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Abstract

The photorefractive effect, an indirect nonlinear optical effect mediated by the material
photoconductivity, offers the unique opportunity to obtain high sensitivity light-light

interaction already at moderate intensity levels below 1 W/cm2 typical of unfocused

continuous wave laser beams. We distinguish two kinds of photorefractive effects. In

the conventional one the photoconductivity arises from carriers photoexcited from mid-
gap levels, while in the interband photorefractive effect the carriers are produced by

band-to-band transitions through the absorption of higher energy photons.

In this work we concentrate on two important aspects of photorefractive nonlinear
optics that were not addressed previously. We show that interband photorefractive

effects offers new interesting opportunities for optical parallel processing and clarify the

role of the various anisotropic material properties on the strength of conventional and

interband photorefractive gratings.

As compared to the conventional one, the interband photorefractive effect leads to a

much faster response speed of the order of few µs at the 1 W/cm2 intensity level and to

dynamic holographic gratings which are very robust against simultaneous illumination
with light having sub-band gap energy. The usefulness of this effect for optical signal

processing and for wave manipulation is shown by demonstrating: (a) a high resolution

optically addressed spatial light modulator operating at a refresh cycle of 70 µs based

on KNbO3; (b) an optical joint Fourier transform correlator based on Sn2P2S6 which
can operate at the record frame rate of 10 kHz; (c) light induced dynamic waveguides

in KNbO3 that can be reconfigured in real time.

We present here the first study elucidating the role of the complete set of anisotropic
material properties on the resulting coupling constant among the optical waves.

Anisotropic crystals are in general the materials of choice for obtaining large refrac-

tive index changes for both, conventional and interband photorefractive effects. This
anisotropy has an enormous influence on the magnitude of the nonlinear interaction. As

an important new result, it is shown theoretically and experimentally that an anisotropy

of the photoexcitation process with respect to light polarization dramatically influences

the two-wave mixing coupling gain landscape in wavevector space. By proper mate-
rial engineering, this effect can be used for the enhancement of the maximum gain in

a given photorefractive medium. Diffraction of light at volume gratings is obviously

also influenced by an anisotropy of the medium and/or of the grating itself. The well

known isotropic coupled wave theory of Kogelnik (H. Kogelnik, Bell Syst. Tech. J. 48,
2909 (1969).) is extended here to the anisotropic case. This leads to the first com-

plete set of analytic expressions valid in general geometries and that describe mixtures

of anisotropic phase and absorption gratings with arbitrary phase relationship. This
approach is valid also for non photorefractive media. A predictive understanding of the



diffraction properties of emerging holographic materials with strong optical anisotropy

can be gained. These include for instance organic crystals, liquid crystals, and polymer

dispersed liquid crystals.



Chapter 1

Introduction

Conventional nonlinear optical effects are due to the higher order material polarization

induced by oscillating optical fields [1]. The order of the effect is associated with the

corresponding nonlinear susceptibility χ(2), χ(3), and so on. These effects can give dra-

matic and basically instantaneous light induced changes of the optical properties of a
material provided that the optical intensity is very large. This can be realized by us-

ing high energy short laser pulses and highly focused light, leading to effects such as

second- or third-harmonic generation, optical rectification, sum and difference frequency

generation, optical parametric amplification or nonlinear refraction.

In contrast, the efficiency and sensitivity of these effects become very small when

using low power unfocused light from continuous wave (cw) lasers. Therefore, these
effects are in general not well suited for applications involving moderate intensity levels

of the order of 1 W/cm2 or less and for exploiting one of the most attractive properties

of light, its parallelism. The photorefractive effect, which concerns this work the most,
offers the possibility to obtain high sensitivity light-light interaction at these moderate

intensity levels. As will be discussed in more detail in Chapt. 2, photorefraction is an

indirect nonlinear optical effect and can occur in χ(2) optically nonlinear materials, which

are noncentrosymmetric (piezoelectric) materials showing the linear electro-optic effect.
It is indirect in the sense that one of the two electric fields at the source of the induced

polarization is a spatially modulated quasi-static electric field produced indirectly by

the optical wave (or waves) as a result of photoinduced charge transport in the bulk
of the material. This transport of charges leads to an highly increased sensitivity with

respect to conventional direct nonlinear effects for cw power levels. However, the charge

transport also brings about the most important drawback. Moving a sufficient number

of charges needs time and the 1 W/cm2 response speed for the most commonly used
materials may typically range between a fraction of 1 ms and a few minutes.

Most of the materials showing efficient photorefractive effects are strongly anisotropic.
Although photorefractive nonlinear optics is becoming a mature research field [2–8] a

complete description of the influence of all the various material anisotropies was never

developed. This work closes this gap. We describe the role of all relevant materials

anisotropies and give new general expressions predicting the light diffraction properties
and wave mixing interaction. An important new finding is that an anisotropy of the

photoexcitation cross-section with respect to light polarization plays a dramatic role on

the wave interaction strength. The new predictions are confirmed experimentally and
can give guidance for optimizing material production and geometrical arrangements for

different tasks.

In conventional photorefraction the photoexcitation at the origin of the charge trans-
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port process occurs from mid-gap defect levels introduced by intentional crystal doping.

In this work we treat also a very interesting alternative which we call the interband

photorefractive effect. In this case the photoexcitation occurs by using light with a
photon energy able to induce band-to-band transitions. This leads to a much faster rise

of the internal space-charge fields and opens interesting perspectives for parallel optical

processing and optical wave manipulation tasks, such as dynamic splitting and switch-

ing. An optical addressed spatial light modulator (incoherent-to-coherent converter), a
high speed optical correlator and the creation of dynamic light induced waveguides all

basing on this effect are demonstrated here.

We begin in Chapt. 2 by presenting first the simplest band transport model of the

photorefractive effect describing the formation of the light induced space-charge electric
field. For reasons that will become clear in Chapt. 5, unlike in standard literature, the

initial equations are written with the density of the “usefully dissipated” energy instead

of the light intensity as the driving quantity. This is the optical energy which is locally

dissipated for the generation of mobile charge carriers and ensures that any anisotropy
of the photoexcitation process is correctly taken into account. In addition to the theory

for conventional photorefraction, we describe in Chapt. 2 our own simplest model for

interband photorefractive effects and give a short review of other models applying in
special situations, such as the presence of electron-hole competition, ionic movement, or

multiple active levels.

For anisotropic crystals containing a modulated space-charge grating the effective

dielectric constant and the strength of the electro-optic response depend in a complicated
way on the piezoelectric, elastic and photoelastic properties of the material. This is

discussed in Chapter 3. The phenomena are illustrated for BaTiO3 and KNbO3, two

among the materials showing the strongest photorefractive effects [9–11]. It is also

shown that the occurrence of enigmatic fanning patterns observed after light passes
a BaTiO3 crystal can be fully explained as a direct consequence of these mechanical

coupling effects.

Chapter 4 gives a general treatment of light diffraction at anisotropic volume gratings

in optically anisotropic materials. We build on the (isotropic) coupled-wave theory of
Kogelnik [12] and extend it to the anisotropic case. The new expressions are valid in

general geometries and can be used to describe anisotropic or isotropic diffraction at

phase and/or absorption gratings with arbitrary relative phase and produced by any

physical mechanism. For transmission type holograms their validity extends also to the
case of gain gratings. The new relationships evidence the role played by walk-off and

by the anisotropy of the modulated part of the real and imaginary components of the

dielectric tensor. Therefore their use is particularly important for holographic materials
having strong birefringence and/or containing gratings with strongly anisotropic prop-

erties, such as several organic crystals, liquid crystals, oriented polymers or polymer

dispersed liquid crystals.

The two-wave mixing technique can be viewed as being the basis of the majority of

applications of the photorefractive effect. Chapter 5 treats two-wave mixing in view
of the various material anisotropies. It is shown and experimentally verified that an

anisotropy of the photoexcitation cross section has a dramatic influence on the expected

two-wave mixing gain. This can lead to a significant gain enhancement in proper ge-
ometries, thus giving important guidance for material engineering and selection of the
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best geometrical arrangement.

In the final chapter we give a brief summary of the observed photorefractive effects

under interband photoexcitation in the two materials KNbO3 and Sn2P2S6 and demon-
strate three potential applications for optical processing and wave manipulation. A

high speed high resolution incoherent-to-coherent converter with superior performance

with respect to what is achievable with the conventional photorefractive effect is demon-

strated using KNbO3. An unprecedented optical correlation rate of 10 kHz is achieved
by using pulsed interband gratings in Sn2P2S6 in connection with a holographic memory

stage for the fast image input. Finally, it is shown that light can be guided by the refrac-

tive index channels produced by the interband photorefractive effect. In KNbO3 these

dynamic waveguides are easily reconfigured in a time frame of the order of 100 µs.
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Chapter 2

Photorefractive effects

By its literal interpretation, the word photorefraction may describe all kind of pho-

toinduced changes of the refractive index of a material and therefore any photoinduced
phase grating would belong to this category. However, it has become customary in the

literature to consider only a smaller class of materials as those showing the photore-

fractive effect [3, 5, 6, 8]. These materials possess two important properties, they are

photoconductive and exhibit an electro-optic effect. Photoconductivity ensures charge
transport, resulting in the creation of a space-charge distribution under inhomogeneous

illumination. The electro-optic effect translates the internal electric fields induced by

the inhomogeneous space-charges into a modulation of the material refractive index.
In more recent literature the concept of photorefraction has been slightly expanded to

include also the effects observed in some polymeric compounds, where the refractive

index change is governed by a field assisted molecular reorientation [13]. The photore-

fractive effect is distinguished from many other mechanisms leading to optical induced
refractive index gratings also by the fact that it is an intrinsically nonlocal effect, in the

sense that the maximum refractive index change does not need to occur at the same

spatial locations where the light intensity or the rate of photoexcitation processes are

largest.

In the strict sense mentioned above, the photorefractive process, that culminates

with the formation of a phase grating or a spatially variation of the refractive index, is

described by the mechanisms shown in the schematic diagram of Fig. 2. The three most

important properties which a material must fulfill are depicted in the outlined boxes,
optical absorption, charge transport and electro-optic effect or field assisted molecular

reorientation. Optical absorption and charge transport together give rise to photocon-

ductivity, while the electro-optic effect or molecular reorientation translate the internal
electric field into refractive index changes. The mechanisms in the top loop indicated

by dashed arrows are also necessary in most materials under low intensity continuous

illumination. Under these conditions, a large number of trapping sites allows to create

a considerable space-charge modulation amplitude, even though the number of mobile
charges is small at any moment in time. Large photorefractive effects without the neces-

sity of trapping may be observed by studying the initial response to intense short-pulsed

light [14–16] , or, in some conditions, by using a continuous light with a wavelength short
enough to produce interband photoexcitations [17] and thus create a large number of

mobile electrons and holes.

In this chapter we describe the simplest theoretical model for the formation of a

modulated space-charge distribution and space-charge field in photorefractive materials.
Besides the single-carrier band-model relevant to conventional photoexcitation of carriers



8 Photorefractive effects

Inhomogeneous
illumination

Charge
excitation

 Absorption

Inhomogeneous
space charges

Charge
 transport

Trapping

Charge
reexcitation

Internal space-charge
electric field

 Electro-optic
effect

(Pockels)

Inhomogeneous
refractive index change

Field assisted
orientation of

 molecules (Kerr)

Figure 2.1: The important mechanisms for the photorefractive effect.

from a mid-gap impurity level to the conduction or valence band we will treat in some

detail the simplest model describing interband photorefractive effects induced by direct
band-to-band carrier phototransitions. This model is important for the understanding of

the applications of interband photorefractive effects reported in Chapter 6. In addition,

a few refined models put forward in the literature to describe special situations such as
the presence of multiple defect levels, simultaneous electron and hole charge transport,

or ionic charge compensation and grating fixing, will be cited briefly. The translation

of the space-charge field distribution calculated in this chapter into a refractive-index

modulation by means of the electro-optic effect will be the matter of Chapter 3.

2.1 Single-carrier band transport model

Crystalline photorefractive materials can be considered as wide band-gap semiconduc-
tors containing mid-gap impurity levels. The dynamics of charge redistribution can

therefore be described by rate equations which are similar to the ones which are com-

mon in semiconductor physics. The most successful model describing the formation

of the space-charge gratings in photorefractive crystals is the single-level single-carrier
band model introduced by the Kiev group in the second half of the seventies [18–20].

This ’Kukhtarev-Vinetskii’ model can explain satisfactorily the experimental observa-

tions in most materials. Alternative approaches such as Feinberg’s ’Hopping model’ [21]
essentially give the same predictions.
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Here we present a slight modification of the standard ’Kukhtarev-Vinetskii’ model

that takes explicitely the number density of photoexcited carriers (or what we call the

’usefully dissipated energy’) as the primary quantity driving the whole photorefractive
effect. In this way the correct grating modulation is calculated even in the case where

the photoexcitation process is strongly anisotropic with respect to the recording waves

polarization, the consequences of which will become clear in Chapter 5. The model

presented here assumes the presence of a single active impurity level between the two
bands. The valence of these impurity centers can change between the states An+ and

A[n+1]+ by excitation/retrapping of electrons to and from the conduction band. Charge

transport occurs only in the conduction band by means of drift, diffusion or the pho-

togalvanic effect, the latter being due to the fact that upon thermalization the carriers
can be emitted into the conduction band in a preferential direction due to asymmetric

local potentials [22, 23].

Within the framework of the single-carrier single-level band model the charge redis-
tribution and the creation of a space-charge electric field in a photorefractive material

are governed by following equations

∂N+
D (�r, t)

∂t
= (χw (�r, t) + β)

(
ND −N+

D (�r, t)
)

−γn (�r, t)N+
D (�r, t) , (2.1a)

∂n (�r, t)

∂t
=

∂N+
D (�r, t)

∂t
+

1

e
�∇· �J (�r, t) , (2.1b)

�J (�r, t) = en (�r, t) µ
↔ · �E (�r, t) + kBTµ

↔ · �∇n (�r, t)

+χw (�r, t)
(
ND −N+

D (�r, t)
)
e�Lpg, (2.1c)

�∇ · �E (�r, t) =
e

εeffε0

(
N+
D (�r, t)− n (�r, t)−NA

)
, (2.1d)

where n is the free electron concentration in the conduction band, ND is the total donor

concentration, N+
D is the concentration of ionized donors, NA is the concentration of

ionized donors in the dark, �J is the current density vector, �E is the electric field vector,

χ = [h̄ (ND −NA)]
−1 is a normalization constant, β is the dark generation rate, γ is

the recombination constant, µ
↔

is the electron mobility tensor, ε0 is the permittivity of
vacuum, εeff is the (scalar) effective dielectric constant for the given photorefractive

configuration that will be discussed in more detail in Chapter 3, e is the absolute value

of the elementary charge, kB is the Boltzmann-constant, T is the absolute temperature,

�r is the position vector, t is the time, and �Lpg is the photogalvanic drift-vector and
depends on the direction of polarization of the illuminating light 1. Finally, the driving

quantity in the above equations is the ”usefully dissipated energy” w, that is the optical

energy which is locally dissipated for the generation of mobile charge carriers. It is
defined as [25]

w(�r, t) =
1

2
ε0

[
�E(�r, t) · κ↔ · �E∗(�r, t)

]
, (2.2)

where �E(�r, t) is the complex amplitude of the total optical electric field obtained by
1An alternative description of the photogalvanic component �Jpg to the current density (last term on the

right-hand side of Eq. (2.1c)) relates it directly to the optical electric field via the photogalvanic tensor β
↔
;

�Jpg (�r, t) = �E (�r, t) ·β
↔
· �E∗ (�r, t) . The third-rank tensor β

↔
contains the point group symmetry of the crystal

and depends on extrinsic parameters such as doping level and reduction state of the material [23, 24] .
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the coherent superposition of all the illuminating waves. The real second rank tensor κ↔

describes the anisotropy of the photoexcitation process and is related to the absorptive

part of the dielectric tensor, i.e. to the symmetric imaginary part
↔
ε′′ of the complex

material dielectric tensor ε
↔
= ε′

↔
+ i

↔
ε′′. It is defined as

κkl ≡ φkl (ε
′′)kl , (2.3)

where the quantities φkl describe the light polarization dependence of the quantum

efficiency, that is the probability that an absorbed photon of given polarization produces

a photoexcited mobile carrier. Note that in Eq. (2.3) no summing over equal indices is

performed.

For the present treatment we consider specifically the grating formed by the interfer-

ence of two coherent plane waves of the form

�ES(�r, t) ≡ ES (�r) êS exp
[
i
(
�kS · �r − ωt

)
− αS ζ̂ · �r

]
, (2.4a)

�EP (�r, t) ≡ EP (�r) êP exp
[
i
(
�kP · �r − ωt

)
− αP ζ̂ · �r

]
, (2.4b)

the first representing the signal wave (S), the second the pump wave (P ). Here êS
(êP ) are unit vectors along the direction of the optical electric field of the two waves,

ES (EP ) are scalar complex amplitudes, �kS (�kP ) are the corresponding wave-vectors,

and αS (αP ) are the amplitude absorption coefficient measured in the direction given

by the unit vector ζ̂, which is normal to the entrance surface of the two waves into the
recording material2. Interference of the two above plane waves leads to a sinusoidally

varying expression for the time-averaged ’usefully dissipated energy’,

w(�r) = w0Re
[
1 +m exp

(
i �K · �r

)]
, (2.5)

where �K ≡ �kS − �kP is the grating wavevector,

m (�r) =
2ES (�r)E

∗
P (�r) [êS · κ

↔ · êP ] e−(αS+αP )ζ̂ ·�r

|EP (�r) |2 [êP · κ↔ · êP ] e−2αP ζ̂·�r + |ES (�r) |2 [êS · κ↔ · êS] e−2αS ζ̂·�r
(2.6)

is the (complex) fringe modulation index, and

w0 = |EP (�r) |2 [êP · κ↔ · êP ] e−2αP ζ̂·�r + |ES (�r) |2 [êS · κ↔ · êS] e−2αS ζ̂·�r (2.7)

is the average value of w(�r) corresponding to the incoherent superposition of the con-

tributions of the signal and pump waves.

2.1.1 Steady-state

The steady-state situation is found by solving Eqs. (2.1) and (2.5) with all time deriva-

tives equalling zero. By inserting only spatially homogeneous variables in these equa-
tions one can easily find expressions for the spatially averaged values n0, N

+
D0 and J0 of

2We choose here the same kind of coordinate representation that will be used in Chapt. 4 for the
calculation of light diffraction at volume gratings in general geometries. The reason for calculating the
absorption constants along the specific direction ζ̂ will become clear in Chapter 4 and in Appendix A,
where the expressions for the absorption constants are explicitely derived.
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the quantities n, N+
D and J , respectively. First, with (2.1d) we obtain immediately the

charge neutrality relationship

N+
D0 − n0 −NA = 0, (2.8)

which shows that any increase of the average electron concentration n0 in the conduc-
tion band is compensated by an equal increase of the number density of ionized donors

N+
D0. Usually, for cw laser illumination at a wavelength outside the interband electronic

resonance we have always n0 
 N+
D0 and therefore the average densityN+

D0 is not signifi-

cantly influenced by the illumination. This statement is no longer true for high intensity
pulsed laser photoexcitation or for cw illumination in resonance. The spatially averaged

quantities give us also an important relationship between the photoconductivity and

the illumination strength. The first term on the right-hand side of (2.1c) gives the drift
conductivity contribution to the current density, that is �J0 = eµ↔n0 �E0, the conductivity

tensor is therefore given by σ↔ = eµ↔n0. The average carrier density n0 is calculated with

(2.1a) to be

n0 =
(χw0 + β)

(
ND −N+

D0

)
γN+

D0
, (2.9)

therefore the conductivity has a photoconductivity contribution increasing linearly with
the average energy density w0

3 and a constant dark conductivity contribution (∝ β).

We concentrate now our interest on the spatially modulated quantities appearing in

Eqs. (2.1), and specially on the space-charge field �E(�r). With the driving quantity given
by Eq. (2.5) the set of equations (2.1) can be solved analytically under the assumption

that the light modulation index is small (|m| 
 1) as first put forward by Kukhtarev

et al. [19] 4. In this limit, the magnitude of the space-charge electric field �E(�r) is not

strongly influenced by the coupling between the interacting waves. The space-charge
field can then be written in a sinusoidal form of the type (2.5), i.e.

�E(�r) = �E0 + Re
[
�E1 exp

(
i �K · �r

)]
. (2.10)

The calculation of the amplitude �E1 from the initial equations (2.1) and (2.5) is lengthy

but straightforward. Here we give only the final result, first assuming that there are no

contributions from photogalvanic currents (�Lpg = 0). In this case the steady-state field
distribution can be shown to be

�E1 = K̂

−im Eq (ED − iE0)

Eq +ED − iE0

 , (2.11)

which can be rewritten as

�E1 = −mK̂

 E2
qE0

(Eq + ED)
2 + E2

0
+ i

EqE
2
D + EqE

2
0 +E2

qED

(Eq + ED)
2 + E2

0

 . (2.12)

3By neglecting the fine but sometimes important difference between the ’usefully dissipated energy’ w
and the light intensity I (see Chapter 5), this statement is equivalent to a a linear increase of photocon-
ductivity with light intensity, as usually referred in literature.

4For a general light distribution one has usually to rely on numerical calculations for the solution
of Eqs. (2.1). However, besides the small-modulation approximation presented here, in some special
situations analytical solutions may be obtained also using a whole-beam method, see for instance Refs. [26–
29]. It has to be noticed, that approximated analytical expressions valid for sinusoidal light distributions
up to higher order Fourier components, that is outside the small-modulation approximation, have also
been obtained [30–33].
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In (2.11) and (2.12) E0 ≡ �E0 · K̂ is the projection of the externally applied electric field
�E0 along the direction of the unit vector along the grating K̂ ≡ �K/| �K|. The scalar

quantities ED and Eq have the dimension of an electric field and are called the diffusion
and the trap-limited field, respectively. They are defined as

ED ≡ | �K|kBT
e

(2.13)

and

Eq ≡
e

ε0εeff | �K|
N+
D0

(
ND −N+

D0

)
ND

≡ e

ε0εeff | �K|
Neff , (2.14)

where Neff is an effective trap concentration that becomes maximal if N+
D0 = ND/2, that

is if the donor level is in average half-filled in the dark. For the case where no external
electric field is applied to the sample ( �E0 = 0) the above Eq. (2.11) simplifies to

�E1 = −imK̂
EqED

Eq + ED
. (2.15)

In this case the driving charge transport mechanisms is solely the diffusion of the pho-

toexcited charge-carriers. As can be easily recognized by using (2.10) and comparing
(2.5) with (2.15), in this regime the electric-field grating is shifted by π/2 with respect

to the fringes defined by the rate of photoexcitations.

∆n x( ) = − n3

2
reff E x( )

E x( ) ∝ ρ x( )∫ dx

ρ x( )

wo
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wo-w1

0

Φ=π/2
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0 21
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Figure 2.2: Phase relationship between ”usefully dissipated energy”, space-charge, space-charge
field and refractive index distributions. Left hand side: no external field; Right-hand side: with
applied electric field.

Figure 2.2 shows schematically the phase relationship between w(x), the total space-

charge ρ(x), the space-charge field E(x) and the refractive index change �n(x) for a
one-dimensional photorefractive grating pointing along the x-axis. Both diffusion-only
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(E0 = 0) and drift-assisted cases (E0 
= 0) are considered. In the latter case the phase

shift φ between w(x) and �n(x) differs from π/2 and depends on the magnitude of the

applied field E0 as obtained from

tan φ =
EqE

2
D + EqE

2
0 + E2

qED

E2
qE0

, (2.16)

which is derived directly from (2.12). Figure 2.3 shows the in-phase (real part) and
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Figure 2.3: Dependence of space-charge field amplitude on grating spacing
according to (2.12). a) No applied field; b) With externally applied electric
field.

out-of-phase components (imaginary part) of the scalar space-charge field amplitude E1

inside the square brackets of (2.12) as a function of the grating spacing Λ = 2π/| �K |,
together with the total space-charge field amplitude E1. At small grating spacings the

density of available charges Neff limits the achievable space-charge field amplitude to the

value of the field Eq. In absence of applied field the long-grating-spacing space-charge
field amplitude diminishes as ED ∝ 1/Λ because the charge diffusion mechanisms is less

efficient, the longer the grating spacing is. It has to be noted that in absence of an

applied field (E0 = 0) the dotted curve (real component) in Fig. 2.3(a) vanishes and

the dashed curve for the imaginary component shows a maximum at the Debye grating
spacing

Λ0 = 2π

√√√√√ε0εeffkBT

e2Neff
, (2.17)

for which Eq = ED. In typical inorganic crystals the Debye grating spacing ranges
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between ≈0.3 µm and ≈1.5 µm. Note also that the dashed curves in Fig. 2.3 can be

directly measured by means of two-wave mixing experiments (see Chapt. 5).

For completeness we give now the expressions derived in the steady-state in the
presence of photogalvanic effects (�Lpg 
= 0) [34–36]. In this case it is important to

consider explicitly the electrical boundary conditions. If the crystal surface is fully

illuminated, the sample is connected to an external voltage supply (applied electric field
�E0), and dark conductivity is negligible (β 
 χw0), (2.11) transforms into

�E1 = K̂

−im Eq [ED − i (E0 + Epv)]

Eq + ED − i (E0 + ηEpv)

 , (2.18)

where Epv ≡ K̂ · �Epv is the projection along the grating vector of the photovoltaic field
�Epv. The latter corresponds to the equivalent externally applied field that would give rise
to a photocurrent equal to the photogalvanic current and is defined by the relationship

µ
↔ · �Epv = γN+

D0
�Lpg. (2.19)

In Eq. (2.18) η is a factor that takes into account the reduction state of the crystal and is

defined as η ≡ N+
D0/ND. Note that in many photorefractive materials, such as LiNbO3,

LiTaO3 and KNbO3, the longitudinal photogalvanic current is always antiparallel to

the spontaneous polarization [23], therefore Epv has opposite sign than an electric field

applied along the positive c-axis.
One common experimental situation in strongly photogalvanic crystals such as

LiNbO3 and LiTaO3 is the one where the two electrode end-faces are short circuited

but no external voltage is applied. In this case Eq. (2.18) is still valid by inserting

E0 = 0. In contrast, for an open circuit situation the boundary conditions require a
vanishing steady state current density across the sample. This is satisfied if an internal

electric field E0 = −Epv builds up to compensate the photogalvanic current. Therefore

from (2.18) the open-circuit steady-state space-charge field is

�E1 = K̂

−im EqED
Eq +ED − iEpv (η − 1)


= −mK̂

 EqEDEpv (1− η)

(Eq + ED)
2 + E2

pv (η − 1)2

+i
EqE

2
D + E2

qED

(Eq +ED)
2 + E2

pv (η − 1)2

 . (2.20)

Figure 2.4 shows an example of the expected amplitude of the real (Re (E1)) and

imaginary component (Im (E1)) of the steady-state space-charge field in the case where
the photogalvanic effect is strong. The short circuit configuration usually give rise to

stronger fields with a dominating real component that reaches the value of the photo-

voltaic field at longer grating spacings. In open circuit, in contrast, the field is generally

smaller. Note that the imaginary component, which is important for two-wave mixing
energy coupling, can show two maxima at two different gratings spacing corresponding

to the condition (Eq+ED) = |Epv|(1−η). Note also that for perfect open circuit bound-

ary conditions the imaginary component can exceed the value of the real one also at
longer grating spacing. However, it should be remarked that, due to electrodes effects
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Figure 2.4: Real and imaginary components of the space-charge field am-
plitude as a function of the grating spacing in the presence of photogal-
vanic effect. a) Short circuit, (2.18) E0 = 0; b) Open circuit, (2.20).
Parameters: Epv = −20 kV/cm, ED(Λ = 1 µm) = 1.6 kV/cm, Eq(Λ = 1
µm) = 10 kV/cm, η = 0.2.

and surface conduction influence, in materials showing strong photogalvanic effects it is

not always easy to experimentally define the electrical boundary conditions.

2.1.2 Space-charge field dynamics

The dynamic evolution of the space-charge field amplitude �E1 upon switching on or
switching off the cw periodic illumination (2.5) can be determined from the equation

set (2.1). Again, in the small modulation approximation the calculation is lengthy but

straightforward5. The build-up upon switching on of the illumination at time t = 0
evolves exponentially in time as

�E1 (t) = �E1,sat [1− exp (−Γt)] , (2.21)

while the decay follows

�E1 (t) = �E1 (t = 0) exp (−Γt) , (2.22)

which is valid both under homogeneous illumination (w(�r) = w0), or in the dark. The

5A detailed derivation of the following expressions (2.21)-(2.24) is not given here. Examples of such a
derivation may be found in Refs. [37, 38].
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time rate Γ is in general complex, thus allowing for damped oscillations in the dynamics6

Re(Γ) = Γdie
K2
e (K

2 +K2
e )

(
1 + K2

K2
0

)
+ K2

eK
2

K2
0
K2
D

(K2 +K2
e )

2 +K2K2
D

, (2.23)

Im(Γ) = Γdie
K2
e

(
1 + K2

e

K2
0

)
KKD

(K2 +K2
e )

2 +K2K2
D

. (2.24)

These equations are valid in absence of photogalvanic effects, the situation for pho-

togalvanic materials is considerably more complicated and will not be treated here.

