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A sharp Trudinger - Moser type inequality

for unbounded domains in R2

Bernhard Ruf

Abstract

The classical Trudinger-Moser inequality says that for functions with Dirichlet norm
smaller or equal to 1 in the Sobolev space H1

0 (Ω) (with Ω ⊂ R2 a bounded domain), the
integral

∫
Ω
e4πu2

dx is uniformly bounded by a constant depending only on Ω. If the volume
|Ω| becomes unbounded then this bound tends to infinity, and hence the Trudinger-Moser
inequality is not available for such domains (and in particular for R2).

In this paper we show that if the Dirichlet norm is replaced by the standard Sobolev norm,
then the supremum of

∫
Ω
e4πu2

dx over all such functions is uniformly bounded, independently
of the domain Ω. Furthermore, a sharp upper bound for the limits of Sobolev normalized
concentrating sequences is proved for Ω = BR, the ball or radius R, and for Ω = R2. Finally,
the explicit construction of optimal concentrating sequences allows to prove that the above
supremum is attained on balls BR ⊂ R2 and on R2.

1 Introduction

Let Ω ⊂ RN denote a bounded domain. The Sobolev imbedding theorem states that H1
0 (Ω) ⊂

Lp(Ω), for 1 ≤ p ≤ 2∗ = 2N
N−2 , or equivalently, using the Dirichlet norm ‖u‖D = (

∫
Ω |∇u|

2dx)1/2

on H1
0 (Ω),

sup
‖u‖D≤1

∫
Ω
|u|pdx < +∞ , for 1 ≤ p ≤ 2∗ ,

while this supremum is infinite for p > 2∗. The maximal growth |u|2∗ is called “critical” Sobolev
growth. In the case N = 2, every polynomial growth is admitted, but one knows by easy
examples that H1

0 (Ω) * L∞(Ω). Hence, one is led to look for a function g(s) : R → R+ with
maximal grwoth such that

sup
‖u‖D≤1

∫
Ω
g(u)dx < +∞.

It was shown by Pohozhaev [12], Trudinger [14] and Moser [11] that the maximal growth is
of exponential type. More precisely, the Trudinger-Moser inequality states that for Ω ⊂ R2

bounded
sup

‖u‖D≤1

∫
Ω
(eαu2 − 1)dx = c(Ω) < +∞ for α ≤ 4π ,(1.1)

The inequality is optimal: for any growth eαu2
with α > 4π the corresponding supremum is

+∞.
The supremum (1.1) becomes infinite for domains Ω with |Ω| = ∞, and therefore the

Trudinger-Moser inequality is not available for unbounded domains. Related inequalities for
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unbounded domains have been proposed by Cao [5] and Tanaka [2], however they assume a
growth eαu2

with α < 4π, i.e. with subcritical growth.

In this paper we show that replacing the Dirichlet norm ‖u‖D =
(∫

Ω |∇u|
2dx

)1/2 by the
standard Sobolev norm on H1

0 (Ω), namely

‖u‖S =
(
‖u‖2

D + ‖u‖2
L2

)1/2 =
(∫

Ω
(|∇u|2 + |u|2)dx

)1/2

(1.2)

yields a bound independent of Ω. More precisely, we prove

Theorem 1.1 There exists a constant d > 0 such that for any domain Ω ⊂ R2

sup
‖u‖S≤1

∫
Ω
(e4πu2 − 1)dx ≤ d(1.3)

The inequality is sharp: for any growth eαu2
with α > 4π the supremum is +∞.

In an interesting paper, L. Carleson and A. Chang [6] proved that the supremum in (1.1)
is attained if Ω = B1(0), the unit ball in R2. This result was extended to arbitrary bounded
domains in R2 by M. Flucher [9]. In their proof, Carleson and Chang used a ”concentration-
compactness” argument. They consider ”normalized concentrating sequences”, i.e. normalized
(in the Dirichlet norm) sequences which converge weakly to 0 and (being radial) blow up at the
origin. They showed that for any such sequence {un} one has

lim
n→∞

∫
B1(0)

(e4πu2
n − 1)dx ≤ e |B1|(1.4)

Hence, one may say that e |B1| is the highest possible ”concentration” or ”non-compactness”
level (see also P.L. Lions [10], and H. Brezis - L. Nirenberg [3] for the related situation for
Sobolev embeddings). Carleson and Chang went on to show that

sup
‖u‖D≤1

∫
B1

(e4πu2 − 1)dx > e |B1|(1.5)

and hence, since no concentration can happen at a level above e |B1|, they concluded that the
supremum in (1.1) is attained.

Let us call the maximal limit in (1.4) the Carleson-Chang limit, in symbol: cc-lim. In [7] an
explicit normalized concentrating sequence {yn} with

lim
n→∞

∫
B1

(e4πy2
n − 1)dx = cc−lim

‖un‖D≤1

∫
B1

(e4πu2
n − 1)dx = e |B1|(1.6)

was constructed.

In this paper we analyze the corresponding Carleson-Chang limit for concentrating sequences
which are normalized in the Sobolev norm. We will show
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Theorem 1.2
1. Let Ω ⊂ R2 be a bounded domain, and let R > 0 such that |Ω| = |BR|. Then

cc−lim
‖un‖S≤1

∫
Ω
(e4πu2

n − 1)dx ≤ π e1−D(R) ,(1.7)

where
D(R) = 2K0(R)[2RK1(R)− 1/I0(R)] > 0 , with lim

R→+∞
D(R) = 0 .

Here, Ik(x) and Kk(x) denote the k − th modified Bessel functions of the first and second kind,
i.e. the solutions of the equation

−x2u′′(x)− xu′(x) + (x2 + k2)u(x) = 0 , k = 0, 1, 2, ...

2. Let Ω ⊆ R2 be an arbitrary domain. Then

cc−lim
‖un‖S≤1

∫
Ω
(e4πu2

n − 1)dx ≤ π e .(1.8)

3. The bound in (1.7) is sharp for Ω = BR(0), and the bound in (1.8) is sharp for Ω = R2.

It is remarkable that for Ω = B1(0) with Dirichlet normalization and for Ω = R2 with
Sobolev normalization the corresponding Carleson-Chang limits coincide, that is

cc−lim
‖un‖D≤1

∫
B1

(e4πu2
n − 1)dx = cc−lim

‖un‖S≤1

∫
R2

(e4πu2
n − 1)dx = e π .

