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Abstract

One of the key invariants in computer and communication systems is that im¬

portant characteristics follow long- or heavy-tailed distributions. This means

that the tail of these distributions declines according to a power law. Hence,

the probability for extremely large values is non-negligible. For example, such

distributions have been found to describe the size of web objects or the pro¬

cessing latencies in computer and communication systems. As a consequence,

there is a need to employ such distributions when evaluating such systems with

synthetic workloads. However, sampling from such distributions to generate
workloads implies that the system under evaluation remains in transient state

over all periods of time that are feasible for performance evaluations. Con¬

sequently, frequently-used statistics for performance evaluation, such as the

average of the system output, do not converge.

In this thesis we move away from evaluation using statistics such as the

average, which describe the expected behavior of the system in all cases, and

take the step towards evaluation using statistics such as quantiles, which de¬

scribe the behavior in a given percentage of cases. Such quantiles of the sys¬

tem output do not depend on the extreme tail of the output distribution. We

therefore address the problem of whether employing quantiles can enable per¬

formance evaluations within periods of time that are feasible in practice for

performance evaluations.

Quantiles have a natural interpretation to statistically characterize the sys¬

tem performance. If e.g. a system offers a web service, the 99-th percentile
of the latencies of downloads can statistically characterize the system perfor¬
mance from a user's view, since 99% of downloads terminate within times

smaller than this quantile. If converged, such quantiles can be used to derive

statistical guarantees for the system performance. Similar statements hold for
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11 Abstract

system components such as servers and networks.

Applying probability theory, we show that statistics of quantiles converge

considerably faster than other frequently-used performance evaluation statis¬

tics if the underlying distribution is long- or heavy-tailed. Based on this theory,
we give a method which enables to evaluate system performance under long-
or heavy-tailed input within periods of time that are practically feasible. We

validate the proposed method by applying it to a simulation-based evaluation

of the network performance of systems that offer web services.

We show that the proposed method has further applications to other prob¬
lems that require performance evaluation with synthetic workloads which are

generated by sampling long- or heavy-tailed distributions. These applications
include capacity provisioning, benchmarking of new hard- and software, as

well the evaluation of protocols that rely on the request/reply paradigm such

as HTTP, IMAP, FTP, or NFS. Further applications can be found in the field

of computer systems where CPU requirements of tasks show a heavy-tailed
distribution. This includes the evaluation of migration policies in a network of

workstations, as well as task assignment policies for distributed servers.



Kurzfassung

Die Langschwanzigkeit der Verteilungen wichtiger Kenngrossen ist eine der

bekannten Invarianten in Computer- und Kommunikationssystemen Lang¬
schwanzigkeit einer Verteilung bedeutet, dass die Verteilung nach einem Po¬

tenzgesetz zerfallt Dies wiederum hat zur Folge, dass die Wahrscheinlichkeit

sehr grosse Werte zu beobachten nicht vernachlassigbar ist Unter anderem

wurde festgestellt, dass z B die Grosse von Web-Objekten oder die Verar-

beitungslatenz gewisser Systeme mit langschwanzigen Verteilungen beschrie¬

ben werden können Daher gibt es bei der Evaluation von Systemen mit syn¬
thetischer Last ein Bedürfnis solche Verteilungen zu modellieren Allerdings
impliziert das Generieren von Last durch ein Abtasten solcher Verteilungen,
dass das zu evaluierende System sich in einem transienten Zustand befindet

wahrend aller Zeitspannen, die fur Performance-Evaluationen machbar sind

Als Folge konvertieren gebräuchliche Statistiken zur Performancemessung,
wie der Mittelwert von Outputgrossen, nicht

In dieser Dissertation bewegen wir uns weg von Performance-

Evaluationen mit Statistiken, wie dem Mittelwert, der das erwartete Verhal¬

ten des Systems in allen Fallen wiedergibt, und betrachten Statistiken wie

Quantile, die das Verhalten des Systems in einem gegebenen Prozentsatz von

Fallen wiedergeben Solche Quantile der Outputgrossen hangen nicht vom

aussersten Schwanz der Output-Verteilung ab Deshalb untersuchen wir das

Problem, ob das Betrachten von Quantilen eine Performance-Evaluation in¬

nerhalb von Zeiten ermöglicht, die fur solche Evaluationen praktisch machbar
sind

Quantile haben eine natürliche Interpretation um die Performance von Sy¬
stemen zu charakterisieren Wenn z B ein System einen Web-Dienst anbietet,
kann das 99-te Perzentil der Download-Latenz die System Performance aus

in
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Benutzersicht charakterisieren, da 99% der Downloads innerhalb einer Zeit

enden, die kleiner als dieses Quantil ist Falls ein solches Quantil konvergiert
hat, kann es benutzt werden, um statistische Garantien fur die Performance

des Systems abzugeben Aehnhche Aussagen können fur Systemkomponen¬
ten, wie Server und Netzwerke, gemacht werden

Durch Anwendung von Wahrscheinlichkeitstheorie zeigen wir, dass Sta¬

tistiken wie Quantile signifikant schneller als andere bei der Performance-

Evaluation gebräuchliche Statistiken konvergieren, wenn die unterliegende

Verteilung langschwanzig ist Basierend auf dieser Theorie geben wir ei¬

ne Methode an, die es ermöglicht, die System Performance unter lang-
schwanzigem Input innerhalb von Zeiten zu evaluieren, die praktisch machbar
sind Wir validieren die vorgeschlagene Methode, indem wir sie auf eine si-

mulationsbasierte Performance-Evaluation von Netzwerken in Systemen, die

Web-Dienste anbieten, anwenden

Wir zeigen, dass diese Evaluationsmethode weitere Anwendungen bei

Problemen hat, die eine Performance-Evaluation mittels synthetischer Last er¬

fordern, welche durch Abtasten von langschwanzigen Verteilungen generiert
wird Die Anwendungen beinhalten die Dimensionierung von Kapazitäten,
das Benchmarking neuer Hard- und Software, sowie die Evaluation von Pro¬

tokollen die auf dem Request/Reply Paradigma beruhen, wie HTTP, IMAP,
FTP, oder NFS Weitere Anwendungen können im Gebiet der Computersyste¬
me gefunden werden, da der CPU-Bedarf von Tasks ebenfalls langschwanzig
verteilt ist Dies beinhaltet die Evaluation von 'Migration Policies' in einem

Netzwerk von Workstations sowie von 'Task Assigment Policies' fur verteilte

Server
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Chapter 1

Introduction

One of the key invariants in computer and communication sys¬

tems is that important characteristics follow long- or heavy-tailed
distributions. This means that the tail of these distributions de¬

clines according to a power law. Hence, the probability for ex¬

tremely large values is non-negligible. For example, such distri¬

butions have been found to describe the size of web objects or the

processing latencies in computer and communication systems.
As a consequence, there is a need to employ such distributions

when evaluating such systems with synthetic workloads. How¬

ever, sampling from such distributions to generate workloads im¬

plies that the system under evaluation remains in transient state

over all periods of time that are feasible for performance evalu¬

ations. Consequently, frequently-used statistics for performance
evaluation, such as the average of the system output, do not con¬

verge.

In this thesis we move away from evaluation using statistics

such as the average, which describe the expected behavior of the

system in all cases, and take the step towards evaluation using
statistics such as quantiles, which describe the behavior in a given

1



2 Chapter 1. Introduction

percentage of cases. Such quantiles of system output do not de¬

pend on the extreme tail of the output distribution. We therefore

address the problem of whether employing quantiles can enable

performance evaluations within periods of time that are practi¬

cally feasible for performance evaluations.

We illustrate the problem and our approach to a solution with

an example of a capacity provisioning problem for web services.

The infrastructure for these services typically consists of a net¬

work, servers, and clients. The service is engaged by triggering a

browser at the client to download a web page. The browser there¬

fore requests web objects from servers over the network. Upon
arrival, these objects are displayed in the browser.

The main property of the traffic of web services in the con¬

text of performance evaluation is the stochastic self-similarity of

traffic patterns. This means that the burstiness of traffic patterns
is preserved on different time scales which span at least four to

five magnitudes [Park and Willinger(2000)]. Such self-similarity
is known to have significant negative impact on performance and

stability in performance evaluations. A related property is the

long-tailed distribution of the size of downloaded objects. This

long-tailed distribution implies a very large variability of object
sizes. Thus, extremely large object sizes occur with significant
probability in addition to many small objects.

To evaluate the performance of networks and servers

for capacity provisioning, benchmarking, or protocol eval¬

uation, it is common practice to employ synthetically

generated workloads rather than to replay traffic traces

[Krishnamurthy and Rexford(2001)]. The main reasons for this

are that traffic traces may not reflect the full variability inher¬

ent to web traffic and that traffic traces cannot account for ef¬

fects caused by load adaptation mechanisms such as TCP's flow

control in the network. Moreover, traffic traces do not account
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for future trends in workload developments. The object sizes in

the synthetic workload generation are usually obtained by sam¬

pling long- or heavy-tailed distributions. It can be shown that

generating workload by sampling a heavy-tailed object size dis¬

tribution induces a self-similarity in the generated traffic which

is comparable to the self-similarity of web traffic observed in ex¬

isting infrastructure [Willingeretal.(1995)]. As a consequence

such traffic has similar performance and stability properties.

[Crovella and Lipsky(2000)] states that performance evalua¬

tions are difficult when workload is generated by sampling a

heavy-tailed distribution. Such workloads cause the evaluated

system to remain in a transient state for all times that are practi¬

cally feasible for performance evaluations. For the performance
evaluation of web services, this implies that frequently used

statistics such as the average download latency do not converge.

Thus, these statistics are not suitable for performance evaluation.

A similar statement can be made for capacity provisioning,

benchmarking, or protocol evaluation of any service that employs

request/reply transactions or downloads of objects that have a

long- or heavy-tailed distribution. Examples for such services

are e-mail and file transfer which base on protocols like IMAP,

FTP, and NFS.

Clearly, there is a need to research whether meaningful statis¬

tics can be found in order to statistically evaluate the performance
of services within times that are of practical interest. This thesis

proposes a quantile-based approach, which implies that the eval¬

uation is restricted to account for a large fraction of downloads

instead of all downloads. For the example of performance eval¬

uation of a web service, this means that we propose to evaluate

network and server performance with the statistics of download

latency percentiles such as the 99-th latency percentile. By def¬

inition 99% of the downloads have a latency smaller than the
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99-th latency percentile. Thus this percentile has a natural in¬

terpretation in statistical evaluation of quality of service. Perfor¬

mance evaluation with such latency quantiles does not account

for the latencies of extremely large downloads. Therefore per¬

formance evaluation with such statistics can lead to meaningful
results within periods of time that are practically feasible.

To validate this hypothesis, we show that a quantile-based ap¬

proach can be employed to evaluate the network performance in

simulations of web services. Results presented in this thesis in¬

dicate that network latency quantiles, such as the 99-th latency

quantile, converge during periods of time that are practically fea¬

sible. This in turn leads to useful quality of service guarantees.
We further show that a similar convergence can be expected for

other systems when input for performance evaluation is gener¬

ated by sampling from long- or heavy-tailed distributions. There¬

fore it is possible to give statistical quality of service guarantees
in a number of resource allocation problems.

1.1 Problem Statement

For the example of performance evaluation of a web service with

a synthetic workload the research problem that this thesis ad¬

dresses can be stated as follows:

We assume that object sizes for the performance evaluation

are generated by sampling a heavy-tailed distribution. This

generally prevents frequently-used statistics such as the average

download latency from converging at sample sizes that are of

practical use to engineer quality of service guarantees. A similar

statement can be made for other statistics that depend on objects
of all size. Hence, there is a need to research whether it is possi¬
ble to evaluate the performance ofthe service with statistics that
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do not depend on objects ofall size. These statistics then need to

have the following properties:

1. These statistics need to have a meaningful interpretation in

the context of quality of service.

2. These statistics need to converge at sample sizes that are of

practical use to evaluate quality of service.

The reason that statistics that depend on objects of all size

do not converge at sample sizes that are of practical use can be

given as follows: In order for the object size distribution in the

sample to converge to the heavy-tailed distribution used for gen¬

eration of the objects, a necessary condition is that the running

average of the generated object sizes converges to the average of

the heavy-tailed distribution. This requires sample sizes larger
than 1014 if we assume convergence to a 5% relative accuracy

and heavy-tailed object size distribution with a = 1.1. This large

sample size can be explained with convergence properties of the

sample's average from a heavy-tailed distribution that has infinite

variance. This average does not converge to a normal distribution

at the typical n-1/2 rate, where n is the sample size. Instead, the

average converges to a a-stable distribution at a rate which is

considerably slowed down for a between 1.0 and 1.2, which is

typical for measured object size distributions. Truncating the ob¬

ject size distribution at 2.1GB, which is equivalent to assuming
that object sizes are represented by signed 32 bit integers since

231 = 2.1 • 109, reduces the sample size to 1012 objects. This

is to be explained with the very large variance of the truncated

heavy-tailed distribution.
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1.2 Our Approach

In this thesis, we abstract from the performance evaluation of

a web service with synthetic workload. We introduce a system

model which is depicted in Figure 1.1 and propose a quantile-
based method to enable performance evaluation of systems that

follow this model at amounts of input that are of practical use.

Estimation of Estimation of

Input Quantiles Output Quantiles

Heavy-tailed SamPling

System Input

Input Generation Process

System
Observing

> System Output

Output Generation Process

Figure 1.1: System Model

For the example of web services, the long- or heavy-tailed dis¬

tribution in the input generation process is the size distribution of

downloaded objects. The observed system output is the latency
of the downloads. The system consists of the infrastructure for

which we evaluate performance, i.e. network, servers, etc. Alter¬

natively, simulations which mimic the infrastructure can be used

for performance evaluation.

We assume that system performance can be characterized with

converged quantiles of system output, such as the 95-th, 98-th, or

99-th percentile. For the example of web services this means

assuming that the performance of a web service can be charac-
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terized with converged 95-th, 98-th, or 99-th percentiles of user-

perceived download latency. These percentiles reflect the amount

of time required to complete the corresponding percentage of

web downloads and therefore naturally reflect a statistical quality
of a web service when converged.

We assume that a lower bound for the amount of input nec¬

essary to converge a quantile in system output can be estimated

from the convergence of the corresponding quantile of system

input. This lower bound estimates the initial phase of the conver¬

gence of the output quantile. Due to effects that come from the

adaptivity of the system, much more of the input may need to be

consumed to converge the quantile in system output.

Hence, the method is based on estimation of quantiles such as

the 95-th, 98-th, or 99-th percentile in system in- and output. The

method exploits the fact that quantiles from a heavy-tailed distri¬

bution usually converge at sample sizes that are of practical use.

For the example of a web service, the 99-th object size quantile

converges to a 5% relative accuracy at sample sizes larger than

105 if the object sizes are obtained by sampling a heavy-tailed

object size distribution with a = 1.1. This comes from the fact

that quantiles of a heavy-tailed distribution converge to a normal

distribution at a n-1/2 rate, where n is the sample size. This nor¬

mal distribution usually has a comparably small variance. The

convergence solely depends on the order of the quantile and the

probability density of the heavy-tailed distribution in the vicinity
of the quantile. This convergence is fundamentally different from

the convergence of the running average in the sample from the

heavy-tailed distribution. The running average converges to an

a-stable distribution at a rate which is significantly slower than

n-1//2. As a consequence of this difference in convergence, quan¬

tiles of input from a heavy-tailed distribution can be estimated at

sample sizes that are of practical use. This means that the corre¬

sponding quantile in system output may also converge at sample
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sizes that are of practical use.

Assuming that the system can contain adaptive mechanisms

that prevent an evaluation with simple input/output correlation

schemes, we propose to apply convergence test procedures to

estimate quantiles of system output. Inferences from proba¬

bility theory suggest that quantiles in system output generally

converge to a normal distribution whenever the output distribu¬

tion is sufficiently regular in the vicinity of the quantile. The

details of this convergence depend on the conelation structure

of system output. If the correlations decay fast enough to be

consistent with a weakly dependent correlation structure, quan¬

tiles generally converge to a normal distribution at a n-1/2 rate

[Hampel et al.(1986)]. Stronger correlations result in a long-

range dependent correlation structure, which typically manifests

in a slow down of the rate of convergence [Beran(1994)]. We

thus propose to apply standard normality test procedures which

are based on normal probability plots to check whether the p-th

quantile in system output is consistent with a normal distribution.

In case of convergence, the test additionally checks the rate of

convergence and provides an accurate estimation of the quantile.

1.3 Validation

We validate the proposed method with a simulation study of the

network performance of a web service using ns-2 [ns-2(2000)].
We derive the convergence of the 95-th, 98-th, and 99-th per¬

centile in simulation input. We employ this convergence to de¬

termine the minimal number of downloaded objects required to

estimate the corresponding 95-th, 98-th, and 99-th network la¬

tency percentile. We then test the convergence of these latency

quantiles. We find that in our simulations under low utilizations,

quantiles of interest are weakly correlated and converge to a nor-
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mal distribution at a n-1/2 rate. With low utilization, we mean

utilizations that are comparable to what Odlyzko's study of uti¬

lization patterns [Odlyzko(2000)] reports as average in private
networks. Under high utilizations, we also find convergence of

latency quantiles to a normal distribution. This convergence is

slower than a n-1/2 rate. With high utilization, we mean uti¬

lizations that are comparable to what France Telecom and others

consider as a maximum which is acceptable during the busiest

period [Ben Fredj et al.(2001)]. In both cases we can accurately
estimate confidence intervals for the latency quantiles that can be

employed to engineer guarantees for the web service.

Finally, we argue that both the estimation of the minimal sam¬

ple size to converge the p-th quantile in system output as well as

the test method can be applied to evaluate system output of other

systems with heavy-tailed input.

1.4 Research Contributions

The research contribution of this thesis is to provide a method

that enables performance evaluation of systems with synthetic
workloads that were generated by sampling heavy-tailed distri¬

butions. In detail this means

1. Quantiles are suitable statistics for performance
evaluation

We give evidence that quantiles are suitable statistics for

performance evaluation of systems with synthetic work¬

loads that were generated by sampling heavy-tailed distri¬

butions.

2. A priori bounds for evaluation duration

We provide lower bounds that estimate the initial phase in

the convergence of quantiles in system output.
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3. Estimation of quantiles in system output
We give a method to test whether quantiles of simulation

output have converged. In case of convergence this method

additionally provides accurate estimates for the quantiles.

4. Practicability of the method

We show that the test method can be employed to evaluate

the network performance of web services in terms of latency

quantiles.

5. Versatility of the method

We show that our method is not limited to the performance
evaluation of network performance of web services. In¬

stead, the method has a series of further applications which
need not be related to the evaluation of network perfor¬
mance of web services.

These research contributions are revisited and assessed in

Chapter 9.

1.5 Outline

This thesis is structured as follows:

• Chapter 2 gives backgrounds of probability theory. The

chapter explains why it is important to model long- and

heavy-tails in performance evaluations in the generation of

synthetical workloads and why this leads to a stability prob¬
lem. Finally, the chapter reviews how this stability problem
is addressed in related work.