The reason is that the electrical boundary conditions can change dynamically during

the processes of hologram recording and erasure [35]. In (2.23) and (2.24), K = | �K|,
K0 ≡ 2π/Λ0 is the Debye grating vector,

Ke ≡
√√√√eγNA

µkBT
(2.25)

is the (scalar) inverse diffusion length in direction K̂ , and

KD ≡ e( �E0 · K̂)

kBT
≡ eE0

kBT
(2.26)

is the wavevector for which the applied field equals the diffusion field. Finally, the

driving quantity in (2.23) and (2.24) is the dielectric relaxation rate Γdie which is the

inverse of the dielectric relaxation time τdie given as

τdie ≡
1

Γdie
≡ ε0εeff

eµn0
, (2.27)

where the average electron density n0 is given by Eq. (2.9). Note that the mobility µ in

(2.25) and (2.27) is the scalar mobility for drift in direction of the grating vector, that

is

µ ≡ K̂ · µ↔ · K̂. (2.28)

Because of the linear increase of the electron density with w0 (Eq. (2.9)), the single-

carrier band transport model predicts a direct proportionality of both Re(Γ) and Im(Γ)

from w0, and thus usually also from the light intensity. In the absence of applied fields
and photogalvanic currents the time rate Γ becomes real and the predicted dynamics is

simply exponential. In this case we get

Re(Γ) = Γdie
1 + K2

K2
0

1 + K2

K2
e

, Im(Γ) = 0. (2.29)

In general one is mainly interested in the non-oscillating term (real part) of the time

rate Γ, Figure 2.5 shows Re(Γ) in absence and in presence of an applied electric field

E0. In the presence of the field, the short grating spacing (K → ∞) limiting time
6The existence of strong oscillations with low damping constant in the photorefractive dynamics is

related with the existence of photorefractive space-charge waves, over which a wide literature exists, see
for instance [39–44]. Space-charge waves are observed in photorefractive materials with large drift lengths,
such as Bi12SiO20 and semiinsulating semiconductors.
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Figure 2.5: Grating spacing dependence of photorefractive response rate
Re(Γ) in absence and presence of an applied electric field.

rate Re(Γ) = Γdie(Ke/K0)
2 = w0/(h̄Neff) is reached already at longer Λ. Note that

in this limit the photorefractive time constant τ = 1/Γ corresponds to the excitation

time, that is the time needed to photoexcite a number of charges equal to the effective

number of traps Neff [45]. In contrast, at very long grating spacings (K 
 K0, Ke) the
photorefractive response rate Re(Γ) always corresponds to the dielectric response rate

Γdie.

2.2 Interband photorefractive effects

In this section we present the simplest theoretical model describing the formation of
photorefractive gratings by band-to-band photoexcitation. Our interest on this effect

rely mainly on the three following interesting properties which are a direct consequence

of the physics described below. (a) The short response time due to the efficient pho-

toexcitation process induced by the resonantly absorbed photons. (b) The possibility
of obtaining thin gratings which are a prerequisite for several high resolution optical

processing elements, such as Joint Fourier Transform Optical Correlators or Incoherent-

to-Coherent Converters (see Chapt. 6). (c) The robustness of the induced refractive
index changes with respect to below band-gap illumination, which is particularly im-

portant for the dynamic waveguide structures created using this effect.

As mentioned above, for interband photorefractive effects the photoexciting light
wavelength is in the high absorption spectral region for electronic resonances. Therefore

the primary charge transfer mechanism is the phototransition of electrons between the

valence and conduction band. Neglecting the effect of mid-gap traps the rate equations

(2.1) describing the formation of an internal space-charge field can be reformulated in
this case as [46]

∂n(�r)

∂t
= h̄−1w(�r)− γdirn(�r)p(�r) +

1

e
�∇·�Je(�r) , (2.30a)

∂p(�r)

∂t
= h̄−1w(�r)− γdirn(�r)p(�r)−

1

e
�∇·�Jp(�r), (2.30b)
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�Je(�r) = en(�r)↔µe �E(�r) + kBT
↔µe · �∇n(�r), (2.30c)

�Jp(�r) = ep(�r)↔µp �E(�r)− kBT
↔µp · �∇p(�r), (2.30d)

�∇ · �E(�r) =
e

εeffε0
(p(�r)− n(�r)) , (2.30e)

where all space-dependent variables are also time-dependent. Here p is the hole density
in the valence band, �Je, �Jp,

↔µe and
↔µp are the electron and hole current densities and

mobility tensors, respectively, γdir is the direct recombination constant between the

two bands 7 , and the other quantities have been defined previously. As mentioned
above, equations (2.30a-2.30e) completely neglect the redistribution of charges within

mid-gap traps, which is the dominating effect for conventional photorefraction. This

approximation is allowed only in the case where the light intensity (energy density w)

are large enough, so that the average densities of free electrons and holes become the
same and are given by

n0 = p0 =

√√√√ w0

h̄γdir

=
√√√√ gI0

γdir

 . (2.31)
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Figure 2.6: Photocurrent as a function of light intensity under interband
illumination of KNbO3. In the low intensity regime the photocurrent in-
creases linearly and charge recombination in deep traps plays a major role.
In the high intensity regime the photocurrent increases with the square
root of light intensity and interband transitions dominate the process.

However, even though experiments involving the interband photorefractive effect are

best performed in crystals as pure as possible, we could demonstrate experimentally

that deep traps can still play an important role at moderate or low intensities [46–48].
For instance, the presence of deep traps predicts a deviation of the photoconductivity

from the square root dependence on light intensity predicted by (2.31), as shown exper-

imentally in Fig. 2.6 [49]. We have presented theoretical models including explicitely

the effect of deep traps previously [46–48]. For simplicity, here we keep with equations
7Neglecting the effect of absorption anisotropy equations (2.30a) and (2.30b) may be written also

directly as a function of the light intensity I . In this case the term h̄−1w(�r, t) is equivalent to gI(�r, t),
with g = αdir/(h̄k0c) = αdir/hν, αdir being the (intensity) absorption constant for the band-to-band
transition and k0 = 2π/λ being the free space light wavevector.
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(2.30a-e) and we present the expected behaviour for this ”trap-free” case only, which de-

scribes in a satisfactory way the physics of space-charge field formation near the surface

illuminated by the highly absorbed recording light.

2.2.1 Steady state

Under a sinusoidal illumination of the type (2.5) the equations (2.30a-2.30e) can be

solved in a similar way as in the case of the single carrier band transport model. For
the scalar space-charge field amplitude we obtain [46]

�E1 = K̂

−im [ED (ERh − ERe)− iE0 (ERe + ERh)]Eqf
[(2Eqf +ED) (ED + ERe +ERh) +E2

0 ] + iE0 [ERe −ERh]

 , (2.32)

where

Eqf ≡
e

ε0εeff | �K|
n0 =

e

ε0εeff | �K|

√√√√ w0

h̄γdir
(2.33)

is the free charge limiting field in analogy with (2.14), and

ERe ≡
1

| �K|µe
γdirp0 =

1

| �K|µe

√
γdirw0

h̄
, (2.34)

ERh ≡
1

| �K|µp
γdirn0 =

1

| �K|µp

√
γdirw0

h̄
, (2.35)

are the electron and hole recombination fields, respectively. Their magnitude can be

interpreted as the average internal electric fields in which electrons (or holes) drift for

an average distance (K)−1 = Λ/2π before a recombination to the other band takes place.
The projected mobilities µe and µp in (2.34) and (2.35) are found according to (2.28).

Figure 2.7 shows the typical dependence of the space-charge field amplitude on grating

spacing for the interband case. A comparison with Fig. 2.3(b) shows that the long
grating spacing saturation value in presence of an applied field is only half as big with

respect to the conventional case. The reason for that is the quadratic recombination

process leading to relationship (2.31) for the free charge density, as a consequence the

modulation amplitude of the photoexcited charges is only half as big as the one for the
energy density w(�r). Another big difference with the conventional photorefraction is the

behaviour at small grating spacings Λ. While in the conventional case the space-charge

field rises proportional to Λ, in interband photorefraction the initial rise is proportional
to Λ3. This is because not only the free-carrier limiting field Eqf is giving a limitation to

the space-charge field amplitude, but also the recombination fields ERe and ERh. The

overlinear increase of Im(E1) with grating spacing was confirmed experimentally in pure

KNbO3 by means of interband two-wave mixing investigations [46, 50]. Figure 2.7(a)
also shows that in absence of an external field the space-charge field is bound by the

function (m/2)ED|(µe−µp)/(µe+µp)|, therefore, as expected, no space-charge field can

build up in this regime if the electron and hole mobilities are the same.

The role of the pseudo-fields Eqf , ERe and ERh merits some additional discussion. A
significant space-charge field amplitude can be reached only if Eqf and at least one among

the recombination fields ERe and ERh are large enough, say, of the order of 1 kV/cm.

Looking at Eq. (2.33) we recognize that the requirement of a large field Eqf means
nothing else than the charge density n0 should be large enough to sustain the modulated
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Figure 2.7: Dependence of space-charge field amplitude on grating spacing
for interband photorefractive effects in absence of deep traps (2.32). a)
No applied field; b) With externally applied field.

space-charge field. The second condition implies that at least one of the carrier mobilities

should be small enough so that, before recombination, the carrier is prevented to drift
too far as compared to the fringe distance. If the drift or diffusion distances are too long,

the carrier looses coherence with the illuminating light distribution and the resulting

space-charge field modulation amplitude decreases. In pure KNbO3, the limitations due

to Eqf , ERe and ERh normally become important only at grating spacings below ∼ 0.5
µm. In general significant space-charge field amplitudes at submicron grating spacing

can be easily achieved already for an illuminating intensity of the order of few tens of

mW/cm2 (λ = 364 nm). For experiments where the typical distances are larger (5-10
µm), such as the dynamic waveguides described in Sect. 6.4, the constraints on Eqf , ERe
and ERh, and thus on the illumination intensity, are even less stringent.

2.2.2 Dynamics

The dynamic behaviour of interband photorefractive effects is more complex than the

one for the conventional case. In the latter situation, the carriers are photoexcited from

mid gap levels and the equilibrium average carrier density in the conduction (or valence)
band is reached in a time, which is short as compared to the build-up time of the space-

charge field. This is no longer true for interband gratings. The large free carrier density

has to build-up first and the time required for this process may be comparable or even
longer than the characteristic time constants for the charge redistribution process, such
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as the dielectric time τdie (2.27) or the diffusion time τD ≡ e/(K2kBTµ) for electrons

or holes. As discussed in more depth in [46], it is clear that the space-charge field

cannot reach a steady-state before the average charge density n0(t) also does so. Upon
switching on the illumination at time t = 0, in absence of deep traps the latter grows

approximately as

n0(t) = n0(t = ∞)
1− exp(−2Γdirt)

1 + exp(−2Γdirt)
, (2.36)

where n0(t = ∞) is the steady-state value given by (2.31) and

Γdir ≡ γdirn0(t = ∞) =

√
γdirw0

h̄

(
=

√
gI0γdir

)
(2.37)

is the recombination rate that governs the charge density build-up. Correspondingly,

upon switching off the illumination, the free charge density initially decays in the dark

as

n0(t) = n0(t = 0)
1

1 + Γdirt
. (2.38)

In pure KNbO3 at wavelengths around 350 nm the time rate Γdir is typically of the
order of (10 µs)−1 for illumination intensities of the order of 100 mW/cm2. As will be

shown later, the photorefractive response time in the interband regime is also in the

10-100 µs range, which is faster by at least two order of magnitude with respect to the
typical speed of the same material in the conventional photorefractive regime.

Equations (2.36) and (2.38) describe the build-up and decay of the average charge

density and therefore do not consider any charge transport issues which are important

to describe the formation of the space-charge field. An exact analytical solution of
the dynamic equations (2.30a-2.30e) is made difficult by the above time dependence of

n0. Therefore we rely here on a simpler approach that assumes that the build up of

the modulated space-charge field starts from a state in which the average free carrier
density is already established. In other words, at time t = 0 only the modulation m in

Eq. (2.5) is being switched on. Following [47] the dynamic solution of the set (2.30a-e)

takes the form

�E1(t) = �E1,sat{1−
1

2

[
(1− B/C) e−Γ1t + (1 + B/C) e−Γ2t

]
}, (2.39)

where �E1,sat corresponds to the steady-state solution (2.32) and

B ≡ (ED + Eqf)(ERe + ERh) + iE0(ERe − ERh) + 2EReERh, (2.40)

C ≡ {[(ED + Eqf)(ERe − ERh)− iE0(ERe + ERh)]
2

+4EReERh(Eqf −ERe)(Eqf − ERh)}1/2. (2.41)

The exponential time rates Γ1,2 are given by

Γ1,2 =
Γdir

2EReERh
(B ∓ C). (2.42)

In Fig. 2.8 we show the dependence of the time rates Γdir, Γ1 and Γ2 on light intensity.

The experimentally observed square root dependence is predicted also theoretically.
Note that if Γdir is smaller than Γ1 or Γ2 as in the case shown here, the photorefractive
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Figure 2.8: Direct recombination rate Γdir and photorefractive time rates
Γ1 and Γ2 (2.42) for interband gratings. The points show the measured
time rate in pure KNbO3 under illumination at the wavelength λ = 351 nm
and for Λ = 4.7 µm and E0 = 2.2 kV/cm [46]. The additional parameters
for the plot are: g = 1024 J−1m−1, γdir = 8 · 10−19 m3/s, µe = 10−9

m2/(Vs).

grating is still expected to build up in a time which is not faster than (Γdir)
−1 because

otherwise the average free charge concentration would not have reached a stationary

value. It is worth noting that in some limits the time rates Γ1 and Γ2 may be expressed

in a simpler form. First, for small grating spacings (Λ → 0) the rates Γ1 and Γ2 converge

towards the diffusion rates ΓDh ≡ kBTK
2µp/e and ΓDe ≡ kBTK

2µe/e, respectively. On
the other hand, for large grating spacings Λ (ED 
 Eqf ) and for the case where the free

charge limiting field is the dominating quantity (Eqf � ERe, ERh) the expression (2.39)

takes the simpler form

�E1(t) = −imK̂
ED
2

µp − µe
µp + µe

{1− exp[−(Γdie + Γdih)t]}, (2.43)

where Γdie ≡ (eµen0/ε0εeff) = (τdie)
−1 is the dielectric rate for electrons and Γdih is

the corresponding dielectric rate for holes. Eq. (2.43) is valid for E0 = 0. Therefore,

multiple measurements of the time dynamics in the latter regime allow the determination
of the ratio of the effective bipolar mobility µp/µe along the different crystallographic

directions, as performed in [49].

2.3 Other models

In the two sections above we have described in some detail the simplest band models
for conventional and interband photorefractive effects, respectively. For the sake of

completeness we mention here few other models for conventional photorefractive effects.

In particular situations these models describe the space-charge field formation better
than the single-level single-carrier band model described in Section 2.1.
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2.3.1 Models for electron-hole competition

In several photorefractive materials it is observed that a photon of given wavelength
may induce both, photoexcitation and charge transport of electrons in the conduction

band, and photoexcitation and charge transport of holes in the valence band. This

kind of competition between electrons and holes usually leads to a reduction of the

achievable amplitude of the space-charge field grating. The two mostly applied models
for electron-hole competition were presented by Valley [51] and Stohkendl [52]. The

first model [51, 52] considers a single level from which both electrons and holes can be

photoexcited (Fig. 2.9(b)). The second model [51] considers two independent levels, one
giving rise to electron charge transport, the other to hole charge transport (Fig. 2.9(c)).
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c) Electron-hole, two levels

Figure 2.9: Schematics of band models for conventional photorefractive effects. a) Single level,
single carrier band model of Sect. 2.1; b) Electron-hole model with single level; c) Electron-hole
model with two independent levels.

2.3.1.1 One level

Like in the conventional single level model, in the first electron-hole model there exist a

single charge reservoir where the space-charges forming the space-charge field are being

trapped. The behaviour is therefore similar to the case of the conventional single-level
model, however with some grating-spacing dependent correction terms R(| �K|) for the

space-charge field amplitude [51, 52], so that Eq. (2.15) transforms into

�E1 = −imK̂
EqED

Eq + ED
R(| �K|), (2.44)

which is given here for the case where no fields are externally applied. The reduction

term R(| �K|) < 1 takes the form R(| �K|) = (σe − σp)/(σe + σp) at large grating spacings
Λ (meaning large in comparison to the electron and hole diffusion lengths). Here σe =

eµen0 and σh = eµhp0 are the electron and hole photoconductivities, respectively. On

the other hand, for short grating spacings the correction term contains exclusively terms

related to the photoexcitation process. Using the same formalism as in Eqs. (2.1) one
can write R(| �K|) = (we0−wh0)/(we0+wh0), where we0 and wh0 are the energies absorbed

for the generation of mobile electrons and mobile holes, respectively, that is the usefully

dissipated energies for electrons and holes defined in accordance with (2.2) and (2.5).

Note that since the sign of (σe − σp) and (we0 − wh0) may differ from each other, a

switch in sign of the quantity Im( �E1) may occur at intermediate grating spacings, which
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results in a switch of the direction of energy transfer in a two-wave mixing experiment

(see Chapter 5). Since it still possesses a unique independent charge reservoire, the

dynamics of the first electron-hole model of Fig. 2.9(b) is characterized by a single
exponential behaviour as given in (2.21) and (2.22). In analogy with (2.29) the time

rate Γ ≡ 1/τ is obtained as

Γ = Γdie

1 +
K2

K2
0

1 +
K2

K2
e

+ Γdih

1 +
K2

K2
0

1 +
K2

K2
h

, (2.45)

where Γdih ≡ τ−1
dih and Kh are the dielectric rate and the inverse diffusion length for holes

and are defined equivalently to (2.27) and (2.25).

2.3.1.2 Two levels

The second electron-hole model [51,53–55] of Fig. 2.9(c) assumes the presence of two in-

dependent charge reservoirs. Charge redistribution in the first reservoire occurs uniquely

through transport in the conduction band, in the second reservoire uniquely through

the valence band. Coupling between the two systems occurs only via the internal space-
charge field. This model leads to partial compensation of the space-charge field by

formation of two quasi-independent space-charge gratings. In absence of applied fields

the two gratings are mutually phase shifted by 180 degrees and the space-charge field

amplitude is given as

�E1 = −imK̂
ED (Eqe − Eqh)

ED + Eqe + Eqh
, (2.46)

where Eqh ≡ (e/εε0K)(N−
A0(NA −N−

A0)/NA) is the hole trap limited field equivalent to
(2.14) and N−

A0 is the density of empty hole acceptors in the dark. Note that according

to this model, the space-charge field can be completely compensated only if Eqe = Eqh.

After compensation, the application of an external electric field can lead to significant
transient enhancement of the grating amplitude because drift leads to a phase movement

of the two grating components in opposite directions.

One of the most attractive features predicted by this model is the possibility to slow

down the dynamics of the process. Due to the presence of the two charge reservoires the

grating build-up and decay are given by double exponential functions. In general, one

of the involved time constants may become very long even as compared to the dielectric
time constant of the slower carriers 8. Therefore quasi nondestructive readout of the

holograms is possible even though the holograms are not permanently fixed. Explicit

expressions for the two exponential time rates Γ1 and Γ2 were calculated in [61] and [62],
in absence of an electric field they read

Γ1 = Γdie

1 +
K2

K2
0e

1 +
K2

K2
e

+ Γdih

1 +
K2

K2
0h

1 +
K2

K2
h

, (2.47)

8This phenomenon is closely related to what can be observed during electret formation in several
materials [56–60].
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Γ2 = Γdih
Γdie

[
K2

K2
0h
+ K2

K2
0e

(
1 + K2

K2
0h

)]
Γdie

[(
1 + K2

K2
h

) (
1 + K2

K2
0e

)]
+ Γdih

[(
1 + K2

K2
e

) (
1 + K2

K2
0h

)] , (2.48)

where Γdih ≡ τ−1
dih and Kh are the dielectric rate and the inverse diffusion length for holes

and are defined equivalently to (2.27) and (2.25). K0e ≡ 2π/Λ0e and K0h ≡ 2π/Λ0h are

the independent Debye screening wave vectors for the two sub-systems and are defined
equivalently to (2.17). While the fast time rate Γ1 essentially behaves like the time rate

(2.45) for the first electron-hole model, the time rate Γ2 reflects the collective motion and

the interaction between the electron and hole sub-systems. This can lead to very small
values for this time rate and thus to the slow dynamics mentioned above. Specifically, at

large grating spacing (K → 0) the time rate evolves as Γ2 ∝ K2, that is τ2 = 1/Γ2 ∝ Λ2,

which is the same behaviour encountered in the case of grating compensation through

ionic charges, as will be discussed in section 2.3.2.

2.3.1.3 Two levels, one with thermal excitation only

If in the above two-level model (Fig. 2.9(c)) one of the levels is considered to be emptied

uniquely by thermal transitions the expected steady-state amplitude of the space-charge
field differs from the one calculated in (2.46). In this case the thermal excited carriers

just try to compensate the field built-up by the photoexcited carriers of the other sign.

Therefore, perfect grating compensation does not depend on the delicate equilibrium

between the fields Eqe and Eqh as in (2.46) and the stationary space-charge field takes
the form [38]

�E1 = −imK̂
EDEqe

ED + Eqe + Eqh
, (2.49)

where it is assumed that electrons are the primary (photoexcited) carriers and m is
the modulation of photoexcited free electrons in the conduction band before charge

transport. As one can easily see, if Eqh and the effective number of hole traps (N−
A0(NA−

N−
A0)/NA) are large, an almost perfect compensation can be obtained. The dynamics is

given by the same double exponential behaviour as described by the above electron-hole

two level model. The time rates are still given by Eqs. (2.47) and (2.48) where now one

of the dielectric time rates does not depend on light intensity. The slowing down of the

time rate Γ2 is observed also here in full analogy with the above case.

2.3.2 Electron-ion compensation, ionic fixing

In the electron-ion model it is assumed that there is single mid-gap level from which a

single kind of carrier (for instance electrons) are photoexcited. In addition there is a

background of thermal ionic conductivity, the ions move in the field generated by the

primary carriers and try to zero the field amplitude. In this respect the electron-ion
model is very similar to the latter model above. In absence of applied electric field the

steady state space-charge field amplitude after simultaneous electron redistribution and

ionic compensation can be calculated as [38, 62, 63]

�E1 = −imK̂
EqED (ED − iEpv)

EqED + (ED − iηEpv) (EqI + ED)
, (2.50)
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where

EqI ≡
e

ε0εeff | �K|
NI0, (2.51)

is the maximum space-charge field that can be induced by the density NI0 of ionic

charges which are movable and η ≡ N+
D0/ND was already defined in Sect. 2.1.1. For

materials with negligible photogalvanic effect (Epv = 0) one has then

�E1 = −imK̂
EqED

ED + Eq + EqI
. (2.52)

In materials like LiNbO3 and KNbO3 the density NI0 at high temperatures usually
exceeds largely the effective trap concentration Neff so that the ratio EqI/Eq is large. In

this case Eqs. (2.50) and (2.52) show that the grating is largely compensated and has a

very small amplitude at steady state. However, this grating is composed by two large

opposite components almost canceling each other. Specially at longer grating spacings
the electron and the ion component of the grating may individually reach amplitudes

which are larger by orders of magnitude with respect to the electron component (2.15)

or (2.18) that would be reached in absence of compensation [38].

Like in the two-level electron-hole model the dynamics is characterized by a double

exponential behaviour with the time rates given as

Γ1 = Γdie

1 +
K2

K2
0e

1 +
K2

K2
e

+ ΓdiI

1 + K2

K2
0I

 , (2.53)

Γ2 = ΓdiI

Γdie

[
K2

K2
0I
+ K2

K2
0e

(
1 + K2

K2
0I

)]

Γdie

(
1 + K2

K2
0e

)
+ ΓdiI

(
1 + K2

K2
e

) (
1 + K2

K2
0I

), (2.54)

where

K0I ≡
√√√√√ e2NI0

εeffε0kBT
(2.55)

is the Debye wavevector for ions and ΓdiI ≡ eµINI0/(εeffε0) is the dielectric relaxation

rate for the ions with ionic mobility µI . Again, due to the collective motion of electrons

and ions the time rate Γ2 can be made significantly smaller than both leading quantities
Γdie and ΓdiI, leading to permanent or quasi-permanent holograms. In combination with

temperature cycling, ionic compensation is one of the most commonly used techniques

for the fixing of photorefractive holograms [64–68]. After high temperature recording

and reaching the compensated state the sample may be cooled down to room temper-
ature, where the ionic grating becomes freezed. The final room-temperature grating

evolution is related to the time rate Γ2, however, now with a dielectric relaxation rate

ΓdiI associated with a much smaller ionic mobility. As a result, in LiNbO3 the fixed grat-

ings may be stable for several years or even decades. Note that in materials with large
photogalvanic effects and slow time response of the electronic grating such as LiNbO3

and LiTaO3, a room-temperature revealing of the space-charge grating by means of ho-

mogeneous illumination is usually necessary. Several investigations have treated this
step in detail [62, 63, 69–72] .
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2.3.3 Two-level models, one carrier type

There are several photorefractive materials showing unipolar conductivity where the
physics is not fully explained by the simplest one level one carrier model of Sect. 2.1.

Not too uncommon phenomena are for instance the observation of double exponential

decays or of a sublinear photoconductivity of the type σph ∝ Ix, which are not predicted

by the simplest model. In this case models invoking the presence of more than one defect
level in the band-gap can come to help. The first two-level model was put forward

by Valley [73] by considering optically driven transitions only. Several authors have

developed the concept further by recognizing that shallow trap centers being thermally
coupled to the conduction (or valence) band may contribute to charge transport and

lead to the peculiar observations [74–80]. A complete summary of this kind of two-level

models has been given recently by Buse [81], distinction between the ”two-center model”

and the ”three-valence model” is made. In the first case the two levels are assumed to be
associated with different impurities, each occurring in two valence states. In the second

case a single impurity species A that may occur in three different valence states A+, A0

and A− is assumed, leading to the two levels A+/A0 and A0/A−. The fine difference
between the two models lye in the charge neutrality conditions. In the ”two-center

model” charge neutrality does not need to be satisfied within each impurity type while

this is obviously required for the single-impurity ”three-valence model”. Both models

deliver very similar predictions. In absence of applied electric field the space-charge field
amplitude is of the form (2.15), however with an additional reduction factor R(I, �K)

that depends on light intensity and on the grating wavevector [81]. The limiting field

Eq and the effective density of traps Neff are slightly redefined with respect to (2.14) in
order to account for the individual model characteristics.

2.4 Summary

In this chapter we have presented the fundamentals of the photorefractive effect. Be-

sides for the conventional single-level single-carrier model, we have described also the

simplest model for the formation of the space-charge electric field in response to inter-
band absorbed light. In this case the space-charge field amplitude becomes critically

dependent on the density of free carriers and therefore on the incident energy. Finally,

models valid in specific situations such as simultaneous electron and hole conduction,

ionic conduction, or the presence of two active photorefractive defect levels were also
discussed shortly. Unlike the common approach, we have taken here the ‘usefully dissi-

pated energy’ instead of the light intensity as the quantity driving charge redistribution

and thus the space-charge field formation. The necessity of this choice will be proven
by the experiments presented in Chapt. 5.
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Chapter 3

Dielectric response and electro-optic effect

In Chapter 2 the formation of the space-charge electric field was calculated for different

physical models starting from the initial rate equations. Through the Gauss equation

(2.1d) the space-charge field amplitude will depend on the effective relative dielectric
constant εeff , whose form will be specified below. In addition, we concentrate here our

attention to the correct value for the effective linear electro-optic coefficient reff that

translates the modulated internal electric field into a refractive index modulation.

It is well known that the static dielectric tensor and the electro-optic tensor are of

anisotropic nature for most of the point group symmetries to whom the major photore-

fractive crystals belong. This anisotropy is obvious and, to our knowledge, it is taken
into account in all works aimed at optimizing photorefractive geometries. However,

as pointed out by several researchers [82–85], the magnitude of the effective dielectric

constant and electro-optic coefficient being active in a particular experiment does not

depend only on this primary tensor properties. The mechanical state of the crystal plays
also a major role. It could be shown that, in general, an electro-optic crystal containing

a sinusoidal electric-field grating modulation is neither in a mechanically free, nor in a

mechanically totally clamped state. In fact, some of the possible local mechanical re-

laxations in response to the periodic electric field are allowed, while other are clamped.
As a consequence the magnitude of the dielectric response results from a combination

of several contributions involving the piezoelectric effect and the material elasticity. To

calculate the electro-optic response also the elasto-optic properties should be added to
the picture.