In the final result of the paper we prove

Theorem 1.3 For any ball Ω = BR(0) and for Ω = R2 holds

sup
‖u‖S≤1

∫
Ω
(e4πu2 − 1)dx > e1−D(R) π(1.9)

This implies in particular that the supremum (1.9) is attained in the cases of Ω = BR(0) and
Ω = R2.

2 A uniform bound

In this section we prove Theorem 1.1. We begin with

Proposition 2.1 Let Ω ⊂ R2 denote a domain in R2, and let H1
0 (Ω) denote the standard

Sobolev space equipped with the norm

‖u‖S =
(∫

Ω
(|∇u|2 + |u|2)dx

)1/2

Then there exists a constant d (independent of Ω) such that

sup
‖u‖S≤1

∫
Ω
(e4πu2 − 1)dx ≤ d .(2.1)
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Proof. It is clear that

sup
‖u‖S≤1

∫
Ω
(e4πu2 − 1)dx ≤ sup

‖u‖S≤1

∫
R2

(e4πu2 − 1)dx(2.2)

since any function u ∈ H1
0 (Ω) can be extended by zero outside of Ω, obtaining a function in

(H1(R2), ‖ · ‖S). Hence, it is sufficient to show that

sup
‖u‖S≤1

∫
R2

(e4πu2 − 1)dx ≤ d(2.3)

We use symmetrization (see e.g. J. Moser [11]) by defining the radially symmetric function u∗

as follows:

for every ρ > 0 let m({x ∈ R2 ; u∗(x) > ρ}) = m({x ∈ R2 ; u(x) > ρ}) .

Then u∗ is a non-increasing function in |x|. By construction∫
R2

(e4π|u∗|2 − 1)dx =
∫

R2

(e4π|u|2 − 1)dx and
∫

R2

|u∗|2dx =
∫

R2

|u|2dx

and it is known that ∫
R2

|∇u∗|2 ≤
∫

R2

|∇u|2dx .

It is therefore sufficient to prove (2.3) for radially symmetric functions u(x) = u(|x|).
Thus, we may assume that u in (2.3) is radially symmetric and non-increasing. We divide

the integral (2.3) into two parts, with r0 > 0 to be chosen:∫
R2

(e4πu2 − 1) =
∫
|x|≤r0

(e4πu2 − 1) +
∫
|x|≥r0

(e4πu2 − 1)(2.4)

We write the second integral as∫
|x|≥r0

(e4πu2 − 1) =
∞∑

k=1

∫
|x|≥r0

(4π)k|u|2k

k!
(2.5)

We estimate the single terms by the following ”radial lemma” (see Berestycki - Lions, [4], Lemma
A.IV):

|u(r)| ≤ 1√
π
‖u‖L2

1
r
, for all r > 0 ,(2.6)

Hence we obtain for k ≥ 2:∫
|x|≥r0

|u|2k ≤ ‖u‖2k
L2

2
πk−1

∫ ∞

r0

1
r2k

rdr =
1

k − 1
‖u‖2

L2

(‖u‖2
L2

πr20

)k−1

.(2.7)

This yields ∫
|x|≥r0

(e4πu2 − 1) ≤ 4π‖u‖2
L2 + 4π‖u‖2

L2

∞∑
k=2

1
k!

(
4‖u‖2

L2

r20

)k−1

≤ c(r0) ,

(2.8)

since ‖u‖L2 ≤ 1.
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To estimate the first integral in (2.4), let

v(r) =

{
u(r)− u(r0) , 0 ≤ r ≤ r0

0 , r ≥ r0

Then, by (2.6)
u2(r) = v2(r) + 2v(r)u(r0) + u2(r0)

≤ v2(r) + v2(r) 1
πr2

0
‖u‖2

L2 + 1 + 1
πr2

0
‖u‖2

L2

≤ v2(r)
[
1 + 1

πr2
0
‖u‖2

L2

]
+ d(r0)

(2.9)

hence

u(r) ≤ v(r)
(

1 +
1
πr20

‖u‖2
L2

)1/2

+ d1/2(r0) =: w(r) + d1/2(r0)

By assumption ∫
Br0

|∇v|2dx =
∫

Br0

|∇u|2dx ≤ 1− ‖u‖2
L2

and hence ∫
Br0

|∇w|2dx =
∫
Br0

|∇v(1 + 1
πr2

0
‖u‖2

L2)1/2|2

= (1 + 1
πr2

0
‖u‖2

L2)
∫
Br0

|∇u|2dx

≤ (1 + 1
πr2

0
‖u‖2

L2)(1− ‖u‖2
L2)

= 1 + 1
πr2

0
‖u‖2

L2 − ‖u‖2
L2 − 1

πr2
0
‖u‖4

L2 ≤ 1

(2.10)

provided that r20 ≥ 1
π . Since by (2.9) u2(r) ≤ w2(r) + d we get∫

|x|≤r0

(e4πu2 − 1)dx ≤ e4πd

∫
Br0

e4πw2
dx

The result follows by the Trudinger-Moser inequality, since w ∈ H1
0 (Br0) with ‖w‖2

D =
=

∫
Br0

|∇w|2dx ≤ 1.

In the next proposition we show that the result is optimal (as in the Dirichlet-norm case),
namely that the supremum in (2.1) becomes infinite if the exponent 4π is replaced by a number
α > 4π.