• Chapter 3 introduces the theory behind our quantile-based
method.
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• Chapter 4 introduces our quantile-based method for per¬

formance evaluation, which is comprised of estimation of

minimal sample sizes required to converge the p-th. quantile
in system output and testing this quantile for convergence.

• Chapter 5 describes the simulation environment of ns-2

which we have employed to study network latencies of web

downloads to validate our method, and includes a descrip¬
tion of our HTTP implementation.

• Chapter 6 introduces the validation study and evaluates

minimal sample sizes required to converge the p-th latency

quantile in a simulation of a web service.

• Chapter 7 elaborates on the validation study and applies
the proposed test method to download latency quantiles in a

simulation of a web service.

• Chapter 8 presents further application scenarios and proto¬
cols to which our evaluation method can be applied.

• Chapter 9 concludes this thesis with a summary of results,

reviews our research contributions, and provides a number

of starting points for further research.





Chapter 2

Background and

Related Work

In this chapter we review the background and related work for

this thesis. We start with statistics and introduce the notion of

long- and heavy-tailed distributions. We explain the long mem¬

ory property of long- or heavy-tailed distributed characteristics.

We explain why it is important to model this property when

performance is evaluated with synthetical workload. We illus¬

trate this with the example of performance evaluations with self-

similar network traffic. We explain why performance evalua¬

tions of systems with synthetical workloads which are generated
by sampling long- or heavy-tailed distributions inherently suffer

from a stability problem. Finally, we review how this stability or

convergence problem is addressed in research work.

13
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2.1 Probability Distributions

A random variable X is described by the probability p that cer¬

tain values x can be observed. The set of values is called the

sample space.

Se-05

76-05

§ 68-05

I 58-05

g 4.-05

| 38-05

Q. 28-05

18-05

(a) Probability Density Function (b) Cumulative Distribution Function

Figure 2.1: Distribution ofa Random Variable

A discrete random variable is a random variable which can

take a finite or countably infinite number of values. Examples
for a discrete random variable are the number of downloaded web

objects in a simulation or the number of currently active users in

a simulation. A discrete random variable has a certain probability
to take the value x. This probability is denoted by the probability
massfunction PMF p(xi) = p(X — x{) for which

^2p(xi) = 1

i

A continuous random variable is a random variable which can

take any real number. An example for a continuous random vari¬

able that is related to the topic of this thesis is the download time

of a web object. For a continuous random variable, the role of the

Probability Density Function f(x)=F(x) (PDF) Cumulative Distnbution Function F(x) (CDF)

10000 20000 30000 40000 50000 60000 10000 20000 30000 40000 50000 60000
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probability mass function is taken by a probability density func¬
tion (PDF), f(x), which has the properties that f(x) > 0, / is

piecewise continuous, and

/CO f(x)dx = 1 (2.1)
-co

Then for any a < b the probability that X falls in the

interval ]a, b[ is given by

p(a < X < b) = I f{x)dx (2.2)
Ja

For examples for PDFs see Figure 2.1 (a).

The probability p(X < x) is denoted by the

cumulative distributionfunction (CDF)

F(x) = f f(u)du (2.3)
J —CO

It follows that

lim F(x) = 0
X—*—CO

(2.4)

lim F(x) = 1
X—»CO

(2.5)

and

p(a < x < b) = F(b) - F(a) (2.6)

For an example for CDFs see Figure 2.1 (b).
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2.1.1 Moments of a Distribution

The properties of a distribution of a continuous random variable

can be described with moments of the distribution. The r-th mo¬

ment of a distribution is defined as

/•CO

E{Xr) = / xrf{x)dx (2.7)
Jo

Examples:
The first moment of a distribution is the expected value E{X).
The r-th central moment of distribution is defined as

/•CO

E([X - E(X)Y) = / (x - E(X)Yf(x)dx (2.8)
Jo

Examples:
The second central moment of a distribution is the variance ofthe
distribution Var(X), the third central moment is the skewness,
and the fourth central moment the kurtosis.

Analog definitions can be made for the distribution of discrete

random variables by replacing integrals with sums.

2.1.2 Confidence Interval and Accuracy

A confidence interval for a random variable is a interval [L, U]
that contains the variable with a specified probability. We call

this probability the significance level of the confidence interval.

For example, let X be a random variable that follows a normal

distribution with expectation value \i and variance a2 which is

given by

i rx (x- )2

N{ß,a){x) = -r^ e~^^dt (2.9)
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Then the confidence interval at significance level 95%, which is

symmetric around the expected value //, is given by [U, L] with

U — fj, - 1.96 * a and L = p + 1.96 * a. Unless explicitly
stated otherwise, all confidence intervals in this thesis assume a

significance level of 95%.

The relative accuracy with which we can estimate a random

variable from observations that follow a given distribution can

now be defined as

Accuracy — max{ I 1,1 1} (2.10)

2.1.3 Exponential and Heavy-tailed Distributions

We now introduce distributions that are frequently used when

modeling computer- and communication systems.

We begin with the exponential distribution. The PDF / of a

exponential distribution is given with:

ti \
/ ° if a; < 0

,* ii\
fix)

= < i _x ._

^
_ (2.11)J v '

- e ä if x > 0
K a —

The CDF is given by integration. For an example see Figure 2.1.

The exponential distribution has the following properties:

1. The expected value is E(x) — a. The variance is

Var{x) = a2 which is comparably small. This leads to a

standard deviation which equals the expected value.

2. The probability that a exponentially distributed random

variable takes values which are magnitudes larger than the

expected value is negligible. Neglecting a very small frac¬

tion (< 1%) of the very largest values when sampling the
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distribution has negligible impact on the statistical proper¬

ties of the sample.

3. The exponential distribution is the only memoryless random

distribution. Thus if for example the age of processes were

exponentially distributed, the remaining lifetime of a pro¬

cess is independent of its current age since ea+b = ea * eb.

Examples for variables in the field of computer and commu¬

nication systems that are usually modeled with exponential dis¬

tributions are:

• the session inter-arrival times in web workload generation
[Krishnamurthy and Rexford(2001)]

• the arrival rate of tasks in a computer systems
[Harchol-Balter et al.(1999)].

Next we introduce long- and heavy-tailed distributions. We

follow [Crovella and Lipsky(2000)] and define heavy-tailed dis¬

tributions with

l-F(x)~x~a ae]0,2] (2.12)

where a(x) ~ b(x) means

We call a the tail index. We note that more general definitions

are possible (see e.g. [Goldie and Kluppelberg(1997)]). For an

example see the Pareto distribution in Figure 2.1.

A heavy-tailed distribution has the following properties:

1. For a < 1, the expected value does not exist. Therefore

this thesis assumes a e]l,2] unless explicitly stated oth¬

erwise. For all a e]0,2] the variance is infinite, i.e. the
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second moment does not exist. When sampling from such a

distribution, the variance of the sample grows without limit.

2. The probability that a heavy-tailed distributed random vari¬

able takes values which are magnitudes larger than the ex¬

pected value is not negligible. Neglecting a very small frac¬

tion (< 1%) of the very largest values when sampling the

distribution has significant impact on the statistical proper¬
ties of the sample. The tail of a heavy-tailed distribution

manifests a straight line in a log-log plot of the complemen¬
tary cumulative distribution function (CCDF) 1 — F (see

Figure 2.2).

3. A heavy-tailed distribution has long memory. Thus if age
of processes were heavy-tailed distributed, old age of a pro¬

cess would imply that a large remaining lifetime is to be ex¬

pected. If e.g. the tail index of the heavy-tailed distribution

were 1, a process of age x seconds had a probability \ that

the remaining lifetime is more than another x seconds. In

other words, the median remaining lifetime of the process
is equal to the current age.

Examples for variables in the field of computer and commu¬

nication systems that are usually modeled with heavy-tailed dis¬

tributions are:

•

•

the object size and number of embedded images in web

workload generation [Krishnamurthy and Rexford(2001)]

the CPU requirements in a computer systems
[Harchol-Balter et al.(1999)].

We define a long-tailed distribution as a heavy-tailed distribu¬

tion which is truncated several orders of magnitude beyond the

expected value. Thus long-tailed distributions inherit most of the
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Complementary Cumulative Distribution Function (CCDF)
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Figure 2.2: CCDF ofa Exponential and a Pareto Distribution

statistical properties of heavy-tailed distributions. However, the

variance of long-tailed distributions is finite. We note that more

general definitions for long-tailed distributions are possible.

2.1.4 Pareto Distributions

Pareto and ParetoII distributions (see [Johnson et al.(1994)]) are

the simplest class of représentants of heavy-tailed distributions

and thus frequently used in modeling.

For a Pareto distribution the CDF is given by

Fix) = 1 - (-T for x G [k, oo) (2.13)
x

with parameters minimal value k and shape parameter a. The

shape parameter of the Pareto distribution is equal to its tail in¬

dex.
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For a ParetoII distribution the CDF is given by

F(*) = 1-(TT^ *e[0,oo[ (2.14)

The ParetoII distribution has two free parameters: the average

a, and the shape parameter a which equals its tail index, s =

a * (a — 1) is a dependent parameter.

2.2 Modeling Heavy Tails

As we have seen in the previous section, heavy-tailed distributed

characteristics have long memory. In many systems this long
memory contributes to long-range dependence or self-similarity
in performance characteristics, which has significant negative im¬

pact on system performance. A similar statement can be made for

long-tailed distributed characteristics. Thus, modeling long- or

heavy-tails in the distributions of system input is inevitable when

generating workload for performance evaluations with synthetic
workload.

2.2.1 Heavy Tails in Network Traffic Generation

We elaborate this statement for the generation of synthetic net¬

work traffic for performance evaluation.

Generally characterizing network traffic is a difficult problem
given that both network technologies and applications that gen¬
erate traffic vary from site to site and evolve over time. To cope
with this high variability, [Paxson and Floyd(1997)] proposes to

identify invariants that affect resource allocation and system per¬
formance. These invariants have been studied on various activity
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levels (see [Charzinski(2002)] and references therein, and Fig¬
ure 2.3 (left) for an illustration of activity levels). These activity
levels can be linked to user, application, transport protocol, and

network behavior (see Figure 2.3 (right)). In addition to that, the

relation of invariants on different activity levels has been studied.

Probably the most well known invariant of network behavior that

affects resource allocation and system performance across stud¬

ies is the self-similarity of network traffic on the network layer
(see Figure 2.4).

However, this self-similarity of traffic on the network layer
is unlike the distributional self-similarity known from determin¬

istic fractals for which the parts exactly resemble their parts in

all detail. This self-similarity is more general in a sense that

the shape of the graph depicting the throughput is preserved un¬

der aggregation if suitably normalized. The visual impression of
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Figure 2.4: Self-similarity of Web Traffic

burstiness under aggregation does not change. This phenomenon
is called burstiness preservation. Burstiness or variability are

formally captured by the statistics of variance, which is related

to the second moment of the throughput distribution and there¬

fore called second order statistics. Hence, second order self-
similarity, which is observed as an invariant for network traf¬

fic on the network layer, means that the variance of through-
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put statistics is preserved under aggregation if suitably normal¬

ized. The normalization, which completely defines second order

self-similarity, has a direct relation to the correlation structure of

statistics. This normalization is completely described with a sin¬

gle parameter, the Hurst parameter. Independent or short-range
dependent statistics all lead to a Hurst parameter of 0.5. How¬

ever, measurements of network traffic suggest an invariant Hurst

parameter around 0.9. This invariant Hurst parameter in turn im¬

plies a strong long-range-dependent correlation structure among

observations of throughput in a network [Leland et al.(1994)].

This in turn has significant negative impact on the perfor¬
mance of services that use the network such as web, e-mail, or

FTP. The effect of this long-range dependence in the statistic of

network throughput is that relatively long periods of low through¬
put follow relatively long periods of high throughput, which, in

statistics literature, is known as the Joseph effect1. This leads to

drastic reductions in the effectiveness of deploying "buffers" in

network components in order to absorb transient increases in traf¬

fic load [Erramilli et al.(1996)]. This in turn has a considerable

negative effect on system performance.

A series of measurements, simulations, and theoretical con¬

siderations have been made to track down the causes for self-

similarity in network traffic and explore its effects on network

performance.

[Willingeretal.(1995)] theoretically shows that the self-

similarity of network traffic can be explained by the size

of transfered objects following a heavy-tailed distribution.

[Park et al.(1996)] employs simulations to confirm these theo¬

retical results. The work shows that the relation between self-

similarity of network traffic and the heavy-tailedness of the ob-

1 Mandelbrot chose this term in reference to the biblical "seven years of great abundance" and

"seven years of famine" account of the irrigation capacities of the river Nile in ancient Egypt.
[Mandelbrot and Wallis(1968)]
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ject size distribution is not significantly affected by changes in

network resources, topology, traffic mixing, the distribution of

inter-arrival times. The work also shows that transport layer
mechanisms such as TCP's reliability and flow control pre¬

serve self-similarity in network traffic. Hence, given that there

is evidence that size distributions of objects transfered in real

systems possess long tails (see [Arlitt and Williamson(1996)]
[Crovella and Bestavros(1996)] [Paxson and Floyd( 1994)]), this

explanation gives rise to a new understanding of network dynam¬
ics.

[Park et al. (1997)] performs a simulation to study the adverse

impact of self-similarity in network traffic on performance. This

work considers various implementations of TCP's congestion
control for reliable, flow-controlled packet transport. In addition

to confirming that the explanation that self-similar network traffic

with the size distribution of objects transfered is long- or heavy-
tailed, [Parketal.(1997)] finds that network performance mea¬

sured by packet loss and retransmission rate declines smoothly as

self-similarity is increased under reliable, flow-controlled packet
transport. Queueing delay is increased more drastically. When

traffic is highly self-similar, as measured in real networks, queue¬

ing delay grows nearly proportionally to the buffer capacity
present in the system. From these observations this work infers

that provisioning for QoS is a difficult problem at the presence of

self-similar traffic.

We thus infer that modeling the the long or heavy tail in the

object size distribution is inevitable when synthetically generat¬
ing network traffic.
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2.3 Implications of Heavy-tailed Input

Generating input by sampling a heavy-tailed distribution for syn¬

thetical workload generation has severe implications for the sta¬

bility in performance evaluations. A heavy-tailed distribution

has infinite variance or, more formally, non-existing second and

higher moments. As a consequence, the convergence of perfor¬
mance statistics that depend on these moments significantly dif¬

fers from the convergence of the same statistics in systems that

sample from commonly used light-tailed distributions with finite

variance. If the tail index a of the heavy-tailed distribution is

close to one, the performance statistics that depend on these mo¬

ments cannot even be evaluated at sample sizes that are of prac¬

tical use.

We illustrate this with the example of a simple statistic that

depends on the second moment of the distribution: the running
average in a sample from a distribution in system input. Let

Xi,..., Xn be a sample of n independent observations of a ran¬

dom variable in system input. The running sample average can

then be defined as

Xn = -Txi (2.15)
n *-~*

i=i

If the Xi, ...,Xn are from a light tailed distribution with finite

first and second moments, the well known central limit theorem

(CUT) can be applied. The CLT states that the distribution of Xn

converges in distribution to a normal distribution J\f at rate n~ 2.

n1/2(Xn - p) > j\f(0, a2) (2.16)
in distribution

This convergence implies the following:

1. p is the most probable value for Xn at all sample sizes n.

Hence, confidence intervals for Xn around p are symmetric.
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2. The distribution of Xn has fast decaying exponential tails.

Hence, confidence intervals are well centered around p.

3. The distribution of Xn converges at a n1^2 rate. Hence, con¬

fidence intervals for Xn, which are given by // ± 1.96 * a *

rT1!2, lead to convergence of Xn at small sample sizes.

This is illustrated in Figure 2.5 (top) which is from

[Crovella and Lipsky(2000)]. The figure shows histograms of the

distribution of An = Xn around ft = 1 for increasing sample
sizes n. The Xt from which the Xn have been computed were

drawn from a exponential distribution.

If the Xi,...,Xn are from a heavy-tailed distribution for

which the second moment does not exist (see section 2.1.3),
we need to refer to a generalized central limit theorem (GCLT)

[Nolan(2002)] to describe the_convergence of Xn. This GCLT

states that the distribution of Xn converges in distribution to a

a-stable distribution Sa at rate n1//a_1 < n~2.

n1-1/«^ - //) —— Sa (2.17)
m distribution

a-stable distributions are a superset of normal distributions

which have four parameters, a, the index of stability, equals
to the shape parameter of the heavy-tailed distribution used for

sampling. The special case where a = 2 is the set of normal

distributions, a-stable distributions have a skewness parameter
in addition to the location parameter (a generalization of the pa¬

rameter p in the normal distribution), and the scale parameter
(a generalization of the parameter a in the normal distribution),
a-stable distributions are known to have no closed form repre¬
sentation except for three special cases. One of these cases is the

normal distribution. Usually a-stable distributions are described

with their characteristic functions (see [Nolan(2002)]). The con¬

vergence of the distribution of Xn to an a-stable distribution im¬

plies the following:
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1. ß can be far from the most probable value for Xn since a-

stable distnbutions are usually skewed. Hence, particularly
at small sample sizes, confidence intervals for Xn around /x

can be highly asymmetric.

2. The distribution of Xn has at least one slowly decaying
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[Crovella and Lipsky(2000)])
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heavy tail. This tail has the same index a as the heavy-tailed
distribution used for generating the Xi. Hence, confidence

intervals cannot be well centered around fi.

3. The distribution of Xn converges at a n1/"-1 rate. Hence,

for a —> 2 the convergence is almost as fast as the conver¬

gence to a normal distribution. However, for a —> 1, this

convergence is severely slowed.

This is illustrated in Figure 2.5 (bottom) which is from

[Crovella and Lipsky(2000)]. The figure shows histograms of the

distribution of An = Xn around ft = 1 for increasing sample
sizes n. The X{ from which the Xn have been computed were

drawn from a strictly positive heavy-tailed distribution with tail

index a = 1.4.

