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Zusammenfassung

Eine zentrale Frage der Neurowissenschaften ist, wie Informationen im Ner¬

vensystem kodiert sind. Während Neuronen untereinander mit diskreten

singulären Signalen - sogenannten Spikes - kommunizieren, ist es unklar,
ob die Information in der Feuerrate oder der präzisen zeitlichen Struktur

der Spikes kodiert ist. Ähnlich unklar ist auch, in welchem Ausmass Popu¬
lationen von Neuronen kooperieren oder Information unabhängig kodieren.

Diese These versucht eine neue Sicht auf diese Aspekte zu erarbeiten indem

eine neue Art von Kodierung vorgeschlagen wird welche beides beinhaltet,

Kodierung im zeitlichen Bereich als auch kooperatives kodieren über eine

Population von Neuronen. Während die Beurteilung einer Kodierungsstrate¬

gie eng von deren Einsatzgebiet abhängt, so legt die uniforme Anatomie des

Kortexes nahe, dass die Kodierung von Information in den verschiedenen

Modalitäten ähnlichen Prinzipien folgen muss. Deshalb wird in dieser Dis¬

sertation grossen Wert darauf gelegt, die vorgeschlagenen Kodierungsver¬
fahren in der echten Welt zu testen und vorallem verschiedene Modalitäten

wie primäre sensorische, motorische und höher geordnete Repräsentationen
in Betracht zu ziehen.

Im ersten Teil dieser Dissertation wird ein neuer Ansatz zur invarianten

Mustererkennung präsentiert, der zeitliche Populationskode. Der Hauptbe¬
standteil dieses Models ist, dass Informationen im zeitlichen Bereich kodiert

werden. Visuelle Stimuli werden durch ein kortikales Netzwerk von lateral

gekoppelten Neuronen kodiert, wobei die systematische Abhängigkeit zwis¬

chen Verzögerung und Distanz der Kopplung von zentraler Bedeutung ist.

Die resultierende Repräsentation des Stimulus ist positions- als auch rota¬

tionsinvariant wobei klassenspezifische Informationen bewahrt werden so¬

dass eine Klassifizierung möglich bleibt. Der Kode ist robust im Bezug auf

synaptisches Rauschen und kann sehr schnell erstellt werden. Zusätzlich

können grosse Stimulussätze mit zunehmender Komplexität verarbeitet

werden, wenn das Netzwerk mit orientierungs- sowohl als auch raumfre-

quenzselektiven Neuronen ausgestattet wird. So kann der zeitliche Popula¬
tionskode erfolgreich zur Klassifizierung der standard MNIST Datenbank

verwendet werden welche handgeschriebene Ziffern von 250 verschiedenen

Schreibern enthält. Durch die Verwendung von grossen synthetisch gener¬

ierten Stimulussätzen wird zudem gezeigt, dass das Konzept des zeitlichen

Populationskodes auch für hunderte von Stimulusklassen anwendbar ist.



Um zu zeigen, dass sich dieses Kodierungverfahren auch zu anderen

Modalitäten verallgemeinern lässt, wird im zweiten Teil dieser Dissertation

ein Model für die sensor-motorische Integration vorgestellt. Während die

Verhaltenskontrolle aus traditioneller Sicht als eine Sequenz von sensorisch¬

er Verarbeitung, Entscheidungstreffung und Bewegungkontrolle beschrie¬

ben wird, so deuten neue experimentelle Studien darauf hin, dass das Mo¬

torsystem sehr wahrscheinlich für mehr als nur die Ausführung von Bewe¬

gungen verantwortlich ist. Auf diese Erkenntnisse aufbauend wird gezeigt
dass die Populationsantwort des Motorsystems ein Substrat für die Klas¬

sifizierung von Verhaltenssituationen zur Verfügung stellt. Dieses Model

verleiht der aufkommenden Rekonzeptualisierung der Verhaltenskontrolle

weitere Glaubwürdigkeit. In diesem Zusammenhang kann das Motorsystem
als ein höheres Wahrnehmungssystem aufgefasst werden, welches erlaubt

wichtige Verhaltenssituationen zu erkennen, unabhängig von deren jeweili¬

gen sensorischen Manifestation.

Nach erfolgreicher Anwendung in sensorischen als auch motorischen

Systemen, stellt sich die Frage welche Eigenschaften des vorgeschlagenen

Kodierungsverfahrens interessant für Representationen höherer Ordnung
sein könnten. Im letzten Teil dieser Dissertation wird ein neues Model

zur Erstellung von Ortszellen, welche im Hippocampus von Ratten gefun¬
den wurden, vorgeschlagen. Dieses Model nützt die topologieerhaltenden

Eigenschaften des zeitlichen Populationskodes aus. Aufgrund der relativ

breiten Antwortcharakteristik dieser Ortszellen genügt eine kleine Anzahl

um die Position mit zureichender Präzision zu bestimmen. Für einen sich

verhaltenden Organismus bedeutet dies, dass eine flüchtige Erforschung
einer neuen Umgebung bereits ausreicht um eine zureichende interne Rep¬
resentation zu erstellen.

Zusammengefasst wird gezeigt, dass das neue Kodierungsverfahren für

verschiedene Modalitäten anwendbar ist wobei es interessante Invarianzeigen¬
schaften aufweist welche nützlich für die Erstellung von höher geordneten

Representationen der Welt sind.



Abstract

A central question in Neuroscience is how information is encoded in the

nervous system. While neurons communicate with each other using spikes,
i.e. discrete singular events in time, it is unclear whether information is

effectively encoded in the average firing rates or the precise timing of single

spikes. Similarly, it is not known in what context a population of neurons

usees cooperative or independent coding. This thesis tries to elaborate a

new view on these issues by proposing a new type of coding which features

both, coding in the temporal domain as well as cooperative coding across

neurons, the temporal population code. While the assessment of any coding

strategy is strongly dependent on its range of applications, the uniformity
of cortical anatomy suggests affinities between the coding of information

of different modalities in cortical structures. Therefore, this thesis will be

focused on applying the proposed coding scheme to real-world situations

and in particular incorporating different modalities such as vision, motor

and higher order representations.
In the first part of this thesis, a new approach towards invariant pat¬

tern recognition will be presented, the temporal population code. The

key ingredient to the model presented is the coding of information in the

temporal domain. Visual stimuli become encoded by a cortical network of

laterally coupled integrate-and-fire neurons due to a direct relation between

the transduction speed and the distance a signal has to travel between neu¬

rons. This representation of a stimulus is position- and rotation invariant

while retaining class specificity in order to allow for their classification.

The code is robust with respect to synaptic noise and can be generated

quickly. Additionally, incorporating orientation and spatial frequency se¬

lective neurons allows to represent and reliably classify large stimulus sets

of increased complexity. In this context, the temporal population code is

successfully applied to the classification of the MNIST database, a bench¬

mark database for pattern recognition systems containing handwritten dig¬
its from 250 different writers. Using large synthetically generated stimulus

sets, it is shown that the concept of the temporal population code favorably
scales to hundreds of stimulus classes.

In order to show that this coding strategy generalizes to other modali¬

ties, a model of sensori-motor integration is introduced in the second part

of this thesis. While the traditional view on the control of behavior con-



siders a sequence of sensory processing, decision making and movement

control, recent experimental studies suggest that the motor system is most

likely more than only being responsible for motor execution. Building on

these ideas it is shown, that the population response of the motor system

provides a substrate for the categorization of behavioral situations. The

model lends credence to the emerging reconceptualization of behavioral

control. In this context, the motor system can be considered as part of a

high-level perceptual system which allows for the detection of behaviorally
salient situations invariant to their detailed sensory manifestation.

After successful application to the direct encoding of information in

sensory as well as motor systems, the question arises, what properties of

the proposed coding scheme could be of particular interest for higher or¬

der representations. In the last part of this thesis, a new model for the

formation of place cells as found in rat hippocampus will be presented,
which exploits the topology preserving properties of the temporal popu¬

lation code. Due to the relatively broad tuning of these place cells, only
a relatively small number is required for accurate position reconstruction.

Thus, for a behaving organism exploring an unknown environment, this

implies that a relatively sparse exploration strategy suffices to create a

complete representation of the new environment.

In summary, the new coding scheme considered has proven to be appli¬
cable to different modalities while providing interesting invariance proper¬

ties for the formation of higher level representations of the world.



Chapter 1

Introduction

Over a century ago, neuroscientists have identified the single nerve cell

as the elementary unit of processing in the nervous system [31,65]. The

postulate, however, that the brain as a whole relies in its function on ex¬

tensively interconnected single units, raises the question, how these units

communicate. A few decades later it was found that spikes, electrical

impulses emitted by excited nerve cells, also called action potentials, con¬

stitute the substrate for most of the communication between nerve cells

in the brain [3]. The remarkable feature of spikes is that they are highly

stereotyped, varying only little from one nerve cell to another. Indeed, it

was found that action potentials carried into the nervous system by a sen¬

sory axon are often indistinguishable from those carried out of the nervous

system to the muscles by motor axons. Thus, the only features of the con¬

ducting signal of a single neuron conveying information is the frequency at

which spikes occur and the interval between them. Considering a whole

population of neurons, the locations at which spikes occur may also play
an important role. From then until today, one of the key questions in neu¬

roscience remains, how information may be encoded in the spiking activity
of one single or a whole population of nerve cells.

1.1 Temporal and spatial aspects of coding

The first proposal for the type of coding employed by neurons goes back

to the beginning of this century, where researchers became able to record

from single cell fibers. Recordings in various sensory systems revealed that

1
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the stimulus strength was directly related to the number of spikes a sensory

neuron emits within a fixed time window [2]. Thus, this result indicated,
that neurons code information in their firing rate and therefore apply a

coding strategy which was called rate coding.
With the influential work of Hubel and Wiesel, the concept of rate

coding has been tightly coupled to feature selectivity, the property of cells

in sensory areas being selective for a small subspace of the complete sensory

space [35]. They found that single cells in primary visual cortex (VI)
respond selectively to bars of light presented within their receptive field,

modulating their firing rate in relation to the orientation of the presented
bar. Thus, as opposed to the early findings discussed above, which coined

the term rate coding, cells in VI do not only reflect the stimulation intensity
in their firing rate but also other stimulus dimensions such as orientation.

Here, already, the question arises why a cell would encode two parameters

such as intensity and orientation in a single scalar value, i.e. its firing rate.

Ambiguities introduced by such a strategy could be circumvented using
time as an additional coding dimension. Indeed, experimental evidence is

available which shows that cortical neurons can produce feature-specific

phase lags in their activity [44].
The feature selectivity of VI cells inspired a theory of visual processing

which postulates that the visual system consists of a hierarchy of feature

detectors, each of which becomes more and more sophisticated while mov¬

ing up the hierarchy. One of the most influential views was given by Horace

Barlow, according to whom visual scenes are represented by the activity of

thousands of neurons, each being sharply tuned to a particular feature [12].
The system was said to employ a local coding strategy. Evidence for this

type of coding has been found in higher visual areas, where cells have been

found to respond selectively to for instance faces of particular individuals.

The assumption that cells are narrowly tuned to one particular feature

accounts for the fact that cells that use rate coding may only code for a

single scalar value. The very same assumption, however, gives rise to one

of the most significant objections against the local coding theory; given the

high dimensionality of a human's visual sensory space, the total number of

distinct visual features would require by far more cells then what has been

found in the visual system. Thus local coding can become very expen¬

sive, both in terms of the number of cells required and consequently also

the necessary wiring between those cells. Therefore, although hierarchical

1. Introduction 1.1. Temporal and spatial aspects of coding
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models of information processing have had a large success, new theories

started to emerge, which aimed at attacking these problems, questioning
either the rate coding or local coding hypothesis.

A shortcoming of local coding is the fact, that it does not truly exploit
the representational capabilities of a neuron. Local coding requires, that

a single cell simply signals the presence or absence of a particular feature,
i.e. codes one bit of information. However, even under the assumption
that the neurons in question use rate coding, more information could be

provided taking graded responses into account. In particular, an assembly
of cells, each coding for a different feature dimension, can cooperatively
code for a complete sensory subspace. This coding strategy has been called

population coding and has received most attention in the context of the

motor system. Experimental studies have shown that parameters such as

direction of movement are encoded by multiple cells in a distributed manner

[29]. Thus, as an example, in order to code two-dimensional movements,
local coding would require a whole matrix of cells each representing one

single type of movement. The granularity, thereby, would be given by the

number of cells within this matrix. Using population coding, however,

only two cells would be required, each coding with graded responses for

the movement along one of the two dimensions respectively.
With the advent of artificial neural networks (ANN), it became ap¬

parent, that distributed coding is not only a viable alternative to local

coding. Distributed coding forms the foundation of distributed processing
which was found to be computationally very powerful [73]. A very influ¬

ential example was given by Hopfield and his auto-associative networks,
also know as Hopfield networks [33]. These networks stressed two impor¬
tant and closely related concepts - recurrence and network dynamics. As

opposed to the classical view on hierarchical networks by Barlow, which

essentially operate in a feed-forward fashion, recurrent networks may dis¬

play non-trivial network dynamics. Thus, these networks could not only

process information distributed over space, but also over time. At this

time, however, the precise evolution of the network state, and therefore

the role of time in neural network function, was of secondary importance.

Consequently, coding information in the temporal domain was generally
not considered.

The first direct challenge of the rate coding hypothesis pointing towards

the importance of temporal coding was given by a theoretical model pro-

1. Introduction 1.1. Temporal and spatial aspects of coding
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posed by Milner [53]. It postulates that the degree of synchrony in the

activity across a population of neurons provides an additional coding di¬

mension, which could be used for tasks such as the segmentation of sensory

scenes, also called binding by synchrony. In other words, sensory segmen¬

tation could be achieved dynamically by labeling the cells belonging to a

coherent object by their synchronous firing. It is important to notice, that

this model is not in conflict with hierarchical models of the visual system

including the local coding hypothesis. This is due to the way information

is represented in this type of encoding. For all the other types of encoding
discussed so far, the encoded information is tightly coupled to its physical

substrate, i.e. the neuron. In the case of binding by synchrony, however,
the actual information is not tied to one particular physical unit, but rather

lies in the coordinated activity of a population of neurons.

Binding by synchrony introduces an interesting new view on coding
with respect to the neurons involved and their role in providing the phys¬
ical substrate for encoding and representing information. In particular,
the precise topological relationship between neurons partly loses its impor¬
tance. Since the early work of Hubel and Wiesel, the notion of a receptive
field has hardly changed and essentially describes the sensory area which

elicits responses within a neuron upon stimulation. Closely related, the

receptive field profile describes the spatial structure of the receptive field,
i.e. it specifies, for example, the regions which excite or inhibit the cell.

Traditionally, spatially structured receptive fields receive most attention in

explaining response properties of primary sensory neurons. This is prob¬

ably due to the precise topographical mappings found in primary sensory

cortices. A neuron with a specific spatially structured receptive field profile
can respond very selectively to a particular combination of sensory features

and their topological arrangement within its receptive field. Thus, such

neurons would employ a local coding strategy. The high selectivity, how¬

ever, implies that they lack important invariance properties with respect
to the stimulus position or other geometric parameters. These limitations

are circumvented by coding strategies like binding by synchrony. The syn¬

chrony amongst a population of neurons is a code which does not depend
on which neurons are involved and more importantly is invariant to their

topological arrangement. In summary, a neuron reading out information

from its receptive field may use topological or non-topological statistics,
which essentially corresponds to spatially structured or uniform receptive

1. Introduction 1.1. Temporal and spatial aspects of coding
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fields respectively.
A coding strategy which relies on non-topological statistics neglects all

spatial information. This severe neglect of information leads to many in¬

variances but also reduces the remaining coding space considerably. In the

case of binding by synchrony, for example, only one single bit of information

can be encoded, namely whether a group of neurons represents the same

or different objects. To ameliorate this situation, a coding strategy based

on non-topological statistics can make explicit use of the temporal domain.

Instead of simply reflecting the temporal structure of the information to

be encoded, a coding system may actively transform information from the

spatial into the temporal domain. This has the advantage that the spa¬

tial information becomes detached from its precise physical substrate, the

single neurons, and encoded in the temporal evolution of the coordinated

activity of a whole population of neurons. Thus, given the mechanism re¬

sponsible for transforming spatial information to the temporal domain, the

resulting code becomes invariant to those spatial aspects which have not

been transformed.

Building on these theoretical considerations, a new type of coding is

introduced in this thesis, the temporal population code. It features both,

coding in the temporal domain as well as cooperative coding across a pop¬

ulation of neurons. A central ingredient to this proposal is the mechanism

responsible for the generation of the temporal population code, and in

particular the role it assigns to the massively recurrent and well ordered

connections found in cortical structures [22]. The temporal population
code arises from an active transformation of spatial information into a

spatio-temporal representation. This transformation is performed by a

recurrently coupled neural network. A subsequent transformation using

non-topological statistics yields a purely temporal code, whose spatial in¬

variances are determined by the symmetry properties of the transforming
network. Thus, the network comprises both, the coding substrate as well

as the coding mechanism which encapsulates local rules of computation
from subsequent stages of processing.

In the context of a behaving system interacting with unknown and un¬

certain environments, any coding strategy has to conform to strict require¬
ments allowing for fast and robust processing of relevant information. The

temporal population code demonstrates, that non-topological statistics in

combination with coordinated temporal coding across large populations of

1. Introduction 1.1. Temporal and spatial aspects of coding
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neurons yields a powerful coding strategy, which exhibits many advantages
over other approaches. For instance, the speed of information processing

by systems using rate coding is limited since the frequency of a neuron

can only be estimated taking several spikes into account. With the tem¬

poral population code, however, a large part of the encoded information

can already be conveyed by as little as two spikes from each individual

neuron. Another approach towards the efficient usage of limited process¬

ing resources consists of processing only information relevant to the system
while discarding the rest, i.e. for pattern recognition, the stimulus position
is not important and can therefore be discarded. This strategy is adopted

by the temporal population code using non-topological statistics, i.e. to

neglect all information not transformed into the temporal domain by the

encoding mechanism.

Finally, in order to be able to interact with a real-world environment

in a continuous manner, internal representations should reflect the sensory

topology, i.e. similar sensory information is mapped to similar representa¬

tions. From another point of view, given that a behaving agent is moving

consistently in space and time, the global sensory percept will change on a

behavioral time scale. Therefore, the internal representations of the world

should also vary on the behavioral rather then the neural time scale. This

view is also supported by recent theoretical studies suggesting that the

"slowness" of neural responses might be a general objective of neural in¬

formation processing systems [14,39,98]. As will be shown in this thesis, the

temporal population code exhibits this topology preserving property which

will be exploited for the formation of allocentric higher order representa¬

tions of environments from purely local egocentric sensory information.

