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Abstract

The present work is concerned with the analysis of the Discontinuous Galerkin
Finite Element Method (DGFEM) for linear

• diffusion problems,

• elasticity problems,

• Stokes problems.

The corresponding domains are assumed to be possibly non-convex polygons
in two space dimensions. As it is well-known from the regularity theory of linear
second order elliptic partial differential equations, the solutions of such problems
may exhibit singularities in the corners of the polygons as well as in the points
where the boundary conditions change (Dirichlet/Neumann). In order to describe
this singular behaviour of solutions in a mathematical way, the theory of the so-
called weighted Sobolev spaces is applied and extended to the class of problems
under consideration.

In contrast to standard (conforming) finite element methods, the analysis of
the DGFEM is, due to the occurrence of singularities, accompanied by some ad-
ditional technical difficulties. In this thesis, these problems are treated with the
aid of some newly developed tools. Furthermore, it is explained, how singularities
can be resolved numerically by an appropriate choice of the finite element meshes
and of the elemental polynomial degrees.

More precisely, for diffusion and elasticity problems it is proved that, in spite
of the exact solutions being singular, the use of so-called graded meshes leads
to optimal algebraic convergence rates for the h version of the DGFEM (fixed
polynomial degree). In addition, the hp DGFEM for diffusion and Stokes prob-
lems achieves exponential convergence rates if geometric mesh refinement and
judicious polynomial degree distribution strategies are applied.

Finally, it should be mentioned that the low-order h DGFEM for elasticity
problems is found to be free of volume locking. This means that, in contrast
to conforming finite element formulations in the primal variables, the DGFEM
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iv Abstract

is completely robust with respect to nearly incompressible materials, without re-
sorting to mixed formulations. This remarkable advantage of the DGFEM is a
particularity which is very welcome in many practical applications.



Kurzfassung

In der vorliegenden Arbeit wird die Diskontinuierliche-Galerkin-Finit-Element-
Methode (DGFEM) für lineare

• Diffusionsprobleme,

• Elastizitätsprobleme,

• Stokesprobleme

untersucht.
Die entsprechenden Gebiete sind allgemeine Polygone in zwei Ortsdimensio-

nen. Wohlbekannte Aussagen der Regularitätstheorie für lineare elliptische par-
tielle Differentialgleichungen zweiter Ordnung implizieren, dass die Lösungen
solcher Probleme Singularitäten in den Ecken der Polygone, wie auch in den
Punkten mit wechselnden Randbedingungen (Dirichlet/Neumann) aufweisen kön-
nen. Eine Möglichkeit, dieses singuläre Verhalten von Lösungen mathematisch
beschreiben zu können, ist die Theorie der sogenannten gewichteten Sobolevräu-
me, die in dieser Arbeit hinzugezogen und für die vorliegende Problemklasse er-
weitert wird.

Das Auftreten von Singularitäten in den Lösungen führt bei der Analysis der
DGFEM zu zusätzlichen technischen Schwierigkeiten, die bei konformen Finit-
Element-Methoden nicht entstehen. Diese Probleme können mit Hilfe von neuen
Aussagen, die in dieser Arbeit entwickelt werden, behandelt werden. Ferner ist es
möglich, Singularitäten durch eine geeignete Wahl der Gitter und der elementwei-
sen Polynomgrade optimal aufzulösen.

Genauer wird hier bewiesen, dass die h-Version der DGFEM (fester Poly-
nomgrad) für Diffusions- und Elastizitätsprobleme auf sogenannten graduierten
Gittern algebraisch optimal konvergiert, auch wenn die exakten Lösungen sin-
gulär sind. Ferner führen geometrische Gitterverfeinerungen und spezielle Po-
lynomgradverteilungen zu exponentiellen Konvergenzraten der hp-DGFEM für
Diffusions- und Stokesprobleme.