[Crovella and Lipsky(2000)] give the following rough ap¬

proximation to estimate the sample size required to estimate pi
with the running sample average Xn. The convergence relation

2.17 implies

\Xn - A*l ~ ein1/""1 (2.18)

They then define the k digit accuracy with which they want to

estimate the running sample average as

|Xw ~ Ml
< 10-fe (2.19)

P

Hence, the sample size n to estimate ß from Xn can be obtained

by inserting Equation 2.18 into Equation 2.19 which yields in

— * ri11«'1 < 10"fc (2.20)

Before solving for n, Crovella and Lipsky suggest that approx¬

imating £j- with 1 is sufficient to obtain the order of magnitude
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of n. Thus, the sample size required for estimating fi from the

running average Xn with k digit accuracy is given by

(Ü * iQ-kyr^ < n (2.21)
c\

Evaluating this equation, [Crovella and Lipsky(2000)] list the

sample sizes given in Table 2.1 for two digit accuracy. We note

that the definition of k digit accuracy which Crovella and Lipsky
use here is a special case of the definition of relative accuracy

that is used throughout this thesis (see Equation 2.10). The two

digit accuracy corresponds to 1% relative accuracy in our terms.

a n

2.0 1.0-104

1.7 7.2 -104

1.5 1.0 • 10b

1.2 1.0-10i:i

1.1 1.0 • 10^

Table 2.1: Required Sample Size to Estimate the Average from the Running
Mean [Crovella and Lipsky(2000)]

2.4 Performance Evaluations with Heavy-Tailed

Input

2.4.1 Network and Server Performance

Despite the stability or convergence problem discussed in the pre¬
vious section, most research works on network and server per¬
formance continue to assess performance with the average. They
circumvent the convergence problem in two common ways. The

first approach is to limit the variability of traffic by tightly trun¬

cating the tail of the heavy-tailed distribution. The second and

less common approach is to restrict to reporting trends.
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Recent works pursuing the first approach are

[Christiansen et al.(2000)], [Nahumet al.(2001)], and

[Crovella et al.(1999)]. [Christiansen et al.(2000)] employs
synthetic workload generation in an experiment to study the ef¬

fect ofRED vs. FIFO queues in routers on network performance.
They find that for HTTP/1.0, RED in router queues only leads

to minimal improvements on the download latencies of web

objects. This work employed [Mah(1997)]'s model for workload

generation which includes an empirical distribution of object
sizes of web downloads from measurements at UC Berkeley
in 1997. The empirical distribution is long-tailed. However,

reviewing the distribution, which is available as a table in the

code of [ns-2(2000)], we have seen that the largest object is

1.6MB. In addition to this rather small implicit object size limit,

[Christiansen et al.(2000)] focuses on optimizing RED for small

download latencies below two seconds. Presumably, this leads

to a circumvention of the convergence problem.

[Nahum et al.(2001)] employs synthetic workload generation
in an experiment to study the effects of wide-area conditions on

web server performance. They find that packet loss can reduce

the maximum server throughput by as much as 50 percent and

increase the server response time required to deliver web ob¬

jects. The workload in this experiment is generated with the

SURGE workload generator [Barford and Crovella(1998)]. This

generator produces workload by sampling analytic distributions.

The generator employs a long-tailed distribution function to de¬

termine the size of web objects. To address the convergence

problem, [Nahum et al.(2001)] test the convergence of a "typi¬
cal" data point. They repeat their experiment 35 times, and use a

normal plot to show that the average number of HTTP operations
per second converges to normal distribution. To prevent a conver¬

gence problem they set the largest object size in the experiment
to 3.2MB[Nahum(2002)].



32 Chapter 2. Background and Related Work

[Crovella et al.( 1999)] employs synthetic workload genera¬

tion with SURGE [Barford and Crovella(1998)] in an experiment
to study the scheduling of concurrent downloads of static web ob¬

jects in web servers. They compare size independent scheduling
to smallest-object-first scheduling for the typical web workload

in which the object size distribution is long-tailed. The main find¬

ing is that a smallest-object-first scheduling policy can allow web

servers to significantly lower average download latencies with¬

out severely penalizing downloads of large objects. The SURGE
workload generator in workload generation has been configured
to generate objects with 2000 distinct sizes between 186 bytes
and 121MB. This limit circumvents a severe convergence prob¬
lem. To ensure convergence of results, experiments were run long
enough that they were "not strongly influenced by transients".

Moreover, web downloads were grouped into 40 bins according
to object size, for which average values where taken when study¬
ing the dependence of download latencies on the object size.

Recent work pursuing the second approach to restrict to re¬

porting trends is [Fiedler(2001)]. This work performs simula¬

tions to investigate how to provision a differentiated services

(DiffServ) Intranet which serves three classes of traffic, i.e.,

voice, real-time and best-effort data. All data traffic is modeled

as web traffic. Real-time data traffic is web traffic with a down¬

load time requirement. The main finding is that deploying Diff¬

Serv is advantageous if the amount of best-effort traffic in the

network is high. The workload in this experiment is generated
with a SURGE like analytic model. The sizes of web objects are

determined by sampling a long-tailed distribution. The largest
object in the simulation is around 2GB. The problem of conver¬

gence of results is not explicitly addressed in this work. Results

are reported as trends.
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2.4.2 Task Scheduling in Operating Systems

A number of simulation studies with long- and heavy-tailed job
size distributions were conducted to explore various aspects of

task scheduling in operating systems.

[Harchol-Balter and Downey( 1997)] studies migration poli¬
cies in a network of workstations. They employ trace-driven

simulation to show that preemptive migration outperforms non-

preemptive remote execution even when memory-transfer costs

for preemptive migration are high. They show that this finding is

a consequence of the long- or heavy-tail property in the job size

distribution in the trace they used to drive the simulation. The

use of a trace prevents any convergence problem.

[Harchol-Balter et al.(1999)] studies task assignment policies
for a distributed job server if the job size distribution is long-
tailed. They employ simulation and analysis to compare size

based policies such as SITA-E to dynamic policies that send the

job to the host with the least current load. In SITA-E (size based
interval task assignment with equal load), a job size range is as¬

sociated with each host in the distributed server. Host 1 serves

all jobs that have a size between x0 and x\, host 2 serves all jobs
that have a size between x\ and x2, and so on. The cutoff points
for the size intervals are chosen such that the load is equally dis¬

tributed. Hence, in SITA-E, the variability of job sizes arriving
at a host is limited, which is shown to be the cause that SITA-E

outperforms dynamic policies under highly variable long-tailed
job size distributions for statistics such as mean waiting time and

mean slowdown. The workload in this study is generated from

an analytic model. Job sizes in this model are long-tailed with an

upper limit of 1010 time units. Results are obtained after arrival of

4 • 105 jobs and averaging over 400 simulation runs. A deviation

of simulation results from analytic results, which are "similar in

trend", is explained with a hint to the convergence problem of
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simulations with long- or heavy-tailed input. However, in this

study no further analysis is devoted to the convergence problem.

2.5 Performance Evaluation with Quantiles

In the next chapter, we will explain why quantiles have much

better convergence properties that the average when the under¬

lying distribution is long-tailed. Despite this fact, the notion

of quantiles (and percentiles) is rarely used in the evaluation

of network and server performance. To our knowledge only
[Raunak et al. (2000)] use quantiles to investigate the potential of

proxy caching to improve performance of web downloads. How¬

ever, this work uses trace driven simulation presumably to avoid

a convergence problem. The main finding of the work is that web

caching may reduce average network and server latency by up to

60%. However, the 99-th latency percentiles are only reduced by
15-20%. The work thus infers that the benefit of proxy caching
to enhance capacity of web services is limited. This finding is

explained with the poor locality of large web objects. As a con¬

sequence authors have recommended rethinking the cost-benefit

tradeoffs of deploying web proxies.

2.6 Summary

In this chapter we have reviewed the background and re¬

lated work of this thesis. We have introduced the notion of long-
and heavy-tailed distributions and have explained the long mem¬

ory property of long- or heavy-tailed distributed statistics. We

have explained why it is important to model this property when

performance is evaluated with synthetical workloads. We have

illustrated this with the example of performance evaluations with



2.6. Summary 35

self-similar network traffic. We have explained why performance
evaluations of systems with synthetical workloads which are gen¬

erated by sampling long- or heavy-tailed distributions inherently
suffer from a stability problem. Finally, we have reviewed how

this stability or convergence problem is addressed in research

work.
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Chapter 3

Theory

In this chapter we introduce the theory behind the quantile-based
method which we develop in Chapter 4. We introduce the no¬

tion of quantiles and explain why quantiles are promising statis¬

tics when evaluating the performance of systems which generate

input by sampling long- or heavy-tailed distributions. We gener¬

ally explain the impact of conelation in system output on conver¬

gence and show that limit theorems for M-estimators can be em¬

ployed for quantiles. We show that under reasonable assumptions
we can generally expect that quantiles in system output converge
at sample sizes that are feasible in the practice.

3.1 Definition of Quantiles

Definition 1 (p-th Quantile of a Distribution) We define the p-
th quantile xp of the distribution F as the smallest value xp for
which P(X < xp) < p.

It follows from this definition that p G [0,1].

37
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Cumulative Distribution Function
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x

Figure 3.1: Relation CDF and Quantile

Ifp is represented by a percentage value we call the p-th quan¬
tile a p * 100-th percentile.

An example for this is the 99-th object size percentile from a

known object size distribution. By definition 99% of the object
have a smaller size than this object size percentile.

Theorem 1 Suppose that F is the CDF of a continous random

variable and is strictly increasing on some interval I, and that

F = 0 to the left ofI, and that F = 1 to the right of1.1 may be

unbounded. Then the inverse F^1 exists and the p-th quantile xp

ofF is given by

xp = F-\p) (3.1)

Proof is by the definition of CDF (see [Rice(1995)]). Figure 3.1

illustrates this theorem.

To enable quantile-based evaluation of system performance,
we need to determine the convergence of quantile in a sample
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CDF of a Sample

empirical distribution S (n=20)
distribution F

5000 10000 15000 20000 25000 30000

x

Figure 3.2: Sample's CDF

Xi,.., Xn of observations of a random variable X. We thus in¬

troduce the notion of order statistics and empirical distribution

in order to define the quantile of a sample. The order statis¬

tic of the sample can be obtained by arranging the observations

Xi,.., Xn in increasing order allowing repetitions. We denote the

order statistic with

X(\\ < X(o\
<

...
< X,^(1) (2) ^ ^(n) (3.2)

The order statistic can now be employed to define the empirical
distribution Sn of the random variable X in the sample Xi,..,Xn

0 if x < X(1)
Sn(x) = {

n

if XM <x < x(i+i) and i < n (3.3)
1 iix>X(,

If the sample has been obtained by independently sampling a

distribution F(x), the weak law of large numbers implies that for

any fixed x

S„(x) F(x) (3.4)
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(See Figure 3.2 for an illustration of this convergence). Therefore

F is sometimes called the limit or asymptotic distribution.

Hence, the definition of the p-th quantile in a sample can be

stated as:

Definition 2 (p-th Quantile of a Sample) The p-th quantile ofa

sample is the p-th quantile ofthe corresponding empirical distri¬

bution Sn.

This definition implies that X(k) is the p-th sample's quantile with

k = \np].

3.2 Distribution of a Sample's Quantile

In this section, we give a first insight why quantiles are promising
statistics for the performance evaluation of systems with heavy-
tailed input. We start with assuming independent sampling and

review the distribution of a sample's p-th quantile and the corre¬

sponding limit theorem. This limit theorem says that a sample's
p-th quantile converges to a normal distribution at a n~1//2 rate.

This also holds for heavy-tailed distributions that are sufficiently
regular, i.e. smooth, in the neighborhood of the quantile. For

heavy-tailed distributions, this convergence then is fundamen¬

tally different from the convergence of the sample's average to

a-stable at a rate slower than n~1//2, which leads to impractical
sample size for performance evaluation.

Under the assumption of independent sampling, the distribu¬

tion of the p-th sample quantile is given by the following theo¬

rem:

Theorem 2 (Distribution of the p-th Sample Quantile) Let

X\,.., Xn be n independent observations on a random variable
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X that follow the distribution F. Let F be such that two regu¬

larity conditions hold: (i) F(x) admit a continuous PDF f(x)
for all x and (ii) let the p-th quantile xp of the distribution F be

unique and f(xp) > 0. Then, the probability density fk(x) ofthe

p-th sample's quantile X^) with k = \np~\ is given by

fk(x) = n^
"

J) (F(x))k~\l - F(x)r~kf(x) (3.5)

Proof:

The event x < X^k) < x + dx occurs if A; — 1 observations

are smaller than x, one observation is the interval [x, x + dx], and

n — k observations are larger than x + dx. Under assumption of

independence, the probability of any particular arrangement of

this type is Fk~1(x)f(x)[l - F(x)]n~kdx. By the multinomial

theorem, there are nfäzl) sucn arrangements. Hence, fk(x) is

given by equation 3.5. For details see [Rice(1995)], section 3.7,

p. 101.

The corresponding limit theorem for the distribution of the

p-th sample quantile for sample size n —» oo can be given as

follows.

Theorem 3 (Limit Theorem for the p-th Sample Quantile)
Let Xi,..,Xn be n independent observations on a random

variable X thatfollow the distribution F. Let F be such that two

regularity conditions hold. Let (i) F(x) admit a continuous PDF

f(x) for all x and (ii) let the p-th quantile xp of the distribution

F be unique and f(xp) > 0. Let k = \np] when n — oo. Then

Vn(X(fc) - Xp) - J\f(0, a2) forn-^oo with a = ^y"^
(3.6)
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We note that this theorem is the quantile's equivalent of the cen¬

tral limit theorem for the running sample average. Convergence

properties in terms of rate of convergence and the limit distribu¬

tion in this theorem are identical to the ones in the central limit

theorem. For a proof of the theorem, which is essentially straight¬
forward from Theorem 2, see [Rao(1973)], section 6f.2, p.423.

We now get a first insight why quantiles are promising statis¬

tics to evaluate the performance of systems that generate input

by sampling long- or heavy-tailed distributions. Theorem 3 says

that quantiles in this input converge to a normal distribution at a

n~ll2 rate if generated by independent sampling. This is funda¬

mentally different to the average of the sample or other statistics

that depend on moments of the heavy-tailed distribution. These

statistics converge to a-stable distributions at a rate nx/a~l (see
Section 2.3). As a consequence, quantiles of system input from

long- or heavy-tailed distributions such as the 99-th percentile
can be evaluated at sample sizes that are feasible in practice. We

only have to make sure that the long- or heavy-tailed distribution

in system input is such that the regularity conditions (i) and (ii) in

Theorem 3 are fulfilled and the probability density at the quantile
is significantly different from zero.

In the next section we show that similar statements can be

made for the convergence of quantiles in system output where

observations are not independent.

3.3 The Impact of Correlations on Convergence

The assumption that observations in the sample are independent
does not hold for system output. Limit theorems such as Theo¬

rem 3 need modifications to cover situations in which observa¬

tions in a sample are conelated. Before reviewing theory that
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covers the convergence of quantiles of conelated observations,

we generally discuss the impact of correlation to convergence.

We define and explain the different impact of weak and long-

range dependence. We use the example of the variance of the

running sample average for this discussion and assume two finite

moments for the limit distribution of observations.

We recall that under assumption of independence, the variance

of the sample average is given by:

Theorem 4 Let Xi,.., Xn be a i.i.d. (independent and identi¬

cally distributed) sample from a distribution F which has aver¬

age jj, and variance a2. Then the variance of the sample's aver¬

age is given by:

var(Xn) = a2n~l (3.7)

Proof:

Since the Xt are i.i.d.

— 1
n

lb
i=l

since Var(Xl) = a2.

We now define covariance and autocorrelation to enable a dis¬

cussion of required modifications of Theorem 4 that account for

correlated observations.

Definition 3 (Covariance and Autocorrelation) Let Xi,..,Xn
be a samplefrom a distribution F which has average ß and vari¬

ance a2. The covariance of two observations X% and X3 in the

sample is then given by:

Cov{X%,X3) = E[(Xt - n)(X3 - ß)} (3.9)
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The autocorrelation between two observations Xt and X3 in the

sample is then given by:

p(i,J) = ^Cov(Xt,X3) (3.10)

We denote that a more sophisticated definition of autoconelation

is required if the limit distribution F(X) has a non existing sec¬

ond moment (see [Beran(1994)] chapter 11).

Definition 3 leads to the following identity for var(Xn):

n

var(Xn)=n-2a2Y,p(h3) (3-H)

*>j=i

since

1
n

1
n n

mrtE x*) = ZÂ EE Cov(x« x>) <3-12>
lb IL

1=1 t=l J=l

The special case where all conelations for i ^ j sum up to

zero leads to equation 3.7 since

n

£>(M)=« (3.13)
i=i

For other cases the variance is given by:

Theorem5 Let Xi,..,Xn be a sample from a distribution F

which has average ß and variance a2. Let p(i, j) be the autocor¬

relations ofX\,.., Xn. Then the variance ofthe sample's average
is given by:

var(Xn) = a2c(p)n (3.14)
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with

c(p) = [l + Sn(p)} (3.15)

and

6n(p)=n-1J2p(hJ) (3-16)

Proof is with equation 3.11 and equation 3.13.

This leads to the following definition of weak dependence:

Definition 4 (Weakly dependent Correlation Structure)
We define the correlation structure in the sample as weakly

dependent ifcorrelations are summable, i.e.

^p(i,j) <oo

If now the generation process is stationary, i.e. E(X%) = ß for

all i and conelations depend on the lag \i — j\ only, the relation

between the decay of correlations and the dependence structure

can be stated as follows:

Theorem 6 For a stationary generation process the correlation

structure is weakly dependent (WD) if and only if correlations

decay exponentially with the lag k = \i — j\ orfaster, i.e.

\p(k)\ < bak where 0 <6<oo,0<a<l (3.17)

Combining Theorem 5 and Theorem 6 leads to the following
implication if the generation process is stationary: Exponential
or faster decay of autocorrelations with lag k — oo lead to a
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weakly dependent correlation structure. The implication on con¬

vergence of this correlation structure is limited to an enlargement
of the variance in the asymptotic distribution by a constant factor

compared to the i.i.d. case. This enlargement depends on the sum

of all conelations and not a single or a few correlations. The rate

of convergence remains unchanged.

However, from observations in a number of scenarios it is

known that the rate of convergence can be slowed down (see

[Beran(1994)]). We therefore model the slowed-down rate of

convergence with the simplest possible approach and establish

the relation to the convergence structure. We exchange n~l in

Equation 3.14 by n~a. Then

var(Xn) « a2c(p)n~a where 0 < a < 1 (3.18)

with

c(p)= \im na-2Tp(i,j) (3.19)
n—>oo ' •

*¥=3

It can be shown that, under assumption of a stationary generation
process, the sum of the conelations diverges for n —>• oo, i.e.

J^p(k) = oo (3.20)
k

With the following definition of long-range dependence from

[Beran(1994)] it immediately follows that this slowed-down rate

is a consequence of long range dependence.

Definition 5 (Long Range Dependence) We define the correla¬

tion structure in the sample as long range dependent if there ex¬

ists some 0 < a < lfor which

Y^p(hJ) = oo

^3
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and

lim na~2 \^ p(i,j) < oo

n—»oo
^—'

We can now establish the relation between a long range de¬

pendence structure and the decay of correlations:

Theorem 7 For a stationary generation process the correlation

structure is long-range dependent (LRD) if and only if correla¬

tions decay polynomially with the lag k = \i — j\, i.e.

p(k) « cp\k\~a, with cp>0 for \k\ -»• oo (3.21)

Combining Equation 3.18 and Theorem 7 leads to the fol¬

lowing implication if the generation process is stationary: Poly¬
nomial decay of autocorrelations with lag k —* oo leads to a

long-range dependent conelation structure. The implication on

convergence of this correlation structure is, in addition to an en¬

largement of the variance, a slow-down in the rate of convergence

compared to the i.i.d. case. The degree of slow-down depends on

the exponent in the polynomial decay.

