. How to dehne a numerical model for the program BRIDE

• The single node identifier defines the support's single incidence node.

• tx, ty, and tz are the stiffnesses of the springs connecting the translational degrees of

freedom of the single incidence node to the ground, expressed in local coordinates.

• rx, ry, and rz are the stiffnesses of the springs connecting the rotational degrees of

freedom of the single incidence node to the ground, expressed in local coordinates.

• An orientation of the local coordinates system differing from the global one has

to be defined explicitly. The three numeric values after the keyword YOrientation

give the direction of a vector co-planar to the local x axis, defined immediately

beforehand, and the local x-y plane.

• The keywords xNoTension, yNoTension, and zNoTension allow one to define a

contact support in one of the three local directions in which the node can lift off

from the ground. This represents one of the non-linear effects the program BRIDE

can deal with.
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Figure A.5.: A snapshot of the program BRIDE showing the supports of a cable-stayed

bridge model with their identifiers and the elements in a wire-frame repre¬

sentation.

A.1.10. Load cases and load combinations

In structural engineering it is usual to investigate all possible hazards which could involve

a structure and to simulate them with sets of forces acting on the structure called load
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cases. Loading forces are defined as any other object. A loading force can affect just one

element or node. To attribute load forces to one or more load cases, load case identifiers

have to be appended at the end of the object (see subsections A. 1.12 and A. 1.13).
Load cases can be multiplied by different factors and superposed according with the

rules of the national codes in force. Those load case superpositions are called load

combinations.

This is the syntax for the definition of load combinations:

7—Lioaauase ioaa_case_iaentirier ractor—\—;

Any number of load cases given in the load combination are multiplied by the adjacent
load factor and superposed.

A. 1.11. The load_history load case

While the initial self-equilibrating forces f simulating locked-in displacements, creep and

shrinkage are automatically applied to the model during stage-by-stage iteration, other

user defined loads such as the self-weight or conditional loads (see chapter 7) are not.

To state that a user defined load should be taken into account during the stage-by-stage
iteration it has to be assigned to the load-history load case (see subsections A. 1.12 and

A.l.13).

A.1.12. Node loads

The syntax for a node load instruction is:

— NodeLoad node_load_identifier Node node_identifier -y-Force X Y Z—t-^

^Mass mass—' I

LoadCases
condition

j—y- ioaa_nistory j—yy-| condition \—r ;

^ load case identifier -^

• The node identifier defines the node in which the force acts.

• The three numeric values after the keyword Force define the vector of a force acting
on the node.

• The numeric value mass defines a concentrated mass attached to the node which

is used for the modal analysis, the static analysis, and the buckling analysis: when

a static or a buckling analysis is performed the concentrated mass is automatically

multiplied by the acceleration due to gravity of 9.81 ^ resulting in a load in the

negative Z-direction. Rotational nodal masses cannot be taken into account.

• A conditional node load can be defined by adding a condition (see subsection A. 1.14).
If a condition is defined the node load has also to be assigned to the load case

load-history.
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A.1.13. Element loads

The syntax for the plane element load instruction is:

— ElementLoad element_load_identifier Element element_identifier -\

^^SelfWeight —

WeightFromSection section_identifier

vDistributedMass distributed_mass

Force X Y Z

InitialDisplacement tx ty tz rx ry rz

InitialForce n vy vz mx my mz

^ LoadCases
7—^—load_history 7—v^-1 condition

|7—y-ioaa_nistory 7—yy-|

condition \—r

^ load case identifier -'

• The element identifier defines the element on which the force acts.

• The element forces defined by selecting the keywords SelfWeight, WeightFrom¬

Section, and DistributedMass, are defined by a distributed mass which is used for

modal analysis and for defining the weight for static analysis and buckling analysis.

• The distributed mass is automatically multiplied by the acceleration due to gravity

acting in the -Z direction when a static or a buckling analysis is performed.

• The self-weight element force does not need any further specification because ele¬

ment section and material are known.

• The weight-from-section element force is the same as the self-weight element force

but the section used is not the element's own but another one specified with the

identifier. This has been introduced to define the weight of liquid concrete on the

formwork element of a cast or composite beam to take locked-in displacements into

account.

• The numeric value distributedLmass defines the value of the uniformly distributed

mass over the length of the element.

• The three-dimensional vector after the keyword Force defines the uniformly dis¬

tributed force's vector (force components per unit length) acting on the element's

axis.

• The six values after the keyword InitialDisplacement are, respectively, the three

translation and the three rotation components of the initial displacement of the

second incidence node in the element's local coordinates system, if it were free to

move in any direction and if the first incidence node were clamped.

• With the keyword InitialForce an initial self-equilibrating group of forces acting
in the element's incidence nodes can be defined. The six numeric values after the
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A.l. Syntax for the dehnition of model objects

keyword InitialForce are, respectively, the normal force, the shear forces in local y

and z directions, the torsion and the bending moments in local y and z directions

acting on the first incidence node. The normal forces and moments acting on the

second incidence node are the same as the specified ones but with opposite sign.
If shear forces are defined (i.e. they are not equal to zero) the related bending
moments acting on the second incidence node are changed according with the well

known equilibrium relations between bending moments and shear forces.

• The element forces defined by selecting the keywords Force, InitialForce and Ini¬

tialDisplacement are only used for static and buckling analysis.

• A conditional element load can be defined by adding a condition (see subsec¬

tion A. 1.14). If a condition is defined the element load has to be assigned to the

load case load-history.
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Figure A.6.: A snapshot of the program BRIDE showing element loads acting on a cable-

stayed bridge model.

A.1.14. Conditions

The syntax for conditions prescribing a displacement or a force is:

65



A. How to dehne a numerical model for the program BRIDE

| condition|

-Translation -y-Global x y z—^Element element identifier Normed x normed x-

ion '

-y-
rransis

^ Rotatic

^-v—Moment —r-Local x y z-

^ Force -

(
Value value -

Portion port
I

ion val ue Of element identifi er Normed X normed ,J)
(

^
StageForCondition stage_identifier

• The arbitrary intensity load is defined in the load object the condition has been

assigned to and the activation stage is implicitly defined by the position of the

load object in the chronological objects list. The fixed load is defined by all load

objects belonging to the load case load-history active in the condition stage.

• The first line of the rail-road diagram allows one to define the condition parameter

which can be a translation, a rotation, a combination of inner bending moments

or a combination of section forces. The element identifier and a normed value for

the x coordinate (i.e. going from 0 at the element's beginning to 1 at the element's

end) allow one to define the location of the condition parameter.

The second line allows one to define the condition value which can be expressed

absolutely or relatively (as a portion of the value assumed by the same kind of

parameter in another point of the structure). If the geometry of the model defined

in the program input reflects the service geometry of the cable-stayed bridge, the

values for an absolute displacement condition are in most cases set to 0.

The condition stage may be the same as the activation stage or a subsequent
one. If it is a subsequent one its identifier has to be given after the keyword

StageForCondition otherwise it is assumed to be the same as the activation stage.

Conditional factors are computed during the stage-by-stage iteration, hence the

conditional loads must be attributed to the standard load case load-history and

their conditions are also fulfilled only for this load case.

The syntax used to define a "same factor as" condition:

•

•

condition

SameFactorAs conditional load identifier

The condition is defined by specifying the identifier of the conditional load which must

have the same conditional factor, the condition stage is retrieved from that conditional

load.
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A.1.15. Cable dimensioning object

The syntax to define a cable dimensioning object is:

— RedimensionCables j—cable_identifier —y.

^j— LoadCombination load_combmation_identifier Stage stage_identifier —r—;

The object consists of a list of cables to be dimensioned and a list of stage/load-
combination pairs which the cables have to resist.

A.1.16. Notes

Notes can be inserted at any point of the objects list using this syntax:

Note note text ;

such notes -unlikely to preprocessor comments (see subsection A.2.7)- are stored and

appear in the input files stored by the program.