Schlussendlich sollte erwähnt werden, dass die h-DGFEM niedriger Ordnung
für Elastizitätsprobleme vom Effekt des

”
Volume Locking“ nicht betroffen ist.
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vi Kurzfassung

Dies bedeutet, dass die DGFEM – im Gegensatz zu konformen Finit-Element-
Formulierungen in primären Variablen – völlig robust bezüglich (fast) inkompres-
siblen Materialen ist. Dieser bemerkenswerte Vorteil der DGFEM ist in vielen
praktischen Anwendungen sehr gefragt.
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Introduction

In this thesis, the discontinuous Galerkin finite element method (DGFEM) for
several elliptic problems in polygons is analyzed. It is subdivided into three parts:

• The DGFEM for Diffusion Problems (Chapter 2).

• Locking-Free h DGFEM for Elasticity Problems (Chapter 3).

• Mixed hp DGFEM for Stokes Problems (Chapter 4).

Additionally, Chapter 1 presents a general setting for the analysis in this work.
Finally, a few auxiliary results are collected in the appendix.

The DGFEM for Diffusion Problems. The discontinuous Galerkin FEM (DG-
FEM) was introduced in [49] for neutron transport problems. A numerical anal-
ysis for this case has been given in [42]. Later, DGFEM have been generalized
to first order hyperbolic systems and to general convection-diffusion problems as
one type of high order finite volume schemes; see e.g. [24, 25] and the recent sur-
vey [23]. Furthermore, an error analysis of the DGFEM has become available in
[27, 38, 39, 45, 50, 67], for example. In addition, some implementational aspects
are presented in [28].

It is noteworthy that discontinuous Galerkin approaches are extremely flexi-
ble with respect to mesh-design and the choice of boundary conditions—meshes
with hanging nodes, elements of various types and shapes, local spaces of dif-
ferent orders, and even inhomogeneous boundary conditions can be easily dealt
with. Therefore, since the eighties, the problem of treating second order ellip-
tic, and especially diffusion problems, within the DGFEM context has attracted
considerable interest. Today, it is well-known that there are several possibilities
to formulate discontinuous Galerkin schemes for this class of problems: either
resorting to an interior penalty method [1, 2, 3, 54, 64], or omitting stabilization
completely, [43, 51]. An alternative approach is the use of local discontinuous
Galerkin methods [16, 17, 44]. In all these works, error estimates of h- or of
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2 Introduction

p-type under strong regularity assumptions are given. For example, explicit esti-
mates in h and p, which are based on global H k regularity of the solutions, for
pure diffusion problems were recently obtained in [36, 37, 43].

In polygons, however, singularities in the corners and in the points of changing
boundary conditions (Dirichlet/Neumann) may arise. Hence, the solutions of the
corresponding problems are typically only in H k(�) for small k > 1, [5, 6]. A
possible approach to describe such singular behaviour mathematically is given by
the theory of the so-called weighted Sobolev spaces which were originally stud-
ied in [4, 5, 6, 31, 32, 33] for elasticity and potential problems. Furthermore,
in order to resolve the singularities numerically with the DGFEM, some appro-
priate mesh refinement and polynomial degree distribution strategies have to be
applied. Moreover, the reduced regularity imposes several technical difficulties
and requires a careful treatment of the elements and the numerical fluxes near the
singular vertices of the domain. In this thesis, it is shown that these problems may
be overcome by applying some new trace theorems for functions with singulari-
ties.

The aim of Chapter 2 is to prove that optimal algebraic convergence rates
for the h DGFEM (Theorem 2.5.7), and exponential convergence rates for the
hp DGFEM (Theorem 2.6.6) for diffusion problems in convex as well as non-
convex polygons (with mixed boundary conditions) may be achieved, even if the
exact solutions are singular. To do so, so-called graded meshes for the h DGFEM
and meshes which are geometrically refined towards the singularities for the hp
DGFEM are used. In addition, for the hp DGFEM, the elemental polynomial
degrees are chosen to be linearly increasing away from the singularities; see, e.g.
[58] for the standard (conforming) hp FEM and [66] for the hp DGFEM.

Locking-Free h DGFEM for Elasticity Problems. In mechanical engineering,
partial differential equations are often solved by low-order finite element methods.
In many applications, the convergence of these schemes may strongly depend on
various problem parameters. Unfortunately, this can result in non-robustness of
the convergence, i.e. the asymptotic convergence regime of the method is reached
only at such high numbers of degrees of freedom that the scheme is practically not
feasible. In computational mechanics, this non-robustness of the FEM is termed
locking.