3.3.1 Convergence of Quantiles

We now review generalizations of the limit theorem for the p-

th sample quantile (Theorem 3) to justify the expectation that

sample's quantiles in system output usually converge to a normal

distribution. These generalizations of the limit theorem account

for correlations among observations. These generalizations are

limit theorems for M-estimators since quantiles are a special case

of a generalized maximum likelihood estimator (M-estimator).
M-estimators are popular in location estimation since they enable
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to prove limit theorems for entire classes of statistics rather than

for a single statistics such as average, median, or other quantiles.

We introduce M-estimators as follows: We recall that a max¬

imum likelihood estimator (mle) of a statistic 6 is the value of 6

that makes the observed data most probable, i.e. maximizes the

likelihood of this data. Assuming that the A", are from different

independent estimation attempts, the joint probability density for

the observed data is given by the product of the marginal densi¬

ties.

n

lik(9) = l[f(Xl\d) (3.22)
i=i

where / is the probability density of the marginal distribution.

This is often called likelihood. Estimation of 8 then implies the

maximization of this product. However, rather than maximiz¬

ing the product itself, maximum likelihood estimation suggests
to maximize its natural logarithm.

n

l(0) = y£log[f(Xl\6)} (3.23)
i=i

This is equivalent and usually easier to compute.

Maximum likelihood estimators are frequently used since it

can be shown that mles have a number of desirable properties.
The most important one for this thesis is that, under minimal con¬

ditions on regularity for the underlying distribution F, maximum

likelihood estimators converge to a normal distribution.

The generalization of maximum likelihood estimators to M-

estimators can now be explained with the following example:
The location of the normal_distribution is ß. Thus, estimating
ß with the sample average X is equivalent to minimizing the cor-
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responding negative log likelihood, or

£(^r (3.24)
i=i

Outliers, which have non negligible probability if the underlying
distribution F(X) is long-tailed, have significant effects on this

estimate. When F(X) is heavy-tailed, this estimate is not even

defined since the variance a2 is infinite. In contrast, the median

is known to minimize

£
i=i

\Xl- ß
(3.25)

Hence, outliers have much less weight and the median leads to

a much more robust estimate for ß. Abstracting from Equation
3.24 and Equation 3.25, [Huber(1981)] started to study the prop¬

erties of classes of statistics. He introduced M-estimators, which

are the minimizers of

£»(^^) (3.26)
1=1

where the weight function ^ is a compromise between the weight
functions for the sample average and the sample median. Statis¬

tics literature frequently works with ip = $' rather than with ^

and assume that a is known and equal to 1.

Other quantiles than the median can also be expressed with

the M-estimator. The p-th quantile is obtained by setting

{p
- 1 if x < 0

0 ifz = 0 (3.27)

p if:r>0

where c is a constant that depends on the parameter a in the

normal distribution. We denote that ip(x) has an irregularity at
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This implies that we have to carefully review the condi¬

tions in limit theorems for M-estimators before we make any

inferences for the convergence of quantiles. For the case of

a weakly dependent conelation structure among observations

[Hampeletal.(1986)] reports in section 8.3 that M-estimators

generally converge to normal. The implications of these weakly

dependent correlations are the same as in the example discussed

in section 3.3. The variance is enlarged, the rate of convergence

remains at ttt1/2. The relation between correlations and enlarge¬
ment can be formalized with so called influence functions. The

regularity condition required for this convergence is that F can

be approximated with its Taylor expansion around the quantile.
This is comparable to the regularity condition required for con¬

vergence in the i.i.d. case (see Theorem 2). For the problem of

performance evaluation of web traffic, it seems reasonable to as¬

sume such regularity in system output. This in turn implies that

we can expect that quantiles in system output converge to nor¬

mal at a n~xl2 rate as long as the conelation structure in system

output is consistent with weak dependence.

For the convergence of quantiles in system output that shows

a long-range dependent correlation structure, we have to refer to

limit theorems for so called reference processes with long mem¬

ory. These reference processes are Gaussian processes such as

fractional Gaussian noise and fractional ARIMA (auto regres¬

sive integrated moving average). We refer to Gaussian pro¬

cesses and processes that are derived from Gaussian processes.

[Beran(1994)] reports in section 8.3 that M-estimators of every

process that can be derived from a Gaussian processes converge

to normal. The impact of the long-range dependent correlations

are the same as in the example discussed in section 3.3: The vari¬

ance of the normal distribution is enlarged and the rate of conver¬

gence is slowed down. The enlargement can be evaluated with

Hermite polynomials. The relation between the convergence of

the average and the convergence of any other statistic that can
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be expressed with M-estimators, can also be established with

Hermite polynomials. The rate of convergence for all statistics

that can be expressed with M-estimators is slowed down to nH~l

where H is the Hurst parameter.

Strictly speaking, the regularity conditions for a quantile's ip
as expressed in Equation 3.27 are not sufficient that the results

of section 8.3 in [Beran(1994)] apply for quantiles. However,

in an e-mail exchange that is documented in Appendix A, the

author argues that the quantile's ip can be approximated arbitrary

closely with regular i/jn. As a consequence, results in section 8.3

of [Beran(1994)] also hold for quantiles.

For our problem of performance evaluation this implies that

quantiles in system output converge to normal at a nH~x rate

whenever the system is comparable to a reference process with

long memory. Whenever system output is long-tailed, the conver¬

gence relation between average and other statistics lets us expect
that quantiles such as the 99-th percentile converge faster than

the average.

3.4 Summary

In this chapter we have introduced the theory behind the quantile-
based method which we develop in Chapter 4. We have intro¬

duced the notion of quantiles and have explained why quantiles
are promising statistics when evaluating the performance of sys¬

tems which generate input by sampling long- or heavy-tailed dis¬

tributions. We have generally explained the impact of correlation

in system output on convergence and have shown that limit the¬

orems for M-estimators can be employed for quantiles. We have

shown that under reasonable assumptions we can generally ex-
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pect that quantiles in system output converge at sample sizes that

are feasible in practice.



Chapter 4

A Method for

Quantile-based Evaluation

In this chapter, we present the quantile-based method which aims

at evaluating the performance of systems with heavy-tailed input
at sample sizes that are feasible in practice. The system model

which we assume is depicted in Figure 4.1.

An example for such a system is the simulation of the net¬

work of a web service. The input generation process in such a

simulation involves a heavy-tailed object size distribution with

tail index a between 1.0 and 1.2. The system output of interest is

the latency of the web downloads. Output statistics that depend
on the moments of this object size distribution, such as the aver¬

age latency, cannot be evaluated at sample sizes that are feasible

in practice (see Section 2.3 for details).

In order to statistically evaluate the performance of such sys¬

tems, we propose to evaluate quantiles in system output such as

the 99-th, 98-th, and 95-th percentile. This is due to three reasons.

53
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Estimation of Estimation of

Input Quantiles Output Quantiles

Heavy-tailed SamPlmg

System Input

Input Generation Process

-* System
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*- System Output

Output Generation Process

Figure 4.1: System Model

1. First, these quantiles have a natural interpretation in statis¬

tical quality of service. For the example of the 99-th la¬

tency percentile of a web service, this interpretation can be

stated as follows: 99% of the downloads have a latency
smaller than the 99-th latency percentile. Hence, the sta¬

tistical performance of the web service can be characterized

with download latency quantiles in the high nineties such as

the 95-th, 98-th, or 99-th percentile. A similar statement can

be made for network and server latencies of web downloads.

For details of this concept see [Fiedler(2001)].

2. Quantiles of system output do not necessarily depend on

the extreme tail of the input distribution and hence not on

moments of this distribution. Therefore, quantiles may con¬

verge at sample sizes for which statistics that depend on mo¬
ments of the input distribution do not converge. This in turn

enables statistical performance evaluation. Moreover, we

know that, when mild regularity conditions apply for the

limit distribution of system output, quantiles in system out-
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put converge to a normal distribution (see Section 3.3 for

details). With mild regularity conditions for the limit distri¬

bution we mean for example that this distribution has a con¬

tinuous first derivative which is different from zero on the

interval that includes all output values. This convergence to

a normal distribution can be assessed with standard proce¬

dures such as normal plots and convergence tests. In case of

convergence, this additionally provides an accurate estimate

of the p-th quantile in system output. This estimate can then

be used to state statistical QoS guarantees for the system.

3. Lower bounds to the initial phase in the convergence of out¬

put quantiles can be infened from the convergence of input

quantiles. We exploit the fact that under mild regularity con¬
ditions on the heavy-tailed distribution in system input, in¬

put quantiles converge to a normal distribution. In this case,

the convergence can be established with probability theory
(see Section 3.2). This leads to lower bounds of sample
sizes which are feasible for performance evaluation. The as¬

sumption behind this is that for any statistic in system output
to converge, the corresponding statistic in system input has

to converge. We think that this assumption, which is compa¬

rable to the assumption in [Crovella and Lipsky(2000)] stat¬

ing that system stability requires convergence of the average

in system input, is reasonable for the applications intended

by this thesis.

The method for performance evaluation with quantiles thus

pertains to (i) an estimation of the lower bounds for the initial

phase of convergence of quantiles in system output and (ii) an

assessment of the convergence of output quantiles including esti¬

mation of quantiles. We first develop the two parts of the method

for ParetoII distributed input with tail index close to 1 for sys¬

tems which can be evaluated based on the 99-th percentile. Then

we generalize the method to other heavy-tailed distributions and
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quantiles other than the 99-th percentile. We start with listing the

assumptions about system properties upon which the method is

based. In Section 4.1 we develop the estimation of lower bounds.

In Section 4.2 we develop the assessment of convergence and the

estimation of quantiles in system output. Finally, in Section 4.3

we discuss generalization of the method.

The assumptions on system properties which the method

makes can be listed as follows:

1. System performance can be evaluated based on the statistics

of the 99-th percentile of system output.

2. This statistic must have converged to enable QoS evalua¬

tion. Presumably for this statistic to converge the corre¬

sponding statistic in system input has to converge.

3. Input to the system is obtained by independently sampling

probability distributions.

4. The heavy-tailed distribution in system input is represented
with a ParetoII distribution. The tail index of this ParetoII

distribution is close to one, e.g. a = 1.2.

5. The system is such that the system output has finite variance

due to system limits. Mild regularity conditions hold for the

limit distribution of system output: The limit distribution

has a continuous first derivative which is different from zero

on the interval that includes all output values.

4.1 Estimation of Minimal Sample Sizes

We assume that for a statistic in system output to converge the

corresponding statistic in system input has to converge (System

property 2). Hence, for a quantile such as the 99-th percentile
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of system output to converge the conesponding quantile of the

heavy-tailed distribution in system input has to converge. Sam¬

ple sizes that are required to converge quantiles in system input
to a desired accuracy can be evaluated based on Theorem 2 and

Theorem 3. Theorem 2 gives the probability density /„ of the

p-th quantile in a sample. Theorem 3 says that this density con¬

verges to the density of a normal distribution at rate n~xl2 for

sample size n —> oo. These theorems can be exploited for eval¬

uation since the condition of independent sampling and the two

conditions on regularity made in both theorems are fulfilled: The

independent sampling is by system property 3. The regularity
conditions follows from system property 4 since a ParetoII dis¬

tribution has a continous first derivative f(x) for all x > 0 and is

strictly monotonous which leads to f(x) > 0 for all x > 0 which

in turn leads to unique quantiles.

4.1.1 Evaluating Convergence of Input Quantiles

We assume that the accuracy to which a quantile in system input
has converged at sample size n is given with

Accuracyn = max{ | -2——-1, | -^——-1} (4.1)
&n &n

where En are the expected value and [Ln, Un] are the lower and

upper bound of the confidence interval of the quantile (see Sec¬

tion 2.1.2). Hence, the method to evaluate the sample size re¬

quired to converge the p-th quantile from the heavy-tailed distri¬

bution in system input to a given accuracy can be stated as fol¬

lows: For all sample sizes n, the expected value En for the p-th
sample quantile is equal to the quantile of the distribution inde¬

pendent of n since any heavy-tailed distribution represented by a

ParetoII distribution is continuous (System property 4). Hence,

En = F-\p) (4.2)
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At fixed sample size n, the confidence interval bounds Ln and

Un, and thus the accuracy, can be evaluated by successive numer¬

ical integration of the p-th quantile probability density /„. This

density is given in Equation 3.5 of Theorem 2 (employs System

property 3+4).

(F(x))k-\\-F{x))n'kf{x) (4.3)

with k — \np]. The relations to determine the confidence inter¬

vals bounds are

I
Ln

„
. .

,

1 — confidence level
,„ ,,

fn(x)dx =
J—-

(4.4)

for the lower bound Ln and

/Un ,
, .

, . H

1 — con fidence level
fn(x)dx = 1 J— (4.5)

for the upper bound Un. Thus the required sample size to con¬

verge the p-th quantile to a desired accuracy can be evaluated

by iterating the sample size n and evaluating the numerical inte¬

grations for the confidence interval bounds. We denote that this

numerical integration cannot be directly performed with stan¬

dard software such as Mathematica [Mathematical 999)] since

the first factor n(£~J) in /„ can become very large compared to

the remaining factors. This problem can be solved by evaluating
/„ indirectly via

log{fn) = log(faci) + .. + log(facm) (4.6)

instead of

fn = faCi •

..

• faCm (4.7)
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4.1.2 Large Sample Approximation

A good starting point for the iteration which is close to the fi¬

nal result can be obtained from Theorem 3. The theorem implies
that in large samples the distribution of the p-th sample quantile
can be approximated by a normal distribution. This normal dis¬

tribution is centered around the p-th quantile of the heavy-tailed
distribution in system input which can be evaluted with

Xp = F~\p) (4.8)

The variance of this normal distribution follows from Theorem 3

where f(xp) is the probability density of the ParetoII distribution

in system input. The confidence interval of this normal distribu¬

tion is Xp ± 1.96 a. Hence, the sample size can be derived by

evaluating the accuracy relation

-i A/?

< accuracy (4.10)
Xp

Inserting Equation 4.9 in Equation 4.10 and solving for n yields
in an estimation for the sample size

1.96\%(1-P) 1
„„x

Xp J J \Xp) accuracy2

From this equation it can be seen that the sample size required
to converge quantiles of interest in system input will remain fea¬

sible for performance evaluations as long as the probability den¬

sity / at the quantile xp of the heavy-tailed distribution is not

extremely small. This is the case for the 99-th from a ParetoII

distribution if the tail index is close to one (System property 4).
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4.1.3 Special Cases

In special cases, this estimated sample size also approximates the

the sample size required to converge the corresponding quantile
in system output. Such a special case is given when the relation

between in- and output around the quantile can be well approxi¬
mated as linear. The reason for this is the preservation of a nor¬

mal distribution under a linear transformation. In the context of a

simulation of web services this may apply when utilization is low

enough that effects from TCP's congestion control and retrans¬

mission algorithms which are triggered by packet losses become

statistically negligible.

4.2 Evaluating Quantiles in System Output

Assessing the convergence of output quantiles to a normal distri¬

bution and inferring estimates to evaluate system performance in

case of convergence can be achieved as follows:

1. Visually assessing convergence. This can be done with nor¬

mal plots.

2. Testing the hypothesis that the p-th quantile in system out¬

put converges to a normal distribution. This can be achieved

with assessing the linearity in the normal plot or other stan¬

dard procedures, i.e. frequently-used normality tests (see

Appendix C).

3. Estimating the p-th quantile in system output and its accu¬

racy under the assumption that this quantile is normally dis¬

tributed. This can be achieved with standard procedures.
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4. Checking the rate of convergence. This can be achieved by
checking whether the decay of the variance for increasing
sample size n is as expected from probability theory.

4.2.1 Visually Assessing Convergence

Visually assessing the convergence of quantiles of system output
can be achieved with normal plots. Normal plots1 are a extremely
useful graphical tool for qualitatively assessing the fit of of data

to a normal distribution.

We assume that we have m samples of system output with

size n that we obtained by independent performance evaluations

of the system. The p-th sample quantiles of these samples, were

obtained by ordering the n observations in each sample

Sample #1: 1 -* Ym <
..
< Y{k)tl.. < Y{n)tl

Sample #m: m -»• Y(1)iro < ..
< Y{k),m- < Y{n)>m

and setting k = \np].

To produce the normal plot, we anange the output quantiles
Y(k),i Y(k),m in ascending order:

Y(k),l Y(k),m - Y(fc),(i) • Y(fc),(m)-

Then we exploit that if this ordered set is consistent with

normality, the expected value of Y^),(i) is the ^j quantile of a

normal distribution with unknown parameters ß and a:

E(Ymi)))=Äf-\ß,o2)(-^) (4.12)

'Normal plots are sometimes also called normal probability plots or normal quantile-quantile
plots
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Not knowing the parameters ß and a of the normal distribution

Af(ß, a2), we can exploit that any quantile of a normal distribu¬

tion can be related to the conesponding quantile of the standard

normal distribution A/"(0,1). The relation is (see [Rice(1995)]):

^~W)(-^) = **^-Ho,i)(-^-r) + M (4-13)
lib y~ -L lib ~\ -L

Therefore a normal plot plots the Y^),(i) against the ^j quantile
of the standard normal distribution.

If the data in the set is close to normal distributed, the result

of the plot is close to a straight line. Any deviation in the data

from normality such as skewness or subexponential tails can be

visually inspected (see Appendix B for a discussion of typical
deviations from linearity in normal plots).

4.2.2 Testing for Convergence

However, care needs to be taken in classifying a sample quan¬

tile as converged to a normal distribution. To enhance reliability
of the classification we need to extend the normal plot to a hy¬
pothesis test. The simplest way to perform a test is employing
linear regression to evaluate the deviation from linearity in the

normal plot. The conelation coefficient r from this linear regres¬

sion, which is a quantitative measure for the deviation from lin¬

earity, can then be compared against the critical values at given
significance level (see Table 4.1). For e.g. sample size i = 30

[Rice(1995)] reports that, if the data is consistent with normal¬

ity, 10% of plots have a correlation coefficient below 0.9707,
5% have a coefficient below 0.9639, and 1% have a coefficient

below 0.9490. Values for i = 40 are 0.9767, 0.9715, and 0.9597.

The critical values, originally given in [Filliben(1975)], were ob¬

tained from Monte Carlo simulations to determine the null sam¬

pling distribution of r under normality.



4.2. Evaluating Quantiles in System Output 63

m 10% 5% 1%

10 0.9347 0.9180 0.8804

15 0.9506 0.9383 0.9110

20 0.9600 0.9503 0.9290

30 0.9707 0.9639 0.9490

40 0.9767 0.9715 0.9597

50 0.9807 0.9764 0.9664

60 0.9836 0.9799 0.9710

Table 4.1: Critical Valuesfor Normality Test [Rice(1995)[

Alternatively, we can employ frequently-used normality tests

(see Appendix C for an overview).

4.2.3 Inferring Estimates of Quantiles

Intercept and slope of this linear regression determine the esti¬

mates of the parameters ß and a of the normal distribution. This

can be see from Equation 4.13. We call these estimates mn and

sn. Hence, mn ± 1.96 * sn is the confidence interval for the esti¬

mate mn of the quantile in system output at given sample size n.

