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Abstract 
 

 

 

 

 

 

 

The healthy human myocardium represents a global syncytium consisting of 

myocytes or fibres which are attached to each other to form a spatial network 

with a well-defined mechanical functionality. In order that upon stimulation of 

the fibres and subsequent contraction a physiologic ejection volume of blood is 

reached, the arrangement of the fibres exhibits a systematic architecture, in 

particular, the fibrous network wraps both ventricles in a characteristic, rope-like 

fashion. Thereby, no beginning and end of fibre strands can be found in the 

myocardium; in contrast to the skeletal muscles where fibre strands are attached to 

ligaments, cardiac contractile pathways are essentially closed. 

 

In this work the fibre structure of the human heart is studied and finite element models 

are presented which were developed to simulate the contraction of the left ventricle in 

three dimensions. The anisotropy associated with the fibre arrangement within the 

myocardium is thereby included and the active fibre contraction processes are described. 

Finally, the relation between the local fibre structure in the myocardium and the systolic 

deformation patterns are studied.  
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The first step in constructing the finite element models was to define the geometry of the 

human heart. Three geometrical models were created for the left ventricle, viz., a model 

derived from measurements performed on a real heart and two models representing two 

different levels of approximation. The endocardial and epicardial surfaces of the real 

model were reconstructed from thousands of digitized surface points from a human post 

mortem heart. The three FE models were then generated in the form of three spatial 

meshes whose coarseness was designed to include the desired amount of geometrical 

detail. 

 

The SPOT method (fibre Strand Peel-Off Technique) was applied to obtain a 

representative fibre architecture of the human heart. The data contained the coordinates 

of several thousand myocardial fibres, whereby each fibre, in turn, was represented by a 

number of points. The fibre orientation in the myocardium was derived from a point wise 

determination of the fibre direction, whereby the points were interpolated with the help of 

splines. From this, a three dimensional vector field was built, which defined the local 

fibre orientation. In addition, three dimensional representations of the global fibre 

structure of the left ventricle were created. 

 

The myocardium is modelled as a material, composed of a weakly compressible matrix 

and active fibres. The matrix has nonlinear and anisotropic characteristics according to 

the configuration of the myocardium. The active forces are modelled by an additive stress 

tensor including the effect of the transversely branching of the fibres. 

 

For the implementation of the anisotropic constitutive equation, it is necessary to 

determine the spatial fibre orientation in each element. To achieve this goal, an algorithm 

was developed such that for any arbitrary mesh with sufficiently small elements, an 

average and representative fibre orientation is defined. 

 

Another feature of the implemented software is the possibility to produce two 

dimensional representations of layers with a defined thickness and viewpoints from an 
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arbitrary perspective within the myocardium. This feature was used, among other, for the 

verification of the fibre orientation in different regions of the myocardium. 

 

Three finite element models for the left ventricle were implemented successfully. The 

sensitivities of the models with respect to the most important quantities, especially the 

fibre orientation, were studied by variation of the parameters.  

 

The inhomogeneities of the systolic wall thickening, which is an important diagnostic 

criterion, were studied by variation of the local fibre structure, constitutive equation, 

boundary conditions and geometry.   

 

A pathologic situation, i.e., a localised infarction of the heart was modelled by 

inactivating the associated fibre areas. The results show a good agreement with the 

reports of MRI measurements and clinical observations. 
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Zusammenfassung 
 

 

 

 

 

 

 

Das gesunde menschliche Herzmuskelgewebe besteht aus einem homogenen Aufbau von 

Myozyten oder Fasern, welche untereinander verbunden sind und ein Netzwerk mit einer 

wohldefinierten mechanischen Funktionalität bilden. Damit bei Stimulation und 

anschliessender Kontraktion der Fasern ein physiologisches Auswurfvolumen von Blut 

erreicht wird, weist die Anordnung der Fasern eine systematische Architektur auf, 

insbesondere umschliesst das fibröse Netzwerk beide Ventrikel in einer 

charakteristischen, seilartigen Weise. Dabei ist bemerkenswert, dass kein Anfang und 

Ende von Fasersträngen im Myokard gefunden werden können; im Gegensatz zu 

Skelettmuskeln, welche in Sehnen beginnen und enden, sind kontraktile Pfade im 

Herzmuskel geschlossen.  

 

In der vorliegenden Arbeit wurde die Faserstruktur des menschlichen Herzens analysiert 

und Modelle auf der Basis der Finiten Elemente (FE) konstruiert, um räumliche 

Kontraktionsmuster des linken Ventrikels zu simulieren. Die Anisotropie, welche sich 

aus der Faserstruktur des Myokards ergibt, wurde dabei berücksichtigt und der Verlauf 

der aktiven Faserkontraktion miteinbezogen. Damit wurde es möglich, den 

                                                                                                                                          vii                                



Zusammenhang zwischen der lokalen Faserarchitektur des Myokards und dem 

systolischen Deformationsmuster zu untersuchen. 

 

Der erste Schritt bei der Konstruktion der FE Modelle war die Definition der Geometrie 

des menschlichen Herzens. Drei geometrische Modelle wurden für die linken Ventrikel 

gestaltet, nämlich ein reales Modell und zwei Modelle, welche durch schrittweise 

Glättung und Approximation der Oberflächen gewonnen wurden. Die endokardialen und 

epikardialen Oberflächen des realen Modells entstanden dabei aus Tausenden von 

digitalisierten Oberflächenpunkten eines menschlichen post mortem Herzens. Daraus 

ergaben sich drei räumliche Netze für das linken Ventrikel, welche die Geometrie des 

Herzens in unterschiedlicher Detailauflösung wiedergeben. 

 

Die SPOT-Methode (fibre Strand Peel-Off Technique) wurde angewandt um eine 

repräsentative Faserarchitektur des menschlichen Herzens zu erzeugen. Die dabei 

entstandenen Daten enthielten die Koordinaten von mehreren Tausend Myokardfasern, 

wobei jede Faser durch eine Reihe von Punkten dargestellt wurde. Die Faserorientierung 

im Myokard ergab sich zunächst punktweise aus den Differenzen benachbarter Punkte, 

sodann wurde der Verlauf mit Hilfe von Splines interpoliert und daraus ein 

dreidimensionales Vektorfeld gebildet, das die lokale Faserorientierung definiert. 

Räumliche Darstellungen der globalen Faserstruktur entstanden als Faservektorfeld des 

linken Ventrikels.  

 

Das Myokard wurde modelliert als ein Material, welches aus einer leicht kompressiblen 

Matrix und aktiven Fasern besteht. Die Matrix hat entsprechend dem Aufbau des 

Myokards nichtlineare und anisotrope Eigenschaften. Die aktiven Faserkräfte wurden 

durch einen additiven Spannungstensor modelliert, in welchem der Effekt der 

Quervernetzung der Fasern mitberücksichtigt ist. 

 

Für die Implementierung des anisotropen Stoffgesetzes ist es notwendig, die räumliche 

Faserorientierung in jedem Element des FE Netzes zu bestimmen. Um diese Ziel zu 

erreichen, wurde ein Algorithmus entwickelt, welcher gestattet, für beliebige Netze von 
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genügend kleinen Elementen eine mittlere und repräsentative Faserorientierung zu 

erhalten.  

 

Eine weitere Möglichkeit der implementierten Software besteht darin, zweidimensionale 

Darstellungen von Schichten vorgegebener Dicke und aus beliebiger Perspektive im 

Myokard zu erzeugen. Dies gestattete unter anderen die Verifizierung der 

Faserorientierung in verschiedenen Bereichen des Myokards.  

 

Drei FE Modelle des linken Ventrikels wurden erarbeitet. Die Untersuchung und 

Dokumentation der Sensitivität der Modelle in Bezug auf die wichtigsten 

Einflussgrössen, insbesondere den Faserverlauf, erfolgte aufgrund von 

Parametervariationen. 

 

Wichtige diagnostische Hinweise ergeben sich häufig aus der systolischen 

Wanddickenzunahme und deren inhomogenen räumliche Verteilung. Die Veränderungen 

der lokalen Wanddicken wurden durch Variation durch Veränderung der lokalen 

Faserstruktur, des Stoffgesetzes, der Randbedingungen und der Geometrie untersucht.  

 

Durch Inaktivierung einzelner Faserbezirke konnte ein pathologischer Zustand, d.h. ein 

Herzinfarkt modelliert werden. Die Resultate zeigen eine gute Übereinstimmung mit den 

Ergebnissen von MRI Messungen und klinischen Beobachtungen. 
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Introduction 
 

 

 

 

 

 

 

The heart fulfils a vital role in the human body. It pumps blood, thereby delivering 

oxygen and nutrients to the body and removing waste products. It is constantly adjusting 

and adapting its activity to meet the body’s needs regardless whether we are sleeping or 

engaging in physical activities. It works continuously for the entire time of our life and 

pumps blood at a rate varying from 5 to 25 litters per minute in a healthy, not particularly 

trained adult. Due to the importance of the heart to human health, it has been studied 

extensively by medical scientists. Especially in earlier times, however, many researches 

in cardiac physiology had an essentially nonmathematical basis. In contrast, mechanical 

and electrical studies of the heart aiming at a quantitative analysis of the cardiovascular 

system have been performed only more recently. During the last decades, physical 

scientists have thereby made numerous experimental measurements and developed 

mathematical models in view of a better understanding of the heart function. Even though 

there is still a long way before us to understand the complicated microstructure and 

details of the mechanisms of the heart, these attempts have opened new ways for 

investigators and brought new insights into the sophisticated structure and machinery of 

the heart. 
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The first three chapters of this dissertation are concerned with the physiology and 

architecture of the heart.  

 

In chapter 1 we make a short review of the physiology of the heart. We begin with the 

basic concepts of the anatomy and functional role of the heart in the body as a blood 

pump. Then the electrical activities, the heart rate and selected principles of the 

mechanism of contraction are outlined.  

 

In chapter 2 various theories regarding the architecture of the heart are discussed. After 

some historical remarks, more recent theories about the fibre and laminar structure of the 

myocardium are reviewed. These theories have been developed during the last decades; 

yet, further investigations are needed to arrive at a comprehensive view of the heart 

structure.  

 

A novel approach for the determination and documentation of the fibre structure is 

introduced in chapter 3. This chapter plays a central role in the dissertation; however, 

since the procedures are based on a manual digitisation process, there is still a margin for 

improvement with respect to accuracy and completeness of the recovered fibre field. 

Nevertheless, the fibre structure of a human heart in short axis and long axis sections can 

be discussed adequately and the statistical nature of the fibre distribution documented.  

 

In the second part of the dissertation the heart tissue is studied from a continuum 

mechanical point of view and models of the ventricle are presented.  

 

In chapter 4 selected elements of continuum mechanics are outlined. After a short 

summary of the fundamental concepts of continuum mechanics, mathematical 

formulations of the hyperelastic, especially transversely isotropic materials are given. 

 

In chapter 5 various approaches for the formulation of the material behaviour of 

myocardial tissue are discussed and constitutive equations of passive and active 

myocardium which were proposed in the past are reviewed.  
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A finite element model of the left ventricle is implemented in chapter 6. To this end, a 

relatively smooth geometrical shape for the ventricle is chosen as a first level of 

approximation. Appropriate boundary conditions are furthermore imposed, the 

constitutive behaviour including the vector field describing the fibre orientation pattern is 

prescribed and the mathematical approach used for the formulation of the contraction is 

substantiated. 

 

Results of the FE implementation are discussed in chapter 7. In particular, the sensitivity 

of selected important quantities such as wall thickening and stroke volume with respect to 

the fibre orientation and constitutive equation is analysed and discussed.  

 

In chapter 8, finally, the geometry is refined and an exemplary model derived from a real 

geometry of the left ventricle is implemented. As an application of the model, the effects 

of an infarction are simulated.  

  



CHAPTER 1 

 

SELECTED ASPECTS OF HEART 

PHYSIOLOGY 

 

 
1.1  Anatomy and function  
 

The heart is located between the lungs and the diaphragm, exhibits a blunt cone shape 

and has the size of about our clenched fist. The interior of the heart is divided into four 

chambers. These chambers receive and pump the blood from and to the vascular system 

by performing rhythmic contractions. The two upper chambers are called left and right 

atrium while the two lower ones are the left and right ventricles, respectively.  

 

The heart is divided into two functional halves, left and right, according to the two 

vascular systems it has to feed, viz. the large or systemic circulation (left) and the small 

or pulmonary circulation (right). While through the systemic system the entire body is 

supplied with blood, the pulmonary tree perfuses the lungs. The left and right sides, i.e., 

the left atrium and ventricle and right atrium and ventricle are often referred to as the left 

and right heart. A muscular wall, called septum, serves as a partition and separates the 

heart into the right and left sides (Figure 1.1). 

 

The heart has to make available a sufficient amount of blood to allow the organs to 

perform their function. The performance of the heart is thereby measured as cardiac 

output (CO), defined as heart rate times the stroke volume, or cardiac index (CI), which is 

the CO per body surface area. The CO of a healthy adult heart is able to cover a wide 
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range of operating conditions, from typically 5 Lit/min at rest to some 25 Lit/min under 

heavy physical activity, even in an untrained person. In order to meet such demands, both 

heart rate and stroke volume are controlled individually which will be discussed later. 

 

 
Figure 1.1 Structure of the heart and course of blood flow through the heart chambers (Guyton and Hall 

2000)  

 

The left ventricle is the main pumping chamber of the heart and has a thick muscular wall 

(typically about 1 cm in the relaxed state) which is responsible to generate the high pulse 

pressures (12 – 16 kPa peak under healthy conditions) necessary to pump blood 

throughout the systemic circulation. The pressures on right side, in turn, are about 3 – 4 

times smaller, accordingly, the wall is only about half as thick as the right ventricle has to 

drive the blood through the pulmonary system for O2-CO2 exchange solely. The walls of 
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atria, finally, are thin in comparison to the ventricular walls because their main function 

consists of moving blood over the short distance and against a low resistance from the 

atria to the ventricles. With each contraction of the heart, blood is pumped from the atria 

into the ventricles and then out of the heart through the aorta and pulmonary artery. 

 

The heart is contained within a special sac called the pericardium (Figure 1.2). The 

pericardium has two layers, whereby the outer layer is fibrous and the inner one serous. 

The fibrous pericardial sac has a smooth and well lubricated lining which serves as a 

protection against infection, helps to anchor the heart within the chest, and allows the 

heart to move freely inside the sac. The serous pericardium consists also of two layers, 

the parietal layer that adheres to the fibrous pericardium and the visceral layer that 

adheres to the heart. The space between the heart and the pericardium is called pericardial 

space. This space contains a small amount of pericardial fluid that is secreted by the 

serous membrane. This fluid provides lubrication between the membranous layers. 

 

 
Figure 1.2 Structure of pericardial sac 

 

The walls of the ventricles consist of three layers. The epicardium is the outermost layer 

consisting mainly of connective tissue and a serous surface. The myocardium represents 

the driving muscle layer responsible for the heart’s ability to contract and pump blood. 

The endocardium is the thin lining of the inner surface and cavities. The valves of the 

heart and the tendons that hold them open are also covered by the endocardium. The heart 
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wall consists mainly of cardiac muscle or myocardium; several blood vessels called 

coronary arteries supply the myocardium with oxygen and nutrients.  

 

The heart has four valves in order to keep blood from flowing backward. These valves 

are one-way doors that control the flow of blood through the heart. The heart valves in 

turn are controlled and operated by pressure changes in the ventricles as well as by the 

papillary muscles which are part of the myocardium (Figure 1.3). 

 

                                   
Figure 1.3 Valves of the heart 

 

A cardiac cycle comprises one complete heart beat, where the atria and ventricles 

contract and then relax. Contraction of the ventricles is called systole, filling is denoted as 

diastole. Just before the beginning of systole, the two atria contract simultaneously, then, 

the two ventricles contract. Relaxation of the atria occurs during the first phase of systole, 

while relaxation of the ventricles marks the beginning of diastole.  

 

 

1.2  Electrical activity and heart rate 
 

Each heart beat starts with an electrical impulse which is automatically released by a 

special group of cells concentrated in a node called the sinusatrial (SA) node. The SA 

node is located above the right atrium. At the beginning of a heart cycle, an action 
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potential originating from the SA node propagates over the two atria and induces 

contraction. The activity of the SA node, i.e., the heart rate, is in essence controlled by 

three sources. First, like all myocytes (muscle fibres of the heart, see below), the SA node 

has its own intrinsic rhythm (more than 60 beats per minute). Second, the sympathetic as 

well as the parasympathetic nervous system are directly coupled to the SA node and have 

an increasing or decreasing effect on the heart rhythm, respectively. Third, the activity of 

the SA node is influenced by a number of hormones, such as adrenalin.  

 

After contraction of the atria, the electrical impulse reaches another conducting structure, 

the atrioventricular or AV node which is located at the base of the right atrium. Since a 

set of connective tissue associated with the valves separates the atria from the ventricles, 

the AV node is the only conductive link between the atria and the ventricles. The cells of 

the AV node are specialized to delay the conduction of electrical excitation from the atria 

to the ventricles. This node acts as a filter to permit the atrial contraction to fill the 

ventricles with blood before the ventricles begin to contract (Figure 1.4). 

 

 
Figure 1.4 Sinus node, A-V node and the Purkinje system of the heart (Guyton and Hall 2000) 
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The bundle of His represents a continuation of the AV node and provides the electrical 

connection to the ventricles. It separates into two branches called right and left bundle 

branches. These branches descend on either side of the septum and divide into hundreds 

of tiny nerve fibrils called Purkinje fibres throughout the wall of each ventricle. Purkinje 

fibres are conductile cells that conduct action potentials very rapidly, as such, they act 

like a network in order to spread the electrical excitations quickly throughout the cells of 

the ventricular walls.   

 

The electrical currents occurring during de- and repolarisation (contraction and 

relaxation, see below) of the myocytes are sufficiently strong that the electrical activity 

generated by the heart’s contractile system during each cycle can be recorded at the 

surface of the body using conductive adhesive patches. The obtained recording is called 

the electrocardiogram (ECG). In Figure (1.5) we see three examples of typical ECGs. 

They are all regular but with different heart rates. 

 

 
Figure 1.5 Normal electrocardiograms recorded from the three standard electrocardiograph leads (Guyton 

and Hall 2000) 
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The ECG is subdivided into two segments, separated by three waves (Figure 1.6). The 

first wave, called P wave, is due to the atrial contraction. Subsequent to electrical 

stimulation, the right and left atria depolarise and contract. After the P wave, there is a 

straight line called the PR segment. It represents the time delay of the electrical 

stimulation of the AV node. The second and largest wave of the cardiac cycle is the QRS 

wave complex. This wave represents the depolarisation of the ventricles. The third wave 

of the cardiac cycle is denoted as T wave which is due to the repolarisation of the 

ventricles. The second segment, between the QRS wave complex and the T  wave, is 

referred to as the ST segment. This segment represents the time delay between the end of 

ventricular contraction and the beginning of full relaxation of the ventricles. The P wave 

is much smaller than the following two waves according to the smaller muscle mass of 

the atria. The atria also have a repolarisation wave, but because it is much smaller and 

occurs at the same time as the QRS wave complex, it can usually not be detected. 

 
Figure 1.6 Normal electrocardiogram 

 

The various quantities which can be observed and measured during a cardiac cycle are 

summarized in Figure (1.7). The phonocardiogram which is a recording of the sounds 

produced by the beating heart is shown in this figure too. 
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Figure 1.7 Cardiac cycle for left ventricle function (Guyton and Hall 2000) 

 

 

1.3  Contraction and stroke volume 
 

It is instructive in view of our goal to review the process of contraction shortly. Many of 

the mechanisms of contraction of cardiac and skeletal muscle are similar. For simplicity, 

we begin with skeletal muscle and then indicate some of the differences to cardiac 

muscle. In Figure (1.8) we see the organisation of a skeletal muscle from the gross to the 

molecular level.  

 

Muscle fibres are built of parallel arrays of myofibrils. Myofibrils are the functional units 

of the muscle. A typical muscle fibre may contain from several hundreds to several 

thousands parallel myofibrils. Surrounding the fibre is a plasma membrane called 

sarcolemma. This membrane defines the fibre as a single cell. Each myofibril is 
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composed of several hundred myosin and actin filaments, which are large polymerized 

protein molecules. Titin, which is one of the largest proteins in the body, keeps the 

myosin and actin molecules side by side. The proteins actin and myosin are arranged in a 

highly organised lattice and provide the basis of the force-generating apparatus. The 

myofibrils are suspended inside the muscle fibre in an intracellular matrix called 

sarcoplasm, which is mainly composed of the usual intracellular constituents. The fluid of 

the sarcoplasm contains large quantities of potassium, magnesium, phosphate, plus 

multiple protein enzymes. As in all cells a potential difference across the membrane 

arises from a trans-membrane ion gradient.  

The electrical signal inducing the contraction process causes a reversal of this potential. 

In skeletal muscle the initiating signal comes from the attached nerve fibre which arrives 

at the endplate and decreases the muscle-cell-membrane potential. Once a certain 

threshold is reached, a chain of events is triggered. The action potential causes the 

sarcoplasmic reticulum to release large quantities of calcium ions Ca  that rapidly 

penetrate myofibrils and enter the cells. Ca ions activate the actin and myosin filaments 

and cause the contraction. The energy which is needed for the contraction is supplied by 

adenosine triphosphate (ATP) formed by the mitochondria, which is degraded to 

adenosine diphosphate (ADP). 

2+

2+

 

The mechanisms of muscle contraction have not yet been resolved entirely; nevertheless, 

there is a theory which is composed of two parts, the sliding filament theory and the 

cross-bridge theory. A short summery of myosin-actin interaction is described in the 

following.   
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Figure 1.8 Organization of skeletal muscle, from the gross to the molecular level (Guyton and Hall 2000) 

 

The myosin filament is composed of hundreds of myosin molecules. The myosin 

molecule, in turn, is composed of six chains, two heavy chains and four light chains. The 

two heavy chains wrap spirally around one another to form a double helix which makes 

up the large tail of the myosin molecule. One end of each chain is folded into a structure 
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called the myosin head where two of the light chains are attached. Thus, a double helix 

myosin molecule has two free heads lying side by side at one end (Figure 1.9A). At the 

other end, the tails of the myosin molecules are bundled together to form the body of the 

filament. Each head includes a leverarm that extends outward from the body to enable a 

connection which is flexible at two points called hinges, one where the lever leaves the 

body of the myosin filament and the other where the head is attached. The hinged 

leverarms allow the heads to be extended outward or close to the body (Figure 1.9B). 

 The angle under which the lever points outward with respect to the body is, among other, 

a function of the local calcium ion concentration and can change rapidly under excitation. 

 

 
Figure 1.9 (A) Myosin molecule (B) Myosin filament (Guyton and Hall 2000) 
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The second molecule involved in the contraction process, the actin filament is composed 

of three protein components. According to the experimental observations, during the 

contraction, the actin filaments are being pulled together along the myosin filaments. It is 

thereby suggested that the contraction is associated with a sliding mechanism, i.e., the 

filaments slide and pass along each other (Figure 1.10). This sliding is facilitated by 

regularly spaced binding sites on the actin molecule where the myosin heads can connect 

(crossbridges). As the hinges, i.e., the leverarms are activated by calcium ions, the heads 

jump from binding site to binding site.  

 

 
Figure 1.10 Relaxed and contracted states of a myofibril (Guyton and Hall 2000) 

 

Cardiac muscle has some similarities and some differences with skeletal muscle. Figure 

(1.11A) shows the myofibrils of a skeletal muscle of a frog and Figure (1.11B) the 

myofibrils of a mammalian heart. The similar structure can be seen clearly in these 

figures. Yet, a major and important difference consists of the ubiquitous and dense 

crosslinking of the cardiac muscle fibres (Figure 1.12). Dark areas oriented across the 

12 



cardiac muscle fibres indicate cell membranes that separate individual cells from one 

another and provide connections by way of gap junctions. Electrical resistance through 

these junctions is only about 1
400  of the resistance through the outside membranes. 

Accordingly, ions can move almost freely in the intracellular fluid along the cardiac 

muscle fibres. Thus, the cardiac muscle works as a syncytium comprising numerous 

muscle cells.  

 

A further difference derives from the fact that the cardiac action potential is not initiated 

at an endplate but by the specialized conduction system of the heart itself which was 

mentioned earlier. Because of the gap junctions between adjacent cardiac muscle cells, 

the electrical activation spreads from muscle cell to muscle cell. 

 

Furthermore, the duration of a cardiac action potential is about 300 msec, whereas an 

action potential of a typical nerve lasts only about 1 msec. As a result, a single action 

potential maintains tension development throughout systole and neural activities have 

only a modulatory effect on the heart rate (through interaction with the SA node) and 

hardly influence the length of systole. 

 

The actin-myosin structures exhibit a regular geometry and are arranged in a well-

organized pattern. Accordingly, the Z-bands (Figure 1.12) can well be discerned 

microscopically. The distance between the Z-bands is called sarcomere length. 
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Figure 1.11 Transverse tubule-Sarcoplastic Reticulum system from (A) frog muscle (B) mammalian heart 

muscle (Guyton and Hall 2000; Sperelakis 2001) 
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Contraction of the heart occurs in response to a single action potential transmitted to all 

fibres. Thereby, the metabolism of cardiac muscle cells allows the intensity of contraction 

to be modulated from beat to beat. 

 

 
Figure 1.12 Interconnecting nature of cardiac muscle fibres “Syncytial” (Guyton and Hall 2000) 

 

Finally, a muscle is more complex than a mere fibre bundle. In the myocardium the fibres 

are not only crosslinked, but they form an architecture which includes surface-parallel 

and oblique fibre strands (see chapter 3). In particular, due to the hollow shape of the 

ventricles, fibre paths are closed, i.e., in contrast to skeletal muscle, fibre trajectories have 

no beginning and no end as a general rule. Because of such complexities, the analysis of 

the cardiac muscle as a whole is considerably more intricate than the analysis of single 

fibre function. 

 

The particular dynamics associated with the attachment and separation processes of the 

crossbridges along with the properties of the calcium ion channels, lead to the well 

known behaviour of the fibers according to which the force developed after stimulation 

increases with increasing sarcomere length. As a consequence, the stroke volume is 

controlled in a natural fashion, in that the venous return governs the amount of filling of 
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the ventricles, thereby the stretching of the sarcomeres at end-diastole and subsequently 

the intensity of contraction (Frank-Starling’s law). 