3.1 Mechanical response to modulated electric field

The response of a piezoelectric crystal to external electrical and mechanical fields is

given as [86]

Tij = CEijklSkl − ekijEk, (3.1)

Di = eijkSjk + ε0ε
S
ijEj . (3.2)

Here the Einstein summation convention over equal indices is used, and Tij is the elastic

stress tensor, CEijkl is the elastic stiffness tensor at constant electric field, eijk is the
piezoelectric stress tensor; εSij is the clamped static dielectric tensor, Ej is the electric
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field vector, Di is the electric displacement vector, and

Skl =
1

2

(
∂uk
∂xl

+
∂ul
∂xk

)
(3.3)

is the strain tensor corresponding to the symmetrized part of the displacement gradient

matrix ∂ul/∂xk. The crystal response can be easily calculated in the case of a homoge-

nous field �E. In contrast, as mentioned above, for a photorefractive periodic electric

field of the form �E(�r) = E1K̂Re
[
exp

(
i �K · �r

)]
(2.10) the mechanical response is more

complex. In order to determine the effective dielectric constant and electro-optic coeffi-

cient it is therefore necessary to calculate the modulated displacement vector field �u(�r)
for this situation. Since the piezoelectric effect is linear, �u must have the form

�u(�r) = �u1Re
[
exp i

(
�K · �r − π/2

)]
, (3.4)

where the displacement amplitude vector �u1 in general differs from the direction of

the normalized grating vector K̂ ≡ �K/| �K| with Cartesian components K̂i. In steady-

state the equation of motion for a crystal volume element leads to the equilibrium
condition [86]

∂Tij
∂xj

= 0 = CEijkl
∂2u1,k

∂xj∂xl
− ekij

∂E1,k

∂xj
, (3.5)

which can be rewritten as

CEijklK̂jK̂lu1,k =
E1

K
ekijK̂kK̂j, (3.6)

or Aiku1,k = Bi(E1/K), that is

u1,k = A−1
ki Bi(E1/K). (3.7)

The matrix Aik and the vector Bi are defined as [84],

Aik ≡ CEijklK̂jK̂l, (3.8)

Bi ≡ ekijK̂kK̂j . (3.9)

Figure 3.1 shows schematically the periodic crystal deformations in the case of a

crystal with point group symmetry 4mm such as BaTiO3 at room temperature. The

partial clamping of some deformation modes leads to the complex displacement field

(see for instance case (d)).

3.2 Static dielectric constant

The effective scalar static dielectric constant εeff which acts in a photorefractive exper-

iment is the quantity connecting the space-charge field amplitude E1 to the modulation

amplitude of the charge density ρ1 by means of the Gauss equation �∇ · �D = ρ (2.1d).
By using this equation, the dielectric relationship (3.2) and the displacement field �u

determined above (3.7), one obtains [84]

εeff ≡
ρ1

ε0KE1
= K̂iK̂j

[
εSij +

1

ε0
eijkA

−1
kl Bl

]
. (3.10)
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Figure 3.1: Elastic deformations of an ideal crystal belonging to the 4mm point group sym-
metry. (a) undisturbed crystal; (b) homogeneous strain induced by homogeneous electric field
along the 4-fold c-axis; (c) periodic dilation/compression under the effect of a periodic space-

charge field with grating �K-vector || c-axis. (d) same as (c), but for a �K-vector in the ac
plane, the deformations are a combination of dilation/compression and shear deformations.
The space-charge field in cases (c) and (d) is assumed to interest only the central part of the
crystal. The deformation amplitudes are highly exaggerated.

The quantity in the square bracket represents a new second-rank tensor whose compo-

nents depend on the direction K̂ of the grating vector. In general, even in the principal

system of coordinates of the crystal, this tensor is no longer diagonal. It differs signifi-
cantly from the unclamped (free) dielectric tensor εTij measured at constant stress. The

latter can be expressed as [86]

εTij = εSij +
1

ε0
eilmdjlm (3.11)

by using (3.2) and the relationship slm = djlmEj for the inverse piezoeffect, with djlm

being the inverse piezoelectric tensor. Examples visualizing the consequence of equation
(3.10) will be given in Sect. 3.4.
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3.3 Electro-optic effect

If we consider a homogeneous electric field �E(�r, t) = �E0(t) the change of the optical
indicatrix due to the linear electro-optic effect is given by the well known relationship

∆

(
1

n2

)
ij
= rijkEk, (3.12)

where the third-rank electro-optic tensor rijk depends on the frequency ω of the field.

More generally, for a spatially inhomogeneous deformation of the kind resulting in the

presence of a periodic space-charge grating (3.4) the change of the indicatrix is expressed
as

∆

(
1

n2

)
ij
= rSijkEk + p

′E
ijkl

∂uk
∂xl

, (3.13)

where rSijk is the clamped electro-optic tensor that contains the electronic as well as

the optical phonon contributions, and p
′E
ijkl is the modified elasto-optic tensor at con-

stant electric field. The latter tensor contains also the roto-optic contributions and
has no symmetry upon interchange of the last two indices [87]. By inserting (3.7) and

the space-charge field amplitude �E1 = E1K̂ in the above equation after a small index

rearrangement one obtains

∆

(
1

n2

)
ij
= E1

[
rSijk + p

′E
ijlkA

−1
lmBm

]
K̂k. (3.14)

The expression in the square brackets represents an effective third-rank electro-optic
tensor

reffijk ≡ rSijk + p
′E
ijlkA

−1
lmBm (3.15)

and differs considerably from the expression

rTijk ≡ rSijk + pEijlmd
T
klm (3.16)

for the unclamped electro-optic tensor rTijk calculated in analogy to (3.11) by starting

from (3.13) and assuming a homogeneous electric field 1. Due to the symmetry breaking
brought about by the periodic field in direction K̂ and the resulting mechanical response,

the tensor reffijk may possess a lower symmetry than rSijk, which is in full analogy with the

above discussion of Eq. (3.10) for the effective dielectric constant. It will be shown in the
examples below that the elastic, piezoelectric and elasto-optic contributions contained

in the second term on the right-hand side of (3.15) can have a dramatic influence on the

photorefractive nonlinearity in several circumstances.

Finally we want to give an expression for the scalar electro-optic coefficient reff which
is active in a specific photorefractive geometry. This scalar coefficient enters the expres-

sions describing light diffraction and two-wave mixing that will be presented in Chapt. 4

and 5. Let us consider a grating directed along the vector K̂ and the interaction of a

pump wave P polarized along the unit vector d̂P (corresponding to the direction of the
optical electric displacement vector) with a signal wave S polarized along d̂S . The scalar

effective electro-optic coefficient is then expressed by
1In this case the tensor p

′E
ijlk is replaced by the conventional elasto-optic (Pockels) tensor pE

ijlk = pE
ijkl

because for an homogeneous field roto-optic contributions do not lead to a change in refractive index in
a free crystal.
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reff ≡ d̂Si

(
reffijk K̂k

)
d̂Pj . (3.17)

Note that the expression in the brackets is often summarized into an effective (pho-

torefractive) second-rank electro-optic tensor, reffij ≡ reffijk K̂k [88].

a or b

c 

kp

αp

ks

αs

K
Figure 3.2: Angle convention used for repre-
senting the contour plots in this chapter and in
Chapt. 5. All angles are in the ac− (BaTiO3)
or bc−crystal plane (KNbO3) and are internal
to the crystal.

3.4 Examples

As it appears evident from Eqs. (3.8)-(3.10) and (3.15) a large number of material con-

stants must be known in order to calculate the active value of εeff and reff . For the
materials KNbO3 and BaTiO3 the whole set of dielectric, elastic, electro-optic, piezo-

electric and elasto-optic constant has been determined [88, 89]. These two ferroelectric

crystals are among the most important and best performing photorefractive crystals

because they possess large electro-optic coefficients. Therefore we choose KNbO3 and
BaTiO3 as examples for visualizing the above expressions 2. In these two materials the

maximum photorefractive nonlinearity is observed for two-beam interaction in the bc-

plane (KNbO3), resp. ac-plane (BaTiO3). Therefore we choose a representation allowing
us to describe all possible two-wave interaction geometries with the beams propagating

in these optimum incidence plane. Let us first specify a convention for the angles of

interaction (Figure 3.2). The angles αS (αP ) are internal to the crystal and represent

the angle between the wave-vector �k of the signal (pump) wave and the crystallographic
a-axis (BaTiO3) or b-axis (KNbO3). Since the largest electro-optic coefficients are ac-

cessed only for p-polarization of the waves, we consider here only this situation. The case

of s-polarization is much less interesting and gives significantly smaller photorefractive

coupling constants in the two crystals.
We start first by representing the effective scalar electro-optic coefficient reff . Figure

3.3 shows a contour plot of this quantity for the bc-plane interaction in KNbO3 as

calculated from Eqs.(3.8),(3.9),(3.15) and (3.17). The values are calculated for the

wavelength λ = 515 nm using the material data given in [90]. The thick lines connect
points for which the effective electro-optic coefficient vanishes while the positions of the

peak values are indicated by triangles. Solid contour lines connect points with a positive

value of the represented quantity, while dashed contour lines indicate negative values.
The shadowed areas indicate angular regions which, as a result of Snellius law, cannot

2These materials will be used as examples also in Chapt. 5 where two-wave mixing and its optimization
will be treated.
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Figure 3.3: Contour plot of the scalar effective electro-optic coefficient
reff (Eq.(3.17)) for each possible two-wave interaction geometry (αp, αs)
in the bc-plane of KNbO3. Shadowed regions correspond to internal angles
which are not accessible from air with a conventional crystal cut along the
three crystallographic axes. Contour line distance = 50 pm/V, dashed
lines represent negative values and the thick solid line connects points
with reff = 0. Triangles denote the position of local or global maxima or
minima (italic values).

be directly accessed from air in a crystal with the surfaces cut perpendicular to the
crystallographic b- and c-axes. However, these regions may be accessed for other crystal

cuts or by using external wedges. For instance, by cutting a crystal sample under 45◦

with respect to the crystallographic axes the whole shadowed area is accessible.

From Fig. 3.3 it appears evident that a few symmetry operations apply to such a
diagram. The first symmetry operation is

• Invariance upon point symmetry on each of the four points (αP , αS) = (−90◦,−90◦),

(90◦,−90◦), (−90◦, 90◦) or (90◦, 90◦).

Executing these point symmetry operations corresponds in the laboratory frame to a

rotation of the crystal by 180◦ around the crystallographic c-axis (exchange of b with
−b), which leaves the effects unchanged. The other symmetry operation is

• Inversion of all values upon point symmetry on the central point (αP , αS) = (0◦, 0◦).

This symmetry operation corresponds to a rotation of the crystal by 180◦ around the

b-axis (a-axis for BaTiO3), i.e. to a switch of the direction of the polar c-axis which

reverses the sign of the optical nonlinearity. Note that the inversion with respect to

mirroring at the main diagonal seen in Fig.3.3 (exchange of angles between pump and
signal wave) is not a general symmetry operation and does not hold for all quantities

that will be discussed in this work.

By making use of the symmetries discussed above all redundant information can be
eliminated and the size of the diagram of Fig.3.3 can be reduced by a factor of 4. As an
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Figure 3.4: Contour plot of the scalar effective electro-optic coefficient reff [Eq.(3.17)] for
each possible two-wave interaction geometry (αp, αs) in the ac-plane of BaTiO3. Reduced
representation containing all non-redundant information (see text). Contour line distance = 100
pm/V. (a) Correct values obtained by considering mechanical coupling according to Eq.(3.15).
(b) Incorrect values obtained by using Eq.(3.17) with the unclamped electro-optic tensor rT

ijk.

example, Fig.3.4(a) shows the reduced contour plot diagram for reff , this time for the
ac-plane of BaTiO3. A scalar electro-optic coefficient of the order of 800 pm/V can be

accessed even for conventional crystal cuts. In Fig. 3.4 the angles αp and αS have been

chosen to vary in the intervals [0◦, 180◦] and [−90◦, 90◦] , respectively. This choice will
be maintained for the rest of this work. We may identify some special lines in this kind

of representation.

• All conventional geometries for which the grating vector
−→
K is parallel to the c-axis

are found along the diagonal connecting the points (90◦,−90◦) and (0◦, 0◦).

• All geometries with the two beams exactly counterpropagating are found along the

diagonal connecting the points (90◦,−90◦) and (180◦, 0◦), with the grating vector
turning from the c- to the a- (or b-) axis while proceeding along the line.

• Along the diagonal connecting the points (180◦, 0◦) and (90◦, 90◦) the grating vector
points along the a(b)−axis and no electro-optic coupling exists.

• Finally, along the last side diagonal ((0◦, 0◦) to (90◦, 90◦)) the grating vector always

vanishes and so does the effective scalar electro-optic coefficient.

Fig.3.4(b) shows the magnitude of reff if the electro-optic response is incorrectly

calculated using the unclamped electro-optic tensor rTijk (3.16) to insert in (3.17). As

seen by comparison with Fig. 3.4(a), the contour lines shape differ significantly from
the case where the mechanical coupling is correctly considered. By using the correct

expressions, for most of the geometries the effective electro-optic coefficient is somehow

smaller with respect to what would expected on the base of rTijk .

In BaTiO3 the discrepancy between reffijk and rTijk is even stronger if one considers

wave interactions outside the ac crystallographic plane. Fig.3.5 shows a photograph of
the far field light fanning distribution as observed on the backside of a BaTiO3 crystal
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Figure 3.5: Experimentally observed far field
distribution of amplified scattered light (fan-
ning) for a pump beam (λ = 514 nm) propa-
gating along the a-axis of BaTiO3. Both the
pump and the fanning have extraordinary po-
larization. The crystal c axis points to the right.
After the crystal the pump beam is blocked by
the dark spot in the middle [91].

40°

20° Figure 3.6: Theoretical far-field light fanning
distribution induced by an extraordinary po-
larized wave propagating along the a-axis of
BaTiO3. The c-axis points to the right. The
angles are outside the crystal and the initial
noise is assumed to have a Gaussian distribu-
tion in wavevector space with a characteristic
divergence of 24◦.

illuminated with a single c-polarized laser beam (λ = 514 nm) propagating parallel to
the crystal a-axis. Fanning can be viewed as photorefractively amplified broadband

light scattering. Therefore its distribution depends on the symmetry of the electro-

optic tensor. The fanning distribution of Fig.3.5 has remained very enigmatic for a

long time because the upper and lower fanning lobes cannot be understood on the base
of the conventional electro-optic tensor rTijk. Only after understanding the details of

the mechanical coupling and determination of the tensor reffijk the existence of the two

additional lobes was explained successfully [91]. Fig. 3.6 shows the expected far field
intensity distribution using (3.17) and the wave mixing expressions of Chapt. 5. A

Gaussian initial scattering noise distribution is assumed. By using the expression based

on rTijk only the central horizontal lobe pointing towards the c-axis is expected.

Finally, we visualize the dependence of the effective dielectric constant εeff on the

interaction geometry. As seen in Eq. (3.10) εeff depends only on the direction of the
grating vector K̂, and not on the individual polarization vectors of the two interacting
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waves. Therefore, in a diagram such as the one of Fig.3.4, besides for small corrections

due to birefringence, the contour lines for εeff are all essentially parallel to the diagonal

going from top-left to bottom-right. Keeping that in mind we choose to plot the values
of εeff in a conventional diagram while we move solely along the main diagonal (from

left-bottom to top-right) in Fig.3.4. This is shown in Fig. 3.7 for both crystals under

consideration. An extremely strong dependence of the dielectric constant on the inter-

action geometry as well as the deviation of εeff from both εT and εS are evident. Note
that for completeness the top axes in Fig.3.7 give also the angular direction θ of the

corresponding grating vector K̂ for the two crystals, these axes are slightly nonlinear

with respect to the bottom one as a result of the material birefringence.
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Figure 3.7: Effective dielectric constant εeff (solid curves, Eq. (3.10) along the main diago-
nal (bottom-left to top-right) of a diagram such as the one of Fig. 3.4 for KNbO3 (a) and

BaTiO3 (b). In comparison, the dashed and dotted curves give the behaviour of K̂iε
T
ijK̂j and

K̂iε
S
ijK̂j , respectively. The values of εeff remain essentially constant by moving away from the

main diagonal in normal direction (i.e. εeff (αp ±β, αs ∓β) � εeff (αp, αs)). The top axis shows
the grating angle θ defined in the inset.

3.5 Summary

In this chapter we discussed the dielectric response to a modulated charge modulation
in a crystal as well as the electro-optic response to the resulting modulated electric field.

The expressions for the effective dielectric constant and effective electro-optic coefficient

acting in a specific experiment differ from the simple ones found for homogeneous field

and homogeneous crystal strain. This is due to the complicated interrelation between
piezoelectric effect, crystal elasticity and photoelastic effect which leads to partial crystal

clamping in several geometrical arrangements. It was proved that the enigmatic fanning

pattern observed in BaTiO3 for a beam propagating perpendicular to the polar axis
is a direct consequence of these effects. Special contour plot diagrams facilitating the

determination of the optimum two-wave interaction geometry among all possible ones

in the plane of maximum photorefractive nonlinearity were introduced in this chapter

and will be used extensively also in Chapt. 5.
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Chapter 4

Light diffraction at volume gratings in
anisotropic media

The modulated photorefractive space-charge electric field discussed in Chapt. 2 leads

to a modulated refractive index grating by means of the electro-optic effect discussed

in Chapt. 3. If the material is sufficiently thick and the grating modulation is large

enough, such a grating can efficiently diffract a light wave provided that its direction
satisfies Bragg phase matching. The theoretical efforts to understand light diffraction

in thick media have culminated in the coupled wave theory of Kogelnik [12], which

applies to isotropic materials. Despite of the fact that a large fraction of the materi-

als used for volume holography are optically anisotropic, only limited effort has been
made to theoretically analyze the diffraction of light in this kind of media [92–96]. Ko-

jima [92] analyzed the problem of diffraction of light at phase gratings in absorptionless

anisotropic materials finding solutions in the Raman-Nath diffraction regime using a
phase function method, and in the Bragg diffraction regime using Born approximation

in the undepleted pump limit. Rokushima and Yamakita [93] developed a matrix for-

malism to solve the same kind of problems and Johnson and Tanguay [94] analyzed

phase gratings using a numerical beam propagation method. Glytsis and Gaylord [95]
presented a three-dimensional coupled wave diffraction theory for the study of cascaded

anisotropic gratings and waveguide geometries. Vachss and Hesselink [96] considered

the case of optically active anisotropic photorefractive media. They found solutions for
the Bragg diffraction efficiency in the undepleted pump limit. Dielectric and absorption

gratings with a common phase and some special crystal cuts were assumed.

The advent of materials with strong birefringence, such as liquid crystals, ordered

polymers or organic crystals [97–100] in the field of volume holography asks for a novel
consideration of the anisotropy effects. In these materials, not only anisotropic [101] ,

but also isotropic Bragg diffraction is strongly affected by the optical anisotropy. The

main reason lies in the difference between the energy propagation direction and the

wavefront normal. Many materials also show an anisotropic absorption constant, that is,
absorption depends strongly on the direction of light polarization. A complete analysis

of dielectric and absorption gratings in anisotropic materials should include also this

effect.

In this chapter we present a complete formalism extending the coupled wave theory
of Kogelnik [12] to moderately absorbing non-optically active anisotropic thick media.

Dielectric and absorption modulation with common grating vector and of arbitrary

relative phase shift is considered. The model is valid in the framework of the slowly
varying amplitude approximation for every direction of the grating wavevector in three



40 Light diffraction at volume gratings

dimensions. The entrance and exit surfaces of the medium are parallel to each other

and may have an arbitrary orientation with respect to the main axis of the optical

indicatrix. We treat the cases of transmission and reflection gratings, the former being
characterized by a diffracted beam exiting the medium through the same surface as the

transmitted incident beam, the latter being characterized by a diffracted beam back-

reflected through the incidence surface. The coupled wave equations are solved for both

grating types to give the diffraction efficiency and the angle-mismatch sensitivity. The
special case of photorefractive phase gratings is discussed in a separate section.

4.1 Basic equations

Let us consider a medium containing a phase (refractive index) and/or an absorption

grating. There are several physical mechanisms being able to generate such gratings,
i.e. photochemistry, photorefractive effects, acousto-optics and others. The particular

way in which the grating was created is of no importance at this point. Let us consider

further the case of thick holograms only. An exact definition of a thick grating has been

given by Gaylord and Moharam [102] and the conditions to be fulfilled are

Q ≡ K2λd

2πn
> 1 (4.1)

and

ρ ≡ λ2

Λ2nσ
≥ 10, (4.2)

where σ = ∆n for dielectric gratings and σ = ∆αλ/2π for absorption gratings. In

our case of anisotropic materials the refractive index change ∆n and the absorption

modulation ∆α are defined later in connection with Eqs. (4.47) and (4.51), respectively.
The other quantities in the two above conditions are the medium thickness d, the vacuum

wavelength λ, the average refractive index n, the grating spacing Λ and the grating wave

vector K = 2π/Λ. We notice that if the two conditions above are not strictly fulfilled
the diffraction may be described by a mixture of Bragg and Raman-Nath regime. In

such an intermediate regime the theory presented in this work gives only approximate

results and the diffraction would be calculated more precisely by a rigorous coupled

wave analysis similar to the one presented earlier for the isotropic case [103].
As shown by Kogelnik [12], for thick gratings it is sufficient to consider the propaga-

tion of only two plane waves P and S. Since we consider the general case of anisotropic

materials the waves P and S should represent eigenwaves of the medium. The total

electric field amplitude is given by

�E (�r, t) =
[
�Es (�r) e

i�ks·�r + �Ep (�r) e
i�kp·�r

]
e−iωt + cc. (4.3)

where �Es and �Ep are complex amplitudes cleaned of the absorption contribution. This

means that they are always constant in absence of nonlinear effects, as explained later.

In absorbing crystals the wave vectors �ks and �kp are complex with the imaginary part

which possibly has a different direction than the real part [104]

�ks = �ks,r + i�ks,i (4.4a)

�kp = �kp,r + i�kp,i. (4.4b)
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The real part, as usual, is related to the wavefront propagation direction for an eigen-

polarization in the crystal, while the imaginary part is related to the linear absorption

experienced by the waves and is calculated as derived in Appendix A. The wave of
Eq. (4.3) has to fulfill the time independent vector wave equation

�∇×
(
�∇× �E

)
− k2

o
↔
ε · �E = 0, (4.5)

where
↔
ε =

↔
εr + i

↔
εi is the complex second rank dielectric tensor which includes the

effects of the material refractive index and absorption [105], and k0 = ω/c is the free
space wavenumber. From now on the explicit time dependence exp(−iωt) will be al-

ways dropped. We consider a medium containing a phase and/or an amplitude plane

holographic grating. The complex dielectric tensor ε
↔

can then be expressed as

↔
ε =

[
↔
ε

0
r +

↔
ε

1
r cos

(
�K · �r

)]
+ i

[
↔
ε

0
i +

↔
ε

1
i cos

(
�K · �r + φ

)]

=

[
↔
ε

0
r +

1

2
↔
ε

1
r

(
ei
�K ·�r + e−i

�K ·�r
)]

+ i

[
↔
ε

0
i +

1

2
↔
ε

1
i

(
ei(

�K ·�r+φ) + e−i(
�K ·�r+φ)

)]
(4.6)

where the superscripts 0 and 1 denote the constant and the amplitude of the modulated

component, respectively. The grating vector �K in Eq. (4.6) is assumed to have an arbi-

trary direction with respect to the geometrical or crystallographic axis of the anisotropic

medium. The absorption grating (modulated term in the imaginary part of Eq. (4.6))
may be phase-shifted by a phase φ with respect to the refractive index grating. We may

choose our coordinate system to coincide with the main axes of the optical indicatrix so

that the tensor
↔
ε

0
r contains only diagonal elements. In contrast, the modulated part

↔
ε

1
r

of the real dielectric tensor is generally nondiagonal. That is

↔
ε

0
r =


ε0
r,11 0 0

0 ε0
r,22 0

0 0 ε0
r,33

 , (4.7)

↔
ε

1
r =


ε1
r,11 ε1

r,12 ε1
r,13

ε1
r,12 ε1

r,22 ε1
r,23

ε1
r,13 ε1

r,23 ε1
r,33

 . (4.8)

For example, nondiagonal elements can be produced by shear acoustic waves and by
space-charge induced electro-optic effects. For crystalline materials with orthorhombic

or higher symmetry the main axes of the imaginary dielectric tensor coincide with those

of the real one [105]. For these materials also
↔
ε

0
i and

↔
ε

1
i are diagonal tensors,

ε↔0
i =


ε0
i,11 0 0
0 ε0

i,22 0

0 0 ε0
i,33

 , (4.9)

ε
↔1
i =


ε1
i,11 0 0

0 ε1
i,22 0

0 0 ε1
i,33

 . (4.10)

For crystals with lower symmetry the main axes of the absorption ellipsoid may differ
from those of the refractive index ellipsoid [106] and the tensors

↔
ε

0
iand

↔
ε

1
i may contain
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also nondiagonal elements in our coordinate system. In the case where only materials

with positive absorption (no gain) are considered, there are some additional constraints

on the elements of the tensors
↔
ε

0
iand

↔
ε

1
i ,

ε0
i,kl ≥ ε1

i,kl ≥ 0. (4.11)

However, in general this assumption is not necessary and the formalism presented here

can be used to describe the behaviour in gain media as well, as long as the system

remains in a non-oscillating regime.
Let us proceed by analyzing the coupled wave equations by inserting Eqs. (4.6) and

(4.3) into the wave equation (4.5). We notice that the first term of Eq. (4.5) can be

represented in the following form,

�∇×
(
�∇× �E

)
= ei

�ks·�r
{
�∇× �∇× �Es − i

[(
�∇× �Es

)
× �ks + �∇×

(
�Es × �ks

)]
−

(
�Es × �ks

)
× �ks

}
+ ei

�kp·�r {. . .} , (4.12)

where we have listed only the terms proportional to exp
[
i�ks · �r

]
and the second curly

bracket contains analogous terms in �Ep and �kp. The first term on the right-hand side

of Eq. (4.12) contains only second order derivatives of the wave amplitude and can be
neglected in the framework of the slowly varying amplitude approximation. The last

term together with the second term of Eq. (4.5) that contains the contribution of the

non-modulated dielectric tensors describe the linear propagation of the wave as discussed

in Appendix A. For the S -wave the equality among the latter described terms reads

−
[(
�Es × �ks

)
× �ks

]
ei
�ks·�r = k2

o

[
↔
ε

0
r + i

↔
ε

0
i

]
· �Esei

�ks·�r, (4.13)

and an analogous expression holds for the P -wave. The remaining terms, the second

and third ones on the right-hand side of (4.12), are the most interesting ones. They
describe the coupling of the waves due to the modulation expressed by

↔
ε

1
r and

↔
ε

1
i . The

.
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Figure 4.1: (a) Projection of the wavevector di-
agram for the holographic interaction. The co-
ordinate axes are parallel to the main axes of
the optical indicatrix. The input surface plane
ζ̂ · �r = 0 does not necessarily contain the axis

ẑ. The vectors �ks,r, �kp,r, �K and ∆�kr do not
need to be all coplanar. (b) Unit vectors in
direction of the electric field (ês), the dielec-

tric displacement (d̂s), the magnetic field (ĥs),
the energy propagation (ûs), the real and imagi-

nary component of the propagation vector (k̂s,r ,

k̂s,i) for the wave S, and the input surface nor-

mal (ζ̂). It holds ês⊥ûs⊥ĥs , d̂s⊥k̂s,r⊥ĥs, and

ês · d̂s = ûs · k̂s,r = cos βs.

problem being analyzed here is interesting for perfect phase matching and for small
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phase mismatch (Figure 4.1(a)). In this case we write the momentum conservation

equation as

�kp + �K = �ks +∆�k

∆�k ≡ ∆�kr + i∆�ki =
(
�kp,r − �ks,r + �K

)
+ i

(
�kp,i − �ks,i

)
. (4.14)

Using the above arguments Eq. (4.5) transforms in the two coupled wave equations

ei
�ks·�r

[(
�∇× �Es

)
× �ks + �∇×

(
�Es × �ks

)]

=
k2

0

2

[
i
↔
ε

1
r · �Ep −

↔
ε

1
i · �Epeiφ

]
ei
�ks·�rei∆

�k·�r, (4.15)

and

ei
�kp·�r

[(
�∇× �Ep

)
× �kp + �∇×

(
�Ep × �kp

)]

=
k2

0

2

[
i
↔
ε

1
r · �Es −

↔
ε

1
i · �Ese−iφ

]
ei
�kp·�re−i∆

�k·�r. (4.16)

By using some vector algebra the terms on the left-hand side of Eq. (4.15) can be

rewritten as (
�∇× �Es

)
× �ks =

∣∣∣∣�ks,r∣∣∣∣
{(

k̂s,r ·
∂Es
∂�r

)
ês −

(
ês · k̂s,r

) ∂Es
∂�r

}

+i
∣∣∣∣�ks,i∣∣∣∣

{(
k̂s,i ·

∂Es
∂�r

)
ês −

(
ês · k̂s,i

) ∂Es
∂�r

}
, (4.17)

and

�∇×
(
�Es × �ks

)
=

∣∣∣∣�ks,r∣∣∣∣
{(
k̂s,r ·

∂Es
∂�r

)
ês −

(
ês ·

∂Es
∂�r

)
k̂s,r

}

+i
∣∣∣∣�ks,i∣∣∣∣

{(
k̂s,i ·

∂Es
∂�r

)
ês −

(
ês ·

∂Es
∂�r

)
k̂s,i

}
, (4.18)

where the complex scalar amplitude Es is defined by

�Es = Esês (4.19)

and ês , k̂s,r and k̂s,i are real unit vectors directed along the electric field vector and the

real and imaginary wavevectors of the wave S, as shown in Figure 4.1(b). ∂Es/∂�r ≡ �∇Es
is the gradient of the scalar complex wave amplitude Es. Similar expressions to (4.17)
and (4.18) hold for the wave P and the left-hand side of Eq. (4.16).