Proposition 2.2 Suppose that α > 4π. Then, for any domain Ω ⊆ R2

sup
‖u‖S≤1

∫
Ω
(eαu2 − 1)dx = +∞ .(2.11)

Proof.
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We may suppose that 0 ∈ Ω, and that for some ρ > 0 the ball Bρ(0) ⊂ Ω. We use a modified
”Moser-sequence”, see [11], defined in Bρ(0) and continued by zero in Ω \ Bρ(0), and with
Sobolev-norm ≤ 1 :

mn(x) =
1√
2π


log(ρ/|x|)
(log n)1/2 (1− ρ2

4 log n)1/2 , ρ
n ≤ |x| ≤ ρ

(log n)1/2(1− ρ2

4 log n)1/2 , 0 ≤ |x| ≤ ρ/n

(2.12)

One checks that ‖mn‖2
H1

0 (Ω)
≤ 1, for n large. Hence one has

sup
‖u‖S≤1

∫
Ω
(eαu2 − 1)dx ≥ lim

n→∞

∫
Bρ

(eαm2
n − 1)dx

≥ 2π
∫ ρ/n

0

(
e

α
2π

log n[1−ρ2/(4 log n)] − 1
)
rdr

= 2π
(
n

α
2π e−

αρ2

8π − 1
)
r2

2

∣∣∣∣ρ/n

0

→ +∞ , as n→∞

(2.13)

3 Critical growth and concentration

Numerous studies in recent years have shown the close connection of critical growth with con-
centration phenomena, see e.g. the pioneering work of H. Brezis - L. Nirenberg [3].

As pointed out in the introduction, it is of particular interest to study the “highest level of
noncompactness” for the functional

∫
Ω(e4πu2

n − 1)dx, under the restriction ‖u‖S ≤ 1. In view of
this, we make the following definition:

Definition 3.1 A sequence {un} ⊂ H1
0 (Ω) is a Sobolev-normalized concentrating sequence (for

short, SNC-sequence), if
a) ‖un‖S = 1
b) un ⇀ 0 , weakly in H1

0 (Ω)
c) ∃ x0 ∈ Ω such that ∀ρ > 0 :

∫
Ω\Bρ(x0)(|∇un|2 + |un|2)dx→ 0

Next, we define the Carleson-Chang limit as the maximal limit of SNS-sequences:

Definition 3.2 Let

Σ :=
{
{un} ⊂ H1

0 (Ω) | {un} is a SNC-sequence
}
,

and define the Carleson-Chang limit as

cc−lim
‖un‖S≤1

∫
Ω
(e4πu2

n − 1)dx := sup
Σ

lim sup
n→∞

∫
Ω
(e4πu2

n − 1)dx .

The following “concentration-compactness alternative” by P.L. Lions (restated in our nota-
tion) is relevant for our purposes:

Proposition (P.L. Lions, [10], Theorem I.6). Let {un} ⊂ H1
0 (Ω) satisfy ‖un‖S ≤ 1; we may

assume that un ⇀ u. Then either
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{un} is a SNC-sequence
or ∫

Ω(e4πu2
n − 1)dx→

∫
Ω(e4πu2 − 1)dx; this holds in particular if u 6= 0.

Then one has

Proposition 3.3 Suppose that

S := sup
‖u‖S≤1

∫
Ω
(e4πu2 − 1)dx > cc−lim

‖un‖S≤1

∫
Ω
(e4πu2

n − 1)dx .

Then the supremum S is attained.

Proof. Let {yn} denote a maximizing sequence for S, and assume that S is not attained.
We may assume that yn ⇀ y. By the alternative of P.L. Lions we get y = 0, and {yn} is a
SNC-sequence. Hence

S = lim
n→∞

∫
Ω
(e4πy2

n − 1)dx ≤ cc−lim
‖un‖S≤1

∫
Ω
(e4πu2

n − 1)dx < S

Contradiction!

4 Upper bound for the Carleson-Chang limit

In this section we prove an explicit upper bound for the Carleson-Chang limit. In particular, we
prove the estimates (1.7) and (1.8) of Theorem 1.2. In section 7 we will show that the bound in
(1.7) is sharp for Ω = BR, with any radius R > 0, and the bound in (1.8) is sharp for Ω = R2.

Proof.
1. Using symmetrization as in section 2, we see that it is sufficient to prove (1.7) for radial
functions in BR(0). Following J. Moser [11] we perform the change of variables

r = e−t/2 , and setting wn(t) = (4π)1/2yn(r) ,(4.1)

we transform the radial integrals on [0, R] into integrals on the half-line [−2 logR,+∞). We will
write throughout the paper: αR = −2 logR, with αR = −∞ if R = +∞. One checks that∫

BR

|∇yn(x)|2dx = 2π
∫ R

0
| d
dr
yn(r)|2rdr =

∫ ∞

αR

|w′n(t)|2dt

and ∫
BR

(e4πy2
n(x) − 1)dx = 2π

∫ R

0
(e4πy2

n(r) − 1)rdr = π

∫ ∞

αR

(ew
2
n(t) − 1)e−tdt(4.2)

and similarly ∫
BR

|yn(x)|2dx = 2π
∫ R

0
|yn(r)|2rdr =

1
4

∫ ∞

αR

|wn(t)|2e−tdt .(4.3)

The SNC-sequences in this new setting are characterized by:

a) ‖wn‖2
S :=

∫ ∞

αR

(|w′n|2 +
1
4
|wn|2e−t)dt = 1 , wn(αR) = 0

b) wn ⇀ 0 , weakly in H1([αR,+∞))
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c)
∫ A

αR

(|w′n|2 +
1
4
|wn|2e−t)dt→ 0 for any fixed A > 0,

and the estimate (1.7) (which we seek to prove) becomes

cc−lim
‖wn‖S≤1

π

∫ ∞

αR

(ew
2
n(t) − 1)e−tdt ≤ πe1−D(R)(4.4)

for SNC-sequences {wn} ⊂ H1([αR,+∞)).