A.2. Text-preprocessor

A powerful text-preprocessor developed by Dr. Guido Sartoris has been integrated in

the syntax checking system. This allows the use - in the input file - of parameters,

for-loops, if-tests, mathematical expressions, and standard mathematical functions.

The text-preprocessor has its own keywords and constructs for text manipulations
which are disseminated all along the input file. When they are found by BRIDE's

syntax checking system, the preprocessor evaluates them on-line and substitutes them

with the result of their evaluation.

The text-preprocessor features combined with the loose sequence of input objects
allow a powerful input generation, e.g. objects can be generated in a for-loop and the

loop's control variable can be used for both the definition of the numeric values through
mathematical expressions and the definition of the object identifier which may contain

a preprocessor variable value in its string.

A.2.1. Variables

The preprocessor variables are similar to the variables of a programming language3 and

can be used in innumerable ways, e.g. as parameters in expressions or as a control

variable in loops for the generation of coordinates and identifiers. Their name gives a

3the mam differences are that the preprocessor variables have just a floating point number type, that

after being declared they remain visible to the end of the input and that even if they are declared

more than once there is always only one instance associated to a variable name
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A. How to dehne a numerical model for the program BRIDE

Figure A. 7.: Two different models both obtained with the same input file by setting its

variable "number_of_masts" first to 2 (left) and then to 6 (right).

meaning to the value they store and, depending on how the input file has been written,

changing their initialization can change the whole input file (see figure A. 7).
Variables can be declared and defined in two ways, either with the following object-like

definition:

Define variajble_name = variajble_value ;

or by using and initializing the new variable directly where it is needed with a "=",
as in the following example where the variable Susanna is declared, initialized with the

value 4 and used to express the X coordinate:

Node mast_l Susanna =400;

Node mast_2 Susanna 0 3 ;

The former objects would be transformed as follows by the preprocessor:

Node mast_l 4 0 0 ;

Node mast_2 4 0 3 ;

Variable names (e.g. Susanna) can be constituted by any sequence of letters, digits
and the underscore character beginning with a letter.

A.2.2. Expressions

Expressions can be used at any place of the input file in which a numeric value is required.
The syntax is the standard expression syntax also used in programs such as spreadsheet

programs. Parentheses can be used to force evaluation precedences. Expressions may not

begin with a minus (in such a case the whole expression has to be put in parentheses) and

can contain variables which can be defined and initialized previously or in the expression

itself, e.g. the example in the former paragraph (there the expressions are constituted

by just one variable delivering the x coordinate). The operators allowed in expressions
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A.2. Text-preprocessor

Operator Associativity Description

?; Right To Left Conditional

|| Left to Right Logical OR

&& Left to Right Logical AND

!= Left to Right

Left to Right

Inequality

Equality

<

<=

>

>=

Left to Right

Left to Right

Left to Right

Left to Right

Less than

Less than or equal to

Greater than

Greater than or equal to

+ Left to Right

Left to Right

Addition

Subtraction

*

/

%

Left to Right

Left to Right

Left to Right

Multiplication

Division

Modulo Division

Table A.L: The operator's precedence in increasing order. Operators with the same

precedence are grouped together.

are summarized in the table A.l.

The preprocessor also allows the use of the following standard mathematical functions

needing one parameter:
exp(...), log(...), sin(...), asin(...), cos(...), acos(...), tan(...),
atari ( . . . )

,
abs (...), int (...), sqrt (...)

or two parameters:

min(...,...), max(...,...), pow(...,...), atan2(...,...).

The definitions of all these functions are the same as in the programming language C.

A.2.3. [expression] integer evaluation

Brackets are used for integer evaluations of expressions, where the rounded result of the

evaluation replaces the brackets. This statement is very useful to generate identifiers.

A.2.4. For-loop

The For-loop makes BRIDE's syntax checking system re-read a given text portion a

given number of times. This is its syntax:

For controLvariable From initiaLvalue To finaLvalue {
text porhon read repeatedly

}

The first time the syntax checking system reads the text portion in curly brackets

the control variable assumes the initial value. By any further reading the value of the

control variable is increased by one (this means that the initial value has to be smaller
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A. How to dehne a numerical model for the program BRIDE

than the final one). When the control variable assumes the final value the text portion

is read for the last time.

This is an example showing the statement used to generate some identifiers and coor¬

dinates:

For i From 0 To 3 {

Node mast_[i] 4 0 3*i

}

The former instructions would be expanded as follows by the preprocessor:

Node mast_0 4 0 0

Node mast_l 4 0 3

Node mast_2 4 0 6

Node mast 3 4 0 9

A.2.5. If...Else... construct

This construct allows one to switch on and off portions of text inside the input file de¬

pending on the evaluation of the expression in parentheses: if the expression doesn't

equal zero or if it is a true logical expression the first block of text in curly brackets is

read otherwise the second one. This is the construct's syntax:

If (expression) {
text read if expression evaluation^ 0 or true

} Else {

text read if expression evaluations 0 or false

}

The statement can also finish right before the Else, if no alternative is needed. Here

is an example used in combination with a For-loop:

For i From 0 To 3 {

If ( i == 0) { Node deck_0 4 0 3*i ; }

Else { Node mast_ [i] 4 0 3*i ; }

}

The former instructions would be expanded as follows by the preprocessor:

Node deck_0 4 0 0

Node mast_l 4 0 3
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A.2. Text-preprocessor

Node mast_2 4 0 6;

Node mast_3 4 0 9;

A.2.6. Include statement

When the preprocessor encounters an Include statement it replaces it with the content

of the included file. In this example a file named "my_bride_libraries/sections.brd" has

been included in the input file:

Include my_bride_libraries/sections.brd

A.2.7. Comments

Portions of the input file can be commented out with a (* at the beginning and a *) at

the end of the commentary.

A.2.8. Finish

The very last word of the outermost input file (the file not included by any other) has

to be the keyword Finish.
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B. Graphie user interface of the

program BRIDE

The program BRIDE has been conceived as a simulation program for engineers who

know how such simulations are performed. Therefore the goal was set for the design of

the graphic user interface (GUI) of reducing as much as possible the distance between

the user and the inner workings of the program. This has been attempted by choosing
a combination of GUI components which reproduce the inner structure of the program

and its state (see figure B.l and the program's snapshots in appendix A).

static analysis panel

BRIDE'S window
modal analysis panel

buckling analysis panel tjt,
.

menu bar

3D navigation tool-bar

3D output
control panel

Html tool-bar

Figure B.l.: GUI structure of the program BRIDE.

The program BRIDE appears in a window when it is started. At the very top of this

window there is a title bar in which the name of the program and the path of the opened
file appear. Inside the window below the title bar there is the menu bar containing
the "file" menu with which the input file can be opened and closed and the input file

automatically generated by the program can be saved. Below the menu bar there are

the two main GUI components: the "model state control panel" on the left (with which

the stage-by-stage iteration and the cable re-dimensioning can be started and the model

options, the stage and the load case can be set) and the tabbed panel with the three

analysis panels on the right. Each analysis panel contains a "3D canvas", in which the

model and the analysis's results are represented three-dimensionally, and a "3D output

model state
control panel 3D canvas

text panel
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B. Graphie user interface of the program BRIDE

control panel" in which the user can choose what should be represented in the 3D canvas

by selecting the appropriate check boxes. At the bottom there is a "text panel" in which

there appears a formatted text describing the three-dimensional graphic object selected

by the user with the mouse. At the very bottom of the window there is the "Html

tool-bar" with which the user can save the computation's results in an Html document

containing snapshots of the 3D canvas and of the text panel.

B.l. Definition of some standard GUI components

In this section some standard GUI components are defined. The use of standard GUI

components is very important for user-friendliness because it allows the user to operate

the GUI instinctively based on his experience with other programs.

Button: region of the GUI firing an event if clicked with the mouse mostly delimited by
a border and containing either an icon or a string.

Toggle-button: the same as a button except that when it is selected it remains selected

and needs to be clicked again to be deselected. In toggle-buttons selection is

expressed through a darker rendering of the button region.