 

 

1.4  In vivo imaging of the heart 
 

An in vivo monitoring of the motion and deformation of the heart is important for the 

work described here. A number of techniques, mostly based on ultrasound, x-ray, PET 

and MRI/MRS are available today for this purpose. These methods can be characterized 

as follows. 

Ultrasound: True real-time, low resolution, limited 3D capabilities, non-invasive. 

X-ray: Real-time, ionizing, one or two 2D projections only (except for ciné-CT). 

PET: Measurement extends over many heart beats, ionizing, low resolution, provides 

functional information (metabolism of the heart muscle). 

MRI: Requires averaging over a number of heart beats, non-invasive, high resolution, 

tagging allows measurement of deformation (see chapter 8). 

When cardiac fibres contract, the wall of the left ventricle begins to rotate and move 

inward, the wall becomes thicker and the heart becomes shorter. The question arises (and 

is the subject of the next two chapters) how the simple axial shortening of individual 

sarcomeres transforms into the complex deformation pattern required for an efficient 

ejection of blood from heart. E.g., fibre shortening is accompanied by thickening as a 

result of incompressibility. However, it is known that the increase in the cross section of 

the myocytes associated with the fibre shortening can not account for the local wall 

thickening which is more than 40%.  Neither can the longitudinal shortening of the heart 

be explained in a straightforward fashion. Some investigators suggested that there occurs 

some fibre rearrangement during contraction which cause, among other, these complex 

deformations of myocardium. From in vivo imaging and mathematical modelling we 

expect to be able to elucidate some of these questions.          
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CHAPTER 2 

 

ARCHITECTURE OF THE HEART 

 

 
2.1  Introduction 
 

The study of the heart has a long history, and numerous investigations have been made 

through the centuries by anatomists and medical scientists. Available reports from the 

16th century document that already at that time investigators attempted to explain the 

structure and the function of the heart along with the analysis of the anatomy. Some of 

their developed methods or suggestions about the function or structure of the heart are 

still useful or motivating for current studies. For example, Vesalius (1514-1564) and later 

Lower (1669) who developed the blunt unwinding technique (BUT) claimed that the 

ventricles were made up of distinct bands of muscle.  

 

Actually, the blunt unwinding technique (BUT) is still being used today for preparations 

of the heat-denatured heart muscle. In this method, the heart is boiled for about two hours 

in water with acetic acid, then the atria, the epicardium and the subepicardial fat is 

removed. The superficial myocardial fibre coat wrapping both ventricles are subsequently 

peeled off from the biventricular body and the muscle band which builds up the main 

bulk of the structure can then be unrolled. 

 

Later Borelli (1681)  postulated that the heart has a rope structure which is twisted.  

Borelli’s ideas have been further developed in the 20th century by Torrent-Guasp 

(Torrent-Guasp and others 1997). In his anatomical approach he put forward the notion 

that the ventricular myocardial mass consists of a band, curled in a helical way, which 
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extends from the pulmonary artery to the aorta and forms the figure of the number “8” 

(Figure 2.1). He reconstructed a silicone rubber model which was cast from an actual 

unrolled myocardial band to demonstrate and to provide an understanding of this idea 

(Figure 2.2). Unfortunately, the functional role of this hypothetical band structure in the 

motion of the heart is not clear, moreover, the preparation of the band as such contradicts 

the morphology of the myocardium in that a separation of the left ventricular wall into 

two concentric layers is not possible without severe damage (Lunkenheimer and others 

1997b). Moreover, the heart muscle, unlike skeletal muscle, does not exhibit a beginning 

and an end, as is suggested by Torrent-Guasp’s model. Nevertheless, if interpreted 

carefully, it can be helpful for a general anatomical understanding. 
 

 
Figure 2.1 Postulated rope structure of the heart. The figure 8 does not constitute a unique layer or winding 

(Torrent-Guasp and others 1997) 
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C                                                                                                D 

Figure 2.2 A rope model, an intact heart, the silicone rubber mould of the ventricular band, before and after 

unwinding (Torrent-Guasp and others 1997) 
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2.2  Fibre structure 
 

In the 20th century, investigators paid particular attention to the fibre structure of the 

myocardium and its possible role in the functionality of the heart. 

 

Hort (1960) prepared frozen sections in planes parallel to the epicardial surface and 

measured the fibre orientation in each section. He reported that the fibres were locally 

parallel and that the fibre orientation changed smoothly through the myocardium. 

Contrary to skeletal muscle, he observed nowhere separating boundaries in the 

myocardium which would allow distinguishing between different layers of muscle 

strands. He reported also that the network of muscle fibres was interrupted at many points 

but generally, the fibres were closely parallel to the external surface. They were oriented 

obliquely in the outer half of the myocardium, circumferentially at midwall and obliquely 

in the opposite sense in the inner half of the myocardium. He also observed that the 

number of cells along a radial line through the wall of the left ventricle when it was 

arrested and immobilized in systole was up to about 50% higher than in the diastole 

phase. He therefore concluded that the fibres might rearrange themselves during 

contraction of the ventricle. 

 

Streeter and co-workers (1966; 1969) further developed the work of Hort in order to 

verify the hypothesis that there exist discrete muscle bundles in the myocardium which 

exhibit well-defined helical fibre paths running from the apex to the base. For the 

measurements they used a light microscope at magnification 400, which was equipped 

with an eyepiece hairline reticle and rotating stage calibrated in degrees. At this 

magnification, they could see the myofilaments within the fibres. They identified the 

orientation of the myofilament array in the cell with the fibre orientation.  

 

Streeter followed the method of Hort for the measurements of the fibre angles in serial 

tangential sections of myocardium and extended it to three dimensions. The sections were 

obtained from a through-the-wall block of tissue (Figure 2.3). 
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Figure 2.3 Schematic drawing of the left ventricle, showing a full-thickness specimen (Streeter 1983) 

 

Their attempts failed to confirm the existence of any band or layer organization in the 

ventricular wall. Since the work of Streeter, myocardium has been widely viewed as a 

continuous structure in which muscle fibre orientation varies smoothly. Whether Streeter 

and his coworkers with their method would have been able to verify the existence of 

various kinds of possible more complicated fibre organizations in cardiac muscle than 

they documented is a question that cannot easily be determined and is not further 

discussed here. In their earlier work, following Hort and others, they assumed that the 

fibres lie in a plane parallel to the epicardial surface (Streeter and Basset 1966; Streeter 

and others 1969) . They suggested that the left ventricle, for the purpose of stress 

analysis, can be characterized as a cross-linked, fibrous ellipsoidal or paraboloidal 

pressure vessel with a fibre angle changing smoothly from about inside to about 

 outside. Since Streeter this pattern has been adopted in almost all mathematical 

models of the left ventricle. Streeter and coworkers reported also that during the 

transition from diastole to systole in areas not near the apex and base, there was an almost 

constant increase in all fibre angles through the wall. But in areas near the apex they 

observed significant fibre angle differences between diastole and systole. In his later 

work, Streeter conceded that the fibres are not everywhere in a plane parallel to the 

epicardium, and that for the complete determination of the fibre orientation an additional 

60°

60− °
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angle which relates to the inclination of fibres with respect to the epicardial surface must 

be measured. 

 

The inclination angle of the fibres (deviation from a plane parallel to the epicardium) is in 

literature sometimes also called imbrication angle. 

 

Even though the estimates of the inclination angle which is denoted in Figure 2.4 by 3α  

had a large variance, Streeter and co-workers (1978) reported that 3α   tends to remain 

small everywhere in the wall with a magnitude of the order of a few degrees. According 

to these measurements, almost all mathematical models were built upon this assumption, 

which significantly simplifies the mathematical construction (Bovendeerd and others 

1992; Hunter and others 1992).  

 

 
 

Figure 2.4 Dependence of inclination angle 3α  on position in the wall. Shaded area encompasses all 

obtained data for 3α  (Streeter and others 1978) 
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2.3  Laminar structure of the heart 
 

After the works of Streeter, the idea of a continuous structure of the myocardium 

dominated for more than two decades. Yet, during the past decade, some investigators 

revived the notion of a discrete architecture of the myocardial tissue, but at a higher level 

of magnification. 

  

LeGrice and co-workers (1997; 1995a) studied the transmural variations in the structure 

of the ventricular myocardium. Their work supported the view that the ventricular 

myocardium exhibits a discrete laminar structure in which at any point three distinct 

material axes can be identified, viz., the fibre axis in the direction of the muscle fibres, the 

sheet axis which is transverse to the fibres in the plane of the muscle layer and the sheet-

normal axis which is perpendicular to that plane (Figure 2.5). 

 

 

 
Figure 2.5 Schematic of discrete laminar structure of the left ventricle (Nash and Hunter 2000) 

 

In their experiments, dog hearts were arrested in diastole, rapidly excised, and fixed in an 

unloaded state. The right ventricle, the interventricular septum, and the left ventricle free 

wall were divided into a series of wedge-shaped segments by means of radial-transmural 

cuts along meridians spaced at 12  intervals around the heart (Figure 2.6). A series of 

sections were obtained from the base to the apex. Ten wedges of the ventricular 

myocardium were sectioned at 36 spacing. With this method a full set of transmural 

°

°
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sections at 12 steps around the heart was provided. Transmural segments of the left 

ventricle were cut parallel to the base and in each segment five serial slices were cut 

parallel to the epicardial tangent plane. The samples were imaged with a scanning 

electron microscope. 

°

They reported that longitudinal-transmural sections showed a laminar structure, in 

particular, that the myocardium consisted of an array of discrete layers running across the 

ventricular wall from the endocardium to the epicardium in an approximately radial 

direction (Figure 2.7). 

 

 
Figure 2.6 Micrograph of longitudinal-transmural section of left ventricle (LeGrice and others 1995a) 

 

They furthermore found that branching between adjacent layers was relatively sparse and 

each layer consisted of tightly packed groups of myocytes aligned so that the cell axis 

was approximately parallel to the edge of the layer. Adjacent muscle layers were 

connected with collagen fibres (struts). Capillary vessels were observed within layers and 

not in the cleavage planes that separate them. 
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Figure 2.7 Micrograph of  (A) transverse (B) tangential surface of specimen (LeGrice and others 1995a) 

 

They also observed that, despite the uniformity of the muscle layer organization, the 

architecture of ventricular myocardium was not homogeneous and that there was a clear 

transmural variation in the extent of coupling between adjacent layers (Figure 2.8). 

Accordingly, they suggested an arrangement of the muscle layers as shown in Figure 2.9. 

 

 
Figure 2.8 Schematic of fibrous-sheet structure of cardiac microstructure (LeGrice and others 1995a) 
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Figure 2.9 Suggested arrangement of the muscle layers (LeGrice and others 1995a) 

 

Some investigators (LeGrice and others 1995b) argued that cleavage planes in the 

ventricular myocardium   could support a lateral movement of muscle layers with respect 

to each other and permit the rearrangement of muscle fibres during contraction of the 

ventricle. Thus, this mechanism favours changes in wall thickness which is a decisive 

factor in the process of systolic ejection of blood.  

 

 

2.4  Fibre orientation 
 

The notion of a laminar structure of the ventricle is not yet widely accepted and more 

investigations are necessary to develop a complete theory for the orthotropic architecture 

of the ventricular myocardium. Especially three dimensional stress and strain 

measurements would be needed to confirm the orthotropic material behaviour of 

myocardial tissue. However, such measurements are difficult or even impossible to 

perform with presently available instrumentation, in particular under in vivo conditions. 
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Lunkenheimer and co-workers (1997a) developed an alternative method to assess the 

orientation of the ventricular muscle fibres in three dimensions. They used the 

myocardial fibre strand peel-off technique (SPOT) on the biventricular wall of the heart 

for digitizing the fibre architecture. In their approach, different mammalian hearts were 

fixed in formalin (10%) by coronary perfusion. The subepicardial fat, the coronary 

vessels and the epicardial coating were removed. At first, the epicardial surface was 

digitized using a three dimensional magnetic field digitizing system. Then, both 

ventricles including the septum were prepared strand by strand from base to apex and 

from epicardium to endocardium. The contractile pathway alignments were digitized 

manually using the fibre strand peel-off technique (SPOT) (Figure 2.10).  

 

 
Figure 2.10 Fibre strand peel-off technique (Lunkenheimer et al.) 

 

Several thousands points on the epicardium and endocardium surfaces, respectively, and 

likewise several thousands points of almost randomly selected fibres were recovered for 

mathematical analysis. With this method they were able to follow the natural course of 
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the fibres, and thereby they could distinguish between two gross types of fibre 

populations. The first kind of fibres was parallel to the epicardial surface, and the second 

was inclined in an oblique transmural direction towards the endocardial surface. They 

observed that the inclination angle was not everywhere in the myocardium smaller than 

, as Streeter et al.  reported, but they found a wide spectrum of angles which 

increased with depth in the ventricular wall. They reported also that in general, the 

inclination angle in the subepicardium was smaller than in the midwall and 

subendocardium (Lunkenheimer and others 1997a).  

10°

 

Cryer and co-workers (1997) developed an algorithm to calculate the epicardial surface 

and the inclination angle of the fibre strands using the digitized data of Lunkenheimer et 

al. They made a statistical study and presented the distribution of inclination angles as 

histograms (Figure 2.11). In order to obtain these distributions, the length of the digitized 

fibres was used as a weighting factor, so that for each fibre the length of that part whose 

inclination angle lay within a specified range of 10 was determined. In the histogram 

shown in Figure 2.11 the ordinate value is proportional to the number of the individual 

contractile pathways and the abscissa shows the angle of inclination. 

°
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Figure 2.11 Distribution of the angle of inclination in a pig heart (Cryer and others 1997) 

    

In the next chapter we will see how the digitized fibre orientations can be converted into 

fibre vector fields in three dimensions. In chapter 6 we will then use these fibre vector 

fields for the implementation of finite element models of the left ventricle.  
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CHAPTER 3 

 

A THREE-DIMENTIONAL MODEL OF 

THE FIBER ORIENTATION OF THE 

HUMAN LEFT VENTRICLE 

 

 

3.1  Introduction 

 

Anisotropy is one of the most important aspects of the tissue of the heart (chapters 6 and 

7). It plays an essential role in heart function, especially with respect to contraction and 

dilatation. Due to the fibrous structure of the heart muscle, the study of anisotropy could 

be interpreted as local determination of the fibre orientation in the heart muscle. To date, 

there is no method to find out the fibre orientation in vivo. In this work, the fibre strand 

peel-off technique (SPOT) was used to determine the spatial orientation of the muscle 

fibres in a human post mortem heart. The measured fibres were not evenly distributed 

throughout myocardium and the pattern had to be completed accordingly. To achieve this 

goal an algorithm was developed and a new software package was implemented. The 

major result of this study is: The local anisotropy of the heart is determined as a 3D fibre 

orientation field which can be used for the future mechanical analyses of the heart. 

The architecture of the ventricular muscle fibres (cardiomyocytes) along with their 

contraction and relaxation behaviour is the main determinant of cardiodynamics. As 
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mentioned above, the possibilities of determining the fibre orientations in the 

myocardium in vivo are however very limited. Experimental measurements, in particular 

MRI imaging and tagging methods (Stuber 1997), provide mostly global information 

about the motion of the heart during contraction. Nevertheless, the technique of Tensor 

Diffusion Imaging (DTI) which has recently been introduced (Basser and others 1994; 

Pierpaoli and others 1996) reveals a powerful future potential with respect to an analysis 

of the fibre arrangement in the beating heart.  

Our knowledge of human cardiac morphology is mostly based on ex vivo preparations 

(Streeter 1983). A hierarchy of structures has thereby been found, viz., from a 

macroscopic global rope-like architecture (Torrent-Guasp and others 1997) to a 

submicroscopic sheet and fibre arrangement (LeGrice and others 1997; LeGrice and 

others 1995). To this end, a large body of morphological analysis has been made also on 

those animal hearts which exhibit a high similarity with human hearts (swine, dog). 

Besides the cardiomyocytes, the endomysial collagen network, the vasculature and 

interstitial fluid are of further importance. In a comprehensive understanding of 

cardiodynamics, the interplay between the active and passive solid and fluid elements 

throughout the heart cycle has to be taken into account.  

In most published heart models (Bovendeerd and others 1992; Nielsen and others 1991) 

the muscle fibres are assumed to be parallel to the endocardial and epicardial surfaces, 

respectively. A uniform structure, density and global architecture of the fibre strands 

wrapping both ventricles without local irregularities are furthermore assumed. Both 

assumptions may deviate in part considerably from the reality, in particular in pathologic 

cases (Lunkenheimer and others 1997). A major goal of this work was to obtain 

representative fibre architectures of human hearts under representative healthy and 

selected pathologic conditions. 
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3.2  Preparation of the Heart 

 

A fresh human heart in rigor mortis weighing around 500 g typically was perfused via the 

coronary arteries for 24 hours with saline at a pressure of 120 mm Hg. The perfusate was 

subsequently replaced by a 10 % formaldehyde solution and the perfusion was continued 

for another 24 hours. The atria were trimmed down to the ventricular base and the heart 

was submerged for two weeks in a 10% formaldehyde solution. The ventricles were then 

filled with Technovit (Haereus-Kulzer, Germany) such that mouldings of the ventricular 

cavities were obtained. Together with the two-component resin a wooden rod was axially 

anchored in the left ventricular cavity which served to fix the heart in a jig on top of the 

electromagnetic digitizing tablet (3 Draw Digitizer System, 3 SD 005, Polhemus, 

Cochester VTO 5446, USA). 

 

 

3.3  Peeling of the ventricular muscle body and digitization 
 

After having removed the epicardium together with the perivascular fat, one leg of a fine 

forceps was inserted 1 to 2 mm deep into the left ventricular wall. The enclosed fibre 

bundle was detached from its surroundings and then pulled along its prevailing 

longitudinal direction, thus sequestering it from its bed. In so doing, we aimed to restrict 

the strands neither in length nor in their self-organized pathway. Accordingly, minute 

fibres portions were removed sequentially which were typically between 1 – 2 cm long 

and 1 – 2 mm across until the ventricle was essentially peeled. During this process, a 

stepwise digitization was performed by using a manual stylus. Care was furthermore 

taken to perform the combined peeling and digitizing procedure as fast as possible to 

keep the evaporation minimal (Figure 3.1). 

While strands were removed from their grooved bed, numerous connections with the 

neighbouring fibres were disrupted which is an inevitable consequence of the ubiquitous 

cross linking of the cardiomyocytes. Histology however confirms that a preferred fibre 
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direction prevails throughout the ventricular wall such that our procedure reproduced in 

essence this preferred orientation pattern. While the detached strands were of limited 

length, contractile pathways in the ventricular wall have, strictly speaking, no beginning 

and no end. The strands therefore characterize local main fibre trajectories and as such 

mark the fibre architecture pattern segment wise. 

Close to the epicardium where the main fibre weave exhibits a primarily surface-parallel 

orientation, the peeled strands were quite uniform in thickness. In deeper zones, however, 

strands usually grew in thickness as they were pulled out of the myocardial continuum. 

Therefore, opposing surfaces of the strands were found to be slightly wedge-shaped. 

Both ventricles including the septum were prepared in the described fashion, strand by 

strand, from base to apex and from the epicardium to the endocardium. Thereby, 

sequential peeling steps exposed progressively more uneven surfaces, because in distinct 

areas of the left ventricular wall the carved–out strands were more and more inclined 

towards the endocardium.  

 

 
Figure 3.1 Peeling of the fibre muscles (SPOT) 
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While following the well defined grooves and crests on the sequentially exposed surfaces 

with the stylus, a data set characterizing the contractile pathways was obtained. No 

further data processing for the identification of these structures was performed, i.e., the 

strands were considered to represent short segments of the continuous fibre orientation 

field.  

The density of the cloud varied throughout the ventricular wall because, for practical 

reasons, the peeling process could not be performed uniformly. E.g., the wedge shape of 

the strands differed from location to location such that consecutive strands had variable 

dimensions. Care was taken, however, to digitize the base of both ventricles with 

maximal resolution. In the following paragraph, the data processing procedure is 

demonstrated with a typical heart. 

 

 

3.4  Geometry 
 

The first step in (re-)constructing the cardiac anatomy consisted of the determination of 

the left ventricular epi- and endocardium from the point clouds containing typically 2000 

points representing the endocardial and some 4’500 points the epicardial surface. In order 

to derive closed and smooth surfaces from these sets, the software system Raindrop 

Geomagic was applied. The mathematical procedure thereby utilized was based on 

Nonuniform Rational B-Splines (NURBs) (Rogers 2001). The result of the procedure is 

seen in Figure (3.2). 

 

 37



 
Figure 3.2 Real geometry of a typical left ventricle 

 

 

 

 

3.5  Fibre orientation field 
 

Second, the fibre pattern had to be built into the ventricular wall now outlined by two 

surfaces. Due to the method of peeling the measured strands were not evenly distributed 

throughout the myocardium, as mentioned previously (Figure 3.3). While at certain 

locations a dense pattern could be documented, others are almost devoid of fibre traces or 

trajectories. We hypothesize that the characteristics of myocardial tissue exhibits little 

variation within a healthy heart and that therefore the fibre density is quite uniform 

throughout the ventricle. In case of hearts with an infarcted region or with extended 

fibrosis, however, this proposition cannot be applied. A particularly careful peeling is 

necessary in such cases. Nevertheless, even if there are inactive (akinetic) areas or if 

fibrosis is present, the myocardium is anisotropic. The fibre orientation field constructed 
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here can therefore be regarded as a representation of global anisotropy in the sense of 

continuum mechanics. Accordingly, the terms fibre, strand, trajectory and axis of 

anisotropy are used synonymously. 

 

 
Figure 3.3 Fibre trajectories of a typical left ventricle 

 

An extrapolation was in all cases necessary to complete the fibre pattern. For this goal an 

algorithm was developed with which the fibre orientation pattern was determined in the 

form of a uniform fibre field. This field was discretized and defined in a sufficiently large 

number of points in myocardium. The density of points was considered sufficient if it 

was comparable to the one that might be chosen to create a typical Finite Element (FE) 

mesh because such a mesh is expected to include all geometrical details of importance. 

Accordingly, we used the hex-mesh generator of the FE software system MSC Marc-

Mentat to subdivide the volume given by the two surfaces. A mesh with about 47’000 

eight-node hexahedral elements resulted. All of the nodes were numbered and the 

coordinates of all nodes were defined in a global rectangular Cartesian coordinate system 

(Figure 3.4). 
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Figure 3.4 Mesh of a typical left ventricle 

  

More than 2,700 point sequences containing up to 19 individual points defining fibre 

trajectories were available for the left ventricle. In each sequence, the first and last points 

were discarded because these points were often inaccurate due to the manual peeling 

procedure. Accordingly, sequences consisting of less than 4 points were omitted. The 

trajectories were smoothed and converted into cubic splines [NAG, Oxford]. At least 4 

and at most 90 regularly spaced points were interpolated on each spline and utilized to 

represent a trajectory; the number of points thereby depended primarily on the length of 

the curve (Figure 3.3). 

If we choose an arbitrary line between two points,  and iP 1iP+ , on an arbitrary trajectory 

(Figure 3.5), with the position vectors (bold characters are used to denote vectors)  

 and  r ,  respectively, the middle point  

F

r ( )F iP ( 1F iP+ ) iZ  can be calculated as  

 ( ) ( ) ( ){ }1
1
2F i F i F iZ P += +r r r P  (3.1) 

These consecutive points,  and iP 1iP+  ,  in turn, define a direction vector,  

 ( ) ( ) ( )1F i F i F iZ P P+= −v r r  (3.2) 
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Since the points on the trajectory are chosen sufficiently close together and the trajectory 

is a smooth curve, we can utilize this vector as an approximation for the tangent vector at 

the middle point of the arc between the two points.  

 

 

Figure 3.5 fibre distribution in the near of an element Ej 

 

Next, we considered an arbitrary hexahedral element, jE  obtained from the meshing 

procedure mentioned above, and identified an interior point so that there existed always a 

neighbourhood which was inside the hexahedral element (Figure 3.5). 

 A straightforward choice is the middle point jM of the hexahedral element with 

coordinates that are defined as the average value of the coordinates of eight nodes in the 

corners. Let us now consider a spherical neighbourhood of radius R around jM and 

calculate the distance  between all points ( ,i jd Z M ) iZ on the arbitrary trajectory and F

jM .  In case that R d; ,  the point iZ  is within the sphere, if the next point, i.e., 1iZ +  is 

within the sphere too, we conclude that the vector ( )iF Zv  is likewise within the sphere. 

This procedure was repeated for all trajectories and for all of their points iZ  to find the 
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number of curves which cross the sphere. The radius R has to be estimated suitably at the 

beginning; if the number of curves which cross the sphere was zero or too small, R  was 

increased and the procedure repeated until there were at least three curves in the chosen 

sphere around point jM . 

R

j

}2

}2z−

k

}2−

1=

1

A geometrically accurate model of the left ventricle may consist of up to about 50’000 

elements and 70’000 points on the fibre trajectories. If the described algorithm is 

implemented, computing time becomes rather long. A considerable reduction was 

achieved by two modifications of the algorithm. First, the computation of the square root 

associated with the criterion involving the test sphere with radius R is not necessary if 

is much larger than d .  Most of the fibre trajectories lie outside, often even far away 

from our chosen element.  

Instead of a sphere, we can therefore use at first a rectangular neighbourhood of M  with 

the edge length 2R and determine the fibres of interest. Because  

 { ( )1 2 1 2 1, , 1Sup x x y y z z d− − − ≤  (3.3) , 2

we evaluate 

 { 1 2 1 2 1, ,Sup x x y y z R− − ;  (3.4) 

and discard the corresponding fibres. A further improvement results if we skip a number 

of consecutive points and repeat the test for point iZ + ,  only if 1k ;

 { 1 2 1 2 1, ,Sup x x y y z z R− − �  (3.5) 

If we define 
maxFv  as the maximal distance of points iZ  and 1iZ +   on the trajectory , 

we can estimate  from following relation 

F

k

 { }1 2 1 2 2

max

, ,

F

Sup x x y y z z R
k Int

 − − − − 
 
  v

 (3.6) 

If  we use .  1k ≺ k =
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From all direction vectors ( )F iZv  which are inside the spherical neighbourhood of jM ,  

an average fibre direction vector for the element jE has now to be determined  (Figure 

3.6). 