In the present treatment we consider only waves which are sufficiently far from the

absorption resonance of the medium. In this limit one has only moderate absorption,

that is
∣∣∣∣�ks,i∣∣∣∣ 
 ∣∣∣∣�ks,r∣∣∣∣ and ∣∣∣∣�kp,i∣∣∣∣ 
 ∣∣∣∣�kp,r∣∣∣∣. We can therefore neglect the terms involving∣∣∣∣�ks,i∣∣∣∣ in Eqs. (4.17) and (4.18). All relationships derived in this work are valid in this

limit. Summing (4.17) and (4.18) and multiplying both sides of Eq. (4.15) with the unit

vector ês one obtains

2
∣∣∣∣�ks,r ∣∣∣∣

{
∂Es
∂�r

·
[
k̂s,r − ês

(
ês · k̂s,r

)]}

=
k2

0

2

[
i ês · ↔

ε
1
r · êp − ês · ↔

ε
1
i · êpeiφ

]
Epe

i∆�k·�r, (4.20)
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where the transpose sign has been omitted in all terms of the kind êTs ·
↔
ε

1
r · êp in order to

simplify the notation. The left-hand side vector expression in the square brackets gives

a vector which is parallel to the energy propagation direction (Poynting vector) of the
wave S [105]. One can write

k̂s,r − ês
(
ês · k̂s,r

)
= gsûs (4.21)

with ûs being the unit vector along the Poynting vector (Figure 4.1 (b)). The pro-

portionality constant gs can be determined by making use of the crystal optic wave

propagation properties, that is k̂s,r · ûs = ês · d̂s = cos βs and k̂s,r · d̂s = ês · ûs = 0 , which
leads to

gs = ês · d̂s = cos βs. (4.22)

The unit vector d̂s points in the direction of the electric displacement vector for the

wave S. By introducing the unperturbed refractive indices ns and np seen by the signal

and pump wave respectively, and with
∣∣∣∣�ks,r ∣∣∣∣ = k0 ns and

∣∣∣∣�kp,r∣∣∣∣ = k0 np, the coupled wave

equations (4.15) and (4.16) are rewritten as

∂Es
∂�r

· ûs =
k0

4nsgs

[
i ês · ↔

ε
1
r · êp − ês · ↔

ε
1
i · êpeiφ

]
Epe

i∆�k·�r, (4.23a)

∂Ep
∂�r

· ûp =
k0

4npgp

[
i êp · ↔

ε
1
r · ês − êp · ↔

ε
1
i · êse−iφ

]
Ese

−i∆�k·�r, (4.23b)

where gp = êp · d̂p in analogy to (4.22). Equations (4.23a) and (4.23b) describe the

coupling of two plane waves in any general geometry in anisotropic media containing
phase and/or absorption gratings. It is important to notice that the coupling terms must

describe the projection of the amplitude gradients along the Poynting vector direction

û of the corresponding wave. The original theory of Kogelnik [12], in contrast, contains

projections along the wavevector direction k̂, which is correct for the isotropic materials
treated in Kogelnik’s model, but is incorrect if applied to the more general case of

optically anisotropic materials.

Given the geometry of a medium containing a phase and/or absorption grating and
the waves boundary conditions, Eqs. (4.23a) and (4.23b) can be used as the base for the

determination of the diffraction properties. For finite media with a general form one

has often to rely on numerical integration. Fortunately, in the most common case of a

medium with two parallel surfaces, if one assumes an infinite lateral extent the diffraction
properties can be obtained analytically. Depending on the grating orientation one can

then distinguish between two main grating types, i.e. transmission and reflection type

gratings, as depicted in Figure 4.2. In the former case incident and diffracted wave

exit the medium through the same surface, in the latter case the two waves leave the
sample through opposite surfaces 1. In the following we derive the analytic expressions

describing diffraction at transmission and reflection gratings in a plate with parallel

surfaces of infinite extent.

1Note that it is possible for a given grating being fixed in a medium to assume transmission character
for certain read-out wavelengths and reflection character for others.
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ûsûp
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ûsûp

Transmission Hologram

ζ̂ ⋅ r
r = d

  
r
r

  
r
r

Figure 4.2: Wave propagation directions for transmission and reflection
holograms.

4.2 Transmission gratings

4.2.1 Mixed transmission gratings

Let us consider first transmission gratings, as mentioned above in this case both beams
S and P leave the material through the same surface. More precisely, this geometry

is characterized mathematically by the condition
(
ûp · ζ̂

) (
ûs · ζ̂

)
≡ cos θp cos θs > 0 ,

where ζ̂ is the unit vector in the direction of the normal to the entrance surface of the
wave P in the holographic medium (Figure 4.2).

We look for a general expression for the holographic diffraction efficiency under pump

depletion conditions. To find the spatial evolution of the signal wave S we extract Ep
from Eq. (4.23a) and insert it into Eq. (4.23b) to get the second order differential
equation

∂2Es
∂�r2 · ûs

 · ûp − i

(
∂Es
∂�r

· ûs
) (

∆�k · ûp
)

+
k2

0

16nsnpgsgp
Es

[
A2
r − A2

i + 2iArAi cosφ
]
= 0, (4.24)
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where ∂2
/
∂�r2 ≡ �∇⊗ �∇ and ⊗ indicates outer product. The coupling constants Ar and

Ai are defined as

Ar ≡ ês · ↔
ε

1
r · êp = êp · ↔

ε
1
r · ês, (4.25)

Ai ≡ ês · ↔
ε

1
i · êp = êp · ↔

ε
1
i · ês, (4.26)

where the second equalities are valid because the tensors
↔
ε

1
r and

↔
ε

1
i are symmetric. The

boundary conditions for diffraction from a transmission grating are

Es
(
ζ̂ · �r = 0

)
= 0 (4.27)

and

∂Es
∂�r

· ûs
(
ζ̂ · �r = 0

)
=

k0

4nsgs

[
i Ar − Aie

iφ
]
Ep0e

i∆�k·�r, (4.28)

where Ep0 = Ep
(
ζ̂ · �r = 0

)
is the pump wave amplitude at the entrance face of the

anisotropic holographic medium. The general solution of the differential equation (4.24)

has the form

Es = Es1 exp (�γ1 · �r) +Es2 exp (�γ2 · �r) , (4.29)

where Es1 and Es2 are complex constants. The direction of the vectors �γ1 and �γ2 is not

strictly defined because by inserting Eq. (4.29) into Eq. (4.24) one obtains constraints

only on the scalar products �γ · ûs and �γ · ûp. In view of the boundary conditions given

by Eqs. (4.27) and (4.28) it is useful to choose �γ1 and �γ2 parallel to the surface normal
ζ̂, which gives

�γ1,2 =

i∆�k · ûp
2 cos θp

± iW

 ζ̂ , (4.30)

where W =
√
W 2 is a complex quantity with

W 2 =

∆�k · ûp
2 cos θp


2

+
k2
o

16nsnpgsgp cos θs cos θp

×
(
A2
r −A2

i + 2iArAi cos φ
)

(4.31)

and

cos θs = ζ̂ · ûs, cos θp = ζ̂ · ûp. (4.32)

It is important to note that all projection cosines in Eq. (4.31) are taken with respect

to the Poynting vector direction and not with respect to the wavevector direction. The

constants Es1 and Es2 are obtained by using the boundary conditions (4.27) and (4.28)

and one finds

Es1 = −Es2 =
k0

8nsgs cos θs
ei∆

�k·�r|| Ar + iAie
iφ

W
Ep0, (4.33)

where �r|| is a position vector on the entrance surface defined by ζ̂ ·�r = 0. The constantEs1
is �r-independent and the general solution (4.29) fulfills the differential equation (4.24)

only if ∆�k ·�r|| = 0 for all �r||, thus constraining the real and imaginary part of the vector

∆�k to be parallel to the normal to the surface ζ̂, as shown in Fig. 4.1(a). This property
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is a direct consequence of the fact that waves and gratings have infinite extent in the

transversal directions. The wavefront propagation direction �ks of the wave S is now well

defined and is obtained using (4.14) and the linear crystal-optic properties of the sample.
By inserting the complex amplitudes (4.33) and the complex gain constants (4.30) into

(4.29) one finds the general solution for the evolution of the signal wave amplitude

Es (�r) =
k0

8nsgs cos θs

Ar + iAie
iφ

W
ei(

∆kr+i∆ki
2 )ζ̂ ·�r

×
[
eiW(ζ̂·�r) − e−iW(ζ̂·�r)

]
Ep0, (4.34)

where the real scalar mismatch quantities ∆kr and ∆ki have been defined by ∆�kr = ∆krζ̂

and ∆�ki = ∆kiζ̂. In analogy, one can also find the wave amplitude of the transmitted

pump wave, which is

Ep (�r) = e−i(
∆kr+i∆ki

2 )ζ̂·�r
2W + (∆kr + i∆ki)

4W
eiW(ζ̂ ·�r)

+
2W − (∆kr + i∆ki)

4W
e−iW(ζ̂·�r)

Ep0. (4.35)

One can now calculate the diffraction efficiency defined as the ratio of the output

signal intensity to the incident pump intensity

η ≡
Is

(
ζ̂ · �r = d

)
Ip

(
ζ̂ · �r = 0

) =
EsE

∗
snsgs

Ep0E
∗
p0npgp

cos θs
cos θp

e−2�ks,i·�r. (4.36)

The factor cos θs/ cos θp is an obliquity term which assures consistent results in a general

case when we are interested in the optical energy flow through the input and output

surfaces of the medium. The existence of the term nsgs/npgp has been often overlooked in
the literature. Neglecting this term is allowed only in isotropic materials or in anisotropic

materials in the case of a configuration fully symmetric with respect to the axis ζ̂ and

the optical indicatrix. By using the definition for the diffraction efficiency (4.36) and the
solution for the evolution of the signal wave amplitude (4.34) one obtains the general

expression for the diffraction efficiency of a mixed transmission grating

η
(
ζ̂ · �r = d

)
=

k2
0

16nsnpgsgp cos θs cos θp

A2
r + A2

i − 2ArAi sin φ

|W 2|
×

{
sin2 (Re [W ] d) + sinh2 (Im [W ] d)

}
e−(αs+αp)d. (4.37)

The quantities αs = |�ks,i| and αp = |�kp,i| are the effective amplitude absorption constants

experienced by the signal wave S and pump wave P in direction of the surface normal
ζ̂ , respectively. They are expressed by

αs =
k0

(
ês · ↔

ε
0
i · ês

)
2nsgs |cos θs|

, αp =
k0

(
êp · ↔

ε
0
i
· êp

)
2npgp |cos θp|

, (4.38)

as derived in Appendix A (Eq. A.9). It should be noticed that the effective absorption

constants for the waves S and P can differ from each other even in the case where
the tensor

↔
ε

0
i is isotropic. This is the case when the directions of propagation are not
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Figure 4.3: Mixed transmission grating. Diffraction efficiency vs. the real
grating mismatch parameter ∆kr for three values of the phase-shift angle
φ between phase and absorption grating. Parameters: Ar = 2 × 10−5,
Ai = 2 × 10−5, λ = 633 nm, d = 1 cm, αs = 0.4 cm−1, αp = 0.7 cm−1,
ns = 2.2, np = 2.0, gs= 1.0, gp = 0.95, θs = 10◦, and θp = −40◦.

symmetric with respect to the surface normal due to a different propagation distance of

the two waves inside the absorbing medium.
Equation (4.37) describes completely the diffraction at a mixed phase and absorption

transmission grating in anisotropic media. As an example, Fig. 4.3 shows that the total

diffraction efficiency strongly depends on the phase-shift φ between phase and absorption
grating, which is in agreement with previous analysis of mixed phase and absorption

gratings in isotropic media [107]. This behaviour is easily explained by the interference

of the waves scattered off the phase and absorption grating, respectively, and leads to a

nonreciprocal behaviour of the light-diffraction [108].

4.2.2 Transmission gratings with refractive index modulation
only

Let us consider now the case where the grating consists only of a refractive index mod-
ulation. In absence of absorption modulation we have Ai = 0 and the quantity W 2 can

be simplified and rewritten as

W 2 =
1

d2

(
ν2 + ξ2 + iχ2

)
, (4.39)

where the real quantities ν2, ξ2 and χ2 are defined as

ν2 =
k2

0A
2
r

16nsnpgsgp cos θs cos θp
d2, (4.40)

ξ2 =
∆k2

r −∆k2
i

4
d2 =

∆k2
r

4
− (αp − αs)

2

4

 d2, (4.41)

χ2 =
∆�kr ·∆�ki

2
d2 =

∆kr (αp − αs)

2

 d2. (4.42)
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The diffraction efficiency of Eq. (4.37) reads then

η (d) =
ν2√

(ν2 + ξ2)2 + χ4

sin2

√√√√√(ν2 + ξ2) +
√
(ν2 + ξ2)2 + χ4

2

+ sinh2

√√√√√− (ν2 + ξ2) +
√
(ν2 + ξ2)2 + χ4

2

 e−(αs+αp)d. (4.43)

Note that the arguments of the sin2 and sinh2 functions are always real although ξ2

and χ2 can be negative numbers. We notice also that the sinh2 term (second term in the

curly bracket of (4.37)) survived even though there is no longer an absorption modula-

tion. This term takes accurately into account the effect on the diffraction efficiency of a
different absorption constant for the pump and signal waves. It vanishes if the effective

absorption constant seen by the two waves is the same (αs = αp = α, χ2 = 0), in which

case Eq. (4.43) simplifies further to

η (d) =
sin2 √ν2 + ξ2(
1 + ξ2

/
ν2

) e−2αd. (4.44)

This equation has exactly the same form as Eq. (43) of Kogelnik [12]. However the

quantities ν2, ξ2 and α are defined differently. The quantity ξ2 in this case reduces to

ξ2 =
∆k2

r

4
d2, (4.45)

ν2 is redefined according to Eq. (4.40) with the projection cosines given by Eq. (4.32),
and the effective amplitude absorption constant α is given by (4.38).

A further simplification is obtained in the case of perfect Bragg matching, that is

∆�kr = 0, ξ2 = 0. In this case (4.44) becomes

η (d) = sin2
 πAr d

2λ (nsnpgsgp cos θs cos θp)
1/2

 e−2αd, (4.46)

where λ is the vacuum wavelength. The argument of the sin-function is of the form
(π∆nd/λ cos θ) in analogy with the well known Eq.(45) of Ref. [12]. Here the effective

refractive index change ∆n takes the form

∆n =
Ar

2
√
nsnpgsgp

(4.47)

and cos θ = (cos θs cos θp)
1/2. In non absorbing materials the maximum possible diffrac-

tion efficiency is exactly 100% for phase-only gratings, regardless of the fact whether
isotropic or anisotropic diffraction processes are considered.

The effect of the background absorption αs and αp on the Bragg-angle selectivity of a

phase only grating is shown in Figure 4.4 (Eq. (4.43)). The main effect of absorption is to

reduce the maximum diffraction efficiency. In addition, a certain broadening of the Bragg
selectivity curve is observed if signal and pump are absorbed differently (αs 
= αp). For a

given total absorption (αs + αp) the more favorable diffraction efficiency is found when

the absorption difference between signal and pump is maximum. A strong difference
in the effective absorption for the two waves may be observed in a number of crystals
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Figure 4.4: Effect of absorption on the diffraction efficiency and phase
mismatch selectivity for diffraction at a grating with refractive index mod-
ulation only. Parameters: Ar = 5× 10−5, Ai = 0, λ = 633 nm, d = 1 cm,
ns = 2.2, np = 2.0, gs = 1.0, gp = 0.95, θs = 10◦, and θp = −40◦.

under anisotropic Bragg diffraction geometries. It should be noticed that, despite for

the fact that the mismatch term ξ2 in Eq. (4.41) contains the term (αp − αs), there
is no shift in the Bragg angle for αs 
= αp, i.e. the maximum diffraction efficiency is

still obtained for ∆kr = 0. The absorption characteristics can introduce a significant

shift in the direction for which one observes the maximum diffraction efficiency only
when the grating strength ν exceeds π/2. However, for absorbing materials it is usually

convenient to reduce the thickness of the material and avoid this regime.

In order to visualize the essential features brought about by the material anisotropy

we compare in a concrete example the theoretical expressions derived above for
anisotropic media with the standard coupled wave theory for isotropic materials by

Kogelnik. We choose the example of the organic material 4-N,N-Dimethylamino-4’-N-

methyl-stilbazolium tosylate (DAST) [109] which has a very strong birefringence. At

λ = 860 nm, n1 = 2.315, n2 = 1.660, n3 = 1.604 [110]. For a crystal cut along the di-
electric principal axes (x1, x2, x3) and pump and scattered signal beams with �k-vectors

in the 1,3-plane and directed at ±25◦ to the x3-axis one obtains np = ns = 2.119. The

energy propagation vectors ûp and ûs are then directed at ±44.2◦ to the x3-axis, giving

a big walk-off angle of the order of 20◦ and gs = gp = 0.945. Figure 4.5 compares the
dependence of the diffraction efficiency on refractive index change ∆n as obtained from

Eqs. (4.46) and (4.47) with the dependence predicted by Eq. (45) in Ref. [12]. It be-

comes clear that in such highly birefringent materials the use of Kogelnik’s expressions
leads to large errors even in such fully symmetric beam geometries.
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Figure 4.5: Diffraction efficiency vs. refractive index change ∆n (4.47)
predicted by the coupled wave theory for anisotropic materials presented
here (solid line) and the isotropic coupled wave theory of Kogelnik [12]
(dashed line). The diffraction is modeled for the organic crystal 4-N,N-
Dimethylamino-4’-N-methyl-stilbazolium tosylate (DAST) with symmet-

ric p-polarized signal and pump wave propagating in the 1,3-plane (ζ̂ = x̂3)
and the grating wavevector parallel to the 1-axis. Parameters: Ai = 0, λ
= 860 nm, d = 1 cm, αs = αp = 0, and � (k̂s, x̂3) = − � (k̂p, x̂3) = 25◦,
which gives ns = np = 2.119, gs = gp = 0.945, and θs = −θp = 44.2◦.

4.2.3 Transmission gratings with absorption and gain modula-
tion only

In absence of refractive index modulation one has Ar = 0. The expression for the

diffraction efficiency differs from Eq. (4.43) only by a (–) sign

η (d) =
− ν2√

(ν2 + ξ2)2 + χ4

sin2

√√√√√(ν2 + ξ2) +
√
(ν2 + ξ2)2 + χ4

2

+ sinh2

√√√√√− (ν2 + ξ2) +
√
(ν2 + ξ2)2 + χ4

2

 e−(αs+αp)d. (4.48)

The parameter ν2 is defined here as

ν2 =
−k2

0A
2
i

16nsnpgsgp cos θs cos θp
d2 (4.49)

and is a negative number, while ξ2 and χ2 are still given by Eqs. (4.41) and (4.42),

respectively. In the limit of Bragg condition fulfillment and no absorption difference

between the two waves (ξ2 = 0, χ2 = 0) Eq. (4.48) reduces to

η (d) = sinh2
 π Ai d

2λ (nsnpgsgp cos θs cos θp)
1/2

 e−2αd. (4.50)

In analogy with Ref. [12] the argument of the sinh-function is of the form ∆αd/(2 cos θ)

with

∆α =
πAi

λ
√
nsnpgsgp

(4.51)
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and cos θ = (cos θs cos θp)
1/2.

0 1 2 3
0.000

0.005

0.010

0.015

0.020

0.025

Thickness d [cm]

D
iff

ra
ct

io
n 

E
ffi

ci
en

cy

Ai = 10-5

Ai = 2x10-5

d = 2 ln3 /(αs+αp)

Figure 4.6: Diffraction efficiency vs. grating thickness d for transmission
grating with absorption modulation only. The curves are obtained using
Eq.(4.48) by assuming perfect Bragg-matching (kr = 0). Parameters:
Ar = 0, λ = 633 nm, ns = 2.2, np 2.0, gs = 0.98, gp = 0.95, αs = 0.5
cm−1, αp = 1.0 cm−1, θs = 20◦, and θp = −30◦. The vertical line indicates
the optimum thickness for maximum diffraction efficiency.

As already pointed out by Kogelnik the diffraction efficiency of a pure absorption

grating in transmission cannot exceed ηmax = 1/27 = 3.7%. This is still true also by

inclusion of absorption and dielectric anisotropies and is a direct consequence of the
assumed inequality (4.11) which states that there are no positions with local gain for

the optical waves 2. Therefore an absorption modulation is always connected to a certain

background average absorption which leads to the reduction of the diffraction efficiency.
The optimum value of 3.7% is reached when (αs+ αp)d = 2 ln 3 if at the same time the

condition
k0Ai√

nsnpgsgp cos θs cos θp
= αs + αp (4.52)

is fulfilled. Note that under the validity of (4.11) the left-hand side of (4.52) is always

smaller or equal to the right-hand side. Figure 4.6 shows the dependence of the diffrac-

tion efficiency on the grating thickness d for two values of the coupling constant Ai.

Perfect Bragg matching is assumed. The occurrence of an optimum thickness can be
easily recognized.

4.3 Reflection gratings

4.3.1 Mixed reflection gratings

Reflection gratings are characterized by the conditions ûp · ζ̂ = cos θp > 0 and ûs · ζ̂ =

cos θs < 0. As shown in Fig.4.2, we assume the medium to be a plane parallel plate

of thickness d with surfaces oriented in arbitrary directions with respect to the optical
2Note that in the derivation of Eqs.(4.48) and (4.50) the condition (4.11) was not used. Therefore

Eqs.(4.48) and (4.50) are valid also for the description of gain gratings with negative absorption constants,
in this case the diffraction efficiency can largely exceed 1.
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main axes and of infinite lateral dimensions. Let the pump wave P enter the holographic

medium from the face defined by ζ̂ · �r = 0. The boundary conditions valid for reflection

gratings are then

Es
(
ζ̂ · �r = d

)
= 0 (4.53)

and
∂Es
∂�r

· ûs
(
ζ̂ · �r = 0

)
=

k0

4nsgs

[
i Ar −Aie

iφ
]
Ep0e

i∆�k·�r, (4.54)

where Ep0 = Ep
(
ζ̂ · �r = 0

)
. Proceeding in the same way as for transmission holograms

we insert Es = Es1 exp (�γ1 · �r)+Es2 exp (�γ2 · �r) into the second order differential equation

(4.24) and use the above boundary conditions to obtain the general solution for the
evolution of the signal wave amplitude

Es (�r) =
k0

4nsgs cos θs

Ar + iAie
iφ(

∆kr+i∆ki

2

)
[eiWd − e−iWd] +W [eiWd + e−iWd]

×ei
∆kr+i∆ki

2
�ζ·�r

[
eiW(ζ̂·�r−d) − e−iW(ζ̂·�r−d)

]
Ep0, (4.55)

where the property that the vector ∆�k is constrained to be parallel to ζ̂ , so that

∆�kr = ∆kr ζ̂ and ∆�ki = ∆kiζ̂ was used again. The quantity W =
√
W 2 is the same as

given in Eq. (4.31), for reflection gratings it can be rewritten as

W 2 =

∆kr + i (αs + αp)

2

2

+
k2

0

(
A2
r −A2

i + 2iArAi cos φ
)

16nsnpgsgp cos θs cos θp
, (4.56)

where we have used Eqs. (4.1) and (4.14) as well as �ks,i = −αsζ̂ ,�kp,i = +αpζ̂. In analogy

to (4.35), the evolution of the pump wave amplitude is obtained as

Ep (�r) =

 [2W +∆k] eiW(ζ̂ ·�r−d) + [2W −∆k] e−iW(ζ̂·�r−d)

[2W +∆k] e−iWd + [2W −∆k] eiWd

 e−i(∆k
2 )ζ̂·�rEp0, (4.57)

where ∆k = ∆kr + i∆ki . The diffraction efficiency of a reflection hologram is defined

as

η =
Is

(
ζ̂ · �r = 0

)
Ip

(
ζ̂ · �r = 0

) =
EsE

∗
snsgs

Ep0E∗
p0npgp

∣∣∣∣∣∣cos θscos θp

∣∣∣∣∣∣ , (4.58)

where again an obliquity factor is introduced in the definition. Inserting the complex

signal wave amplitude (4.55) into (4.58) one obtains the general expression for the

diffraction efficiency of a mixed phase and absorption reflection grating in anisotropic

media with absorption anisotropy

η =
−k2

0

(
A2
r + A2

i − 2ArAi sinφ
)

16nsnpgsgp cos θs cos θp

1

R

{
sin2 (Re [W ] d) + sinh2 (Im [W ] d)

}
, (4.59)

where the quantity R is given as
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R =

(∆kr)
2

4
+

(αs + αp)
2

4

 {
sinh2 (Im [W ] d) + sin2 (Re [W ] d)

}
+

∣∣∣W 2
∣∣∣ {cosh2 (Im [W ] d)− sin2 (Re [W ] d)

}
+Re [W ]

(αs + αp)

2
sin (2Re [W ] d) +

∆kr
2

sinh (2Im [W ] d)


+Im [W ]

(αs + αp)

2
sinh (2Im [W ] d)− ∆kr

2
sin (2Re [W ] d)

 . (4.60)
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Figure 4.7: Mixed reflection grating. Diffraction efficiency vs. thickness d
for three values of the phase-shift angle φ between phase and absorption
grating. Parameters: Ar = 6× 10−5, Ai = 2× 10−5,λl = 633 nm, ∆kr =
0, αs = 0.7 cm−1, αp = 1.0 cm−1, ns = 2.2, np = 2.0, gs = 1.0, gp = 0.95,
θs = −170◦, θp = −40◦. The inset shows the dependence of the diffraction
efficiency on the phase mismatch ∆kr for d= 1 cm, φ = −90◦ , and the
other parameters as above.

The overall diffraction efficiency of mixed reflection gratings depends again on the

phase-shift φ between phase and absorption grating components, as shown in Fig. 4.7
where η is plotted versus the material thickness. This leads again to non-reciprocal

transmission as in the case of transmission gratings discussed above. It is clearly recog-

nized in Fig. 4.7 that after reaching saturation, a further increase in thickness does not

lead to a larger diffraction efficiency. Physically, this is easily understood by the fact
that the pump wave intensity Ip does strongly decrease with increasing depth due to the

combined effects of back diffraction and absorption. An example of angular mismatch

characteristics for reflection gratings is plotted as an inset in Fig. 4.7.

4.3.2 Reflection gratings with refractive index modulation only

In analogy with section 4.2.2 one can write W 2 =
(
ν2 + ξ2 + iχ2

)
/d2 , with ν2 given by

Eq. (4.40) being now a negative real number,

ξ2 =

(∆kr)
2 − (αs + αp)

2

4

 d2, (4.61)
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and

χ2 = −
∆kr (αs + αp)

2

 d2. (4.62)

The diffraction efficiency is found from Eq. (4.59) as

η =
−ν2

d2R

{
sin2 (Re [W ] d) + sinh2 (Im [W ] d)

}
, (4.63)

where R is given by (4.60) and the real and imaginary components of the coupling

quantity W are

Re [W ] = ±1

d

√√√√√(ν2 + ξ2) +
√
(ν2 + ξ2)2 + χ4

2
, (4.64)

Im [W ] = ±1

d

√√√√√− (ν2 + ξ2) +
√
(ν2 + ξ2)2 + χ4

2
. (4.65)

In the two above equations the signs (+) or (–) have to be selected in order to be

consistent with the quadrant of the complex quantity W 2. For the practically most

interesting case of perfect phase matching and no loss Eq. (4.63) reduces to

η = tanh2
√
−ν2 = tanh2

 πAr d

2λ (nsnpgsgp |cos θs| cos θp)1/2

 , (4.66)

which, with the use of (4.47) corresponds to the well known expression for isotropic

dielectric reflection holograms (Eq. (59) in [12]).

Dielectric reflection gratings are interesting for applications as sharp wavelength fil-

ters, it is therefore useful to look a little more in detail at the Bragg selectivity of such
gratings. In Fig. 4.8 we show the reflectivity of a grating as a function of the wavevector

mismatch ∆kr
3 for different values of the coupling constant Ar and of the grating thick-

ness d. For fixed d, besides the increase of the peak diffraction efficiency there is also a

broadening of the Bragg selectivity with increasing coupling constant Ar (Fig. 4.8(a)).
Ultimately, for large enough values of Ar this leads to the formation of a stop band

with reflectivity equal to 1 for a broad range of wavelengths around the perfectly phase

matched one. One can speak about one-dimensional photonic band-gap structures in
this context. The broadening of the selectivity curve for larger Ar is physically due to a

shorter average distance traveled by the pump wave inside the grating structure (smaller

effective thickness). The effect of the thickness on the Bragg selectivity can be seen ex-

plicitely on Fig. 4.8 (b). Evidently, thicker gratings lead to sharper reflection filters,
however, this is true only as far as the refractive index change (∝ Ar) is not too large.

Therefore, the simultaneous optimization of the grating reflectivity and minimization

of the reflected bandwidth requires a careful balance between the grating thickness and
the amplitude of the refractive index modulation.