Check-box: the same as a toggle-button except that the selection state is showed by a

check-mark instead of a darker rendering of the button region.

Combo-box: a region of the GUI showing one item at a time selected by the user out of

a list of items which appear only if the mouse clicks once on the combo-box region.

Menu: button opening a list of items to be selected when clicked. Menus appear usually
in a bar on the top of the program's window and carry typically the same names

in all programs (e.g. "file", "edit", "help",.--) thus allowing the user to guess which

kind of program functionality they contain.

Bar, tool-bar: stripe-shaped region of the GUI containing more components with re¬

lated functions.

Panel: rectangular region of the GUI containing one or more components with related

functions.

Tabbed-panel: GUI component allowing one to show only one panel at a time out of a

group of panels. The presence of the other panels is expressed through selectable

tabs on the side of the panel being shown.

3D canvas: special panel allowing the rendering of three-dimensional models.
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B.2. Menu bar

B.2. Menu bar

The menu bar (see figure B.2) contains the file menu which allows one to open a file, re¬

open it keeping the current output options (if the input file has been slightly modified),
save an input file reflecting the content of the actual loaded model (i.e. considering the

possibly changed cable sections and the computed conditional loads), close the model

and exit the program.

Figure B.2.: The file menu.

B.3. Model state control panel

The model state control panel (see figure B.3) contains the GUI components needed for

the following computation options: second order, cable sag, tension/compression only

(in elements such as cables, supports and joints) and shrinkage.
In the middle on the left side a vertical toggle-button is used to start and stop the

repeated execution of the stage-by-stage iteration. On its right are the check-boxes for

the option related only to such an iteration: locked-in displacements, creep, conditional

loads, the slider to set the error feed-back factor a explained in the subsection 7.3.2

and the check-box to set a = — 1 for the last stage-by-stage iteration as explained in

section 7.3.3. The chart in the white rectangle represents the error in the fulfilment of

the conditions of conditional loads prescribing a given absolute translation and is used

to show the user if convergence is taking place during the stage-by-stage iteration and to

help him operate the slider for the feed-back factor a. A label right above the chart gives
the error in the last iteration and the darker lines in the chart's background represent a

power of 10.

The button carrying the label "dimension cables" starts the cable dimensioning. The

user can read the weight of all cables in the label right above the button (in tons if the

section areas of the cables have been expressed in square metres and the material density
in tons per cubic metre).
The two combo-boxes on the lower end contain the identifiers of all construction stages

(the first combo-box) and of all load cases and load combinations (the second one) defined

by the user in the input file. The user can select whatever construction stage/load pair
is desired to view in the analysis panels. The buttons carrying the labels "+" and "-"

allow one to select the combo-box item coming before or after the one being selected

and are an alternative in addition to the standard combo-box selection mode.
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j »toil ortir

j cable lai

j tension/compreision-only
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error in prescribed translations:
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construction stage

final

load case or load combination

load.history

Figure B.3.: The model state control panel.

B.4. Elements common to all three analysis panels

Figure B.4.: Tabs of the tabbed-panel.

In the program BRIDE a specific "analysis panel" with a 3D canvas, a 3D navigation
tool bar and a 3D output control panel has been dedicated to each kind of analysis
the program BRIDE can perform: static, buckling and modal analysis. These three

panels have been stacked by means of a tabbed-panel GUI component (see figure B.4).
When the user selects a tab with the mouse, the corresponding analysis is performed or,

respectively, the corresponding panel appears on the top of the panel stack.

The 3D canvas looks the same in the three analysis panels: a rectangle in which three-

dimensional objects are rendered. Snapshots of the picture rendered in the 3D canvas

can be included in the Html document selecting a button of the Html tool bar.
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B.4. Elements common to all three analysis panels

The 3D navigation tool bar is common to the three analysis panels but is quite complex
in its construction and merits a closer examination (see figure B.5).

I^^Bs^^^H 1——^ —* i i v li \* LS IS I Lb 1 lib vl\ t/" ^ i 1 U I \f | y '\ t^mm*. V" *js i

Figure B.5.: 3D navigation tool-bar.

The navigation in the three-dimensional world represented inside the 3D canvas is

defined through two points: the "eye" point in which the eye of the viewer is located and

the "center" point to which the eye is looking at. The first three buttons on the left can

be selected only one at a time and define the mouse behaviour inside the 3D canvas. If

the first button is selected, by clicking any three-dimensional object a formatted text

describing the clicked object (which can be either a model object or the representation of

a result) appears in the text panel. If the second button is selected the viewing direction

of the user in the three-dimensional world represented in the 3D canvas can be changed

by clicking on the three-dimensional representation: the point of the representation on

which it was clicked becomes the new center of the picture. If the third button is selected

by clicking any three-dimensional object the center is set on the clicked point but the

view direction is not changed, i.e. the eye is also moved collaterally. The fourth button

allows one to zoom in, the fifth to center the image and the sixth to zoom out. The

seventh, eight and ninth allow one to choose a viewing direction parallel to a main axis

and to center the image. The tenth allows one to choose the viewing direction [-1,-
1,-1] and to center the image. The eleventh allows one to view the three-dimensional

representation from the other side. The twelfth button is a toggle-button which allows

one to define the eye moving behaviour of the subsequent four arrow buttons: if it is

selected the eye is moved around the center of the image changing the viewing direction,
if it is not selected the eye movement is translatory. The last but one button is a toggle
button allowing one to define if the three-dimensional representation should be iso-axial

or perspective. The last button makes a pop-up menu pop-up in which the user can

define the coordinates of the eye and of the center manually. The slider allows one to

change the speed of the eye: if the slider is moved toward the rabbit the eye becomes

faster and if the slider is moved toward the snail the eye becomes slower.

The 3D output definition panels in the three analysis panels also have common ele¬

ments: in all 3D output definition panels the upper side is organized in three columns,
the two first columns contain check boxes and the third column labels (see figure B.6).
The first column, denoted by an icon representing an I-profile, contains the check boxes

which allow one to require the representation of the objects specified in the label on

the same row. The second column, denoted by an icon representing a "T", contains the

check-boxes for the representation of text elements such as identifiers (for model objects)
and maxima (for the results) relative to the objects specified in the label. On the bottom

of the three columns there are three sliders, the first allowing one to adjust the scale

of some three-dimensional objects not having a constraining physical dimension (nodes,
joints and supports), the second one is used to set the number of points in the element
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Figure B.6.: The 3D output definition panel in the static analysis panel.

in which the results have to be interpolated during post-processing and the third slider

allows one to set the size of the maxima to which the results have to be scaled.

B.5. Specific analysis panel components of the 3D

output definition panels

B.5.1. Static analysis panel

By selecting the "elements" check-box (see figure B.6) the elements are represented as

wire-frames, by selecting the "elements thick" check-box they are represented as boxes

having the width and the height specified in the section object with the maxima and

the minima in the local y and z directions. The difference between "displacements" and

"displacements thick" is the same as between "elements" and "elements thick": selecting
the "displacements" check-box the displaced shape of the structure is shown as a wire¬

frame spline where the elements in traction are coloured in red and those in compression
in blue, while selecting the "displacements thick" check-box the spline is represented by
boxes between the interpolation points having the same cross section as the boxes used

for the thick elements. If the "normal tension" check-box is selected the same appears
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as with "elements thick", but if such an element is selected, a line of charts representing
the normal tension in its interpolation points along the local z axes appears in the text

panel. If the toggle-button "keep actual scale" is selected the scale for the amplification
of the results representation is kept unchanged; this is very useful for comparing results.

deck 8 1 0/3 deck 8 1 1/3

Mt& mm
1 15 E3

^Lâ3£A^^.

deck 8 12/3 deck 8 15/3

l 28E3 /[1 1CE3

Figure B.7.: Text panel with the charts of the normal tension along the local z axis

in the interpolation points of a composite element carrying the identifier

"deck_8_l".

B.5.2. Buckling analysis panel
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lacUlli factor; 7. FiE3

Figure B.8.: Components of the 3D output specification panel in the buckling analysis

panel.