 

Figure 3.6 Average direction vector defined as fibre orientation for element Ej 

 For this purpose, we define a weighting function W ,  and postulate that the vectors 

which are closer to the centre of the element have a heavier weight, such that we can 

write 

 ( ) ( )average j i F i
i

E W Z= ⋅∑v v  (3.7) 

Upon normalization we obtain 

 ( ) ( )
( )

average j
j

average j

E
E

E
=

v
N

v
 (3.8) 

For the weighting function W  we used the form 

 
( ) ( ){ }

1
i pn m

t t n n

W
c d c d

=
⋅ + ⋅

 (3.9) 
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and  

 ( ) ( ) ( )2 2,i j t nd Z M d d= +  (3.10) 

Here,   and  are the tangential and normal distances of td nd jM  and iZ ,  respectively, 

furthermore,  c  and  c  are constant coefficients which determine the relationship 

between d  and ,  and  n ,   and 

t

nd

n

t m p   are exponents. With the help of these factors we 

can determine the influence of the spatial distribution of the trajectories on the average 

direction. For this purpose, a software package was developed which allowed 

reconstructing the fibre vector field from the digitized fibre trajectories (Figure 3.7). 

 

 

Figure 3.7 3D-represantation of fibre orientation field 

 
A number of further features were thereby implemented, in particular: 

(a) Visualization of the fibre structure in the form of a two dimensional 

representation of layers with defined thickness and viewpoints from an arbitrary 

perspective within the myocardium.  
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(b)  Interpolation of the fibre orientation in the myocardium. As input, the program 

uses not evenly distributed digitized data without any assumption about the 

distribution of the fibres. 

(c) Construction of a rectangular Cartesian coordinate system in the middle point of 

each arbitrary element in myocardium, so that the first axis of this coordinate 

system is along the fibre orientation in that point. This feature will be used for 

implementation of a transversely isotropic finite element model of the left 

ventricle in chapters 6, 7 and 8. 

(d) The program performs a statistical evaluation of the interpolated fibre orientation. 

  

 

3.6  Transverse fibres 

 

A first focus was aimed at the repartition of oblique transmurally aligned pathways 

(transverse fibre trajectories) throughout the myocardium (Cryer and others 1997). 

Although transverse fibres may have a significant influence on the performance of the 

ventricle, this aspect received little attention in previous mathematical models [transverse 

fibres were considered, e.g., by Bovendeerd et al. (1994)]. It turns out that the tendency 

of the contractile pathways to incline towards the endocardium is quite unevenly 

distributed all over the left ventricular wall. While at certain locations, such as the margo 

obtusus, transmural fibres are encountered frequently, others are almost devoid. The 

spatial angulations of all contractile pathways which have been digitized in this heart are 

summarized as histograms in Figure (3.8).  
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3.7  Short axis sections 
 

In Figure (3.9) the fibre trajectories are shown in thirty short axis slices of the heart. We 

found a pronounced concentration of transverse fibres in the apical eight slices (ca. 2.5 

cm), Figure (3.9-23 to 30). Thereby, the angles with respect to the epicardial surface were 

particularly large exceeding in some areas of the five most apical slices (1.5 cm) an angle 

of 45 degrees. In the base, the first three slices (ca. 1 cm) displayed the highest extent of 

variations in fibre angulations, all around the circumference, resembling in some areas to 

a fishbone-like pattern (Figure 3.9-1 to 3). From there up to slice fifteen (ca 3.5 cm) still 

some deviations from the strictly tangential alignment were found, however, angles 

bigger than 20 degrees were never recorded (Figure 3.9-3 to 15). The highest amount of 

transverse fibres in this area was mainly located around the obtuse margin of the free 

wall. From slice sixteen to twenty-two (ca. 2 cm) an almost strictly tangential fibre 

alignment prevailed (Figure 3.9-16 to 22).  

The question arises with respect to the significance of transverse contractile pathways. In 

agreement with the classical literature (Hunter and others 1988; Laplace 1806; Mirsky 

1969; Mirsky and others 1981; Mirsky and Krayenbühl 1981) we conclude that the 

subbasal 3.5 cm along with the adjoining 2 cm of the ventricle’s midportion represent the 

main hemodynamic pump unit of the left ventricle. The upper part of the left ventricle is 

in particular supposed to sustain ventricular ejection by contraction of its circular muscle 

mass. Its most basal part (ca. 1 cm) might furthermore be involved in the operation of the 

complex dynamics of the mitral valve apparatus (Boehme 1936). Transverse fibres which 

are located in this section might be of use in controlling circumferential constriction in 

terms of amount and timing (Shapiro and Rademakers 1997). 

The highest amounts of contractile pathways which are not aligned parallel to the 

epicardial surface were however found in the apex. This structural particularity has been 

associated with the cyclic wringing motion of the apex (Ingels 1997). Yet, the functional 

significance of this motion has recently been questioned since Boesiger  et al. (Stuber 

1997; Stuber and others 1999) and other investigators have shown that apical twisting 

and its reversal are strictly confined to the period of ventricular ejection. Therefore, at 

present, we do not attribute much functional importance to the marked transverse fibre 
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presence in the apex in particular with respect to their hypothetical contribution to early 

diastolic filling of the ventricle (Torrent-Guasp and others 2001), but they might in fact 

contribute to homogenize the bioelectric signal transmission as part of the conduction of 

excitation. 

 

 

3.8  Long axis sections 

 

In longitudinal sections the course of the contractile pathways was seen to deviate 

substantially more from a surface-parallel alignment than in short axis sections (Figure 

3.10). This fact might in part be explained by the overall prevailing longitudinal 

orientation of the contractile pathways within the left ventricular wall. Upon comparing 

the septum with the free walls, it was found that in any section the obliqueness was more 

pronounced in the septum. This is particularly true in the border segments of the septum, 

i.e., near the junctions with the free walls where transmural components accumulated 

especially near its inferior junction. Quite generally, the oblique transmural striation of 

the contractile pathways in the free walls appeared to be less pronounced because of the 

shortness of the segments which we were able to digitize. Nevertheless, it turned out that 

the inferior wall is densely interspersed with short segments which are inclined towards 

the endocardium at an angle which largely exceeds 45 degrees. 
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Figure 3.10 2D-represantations of fibres in defined layers (long-axis view) 
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3.9  Radius of fibre curvature 
 

An important underestimated aspect in ventricular mechanics is related to the fact that the 

radius of curvature of the fibres varies widely over the ventricular wall. In part, this 

explains the local inhomogeneities of the systolic contraction pattern which is measured 

by various methods (Brutsaert 1987; Brutsaert and others 1984; Brutsaert and 

Sonnenblick 1969; Lunkenheimer and others 2004).  

 

In ventricular length sections the radius of curvature more or less continuously increases 

from the ventricular base to the apex. This observation has widely been discussed in the 

literature in context with models used for the calculation of ventricular wall stress 

(spheres or ellipsoids). Due to the confined resolution, echocardiography furthered the 

impression that the short axis cross section of the left ventricle is essentially circular 

(Mandarino and others 1998). More advanced imaging methods such as MRI taught us 

however that this assumption is not valid (Stuber 1997; Stuber and others 1999). 

Digitized individual contractile pathways demonstrate the considerable amount of 

regional deviation from a constant average radius of curvature of the ventricle. This holds 

both for vicinal pathways as well as along individual trajectories and becomes 

particularly apparent in ventricular cross sections. Here, each of the three segments of the 

free wall (inferior, posterior and superior) and the septum show their typical modulation 

in curvature when proceeding from base to apex.  

 

 

3.10  Shape of the cross section 
 

The two most basal slices (0.6 cm) exhibit a fairly circular contour. This is the typical 

cross section seen in echocardiography. From the third slice onward, the ventricular 

cavity progressively flattens whereby the largest radius of curvature is found in the 
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septum while the curvature is greatest in the superior and inferior walls. The posterior 

wall around the obtuse margin also flattens out without however reaching the large radius 

of the septum. Beginning with the seventh slice, the posterior wall progressively bends 

more and its bending exceeds that of the inferior wall from the ninth slice onward. Here, 

the bending of the superior wall definitely prevails. From the twelfth slice onward, the 

ventricular cross section assumes a horse shoe shape with its base in the septum and the 

smallest radius of curvature in the posterior wall. Descending further towards the apex 

the cross section looses even more of its sphericity as it changes into a shape with an 

almost continuous bending of the posterior and superior wall and with a flat septum and 

inferior wall. Both are almost at right angles to one another. From the nineteenth slice 

onward, the inferior wall regains in bending while the posterior wall progressively 

flattens. The highest degree in bending nevertheless prevails in the superior wall. 

Between the twenty-first and twenty-fourth slice the horse shoe-like cross section is 

dominant with the smallest radius of curvature in the posterior wall. Between the twenty-

fifth and twenty-seventh slice the posterior and superior wall exhibit again an almost 

continuous curvature while the inferior wall flattens and aligns at right angle to the 

septum. The very apical slices, finally, show an almost circular cavity. 

In summary, the basal ring and the very apical lumen show a circular shape. The subbasal 

lumen assumes a more or less rectangular shape, then, from 1.8 cm downwards an oval, 

from 3.3cm on a horse shoe-like, from 4.5 cm downwards an irregularly triangular 

contour with the posterior and superior walls merging to one long, continuously curved 

structure. From 5.4 cm onward, the horse shoe-like cross section is found again, from 6.3 

to 8.1 cm the shape is triangular again, and in the apical 9 mm the cross section returns to 

circular. It is worth mentioning that, although the wall thickness varies between the 

various regions this aspect quite generally applies to the shape of the ventricular cavity as 

well as to its outer dimensions. 

 

 

 

 50



3.11  Limitations 

 

The human heart investigated here had previously undergone a process of fixation 

devised to fill up the interstitial space with water such that, after formalin fixation, the 

peeling procedure could be performed. Yet, any extended time of manipulation on the 

heart before it is fixed furthers the process of degradation. Therefore, the shape of the 

heart which we assessed during the peeling procedure must be expected to differ 

somewhat from its intravital configuration. However, it might be argued that Hort et al. 

have shown (1957; 1960a) that the contour and compliance of the heart are essentially 

determined by its connective tissue scaffold rather than by the contractile tissue. 

Finally, the combined peeling and digitization procedure described here is quite selective 

in that certain fibre strands, i.e., those which can be reached by the forceps are 

documented, while others are omitted. In fact, the greater part of the ventricular muscle 

mass is not peeled. Therefore, if the same heart could be treated twice in this fashion, a 

somewhat different result in terms of alignment of the trajectories would be obtained, 

however, the essential aspects of the overall architecture would be maintained.      

 

 

3.12  Mathematical procedure 
 

The developed computer procedure has a number of options which can be used for 

further evaluations. E.g., a perspective plot from an arbitrary viewpoint can be created 

and the fibre architecture of a particular layer represented (Figure 3.10). This facility is 

instructive because it can show how the trajectories are distributed in different areas of 

the heart and we can in particular compare the measured with the calculated directions 

(Figure 3.11). 
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Figure 3.10 Comparison of digitized (blue) and calculated (black) fibre directions 

 

                         
Figure 3.11 Comparison of digitized (blue) and calculated (black) fibre directions from different view 

points 

 

Furthermore, certain statistical evaluations can be made: We calculate the average of the 

(F i )Zv  vectors in all iZ  points inside a spherical neighbourhood of jM  and attribute it 

as the fibre direction vector to the element jE . It is interesting to know how large the 

average deviations of (F i )Zv  with respect to ( )average jEv  are (Figure 3.12). It is found 

that for the heart which was analyzed here the peak of the diagram is located around 15 

 52



degrees. The maximal deviation of ( )F iZv

5

 with respect to  can be 

determined; for our typical heart sample the result is shown in Figure (3.13). In Figure 

(3.14) we see moreover how many trajectories were in each spherical neighbourhood on 

the average. It turns out that in our sample most of the elements included between 3 and 

15 trajectories for the chosen radius 

(average jEv )

R mm=  of the spherical neighbourhood. For most 

of the elements the trajectories were inside this neighbourhood and only for a small 

percentage it was necessary to make it larger.  

 

 
Figure 3.12 Average of angle deviation 
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Figure 3.13 Maximal angle deviation 

 

 

 

Figure 3.14 Number of fibres in the spherical neighbourhood R of each element 
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3.13  Other hearts 

 

The results shown in this work were derived from a typical healthy human heart. The 

question arises with respect to the biological variability in case of healthy as well as 

diseased hearts. To this end, more samples should be studied, however, in view of the 

time which is necessary for a full statistical study; such a project has to be deferred to the 

future. In this work we have rather concentrated on the development of the basic methods 

which are needed to investigate the fibrous structure of the heart. The functionality and 

significance of the procedures are demonstrated on a sample specimen. 

A further interesting aspect is related to the differences in the fibre orientations which 

occur in the systolic in comparison with the diastolic phase of the heart cycle. For this 

purpose, a sample should be studied in different phases of contraction. From such a study 

would bring further insight into the functional significance of the fibre structure of the 

heart. 
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Figure 3.8A Helix and angle of inclination are defined according to Streeter, positive and negative values 

of these angels are shown here schematically   
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Figure 3.8B Histograms of the digitized human heart, Helix angle Base (Cryer et al.) 
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Figure 3.8C Histograms show the distribution of digitized fibres of the human heart with respect to helix 

angle in midportion (Cryer et al.) 
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Figure 3.8D Histograms show the distribution of digitized fibres of the human heart with respect to helix 

angle in apex (Cryer et al.) 
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Figure 3.8E Histograms show the distribution of digitized fibres of the human heart with respect to 

inclination angle in base (Cryer et al.) 
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Figure 3.8F Histograms show the distribution of digitized fibres of the human heart with respect to 

inclination angle in midportion (Cryer et al.) 
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Figure 3.8G Histograms show the distribution of digitized fibres of the human heart with respect to 

inclination angle in apex (Cryer et al.) 
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Figure 3.9 2D-represantations of fibres in defined layers (short-axis view)  
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Figure 3.9 2D-represantations of fibres in defined layers (short-axis view) 
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Figure 3.9 2D-represantations of fibres in defined layers (short-axis view) 
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Figure 3.9 2D-represantations of fibres in defined layers (short-axis view) 
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Figure 3.9 2D-represantations of fibres in defined layers (short-axis view)  
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CHAPTER 4 

 

SELECTED ELEMENTS OF CONTINUUM    

MECHANICS 

 

 
Biological materials exhibit an inhomogeneous and complex microscopic structure and 

are generally composed of various solid and fluid constituents with in part very different 

mechanical properties. For many applications, however, we do not need to know all the 

details and mechanical characteristics about the microscopic structure to study the 

macroscopic behaviour of a biological object. 

Continuum mechanics lends itself for a description of the macroscopic behaviour of 

materials where many details of the internal microscopic structure are at least partly 

disregarded or substantially simplified. To what extent the inhomogeneities of biological 

materials have to be taken into account thereby depends on the requirements of the model 

to be developed.  

In this chapter we review some basic features of continuum mechanics which will be 

needed for our modelling efforts. 

 

 

4.1  Fundamental concepts 
 

We introduce a rectangular Cartesian coordinate system ( ), ,i j k  with the origin O at an 

arbitrary point in space (Figure 4.1). We denote the reference configuration of the body at 

the initial time t  with 0= 0R  and the configuration of the body at any later time  0t

                                                                                                                                                                         71                                             



with tR . In the reference configuration, 0R , every point of the body is identified with a 

position vector  in the reference frameX ( ), ,i j k . If the body moves or deforms with the 

time, its configuration changes continuously from 0R  to tR  and the point under 

consideration is located at the position  in the reference framex ( ), ,i j k .  

( ), tX=

( ), tx=X X

det i

j

x
X

 ∂
 ∂ 

=

 

Figure 4.1 Coordinate system (i,j,k) 

We assume that there is a one-to-one mapping from the reference configuration 0R  to the 

deformed configuration tR  so that for every point of the body we can write  

      x x                     (4.1) 

Further, we can assume that this mapping is invertible so that  

  (4.2) 

because for physically realistic problems the Jacobian of the transformation  

 J  (4.3) 

must never be zero for t . 0
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The displacement for the point under consideration is defined as 

 = −u x X  (4.4) 

Note that displacement u can be written in both configurations 0R and tR , but u has always 

the same value in 0R and tR .  

From (4.1) we can define the deformation gradient tensor as 

 d d=x F X  (4.5) 

or with respect to the components 

 i
ij

j

xF
X
∂

=
∂

 (4.6) 

From (4.3) it is clear that 

 detJ = F  (4.7) 

and from (4.5), for the inverse of the deformation gradient tensor, we can write  

 d d=G x X  (4.8) 

 1−=G F  (4.9) 

Now, we can derive the relation between displacement and deformation gradient tensor 

as follows 

 = +x u X  (4.10) 

 d d d= +x u X  (4.11) 

 grad +=F u I  (4.12) 

or 

 i
ij ij

j

uF
X

δ∂
= +
∂

 (4.13) 

The deformation gradient tensor is important because it characterizes the state of motion 

and deformation in the neighbourhood of any point of the body. 

Equation (4.5) shows the transformation of any infinitesimal line element in the 

neighbourhood associated with an arbitrary point of the body. It is interesting to know 

how volume elements or surface elements transform during deformation. Let dV be an 

infinitesimal volume element in the reference configuration 0R . Due to deformation this 
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element will have the volume  in deformed configurationdv tR . It is easy to prove that 

(Holzapfel 2000) 

dv

 dv JdV=  (4.14) 

and with the use of  

 d d Jd d= ⋅ = ⋅s x S X  (4.15) 

 Td d d d⋅ = ⋅s F X F s X  (4.16) 

and (4.5) we can derive the relation between the surface elements in 0R  and tR  

  (4.17) Td J d−=s F S

S

or 

  (4.18) Td J d=s G

We define the right Cauchy-Green tensor as  

  (4.19) T=C F F

and the left Cauchy-Green tensor 

 T=B FF  (4.20) 

respectively.  

 
Figure 4.2 Deformation of a surface element 
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Now we introduce a unit vector  N  which has an arbitrary direction in configuration 0R . 

is the corresponding vector of N in ′n tR . From (4.5) it is seen that N  will deform to 

according to ′n

′ =n FN  (4.21) 

 The stretch ratio λ  corresponds to the length of ′n  

 λ = ⋅FN FN  (4.22) 

or  

 Tλ = ⋅ ⋅N F F N  (4.23) 

and from (4.19) we can write 

 λ = ⋅ ⋅N C N  (4.24) 

From definition of the unit vector we have, in turn,  

 
λ λ
′

= =
n FNn  (4.25) 

This is an important relation and shows how a unit vector N in 0R  transforms to the unit 

vector n in tR (Figure 4.2).  

A further useful tensor is the Green-Lagrange strain tensor which is defined as 

 (1
2

)= −E C I  (4.26) 

Since F is nonsingular, it can be decomposed into a pure stretch tensor U and a pure 

rotation tensor R 

 =F RU  (4.27) 

so that 

 
T

T

=

=

R R I
U U

 (4.28) 

implying that  

 2 = =U UU C  (4.29) 

U and C are symmetric and positive definite. From (4.26) we see furthermore that the 

Green-Lagrange strain tensor depends only on the stretch tensor U and that it is 
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independent of the rotation tensor R, or, in other words, independent of the rotation of the 

body during deformation. 

Next, we review the concept of stress. Let the body under consideration be cut 

hypothetically by a plane surface. We look at an infinitesimal surface element of this 

hypothetical plane in an arbitrary point x in the body in deformed configuration

ds

tR .  If 

denotes the infinitesimal force acting on surface element , the Cauchy stress or true 

stress can be determined by definition from the following relation 

df ds

( ), tσ x

 ( ),d tσ=f x ds  (4.30) 

In the reference configuration 0R  we introduce the first Piola-Kirchhof stress tensor 

  by writing ( , tP X )

 ( ),d t=f P X Sd  (4.31) 

From (4.30) , (4.31)  and (4.17) we can derive the relation between the Cauchy stress 

tensor and first Piola-Kirchhoff stress tensor as 

 ( ) ( ), ,t d t dσ =x s P X S  (4.32) 

  (4.33) 1 TJσ −= PF

 TJσ −=P F  (4.34) 

The second Piola-Kirchhoff stress tensor S can be found from the first Piola-Kirchhoff 

stress tensor as follows 

 =P FS  (4.35) 

This implies that 

  (4.36) 1 TJσ −= FSF

 1 TJ σ− −=S F F  (4.37) 

σ  and S are both symmetric, but S, as opposed to σ , does not admit a straightforward 

physical interpretation. 
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4.2  Elastic and hyperelastic materials 
 

In this paragraph we consider only deformations of a special, but very important class of 

materials. We thereby assume that the temperature remains constant, i.e., all processes 

are isothermal as is by and large the case in biological systems. A material is called 

elastic if the stress at time t depends only on the state of deformation at this instant of 

time and not on the deformation history, in other words, the stress tensor σ  is completely 

determined by the instantaneous value of the deformation gradient tensor F at any point 

of the body and at any time t and is not affected by the previous values of F (Ogden 

1984).  

A constitutive equation describes the mechanical behaviour of a material in terms of 

stress and strain (in case of non elastic materials, there may be other quantities of 

importance such as the strain rate). The equation defines the state of stress at any point of 

the body and at any time t as a function of the deformation. For elastic materials, the 

general form of the constitutive equation can be expressed as 

 ( ) ( ), tσ =x g F  (4.38) 

Although we confine ourselves here to homogeneous materials only, the stress tensor σ  

depends explicitly on the coordinates X, and the constitutive equation may vary from 

point to point within the body thereby including the possibility of spatial inhomogeneity. 

Axiomatically we accept that physical processes are independent of the observer, which 

implies that the mathematical representation of all processes of interest must be written in 

an invariant formulation under transformation of the reference frame. 

It can be easily proven (Truesdell and Noll 1992) that the necessary and sufficient 

condition for the invariance of (4.38) is that stress tensor σ   takes the following form 

 ( ) Tσ = Ff C F  (4.39) 

or, from (4.37), the second Piola-Kirchhoff stress tensor 

 ( )J=S f C  (4.40) 
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E.g., for an isotropic material, which is a material whose mechanical properties do not 

exhibit any preferred direction, ( )f C is often expanded in a power series 

  (4.41)  ( ) 2
0 1 2

N
Na a a a= + + + ⋅⋅⋅+f C I C C C

and the stress tensorσ  takes the following form 

  (4.42) 2
0 1 2σ α α α= + +I B B

where 0 1 2, ,α α α are functions of invariants of B. 

σ can also be expressed in an alternative form as 

 1
0 1 1σ β β β −

−= + +I B B  (4.43) 

where again 0 1 1, ,β β β− are functions of invariants of B. 

If the material is incompressible, we find from (4.14) that 1J = . Accordingly, the 

relations (4.38), (4.39) and (4.40) must be corrected to  

 ( )pσ = − +I g F  (4.44) 

 ( ) Tpσ = − +I Ff C F  (4.45) 

 ( )1p −= − +S C f C  (4.46) 

where p is an undetermined scalar called the hydrostatic pressure (Eringen 1962; Eringen 

1980). It can be found from equilibrium and boundary conditions. The relation (4.42) for 

an isotropic and incompressible material then reads 

  (4.47) 2
1 2pσ α α= − + +I B B

or 

 1
1 1pσ β β −

−= − + +I B B  (4.48) 

In order to proceed, we assume that there exists a function ( )FW , known as strain–

energy function that is a single-valued function of the deformation gradient tensor F at 

any point of the body and any time, which is independent of the rate of deformation or its 

history. W is the internal mechanical energy due to deformation that is stored in the 

body. It is measured per unit reference volume. 

( )F
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Hyperelastic materials represent a subclass of elastic materials which are defined such 

that the first Piola-Kirchhoff stress tensor can be derived from the strain-energy function 

 as ( )W F

 ( )W∂
=

∂
F

P
F

 (4.49) 

or from (4.33) the Cauchy stress tensor as 

 ( )1 TW
Jσ − ∂

=
∂

F
F

F
 (4.50) 

From the invariance of W  with respect to arbitrary rigid motions it can be proven (Green 

and Adkins 1970) that W  is a function of the right Cauchy-Green tensor C 

 ( ) ( )1
2W W=F C  (4.51) 

Furthermore, from (4.26), it can be written as a function of the Green-Lagrange strain 

tensor, E. In order to avoid the introduction of other symbols, we denote these functions 

of C and E by W  andW  . Then P,( )C ( )E σ and S can be written as follows 

 ( )2
W∂

=
∂

C
P F

C
 (4.52) 

 ( )12 TW
Jσ − ∂

=
∂

C
F

C
F  (4.53) 

 ( ) ( )2
W W∂ ∂

= =
∂ ∂

C E
S

C E
 (4.54) 

Due to the simple form of (4.54), in many cases it is easier to work with second Piola-

Kirchhof stress tensor S. 

For an isotropic material W must be invariant under arbitrary rotational motions Q, 

from which follows  

( )C

 ( ) ( )TW W=C QCQ  (4.55) 

If we choose Q such that QCQ is diagonal (which is always possible), we conclude that 

must be a function of the invariants of C. Denoting them by 

T

W ( ) ( ) (1 2 3, ,I I IC C C)  we 

have 
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 ( ) ( ) ( )( )1 2 3, ,W W I I I= C C C  (4.56) 

 ( )1 trI =C C  (4.57) 

 ( ) ( )2 2
2

1 tr tr
2

I  = − C C C  (4.58) 

 ( ) 2
3 det =I J=C C  (4.59) 

and for the second Piola-Kirchhoff stress tensor follows 

 ( )3

1
2 i

i i

W I
I=

∂ ∂
=

∂ ∂∑
C

S
C

 (4.60) 

 ( )
i

i

W
W

I
∂

=
∂

C
 (4.61) 

 1I∂ =
∂

I
C

 (4.62) 

 2
1

I I∂
= −

∂
I C

C
 (4.63) 

 13
3

I I −∂
=

∂
C

C
. (4.64) 

Accordingly, we can write  

  (4.65) ( ) 1
1 1 2 2 3 32 W IW W I W −= + − +S I C C

1− 

With (4.65) we furthermore deduce from (4.36) for the Cauchy stress tensor  

  (4.66) ( )1
2 2 3 3 1 3 22J I W I W W I Wσ − = + + − I B B

Considering the concept of strain energy function W  we see that we arrive at the same 

relation as (4.43). 