There exist different kinds of locking: Shear locking typically appears if the
corresponding domains are very thin and plate and shell theories, which include
shear deformation, are used. In addition, in shell theories and their finite ele-
ment models, there arises membrane locking which is caused by the interaction
between bending and membrane energies. Finally, problems dealing with nearly
incompressible materials are often accompanied by the so-called volume locking;



Introduction 3

this type of locking is very typical for elasticity problems and will be studied in
this thesis.

In order to overcome locking, a wide variety of alternative approaches have
been suggested. For example, low-order mixed FEM, where an extra variable
for the divergence term is introduced, yield adequate numerical results; cf. [18].
These methods are closely related to under-integration schemes. A further possi-
bility is the use of non-conforming methods, where the global continuity of the
numerical solutions is not anymore enforced; see [41], for example.

In 1983, M. Vogelius proved absence of volume locking for the p-version of
the FEM on smooth domains [63]. Moreover, in 1992, I. Babuška, M. Suri [8]
showed that, on polygonal domains, the h FEM is locking-free on regular triangu-
lar elements with p ≥ 4. In addition, they proved that, for conforming methods,
locking cannot be avoided on quadrilateral meshes for any p ≥ 1. Recently,
P. Hansbo and M. G. Larson [35] suggested the use of a DGFEM. Assuming at
least H2 regularity, they showed that the h-version of the DGFEM does not lock
for all p ≥ 1.

Following the classical approach [53, 64], Chapter 3 is devoted to the analysis
of the DGFEM for linear elasticity problems in polygons (see also [65]). Based
on a recent regularity result [34] it will be proved that, even if the exact solutions
of the elasticity problems are singular (i.e. not H 2 anymore), the h-version of the
DGFEM is locking-free. Additionally, the use of graded meshes leads to optimal
algebraic convergence rates for the DGFEM (independent of the compressibility
of the material) as in the diffusion case.

Mixed hp DGFEM for Stokes Problems. In recent years, several mixed DG-
FEM have been proposed for the discretization of incompressible fluid flow prob-
lems, see [9, 20, 21, 30, 35, 40, 62], for example. Some of the main motivations
that lead to the above methods are the following: First of all, the discontinuous
nature of the finite element spaces makes it possible to easily treat convective
terms by suitable upwind fluxes, similarly to the original discontinuous Galerkin
discretizations of (non-linear) hyperbolic equations (see [19, 22, 26] and the refer-
ences therein). Thus, mixed DG methods provide robust and high-order accurate
approximations particularly in transport-dominated regimes; see, e.g., [20, 30, 40]
for mixed DGFEM for the Navier-Stokes and Oseen equations. Moreover, mixed
DG methods are considerably flexible in the choice of velocity-pressure combi-
nations, without extensive stabilization techniques. In the discontinuous Galerkin
context, for example, no extra stabilization is required to use optimal mixed-order
elements where the approximation degree for the pressure is of one order lower
than that of the velocity; see [35, 62] for details.

The recent work in [56] presented a unifying framework for the analysis of



4 Introduction

mixed hp DGFEM for pure Stokes flow. For Qp−Qp−1 elements, the dependence
of the discrete inf-sup constant on the polynomial degree p was shown to be of
order O(1/p), for two- and three-dimensional domains. In three dimensions, this
is exactly the same bound as that of [60] for conforming mixed hp FEM, however
with an optimal gap of one order in the finite element spaces for the velocity and
the pressure. The results in [56] then ensure (slightly suboptimal) error bounds
for the p-version of the DGFEM where convergence is obtained by increasing the
polynomial approximation order on a fixed (quasi-uniform) mesh. However, these
bounds give algebraic rates of convergence and are restricted to piecewise smooth
solutions; an assumption that is unrealistic in polygons, due to the presence of
singularities. For conforming mixed methods, similar p-version results can be
found in, e.g., [10, 11, 12, 59, 60] and the references therein.