The only characteristic of this panel (see figure B.8) is the label showing the buckling
factor. The displacements represent the buckling shape and are normed, i.e. their

magnitude has no physical meaning.

B.5.3. Modal analysis panel

The only not self-explanatory components in this panel (see figure B.9) are the buttons

with the label "+" and "-" to choose the natural oscillation and the label with the

resonance frequency in Hertz.
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Figure B.9.: Components of the 3D output specification panel in the modal analysis

panel.
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Figure B.10.: The Html tool-bar.

B.6. Text panel

In the text panel there appear a formatted text description of the three-dimensional

graphic objects selected with the mouse and the charts of the normal tensions (see
figure B.7). Snapshots of the text panel content can be added to the Html document

using a button of the Html tool bar. At the beginning of the Html document an index

constituted by links leading to the different snapshots is inserted.

B.7. Html tool-bar

The Html tool-bar (see figure B.10) allows the user to generate an Html1 document

constituted by snapshots of the 3D canvas and of the text panel and to store it. With

the first button on the left it is possible to add to the Html document a snapshot of the

text panel, the error and the cable weight with the second button, a snapshot of the 3D

canvas with the third, with the fourth button the generated document can be saved and

with the last button it can be reset.

B.8. Syntax highlighting

Syntax highlighting is a very useful feature not directly implemented in the program

BRIDE but in most text editors used by programmers. To custom an editor for a

1The Hyper Text Markup Language is the format of most Internet pages and can be read not only by
all web browsers, but also by the main word processors.
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Figure B.ll.: Syntax highlighting with the editor Jedit.

special syntax, such as the input syntax of the program BRIDE, it is usually necessary

to enter the syntax keywords in some editor's configuration file. Figure B.ll shows a

snapshot of the editor Jedit (downloadable for free at www.jedit.org) highlighting the

syntax of an input file for the program BRIDE.
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C. Information technology tools used

to develop the program BRIDE

The program BRIDE has been written using both programming languages C++ and

Java and can be compiled without any modification on the operative systems Linux and

Windows. Mac OS has not been tested but the code should be fully compatible with

that operating system too.

In the program BRIDE the reading of the input file and all computations are per¬

formed by a shared object (or a "dynamic link library" in the Windows jargon) written

in C++ (see [Stroustrup]) and compiled with the compiler from the GNU foundation

(see www.gnu.org). While the operating system Linux is the natural one for the GNU

compiler, for the Windows operating system the GNU compiler embedded in the Minimal

GNU Windows environment (see www.mingw.org) has been used.

The graphic user interface (GUI) has been written in Java using the GUI components

of the Swing package (see [Java Tutorial]). The three-dimensional renderings have been

implemented with the Java 3D library (see [Java 3D]), which is a Java interface to the

3D native libraries Open GL and DirectX. The GUI has been compiled using the Java

compiler by Sun Microsystems (www.java.sun.com). When the GUI is started, it loads

the shared object and (according to the wishes of the user) begins sending him queries
and receiving back the information needed to represent the results. The communication

between the GUI and the C++ has been implemented using the Java Native Interface

(JNI, see [JNI]).
All compilers and libraries used can be downloaded for free on the Internet.

During the development of the program BRIDE it was very important to stick to

the object-oriented programming paradigm to keep the increasing complexity of the

source code under control; a few books on the subject are listed in the bibliography

(see [FAQs, Refactoring, Patterns]).
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D. Input files discussed in chapter 9

D.I. Main input file

(* 1*)

(* 2*)

(* 3*)

(* 4*)

(* 5*)

(* 6*)

(* 7*)

(* 8*)

(* 9*)

(* 10*)

(* 11*)

(* 12*)

(* 13*)

(* 14*)

(* 15*)

(* 16*)

(* 17*)

(* 18*)

(* 19*)

(* 20*)

(* 21*)

(* 22*)

(* 23*)

(* 24*)

(* 25*)

(* 26*)

(* 27*)

(* 28*)

(* 29*)

(* 30*)

(* 31*)

(* 32*)

(* 33*)

(* 34*)

(* 35*)

(* 36*)

(* 37*)

(* 38*)

(* 39*)

(* 40*)

(* 41*)

(* 42*)

Note ========== materials and sections =====================================

Material concrete_45_35 E 30E6 SigMax 0 G 11E6 Rho 2.5

MaxCreepFactor 2 DaysForHalfCreep 40

MaxShrinkageStrain 0.0005 DaysForHalfShrinkage 300 ;

Section 3_3 SectionGroup not_a_cable A 6.60 It 1 Iy 24.89 Iz 8.38

yMax 1.5 yMin (-1.5) zMax 2.75 zMin (-2.75) Material concrete_45_35 ;

Section ab_l SectionGroup not_a_cable A 5.1 It 1 Iy 2.53 Iz 13.38

yMax 1 yMin (-1) zMax 2.5 zMin (-2.5) Material concrete_45_35 ;

Section 2_2 SectionGroup not_a_cable A 5.72 It 1 Iy 14.09 Iz 6.88

yMax 1.5 yMin (-1.5) zMax 2.2 zMin (-2.2) Material concrete_45_35 ;

Section 1_1 SectionGroup not_a_cable A 4.52 It 1 Iy 7.90 Iz 2.03

yMax 1 yMin (-1) zMax 1.9 zMin (-1.9) Material concrete_45_35 ;

Section cd_9 SectionGroup not_a_cable A .96 It 1 Iy .2 Iz .03

yMax .8 yMin (-.8) zMax .3 zMin (-.3) Material concrete_45_35 ;

Section slab_long SectionGroup notACable A 2.38 It .05 Iy .012 Iz 18.032

yMax 4.765 yMin (-4.765) zMax 0.125 zMin (-0.125) Material concrete_45_35

Section slab_long_end SectionGroup notACable A 20.5 It 27 Iy 7.89 Iz 155

yMax 4.765 yMin (-4.765) zMax 1.075 zMin (-1.075) Material concrete_45_35

Section slab_cross SectionGroup notACable A 1.125 It .023 Iy .006 Iz 1.898

yMax 2.75 yMin (-2.75) zMax 0.125 zMin (-0.125) Material concrete_45_35 ;

Section slab_cross_end SectionGroup notACable A 3.225 It 1.4 Iy 1.24 Iz .60

yMax .75 yMin (-.75) zMax 1.075 zMin (-1.075) Material concrete_45_35 ;

Material steel_360 E 195E6 SigMax 0 G 140E3*0.7 Rho 7.85

MaxCreepFactor 0 DaysForHalfCreep 0

MaxShrinkageStrain 0 DaysForHalfShrinkage 0 ;

Section I_profile SectionGroup notACable A 0.14 It 1E-4 Iy .067 Iz .001

yMax .25 yMin (-.25) zMax .95 zMin (-.95) Material steel_360 ;

Material 0.6_strands_steel E 195E6 SigMax 1770E3*0.7 G 0 Rho 7.85

MaxCreepFactor 0 DaysForHalfCreep 0

MaxShrinkageStrain 0 DaysForHalfShrinkage 0 ;

For i From 1 To 100 {

Section [i]_strands SectionGroup cables A 150E-6*i It 0 Iy 0 Iz 0

yMax dc = sqrt(150E-6*i/3.14) yMin (-de) zMax dc zMin (-de)

Material 0.6_strands_steel ;

>

Note ========== one bridge half

Define s = 1 ;
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(* 43*)

(* 44*)

(* 45*)

(* 46*)

(* 47*)

(* 48*)

(* 49*)

(* 50*)

(* 51*)

(* 52*)

(* 53*)

(* 54*)

(* 55*)

(* 56*)

(* 57*)

(* 58*)

(* 59*)

(* 60*)

(* 61*)

(* 62*)

(* 63*)

(* 64*)

(* 65*)

(* 66*)

(* 67*)

(* 68*)

(* 69*)

(* 70*)

(* 71*)

(* 72*)

(* 73*)

(* 74*)

(* 75*)

(* 76*)