In Fig. 4.9 the maximum diffraction efficiency and the full-width-at-half-maximum

(FWHM) of the Bragg selectivity are plotted as a function of the coupling constant

Ar (a) and of the grating thickness d (b). The FWHM is described both in terms
of the wavevector mismatch parameter ∆kr and in terms of the wavelength deviation

∆λ from the Bragg wavelength at the technologically very important telecommunication
3If the wavevector mismatch ∆kr is due uniquely by a mismatch ∆λ in the read-out wavelength λ,

the relation between these two quantities is given as ∆λ ∼= ∆krλ
2/(4πn).
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Figure 4.8: Diffraction efficiency (reflectivity) of a phase-only reflection grating as a function
of the phase mismatch parameter ∆kr as obtained by Eq.(4.63). (a) d = 1 cm, Ar = 2× 10−5

(solid curve), Ar = 2 × 10−4 (dashed curve); (b) Ar = 5 × 10−5, d = 0.5 cm (solid curve),
d = 2 cm (dashed curve); The other parameters are: λ = 633 nm, αs = αp = 0, ns = 2.2, np

= 2.0, gs = 1.0, gp = 0.95, θs = 10◦, θp = 170◦.

wavelength of 1.55 µm. Again, the broadening of the spectral reflectivity band for larger

Ar can be easily recognized. As seen in Fig. 4.8(a) this effect is also accompanied by a
strong rise of the side lobes. In contrast, increase of d always leads to a decrease of the

spectral reflectivity bandwidth. Note however, that once saturation of the diffraction

efficiency is reached, the narrowing is practically stopped because virtually no light

reaches the deepest regions of the grating. At this point smaller FWHM can only be
obtained by simultaneous increase in thickness and decrease in grating strength Ar.
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Figure 4.9: Maximum diffraction efficiency (lower graphs) and FWHM (upper graphs) as a
function of the coupling constant Ar (a) and of the grating thickness d (b) as obtained by
Eq.(4.63). (a) d = 0.5 cm; (b) Ar = 2 × 10−4; The other parameters are: λ = 1.55 µm, αs

= αp = 0, ns = np = 2.2, gs = gp = 1.0, θs = 0◦, θp = 180◦.
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4.3.3 Reflection gratings with absorption modulation only

For ε
↔1
r = 0

↔
the quantity ν2 is given by Eq.(4.49) and is now a positive real number. The

diffraction efficiency is then expressed as

η =
ν2

d2R

{
sin2(Re [W ]) + sinh2(Im [W ])

}
, (4.67)

with R, ξ2, χ2, Re [W ] and Im [W ] obtained from (4.60), (4.61), (4.62), (4.64) and (4.65),

respectively. Under Bragg incidence one has ∆�kr = 0 and thus χ2 = 0. It holds further

that ∆α ≤ αs, which implies ν2+ξ2 < 0, Eq. (4.67) transforms then for Bragg incidence
into

η = ν2
[
−ξ2 +

√
− (ν2 + ξ2) (αs + αp) d coth

√
− (ν2 + ξ2)

−
(
ν2 + ξ2

)
coth2

√
− (ν2 + ξ2)

]−1
. (4.68)

In the case where solely positive absorption is considered (no gain), the inequality

(4.11) implies k0Ai/
√
nsnpgsgp cos θs cos θp ≤ αs + αp in analogy with (4.52). In the

case when the equal sign holds one has ξ2 = −4ν2 < 0. By inserting it into (4.68)

in the limit ξ2 → −∞ (large absorption) one finds the maximum possible diffraction
efficiency achievable by a reflection grating with absorption modulation only, that is

η = 1/(7 + 4
√
3) = 7.2%.

The above expressions in this section are valid for the case of positive absorption.
In the opposite case of optical gain (negative absorption constants) the solutions (4.67)

and (4.68) are no longer valid. In fact a modulated gain in a reflection geometry leads to

laser oscillation. This process does not obey the boundary conditions (4.53) and (4.54)

and therefore the corresponding solutions cannot be applied to the description of the
oscillation. We recall that this limitation is not present for transmission gratings, where

only amplification but no oscillation can occur. As pointed out above (see footnote on

page 52) the solutions for positive absorption are valid also for the case of gain.

4.4 Photorefractive phase gratings

In terms of light diffraction, plane wave photorefractive phase holograms can be treated

by inserting the refractive index change induced by the photorefractive effect in the
equations derived above 4. Therefore we are left with the task of determining the value

of the coupling constant Ar for the photorefractive case. We have first to relate the

change of the inverse dielectric constant ∆
↔
ε
−1
r ≡ ∆

(
1/n2

)
ij

calculated in Chapter 3

(Eq. (3.14)) with the change of the (direct) dielectric constant ∆
↔
εr ≡ ↔

ε
1
r contained in

the defining expression (4.25) for the quantity Ar. This relationship is given by

∆
↔
εr =

↔
ε

1
r = −

(
↔
εr ·∆

↔
ε
−1
r · ↔

εr

)
∼= −

(
↔
ε

0
r ·∆

↔
ε
−1
r · ↔

ε
0
r

)
, (4.69)

where the last equality is valid because we assumed
∥∥∥∥↔ε1
r

∥∥∥∥ 

∥∥∥∥↔ε0
r

∥∥∥∥, which is usually

fulfilled in photorefractive experiments. By combining the above equation (4.69) with
4This is strictly correct only as far as the pump and signal wave do not modify the grating during

its read-out, otherwise the feedback of the waves onto the grating has to be taken into account in a
self-consistent manner.
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Eqs. (4.25) and (3.14) one obtains

Ar = −ês · ↔
ε

0
r ·

(
↔
r
eff · K̂

)
· ↔
ε

0
r · êp E1, (4.70)

where the tensor r↔eff is the third-rank effective electro-optic tensor defined in (3.15) and

takes into account all mechanical coupling effects. Performing the tensor multiplications

in the above expression leads to

Ar = −n2
sn

2
pgsgpreff Esc, (4.71)

where ns and np are the refractive indices seen by the signal and pump wave, respectively,

and reff is the scalar effective electro-optic coefficient defined in Eq. (3.17).
The expression (4.71) can now be inserted into Eqs. (4.43) and (4.63) to obtain the

diffraction efficiency η of photorefractive transmission and reflection gratings. We give

here only the special cases valid for phase-matched Bragg-diffraction in non absorbing
materials. For transmission gratings in a medium of thickness d one gets

η = sin2

 π

2λ

 gsgp
cos θs cos θp

1/2

(nsnp)
3/2 reffEscd

 , (4.72)

while for reflection gratings the result is

η = tanh2

 π

2λ

 gsgp
cos θs cos θp

1/2

(nsnp)
3/2 reffEscd

 . (4.73)

4.5 Summary

In this chapter we have given a detailed treatment of light diffraction at volume trans-

mission or reflection gratings by extending the well known Kogelnik’s coupled wave

theory to the case of anisotropic media. The new expressions given here are valid for
general interaction geometries in parallel plate media cut in arbitrary directions with

respect to the crystallographic axes. They consider explicitely a combination of refrac-

tive index and absorption or gain gratings with arbitrary relative phase relationship.

The correct expressions describing light diffraction in anisotropic non optically active
photorefractive crystals in the framework of the coupled waves analysis were given as a

special case in the last section.



Chapter 5

Two-wave mixing

In the case of light diffraction treated above in Chapter 4 the signal wave S has a van-

ishing amplitude at the entrance surface into the holographic medium. In contrast, for
the case of two-wave mixing the signal wave is injected and has a nonzero amplitude at

the entrance surface. Therefore the two situations differ solely by the boundary condi-

tions and can be treated using the same coupled wave equations derived in Chapter 4.
Two-wave mixing (TWM) leads in general to energy and/or phase transfer between the

waves, therefore (TWM) is often simply called two-beam coupling. The kind and mag-

nitude of the coupling depends on the phase relationship between the waves and the

grating. In this chapter we will treat principally the case of photorefractive two-wave
mixing, in which case the grating at which the two waves couple is dynamically created

by the waves themselves. However, before doing that we want to consider shortly the

case when two waves couple at a prerecorded fixed grating.

5.1 Two-wave mixing at fixed grating

To treat the case of two-wave mixing at a fixed grating we refer to the formalism de-

veloped in Chapter 4. In the case of light diffraction discussed above the phase of the

diffracted signal wave is determined solely by the phase position of the grating. In
contrast, for two wave mixing there are two absolute reference phases, one given by

the grating position (for instance the positions of the refractive index maxima) and the

other given by the position of the interference fringes created by the signal and the

pump wave. Both are defined from outside. Different relative shifts between the two
reference phases lead to a different coupling between pump and signal.

Let us suppose we want to know the amplitude of the signal wave S after coupling
with the pump wave P at a fixed transmission grating. This amplitude is a coher-

ent superposition of the transmitted amplitude of S when the wave P is absent and

the amplitude diffracted from P in direction of S, when the latter has zero ampli-

tude at the entrance face. Therefore one first calculates the transmitted amplitude

Es,t
(
ζ̂ · �r = d

)
using Eq. (4.35) letting S take the role of the pump wave. Secondly,

the amplitude Es,d
(
ζ̂ · �r = d

)
scattered from P into the general direction of S is cal-

culated using Eq. (4.34) by extracting the correct wave propagation direction �ks,d from

Eq. (4.14). Finally the two waves are added and combined with the phase factors as

Es,t exp
(
i�ks · �r

)
+Es,d exp

(
i�ks,d · �r

)
to obtain the electric field amplitude of the wave S

at the exit of the grating region. In analogy, in the case of a fixed reflection holograms
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the same procedure outlined above is followed. One uses Eqs. (4.57) and (4.55) instead

of Eqs. (4.35) and (4.34) to obtain the transmitted and in-diffracted amplitudes.

Before treating the most interesting case of perfect phase matching (�ks,d ≡ �ks), where

the transmitted and in-diffracted wave are not distinguishable, it is useful to consider one
aspect of Bragg diffraction that was not mentioned in Chapter 4. Our interest should go

first at the phase relationship between the refractive index or absorption grating and the

fringes formed by the interference of the transmitted read-out wave P (determined from

(4.35)) with the diffracted wave S (determined from (4.34)). For perfect Bragg matching
these fringes (calculated from the modulation of the local optical energy density) must

have the same periodicity �K of the grating. This is clearly seen in Fig. 5.1 which shows

the phase relationship between the optical energy density (∝ | �Es+ �Ep|2) and a refractive
index (a) or an absorption grating (b) of the transmission type. The refractive index

grating modulation is characterized by the function g(�r) corresponding to the cosine

term in the first square bracket of Eq. (4.6). Similarly, the absorption grating in (b)

is described by a corresponding function f(�r) which is assumed to have positive values
for positive absorption changes. The fringes and grating modulation are plotted in

Fig. 5.1 along the exit surface ζ̂ · �r = d (see Fig. 4.2) with �r|| being a vector inside

this surface. It can be easily proved that in the case of a pure phase grating, as shown
in Fig. 4.2(a), the light fringes induced by the Bragg diffraction process are out of

phase by π/2 with respect to the grating. It will be shown in the next section that

this π/2 phase shift give the optimum energy transfer from the pump to the diffracted

signal wave. In other words, the phase of the initially vanishing diffracted wave adjusts
itself in order for this wave to be optimally amplified. In contrast, in the case of a

pure absorption grating (Fig. 4.2(b)) the fringes are found to be out of phase with the

absorption maxima, i.e. the fringe maxima establish themselves at the places where the

modulated absorption is minimum. One could take a pseudo-philosophical conclusion
out of these facts: light chooses its phase in order to produce the maximum possible

diffracted power. This is valid for both refractive index, absorption or mixed gratings.

Let us now go back and treat in more detail the case of perfect phase matching

(∆kr = 0, that is �ks,d ≡ �ks). We consider a grating of the kind (4.6). Its relative
orientation with respect to the signal and pump wave shall be such that it acts as

transmission type grating. The scalar complex amplitudes of the two waves at the

entrance surface are Es0 and Ep0, respectively. If the waves are perfectly phase matched
to the grating an analogous calculation as the one described in Chapt. 4 leads to the

expression

Es (�r) = e−(
αp−αs

2 )ζ̂·�r

Ep0
k0

(
Ar + iAie

iφ
)

8nsgs cos θs

eiW(ζ̂·�r) − e−iW(ζ̂·�r)

W

+Es0

2W − i (αp − αs)

4W
eiW(ζ̂ ·�r) +

2W + i (αp − αs)

4W
e−iW(ζ̂·�r)

 , (5.1)

which describes the evolution of the signal wave amplitude. We recall that the ampli-
tude Es contained in the above formula is cleaned of the absorption contribution (see

Eq. (4.3)). If one considers only pure refractive index gratings (Ai = 0) and one assumes

that the absorption constant is the same for the two waves (αp − αs = 0) the above
expression simplifies to
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Figure 5.1: Phase relationship between modulated energy density ∝ | �Es + �Ep|2 (upper graphs)
and a refractive index (a) or an absorption grating (b) (lower graphs). In (b) the absorption
change is positive if the function f(�r) is positive.

Es (�r) = iEp0

√√√√npgp cos θp
nsgs cos θs

sin(γζ̂ · �r) + Es0 cos(γζ̂ · �r), (5.2)

where the coupling constant γ is given as

γ = k0Ar
/
4
√
nsnpgsgp cos θs cos θp. (5.3)

Figure 5.2 shows the spatial evolution of the signal wave intensity (∝ EsE
∗
s) for three

values of the phase shift δ between the input light fringes and the grating. A pure phase
grating (Ai = 0) is assumed in a fully symmetric configuration. It can be recognized how

the optimum phase shift of π/2 leads to the fastest amplification of the signal. As seen

by considering Fig. 5.1 the diffracted wave from P into S carries a phase-shift of π/2,
therefore if the input signal wave is shifted by the same amount the two components

add constructively. In the opposite case in which the input wave is shifted by −π/2 the

signal wave amplitude first decreases to 0 as a result of destructive interference with the

diffracted pump wave. Later it increases again, however with an opposite phase with
respect to the input wave. Finally, in the case where the input light fringes are exactly

in phase with the grating (δ = 0), the signal wave experiences a transfer of phase and

its initial intensity does not contribute to increase the amplified signal. The optimum

phase shift of δ = π/2 becomes evident also by considering the upper graph in Fig. 5.2
that shows the dependence of the amplified signal on δ for d = 0.5 cm. If the exact

grating phase position is not known, measurements of these oscillations for both waves

can provide this information. Methods valid in the regime of small grating diffraction
efficiency are described for instance in Refs. [111, 112].
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Figure 5.2: Amplification of signal wave by two-wave mixing at a fixed
phase only grating. The grating strength is Ar = 10−4 and the in-
put pump-signal intensity and amplitude ratios are Ip0/Is0 = 25 and
Ep0/Es0 = 5exp(−iδ), respectively. The evolution is shown for three
values of the phase shift δ between input light fringes and refractive index
grating. The upper graph shows the dependence of the amplified signal
on δ for d = 0.5 cm.

It is very interesting to compare the amplification obtained by a fixed refractive

index grating of given strength with the amplification obtained by self-induced dynamic

photorefractive two-wave mixing, where the grating is induced by the interacting beams
themselves. This case will be treated in detail in the next section. Let us consider a

material with a maximum refractive index grating strength corresponding to a coupling

constant Ar = 10−4. In absence of anisotropy enhancement a material with this optical

nonlinearity can give an exponential gain coefficient of Γ ≈ 4.8 cm−1 (see next section
for definition). Figure 5.3 compares the two cases. Clearly, if amplification is the only

criterion, fixed gratings lead to much better performance than dynamic self-induced

gratings. For instance, in the specific example given here the point where half of the
pump energy is transferred to the signal wave is reached after about 6 mm of interaction

for the fixed grating and after about 14 mm for the dynamic one. The reason for the

absence of oscillations in the latter case is related to the fact that the grating modulation

depth becomes small both for short and large distances and will become clear in the
next section.

5.2 Photorefractive two-wave mixing

In this section we treat specifically the case of photorefractive two-wave mixing. Here the

dynamic gratings responsible for the coupling are recorded by the two interacting waves
themselves. With respect to the case of two-wave mixing treated in the last section,
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Figure 5.3: Comparison of the signal wave amplification for two-wave mix-
ing at a fixed phase only grating (solid curve) and for two-wave mixing at
a dynamic photorefractive grating (dashed curve). The optical nonlinear-
ity is the same in the two cases (Ar = 10−4). The input intensity ratio is
Ip0/Is0 = 1000 and δ = π/2.

dynamic two-wave mixing has the enormous advantage that the grating can adapt in

real time to modifications in the shape and phases of the input waves. This feature
is paid by a somewhat smaller optical nonlinearity because, as mentioned above, the

grating modulation depth is not constant along the propagation path. With some little

modifications, the treatment presented below can be extended to describe the coupling

of two waves recording a grating with mechanisms other than the photorefractive effect.

The present treatment bases on the photorefractive equations discussed in Chapter 2

and on the coupled wave equations derived in Chapter 4. It considers the electro-optic
and dielectric anisotropies discussed in Chapter 3. A very interesting new finding is

the extremely strong influence of the photoexcitation anisotropy on the photorefractive

two-wave mixing gain. This can lead to a strong enhancement of the gain under proper

choice of the interaction geometry. Another interesting finding is derived for the pump
depletion regime. Even for a fixed value of the photorefractive gain coefficient, an asym-

metric interaction geometry or the photoexcitation anisotropy influence significantly the

spatial evolution of the signal and pump intensities.

We consider the coupled wave equations (4.1) derived in Chapter 4 in the slowly

varying amplitude approximation. By considering the fact that for photorefractive two-

wave mixing phase matching is automatically fulfilled (∆kr = 0) and using Eq. (4.71)
describing the coupling constant Ar ≡ ês · ε↔1

r · êp for the photorefractive case, one obtains

�∇Es · ûs =
k0

4nsgs

[
−iRmEpẼsce

(αs−αp)ζ̂ ·�r
]
, (5.4a)

�∇Ep · ûp =
k0

4npgp

[
−iRm∗EsẼ

∗
sce

(αp−αs)ζ̂·�r
]
, (5.4b)

where R ≡ n2
sn

2
pgsgpreff , and reff is given by Eq. (3.17). We recall that ûs and ûp are

unit vectors in direction of the Poynting vectors of the waves S and P , respectively. The

quantity

Ẽsc ≡ E1/m ≡ Ẽsc,r + iẼsc,i (5.5)
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is the complex amplitude of the first Fourier component of the internal space-charge

field normalized by the modulation m. Its real part Ẽsc,r corresponds to the component

of the space-charge field being in phase with the energy density distribution (2.5), while
the imaginary part Ẽsc,i is the π/2 out-of-phase component as discussed in Section 2.1.1.

5.2.1 Undepleted pump approximation

Let us first consider the situation in which the pump is not significantly depleted by the

interaction. In this regime the energy of the pump wave is always much larger than the

one of the signal wave everywhere in the crystal, i.e. |Ep|2 [êp · κ↔ · êp] exp(−2αpζ̂ · �r) �
|Es|2 [ês · κ↔ · ês] exp(−2αsζ̂ · �r). In this case equations (5.4a) describing the evolution of

the signal wave amplitude transforms to

�∇Es · ûs =
k0R

2nsgs

ês · κ↔ · êp
êp · κ↔ · êp

[
Ẽsc,i − iẼsc,r

]
Es, (5.6)

which can be easily solved for Es leading to

Es(ζ̂ · �r = d) = Es0e
(Γ/2)deiδd. (5.7)

With (2.4a) this corresponds to

|�Es|(ζ̂ · �r = d) = |�Es0|e(Γ/2−αs)d, (5.8)

where Es0 and �Es0 are the corresponding incident amplitudes at the position ζ̂ · �r = 0.

Here it is assumed that the entrance surface (surface where the wave S starts interacting
with P ) contains the coordinates origin. The two-wave mixing exponential gain Γ and

the phase coupling factor δ in Eq. (5.7) are given by

Γ =
2π

λ

nsn
2
p

cos θs
gp
ês · κ↔ · êp
êp · κ↔ · êp

reff Ẽsc,i, (5.9)

and

δ = −π

λ

nsn
2
p

cos θs
gp
ês · κ↔ · êp
êp · κ↔ · êp

reff Ẽsc,r. (5.10)

We recall that cos θs = ζ̂ · ûs is the cosine of the angle between the Poynting vector and

the surface normal. As seen in (5.9) the exponential gain depends on the photoexcitation

anisotropy through the factor (ês·κ↔·êp/êp·κ↔·êp). If the tensor κ↔ is sufficiently anisotropic,
by choosing appropriate geometries this factor can become very large with respect to

1, thus giving an enhancement of the two-wave mixing gain. Experimental evidence for

the influence of this factor will be given later in this chapter. This will also demonstrate

that the ‘usefully dissipated energy’ and not the local light intensity is the quantity
driving the photorefractive space-charge field formation. Using the light intensity would

transform the above factor to (ês · êp), that is to the expression found for the isotropic

case.

In order to predict the magnitude of Γ and δ in a particular geometry the knowledge
of the values of Ẽsc,i and Ẽsc,r is necessary. In the undepleted pump approximation,

the modulation m is always small and the space-charge field amplitude is linearly pro-

portional to m. Therefore the normalized amplitudes Ẽsc,i and Ẽsc,r do not depend
at all on m in this regime. Here we limit our considerations to the predictions of the
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simplest photorefractive model presented in Sect. 2.1 that considers a single defect level

and a single carrier type. According to Eq. (2.15), under the assumptions of a negligible

photogalvanic effect (which is usually the case in most KNbO3 and BaTiO3 samples)
and assuming that no external electric field is applied, the normalized space-charge field

amplitude Ẽsc reads

Ẽsc = ±i EqED
Eq + ED

, (5.11)

and therefore Ẽsc,r = 0 under these assumptions. In (5.11) the + sign holds for hole

conduction and the − sign holds for electron charge transport. The trap-limited field
Eq and the diffusion field ED were defined in Sect. 2.1. Equation (5.11) predicts the

space-charge field amplitude in most photorefractive materials in a satisfactory way

and will be used here to visualize the geometrical dependence of the gain Γ. Refined
models that describe better the space-charge formation in specific situations or in specific

crystal samples have been reported in literature and several of them were mentioned in

Sect. 2.3. Note that effects such as electron-hole competition or multiple defect levels

usually tend to decrease the space-charge field strength and, given a trap density, (5.11)
can be viewed as an upper bound for the space-charge field amplitude.

For the visualization of the dependence of the exponential gain Γ in KNbO3 and

BaTiO3 on the geometrical arrangement and on the anisotropy of the tensor κ↔we use the

same kind of contour plot representation introduced in Chapt. 3 (Fig. 3.4). Figures 5.4

and 5.5 show the contour plot diagrams of the TWM gain Γ in the planes of maximum
nonlinearity for the crystals KNbO3 and BaTiO3. They are obtained using Eqs. (5.9)

and (5.11) for isotropic (κ22/κ33 = 1) as well as anisotropic photoexcitation. In each

case the effective number of traps is chosen to be Neff = 1017cm−3 and hole conduction
is assumed. The gain plotted here is given per unit length along the Poynting vector

direction, that is it corresponds to Γ cos θs (see (5.9)), in this way the representation

becomes independent from a specific crystal cut. It appears evident that the gain

landscape is dramatically modified by the anisotropy of the photoexcitation constant.
The position of the maximum gain in the diagram moves by changing the parameter

κ22/κ33, some of the mountains grow, while others decrease in height. For κ22/κ33 � 1

the optimum condition is found for a pump beam propagating under an angle αp close to
0◦ , that is nearly perpendicular to the c-axis. In contrast, for κ22/κ33 
 1 the optimum

is for a pump beam nearly parallel to c.

Obviously, by assuming an initial light scattering distribution, the representations of

Figs. 5.4 and 5.5 can be used to qualitatively predict the structure of light fanning as

well as optimum configurations for various phase conjugation schemes. For a rigorous

treatment, however, the knowledge of the two-wave mixing gain alone is not sufficient
because grating competition effects have to be taken into account.

It is also interesting to look at the evolution of the maximum possible gain in any

geometry as a function of the anisotropy parameter κ22/κ33. This is depicted in Fig. 5.6

for both crystals and two different values for the trap density. It is evident that the

isotropic case represents a kind of worst-case situation, the maximum gain can be en-
hanced dramatically both by decreasing or increasing the ratio κ22/κ33 away from 1.

Note that each point in Fig. 5.6 corresponds to a different position of the maximum

in the landscape diagram. It is also worth noting that, despite the fact that BaTiO3

has a maximum scalar electro-optic coefficient almost three times larger than KNbO3
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Figure 5.4: Contour plot of the exponential gain Γ cos θs (Eq. (5.9)) for p-polarized beams in the
bc-plane of KNbO3. (a) Isotropic photoexcitation, κ22/κ33 = 1; (b) anisotropic photoexcitation
κ22/κ33 = 0.1; (c) κ22/κ33 = 100. Contour line distance = 20 cm−1. Effective density of traps
Neff = 1017cm−3. For the meaning of shadows and special symbols see Fig. 3.3 on page 34.

(Fig. 3.3 and Fig. 3.4), the maximum gains are not significantly higher in this crystal

(Fig. 5.6). This is because of the much larger dielectric constant of BaTiO3 (Fig. 3.7)
that prevents to reach a very high space-charge field Ẽsc in some of the geometries where

the anisotropy factor in Eq. (5.9) is big.

For applications, one interesting regime is the one where the pump and signal wave

propagate perpendicular to each other because in this regime linear scattering from

the pump beam as well as detrimental beam-fanning can be minimized. This situation
corresponds to the main diagonal in Fig. 5.4. Unfortunately, in absence of photoexci-

tation anisotropy the gain is very small in such geometries, as seen by the node line in

Figs. 5.4(a) and 5.5(a) that runs essentially along the main diagonal. This node line is

given by the condition ês · κ↔ · êp = 0 and is substantially modified if κ
↔

is anisotropic.
Therefore large gains become possible also in this interesting kind of geometries. This is

shown in Fig. 5.7 where the gain coefficient in KNbO3 is plotted for �ks⊥�kp in the same

kind of diagram as in Fig. 3.7 for κ22/κ33 = 1, 0.1, and 10. The situation for BaTiO3 is
fully analogous.
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Figure 5.5: Contour plot of the exponential gain Γ cos θs (Eq. (5.9)) for p-polarized beams
in the ac-plane of BaTiO3 in the case of isotropic (a) and anisotropic photoexcitation (b+c).
Contour line distance = 20 cm−1. Effective density of traps Neff = 1017cm−3.

5.2.2 Pump depletion

If the initial intensity ratio between pump and signal wave is too low and the gain-

length product Γd is large enough, the pump wave can be significantly depleted during

the two-wave mixing interaction. This situation is more complex than the one found in

the weak signal regime. In order to determine the spatial evolution of the signal and
pump waves one has then to rely in most cases to a numerical integration of the coupled

equations (5.2). An example is when the two beams enter the crystal from surfaces

which are not parallel to each other, in which case the surface normal vectors ζ̂s 
= ζ̂p
and the waves S and P are no longer homogeneous in a direction perpendicular to the

corresponding surface normal. It should also be remarked that for a general geometry

the absorption constants αs and αp for the two waves usually differ from each other (this

statement is true even in fully isotropic materials as long as the interaction geometry
is not symmetric with respect to the surface normal), therefore also in this case the

coupled wave equations may be integrated numerically.

For simplicity we consider here explicitly only cases where the two waves enter the
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Figure 5.6: Maximum exponential gain Γ cos θs as a function of the pho-
toexcitation anisotropy parameter κ22/κ33. Each point is determined by
finding the peak value over all possible two-wave mixing interaction ge-
ometries.

crystal from a common surface or from opposite parallel surfaces. The +z direction is
defined as being parallel to the direction of the normal to the incidence surface for the

S wave (ζ̂ ≡ ζ̂s = (0, 0, 1)). Furthermore the absorption is assumed to be moderate

(αsd ≈ 0, αpd ≈ 0 with d being the interaction length), so that we can neglect the

absorption terms in the coupled wave equations (5.2).

5.2.2.1 Transmission gratings

Transmission gratings are characterized by the condition cos θs cos θp > 0, that is, both

beams enter the crystal from the same face. By multiplying Eq. (5.4a) by E∗
snsgs and

Eq. ( 5.4b) by E∗
pnpgp and inserting the modulation ratio (2.6) one obtains

d

dz
Ĩs = Γ

ĨsĨp

GĨs + Ĩp
, (5.12a)

d

dz
Ĩp = −Γ

ĨsĨp

GĨs + Ĩp
, (5.12b)

where it was assumed thatEsc = iEsc,i. Note that the quantity Γ is the same exponential

gain constant as given in (5.9). We recall that the light intensities for the waves are
given by I = cEE∗ng with c being the speed of light. The intensities Ĩs ≡ Is cos θs
and Ĩp ≡ Ip cos θp appearing in (5.12a) and (5.12b) correspond to the projections of

the Poynting vectors along the surface normal ζ̂ and give the energy flow per unit area

through a surface parallel to the input surface. The constant G depends on the geometry
of interaction and is defined as

G =
npgp cos θp (ês · κ↔ · ês)
nsgs cos θs (êp · κ↔ · êp)

. (5.13)
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By summing (5.12a) and (5.12b) one recognizes that the total projected energy flow

is conserved, that is Ĩs + Ĩp ≡ Ĩ0 is a constant. Therefore we have dĨs/Ĩs + [G/(Ĩ0 −
Ĩs)]dĨs = Γdz. Integration of this equation with the boundary conditions Ĩs(z = 0) = Ĩs0
, Ĩp(z = 0) = Ĩp0 proper of the transmission grating geometry leads to the solution

χ(z) = χ0 exp(Γz), (5.14)

where

χ(z) ≡ Ĩs(z)[
Ĩp(z)

]G ≡ β(z)
[
Ĩp(z)

]1−G
, (5.15)

and χ0 = χ (z = 0) =
(
Ĩs0/Ĩp0

)
Ĩ1−G
p0 ≡ β0Ĩ

1−G
p0 . Therefore χ is a modified intensity ratio

which for G = 1 reduces to the conventional intensity ratio β = Ĩs/Ĩp. The evolution of

the signal and pump wave intensities can thus be expressed as

Ĩs(z) = Ĩs0
1 + β−1

0

1 + β−1
0

(
Ĩp/Ĩp0

)1−G
exp(−Γz)

, (5.16)

and

Ĩp(z) = Ĩp0
1 + β0

1 + β0
(
Ĩp/Ĩp0

)G−1
exp(Γz)

. (5.17)

Note that, in contrast to the case of two-wave mixing at fixed gratings treated in
Sect. 5.1, the above equations do not lead to an oscillation of the light power between

the pump and signal waves as a function of propagation distance. Here the energy

is always transferred unidirectionally from one wave to the other. A run-over is not

possible because in the strong depletion regime the amplified wave dominates and, as
a consequence, the photorefractive grating (and therefore the coupling term) becomes

very weak due to a small modulation amplitude (2.6).