Let now denote {wn} a maximizing SNC-sequence for the Carleson-Chang limit (1.7). We
may assume that the sequence {wn} satisfies

lim
n→∞

π

∫ ∞

αR

(ew
2
n − 1)e−tdt > 2πe−D(R) ,(4.5)

since otherwise the theorem is proved. Note that we may assume that wn(t) is an increasing
function on [αR,+∞). Fix AR ≥ 1 such that

t− 2 log t−D(R) > 1 , ∀ t ≥ AR .(4.6)

Claim 1: There exists a number n1 such that

wn(t) < 1 , ∀ t ≤ AR , ∀ n ≥ n1

Indeed, for 0 < R < +∞ we can estimate

wn(t) ≤ (AR + 2 logR)1/2

(∫ AR

αR

|u′n|2dt
)1/2

=: (AR + 2 logR)1/2 δn , for t ≤ AR ,

(4.7)

with δn → 0 as n→ 0, by c).
For R = +∞ and 0 < t ≤ AR we estimate

wn(t) = wn(0) +
∫ t

0
w′(t)dt ≤ wn(0) + t1/2(

∫ t

0
|w′n|2)1/2dt

The second term goes to zero, as above. For the estimate of wn(0) we use the following Radial
Lemma (see W. Strauss, [13]), valid for radial functions v(r) in H1(R2) and for r ≥ 1:

(r +
1
2
)v2(r) ≤ 5

4

∫ ∞

r
(|v′|2 + |v|2)ρdρ

We transform this inequality (as before) by the change of variables r = e−t/2 and w(t) =
(4π)1/2v(r) and get, for t ≤ 0 :

(e−t/2 +
1
2
)w2(t) ≤ 5

2

∫ e−t/2

−∞
(|w′(t)|2 +

1
4
|w(t)|2e−t)dt .(4.8)

Hence, we get for wn(0), using the concentration property of wn

w2
n(0) ≤ 5

3

∫ 0

−∞
(|w′(t)|2 +

1
4
|w(t)|2e−t)dt =: σ2

n → 0 , as n→∞ .
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Thus the claim is proved.

By claim 1 we conclude that for n sufficiently large (0 < R ≤ +∞)

w2
n(t) < 1 < AR − 2 logAR −D(R) , αR ≤ t ≤ AR .

Let now an > AR denote the first t > AR with

w2
n(an) = an − 2 log an −D(R) .(4.9)

Such an an exists (for n sufficiently large), since otherwise

w2
n(t) < t− 2 log t−D(R) ,∀ t ≥ AR ≥ 1 , as n→∞ ,

and thus

π

∫ ∞

αR

(ew
2
n − 1)e−t ≤ π

∫ AR

αR

(ew
2
n − 1)e−t + π

∫ ∞

AR

et−2 log t−D(R)−t

The second term on the right is bounded by πe−D(R), and in the following claim 2 we prove that
the first term goes to 0, for n→∞, and thus we have a contradiction to assumption (4.5).

Claim 2: π

∫ AR

αR

(ew
2
n − 1)e−t → 0 as n→∞.

This is immediate for 0 < R < +∞, since then this term can be estimated, using (4.7), by

π(R2 − e−AR)(eδ
2
n(AR+αR) − 1) → 0 as n→∞ .

If R = +∞ we write ∫ 0

−∞
(ew

2
n − 1)e−tdt+

∫ AR

0
(ew

2
n − 1)e−tdt

The second term is now estimated as before, while for the first term we use a series expansion:∫ 0

−∞
(ew

2
n − 1)e−tdt =

∫ 0

−∞

∞∑
k=1

|wn(t)|2k

k!
e−tdt

=
∫ 0

−∞
|wn(t)|2e−tdt+

∫ 0

−∞

1
2
|wn(t)|4e−tdt+

∞∑
k=3

∫ 0

−∞

|wn(t)|2k

k!
e−tdt

The first term goes to zero by concentration, the second term can be estimated by Sobolev (by
returning to the variable r and back to t)∫ 0

−∞
w4

ne
−tdt ≤ c0

(∫ 0

−∞
(|w′n|2 +

1
4
|wn|2e−t)dt

)2

and hence also goes to zero by concentration. For the third term, observe that by (4.8) we get
for t ≤ 0

w2
n(t) ≤ 5

4
1

e−t/2 + 1/2
σ2

n ≤ c et/2 σ2
n

Hence we can estimate the series as
∞∑

k=3

∫ 0

−∞

ck

k!
σ2k

n ek t/2e−tdt ≤
∞∑

k=3

ckσ2k
n

∫ 0

−∞
et/2dt ≤ c1 σ

6
n 2 ,
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and thus claim 2 is proved.

Thus we have proved the existence of a number an > AR as claimed in (4.9).

We now prove, for 0 < R ≤ +∞

i) π

∫ an

αR

(ew
2
n − 1)e−tdt→ 0, as n→∞.

ii) lim
n→∞

π

∫ ∞

an

(ew
2
n − 1)e−tdt ≤ πe1−D(R)

Proof of i): Note that the argument above shows that an → +∞ as n → ∞, since for an
arbitrarily large number AR there exists n0(AR) such that an > AR for n ≥ n0. By (4.9) we
have

π

∫ an

αR

(ew
2
n − 1)e−tdt ≤

∫ A

αR

(ew
2
n − 1)e−tdt+ π

∫ an

A
e−2 log t−D(R)dt

Let ε > 0: for the second term we get πe−D(R)( 1
A − 1

an
) < ε/2, for A sufficiently large, and then

the first term becomes ≤ ε/2, for n ≥ n0(A, ε), proceeding as in Claim 2.

Proof of ii): We apply the following basic estimate which was proved in [6] (we cite it here in
the form given in [7], Proposition 2.2):

Lemma (Carleson-Chang): For a > 0 and δ > 0 given, suppose that
∫∞
a |w′(t)|2dt ≤ δ. Then∫ ∞

a
ew

2−tdt ≤ e
1

1− δ
eK , with K = w2(a)(1 +

δ

1− δ
)− a .

We apply this Lemma to our sequence {wn}, with a = an given in (4.9), and δ = δn =∫∞
an

(|w′n|2+ 1
4 |wn|2e−t)dt. Furthermore, in the following section 5, (5.1) and section 6, Proposition

6.4, it is shown that:

For a > 0 and b > 0 given, let

Sa,b = {u ∈ H1(αR, a), u(αR) = 0 ,
∫ a

αR

(|u′|2 +
1
4
|u|2e−t)dt = b} .