1.2 Organization of this Thesis

This thesis is organized in six chapters, whereas the central four chapters

represent the main body. The second and third chapter combines the

material of three publications [100,101,103]. Each of the two subsequent

chapters is based on an article either published or accepted for publication

[99,102]. Most of the results have also been presented at conferences or/and
appeared in abstract form in conference proceedings. The different articles

have not been incorporated into this thesis in their original format, but have

1. Introduction 1.2. Organization of this Thesis
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been partially rewritten and reorganized in order to prevent unnecessary

repetitions.
In the second chapter, a new approach towards invariant pattern recog¬

nition will be presented, which is based on a temporal population code. A

number of models have been proposed which aim to reproduce capabilities
of the visual system such as invariance to shifts in position, rotation and

scaling. Most of these models are based on the Neocognitron, a hierarchical

multi-layer network of spatial feature detectors. These models do not con¬

sider time as a coding parameter, although recently, the importance of the

temporal dynamics of neuronal activity in representing visual stimuli has

gained increased attention. The key ingredient to the model presented in

this thesis is the coordinated coding of information in the temporal domain

across large populations of neurons. Visual stimuli become encoded by a

cortical network of laterally coupled integrate-and-fire neurons due to a di¬

rect relation between the transduction speed and the distance a signal has

to travel between neurons. This representation of a stimulus is position-
and rotation invariant while retaining class specificity in order to allow for

their classification. The code is robust with respect to synaptic noise and

can be generated quickly.
While the above model incorporates a rather uniform network topology,

a second, more elaborate model featuring cortical cells with orientation as

well as spatial frequency selectivity is presented in the third chapter. The

connectivity between cells is no longer isotropic but depends on their rel¬

ative spatial frequency as well as orientation selectivities. This advanced

network can cope with stimulus sets of increasing complexity, both in terms

of variability between stimuli belonging to the same stimulus class as well

as the number of stimulus classes which need to be distinguished simultane¬

ously. In this context, the temporal population code is successfully applied
to the classification of the MNIST database, a benchmark database for pat¬

tern recognition systems containing handwritten digits from 250 different

writers. In addition, using large synthetically generated stimulus sets, it is

shown that the concept of the temporal population code favorably scales

to hundreds of stimulus classes. Finally, several different experiments are

described which aim at determining the dimensionality of the enhanced

temporal population code.

In contrast to the classical notion of a receptive field, the temporal

population code neglects any spatial topology. It rather considers a non-

1. Introduction 1.2. Organization of this Thesis
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topological statistical measure on the activity of a whole population of neu¬

rons and the evolution of this measure over time. In order to show that this

coding strategy generalizes to other modalities, a model of sensori-motor

integration is introduced in the fourth chapter of this thesis. This model,

implemented on an autonomous mobile robot, uses such a population code

to identify behaviorally important situations. While the traditional view

on the control of behavior considers a sequence of sensory processing, de¬

cision making and movement control, recent experimental studies suggest
that the motor system is most likely more than only being responsible for

motor execution. Building on these ideas it is shown, that the population

response of the motor system provides a substrate for the categorization
of behavioral situations. This categorization allows for the assessment of

the complexity of a behavioral situation and regulates whether higher level

decision making is required in order to resolve behavioral conflicts. The

model lends credence to the emerging reconceptualization of behavioral

control. In this context, the motor system can be considered as part of a

high-level perceptual system which allows for the detection of behaviorally
salient situations invariant to their detailed sensory manifestation.

After successful application to the direct encoding of information in

sensory as well as motor systems, the question arises, what properties of

the proposed coding scheme could be of particular interest for higher order

representations. Thus, the objective of the fifth chapter is to investigate
to what extent the properties of a temporal population code can be ex¬

ploited for the formation of place cells, i.e. cells found in the hippocampus
which respond selectively for specific positions within an environment. Un¬

like other approaches towards invariant pattern recognition, the temporal

population code naturally generalizes across different views of a stimu¬

lus; their visual similarity is directly accessible through the similarity of

their representations without the need for learning. In the context of an

agent behaving in an environment with different visual cues, this means

that the similarity amongst different viewing angles and distances directly
translates into the relative locations within the environment where these

views are perceived. This property allows to construct place cells from

multiple temporal population code snapshots of the environment taken at

the same location but different orientations. Due to the relatively broad

tuning of these place cells, only a relatively small number is required for

accurate position reconstruction. Thus, for a behaving organism exploring

1. Introduction 1.2. Organization of this Thesis
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an unknown environment, this implies that a relatively sparse exploration

strategy suffices to create a complete representation of the new environ¬

ment.

Finally, in the general conclusions the main results of this thesis are

summarized and limitations to the presented models are discussed.

1. Introduction 1.2. Organization of this Thesis
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Chapter 2

The temporal population
code

2.1 Introduction

Mammals demonstrate highly evolved visual object recognition skills, tol¬

erating considerable changes in images due to, for instance, different view¬

ing angles and deformations. Elucidating the mechanisms of such in¬

variant pattern recognition is an active field of research in neuroscience

[25,37,47,71,84]. However, still very little is known about the underly¬

ing algorithms and mechanisms. A number of models have been proposed
which aim to reproduce capabilities of the biological visual system, such

as invariance to shifts in position, rotation and scaling [62,69,96]. Most

of these models are based on the Neocognitron [26], a hierarchical multi¬

layer network of spatial feature detectors. As a result of a gradual increase

of receptive field sizes, translation invariant representations emerge in the

form of activity patterns at the highest level. These models do not con¬

sider time as a parameter of neural representations. Recently, however, the

importance of the temporal dynamics of neuronal activity in representing
visual stimuli has gained increased attention [11,27,79]. Hence, it seems

timely to consider the role of temporal coding in the context of tasks like

invariant object recognition.

In recent years, several modeling studies have addressed properties of

temporal codes [9,34,91]. For instance, Buonomano and Merzenich pro¬

posed a model for position-invariant pattern recognition which uses tem-

11
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poral coding [17]. In this model, feed-forward inhibition modulates the

spike-timing such that stimuli are represented by the response latencies of

the neurons in the network. This architecture naturally leads to translation

invariant representations. This model assigns a critical role to inhibitory in¬

teractions in the feed-forward path of the visual system (retina-LGN-Vl),
whereas anatomical studies suggest that these connections are predomi¬

nantly excitatory [38]. Furthermore, the majority of inputs to cortical

neurons are excitatory and of cortical origin [22]. Indeed, a recent theo¬

retical study has shown that lateral excitatory coupling has pronounced
effects on the global network dynamics [93]. In particular, the combina¬

tion of intracortical connectivity and dendritic processing allowed context

dependent representations of different stimuli, to be expressed in the tem¬

poral dynamics of the network. Here we build on these previous proposals
and concepts [17] and investigate the formation of invariant representations

by the dynamics of activity of neuronal populations.
In this chapter, we investigate a model of primary visual cortex con¬

sisting of a map of integrate-and-fire neurons with lateral excitatory in¬

teractions. A central feature of this model is the monotonie relationship
between transmission delays in this lateral coupling and the distance be¬

tween pre- and postsynaptic neurons. We hypothesize that this network

property induces dynamics of neuronal activity (fig. 2.1a) that are spe¬

cific to the geometry of a stimulus and invariant with respect to several

transformations. The advantage of such a representation is that it emerges

naturally without the need of training the network repeatedly for different

stimulus positions or orientations. In order to investigate the validity of

this hypothesis, we determine the amount of information contained in the

temporal population responses of this network for different parameters and

stimulus sets. Furthermore we investigate the speed of encoding and its

robustness to synaptic noise. The results suggest that invariant pattern

recognition can be achieved using temporal coding at the population level.

2. The temporal population code 2.1. Introduction
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Figure 2.1: Schematic of the encoding paradigm. "Solid" input-patterns

pass through an edge-detection stage and the resulting contour is pro¬

jected topographically onto a map of cortical neurons. Due to the lateral

intracortical interactions, the stimulus becomes encoded in the network's

activity-trace.

2.2 Methods

2.2.1 Network

The investigated network consists of a two-dimensional array of 40 x 40

conductance-based leaky integrate-and-fire neurons, which include a spike-

triggered potassium conductance yielding frequency adaptation. Under

constant excitation and after adaptation, these neurons spike regularly.
The time course of a leaky integrate-and-fire neuron's membrane voltage

V(t) is described by the differential equation:

Cyr
dV_
'~dt (lexc(t) + hnh{t) + IK{t) + Ileak{t)) :2.u

where Cm is the membrane capacitance (Cm = 0.2 nF), and / represents the

transmembrane current, i.e. excitatory input (Iexc), inhibitory input (Imh),
spike-triggered potassium current (Ik) and leak current (Iieak)- These cur¬

rents are computed by multiplying a conductance g with the driving force:

I(t) = g(t)(V(t) —Vrev) where Vrev is the reversal potential of the conduc¬

tance (V^ = 60 mV, V^ = -70 mV, VKev = -90 mV, V{k = -70 mV).
The neuron's activity at time t, A(t), is given by A(t) = H(V(t) —9) where

H is the Heaviside function and 9 is the firing threshold (9 = —55 mV).

2. The temporal population code 2.2. Methods
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Figure 2.2: Two-dimensional view of the network connectivity. Each neu¬

ron connects through long-range excitatory connections to its neighbors
whereas the transmission delay r increases linearly with the distance the

signal has to travel, i.e. r = 1 ms/cell. For one control experiment, in

addition, the cells were connected with their nearest neighbors through

inhibitory synapses and a delay of 2 ms.

Each time a spike is emitted, the neuron's potential is reset to Vrest = V{^k.
The constant leak conductance gieak is 20 nS. The time course of the potas¬
sium conductance is given by TKdgK/dt = —(gK(t) — gVK A(t)) where

A(t) G {0,1} with a time constant tk and a peak conductance gp^a
(tk = 40 ms, gp^a = 200 nS). The synaptic interactions are "instanta¬

neous", such that the total synaptic conductance at time t is the linear

sum over all active conductances derived from the individual synapses at

time t. In the discrete-time simulations, the equations above are integrated
with Euler's method and a temporal resolution At of 1 ms.

Each neuron connects to a circular neighborhood of fixed size, such that

neurons with Euclidean distance < 9 cells are connected(fig. 2.2). The

synapses are of equal strength v and are modeled as instantaneous excita¬

tory conductances, while transmission delays are related to the Euclidean

distance between the positions of the pre- and postsynaptic neurons with

a proportionality factor of r = 1 ms/cell (fig. 2.2). Additionally, for one

control experiment, each cell connected to its nearest neighbors through an

inhibitory synapse with a transmission delay of 2 ms. Stimuli are presented

continuously to the network and first pass through an edge-detection stage

(LGN) and the resulting contours are projected topographically onto the

2. The temporal population code 2.2. Methods
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array of neurons (VI) using a tonic excitatory input conductance (fig. 2.1).
After frequency adaptation, the stimulated neurons spike at a frequency of

approximately 42 Hz.

2.2.2 Clustering algorithm and mutual information

The algorithm for clustering the responses of the network is adapted from

Victor and Purpura [94]. The network's responses to stimuli from C stimu¬

lus classes Si, S2, •,
Sc are assigned to C response-classes Ri, R2,..., Re

yielding aCxC hit-matrix N(Sa, Rß), whose entries denote the number of

times that a stimulus from class Sa elicits a response in class Rß. Initially,
the matrix N(Sa, Rß) is set to zero. For each response, r G Sa, we calcu¬

late the average temporal correlation of r to the responses r' 7^ r elicited

by stimuli of class Sy.

p(r,57)^-^(Z(p(,/)))r,etotedbySJ (2.2)

where p(r, r') is the temporal correlation between r and r', (•) denotes the

average. Z is the Fisher Z-Transform given by Z(p) = 1/2 fn((l + p)/(l —

p)), which transforms a distribution of correlation coefficients p into an

approximately normal distribution of coefficients, Z(p) (fig. 2.3). Thus,

Z(p) becomes a measure on a proportional scale such that mean values

are well defined. The average correlation is also computed for the stimulus

class Sa which elicited r, but since r 7^ r', the term p(r, r) is excluded from

(2.2). The response r is classified into the response-class Rß for which

p(r, Sß) is maximal, and N(Sa, Rß) is incremented by one. If k p's share

the maximum, each corresponding matrix-element is increased by 1/k.
An information-theoretic measure, the mutual information I, quantifies

the extent to which this clustering is random. For stimuli that are drawn

from discrete classes Si, S2, • •

•,
and responses that have been grouped into

discrete classes Ri, R2,..., the mutual information / is given by

Ntot
_

log2N(Sa,Rß)+log2Ntot

l0g2 Y, N(Sa, Rß) - l0g2 Y,N^ R*

2. The temporal population code 2.2. Methods
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Figure 2.3: The Fisher Z-Transform (left) transforms a skewed distribu¬

tion of correlation coefficients p (middle) into an approximately normal

distribution Z(p) (right).

where Ntot is the total number of stimuli. For C equally probable stim¬

ulus classes, random classification corresponds to N(Sa, Rß) = Ntot/C2
for Va, ß G {1,..., C}, where / becomes zero. For perfect classification,
where each diagonal element of N(Sa, Rß) is equal to Ntot/C, the mutual

information becomes maximal, i.e. / = log2 C.

2.3 Results

2.3.1 Classification performance

In a first experiment, we investigate the concept and test the basic net¬

work's performance in the invariant encoding of hand-drawn stimuli. The

arrangement of the six stimulus classes (fig. 2.4a) reflects an intuitive no¬

tion of topology, i.e. class 1 is visually more similar to class 2 or 3 than

to class 5 or 6. For each stimulus class, 24 samples are presented to the

network (fig. 2.4b).
The spike raster plot for a sample of class 1 illustrates the network ac¬

tivity (fig. 2.5a). An initial synchronous phase is followed by a dispersion
of activity. Such raster plots give a good description of network activity.

However, because activities of such large numbers of neurons are rarely
recorded simultaneously in visual cortex, they do not allow a direct com¬

parison to physiological data. Therefore, population averaged histograms

2. The temporal population code 2.3. Results
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Figure 2.4: The stimulus classes, (a) Each stimulus class consists of a

horizontal and a vertical bar of equal length, but intersecting at different

locations for the individual classes. The arrangement reflects an intuitive

notion of topology in a sense that visually similar stimulus classes are closer

than dissimilar ones, (b) From each stimulus class, 24 hand-drawn samples
were presented to the network.

120 .i ' ' "I

|20
* 80 -

!

CD
O

CD
O

40 - J.
£10
o

l" -

'
-

' i
.

'
c

! :
. o

O Qll IM

0 20 40 60 80 100 -50 -25 0 25 50

time [ms] time la g [ms]

Figure 2.5: (a) Spike raster of 130 neurons of the network while presenting
a stimulus sample of class 1. (b) The population cross-correlation function

for the neurons shown in panel (a).
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Figure 2.6: Sample responses of the network to stimulus class 1 and 6.

are not used to describe physiological data but rather time averaged his¬

tograms [30]. For comparison we compute the multi-unit cross-correlation

function (fig. 2.5b). The central peak signifies the population bursts and

the satellite peaks are a sign of the temporally structured activity. Overall,
this cross-correlation function resembles those acquired in the visual cortex

of mammals [43,78].

Qualitatively, the difference between the responses of the network to

different stimulus classes is shown in fig. 2.6. After the initial identical

synchronous phase, the dispersion of the population activity over time is

different for the two stimulus classes.

For a quantitative analysis, the responses of the network are clustered

into six classes using the temporal correlation of the population response as

a similarity-measure. For each stimulus the correlation is computed with

all other responses over an interval of 100 ms. It is assigned to the re¬

sponse class which maximizes the average of this measure (see sec. 2.2.2).
The resulting hit-matrix (fig. 2.7a) reveals that 91% of the stimuli are

classified correctly (diagonal entries). The misclassifications (9%, non-zero

off-diagonal entries), however, do show some regularity. They only occur

among visually similar stimuli. Indeed, more than half of the misclassifica¬

tions result from a confusion of the classes 4 and 5 which only differ in the

precise position of the vertical bar. In order to investigate the relationship
between the strength of the lateral coupling, v, and the encoding performed

by the network, we vary this parameter in the range of 0 < v < 0.25 nS.

For each of these conditions we calculate the mutual information from the

2. The temporal population code 2.3. Results
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Figure 2.7: Hit-matrices. The matrix entries represent the number of times

a stimulus class (fig. 2.4a) is assigned to a response class, averaged over 24

trials, (a) Distortion stimulus set with 24 samples per stimulus class and

v = 0.13 nS (=2.1 bits), (b) Rotation stimulus set with 23 samples per

stimulus class and v = 0.1 nS (=2.1 bits).
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hit-matrix (see Methods). We find that for v < 0.01 nS the activity-traces
contain no information about the input stimuli. For 0.01 < v < 0.25

nS, however, mutual information reaches 1.77 ± 0.21 bits (mean ± std,
of log2(6) = 2.6 bits possible) and all hit-matrices qualitatively resemble

the one shown in fig. 2.7a. In summary, the network successfully and re¬

liably encodes the six stimulus classes in a large range of lateral coupling

strength.
In a next step we investigate the classification of rotated stimuli. A

stimulus set is constructed by taking one sample out of each stimulus class

(fig. 2.4a), and generating the complete sets by rotating each sample by 23

evenly spaced angles between 0° and 360o1. As in the previous experiment,
no information about the input is conveyed by the network's activity traces

for v < 0.01 nS. For 0.01 < v < 0.25 nS, mutual information reaches

1.56 ± 0.29 bits. Maximal information of 2.1 ± 0.04 bits is attained for v =

0.1 nS. The corresponding hit-matrix (fig. 2.7b) shows the same tendency as

for the distortion stimulus set: 87% of the stimuli are classified correctly,
while 12% are confused with nearest neighbors and only 1% with non-

nearest neighbors. Hence, the population activity-trace reliably encodes

the six stimulus classes invariant to rotation.