For an isotropic incompressible material the relation 3 1J I= =  holds. This condition 

can be treated as an internal constraint for the material. Upon introducing an 

indeterminate Lagrange multiplier,  p, corresponding to the hydrostatic pressure, and 

writing the strain-energy function as 

 ( ) ( )( ) (1 2 3
1,
2

W W I I p I= −C C )1−  (4.67) 

S  and σ  obtain the following forms  
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 ( )1 2
W

p − ∂
= − +

∂
C

S C
C

 (4.68) 

 ( )2 TW
pσ

∂
= − +

∂
C

I F F
C

 (4.69) 

Finally, with the use of equations (4.60) to (4.64), we can write 

 ( )1
1 1 2 22p W IW W−= − + + −S C I 2 C  (4.70) 

 ( ) 2
1 1 2 22p W IW Wσ = − + + −I B 2 B  (4.71) 

or alternatively 

 1
1 22 2p W Wσ −= − + −I B B  (4.72) 

The scalars p in (4.71) and (4.72) differ by the term 1 22I W . 

 

 

4.3  Transversely isotropic two-phase materials 
 

Next we consider a class of materials that are composed of two phases, viz., a matrix 

material or ground substance and a family of continuously and systematically arranged 

fibres in the matrix. Such materials exhibit a preferred direction or axis and we expect 

that their material properties depend on this direction. If the response of the material 

along directions which are orthogonal to this preferred axis is isotropic, we say that the 

material is transversely isotropic (Figure 4.3). 

In case that the material is moreover hyperelastic there exists a strain-energy function 

which not only depends on C but also on the preferred direction,  N. Whenever the 

material undergoes deformation, the vector N will deform with the body. From (4.25) we 

can write for the new direction n 

 λ =n FN  (4.73) 

 2λ = ⋅ ⋅N C N  (4.74) 

It can be proven (Spencer 1984) that under these conditions the strain energy function 

must be of the form 

 ( ),W W= ⊗C N N  (4.75) 

                                                                                                                                                                         81                                             



 

 
Figure 4.3 Transversely isotropic material 

  

Similar to (4.56), it must be a function of the invariants ( ) ( ) ( ) (1 2 3 4, , , ,I I I IC C C C N)

)

 

and  as follows (5 ,I C N

 ( ) ( ) ( ) ( ) ( )1 2 3 4 5, , , , , ,W W I I I I I =  C C C C N C N  (4.76) 

where  and  are given by (4.57), (4.58) and (4.59). and 

are defined by 

( ) ( )1 2,I IC C

)

( )3I C (4 ,I C N)

(5 ,I C N

 ( )4 ,I = ⋅ ⋅C N N C N  (4.77) 

 ( ) 2
5 ,I = ⋅ ⋅C N N C N  (4.78) 

while the second Piola-Kirchhof stress tensor is defined by 
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 ( ),
2
W∂ ⊗

=
∂

C N N
S

C
 (4.79) 

or 

 ( )5

1

,
2 i

i i

W I
I=

∂ ⊗ ∂
=

∂ ∂∑
C N N

S
C

 (4.80) 

1I∂
∂C

, 2I∂
∂C

 and 3I∂
∂C

 are given by (4.62), (4.63) and (4.64), respectively. 4I∂
∂C

, 5I∂
∂C

 , in 

turn, and are defined by 

 4I∂ = ⊗
∂

N N
C

 (4.81) 

 5I∂ = ⊗ + ⊗
∂

N CN NC N
C

 (4.82) 

Analogous to (4.65) and (4.66), the constitutive equations of an transversely isotropic 

material can be written. For S we have accordingly  

 

  (4.83) 
( )

( )

1
1 1 2 2 3 3

4 5

2

2

W IW W I W

W W

− = + − +
+ ⊗ + ⊗ + ⊗  

S I C C

N N N CN NC N


and with the definition 
λ

=
FNn  follows  

 ( )1 ,
2 TW
Jσ − ∂ ⊗

=
∂

C N N
F

C
F  (4.84) 

 

 
( )

( )

1 2
3 3 1 1 2 2

1
4 4 4 5

2

2

J I W W IW W

J I W I W

σ −

−

 = + + −
+ ⊗ + ⊗ +  

I B B

n n n Bn nB n


⊗
 (4.85) 

For a transversely isotropic material with an incompressible matrix, we postulate for 

an expression of the form W

 ( ) ( ) ( ) ( ) (1 2 4 5 3
1, , , , ,
2

W W I I I I p I= − C C C N C N )1 −  (4.86) 

where p is again the hydrostatic pressure. From this formulation one obtains for  S and σ  

 ( )1 ,
2
W

p − ∂ ⊗
= − +

∂
C N N

S C
C

 (4.87) 
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 ( ),
2 TW

pσ
∂ ⊗

= − +
∂

C N N
I F F

C
 (4.88) 

Furthermore, it follows 

 
( )

( )

1
1 1 2 2

4 5

2 2

2

p W I W W

W W

−= − + + −

+ ⊗ + ⊗ + ⊗  

S C I C

N N N CN NC N
 (4.89) 

 

  (4.90) 
( )

( )

2
1 1 2 2

4 4 4 5

2 2

2

p W IW W

I W I W

σ = − + + −

+ ⊗ + ⊗ + ⊗  

I B B

n n n Bn nB n

Finally, the alternative form for σ is 

  (4.91) 
( )

1
1 2

4 4 4 5

2 2

2

p W W

I W I W

σ −= − + −

+ ⊗ + ⊗ + ⊗  

I B B

n n n Bn nB n

Again, the scalars p in (4.90) and (4.91) differ by the term 1 22I W .  

In order to arrive at a useful description for biological materials, these general 

formulations have to be adapted accordingly. A number of approaches have been 

proposed in the literature to this end. In the next chapter we will first discuss some of the 

constitutive equations which have been developed during the last twenty years to describe 

the properties of the fibrous structure of the heart tissue. In our model we will then 

substantiate that transversely isotropic constitutive equations are essential for a realistic 

description of the mechanics of the myocardium. 
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CHAPTER 5 

 

CONSTITUTIVE MODELS FOR 

MYOCARDIUM 

 

 
Biological materials are heterogeneous, of a multiphase nature and exhibit viscoelastic 

behaviour. Myocardial tissue is furthermore anisotropic and nearly incompressible. 

Anisotropy, which is due to the fibrous structure of the tissue, causes directional 

dependency of the material behaviour to the applied loads. It is particularly important for 

any useful constitutive equation describing myocardial tissue that the dependency of the 

behaviour on the direction along with local variations thereof be included in the analysis. 

The simplest anisotropic material, called transversely isotropic material, has a single 

preferred direction or axis of symmetry. This type of anisotropy can be described by a 

vector field so that in each point of the material a vector shows the preferred direction.  

A further important property is due to viscoelasticity in that the load-elongation and 

relaxation curves of biological tissue specimens show a hysteresis. After an initial 

conditioning phase, however, the difference between loading and unloading curves of 

successive cycles is often found to exhibit a decreasing tendency, i.e., the hysteresis 

becomes smaller (Figure 5.1). After a number of successive cycles, the hysteresis 

stabilizes asymptotically. At this stage, one says that the tissue has reached a 

preconditioned state. Experimental investigations show moreover that the hysteresis of 

living tissues is rather insensitive to the strain rate (“structural damping”). Even under a 

wide rage of frequencies, such as in an extreme situation in ultrasound experiments when 

the frequency changes from 1 KHz to 10 MHz, the energy dissipation per cycle usually 

changes not more than by a factor of 2 or 3 (Fung 1993).  
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Every hysteresis consists of two curves, viz., one for loading and one for unloading which 

are essentially independent from the strain rate in case of biological tissues. If one derives 

from this fact an approximation and assumes that in the preconditioned state the 

viscoelastic material can be treated as one elastic material under loading and another 

elastic material under unloading conditions. Then methods of the theory of elasticity can 

be used to describe the energy dissipation or damping properties of the tissue. Several 

authors denote this procedure as pseudoelastic approximation in order to remind that the 

material is actually inelastic but under the special conditions considered here, we can deal 

with it as an elastic material. For each of these pseudoelastic loading and unloading 

curves, a strain-energy function can be defined that is named pseudostrain-energy 

function. It means that the preconditioned tissue can be treated approximately as two 

hyperelastic materials.  

 

Figure 5.1 Load-elongation behaviour of human fascia lata tested along the fibre direction (Weiss and 

others 1996) 
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For an anisotropic material the pseudostrain-energy function must be formulated so that it 

includes the dependency of the material properties on the preferred direction. Because of 

the complex and multiphase structure of biological materials this dependency is not 

trivial and during the last years a considerable amount of research has been devoted to the 

investigation of the directional dependency of the constitutive equation for various 

biological materials. A number of investigators have studied especially the fibrous 

structure of the heart and tried to find suitable constitutive equations for the myocardial 

tissue. These attempts can be categorised into two approaches. 

In the first approach one uses the symmetry of the structure to choose a local coordinate 

system. The strain energy function in this local coordinate system is determined so that 

the dependency on the strain tensor reflects the symmetry. In the second approach one 

introduces a strain energy function in the global coordinate system, which depends 

explicitly on a vector field N that represents the preferred direction of the material in each 

point.  

 

 

5.1  Constitutive equations in a local coordinate system 
 

This approach is in widespread use by many investigators. The principle of this approach 

derives from the fact that for an anisotropic material in each point a local coordinate 

system can be defined so that one of the axes of the coordinate system is collinear with 

the direction of anisotropy (In case of a more complex anisotropy than the transverse 

isotropy considered here, the alignment of the local coordinate system is chosen such that 

other symmetry axes are taken into account). In this coordinate system the strain energy 

can be expressed as a quadratic function of the components of the Green-Lagrange strain 

tensor. Thus, all computations must be performed in this local coordinate system. This 

approach has been used by various investigators who studied cardiac and cardiovascular 

mechanics. A transversely isotropic structure for the tissue is thereby often assumed and a 

formulation for the material behaviour is chosen which is based on the available 

experimental information. 
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Chuong and Fung (1986) proposed the following form of the strain energy function to 

describe the mechanical properties of arteries in three dimensions assuming orthotropic 

symmetry 

 (1 1
2

QW C e )= −  (5.1) 

where Q is a quadratic function of the three principal strain components. C is a suitably 

chosen constant. 

Guccione and co-workers (1991) used this idea for developing a cylindrical model for the 

left ventricle and presented an explicit form for Q to describe the special case of three 

dimensional fibre structure of the myocardium. They thereby assumed a thick-walled 

cylindrical geometry for the left ventricle with a transversely isotropic structure for the 

myocardium that is incompressible. They defined a local coordinate system 

( , ,R F C )X X X  which was orthogonal in the stress-free state. The RX  axis was aligned 

with the radial direction; the fibre axis FX   was oriented along the fibres and laid in a 

plane normal to the radial axis while the CX  axis was chosen along the cross-fibre 

direction. The form is 

  (5.2) 

( )
(

( )

1

2 2 2 2 2
2 3

2 2 2 2
4

2 RR FF CC

FF CC RR CR RC

RF FR FC CF

Q b E E E

b E b E E E E

b E E E E

= + +

+ + + + +

+ + + +

)

( )

 

where the  are the components of the Green-Lagrange strain tensor in the local 

coordinate system and the coefficients ,  are material constants and 

independent of the deformation and position in the body. 

ijE

1 2 3, , ,C b b b 4b

Bovendeerd and co-workers (1992) developed a finite element model with prolate 

spheroidal geometry for the left ventricle under the assumption of transverse isotropy and 

incompressibility of the tissue. They defined an orthonormal local coordinate system 

1 2 3, ,X X X  with the axis 3X  parallel to the fibre direction and 1X   and 2X  as cross-

fibre axes (Figure 5.2). They introduced a form for Q as follows 
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( )( ) ( )
( )

2 2
1 1 2 2 3 33

2 2
4 31 32

Q a I a I a E

a E E

= + +

+ +

E E
 (5.3) 

where ijE  are the components of the Green-Lagrange strain tensor E.   and ( )1I E ( )2I E  

are the following set of strain invariants 

 
( )1

11 22 33

trI
E E E

=

= + +

E E
 (5.4) 

 

 

( ) ( ) ( )2 2
2

2 2 2
12 23 31 11 22

22 33 33 11

1 tr tr
2

I

E E E E E
E E E E

 = − 

= + + −
− −

E E E

 (5.5) 

 

 

 
Figure 5.2 X3 axis is assumed parallel to the muscle fibres in each point (Bovendeerd and others 1992) 

 

In both of the above models the assumption of transverse isotropy is the key to the 

formulation of the strain energy function.  In chapter 2 it was however reported that 

according to the most recent investigations the ultrastructure of the myocardium exhibits 

distinct cleavage planes (LeGrice and others 1997; LeGrice and others 1995). Each plane 

is thereby defined by a sheet of interconnected muscle fibres invested in a sheath. 

Sheaths, in turn, are separated from adjacent planes by perpendicularly arranged strands 

of collagen. This structural arrangement, which suggests an orthotropic material 

symmetry, motivated some authors to develop a generalized form of the Guccione’s 
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formulation for Q (Costa and others 2001; Usyk and others 2000). Suppose that the 

orthonormal local coordinate system ( )F , ,S NX X X  is defined so that FX  is parallel to 

the muscle fibres, SX  is parallel to the sheets and perpendicular to the fibres and NX  is 

normal to the sheet plane. Then Q is defined for this orthotropic and incompressible 

structure as 

 

 
( )

( ) ( )

2 2 2 2

2 2 2 2

FF FF SS SS NN NN FS FS SF

FN FN NF NS NS SN

Q b E b E b E b E E

b E E b E E

= + + + +

+ + + +

2

)

 (5.6) 

 

where again are the components of Green-Lagrange strain tensor and b  the material 

constants. 

ijE ij

Recently, Nash and Hunter (2000) proposed a ‘pole-zero’ formulation of the pseudo-

strain energy function with eighteen material constants in the local coordinate 

system ( F , ,S NX X X  to describe the orthotropic behaviour of myocardium (Figure 5.3). 

 

Figure 5.3 Local coordinate system (XF,XS,XN) (LeGrice and others 1997) 
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This particular form was chosen to reproduce the highly nonlinear increase of the 

stiffness of the myocardium as the elongation reaches some practical upper limit (Figure 

5.4). The derivation of the explicit form of such a constitutive law requires three 

dimensional stress and strain measurements to provide sufficient experimental data. 

Because these histological measurements are not yet completed, they reduced the number 

of independent unknown material parameters on the basis of a number of assumptions 

about the microstructure of myocardium. They suggested in particular that the strain 

energy function is separable into individual expressions in terms of the stretch along each 

of the material axes and gave the following form for the pole-zero strain energy function  
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− − −

2

b
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 (5.7) 

 

where the a  and are material constants.  ,ij ijb ijk

It is clear from the above examples that this first type of approach is based on 

phenomenological and microstructural aspects and has the advantage of mathematical 

simplicity. The other advantage consists of the fact that there is a direct physical 

interpretation of the various material parameters and that they can therefore be used, 

among other, as controlling tools for certain aspects of the material behaviour, for 

example, the rigidity of the material in a defined direction.  

In the literature the use of local coordinate systems has often been accompanied by 

assumptions about the fibre architecture of the ventricular wall. On the one hand, this can 

be very helpful for the simplicity of numerical calculations but, on the other, it is not 

necessarily in agreement with the reality. For example, a prolate spheroidal coordinate 

system has been applied and it was assumed that the inclination angel is zero, i.e., the 

fibres are always parallel to the epicardial surface.  
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Figure 5.4 suggested stress-strain curves for each of the material axes (Stevens and others 2003) 

 

A disadvantage of this approach is that for finite element implementation stress and 

elasticity tensors must be transformed to the global coordinate system. It requires the 

transformation of a rank two and rank four tensor at every integration point for every 

element and at each iteration of the nonlinear solver which is computationally very 

expensive, especially if a large number of elements are needed to describe details of the 

geometry(Weiss 1994). 

 

 

5.2  Constitutive equations in the global coordinate system 
 

The important point when choosing this approach is that at first the fibre directions must 

be determined in the global coordinate system as a vector field throughout the entire 

myocardium. We thereby assume again that the tissue is in a preconditioned state and that 

the preferred direction of the tissue is determined by a vector field throughout the body. 

Additionally, we assume that the material is hyperelastic and that there exist a strain 

energy function that depends on the vector field. 

In the last chapter we saw that for a hyperelastic material the strain energy function can 

be expressed as a function of strain invariants taking into account the vector field which 
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determines the preferred direction of the material in each point.  In the case of a 

transversely isotropic material we had the following form which depends on five scalars 

1 2 3 4 5  , , , ,I I I I I

 ( ) ( ) ( ) ( ) ( )1 2 3 4 5, , , , , ,W W I I I I I =  C C C C N C N  (5.8) 

The scalars 1 2 3 4 5, , , ,I I I I I are defined in section 4.3 and is the vector field of fibre 

orientation. 

N

Models are documented in the literature where the authors proposed an explicit form for 

 and determined the material parameters with the use of experimental data. For 

practical reasons the determination of a specific form of the strain energy function which 

depends on five invariants is difficult, nevertheless, attempts have been made to define 

 for a subclass of transversely isotropic materials. It is thereby hypothesized that the 

tissue can be idealized as being composed of a noninteracting bundle of fibres and a 

matrix. The fibres are continuously distributed and there can be interactions between 

fibres and the matrix. Furthermore it is assumed that the material is incompressible which 

implies that , and that the matrix is isotropic. Upon postulating that the strain 

energy function can be written as the sum of three separated parts we have 

W

2 = =

W

3 1J I

 ( ) ( ) ( )matrix 1 2 fibres 4 interaction 1 2 4,W W I I W I W I I I= + + , ,  (5.9) 

 
matrixW  is the strain energy function of the matrix, W  the one of the fibres and W  

is related to the interaction of matrix and fibres.  

fibres interaction

Due to the lack of experimental data, the dependency on 5I  has been omitted in the above 

formulation because it has the smallest influence. It is intended to keep the functional 

form of W as simple as possible and the number of invariants compatible with the 

experimental evidence. A form for W  is chosen which depends on a minimal number of 

invariants and which can yield a good fit with experimental data. The dependency on 4I  

can moreover be replaced from the relation , which is sometimes 

more useful for the determination of the material coefficients from experimental data. 

4Iλ = = ⋅ ⋅N C N
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Along these lines, Humphrey and co-workers (I,II1990b) proposed a specific functional 

form for the strain energy function whereby they took into account the information they 

established experimentally with respect to geometrical structure and multiaxial 

mechanical properties for passive myocardium. Accordingly, they chose a polynomial 

form which depended only on two invariants 1I  and λ as follows 

2 3

  (5.10) 
( ) ( ) ( ) (

( )( ) ( )
1 1 2 3 1

2
4 1 5 1

, 1 1

3 1 3

W I C C C I

C I C I

λ λ λ

λ

= − + − + −

+ − − + −

)3

5They estimated mean values for the material parameters C C  from biaxial 

deformation experiments. With this form of W , the Cauchy stress tensor can be 

calculated from 

1 2 3 4, , , ,C C C

 
1

12 TW Wp
I

σ
λ λ

∂ ∂
= − + + ⊗

∂ ∂
I B FN NF  (5.11) 

where in agreement with the equation (4.90), 4I  is replaced with λ . 

Later, Novak and co-workers (1994) performed further biaxial tests observing similar 

protocols as Humphrey et al. and used the same functional form for the strain energy. 

They showed that the proposed constitutive equation could be used to describe the 

nonlinear and anisotropic behaviour found in the four regions, i.e., the middle portion of 

the interventricular septum, furthermore the inner, middle and outer layers of the lateral 

left ventricular free wall of the canine heart equally well with material parameters chosen 

appropriately for these four regions. In particular, specimens from the inner and outer 

portions of the LV free wall tended to be stiffer than those from the middle of the LV free 

wall and the septum. This finding suggests that the mechanical properties of the heart are 

qualitatively similar from region to region, but quantitatively different.  

Lin and co-workers (1998) performed biaxial tests using a similar protocol as Humphrey 

et al. on passive and activated specimens. They reported that the simplest polynomial 

energy function which fitted the experimental data for the passive material and which had 

zero energy in the unloaded state had 14 parameters. To reduce this number they used an 

exponential function rather than a polynomial one and gave the following form for the 

passive strain energy function 
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 ( ) ( )1 4 1, QW I I C e 1= −  (5.12) 

where  

  (5.13) ( ) ( )( ) (2
2 1 3 1 4 4 43 3 1Q C I C I I C I= − + − − + − )21

3

1

They were furthermore able to perform for the first time similar measurements on 

activated thin sheets of myocardium. In their tests, the active stress-strain responses were 

more linear than the passive ones. This finding suggested that the passive and actively 

contracting myocardium represent functionally two different types of materials which 

therefore require different strain energy functions to describe their properties. Yet, unlike 

the passive state, the best fit for the experimental data could be reached with the 

polynomial form. A peculiarity derived however from the active material behaviour. 

Upon activation, the muscle shortened. The strains during activation were referenced to 

the dimensions in the passive unloaded state, such that there could be active stress, and 

hence a nonzero energy developed at zero passive strain level (i.e. at stretch ratios = 1). 

They proposed the following form for the active strain energy function 

  (5.14) 
( ) ( )( ) ( )

( ) ( ) ( )

2
1 4 0 1 1 4 2 1

2
3 4 4 1 5 4

, 3 1

1 3

W I I C C I I C I

C I C I C I

= + − − + −

+ − + − + −

Due to the large amount and relative comprehensiveness of in vitro biaxial test data 

which has been used for the determination of the functional form and the estimation of 

material parameters described above, we expect that the constitutive equations (5.10), 

(5.12) and (5.14)  might be employed in analyses of the intact heart with more confidence 

than previous relations which were based on uniaxial experiments solely.  

The first advantage of the second approach involving the global reference system is that 

we do not need to make any a priori assumption or definition with respect the global 

geometry of the myocardium or the orientation of the fibres. A second advantage is 

related to the finite element implementation in that the stress and elasticity tensors can be 

computed in the global coordinate system without transformation. We can therefore use a 

fine mesh to describe details of the geometry and still expect a reasonable computation 

time. 
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Nevertheless, there is a disadvantage associated with the second approach. The 

mathematical dependence of the strain energy function on invariants is rather formal and 

it is not straightforward to give a direct and simple physical interpretation of the material 

constants. Nevertheless, in the next chapters we will see that the use of a strain energy 

function in the global coordinate system has significant practical advantages. E.g., it 

makes the use of commercial FE codes and their widely developed facilities possible. 
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CHAPTER 6 

 

FINITE ELEMENT MODELING OF THE 

LEFT VENTRICLE – GEOMETRICAL 

APPROXIMATIONS 

 

 
6.1  Introduction 
 

In the last chapters the fibrous architecture and the constitutive properties of the heart 

were discussed. But, in addition to the sophisticated fibre structure and material 

behaviour, the heart has a quite irregular geometry. Especially the structure of the highly 

trabeculated endocardium does not easily allow for a mathematical description. 

Accordingly, to gain an initial access to the study of heart mechanics, some radical 

simplifications of the geometry are helpful and actually necessary to obtain basic general 

results. The most important approximation consists of the assumption of an axisymmetric 

geometry for the left ventricle which was popular in early studies of the heart and was 

helpful for a better basic understanding of the heart function. Thereby, some investigators 

approximated the geometry of the left ventricle by a thin-walled cylinder, sphere or 

ellipsoid (Falsetti and others 1970; Sandler and Dodge 1963). In this case, the wall stress 

can be calculated analytically as a function of the inside pressure and of the geometrical 

dimensions, and the results can be regarded as a first approximation for the average stress 

in the heart wall (Huisman and others 1980). Other authors developed somewhat more 

complicated models. They modelled the left ventricle as a thick-walled cylinder, sphere 

or ellipsoid to estimate the transmural stress distribution in the wall (Ghista and Sandler 
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1969; Mirsky 1969; Wong and Rautaharju 1968).                   Usually, in particular in 

models treated analytically, it was supposed that the symmetry was preserved during the 

deformation.   

 

These simplifications of the geometry were usually accompanied by other 

approximations with respect to the material behaviour. For example, in early attempts for 

the modelling of the heart, assumptions like isotropy and linear elasticity of the material 

were widely used. Depending on the assumptions about the geometry, the material 

behaviour and the boundary conditions, these models yielded sometimes quite different 

predictions of the circumferential or longitudinal distribution of the wall stress in the 

myocardium (Huisman and others 1980; Yin 1985). These different predictions which 

sometimes could not be verified experimentally were the reason for partly controversial 

conclusions about the structure of the myocardium and heart function and emphasised the 

necessity for more investigations about the microstructure of the myocardium. 

 

Later experimental studies confirmed the nature of the fibre structure in the myocardium 

(Streeter and others 1966; Streeter and others 1969). Thereby, the existence of an 

interwoven network of the circumferential and transmural fibres was verified, but due to 

the complicated nature of the fibrous network, its structure could not be determined in 

detail. A number of investigators gave a mathematical formulation for the fibre 

architecture on the basis of certain simplifying assumptions. They supposed in particular 

that the fibres were distributed in separate thin layers parallel to the endocardial and 

epicardial surfaces (Arts and Reneman 1989; Arts and others 1982), and in each layer the 

fibres ran parallel to one another in a specified surface-parallel direction (Beyar and 

Sideman 1984a; Beyar and Sideman 1984b). Once the fibre direction field was given, 

transversely isotropic constitutive equations in the associated local coordinate system 

were developed to model the material behaviour.  

 

Analytic procedures are only possible with extremely limiting assumptions. More refined 

constitutive models and complicated geometries have to be treated numerically. Thereby, 

the Finite Element (FE) method lends itself for this purpose, as it is suited to treat 
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irregular solid geometries, boundary conditions and nonlinear multiphase constitutive 

properties. During the last twenty years there were a number approaches involving FE 

techniques in combination with experimental attempts including MRI measurements to 

formulate advanced models of the heart. A short review of the most important published 

finite element models of the left ventricle and their results is given in the following (Yin 

1985). 