In absence of photoexcitation anisotropy and for nearly symmetric incidence of signal
and pump beams the factor G is always very close to 1, in this case Eqs. (5.16) and
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Figure 5.8: Signal wave amplification and pump wave depletion as a func-
tion of the propagation distance z in transmission geometry. The normal-
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(5.17) reduce to the well known conventional expressions derived for the isotropic case in

symmetric configurations [20]. Note that for the case of transmission gratings considered

here the factor G is bound to be positive because the tensor κ
↔

contains only positive

elements. We note also that, although for strong anisotropies the factor G may depart
significantly from 1, in the above equations the influence of the term (Ĩp/Ĩp0)

±(1−G) on the

beam intensities is still weaker than the one given by the exponential term. However, the

corrections brought about by this term are not negligible. The saturation of the amplified

signal beam to its maximum value is slower for G > 1, and faster for G < 1 than for the
case G = 1. This can be seen in Fig. 5.8 where Ĩs(z)/(Ĩs0 + Ĩp0) and Ĩp(z)/(Ĩs0 + Ĩp0)

are plotted for different values of G and for a common value of the gain Γ. It is worth

noticing that in the saturation region the depleted pump wave intensity decreases as
Ĩp(z + ∆z) = Ĩp(z) exp(−Γ∆z/G), as can be clearly recognized in Fig. 5.8. To get an

impression of the possible range for the quantity G in a typical transmission geometry

we may take first the example of a BaTiO3 cut along the crystallographic axes and with

both interacting beams entering the sample from air through the a-face of the crystal.
Considering all possible two-beams interaction geometries in such a configuration we

have 0.936 < G < 1.07 for κ22/κ33 = 1, 0.944 < G < 1.06 for κ22/κ33 = 0.1, and

0.43 < G < 2.30 for κ22/κ33 = 10 . The ranges for KNbO3 in the same kind of geometry
are very similar. For crystals cut under 45 degrees to the crystallographic axes, G varies

between Gmin ≈ 0.25 and Gmax ≈ 4 for both κ22/κ33 = 0.1 and κ22/κ33 = 10.

5.2.2.2 Reflection gratings

In this case the signal and pump wave enter from opposite surfaces and one has

cos θs cos θp < 0. The coupled wave equations (5.4a) and (5.4a) can be brought again

exactly in the form of Eqs. (5.12a) and (5.12b) if one allows one of the two projected
intensities to take negative values. If we choose the signal wave to propagate towards
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positive z and the pump wave to propagate towards the negative z axis, then Ĩs(z) > 0

and Ĩp(z) < 0. Such a negative intensity value reflects the fact that the energy flow for

the pump wave is in a direction which is opposite with respect to the considered surface

orientation (vector ζ̂). Therefore, as in the above case of transmission gratings, the
conserved quantity is still the sum of the (this time signed) intensities and the solution

of the coupled equations (5.12a) and (5.12b) is still of the form given by Eqs. (5.14)

and (5.15). However, the exponent G (still defined by (5.13)), is now bound to be a
negative number. For a plate of thickness L the boundary values are now given at z = 0

for the signal wave, and at z = L for the pump wave. Using these boundary values in

(5.14) and (5.15) and reintroducing a positive intensity |Ĩp(z)| = −Ĩp(z) for the pump

wave one can easily find the expressions for the transmitted intensities Ĩs(z = L) and
|Ĩp(z = 0)|, that is

Ĩs(L) = Ĩs(0)
1 + |β0|−1

1 + |β0|−1|Ĩp(0)/Ĩp(L)|1−|G| exp(−ΓL)
, (5.18)

and

Ĩp(0) = Ĩp(L)
1 + |β0|

1 + |β0||Ĩp(0)/Ĩp(L)||G|−1 exp(ΓL)
, (5.19)

which are in full analogy to (5.16) and (5.17). The intensity ratio |β0| is defined here as

|β0| ≡ Ĩs(0)/|Ĩp|(L) and differs from the definition used for transmission gratings. For

samples cut along the dielectric axes, symmetric interaction geometries and in absence

of photoexcitation anisotropy we have G = −1. In this case the two above expressions
reduce to the well known conventional relationships [113]. The new correcting factor

|Ĩp(0)/Ĩp(L)|±(1−|G|) brings about a similar influence on the output intensities as in the

case of transmission gratings discussed above. Fig. 5.9 shows an example of the G-

dependence of the signal and pump output intensities as obtained by solving the above
transcendent equations. For fixed gain coefficient Γ an exponent G closer to 0 leads

again to faster saturation.

5.2.3 Response time and sensitivity

The photorefractive response time depends on several intrinsic and extrinsic material pa-

rameters and on the average photoconductivity of the material. The latter is a function

of the power of the interacting beams and of the tensor κ
↔

describing the photoexcita-

tion. In the simplest band transport model and in absence of applied electric fields the
response time τ is expressed as

τ =
ε0εeff
eµn0

1 +K2/K2
e

1 +K2/K2
0
, (5.20)

which is Eq. (2.29) combined with (2.27). All the quantities contained in the above equa-

tion were defined in Sect. 2.1.2. According to (2.9) and (2.7) the average density of free

carriers n0 can be written as a function of the amplitudes of the two interacting waves,
in the case where the pump wave is not depleted we have n0 ∝ |EP |2 (êP · κ↔ · êP ) τR,
where the recombination time τR is given by (γN+

D0)
−1. Therefore the dielectric time

τdie ≡ (ε0εeff/eµn0) does depend on the light power, on the polarization of the light
waves and on the photoexcitation anisotropy through the free carrier density n0, in
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addition it depends also on the direction of the grating vector K̂ through the effective

dielectric constant εeff and the mobility µ. For the response time τ additional depen-

dencies on the grating direction K̂ are brought about through the quantities K0 and

Ke.

In order to illustrate the expected dependence of the response time on the interaction

geometry we take the example of hole conducting BaTiO3 which is characterized by an
extremely large anisotropy of the carrier mobility (µa/µc ≈ 20, [114, 115]). Figure 5.10

shows contour plots for the inverse response time. The values of the dielectric and

mobility anisotropies are taken from Ref. [89] and Ref. [115], respectively, while the

effective number of traps and the diffusion length (for charge movement along the c-
axis) are chosen as Neff = 1017 cm−3 and K−1

e = 10 nm, respectively. We assume to be

in the undepleted pump regime so that the photoconductivity is induced uniquely by

the pump beam. Fig. 5.10(a) is for κ11/κ33 = 1. The fastest response is predicted for
(αp, αs) = (180◦, 0◦). This is for two reasons. On one hand the response is faster for

counterpropagating than for copropagating beam geometries because in hole conducting

BaTiO3 the diffusion length is short [3], and thereforeKe > K0 (see (5.20)). On the other

hand the position of the predicted maximum of 1/τ corresponds to a counterpropagating
geometry with wavevector K̂ parallel to the a-axis, which is favored with respect to other

geometries (such as (αP , αS) = (90◦,−90◦) with K̂ ‖ c-axis) because the large increase

in mobility for charge movement along a overcomes the disadvantage of a larger effective
dielectric constant 1. Fig. 5.10(b) is for κ11/κ33 = 10. In this case the photoconductivity

is larger for geometries having the pump wave polarized approximately along the a -

axis (αp ≈ 90◦) and the maximum is observed for a geometry for which the pump and

signal wave are propagating nearly perpendicularly. Note that in the two graphs, the
absolute values of the inverse response time 1/τ are normalized to the inverse dielectric

1Note however that, even though a space-charge grating can build up, this particular geometry with
the wavevector ||a-axis does not lead to any photorefractive coupling because the effective electro-optic
coefficient vanishes (see Figs. 3.4 and 5.5).
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Figure 5.10: Contour plot of the inverse photorefractive response time 1/τ (Eq. (5.20)) for p-
polarized beams in the ac-plane of BaTiO3 (undepleted pump). (a) Isotropic photoexcitation,
κ11/κ33 = 1; (b) anisotropic photoexcitation κ11/κ33 = 10; The contour lines are at the indi-
cated logarithmic distances. Parameters: effective density of traps Neff = 1017 cm−3, inverse
diffusion length in c-direction K−1

e = 10 nm. The values of 1/τ are normalized to the inverse
dielectric time 1/τdie for a grating pointing along the c-axis (= 1/τ (αp = αs = 0◦)).

time 1/τdie(K̂||c) for a wavevector parallel to the c-axis. They are important only to

judge the possible dynamic range of the response time among all possible interaction

geometries. As might have been expected, the dynamic range increases in the case of
anisotropic photoexcitation.

There are several possible definitions for the photorefractive sensitivity. Most of

them measure the change per unit time of the refractive index (Sn) or some related

quantity such as the square root of the diffraction efficiency [3]. For two-wave mixing,
another quantity which is proportional to the material sensitivity is given by the ratio

Γ/τ between the exponential two-wave mixing gain and the response time [116]. For

crystals following the simplest band model this measure is equivalent to the sensitivity
Sn, provided that the photoexcitation tensor is isotropic. In contrast, as discussed

in [117] in the anisotropic case significant deviations occur due to the influences of the

tensor κ
↔

on the gain and on the response time.

5.2.4 Experimental verification in dichroic KNbO3

The most important new finding of this chapter is the discover of the strong influence
of a photoexcitation anisotropy on the photorefractive exponential gain coefficient Γ

as evidenced in Eq. (5.9). Since the gain Γ characterizes the wave evolution both in

the undepleted and depleted pump regimes, it is important to provide a convincing
experimental verification of Eq. (5.9).

For the experimental proof we choose Ni-doped KNbO3, this doping leads to a pro-

nounced dichroism in the absorption spectrum in the green-red spectral region as ev-

idenced in Fig. 5.11. The sample used for the investigations described below has the
dimensions a × b × c = 4.6 × 5.8 × 6.0 mm3. The dopant level in the melt used to
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produce the raw boule contained Ni and Nb in an atomic ratio of 3000 ppm. The or-

thorhombic point group symmetry mm2 of KNbO3 allows for three different diagonal

elements of the tensors ε
↔0
r, ε

↔0
i and κ

↔
.
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Figure 5.11: Absorption spectrum of Ni-doped KNbO3 for light polar-
izations parallel to the three crystallographic axes. Note the pronounced
dichroism in the green-red region.

The anisotropy of the imaginary part of the dielectric tensor ε
↔0
i can be determined

from the absorption spectra shown in Fig. 5.11. Since the following holographic ex-

periments were performed using Ar+-laser light at the wavelength λ= 514 nm we are

interested only on the absorption constants at this wavelength. These are measured

to be 2αa= 0.77 cm−1, 2αb= 2.43 cm−1 and 2αc= 0.89 cm−1 2. The two-wave mixing
experiments that will be described below were performed with p-polarized beams prop-

agating in the crystal bc-plane (see Fig. 5.13). Therefore we are actually interested only

in the ratio αb/αc = 2.7. With Eq. (4.38) derived in Appendix A this anisotropy leads

to a ratio ε0
i,22/ε

0
i,33 = 3.0 in the imaginary dielectric tensor.

The important quantity that one needs to know is the anisotropy of the photoexcita-

tion tensor κ
↔
not the one of the imaginary dielectric tensor. Therefore one has to verify

how these two quantities relate to each other for our crystal. The tensor element κii is

proportional to the density n0 of mobile charges photoexcited by light polarized along

the crystalline axis i. The density n0 is directly proportional to the photoconductivity

σph = eµn0, with e being the elementary charge and µ being the carrier mobility. Be-
cause the photoconductivity ratio for different light polarizations can be precisely deter-

mined experimentally, we can use this ratio to determine the ratio between the diagonal

elements of κ
↔
. We have performed photoconduction experiments using a holographic

technique. A photorefractive grating is recorded by interfering two waves propagating
in the bc-plane of the crystal. After recording reaches saturation the grating is optically

erased by illumination of the whole grating with a homogeneous beam entering through

the polished a-surface of the crystal. The polarization of the erasing beam is adjusted
2Note that we keep here with the convention (used throughout this work) of designing the absorption

constant α as the amplitude absorption constant, therefore the intensity absorption constant get a factor
of 2 in their definition.
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Figure 5.12: Inverse erasure time τ−1 vs. the local intensity I of the
grating erasure beam (λ = 514nm). The two sets of experimental points
correspond to b- and c-polarization of the erasure light, respectively. From
the slopes of the straight lines one determines κ22/κ33 = 3.4± 0.1.

alternatively to be parallel to the b- or c-crystal axis. In this way one is able to deter-

mine the erasure time for the two light polarizations independently. This is achieved

by monitoring the space-charge field decay through the Bragg diffraction of a sharply

collimated He-Ne laser beam (λ= 633 nm) propagating parallel to the a-surface. Care
was taken that in all the volume probed by the He-Ne read-out beam the erasing light

intensity is the same. The decay of the space-charge grating was found to be single

exponential as expected from the single carrier charge transport model (2.22). Through

Eqs. (2.29) and (2.27) the exponential time constant τ is inversely proportional to the
photoconductivity provided that the dark conductivity is negligible. Figure 5.12 shows

the results of the grating photoerasure experiments. We find a linear dependence of

the inverse erasure time τ−1 on light intensity. However, b-polarized light erases the
grating much faster. From the two slopes the anisotropy ratio κ22/κ33 = 3.4 ± 0.1 can

be extracted. This number is close to the one found above for the anisotropy of ε↔0
i and

suggests that in our sample the quantum efficiency for photoexcitation of mobile charges

deviates only little from isotropy.

Figure 5.13 shows our experimental geometry for two-wave mixing. This interaction
geometry is relevant from a technological point of view because it is used in important

applications such as laser beam clean-up [118]. The signal beam S enters through the c

surface of the crystal under an external angle α with respect to the surface normal. The

pump beam enters through the b surface under an angle β. Both beams are horizontally
polarized (bc-plane), corresponding to the plane of maximum photorefractive nonlinear-

ity treated throughout the present chapter. In order to keep the wave interaction length

under control and avoid unwanted influence of shadow regions at the edges of the crystal
the pump beam is collimated in the horizontal direction to a width of 0.95 mm at the

entrance face. Its intensity is 150× the one of the signal beam.

In a first set of two-wave mixing experiments we keep the angle γ between the two

beams constant and change α and β simultaneously by rotating the crystal sample.

Fig. 5.14 shows the measured exponential gain Γ as a function of the angle α for γ = 60◦.
The dotted curve is plotted assuming that there is no anisotropy in the tensor κ↔ in
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Figure 5.13: Experimental configuration for two-wave mixing in dichroic
KNbO3. The pump wave P amplifies the signal wave S. As drawn here
the angles α, β and γ are taken to be all positive so that α+β + γ = 90◦.

correspondence with the predictions of the conventional photorefractive theory that

takes the light intensity rather than the usefully dissipated energy as the driving quantity
[19,20]. As can be clearly seen, these predictions fully disagree with the measurements.

In contrast, the solid line describes the measurements very well. This curve is plotted

using Eq. (5.9) and the anisotropy κ22/κ33 = 3.4 determined above, and with the value

of the space-charge electric field Esc,i calculated using the known material properties,
i.e. the effective number of traps Neff = 5.3 × 1016 cm−3, determined independently

for this crystal [119]. No parameters were adjusted to plot the solid curve. Our theory

predicts correctly the point at which the gain crosses zero. This point is a well defined
characteristics of the dichroism. While for the conventional models the crossing point

should occur whenever the electric field vectors of the two waves are orthogonal (point

B in Fig. 5.14), in reality we find it in accordance with Eq. (5.9) at the angle for which

(ês·κ↔·êp) = 0 (point A). In order to clarify this point further we have drawn schematically
in the inset of Fig. 5.14) the relative orientation of the important vectors for the crystal

orientations corresponding to points A and B.

In the (αp, αs) space the experiment described above is performed by moving along

the curved trajectory represented by the arrow pointing to the bottom left in the con-

tour diagram of Fig. 5.15. This diagram is plotted using the parameters determined
independently above for this crystal 3. We also performed experiments by following the

horizontal trajectory from left to right in the center square of Fig. 5.15. Experimen-

tally this is achieved by keeping the signal beam angle α = −30 deg and the crystal

orientation fixed while changing the pump wave angle β (see Fig. 5.13). While in the
previous experiment performed by rotating the crystal the fringe spacing Λ remained

approximately constant, now the grating period varies significantly. The results are

shown in Fig. 5.16. Also here the measurements are described very well by the same

3With respect to the other contour plots of the present chapter, the reduced representation shown here
is shifted in the coordinates αp and αs in such a way that the interesting accessible square appears in the
center of the diagram.
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ês

êp
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Figure 5.14: Measured two-wave mixing gain Γ (circles) as a function of
the angle α for a fixed value of γ = 60◦. Dotted curve: Prediction of con-
ventional theory (Eq. (5.9) with κ22/κ33 = 1). Solid curve: prediction of
Eq. (5.9) with κ22/κ33 = 3.4 determined from the experiment in Fig.5.12.
Both curves are plotted using an effective density of traps Neff = 5.3×1016

cm−3 determined in Ref. [119]. The insets show the orientations of the rel-
evant vectors (all in the same plane) for the two gain zero-crossing points
A and B.

parameters as above (κ22/κ33 = 3.4, Neff = 5.3 × 1016 cm−3) and no adjustment of pa-

rameters is made necessary. Again, the gain expected for the conventional isotropic case
(dotted line) disagrees completely with the measurements. The dashed line illustrates

the predicted gain if the anisotropy was κ22/κ33 = 10 which would lead to a further gain

enhancement.

The geometry of Fig. 5.13 used for the above experiments is particularly interesting

because, due to the large angle between pump and signal wave, scattering and fanning

noise in direction of the signal wave is strongly reduced. For crystal characterization
pourposes, however, one usually employs a geometry with both beams entering the

sample from the same surface (transmission geometry). In this case the photoexcitation

anisotropy brings about quantitative but not qualitative differences with respect to

the fully isotropic case. We believe that this is a possible reason why the effects of
dichroism have been overlooked until now. Let us consider the example of our crystal in

a symmetric transmission geometry with interference fringes having a grating spacing

of Λ = 0.4 µm for which the gain is close to a maximum. If the beams enter through

the b crystal face, the grating vector is directed along the c-axis, and both beams are
p-polarized, the gain coefficient is reduced by about 37% for κ22/κ33 = 3.4 with respect

to the isotropic case (κ22/κ33 = 1). This reduction factor changes only slowly with

the beam interaction angle. For this reason we believe that previous manifestations
of the effects of material dichroism on two wave mixing might have been erroneously
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Figure 5.15: Contour plots of the exponential gain Γ for dichroic Ni-
doped KNbO3. The experiments of Fig. 5.14 and Fig. 5.16 correspond to
the trajectories shown by the arrows pointing to the bottom down and
to the right, respectively. Parameters: κ22/κ33 = 3.4, Neff = 5.3 × 1016

cm−3. The angle convention is the same as given in Fig. 3.2.

interpreted in terms of electron-hole competition [51, 52], incomplete crystal poling, or

partial grating erasure due to surface reflections [120]. These are all effects that can

also lead to a reduction of the space-charge field amplitude (see also Chapt. 2). Most

materials showing strong two-wave mixing effects, such as BaTiO3 and SrxBa 1−xNb2O6

are strongly anisotropic and are expected to show similar behaviour as shown in this

work for KNbO3 crystals.

5.3 Summary

In this chapter we have treated two-wave mixing interaction of plane waves. In the case

of fixed transmission phase grating the signal wave shows an oscillatory behaviour as
a function of propagation distance analog to what is found for Bragg diffraction. The

amplitude of modulation depends on the phase shift between the grating and the modu-

lated light distribution as well as on the input intensity ratio between signal and pump.

For an equal value of material optical nonlinearity fixed gratings lead to a stronger
amplification with respect to dynamic gratings recorded by the photorefractive effect

because the former can be produced with a homogeneous refractive index modulation

depth. The drawback is the need for an active stabilization of the interferometric set-up.
In contrast, photorefractive phase gratings are self-adapting and therefore particularly

interesting for several applications.

We have derived new expressions for the two wave mixing exponential gain Γ and the

phase coupling factor δ for the case of anisotropic media. The important role of birefrin-

gence and specially of a photoexcitation dichroism on this quantities is clearly demon-
strated. The expected gain landscapes for the two-wave mixing interaction are dramat-
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Figure 5.16: Two-wave mixing gain Γ (circles) as a function of the angle
β for α = −30◦. The theoretical curves are plotted according to Eq. (5.9)
with κ22/κ33 = 1 (dotted line), κ22/κ33 = 3.4 (solid line, determined in
Fig. 5.12), and κ22/κ33 = 10 (dashed line). The latter curve shows the
possible gain enhancement for larger anisotropy.

ically modified by these effects as shown by the examples in KNbO3 and BaTiO3 and

the experimental confirmation using Ni-doped KNbO3. In materials with an anisotropic

photoexcitation an enhancement of the maximum gain coefficient can always be achieved

by a proper choice of the interaction geometry. A very interesting geometry for future
applications of these phenomena is the one in which two p-polarized waves cross under

an angle of nearly 90 degrees. In this case linear light scattering from the pump wave

in direction of the signal wave and the related noise are particularly low. For isotropic
photoexcitation the two-wave mixing gain in such a geometry nearly vanishes while a

significant gain can be obtained in the presence of anisotropy. This opens interesting

new perspectives for noise-free coherent image amplification [9,121–123] and for spatial

beam cleanup of high power diode lasers in the near infrared [118, 124–126]. Interest-
ingly, provided that photoconduction still dominates over dark conduction effects, the

possible gain enhancement depends only on the ratio κii/κjj of the photoexcitation ten-

sor components for two polarization directions and not on their magnitude. Therefore,
if one of the two polarization components is absorbed only very weakly, this ratio can in

principle become very large. This situation may be most easily realized in the spectral

region which is far from the interband and defect absorption lines. Therefore, in order to

exploit this effect for beam cleanup applications, future material research should look for
crystals with large anisotropy of the tensor κ↔ at the operation wavelength, this should

be accompanied by a low enough absorption and a strong enough photoconductivity at

the power levels of operation.

After describing the geometrical dependence of the two-wave mixing gain coefficient

Γ in the general case, we have also analyzed the wave evolution for the case of pump

depletion. New expressions valid for the case of anisotropic photoexcitation and/or
asymmetric interaction geometries with respect to the surface normal were given both
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for transmission and reflection type geometries.

The results presented in this chapter unambiguously demonstrate that the ’use-

fully dissipated energy’ w(�r) (2.2) is the quantity driving the formation of space-charge
gratings in photorefractive materials and justify therefore the original choice taken in

Chapt. 2. This quantity has to be used instead of the local light intensity I(�r) that was

believed previously to take this role.



Chapter 6

Optical processing and wave manipulation
by interband photorefractive effects

In this chapter we return to the interband photorefractive effect discussed already in

Chapter 2. Due to the superior speed with respect to conventional photorefraction,
this effect appears very interesting for applications requiring a large processing speed in

parallel or a relatively quick switching time. Three examples are demonstrated here, an

optically addressed spatial light modulator (incoherent-to-coherent converter) based on

interband photorefraction in KNbO3, a high speed optical correlator based on interband
photorefraction in the relatively new photorefractive crystal Sn2P2S6, as well as the use

of interband effects in KNbO3 to induce reconfigurable light induced 1D waveguides

with switching times in the 100 µs region. These three systems are preceded by a short
summary on the main experimental findings on band-to-band photorefractive effects in

KNbO3 and Sn2P2S6.

6.1 Interband photorefractive effects in KNbO3 and
Sn2P2S6

6.1.1 KNbO3

Potassium niobate has a room temperature band-gap energy of 3.3 eV, therefore near

ultraviolet light in the 350 nm region leads to direct transitions between the valence
band (related to the 2p orbitals of the oxygen ions) and the conduction band (related to

the 4d orbitals of the Nb ions). The interband photorefractive properties of nominally

pure KNbO3 under illumination in the above mentioned spectral range were studied in
Refs. [17, 46–49, 127, 128]. Here we mention solely the most relevant features observed

under cw illumination at the wavelengths 364 and 351 nm.

• The photoconductivity deviates from a linear dependence on light intensity for
intensities of the order of 1 mW/cm2. Above this level one reaches a regime with

square root dependence (see for instance Fig. 2.6), a signature of interband effects.

• The interband gratings are composed by two principal components. The modulated
charges giving rise to the first one are energetically located in the two bands and

in shallow trap levels with fast thermal exchange with the bands. This component

dominates for local light intensities above 50 mW/cm2 (λ= 364 nm). The second
component is composed of a carrier modulation in deep trap levels. It dominates
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for local light intensities below 0.1 mW/cm2 and therefore it is the dominant com-

ponent far enough from the entrance surface illuminated by the UV light. The

average amplitude of the first grating component is about 5 to 10 times stronger
than the one of the second one. In undoped crystals and in absence of externally

applied electric fields the two components are mutually phase shifted by π. This

is evidenced by direct depth resolved Bragg diffraction investigations in transverse

geometry [46], by off-Bragg angle Bragg diffraction investigations in longitudinal
geometry [47] and by the fact that the effective UV two-wave mixing gain coefficient

has opposite signs for low and high wave intensities [47]. With the help of Fig. 6.1

we may discuss the latter point in little more detail. As seen by the fitted curves

the trap-free model of Sect. 2.2 describes well the behaviour of the photorefractive
gain at large light intensities, where the band grating dominates. However, this

model cannot predict the observed zero crossing at low intensities. Inclusion of the

charges trapped in deep levels is necessary. A highly simplified model of this kind
was recently shown to predict correctly the observed transition with increasing light

intensity [48].
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Figure 6.1: Intensity dependence of two-wave mixing gain for interband
photorefraction in KNbO3. The curves show the behaviour predicted by
“trap-free” model of the interband photorefractive effect (Eq. (2.32)). The
zero-crossing point at the intensity of about 1 mW/cm2 is not predicted
by Eq. (2.32) and is due to the fact that at low intensity a deep trap
gratings being out of phase by 180 degrees with respect to the free charge
grating becomes the dominant component. Electrons are the dominant
charge carriers at low intensities and holes dominate at large intensities.
λ = 364 nm, grating vector ||c-axis, wave polarization in the bc-plane,
modulation index m=0.11 .

• The average refractive index change modulation ∆n obtained by the interband

photorefractive effect is few times 10−5 and is of the same order of magnitude to

what can be reached by conventional photorefractive effects in the same material.

• While the grating component stored in deep traps is affected by below band-gap

visible illumination, the free carrier grating component is not. Therefore the near

surface grating is extremely robust against optical erasure at wavelengths longer
than those used for recording. In KNbO3 we have shown that incoherent visible
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light more than five orders of magnitude more intense than the ultraviolet recording

beams does not affect significantly the free carrier component of the grating. In-

terestingly, in several situations the partial erasure of the deep trap component by
intense visible light can lead to an enhancement of the measured hologram diffrac-

tion efficiency. This is a consequence of the above discussed π-phase shift between

the two grating components, which leads to a partial compensation if the second

component is not erased.

• At the intensity of 1 W/cm2 the fast grating component show a build-up and decay

time of about 10 µs for λ = 351 nm and b-polarized light, where the intensity
absorption constant is ≈ 5500 cm−1. This response time is increased by less than a

factor of 4 for λ = 364 nm and c-polarized light, which are associated with a 10 times

lower intensity absorption constant of 540 ±50 cm−1. As predicted by theory the
response time depends inversely proportional to the square root of light intensity

(see Fig. 2.8). Note that the response times for conventional photorefraction in

KNbO3 range typically between ≈ 1 ms and few seconds depending on doping and

chemical treatment. These are about two to six order of magnitude slower than the
interband photorefractive gratings, which clearly proves the interest of the latter

for high-speed parallel processing.

• For most samples, at typical intensities of 100 mW/cm2 (λ = 364 nm, c-

polarization) the grating is found to extend until about 200µm below the illumi-

nated surface, that is about 10 times the 1/2α level. The maximum depth can be
characterized by the point where the remaining non-absorbed photons are still able

to create a photoconductivity larger than the material dark conductivity. There-

fore, as expected, the grating depth depends on light intensity, polarization and

wavelength. The position of the border between the two regions mutually domi-
nated by the free carrier grating components and by the trapped grating component

also depends on these quantities as well as on intrinsic and extrinsic properties of

the sample (purity, doping level, ...) [47]. For conditions under which the trapped

grating is not being erased significantly the point at which the two gratings compo-
nents have the same amplitude (but opposite sign) can extend up to about 100 µm

below the surface.

• In the framework of the simple model presented in Sect. 2.2 all measurements

in pure samples are consistent with an effective mobility for the slowest carrier

(electrons) slightly smaller than 10−5 cm2/(Vs). This small value is given by a
trap limiting effect due to carriers falling into shallow trap levels (mainly oxygen

vacancies) in thermal equilibrium with the band. The effect of shallow traps is not

explicitely included in the model of Sect. 2.2 and what is called the “band grating”

is in reality a grating induced by carriers sitting in the pseudo-band formed by the
true band and the nearby shallow levels [46, 50].