The accuracy of this estimation then is

1.96* sn
accuracy = (4.14)

4.2.4 Rate of Convergence

In order to further enhance the reliability of this test method we

propose to successively test the convergence for increasing sam¬

ple sizes n and to check whether the rate of convergence is as

expected. We know that under mild regularity conditions on the

distribution of system output (System property 5) this rate has to
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be n-1/2 where n is the sample size if the correlation structure

of system output is consistent with weak dependence (see Sec¬

tion 3.3). If the conelation structure is consistent with long-range

dependence, we can expect this rate to be nH~l, where H is the

Hurst parameter. Thus, the estimated variance sn of a normally
distributed quantile should decay with a n~1//2 or nH~l rate. We

therefore propose to check whether

• sn * y^ is constant. This is consistent with a weak depen¬
dent correlation structure in system output

• log(sn) is linear in log(n). This is consistent with a long-

range dependent correlation structure in system output.

• log(sn) is not linear in log(n).

4.3 Generalizations of the Method

We note that the proposed method is not limited to performance
evaluations with ParetoII distributed input that are evaluated

based on the 99-th quantile in system output. The method can

usually also be employed for evaluation with other heavy-tailed
distributions in system input and other fixed quantile in system

output.

However, three requirements need to be fulfilled.

1. The output quantile of interest, which is used to evaluate

the system performance, must be chosen such that all p-

quantiles of input that impact the quantile of interest in sys¬

tem output must have an order p which is not extremely
close to one. This is the case for the 99-th input percentile
but is not the case for the 99.999-th input percentile. With¬

out this requirement the p-th input quantile cannot converge
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CCDF of Samples from a Heavy-Tailed Distribution
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Figure 4.2: CCDF ofSamplesfrom a Heavy-Tailed Distribution

at sample sizes of interest. This can be inferred from Equa¬
tion 4.11 and the fact that f(xp) -* 0 for p —> 1. For an

illustration see Figure 4.2.

2. Presumably the heavy-tailed distribution in system input
must be such that the regularity conditions in Theorem 3

are fulfilled. This implies that the distribution is such that

quantiles are unique, and have a nonzero probability den¬

sity. Moreover, the probabiltiy density is continuous for all

values. Without this requirement input quantiles may not

converge at sample sizes of interest.

3. The system must be such that minimal regularity conditions

such as the uniqueness of the quantile of interest hold for

the limit distribution of system output. Without this sys¬
tem property output quantiles cannot converge to a normal

distribution.

n=1000

n=10000

n=100000
sCDistribution

\
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4.4 Summary

In this chapter, we have presented a method which aims at statis¬

tically evaluating the performance of systems with heavy-tailed
input at sample sizes that are feasible in practice. The method

is based on an evaluation of quantiles such as the 95-th, 98-th,
or 99-th percentile in system output. The method pertains to (i)
estimation of the minimal sample sizes required for performance
evaluation and (ii) a method to evaluate quantile of system output
that employs standard normality test procedures. The evaluation

method (ii) pertains to a visual pre-test of convergence of quan¬
tiles with normal plots, testing convergence with a hypothesis
test, estimation of the confidence intervals for the quantiles out

of the hypothesis test and checking the rate of convergence.



Chapter 5

Simulation Environment

In this chapter, we describe the simulation environment which

we employ in the validation study of the proposed method. The

focus of this study is to show that the method can be employed
to evaluate web services based on network latency quantiles.

We first discuss how to perform simulations of web down¬

loads. Second, we introduce the simulation engine ns-2. Third,
we review ns-2's support to simulation of TCP connections.

Fourth, we describe how we implement and drive hyper text

transfer protocol (HTTP) interactions on top of TCP.

5.1 Performing Simulations of Web Downloads

Accurately simulating web downloads to obtain realistic la¬

tency distributions is difficult given that web traffic patterns
exhibit great variability. We thus assume that the system model

underlying to the simulation includes the strategies described

in [PaxsonandFloyd(1997)], [Barford and Crovella(1998)],

67
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Resource Related Input:
Object Sizes etc.

Protocol Related

Input:
Redirection

Codes etc.

User Related Input:
Think Times etc.

Output:
Network

Latencies

of Downloads

Figure 5.1: System Model ofthe Simulation

[KrishnamurthyandRexford(2001)] to cope with this problem.
In detail, this means that

• We assume that all input which drives the simulation is on

the level of the application [Paxson and Floyd(1997)].
We assume that this input can be grouped into

resource-related, protocol-related, and user-related in¬

put [KrishnamurthyandRexford(2001)]. An example for

resource-related input is the distribution of object sizes.

An example for protocol-related input is the frequency of

HTTP redirects. An example for user-related input is the

distribution of think times.

• We assume that this input is modeled by sampling
distributions which are given with a analytic formulae

[Barford and Crovella(1998)]. These analytic formulae
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capture well known invariants of the corresponding in¬

put variable. An example for such an invariant is heavy-
tailedness with tail index a.

• We assume that interactions are explicitly modeled on the

level of the application protocol [Paxson and Floyd(1997)].
Hence, HTTP interactions are explicitly modeled.

This leads to the system model depicted in Figure 5.1.

Moreover, we assume that implementation of the model ac¬

counts for the improvements of HTTP/1.1 [Fielding et al.(1999)]
over HTTP/1.0 [Berners-Lee etal.(1996)] that optimize perfor¬
mance in terms of network latency. These improvements concern
the TCP connection management of HTTP.

5.2 ns-2

We use ns-2 (network simulator version 2) [ns-2(2000)] as our

simulation environment which we have enhanced with a HTTP

implementation and instrumented that we can measure the net¬

work latencies of downloads, ns-2 is the open source, freely
available discrete event simulator targeted at academic network¬

ing research [ns-2 Research)], ns-2 can perform simulations of

wired and wireless networks on on the level of IP packets and

provides procedures to create and manage network topologies.
ns-2 supports both shared media such as Ethernet as well as

point-to-point connections. At connection endpoints, so called

agents construct or consume IP packets which are transfered from

source to destination. These agents simulate simple applications
and can be enhanced to model application layer protocols such as

HTTP, ns-2 offers substantial support for the simulation of rout¬

ing and TCP.
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Technically, ns-2 is an object-oriented simulator, written in

C++ with an object-oriented tool command language (OTcl)

interpreter as a front-end. Core low-level routines such as

packet forwarding are implemented in C++ since this code rarely

changes and needs to be run fast. High level routines such as the

configuration and topology definition which change frequently
and need not run fast are implemented in OTcl.

We implemented HTTP and started our simulations with ns-

2.1b6a which was released in May 2000. Later, we adapted our

HTTP implementation to ns-2.1b9a [ns-2 Change Log (2003)]
which was released in July, 2002. The main reason for this adap¬
tation was the integration of a "better" random number generator.
In detail, the Park-Miller LCG16807 random number generator
has been replaced with Piene L'Ecuyer's MRG32k3a.

5.2.1 TCP Support

ns-2 offers substantial support for the simulation of TCP. In addi¬

tion to the widely-used Reno version of TCP, ns-2 also supports
SACK, Tahoe, and New Reno variants of TCP. The functionality
implemented for each of these variants captures the essence of

TCP's congestion and error control behavior which affects trans¬

mission latency. For our implementation we employ Reno TCP

[Jacobson(1988)] which is based primarily on the 4.4BSD TCP

implementation. Reno TCP in ns-2 is "bug-fixed" by Kathie

Nichols and Van Jacobsen who authored the original BSD im¬

plementation (see comments in the code).

Technically, the endpoints of a TCP connection are modeled

with so called TCP agents which emulate simple applications
that use TCP. Every such agent has a C++ base class with an

OTcl interface for configuration. This class contains a collection

of routines for sending packets, processing ACKs, managing the
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send window, and handling timeouts. The base TCP agent solely

supports unidirectional data transfer. The Reno 2-way FuUTCP

agent, which is derived from this agent, additionally supports
bidirectional data transfer and delayed method invocation upon

receipt of transfered data. We employ this delayed method invo¬

cation to explicitly implement the interactions of HTTP.

Further important properties and settings of FuUTCP which

are related to our simulation of web downloads are the following:
FuUTCP implements a complete 3-way-handshake for connec¬

tion establishment. However, FuUTCP does not support FIN bits

for explicit connection tear down. FuUTCP uses a signed integer
to account for sequence numbers. Sequence number wrapping is

not supported which results in a limitation of 2.1GB to the max¬

imum transfer size. We have configured the maximum segment
size (MSS), i.e. maximum amount of data the sender may send

in a single packet, to 1000 bytes. FuUTCP implements delayed
acknowledgment. I.e. the receiver sends one acknowledgment
for every two data packet it receives. The initial retransmission

timeout used to estimate the round trip time (RTT) to the receiver

is set to 3 seconds. This initial setting is used for the retransmis¬

sion timer and defines the tradeoff between slow recovery from

a lost TCP SYN packet against possible spurious transmissions.

The time granularity to calculate RTT and retransmission time¬

out (RTO) is 100 ms. The initial congestion window size is set

to two segments of size MSS. The receiver buffer size is set large
enough that it does not restrict throughput.

5.2.2 HTTP support

Version ns-2.1b6a contains very limited support for simulation

of web downloads. The support does not model the complete
set of improvements in connection management of HTTP/1.1

[Fielding et al.(1999)] over HTTP/1.0 [Berners-Lee et al.(1996)]
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that optimize download latencies. HTTP interactions are not

driven with an analytic model as required in our system model but

distributions which determine the size of web objects and think

time between successive downloads are taken from a hard-coded

table. This table represents the distributions from a limited set of

measurements taken 1995 at Berkeley [Mah(1997)]. The largest
object in these measurements is 1.6 MB. As a consequence, the

traffic generated with this implementation is not very bursty thus

misses a significant fraction of variability. Moreover, the imple¬
mentation uses ns-2's default one-way TCP connection module

which does not model the 3-way handshake for connection setup.
This leads to inaccurate results for download latencies as losses

of SYN packets in the 3-way handshake trigger long timeouts.

We have thus decided to enhance ns-2 with our own implemen¬
tation of web downloads.

5.2.3 A Short Review of HTTP/1.1 's Connection

Management

Before presenting this implementation we generally introduce

the improvements in connection management of HTTP/1.1 over

HTTP/1.0 which are not completely modeled in ns-2.1b6a. We

use the example of a web page that consists of a container ob¬

jects and five embedded objects. One of these embedded objects
is located on a remote server. Figure 5.2 depicts the typical set

of HTTP/1.0 interactions required to perform a download of this

web page.

In the first phase of this download, the web client sends a re¬

quest for the container object to the web server after establishing
a TCP connection. The server typically responds with a reply
that includes the container object after receiving and processing
the request. In the second phase, after the client has received and

processed the container object, the client starts sending further
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Connection,

Client Server,

2 Connection3

Server, Client Server2

Figure 5.2: Interactions ofDownload with HTTP/1.0

requests for embedded objects of the web page. To handle the re¬

quest, the client establishes a new TCP connection for each em¬

bedded object. The new connection is established although the

embedded object, in many cases, is located on the same server as

the container object or other embedded objects. To minimize the

network latency of the download, a limited number of such TCP
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connections can be established in parallel. In our example this

limit, which is to maintain fairness between different users, is set

to three. Upon receipt of the request, the servers reply by send¬

ing the requested objects. Once one of these objects is received,

the client sends a request for the next embedded object until all

objects are requested.

Connection,

Client Server,

HTTP Get

Container Obj

HTTP Put

Container Obj Connection2
Client Server-

Figure 5.3: Interactions ofDownload with HTTP/1.1
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Figure 5.3 depicts the typical set of HTTP/1.1 interactions to

download the same web page. The first phase of the download,

in which the contained object is downloaded, is the same as in

HTTP/1.0. In the second phase, HTTP/1.1 implements two op¬

timizations for connection management that affect the download

latency:

• Persistent connections

TCP connections between the client and a server that have

been established for a HTTP request/reply interaction are

kept open for reuse in further HTTP request/reply interac¬

tions. This prevents unnecessary TCP slow starts and thus

inhibits the possibility of time consuming events such as the

loss of a SYN packet triggering a time-out.

• Pipelining
TCP connections between client and servers are immedi¬

ately established. All requests for embedded objects are

immediately send off after processing the container object.

5.3 Our Implementation of Web Downloads in

ns-2

The key features of our implementation to support web down¬

loads with HTTP/1.1 in ns-2 are:

1. We follow the system model depicted in Figure 5.1 and

drive the HTTP interactions on the application layer by sam¬

pling analytic distributions.

2. We implement the complete set of HTTP/1.1 improvements
in connection management that affect network latencies.

This includes pipelining and persistent connections.
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3. We employ ns-2's FuUTCP which accurately models 3-way
handshake for connection setup.

The goal of this implementation is to research network latencies

of web downloads during times of peak usage.

The important random variables which drive the simulation

and their distribution including parameters were chosen as fol¬

lows:

5.3.1 Resource-related Input Variables

The resource-related variables were chosen such that the full hi¬

erarchical structure of web resource can be modeled. Hence,
resource-related variables pertain to

• size of container objects

• size of embedded objects

• number of embedded objects

Default values for distributions including parameters are listed

in Table 5.3.1. The parameters in the functions have the same

values as in [Feldmann et al.(1999)]. Real numbers obtained by
the random number generator are truncated to integer.

Parameter Distribution Average Shape
size of container obj. ParetoII 12KB 1.2

size of embedded obj. ParetoII 12KB 1.2

number of embedded obj. ParetoII 3 1.5

Table 5.1: Resource Related Parameters to Generate Web Traffic
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No special effort is taken to model the locality of objects
which may considerably affect server performance since the

focus of the implementation is research of network latencies.

Instead, we follow the approach of [Fiedler(2001)] and chose

servers randomly.

5.3.2 User-related Input Variables

For user-related variables, our implementation restricts to mod¬

eling the think time of successive downloads after which the next

transaction is triggered. The default values for distribution of

think times including parameters are listed in Table 5.3.2. The

shape parameter of the ParetoII distribution of think time, which

is the significant parameter that impacts the traffic characteristic,
has the same values as in [Feldmann et al. (1999)]. The parameter
for the average in this function, which can be used to adjust the

network utilization, has a default value of 40 seconds.

Parameter Distribution Average Shape

Think Time ParetoII 40 sec 2.0

Table 5.2: User Related Random Variables to Generate Web Traffic

More coarse grained user-related variables such as session du¬

ration, which exceed the scope of investigating latencies during
time of peek usage, are not modeled.

5.3.3 Protocol-related Input Variables

Protocol-related variables which primarily affect enor handling,
redirection etc. are not modeled.
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5.3.4 Our Implementation of HTTP

To implement HTTP interactions we exploit that ns-2's FuUTCP

module supports bidirectional data transfer with the possibility to

invoke a command at the receiver side upon receipt of all data.

We thus employ mutual method invocation between client and

server to implement HTTP interactions. The connection manage¬

ment of HTTP/1.1 including persistent connections and pipelin¬
ing can then be added by method derivation.

Client Server

requestPage
sendFirstRequest »- recvFirstRequest i

irecvFirstReply
* sendFirstReply

*

genFurtherRequests
sendFurtherRequests - recvFurtherRequest ,

recvFurtherReply m sendFurtherReply
*

Figure 5.4: Method Invocations ofa Download (Example)

Our implementation can be explained as follows: All book¬

keeping associated with the download of a web page is done

in a dynamic object which is created at the start of a down¬

load and freed upon termination of the download. This book¬

keeping includes the status of the download as well as locations

where embedded objects have to be requested which is known as

soon as the container object has been received. The sequence of

mutual method invocations that implement the interactions de¬

picted in Figure 5.3 are listed in Figure 5.4. When the think

time of this client is over the client method requestPage calls

the client method sendFirstRequest which simulates the sending
of the HTTP GET of the container object. This sendFirstRequest
method employs FuUTCP to simulate a data transfer to the server

and calls the server method recvFirstRequest when the server
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has received the data. Then the server determines the size of

the container object and number, size, and location of embedded

objects by sampling the distribution of the conesponding vari¬

ables. Moreover, the server calls its sendFirstRequest method

which simulates the sending of the HTTP PUT of the contained

object. This sendFirstRequest method in turn employs FuUTCP
to simulate a data transfer to the client and calls the client method

recvFirstReply. This client method recvFirstReply calls genFur-
therRequests which updates the bookkeeping and calls sendFur-

therRequests to simulate the sending of HTTP GETs for the

embedded objects. This sendFurtherRequests method employs
FuUTCP to simulate the data transfers to the server(s) and calls

the server method recvFurtherRequest when the corresponding
server has received the data. Each call of the recvFurtherRequest
method in turn calls sendFurtherReply which simulates the send¬

ing of a HTTP GET of an embedded object. This sendFurtherRe¬

ply method in turn employs FuUTCP to simulate a data transfer

to the client and calls the client method recvFurtherReply which

updates the bookkeeping.

The connection management of HTTP/1.1 is implemented in

two steps with deriving a set of methods at the client's side.

The first step adds persistent connections. The second step adds

pipelining of requests. In the first step, a container that enables

reuse of previously opened connections is added to each client

to keep track of persistent connections. A derived client method

genFurtherRequests searches this container before sending a re¬

quest. Methods at the server side do not need to be modified

to implement persistent connections. The server just reuses the

connection of the request to send the reply. In the second step,
pipelining, i.e the immediate sending off of requests for embed¬

ded objects, is added by deriving the client method genFurther¬
Requests.



80 Chapter 5. Simulation Environment

5.3.5 Connection Setup

Employing FuUTCP solves the problem of accurately modeling
the 3-way handshake at connection setup.

5.3.6 Interface for Testing

© ©====©

Figure 5.5: Visualizing Connection Management

For test purposes the HTTP interactions in our implemen¬
tation can be visualized with the network animator (nam)
[nam(2003)]. We have analyzed a number of downloads in differ¬

ent setups to verify the conectness of our implementation. Fig¬
ure 5.5 depicts a screen shot that has been made when testing the
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download of a single web page with multiple embedded objects
with HTTP/1.0, persistent HTTP, and HTTP/1.1.

5.4 Summary

In this chapter we have described the simulation environment

which we employ to verify the applicability of the evaluation

method proposed in chapter 4. We have discussed the under¬

lying system model of our simulation of web services. We have

described our implementation on top of ns-2 to simulate web ser¬

vices with HTTP/1.1 which is targeted at research of network

latencies.
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Chapter 6

Evaluation

of Simulation Input

In this chapter, we start with the validating the proposed method
and analyze the convergence of input in a simulation of web ser¬

vices. We justify that it is sufficient to focus this analysis on the

input which is obtained by sampling the long- or heavy-tailed ob¬

ject size distribution in workload generation. We show how the

method, which is described in Section 4.1, can be employed to

evaluate the minimal sample size required to converge the 99-th,
98-th, and 95-th object size percentiles in simulation input. We

show that for our simulation these sample sizes are magnitudes
smaller than the sample size required to converge the running av¬

erage of object sizes in simulation input. We further show that

this difference in sample sizes also holds under small changes to

the parameters of the object size distribution used in workload

generation. Moreover, we discuss under which conditions these

sample sizes also approximate the sample size required to con¬

verge the 99-th, 98-th, and 95-th network latency percentile of

web downloads in simulation output.