 

Gould and co-workers (1972) defined a nonsymmetric geometry and showed that the 

transmural stress distribution depends on local wall curvature.  

 

Janz and co-workers (1978) used an axisymmetric geometry and emphasised the 

necessity to apply a finite deformation theory. They showed furthermore that material 

anisotropy and regional heterogeneity may exert a substantial influence on the stress and 

strain distribution in the myocardial wall. 

 

Pao and co-workers (1976) applied a nonsymmetric geometry and demonstrated that even 

for an isotropic linear elastic material model, local wall curvature and varying wall 

thickness can influence the distribution of wall stress considerably. 

 

Panda and Natarajan (1977) formulated an anisotropic linear elastic material model along 

with a nonsymmetric geometry and verified that the form of the assumed anisotropy may 

have an appreciable effect on the transmural stress distribution. 

 

Vinson and co-workers (1979) studied the effect of various regional heterogeneities of 

material properties on the basis of a nonsymmetric ventricular geometry. 

 

Arts and co-workers (1989; 1982) and also Beyer and Sideman (1984a; 1984b) worked 

with a symmetric geometry. They developed a model for the myocardium in which the 

tissue was assumed to be composed of a contractile fibre structure embedded in an 

incompressible fluid. Contractile fibre stress thereby depended on time, sarcomere length 

and velocity of sarcomere shortening. 
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Horowitz and Perl (Horowitz and others 1986; Perl and others 1986) created a 

nonsymmetric model in the form of a three dimensional reconstruction of the left 

ventricle which was based on the geometric data derived by Ritman et al. from computed 

tomography. The myocardial material consisted of a matrix in which fibres were 

embedded. It was thereby assumed that the matrix had a Poisson’s ratio of 0.45 and a 

constant Young’s modulus while the Young’s modulus and the stiffness of the fibres 

increased with increasing strain. The surface-parallel fibre structure included a linear 

variation of the fibre angle, from 60+ ° to the circumferential direction at the endocardium 

to at the epicardium. 60− °

 

Huyghe  and co-workers (1992) proposed a two phase axisymmetric FE model which 

allowed torsion about the axis of symmetry. They implemented an anisotropic quasi-

linear viscoelastic constitutive relation (Fung 1993) for myocardium which was 

considered to be saturated with intracoronary blood. Incompressibility was assumed, yet, 

the volume of the ventricular wall was variable since blood could be squeezed out of the 

wall. Active fibre stress depended on time, strain and strain rate and a transmural 

variation of the otherwise surface-parallel muscle fibre orientation was included. 

 

Bovendeerd and co-workers (1996; 1992; 1994) studied the dependence of local left 

ventricular mechanics on myocardial muscle fibre orientation. They used a thick-walled 

truncated ellipsoid of revolution for the geometry of the left ventricle. During a simulated 

ventricular cycle rotational symmetry was maintained, as a result of rotationally 

symmetric input parameters. Passive material behaviour included incompressibility and 

transverse isotropy. The muscle fibre orientation in the left ventricle wall was quantified 

by the helix fibre angle (here denoted as inclination angle), defined as the angle between 

the local circumferential direction and the projection of the fibre path on the plane 

perpendicular to the local radial direction. A transmural variation of the helix fibre angle 

from  at the endocardium to 60+ ° 60− ° at the epicardium was assumed.  In addition, a 

transverse fibre angle (here oblique or crossover angle) was used to model the continuous 

course of the muscle fibres between the inner and the outer layers of the ventricular wall. 
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This angle was defined as the angle between the circumferential direction and the 

projection of the fibre path on the plane perpendicular to the local longitudinal direction 

(Figure 6.1). The model for the contractile properties of the myocardium was similar to 

the approach presented by Arts (1982). 

 

      
Figure 6.1 Fibre orientations is quantified by two angles α helix and α trans (Bovendeerd and others 1994) 

 

Extensive work on the mechanics and microstructure of the heart has been performed by 

the bioengineering research group at the University of Auckland, Auckland, New 

Zealand (P. J. Hunter and co-workers). They developed various three dimensional finite 

element models of the canine heart which were based on a prolate spheroid coordinate 

system and a defined fibre structure (Hunter and others 1992). The orientation of the 

fibres at and between the epicardial and endocardial surfaces was measured and 

interpolated throughout the ventricular wall (Figure 6.2). In their early models they used 

transversely isotropic constitutive equations. The FE code was derived from a high order 

Hermitian element formulation (Nielsen and others 1991a; Nielsen and others 1991b). 
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Figure 6.2 Schematic diagram of specially designed apparatus for the measurement of fibre orientation 

(Nielsen and others 1991a) 

 

Later they analysed the three dimensional arrangement of the ventricular muscle cells and 

the associated extracellular connective tissue matrix in dog hearts. The existence of an 

ordered laminar arrangement of the myocytes with extensive cleavage planes between the 

muscle layers was reported. Thereby, these planes were found to run radially from the 

endocardium toward the epicardium in transmural sections and to coincide with the local 

muscle fibre orientation in tangential sections. They concluded that the ventricular 

myocardium is not a uniformly branching continuum but is organised in a laminar 

hierarchy in which it is possible to identify three axes of material symmetry at any point 

(LeGrice and others 1995). They gave in particular a mathematical formulation for the 

laminar structure of the heart (LeGrice and others 1997) and formulated an orthotropic 

material model called “pole-zero” law which is discussed in chapter five (Figure 6.3). 
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Figure 6.3  Schematic of fibrous-sheet structure of cardiac tissue (LeGrice and others 1995) 

 

Another group, at the University of California, San Diego (A. D. McCulloch and co-

workers) followed the work of Hunter et al. and developed a finite element model of the 

rabbit ventricular anatomy in a prolate spheroidal coordinate system. They studied among 

other its fibre architecture, as before with this assumption that the fibres were distributed 

in parallel layers (Vetter and McCulloch 1998). Recently, they have used a three 

dimensional finite element model to investigate the effects of material orthotropy on the 

regional mechanics of the canine left ventricular wall at end-diastole and end-systole 

(Usyk and others 2000). 
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Figure 6.4 (A) Schematic of a block cut from a tissue slice. (B) Micrograph of unstained cryosectioned 

tissue showing fibre orientations (Vetter and McCulloch 1998). 

 

The results published so far are based on more or less idealised models of the heart which 

enable an understanding of general cardiovascular physiology. They are furthermore 

mostly derived from animal preparations. In order to provide further insight into 

cardiodynamics, local deformation patterns of the myocardium as function of time and in 

particular pathologic developments including fibre disarray, accurate information about 

the three dimensional motion of the human heart as well as on the detailed fibre 

architecture and a constitutive equation which mimics the material behaviour of the 

myocardium and the dependence of it on time are necessary (Yin 1985). 

 

In this chapter we use the method of finite elements to construct a mathematical model 

for the left ventricle. We begin with an idealized geometry and attempt to implement the 

constitutive equation introduced in the last chapter with an artificially generated 

orientation vector field, which is comprehensively discussed in chapter 3.  In chapter 8 

we will further develop the model on the basis of a realistic geometry obtained from a 

post mortem human heart. 
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6.2  Geometry and mesh 
 

As a first attempt for the simulation of contraction process of the heart we start with a 

simple geometry and investigate how the change of the components of the active stress 

tensor influence the deformation and stress distribution in the heart wall. There are 

several methods to fit a geometry to digitized data representing a fibre orientation field 

(Cryer and others 1997; Hunter and others 1992). In this chapter we use a graphical 

method for the sake of simplicity. A real geometry of the left ventricle will be discussed 

in chapter 8. 

 

Consider the equation of an ellipse in a global Cartesian coordinate system ( ), ,X Y Z  in 

the  plane and in the region   0Z = 0, 0x y≥ ≤

 
2 2

2 2 1x y
a b

+ =  (6.1) 

we choose the values 

 
0.5
1.0

a
b
=
=

 (6.2) 

with constant parameters a and b and create a first curve. Then we choose  

 
0.3
0.9

a
b
=
=

 (6.3) 

and create a second curve. 

If we connect these two curves with the lines 0x = and 0y = , subsequently rotate the 

associated surface around the Y-axis (Figure 6.5A), the resulting object is an ellipsoid. 

The values of parameters a and b are quite arbitrary at this time, but the geometry and 

mesh can be scaled later on with graphical tools. 

 

In this fashion a prolate spheroidal geometry was produced, then, a mesh consisting of 

more than 11,700 eight-node hexahedral elements was introduced with the help of hex-

mesh generator of the commercial software package MSC-Marc Mentat (Figure 6.5B).  
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                               A                                                                                           B 

Figure 6.5 (A) Connected curves from equation (6.1). (B) generated mesh from prolate spheroidal 

geometry 

 

Next, the measured fibre trajectory file (Figure 6.6) and the mesh data file were merged 

into one common data file. With the help of graphical facilities of the applied software 

the mesh was scaled and the elements were adjusted so that the mesh covered the fibres 

totally (Figure 6.7). Apparently, with this method, the symmetries of the geometry were 

lost, yet, the resulting shape was still much smoother than a real geometry of the left 

ventricle which will be constructed from digitized data later on. 

 

     
Figure 6.6 Measured fibre trajectories as explained in chapter 3 
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Figure 6.7 Adjusted mesh to the fibres 

 

 

6.3  Fibre orientation field 
 

In chapter 3 a method was introduced which allows to construct a fibre orientation field 

for a given mesh from a set of digitized 3D fibre data so that for each element a vector is 

defined which shows the orientation of the fibres in that element. These vectors are 

normalized and saved in a file for later numerical use. The advantage of this method is 

that one can attribute a fibre structure taken from a real heart to an originally prolate 

spheroidal geometry which is gradually being deformed during this process to 

accommodate the fibre field but still keeps a smooth outline (Figure 6.7). 

 

 

 

6.4  Boundary conditions 
 

The myocardium is surrounded by the pericardial sac. At the basis, furthermore, the left 

ventricle is restrained by the aorta, the atria and the connections to the right ventricle. 

Quantitative information on these boundary conditions is not available, so one has to 

make appropriate assumptions in order to suppress an undesired rigid body displacement 

of the left ventricle during the finite element calculation. In our model of the left 
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ventricle, therefore, the motion of the basal plane for the elements which were in sub-

epicardial and mid-wall layers was suppressed. 

 

A further boundary condition derives from the intracavital blood pressure acting on the 

endocardial surface. The blood pressure in a real ventricle depends on time and location. 

In order to determine the spatial distribution of the pressure as function of time, the fluid 

dynamics of the blood in the ventricle has to be considered. However, since the pressure 

gradients in the left ventricle during ejection are mostly small (typically less than 10 mm 

Hg) in comparison with the absolute pressure, we discarded local variations and assumed 

a uniform parabolic dependence of the pressure on time. In the literature, the dependence 

of the blood pressure of the left ventricle on time is reported as shown in Figure (1.7). 

The curve  

  

  (6.4) 2944.38 245.54 0 0.2P t t t= − + ≤ ≤

 
approximates this dependence reasonably well. It has a maximum at  

 
15.96 kpa
0.13 sec

Max

Max

P
t

=
=

 (6.5) 

which corresponds to 120 mmHg, the normal systolic blood pressure for a healthy heart.  

We assumed that this pressure is uniformly applied to the entire endocardial surface 

(Figure 6.8). 

 

 
Figure 6.8 Curve of blood pressure according to equation (6.4) 
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6.5  Strain energy function 
 

In chapter 5 we introduced various strain energy functions for myocardial tissue which 

have been proposed during the last twenty years. For the simulation of contraction 

processes, however, the formulation proposed by Lin and Yin (1998) for the active phase 

of the heart appears to be most appropriate 

 

  (6.6) 
2

0 1 1 4 2 1
2

3 4 4 1 5 4

( 3)( 1) ( 3)

( 1) ( 3) ( 1
actW C C I I C I

C I C I C I

= + − − + −

+ − + − + − )

where  

 1

4

trI
I
=
= ⋅ ⋅

C
N C N

 (6.7) 

The following values for the material parameters are chosen 

 

1

2

3

4

5

7.89
66.20
51.12
40.12
0.0032

C
C
C
C
C

= −
=
=
=
=

 (6.8) 

The units are given, as in Lin and Yin (1998), in 2g cm . These material parameters 

correspond to the phase where the myocardial tissue exhibits its stiffest behaviour during 

contraction according to the biaxial tests of Lin and Yin (1998). We therefore expect that 

these values characterize the upper limit for stress tensor in the heart wall.   

 

 

6.6  Contraction 
 

Systolic contraction is modelled by defining the total second Piola-Kirchhoff stress tensor 

S as the sum of the passive three-dimensional stress tensor S   derived from the strain 

energy function(6.6) and an unknown active three-dimensional stress tensor S  which 

passive

active
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must be defined in the global coordinate system. Accordingly, we can write the total 

Piola-Kirchhoff stress tensor S as follows 

 passive active= +S S S  (6.9) 

We note that S  has to be given in the global coordinate system because all 

calculations will be done in the global rectangular coordinate system

active

( , , )i j k

F

. As 

mentioned above, for each element, there is a fibre orientation defined as a vector, which 

we denote by . We choose this direction as the positive direction of the 1′e X axis, the 

axis along which the fibres are oriented in the middle point of the considered element. A 

second vector e can be defined as the vector product of 2′ 1′e  and the vector as −k

 2 1′ ′= − ×e e k  (6.10) 

 
because the symmetry axis of the original spheroid was chosen along the Z axis of the 

global coordinate system ( , , )i j k . 2′e  will therefore be directed toward the inside of the 

geometry. We choose it as the unit vector along the assumed sheet axis SX , and it is 

perpendicular to the FX  andZ axes. The third vector 3′e can be defined as 

 3 1 2′ ′ ′= ×e e e  (6.11) 

This vector defines the normal axis NX which is perpendicular to FX  and SX . 

 

With these three perpendicular unit vectors 1 2 3, ,′ ′ ′e e e  we define the local rectangular 

coordinate system ( , , )F S NX X X  in the middle point of each element. The relation 

between the unit vectors  

 { }
1

2

3

,m m k mkδ
′ 

 ′ ′ ′ ′= ⋅ 
 ′ 

e
e e e e

e
=  (6.12) 

of the local coordinate system ( , , )F S NX X X  and the unit vectors 

 { } ,n n l nlδ
 
 = ⋅ = 
 
 

i
e j e e

k
 (6.13) 
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of the global coordinate system ( , , )X Y Z , is given by the transformation matrix Q 

  (6.14) 
11 12 13

21 22 23

31 32 33

q q q
q q q
q q q

 
= 
 
 

Q 


with the components 
 mn m nq ′= ⋅e e  (6.15) 

as follows 

 { } { } , 1, 2,m n m n′ =e Q e 3=

)

 (6.16) 

 

If we denote the second Piola-Kirchhoff stress tensor in the local coordinate system 

( , ,F S NX X X  with , this tensor in the global coordinate systemactive′S ( , , )X Y Z   is 

determined by 

  (6.17) T
active active′=S Q S Q

 

In order to be able to execute the numerical calculations, we first define the orientation 

vector for each element, then define the local coordinate system and determine the 

transformation matrix Q.  Subsequently, we can determine the components of the active 

stress tensor S  in the local coordinate system (active′ , , )F S NX X X  and apply the 

transformation (6.17), such that the components of the active stress tensor S  in the 

global coordinate system

active

( , , )X Y Z are known.  As explained above, furthermore, the 

blood pressure inside the left ventricle is approximated with a parabola. To determine the 

values of the components of the stress tensor in the local coordinate system which are 

necessary in each increment to equilibrate the inside pressure, we introduce small values 

for the stress components and increase them slowly until the contraction sets in.  

 

The first calculations were performed with an active stress tensor which contained only 

one component  in the fibre direction, and it was assessed which minimal 

value of  was necessary to overcome the intracavital pressure. In our finite 

element calculations the pressure increases incrementally whereby the number of 

( , )activeS F F′

, )F F(activeS ′
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increments can arbitrarily be chosen. The values for the stress component   

have therefore to be determined sequentially according to the pressure increments.  

( , )activeS F F′

( , )F F

 

From MRI, among other, we know that there are three main features regarding the 

deformation process during the contraction of the heart. These features are wall 

thickening, longitudinal shortening and a twisting rotation. Any realistic simulation of 

contraction has to reproduce these motions. Accordingly, we began to analyse the 

components of the active stress tensor and its values in view of these effects. We found in 

particular that the component ( , )activeS F F′  alone can not produce all of these effects, 

actually, as we see in Figure 6.9, contraction only with ( , )activeS F F′  caused longitudinal 

elongation of the left ventricle instead of shortening.  

 

          
                                   A                                                                                           B 

Figure 6.9 Active stress tensor is defined only along the fibres. (A) Before contraction. (B) After 

contraction.  

It was therefore necessary to add further components to active′S  which induce longitudinal 

shortening and rotation. In addition to ( , )activeS F F′ , i.e. the active stress along the fibres, 

a normal component , i.e. an active stress in cross-fibre direction was 

introduced which is a function of the active stress along the fibres . This 

assumption is in particular in agreement with the biaxial experimental tests in barium-

contracted rabbit myocardium (Lin and Yin 1998).  

( , )activeS N N′

activeS ′
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Suitable values for  and ( , )activeS F F′ ( , )activeS N N′  were sought by trial and error, but it 

was thereby taken into account that the biaxial measurements had shown that 

 could be between 20% and 62% of the( , )activeS N N′ ( , )activeS F F′ . The exact relation 

between  and  is however unknown (Lin and Yin 1998). We 

performed the calculations for different values of the two components of the stress tensor 

and compared the resulting deformations with MRI measurements of the left ventricle. 

From these calculations it could finally be concluded that at least one further component 

of the stress tensor has to be nonzero because with an active stress tensor with fibre and 

cross-fibre components only as 

( ,S N )N activeS ′active′ ( ,F )F

 

  (6.18) 
( , ) 0 0
0 0 0
0 0 ( ,

active

active

active

S F F

S N N

′ 
′ = 
 ′ 

S
)




 
the contraction itself could be simulated but it was associated with some swelling of the 

geometry, which disturbed the symmetry of the model. To our best knowledge this effect 

has been never reported and could not be seen in our MRI images either (Figure 6.10). 

 

 
Figure 6.10 Contraction with fibre and cross-fibre component of stress tensor. Swelling are shown in the 

picture 
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The dense crosslinking of the myocytes suggested that a shear component exists in the 

active stress tensor; therefore, we decided to use an active stress tensorS   in the 

following form 

active′

 
( ), 0 0
0 0 (
0 ( , ) (

active

active active

active active

S F F
S S N

S N S S N N

′ 
 ′ =  
 ′ ′ 

S , )
, )

′  (6.19) 

 
This form produced deformations which were essentially in agreement with MRI and 

MRT sequences (Figure 6.11). 

 

         
Figure 6.11 Contraction with fibre, cross-fibre and shear component of stress tensor 

 

It should be remembered at this point that (6.19) represents the second Piola-Kirchhoff 

stress tensor in the local coordinate system of each element which has to be transformed 

according to equation (6.17) to the global coordinate system and added to the passive 

second Piola-Kirchhoff stress tensor as outlined in (6.9). Since our material model is 

purely transversely isotropic, it contains no information with respect to the probable 

orthotropic structure of the tissue. Accordingly, we can only speculate about the value of 

the shear component . We concluded from the simulations that the shear 

component  must be between 25% and 50% of the cross-fibre 

component .  

( ,activeS S N′

)S N

)N

)

( ,activeS ′

( ,activeS N′
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In a healthy adult heart, the ejection fraction, i.e. the volume of the output stroke to the 

end diastolic volume, is about 60%. This reduction of the volume is produced primarily 

by wall thickening, furthermore by radial motion of the epicardium toward the inside of 

the cavity and longitudinal shortening of the ventricle. It is thereby well known that the 

wall thickening plays the major role in contraction. Some studies suggest that the laminar 

architecture of the left ventricular myocardium may in fact be critical for ventricular 

mechanics, in particular, it has been postulated that, whereas fibre shortening is similar at 

the epicardium and endocardium and from apex to base (MacGowan and others 1997; 

Rademakers and others 1994; Waldman and others 1985), local wall thickening increases 

significantly from subepicardium to subendocardium (Rademakers and others 1994; 

Sabbah and others 1981; Waldman and others 1985) and may also be greater at the apex 

and midventricle than at the base (Azhari and others 1995; Rademakers and others 1994; 

Takeda and others 1992). There are various theories addressing the mechanism of wall 

thickening.  

 

Some investigators suggested that rearrangement of the lamina in the myocardium is 

mainly responsible for wall thickening (MacGowan and others 1997; Rademakers and 

others 1994; Waldman and others 1985). Recently, it was hypothesised that, in addition 

to sliding of adjacent sheets, the myocardial sheets are dynamic structures that deform 

during contraction and both mechanisms i.e. sliding and deformation are important for 

the regional wall thickening (Costa and others 1999). In our model we do not have any 

laminar structure, so wall thickening during the contraction is the result of the 

longitudinal shortening and the radial motion of the epicardial surface toward the inside 

of the model only. Yet, the deformation of the elements can be compared with the 

suggested deformation of the sheets (Costa and others 1999). In order to reach a realistic 

amount of ejection which is about 60%, finally, we must apply somewhat higher forces, 

i.e., correspondingly bigger components of the stress tensor than is necessary for 

equilibrating the intracavital pressure.  
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The constitutive equation and the model of contraction were implemented within the 

framework of the commercial software MSC-Marc Mentat. In the next chapter the 

various aspects of the implementation will be studied in detail. 
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CHAPTER 7 

 

FINITE ELEMENT MODELING OF THE 

LEFT VENTRICLE – GEOMETRICAL 

APPROXIMATIONS II 

 

 
In the last chapter we constructed a finite element model of the left ventricle. Thereby, 

we introduced the constitutive equation, the boundary conditions and a method for the 

implementation of contraction. Furthermore, large displacements were taken into 

account, i.e., the analysis was nonlinear, and the total Lagrangian method has been used. 

Therefore, the second Piola-Kirchhoff stress and Green-Lagrange strain tensors had to be 

used for the calculations. 

 

In this chapter, we introduce the active stress tensor and assess the results of the 

simulation under the conditions of active contraction. In particular, two important 

characteristics of contraction will be discussed, i.e., the deformation pattern and the local 

wall thickening, which are basic determinants for the stroke volume. 

 

 

7.1  Simulation of contraction 
 

In chapter 5 various constitutive equations were discussed, which during the last decades 

have been proposed to describe the material behaviour of myocardial tissue. As 

mentioned in chapter 5, some of them have already been used for finite element 
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implementations by other investigators. Due to experimental restrictions in most of these 

approaches, the constitutive equations which were originally proposed for passive 

material behaviour have consistently been used also for the formulation of FE models of 

the active (systole) along with the passive state (diastole) of myocardial tissue. 

 

The distribution of active stresses in myocardial tissue has not yet been determined 

experimentally (Huisman and others 1980b; Yin 1985) which is not astonishing in view 

of the practical difficulties associated with such a task. Some investigators have 

nevertheless developed theories about active stresses in the heart wall; they used 

constitutive equations either of passive myocardium or derived from theoretically based 

active stress simulations for finite element implementation of contraction (Arts and others 

1982; Bovendeerd and others 1992; Huyghe and others 1992; Zahalak and others 1999).  

 

However, these models have only partially been successful in modelling the 

experimentally measured value of stroke volume or a realistic deformation pattern of the 

myocardium during contraction; in particular, geometrical effects like wall thickening, 

longitudinal shortening and rotational motion of the myocardium have not yet been 

satisfactorily described (Bovendeerd and others 1996; Bovendeerd and others 1994). The 

published results confirm that more complicated mechanisms are involved in the motion 

of the heart, which to some extent still defy modelling. 

 

In the following, we try to reproduce realistic and inhomogeneous deformation patterns 

as they are observed under clinical conditions and study the dependence of them on 

material behaviour and orientation of the fibres. 

 

For this purpose, we use, as mentioned in the last chapter, a constitutive equation of 

active myocardial tissue according to Lin and Yin (1998), which was based on biaxial 

experimental tests (Equation 6.19). This equation describes significantly stiffer material 

than the other equations, proposed by the same authors for myocardium in passive state 

(Lin and Yin 1998; Novak and others 1994), but has a little different functional form. 

Yet, the material behaviour of active tissue changes with the time, an effect, which has 
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not yet been studied such that we are forced to use the constitutive equation that 

characterizes the behaviour of the fully contracted tissue. Thereby, we do not assume any 

laminar structure or fibre rearrangement in the material. The existence of such structures 

or fibre rearrangements, however, is expected to influence the procedure of contraction 

significantly. In particular, we expect that the values of the components of the applied 

second Piola-Kirchhoff active stress tensor active′S , which are necessary to simulate the 

contraction, are therefore bigger than the real values. 

 

We define now the values of the components that must be added to the passive stress 

tensor in each increment in order to simulate active contraction. For simplicity, we 

assume that these values are equal for all elements and they do not have any dependence 

on time or microstructure of the fibres like sarcomere length or the velocity of sarcomere 

shortening. 

 

We set the incremental values of the second Piola-Kirchhoff active stress tensorS  as 

follows   

inc
active′

  (7.1) 
3 0 0
0 0 0.6
0 0.6 1.8

inc
active

 
′ = 
 
 

S 


Here we assumed that the value of ( , )activeS N N′  is about 60% of ( , )activeS F F′   , and the 

value of S  is about 33% of ( ,active S N′ ) ( ,activeS N )N′ . inc
active′S will be added to the passive 

stress tensor in each increment, such that the number of increments determines the final 

level of active stress. All values of the stress components in inc
active′S  are given in kPa. 

 

In a first step, the contraction process is modelled with 30 increments. Figures (7.1A) and 

(7.2A) show the mesh before the onset of the deformation. The results of the simulation 

are shown in Figures (7.1B) and (7.2B). All values of the maximal principal Cauchy 

stresses are given in Pa. 
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A 

 

 
B 

Figure 7.1 FE implementation of contraction, up view (A) before deformation (B) after deformation 
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A 

 

 
B 

Figure 7.2 FE implementation of contraction, front view (A) before deformation (B) after deformation 

 

The deformation of the endocardial surface is shown in Figure (7.3). Here, the volume of 

the left ventricle reduces from the initial value of 137ml to the final value of 102ml. 
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                              A                                                                                                B 

Figure 7.3 Deformation of endocardial surface, front view (A) before contraction (B) after contraction with 

30 increments 

 

Next, we increase the number of increments to 50 and simulate the contraction again. 