(* 77*)

(* 78*)

(* 79*)

(* 80*)

(* 81*)

(* 82*)

(* 83*)

(* 84*)

(* 85*)

(* 86*)

(* 87*)

(* 88*)

(* 89*)

(* 90*)

(* 91*)

(* 92*)

(* 93*)

(* 94*)

Include /home/pietro/bride/source/smpls/half_demo_numbered.brd

Note ========== other bridge half =============================

Restart ;

Define s = 2 ;

Include /home/pietro/bride/source/smpls/half_demo_numbered.brd

Note ========== juction between the two bridge halfs ===============

Joint dl_c2 Nodes dl_0 c2_0 Stiffness 1E10 1E10 1E10 1E10 1E10 1E10

Joint cl_d2 Nodes cl_0 d2_0 Stiffness 1E10 IEIO IEIO IEIO IEIO 1E10

Joint el e2 Nodes el 0 e2 0 Stiffness IEIO IEIO IEIO IEIO IEIO 1E10

Remove Joint cl_9_tmp
Remove Joint dl_9_tmp
Remove Joint c2_9_tmp
Remove Joint d2_9_tmp
Joint cl_9 Nodes al_l cl_9

Joint dl_9 Nodes bl_l dl_9

Joint c2_9 Nodes a2_l c2_9

Joint d2 9 Nodes b2 1 d2 9

Stiffness 0 IEIO 1E10 0 0 0

Stiffness 0 0 1E10 0 0 0 ;

Stiffness 0 IEIO 1E10 0 0 0

Stiffness 0 0 1E10 0 0 0 ;

Remove Support cl_17 ;

Remove Support d2_17 ;

Support cl_17_final Node cl_17 Stiffness 1E30 1E30 1E30 0 0 0 ;

Support d2_17_final Node dl_17 Stiffness 0 1E30 1E30 0 0 0 ;

Stage last_but_one DayNumber (dayNumber=dayNumber+2) ;

CompositeBeam cl_0_conc FormworkBeam cl_0 Dz 1.075 Section slab_long ;

ElementLoad cl_0_conc_l Element cl_0_conc Force 0 0 (-27.22) LoadCase live

CompositeBeam dl_0_conc FormworkBeam dl_0 Dz 1.075 Section slab_long ;

ElementLoad dl_0_conc_l Element dl_0_conc Force 0 0 (-27.22) LoadCase live

CompositeBeam el_0_conc FormworkBeam el_0 Dz 1.075 Section slab_long ;

ElementLoad el_0_conc_l Element el_0_conc Force 0 0 (-27.22) LoadCase live

CompositeBeam c2_0_conc FormworkBeam c2_0 Dz 1.075 Section slab_long ;

ElementLoad c2_0_conc_l Element c2_0_conc Force 0 0 (-27.22) LoadCase live

CompositeBeam d2_0_conc FormworkBeam d2_0 Dz 1.075 Section slab_long ;

ElementLoad d2_0_conc_l Element d2_0_conc Force 0 0 (-27.22) LoadCase live

CompositeBeam e2_0_conc FormworkBeam e2_0 Dz 1.075 Section slab_long ;

ElementLoad e2_0_conc_l Element e2_0_conc Force 0 0 (-27.22) LoadCase live

Stage last DayNumber (dayNumber=dayNumber+l) ;

Note ========== cable dimensioning stuff ==================================
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(* 95*) LoadCombination history_and_live_l.7

(* 96*) LoadCase load_history 1.7 LoadCase live 1.7 ;

(* 97*)

(* 98*) RedimensionCables

(* 99*) For a From 1 To 2 {

(*100*) For i From 0 To 7 {

(*101*) c[a]_[8-i]_cab d[a]_[8-i]_cab c[a]_[10+i]_cab d[a]_[10+i]_cab

(*102*) }

(*103*) }

(*104*) LoadCombination history_and_live_l.7 Stage last ;

(*105*)

(*106*) Finish

Line 1: a note describing what is coming next in the input file.

Lines 3-38: definition of materials and sections needed in the model.

Lines 34-38: definition of some cable sections not used directly in the model but needed

to choose from during the cables dimensioning. The sections are generated using

a preprocessor's for-loop.

Lines 42-43: definition of the first half of the bridge.

Line 42: the variable "s" used inside the file "half_demo_numbered.brd" to define the

sign of the X and Y coordinates is set to 1.

Line 43: the file "half_demo_numbered.brd" listed in section D.2 is included using the

pre-processor command "Include".

Lines 47-49: definition of the second half of the bridge.

Line 47: since the two halves of the bridge are erected simultaneously a restart object
is needed before the definition of the second half of the bridge.

Line 48: the variable "s" used inside the file "half_demo_numbered.brd" to define the

sign of the X and Y coordinates is set to 2.

Line 49: the file "half_demo_numbered.brd" listed in section D.2 is included using the

pre-processor command "Include".

Lines 53-91: definition of the objects joining together the two halves of the bridge.

Lines 53-55: definition of the joints joining together the deck in the middle.

Lines 57-64: substitution of some temporary joints used during erection with less con¬

straining ones for the final state.

Lines 57-60: removal of the temporary joints.

Lines 61-64: definition of the final joints.
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Lines 66-69: substitution of some temporary supports used during erection with less

constraining ones for the final state.

Lines 66-67: removal of the temporary supports.

Lines 68-69: definition of the final supports.

Line 71: stage object definition, the variable "dayNumber" is defined inside the included

file.

Lines 73-89: definition of the composite beams cast over the steel profiles joined to¬

gether in the middle of the mid-span.

Lines 95-96: definition of the load combination used to dimension the cables.

Lines 98-104: definition of a cable dimensioning object. The identifiers of the cables to

be dimensioned are generated with a preprocessor's for-loop.

Line 106: "Finish" command needed at the end of every outermost input file (i.e. not

included by any other input file).

D.2. Input file included (twice) in the main input file

(* 1*)

(* 2*)

(* 3*)

(* 4*)

(* 5*)

(* 6*)

(* 7*)

(* 8*)

(* 9*)

(* 10*)

(* 11*)

(* 12*)

(* 13*)

(* 14*)

(* 15*)

(* 16*)

(* 17*)

(* 18*)

(* 19*)

(* 20*)

(* 21*)

(* 22*)

(* 23*)

(* 24*)

(* 25*)

(* 26*)

(* 27*)

Note ========== definition of some variables

Define sf = (s-l)*2-l ;

Define dayNumber = s/2-.5 ;

Define tmpx = 0 ;

Note ========== mast ========================

Node s[s].foundation 80*sf 0 0 ;

Support s[s].foundation Node s[s].foundation

Stiffness 1E30 1E30 1E30 1E30 1E30 1E30 ;

Node a[s]_l 80*sf (-9.53)*sf 13.25 ;

Beam a[s]_l Nodes s[s] .foundation Excentricity 0 (-10.7)*sf 0

a[s]_l Excentricity 0 (-1.5*sf) (-2.35) Section 3_3 YOrientation 0 sf 0 ;

ElementLoad a[s]_l_s Element a[s]_l SelfWeight LoadCase load_history ;

ElementLoad a[s]_l_p Element a[s]_l InitialDisplacement .01 0 0 0 0 0

LoadCase load_history Translation Global 0 0 1 Element a[s]_l

Normed_x 1 Value 0 StageForCondition half[s]_last ;

Node b[s]_l 80*sf 9.53*sf 13.25 ;

Beam b[s]_l Nodes s[s] .foundation Excentricity 0 10.7*sf 0

b[s]_l Excentricity 0 1.5*sf (-2.35) Section 3_3 YOrientation 0 sf 0 ;

ElementLoad b[s]_l_s Element b[s]_l SelfWeight LoadCase load_history ;

ElementLoad b[s]_l_p Element b[s]_l InitialDisplacement .01 0 0 0 0 0

LoadCase load_history Translation Global 0 0 1 Element b[s]_l Normed_x 1

Value 0 StageForCondition half[s]_last ;
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Beam ab[s]_l Nodes a[s]_l Excentricity 0 (-1.5*sf) (-2.35)

b[s]_l Excentricity 0 1.5*sf (-2.35) Section ab_l YOrientation sf 0 0 ;