• In principle, due to the strong absorption of the UV light, thermal effects such as
direct thermo-optic gratings [129], thermoelectric gratings [130], or gratings induced

by pyroelectric space-charge fields [131, 132] could also give a contribution to the

observations in diffraction experiments. However, direct experimental verification
in several different geometries as well as theoretical estimations of the size of the
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effects based on the known material parameters show that none of these effects

gives a significant contribution at the cw intensities up to ≈ 1 W/cm2 relevant for

our investigations. Our attempts to detect a possible presence of surface gratings
using a reflection type geometry show that also this effect is negligible.

6.1.2 Sn2P2S6

With respect to KNbO3, tin hypothiodiphosphate (Sn2P2S6) is a newer and still less well
known electro-optic crystal. The material is ferroelectric below TC= 66 oC (monoclinic

point groupm) [133] and has a large diagonal electrooptic coefficient of ≈ 60 pm/V [134].

The conventional photorefractive properties of Sn2P2S6 are very interesting, specifically

due to the high sensitivity in the red and near infrared spectral range [135, 136]. Fur-
thermore, Sn2P2S6 has a lower band-gap energy (≈ 2.3 eV) than KNbO3. It is therefore

suitable for interband photorefraction at longer wavelengths.

Investigations of the photorefractive response under interband illumination was per-
formed on Sn2P2S6 crystals grown at the Uhzgorod State University (Ukraine) by the

vapour transport technique. Samples of different sizes were cut along the crystallo-

graphic axes with the spontaneous polarization nearly parallel to the OX-axis. In our
notation the OY -axis is perpendicular to the mirror plane as in Ref. [135]. The absorp-

tion spectrum of Sn2P2S6 near the band edge energy and the temperature dependence

of the absorption coefficient at λ = 532 nm are shown in Fig. 6.2. One sees that the

absorption edge is situated around the 530 nm wavelength and that, as expected, this
edge moves to longer wavelengths for increasing temperature due to a reduced band gap

energy.
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Figure 6.2: Absorption spectra (a) and temperature dependence of the intensity absorption
coefficient at λ = 532 nm (b) for light polarized parallel and perpendicular to the polar X-axis
in a Z-cut Sn2P2S6 crystal.

First characterization of photorefractive effects in Sn2P2S6 under cw photoexcitation

in the blue-green spectral range (λ = 488 and 514 nm), that is well within the interband

absorption region, were reported in Ref. [137]. Under illumination with plane wave
interference fringes refractive index changes up to ∆n ≈ 10−4 and response time down

to τ1 ≈ 3 µs are observed (p-polarized (||OX) light at λ = 488 nm, intensity = 0.7

W/cm2). The response is not single exponential though. A second, about 10 times
longer, time constant related to a grating component of similar amplitude does exist. In
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general, in terms of refractive index change and sensitivity the performance of Sn2P2S6 at

488 nm approaches the one of KNbO3 at 350 nm. However, the grating evolution is more

complicated. All experiments point to a photorefractive charge transport nature of the
photoinduced gratings 1. However, details of the charge redistribution and of the exact

role played by free and trapped charges, respectively, are not yet fully understood in

this material.
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Figure 6.3: Intensity dependence of the photoconductivity σph measured
under illumination withX-polarized light at λ = 532 nm in the cw regime.
Fresnel losses at the input surface are already subtracted for the value of
the incident intensity I .

Due to it’s use for the realization of the fast optical correlator described in Sect. 6.3,
here we are more interested on the photorefractive response under photoexcitation at

the wavelength of 532 nm, which is right at the band-edge of the material. The room

temperature intensity absorption coefficient at this wavelength is 2α = 23 cm−1 for
X-polarized light and 2α = 7 cm−1 for Y -polarization. As seen in Fig. 6.2(b) these

values increase with increasing temperatures, which is expected to lead to a more pro-

nounced interband nature of the photorefractive effect. This hypothesis is confirmed by

cw photoconductivity investigations performed using a differential measuring technique
described in Ref. [138]. Fig. 6.3 shows the intensity dependence of the photoconductivity

for two temperatures. The measurements were performed under an electric field of 200

V/cm parallel to theOX-axis applied through silver painted electrodes and the light (X-
polarized) was incident on the Z-surface. The measured photoconductivity is large and

reaches about 10−4 (Ωm)−1 for an intensity of the order of 100 mW/cm2. This confirms

the efficient photoproduction of free carriers by the band-edge light. At T = 50 oC and

for a light intensity I larger than 2 mW/cm2 the photoconductivity σph increases with
the square root of I , a typical signature of interband effects. For the lower temperature

of 27 oC, for which the absorption constant is smaller, the regime for which σph ∝ I1/2 is

not reached yet at the intensities used here. Therefore at room temperature the grating
is expected to be formed by a combination of free and trapped charges already at the

1A possible alternative is a thermal origin [131, 132] for the observed gratings. However, such a
mechanisms can be excluded by considering the size of the effects as well as their geometry and intensity
dependence. This conclusion holds also for the gratings induced by nanosecond pulsed at 532 nm discussed
below.
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illuminated input surface. Note that the dark conductivity σd is strongly dependent on

the illumination history. Maximum σd was measured after pre illumination with the

green light (532 nm). In this condition we measured σd = 7 × 10−9 (Ωm)−1 at room
temperature, and σd = 9× 10−9 (Ωm)−1 for T = 50 oC. The big ratio between σph and

σd leads to a low value for the dark intensity (the equivalent intensity for which dark-

and photoconductivity are equal) of less than 1 µW/cm2. This is very useful because it

leads to a large dynamic range for the usable intensities.
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Figure 6.4: Dynamics of the diffraction efficiency in Sn2P2S6 under pulsed
grating recording at 532 nm. Pulse length = 50 ns; Fluence = 100 µJ/cm2.

In view of the high repetition rate optical processing task described in Sect. 6.3, at 532

nm we were mainly interested on the photorefractive response under nanosecond pulse
excitation. The large optical intensity during the pulse leads to an initial high density

of free carriers. As a consequence, at least in the transient regime, interband processes

are more pronounced than for the case of cw illumination. In these experiments plane
wave holograms were recorded using a Q-switched high repetition rate (up to 50 kHz)

frequency doubled Nd:YAG laser (λ = 532 nm, 50 ns pulse length). The holograms were

tested under the Bragg-angle by a weakly absorbed beam (λ = 633 nm). This geometry

is equivalent to the correlator experiment described in Sect. 6.3 if it would be operated
with two point images at the input. Figure 6.4 shows an example of the dynamic

response obtained by intersecting two horizontally polarized (XZ-plane, grating vector

||OX-axis) pulses at the temperature of 50 oC. The charge redistribution follows the 50
ns pulse and the diffraction efficiency reaches a maximum in a time of the order of 1 µs

with a subsequent decay. The full width at half maximum of the response peak is of

the order of 3 µs. This width increases only slightly (about a factor of 2) by an increase

of the grating spacing by a factor of 10. At room temperature and for a fluence of 110
J/cm2 the response peak width is about 12 µs for Λ = 6.6 µm and 6 µs for Λ = 0.8

µm and is therefore slightly larger than at 50 oC. The reason for this behaviour is the

increase of the photoexcitation cross-section for higher temperatures. This influences

also the diffraction efficiency η. The efficiency decreases by about one order of magnitude
between room temperature and T = 50 oC, for instance from η ≈ 2×10−4 to ≈ 2×10−5

for the grating spacing Λ = 1.6 µm. The increased absorption for higher temperatures

leads to a smaller effective grating thickness and thus to a smaller diffraction efficiency
in the longitudinal read-out geometry used here.
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Figure 6.5: Appearance of a trap-induced second peak with slower time constant at large
grating spacings. Note the change in time scale in the middle of the abscissa.

It has to be noted that in addition to the fast responding peak described above, at

large grating spacing (Λ > 5µm) one observes a subsequent second peak appearing on

a much slower time scale of the order of 1-2 ms, as seen in Fig. 6.5. The diffraction

efficiency associated with this second peak is lower than for the first one and the value
depends on crystal temperature. The appearance of this second peak can be explained

by a modification of the model presented in Sect. 2.2 that includes a single trap level

in addition to the interband photoexcited free carriers. Numerical simulations based on
such a model are able to predict qualitatively the observed dynamics [138]. The fast peak

results as being associated with free charges while the second one is related to trapped

charges forming a grating phase shifted by 180 degrees with respect to the fast one. The

above discussion shows that pulsed photoexcitation has two important advantages with
respect to cw one. On one hand we get initially a stronger free carrier grating because

of the larger intensity in the pulse (about 2 kW/cm2 for the measurement of Fig. 6.4).

On the other hand, since the grating dynamics evolution takes place completely in the
dark after the pulse, separation of the effects of free and trapped charges is easier than

in the cw case.

The above measurements show that pulsed interband photorefractive effects in
Sn2P2S6 are characterized by a fast response of the order of few µs. We could ver-

ify that well distinguished dynamic holograms can be recorded at a pulse rate of 10 kHz

or more (see Fig. 6.6). The slower grating seen in Fig. 6.5 and the final slow decay-

ing signal that can be recognized in Fig. 6.4 lead in this case only to a small constant
background diffraction. The importance of this background diffraction could potentially

be further decreased by using stronger cw read-out intensities, thus effectively erasing

the trap grating between subsequent pulses. As seen in Fig. 6.6, for a 10 kHz pulse

repetition rate and a pulse fluence of 10 µJ/cm2 one still measures a differential peak
diffraction efficiency of 1.5 × 10−5. The corresponding full width at half maximum of

the diffraction peak dynamics is about 20 µs. These values indicate that, as will be seen

in Sect. 6.3, the fast response of Sn2P2S6 to pulsed band-edge light is well suited for
applications in high rate optical parallel processing.
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Figure 6.6: Time dependence of the diffraction efficiency for plane-wave holograms recorded in
Sn2P2S6 with 50 ns long pulses (λ = 532 nm) at a repetition rate of 10 kHz.

6.2 High-speed optical processing in KNbO3 with
high resolution

It has already been pointed out several times that interband photorefractive effects

lead to a much increased response speed as compared to conventional photorefraction.
If combined with the higher resolution proper of short-wavelength light, this leads to

an extremely high effective parallel processing rate. One of the best test benches to

demonstrate these properties is a photorefractive incoherent to coherent optical con-
verter (PICOC) operated in the interband regime [139]. A PICOC is basically an opti-

cally addressed spatial light modulator based on the photorefractive effect by which an

incoherent wave is transferred onto a coherent beam. The key performance characteris-

tics obtained with this test bench can be easily extrapolated to other optical processing
devices such as for instance optical correlators.

In a PICOC the information transfer between incoherent and coherent light occurs

through diffraction at a modulated holographic phase grating. This approach was re-

alized earlier by using conventional photorefraction [140–144]. The grating is the key
element of the device which determines the time response and influences the optical res-

olution. Resonantly absorbed ultraviolet light not only gives faster response and higher

intrinsic resolution. As already mentioned, it also produces gratings which are robust
under non-resonant illumination, i.e. they are not affected by light with wavelengths

longer than the absorption edge. Therefore, the read-out wavelength λro, on which the

image is converted, can be chosen inside the whole transparency range of the material

with no restriction on its intensity.

The experimental implementation [139] of the interband PICOC is performed with a

47 µm thick sample of nominally pure, single domain KNbO3 crystal. The principle of

the set-up is schematically shown in Fig. 6.7. The photorefractive grating is recorded
by two interfering s-polarized laser beams at λrec=364 nm. For this wavelength the
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Figure 6.7: Schematic set-up of the implemented Photorefractive-Incoherent-to-Coherent Con-
verter (PICOC). The two recording waves interfere in the crystal to produce a photorefractive
grating which is modulated by the projected image carried by incoherent light of the Hg arc-
lamp. The read-out laser beam is anisotropically Bragg diffracted and reveals the contrast
reversed image on the coherent output beam.

absorption is 2α=540 cm−1 [46]. The grating wavevector �K was oriented along the
crystallographic b axis and the grating period Λ adjusted to 0.6 µm. In this geometry

the read-out beam at λro=532 nm is diffracted anisotropically and perpendicular to the

crystal surface. This anisotropic diffraction geometry offers the largest electro-optic coef-

ficient and thus the largest diffraction efficiency. In addition, the fact that the diffracted
beam leaves the surface perpendicularly prevents a reduction in resolution that would

occur if the incoherent input beam and the coherent output beam would not be colin-

ear [145, 146]. The total intensity of the recording laser beams is set to 85 mW/cm2 to
insure an almost homogeneous interband photorefractive grating throughout the whole

crystal depth [47]. The read-out intensity is 5 W/cm2. Because of the robustness of

the interband grating, the wavelength of the incoherent light has to be shorter than the

fundamental absorption edge as well. A mercury arc-lamp filtered by a bandpass filter
(transmission: 300-400 nm) provides the incoherent light which is first modulated by

a resolution chart and then imaged onto the crystal. The image carried by the output

wave is finally monitored by a CCD camera.

Before presenting the experimental outcomes it is useful to discuss shortly the pa-

rameters limiting the resolution R 2 of such a PICOC. It is well known, that Abbé
resolution increases with increasing aperture of the optical projection system. However,

at the same time the depth of focus is decreasing. Therefore, if the recording medium

or grating has a certain thickness d, the system aperture cannot be made infinitely
large. Given the thickness d, optimization of the aperture A for maximum resolution

leads to R ∝
√
n/dλ [50]. This limitation comes from pure diffraction considerations

for the incoherent input wave and shows that both, a short wavelength λ and a small

grating thickness d lead to a better resolution. In addition, the diffraction process at the

2Two spatially separated bright pixels are resolved when their intensity is at least twice as large as
the intensity of the dark pixel which separates them. The resolution R in line pairs per unit length
is then given by the inverse of twice the minimum size of the pixels for which the above condition is
fulfilled [142, 146].
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modulated Bragg grating limits the resolution as well, as was discussed extensively in

Refs. [142,145]. Here we calculate the resolution limit due to the finite grating diffraction

in a similar way as in [142], however, by taking into account wavelength dispersion and
the anisotropic nature of the coupled wave equations discussed extensively in Chapter 4.

The curves obtained by this procedure are shown in Fig. 6.8. For a 47 µm thick grating

and a read-out wavelength of 532 nm one predicts that the Bragg diffraction process

limits the resolution to a maximum of 160 lp/mm. This number is slightly larger than
the resolution of 148 lp/mm allowed by the simple projection system for the incoherent

illumination.
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Figure 6.8: Resolution limit R according to Ref. [142] vs. the ratio n/λro for different grating
thicknesses d in KNbO3. R is defined at 50% of the modulation transfer function, and n is
the refractive index at λro. The lines are calculated assuming a grating period Λ = 0.6 µm
and a diffraction efficiency of η = 0.01. (©) is the resolution measured with a 0.83 mm thick

conventional photorefractive grating in Ref. [142] at λro=633 nm, (•) is measured in this work
with a 47 µm thick interband grating at λro=532 nm. In the inset, a detail of the converted
image obtained with a resolution chart showing the best optical resolution achieved of 124
lp/mm.

In the experiments we find a best optical resolution of 124 line pairs/mm (lp/mm).

This value is obtained using an intensity of 70 mW/cm2 for the incoherent light and is
among the best of those achieved with different implementation of optically addressed

spatial light modulators (see Table 6.1). For stronger intensities of the incoherent or of

the recording waves, the resolution did not show any improvement. We noticed instead

an increase of noise due to light scattering at the read-out wavelength. For lower inten-
sities the optical resolution decreased because of a worse image contrast when reducing

the incoherent intensity, and because of a reduction of the grating homogeneity [47] when

reducing the recording intensity. E.g., with a total recording intensity of 10 mW/cm2

and an incoherent intensity of 70 mW/cm2, the resolution fell below 96 lp/mm.
As mentioned earlier, the interband PICOC is interesting not only because of the

achievable resolution, but also because of its short build-up and reconfiguration time.

For the experimental parameters giving the maximum resolution we measured a response
time of 35 µs with an overall contrast better than 10:1 (Fig. 6.8) and a diffraction
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efficiency of η = 0.4%. For increasing intensities the speed and the diffraction efficiency

increases. As shown in Fig. 6.9a, stronger incoherent intensities accelerate the recording,

i.e. the time needed to modulate the grating, while no influence is noticed on the recovery
time needed to restore the original homogeneous grating. The recovery time is governed

by the recording intensity (Fig. 6.9b).
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Figure 6.9: Dependence of the recording time (a) and of the grating recovery time (b) on the
incoherent intensity for different recording intensities Irec: (©) 8 mW/cm2, (✸) 25 mW/cm2,
(✷) 85 mW/cm2. The lines are guides to the eye.

The write-read-erase cycle of 70 µs achieved with the present approach is almost as

fast as for multiple quantum well (MQW) structures and much faster than spatial light
modulators (SLM) based on ferroelectric liquid crystals (FLC) which show responses of

typically 1 ms. In our case, speed and resolution combine to give, to our knowledge,

the highest incoherent-to-coherent conversion rate Γ ≡ (2R)2/τ = 88 Gbit/(s cm2)
demonstrated to date in cw regime (Table 6.1).

The PICOC implementation discussed here is also energetically very competitive. By

defining the optical switching energy per bit as

En/bit ≡ (Irec + Iinc)
τ

2R2 , (6.1)

we obtain En/bit = 0.5 pJ, one of the smallest values measured in optically addressed

SLM’s as reported in Table 6.1. However, this figure does not consider the readout inten-

sity Iro and the output power in the coherent beam carrying the image. An appropriate
figure of merit is then given by ppin/ppout i.e., the number of total input photons per

pixel necessary to generate one photon per pixel at the output [147]. For our experiment

this is expressed by

ppin/ppout =

(
3

η

)1/3 (2R)2hνro
Iroτ

1/3

×
 τ

(2R)2

(
Irec
hνrec

+
Iinc
hνinc

+
Iro
hνro

) , (6.2)

where I and hν are the intensities and the photon energies of the recording (rec), the
incoherent (inc), and of the read-out (ro) waves. This figure has to be minimized and
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allows to compare the performance of the converter with optical correlators. In fact,

a PICOC can also be used as a correlator by directly modulating the recording waves

with the object and the reference images and by placing the crystal in the Fourier-plane.
The diffraction of the read-out beam would reveal the correlation function of the two

input images in the object plane. With Eq. (6.2), we obtain ppin/ppout = 5 × 105 for

our PICOC-correlator, a value which compares well even with correlators implemented

in vapor gases [147, 148].

Table 6.1: Comparison of selected optically addressed SLM’s operated in the diffraction (D) or transmis-
sion (T) mode. The quantities are defined in the text. For this work, the values of R, τc, and η correspond
to a single measurement. For most of the other cases these three quantities have been extracted from
distinct experiments.
Optical - Modulating R τc η Γ En/bit ppin

ppout
Ref.

sensor - material ( lp
mm

) (ms) (%) ( Gbit
s cm2 ) (pJ)

pure KNbO3 124 0.07 D=0.4 88 0.5 5·105 this work, [139]

Fe:KNbO3 35 100 D=1.2 0.005 103 4·108
[142]

BSO thin film 27 10 T=3.8 0.03 170 107 [149]

GaAs PROM (a) 17 2 T=70 0.06 175 4·106 [150]

bacteriorhodopsin 100 100 T=1 0.04 104 8·107 [151]

GaAs-AlGaAs MQW (a) 70 0.035 D=1.5 56 0.2 3·105 [152]

a-Si:H - FLC (a) 150 2 D=0.2 4.5 0.02 106 [153]

Si diodes - LC (nem.) (a) 70 16 - 0.12 0.3 - [154]

Sn2P2S6
(b) 32 0.1 D=10−5 4.1 20 2·107 this work, [155]

Cs atom vapor (b) 15 - D=7·10−4 - - 104 [147]
(a) Operated with an external voltage. (b) Operated as correlator.

Table 6.1 summarizes performance characteristics of selected OA-SLM implementa-
tions. The reported values do not always reflect the best limiting performances achiev-

able when the parameters are singularly optimized, but they correspond to the best

global results obtained through a single measurement. The values have been chosen
trying to optimize the conversion rate and the energetic aspects. One can conclude that

a PICOC based on the interband photorefractive effect can be competitive with devices

based on semiconductor MQW or on liquid crystals. It is faster than liquid crystal de-

vices and is more versatile with respect to devices based on MQW’s because the readout
wavelength does not need to be chosen in a narrow spectral range corresponding to the

excitonic resonance.

The resolution, optical energy budget and versatility of the incoherent-to-coherent

optical converter discussed in this section proves that interband photorefractive effects
are very well suited for parallel optical processing at low intensities. In the next section

we describe a further example where one makes use of these properties for the demon-

stration of a high repetition rate optical correlator using Sn2P2S6. Figures for this

optical processing element were included in Table 6.1 as well.

6.3 High frame rate joint Fourier transform corre-
lation in Sn2P2S6

If an optical correlator has to compete with the steadily improving purely electronic
alternatives its operation frame rate has to be high enough. Figure 6.10 compares the
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processing time required to compare two images by dedicated electronic devices3 and

by the approach taken in this section. Clearly, if the linear input dimension is smaller

than approximately 50 pixels an optical correlator that processes all pixels in parallel
would need to be operated with a cycle time not exceeding 100 µs per frame.
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Figure 6.10: Processing time required for calculating the correlation between two images of size
Npx ×Npx. A JFT optical correlator with 10 kHz frame rate is faster than a 2 GHz clock rate
state of the art dedicated digital processor as long as the number of pixels exceeds Npx ≈ 50.

In the past the speed of optical correlators was often limited by the input electronic

interface device, such as the input spatial light modulator (SLM) used in one or both

arms of the joint Fourier transform (JFT) scheme first proposed by Weaver and Good-

man [156]. Today, the advent of faster display devices such as ferroelectric liquid crystals
SLM’s has shifted the limiting factor back to the nonlinear device element [157]. It is

therefore important to provide a material where the optical processing operation can

be performed at a rate at least equal to the input data rate. Among the low-power

nonlinear optical effects coming into consideration, the interband photorefractive effect
discussed in this chapter is particularly attractive because of the high sensitivity and

speed and because the relatively small thickness of the recorded gratings leads to higher

spatial resolution and an increased shift invariance of the correlator. As discussed in
Sect. 6.1 for the green spectral range the material of choice to obtain highly sensitive

interband photorefractive gratings is Sn2P2S6.

Here we use Sn2P2S6 as nonlinear optical processing element performing fast JFT

correlation operation. The system is operated in the pulsed regime using a high rep-
etition rate frequency doubled Nd:YAG laser at the wavelength of 532 nm. The main

features of the pulsed band-edge photorefraction at this wavelength were described in

Sect. 6.1. The optical system consists of an angularly multiplexed holographic storage
memory cascaded to the Sn2P2S6 dual axis JFT correlator. The principle of operation

is schematically shown in Fig. 6.11. The use of the holographic memory permits to
3such as a 2001 generation Texas Instruments TMS320C82 or TMS320C80 digital signal processor.
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overcome the available speed of the electronic/optic interface device and to operate the

JFT correlator at a rate of 10 kHz.
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Figure 6.11: Principle of operation of the high rate JFT correlator.

A schematic view of the setup is shown in Fig. 6.12. The left upper part is the
holographic storage memory stage used to provide a fast image template sequence. In

the lower right part the two arms of the dual axis JFT correlator cascaded to the

memory can be recognized. The collimated laser light enters the setup at top left.
The beam is divided by a polarizing beam splitter. The transmitted part is reflected

by a galvanic scanner, which is used to produce the reference wave of the angular

multiplexed holograms. The other beam is modulated and reflected by a ferroelectric

liquid crystal spatial light modulator (SLM) with 256 x 256 pixels (Displaytech Inc., pixel
size = 17 µm) that acts as an array of switchable half-wave plates. After modulation

the image beam passes the beam splitter for the second time and is imaged inside

the LiNbO3 crystal which acts as holographic storage medium. In the arrangement
chosen in our experiment the image pixels are modulated in phase but there is no

modulation in intensity (binary phase images). The library images are recorded in

the angularly multiplexed holographic memory by the incremental recording scheme

[158, 159] with about 100 writing cycles, which guarantees holograms with equivalent
diffraction efficiency. This part of the set-up can also work as a Vander Lugt type

correlator if the holograms are read out with the image beam [160]. Examples of images

recovered from the memory stage of the set-up are shown in Fig. 6.13. In order to permit
direct observation, in this particular case the images were recorded in the amplitude

rather than in the phase domain. By synchronizing the laser pulse train and the galvanic

mirror movement by means of a digital word generator, a read-out frame rate of 50

kFrames/s was achieved. This number is limited by the available repetition rate of our
laser.

In the JFT implementation the reconstructed images from the static hologram are

reflected by two mirrors and are Fourier transformed by the upper FT lens (f = 250
mm) to the location of the nonlinear Sn2P2S6 crystal. The second input beam of the



Optical processing and wave manipulation 95

Rotating
Mirror
(Scanner)

PBS

LiNbO3

CCD-Camera or
photomultiplier

Glass plate

Shutter 2

Dichroic
beam
splitter

Oven

Sn2P2S6

High rep. rate
Nd:YAG laser
(532 nm)

Ferroelectric 
LC SLM

FT Lenses

Hol. Memory

JFT

He-Ne 
(633 nm)

Figure 6.12: Scheme of the set-up for the joint transform correlator.

correlator is derived from the original image beam of the storage system by the beam
splitter placed in front of shutter 2. The paths length of the two arms are adjusted in

order to produce exactly overlapping Fourier transforms patterns of the input objects on

the incidence surface of the Sn2P2S6 crystal. A thick glass plate (25 mm) compensates
the 10 mm thick LiNbO3 crystal and ensures mutual coherence between the waves

propagating in the two arms. The gratings written by the green input beams are read

out with the expanded and collimated beam of a cw He-Ne laser (λ = 633 nm , 10 mW

power). The read-out angle matches the Bragg condition of the grating (Λ ≈ 3.3 µm)
written by the zero-order Fourier components of the input beams. The diffracted read-

out beam is extracted using a dichroic beam splitter and Fourier transformed into the

correlator output plane. The intensity distribution on the output plane can be detected
by a CCD-camera, in alternative the central peak can be selected by an aperture and

detected with a photomultiplier.

The system is operated in two steps. First the images are stored holographically in
the LiNbO3 crystal. In a second step the object beam is stopped by shutter 2, and the

image to be correlated with the stored images is displayed on the SLM. The correlation

between the input wave from the SLM and the read-out wave from the holographic

memory will build up in the output plane. High speed image sequences were produced
by reading-out 10 phase modulated Escher-images [161] of the kind shown in Fig. 6.13 at

a rate of 10’000 frames/s from the holographic memory. The total energy of the image

sequence incident on the Sn2P2S6 was 200 nJ per image, whereas the pulse energy

coming from the SLM was 800 nJ. The polarization of the beams was vertical (||Y ) and
T = 27 ◦C. The intensity of the correlation peak was selected using a pinhole. Two

typical correlation traces are shown Fig. 6.14. The 10 mutual correlation peaks can be

clearly identified. Peak 4 in (a) and peak 10 in (b) are the highest. They correspond to
the correctly identified images that were displayed on the SLM. The height of the peaks
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Input
images

Readout
images

Figure 6.13: Digitized input images and images retrieved from the holographic memory stage.
Three out of 100 stored amplitude modulated images are shown.

corresponding to the non matching images are however higher than expected by theory.

This is related to the limited usable aperture (4x4 mm2) of the available Sn2P2S6 crystal,

which acts as spatial low pass filter on the input images. The height of the correlation
peak was in fact particularly low for input images showing high spatial frequencies (like

image number 1 in our case). An important figure of merit for light driven SLM’s is the

switching energy per pixel, which is about 20 pJ/pixel for the correlator described here.

This is less than two orders of magnitude higher than the best values found previously
for semiconductors, multiple quantum wells, and interband operated KNbO3 devices

(see Table 6.1).
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Figure 6.14: Intensity of the correlation peaks produced by comparing image 4 (a) and image
10 (b) with an image sequence extracted from the holographic memory at the rate of 10 kHz.

In summary, in this section it was shown that, by a combination of a holographic
memory with fast dynamic holography in Sn2P2S6, realization of a joint Fourier trans-
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form optical correlator working at a frame rate of 10 kHz is possible. To our knowledge,

this is the highest correlation rate demonstrated to date in a photorefractive JFT cor-

relator. The corresponding processing speed also exceeds the performance of current
electronics (see Fig.6.10). Typical applications of such correlators are pattern and posi-

tion recognition (fingerprints, faces, industrial tools, objects, . . . ), tracking of unknown

objects or search in large databases of page coded information.

6.4 Reconfigurable light-induced waveguides in
KNbO3

Optical waveguides play a key role in the field of optoelectronics. In crystalline ma-

terials, waveguides can be fabricated by various techniques, including ion in-diffusion,

ion exchange, ion implantation, etching, and epitaxial thin film deposition [162–164].
For some applications such as optical switching or dynamic optical interconnection, re-

configurable waveguides are desirable. A further advantage would be achieved if the

fabrication step could be fully omitted. We show here a technique based on the inter-
band photorefractive effect by which a one-dimensional waveguide is created in real-time

by means of light illumination only [165]. The waveguide shape reflects the spatial dis-

tribution of a top surface illumination and can be reconfigured in a time of few tens of

microseconds 4.