Then the supremum
sup{‖u‖2

∞ : u ∈ Sa,b}

is attained by a function y, with

‖y‖2
∞ = y2(a) = b(a−D(R)) +O(

1
a
).

Thus, choosing a = an and b = bn = 1− δn we get for wn ∈ San,bn

w2
n(an) ≤ an − anδn −D(R) +O(δn) +O(

1
an

) ,

which implies together with (4.9)

δn ≤
2 log an

an
+O(

log an

a2
n

)(4.10)
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Thus we have for K = Kn in the Lemma of Carleson and Chang

Kn = w2
n(an)(1 +

δn
1− δn

)− an

≤
(
an − anδn −D(R) +O(

log an

an
)
)

(1 + δn +O(δ2n))− an

= −D(R)− δnD(R) +O(
log an

an
) + anO(δ2n)

= −D(R) +O(
(log an)2

an
)

(4.11)

Hence we obtain by the Lemma of Carleson and Chang for any maximizing SNC-sequence {wn}

lim
n→∞

π

∫ ∞

an

(ew
2
n − 1)e−tdt ≤ lim

n→∞
π e

1
1− δn

eKn ≤ π e1−D(R) ;

thus ii) is proved.

With i) and ii) we now easily complete the proof of the first statement of Theorem 1.2

2. It is clear that for Ω0 ⊂ Ω1 the corresponding cc-limits are increasing. Thus, it is sufficient
to prove 2) for Ω = R2; this corresponds to setting R = +∞, which was included in the proof
of 1).

5 An auxiliary variational problem

In this section we consider the following variational problem: Determine

sup {‖u‖2
∞ | u ∈ Sa,b} ,(5.1)

where

Sa,b =
{
u ∈ H1(αR, a) |u(αR) = 0,

∫ a

αR

(
|u′|2 +

R2

4
|u|2e−t

)
dt = b > 0

}
Note that Sa,b ⊂ L∞(αR, a), with compact embedding, and hence it is easily seen that the
supremum in (5.1) is attained: let ya ∈ Sa,b such that

‖ya‖2
∞ = sup {‖u‖2

∞ | u ∈ Sa,b} .(5.2)

In order to determine the value of (5.2) we need to identify the maximizing function ya ∈ Sa,b.
The natural way to do this consists in deriving the Euler-Lagrange equation associated to (5.1),
but we encounter the difficulty that the functional y 7→ ‖y‖2

∞ is not differentiable. However,
this functional is convex, and hence its subdifferential exists. We briefly recall this notion, and
then derive the Euler-Lagrange equation for (5.1). For the proofs of some of the results we refer
to [8].

Definition 5.1 Let E be a Banach space, and ψ : E → R continuous and convex. Then we
denote by ∂ψ(u) ⊂ E′ the subdifferential of ψ in u ∈ E, given by

µu ∈ ∂ψ(u) ⇔ ψ(u+ v)− ψ(u) ≥ 〈µu, v〉 , ∀ v ∈ E ;

here 〈·, ·〉 denotes the dual pairing between E and E′. An element µu ∈ ∂ψ(u) is called a
subgradient of ψ at u.
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In [8], Lemma 2.2, it is proved that

Lemma: If ψ satisfies in addition

ψ(x) ≥ 0 , ∀x ∈ E , and ψ(tx) = t2ψ(x) , ∀ t ≥ 0 ,(5.3)

then

µ ∈ ∂ψ(u) ⇔

{
〈µ, u〉 = 2ψ(u)

〈µ, x〉 ≤ 〈µ, u〉 , ∀ x ∈ ψu = {x ∈ E;ψ(x) ≤ ψ(u)} .

Furthermore, by an easy variation of [8], Lemma 2.3 and Corollary 2.4, one has:

Lemma 5.2 Suppose that ψ : E → R satisfies (5.3), and φ ∈ C1(E,R) satisfies 〈φ′(x), x〉 = 2φ(x),
∀x ∈ E. If y ∈ E is such that

ψ(y) = sup
{u∈E, φ(u)=b}

ψ(u) ,

then
φ′(u) ∈ b

ψ(u)
∂ψ(u)

Proof. The Euler-Lagrange equation

φ′(u) ∈ λ∂ψ(u) for some λ > 0(5.4)

is obtained as in [8], Lemma 2.3 and Corollary 2.4. The value

λ =
b

ψ(u)

is found by testing (5.4) with u:

2b = 2φ(u) = 〈φ′(u), u〉 = λ〈µu, u〉 = λ2ψ(u) .

We now apply Lemma 5.2 to our situation, and obtain

Theorem 5.3 Let E = {v ∈ H1(αR, a); v(αR) = 0}, and consider

ψ(u) = ‖u‖2
∞ : E → R

and
φ(u) =

∫ a

αR

(|u′(x)|2 +
1
4
|u(x)|2e−x)dx .

Suppose that y ∈ E satisfies

ψ(y) = sup{ψ(u) | u ∈ E , φ(u) = b} ;

then y satisfies (weakly) the equation

−y′′(x) +
1
4
y(x)e−x =

b

‖y‖2
∞
µy , where µy ∈ ∂ψ(y) ⊂ E′(5.5)
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6 The auxiliary Euler-Lagrange equation

It remains to determine the subgradient µy in equation (5.5). Again following [8], Lemma 2.6,
2.7 and 2.8 we find:

Proposition 6.1 Let Ky = {x ∈ [αR, a]; |y(x) = ‖y‖∞}. Then
i) supp µy ⊂ Ky

ii) Ky = {a}
iii) µy = ‖y‖∞δa, the Dirac delta-function concentrated in the point a.

Thus, equation (5.5) becomes −y′′ + 1
4ye

−t = b
‖y‖∞ δa , αR ≤ t ≤ a

y(αR) = 0
(6.1)

From this one now concludes easily that equation (5.5) is equivalent to solving the equation{
−w′′ + 1

4we
−t = 0

w(αR) = 0
, αR ≤ t < a ,(6.2)

with the condition that ∫ a

αR

(|w′(t)|2 +
1
4
|w(t)|2e−t)dt = b ;(6.3)

the last condition is obtained by multiplying equation (6.1) by y and integrating.