In order to analyze the speed of encoding we determine the amount of

information encoded in the network's activity-trace at different times after

stimulus onset. Varying the length of the interval used to compute the

correlation between different responses between 2 to 100 ms we observe that

66% of the information is available after 20 ms (fig. 2.8). This property of

our encoding scheme is compatible with the impressive speed of processing
found in the mammalian visual system [86].

How the present model scales with an increasing number of stimulus

classes was the subject of the following experiment. A handwritten (single
writer) uppercase Roman alphabet was presented to the network, with 26

stimulus classes with 20 samples each (fig. 2.9a). For 0.02 < v < 0.25

nS, information reaches 3.92 ± 0.12 bits (of log2(26) = 4.7 bits possible).
Maximal information of 4.16 ± 0.02 bits is attained for v = 0.1 nS, where

88% of the stimuli are classified correctly. The corresponding hit-matrix is

shown in fig. 2.9b. Thus the proposed encoding scheme scales to problems

1 Since the whole system is manifestly invariant under rotations by multiples of 90°, these rotations

have to be omitted, otherwise the task would become trivial Therefore, the number of angles should not

be a multiple of 4

2. The temporal population code 2.3. Results
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Figure 2.8: Average information encoded in the network's activity traces

as a function of time for the distortion stimulus set with v = 0.13 nS. The

standard deviation is calculated over 24 trials.

of interesting complexity.

2.3.2 Controls

It has been argued that a potential problem of encoding information in the

timing of action potentials is the highly unreliable transmission of signals
across synapses [6]. Thus, we investigate the robustness of the proposed

encoding scheme with respect to synaptic noise in the lateral coupling.

Synaptic noise is modeled by perturbing the individual synaptic conduc¬

tances dynamically; each conductance is multiplied by a random factor

/, drawn from a normal distribution with mean one and variance a2, i.e.

/ G N(l, a2). In order to prevent negative conductances, the normal distri¬

bution is clipped at zero. The system's performance in encoding the input
stimuli decreases linearly with increasing noise (fig. 2.10a). The number of

correctly classified stimuli decreases by not more than 25% for a = 1, which

corresponds to a signal to noise ratio of 1. Furthermore, misclassifications

are to a substantial part (90% for a = 1) due to the confusion of nearest

neighbors (fig. 2.10b). Thus, the information encoded at the population

2. The temporal population code 2.3. Results
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transmission speed and synaptic strength of the lateral coupling.

level is robust in respect to synaptic noise.

In the following experiment we would like to investigate the network's

encoding performance for different speeds of tangential interactions. For

this purpose, the temporal resolution of the simulation was increased to

At = 0.1 ms, allowing for the delay slopes r to take values from 0 to 2

ms/cell in 0.1 ms/cell steps. For the clustering we binned the network

responses with a temporal resolution of 1 ms. In addition, the synaptic

strength v was varied simultaneously in the range from 0 < v < 0.2 nS in

order to detect combined effects of r and v on encoding performance. As

it is shown in fig. 2.11, the performance does not significantly depend on r,

as long as the latter is above « 0.3 ms/cell. Furthermore, apart from weak

synaptic strengths (i.e. v < 0.04 nS) we do not observe any systematic

relationship between v and r. Thus the encoding scheme proposed here is

remarkably invariant to the choice of two defining parameters of the lateral

coupling, which constitutes the central component of the proposed network

leading to the transformation of the spatial stimulus into the temporal
domain.

As a further control we study the encoding of random stimuli. We

present random dot patterns which have the same pixel density as the

bar-stimuli investigated before. The random stimuli are compared to the

t [ms/cell]

2. The temporal population code 2.3. Results
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clusters of the bar stimuli from the first experiment. We find that the

distance of the random stimuli from these clusters, in units of the width

of the distribution of the bar-stimuli, is large (29.8 ± 2.4, mean ± std,

n=500.000). Hence, with a reasonable choice of a classification threshold,

e.g. a distance of at most 3 standard deviations resulting in approximately
0.5% false rejections, the number of false positives is virtually zero. Thus,
it is unlikely that in the proposed encoding scheme random stimuli are

confused with structured stimuli.

So far, the network we have investigated only incorporates excitatory

coupling between neurons, while inhibitory interactions, which are ubiqui¬
tous throughout the cortex, have not been considered. Hence, as a control

we add lateral inhibitory connections to our network model. Each cortical

neuron inhibits its direct neighbors in the map with a synaptic conductance

of 10 nS and a delay of 2 ms(fig. 2.2). We find that for all stimulus sets pre¬

sented above, there is no significant difference in the system's performance,
i.e. base set: 1.78 ±0.19 bits, rotation set: 1.5 ±0.27 bits. These results in¬

dicate that the proposed encoding scheme is not affected by incorporating

inhibitory interactions in the neural network.

The effect of the presence of multiple stimuli is addressed as a further

control. We investigate a four times wider network. The activity induced

by a target stimulus is evaluated by pooling neuronal activity within a large

region (readout region), which however does not encompass the whole net¬

work. Two randomly chosen stimuli serve as distractors on either side

(fig. 2.12a). When the readout region of the stimulus includes the distrac¬

tors a small decrease in performance is observed (fig. 2.12c). If by virtue

of the tangential connections in the network the distractors interact with

the representation of the target stimulus the encoded information is more

reduced (fig. 2.12b). A combination of both effects leads to a more se¬

vere interference (fig. 2.12d). Note, however, that this situation creates

a continuous stimulus pattern that poses severe problems for any recog¬

nition system. Furthermore, given the scaling properties of the network

(see sec. 3.3.4) it is possible to encode pairs of neighboring stimuli as one

compound stimulus. Hence, the presence of multiple stimuli does not pose

a fundamental problem to the encoding scheme investigated here.

2. The temporal population code 2.3. Results
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Figure 2.12: Multiple Stimuli. The panels a-d show the target stimu¬

lus (black), the distracting stimuli (gray) and the readout region (dashed
rectangle) in four characteristic situations, (a) Control condition: stimuli

do not interact and readout only captures target stimulus, (b) Repre¬
sentations of the stimuli interact through the lateral coupling within the

network, (c) Readout captures activity from the distracting stimuli, (d)
Conditions (b) & (c) are combined. The histogram on the right shows the

performance of the system in encoding and classifying stimuli in the four

situations resp. (errorbars: ± standard deviation over 20 trials).
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2.4 Discussion

We have shown that, in a model of a cortical network, the interaction

of network- and stimulus-topology induces stimulus-specific but transfor¬

mation invariant temporal dynamics. Thus, stimuli are represented by a

temporal population code. This representation is position- and rotation-

invariant while reasonably robust to stimulus variability. The stimulus

encoding preserves an intuitive notion of visual similarity. Furthermore, it

is robust with respect to synaptic noise. These properties apply in a range

of the strength and speed of the lateral coupling each spaning more than

one order of magnitude.
In the study presented in this chapter, we tried to understand how key

functional properties of the visual system can be accounted for by a tem¬

poral population code. Compared to area 17, however, our model contains

several assumptions. It is composed of conductance-based integrate-and-
fire neurons, which are coupled through excitatory connections. The key

assumption of our model is that the transduction latencies of these con¬

nections depend systematically on the distance between pre- and postsy¬

naptic neurons. Indeed, indirect evidence for such a relationship has been

found [54,85]. These transduction delays could result from dendritic de¬

lays due to the distance a signal has to travel between the synapse and

the soma of the postsynaptic neuron [4]. Thus, our study predicts that

a positive correlation exists between the separation of receptive fields and

the distance between the dendritic location of the respective synapses and

the soma.

The speed of information flow found in biological visual systems poses

severe constraints upon computational models of pattern recognition. Ex¬

perimental studies have shown that the analysis and classification of com¬

plex visual patterns can be carried out by humans in not more than 200

ms [87]. Considering that a minimum of 10 areas are involved to reach the

relevant processing areas from the retina, little time is left for intra-areal

processing. This view is supported by studies in macaque monkeys [89,90],
which show that single visual areas can process significant amounts of in¬

formation in just 20 to 30 ms. This is compatible with our finding that

66% of information about a stimulus becomes encoded within 20 ms. The

gradual increase of encoded information over time we observed indicates

that subsequent processing stages can be engaged before all the information

2. The temporal population code 2.4. Discussion
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about a stimulus has been encoded. Indeed, experimental data on signal

timing in the macaque visual system show that the distribution of onset

latencies of different visual areas overlap substantially [76]. This suggests
that the dominant mode of processing in the visual system is concurrent

rather than strictly feed-forward.

A number of studies have proposed a role for temporal dynamics in

the formation of visual representations. One of the first proposals [66]
suggested that local features of visual stimuli are coded in the temporal

patterns of spikes of single neurons. Based on principal component anal¬

ysis of the response patterns of single neurons, a significant amount of

information carried by the first (= firing rate) as well as the higher compo¬

nents (= temporal pattern) was found [90]. An important difference with

the present study is that we consider temporal coding at the population

level, rather than at the level of a single neuron. Recently, Buonomano

and Merzenich presented a model on the generation of temporal popula¬
tion codes [17] which contained orientation selective feature detectors and

strong feed-forward inhibition. It was shown that the latencies between

stimulus onset and the first spike of the neurons in the network constitute

a representation which is invariant to the position of presented stimuli. In

contrast, by relying on lateral interactions, the present model accumulates

information over time which results in reliable encoding.
As a particular example of a temporal population code, synchronized

neuronal activity has been intensively studied [1,11,79]. A large number

of experiments have reported synchronized activity in a variety of species
and cortical structures [78,80]. In particular, it has been argued that the

synchronization of neural activity provides a substrate for the binding and

segmentation of visual patterns [53,95]. Furthermore, it has been shown

that the synchronization of neuronal activity is mediated by intracortical

connections without changing receptive-field properties of the postsynaptic
neurons [23,57]. Thus, synchronous activity does not contain information

about stimulus features as such and can be seen as a binary signal about

global stimulus properties. Our model shows that synchronous activity
at a broad time scale combined with dispersion on a fine time scale pro¬

vides a high-dimensional signal in a temporal population code. This signal
contains detailed information about a stimulus, including local features

and their global relationship. Indeed, experimental evidence is available

which shows that cortical neurons can produce feature-specific phase lags

2. The temporal population code 2.4. Discussion
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in their activity [44]. Theoretical studies argue that synchronous and dis¬

persed activity are different functional modes of the same basic network

structure [20]. The transition between these modes depends on the trans¬

mission delays in the lateral coupling. Moreover, Maass [48] has shown

that neurons which encode information in their spike-timing have inter¬

esting computational properties. Therefore, we believe that the temporal

population code provides a promising approach towards both, invariant

pattern recognition and the understanding of the encoding of information

by the nervous system.

2. The temporal population code 2.4. Discussion
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Chapter 3

The enhanced temporal

population code

3.1 Introduction

In the previous chapter, the basic principles of the temporal population
code and some of its properties have been investigated. Here, we would

like to discuss an enhanced version of the code. This code arises from

a network whose units are characterized by their orientation and spatial

frequency selective responses similar to neurons in primary visual cortex.

In addition, the lateral connectivity is no longer isotropic but depends on

the neural response preferences. In particular, long-range horizontal con¬

nections are preferentially linking neurons with co-oriented and co-axially

aligned receptive fields [15]. These changes to the network have two ma¬

jor implications regarding its coding properties. First of all, the temporal

population code becomes multi-dimensional because each population of a

particular neuron type is treated as an individual channel carrying a single

temporal population code. Second, due to the separation of different neu¬

ron types and the non-isotropic lateral connectivity, the resulting temporal

population code is no longer stimulus rotation invariant. All together, this

enhanced temporal population code provides more coding space and is

therefore better suited for the reliable classification of large stimulus sets

of increased complexity.
We show, that the enhanced temporal population code has similar basic

coding properties as the model presented in the previous chapter. Further-
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more, we demonstrate that the stimulus encoding is invariant to small

deformations and preserves an intuitive notion of visual similarity. On the

MNIST database [45], a widely used benchmark consisting of many hand¬

written samples of the 10 digits, it achieves nearly 95% of correct classifica¬

tions. Thus, the encoding process performed by the network discards part

of the information for the generation of invariant representations, while

preserving the relevant information for the classification of stimuli. In or¬

der to have access to hundreds of stimulus classes, we generate a set of

synthetic stimuli. These are used to investigate the scaling performance of

the network, as well as the robustness and dimensionality of the resulting

representation.

3.2 Methods

3.2.1 Network

As opposed to the model presented in the previous chapter, the smallest

unit of the network is not a single neuron, but rather a column of neurons.

These columns, however, are modeled as a single leaky integrate-and-fire
unit with graded output. The time course of its membrane voltage V(t) is

described by the differential equation:

dV

Cmlit = ~(Iexc{ï) + Ik® + w*)) C3-1)

where Cm is the membrane capacitance (Cm = 0.2 nF), and / represents the

transmembrane current, i.e. excitatory input (Iexc), spike-triggered potas¬
sium current (Ik) and leak current (Iieak)- These currents are computed by

multiplying a conductance g with the driving force: I(t) = g(t)(V(t)—Vrev)
where Vrev is the reversal potential of the conductance (VJ = 60 mV,
yrev = _Qq my^ yrev^ = _?q my) The column>s activity at time t is

given by A(t) = a • Q(V(t) — 9) where a G [0,1] is the activation of the

column as determined by the applied input stimulus and the column's

orientation and spatial frequency selectivity. O is the Heaviside function

and 9 is the firing threshold (9 = —55 mV). Each time a column emits a

spike, the potential is reset to Vrest = V{k- The constant leak conductance

gieak is 20 nS. The time course of the potassium conductance is given by

3. The enhanced temporal population code 3.2. Methods
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TKdgK/dt = ~(gK(t) - gPKakÂ(t)) where Â(t) = H(V(t) - 9) with a time

constant tk and a peak conductance gp^a (tk = 40 ms, g^a = 200 nS).
The excitatory input to a column consists of two components. First, a con¬

stant driving conductance of 5 nS in conjunction with the time course of

the membrane potential as given above yields a firing rate of approximately
42 Hz after frequency adaptation. Second, the synaptic conductances of

the lateral connections between different columns.

Each column is characterized by its orientation and spatial frequency

selectivity. Thus the columns can be parameterized by a triplet (x, <f>, v),
where x G [0, l]2 is a two-dimensional vector specifying the center of the

column's receptive field within the visual space, <f> G {0°,45°,90°, 135°} is

the column's preferred orientation and v G {high, medium, low} its pre¬

ferred spatial frequency. The total number of columns is 8400, with an

equal amount selective for each of the four orientations. The ratio of

columns selective for the three different spatial frequencies is given by

high : medium : low = 16 : 4 : 1. The columns selective for a partic¬
ular spatial frequency are arranged in a regular grid spanning the [0, l]2
plane, where in turn four columns representing the different orientations

share the same receptive field center.

The input to this network consists of a retinal grey-scale image of 80 x 80

pixels corresponding to the [0, l]2 plane. This image passes through an

edge detection stage, by convolving it with a difference of Gaussian (DOG)
kernel k%3 given by

fey = e"16r2 - l/4e"4r2 with r = ^±2 for i, j G {-3,..., 3}. (3.2)

The resulting contour is cropped to the original size of the image and repre¬

sents the activity in the LGN, which serves as the input to VI (fig. 3.2.1).
Given the position y G [0, l]2 of the thalamic neurons within the visual

space, the activation of a VI column (i(x^v) is defined by the absolute

value of a complex sum

a(x,4>,v)

\y-x\\<rm,

'2\\y-x\\\2
„
$(y-x)3v

• rmax / X (3 rmax (3.3)

which essentially is the convolution of the input image with complex, ori¬

ented Gabor filters of different orientation and spatial frequency selectivi-

3. The enhanced temporal population code 3.2. Methods
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ties, (f) is the unit vector with angle (f). rmax is the normalized radius of the

circular receptive field of the VI cell within LGN which is 0.05, 0.1 and 0.2

for high, medium and low spatial frequency selectivities respectively.
The lateral connectivity between the VI columns is exclusively excita¬

tory and characterized by (1) symmetric short-range and (2) asymmetric

long-range connections (fig. 3.2.1). A cortical column a connects to a cor¬

tical column b if va = v^ A xa ^ xb and one of the following conditions are

met:

1. (f)a j^ fa A "a and b are nearest neighbors"

2. (f)a = (f)b A \<(xb - Xa, <j>a)\ < 30° A \\xb - fa|| < lmax

where lmax is the maximal length for long-range connections, 0.35, 0.55,
0.75 for high, medium and low frequency selectivities respectively. The

second condition describes the connectivity between columns with identical

orientation selectivity, i.e. each column receives connections from columns

within a sector with an apex angle of 30°, a radius of lmax and the apex

centered on the receiving column. The synapses are of equal strength w and

are modeled as instantaneous excitatory conductances, while transmission

delays Ta^b are proportional to \\xb — xa\\ with 1 ms/cell. Thus the total

lateral synaptic input conductance at the post-synaptic column b is given

by

gb(t) = wJ2 Mt ~ Ta^b) (3.4)

where Cb is the pool of columns, from which b receives inputs, according
to the conditions above.

In the discrete-time simulations, all the equations are integrated with

Euler's method using a temporal resolution At = 1ms.

3.2.2 Statistics

For the statistical analysis of the network's response, the activities of the

cortical columns are recorded over 100 ms after stimulus onset, yielding
the vectors A^v = {A^(£)|£ = 1,..., 100 ms}. The temporal population

response of the ((f), v)-columns is then given by A^v = ^^A^v. Thus

the response of the network to a stimulus s is given by the twelve vectors

3. The enhanced temporal population code 3.2. Methods
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Figure 3.1: Schema of the network system. The input, present at the

retina first passes through an edge detection stage, implemented by means

of LGN cells with center surround receptive fields. The resulting contour

of the stimulus in the LGN is then passed to the cortical columns, which

in turn have different spatial frequency and orientation selectivities. The

receptive fields of the columns are oriented Gabor patches of different sizes

(spatial frequencies). The active columns within the cortical layer interact

through lateral coupling, which is specific (selective) for the relative spatial

frequency and orientation selectivities of the interacting columns (see text).
This interaction leads to shifts of the spike timing of columns, such that

the spatial stimulus presented at the retina is encoded in the temporal

population activity of the cortical network.