In this work, the hp-approaches of [56] are extended to mixed hp DGFEM
for Stokes flow in non-smooth polygonal domains where the exact solutions are
piecewise analytic, however, exhibit singularities at the corners; cf. [57]. As in the
elasticity case, the regularity of the exact solutions are described using the recent
result from [34]. To prove exponential convergence for the mixed hp DGFEM,
several ingredients from the analysis of conforming mixed hp FEM for Stokes
flow on geometric meshes are used; see, e.g., [55, 58, 59]. Furthermore, com-
bined with the techniques from Section 2.6, the setting [56] makes it possible to
derive the exponential convergence result. Exemplarily, only the interior penalty
DGFEM is considered here, however, the results hold true verbatim for all the DG
methods studied in [56].



Chapter 1

Preliminaries

The aim of this preparatory part is to establish a functional setting for the analysis
of the discontinuous Galerkin finite element methods (DGFEM) in the ensuing
chapters. Moreover, a few definitions from the theory of standard (conforming)
finite element methods will be recalled.

1.1 Polygonal Domains

Let� ⊂ � 2 be a bounded, polygonal domain. Suppose that its boundary 0 = ∂�
is composed of a Dirichlet part 0D with 0 < � 0D

ds <∞ and of a Neumann part
0N with 0 ≤ � 0N

ds <∞ (cf. Figure 1.1):

0 = 0D ∪ 0N .

The corner vertices and the points of changing boundary conditions (Dirichlet/
Neumann) of � are called ’singular points’. They are collected in the set

S P(�, 0D, 0N ) = {Ai : i = 1, 2, . . . , M}.

Moreover, let n� be the unit outward vector on ∂�.

1.2 Weighted Sobolev Spaces

The regularity of the elliptic problems considered in this work will be measured in
terms of certain suitably chosen function spaces. To define them, to each singular
point Ai ∈ S P(�, 0D, 0N ) a weight βi ∈ [0, 1), i = 1, 2, . . . , M , is associated.
These numbers are stored in a weight vector β = (β1, . . . , βM). Moreover, the

5



6 Chapter 1. Preliminaries

PSfrag replacements

0D

0N

�

A1

A2

A3

A4

A5

A6

n�

Figure 1.1: Polygon in � 2 with Dirichlet and Neumann boundary conditions.

shorthand notation C1
�
β ≺ C2 is used to mean C1 ≤ βi < C2 for all i =

1, 2, . . . , M . Additionally, for any number k ∈ �
, let

β ± k = (β1 ± k, . . . , βM ± k).

Furthermore, by

8β(x) =
M�

i=1

ri (x)βi , ri (x) = |x − Ai |

a weight function on � is introduced.
Then, for any integers m ≥ l ≥ 0, the weighted Sobolev spaces H m,l

β (�)

are defined as the completion of the space C∞(�) with respect to the weighted
Sobolev norms

‖u‖2
Hm,l
β (�)

= ‖u‖2H l−1(�)
+ |u|2

Hm,l
β (�)

, l ≥ 1,

‖u‖2Hm
β (�)
=

m�

|α|=k
k=0

‖|Dαu|8β+k‖2L2(�)
, l = 0.

Here,

|u|2
Hm,l
β (�)

=
m�

|α|=k
k=l

‖|Dαu|8β+k−l‖2L2(�)
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and

Dαu = ∂ |α|u
∂xα1

1 ∂xα2
2
= ux

α1
1 x

α2
2

with α = (α1, α2) ∈ � 2 and |α| = α1 + α2.
For non-integers s = m+θ, 0 < θ < 1, the weighted Sobolev spaces H s,l

β (�)

are given by the K-method of interpolation:

Hm+θ,l
β (�) = (Hm,l

β (�), Hm+1,l
β (�))θ,∞.

Moreover, for a weight vector β = (β1, . . . βM) and l ∈ � , the countably
normed space Bl

β(�) consists of all functions u for which u ∈ H m,l
β (�) for all

m ≥ l and

‖|Dαu|8β+k−l‖L2(�) ≤ Cd(k−l)(k − l)!, |α| = k = l, l + 1, . . . (1.1)

for some constants C > 0, d ≥ 1 independent of k. It may be proved that, for any
u ∈ Bl

β(�), m ≥ l and 0 < θ < 1,

‖u‖Hm+θ,l
β (�)

≤ Cdm+θ−l0(m + θ − l + 1),

where 0(s) = � ∞0 t s−1e−t dt is the Gamma function satisfying k! = 0(k + 1) for
all k ∈ � 0.