Figure (7.4) shows the endocardial surface. 

 

 
Figure 7.4 Deformation of the endocardial surface after 50 increments 

 

In this case, the volume of the left ventricle reduces from the initial value of 137ml to the 

final value of 85 ml. The finite element implementation is shown in Figure (7.5). 
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A 

 

 
B 

Figure 7.5 FE implementation of contraction, front view (A) before deformation (B) after deformation 

 

 

Finally, we increase the number of increments to 70 and simulate the contraction. The 

endocardial surface and FE implementation are shown in Figures (7.6) and (7.7), 

respectively. 
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Figure 7.6 Deformation of endocardial surface with 70 increments 

 

In this case, the volume of the left ventricle reduces from the initial value of 137ml to the 

final value of 75 ml. 

 

It is seen that the ventricular volume does not reduce with the same rate as the number of 

increments increases, but the rate of volume reduction decreases consistently. This effect 

can be explained in that more resistance against the deformation develops as the radius of 

curvature of the ventricle decreases. At the same time, areas exhibiting high stresses 

develop, which can be seen in red in Figure (7.7). This is particularly well apparent on 

the endocardial surface.  

 

It has been observed already earlier that the myocardial wall stress can not be measured 

under in vivo conditions. Nevertheless, in a number of published mathematical models 

attempts have been made to estimate the stress distribution in the ventricular wall. Some 

of these models give information about the stress distribution over the thickness of the 

wall as well. Given the experimental uncertainty, it is not astonishing that large 

differences between the stresses were predicted by the various models for the same 

cardiac geometry(Huisman and others 1980a; Huisman and others 1980b; Yin 1981; Yin 

1985). As a general rule, predicted peak values of the wall stress in most models are 

around 100 kPa (Bovendeerd and others 1992; Bovendeerd and others 1994; Horowitz 

and others 1986). 
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Since the properties of the myocardial tissue change dramatically during the cardiac 

cycle, serious scepticism concerning the calculated stress distributions is indicated, in 

particular as a considerable experimental uncertainty exists likewise with respect to the 

constitutive properties of the cardiac material. If it is attempted to reproduce the 

inhomogeneous deformation patterns as they are observed under clinical conditions while 

applying constitutive equations of active myocardial tissue according to Lin and Yin 

(1998) it is found that the value of the maximal principal Cauchy stress increases in 

comparison with earlier models using a smoother geometry. This confirms that other 

mechanisms, for example, possible effects associated with the layered structure of the 

myocardium suggested by LeGrice and co-workers (1995), are necessary to describe the 

contraction completely and produce a physiologic stroke volume with lower values of the 

maximal principal Cauchy stresses. 
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A 

 

 
B 

Figure 7.7 FE implementation of contraction, front view (A) before deformation (B) after deformation 
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7.2  Wall thickening 
 

Because of its significant contribution to the stroke volume, wall thickening is of 

particular interest as a functional measure. In order to assess wall thickening, we consider 

short axis cross section of parallel equidistant planes exhibiting the geometry of the left 

ventricle before and after deformation (Figure 7.8). The geometry at the end of 

contraction is reconstructed from the deformed mesh of Figure (7.7).  

 

                     
                                    A                                                                                                 B 

Figure 7.8  Cross section of parallel planes with the geometry of the left ventricle (A) before deformation 

(B) after deformation 

 

We merge both series of cross sections to allow for a comparison (Figure 7.9). 

In these Figure, the deformed curves are shown in red. 

 

Figure 7.9 shows that, as a general rule, local wall thickening in each cross section has an 

irregular distribution but it is remarkable that in cross sections 3, 4, 5 and 6 which are at a 

distance between 2.4 cm and 4.5 cm underneath the base, maximal wall thickening can be 

more than 40%. A real heart has a quite complex geometry, especially in the apical area. 

This area can in particular not be approximated by a deformed spheroid in a 

straightforward manner and the results of the simulation in this area must therefore be 

interpreted carefully. 
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Figure 7.9 Cross sections of deformed (or contracted in red) and undeformed (in black) geometry are 

compared together 

 

 

7.3  Material behaviour 

 

In subsection 7.1 we introduced the incremental values of second Piola-Kirchhoff active 

stress tensorS  . It is not always easy to estimate these values; actually large estimated 

values can quickly cause numerical problems. An alternative method for the simulation 

of the contraction is to define the total second Piola-Kirchhoff active stress tensor 

inc
active′

total
active′S  

and improve the subroutine so that the program determines the number of necessary 
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increments, the time distribution of increments and the best value of incremental second 

Piola-Kirchhoff active stress tensor inc
active′S

total
active =

0 1

3 4

C C
C I

= +

 . In this later method the boundary conditions 

must be corrected and instead of the equation (6.4) for the pressure we must define a 

constant mean value for the inside pressure. This method reduces the number of 

increments and the time of calculation remarkably. Because we want to compare the 

results of simulation of different constitutive equations, we use this later method with 

constant inter ventricular pressure of 14 kPa and defined total second Piola-Kirchhoff 

active stress tensor  as in equation (7.2).   total
active′S

activeW I

2cm

1

2

3

4

5

C
C
C
C
C

=

4 1

( 1

C I
λ λ= −W I

  (7.2) 
140 0 0

0 0 21
0 21 84

 
′ 
 
 

S 


)

We used the same mesh and boundary conditions as explained in subsection 7.1. 

Different constitutive equations are implemented, to determine the influence of material 

behaviour on pattern of deformation, especially irregularities of deformed endocardial 

surfaces. 

The first constitutive equation is equation (6.6), which shows the material behaviour of 

active myocardium (Lin and Yin 1998) and was used for the simulations of the last 

subsections (Figure 7.10A). 

 
2

1 4 1 4 2 1
2

4 1 5 4

( , ) ( 3)( 1) ( 3)

( 1) ( 3) ( 1

I I I C I
C I C I

− − + −

+ − + − + −
 (7.3) 

where the material parameters (in g ) are chosen as follows 

 

7.89
66.20
51.12
40.12
0.0032

−
=
=
=
=

 (7.4) 

The second implemented material behaviour is the constitutive equation of passive 

myocardium (Equation 5.10)  

  (7.5) 
2 3

1 1 2 3 1
2

5 1

( , ) ) ( 1) ( 3)

( 3)( 1) ( 3)

C C C I
C I

λ

λ

+ − + −

+ − − + −

where the material constants are  
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1

2

3

4

5

2.753
15.01
0.003

7.356
5.405

C k
C k
C
C k
C k

Pa
Pa

kPa
Pa
pa

=
=
=
= −
=

 (7.6) 

Figure (7.10B) shows the results of simulation. 

In chapter 5 we explained that a transversely isotropic material can be idealized as being 

composed of a noninteracting bundle of fibers and a matrix. The fibers are continuously 

distributed and can interact with the matrix. 

We would like to compare the behaviour of this isotropic matrix with our transversely 

isotropic constitutive equations. We assume that activated matrix behaves like a Mooney-

Rivlin material  

  (7.7) 1 2 10 1 01 2 11 1 2

2 3
20 1 30 1

( , ) ( 3) ( 3) ( 3)( 3)

( 3) ( 3)

W I I C I C I C I I
C I C I

= − + − + − −

+ − + −

comparison of (7.7) and (7.3) shows that both equations have  similar polynomial 

dependence on 2I and 4I respectively, so we decided to choose Mooney-Rivlin material 

parameters (in 2
g

cm ) as follows (Figure 7.10C) 

 

10

01

11

20

30

40.12
0.0032

7.89
66.20
0.0

C
C
C
C
C

=
=
= −
=
=

 (7.8) 

As the forth material we choose a linear elastic material behaviour for the matrix with 

assumed E modulus and Poisson’s ratio as follows (Figure 7.10D) 

 200
0.48

E kPa
ν
=
=

 (7.9) 
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                                     A                                                                                              B                                         

                         
                                    C                                                                                               D 

Figure 7.10 (A) Active material, (B) Passive material, (C) Mooney-Rivlin material, (D) Linear elastic 

material 

 

In these simulations of contraction, the volume of the left ventricle reduces from original 

value of 137 ml to the final value of 106ml for active material (7.3), 110 ml for passive 

material (7.5), 107 ml for Mooney-Rivlin (7.7) , and 108 ml for linear elastic material 

(7.9). 

Figure 7.11 shows cross section of the deformed geometry with three planes parallel and 

about 2cm under the base (Figure 7.11A), 3cm under the base (Figure 7.11B) and 4cm 

under the base (Figure 7.11C). 

Comparison of these Figures show that how material behaviour can influence the pattern 

of deformation, even though all other conditions are the same.  
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   B 
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Figure 7.11 Cross section of three parallel planes with deformed geometry for different material behaviour 
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7.4  Fibre orientation 
 

It is instructive to know how fibre orientation can influence the pattern of deformation. 

We choose another digitalized fibre orientation (Figure 7.12), from a pig heart in systole 

state, and with the method of chapter 3 produce a new fibre vector field for the same 

geometry as used in last subsections. Figure 7.12A shows left ventricle of a human heart, 

where Figure 7.12B shows the left ventricle of a pig heart. Both hearts are digitized in 

similar spatial situations i.e. the right ventricles in both figures are in the left side. 

Apparently these two fibre orientations produce different fibre vector fields for the same 

geometry. 

 

         
                                       A                                                                                          B 

Figure 7.12 Fibre orientation of the left ventricle (A) human heart (B) pig heart 

 

We simulate the contraction with the same second Piola-Kirchhoff active stress tensor 

 as in equation (7.2) and the same boundary conditions as in last subsections. Figure 

(7.13B) shows the results of simulation for active material (7.3) with coefficients(7.4). 

total
active′S

Deformed endocardial surface of Figure (7.10A) is shown again for the comparison 

(Figure 7.13A). These figures show that change in fibre orientation can change the 

pattern of deformation and the stroke volume significantly. In this case the volume of the 

left ventricle reduces from the initial value of 137 ml to the final value of 116 ml (Figure 
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7.13B), which is 10 ml less than the same implementation with last fibre vector field 

(Figure 7.13A). This means that the stroke volume has been reduced more than 30%.  

 

                     
                                    A                                                                                               B 

Figure 7.13 Deformed endocardial with the fibre orientation of (A) human heart (B) pig heart 

 

Cross sections of these two deformed endocardial surfaces with three planes parallel to 

base, and about 2cm, 3cm and 4cm under the base respectively, are shown in Figure 

(7.14). In these figures red and black curves show cross sections of the deformed 

geometry with the new and old fibre orientations respectively. 

These figures show that even for a very smooth geometry and same boundary conditions 

and material behaviours, fibre orientation has a remarkable influence on local 

deformation of the endocardial surface.  

Differences in fibre structures of the left ventricle in diastole and systole, as well as the 

geometrical details of the apex need deeper studies. These details could play an essential 

role in local wall thickening i.e. stroke volume, and stress distribution in the heart wall.  

In the next chapter we begin to study the contraction of a more realistic geometry of the 

left ventricle.   
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Figure 7.14 Cross section of three parallel planes with deformed geometry for different fibre orientations 
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CHAPTER 8 

 

FINITE ELEMENT MODELING OF THE 

LEFT VENTRICLE – REALISTIC 

GEOMETRY 

 

 
In the last two chapters we developed a finite element model of the left ventricle. We 

thereby used a geometrical approximation and studied the pattern of contraction, wall 

thickening and the effect of different kinds of material behaviour. In this chapter we 

attempt to refine the geometry and study its effect on local wall thickening. We use the 

active material behaviour of equation (6.6), the boundary conditions as described in 

subsection 6.4, and follow the same method as worked out in depth in chapters 6 and 7, 

respectively. 

 

 

8.1  Simulation of contraction 
 

In a realistic left ventricular geometry, the local radius of curvature at different locations 

of the endocardial and epicardial surfaces can be positive or negative and exhibit large 

variations. Because the local geometry has a significant influence on the stress 

distribution and the deformation pattern, the geometrical details have to be taken into 

account in the model. Yet, the construction of a network, i.e. the meshing procedure, will 

be more difficult as the geometry becomes more complicated. Manual meshing is very 

time-consuming while automatic meshing requires extensive testing and manual 
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adaptation. The development of a suitable mesh for a realistic geometry is therefore a 

nontrivial step.  

As a first step towards the model of a real left ventricle, we used the geometry as shown 

in Figure (8.1). This geometry was produced from digitized points of the endocardial and 

epicardial surfaces of a human heart, as explained in chapter 3, but the surface was 

smoothed and truncated at the base. These modifications simplified the application of the 

boundary conditions at the base as described in subsection 6.4.  

 
 

 
Figure 8.1 Real geometry of a smoothed and truncated (at the base) human heart 

 

 

A mesh consisting of more than 19,600 eight-node hexahedral elements was created with 

the help of the hex-mesh generator of the commercial software package MSC-

MarcMentat (Figure 8.2A). 

 

When working with real geometries, care has to be exercised with respect to the 

modeling of contraction. In the last two chapters we developed two numerically different 

methods for the simulation of contraction. In the first method we added the incremental 
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second Piola-Kirchhoff active stress tensor inc
active′S  to the second Piola-Kirchhoff passive 

stress tensor and determined the number of increments. In the second method we 

prescribed the final second Piola-Kirchhoff active stress tensor S  and used an 

adaptive algorithm for the determination of the number of necessary increments along 

with the incremental value of the stress tensor. 

total
active′

 

Generally, both of these methods can be used in case of a real geometry, but it was found 

that automatic meshing leads to models where either one or the other method converges 

easier, even though by regulating the parameters also the method which is not well suited 

can be applied after appropriate testing and adaptation. 

 

In this subsection we applied the first method and chose ( , )activeS F F′  equal to 3 kPa and 

the incremental values of the second Piola-Kirchhoff active stress tensorS  (in kPa) as 

follows   

inc
active′

  (8.1) 
3 0 0
0 0 0.3
0 0.3 1.8

inc
active

 
′ = 
 
 

S 


This choice was found to be favourable for convergence up to 70 increments. 

Theoretically, the number of increments can be increased until the mesh fails, but from a 

physiological point of view bigger values are not relevant. Results of the simulation are 

shown in Figure (8.2B). 

 

The local irregularities of the epicardial and endocardial surfaces were seen to cause large 

deformations associated with high stress regions, especially in subendocardial layers, 

where the radius of curvature was in general smaller than elsewhere. This effect was 

indeed expected and already observed by other investigators (Arts and others 1982; 

Bovendeerd and others 1996; Bovendeerd and others 1992; Bovendeerd and others 1994; 

Huyghe and others 1992). Subepicardial layers near the apex exhibit some high stress 

regions likewise. As mentioned in the last chapter, however, the apex has quite an 

irregular geometry and the accuracy of our digitized data was not sufficient to reproduce 
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all details of its structure. Accordingly, the stress distribution along with the deformation 

pattern in the apical region will need further consideration in the future based on more 

precise geometrical data. 

 

 
A 

 

 
B 

Figure 8.2 FE implementation of contraction, front view (A) before deformation (B) after deformation 
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The deformation of the endocardial surface is shown in Figure (8.3). In this calculation, 

the volume reduction of the left ventricle, i.e., the stroke volume is about 47%. This result 

is somewhat less than the physiologic value, but near the results of subsection 7.1 even 

though in this case a reduced active stress tensor was applied. An important difference 

between the geometry used here (Figure 8.2A) and the smooth geometrical 

approximation of the last chapter (Figure 7.2A) is that in Figure (8.2A) the curvature of 

the septal surface is opposite to the curvature of the septum in the last chapter. This fact 

confirms that the geometry, especially the local curvature, can reduce the active stress 

needed for similar deformations.  

 

 

                      
                                    A                                                                                                B 

Figure 8.3 Deformation of endocardial surface, front view (A) before contraction (B) after contraction  

 

 

Cross sections showing the ventricular contour in various planes parallel to base 

(perpendicular to the long axis) can be compared in Figure (8.4). It can be seen again that 

wall thickening exhibits an irregular distribution around the perimeter. Cross sections 1, 

2, 3 and 4 which are between 2 cm and 4 cm under the base show a maximal local wall 

thickening of about 47%, which is clearly more than the maximal value of the wall 

thickening in the last chapter. This finding confirms the fact that the geometrical details 

of the left ventricle can influence the local wall thickening significantly. As mentioned 

above, comparison of Figure (8.2A) and (7.2A) shows that the septal surfaces have 
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opposite curvatures. This circumstance influences the pattern of wall thickening directly, 

so that in Figure (8.4), the minimal wall thickening is found in the septum while in Figure 

(7.9) the septum shows a remarkably high value of thickening. The maximal wall 

thickening, in turn, occurs in Figure (8.4) in a posterior and superior region, similar as in 

Figure (7.9). Measurement of local wall thickening and three dimensional analysis of the 

heart motion were the matter of discussion and research during the last decades (Bogaert 

and Rademakers 2001; MacGowan and others 1997; Rademakers and others 1994; Stuber 

1997; Waldman and others 1985). 
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Figure 8.4 Cross sections of deformed (or contracted in red) and undeformed (in black) geometry  
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8.2  A real geometry 

 
In this subsection we begin the study of a real geometry of a human heart. The geometry 

was constructed from digitized data as explained in chapter 3 (Figure 8.5). 

 

 

                       
                                 A                                                                                                     B 

Figure 8.5 Real geometry of a smoothed human heart 

 

 

A mesh consisting of more than 46,700 eight-node hexahedral elements was created with 

the help of the hex-mesh generator of the commercial software package MSC-

MarcMentat (Figure 8.6A). The fibre orientation was derived from the fibre vector field 

described in chapter 3, which was used already in the last chapter (Figure 6.6).  

 

In this case the number of elements was relatively high, accordingly, the calculations 

were time consuming. It was found that the second method for the simulation of 

contraction was more favourable. The total second Piola-Kirchhoff active stress tensor 

 (in kPa) was defined as follows   total
active′S

  (8.2) 
200 0 0
0 0 60
0 60 120

total
active

 
′ = 
 
 

S 

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Here we assumed again that the value of ( , )activeS N N′  is about 60% of . The 

value of , as discussed in chapters 6 and 7, could be estimated between 25% 

and 50% of . The good quality of mesh allowed us to apply the upper 50% 

limit for  . 

( , )activeS F F′

( ,activeS S N′

( ,activeS N′

( ),activeS S N′

)

)N

 

The simulations revealed furthermore that the boundary conditions influence the pattern 

of deformation significantly. In the last two models, boundary conditions were always 

applied at the base. As a result, we could not simulate the contraction in the basal area 

properly, moreover, longitudinal shortening was prevented because of an inaccurate 

structure of apex. In this model, however, due to geometrical irregularities at the base, we 

applied the boundary condition on selected elements of the apical area. A constant value 

of 14 kPa for the ventricular pressure was defined as in the last chapter. Here, the effect 

of long-axis shortening is seen clearly; it is about 15%. Figure (8.6B) shows the results of 

the simulation. 

 

These findings demonstrate that it is important to define a realistic set of boundary 

conditions. In particular, as discussed in chapters 1 and 6, the heart is contained within 

the pericardial sac. The pericardial sac, in turn, influences the motion of myocardium 

during the contraction and dilatation. Accordingly, the role of the pericardium should be 

studied and taken in to account in future models.  

 

The deformation of the endocardial surface is shown in Figure (8.7). 
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A 

 

 
B 

 

Figure 8.6 FE implementation of contraction, front view (A) before deformation (B) after deformation 
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                                   A                                                                                                 B 

Figure 8.7 Deformation of endocardial surface, front view (A) before contraction (B) after contraction 

 

The volume of the left ventricle reduces from an initial value of 102 ml to the final value 

of 60 ml which corresponds to a stroke volume of about 41%, which is somewhat less 

than a physiologic value.  

 

Cross sections exhibiting the epi- and endocardial surfaces of deformed geometry within 

a group of planes parallel to base (in red) are shown in Figure (8.8) and can be compared 

with the cross sections of undeformed geometry (in black). It can be seen again that wall 

thickening is distributed in a quite irregular fashion. Basal cross sections thereby show a 

maximal local wall thickening of about 42%. It confirms again that the boundary 

conditions can influence the maximal value of wall thickening significantly. 

 

High resolution MRI and MRT imaging techniques become presently available which 

provide the necessary tools for a quantification of the three dimensional myocardial 

deformations. The analysis of such measurements will be useful for a validation of our 

FE models in the future. (Bogaert and others 2000; Bogaert and Rademakers 2001; 

Mazhari and others 2001; Papademetris and others 2002; Papademetris and others 2001; 

Sinusas and others 2001). 
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Figure 8.8 Cross sections of deformed (or contracted in red) and undeformed (in black) geometry 
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8.3  Infarction of the heart 
 

An infarction of the heart causes the death of an area of myocardial tissue, so that 

depolarization of the cells is not possible. This implies that the infarcted tissue will not 

contract. The size of the inactive tissue depends on the strength of the infarction. By 

omitting the application of the total second Piola-Kirchhoff active stress tensor S   on 

the elements of a selected area, we can simulate an infarction with our finite element 

model. Figure (8.9) shows the selected area (in green) as the infarcted tissue of the heart. 

All other conditions and S  are the same as in the last subsection. 

total
active′

total
active′

 

 

 
Figure 8.9 Selected area (in green) shows the infarcted tissue 

 

The results of the simulation are shown in Figure (8.10). Negative values of the maximal 

principal Cauchy stress show that the marked area does not participate in the contraction 

process. Figure (8.11) exhibits the endocardial surface. Here the volume of the left 

ventricle does not reduce at all, i.e., there is no contribution to the stroke volume. This 

finding is in agreement with the clinical observation that a large infarction in the basal 

area can adversely affect the entire heart and lead to a rapid death. In Figure (8.11) a 
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significant bulging of the endocardial surface is observed whose extent can be assessed 

by comparison with Figure (8.7) and which is also in agreement with clinical 

observations. It is interesting to note that the outside view of the infarcted heart (Figure 

8.10) does not show a large difference with a healthy heart (Figure 8.6B). 

 

 
Figure 8.10 FE implementation of heart infarction, front view 

 

 
Figure 8.11 Deformation of endocardial surface in an infarcted heart, front view 
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In Figure (8.12) the cross sections of the health heart (black curves) and infarcted heart 

(red curves) can be compared. It is seen that the infarction changes the whole pattern of 

contraction and wall thickening(Bogen and others 1984; Holmes and others 1994; Jogdutt 

1985; Summerour and others 1998).  
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Figure 8.14 Cross sections of deformed (or contracted) geometry for a (A) health heart (in black) (B) 
infarcted heart 
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In this chapter we attempted to show the applicability of our approach for the study of 

heart function under physiological and pathological conditions in realistic cases. We 

anticipate that this approach will be useful for a deeper understanding of diseases of the 

heart in general and implantable devices in future. 

 

 

   

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                                                                                                                                          163 



References 
 

Arts T, Veenstra PC, Reneman RS. 1982. Epicardial deformation and left ventricular wall 

mechanics during ejection in the dog. American Journal of Physiology 243:H379-

H390. 

Bogaert J, Bosmans H, Maes A, Suetens P, Marchal G, Rademakers FE. 2000. Remote 

myocardial dysfunction after acute anterior myocardial infarction: impact of left 

ventricular shape on regional function: a magnetic resonance myocardial tagging 

study. J Am Coll Cardiol 35(6):1525-34. 

Bogaert J, Rademakers FE. 2001. Regional nonuniformity of normal adult human left 

ventricle. Am J Physiol Heart Circ Physiol 280(2):H610-20. 

Bogen DK, Needleman A, McMahon TA. 1984. An analysis of myocardial infarction: the 

effect of regional changes in contractility. Circ Res 55:805-815. 

Bovendeerd PH, Arts T, Delhaas T, Huyghe JM, van Campen DH, Reneman RS. 1996. 

Regional wall mechanics in the ischemic left ventricle: numerical modeling and 

dog experiments. Am J Physiol 270(1 Pt 2):H398-410. 

Bovendeerd PH, Arts T, Huyghe JM, van Campen DH, Reneman RS. 1992. Dependence 

of local left ventricular wall mechanics on myocardial fiber orientation: a model 

study. J Biomech 25(10):1129-40. 

Bovendeerd PH, Huyghe JM, Arts T, van Campen DH, Reneman RS. 1994. Influence of 

endocardial-epicardial crossover of muscle fibers on left ventricular wall 

mechanics. J Biomech 27(7):941-51. 

Holmes JW, Yamashita H, Waldman LK, Covell JW. 1994. Scar remodeling and 

transmural deformation after infarction in the pig. Circulation 90:411-420. 

Huyghe JM, Arts T, van Campen DH, Reneman RS. 1992. Porous medium finite element 

model of the beating left ventricle. Am J Physiol 262(4 Pt 2):H1256-67. 

Jogdutt BI. 1985. Delayed effects of early infarct-limiting therapies on healing after 

myocardial infarction. Circulation 72:907-914. 

MacGowan GA, Shapiro EP, Azhari H, Siu CO, Hees PS, Hutchins GM, Weiss JL, 

Rademakers FE. 1997. Noninvasive measurement of shortening in the fiber and 

                                                                                                                                          164 



                                                                                                                                          165 

cross-fiber directions in the normal human left ventricle and in idiopathic dilated 

cardiomyopathy. Circulation 96(2):535-41. 

Mazhari R, Omens JH, Pavelec RS, Covell JW, McCulloch AD. 2001. Transmural 

Distribution of Three-Dimensional Systolic Strains in Stunned Myocardium. 

Circulation 104:336-341. 

Papademetris X, Sinusas AJ, Dione DP, Constable RT, Duncan JS. 2002. Estimation of 

3-D left ventricular deformation from medical images using biomechanical 

models. IEEE Trans Med Imaging 21(7):786-800. 

Papademetris X, Sinusas AJ, Dione DP, Duncan JS. 2001. Estimation of 3D left 

ventricular deformation from echocardiography. Med Image Anal 5(1):17-28. 

Rademakers FE, Rogers WJ, Guier WH, Hutchins GM, Siu CO, Weisfeldt ML, Weiss JL, 

Shapiro EP. 1994. Relation of regional cross-fiber shortening to wall thickening 

in the intact heart. Three-dimensional strain analysis by NMR tagging. Circulation 

89(3):1174-82. 