3. The enhanced temporal population code 3.2. Methods
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{A(f)l/(s)\y(f), v}. Each vector is normalized to a maximum of one in order

to remove any information in the size of the response about the stimulus'

orientation and spatial frequency statistics. This conforms with the objec¬
tive of the present study to investigate the amount of information encoded

in the temporal domain only. We evaluate the encoding performance of

our model by dividing the stimulus samples into test and training set. The

training set is used to define prototypes, that are used for classification of

the responses of the training samples. The performance of the network in

encoding the stimuli was measured by clustering the set of temporal pop¬

ulation responses for the stimuli into as many response classes Rß as there

are stimulus classes Sa. A response class is characterized by the prototype

response N,, the averaged temporal population response of the network to

the training samples of the corresponding stimulus class ß. A test sample
s G S^ is assigned to the response class Rß to which it is closest. As a

distance measure we use the sum over the Euclidean distances between the

twelve corresponding vectors, i.e.

d(s,Rß) = J2\\^(s)-Äl\\. (3.5)

As in the previous chapter,the clustering is summarized by a hit-matrix

N, where the components N(Sa, Rß) correspond to the number of times

a stimulus sample from class a was assigned to the response class ß (see
sec. 2.2.2).

3.2.3 Stimuli

Synthetic stimulus classes are generated by choosing 5 random points p%

within a circular disc with radius 0.35 centered in the input space given

by the [0, l]2 plane. Each pair of points is connected by a line with a

probability of 0.3 (fig. 3.2). The points are jittered following a random

distribution N with variance a2os for all the samples of a stimulus class:

V\ = Pi ± opt for i G {1,..., 5}, where ôpt G [N(0, cr2os)}2. The thickness of

the bar d%3 connecting p\ and p1 is drawn from a normal distribution, i.e.

dl3 G N(d,(j2wldül) with d=0.12 (see fig. 3.2). From a given set of stimulus

classes, three sets of samples are generated, each with a different within

class variability, i.e. apos = 0.03, 0.04, 0.05 and aWidth = 0.021, 0.025, 0.029

3. The enhanced temporal population code 3.2. Methods
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Figure 3.2: Three examples of the synthetic stimulus classes with 4 samples
each for the three different levels of variability. A stimulus class is defined

by a set of random points {pz\i = 1,..., 5} and a randomly chosen pairwise

connectivity pattern between the points. The samples to a stimulus class

are generated by jittering the position of the individual points as well as

varying the thickness of the bars between the points to various degrees.

respectively.

3.3 Results

In the following we perform several experiments, in order to investigate
the coding properties of the propoed enhanced network. First we provide

examples of the network responses. Thereafter, a number of controls are

presented investigating the coding performance and stability with respect

to several network parameters. Subsequently, the properties of this code

and in particular the dimensionality of the coding space is analyzed. Fi¬

nally, we test the scaling properties of the temporal population code with

respect to the number of stimulus classes presented.

3.3.1 Example of stimulus classification

First, we would like to provide a first insight into the temporal population
code generated by the proposed network and introduce some basic termi¬

nology and performance measures. The temporal population response of

the network consists of 12 activity traces, one for each neuron type, defined

by their orientation and spatial frequency selectivity. Example traces for

3. The enhanced temporal population code 3.3. Results
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a 0

b 1 0

c 1.83 1.69 0

d 1.75 1.52 1.42 0

e 1.51 1.43 1.6 1.66 0

a b c d e

Table 3.1: Mutual Euclidean distances between the different samples shown

in figure 3.3, normalized to the distance between the samples (a) and (b)
which belong to the same stimulus class.

the four orientations and the highest spatial frequency are shown in fig¬
ure 3.3a-e for different stimuli. The population response shows synchronous
bursts of activity over a coarse time-scale combined with dispersion on the

time-scale of individual bursts. This dispersion is due to the interaction

of active neurons through the delayed signaling over their lateral coupling.
Due to the spike triggered potassium currents, we observe frequency adap¬
tation in the form of a prolongation of the inter-spike intervals. Stimuli a

and b are samples from the same stimulus class, while c - e are from differ¬

ent classes. The mutual Euclidean distances between the five samples in

fig. 3.3 are given in table 3.1. The distances are normalized to the distance

between the two samples a and b that are from the same stimulus class.

All normalized Euclidean distances between samples of different classes lie

above one.

3.3.2 Robustness of encoding

In the following experiments, we investigate to what extent some of the

properties found in the previous chapters also hold for the enhanced net¬

work. We show the dependency of classification performance on the synap¬

tic strength in the lateral coupling, which is the key ingredient to the

present approach. Furthermore, we survey coding stability with respect

to synaptic noise and with respect to stimulus variability by testing the

proposed coding scheme in a standard benchmark for pattern recognition,
the MNIST database. For these more quantitative investigations, the net¬

work responses to stimulus sets will be clustered (see methods), in order

3. The enhanced temporal population code 3.3. Results
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Figure 3.3: (a) Activity of the columns with highest spatial frequency
selectivities and different orientation preferences (0°, 45°, 90°, 135°) for a

stimulus (left), along with the spike raster plot and the corresponding

activity histograms over time (right), (b)-(e) Activity histograms over

time of the four different populations of orientation selective columns for

samples of the same (b) and different (c)-(e) stimulus classes than in (a).
Note that in (a), the filtered stimuli are shown individually for the different

orientations. In (b)-(e), the four orientations are superimposed.
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to determine the information available in the temporal population code.

Naturally, this information depends on the clustering algorithm used and

therefore we will compare different approaches.
The objective of the first experiment is to determine the dependency

of the networks encoding performance with respect to the lateral synaptic

strength w. In particular, the contribution of the populations of cortical

neurons selective for the three different spatial frequencies is analyzed. The

stimulus set consists of 50 stimulus classes with low variability, 100 sam¬

ples each, where 50 samples are used to produce the prototype responses

("training set") and 50 samples are clustered ("test set"). The simulation

was performed for w G [0,1] nS. In order to determine the contribution of

the different frequency selectivities, the clustering was performed based on

the population responses for the different spatial frequencies individually.
In fig. 3.4a the percentage of correctly classified stimuli is plotted as func¬

tion of w for the three spatial frequencies. For w = 0 nS, the performance
is around chance level for all frequencies, because there are no effective

lateral connections, which are necessary for transforming the spatial stim¬

ulus structure into the temporal domain. For increasing lateral synaptic

strength, however, the performance increases in all three cases, with an

optimal performance for wvapt = 0.92, 0.32, 0.2 nS for high, medium and

low spatial frequency selectivities respectively. In all cases, performance
remains stable at a high level over a wide range of synaptic strength.

Performance in terms of correctly classified samples does not depend on

the type of errors made by the clustering. Mutual information, however,
does account for the nature of errors. This can be clarified by investigating
two idealized cases [72]. In the first case, stimulus classes group naturally
into super-classes of size Z, whereas stimulus classes from different super¬

classes are perfectly discriminated and stimulus classes within the same

super-class are not discriminated at all. In this case, the percentage of

correctly classified samples is 1/Z and the mutual information is equal to

log2(C/Z), where C is the number of stimulus classes. In a second case, we

assume that no similarity structure exists among the stimuli, such that they
are discriminated with probability q or confused with any of all the others

with probability 1 — q. In this case the percentage correct is q ± (1 — q)/C
and mutual information is given by

i±<f^> log2(C« + !-,) + (C-^1-g)log.j(l - ,). (3.6)

3. The enhanced temporal population code 3.3. Results
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synaptic strength [nS] correct [%]

Figure 3.4: (a) The percentage of correctly classified stimuli as a function

of the lateral synaptic strength. The clustering is based on the the network

responses of three populations of neurons defined by their spatial frequency

selectivity individually, (b) Information vs. Percentage Correct. The

arrangement of the data points from (a) relative to the two sample cases

(see text). (c) Influence of synaptic noise on encoding. Percent of correct

classifications as a function synaptic noise a (mean ± std, n=50).

These relationships are illustrated in fig. 3.4b (with C = 50), which shows

mutual information versus the percentage of correct classifications for the

two sample cases described above. Plotting the data from fig. 3.4a in

this graph reveals that for optimal performance, there is a nearly linear

relationship between the two performance measures. The fact that the ex¬

perimental relationship is between the two extreme cases indicates that the

encoding of stimulus similarity is slightly more complex. However,we can

not draw more specific conclusions, since an arbitrary number of different

similarity structures generate similar relationships. An example, in which

a linear relationship exists between the information available and the per¬

centage correct (close to what the data show), is when super-classes exist

but also each stimulus can be discriminated, with a certain probability,
within its super-class [72]. Regarding code dimensionality, we can make

the following observation: if all pairs of stimulus classes are equally likely
to be confused (dashed line), the stimulus classes have roughly the same

distance from each other. This can only take place in a high-dimensional

coding space. The other case (forming super-classes, solid line) can exist

3. The enhanced temporal population code 3.3. Results
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in a low-dimensional coding space. However, although the data points in

fig. 3.4b appear to lie closer to the high-dimensional case no quantitative
statement can be made, because of the lack of a metric within the rep¬

resentation in fig. 3.4b. The question about code dimensionality will be

pursued further below.

As shown above, the performance of the network in encoding the stim¬

uli does not critically depend on the exact strength of the lateral coupling,
as soon as a threshold value of w is exceeded. The objective of the next

experiment is to determine, whether this finding also holds for dynam¬

ically changing synaptic strengths due to the putative highly unreliable

transmission of signals across synapses [6]. Synaptic noise is modeled by

perturbing the individual synaptic conductances dynamically; each conduc¬

tance is multiplied by a random factor /, drawn from a normal distribution

with mean one and variance a2, i.e. / G N(l, a2). For / < 0 the synaptic
conductance is set to zero, which corresponds to a synaptic failure. For

increasing noise the system's performance in encoding the input stimuli

decreases approximately linearly(fig. 3.4c). The number of correctly clas¬

sified stimuli decreases by not more than 3% for a = 1, which corresponds
to a signal to noise ratio of 1. Thus the encoding of the stimuli by the

enhanced network is similarly stable with respect to synaptic noise as the

simpler network presented in the previous chapter.
A different and important type of noise source in pattern recognition,

is the pattern variability within stimulus classes. Therefore, the network

is tested on handwritten digits from 250 writers contained in the MNIST

database [45] (fig. 3.5a), which is a standard benchmark in the domain of

character recognition. To facilitate comparison with other systems tested

on this database we used the original partitioning into a training-set and a

test set with of 5400 samples and 950 samples per digit respectively. Our

model is capable of classifying 94.8% of the stimuli correctly (fig. 3.5b).
So far, the clustering of the network responses was performed by com¬

paring the test samples to the prototype responses of each class, which are

essentially the average responses of the network to the training samples
of a class. Here, we investigate the k-nearest-neighbors (KNN) cluster¬

ing method. This algorithm determines the pairwise Euclidean distance

between the sample which is about to be classified, and all the other sam¬

ples, from the same and all other classes. The k nearest neighbors are

then determined, and the sample is assigned a classification based on the

3. The enhanced temporal population code 3.3. Results
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stimulus classes

Figure 3.6: Clustering methods. Mutual information for three stimulus sets

with 50,100 and 200 stimulus classes. Two different types of clustering
methods have been used: prototype clustering and KNN clustering for

k = 1,5,20.

prevailing classification of these k neighbors. Fig. 3.6 shows the mutual

information for stimulus sets consisting of 50, 100 and 200 stimulus classes

based on the prototype clustering as well as for the KNN clustering with

k = 1, 5, 20. While there is only a small performance difference between

the KNN clusterings, they outperform prototype clustering for all three

stimulus sets. Thus using the prototype clustering as the method of choice

is save with respect to performance over-estimâtion as well as computa¬

tionally more efficient. In addition, the absolute performance difference

between KNN and prototype clustering is rather small, and therefore it is

meaningful, to analyze the topology of the cluster centers in the potentially

high-dimensional space.

3. The enhanced temporal population code 3.3. Results
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3.3.3 Code dimensionality

By comparing the prototype responses for different stimulus classes, we

can estimate their similarity. In fig. 3.7 the dendrograms for two dif¬

ferent sets of stimuli are shown with (a) similar and (b) different local

features. The height of the vertical bars between stimulus classes/super¬
classes correspond to their (averaged) mutual Euclidean distances, normal¬

ized to the mean distance of the samples to their corresponding prototype.
The pairs of stimulus classes in fig. 3.7a with a distance of approximately
one are visually very similar. The mutual distances between the stimulus

classes in fig. 3.7b are all significantly above one, however, they have all

approximately the same distance from each other, i.e. suggesting a high-
dimensional coding space.

A more systematic overview on the distances between samples of the

same and different classes is given in fig. 3.7c, for 100 stimulus classes, 250

samples each. The distances are normalized with the mean distances of

the samples to their own prototype, and this distribution is represented

by the histogram termed internal. The histogram termed external shows

the distance distribution of samples to other prototypes than their own.

The distances between stimulus classes vary within a limited range only.
This is the hallmark of a high dimensional representation. Please note,

however, that we are considering a finite number of stimulus classes only.
As a Gedankenexperiment N stimulus classes can be distributed over the

corners of a log2(A^) dimensional hyper cube. This would equally lead to a

narrow distribution of distances between samples and all prototypes. Thus

using this type of reasoning we can not make statements on dimensionalities

higher than log2(N). For the present work this amounts to roughly 10

dimensions.

As a further control, the random internal and random external his¬

tograms show the distance distributions of samples to randomly generated

prototypes. These prototypes are defined as random patterns that give rise

to the same activity statistics as the structured stimuli within populations
of neurons with the same spatial frequency selectivities. In addition, the

distribution called random internal, also preserves the activity statistics

within populations of neurons with the same orientation selectivities. In

both cases, however, the distances lie significantly outside of the internal

distribution. Hence, with a reasonable choice of a classification thresh-

3. The enhanced temporal population code 3.3. Results
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Figure 3.7: (a) & (b) Dendrograms for 10 stimulus classes with (a) similar

and (b) different local features. The height of the vertical bars connecting

single or groups of stimulus classes corresponds to the their (averaged)
mutual distance. All distances are normalized to the average distance of

samples to their own prototypes, (c) Distance distributions of samples to

their own (internal) and other (external) stimulus prototypes, as well as to

random prototypes with the same (random internal) and other (random
external) orientation statistics.
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old the number of false positives is virtually zero. Thus, it is unlikely
that in the proposed encoding scheme random stimuli are confused with

structured stimuli. The two distributions for the random prototypes have

approximately the same mean and only differ by their variances, the ex¬

ternal being slightly broader than the internal. This can be explained by
the external prototypes having more degrees of freedom which leads to

a broader distribution. More importantly, however, this shows that the

orientation statistics of a stimulus does not contribute significantly to the

information encoded in the temporal population code. Rather the spatially
structured topological properties of a stimulus are encoded.

So far, our results suggest a high-dimensional coding space. A tradi¬

tional tool to determine the dimensionality of a data set in a more rig¬
orous way is principal component analysis (PCA) [63]. PCA involves a

mathematical procedure that transforms a number of (possibly) correlated

variables into a (smaller) number of uncorrelated variables called principal

components. The first principal component accounts for as much of the

variability in the data as possible, and each succeeding component accounts

for as much of the remaining variability as possible.
We perform PCA on the network responses to a stimulus set of 800

classes, 250 samples each. Here, we only consider the population of cells

selective for the highest spatial frequency. A PCA basis is computed from

all network responses, irrespective of their orientation tuning. The network

responses to a stimulus are then projected upon this basis yielding a four-

dimensional PCA coefficient for each component and stimulus, i.e. one di¬

mension for each orientation. Clustering is then performed using Euclidean

distance between corresponding coefficient-vectors as a similarity measure.

Fig. 3.8 shows the additional and individual information contributed by
each component (4 dimensions each, dashed and solid lines respectively),
starting with the first order component in the former case. Higher order

components carry a significant amount of information individually, how¬

ever, this information is partly or fully redundant with information pro¬

vided by lower order components. The five first components account for

91% of the total information encoded in the network response. Thus, the

dimensionality of the code generated by the network is approximately 20.

3. The enhanced temporal population code 3.3. Results
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Figure 3.8: Information as a function of the number of PCA compo¬

nents/dimensions. The additional information provided by subsequent

components (data points), each comprising 4 dimensions, is shown by the

dashed line. The information encoded the individual principal components

individually is given by the solid line.

3.3.4 Scaling with the number of stimulus classes

The robust encoding suggests a favorable scaling to a large number of

stimulus classes. Therefore, in this last control, we investigate the scaling

properties of the model presenting stimulus sets to the network with 50,

100, 200, 400, 800 and 1600 classes, 250 samples each, for three different

stimulus variabilities. The prototype responses are generated from 50 sam¬

ples of each stimulus class. The remaining 200 samples are clustered. The

network's performance is shown in fig. 3.9a, where the encoded information

is plotted as a function of the number of stimulus classes. Optimal perfor¬
mance (/ = \og2(^classes)) is indicated by the thin dashed line. For an

increasing number of stimulus classes the encoded information stays close

to the theoretical limit. Thus, the proposed encoding scheme scales to

problems of interesting complexity.

«- individual

©- additional
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Figure 3.9: (a) Information encoded by the network as a function of the

number of stimulus classes. For classification, prototype clustering has

been used for the three different levels of stimulus within class variabili¬

ties. Optimal performance (Information=log2(#dasses)) is indicated by
the thin dashed line, (b) Classification error probability as function of

the number of stimulus classes derived from the experimental data (solid
line) and fitted (dashed line, see text) for the lowest level of within class

variability.
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In the following we would like to analyze the error probability as a

function of the number of stimulus classes in more detail. Given the dis¬

tribution functions of distances between samples and their corresponding

prototypes (f>znt(%) and between samples and non-corresponding prototypes

(f>ext(%), where x designates the distance, the error probability as a function

of the number of stimulus classes N is given by

/>oo

Perr(N) = / (f)mt(x)dx (3.7)
Ja(N)

where a(N) is the expectation of the minimal distance of a sample to any

of N non-corresponding prototypes given by

/oo xN(l - <$>ext(x))N-l^ext(x)dx (3.8)
-oo

where §ext(x) = f^ (f)ext(x)dx is the cumulative distribution function of

(f)ext(x). If we assume 4>%nt(x) and 4>ext(x) to be Gaussian, perr(n) only

depends on the widths of these distributions, i.e. amt and aext, and their

relative distance dp = pext
—

Pmt- From the experimental data, we measure

dp = 0.76, (Tmt = 0.15 and aext = 0.3. Fig. 3.9b shows the measured error

probability as a function of stimulus classes (solid line) together with the

fitted theoretical error probability perr(N) (dashed line) as given above,
with dp fixed to the experimental value of 0.76. The resulting standard

deviations are amt = 0.21 and aext = 0.18. This discrepancy between ex¬

perimental and fitted values arises from the assumption that (f>znt(%) and

(f>ext(%) have a Gaussian distribution, which is obviously a simplification

(fig. 3.7c). Nevertheless, the simple heuristics outlined above give a sur¬

prisingly good overall description of the network's scaling properties for

large stimulus sets. In addition it gives us a tool at hand to extrapolate
network performance to even larger stimulus sets.