83
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6.1 Properties of the Workload

Generation Process

This analysis of convergence of simulation input exploits that un¬

derlying model of the simulation is as depicted in Figure 5.1. In

detail this means:

1. The variables in web traffic generation process pertain to

resource-related variables such as the size of container and

embedded objects, and the number of embedded objects in

a web page, user-related variables such a the think time

between successive downloads, and HTTP-protocol related

variables which are not modeled in our implementation.

2. All input variables, including the object sizes, are obtained

by independently sampling analytic distributions. These an¬

alytic distributions reflect the important characteristics of

web traffic such as heavy-tailedness of object size distribu¬

tions.

We assume that it is the heavy-tailed distributed variables in

simulation input which determine the convergence properties
of simulation input. This assumption can be justified with

[Willinger et al.(1997)] [Park et al.(1996)] reporting that heavy-
tailed distributed variables are the essential cause for the great
variability and the self-similarity of web traffic. We further make

the technical assumption that heavy-tailed distributed system in¬

put is such that is has a continuous first derivative and is strictly
monotonous for all x > 0. This is e.g. the case for a Pareto or

ParetoII distribution. As a consequence, the sample size required
to converge quantiles from such distributions can be evaluated

with the method proposed in section 4.1 which is based on The¬

orem 2 and Theorem 3.

The heavy-tailed distributed variables in our simulation are
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• the distribution of object size for container and embedded

objects.

• the distribution of think times between successive down¬

loads.

[Park et al.(1996)] reports that effects of variability from the

heavy-tails of the object size distributions clearly dominate the

effects from the heavy-tail in the think time distribution. This

can be explained with the fact that the tail indices of object size

distributions are significantly smaller than the tail index of the

think time distribution. Hence, we focus our analysis of conver¬

gence of simulation input on the distributions of object sizes.

6.2 Object Size Distribution

We exploit that both embedded and container objects are mod¬

eled with the same ParetoII object size distribution which is given
with

F^ =

1~7jT^r xe[0'oo[ (6,1)

The parameters of this distribution are listed in Table 6.1. We

denote that average and shape parameters are independent pa¬
rameters where as s = a * (a — 1) is a dependent parameter.

Parameter Value

average a 12KB

shape parameter a 1.2

s 2400B

Table 6.1: Parametersfor the ParetoII Object Size Distribution
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6.3 Object Size Quantiles

We assume that object sizes in simulation input are indepen¬
dently sampled from this ParetoII distribution. Hence, we can

employ part one of the proposed method, which is described in

section 4.1, to evaluate the minimal sample sizes required to con¬

verge then 95-th, 98-th, 99-th, 99.9-th, and 99.99-th object size

percentiles in simulation input.

Percentile Object Size

95-th 27 KB

98-th 60 KB

99-th 110 KB

99.9-th 760 KB

99.99-th 5.2 MB

Table 6.2: Percentiles ofthe Object Size Distribution

As a first result we can give percentiles of the object size dis¬

tribution Xp which are evaluated by setting xp = F~1(p). For the

ParetoII object size distribution given in Equation 6.1 the per¬
centiles can be evaluated from

'-'(»— ((T^Tï-i)
Values for the 95-th, 98-th, 99-th, 99.9-th, and 99.99-th object
size percentiles are listed in Table 6.2

6.3.1 Sample Sizes to Converge Object Size Quantiles

Next, we can give the minimal sample sizes required to converge
these object size quantiles to a given accuracy.
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We apply the proposed method and start with estimating these

sample sizes with

'^V^—l-^ (6.2)
Xp J J (xp) accuracy'

This inequation follows from a large sample approximation of the

distribution of sample's quantiles (see section 4.1.2 for a deriva¬

tion).

We improve this estimation with the accurate evaluation as

proposed in Section 4.1.1. We thus iterate the sample size n and

evaluate the following integral relations which determine the con¬

fidence interval for the sample's quantile until the accuracy rela¬

tion 2.10 for the sample's quantile leads to the given accuracy.

fLn
f ( \a

1 ~ confidence level
./

fn(x)dx
= = 0.025 (6.3)

for the lower bound Ln of the confidence interval and

fU"
n , s , . .

\ — confidence level
. „ „„_ „ „,

/ fn(x)dx = 1 J—
= 0.975 (6.4)

Jo *

for the upper bound Un. Here /„ is the probability density of the

sample's quantile as given in Equation 3.5, the confidence level

is assumed to be 95%. En in the accuracy relation is given with

F_1 (p) since the sample's quantile's expected value equals to the

corresponding quantile of the distribution the samples. Values

for estimation of the 95-th, 98-th, 99-th, 99.9-th, and 99.99-th

object size percentiles at a 5% accuracy are listed in Table 6.4.

Values for estimation of the 99-th object size percentile at vari¬

ous accuracies are listed in Table 6.3. These values maximally
differ by 0.2 in the mantissa from the values estimated with In¬

equation 6.2. Hence, the enor that comes from approximating
the sample's quantile's distribution with a normal distribution is

negligible.
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Accuracy of the

99-th percentile

Sample Size

1% 2.8 • 10ö

2% 7.2 • 10b

3% 3.2 • 105

5% 1.2-10b

10% 3.1 -104

Table 6.3: Sample Size Required to Estimate the 99-th Object Size Percentiles

Percentile

(5% Ace.)

Sample Size

95-th 2.6 • 104

98-th 6.0 • 104

99-th 1.2 105

99.9-th 1.2 • 10ö

99.99-th 1.1 • 10'

Table 6.4: Sample Size Required to Estimatefurther Object Size Percentiles

6.3.2 Sample Sizes to Converge the Running Mean

These sample sizes to converge the 95-th, 98-th, and 99-th ob¬

ject size quantile are magnitudes smaller than the sample sizes

required to converge the running average of the object size

distribution. This can be seen by adopting the argument of

[Crovella and Lipsky(2000)] which we review in section 2.3.

This argument yields in the following inequation for estimation

of the sample size required to converge the running average from

a heavy-tailed distribution with tail index a with k digit accuracy

(^ * 10~fer^ < n (6.5)
C\

for which [Crovella and Lipsky(2000)] suppose that f- « 1.

Hence, to estimate sample size for any accuracy not just k digit
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accuracy the inequation can be stated as:

accuracy'i-v* < n (6.6)

Values for estimation of the running sample average from the ob¬

ject size distribution at various accuracies are listed in Table 6.5.

Accuracy Sample Size

1% 1.0-1012

2% 1.5 • 10lü

3% 1.4-10y

5% 6.4 • 10''

10% 1.0 • 10b

Table 6.5: Sample Size Required to Estimate the Average Object Size (adapted
from [Crovella and Lipsky(2000)])

These values for the sample size required to estimate the run¬

ning average are magnitudes larger than the values required to

estimate the 95-th, 98-th, and 99-th percentile from the object
size distribution. This large difference can be explained with the

fundamental difference in convergence of the running average to

a a-stable distribution at a n1/**-1 rate versus the convergence of
the quantiles to a normal distribution at a n'1!2 rate. Here n is

the sample size and a the tail index of the object size distribution.

6.3.3 Introducing System Limits

This large difference continues to hold at the presence of realistic

bounds to the object size distribution inherent to common oper¬

ating systems. We show that this is the case with a 2.1GB limit to

the object size distribution. The choice of this limit to 2.1GB can

be explained with the fact that signed integers in our simulation

are represented with 32 bits and 231 = 2.1 • 109.
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The sample size required to converge the 95-th quantile re¬

mains unchanged by introducing a 2.1GB limit. This can be

explained with the fact that 1 - F(2.1GB) = 10-7. Hence,
the sample size to required converge the 95-th percentile is

practically equal to the sample size required to converge the

[100 * (0.95 + 10~7])-th percentile. A similar statement can be

made for the 98-th and 99-th quantile.

The sample size required to converge the running average af¬

ter introducing a limit can be estimated with the central limit the¬

orem (CLT). CLT states that the running average in i.i.d samples
of size n from a distribution with two finite moments converge to

a normal distribution

n1'2 (Xn - ß) AT(0, a2) (6.7)
in distribution

Thus, at sample size n the confidence interval for the running
average is given with

ß ± 1.96 -^= (6.8)
y/n

and the accuracy relation is given by

1.96 ^
accuracyn = — (6.9)

ß

Thus solving for n yields in

/ 1.96* a Y
^_< n (6.10)

\ ß * accuracy J

The parameters a and ß of the asymptotic normal distribution

can be evaluated with the standard formulae. Evaluating these

formulae with numeric integration leads to a2 — 4.9 • 10u and

ß
— 11067 for the ParetoII object size distribution with a 2.1GB

limit. Inserting these values for a and ß in Inequation 6.10 leads

to the sample sizes listed in Table 6.6.
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Accuracy of the

sample's average

Sample Size

1% 1.5-10»

2% 3.8 • 10'

3% 1.7-10'

5% 6.1 • 10b

10% 1.5 • 10ö

Table 6.6: Sample Size Required to Estimate the Average Object Size (2.1GB

limit)

6.3.4 Sensitivity to Small Changes in Tail Index

The difference in the sample size required to converge the 99-

th quantile and the running average gets more emphasized for

tail index a —> 1 (See Table 6.7 which has been obtained by
repeating the evaluation of section 6.3.1 and section 6.3.2 for 5%

accuracy). From this table we infer that the sample size required
to converge the 99-th percentile from a ParetoII distribution do

not significantly change when the tail index a varies between 1.1

and 1.3 This is not the case for the running average. The sample
size required to converge the running average largely increases

for tail index a — 1.

a 99-th Percentile Average (w/o limit) Average (2.1GB limit)
1.1 1.3 • 105 2.0 • 10i4 1.4-10"

1.2 1.2 • 10& 6.4 • 107 6.1-10b

1.3 9.1 • 104 4.3 • 105 2.9 • 10b

Table 6.7: Sample Sizes at Various Tail Indices a (5% Accuracy)
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6.4 Special Cases

The sample sizes to converge the p-th object size quantile in sim¬

ulation input, which are listed in Table 6.3 and Table 6.4, is not

only necessary but also sufficient to converge the conesponding
p-th latency quantile if network bandwidth is large enough to pre¬

vent packet losses. This can be explained with the fact that a

normal distribution is conserved under the linear transformation

which in this case describes the object size latency relationship
in the vicinity of the p-th latency quantile.

Assuming that TCP's congestion control and retransmission

algorithm have an adverse impact on convergence implies that it

is reasonable to assume that the sample sizes listed in Table 6.3

and Table 6.4 are lower bounds to the sample sizes required to

converge the conesponding p-th quantile in simulation output.

6.5 Summary

In this chapter, we have started to validate the proposed method.

We have analyzed the convergence of input a simulation of web

services. We have justified that it is sufficient to focus this anal¬

ysis on the input which is obtained by sampling the long- or

heavy-tailed object size distribution in workload generation. We
have determined the minimal sample size required to converge
the 99-th, 98-th, and 95-th quantile in the sample from the object
size distribution in simulation input. For simulations such sample
sizes are feasible in practice. We have found that the sample sizes

do not highly dependent on small changes in the tail index a of

the object size distribution such as a = 1.1 instead of a = 1.2.

We have shown that this is in contrast to the sample size required
to converge the running average from the object size distribution.



6.5. Summary 93

This sample size largely grows if the tail index a decreases from

1.2 to 1.1.





Chapter 7

Evaluation

of Simulation Output

In this chapter, we continue with the validation study of the pro¬

posed method and analyze the convergence of output in a simu¬

lation of a web services. We show that download latency quan¬
tiles such as the 99-th, 98-th, and 95-th percentile can converge
within sample sizes that are feasible for simulations and can thus

be used to evaluate network performance. The system model and

environment for the simulation study is as described in Chapter 5.

7.1 Simulation Study

7.1.1 Workload Generation

We take two steps to show that the method can be employed
for evaluation. We first show that the method allows to evalu¬

ate network performance under the assumption that each down¬

load consists of a single object before we remove this simplifi-

95
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Name of Set Object Size

Distribution

Embedded Objs.
Per Page Dist.

Think Time

Distribution

Coarse

Model

ParetoII

Average 12 KB

Shape 1.2

None ParetoII

Average 10s

Shape 2.0

Accurate

Model

ParetoII

Average 12 KB

Shape 1.2

ParetoII

Average 3

Shape 1.5

ParetoII

Average 40s

Shape 2.0

Table 7.1: Probability Distributions to Generate Web Traffic

cation in a second step. This single object assumption allows us

to directly associate object sizes with download latencies which

facilitates the analysis of results. The specific choice of parame¬
ters for web traffic generation under this assumption is depicted
in Table 7.1.1, first row. We refer to the underlying model for

workload generation as the "coarse model". In the second step
we remove this single object assumption and chose parameters
such that they reflect the full structure inherent to web pages (see
Table 7.1.1, second row). We refer to the underlying model for

workload generation as the "accurate model". To obtain compa¬
rable results with both models, we have adjusted the parameters
for the coarse model in the table such that the network utilization

for traffic generated with both models are comparable. With net¬

work utilization we mean the amount of traffic transported over

the network per time unit in proportion to the capacity of the bot¬

tleneck link. In detail, we have adjusted the average think time in

the coarse model so that the ratio

average number of objects * average object size

average think time

which determines the average network utilization remains con¬

stant.
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7.1.2 Topology

Queue Length:
52kB

Access Links

Bandw.: 10Mb/s

Delay: 0.1ms

5 Web Servers

Queue Length:
52kB

Bottleneck Link

Bandwidth: variable

Delay: 10ms

Access Links

Bandwidth: 10Mb/s

Delay: 0.1ms

50 Web Clients

Figure 7.1: Validation Topology

Capacity Avg. Utilization Loss Rate

High utilization 640Kb/s 64% 0.8%

Medium utilization 2560Kb/s 17% < 0.1%
Low utilization 6400Kb/s 7.0% < 0.1%

Table 7.2: Avg. Utilization ofthe Bottleneck Link

The topology in the validation study and the location of web

clients and servers is as depicted in Figure 7.1.2. The bottleneck

link in this topology represents some critical link in a network.

The bottleneck link can also be viewed in more general sense,
since it has been argued that there is always a single bottleneck
link on any network path [Bajaj et al.(1998)]. All access links to

the bottleneck have a capacity of 10Mb/s and a propagation de¬

lay of 0.1ms. We later vary this propagation delay of access links

to explore whether the evaluation method can be applied without

assuming that the physical propagation delay between all clients

and servers is equal. The bottleneck link has a propagation delay
of 10ms. This can be seen as an abstraction from multiple links

in a well provisioned network where delay adds up to 10ms or
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as a worst case of a transcontinental or transoceanic link. Queue
sizes are set to 52KB. We vary the capacity at the bottleneck link

to explore under which link utilizations our method can be ap¬

plied to estimate network performance. We consider three cases

for the capacity of the bottleneck link: 640Kb/s, 2560Kb/s, and

6400Kb/s. The 640Kb/s case leads to a average utilization of

slightly more than 60% (see Table 7.2). This average utilization

is known as an upper limit to what's acceptable during the busiest

period (see [Ben Fredj et al.(2001)] on provisioning procedures).
We then lower the average link utilization to values that are typi¬
cal for data networks [Odlyzko(2000)]. We refer to the 640Kb/s

case as high utilization, to the 2560Kb/s case as medium utiliza¬

tion, to the 6400KB/S case as low utilization.

Given that the focus is on network performance, we randomly
chose the server for each web request and assume that embedded

objects are located on the same server as the container objects.
Default values are used for all other configurations of the simu¬

lation (see chapter 5 for details).

7.1.3 Simulation Duration

We run very long simulations. When employing the coarse

workload model simulations terminate after the first 500,000 re¬

quested objects have been completely downloaded, which cor¬

responds to 28 hours of simulation time. Typically more than

500,000 objects have been completely downloaded during this

period. This period is sufficient to converge the 95-th, 98-th,
and 99-th object size percentiles in simulation input such that

they can be estimated with a 3.6% accuracy or better (cf. ta¬

ble 6.3). When employing the accurate workload model simula¬

tions terminate after the first 120,000 requested web pages have

been completely downloaded. These web pages contain approxi¬
mately 500,000 web objects. Hence, this period is also sufficient
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to converge the 95-th, 98-th, and 99-th object size percentiles in

simulation input such that they can be estimated with a 3.6% ac¬

curacy or better.

7.1.4 Limitations

The object size distribution which determines traffic burstiness is

truncated at 2.1GB since object sizes in our simulation environ¬

ment are represented with 32 bit signed integers. We denote that

this differs from the 4GB limitation in common operating sys¬
tems which represent object sizes with unsigned integers. More¬

over, the simulation environment imposes a 2.1GB limit on the

amount of data that can be transported over a TCP connection to

avoid a wrap over of the sequence number which is also repre¬
sented with a 32 bit integer. Therefore, given that we implement
downloads with HTTP/1.1 which uses persistent TCP connec¬

tions, we have to limit the total size of web pages including con¬

tainer and embedded objects to 2.1GB. We have verified that we

have chosen simulation duration and number of simulation runs

large enough that objects and pages of this size occur in our sim¬

ulations.

7.1.5 Evaluation of Network Latency and

Latency Quantiles

We assume that the network latency of a web download is defined

as the time that has elapsed between the following start and stop
event. The start event is the begin of the send process of the first

TCP syn packet associated with the first conesponding HTTP
request. The stop event is the end of the reception process of the

last TCP packet containing relevant data associated with the any
of the corresponding HTTP replies.
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The p-th network latency quantile (NLP) associated with each

of the simulation runs is then computed as follows: We take the

network latency of downloads in the order with which the cone¬

sponding web requests were issued. All latencies are sorted from

shortest to longest, i.e. NLi,..,NLn —> NL(i),..,NL(n)- The

p-th latency quantile is then given by NL(k) with k = \np].

7.2 Results

In this section, we present the results from applying the method

described in Section 4.2 to assess the convergence of 99-th, 98-th,
and 95-th network latency percentiles in simulation output.

We recall that the method exploits that it is reasonable to as¬

sume that latency quantiles in simulation output generally con¬

verge to a normal distribution which we have explained in Sec¬

tion 3.3.1. When observed latencies have a weakly dependent
correlation structure this convergence is at a n~xl2 rate where

n is the sample size. When observed latencies have a long-range
dependent conelation structure this convergence is at a nH_1 rate

where 1/2 < H < 1 is the Hurst parameter.

Hence, the focus of investigation is whether we can observe a

convergence of the 99-th, 98-th, and 95-th network latency per¬
centiles at sample sizes which occur in our simulations.

7.2.1 Low Utilization

At low utilization we can observe that all latency quantiles inves¬

tigated converge to a normal distribution at rate n"1^2 for both the

coarse and the accurate workload generation model. The sam¬

ple size required to estimate a latency quantile from simulation
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output is comparable to the sample size required to estimate the

corresponding object size quantile in simulation input.
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Figure 7.2: Normal Plot (99-th NLP, Coarse Model, Low Util.)