We now determine the explicit solution of equation (6.2).

Theorem 6.2 The solution of equation (6.2) is given by
• for 0 < R < +∞:

w(t) = γ

(
K0(e−t/2)− K0(R)

I0(R)
I0(e−t/2)

)
=: γ z(t)(6.4)

• for R = +∞:

w(t) = γK0(e−t/2) ,(6.5)

with unique coefficients γ = γ(R, a, b) ∈ R+.

Here Ik(x) and Kk(x) are the k − th modified Bessel functions of first and second kind, i.e. the
solutions of the equation

−x2u′′(x)− xu′(x) + (x2 + k2)u(x) = 0 , k = 1, 2, ...

Proof. By inspection.

It is crucial to dermine with precision the value of the coefficient γ = γ(R, a, b) of w(t). This
requires some lengthy calculations.

We begin by recalling the following relations for the modified Bessel functions (see e.g. [1],
9.6.27,28):

d

dx
I0(x) = I1(x) ,

d

dx
K0(x) = −K1(x) ,

d

dx
(xK1(x)) = −xK0(x) ,(6.6)
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and the following integral relations∫ b
a |K0(r)|2rdr =

[
1
2r

2(K2
0 (r)−K2

1 (r))
]b

a∫ b
a |K1(r)|2rdr =

[
1
2r

2(K2
1 (r)−K0(r)K2(r))

]b

a∫ b
a |I0(r)|

2rdr =
[

1
2r

2(I2
0 (r)− I2

1 (r))
]b

a∫ b
a |I1(r)|

2rdr =
[

1
2r

2(I2
1 (r)− I0(r)I2(r))

]b

a∫ b
a [I1(r)K1(r)− I0(r)K0(r)]rdr = [I0(r)K1(r)r]

b
a

(6.7)

see [1]; for the last relation use integration by parts and (6.6).

Using these relations we will prove:

Theorem 6.3
1) Condition (6.3) yields for the coefficient γ = γ(R, a, b) in (6.4)

γ2 = 4
b

a

[
1− 4

a
C(R)

]
+O(

1
a3

) ,

for a large, with

C(R) = 1
4R

2
(
K2

0 (R)−K0(R)K2(R) +K2
0 (R)(1− I2(R)

I0(R))
)

+ 2RK0(R)K1(R)− 2K0(R)
I0(R)

(6.8)

and C(+∞) = 0.

2) The solution w(t), αR ≤ t ≤ a, of equation (6.2) is given by
• for 0 < R < +∞:

w(t) = 2

√
b

a

(
1− 4

a
C(R) +O(

1
a2

)
)1/2 (

K0(e−t/2)− K0(R)
I0(R)

I0(e−t/2)
)

(6.9)

• for R = +∞:

w(t) = 2

√
b

a

(
1 +O(

1
a2

)
)1/2

K0(e−t/2)(6.10)

Proof. Recall the definition of w(t) given in (6.4). We begin by evaluating the expression

W 2(a) :=
∫ a

αR

(|w′(x)|2 +
1
4
|w2(x)|2e−x)dx

Using the explicit form of w(t) in (6.4), the change of variable r = e−x/2, and the relations (6.6),
we get
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W 2(a) =
1
4

∫ a

αR

{∣∣∣∣K ′
0(e

−x/2)− K0(R)
I0(R)

I ′0(e
−x/2)

∣∣∣∣2 +
∣∣∣∣K0(e−x/2)− K0(R)

I0(R)
I0(e−x/2)

∣∣∣∣2
}
e−xdx

=
1
2

∫ R

e−a/2

{∣∣∣∣−K1(r)−
K0(R)
I0(R)

I1(r)
∣∣∣∣2 +

∣∣∣∣K0(r)−
K0(R)
I0(R)

I0(r)
∣∣∣∣2

}
rdr

=
1
2

∫ R

e−a/2

{
|K1(r)|2 +

K2
0 (R)
I2
0 (R)

|I1(r)|2 + |K0(r)|2 +
K2

0 (R)
I2
0 (R)

|I0(r)|2

+ 2
K0(R)
I0(R)

(K1(r)I1(r)−K0(r)I0(r))
}
rdr

(6.11)
Using the relations (6.7) we get

1
2

{[
1
2
r2(K2

1 (r)−K0(r)K2(r))
]R

e−a/2

+
K2

0 (R)
I2
0 (R)

[
1
2
r2(I2

1 (r)− I0(r)I2(r))
]R

e−a/2

+
[
1
2
r2(K2

0 (r)−K2
1 (r))

]R

e−a/2

+
K2

0 (R)
I2
0 (R)

[
1
2
r2(I2

0 (r)− I2
1 (r))

]R

e−a/2

+ 2
K0(R)
I0(R)

[I0(r)K1(r)r]
R
e−a/2

}

=
1
2

{[
1
2
r2

(
K2

0 (r)−K0(r)K2(r) +
K2

0 (R)
I2
0 (R)

(I2
0 (r)− I0(r)I2(r))

)]R

e−a/2

+ 2
K0(R)
I0(R)

[I0(r)K1(r) r]
R
e−a/2

}

(6.12)

Evaluating at the boundaries we obtain

1
4R

2
(
K2

0 (R)−K0(R)K2(R) +K2
0 (R)(1− I2(R)

I0(R))
)

+ 2RK0(R)K1(R)

−1
4e
−a{K2

0 (e−a/2)−K0(e−a/2)K2(e−a/2)

+K2
0 (R)

I2
0 (R)

[ I2
0 (e−a/2)− I0(e−a/2)I2(e−a/2) ] }

−2e−a/2 K0(R)
I0(R) I0(e

−a/2)K1(e−a/2)

(6.13)

For the terms with argument e−a/2, a large, we now use the following behavior of the Bessel
functions for x > 0 small, see [1],9.6.7-9: :

K0(x) ∼ − log x K1(x) ∼ 1
x K2(x) ∼ 2

x2

I0(x) ∼ 1 I1(x) ∼ 1
2x I2(x) ∼ 1

8x
2

(6.14)
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We get

1
4R

2
(
K2

0 (R)−K0(R)K2(R) +K2
0 (R)(1− I2(R)