3.4 Discussion

This chapter introduced an enhanced network for the generation of a tem¬

poral population code, which consists of orientation and spatial frequency
selective units. Using a set of artificially generated visual stimuli, we show

3. The enhanced temporal population code 3.4. Discussion
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that this temporal population code favorably scales up to hundreds of stim¬

ulus classes. This not only holds for k-nearest neighbor clustering, but also

for the computationally more efficient prototype clustering. Moreover, we

show that this encoding is robust with respect to variations in synaptic

strength and noise in the lateral connections as well as stimulus variability.
In a widely used benchmark on the recognition of hand written digits

nearly 95% correct classification was achieved. This falls short of the per¬

formance of the very best specialized character recognition systems [45].
However, it compares well to an approach, in which a k-nearest neighbor

clustering is applied directly to the spatial representation of the stimuli cen¬

tered at a common position [45]. Thus, the encoding process performed by
the network discards part of the information for the generation of invariant

representations, while preserving the relevant information for classification

of the stimuli.

One of our aims was to assess the dimensionality of the encoding. Sev¬

eral measures presented argue that it is high-dimensional. Comparing the

percentage correct with information encoded in the temporal population
code with the two extreme cases of either a high- or a low-dimensional

code shows that our model does not match either of these two extremes.

However, the histogram of the distances between different stimulus classes

reveals a very narrow distribution which argues for the high-dimensional

case; it is not possible to arrange a large amount of stimulus classes within

a low-dimensional space while keeping the distance distribution narrow.

Moreover, the principal component analysis shows that the first 5 compo¬

nents, i.e. 20 dimensions, suffice to extract most of the information avail¬

able in the temporal population code. Recently, a model was proposed that

maps continuous time inputs onto a high-dimensional spatial representa¬

tion [49]. Hence, it is of interest to investigate in future work, whether this

model could be used for the classification of a high-dimensional temporal

population code.

A number of studies propose a role for temporal dynamics in the for¬

mation of visual representations. One of the first proposals [66] suggests
that local features of visual stimuli are encoded in the temporal patterns

of spikes of single neurons. This concept has been investigated in several

stages of the hierarchy of the visual system, including LGN, VI and infer-

otemporal cortex [52,66,67]. Based on principal component analysis of the

response patterns of single neurons in repeated recordings, a significant

3. The enhanced temporal population code 3.4. Discussion
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amount of information carried by the first (= firing rate) as well as the

higher components (= temporal pattern) was found [90]. An important
difference with the present study is that here we consider the encoding of

stimuli by populations of neurons in a single run, rather than by a single
neuron in repeated runs [30]. This also explains why the peri stimulus time

histograms between these two cases appear very different, being smooth in

the former and having high variability in the latter case. We show that this

variability provides an efficient coding substrate. Moreover, in related work

it is shown that it also has a profound influence on the interactions within

a network [13]. Surprisingly, to our knowledge, no experimental data are

available on the variability over time of the activity of whole populations
of neurons.

Temporal coding on a millisecond time-scale is observed in multiple
modalities. For instance, in the auditory system, where also the stimuli

themselves vary on this time-scale, Bialek and colleagues show that infor¬

mation about time dependent input can be conveyed by spike timing [68].
Evidence for a neuronal representation of auditory stimuli by spike timing
has also been found in grasshoppers [50]. In the visual system, motion stim¬

uli are temporally varying inputs, which for example can be reconstructed

from the spike timing of the HI neuron in the fly [21]. One of the earli¬

est studies of the fast dynamics of neuronal systems was performed in the

olfactory system [24]. Indeed, the most direct evidence for the behavioral

relevance of temporal coding has recently been obtained in the olfactory

system of the honeybee [51]. Moreover, this study also revealed that the

olfactory system does transform relatively constant sensory inputs into a

time-varying population response at the millisecond time scale. Hence,
this suggests that temporal population coding arising out of the inherent

dynamics of a neuronal system, as investigated here, is a valid hypothesis
for the encoding mechanisms underlying sensory processing.

3. The enhanced temporal population code 3.4. Discussion



Chapter 4

Involving the motor

system in decision

making

The objective of the previous two chapters was to present a particular ex¬

ample of how temporal coding in combination with non-topological statis¬

tics can yield powerful computational mechanisms for the task of invariant

pattern recognition. In this chapter, we would like to present a code which

relies on non-topological statistics only without temporal coding. In addi¬

tion, this code is employed at the motor system of a complete behavioral

system. Thus, non-topological statistics are not only of interest for the in¬

terpretation of sensory information. Furthermore, we show the invariance

properties of non-topological codes as discussed in the previous chapters
also applies to more abstract concepts such as the invariant detection of

behaviorally ambiguous situations.

4.1 Introduction

Traditionally, behavioral control is seen as emerging out of three stages:

sensory processing, decision making and motor execution. Recently, how¬

ever, physiological and behavioral studies have shown that the borders

between sensory and motor systems become more and more vague [42,56,
70,75]. Furthermore, there is increasing evidence, that motor systems may
not only be important in altering the physical state of an organism, but also
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its cognitive state [28,32]. Georgopoulos et al. have found direct evidence

for task related modulation of activity in motor systems [19], which makes

the latter a candidate not only for the execution of movements but also for

their planning. Indeed, a recent theoretical study has shown that in or¬

der to satisfy constraints observed in optimal decision making in humans,
the motor system should be seen as an integral component of a decision

making process [92]. This integration of the motor system with decision

making and perceptual stages raises the question whether the original tri-

ate sensing-deciding-acting captures biological reality [70].
Involving the motor system in decision making has a number of advan¬

tages. First, decisions automatically adhere to the constraints given by
the morphology of the behaving agent [70]. While the sensory input to an

agent is in general task and goal unspecific, the motor output conforms

to physical as well as task related boundary conditions. Thus, introduc¬

ing category boundaries in processing of stimulus features at a motor level

rather than at the sensory input appears to be more natural. Variations

of stimuli which do not have a consequence for behavior can be clearly dif¬

ferentiated from those that do. This may be exploited to combine highly

reproducible performance on particular local aspects of a task with a flexi¬

ble behavioral repertoire on a more global scale. These properties motivate

a further investigation of such an integrated decision system.

We use a neural model of sensorimotor integration to study the pos¬

sible role of the motor system in interpreting behavioral situations. An

autonomous mobile robot learns to perform a simple but still complex

enough navigation task which requires different levels of behavioral con¬

trol, i.e. navigation in a maze of lines. At a local level the agent has to

learn to accurately follow a line, thus a very stereotyped and reproducible
behavior. At a more global level however, the agent has to retain a flexible

behavior in order to optimally explore the maze. Thus line following in a

maze is a behavioral paradigm which allows to study the interactions and

transitions between different possibly conflicting behavioral requirements.
The robot employs a form of reinforcement learning [83], in order to learn

the mapping from the sensory input provided by a camera to its motor

output. We show, both in simulation and real-world experiments, that

the robot's uncertainty at the motor level reflects the presence of multi¬

ple behavioral options. A simple non-topological measure of uncertainty
at the motor level therefore serves to detect behaviorally relevant situa-

4. Motor system and decision making 4.1. Introduction
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Visual Input (8x8) Motor Map (9x9)

Figure 4.1: (a) The micro-robot Khepera, following a line drawn on the

floor. A CCD camera is mounted on top of the cylindrical body with an

inclination angle of « 45°. (b) The network model. The visual input, with

a resolution of 8 x 8 pixels is mapped onto the motor-map with 9x9 units,
each of which corresponds to a pair of speeds for the left and right motors

respectively. This sensorimotor mapping consists of parallel perceptrons

which are learned by a form of reinforcement learning. Initially random

actions are generated. These actions are validated by measuring the change
in activity captured by the receptive field in the visual input (dashed circle):
black lines moving in/out of the receptive field generate positive/negative
learning signals. In parallel, the entropy of the motor-map determines the

activation of the decision making mechanism. If the entropy surmounts a

dynamic threshold (see text), random reflexes with equal probability are

triggered causing the robot to bias its actions towards right or left turns.

tions. Thus, the motor system may not only change the physical state of

an organism but also constitute an integral part of the decision making

system.

4.2 Methods

Experiments were performed using both, the real-world robot Khepera (K-
team, Lausanne, Switzerland, see fig. 4.1a) as well as a simulated virtual ap¬

proximation of the latter programmed in C++ using OpenGL (sec. A.3.3).
The robot has a circular body (radius = 2.25 cm) with two wheels attached

4. Motor system and decision making 4.2. Methods
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to its side each controlled by an individual motor. In the following we use

the robot's body radius as our length unit. The visual input is provided

by a camera mounted on top of the robot and inclined toward the floor

with an angle of approximately 45°. The network model is simulated on

a Linux computer using a neural network simulator programmed in C++

(see Appendix A). The update frequency of the simulation is 25 Hz which

corresponds to the frame rate of the camera. On average, the robot moved

with a speed of approximately 0.7 body radii per second.

The environment consists of a white rectangular arena surrounded by
walls and a maze of black lines drawn on the floor (see fig. 4.2a). The

virtual environment is a square with a side length of 35 body radii and

contains 36 crossings of three lines each. Because the tethered real-world

robot has a limited freedom of movement, the corresponding environment

was designed accordingly smaller, i.e. 28 x 21 body radii2 with 12 crossings

only.

A schema of the model investigated in this study is shown in fig. 4.1b.

The grey scale image of the floor in front of the robot with a resolution of

8x8 pixels constitutes the input to the system. The 9x9 units of the

motor-map, which stand for a combination of left and right wheel speeds

each, represent the output of the system. In the following we will discuss

the different components of the model in detail.

4.2.1 Sensorimotor mapping

The mapping between the visual input and the motor output is responsible
for the robot's controlled movement along lines. The general conditions for

the acquisition and representation of this mapping are the following: (1)
it can be learned based on a reinforcement type learning signal (2) the

particular choice of learning system does not imply an a priori restriction

on the type of possible mappings. The parallel perceptron [10] conforms to

these requirements and is therefore used to learn the sensorimotor mapping.
The visual input z is processed by n = 10 single layer perceptrons whose

individual outputs are given by o% = w, • z for i = 1... n where w, is the

weight vector of perceptron i. The output p of the parallel perceptron is

4. Motor system and decision making 4.2. Methods



57

then given by

1=1

where G(-) is the Heaviside step-function, thus p G [0,1].
The units in the robot's motor-map correspond to different robot move¬

ments as given by an instantaneous two-dimensional speed vector s =

(sLi sr) where sl and sr are the speeds of the left and right motors respec¬

tively. Each unit's activity as is controlled by the output ps of an individual

parallel perceptron, such that

as = fe(ps) where fo(x) = \°_
Q

*<

Q
(4.2)

The ensemble of motor units {as|Vs} constitutes a stochastic motor-map,

within which a particular unit s has the probability ps = as/ ^Vs as of being
the winning unit. Due to the inertia of the real-world robot, executed motor

actions are low-pass filtered, such that the actual motor-speeds are running

averages over the past winning units. For consistency between real-world

and virtual experiments, the motor-commands are low-pass filtered in order

to smoothen the movements of the robot, i.e.

(s)(+1 = is(t) + (l-i)(s>( (4.3)

where r = 4 simulation time-steps is a time-constant which approxima-

tively characterizes the inertial properties of the robot.

4.2.2 Learning

The learning signal 7s for a parallel perceptron s is given by the product
of a non-specific performance measure a which is directly derived from the

visual input, and a perceptron specific feedback ßs from the motor-map,

i.e. 7s = a • /3s.
The performance measure a is given by the temporal derivative of the

summed activity from a small receptive field in the lower center of the

visual input (see fig. 4.1b). This signal is positive/negative if a line moves

in/out of the receptive field respectively and zero if the robot moves such

that the receptive field stays centered on the line.

4. Motor system and decision making 4.2. Methods
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The perceptron specific factor is given by the Gaussian

^ = elp(_l!<!^!Ü) (4.4)

where (s)t is the actual motor-speeds as given in eq. 4.3, a2 is the variance

and || • || is the Euclidean distance. Thus, ßs localizes learning to the motor

units which lie close to the current motor-speed.
The weight vectors of the parallel perceptron s are updated according

to

w:(t+i) = w:(t)+i1-At(t) (4.5)

where r\ is the learning rate and

A,B(t)= - (K(t)||2-i)-w;(*)

f 78(*) z(* - t) for 7S(£) • o,(£ - t) < 0

j 0 otherwise

The first term moves ||wf || towards 1. The second term selectively updates
the weight vectors for which o% = ws • z has opposite sign of 7s. The time

constant r is given by the inertial properties of the robot (see eq. 4.3).

4.2.3 Decision making

The robot is equipped with three basic prewired reflexes: driving straight,

turning to the right and turning to the left. These reflexes bias the motor-

map rather than imposing particular motor-actions, by projecting linear

activity ramps onto the motor-map, i.e. as = fo(os + 6s). The activity

ramps 6s for the three reflexes mentioned above are defined as follows:

{sl
+ sr driving straight

sl — sr turning right (4.6)
sr — sl turning left

where B and C are constants such that mins6s = 0 and maxs6s = 1. For

the function fo we set 9 = 1. The default behavior of the robot is driving
ahead along the line. The reflexes to turn to the right or left are triggered

by the robots uncertainty about the current situation. This uncertainty can

4. Motor system and decision making 4.2. Methods
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be derived from the motor-map only and is naturally given by its entropy

E, defined as

E = log2 ( J2 os) ~^E°S lo^s) (4-7)

where the sums run over all s. In a situation, where one single motor unit

is active, the entropy becomes minimal, i.e. E = 0, which corresponds to

minimal uncertainty. On the opposite, maximal uncertainty is reflected in

the motor-map by a uniform activity distribution, which leads to maximal

entropy. We hypothesize that entropy will be rather low while following
lines and increase significantly at crossings, where several valid motor-

actions are possible. Therefore, we define a dynamic threshold 9e for the

entropy, above which the default reflex "driving straight" will be replaced

by one of the two turning reflexes, thus making the robot to turn to the

side favored by the reflex. The threshold 9e is given by

0E(t) = (E)t + oy/(E?)t-(E)*t (4.8)

where (-)t denotes the running average as defined in eq. 4.3 with r = 1000

time-steps. Ö = 1.1 is a constant. Note that the second term computes a

running standard deviation of E.

4.3 Results

4.3.1 Line following

In the following we present experiments performed with the virtual robot

and subsequently show that the results generalize to the real-world. Fig. 4.2b-

d show the robot's trajectories during 106 time-steps for three sensorimotor

mappings acquired by the robot during 5'000, 40'000 and 2'500'000 time-

steps of learning respectively. The mapping is randomly initialized. While

the robot is poorly following the line after 5'000 time-steps of learning,
its performance after 40'000 time-steps almost corresponds to the perfor¬
mance after 2'500'000 time-steps. Thus, these results qualitatively show

that the learning mechanism for the acquisition of the sensorimotor map¬

ping is both fast and stable. From a behavioral point of view, fig. 4.2

4. Motor system and decision making 4.3. Results
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Figure 4.2: Virtual maze, (a) The maze of lines for the simulated robot

consists of 36 crossings, each consisting of three lines. The average thick¬

ness of the lines is « 0.5 body radii, (b-d) Trajectories of the robot

recorded over 106 time-steps after the robot was learning to follow the line

for 5'000, 40'000 and 2'500'000 time-steps.

illustrates the fact that the robot's movements become more controlled

over time, i.e. the entropy in the robot's behavior reduces.

4.3.2 Motor-map entropy

We now investigate how this behavioral change is reflected in the internal

states of the robot. The entropy of the motor-map as a function of time-

steps the robot was learning is shown in fig. 4.3a. The average entropy

decays over time. This reduction of the average entropy indicates that the

initially broad activity in the motor-map in response to any given visual

input stimulus gets sharpened and adjusted to the specified task. Thus the

increased precision in line following is reflected in the reduced entropy in

the motor-map.

4.3.3 Crossing detection

While the reduction of behavioral entropy leads to a stereotyped and re¬

producible behavior at a local level, a more flexible behavior is desirable

at a global level. This flexibility, however, can only be achieved when the

constraints given by the local behavior are relaxed, i.e. at crossings of lines.

Indeed looking at the entropy of the motor-map we observe a persistently

large variance (see fig. 4.3a). This reflects the property of the environment

4. Motor system and decision making 4.3. Results



61

;55

04

o02

20 80 320 1280 5120

I !__
timesteps x10

2 4 6

distance from crossings [body radius]

Figure 4.3: Entropy in the motor-map. (a) The average entropy decreases

as a function of the time-steps the robot learns the sensorimotor mapping.
The standard deviation (error bars) stays relatively constant (±10%). (b)
The probability to trigger a crossing event as a function of the robot's

distance from the crossing. A crossing is triggered as soon as the entropy
in the motor-map exceeds a dynamic threshold which is determined by the

running average and variance of the entropy (see Methods).
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to not only consist of single lines but to also incorporate crossings. As a

crucial ingredient to the proposed model, we use high entropy in the motor-

map as a signature of a choice of multiple behaviors being available, i.e. a

behavioral decision being required. Therefore, we use a simple criterion for

the detection of crossings, namely the entropy of the motor-map exceed¬

ing a (dynamic) threshold (see Methods). Fig. 4.3b shows the probability
that the robot detects a crossing based on this criterion as a function of

the robots distance to the next crossing. The distribution peaks at a dis¬

tance of approximately two body radii which corresponds to the distance

at which the robot usually sees the crossing in the center of its visual field.

Thus, the entropy in the motor-map is a reliable indicator of crossings.