We start with presenting results from the evaluation of 30 sim¬

ulation runs obtained with the coarse model for workload gener¬
ation. This model allows us to directly compare the convergence
of latency quantiles and conesponding object size quantiles. Fig¬
ure 7.2 depicts a normal plot produced from the 99-th network la¬

tency percentiles of the 30 simulation runs. This normal plot re¬

sults in a straight line and shows no indications that the distribu¬

tion of these latency percentiles deviates from a normal distribu¬

tion. This is also reflected in the conelation coefficient which has

been obtained by applying linear regression to the points of the

plot. The conelation coefficient is 0.99. The intercept and slope
of the linear regression, which are 0.275 seconds and 0.0027 sec¬

onds, lead to estimations for the parameters of the underlying
normal distribution. These parameters in turn lead to an estima¬

tion of the 99-th latency quantiles which is 0.275 ± 1.96 * 0.0027

seconds which is accurate up to 1.9%.

In order to investigate the minimum sample size required for
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Linearity of Normal Plot (6400Kb/s)
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Figure 7.3: Normality Test (99-th NLP, Coarse Model, Low Util.)

convergence we produce normal plots for increasing sample size.

We successively employ linear regression to the points of these

normal plots to test whether the normal plots result in a straight
line which indicates that the latency quantiles follow a normal

distribution. Figure 7.3 depicts the conelation coefficients from

these normal plots together with critical values for the hypothe¬
sis that the latency quantiles follow a normal distribution. The

upper line depicts the critical value for the conelation coefficient

at a 5% significance level given in Table 4.1. This means that if

quantiles are normally distributed, we expect 5% of the conela¬

tion coefficients from normal plots to be smaller than this value.

The lower line reflects a 1% significance level given in Table 4.1.

This means that if quantiles are normally distributed, we expect
1% of the conelation coefficients from normal plots to be smaller

than this value. From Figure 7.3 we come to the conclusion that

the 99-th latency percentiles in this simulation converge to a nor¬

mal distribution for sample sizes larger than 110'000.

From Figure 7.4 we infer that the rate of this convergence is

n-i/2 -j;ne ggure plots the product s * ^/n vs. n with n being the

99-th NLP

sign, level 5%

sign, level 1%
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Figure 7.4: Consistency of Convergence (Coarse Model, Low Util.)

sample size and s being the estimated standard deviation, which

is given by the slope of the linear regression in the normal plot.
Comparing this figure to the conesponding figure for simulation

input (see appendix D Figure D.l) leads to the conclusion that

the product is constant within the accuracy of the simulation. The

relative deviation around sample size 240,000 is not larger than

the corresponding relative deviations in simulation input which

by probability theory must be constant. Hence, we infer that this

convergence is consistent with a weakly-dependent conelation

structure in observed latency quantiles.

Finally, we list minimal sample sizes required to estimate the

99-th latency quantile at a given accuracy (see Table 7.3). These

sample sizes were determined as follows: The definition for ac¬

curacy is given in Equation 2.10. The normal plot at 500k down¬

loads leads to an estimation of the expected 99-th latency quantile
of ß = 0.275 seconds. This estimation equals up to three digits
to the estimation from any other normal plot between 110k and

500k downloads. Based on the consistency check we can get a

robustified estimation of the radius of the confidence interval in
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Accuracy of the

99-th percentile

Sample Size

1% 3 10b

2% 7-10b

3% 3-10b

5% l-10b

10% 3-104

Table 7.3: Sample Size Required to Estimate the 99-th NLP (Coarse Model,
Low Util.)

which we expect the latency quantile. Exploiting that the conver¬

gence is to a normal distribution at rate ro-1/2, the radius of the

confidence interval can be estimated with:

confidence interval radius = 1.96
y/n

(7.2)

where the parameter a of the normal distribution can be conser¬

vatively estimated from the consistency check as a < 2.3 sec¬

onds. Hence, inserting Equation 7.2 into the accuracy relation

given in Equation 2.10 and solving for n yields in

/1.96*cr\2 1

accuracy
2 —
< n (7.3)

We can thus determine the sample sizes required to estimate the

99-th latency quantile from simulation output. Results are listed
in Table 7.3. The sample sizes turn out to be comparable to the

sample sizes required to estimate the corresponding object size

quantiles in simulation input (see Table 6.3).

Similar observations can be made for the convergence and

consistency of convergence of the 98-th and 95-th latency per¬
centile (see appendix D).

We therefore repeat the simulations for low utilization with
the accurate model for web traffic generation. We perform 30
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Figure 7.5: Normality Test (99-th NLP, Accurate Model, Low Util.)
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Figure 7.6: Consistency of Convergence (Accurate Model, Low Util.)

simulation runs with different seeds and terminate after the first

120,000 requested web pages have been completely downloaded.
Results for the convergence of 99-th latency quantiles and con¬

sistency of the convergence are depicted in Figure 7.5 and Figure
7.6. The normal plot at 120,000 downloads leads to an estima-
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tion of the 99-th latency percentile of 0.77 ± 0.03 seconds which

is accurate up to 4%. Conservatively estimating a < 6.8 seconds

from the consistency check (see Figure 7.6) and applying Equa¬
tion 7.3, we can determine the samples sizes required to estimate

the 99-th latency percentile from this simulation (see Table 7.4).
The magnitude of the sample sizes listed in Table 7.4 is com¬

parable the magnitude of sample sizes required to estimate the

conesponding object size quantiles in simulation input (see Ta¬

ble 6.3).

Accuracy of the

99-th percentile

Sample Size

1% 3-100

2% 8-105

3% 3-105

5% 1-105

10% 3-104

Table 7.4: Sample Size Required to Estimate the 99-th NLP (Accurate Model,
Low Util.)

Similar observations can be made for the convergence and

consistency of convergence of the 98-th and 95-th latency per¬
centile (see appendix D).

7.2.2 High Utilization

At high utilization we observe for the coarse workload gener¬
ation model that the 99-th and 98-th latency percentile converge
to a normal distribution at a rate which is no more consistent with

weak dependence. The 95-th latency quantile does not converge

during simulation times that we have done. The order of magni¬
tude of the sample sizes required to estimate a latency quantile
from simulation output is still comparable to the order of mag-
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nitude of the sample size required to estimate the conesponding
object size quantiles in simulation input.

Linearity of Normal Plot (64QKb/s)
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50 100 150 200 250 300 350 400 450 51

Number ot Downloads (xi 000)

a) 99-th NLP

Figure 7.7: Normality Test (Coarse Model, High Util.)

Results presented here are from the evaluation of 40 simu¬

lation runs. Figure 7.7 depicts the conelation coefficients from

normal plots for increasing sample size together with critical val¬

ues for the hypothesis that the latency quantiles follow a normal

distribution. The upper line depicts the critical value for the cor¬

relation coefficient at a 5% significance level. This means that

if quantiles are normally distributed, we expect 5% of the cor¬

relation coefficients from normal plots to be smaller than this

value. The lower line reflects a 1% significance level. This

means that if quantiles are normally distributed, we expect 1%
of the conelation coefficients from normal plots to be smaller

than this value. From Figure 7.7 we come to the conclusion that

the 98-th latency percentiles in this simulation converge to a nor¬

mal distribution for sample sizes larger than lOO'OOO. The 99-th

latency percentile presumably converges for sample sizes larger
than 350'000.

Estimating the 99-th and 98-th latency quantiles from the in¬

tercept and slope of the linear regression of the normal plot at

sample size 500'000 lead to 7.37 ± 0.45 seconds for the 99-th la¬

tency percentile and 5.11 ± 0.68 seconds for the 98-th percentile.
However, the convergence of the 99-th and 98-th latency per-

Linearity of Normal Plot (640Kb/s>

50 100 150 200 250 300 350 400 450 500

Number of Downloads (xlOOO)

b) 98-th NLP
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Figure 7.8: Consistency of Convergence (Coarse Model, High Util.)

centile is not consistent with a n~1//2 rate (see Figure 7.8 which

depicts a log-log plot of sample variance of the quantiles vs. sam¬

ple size). Convergence at a n_1//2 rate would result in a line par¬
allel to the reference line entitled with Hurst parameter H = 0.5

which is clearly not what we observe. The convergence is also

not completely consistent with a slower rate nl~H with Hurst

parameter 1/2 < H < 1 which is expected for a long-range de¬

pendent correlation structure among the observations of latency
quantiles. Such a conelation structure would result in a straight
line with smaller slope (see e.g. the reference line for Hurst pa¬
rameter H = 0.9 which is to be expected for the conespond¬
ing on/off process with unbound heavy-tailed input with tail in¬

dex a = 1.2 (see [Willinger etal.(1997)])). Moreover, Figure
7.8 shows that the 99-th and 98-th latency percentiles converge
at different rates which is to be explained with the fact that the

simulation has not yet reached stability. Nevertheless, we argue
that it is possible to estimate latency quantiles from these simula¬

tions by additionally estimating confidence intervals for the rate

of convergence. Such an estimation can be obtained by group¬

ing simulations and evaluating the variance of latency quantiles
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at sample size n for each group. In our case this implies to per¬

form e.g. 20 times 40 simulation runs instead of 40 to estimate

upper However, for practical applications some approximated up¬

per bound for the latency quantile which can be estimated from

the intercept of normal plots and Figure 7.8 may be sufficient.

We roughly estimate this bound to compute the magnitude of the

minimal sample size required for such an estimation. The normal

plot at 500k downloads leads to an estimation of the expected 99-

th latency quantile of ß — 7.37 seconds. This estimation equals
up to two digits to estimations from any other normal plot be¬

tween 210k and 500k downloads. The radius of the confidence

interval in which we expect the latency quantile can now be esti¬

mated with the long-range dependent equivalent of Equation 7.2

confidence interval radius — 1.96 a nH~l (7.4)

However, both, H and a, have to be estimated from the data of

the simulation. Some rough estimate can be obtained by visually
7.8 fitting a line to the log-log plot of variances

l
(see Figure 7.9).

This leads to H = 0.55 and o2 = 30,000 seconds2 excluding the

first 100,000 downloads which fall in the initial phase of con¬

vergence. Based on these values the order of magnitude of the

minimal sample size for estimation a quantile can be estimated

with

/ 1.96* a \t=h
^

._ _.

< n (7.5)
\ß * accuracy/

Values for the 99-th latency percentile in this simulation are listed

in Table 7.5.
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Figure 7.9: Estimation ofH and Sigma (Coarse Model, High Util.)

Accuracy of the

99-th percentile

Sample Size

1% 1-10«

2% 3-107

3% 1-107

5% 4-10b

10% 8-105

Table 7.5: Approx. Sample Size Required to Estimate the 99-th NLP (Coarse
Model, High Util.)

7.2.3 Medium Utilization

At medium utilization, normal plots do not indicate convergence
for any of the latency quantiles investigated within samples sizes

we have analyzed. For a sequence of normal plots for the 99-th

latency percentile up to 500,000 downloads refer to Figure 7.10.

'For more sophisticated estimation procedures that lead to more accurate estimation of H see

[Beran(1994)]
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For plots for the 98-th and 95-th latency percentile refer to Ap¬

pendix D Figure D.H.

There is two possible explanations for this non-convergence
within sample sizes that we have simulated: First, the latency
distribution has inegularities, i.e. discontinuities or discontinu¬

ities of the first derivation around the latency quantiles of inter¬

est. As a consequence quantiles cannot converge. Monitoring
the histogram of latencies around the 99-th latency quantile (Ap¬
pendix D Figure D.10) we do not find any indication for such ir¬

regularities. Second, the quantiles do converge but have a initial

phase larger than the sample size we have done in our simula¬

tions. Presumably this is the case since for a latency quantile to

converge the convolution of object sizes in simulation input and

effects from TCP's congestion control and retransmission, which

are rare but statistically relevant at medium utilization, have to

converge.

7.3 Summary

In this chapter, we have elaborated on the validation study of

the proposed method. We have applied the method described

in Section 4.2 to evaluate network latency quantiles such as the

99-th, 98-th, and 95-th percentile of web downloads in a sim¬

ulation of a web service. We have observed that these latency
quantiles can converge within sample sizes that are feasible for

simulations. We have shown that under low utilization, when

effects from system adaptivity to congestion are negligible, la¬

tency quantiles converge at approximately at same sample sizes

as conesponding quantiles from the heavy-tailed distribution in

simulation input. We have also shown that under high utiliza¬

tion, when effects from system adaptivity are significant, it is

still possible to detect convergence of latency quantiles which is
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at a rate slower than n~1//2. However, the initial phase in this con¬

vergence, which depends on details of the system adaptivity, can

become considerably long.
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Chapter 8

Applications

In the previous chapters, we have introduced a method for

quantile-based performance evaluation of systems with synthet¬
ically generated workload. We have assumed that the workload

is generated by sampling long- or heavy-tailed distributions. We

have shown results that indicate that the method can be employed
to evaluate the network performance of web services for which

the size distribution of downloaded objects is long-tailed. Our re¬

sults indicate that this enables performance evaluation at sample
sizes which are practically feasible.

In this chapter, we show the versatility of the method. We give
evidence that the method can be applied to almost any problem
that requires performance evaluation with long- or heavy-tailed
input to which the system model of Figure 1.1 can be applied.
The problem does not need to have any relation to the perfor¬
mance evaluation of networks in web services. The only stringent
requirements for application of the method is (i) that quantiles of

system output have a useful interpretation in the corresponding
application scenario and (ii) that the system is such that it does

not prevent quantiles of output to converge at sample sizes that

115
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are of practically feasible.

We therefore start with reviewing characteristics where mea¬

surements indicate long- or heavy-tailed distributions. We then

list performance evaluation problems of systems in which these

characteristics are part of the input. For each of these perfor¬
mance evaluation problems we review input and output of these

systems to show that the problem can be abstracted with the sys¬

tem model given in Figure 1.1 and give arguments that quantiles
in the system output are useful in related application scenarios.

In the field of computer and communication systems long-
or heavy-tailed distributions appear to fit measurements for the

following characteristics.

1. sizes of objects of IMAP or POP3 e-mail services

[Charzinski(2002)]

2. sizes of objects of FTP transfers [Paxson and Floyd(1994)]

3. sizes of objects stored in Unix file systems [Irlam(1994)]

4. CPU requirements for Unix processes

[Leland and Ott(1986)]
[Harchol-Balter and Downey(1997)]

5. Direct access storage device I/O time requirements
[Peterson and Adams(1996)]

The tail indices estimated from these measurements are all be¬

tween 1.0 and 1.3. Such indices close to 1 are clearly in favor

of our method since this implies unpractically large sample sizes

to evaluate the performance with frequently-used performance
statistics that depend on moments of the heavy-tailed distribu¬
tion.
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In fields other than computer and communication systems

long or heavy-tailed distributions appear to fit measurements for

the following characteristics.

1. the cost for hurricane, fire, and earthquake damage
[Doyle(1999)]

2. the distribution of income in the US

Hence, performance evaluation problems of systems in which

these characteristics are part of the input include the following:

8.1 Network Performance Evaluation

Network performance evaluation for services such as e-mail or

file transfer where file sizes are long- or heavy-tailed with tail

indices close to 1 are problems where the proposed method can

be applied. Similar to the web services, e-mail or file transfer

services all employ request/reply transactions. Part of the sys¬
tem input is the size of the requested file. System output is the

latency of requests. Therefore, performance evaluation of these

services can be abstracted with the system model given in Fig¬
ure 1.1. Similar to the web services, latency quantiles such as

the 99-th percentile are useful to statistically characterize system
performance.

Hence, the proposed method can be applied to evaluate prob¬
lems such as

• Evaluation of network capacity provisioning

• Evaluation of advancements in protocol development

• Evaluation of optimizations of protocols e.g. for wireless

scenarios
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8.2 Server Performance Evaluation

Performance Evaluation for web, file, and e-mail servers where

file sizes are long- or heavy-tailed with tail indices close to 1

are problems where the proposed method can be applied. Web,
e-mail or file transfer services all employ request/reply transac¬

tions. Part of the system input is the size of the requested file.

System output is the latency of requests. Therefore, performance
evaluation of these services can be abstracted with the system
model given in Figure 1.1. Latency quantiles such as the 99-

th percentile are clearly useful to statistically characterize server

performance.

Hence, the proposed method can be applied to evaluate prob¬
lems in the context of server performance evaluation. These

problems include:

• Evaluation of server configuration and server capacity pro¬

visioning

• Evaluation of CPU scheduling algorithms on a single server

• Evaluation of load balancing algorithms which schedule re¬

quests between multiple servers

One problem that deserves special attention in server con¬

figuration is to optimize parameters that control the maximum
number of requests which can be processed in parallel. This pa¬
rameter is is known to have great impact on server performance
[Liu et al.(2003)]. So far performance evaluations to optimize
such parameters for web servers have been performed with work¬
loads generated from distributions that inherently limit variability
(see Section 2.4.1 and [Liu et al.(2003)]). The proposed method
can remedy this drawback and lead to more realistic results.
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8.3 Computer System Performance Evaluation

The proposed method can also be applied in the evaluation of

computer systems since CPU and I/O time requirements of are

long- or heavy-tailed.

The input in these evaluations are the CPU requirements and

the arrival rates of the processes. The CPU requirement is typ¬
ically long- or heavy-tailed, the arrival rate is exponential. The

output is the wall time or response time, the slowdown, i.e. the ra¬

tio of CPU requirement and wall time as well as the queue length.
Therefore, performance evaluation of these services can thus be

abstracted with the system model given in Figure 1.1. Since

quantiles of response time, slowdown, or queue-length have a

natural interpretation, the proposed method can also be applied
for the evaluation of computer systems.

Hence, the proposed method can be applied in the evaluation
of computer systems. Problems include:

• Evaluation of migration policies in a network of worksta¬

tions

• Evaluation of task assignment policies for a distributed
server

8.4 Outside Computer and Communication

Systems

We restrict to denoting that the proposed method may be of use

in fields outside of computer and communication systems namely
in economics. We do not elaborate on any of the examples since
the author of this thesis is not familiar with these fields.
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8.5 Summary

We have shown that the quantile-based method which this thesis

proposes has more applications than the evaluation of the net¬

work performance of web services. Further applications in the

evaluation of network performance include evaluations of net¬

work capacity provisioning, evaluations of advancements and op¬
timizations in protocol development for services such as e-mail

or file transfer. Applications in the evaluation of server perfor¬
mance include evaluations of capacity provisioning, evaluations

of server configuration, and evaluations of algorithms for request
scheduling and load balancing for web, file, and e-mail services.

More applications of the method are in the field of computer sys¬
tems. These include the evaluation of migration policies in a net¬

work of workstations as well as the evaluation of task assignment
policies for distributed servers.
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Conclusions and Further

Work

In this thesis, we have developed a new method for performance
evaluation of systems with synthetic workloads that are generated
by sampling from a heavy-tailed distribution. This method en¬

ables the evaluation of the performance of systems under heavy-
tailed input at sample sizes that are practically feasible. The

method exploits the fact that quantiles of system output, such as

the 99-th percentile, converge long before frequently-used statis¬

tics such as the average. We have shown that for many applica¬
tions of the method, such quantiles are a useful statistic to char¬

acterize system performance. We have further shown results that

indicate that this method can be employed to evaluate network

performance in simulations of web services. Moreover, we have

shown the generality of the method by giving applications of the

method other than capacity provisioning for networks of web ser¬

vices.
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9.1 Review of Contributions

In Section 1.4 we have stated the research contribution of this

thesis. Now it is time to revisit these contributions. Below, each

of these contributions is assessed.