So far, waveguide formation by means of the conventional photorefractive effect
[166, 167] has been demonstrated either with the combined effect of multiple exposure

illumination of aligned focused spots [168, 169], or by using the self-induced channel

generated by a self-focused or spatial soliton beam [170, 171]. These approaches make

use of the conventional photorefractive effect and are therefore associated with a rela-
tively slow response time. Waveguides formed by spatial soliton beams are also critically

dependent on the beam intensity and on the exact self focusing conditions. In addition,

except for a small bending due to charge diffusion effects, soliton induced waveguides
are essentially straight, which precludes the possibility of constraining light propagation

along an arbitrary path.

In our case the mechanisms underlying waveguide formation is the local screening

of an external electric field E. This is analogous with the mechanisms acting in the

case light induced waveguides are produced by beam self-focusing [170] or light induced
domain switching [172]. Using an electro-optic crystal, if the light polarization and

field direction are chosen properly, the refractive index decreases homogeneously across

the sample apart for the regions which are externally illuminated. There the field is

screened by bipolar charge transport. Because the desired structure can be imaged
onto the surface by a deflector or a photo-lithographic like process, various waveguide

configurations can be easily produced in this way.

A schematic view of the setup used to produce the light induced waveguides in KNbO3

is shown in Fig. 6.15. A pure, single domain crystal of dimensions a×b×c = 13.8×3.9×
7.3 mm3 is used for the experiments presented below. The field is applied along the c-axis
using silver paste electrodes. A mask with a slit width of 100 µm was homogeneously

4It is possible to implement the technique presented below building on the conventional instead of the
interband photorefractive effect, however, at the cost of a much longer response time.
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Figure 6.15: Schematic top (a) and front view (b) of the experimental setup for creating
light induced waveguides. L1 and L2, and CL1 and CL2 are spherical and cylindrical lenses,
respectively. In (b), the intensity distribution of the probe beam at the front and exit faces of
the waveguide is depicted.

illuminated by an Ar++ laser (λ = 364 nm) polarized parallel to the c-axis. This

controlling light has a photon energy larger than the 3.3 eV bandgap of KNbO3. The

slit is imaged by the cylindrical lens CL2 (f = 50 mm) onto the b-surface of the sample.

The imaged UV stripe has a width of 25 µm along the c-axis at the incident surface
and is aligned parallel to the a-axis. Due to the strong absorption of UV light in

pure KNbO3 (intensity absorption coefficient 2αc = 540±50 cm−1) [46], the UV stripe

can induce field screening only for about 150 µm below the surface. A c-polarized

HeNe laser beam (λ = 633 nm) 5 is focused by a spherical lens L1 (f = 80 mm)
down to a full width at half maximum (FWHM) of 15 µm and fed into the waveguide

entrance. The opposite exit face is imaged by L2 (f = 100 mm) onto a calibrated

CCD camera that monitors the beam intensity distribution. Additional background
illumination of the crystal is provided by a mercury arc-lamp with a total intensity of

about 30 mW/cm2. This background light produces a homogeneous conductivity which

permits a better definition of the narrow stripe region where the external field is screened.

Due to the extremely large photoconductivity induced by interband illumination, already
weak intensity side lobes can enlarge the width of the induced waveguides in absence of

background illumination.

Figure 6.16 depicts the output beam profile under the influence of the external field

and of the striped UV illumination for different scenarios. Without both the electric

field (E=0) and imaged slit (UV off), one observes the expected natural diffraction of
the HeNe beam, which expands to a FWHM of 88 µm after traveling the 13.8 mm long

crystal (Fig. 6.16(a)). No significant change in the intensity distribution is observed

when either imaging the slit onto the crystal surface (UV on, here IUV=3 W/cm2) or

when applying an external field, each separately, as shown in Figs. 6.16(b) and 6.16(c).

5While all results presented in this section are obtained with red probe light, as might be expected
we could also demonstrate that the above technique can be used to guide light at the telecommunication
wavelengths of 1.3 and 1.55 µm. Obviously, due to the larger natural diffraction, larger fields are required
to achieve the same waveguide width in this case. The guided beam full-width-at-half maximum scales
roughly as λ/E1/2.
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Figure 6.16: CCD-images of the intensity distribution of the probe beam at the exit face of
the waveguide (240×240 µm). The UV light is incident from the left side. Underneath, the
corresponding 1-D beam profiles along the white dotted lines. (a) E=0, UV illumination off,
(b) E=0, UV on, (c) E=4.8 kV/cm, UV off, and (d) E=4.8 kV/cm, UV on. The intensity in
the UV illumination pattern is 3 W/cm2 corresponding to a total UV power of 10 mW.

Only the combination of electric field and slit illumination leads to waveguide formation
and to the decrease of the beam width along c to 15 µm (FWHM, Fig. 6.16(d)), which

corresponds to the width at the waveguide entrance. The guiding properties are found

to be unchanged as the intensity of the HeNe beam varies from 0.004 to 200 W/cm2.
This confirms the robustness of interband photorefractive gratings mentioned earlier.

The total losses in the induced waveguide correspond to an intensity loss coefficient

2α < 0.02 cm−1, i.e. less than 0.1 dB/cm. In contrast to the beam width along c,

the one along b (profiles not shown in Fig. 6.16) stays practically unchanged. Upon
waveguide formation, one observes here an improved, more Gaussian like, beam profile,

as well as a slight attraction of the beam’s center towards the UV illuminated surface

of the crystal, where the change in refractive index is the highest.

UV Intensity  [W/cm2]

0.001 0.01 0.1 1 10

0.01 0.1 1 10

0

20

40

60

80

100

E [kV/cm]

0 1 2 3 4 5
0

20

40

60

80

100

V
er

tic
al

 B
ea

m
 W

id
th

 [
µm

]

15 µm

(b)    E = 4.8 kV/cm(a)   IUV =  3 W/cm2

E  [kV/cm]

88 µm

UV power  [mW]

Figure 6.17: Dependence of the beam width (FWHM) along the c-axis on (a) the applied
electric field E, and (b) the incident UV intensity.
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By using the known electro-optic coefficients of KNbO3 [88], for E= 4.8 kV/cm, we

expect the refractive index inside the illuminated region (core) to be larger by ∆nc =

1.34 × 10−4 with respect to the surrounding regions (cladding). For a simple model of
a step-profile planar waveguide of 25 µm width along c and infinite extent along the b

axis, waveguide theory [173] implies then that the two lowest order modes should be

guided. The ground mode TM0 of such a waveguide is expected to have a width of

17 µm (FWHM), which is in very good agreement with the measured 15 µm.

The influence of the experimental parameters on the guiding properties is analyzed
with the help of Fig. 6.17. For increasing applied electric field the beam width decreases

before reaching the constant saturation value. For IUV=3 W/cm2 the FWHM is smaller

than 20 µm for E > 3 kV/cm as seen in Fig. 6.17(a). The corresponding UV intensity

required for a field of 4.7 kV/cm (Fig. 6.17(b)) is ≈ 0.8 W/cm2 that corresponds to a
total UV power of less than 3 mW. Therefore the formation of the dynamic waveguide

is possible already with a very moderate amount of UV light.
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Figure 6.18: CCD-images of the intensity distribution of the probe beam at the exit face of
the waveguide for different deflection angles. The integrated intensities of the guided and non-
guided portion of the beam are plotted underneath as a function of the deflection angle inside
the crystal. The dotted lines are guides to the eye.

One big advantage of the present approach is that it allows a reconfiguration of

the waveguide structure in real time. By simply modifying the image mask, various

waveguide designs are possible, e.g. Y- or multiple branches, Mach-Zehnder like inter-

ferometers, or switches. The feasibility of such structures is demonstrated by replacing
the simple slit mask (Slit #1 in Fig. 6.15(b)) by a mask (Slit #2 in Fig. 6.15(b)) permit-

ting a continuous rotation of one of its arms. The guided red beam encounters the pivot

point of this rotation after 1/4 of its propagation in the crystal. By rotating the other

3/4 of the induced waveguide using the mask the guided beam is deflected. The beam
profiles for different deflection angles are shown in the upper part of Fig. 6.18. The

corresponding integrated relative intensities of the guided and non-guided portions are

plotted underneath. For increasing deflection angles, the intensity of the guided beam
decreases continuously from 100% at 0 deg. to 2.3% at 1.75 deg. For an angle of 0.7 deg.,
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the deflected and non deflected beams are of equal intensity. In a 13.8 mm long crystal

a deflection angle of 0.7 degrees corresponds to a total displacement of 170 µm at the

exit surface. This displacement is larger than what was recently achieved with spatial
solitons steering [174] and should allow separation of up to 12 output channels in a 1xN

optical interconnect. Figure 6.19 shows two examples of light induced waveguides in the

form of a Y-branch. In the first case the Y-branch is formed by straight waveguides, in

the second by curved ones. As expected, the latter case leads to a better confinement
of the input wave into the two exit channels. In the example presented here the mutual

distance of the probe beams at the exit of the crystal is about 150 µm, corresponding

to a deflection of each beam by about 0.5 degrees.

a) straight Y-branch

b

c

b

c UV light on

b) bended Y-branch

b

c

b

c UV light on

Figure 6.19: Straight (a) and bended (b) Y-branch waveguides. The CCD
images show the diffracted He-Ne laser beam without controlling UV il-
lumination (left) and the two splitted guided beams (right).

The buildup and reconfiguration time of the induced waveguide decreases as the

square root of the light intensity as seen in Fig. 6.20. This behaviour is expected for
interband photorefraction as already shown theoretically in section 2.2.2 and demon-

strated experimentally in Fig. 2.8. One measures a waveguide build-up time of 63 µs

for an UV intensity of 2.65 W/cm2 and 780 µs for IUV=20 mW/cm2.
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Figure 6.20: Buildup time constants of the light induced waveguide as a
function of the UV stripe intensity measured at the crystal surface (E=4.8
kV/cm).

In summary, in this section we have shown that light can be guided by transient one-
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dimensional6 waveguides produced through side-illumination by means of the interband

photorefractive effect. Reconfiguration and switching of such dynamic waveguides is

possible in a time scale of few tens of microseconds. The presented method appears
attractive for creation of active all-optical devices such as switches , tunable Y-branches,

reconfigurable optical interconnects compatible with telecommunication wavelengths, or

for the use as low loss waveguides for nonlinear optical frequency conversion applications.

6.5 Summary

In this chapter we have given a short description of interband photorefractive effects
in two electro-optic materials, KNbO3 and Sn2P2S6. In the first material the band-to-

band processes occur at near ultraviolet wavelengths while in the second one they take

place already in the blue-green spectral region. In both cases refractive index variations

being robust against erasure with longer wavelength light and having response speeds in
the few µs region can be achieved. This makes them interesting for applications in fast

parallel optical processing such as the optically addressed spatial light modulator and the

Joint Fourier transform optical correlator presented in Sects. 6.2 and 6.3, respectively.
By the same effect, as shown in Sect. 6.4, manipulation of an optical beam by means of

a controlling light pattern becomes also possible.

6Several methods for a more efficient confinement also in the second transverse dimension based on
alternative electrode configurations and/or special geometries are under investigation.



Chapter 7

Conclusions

Low power optical waves can interact in an efficient way by means of the photorefrac-

tive effect. This interaction is generally strongest in highly anisotropic crystals, such as

BaTiO3, KNbO3, LiNbO3, SrxBa1−xNb2O6 or Sn2P2S6, that exhibit large electro-optic

effects. We have presented the first treatment that takes into account the complete set
of anisotropic material properties. These include the birefringence, the dielectric con-

stants, the dichroism, the electro-optic constants, the elastic and photoelastic constants,

the piezoelectric constants, the mobility tensor, and the cross-sections for free carrier

photoexcitation. All these quantities influence the coupling constant substantially.

The role played by the anisotropy of the photoexcitation process with respect to light

polarization was generally overlooked in previous literature. It was shown here that
this anisotropy influences dramatically the two-wave mixing coupling constant because

it determines directly the modulation depth of the photoexcited free carriers, which

drives the whole charge redistribution process. We have also shown that the case where
this quantity is isotropic corresponds to a worst-case scenario. An enhancement of the

achievable two-wave mixing gain is always possible by introducing such an anisotropy.

Gratings in photorefractive materials are in general anisotropic in the sense that the

refractive index modulation seen for different polarizations of the read-out wave can

be strongly different. An extension of the well known coupled wave theory of Kogel-

nik [12], required to describe diffraction at such kind of gratings, was given in this work.
New expressions which describe isotropic or anisotropic diffraction in general geome-

tries for either transmission or reflection type gratings were given. For completeness,

the simultaneous presence of phase and absorption modulation with arbitrary mutual
phase shift was considered. This phase shift leads in general to nonreciprocal diffrac-

tion with respect to an exchange of the role of the incident and diffracted waves. The

anisotropic coupled-wave theory presented here is relevant for any holographic mate-

rials having strong birefringence and/or containing gratings with strongly anisotropic
properties, such as organic crystals [175], liquid crystals [176,177] or polymer dispersed

liquid crystals [178, 179].

Photorefractive gratings induced by interband absorbed light were modeled and char-

acterized in the crystals KNbO3 and Sn2P2S6. The two most important advantages with

respect to conventional photorefraction are the strongly increased response speed and

the robustness of these dynamic gratings against erasure through a probe wave at a
wavelength longer than the recording one. For parallel optical processing tasks based

on Fourier or image plane processing a further advantage comes into play. The resulting

gratings are rather thin with the thickness that depends on the absorption constant and
on the recording light intensity. This leads to an increased resolution in image transfer
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applications and to a higher shift invariance for pattern recognition tasks [142,160,180].

On the other hand, the drawbacks of interband photorefractive effects are also related

with the large absorption constant. Any application where the recording light has to be
reused or detected after the nonlinear material is better performed using conventional

photorefractive effects. Examples of such applications can be found in the fields of

holographic storage, adaptive interferometry, coherent image amplification, laser beam

cleanup, phase conjugation, etc. [4, 6]. If, in contrast, the recording light can be fully
sacrificed in the nonlinear sample, one is better off by using the interband processes.

We have given three examples of this latter kind of applications. An optical addressed

spatial light modulator with speed comparable to semiconductor multiple quantum well

devices but higher resolution, a device where one is able to guide, steer and switch a
light beam by means of a controlling light pattern, and a fast photorefractive Joint

Fourier transform correlator cascaded to a holographic memory. This system is able

to perform correlations at the, to our knowledge, unsurpassed rate of 10 kHz. The
investigations on interband effects reported in this work were performed in the crys-

tals KNbO3 and Sn2P2S6. However, the interband photorefractive effect is not limited

to these two materials and, depending on the required wavelength of operation, other

electro-optic compounds may be selected. For instance, the light induced waveguides re-
ported in Sect. 6.4 may be produced using smaller applied fields with crystals possessing

electro-optic coefficients even larger than KNbO3, such as BaTiO3 and SrxBa1−xNb2O6.

Reaching the same, very low, waveguide losses observed in KNbO3 puts a significant
challenge on high purity crystal growth of these two materials.

In conclusion, this work has indicated two ways to increase the sensitivity and the

strength of the photorefractive nonlinear process. The first is based on exploiting the

increased efficiency of charge photoexcitation related to interband absorption processes.
The second relates to the targeted utilization of the anisotropic properties of the ma-

terial. We hope that these insights will lead to alternative approaches to new practical

applications.



Appendix A

Linear propagation in dichroic birefringent
media

Throughout this work we have used the effective amplitude absorption constants α seen

by a given wave. In dichroic birefringent crystal this quantity is obviously not obtained
by a simple trigonometric operation on a scalar number. It is related to the imaginary

part ε↔0
i of the dielectric tensor. We treat here the problem of linear propagation in

a dichroic birefringent medium and derive Eq. (4.38) relating the effective amplitude

absorption constants to the tensor ε
↔0
i .

We consider a wave of the form �E exp
[
i(�k · �r − ωt)

]
with complex wavevector of the

form �k = �kr + i�ki. If this wave is an eigenwave of the medium it has to fulfill the wave

equation (4.5), which translates into

−E
[(
ê×

(
�kr + i�ki

))
×

(
�kr + i�ki

)]
ei
�kr·�re−

�ki·�r

= k2
o

[
↔
ε

0
r + i

↔
ε

0
i

]
Eê ei

�kr ·�re−
�ki·�r, (A.1)

where we have used �E = Eê. Equation (A.1) is the same as Eq. (4.13) of Sect. 4.1. The

real part of the space independent terms in (A.1) reads

E
[(
ê× �kr

)
× �kr −

(
ê× �ki

)
× �ki

]
= −E k2

o
↔
ε

0
r · ê, (A.2)

Under our general assumption of moderate absorption (
∣∣∣∣�ki∣∣∣∣ 


∣∣∣∣�kr∣∣∣∣), we recognize

Eq. (A.2) as the equation describing linear propagation in lossless anisotropic media,

as can be verified in several textbooks [104,105,181]. The remaining (imaginary) terms

of (A.1) are related to the effective scalar absorption constant we are looking for, they

read

−iE
[(
ê× �kr

)
× �ki +

(
ê× �ki

)
× �kr

]
= i E k2

o
↔
ε

0
i · ê. (A.3)

We are considering here a boundary value problem, the wave should have a constant in-

tensity at the input surface of the medium defined by the condition ζ̂ ·�r = 0 (Figure 4.1).
A constant intensity implies ∣∣∣∣ �E ei

�k·�r
∣∣∣∣ (ζ̂ · �r = 0

)
= constant, (A.4)

which can be fulfilled only if the vector �ki is parallel to the surface normal ζ̂. One can

write
�ki = α

(
±ζ̂

)
, (A.5)

105
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where the effective absorption constant α is positive, and the (+) sign in (A.5) holds if

the wave enters the medium at the plane ζ̂ ·�r = 0, while the (-) sign holds if it enters at

the plane ζ̂ · �r = d and exits at ζ̂ · �r = 0. Therefore, the vectors �kr and �ki are in general
noncollinear and the wave is inhomogeneous even in the absence of a nonlinear grating.

By inserting (A.5) into (A.3) and using the vector identity
(
�a×�b

)
×�c = (�a · �c)�b−

(
�b · �c

)
�a

one gets

αk0 n
[(
ê · ζ̂

)
k̂r +

(
ê · k̂r

)
ζ̂ − 2

(
k̂r · ζ̂

)
ê
]
= −k2

0
↔
ε

0
i · ê, (A.6)

where we have introduced explicitely the refractive index n seen by the wave and we
have used the relationship �kr = k0nk̂r. We are looking for an expression for α, which is

obtained by multiplying Eq. (A.6) by ê

2αk0 n
[(
ê · ζ̂

) (
k̂r · ê

)
−

(
k̂r · ζ̂

)]
= −k2

0

(
ê · ↔

ε
0
i · ê

)
. (A.7)

As in (4.21) the expression in the square brackets on the left-hand side is related again
to the unit vector û along the Poynting vector of the wave and can be rewritten as[(

ê · ζ̂
) (

k̂r · ê
)
−

(
k̂r · ζ̂

)]
= ζ̂ ·

[
ê
(
k̂r · ê

)
− k̂r

]
= −g

(
ζ̂ · û

)
= −g cos θ, (A.8)

where the angle θ is defined by the last equality and is the same as the one introduced in

Chapt. 4. We recall that g = ê·d̂, with d̂ being the unit vector pointing in direction of the

dielectric displacement vector (polarization). By combining Eqs. (A.7) and (A.8) one
obtains finally the value of the amplitude absorption constant α which fulfills Eq. (4.5),

that is

α =
k0

(
ê · ↔

ε
0
i · ê

)
2n g |cos θ| =

π
(
ê · ↔

ε
0
i · ê

)
λn g |cos θ| , (A.9)

where λ is the vacuum wavelength. Equation (A.9) can also be used to derive the

elements of the tensor ε↔0
i from measurements of α for various wave propagation directions

and polarizations.



Bibliography

[1] R. W. Boyd, Nonlinear Optics (Academic Press, San Diego, 1992).

[2] A. Ashkin, G. D. Boyd, J. M. Dziedzic, R. G. Smith, A. A. Ballman, J. J.

Levinstein, and K. Nassau, “Optically induced refractive index inhomogeneities

in LiNbO3 and LiTaO3,” Appl. Phys. Lett. 25, 233 (1966).

[3] P. Günter and J. P. Huignard, Photorefractive materials and their Applications I
: Fundamental Phenomena, Vol. 1 of Topics in Applied Physics (Springer Verlag,

Berlin, 1988).

[4] P. Günter and J. P. Huignard, Photorefractive materials and their Applications II

: Applications, Vol. 2 of Topics in Applied Physics (Springer Verlag, Berlin, 1989).

[5] P. Yeh, Introduction to photorefractive nonlinear optics, Wiley series in pure and

applied optics (Wiley, New York, 1993).

[6] S. I. Stepanov, “Applications of photorefractive crystals,” Rep. Progr. Phys. 57,
39 (1994).

[7] Photorefractive effects and materials, edited by D. D. Nolte (Kluwer Academic

Publishers, Boston, 1995).

[8] L. Solymar, D. J. Webb, and A. Grunnet-Jepsen, The physics and applications of

photorefractive materials, Vol. 11 of Oxford Series in Optical and Imaging Science

(Clarendon Press, Oxford, 1996).

[9] F. Laeri, T. Tschudi, and J. Albers, “Coherent cw image amplifier and oscillator

using two-wave interaction in a BaTiO3 crystal,” Opt. Commun. 47, 387 (1983).

[10] M. H. Garrett, J. Y. Chang, H. P. Jenssen, and C. Warde, “High photorefractive
sensitivity in an n-type 45o-cut BaTiO3 crystal,” Opt. Lett. 17, 103 (1992).

[11] P. Günter, “Holography, coherent light amplification and optical phase conjugation

with photorefractive materials,” Phys. Rep. 93, 199 (1982).

[12] H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech.

J. 48, 2909 (1969).

[13] W. E. Moerner, A. Grunnetjepsen, and C. L. Thompson, “Photorefractive Poly-

mers,” Ann. Rev. Mat. Sci. 27, 585 (1997).

[14] G. C. Valley, “Short-pulse grating formation in Photorefractive materials,” IEEE
J. Quantum Electr. QE-19, 1637 (1983).

107



108 References

[15] G. Pauliat and G. Roosen, “Photorefractive effect generated in sillenite crystals

by picosecond pulses and comparison with the quasi-continuous regime,” J. Opt.

Soc. Am. B 7, 2259 (1990).

[16] I. Biaggio, M. Zgonik, and P. Günter, “Photorefractive effects induced by picosec-
ond light pulses in reduced KNbO3,” J. Opt. Soc. Am. B 9, 1480 (1992).

[17] G. Montemezzani, P. Rogin, M. Zgonik, and P. Günter, “Interband photorefractive

effects in KNbO3 induced by ultraviolet illumination,” Opt. Lett. 18, 1144 (1993).

[18] V. L. Vinetskii and N. V. Kukhtarev, “Theory of the conductivity induced by

recording holographic gratings in nonmetallic crystals,” Sov. Phys. Solid State 16,
2414 (1975).

[19] N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinetskii,

“Holographic storage in electro-optic crystals. I. Steady state,” Ferroelectrics 22,

949 (1979).

[20] N. V. Kukhtarev, V. B. Markov, S. G. Odulov, M. S. Soskin, and V. L. Vinet-
skii, “Holographic storage in electro-optic crystals. II: Beam coupling and light

amplification,” Ferroelectrics 22, 961 (1979).

[21] J. Feinberg, J. D. Heimen, A. R. Tanguay, and R. W. Hellwarth, “Photorefractive

effects and light-induced charge migration in barium titanate,” J. Appl. Phys. 51,
1297 (1980).

[22] A. M. Glass, D. VonderLinde, and T. J. Negran, “High-voltage bulk photovoltaic

effect and the photorefractive effect in LiNbO3,” Appl. Phys. Lett. 25, 233 (1974).

[23] B. I. Sturman and V. M. Fridkin, The Photovoltaic and Photorefractive Effects in

Noncentrosymmetric Materials, 1 ed. (Gordon and Breach, Philadelphia, 1992).

[24] H. G. Ferstl, P. Hertel, E. Krätzig, and R. V. Baltz, “Investigations of the photo-

voltaic tensor in doped LiNbO3,” Phys. Stat. Sol. (b) 113, 157 (1982).

[25] G. Montemezzani, C. Medrano, P. Günter, and M. Zgonik, “Charge Carrier Pho-

toexcitation and Two Wave Mixing In Dichroic Materials,” Phys. Rev. Lett. 79,

3403 (1997).

[26] M. Cronin-Golomb, “Whole beam method for photorefractive nonlinear optics,”

Opt. Commun. 89, 276 (1992).

[27] D. N. Christodoulides and M. I. Carvalho, “Bright, dark, and gray spatial soliton

states in photorefractive media,” J. Opt. Soc. Am. B 12, 1628 (1995).

[28] A. A. Zozulya and D. Z. Anderson, “Propagation of an optical beam in a photore-
fractive medium in the presence of a photogalvanic nonlinearity or an externally

applied electric field,” Physical Review A 51, 1520 (1995).

[29] R. Ryf, G. Montemezzani, M. Wiki, P. Günter, and A. A. Zozulya, “Launch-

ing one-transverse-dimensional photorefractive solitons in KNbO3 crystals,” Opt.
Commun. 159, 339 (1999).



References 109

[30] F. Vachss and L. Hesselink, “Nonlinear photorefractive response at high modula-

tion depths,” J. Opt. Soc. Am. A 5, 690 (1988).

[31] E. Serrano, M. Carrascosa, and F. Agullo-Lopez, “Analytical and Numerical Study

Of Photorefractive Kinetics At High Modulation Depths,” J. Opt. Soc. Am. B 13,

2587 (1996).

[32] M. R. Belic, D. Timotijevic, M. Petrovic, and M. V. Jaric, “Exact solution to pho-
torefractive two-wave mixing with arbitrary modulation depth,” Opt. Commun.

123, 201 (1996).

[33] N. Kukhtarev, S. Lyuksyutov, P. Buchhave, T. Kukhtareva, K. Sayano, and P.

P. Banerjee, “Self-enhancement of dynamic gratings in photogalvanic crystals,”

Phys. Rev. A 58, 4051 (1998).

[34] F. Jariego and F. Agullo-Lopez, “Monotonic versus oscillatory behaviour during

holographic writing in photorefractive photovoltaic materials,” Opt. Commun. 76,
169 (1990).

[35] C. Gu, J. Hong, H. Y. Li, D. Psaltis, and P. Yeh, “Dynamics of grating formation

in photovoltaic media,” J. Appl. Phys. 69, 1167 (1991).

[36] F. Agullo-Lopez, J. M. Cabrera, and F. Agullo-Rueda, Electrooptics: Phenomena,

Materials and Applications (Academic Press, London, 1994).

[37] L. Solymar, in Electro-optic and Photorefractive Materials, Springer Proceedings

in Physics, edited by P. Günter (Springer-Verlag, Berlin, 1987), pp. 229–245.

[38] G. Montemezzani, M. Zgonik, and P. Günter, “Photorefractive charge compensa-

tion at elevated temperatures and application to KNbO3,” J. Opt. Soc. Am. B 10,
171 (1993).

[39] B. I. Sturman, M. Mann, J. Otten, and K. H. Ringhofer, “Space-charge waves and
their parametric excitation,” J. Opt. Soc. Am. B 10, 1919 (1993).

[40] B. I. Sturman, E. Shamonina, M. Mann, and K. H. Ringhofer, “Space-charge waves

in photorefractive ferroelectrics,” J. Opt. Soc. Am. B 12, 1642 (1995).

[41] M. Cronin-Golomb, “Photorefractive surface waves,” Opt. Lett. 20, 2075 (1995).

[42] V. A. Kalinin and L. Solymar, “Energy relations for space-charge waves in pho-

torefractive materials,” Appl. Phys. Lett. 68, 3826 (1996).

[43] B. I. Sturman, M. Aguilar, and F. Agullo-Lopez, “Analysis of space-charge wave

effects in GaAs:EL2,” Phys. Rev. B 54, 13737 (1996).

[44] H. C. Pedersen and P. M. Johansen, “Space-charge wave theory of photorefractive

parametric amplification,” J. Opt. Soc. Am. B 16, 1185 (1999).

[45] P. Yeh, “Fundamental limit of the speed of photorefractive effect and its impact

on device applications and material research,” Appl. Opt. 26, 602 (1987).

[46] G. Montemezzani, P. Rogin, M. Zgonik, and P. Günter, “Interband photorefractive
effects: Theory and experiments in KNbO3,” Phys. Rev. B 49, 2484 (1994).



110 References

[47] P. Bernasconi, G. Montemezzani, and P. Günter, “Off-Bragg-angle light diffraction

and structure of dynamic interband photorefractive gratings,” Appl. Phys. B 68,

833 (1999).

[48] M. Carrascosa, F. Agullo-Lopez, G. Montemezzani, and P. Günter, “Photorefrac-
tive gratings generated by band-gap excitation: Application to KNbO3,” Appl.

Phys. B 72, 697 (2001).

[49] P. Bernasconi, G. Montemezzani, I. Biaggio, and P. Günter, “Characterization

Of the Bipolar Mobility In Polar Materials By Interband Photoexcitation,” Phys.
Rev. B 56, 12196 (1997).

[50] P. Bernasconi, PhD. Dissertation, Swiss Federal Institute of Technology, Diss ETH

Nr. 12761, Zürich, 1998.
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