4.3.4 Decision making

In the following we use this signal to trigger random reflexes in order to

bias the robot's movements towards a particular direction. Therefore, the

default activity ramp imposed on the motor-map for driving forward is re¬

placed by a ramp favoring either right or left movements. Both directions

have the same probability to be chosen. We investigate these principles in

the example of the particular crossing shown in fig. 4.4 where the robot

approaches from the bottom left corner. After lO'OOO time-steps of learn¬

ing, the crossing is still a likely source of errors where the robot looses the

line (fig. 4.4a). In addition, the robot follows the right branch more of¬

ten although the decision making mechanism chooses both directions with

equal probability (see fig. 4.4d). After further learning (40'000 time-steps),
the errors are reduced, but there is still an imbalance in the directions the

robot takes at the crossing(fig. 4.4b). This imbalance is determined by
the particular morphology of the crossing and the direction from which

the robot approaches. More importantly, however, this shows that at this

stage the robot's sensorimotor mapping is not yet accurate enough for the

given task. Thus, either the robot does not detect the crossing or it fails

to execute a decision appropriately. It is not until a further refinement of

the sensorimotor mapping, that the entropy in the motor-map becomes a

reliable indicator of crossings and the motor-map itself allows any branch

to be followed. The previous imbalance is evened out by taking and execut¬

ing random decisions rather than following the more "convenient" branch

(see fig. 4.4c,d). Thus, we exploit the events of high entropy to trigger the
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Figure 4.4: Sample crossing, (a-c) Trajectories of the robot approaching
from the lower-left branch (see arrow) after lO'OOO, 40'000 and 2'500'000

time-steps of learning respectively, (d) Fractions of left turns, right turns

and errors at the crossing for the situations shown in (a-c). N = 37, 33, 32

respectively.

transitions from reproducible and stereotyped behavior at a local level to

flexible and explorative behavior at a more global level.

The entropy in the motor-map reliably reflects the complexity of the

behavioral context. Crossings elicit broader activity within the motor-map,

because both branches, respectively their sensorimotor mappings, are rep¬

resented simultaneously. This effect has two implications: (1) the entropy
of the motor-map increases which indicates the increased complexity of the

behavioral context (2) coarse interaction within the motor-map by apply¬

ing activity ramps can be used to impose general decisions such as taking
the right or left branch without specifying in detail what needs to be done

in order to do so.

We now show that the previous findings, based on the single crossing
shown in fig. 4.4, hold for the whole maze. In total, the maze contains

36 crossings which can be approached from three different branches each.

Thus, the maze consists of 108 oriented branches, which should be visited

equally often given that the robot makes unbiased decisions at each cross¬

ing. Fig. 4.6a shows the rates at which the robot visits the different oriented

branches. The control experiment, in which the decision making mecha¬

nism was not used, shows a large imbalance, e.g. some oriented branches

are not visited at all, while others are visited more than three times more

often than expected for a uniform maze coverage. Using the decision mak-
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ing mechanism reduces this imbalance greatly and in particular there are

no more unvisited branches. We captured the imbalance of the different

distributions by calculating the standard deviation over the rates of visiting
the oriented branches. In fig. 4.6b we show this measure of inhomogeneity
with and without decision making mechanism. The robot's coverage of the

maze is more homogeneous using the decision making mechanism. Thus,
the above result generalizes to a wide variety of crossing morphologies.

While the above investigation has shown that the decision making
mechanism has a great impact on the global behavior of the robot, it is

unclear what possible other effects there are. For example, investigating
the speed profile of the robot running around in the maze reveals inter¬

esting characteristics. First, with decision making turned on, the shape
of the speed distribution changes for different durations of the learning

periods (fig. 4.5a-c). While the distribution appears to be rather symmet¬
ric around a medium speed for lO'OOO and 40'000 time-steps of learning,
it becomes very skewed towards higher speeds for 2'500'000 time-steps of

learning. Thus, longer periods of learning lead to higher average speeds.

Comparing, however, the situation where the decision making mechanism

is turned on (fig. 4.5c) to where it is turned off (fig. 4.5d) shows a very

prominent difference. While both distributions peak at approximately the

same speed, the distribution with decision making is less skewed indicating
that lower speeds are driven more often. This increase in low speeds is due

to the fact that decision making may lead to situations where the robot has

to take very sharp turns which are usually driven at lower speeds. Without

decision making, however, the robot only drives along the branches which

are most "convenient", i.e. the branches which require a minimal amount

of turning and therefore can be followed at larger speeds. Thus, the deci¬

sion making mechanisms does not only influence the robots behavior at a

global level, but also has an effect on the robot's local movement statistics.

The results discussed so far originate from the simulated virtual robot.

This setup guarantees repeatability over trials and therefore allows for

a systematic evaluation of the proposed model. Only experiments with

a real robot, however, allow the exploration of the robustness and the

generalizability of a model [55]. Therefore, the above experiments are

also performed in the real-world using the micro-robot Khepera. After

one hour of learning (« 90'000 time-steps), the precision of line-tracking
reaches a high level. Analyzing maze coverage reveals that the homogeneity
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Figure 4.5: (a-c) Distribution of the robot's driving speed after lO'OOO,
40'000 and 2'500'000 time-steps of learning respectively, (d) Speed distri¬

bution without decision making.
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Figure 4.6: Maze coverage and inhomogeneity. (a) The deviation from

uniform maze coverage for a robot using the decision making mechanism

(black bars) and a control, for which no random decisions are imposed
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according to their deviation from uniformity. The sorting order is not

necessarily identical for the two distributions, (b) Inhomogeneity for the

virtual and the real-world robot with and without decision making (black
and white bars respectively). Inhomogeneity is defined as the standard

deviation of the rates at which the different oriented branches are visited

in percent of the uniform rate. Please note that this measure is independent
of the total number of crossings.
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is greatly increased by the decision making mechanism (fig. 4.6b). Thus,
the performance of the real-world robot matches the simulated system on

the local as well as the global behavioral level.

4.4 Discussion

We used a neural model of sensorimotor integration to study to what extent

the motor system itself can contribute to the interpretation of behavioral

situations. The proposed neural network controls the behaving robot which

learns to perform in a navigation task, i.e. line following. We show that the

population response of the motor system provides a substrate for the cat¬

egorization of behavioral situations. Based on this categorization, higher
level decision making is engaged in order to resolve behavioral conflicts. As

a result this self-contained model achieves optimal balance between local

and global requirements of the behavioral task.

It is unclear how the concept put forward in this study of detecting be¬

havioral salient events through the motor system, generalizes to behavioral

paradigms other than line following which is a strongly constrained type of

navigation; it can be accomplished using exclusively local information in

space and time, i.e. information that can be acquired from local sensors and

processed in a purely feed-forward fashion (no memory). Apart from this

however, there is no a priori assumption specific to line following. Thus, we

claim that the above concept holds for other behavioral paradigms as well,
as long as the underlying sensorimotor mapping is learned by the agent

autonomously.
As a direct consequence of an agent learning a behavioral task, its

behavioral diversity is reduced. Thus, in the case of line following, the

robots movements along the line become more and more accurate and

reproducible in order to fulfill the goal of keeping the gaze centered on the

line. While this might be very desirable from a purely local point of view,
the agent may be confronted with different if not conflicting behavioral

goals at more global levels. In order to optimally explore a maze of lines, an

agent rather needs to diversify its behavior selectively in those situations

where the constraints imposed by the line following are relaxed, i.e. at

crossings. It is therefore crucial to be able to identify these situations,
in order to maintain an optimal balance between different requirements

4. Motor system and decision making 4.4. Discussion
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of a behavioral task. In this study we have shown, that the population

response of the motor system provides the relevant information in order to

detect such situations. Moreover, incorporating a simple decision making

mechanism, the robot has shown to optimally perform both at a local level,
i.e. accurate line following, as well as at a global level, i.e. even coverage of

the maze.

The linkage between sensory input and behavior involving interpreta¬
tion and behavioral selection is usually referred to as a decision process.

Currently, no dedicated brain structure is known, which contains an ab¬

stract representation of interpretations or decisions, without being related

to a motor system or dependent on continuous sensory stimulation [46].
Furthermore, the cortical areas along the path from primary sensory to pri¬

mary motor areas form a reciprocally coupled network where information

flows in either direction. Here, we hypothesize that the decision process

is an emergent property of this bidirectional interaction. One important

ingredient to a decision process is the detection of situations at which deci¬

sions may be required. A theoretical study suggests that sensory neurons

can encode the variables required to compute a decision, but they neither

carry out this computation nor represent its outcome [77]. In the case of

detecting behaviorally relevant situations, the motor system might be a

more adequate candidate. Given that the sensorimotor mapping is learned

with an appropriate learning rule with no a priori assumptions about the

requirements for a particular task, behaviorally ambiguous situations are

naturally translated into "ambiguous activation" of the motor-map. Put

another way, in order to detect behaviorally ambiguous situations one needs

to know what the different behavioral options are. Since the set of possi¬
ble behavioral choices at each moment in time is strongly constrained by
the characteristics of the agent's motor system, control structures closer

to the motor end of the sensorimotor mapping are better qualified for the

detection of behaviorally ambiguous situations. In addition, the dimen¬

sionality and variability of a perceived environment usually surmounts the

behavioral diversity of an animal, such that interpretations of behavioral

situations might be more efficiently guided by the low dimensional but task-

specific representation of the world at the motor end. Therefore, the motor

cortex can be considered as part of a high-level perceptual system [70].

4. Motor system and decision making 4.4. Discussion



Chapter 5

Temporal population
codes and the formation

of place fields

In the last chapter of the main body of this thesis, we would like to discuss

how the properties of the enhanced temporal population code presented
in chapter 3 can be exploited by higher order systems to form allocentric

representations of a physical environment based on purely visual egocentric

sensory information. The property required for this non-trivial transfor¬

mation is bounded invariance.

5.1 Introduction

Cells in the hippocampus of the rat fire selectively depending on the rat's

position within the environment irrespective of its orientation. The ensem¬

ble of locations where such a cell fires - the place field - is determined by
a combination of different environmental and internal cues [60]. The ques¬

tion arises, however, what kind of computations are performed in order

to map egocentric sensory information about various cues to an allocen¬

tric representation of space. O'Keefe and Burgess proposed that a place
field is formed by the summation of Gaussian tuning curves, each oriented

perpendicular to a wall of the environment and peaked at a fixed distance

from it [18,58,59]. While this proposal tries to explain the actual transfor¬

mation from one coordinate system to another, it does not account for the

69
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problem on how to form egocentric representations of space which could

be appropriate for the proposed computation. Thus, it is yet unclear, how

the information about a rat's distance to different walls becomes available,
and in particular how this proposal would generalize to other environments

where more advanced visual skills, such as cue identification, are required.

Considering the role of the visual sensory modality and its role in pro¬

viding such an appropriate egocentric representation leads to the notion

of bounded invariance. For an agent moving in an environment, visual

percepts of objects may undergo a combination of transforms comprising

zooming and shearing (rotation in depth). Thus in order to distinguish
two views of the same visual object seen from different positions within

the environment one needs not to be invariant with respect to zooming
and shearing. In contrast, non-invariance also means reduced or no gen-

eralizability, i.e. small variations between two visual percepts of the same

object prevents them to be identified. A path between the two extremes

above is bounded invariance which provides both, generalization as well

as specificity. In terms of place coding, this means that the position from

which a particular visual object is perceived can be identified simply by

comparing to visual percepts of the same object from other locations. Ac¬

tually, the property of bounded invariance is tightly coupled to the internal

representation of the visual percepts being topology preserving, i.e. views

of the same object from locations nearby result in similar representations
while their representations become very dissimilar if the locations are far

apart.

In this chapter, we show that model for visual pattern recognition pro¬

posed in the first two chapters of this thesis supports the notion of bounded

invariance. Compared to other approaches towards invariant pattern recog¬

nition [26,45], the temporal population code is not a pattern classifier in the

traditional sense, but rather a transformation which is topology preserv¬

ing, i.e. similar visual stimuli result in similar temporal population codes.

Thus, the visual similarity between different stimuli is directly accessible

from the temporal population code without the need for learning. This

is in contrast to other approaches towards invariant pattern recognition
which require extensive supervised training sessions for all possible combi¬

nations of stimuli in order to make any information about their similarity
accessible.

We investigate to which extent the properties of the temporal popula-

5. Formation of place fields 5.1. Introduction
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tion code can be exploited for place field formation using a virtual robot

which explores its environment with a camera mounted on its top. We show

that the similarity between two different views of the same stimulus directly
translates to the topology of the temporal population coding space. This

guarantees for favorable generalization properties across different views of

the same stimuli which makes extensive scanning of the stimulus space

unnecessary. We will show that a robot can form place-fields from a se¬

ries of temporal population code snapshots of the salient visual cues in

its environment. The response of such a place cell degrades smoothly and

monotonically for increasing distances from the location where it was es¬

tablished. This is due to the bounded invariance properties of the temporal

population code and allows for a stable and accurate position reconstruc¬

tion given the responses of a small number of place cells.

5.2 Methods

Experiments were performed using a simulated version of the real-world

robot Khepera (K-team, Lausanne, Switzerland) programmed in C++ us¬

ing OpenGL (sec. A.3.3). The robot has a circular body with two wheels

attached to its side each controlled by an individual motor. The visual

input is provided by a camera with a viewing angle of 60° mounted on

top of the robot. The neural networks are simulated on a Linux computer

using a neural network simulator programmed in C++ (see Appendix A).
The environment consists of a square arena with a gray floor surrounded

by white walls (fig. 5.1, left). In the following, all lengths will be given in

units of the side lengths of the square environment. Four different black

patterns are drawn on the walls approximately at the hight of the robot's

camera. These patterns, a square, a triangle, a Z and a X constitute the

visual cues from which the robot forms a representation of space.

5.2.1 The temporal population code

The visual information captured by the camera is processed by the cor¬

tical type network proposed in chapter 3. The input image first passes

through an edge-detection stage by convolving it with a difference of Gaus¬

sian (DOG) kernel. The resulting contour represents the activity in the

5. Formation of place fields 5.2. Methods
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Figure 5.1: Place cells from multiple snapshots. The robot is placed in

a virtual square environment with four black patterns on the white walls,
i.e. a square, a triangle, a Z and a X. The robot scans the environment

for salient stimuli by rotating on place. A simple saliency detector triggers
the acquisition of visual snapshots which are subsequently transformed

into temporal population codes (TPC). A place cell is defined through its

associated temporal population code templates.

5. Formation of place fields 5.2. Methods
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LGN, which serves as the input to the cortical network. This network

consists of cortical columns which are selective for one of four orientations

(0°,45°,90° and 135°) and one of three spatial frequencies (high, medium

and low). The lateral connectivity between the columns is exclusively ex¬

citatory and depends on their respective selectivities. While columns of

different spatial frequency selectivities do not interact, the type of connec¬

tivity between columns of the same spatial frequency selectivity depends
on the orientation selectivity. For short distances columns connect to any

other column irrespective of their orientation selectivity or their relative po¬

sition. Long-range connections are permitted exclusively between columns

with the same orientation selectivity. Furthermore, these columns must

be arranged along the common preferred orientation in order to become

connected. For further details about the network, please see section 3.2.1

of this thesis.

The output of the network is given by twelve 100-dimensional vectors

A^j, with i/j G {0°, 45°, 90°, 135°} and v G {high, medium, low} which

reflect the average population activity recorded over 100 time-steps for

each type of cortical column. In the following we concatenate the four

corresponding vectors with the same spatial frequency selectivity leaving
us with three 400-dimensional vectors Av. This set of vectors form the

temporal population code within which visual information of a snapshot
will be represented.

The similarity S(si, s2) between two snapshots si and s2 is defined as

the average correlation between the corresponding vectors, i.e.

S(si,s2) = !z(p(A:\AsJ))j (5.1)

covfAf^Af,^

\/v

where p(A*1, As2\
_

V v i v

S2N

V/var(A^1)var(A^

where Z is the Fisher Z-Transform introduced in section 2.2.2.

5.2.2 Place cells from multiple snapshots

In this study, the response properties of a place cell are given by the similar¬

ity between incoming snapshots of the environment and template snapshots

5. Formation of place fields 5.2. Methods
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associated to the place cell when it was constructed. Thus, for both, the ac¬

quisition of place cells as well as their exploitation, the system needs to be

provided with informative snapshots of its environment. For this purpose,

the robot is equipped with a simple visual saliency detector based on a

heuristic saliency trace s(t) which captures the relative contrast within the

central visual field. Thus, this trace is determined by the activity a(y, t)
of the cells in the LGN, where y G [—1, +1]2 defines the position of the cell

within LGN (assuming the LGN cells lie on the nodes of a regular lattice

covering the [—1, +l]2-plane):

8(t)=
Ee-^(y-t)s
J2a(y^Y

where both sums run over all y. Thus, s(t) becomes large for relatively

high contrast in the central visual field as compared to the periphery. At

each point in time where s(t) > 9sa\iency, a new snapshot is acquired with

a probability of 0.1. A minimal delay between subsequent snapshots is

imposed in order to prevent several snapshots to be taken from the same

gaze. A place-cell k is defined by several snapshots acquired at the same

location but for different orientations. These snapshots will be called tem¬

plates tk with i = 1... n, where n is the number of templates stored per

place cell.

Whenever the robot tries to localize itself, it scans the environment by

rotating in place and taking snapshots of visually salient scenes (fig. 5.1).
The similarity S between each incoming snapshot s3 with j = 1... m and

every template tk is determined using eq. 5.1. The activation ak of place-
cell k for a series of m snapshots s3 is then given by a sigmoidal function

1 + expf —ß(ik — 9) j where ik = ( max S(tO'kVl'k)
\ ^ ^ I \ * ^ ^ I

(5*2)
ik represents the input to the place-cell which is computed by determin¬

ing the maximal similarity of each snapshot to any template of the place
cell and subsequent averaging, i.e. (-)3 corresponds to the average over all

snapshots j.
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5.2.3 Position reconstruction

Given the response of individual place cells, the objective in the following
is to investigate the accuracy with which the robot's position is encoded

by a population of place cells. There are many different approaches to

the problem of position reconstruction or decoding from place cell activity

[104]. Methods like population vectors [29], template matching [97] or the

optimal linear estimator [74] are special cases of the more general basis

function framework. A basis function method uses a linear combination of

basis functions 0fc(x) with the coefficients proportional to the activity of

the place cells a^, i.e.

^afc(/>fc(x).
k

Here we use a direct basis approach, i.e. the basis function 0^(x) directly

corresponds to the average activation ak of place cell k at position x within

the environment. The reconstructed position x is then given by

x

X

argmaxy^qfc(/>fc(x)
k

The reconstruction error is given by the distance between the reconstructed

and true position averaged over all positions within the environment.