1. Quantiles are suitable statistics for performance
evaluation

We give evidence that quantiles are suitable statistics

for performance evaluation of systems with synthetic
workloads that were generated by sampling heavy-tailed
distributions.

To show the suitability of quantiles for performance eval¬

uation we have shown (i) that quantiles have useful inter¬

pretation in many application scenarios that are related to

statistical quality of service guarantees for the system and

(ii) that quantiles of output can converge at sample sizes
that are feasible for performance evaluations.

We have reviewed the interpretation of quantiles in a num¬

ber of application scenarios. For the example for the ap¬
plication of a web service we have argued that quantiles,
such as the 99-th download latency quantile, naturally re¬

flect user-perceived system performance since 99% of the

downloads have a latency smaller than the 99-th percentile.
To show that quantiles can converge at sample sizes that

are feasible for performance evaluations we have reviewed

probability theory. We have given theory from which we

can infer that quantiles in system in- and output converge
to a normal distribution if the underlying distributions are

sufficiently regular. We have further applied this theory
to show that quantiles in system input converge at sample
sizes that are practically feasible for performance évalua-
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tions. For the example of the application of performance
evaluation of a web service we have calculated that the 99-

th percentile of a distribution of web objects converges to

a 5% relative accuracy at a sample size of 1.2 • 105. More¬

over, we have given indications from theory that quantiles
in system output can generally converge at sample sizes that

are practically feasible for performance evaluation. For the

example of the application of performance evaluation of a

web service we have presented results which indicate that

quantiles such as the 99-th download latency percentile can

converge at sample sizes below 5 • 105 which is practically
feasible to achieve.

2. A priori bounds for evaluation duration

We provide lower bounds that estimate the initial phase in

the convergence ofquantiles in system output.

We have shown how to apply statistics to evaluate this con¬

vergence of quantiles from a heavy-tailed distribution in

system input. It seems reasonable to assume that this con¬

vergence estimates the initial phase of the convergence of

the conesponding quantile in system output. For example
for the application of performance evaluation of a web ser¬

vice this can further be supported with results from the val¬

idation study.

3. Estimation of quantiles in system output
We give a method to test whether quantiles of simulation

output have converged. In case of convergence the method

additionally provides accurate estimatesfor the quantiles.

Our review ofprobability theory shows that quantiles in sys¬
tem output generally converge to a normal distribution when

the underlying distribution is sufficiently regular, which is

reasonable to assume in most application scenarios. We
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have therefore proposed to employ standard procedures
to assess this convergence to a normal distribution. The

method that we have proposed combines normal probabil¬
ity plots to visually pretest convergence, a hypothesis test

to make the pretest reliable, and monitors the rate of con¬

vergence. Moreover, in case of convergence, the standard

procedures in our method can also be employed to estimate

the quantile.

4. Practicability of the method
We show that the test method can be employed to evaluate

the networkperformance ofweb services in terms oflatency
quantiles.

We have applied our test method to evaluate the perfor¬
mance of web service in a client server scenario. The re¬

sults indicate that the method can be employed to estimate

network latency quantiles at sample sizes that are of practi¬
cal use. Hence the method can be employed for such per¬
formance evaluations. We have additionally verified that

the average network latency did not converge in our perfor¬
mance evaluations and thus cannot be evaluated.

5. Versatility of the method

We show that our method is not limited to the performance
evaluation of network performance of web services. In¬

stead, the method has a variety of further applications
which need not be related to the evaluation of network

performance ofweb services.

We have shown that our method can be employed to evalu¬

ate a number of problems in the field of computer- and com¬

munication systems. These include network capacity provi¬
sioning and protocol evaluation for e-mail and file transfer

services. They also include server capacity provisioning for
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web, e-mail, and file servers as well as the evaluation of

server configuration and algorithms for request scheduling
and load balancing. Further applications of the method in¬

clude the evaluation of computer systems. Examples are

the evaluation of migration policies in a network of work¬

stations as well as task assignment policies for distributed

servers.

9.2 Further Work

In this section, we present some open issues and unsolved prob¬
lems related to the proposed method.

Impact of Topology For the application of performance evalua¬

tion of a web service, our evaluation has assumed a dumb¬

bell network topology which represents some bottleneck

link in a network. This may hold as a base line for eval¬

uations. However, it remains to be seen how variations in

topology, speed of access and backbone links affect the con¬

vergence of network latency percentiles. It also remains

to be seen how variations of utilization on these different

topologies affect convergence.

Impact of Document Popularity For the application of perfor¬
mance evaluation of a web service we have not modeled

document popularity when generating workload. Modeling
this document popularity means to introduce correlations

in workload generation which in turn affects convergence

properties. However, it remains to be seen how this affects

the convergence of network latency percentiles in the eval¬

uation.

Testing Applications A number of applications of the proposed
method have been defined and analyzed in theory. Now it
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remains to be seen whether quantiles that are of interest to

the application scenarios converge at sample size that are

feasible for performance evaluations.

Normality Tests We have tested convergence to normality by
employing linear regression to quantify the linearity of the

normal plot. However, more than two dozen normality test

procedures could be used instead of quantifying the linear¬

ity in the normal plot. Therefore it remains to be seen how

results are affected when different normality tests are em¬

ployed to assess the convergence of quantiles in system out¬

put.
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Appendix A

E-mail Exchange with

Jan Beran

In Section 3.3.1 we have claimed that the author of [Beran(1994)]
has argued in an e-mail exchange that results in Section 8.3 of the

book also apply for quantiles. The e-mail exchange (in German)
is documented here.

From: Jan.Beran@uni-konstanz.de

To: Martin Maechler <maechler@stat.math.ethz.ch>

Subject: Re: Asym.Verteilung empirischer

Quantile unter "Long Range Dependence"
Date: Wed, 05 Mar 2003 12:10:48 +0100 (MET)

Die Aussage des Satzes ist auch fuer den Median gueltig.
Ein Beweis ergibt sich eleganter aus bekannten

funktionalen Grenzwertsaetzen fuer die empirische

Verteilung von "long-memory processes", wie sie v.a.

von Giraitis bewiesen wurden. Fractional G.n. ist dabei

nur ein Spezialfall (es ist eben nicht

einfacher den Satz fuer diesen Spezialfall zu beweisen).
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140 Appendix A. E-mail Exchange withjan Beran

Zitiere Martin Maechler <maechler@stat.math.ethz.ch>:

> >>>>> "Jan" == Jan Beran <Jan.Beran@uni-konstanz.de>

> >>>>> on Wed, 05 Mar 2003 09:35:32 +0100 (MET) writes:

> Jan> Kurze Antwort auf Deine Frage:

> Jan> Soviel ich sehe gibt es keinen Druckfehler.

> Jan> Das c_\gamma kommt aus Theorem 2.2.

> Aha! ok, leuchtet jetzt ein
...

>

> Jan> Die psi-Funktion ist streng genommen nicht

> Jan> genuegend regulaer, um die Bedingungen in

> Jan> Beran (1991) zu erfuellen (auch der Median

> Jan> erfuellt die Bedingungen eigentlich nicht).

>

> "eigentlich" : Heisst dies, dass die Aussage des

> Theorems trotzdem gilt (jetzt mal fuer den Median),

> auch wenn der Beweis angepasst werden muesste?

>

> Jan> Man kann aber natuerlich diese

> Jan> psi-Funktion beliebig genau durch eine

> Jan> geneugend regulaere Funktion approximieren.
> Jan> (Die genauen mathematischen Details

> Jan> aufzuschreiben erfordert

> Jan> natuerlich ein bisschen Arbeit...)

>

> klar.

> Fuer fractional Gaussian noise (und ARIMA?) ist die

> Asymptotik des Medians sicher doch bekannt? --

> und jene fuer alpha-Quantile (festes alpha)
> waere dann analog?

Jan> Zitiere Martin Maechler <maechler@stat.math.ethz.ch>:

>> Man ja Quantile (mit festem alpha) als

>> M-Schaetzer definieren, allerdings mit etwas
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> >> unueblicher psi-Funktion.

> >> Dann wuerde ja alles aus Beran(1991) folgen --

> >> wobei ich nicht dieses sondern Dein

> >> Chapman&Hall Buch vor mir habe.

> >> Ich beziehe mich auf S.151 ff, speziell
> >> Theorem 8.2, auf S.153.

> >> Dort hat die Formel fuer

> >> \sigma_{\mu} noch ein c_{\gamma} drin,

> >> was aber, glaub ich, nicht

> >> (dort wenigstens) definiert ist --

> >> stattdessen definierst Du c_l und c_2
> >> Tippfehler?
> >>

> >> Neben der c_\gamma Frage, bleibt jene, ob die

> >> psi-Funktion des alpha-Quantils
> >> genuegend regulaer ist (nicht differenzierbar

> >> bei 0), um die Voraussetzungen von

> >> Theorem 8.2 zu erfuellen.
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Appendix B

Examining Normal Plots

Normal plots can be employed to visually assess the fit of data

to a normal distribution. If the data in the set follows a normal

distribution, the result of the plot is close to a straight line (see
Section 4.2.1 for details). Deviations from this straight usually
may reveal deviations from normality. This appendix lists the

most frequently encountered deviations.

Figure B.l: Example: Normal Plotfor Data with Outliers [statguide(1997)J
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a) Skewness to the Right

d) Heavy-tailedness

e) Mixture of Normals (Same Mean) f) Mixture of Normals (Same Var)

g) Normal Truncated at Left h) Normal Truncated at Right

Figure B.2: Normal Plots: Possible Deviations from Normality
[statguide(1997)]
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• Suspected outlier(s)
For data sampled from a normal distribution, the X-Y values

in the normality plot will lie along a hypothetical straight
line passing through the main body of the X-Y values. If

this is generally true, with a few points lying off that hy¬
pothetical line, those points are likely outliers, as with the

smallest data value and, perhaps, the largest two data values

in the hypothetical example shown in Figure B.l.

• Skewness to the right
If both ends of the normality plot bend above a hypotheti¬
cal straight line passing through the main body of the X-Y

values of the probability plot, then the population distribu¬

tion from which the data were sampled may be skewed to

the right. Figure B.2 (a) shows a hypothetical example of a

normal probability plot for data sampled from a distribution

that is skewed to the right.

• Skewness to the left
If both ends of the normality plot bend below a hypotheti¬
cal straight line passing through the main body of the X-Y

values of the probability plot, then the population distribu¬

tion from which the data were sampled may be skewed to

the left. Figure B.2 (b) shows a hypothetical example of a

normal probability plot for data sampled from a distribution

that is skewed to the left.

• Light-tailedness
If the right (upper) end of the normality plot bends below a

hypothetical straight line passing through the main body of

the X-Y values of the probability plot, while the left (lower)
end bends above that line (an S curve), then the population
distribution from which the data were sampled may be light-
tailed. Figure B.2 (c) shows a hypothetical example of a

normal probability plot for data sampled from a distribution

that is light-tailed.
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• Heavy-tailedness
If the right (upper) end of the normality plot bends above a

hypothetical straight line passing through the main body of

the X-Y values of the probability plot, while the left (lower)
end bends below it, then the population distribution from

which the data were sampled may be heavy-tailed. Figure
B.2 (d) shows a hypothetical example of a normal probabil¬

ity plot for data sampled from a distribution that is heavy-
tailed.

• Mixtures ofnormal distributions

Data may be sampled from a mixture of normal distribu¬

tions. Depending on the means and variances of the com¬

ponent normal distributions, and on the relative proportions
of the data that come from each distribution, a mixture of

normal distributions may produce a variety of normal prob¬
ability plots. Figure B.2 (e) shows a hypothetical example
of a normal probability plot for data sampled from a mix¬

ture of two normal distributions with the same average but

different variances. Such a mixture of normal distributions

may be hard to distinguish from a symmetric, heavy-tailed
distribution. Figure B.2 (f) shows an example of a normal

probability plot for data sampled from a mixture of two nor¬

mals with the same variance but different averages. Such a

mixture of normal distributions may be hard to distinguish
from a light-tailed distribution.

• Truncated normal distributions

The normal probability plot for data sampled from a trun¬

cated normal distribution will resemble one for data from

a skewed distribution. Figure B.2 (g) shows a hypothetical
example of a normal probability for data sampled from a

normal distribution truncated at the left. This may be hard

to distinguish from a normal probability plot for a distribu¬

tion skewed to the right. Figure B.2 (h) shows a hypothet-
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ical example of a normal probability plot for data sampled
from a normal distribution truncated at the right. This may

be hard to distinguish from a normal probability plot for a

distribution skewed to the left.
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Appendix C

Normality Tests

We briefly review the most frequently-used normality tests.

• Kolmogorov-Smirnov test

The Kolmogorov-Smirnov is based on the evaluation of the

greatest discrepancy between the observed and expected cu¬

mulative distribution \Sn(x) — F(x)\. This test can be ap¬

plied to test whether data follow any specified distribution,
not just the normal distribution. The Kolmogorov-Smirnov
test becomes a conservative test and thus loses power if the

parameters o and ß of the normal distribution are not spec¬
ified beforehand, but must be estimated from the sample
data. The Kolmogorov-Smirnov test will not indicate the

type of nonnormality, say whether the distribution appears
to be skewed or heavy-tailed. Examination of the normal

plot for the data is necessary to provide clues as to why the

data failed the Kolmogorov-Smirnov test.

• Shapiro-Wilk and D'Agostino-Pearson tests

The Shapiro-Wilk test calculates a W statistic that tests

whether a random sample, £1,2:2,... ,xn comes from
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(specifically) a normal distribution. Small values of W are

evidence of departure from normality. The W statistic is

calculated as follows:

YTUxi-x)2
K )

where the X(t) are the ordered sample values (x^ is the

smallest) and the az are constants generated from the av¬

erages, variances and covariances of the order statistics of a

sample of size n from a normal distribution. This test and

the D'Agostino-Pearson test are specifically designed to de¬

tect departures from normality, without requiring that the

parameters a and ß of the hypothesized normal distribution

be specified in advance. These tests tend to be more power¬
ful than the Kolmogorov-Smirnov test, but, as general tests,

they will not indicate the type of non-normality, say whether

the distribution appears to be skewed as opposed to heavy-
tailed (or both). Examination of the normal plot for the data

is necessary to provide clues as to why the data failed the

Shapiro-Wilk or D'Agostino-Pearson test.

• D'Agostino's testfor skewness

D'Agostino's test for skewness tests for non-normality due

to a lack of symmetry. Data sampled from a symmetric dis¬

tribution may not fail the skewness test, even if the distri¬

bution is substantially light-tailed (such as a uniform distri¬

bution) or heavy-tailed (such as a Cauchy distribution, or a

mixture of normal distributions with the same average but

different variances). Thus, failure to reject the null hypoth¬
esis does not necessarily mean that the data come from a

normal distribution. If data fail the skewness test, the con¬

clusion is that the underlying distribution is significantly
skewed, but that does not preclude the possibility that it is

also substantially heavy-tailed or light-tailed with respect to

the normal distribution (as might be the case with data from
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a mixture of normal distributions with the same average but

different variances). Examination of the normal plot may
help in detecting whether the underlying distribution might
also have non-normal tails.

• Anscombe-Glynn testfor kurtosis

The Anscombe-Glynn test for kurtosis tests for non-

normality due to tail heaviness relative to the normal dis¬

tribution. Data sampled from a distribution with tail heavi¬

ness comparable to that for the normal distribution may not

fail the kurtosis test, even if the distribution is substantially
skewed (such as a truncated normal distribution, or a mix¬

ture of normal distributions with the different averages but

the same variance). Thus, failure to reject the null hypoth¬
esis does not necessarily mean that the data come from a

normal distribution. If data fail the kurtosis test, the con¬

clusion is that the underlying distribution has non-normal

kurtosis, but that does not preclude the possibility that is

also substantially skewed with respect to the normal dis¬

tribution. Examination of the normal probability plot may
help in deciding whether the underlying distribution might
also be skewed.

A alternative method to applying one or more of these tests

is based on employing linear regression to evaluate the deviation

from linearity in a normal plot.
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Appendix D

Details of Simulation

Evaluation

This appendix lists all details of the results discussed in Sec¬

tion 7.2.

Percentile Latency

99-th 0.275 ± 0.004 sec

98-th 0.205 ± 0.002 sec

95-th 0.155 ±0.001 sec

Table D.l: Estimated NLPs (Coarse Model, Low Utilization, 500k DLs)

Percentile Latency

99-th 7.35 ± 0.92 sec

98-th 5.08 ± 1.37 sec

95-th 2.42 ± 0.41 sec

Table D.2: Estimated NLPs (Coarse Model, High Utilization, 500k DLs)
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Unearity of Normal Plot (6400Kb/s)
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Figure D.2: Consistency of Convergence (Coarse Model, Low Utilization)

Percentile Latency

99-th 0.77 ± 0.03sec

98-th 0.49 ± O.Olsec

95-th 0.30 ± 0.003sec

Table D.3: Estimated NLPs (Accurate Model, Low Utilization, 120k DLs)

Utilization #Downloads around 99-th NLP

Low 62,735
Medium 24,126

High 4,879

Table D.4: Population around 99-th NLP (Coarse Model, 30x150k DLs)
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Figure D.3: Convergence of NLPs, OSPs and avg. NL, avg OS (Coarse
Model, Medium Utilization)



157

S 126+06

*
1e+06

I 800000

« 600000

a 400000

200000
S
LU

95 th OSP -

98 th OSP

99-th OSP

f S^X^

50 100 150 200 250 300 350 400 450 500

Number of Downbads (xlOOO)

a2) OSPs
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Figure D.5: Convergence of NLPs, OSPs and avg. NL, avg OS (Coarse
Model, High Utilization)



159

^L^-
^<\~ _

98-th NLP
99-th NLP - -

WD (H=0 5)
LRD (H=0 9)

--"X^,

Number of Downloads (x1000)

al) NLPs

Consistency

1 26+06

19+06

95-th OSP

98-th OSP -

99-th OSP

800000
^ ,i(A»., „""

600000

400000
iX^-^^, .^—w~^_—'—"~"

200000

_

50 100 150 200 250 300 350 400 450 500

Number of Downloads (xlOOO)

a2) OSPs

Figure D.6: Consistency of Convergence (Coarse Model, High Utilization)
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Figure D.7: Convergence of NLPs, OSPs and avg. NL, avg OS (Accurate
Model, Low Util.)
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Figure D.8: Consistency ofNLPs, OSPs (Accurate Model, Low Util.)
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Figure D.9: Object Size /Network Latency Relation (Coarse Model)
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Figure D.IO: Histogram ofNetwork Latencies around the 99-th NLP (Coarse
Model)
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Figure D.ll: Normal Plots for the 99-th NLP (Coarse Workload Model,
2560Kb/s)