ElementLoad ab[s]_l_s Element ab[s]_l SelfWeight LoadCase load_history ;

ElementLoad ab[s]_l_p Element ab[s]_l InitialDisplacement .01 0 0 0 0 0

LoadCase load_history Translation Global 0 10 Element ab[s]_l

Normed_x 0 Value 0 StageForCondition half[s]_last ;

Node a[s]_2 80*sf (-9.53)*sf 35.3 ;

Beam a[s]_2 Nodes a[s]_l Excentricity 0 (-1.5*sf) (-2.35) a[s]_2

Section 2_2 YOrientation 0 sf 0 ;

ElementLoad a[s]_2_s Element a[s]_2 SelfWeight LoadCase load_history ;

ElementLoad a[s]_2_p Element a[s]_2 InitialDisplacement .01 0 0 0 0 0

LoadCase load_history Translation Global 0 0 1 Element a[s]_2 Normed_x 1

Value 0 StageForCondition half[s]_last ;

Node b[s]_2 80*sf 9.53*sf 35.3 ;

Beam b[s]_2 Nodes b[s]_l Excentricity 0 1.5*sf (-2.35) b[s]_2

Section 2_2 YOrientation 0 sf 0 ;

ElementLoad b[s]_2_s Element b[s]_2 SelfWeight LoadCase load_history ;

ElementLoad b[s]_2_p Element b[s]_2 InitialDisplacement .01 0 0 0 0 0

LoadCase load_history Translation Global 0 0 1 Element b[s]_2 Normed_x 1

Value 0 StageForCondition half[s]_last ;

Beam ab[s]_2 Nodes a[s]_2 b[s]_2 Section 1_1 YOrientation sf 0 0 ;

ElementLoad ab[s]_2_s Element ab[s]_2 SelfWeight
LoadCase load_history ;

ElementLoad ab[s]_2_pl Element ab[s]_2 InitialDisplacement .01 0 0 0 0 0

LoadCase load_history Translation Global 0 10 Element ab[s]_2 Normed_x 0

Value 0 StageForCondition half[s]_last ;

For i From 0 To 7 {

Node a[s]_[3+i] 80*sf (-9.53)*sf 47+i*.9 ;

Beam a[s]_[3+i] Nodes a[s]_[3+i-l] a[s]_[3+i] Section 1_1

YOrientation 0 sf 0 ;

ElementLoad a[s]_[3+i]_s Element a[s]_[3+i] SelfWeight LoadCase load_history ;

ElementLoad a[s]_[3+i]_p Element a[s]_[3+i] InitialDisplacement .01 0 0 0 0 0

LoadCase load_history Translation Global 0 0 1 Element a[s]_[3+i]

Normed_x 1 Value 0 StageForCondition half[s]_last ;

Node b[s]_[3+i] 80*sf 9.53*sf 47+i*.9 ;

Beam b[s]_[3+i] Nodes b[s]_[3+i-l] b[s]_[3+i] Section 1_1

YOrientation 0 sf 0 ;

ElementLoad b[s]_[3+i]_s Element b[s]_[3+i] SelfWeight LoadCase load_history ;

ElementLoad b[s]_[3+i]_p Element b[s]_[3+i] InitialDisplacement .01 0 0 0 0 0

LoadCase load_history Translation Global 0 0 1 Element b[s]_[3+i]

Normed_x 1 Value 0 StageForCondition half[s]_last ;

Stage mast[s] DayNumber (dayNumber=dayNumber+l) ;

Note ========== deck ============================
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(* 80*)

(* 81*)

(* 82*)

(* 83*)

(* 84*)

(* 85*)

(* 86*)

(* 87*)

(* 88*)

(* 89*)

(* 90*)

(* 91*)

(* 92*)

(* 93*)

(* 94*)

(* 95*)

(* 96*)

(* 97*)

(* 98*)

(* 99*)

(*100*)

(*101*)

(*102*)

(*103*)

(*104*)

(*105*)

(*106*)

(*107*)

(*108*)

(*109*)

(*110*)

(*111*)

(*112*)

(*113*)

(*114*)

(*115*)

(*116*)

(*117*)

(*118*)

(*119*)

(*120*)

(*121*)

(*122*)

(*123*)

(*124*)

(*125*)

(*126*)

(*127*)

(*128*)

(*129*)

(*130*)

(*131*)

Node c[s]_9 80*sf (-9.53)*sf 13.25 ;

Joint c[s]_9_tmp Nodes a[s]_l c[s]_9 Stiffness 1E10 IEIO IEIO IEIO IEIO 1E10 ;

Node d[s]_9 80*sf 9.53*sf 13.25 ;

Joint d[s]_9_tmp Nodes b[s]_l d[s]_9 Stiffness IEIO IEIO IEIO IEIO IEIO 1E10 ;

Node e[s]_9 80*sf 0 13.25 ;

Beam ce[s]_9 Nodes c[s]_9 e[s]_9 Section cd_9 YOrientation sf 0 0 ;

ElementLoad ce[s]_9_s Element ce[s]_9 SelfWeight LoadCase load_history ;

ElementLoad ce[s]_9_cast Element ce[s]_9 WeightFromSection slab_cross

LoadCase load_history ;

Beam de[s]_9 Nodes e[s]_9 d[s]_9 Section cd_9 YOrientation sf 0 0 ;

ElementLoad de[s]_9_s Element de[s]_9 SelfWeight LoadCase load_history ;

ElementLoad de[s]_9_cast Element de[s]_9 WeightFromSection slab_cross

LoadCase load_history ;

Stage platform[s] DayNumber (dayNumber=dayNumber+l) ;

CompositeBeam ce[s]_9_conc FormworkBeam ce[s]_9 Dz 1.075 Section slab_cross ;

CompositeBeam de[s]_9_conc FormworkBeam de[s]_9 Dz 1.075 Section slab_cross ;

Stage platform[s]_hard DayNumber (dayNumber=dayNumber+l) ;

For i From 0 To 7 {

Node c[s]_[8-i] (80-(6.5+9.8*i))*sf (-9.53)*sf 13.25 ;

Beam c[s]_[8-i] Nodes c[s]_[8-i+l] c[s]_[8-i] Section I_profile
YOrientation 0 sf 0 ;

ElementLoad c[s]_[8-i]_s Element c[s]_[8-i] SelfWeight LoadCase load_history ;

ElementLoad c[s]_[8-i]_cast Element c[s]_[8-i]

WeightFromSection slab_long LoadCase load_history ;

ElementLoad c[s]_[8-i]_p Element c[s]_[8-i] InitialDisplacement .01 0 0 0 0 0

LoadCase load_history Translation Global 10 0 Element c[s]_[8-i]_conc

Normed_x 1 Value 0 StageForCondition half[s]_last ;

Node d[s]_[8-i] (80-(6.5+9.8*i))*sf 9.53*sf 13.25 ;

Beam d[s]_[8-i] Nodes d[s]_[8-i+l] d[s]_[8-i] Section I_profile
YOrientation 0 sf 0 ;

ElementLoad d[s]_[8-i]_s Element d[s]_[8-i] SelfWeight LoadCase load_history ;

ElementLoad d[s]_[8-i]_cast Element d[s]_[8-i]

WeightFromSection slab_long LoadCase load_history ;

ElementLoad d[s]_[8-i]_p Element d[s]_[8-i] InitialDisplacement .01 0 0 0 0 0

LoadCase load_history Translation Global 10 0 Element d[s]_[8-i]_conc

Normed_x 1 Value 0 StageForCondition half[s]_last ;

Node e[s]_[8-i] (80-(6.5+9.8*i))*sf 0 13.25 ;

Beam e[s]_[8-i] Nodes e[s]_[8-i+l] e[s]_[8-i]

Section I_profile YOrientation 0 sf 0 ;