Sinusas AJ, Papademetris X, Constable RT, Dione DP, Slade MD, Shi P, Duncan JS. 

2001. Quantification of 3-D regional myocardial deformation: shape-based 

analysis of magnetic resonance images. Am J Physiol Heart Circ Physiol 

281(2):H698-714. 

Stuber M. 1997. Quantification of the human heart wall motion by ultra-fast magnetic 

resonance myocardial tagging techniques [Ph.D. Thesis]. Zurich: Ph.D. Thesis, 

Swiss Federal Institute of Technology. ethz-bib 12208 p. 

Summerour S, Emery J, Fazeli B, Omens JH, McCulloch AD. 1998. Residual strain in 

ischemic ventricular myocardium. J. Biomech. Engng 120:710-714. 

Waldman LK, Fung YC, Covell JW. 1985. Transmural myocardial deformation in the 

canine left ventricle. Normal in vivo three-dimensional finite strains. Circ Res 

57(1):152-63. 

 



General Bibliography 

 

Alexander DC, Pierpaoli C, Basser PJ, Gee JC. 2001. Spatial transformations of diffusion 

tensor magnetic resonance images. IEEE Trans Med Imaging 20(11):1131-9. 

Arts T, Bovendeerd P, Delhaas T, Prinzen F. 2003. Modeling the relation between 

cardiac pump function and myofiber mechanics. J Biomech 36(5):731-6. 

Arts T, Bovendeerd PH, Prinzen FW, Reneman RS. 1991. Relation between left 

ventricular cavity pressure and volume and systolic fiber stress and strain in the 

wall. Biophys J 59(1):93-102. 

Arts T, Reneman RS. 1989. Dynamics of left ventricular wall and mitral valve 

mechanics. J. Biomech. 22(3):261-271. 

Arts T, Veenstra PC, Reneman RS. 1982. Epicardial deformation and left ventricular wall 

mechanics during ejection in the dog. American Journal of Physiology 243:H379-

H390. 

Azhari H, Oliker S, Rogers WJ, Weiss JL, Shapiro EP. 1996. Three-dimensional mapping 

of acute ischemic regions using artificial neural networks and tagged MRI. IEEE 

Trans Biomed Eng 43(6):619-26. 

Azhari H, Sideman S, Weiss JL, Shapiro EP, Weisfeldt ML, Graves WL, Rogers WJ, 

Beyar R. 1990. Three-dimensional mapping of acute ischemic regions using MRI: 

wall thickening versus motion analysis. Am J Physiol 259(5 Pt 2):H1492-503. 

Azhari H, Weiss JL, Rogers WJ, Siu CO, Shapiro EP. 1995a. A noninvasive comparative 

study of myocardial strains in ischemic canine hearts using tagged MRI in 3-D. 

Am J Physiol 268(5 Pt 2):H1918-26. 

Azhari H, Weiss JL, Rogers WJ, Siu CO, Zerhouni EA, Shapiro EP. 1993. Noninvasive 

quantification of principal strains in normal canine hearts using tagged MRI 

images in 3-D. Am J Physiol 264(1 Pt 2):H205-16. 

Azhari H, Weiss JL, Shapiro EP. 1995b. Distribution of myocardial strains: an MRI 

study. Adv Exp Med Biol 382:319-28. 

Azhari H, Weiss JL, Shapiro EP. 1997. In vivo assessment of regional myocardial work 

in normal canine hearts using 3D tagged MRI. Adv Exp Med Biol 430:241-8. 

                                                                                                                                          166 



Basser PJ. 1995. Inferring microstructural features and the physiological state of tissues 

from diffusion-weighted images. NMR Biomed 8(7-8):333-44. 

Basser PJ. 1997. New histological and physiological stains derived from diffusion-tensor 

MR images. Ann N Y Acad Sci 820:123-38. 

Basser PJ. 2002. Relationships between diffusion tensor and q-space MRI. Magn Reson 

Med 47(2):392-7. 

Basser PJ, Jones DK. 2002. Diffusion-tensor MRI: theory, experimental design and data 

analysis - a technical review. NMR Biomed 15(7-8):456-67. 

Basser PJ, Mattiello J, LeBihan D. 1994a. Estimation of the effective self-diffusion tensor 

from the NMR spin echo. J Magn Reson B 103(3):247-54. 

Basser PJ, Mattiello J, LeBihan D. 1994b. MR diffusion tensor spectroscopy and 

imaging. Biophys J 66(1):259-67. 

Basser PJ, Pajevic S. 2000. Statistical artifacts in diffusion tensor MRI (DT-MRI) caused 

by background noise. Magn Reson Med 44(1):41-50. 

Basser PJ, Pajevic S. 2003. A normal distribution for tensor-valued random variables: 

applications to diffusion tensor MRI. IEEE Trans Med Imaging 22(7):785-94. 

Basser PJ, Pajevic S, Pierpaoli C, Duda J, Aldroubi A. 2000. In vivo fiber tractography 

using DT-MRI data. Magn Reson Med 44(4):625-32. 

Basser PJ, Pierpaoli C. 1996. Microstructural and physiological features of tissues 

elucidated by quantitative-diffusion-tensor MRI. J Magn Reson B 111(3):209-19. 

Basser PJ, Pierpaoli C. 1998. A simplified method to measure the diffusion tensor from 

seven MR images. Magn Reson Med 39(6):928-34. 

Beyar R, Sideman S. 1984a. A computer study of left ventricular performance based on 

fiber structure, sarcomere dynamics, and transmural electrical propagation 

velocity. Circ Res 55:358-375. 

Beyar R, Sideman S. 1984b. Model for left ventricular contraction combining the force 

length velocity relationship with the time varying elastance theory. Biophys J 

45:1167-1177. 

Boehme W. 1936. Ueber den aktiven Anteil des Herzens an der Förderung des 

Venenblutes. Ergebn. Physiol. 38:252-338. 

                                                                                                                                          167 



Bogaert J, Bosmans H, Maes A, Suetens P, Marchal G, Rademakers FE. 2000. Remote 

myocardial dysfunction after acute anterior myocardial infarction: impact of left 

ventricular shape on regional function: a magnetic resonance myocardial tagging 

study. J Am Coll Cardiol 35(6):1525-34. 

Bogaert J, Rademakers FE. 2001. Regional nonuniformity of normal adult human left 

ventricle. Am J Physiol Heart Circ Physiol 280(2):H610-20. 

Bogen DK, Needleman A, McMahon TA. 1984. An analysis of myocardial infarction: the 

effect of regional changes in contractility. Circ Res 55:805-815. 

Borelli HS. 1681. De Muto Animalium. Rome. 

Bosmans H, Bogaert J, Rademakers F, Marchal G, Laub G, Verschakelen J, Baert AL. 

1996. Left ventricular radial tagging acquisition using gradient-recalled-echo 

techniques: sequence optimization. Magma 4(2):123-33. 

Botham MJ, Lemmer JH, Gerren RA, Long RW, Behrendt DM, Gallagher KP. 1984. 

Coronary vasodilator reserve in young dogs with moderate right ventricular 

hypertrophy. Ann Thorac Surg 38(2):101-7. 

Bovendeerd PH, Arts T, Delhaas T, Huyghe JM, van Campen DH, Reneman RS. 1996. 

Regional wall mechanics in the ischemic left ventricle: numerical modeling and 

dog experiments. Am J Physiol 270(1 Pt 2):H398-410. 

Bovendeerd PH, Arts T, Huyghe JM, van Campen DH, Reneman RS. 1992. Dependence 

of local left ventricular wall mechanics on myocardial fiber orientation: a model 

study. J Biomech 25(10):1129-40. 

Bovendeerd PH, Huyghe JM, Arts T, van Campen DH, Reneman RS. 1994. Influence of 

endocardial-epicardial crossover of muscle fibers on left ventricular wall 

mechanics. J Biomech 27(7):941-51. 

Bradley TD. 2000. Sleep apnea implications in cardiovascular and cerebrovascular 

disease. New York: Dekker. 554 S. p. 

Brutsaert DL. 1987. Nonuniformity: a physiologic modulator of contraction and 

relaxation of the normal heart. J. Am. Coll. Cardiol. 9:341-348. 

Brutsaert DL, Rademakers F, Sys SU. 1984. Triple control of relaxation: implications in 

cardiac disease. Circulation 69:190-196. 

                                                                                                                                          168 



Brutsaert DL, Sonnenblick EH. 1969. Force-velocity-length-time relations of the 

contractile elements in heart muscle of the cat. Circ Res 24:137-149. 

Buchalter MB, Rademakers FE, Weiss JL, Rogers WJ, Weisfeldt ML, Shapiro EP. 1994. 

Rotational deformation of the canine left ventricle measured by magnetic 

resonance tagging: effects of catecholamines, ischaemia, and pacing. Cardiovasc 

Res 28(5):629-35. 

Carmeliet E, Vereecke J. 2002. Cardiac cellular electrophysiology. Boston: Kluwer 

Academic Publishers. 421 S. p. 

Chen J, Song S, Liu W, McLean M, Allen J, Tan J, Wickline S, Yu X. 2003. Remodeling 

of cardiac fiber structure after infarction in rats quantified with diffusion tensor 

MRI. AmJ Physiol Heart Circ Physiol. 285(3):H946-54. 

Chuong CJ, Fung YC. 1986. Residual stress in arteries. In: Schmid-Schönbein GW, Woo 

Sl-Y, Zweifach BW, editors. Frontiers in Biomechanics. New York: Springer-

Verlag. p pp. 117-129. 

Costa KD, Holmes JW, McCulloch AD. 2001. Modelling cardiac mechanical properties 

in three dimentions. The Royal Society 359:1233-1250. 

Costa KD, Hunter PJ, Rogers JM, Guccione JM, Waldman LK, McCulloch AD. 1996a. A 

three-dimensional finite element method for large elastic deformations of 

ventricular myocardium: I--Cylindrical and spherical polar coordinates. J 

Biomech Eng 118(4):452-63. 

Costa KD, Hunter PJ, Wayne JS, Waldman LK, Guccione JM, McCulloch AD. 1996b. A 

three-dimensional finite element method for large elastic deformations of 

ventricular myocardium: II--Prolate spheroidal coordinates. J Biomech Eng 

118(4):464-72. 

Costa KD, May-Newman K, Farr D, O'Dell WG, McCulloch AD, Omens JH. 1997. 

Three-dimensional residual strain in midanterior canine left ventricle. Am J 

Physiol 273(4 Pt 2):H1968-76. 

Costa KD, Takayama Y, McCulloch AD, Covell JW. 1999. Laminar fiber architecture 

and three-dimensional systolic mechanics in canine ventricular myocardium. Am 

J Physiol 276(2 Pt 2):H595-607. 

                                                                                                                                          169 



Creswell LL, Moulton MJ, Cox JL, Rosenbloom M. 1995. Revascularization after acute 

myocardial infarction. Ann Thorac Surg 60(1):19-26. 

Creswell LL, Moulton MJ, Wyers SG, Pirolo JS, Fishman DS, Perman WH, Myers KW, 

Actis RL, Vannier MW, Szabo BA and others. 1994. An experimental method for 

evaluating constitutive models of myocardium in in vivo hearts. American Journal 

of Physiology 267,2pt2:H853-63. 

Creswell LL, Pasque MK, Vannier MW. 1993. Three-dimensional cardiac magnetic 

resonance imaging. American Journal of card. Imaging 7(3):195-208. 

Creswell LL, Pasque MK, Vannier MW. 1993. Three-dimensional cardiac magnetic 

resonance imaging. American Journal of card. Imaging 7(3):195-208. 

Cryer CW, Navidi-Kasmai H, Lunkenheimer PP, Redmann K. 1997. Computation of the 

alignment of myocardial contractile pathways using a magnetic tablet and an 

optical method. Technology and Health Care 5:79-93. 

Das DK. 1999. Heart in stress. New York: New York Academy of Sciences. 438 S. p. 

Delhaas T, Arts T, Bovendeerd PH, Prinzen FW, Reneman RS. 1993. Subepicardial fiber 

strain and stress as related to left ventricular pressure and volume. Am J Physiol 

264(5 Pt 2):H1548-59. 

Denisova O, Shapiro EP, Weiss JL, Azhari H. 1997. Localization of ischemia in canine 

hearts using tagged rotated long axis MR images, endocardial surface stretch and 

wall thickening. Magn Reson Imaging 15(9):1037-43. 

Dokos S, LeGrice IJ, Smaill BH, Kar J, Young AA. 2000. A triaxial-measurement shear-

test device for soft biological tissues. J Biomech Eng 122(5):471-8. 

Dokos S, Smaill BH, Young AA, LeGrice IJ. 2002. Shear properties of passive 

ventricular myocardium. Am J Physiol Heart Circ Physiol 283(6):H2650-9. 

Drake DH, McClanahan TB, Ning XH, Gerren RA, Dunham WR, Gallagher KP. 1987. 

Changes in contractility fail to alter the size of the functional border zone in 

anesthetized dogs. Circ Res 61(2):166-80. 

Eringen AC. 1962. Nonlinear theory of continuous media. New York: McGraw-Hill. 477 

p. 

Eringen AC. 1980. Mechanics of continua. Huntington, N.Y.: R. E. Krieger Pub. Co. xv, 

592 p. 

                                                                                                                                          170 



Falsetti HL, Mates RE, Grant C, Greene DG, Bunnell IL. 1970. Left ventricular wall 

stress calculated from one-plane cineangiography. Circ Res 26:71-83. 

Fung YC. 1990. Biomechanics : motion, flow, stress, and growth. New York: Springer-

Verlag. xv, 569 p. 

Fung YC. 1993. Biomechanics : mechanical properties of living tissues. New York: 

Springer-Verlag. xviii, 568 p. 

Fung YC. 1997. Biomechanics : circulation. New York: Springer. xvii, 571 p. 

Fung YC, Chien S. 2001. Introduction to bioengineering. Singapore ; River Edge, NJ: 

World Scientific. xvii, 293 p. 

Gallagher KP, Buda AJ, Pace D, Gerren RA, Shlafer M. 1986a. Failure of superoxide 

dismutase and catalase to alter size of infarction in conscious dogs after 3 hours of 

occlusion followed by reperfusion. Circulation 73(5):1065-76. 

Gallagher KP, Gerren RA, Choy M, Stirling MC, Dysko RC. 1987a. Subendocardial 

segment length shortening at lateral margins of ischemic myocardium in dogs. 

Am J Physiol 253(4 Pt 2):H826-37. 

Gallagher KP, Gerren RA, Ning XH, McManimon SP, Stirling MC, Shlafer M, Buda AJ. 

1987b. The functional border zone in conscious dogs. Circulation 76(4):929-42. 

Gallagher KP, Gerren RA, Stirling MC, Choy M, Dysko RC, McManimon SP, Dunham 

WR. 1986b. The distribution of functional impairment across the lateral border of 

acutely ischemic myocardium. Circ Res 58(4):570-83. 

Gallagher KP, Ning XH, Gerren RA, Drake DH, Dunham WR. 1987c. Effect of aortic 

constriction on the functional border zone. Am J Physiol 252(4 Pt 2):H826-35. 

Gallagher KP, Stirling MC, Choy M, Szpunar CA, Gerren RA, Botham MJ, Lemmer JH. 

1985. Dissociation between epicardial and transmural function during acute 

myocardial ischemia. Circulation 71(6):1279-91. 

Geerts L, Bovendeerd P, Nicolay K, Arts T. 2002. Characterization of the normal cardiac 

myofiber field in goat measured with MR-diffusion tensor imaging. Am J Physiol 

Heart Circ Physiol 283(1):H139-45. 

Ghista DN, Sandler H. 1969. An analytic elastic-viscoelastic model for the shape and the 

forces in the left ventricle. J. Biomech. 2:35-47. 

                                                                                                                                          171 



Gielen AW, Oomens CW, Bovendeerd PH, Arts T, Janssen JD. 2000. A Finite Element 

Approach for Skeletal Muscle using a Distributed Moment Model of Contraction. 

Comput Methods Biomech Biomed Engin 3(3):231-244. 

Goldstein DS. 2001. The autonomic nervous system in health and disease. New York: M. 

Dekker. xii, 618 p. 

Gould P, Ghista DN, Brombolich L, Mirsky I. 1972. In vivo stresses in the human left 

ventricular wall: analysis accounting for the irregular 3d geometry and 

comparison with idealised geometry analyses. J. Biomech. 5:521-539. 

Green AE, Adkins JE. 1970. Large elastic deformations. Oxford,: Clarendon Press. xiv, 

324 illus. p. 

Guccione JM, Costa KD, McCulloch AD. 1995. Finite element stress analysis of left 

ventricular mechanics in the beating dog heart. J Biomech 28(10):1167-77. 

Guccione JM, Le Prell GS, de Tombe PP, Hunter WC. 1997a. Measurements of active 

myocardial tension under a wide range of physiological loading conditions. J 

Biomech 30(2):189-92. 

Guccione JM, McCulloch AD. 1993. Mechanics of active contraction in cardiac muscle: 

Part I--Constitutive relations for fiber stress that describe deactivation. J Biomech 

Eng 115(1):72-81. 

Guccione JM, McCulloch AD, Waldman LK. 1991. Passive material properties of intact 

ventricular myocardium determined from a cylindrical model. J Biomech Eng 

113(1):42-55. 

Guccione JM, Moonly SM, Moustakidis P, Costa KD, Moulton MJ, Ratcliffe MB, 

Pasque MK. 2001a. Mechanism underlying mechanical dysfunction in the border 

zone of left ventricular aneurysm: a finite element model study. Ann Thorac Surg 

71(2):654-62. 

Guccione JM, Moonly SM, Wallace AW, Ratcliffe MB. 2001b. Residual stress produced 

by ventricular volume reduction surgery has little effect on ventricular function 

and mechanics: a finite element model study. J Thorac Cardiovasc Surg 

122(3):592-9. 

                                                                                                                                          172 



Guccione JM, O'Dell WG, McCulloch AD, Hunter WC. 1997b. Anterior and posterior 

left ventricular sarcomere lengths behave similarly during ejection. Am J Physiol 

272(1 Pt 2):H469-77. 

Guccione JM, Waldman LK, McCulloch AD. 1993. Mechanics of active contraction in 

cardiac muscle: Part II--Cylindrical models of the systolic left ventricle. J 

Biomech Eng 115(1):82-90. 

Guyton AC, Hall JE. 2000. Textbook of medical physiology. Philadelphia: Saunders. 

xxxii, 1064 S. p. 

Hasan KM, Basser PJ, Parker DL, Alexander AL. 2001. Analytical computation of the 

eigenvalues and eigenvectors in DT-MRI. J Magn Reson 152(1):41-7. 

Holmes JW, Yamashita H, Waldman LK, Covell JW. 1994. Scar remodeling and 

transmural deformation after infarction in the pig. Circulation 90:411-420. 

Holubarsch CJF. 2002. Mechanics and energetics of the myocardium. Boston: Kluwer 

Academic Publishers. 216 S. p. 

Holzapfel GA. 2000. Nonlinear solid mechanics : a continuum approach for engineering. 

Chichester ; New York: Wiley. 455 p. 

Hooks DA, Tomlinson KA, Marsden SG, LeGrice IJ, Smaill BH, Pullan AJ, Hunter PJ. 

2002. Cardiac microstructure: implications for electrical propagation and 

defibrillation in the heart. Circ Res 91(4):331-8. 

Horowitz A, Lanir Y, Yin FC, Perl M, Sheinman I, Strumpf RK. 1988a. Structural three-

dimensional constitutive law for the passive myocardium. J Biomech Eng 

110(3):200-7. 

Horowitz A, Perl M, Sideman S. 1993. Geodesics as a mechanically optimal fiber 

geometry for the left ventricle. Basic Res Cardiol 88 Suppl 2:67-74. 

Horowitz A, Perl M, Sideman S, Ritman E. 1986. Comprehensive model for the 

simulation of left ventricle mechanics. Part 2. Implementation and results 

analysis. Med Biol Eng Comput 24(2):150-6. 

Horowitz A, Sheinman I, Lanir Y, Perl M, Sideman S. 1988b. Nonlinear incompressible 

finite element for simulating loading of cardiac tissue--Part I: Two dimensional 

formulation for thin myocardial strips. J Biomech Eng 110(1):57-61. 

                                                                                                                                          173 



Hort W. 1957. Untersuchungen über die Muskelfaserdehnung und das Gefüge des 

Myokards in der rechten Herzkammerwand des Meerschweinchens. Virchows 

Arch. path. Anat. Physiol. 239:694-731. 

Hort W. 1960a. Makroskopische und mikrometrische Untersuchungen am Myokard 

verschieden stark gefüllter linker Kammern. Virchows Arch. path. Anat. Physiol. 

333:569-581. 

Hort W. 1960b. Untersuchungen zur funktionellen Morphologie des 

Bindegewebsgerüstes und der Blutgefässe der linken Herzkammerwand. 

Virchows Arch. path. Anat. Physiol. 33:565-581. 

Huber ME. 2003. Coronary artery magnetic resonance angiography. Zurich: ETH Diss 

No. 15196. 123 p. 

Huisman RM, Elzinga G, Westerhof N, Sipkema P. 1980. Measurment of the left 

ventricular wall stress. Cardiovasc Res 14:142-153. 

Huisman RM, Sipkema P, Westerhof N, Elzinga G. 1980. Comparison of models used to 

calculate left ventricular wall force. Med. Biol. Eng. Comput. 18:133-144. 

Humphrey JD, Strumpf RK, Yin FC. 1989. A theoretically-based experimental approach 

for identifying vascular constitutive relations. 

Humphrey JD, Strumpf RK, Yin FC. 1990a. Biaxial mechanical behavior of excised 

ventricular epicardium. Am J Physiol 259(1 Pt 2):H101-8. 

Humphrey JD, Strumpf RK, Yin FC. 1990b. Determination of a constitutive relation for 

passive myocardium: I. A new functional form. Journal of Biomechanical 

Engineering 112:333-339. 

Humphrey JD, Strumpf RK, Yin FC. 1990c. Determination of a constitutive relation for 

passive myocardium: II. Parameter estimation. Journal of Biomechanical 

Engineering 112:340-346. 

Humphrey JD, Strumpf RK, Yin FC. 1992. A constitutive theory for biomembranes: 

application to epicardial mechanics. Journal of Biomechanical Engineering 

114(4):461-6. 

Humphrey JD, Yin FC. 1989. Constitutive relations and finite deformations of passive 

cardiac tissue II: stress analysis in the left ventricle. Circ Res 65(3):805-17. 

                                                                                                                                          174 



Hunter PJ, McCulloch AD, Nielsen PMF, Smaill BH. 1988. A finite element model of 

passive ventricular mechanics. Computational Methods in Bioengineering 9:387-

397. 

Hunter PJ, Nielsen PM, Smaill BH, LeGrice IJ, Hunter IW. 1992. An anatomical heart 

model with applications to myocardial activation and ventricular mechanics. Crit 

Rev Biomed Eng 20(5-6):403-26. 

Huyghe JM, Arts T, van Campen DH, Reneman RS. 1992. Porous medium finite element 

model of the beating left ventricle. Am J Physiol 262(4 Pt 2):H1256-67. 

Ingels NB. 1997. Myocardial fiber architecture and left ventricular function. Technology 

and Health Care 5:45-52. 

Janz RF, Waldron RJ. 1978. Predicted effect of chronical apical aneurysms on the passive 

stiffness of the human left ventricle. Circ Res 42(2):255-263. 

Jogdutt BI. 1985. Delayed effects of early infarct-limiting therapies on healing after 

myocardial infarction. Circulation 72:907-914. 

Kallioniemi A, Kallioniemi OP, Waldman FM, Chen LC, Yu LC, Fung YK, Smith HS, 

Pinkel D, Gray JW. 1992. Detection of retinoblastoma gene copy number in 

metaphase chromosomes and interphase nuclei by fluorescence in situ 

hybridization. Cytogenet Cell Genet 60(3-4):190-3. 

Laplace PS. 1806. Marquis de Supplément au Livre X du Traité de Méchanique Céleste. 

LeGrice IJ, Hunter PJ, Smaill BH. 1997. Laminar structure of the heart: a mathematical 

model. Am J Physiol 272(5 Pt 2):H2466-76. 

LeGrice IJ, Smaill BH, Chai LZ, Edgar SG, Gavin JB, Hunter PJ. 1995a. Laminar 

structure of the heart: ventricular myocyte arrangement and connective tissue 

architecture in the dog. Am J Physiol 269(2 Pt 2):H571-82. 

LeGrice IJ, Takayama Y, Covell JW. 1995b. Transverse shear along myocardial cleavage 

planes provides a mechanism for normal systolic wall thickening. Circ Res 

77(1):182-93. 

LeGrice IJ, Takayama Y, Holmes JW, Covell JW. 1995c. Impaired subendocardial 

function in tachycardia-induced cardiac failure. Am J Physiol 268(5 Pt 2):H1788-

94. 

                                                                                                                                          175 



LeGrice P, Baird E, Hodge L. 1995d. Treatment of basal cell carcinoma with 

intralesional interferon alpha-2a. N Z Med J 108(1000):206-7. 

Lemmer JH, Botham MJ, McKenney P, Gerren RA, Kirsh MM, Gallagher KP. 1984. 

Norepinephrine plus phentolamine improves regional blood flow during 

experimental low cardiac output syndrome. Ann Thorac Surg 38(2):108-16. 

Lessick J, Sideman S, Azhari H, Shapiro E, Weiss JL, Beyar R. 1993. Evaluation of 

regional load in acute ischemia by three-dimensional curvatures analysis of the 

left ventricle. Ann Biomed Eng 21(2):147-61. 

Lin DHS, Yin FC. 1998. A Multiaxial Constitutive law for Mammalian Left Ventricular 

Myocardium in Steady-State Barium Contracture or Tetanus. Journal of 

Biomechanical Engineering 120:504-517. 

Lower R. 1669. Tractatus de Corde. London. 

Lunkenheimer PP, Redmann K, Dietl K-H, Cryer C, Richter K-D, Whimster WF, 

Niederer P. 1997a. The heart's fibre alignment assessed by comparing two 

digitizing systems. Methodological investigation into the inclination angle toward 

wall thickness. Technology and Health Care 5:65-77. 