Finally, let 0i , i = 1, 2, . . . , M denote the edges of �, and let

M ⊂ {1, 2, . . . , M}

be an index set. Then, for
γ =

�

j∈M
0 j ⊂ 0

the spaces Hm−1/2,l−1/2
β (γ ) and B

l−1/2
β (γ ) are the trace spaces of H m,l

β (�) and

Bl
β(�), and

‖g‖
Hm−1/2,l−1/2
β (γ )

= inf
G|γ=g

G∈H m,l
β

(�)

‖G‖Hm,l
β (�)

.

Remark 1.2.1 For a function space X (D), where D is a polygonal domain in
� 2,

and d ∈ � , d > 0, let X (D)d and X (D)d×d be the spaces of vector, respectively
tensor fields whose components belong to X (D). Without further specification,
these spaces are equipped with the usual product norms (which are simply denoted
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by ‖ · ‖X (D)). Furthermore, for v,w ∈ X (D)d and σ , τ ∈ X (D)d×d define the
following scalar products:

v · w =
d�

i=1

viwi , σ : τ =
d�

i, j=1

σi jτi j ,

and the norms
|v| = √v · v, |σ | = √σ : σ .

Remark 1.2.2

a) If u ∈ Hm,m
β (�), m ≥ 0, (respectively u ∈ B2

β(�)) then u ∈ Hm(�0)

(respectively u ∈ C∞(�0)) for all domains �0 ⊂ � with

P 6∈ �0 ∀P ∈ S P(�, 0D, 0N ).

b) Although H2,2
β (�) 6⊂ H2(�), B2

β(�) 6⊂ H2(�), it was proved in [7] that

B2
β(�) ⊂ H2,2

β (�) ⊂ C0(�).

c) For u ∈ H2,2
β (�), there holds ∇u ∈ H 1,1

β (�)2.

1.3 Meshes and Trace Operators for the DGFEM

1.3.1 Finite Element Meshes

Consider a partition (FE mesh1) T of � into open elements K :

T = {Ki }i ,
�

K∈T
K = �.

Henceforth, the K ∈ T are assumed to be images of the reference quadrilateral

Q̂ = (−1, 1)2 (1.2)

or of the reference triangle

T̂ = {(x̂, ŷ) : −1 ≤ ŷ ≤ −x̂, x̂ ∈ (−1, 1)} (1.3)

under affine maps FK , i.e. for all K ∈ T there exists a constant matrix AK ∈� 2×2 and a constant vector bK ∈ � 2 such that with

F K (x) = AK x + bK (1.4)

1Except for Chapter 3, the FE meshes may be irregular, i.e. hanging nodes are permitted for
the DGFEM.
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there holds

K = F K (K̂ ), (1.5)

where

K̂ = Q̂ or K̂ = T̂ . (1.6)

With each element K ∈ T a polynomial degree (approximation order) pK ≥ 1
is associated. These numbers are stored in a polynomial degree distribution vector

p = {pK : K ∈ T }

whose maximum entry is denoted by | p|. Additionally, for each K ∈ T , introduce

hK = diam(K )

and

ρK = sup{diam(B) : B is a ball contained in K }.
Furthermore, let

h = {hK : K ∈ T }.
Finally, the so-called mesh width of T is given by

hT = sup
K∈T

hK . (1.7)

Throughout this work, all FE meshes are assumed to be shape regular and of
bounded variation:

Definition 1.3.1 Let G = {Ti}i∈ � be a family of FE meshes. Then,

a) G is shape regular if there exists a constant µ > 0 independent of i such that
for all i ∈ �

µ ≤ min
K∈Ti

hK

ρK
≤ max

K∈Ti

hK

ρK
≤ µ−1; (1.8)

b) G is of bounded variation if there exists a constant κ > 0 independent of i
such that for all i ∈ �

κ ≤ hK

hK ′
≤ κ−1, (1.9)

whenever K and K ′ share a common edge.
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1.3.2 Averages and Jumps

Assume that there exists an index set I ⊂ � such that the elements in the subdi-
vision T are numbered in a certain way:

T = {Ki }i∈I.
Furthermore, denote by E the set of element edges associated with the mesh T .
Since hanging nodes are permitted for the DGFEM, E will be understood to con-
sist of the smallest edges in T . Additionally, let 0int be the union of all edges
e ∈ E not lying on ∂�,

0int =
�

e∈E :
e 6⊂0

e,

and
Eint = {e ∈ E : e ⊂ 0int}.