5.2.4 Place field shape and size

In order to investigate the shape of a place field </>(x), and in particular
to determine its degree of asymmetry and its size, we computed the two-

dimensional normalized inertial tensor I given by

I%3=
Ë^M

with r = {ri,r2} = x — x where x = ^x0(x)/^0(x) corresponds to

the "center of gravity". b%3 is the Kronecker delta. I is symmetric and can

therefore be diagonalized, i.e. I = VTDV, such that V is an orthonormal

transformation matrix and Dn > 0 for i = 1, 2. A measure of the half-

width of the place field along its two principal axes is then dt = \flDu

5. Formation of place fields 5.2. Methods
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Figure 5.2: Tolerance with respect to viewing angle and distance. The

similarity between pairs of the same stimuli (square, triangle, Z or X)
under different viewing angles (a) and distances (b). Note that in (b),
similarity is plotted as a function of relative stimulus size which is inversely

proportional to viewing distance.

such that a measure of asymmetry is given by

di — d2
0<

di + d2
< 1

This measure becomes zero for symmetric place fields while approaching
one for asymmetric ones. In addition, we can estimate the size of the place
field by approximating its shape by an ellipse, i.e. 7idid2.

5.3 Results

5.3.1 Bounded invariance

Initially, we would like to investigate the topological properties of the tem¬

poral population coding space. In particular we are interested in how

5. Formation of place fields 5.3. Results
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Figure 5.3: Similarity surface for the four different cues. Similarity between

a reference snapshot of the different cues taken at the position marked

by the white cross and all the other positions surrounding the reference

location.

environmental neighborhood relationships are translated and represented
in the similarity between temporal population code snapshots. This is

illustrated in fig. 5.2 where the similarity S (eq. 5.1) between a pair of

snapshots of the same stimuli under different viewing angles (fig. 5.2a) and

distances (fig. 5.2b) is plotted. Stimuli which are visually similar have sim¬

ilar temporal population codes. The bell-shaped tuning of the similarity
measure shows the bounded invariance of the temporal population code

with respect to the two geometric transforms, shearing (rotation in 3D)
and scaling.

In the experimental setup investigated subsequently, the robot scans

for cues on the walls. Depending on the robot's position within the envi¬

ronment, the different cues undergo a geometric transformation which is

a combination of scaling and shearing. Fig. 5.3 shows the similarity to a

reference snapshot taken at the location of the white cross for the four dif¬

ferent cues. Although the precise shape of the similarity surface differs for

the different stimuli, the similarity decreases smoothly and monotonically
for increasing distances to the reference point for all stimuli.

The similarity surface for different locations of the reference point is

5. Formation of place fields 5.3. Results
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Figure 5.4: Similarity surface of Z cue for different reference points. The

distance/angle of the reference point to the cue is kept constant along the

rows/columns respectively.

shown in fig. 5.4 for the Z cue. Although the Z cue has no vertical mirror

symmetry, the similarity surfaces are nearly symmetric with respect to the

vertical center line. Thus, using a single cue, localization is only possible
modulo a mirror along the vertical center. The implications of this will

be discussed later. Concerning different distances of the reference point
to the stimulus, fig. 5.4 (along the columns) shows that the specificity of

the similarity measure is large for small distances while the tuning becomes

broader for large distances. This is a natural consequence of the perspective

projection which implies that the size of a stimulus is inversely proportional
to the viewing distance. Thus, at large viewing distances the size of the

stimulus changes little for small movements around the reference point. At

small distances, however, small movements can yield dramatic changes in

stimulus size such that the similarity measure becomes very specific.

5.3.2 Place cells from multiple snapshots

In the following we define a place-cell as a unit whose response properties
are determined by eq. 5.2 based on four associated snapshots/templates
taken at the same location within the environment. In the following, the

location at which the templates for a place-cell are recorded will be called

the "associated" location. The templates for each place-cell are chosen by
the stochastic saliency detector and therefore there is no explicit control

5. Formation of place fields 5.3. Results
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over the actual snapshots defining a place-cell, i.e. some place cells are

defined based on two or more templates of the same cue. Furthermore, the

stochastic nature of the saliency detector does not allow for any control

over the precise position of the stimulus within the visual field. This is,
where the intrinsic translation invariance of the temporal population code

plays an important role, i.e. the precise position of the stimulus within

the visual field at the time of the snapshot has no effect on the resulting

encoding as long as the whole stimulus is visible.

Fig. 5.5 shows examples of the receptive fields (subsequently also called

place fields) of such place cells acquired at the nodes of a regular 5x5

lattice within the environment. Most of the place fields have a Gaussian¬

like tuning which is compatible with single cell recordings from pyramidal
cells in CA3 and CAl [60], i.e. the place cells maximally respond close

to their associated positions and degrade smoothly and monotonically for

increasing distances. Some place cells have multiple subfields in that they

respond to different locations in the environment with a similar amplitude.
In accordance with experimental data [59], there appears to be a tendency
for place fields in the center to be more symmetric then those towards the

borders of the environment. A more detailed investigation regarding place
field shape will follow.

5.3.3 Position reconstruction

Subsequently, we determine the accuracy up to which the robot can be

localized within the environment as a function of the number of place cells

and the number of snapshots taken per location. Therefore we use the di¬

rect basis approach for position reconstruction as described in section 5.2.3.

As basis functions we take the normalized response profiles of place cells

constructed from four templates at the nodes of a regular lattice of vary¬

ing resolution covering the environment. Fig. 5.6 shows the reconstruction

error averaged over the environment as a function of the number of place
cells as well as the number of snapshots taken at each location. The re¬

construction error decreases monotonically both for an increasing number

of place cells as well as an increasing number of snapshots. An asymptotic
reconstruction error is approached very fast, i.e. for more then 25 place
cells and more then two snapshots per location. Thus, for a behaving or¬

ganism exploring an unknown environment, this implies that a relatively

5. Formation of place fields 5.3. Results
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Figure 5.5: Place fields of 5 x 5 place cells. The average response of 5 x 5

different place cells for all the positions of the robot within the environment.

Darker regions correspond to stronger responses. The relative location of

each place field within the figure corresponds to the associated location

of the place-cell within the environment. All place fields are scaled to a

common maximum response.
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sparse exploration strategy suffices to create a complete representation of

the new environment.

We now would like to analyze the dependency of the reconstruction

error on the number of snapshots in greater detail. Above we have seen

that localization with a single snapshot is only possible modulo a mirror

along the axis where the cue is located. The systematic reconstruction error

introduced by this short-coming can be determined analytically and is «

0.13 in units of the side-length of the square environment. For an increasing
number of snapshots, the probability that all snapshots are from the same

pair of opposite cues, decreases exponentially fast and we therefore also

expect the systematic error to vanish. Considering 100 place cells, the

difference in reconstruction error between 1 and 10 snapshots amounts to

0.147 + 0.008 (mean ± SD) which is close to the predicted systematic error

due to the effect discussed above. Thus, an increasing number of snapshots

primarily helps to resolve ambiguities due to the symmetry properties of

the temporal population code.

5.3.4 Place field shape

The place field shape is analyzed by computing its two-dimensional nor¬

malized inertial tensor from which the place field asymmetry and size can

be estimated as described in section 5.2.4. Fig. 5.7 shows scatter-plots of

both, place field asymmetry and size versus the distance of the place field's

associated location from the center of the square environment. There is a

tendency that off-center place cells have more asymmetric place fields than

cells closer to the center (r=0.32) which is in accordance with experimen¬
tal results [59]. Regarding place field size, there is no direct relation to

the associated position of place field (r=0.08) apart from the fact that the

variance is maximal for intermediate distances from the center. It must be

noted, however, that the size of the place field critically depends on the

choice of the threshold 9 in eq. 5.2. Indeed different relations between

place field size and location can be achieved by assuming non homoge¬
neous thresholds, which for example might be determined for each place
cell individually based on its range of inputs. The measure for place field

asymmetry, in contrast, has shown to be more stable in this respect (data
not shown).

5. Formation of place fields 5.3. Results



82

# snapshots 10 100
75

# placecells

Figure 5.6: Position reconstruction error. The average error in position
reconstruction as a function of the number of snapshots taken at each

position and the number of place cells considered. The place cells used for

reconstruction are located on the nodes of a regular lattice which spans

the environment evenly.
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Figure 5.7: Place field asymmetry and size. Scatter plots of the place field

asymmetry/size versus the distance of the place fields associated location to

the center of the environment. The correlation coefficients are r=0.32/0.08
respectively.

5.4 Discussion

We have shown that the bounded invariance properties of visual stimuli

encoded in a temporal population code are well suited for the formation

of place fields. More specifically, the topology preservation of similarity

amongst different viewing angles and distances allows a direct translation of

the visual similarity between two views to their relative location within an

environment. Due to the relatively broad tuning of the bounded invariances

only a small number of place cells are required for self-localization, i.e.

position reconstruction accuracy saturates for more then 25 place cells.

Regarding the shape of the receptive fields of these place cells, only weak

correlations between place field asymmetry/size and the distance of the

place field to the center of the environment have been found.

As opposed to the present approach, experimental results suggest that

place field formation in the hippocampus relies on multiple sensory modal¬

ities and not only vision. Although it was shown that vision may play an

important role [40], proprioceptive stimuli, for example, can become im¬

portant in situations where either visual information is not available such
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as in the dark or in the presence of visual singularities, where two different

locations elicit the same visual sensation [8]. A type of information which

is very much related to proprioceptive stimuli, is the causal structure of

behavior which imposes continuous movement in both space and time, i.e.

the information about the last location can be of great importance for es¬

timating the current location [64]. Indeed, a recent study has shown that

position reconstruction error greatly reduces, if this additional constraint

is taken into account [104]. In the present approach we analyzed the prop¬

erties of place cells in the absence of a behavioral paradigm. Thus, it is not

meaningful to integrate information over different locations. We expect,

however, that for a continuously behaving robot this type of information

would be particularly useful to resolve the ambiguities introduced by the

mirror invariance in the case of a single visual snapshot.
As opposed to the large field of view of rats (« 320° [36]) the robot

used in this study has a very restricted field of view of 60°. This has direct

implications on the robots behavior. While a rat has probably continuous

visual stimulation, the robot has to scan for visual stimuli. The advan¬

tage of only considering a 60° field of view is, however, that the amount

of information contributed by single oriented views can be investigated.
We have shown, that a single view allows for localization modulo a mirror

along the orientation of the corresponding stimulus. This ambiguity can

be resolved taking additional snapshots into account. In this context, max¬

imal additional information can be gained if a new snapshot is taken along
a direction orthogonal to the first snapshot. In addition, from a behav¬

ioral point of view, it would also be more efficient to compare snapshots of

stimuli on neighboring rather than opposite walls, since the former would

require smaller turn angles than the latter. Although, these considera¬

tions do not directly translate to the situation of a rat, they might still be

relevant, since, as mentioned above, the rat has not complete panoramic

vision, such that rotational movements are still required for two opposite

snapshots, while no movement would be necessary at all in the case of two

neighboring stimuli.

In the present study, the acquisition of place cells was supervised, in

that their associated locations are assumed to correspond to the nodes of a

regular lattice covering the environment. While this allows for a controlled

statistical analysis of the place cell properties, it is not very likely that

an autonomously behaving agent can acquire place cells in such a regular
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fashion. It is more likely, that place cells have to be acquired incremen¬

tally based on purely local information. Information about the number

of place cells responding or the maximal response of any place cell for a

particular location is locally available to the agent, and can therefore be

used to selectively trigger the acquisition of new place cells. In general,
the representation will most likely also reflect further behavioral require¬
ments in that important locations where decisions need to be taken, will

be represented by a high density of place cells. Locations leaving little or

no behavioral options will have accordingly fewer associated place cells. A

possible solution to the problem of how an agent can bootstrap the notion

of behavioral relevance has been proposed recently [99]. Thus, there are

different strategies for the autonomous acquisition of place cells, each of

which is, however, tightly coupled to the behavioral paradigm in question.

Every type of navigation requires the acquisition and exploitation of a

world model. Starting with the work of Tolman, two schools of thought
about the type of such a world model have been distinguished [88]. The

"stimulus-response school" states that navigation implies the direct map¬

ping between sensory stimuli and motor responses. The "cognitive map

school" postulates the formation of an internal representation of the ex¬

ternal world. Thus, the two schools are not contradictory, but the latter

does rather conceptualize the type of intermediate internal computations
and representations which could be particularly useful for navigation. The

question arises, however, what kind of representation would be particularly
useful for what type of navigation.

On one hand, an egocentric representation of the world as in the stimulus-

response approach allows a simple mapping between orientation dependent
sensor readings and relative actions. On the other hand it does not pro¬

vide any notion of environmental topology as an allocentric representation
does. Navigation based on the latter, however, relies on global (allocentric)
actions, like going south, which in turn have to be translated back to an

egocentric representation in order to become meaningful. Thus while an

egocentric representation seems more appropriate for the reactive control

of an organism, the allocentric representation has its strengths in the cog¬

nitive control. There is no a priori reason why not both representations
could be in use simultaneously. This is in contrast to studies modeling the

formation of place cells and emphasizing their direct role in goal oriented

behavior [8, 18] while neglecting any direct egocentric stimulus-response
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mappings. Even more, experimental studies suggest that the hippocam¬

pus plays an important role in spatial learning while it is not required to

exploit navigational skills which have been acquired before a lesion or inac-

tivation of the hippocampus [7,61]. Thus, we hypothesize that place cells

assist an egocentric stimulus-response based navigation system by provid¬

ing allocentric information rather then playing an active role in navigation
itself. For an egocentric navigation system, for example, it is impossible
to identify a location while approaching from different directions. Access

to this kind of information, however, allows to split a complete naviga¬
tion task into several subtasks such that learning periods can be shortened

significantly.

Furthermore, we believe that the egocentric representations of the envi¬

ronment as given by the temporal population code are not only interesting
in terms of the formation of allocentric representations of space, i.e. place
fields. They might also play a vital role in egocentric navigational strate¬

gies such as visual guidance for which the property of bounded invariance

would allow for both, specificity and tolerance in cue detection.

5. Formation of place fields 5.4. Discussion
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Conclusion

The goal of the present dissertation was to study the coding of information

in sensory as well as motor systems in the context of a behaving system.
The original motivation for this work came from a very general question in

theoretical computational neuroscience, namely, to what extent can arti¬

ficial neural networks approximate real biological systems, if they are not

embedded in the behavioral feedback loop like biological organisms inter¬

acting with their environment. Any type of coding depends strongly on

the properties of the information to be encoded as well as the requirements
of the observer reading and interpreting the code. Thus, in regard of the

behavioral loop, the interaction of an agent with its environment can put

severe constraints on the type of coding used, both at the sensory and the

motor end of the system. Therefore, the validity and relevance of a coding

strategy may not be fully established unless it is tested and analyzed in

the context of a complete behaving system.

In the first part of the thesis, the temporal population code was intro¬

duced as a new proposal of how information is encoded and processed in

neural systems. Starting from the initial question whether and how the

brain may exploit time as an additional coding dimension, the temporal

population code goes one step further in neglecting the spatial dimensions

and suggesting a purely temporal coding strategy. It is probably save to

say that the brain would not employ such an extreme strategy throughout,
but rather uses a mixed approach depending on the needs of the different

subsystems in question. One of the aims of this thesis was, however, to

demonstrate the potential advantages of temporal coding in combination

with non-topological statistics as well as the latter by itself. In particular,
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it was shown that the temporal population code exhibits properties which

are of critical importance for behavioral systems which interact in real

time with noisy environments. The speed at which information becomes

encoded is very fast. In addition, the encoding progresses incrementally
such that information can be read by subsequent stages of processing before

the encoding process has actually completed. This allows for the concur¬

rent processing of information across different stages which can be of great

importance for behaving systems engaged in time critical tasks. Using
an enhanced version of the encoding network, reflecting known properties
of the primary visual cortex, it was also shown that the temporal pop¬

ulation code is well suited for those pattern recognition tasks mammals

excel at, e.g. to reliably classify large stimulus sets of increased complexity.
The system can cope with significant within class variability as found in

the standard pattern recognition benchmark database MNIST for which it

achieves classification results close to 95%. This falls short of other highly

optimized pattern classifiers. Given the fact, however, that the system con¬

sidered does not use any learning but is merely transforming the spatial

input patterns into a different representation, this performance is rather

remarkable.

An important question regarding coding strategies is how information

becomes encoded and how it is decoded. The model of a cortical network

considered in the first part of this thesis is responsible for the genera¬

tion of the temporal population code. This network, in particular in its

enhanced version, reflects some basic properties of primary visual cortex

such as the orientation and spatial frequency selectivity of the individual

neurons and the non-isotropic connectivity between neurons depending on

their individual feature selectivity. More importantly, however, the model

assigns a clear role to the extensive lateral connectivity found within cor¬

tical structures. This is in contrast to most hierarchical models of pattern

recognition which mainly focus on feed-forward processing of information.

For the cortical network discussed, the lateral connections and more pre¬

cisely the transmission properties of these connections play a key role in

the coding process. The temporal population code is based on the coordi¬

nated temporal activity patterns of a large population of neurons. Thus,
no global reference signal is needed, to which the spike timing of different

cells needs to be adjusted in order to encode information. The lateral con¬

nectivity between the neurons adjusts the relative spike timing of different
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cell pairs, and the statistics of these relative spike timings constitutes the

code. More generally spoken, since it is probably more reasonable to think

of temporal coding in terms of relative spike timing between cells rather

then global spike timing, lateral recurrent interactions are inevitable. Re¬

current interactions lead to non-trivial network dynamics, meaning that

the temporal activation patterns of neurons are not merely reflecting the

temporal structure of their input. The vast recurrent connectivity in bio¬

logical neural systems does not necessarily imply that the brain must use

temporal coding strategies, however, it does not rule it out either.

In the studies presented in this thesis, the temporal population code

was read out using purely statistical methods only. However, we studied

a more neural approach towards this problem in the context of a different

project [41], where we investigated a recent proposal for the processing of

continuous temporal streams of information, the Liquid State Machine [49].
This model is based on the structure and dynamics of cortical micro-circuit s

which essentially project the information to be decoded into a high dimen¬

sional space, where it can be classified using simple perceptron-like clas¬

sifiers. Employing the original proposal with a liquid that is initialized

randomly before stimulus presentation results in a moderate performance.
Based on an analysis of the liquid's internal states, we explored further ini¬

tialization strategies. Whereas a deterministically initialized liquid results

in the best performance, we find that in case the liquid is never reset, i.e.

it continuously processes the sequence of stimuli, the classification perfor¬
mance is greatly hampered by the mixing of information from past and

present stimuli. This problem of the mixing of temporally segregated in¬

formation is not specific to this particular method but relates to a general

problem that any circuit that processes continuous streams of temporal
information needs to solve. Considering the biological realism of the en¬

coding and decoding stage, this study suggests that the brain solves the

problem of temporal mixing by applying reset signals at stimulus onset.