I0(R))
)

+ 2RK0(R)K1(R)

−1
4e
−a{(− log(e−a/2))2 − (− log(e−a/2)) 2

e−a

+K2
0 (R)

I2
0 (R)

[ 1− 1
8e
−a ] } − 2e−a/2 K0(R)

I0(R)
1

e−a/2

= 1
4R

2
(
K2

0 (R)−K0(R)K2(R) +K2
0 (R)(1− I2(R)

I0(R))
)

+ 2RK0(R)K1(R)

−1
4e
−a{(a

2 )2 − a
22ea + K2

0 (R)

I2
0 (R)

[ 1− 1
8e
−a) ] } − 2K0(R)

I0(R)

= 1
4R

2
(
K2

0 (R)−K0(R)K2(R) +K2
0 (R)(1− I2(R)

I0(R))
)

+ 2RK0(R)K1(R)

+1
4 a− 2K0(R)

I0(R) +O(a2e−a)

= 1
4a+ C(R) +O(a2e−a) ,

(6.15)

with C(R) as in (6.8). Conditions (6.3) and (6.4) yield now

b = γ2W 2(a) = γ2

(
1
4
a+ C(R) +O(a2e−a)

)
(6.16)

We rewrite (6.16) as

γ2a

4

(
1 +

4
a
C(R) +O(ae−a)

)
= b(6.17)

which yields for γ = γ(a, b)

γ2 = 4
b

a

[
1− 4

a
C(R)

]
+O(

1
a3

)(6.18)

This proves 1). Assertion 2) follows now from (6.4). Formula (6.10) follows from (6.9), noting
that C(+∞) = 0 and K0(+∞)/I0(+∞) = 0.

With this information we can now calculate the value ‖w‖2
∞ = w2(a):

Proposition 6.4 Let w(t) denote the solution of (6.2), (6.3) and hence of (5.1). Then

‖w‖2
∞ = w2(a) = b [a−D(R)] +O(

1
a
) .

Proof. By (6.4) we have, using (6.14)

w2(a) = γ2
(
K0(e−a/2)− K0(R)

I0(R) I0(e
−a/2)

)2

= 4 b
a

[
(1− 4

aC(R)) +O( 1
a2 )

] (
K0(e−a/2)− K0(R)

I0(R) I0(e
−a/2)

)2

= 4 b
a

[
(1− 4

aC(R))
] (

a
2 −

K0(R)
I0(R)

)2
+O( log a

a3 )

= b
[
a− 4C(R)− 4K0(R)

I0(R)

]
+O( 1

a)

(6.19)
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Set
D(R) = 4C(R) + 4

K0(R)
I0(R)

;(6.20)

then (6.19) becomes

w2(a) = b [a−D(R)] +O(
1
a
)(6.21)

7 Construction of optimal concentrating sequences

In this section we show that the upper bounds for the Carleson-Chang limit

cc−lim
‖un‖S≤1

∫
Ω
(e4πu2 − 1)dx ≤ πe1−D(R) ,(7.1)

given in Theorem 1.2 are sharp for Ω = BR and Ω = R2. We do this by constructing explicit
optimal SNC-sequences {wn} for (7.1) for which the Carleson-Chang limit is equal to the bound
on the right.

The construction of this sequence follows closely the proof of the upper bound for the
Carleson-Chang limit, section 4, in combination with information on the optimal sequence for
the corresponding Dirichlet-norm problem, see [7].

We begin by defining the sequence {wn(t)} on [αR, n]: in Theorem 6.3, set a = n and
b = 1− 2 log n

n . Then, for 0 < R ≤ +∞, let wn(t) be given by (6.9) or (6.10), respectively. Thus,
wn(t) satisfies equation (6.2) with a = n, and condition (6.3) with b = 1− 2 log n

n . Furthermore,
we have by Proposition 6.4

w2
n(n) = sup{‖wn‖2

∞ | wn ∈ Sn} = n− 2 log n−D(R) +O(
1
n

) ,(7.2)

where Sn = {u ∈ H1(αR, n) | u(αR) = 0,
∫ n
αR

(|u′|2 + 1
4 |u|

2e−t)dt = 1− 2 log n
n }. We remark that

formula (7.2) constitutes a (late) motivation for the choice of an in (4.9).

It remains to define {wn(t)} in [n,+∞). Here we can follow [7] where an optimal Dirichlet
normalized concentrating sequence was constructed by analyzing carefully the proof of Carleson-
Chang [6].

The complete definition of the optimal SNC-sequence {wn(t)} is:

Definition 7.1 Let wn(t) be given by:

wn(t) =


wn(t) , given by (6.9) or (6.10), respectively, αR ≤ t ≤ n

with a = n and b = 1− 2 log n
n

wn(n) +
1

wn(n)
log

1 +An

An + e−(t−n)
t ≥ n

(7.3)

where An ∈ R+ is such that ∫ ∞

αR

(|w′n(t)|2 +
1
4
|wn(t)|2e−t)dt = 1 .(7.4)
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We show that An ∈ R+ can be chosen as in Definition 7.1, i.e. satisfying (7.4), with the
estimate

Lemma 7.2
An =

1
n2 e

+O(
1
n4

)(7.5)

Proof. First note that by condition (6.3)∫ n

αR

(|w′n|2 +
1
4
|wn|2e−t)dt = 1− 2 log n

n
(7.6)

Thus, we look for a constant An such that∫ ∞

n
(|w′n|2 +

1
4
|wn|2e−t)dt =

2 log n
n

(7.7)

Assume that An ≥ 1
3n2 , then one has

log(
1 +An

An + e−(t−n)
) ≤ log(1 +

1
An

) ≤ log(1 + 3n2)

and then by (7.3) and using that wn(n) = n+O(log n) (by Proposition 6.4)

wn(t) ≤ wn(n) +
1

wn(n)
log(1 + 3n2) ≤ 2n , for t ≥ n , n large ,

and hence ∫ ∞

n
|wn|2e−tdt ≤ 4n2e−n

Therefore, condition (7.7) becomes∫ ∞

n
|w′n|2 =

2 log n
n

+O(n2e−n)(7.8)

One proves as in [7] that this yields

An =
1
n2 e

+O(
1
n4

)

We now give an asymptotic lower bound for π
∫∞
αR

(ew
2
n − 1)e−tdt, as n→∞:

Theorem 7.3 Let {wn} denote the sequence (7.3), and let D(R) be given by (6.20). Then

π

∫ ∞

αR

(ew
2
n − 1)e−t ≥ e πe−D(R) (1 + 2D(R)

log n
n

) +O(
1
n

) .