ElementLoad e[s]_[8-i]_s Element e[s]_[8-i] SelfWeight LoadCase load_history ;

ElementLoad e[s] _[8-i]_cast Element e[s]_[8-i]

WeightFromSection slab_long LoadCase load_history ;
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Beam ce[s]_[8-i] Nodes c[s]_[8-i] e[s]_[8-i] Section I_profile
YOrientation sf 0 0 ;

ElementLoad ce[s]_[8-i]_s Element ce[s]_[8-i] SelfWeight
LoadCase load_history ;

Beam de[s]_[8-i] Nodes e[s]_[8-i] d[s]_[8-i] Section I_profile
YOrientation sf 0 0 ;

ElementLoad de[s]_[8-i]_s Element de[s]_[8-i] SelfWeight
LoadCase load_history ;

Cable c[s]_[8-i]_cab Nodes c[s]_[8-i] Excentricity 0 0 0.770 a[s]_[3+i]

Section l_strands ;

ElementLoad c[s]_[8-i]_cab_s Element c[s] _[8-i]_cab SelfWeight
LoadCase load_history ;

ElementLoad c[s]_[8-i]_cab Element c[s] _[8-i]_cab

InitialDisplacement .01 0 0 0 0 0 LoadCase load_history
Translation Global 0 0 1 Element c[s] _[8-i]_cab Normed_x 0 Value 0

StageForCondition half[s]_last ;

Cable d[s]_[8-i]_cab Nodes d[s]_[8-i] Excentricity 0 0 0.770 b[s]_[3+i]

Section l_strands ;

ElementLoad d[s]_[8-i]_cab_s Element d[s]_[8-i]_cab SelfWeight
LoadCase load_history ;

ElementLoad d[s]_[8-i]_cab Element d[s]_[8-i]_cab

InitialDisplacement .01 0 0 0 0 0 LoadCase load_history
Translation Global 0 0 1 Element d[s]_[8-i]_cab Normed_x 0 Value 0

StageForCondition half[s]_last ;

Stage mid_deck[s]_ [i] DayNumber (dayNumber=dayNumber+l) ;

CompositeBeam c[s]_[8-i]_conc

FormworkBeam c[s]_[8-i] Dz 1.075 Section slab_long ;

ElementLoad c[s]_[8-i]_conc_l Element c[s]_[8-i]_conc Force 0 0 (-27.22)

LoadCase live ;

CompositeBeam d[s]_[8-i]_conc

FormworkBeam d[s]_[8-i] Dz 1.075 Section slab_long ;

ElementLoad d[s]_[8-i]_conc_l Element d[s]_[8-i]_conc Force 0 0 (-27.22)

LoadCase live ;

CompositeBeam e[s]_[8-i]_conc

FormworkBeam e[s]_[8-i] Dz 1.075 Section slab_long ;

ElementLoad e[s]_[8-i]_conc_l Element e[s]_[8-i]_conc Force 0 0 (-27.22)

LoadCase live ;

CompositeBeam ce[s]_[8-i]_conc

FormworkBeam ce[s]_[8-i] Dz 1.075 Section slab_cross ;

CompositeBeam de[s]_[8-i]_conc

FormworkBeam de[s]_[8-i] Dz 1.075 Section slab_cross ;
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Stage mid_deck[s]_[i]_hard DayNumber (dayNumber=dayNumber+l) ;

If (10+i<15) {

Node c[s]_[10+i] tmpx=(80+(6.5+9.8*i))*sf (-9.53)*sf 13.25 ;

>

If (10+i==15) {

Node c[s]_[10+i] tmpx=(80+(6.5+9.8*i)-l.5)*sf (-9.53)*sf 13.25 ;

Support c[s]_[10+i] Node c[s]_[10+i] Stiffness 0 0 1E30 0 0 0 ;

>

If (10+i==16) {

Node c[s]_[10+i] tmpx=(80+(6.5+9.8*i)-9.8)*sf (-9.53)*sf 13.25 ;

Support c[s]_[10+i] Node c[s]_[10+i] Stiffness 0 0 1E30 0 0 0 ;

>

If (10+i==17) {

Node c[s]_[10+i] tmpx=(80+(6.5+9.8*i)-18.l)*sf (-9.53)*sf 13.25 ;

Support c[s]_[10+i] Node c[s]_[10+i] Stiffness 0 0 1E30 0 0 0 ;

>

Beam c[s]_[10+i] Nodes c[s]_[10+i-l] c[s]_[10+i] Section I_profile
YOrientation 0 (-sf) 0 ;

ElementLoad c[s]_[10+i]_s Element c[s]_[10+i] SelfWeight
LoadCase load_history ;

ElementLoad c[s]_[10+i]_cast Element c[s]_[10+i]

WeightFromSection slab_long LoadCase load_history ;

ElementLoad c[s]_[10+i]_p Element c[s]_[10+i]

InitialDisplacement .01 0 0 0 0 0 LoadCase load_history
Translation Global 10 0 Element c[s] _[10+i]_conc

Normed_x 1 Value 0 StageForCondition half[s]_last ;

Node d[s]_[10+i] tmpx 9.53*sf 13.25 ;

If (10+i==15) {

Support d[s]_[10+i] Node d[s]_[10+i] Stiffness 0 0 1E30 0 0 0 ;

>

If (10+i==16) {

Support d[s]_[10+i] Node d[s]_[10+i] Stiffness 0 0 1E30 0 0 0 ;

>

If (10+i==17) {

Support d[s]_[10+i] Node d[s]_[10+i] Stiffness 0 0 1E30 0 0 0 ;

>

Beam d[s]_[10+i] Nodes d[s]_[10+i-l] d[s]_[10+i] Section I_profile
YOrientation 0 (-sf) 0 ;

ElementLoad d[s]_[10+i]_s Element d[s]_[10+i] SelfWeight
LoadCase load_history ;

ElementLoad d[s]_[10+i]_cast Element d[s]_[10+i]

WeightFromSection slab_long LoadCase load_history ;

ElementLoad d[s]_[10+i]_p Element d[s]_[10+i]

InitialDisplacement .01 0 0 0 0 0 LoadCase load_history
Translation Global 10 0 Element d[s]_[10+i]_conc

Normed_x 1 Value 0 StageForCondition half[s]_last ;

Node e[s]_[10+i] tmpx 0 13.25 ;
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Beam e[s]_[10+i] Nodes e[s]_ [10+i-l] e[s]_[10+i] Section I_profile
YOrientation 0 (-sf) 0 ;

ElementLoad e[s]_[10+i]_s Element e[s]_[10+i] SelfWeight
LoadCase load_history ;

ElementLoad e[s] _[10+i]_cast Element e[s]_[10+i]

WeightFromSection slab_long LoadCase load_history ;

Beam ce[s]_[10+i] Nodes c[s]_[10+i] e[s]_[10+i]

Section I_profile YOrientation sf 0 0 ;

ElementLoad ce[s]_[10+i]_s Element ce[s]_[10+i]

SelfWeight LoadCase load_history ;

Beam de[s]_[10+i] Nodes e[s]_[10+i] d[s]_[10+i]

Section I_profile YOrientation sf 0 0 ;

ElementLoad de[s]_[10+i]_s Element de[s]_[10+i]

SelfWeight LoadCase load_history ;

Cable c[s]_[10+i]_cab Nodes c[s]_[10+i] Excentricity 0 0 0.770 a[s]_[3+i]

Section l_strands ;

ElementLoad c[s]_[10+i]_cab_s Element c[s]_[10+i]_cab

SelfWeight LoadCase load_history ;

Cable d[s]_[10+i]_cab Nodes d[s]_[10+i] Excentricity 0 0 0.770 b[s]_[3+i]

Section l_strands ;

ElementLoad d[s]_[10+i]_cab_s Element d[s]_[10+i]_cab

SelfWeight LoadCase load_history ;

If (10+i<15) {

ElementLoad c[s]_[10+i]_cab Element c[s]_[10+i]_cab

InitialDisplacement .01 0 0 0 0 0 LoadCase load_history
Translation Global 0 0 1 Element c[s] _[10+i]_cab

