

Constraints on galaxy formation timescales from observed alpha overabundance

Other Conference Item

Author(s): Greggio, Laura

Publication date: 2003

Permanent link: <https://doi.org/10.3929/ethz-a-004584673>

Rights / license: [In Copyright - Non-Commercial Use Permitted](http://rightsstatements.org/page/InC-NC/1.0/)

Constraints on Galaxy Formation Timescales from observed alpha Overabundance

Laura Greggio, Osservatorio Astronomico di Padova, Italia

Stars and Structure Formation – ETH, Zurich 18-22 August, 2003

At given <Fe>, Mgb is strong relative to solar proportions

• SNII provide the α 's to the ISM m \gtrsim 8 m₀ \Rightarrow $\tau_{SNII} \lesssim$ 0.03 Gyr

• SNIa provide a substantial part of the Fe to the ISM $m \lesssim 8$ $m_{\odot} \Rightarrow t_H \gtrsim \tau_{SNIa} \gtrsim 0.03$ Gyr

If SF ends before a large fraction of SNIa has exploded, the stars could not incorporate the Fe from Ias, and their metallicity distribution will be overabundant in α 's (underabundant in Fe)

> JL $Z_{\alpha}/Z_{\text{Fe}} \Rightarrow t_{\text{SF}}$

Matteucci (1994): Salpeter IMF + model for Ia progenitors \longrightarrow t_{SF.E} $<$ 0.3 Gyr

The constraint depends on the model for the Ia progenitors (Matteucci and Recchi 2001)

Define:

 $A_{Ia}(t)$ as the fraction of stars of an SSP which end up as a SNIa realization probability of the Ia event

 $f_{\text{Ia}}(\tau)$ as the distribution function of the delay times normalized to 1 over the whole τ range $(\tau_n \leq \tau \leq \tau_x)$

 \Rightarrow The Ia rate at time t is:

$$
\dot{n}_{Ia}(t) = k_{\alpha} \times \int_{\tau_{\rm m}}^{min(t,\tau_{\rm m})} d\tau \cdot \psi(t-\tau) \cdot A_{\rm Ia}(t-\tau) \cdot f_{\rm Ia}(\tau)
$$

where

- ψ is the SFR in m_{\odot}/yr
- k_{α} accounts for the dependence on the IMF:

$$
k_\alpha=\frac{\int_{m_i}^{m_i}dm\cdot \phi(m)}{\int_{m_i}^{m_i}dm\cdot m\cdot \phi(m)}
$$

 $k_{\alpha} = 2.8, 1.5$ for $\alpha = 2.35$, Kroupa IMF, within 0.1 $\leq m/m_{\odot} \leq 120$

Stars and Structure Formation - ETH, Zurich 18-22 August, 2003

For a burst of SF: $\psi = \psi_0$ in $0 \le t \le t_B$ $\psi = 0$ in $t > t_B$

$$
\dot{n}_{Ia}(t) = k_{\alpha} \times \psi_0 \times \int_{t-t_{\rm B}}^{t} d\tau \cdot A_{Ia}(t-\tau) \cdot f_{Ia}(\tau)
$$

 \bullet SSP : $t_{\mathsf{B}}\ll$

$$
\dot{n}_{Ia}(t) = k_{\alpha} \psi_0 A_{Ia,0} f_{Ia}(\tau = t) t_{\beta} = k_{\alpha} \mathcal{M}_{B} A_{Ia,0} f_{Ia}(\tau)
$$

For galaxies: assume $A_{Ia}(t) = \text{const} = A_{Ia}$

• Late Type:

$$
\dot{n}_{Ia}^{\mathsf{LT}} = k_{\alpha} \times A_{\text{Ia}} \times \langle \psi \rangle \times \int_{\tau_a}^{\min(t,\tau_x)} d\tau \cdot f_{\text{Ia}}(\tau)
$$

$$
\simeq k_{\alpha} \times A_{\text{Ia}} \times \mathcal{M}_{\mathsf{LT}} \times \langle f_{\text{Ia}} \rangle_{\tau_a, t}
$$