Proof.
a) First note that

π

∫ n

αR

(ew
2
n − 1)e−tdt ≥ 0 , for all n(7.9)
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b) Consider now

π

∫ ∞

n
(ew

2
n − 1)e−t = π

∫ ∞

n
ew

2
n−t +O(e−n) .

Performing the change of variables s = t− n, setting

vn(s) =
1

wn(n)
log

An + 1
An + e−s

and using that by Proposition 6.4

w2
n(n) = (1− 2 log n

n
)[n−D(R)] +O(

1
n

)

= n−D(R)− 2 log n+
2 log n
n

D(R) +O(
1
n

)

we obtain

π

∫ ∞

αR

exp
(
[wn(n) + vn(s)]2 − s− n

)
ds

≥ π

∫ ∞

αR

exp
(
w2

n(n) + 2wn(n)vn(s)− s− n
)
ds

≥ π

∫ ∞

αR

exp
(
n− 2 log n−D(R) + 2D(R)

log n
n

+O(
1
n

) + 2 log
An + 1
An + e−s

− s− n

)
= π

∫ ∞

0
exp(−2 log n−D(R) + 2 log

An + 1
An + e−s

− s+ 2D(R)
log n
n

+O(
1
n

))

= πe−D(R) 1
n2

∫ ∞

0

(
1 +An

An + e−s

)2

e−sds (1 + 2D(R)
log n
n

+O(
1
n

))

= πe−D(R) 1
n2

1 +An

An
(1 + 2D(R)

log n
n

+O(
1
n

))

= e πe−D(R) (1 + 2D(R)
log n
n

) +O(
1
n

) , as n→∞ .

(7.10)

Joining (7.9) and (7.10) we get

π

∫ ∞

αR

(ew
2
n − 1)e−tdt ≥ e π e−D(R)(1 + 2D(R)

log n
n

) +O(
1
n

) ,

and hence the theorem is proved.

We conclude this section by proving some properties of the function D(R):

Lemma 7.4 Let D(R) given by (6.20). Then

D(R) = 4R K0(R)K1(R)− 2
K0(R)
I0(R)

.(7.11)

Furthermore, D(R) > 0, for all R ∈ R+, and

D(R) ∼ −2 logR , as R→ 0

and
D(R) ∼ π

R
e−2R , as R→ +∞ .
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Proof. The explicit form of D(R) is

D(R) = 4C(R) + 4K0(R)
I0(R)

= R2
(
K2

0 (R)−K0(R)K2(R) +K2
0 (R)(1− I2(R)

I0(R))
)

+ 8RK0(R)K1(R)− 4K0(R)
I0(R)

Using the relations (see [1], 9.6.26)

K2(x)−K0(x) =
2
x
K1(x) and I0(x)− I2(x) =

2
x
I1(x)

we get

D(R) = 6RK0(R)K1(R) + (2RK0(R)I1(R)− 4)
K0(R)
I0(R)

.(7.12)

which simplifies, using (see [1], 9.6.15)

K1(x)I0(x) +K0(x)I1(x) =
1
x

(7.13)

to (7.11).

We prove that D(R) > 0, for all R > 0: by (7.11) we get, using again (7.13)

D(R) = 2
K0(R)
I0(R)

[RK1(R)I0(R)− 1 +RK1(R)I0(R)]

= 2
K0(R)
I0(R)

[RK1(R)I0(R)− 1 + 1−RK0(R)I1(R)] > 0 ,

since K1(x) > K0(x) and I0(x) > I1(x), for all x > 0.

Next, using the behavior of the Bessel functions (6.14), for R > 0 small, we have

D(R) ∼ −4 logR− 2(− logR) = −2 logR , for R > 0 small .

For the behavior of D(R) at +∞ we use the asymptotic behavior of the Bessel functions at
+∞, see [1], 9.7.1-2:

Ii(x) ∼ 1√
2πx

ex(1− 4i2−1
8x )

Ki(x) ∼ π√
2πx

e−x(1 + 4i2−1
8x )

(7.14)

Hence, we obtain by (7.11)

D(R) ∼ 4R
π√
2πR

e−R

(
1− 1

8R

)
π√
2πR

e−R

(
1 +

3
8R

)
− 2

π√
2πR

e−R

(
1 +

−1
8R

)√
2πR e−R

(
1− 1

8R
+O(

1
R2

)
)

∼ 2πe−2R

(
1 +

1
4R

)
− 2πe−2R

(
1− 1

4R

)
=
π

R
e−2R .

(7.15)
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8 The Supremum is attained

In this section we show that the supremum

sup
‖u‖S≤1

∫
Ω
(e4πu2 − 1)dx

is attained for any ball Ω = BR(0), as well as for Ω = R2.

By Proposition 3.3 it suffices to prove

Theorem 8.1 Let 0 < R ≤ +∞. Then

sup
‖u‖S≤1

π

∫ ∞

αR

(eu
2 − 1)e−tdt > cc−lim

‖un‖S≤1
π

∫ ∞

αR

(eu
2
n − 1)e−tdt

Proof. This follows immediately by Theorem 7.3: Choose an element of the maximizing
sequence {wn}, with n sufficiently large. Then

sup
‖u‖S=1

π

∫ ∞

αR

(eu
2 − 1)e−t ≥ π

∫ ∞

αR

(ew
2
n − 1)e−t > πe1−D(R) = cc−lim

‖un‖S≤1

∫ ∞

αR

(eu
2
n − 1)dx .

This completes the proof of Theorem 1.3.
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