Lunkenheimer PP, Redmann K, Florek J, Fassnacht U, Cryer CW, Wübbeling F, 

Niederer P, Anderson RH. 2004. The forces generated within the musculature of 

the left ventricular wall. Heart 90:(in press). 

Lunkenheimer PP, Redmann K, Scheld H, Dietl K-H, Cryer C, Richter K-D, Merker J, 

Whimster WF. 1997b. The heart muscle's putative 'secondary structure'. 

Functional implications of a band-like anisotropy. Technology and Health Care 

5:53-64. 

MacGowan GA, Burkhoff D, Rogers WJ, Salvador D, Azhari H, Hees PS, Zweier JL, 

Halperin HR, Siu CO, Lima JA and others. 1996. Effects of afterload on regional 

left ventricular torsion. Cardiovasc Res 31(6):917-25. 

MacGowan GA, Shapiro EP, Azhari H, Siu CO, Hees PS, Hutchins GM, Weiss JL, 

Rademakers FE. 1997. Noninvasive measurement of shortening in the fiber and 

cross-fiber directions in the normal human left ventricle and in idiopathic dilated 

cardiomyopathy. Circulation 96(2):535-41. 

                                                                                                                                          176 



Mandarino WA, Pinsky MR, Gorcsan J. 1998. Assessment of left ventricular contractile 

state by preload-adjusted maximal power using echocardiographic automated 

border detection. JACC 31(861-868). 

Marzilli M, Goldstein S, Sabbah HN, Lee T, Stein PD. 1979. Modulating effect of 

regional myocardial performance on local myocardial perfusion in the dog. Circ 

Res 45(5):634-41. 

Marzilli M, Levantesi D, Sabbah HN, Taddei L, Dalle Vacche M, Stein PD. 1984. 

Regional myocardial systolic function. Effects of coronary occlusion and 

reperfusion. G Ital Cardiol 14(12):1052-61. 

Marzilli M, Sabbah HN, Goldstein S, Stein PD. 1985. Assessment of papillary muscle 

function in the intact heart. Circulation 71(5):1017-22. 

Marzilli M, Sabbah HN, Lee T, Stein PD. 1980a. Role of the papillary muscle in opening 

and closure of the mitral valve. Am J Physiol 238(3):H348-54. 

Marzilli M, Sabbah HN, Stein PD. 1980b. Mitral regurgitation in ventricular premature 

contractions. The role of the papillary muscle. Chest 77(6):736-40. 

Marzilli M, Sabbah HN, Stein PD. 1980c. Supply-demand balance of subendocardial 

muscle: estimation from intramyocardial pressure. J Thorac Cardiovasc Surg 

79(6):803-8. 

Masuoka T, Ajisaka R, Watanabe S, Yamanouchi T, Iida K, Sato M, Takeda T, Toyama 

H, Ishikawa N, Itai Y and others. 1995. Usefulness of hyperventilation thallium-

201 single photon emission computed tomography for the diagnosis of 

vasospastic angina. Jpn Heart J 36(4):405-20. 

Masuoka T, Ajisaka R, Watanabe S, Yamanouchi T, Saito T, Iida K, Sugishita Y, Takeda 

T, Ishikawa N, Toyama H. 1993. [Myocardial ischemia detected by isoproterenol 

stress cardiac blood-pool scintigraphy: significance of asynchrony as an index of 

myocardial ischemia]. J Cardiol 23(1):9-18. 

Mattiello J, Basser PJ, Le Bihan D. 1997. The b matrix in diffusion tensor echo-planar 

imaging. Magn Reson Med 37(2):292-300. 

Mazhari R, Omens JH, Pavelec RS, Covell JW, McCulloch AD. 2001. Transmural 

Distribution of Three-Dimensional Systolic Strains in Stunned Myocardium. 

Circulation 104:336-341. 

                                                                                                                                          177 



Miranda PC, Hallett M, Basser PJ. 2003. The electric field induced in the brain by 

magnetic stimulation: a 3-D finite-element analysis of the effect of tissue 

heterogeneity and anisotropy. IEEE Trans Biomed Eng 50(9):1074-85. 

Mirsky I. 1969. Left ventricular stresses in the intact human heart. Biophys J 9:189-208. 

Mirsky I, Ellison RC, Hugenholtz PG. 1981. Assesment of myocardial contractility in 

children and young adults from ventricular pressure recordings. Am. J.Cardiol. 

27:359-367. 

Mirsky I, Krayenbühl HP. 1981. The role of wall stress in the assessment of ventricular 

function. Herz 6:288-299. 

Moulton MJ, Creswell LL, Actis RL, Myers KW, Vannier MW, Szabo BA, Pasque MK. 

1995. An inverse approach to determining myocardial material properties. J 

Biomech 28(8):935-48. 

Moulton MJ, Creswell LL, Downing SW, Actis RL, Myers KW, Szabo BA, Vannier 

MW, Pasque MK. 1994. Ventricular interaction in the pathologic heart. A model 

based study. Asaio J 40(3):M773-83. 

Moulton MJ, Creswell LL, Downing SW, Actis RL, Szabo BA, Pasque MK. 1996a. 

Myocardial material property determination in the in vivo heart using magnetic 

resonance imaging. Int J Card Imaging 12(3):153-67. 

Moulton MJ, Creswell LL, Downing SW, Actis RL, Szabo BA, Vannier MW, Pasque 

MK. 1996b. Spline surface interpolation for calculating 3-D ventricular strains 

from MRI tissue tagging. American Journal of Physiology 270(1pt2):H281-97. 

Moulton MJ, Creswell LL, Mackey ME, Cox JL, Rosenbloom M. 1996c. Obesity is not a 

risk factor for significant adverse outcomes after cardiac surgery. Circulation 94(9 

Suppl):II87-92. 

Moulton MJ, Creswell LL, Mackey ME, Cox JL, Rosenbloom M. 1996d. Reexploration 

for bleeding is a risk factor for adverse outcomes after cardiac operations. J 

Thorac Cardiovasc Surg 111(5):1037-46. 

Moulton MJ, Creswell LL, Mackey ME, Cox JL, Rosenbloom M. 1996a. Obesity is not a 

risk factor for significant adverse outcomes after cardiac surgery. Circulation 94(9 

Suppl):II87-92. 

                                                                                                                                          178 



Moulton MJ, Creswell LL, Mackey ME, Cox JL, Rosenbloom M. 1996b. Reexploration 

for bleeding is a risk factor for adverse outcomes after cardiac operations. J 

Thorac Cardiovasc Surg 111(5):1037-46. 

Moulton MJ, Creswell LL, Ungacta FF, Downing SW, Szabo BA, Pasque MK. 1996c. 

Magnetic resonance imaging provides evidence for remodeling of the right 

ventricle after single-lung transplantation for pulmonary hypertension. Circulation 

94(9 Suppl):II312-9. 

Moulton MJ, Downing SW, Creswell LL, Fishman DS, Amsterdam DM, Szabo BA, Cox 

JL, Pasque MK. 1995. Mechanical dysfunction in the border zone of an ovine 

model of left ventricular aneurysm. Ann Thorac Surg 60(4):986-97; discussion 

998. 

Murali S, Tokarczyk T, Ristich J, McCurry K, MacGowan GA, Rosenblum WD, 

McNamara DM, Shapiro R, Fung JJ, Kormos RL. 2001. Short-term survival with 

combined heart-kidney or combined heart-liver transplantation with allografts 

from a single donor. J Heart Lung Transplant 20(2):168. 

Nash MP, Hunter PJ. 2000. Computational mechanics of the heart. journal of Elasticity 

61(1-3):113-141. 

Nielsen PM, Hunter PJ, Smaill BH. 1991a. Biaxial testing of membrane biomaterials: 

testing equipment and procedures. J Biomech Eng 113(3):295-300. 

Nielsen PM, Le Grice IJ, Smaill BH, Hunter PJ. 1991b. Mathematical model of geometry 

and fibrous structure of the heart. Am J Physiol 260(4 Pt 2):H1365-78. 

Novak VP, Yin FC, Humphrey JD. 1994. Regional mechanical properties of passive 

myocardium. J Biomech 27(4):403-12. 

Ogden RW. 1984. Non-linear elastic deformations. Chichester, New York: E. Horwood 

;Halsted Press. xiv, 532 p. 

Ohayon J, Usson Y, Jouk PS, Cai H. 1999. Fibre Orientation in Human Fetal Heart and 

Ventricular Mechanics : A Small Perturbation Analysis. Comput Methods 

Biomech Biomed Engin 2(2):83-105. 

Pajevic S, Aldroubi A, Basser PJ. 2002. A continuous tensor field approximation of 

discrete DT-MRI data for extracting microstructural and architectural features of 

tissue. J Magn Reson 154(1):85-100. 

                                                                                                                                          179 



Pajevic S, Basser PJ. 2003. Parametric and non-parametric statistical analysis of DT-MRI 

data. J Magn Reson 161(1):1-14. 

Panda SC, Natarjan R. 1977. Finite-element method of stress analysis in the human left 

ventricular layered wall structure. Med. Biol. Eng. Comput. 15:67-71. 

Pao YC, Robb RA, Ritman EL. 1976. Plane-strain finite-element analysis of 

reconstructed diastolic left ventricular cross section. Ann Biomed Eng 4:232-249. 

Papademetris X, Sinusas AJ, Dione DP, Constable RT, Duncan JS. 2002. Estimation of 

3-D left ventricular deformation from medical images using biomechanical 

models. IEEE Trans Med Imaging 21(7):786-800. 

Papademetris X, Sinusas AJ, Dione DP, Duncan JS. 2001. Estimation of 3D left 

ventricular deformation from echocardiography. Med Image Anal 5(1):17-28. 

Perl M, Horowitz A. 1987. Mechanical model for the simulation of ischaemia and 

infarction of the left ventricle. Med Biol Eng Comput 25(3):284-8. 

Perl M, Horowitz A, Sideman S. 1986. Comprehensive model for the simulation of left 

ventricle mechanics. Part 1. Model description and simulation procedure. Med 

Biol Eng Comput 24(2):145-9. 

Perman WH, Creswell LL, Wyers SG, Moulton MJ, Pasque MK. 1995. Hybrid DANTE 

and phase-contrast imaging technique for measurement of three-dimensional 

myocardial wall motion. J Magn Reson Imaging 5(1):101-6. 

Pierpaoli C, Barnett A, Pajevic S, Chen R, Penix LR, Virta A, Basser P. 2001. Water 

diffusion changes in Wallerian degeneration and their dependence on white matter 

architecture. Neuroimage 13(6 Pt 1):1174-85. 

Pierpaoli C, Basser PJ. 1996. Toward a quantitative assessment of diffusion anisotropy. 

Magn Reson Med 36(6):893-906. 

Pierpaoli C, Jezzard P, Basser PJ, Barnett A, Di Chiro G. 1996. Diffusion tensor MR 

imaging of the human brain. Radiology 201(3):637-48. 

Pirolo JS, Bresina SJ, Creswell LL, Myers KW, Szabo BA, Vannier MW, Pasque MK. 

1993. Mathematical three-dimensional solid modeling of biventricular geometry. 

Ann Biomed Eng 21(3):199-219. 

Potter K, Leapman RD, Basser PJ, Landis WJ. 2002. Cartilage calcification studied by 

proton nuclear magnetic resonance microscopy. J Bone Miner Res 17(4):652-60. 

                                                                                                                                          180 



Rademakers F, Van de Werf F, Mortelmans L, Marchal G, Bogaert J. 2003. Evolution of 

regional performance after an acute anterior myocardial infarction in humans 

using magnetic resonance tagging. J Physiol 546(Pt 3):777-87. 

Rademakers FE, Buchalter MB, Rogers WJ, Zerhouni EA, Weisfeldt ML, Weiss JL, 

Shapiro EP. 1992. Dissociation between left ventricular untwisting and filling. 

Accentuation by catecholamines. Circulation 85(4):1572-81. 

Rademakers FE, Rogers WJ, Guier WH, Hutchins GM, Siu CO, Weisfeldt ML, Weiss JL, 

Shapiro EP. 1994. Relation of regional cross-fiber shortening to wall thickening 

in the intact heart. Three-dimensional strain analysis by NMR tagging. Circulation 

89(3):1174-82. 

Rijcken J, Arts T, Bovendeerd P, Schoofs B, van Campen D. 1996. Optimization of left 

ventricular fibre orientation of the normal heart for homogeneous sarcomere 

length during ejection. Eur J Morphol 34(1):39-46. 

Rijcken J, Bovendeerd PH, Schoofs AJ, van Campen DH, Arts T. 1997. Optimization of 

cardiac fiber orientation for homogeneous fiber strain at beginning of ejection. J 

Biomech 30(10):1041-9. 

Rijcken J, Bovendeerd PH, Schoofs AJ, van Campen DH, Arts T. 1999. Optimization of 

cardiac fiber orientation for homogeneous fiber strain during ejection. Ann 

Biomed Eng 27(3):289-97. 

Rogers WJ, Jr., Shapiro EP, Weiss JL, Buchalter MB, Rademakers FE, Weisfeldt ML, 

Zerhouni EA. 1991. Quantification of and correction for left ventricular systolic 

long-axis shortening by magnetic resonance tissue tagging and slice isolation. 

Circulation 84(2):721-31. 

Rohde GK, Barnett AS, Basser PJ, Marenco S, Pierpaoli C. 2004. Comprehensive 

approach for correction of motion and distortion in diffusion-weighted MRI. 

Magn Reson Med 51(1):103-14. 

Sabbah HN, Marzilli M, Liu ZQ, Stein PD. 1986a. Coronary extravascular compression 

influences systolic coronary blood flow. Heart Vessels 2(3):140-6. 

Sabbah HN, Marzilli M, Liu ZQ, Stein PD. 1986b. Relation of intramyocardial pressure 

to coronary pressure at zero flow. Clin Exp Pharmacol Physiol 13(6):477-86. 

                                                                                                                                          181 



Sabbah HN, Marzilli M, Stein PD. 1980. Intracardiac phonocardiography in experimental 

left ventricular cavity obliteration: potential clinical applicability for the 

distinction of obliterating left ventricle from hypertrophic obstructive 

cardiomyopathy. Am Heart J 100(1):77-80. 

Sabbah HN, Marzilli M, Stein PD. 1981a. The relative role of subendocardium and 

subepicardium in left ventricular mechanics. Am J Physiol 240(6):H920-6. 

Sabbah HN, Marzilli M, Stein PD. 1981b. Ultraminiature strain gauge transducer for 

assessing regional intramyocardial pressure. Med Instrum 15(2):121-4. 

Sacks MS, Chuong CJ. 1993. A constitutive relation for passive right-ventricular free 

wall myocardium. J Biomech 26(11):1341-5. 

Sandler H, Dodge HT. 1963. Left ventricular tension and stress in man. Circ Res 13:91-

104. 

Schmid-Schönbein GW, Fung Y-C. 1986. Frontiers in biomechanics (symposium entitled 

"Frontiers of applied mechanics and biomechanics" held in honor of the 65th 

birthday of Professor Y(uan)-C(heng) Fung; San Diego - Calif., July 1984). New 

York a. o.: Springer. XVIII, 395 p. 

Shapiro EP, Rademakers FE. 1997. importance of oblique fiber orientation for left 

ventricular wall deformation. Technology and Health Care 5:21-28. 

Shrager RI, Basser PJ. 1998. Anisotropically weighted MRI. Magn Reson Med 

40(1):160-5. 

Sinusas AJ, Papademetris X, Constable RT, Dione DP, Slade MD, Shi P, Duncan JS. 

2001. Quantification of 3-D regional myocardial deformation: shape-based 

analysis of magnetic resonance images. Am J Physiol Heart Circ Physiol 

281(2):H698-714. 

Spencer AJM. 1972. Deformations of fibre-reinforced materials. Oxford: Clarendon 

Press. 6,128 p. 

Spencer AJM. 1984. Continuum theory of the mechanics of fibre-reinforced composites. 

Wien: Springer. viii, 284 -- p. 

Sperelakis N. 1995. Physiology and pathophysiology of the heart. Boston [etc.]: Kluwer. 

XVI, 1173 S. p. 

                                                                                                                                          182 



Sperelakis N. 2001. Heart physiology and pathophysiology. San Diego: Academic Press. 

1261 S. p. 

Stein PD, Davis Z, Sabbah HN, Marzilli M. 1979. Reduction of coronary flow in the 

native circulation after bypass. Observations in a hydraulic model of the 

cardiovascular system. J Thorac Cardiovasc Surg 78(5):772-8. 

Stein PD, Marzilli M, Sabbah HN, Lee T. 1980. Systolic and diastolic pressure gradients 

within the left ventricular wall. Am J Physiol 238(5):H625-30. 

Stein PD, Davis Z, Sabbah HN, Marzilli M. 1979a. Reduction of coronary flow in the 

native circulation after bypass. Observations in a hydraulic model of the 

cardiovascular system. J Thorac Cardiovasc Surg 78(5):772-8. 

Stein PD, Marzilli M, Sabbah HN, Lee T. 1980a. Systolic and diastolic pressure gradients 

within the left ventricular wall. Am J Physiol 238(5):H625-30. 

Stein PD, Sabbah HN, Anbe DT, Marzilli M. 1979b. Performance of the failing and 

nonfailing right ventricle of patients with pulmonary hypertension. Am J Cardiol 

44(6):1050-5. 

Stein PD, Sabbah HN, Anbe DT, Marzilli M. 1980b. The pulmonary component of the 

second sound in right ventricular failure. Henry Ford Hosp Med J 28(1):79-4. 

Stein PD, Sabbah HN, Marzilli M. 1985. Intramyocardial pressure and coronary 

extravascular resistance. J Biomech Eng 107(1):46-50. 

Stein PD, Sabbah HN, Marzilli M, Blick EF. 1980c. Comparison of the distribution of 

intramyocardial pressure across the canine left ventricular wall in the beating 

heart during diastole and in the arrested heart. Evidence of epicardial muscle tone 

during diastole. Circ Res 47(2):258-67. 

Stevens C, Remme E, LeGrice I, Hunter P. 2003. Ventricular mechanics in diastole: 

material parameter sensitivity. J Biomech 36(5):737-48. 

Streeter DD, Basset JR, Basset DL. 1966. An engineering analysis of myocardial fibre 

orientation in pig's left ventricle in systole. The Anatomical  Record 155:503-511. 

Streeter DD, JR. 1983. Gross morphology and fibre geometry in the heart wall. 

Handbook of Physiology, Section 2: The Cardiovascular System Vol. 1:pp. 61-

109. 

                                                                                                                                          183 



Streeter DD, JR., Basset DL. 1966. An engineering analysis of myocardial fibre 

orientation in pig's left ventricle in systole. The Anatomical Record 155:503-511. 

Streeter DD, JR., Power WE, Ross MA, Torrent-Guasp F. Three-Dimentional fiber 

orientation in the mammalian left ventricular wall. In: Vally Forge P, 1975, Baan, 

j., A. Noordergraaf, J. Raines (eds.), editor; 1978; London. The MIT Press, 

Cambridge (Massachusets). p 73-84. 

Streeter DD, JR., Spotnitz DPP, Ross JJ, Sonnenblick EH. 1969a. Fiber orientation in the 

canine left ventricle during diastole and systole. Circ Res 24:339-347. 

Streeter DD, Spotnitz HM, Patel DP, Ross J, Sonnenblick EH. 1969b. Fibre orientation in 

the canine left ventricle during diastole and systole. Circ Res 24:339-347. 

Strumpf RK, Humphrey JD, Yin FC. 1993. Biaxial mechanical properties of passive and 

tetanized canine diaphragm. American Journal of Physiology 265(2pt2):H469-75. 

Stuber M. 1997. Quantification of the human heart wall motion by ultra-fast magnetic 

resonance myocardial tagging techniques [Ph.D. Thesis]. Zurich: Ph.D. Thesis, 

Swiss Federal Institute of Technology. ethz-bib 12208 p. 

Stuber M, Scheidegger MB, Fischer SE, Nagel E, Steinemann F, Hess OM, Boesiger P. 

1999. Alternations in the local myocardial motion pattern in patients suffering 

from pressure overload due to aortic stenosis. Circulation 100:361-368. 

Summerour S, Emery J, Fazeli B, Omens JH, McCulloch AD. 1998. Residual strain in 

ischemic ventricular myocardium. J. Biomech. Engng 120:710-714. 

Takayama Y, Costa KD, Covell JW. 2002. Contribution of laminar myofiber architecture 

to load-dependent changes in mechanics of LV myocardium. Am J Physiol Heart 

Circ Physiol 282(4):H1510-20. 

Takayama Y, Holmes JW, LeGrice I, Covell JW. 1996. Enhanced regional deformation 

at the anterior papillary muscle insertion site after chordal transsection. 

Circulation 93(3):585-93. 

Takeda T, Toyama H, Iida K, Masuoka T, Ajisaka R, Kuga K, Satoh M, Sugahara S, Jin 

W, Ishikawa N and others. 1991. A study of ventricular contraction sequence in 

complete right bundle branch block by phase analysis. Ann Nucl Med 5(1):19-27. 

Takeda T, Toyama H, Ishikawa N, Masuoka T, Ajisaka R, Iida K, Satoh M, Jin W, Saitou 

T, Yamanouchi T and others. 1992a. Perfusion and mechanical analysis with 

                                                                                                                                          184 



technetium-99m 2-methoxy-isobutyl-isonitrile in a case of dilated 

cardiomyopathy. Ann Nucl Med 6(2):103-10. 

Takeda T, Toyama H, Ishikawa N, Satoh M, Masuoka T, Ajisaka R, Iida K, Jin W, 

Sugishita Y, Itai Y. 1992b. Quantitative phase analysis of myocardial wall 

thickening by technetium-99m 2-methoxy-isobutyl-isonitrile SPECT. Ann Nucl 

Med 6(2):69-78. 

Torrent-Guasp F, Buckberg GD, Clemente C, Cox JL, Coghlan HC, Gharib M. 2001. The 

structure and function of the helical heart and its buttress wrapping. I. The normal 

macroscopic structure of the heart. Seminars in Thoracic and Cardiovascular 

Surgery 13:301-319. 

Torrent-Guasp F, Whimster WF, Redmann K. 1997. A silicone rubber mould of the heart. 

Technology and Health Care 5:13-20. 

Truesdell C, Noll W. 1992. The non-linear field theories of mechanics. Berlin ; New 

York: Springer-Verlag. x, 591 p. 

Usyk TP, Mazhari R, McCulloch AD. 2000. Effect of Laminar Orthotropic Myofiber 

Architecture on regional Stress and Strain in the Canine Left Ventricle. Journal of 

Elasticity 61:143-164. 

van Doorn A, Bovendeerd PH, Nicolay K, Drost MR, Janssen JD. 1996. Determination 

of muscle fibre orientation using Diffusion-Weighted MRI. Eur J Morphol 

34(1):5-10. 

Vendelin M, Bovendeerd PH, Arts T, Engelbrecht J, van Campen DH. 2000. Cardiac 

mechanoenergetics replicated by cross-bridge model. Ann Biomed Eng 

28(6):629-40. 

Vendelin M, Bovendeerd PH, Engelbrecht J, Arts T. 2002a. Optimizing ventricular 

fibers: uniform strain or stress, but not ATP consumption, leads to high 

efficiency. Am J Physiol Heart Circ Physiol 283(3):H1072-81. 

Vendelin M, Bovendeerd PH, Saks V, Engelbrecht J. 2002b. Cardiac mechanoenergetics 

in silico. Neuroendocrinol Lett 23(1):13-20. 

Vetter FJ, McCulloch AD. 1998. Three-dimensional analysis of regional cardiac 

function: a model of rabbit ventricular anatomy. Prog Biophys Mol Biol 69(2-

3):157-83. 

                                                                                                                                          185 



Vetter FJ, McCulloch AD. 2000. Three-dimensional stress and strain in passive rabbit left 

ventricle: a model study. Ann Biomed Eng 28(7):781-92. 

Vetter FJ, McCulloch AD. 2001. Mechanoelectric feedback in a model of the passively 

inflated left ventricle. Ann Biomed Eng 29(5):414-26. 

Vinson CA, Gibson DG. 1979. Analysis of left ventricular behaviour in diastole by 

means of finite element method. Br. Heart J. 41:60-67. 

Vis MA, Bovendeerd PH, Sipkema P, Westerhof N. 1997. Effect of ventricular 

contraction, pressure, and wall stretch on vessels at different locations in the wall. 

Am J Physiol 272(6 Pt 2):H2963-75. 

Waldman LK, Fung YC, Covell JW. 1985. Transmural myocardial deformation in the 

canine left ventricle. Normal in vivo three-dimensional finite strains. Circ Res 

57(1):152-63. 

Weiss, j. A., Maker BN, Govindjee S. 1996. Finite element implementation of 

incompressible, transversely isotropic hyperelasticity. Computer methods in 

applied mechanics and engineering 135:107-128. 

Weiss JA. 1994. A constitutive model and finite element representation for transversely 

isotropic soft tissue. Ph.D. Thesis: The University of Utha. 

Wong AYK, Rautaharju PM. 1968. Stress distribution within the left ventricular wall 

approximated as a thick ellipsoidal shell. Am. Heart J. 75:649-662. 

Wu J, Takeda T, Toyama H, Ajisaka R, Masuoka T, Satoh M, Ishikawa N, Sugishita Y, 

Itai Y. 1995. Resting asynchronous left ventricular contraction abnormality 

analyzed by a phase method in spastic angina pectoris. J Nucl Med 36(6):1003-8. 

Wu J, Takeda T, Toyama H, Ajisaka R, Masuoka T, Watanabe S, Sato M, Ishikawa N, 

Itai Y. 1999. Phase changes caused by hyperventilation stress in spastic angina 

pectoris analyzed by first-pass radionuclide ventriculography. Ann Nucl Med 

13(1):13-8. 

Yin FC. 1981. Ventricular Wall Stress. Circ Res 49, No.4(Oct):829-842. 

Yin FCP. 1985. Applications of the finite-element method to ventricular mechanics. CRC 

Crit. Rev. Biomed. Eng. 12:311-342. 

Zahalak GI, de Laborderie V, Guccione JM. 1999. The effects of cross-fiber deformation 

on axial fiber stress in myocardium. J Biomech Eng 121(4):376-85. 

                                                                                                                                          186 