Normed_x 0 Value 0 StageForCondition half[s]_last ;

ElementLoad d[s]_[10+i]_cab Element d[s]_[10+i]_cab

InitialDisplacement .01 0 0 0 0 0 LoadCase load_history
Translation Global 0 0 1 Element d[s] _[10+i]_cab

Normed_x 0 Value 0 StageForCondition half[s]_last ;

>

If

>

If

(10+i==15) {

ElementLoad c[s]_[10+i]_cab Element c[s]_[10+i]_cab

InitialDisplacement .01 0 0 0 0 0 LoadCase load_history
Translation Global 10 0 Element c[s]_[10+i]_cab Normed_x 1 Value 0

StageForCondition half[s]_last ;

ElementLoad d[s]_[10+i]_cab Element d[s]_[10+i]_cab

InitialDisplacement .01 0 0 0 0 0 LoadCase load_history
Translation Global 10 0 Element d[s] _[10+i]_cab Normed_x 1

Value 0 StageForCondition half[s]_last ;

(10+i==16) {

ElementLoad c[s]_[10+i]_cab Element c[s]_[10+i]_cab

InitialDisplacement .01 0 0 0 0 0 LoadCase load_history
Translation Global 10 0 Element c[s] _[10+i]_cab

Normed_x 1 Value 0 StageForCondition half[s]_last ;
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y

if

ElementLoad d[s]_[10+i]_cab Element d[s]_[10+i]_cab

InitialDisplacement .01 0 0 0 0 0 LoadCase load_history
Translation Global 10 0 Element d[s] _[10+i]_cab

Normed_x 1 Value 0 StageForCondition half[s]_last ;

(10+i==17) {

ElementLoad c[s] _[10+i]_cab Element c[s] _[10+i]_cab

InitialDisplacement .01 0 0 0 0 0 LoadCase load_history
Translation Global 10 0 Element c[s] _[10+i]_cab

Normed_x 1 Value 0 StageForCondition half[s]_last ;

ElementLoad d[s]_[10+i]_cab Element d[s]_[10+i]_cab

InitialDisplacement .01 0 0 0 0 0 LoadCase load_history
Translation Global 10 0 Element d[s]_[10+i]_cab

Normed_x 1 Value 0 StageForCondition half[s]_last ;

Stage side_deck[s]_ [i] DayNumber (dayNumber=dayNumber+l) ;

If (10+i<=15) {

CompositeBeam c[s]_[10+i]_conc FormworkBeam c[s]_[10+i] Dz 1.075

Section slab_long ;

ElementLoad c[s]_[10+i]_conc_l Element c[s] _[10+i]_conc

Force 0 0 (-27.22) LoadCase live ;

CompositeBeam d[s]_[10+i]_conc FormworkBeam d[s]_[10+i] Dz 1.075

Section slab_long ;

ElementLoad d[s]_[10+i]_conc_l Element d[s]_[10+i]_conc

Force 0 0 (-27.22) LoadCase live ;

CompositeBeam e[s]_[10+i]_conc FormworkBeam e[s]_[10+i] Dz 1.075

Section slab_long ;

ElementLoad e[s]_[10+i]_conc_l Element e[s] _[10+i]_conc

Force 0 0 (-27.22) LoadCase live ;

CompositeBeam ce[s]_[10+i]_conc FormworkBeam ce[s]_[10+i] Dz 1.075

Section slab_cross ;

CompositeBeam de[s]_[10+i]_conc FormworkBeam de[s]_[10+i] Dz 1.075

Section slab_cross ;

} Else {

CompositeBeam c[s] _[10+i]_conc

FormworkBeam c[s]_[10+i] Dz .125 Section slab_long_end ;

ElementLoad c[s]_[10+i]_conc_l Element c[s]_[10+i]_conc

Force 0 0 (-27.22) LoadCase live ;

CompositeBeam d[s]_[10+i]_conc

FormworkBeam d[s]_[10+i] Dz .125 Section slab_long_end ;

ElementLoad d[s]_[10+i]_conc_l Element d[s]_[10+i]_conc

Force 0 0 (-27.22) LoadCase live ;

CompositeBeam e[s]_[10+i]_conc

FormworkBeam e[s]_[10+i] Dz .125 Section slab_long_end ;
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D.2. Input hie included (twice) in the main input hie

(*340*

(*341*

(*342*

(*343*

(*344*

(*345*

(*346*

(*347*

(*348*

(*349*

(*350*

(*351*

(*352*

(*353*

(*354*

(*355*

(*356*

(*357*

(*358*

(*359*

(*360*

(*361*

(*362*

(*363*

(*364*

(*365*

(*366*

(*367*

(*368*

(*369*

(*370*

(*371*

ElementLoad e[s]_[10+i]_conc_l Element e[s]_[10+i]_conc

Force 0 0 (-27.22) LoadCase live ;

CompositeBeam ce[s]_[10+i]_conc FormworkBeam ce[s]_[10+i] Dz .125

Section slab_cross_end ;

CompositeBeam de[s]_[10+i]_conc FormworkBeam de[s]_[10+i] Dz .125

Section slab_cross_end :

Stage side_deck[s]_[i]_hard DayNumber (dayNumber=dayNumber+l) ;

Node c[s]_0 0 (-9.53)*sf 13.25 ;

Beam c[s]_0 Nodes c[s]_0 c[s]_l Section I_profile YOrientation 0 (-sf) 0

ElementLoad c[s]_0_s Element c[s]_0 SelfWeight LoadCase load_history ;

ElementLoad c[s]_0_cast Element c[s]_0 WeightFromSection slab_long
LoadCase load_history ;

Node d[s]_0 0 9.53*sf 13.25 ;

Beam d[s]_0 Nodes d[s]_0 d[s]_l Section I_profile YOrientation 0 (-sf) 0

ElementLoad d[s]_0_s Element d[s]_0 SelfWeight LoadCase load_history ;

ElementLoad d[s]_0_cast Element d[s]_0 WeightFromSection slab_long
LoadCase load_history ;

Node e[s]_0 0 0 13.25 ;

Beam e[s]_0 Nodes e[s]_0 e[s]_l Section I_profile YOrientation 0 (-sf) 0

ElementLoad e[s]_0_s Element e[s]_0 SelfWeight LoadCase load_history ;

ElementLoad e[s]_0_cast Element e[s]_0 WeightFromSection slab_long
LoadCase load_history ;

Stage half[s]_last DayNumber (dayNumber=dayNumber+l) ;

Line 3: definition of the variable "sf" which assumes the value 1 if the variable "s" defined

in the main input file listed in section D.l is set to 2 and —1 if "s" is set to 1.

Line 4: definition of the variable "dayNumber" needed to generated the day numbers

assigned to the stage objects. This variable is also initialized using the variable

"s".

Line 5: definition of the variable "tmpx" used to generate X coordinates.

Lines 9-77: definition of the mast.

Lines 17-19: first definition of a conditional load.

Lines 59-75: generation with a pre-processor for-loop of some mast elements with their

related objects (nodes and loads).

Line 77: first definition of a stage object.

Lines 105-371: definition of the model objects related to the deck and the cables.
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Lines 81-103: definition of the junction between the mast and the deck.

Line 100: first definition of a composite beam element.

Lines 105-351: for-loop in which the following model objects are generated eight times

using the loop's control variable "i":

• a deck segment on the mid-span side of the mast,

• the cables supporting it,

• its cast concrete slab (taken into account with composite elements),

• a deck segment on the side-span side of the mast,

• the cables supporting it and,

• its cast concrete slab.

Lines 105-184: definition of the mid-span deck segment with its cables and cast con¬

crete.

Lines 186-350: definition of the side-span deck segment with its cables and cast con¬

crete.

Lines 186-188: first of many if-checks needed to take into account the changes of the

deck at the supports while generating the model objects in the for-loop.

Lines 353-371: Model objects simulating the deck (without concrete) from the last

cable anchoring to the center of the mid-span.
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