In fact, the initial sharp onset response observed in the temporal popula¬
tion code would be particularly well suited to convey this type of signal

indicating the onset of a stimulus to trigger the read out system.

As already discussed, the assessment of any coding strategy is strongly

dependent on its range of applications. However, the uniformity of cortical

anatomy suggests affinities between the coding of information of different

modalities in cortical structures. Therefore, the objective of the second
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part of this disertation was to investigate whether the coding principles
studied would generalize to other modalities. In particular, we were in¬

terested, to what extent the concept of non-topological codes would be

advantageous in the motor system. In a simple model of sensori-motor

control, we studied the general problem of how an autonomous system
could detect the presence of different behavioral options. It was shown,
that applying a simple non-topological statistical measure to the motor

system allowed to reliably detect these behaviorally ambiguous situations.

Due to the invariance properties of non-topological codes, the detection was

invariant to the detailed sensory manifestation of these situations. Thus

the same coding principle can be used in the motor system. It must be

emphasized, however, that in this context, the motor system is rather a

high level perceptual system than an output system. The nature of non-

topological codes and in particular its invariance implies that they are

not very well suited for the encoding of motor commands. This system,

however, shows very nicely, that non-topological codes can coexist with

other codes in the same physical substrate without interference. Thus, the

motor system uses a population vector coding strategy to encode the re¬

quired movements of the robot to fulfill the sensori-motor task on top of

which the non-topological system can determine the behavioral relevance

of situations.

In the last part of this thesis, the bounded invariance properties of the

temporal population code were investigated. A representation of a stimulus

is bounded invariant to a particular transformation, when its representa¬

tion does not change for small transformations, however, it does change for

larger transformations. An alternative view is, that the representation is

topology preserving, i.e. similar/dissimilar stimuli (in terms of the transfor¬

mation in question) have similar/dissimilar representations. It was shown

that the temporal population code has this property in that it preserves

an intuitive notion of visual similarity. Specifically, it was shown that it

is bounded invariant to visual stimuli which undergo transformations like

zooming or rotation in depth. Considering an autonomous agent, its vi¬

sual percepts of the environment will undergo a combination of these two

transformation while moving around. Thus, small movements will lead

to similar representations of the visual stimuli while larger displacements
will lead to completely different internal representations. It was shown,
that this effect can be exploited to construct place cells, i.e. cells which are
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selectively active depending on the agents position within the environment.

Interestingly, the concept of bounded invariance is closely related to a

different recently proposed coding strategy which postulates that a com¬

mon principle for the internal representation of sensory information is that

these representations should vary on a slow time scale only [14,39,98]. An

agent moving continuously in space and time will perceive its environment

in a mostly continuous manner. Thus, a representation of this environment

with bounded invariance will change at the time scale at which the global

percept is changing rather than, for example, at the rate at which a single

photo-receptor is responding to its stimulation. Thus, in the context of a

behaving agent, a bounded invariant representation also conforms to the

concept of "slowness", i.e. it changes on the behavioral rather than a neu¬

ral time-scale. In a preliminary study, we investigated to what extent this

argumentation holds by studying a system which uses optimization tech¬

niques to construct representations from multi-modal sensory information

which conform to the proposed "slowness" criterion. Indeed, we found that

the cells emerging after several such optimization stages, have developed

response properties similar to place cells found in rat hippocampus. Thus,
it will be the objective of future work to elaborate on these preliminary
results in order to detail what the conceptual similarities and differences

between the temporal population code, specifically its various invariance

properties, and the recently proposed optimization approaches are.
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6. Conclusion



Appendix A

The wSim simulation

environment

A.l Motivation -

yet another neural simulator?

There are many ways to simulate neural networks. The different tools

may range from very general purpose tools such as Matlab or C++ to very

specialized programs such as Neuron [81] or Genesis [16] which put a strong

emphasis on biophysically detailed neuronal models. The individual choice

depends very much on the specific needs of a project.
In principle, todays computers and the tools that come with it are par¬

ticularly badly suited to simulate neural networks. The greatest mismatch

arises due the two most prominent properties of neural systems, their struc¬

tural diversity and their massively parallel operation. Modern computers
and algorithms, however, are optimized for serial execution of instructions

and homogeneous data structures.

Unfortunately, attacking the problem regarding parallel computation
with clusters of computers or multi-processor systems is in general not

very promising because the communication between the systems becomes

the limiting factor. Thus, for very specific problems, where a neural net¬

work can be split into different modules which require minimal commu¬

nication between each other, such an approach might be applicable. The

distribution of massively inter-connected networks, however, will generate

a large amount of communication overhead. Thus, for now, the only way to

93



94

"tackle" the problem of massively parallel computation is to optimize the

serial implementation as much as possible in order to achieve an optimal

performance on a single processor.

The structural diversity of neural networks manifests itself at different

levels. First, there are a variety of neural cell and synapse types one would

possibly like to use. Second, connection patterns between different cell

groups might be sparse or all-to-all, random or structured. Thus, in both

cases, one faces a trade-off between using customized code which is very

fast but unportable and hard to reuse, as opposed to follow a more general

approach which, however, might lead to poor performance.
In summary, there is a need for a solution, which is maximally flexi¬

ble while conceding a minimum of compromises in terms of performance.

Therefore, the strategy in the design of the wSim simulation environment

was to provide an elaborate C++ library, allowing for maximal flexibility
while relying on heavy use of templates, admitting for extensive optimiza¬
tions at compile-time. In the following, some critical design issues con¬

cerning the main wSim library, as well as the different components of the

complete simulation environment will be discussed.

A.2 Design strategies

The main design considerations responsible for both the flexibility of the

library as well as its highly optimized performance will be discussed in the

following sections.

A.2.1 Polymorphism and templates

The structural diversity of neural networks suggests a concept which was

mainly introduced with object oriented programming, i.e. polymorphism

(see [82] for a general introduction). Run-time polymorphism refers to a

programming language's ability to process objects differently depending
on the object type, whereas the decisions about which code to execute

are taken at run-time. Thus, a library for neural networks could use this

mechanism to selectively execute code depending on the type of cell or

synapse currently used. Unfortunately, the additional machinery required
for this type of flexibility can have a severe effect on run-time performance,
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specifically if this machinery has to be invoked for each cell or synapse. This

problem can be circumvented by choosing the smallest object to be for

example a group of cells instead of single cells. This, however, is by far not

as elegant and makes the library less intuitive for the user. Furthermore,
such a design of the library would have implications on the data alignment
of the library which is discussed in the next section.

An alternative to run-time polymorphism are templates which provide

compile-time polymorphism, i.e. decisions about which code to execute

are performed at compile-time. Thus templates may cause an increase

in compilation time while having no impact on the run-time performance
of a library. In addition, using templates allows for a policy-based design
of the library which guarantees for maximal flexibility and scalability [5].
In essence, this means that the functionality of the library is split into

orthogonal components, i.e. mutually independent components, which then

can be combined in a single instance at compile-time through templates.
This yields a very diverse and versatile functionality which is much superior
to other mechanisms such as multiple inheritance.

A.2.2 Data alignment and locality of information

Another important issue in simulating neural networks is the alignment of

data. Usually, networks become rather large and therefore require a lot of

memory to store the state variables of the individual cells and synapses.

An important component in modern computers is the cache, a special type
of memory which is directly located on the processor, providing extremely
fast access to data. Compared to the normal memory, however, the cache

is usually a lot smaller, such that only a limited amount of consecutive

data can be stored. Thus, if a program requires access to data which is

not in the cache, the main memory has to be consulted, which slows down

processing significantly. Therefore, it is advisable to organize the state

variables such that the ones that share a common computation are located

near each other in memory such that it becomes very likely to have them

cached simultaneously.
Since a common property of neural networks is that computations are

based on local information only, i.e. a cell only knows about its own po¬

tential, the state variables of a single entity should be grouped in memory.

This is in contrast to another approach where one would rather group the
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state variables of the same type across cells. Regarding the question about

the smallest object raised in the previous section, this implies that each

cell forms a single object rather than a group of cells being the smallest

entity. Thus, both, in terms of library design (intuitive, data encapsula¬

tion) and performance (compile-time optimizations, data alignment), the

strategy of defining the single entities, cells and synapses, as individual

objects is well justified and was pursued in the development of the wSim

simulation environment.

A.3 wSim components

A.3.1 Library

The library is the main component of the simulation environment providing
the basic functionality to define and build neural networks. Each network

is organized in hierarchy in which modules form the basic structural unit.

A module is a container which can hold other modules, groups of cells

(CellGrp) and groups of synapses (SynGrp).
The library provides the founding to define cell and synapse types used

to instantiate CellGrp's as well as SynGrp's. A cell type, for example,
is defined by declaring a new class which derives from the base cell type

WCellTypeo provided by the library, i.e.

#include <wSim.hpp>

class MyCell : public WCellType<float> { /* ... */ };

where the template argument <f loat> declares the output of the cell to

be a single precision floating point number. Similarly, synapse types are

derived from a base synapse type WSynTypeo

class MySynapse : public WSynType<AffCellType,

EffCellType> {

/* ... */

};

where AffCellType and EffCellType are the afferent and efferent cell

types of MySynapse. For both, cells and synapses, state variables are de¬

fined as members and the computations performed on these variables are
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defined as member functions. The following example shows how this might
look for a very simple linear unit:

class MyCell : public WCellType<float> {

public :

// two state variables, activation and input
float act, input;

// this function is called for each time step

float update() {

act=input;

input=0;
return act ;

}

};

For a more detailed and elaborate example, please see section A.4.

To instantiate a group of cells of type MyCell, one creates an object of

type WCellGrp<MyCell> i.e.

new WCellGrp<MyCell>(module,"MyCell",20,20);

where the first argument is a pointer to a module to which this CellGrp
should belong, the second argument is a string with the objects name,

and the last two arguments give the size of the group, i.e. 20 x 20 cells.

Similarly, a SynGrp is created by the following instruction:

new WSynGrp<MySynapse>(afferent,efferent);

where afferent and efferent are pointers to the pre- and postsynaptic

CellGrp's respectively.

Thus, the library by itself provides the basic functionality to define and

build a hierarchical network of different cell and synapse types whereas

the different objects can be grouped in different modules. Running such a

network thereafter, is a rather straight forward task. Each module contains

a cycle function which updates all the objects and sub-modules. Thus, by

calling the cycle function of the root module, also called the process, all

objects are updated recursively in an order given by the hierarchy.

A. The wSim simulation environment A.3. wSim components
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A.3.2 Engine

The simulation environment provides two different engines to run the pro¬

cess. A very simple and light-weight non-interactive engine runs at the

console. A more elaborate engine provides a graphical user-interface (GUI)
which allows direct interaction with the running process as well as the on¬

line inspection of different state variables. Both engines dynamically load

the process as compiled binary code. The console-based engine, thereafter,

repeatedly calls the process' cycle function until it gets terminated by the

user. The purpose of this engine is mainly to run automated large scale

simulation in the background where no user interaction is required.
The GUI engine's primary use is to simulate processes in the foreground

providing the user different ways of interaction. The basic functionality of

this engine is:

• starting, stopping and initializing a process

• on-line manipulation of network parameters

• visualization of state variables (see fig. A.l)

• selective activation and deactivation of modules/objects

• exporting state variables to Matlab

The visualization of state variables is kept at a minimal level. There are

space plots of cell as well as synapse groups. Furthermore, each state

variable of different cells/synapses or groups of those can be inspected in

time plots or histograms. For more elaborate data visualization, the engine

provides the possibility to export data to Matlab which provides a much

richer and more flexible graphics facility.

A.3.3 Plugins

As a special type of module, the library also defines devices. These are plug-
ins which allow the interaction with external devices such as robots or cam¬

eras. At the present state, four different devices are defined: wKhepera,

wVideo, wKleopatra, wAudio.

A. The wSim simulation environment A.3. wSim components
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Figure A.l: The GUI engine of the wSim simulation environment consists of a main

window (center), which allows to interact with different modules as wells as objects, i.e.

CellGrps and SynGrps. Different monitors allow to inspect traces of objects online. The

two windows on top show group plots of two CellGrps. The monitor in the lower left corner

shows the traces of a SynGrp and its arborization. The lower right corner contains a time

plot, which allows to investigate the evolution of traces over time for both, CellGrps and

SynGrps. In addition, selections of single or groups of cells or synapses can be visualized

using an intuitive drag-n-drop interface.
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100

The wKhepera device provides an interface to the mobile robot Khepera

(fig. 4.1a). Special CellGrp's provide the facility to drive the robots wheels,
as wells as to read the different sensory values from the eight IR-sensors

arranged around the robots body. The wVideo device provides access to

CCD cameras which are often mounted on top of the Khepera robot. A

special video CellGrp reads this images and provides them to the rest of

the simulation.

The wKleopatra device is a virtual approximation of the Khepera

robot, providing the same functionality. This robot moves in a virtual

environment which can be specified by a scenery description file. The en¬

vironment is rendered in OpenGL as seen from a virtual camera mounted

on top of the robot. Thus, the wKleopatra device provides both, access to

the virtual robot as well as the virtual camera. A main goal in the design
of these interfaces was to provide a common interface for both real-world

as well as virtual robot, such that the same simulation can be performed
in the virtual as well as a real environment, simply by choosing a different

back-end. This is very convenient, because often, large scale experiments
are performed preferably in a virtual environment, whereas the real-world

experiment is necessary to show that a specific model can c ope with the

real world. This strategy, for example, was successfully applied in the work

described in chapter 4.

Last but not least, the wAudio provides access to auditory information,
i.e. it interfaces to the soundcard of a computer and provides the power

spectrum of a user-defined input source.

A.4 Example process

The following example illustrates how a complete process with two Cell¬

Grp's of cell types InputCell and OutputCell and a connecting SynGrp
of type MySynapse is built. The header file contains the declarations of

the different cell and synapse types as well as the process. In the source

file, the process is then constructed by instantiating the CellGrp's and the

SynGrp within the constructor of the process.
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Header File for wSim process

Project
Author

Started

Description

Change log

example

rwyss

Tue Aug 5 10:05:48 2003

#include <wSim.hpp>

/************* Cell Definitions *******************/

// a randomly spiking cell

class InputCell : public WCellType<bool,1> {

public :

float act;

static float fireProb;

// this function is called for each cell

// at each time step; return true if a spike

// is emitted, false otherwise

bool update() {

act=randu()<f ireProb;

return act>0;

}

// this function is called once, when a group of cells of

// type 'MyCell' is created; thus, specify which traces

// (pot, excin ...) or static parameters (thresh, tau ...)

// should be accesible within the GUI
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static void define() {

WTrace::add(&InputCell::act ,"activity","act",

false,QColor(255,255,255)) ;

WParam::add(&fireProb,false,"fire probability",0.1);
}

static const QString getDescriptionO {

return "random spiking cell";

}

};

class OutputCell : public WCellType<bool,0> {

public:

// an integrate and fire cell

float act, pot, excin;

static float thresh, tau;

// this function is called for each cell

// at each time step; return true if a spike

// is emitted, false otherwise

bool update() {

pot+=l/tau*(excin-pot);

excin=0; // reset

if (pot>thresh) {

pot=0;

act=l;

return true;

} else {

act=0;

return false;

}

}

// this function is called for each cell

// when the process is reset or parameters are

// changed; v is 3D vector indicating the cells
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// position within the cell group

void init(WVector v) {

pot=excin=0; // reset all values to zero

}

// this function is called once, when a group of cells of

// type 'MyCell' is created; thus, specify which traces

// (pot, excin ...) or static parameters (thresh, tau ...)

// should be accesible within the GUI

static void define() {

WTrace::add(&OutputCell::act ,"activity","act",

false,QColor(255,255,255));

WTrace::add(&OutputCell::pot ,"potential","pot");

WTrace::add(&OutputCell: :excin ,"exc. input","excin");
WParam::add(&thresh,false,"threshold",2);

WParam::add(&tau,faise,"tau",3);

}

static const QString getDescriptionO {

return "integrate & fire cell";

}

};

/************* Synapse Definitions ****************/

class MySynapse : public WSynType<InputCell,OutputCell,
FwdMask> {

public :

static float strength;
float weight;

// this function is called (d+1) time-steps after the

// presynaptic cell fired, where d is the delay set by

// the function void setDelay(int d);

// a: presynaptic, b: postsynaptic
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void update(InputCell &a, OutputCell fee) {

e.excin+=weight;
}

// see above; vl: presynaptic, v2: postsynaptic
void init(WVector vl,WVector v2) {

setDelay(O);
// f.ex. set weight to the topographic distance

// between pre- and postsynaptic cell

weight=strength*length(vl-v2);
}

// see above

static void define() {

WTrace:: add(&MySynapse ::weight,"weight");
WParam:: add(festrength,true,"strength",0.1);

}

static const QString getDescriptionO {

return "excitatory all-to-all connection";

}

};

/************* Process Definition *****************/

class MyProcess : public WProcess {

public:

MyProcess ();

protected:

WCellGrp<InputCell> *input;

WCellGrp<OutputCell> *output;

WSynGrp<MySynapse> *synapse;
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};
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Source File for wSim process

Project
Author

Started

Depends

Description

Change log

example

rwyss

Tue Aug 5 10:05:48 2003

example.hpp

#include "example.hpp"

float InputCell::fireProb;
float OutputCell:: thresh, OutputCell:: tau;

float MySynapse:: strength;

MyProcess::MyProcess() : WProcessC example") {

// constructing two cell groups, each of size 25x25

input = new WCellGrp<InputCell>(this,"Input",25,25);

output = new WCellGrp<0utputCell>(this,"Output",25,25);

// connecting the two cell groups

synapse
= new WSynGrp<MySynapse>(input,output);

}

/*** DO NOT CHANGE ANYTHING BEYOND THIS LINE ***/

// this function is called from wSimMonitor/wSim

extern "C" WProcess *createProcess() {

// creates the process and returns a pointer to it
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return (WProcess*) new MyProcess();
}
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