• Early Type:

$$
\dot{n}_{Ia}^{\text{ET}} = k_{\alpha} \times A_{Ia} \times \psi_{\text{B}} \times \int_{t-t_{\text{B}}}^{t} d\tau \cdot f_{Ia}(\tau)
$$

$$
\simeq k_{\alpha} \times A_{Ia} \times \mathcal{M}_{\text{ET}} \times \langle f_{Ia} \rangle_{t-\Delta t, t}
$$

Stars and Structure Formation - ETH, Zurich 18-22 August, 2003

OBSERVED RATES (Cappellaro, Evans & Turatto 1999)

$$
\star \quad n_{Ia}^{\text{LT}} \simeq 0.2 \text{ SNu} = \frac{0.2}{100} \times \frac{L_{\text{B}}}{10^{10} L_{\text{B},0}} = 0.2 \cdot 10^{-12} L_{\text{B}} \text{ events/yr}
$$

$$
\dot{n}_{Ia}^{\text{LT}} = k_{\alpha} \times A_{\text{Ia}} \times \langle \psi \rangle \times \int_{\tau_a}^{\min(t,\tau_x)} d\tau \cdot f_{\text{Ia}}(\tau) \quad t \to \tau_x \quad \mathfrak{I}_{Ia} \to 1
$$

$$
\longrightarrow A_{\text{Ia}} \simeq \frac{0.2}{k_{\alpha}} \times \frac{1}{(M_{\star}/L_{\text{B}})_{\text{LT}}} \times \frac{t_{Gyr}}{\mathfrak{I}_{Ia}(t)} \times 10^{-3} \approx 10^{-3}
$$

 \star $\vec{n}_{Ia}^{\text{ET}} \simeq 0.2$ SNu

$$
\frac{\dot{n}_{Ia, SNU}^E}{\dot{n}_{Ia, SNU}^L} \simeq \frac{(\mathcal{M}/L_{\rm B})_{ET}}{(\mathcal{M}/L_{\rm B})_{LT}} \times \frac{\langle f_{\rm Ia} \rangle_{t-\Delta t,t}}{\langle f_{\rm Ia} \rangle_{\tau_a,t}}
$$
\n
$$
\longrightarrow \frac{\langle f_{\rm Ia} \rangle_{t-\Delta t,t}}{\langle f_{\rm Ia} \rangle_{\tau_a,t}} \simeq \frac{(\mathcal{M}/L_{\rm B})_{LT}}{(\mathcal{M}/L_{\rm B})_{ET}} \approx 0.1
$$

• SNIa rates in Late Type Galaxies can be used to constrain A_{Ia}

• SNIa rates in Early Type Galaxies can be used to constrain f_{Ia} The dependence of \dot{n}_{Ia}^{ET} with redshift reflects $f_{Ia}(\tau)$

Stars and Structure Formation – ETH, Zurich 18-22 August, 2003

Stars and Structure Formation – ETH, Zurich 18-22 August, 2003

A useful parametrization:

$$
f_{Ia}(\tau) \propto (\tau/\tau_1)^m \quad in \quad \tau_n \le \tau \le \tau_1
$$

1
$$
in \quad \tau_1 \le \tau \le \tau_0
$$

$$
(\tau/\tau_0)^{-s} \quad in \quad \tau_0 \le \tau \le \tau_x
$$

For a burst of SF:

$$
\dot{n}_{Ia}(t) = k_{\alpha} \times A_{Ia} \times \psi_0 \times \int_{t-t_{\rm B}}^{t} d\tau \cdot f_{Ia}(\tau)
$$

ISM pollution occurs on longer timescales for longer Burst duration

A Salomonic Criterion:

The overabundance is realized when about $\%$ of SNIa explode after the burst ends

CONCLUSIONS

- \bullet τ_{Ia} is sensitive to both τ_{0} and the late epochs decline slope s
- \bullet τ_{Ia} is longer for longer durations of the SF episode but for sufficiently large $t_{\rm B}$ the condition $\tau_{\rm Ia}$ $<$ $t_{\rm B}$ becomes verified
- \rightarrow abundance ratios DO yield info on t_{B}
- the constraint on $t_{\rm B}$ depends on the SNIa model

Models in the literature correspond to $t_{\rm B}$ in the range 1 \div 4 (Gyr) to accomodate an α overabundance

Stars and Structure Formation - ETH, Zurich 18-22 August, 2003