Moreover, define
0int,D = 0int ∪

�

e∈E :
e⊂0D

e

and
Eint,D = {e ∈ E : e ⊂ 0int,D},

and for every K ∈ T set

EK = {e ∈ E : e ⊂ ∂K }.
Obviously, for each e ∈ Eint, there exist two indices i and j with i < j such that
Ki and K j share the interface e:

e = ∂Ki ∩ ∂K j .

Thus, the following mapping is well-defined:

ϕint : Eint −→ � 2

e 7−→
�
ϕint,1(e)=i
ϕint,2(e)= j � .

If e ∈ E is a boundary edge, i.e. e ⊂ 0, there is a unique element K i ∈ T such
that

e = ∂Ki ∩ 0.
Hence, the above definition may be extended as follows:

ϕ0 : {e ∈ E : e ⊂ 0} −→ �
e 7−→ ϕ0(e) = i.
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K17

K25
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Figure 1.2: Numbering-dependent normal vectors in finite element meshes.

On e ∈ Eint, let νe be the normal vector which points from Kϕ1(e) to Kϕ2(e); for
boundary edges e ⊂ 0, set νe = n� (cf. Figure 1.2).

Since the DGFEM is based on functions in

H1,1(�, T ) = {v ∈ L2(�) : v|K ∈ W 1,1(K ), K ∈ T } 6⊂ C0(�),

the discontinuities over element boundaries have to be controlled in a certain way.
Consider therefore u ∈ H 1,1(�, T ), v ∈ H1,1(�, T )2, W ∈ H1,1(�, T )2×2.
Then, for e ∈ Eint and x ∈ e, introduce the following averages at x ∈ e,

〈u〉 = 1

2
(u+ + u−), 〈v〉 = 1

2
(v+ + v−), 〈W〉 = 1

2
(W+ +W−),

and the (numbering-dependent) jumps at x ∈ e,

[u] = (u+ − u−)νe, [v] = (v+ − v−) · νe,

[v] = (v+ − v−)⊗ νe, [W] = (W+ −W−)νe.

Here, v⊗ νe is the matrix whose i j -th component is viνe, j , and v+, v− denote the
traces of v onto e taken from within the interior of the elements Kϕ1(e) and Kϕ2(e),
respectively (analogous for v± and W±). For e ⊂ 0, define 〈u〉 = u, 〈v〉 = v,
〈W〉 =W, as well as [u] = un�, [v] = v · n�, [v] = v ⊗ n�, and [W] =Wn�.

1.3.3 Elements Near Singular Points

In order to account for the singular behaviour of solutions near the singular points
of the polygon�, the following sets have to be defined:

K0 = {K ∈ T : P ∈ K for some P ∈ S P(�, 0D, 0N )} (1.10)
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and
∂K0 = {e ∈ E : P ∈ e for some P ∈ S P(�, 0D, 0N )}.

Let K ∈ K0. Henceforth, it will always be assumed that the finite element meshes
are fine enough, i.e. that exactly one singular point belongs to K . This vertex
is denoted by AK and the corresponding weight by βK . Moreover, the spaces
Hm,l
βK
(K ) are given as in Section 1.2, however, equipped with the weight function

8βK (x) = rβK
K , rK = |x − AK |.

The ensuing results are essential for the error analysis of the DGFEM.

Lemma 1.3.2 Let K be an element in K0. Then, there holds:

a) H0,0
βK
(K ) ⊂ L1(K ) and

‖u‖L1(K ) ≤ Ch1−βK
K ‖u‖H0,0

βK
(K )

for all u ∈ H0,0
βK
(K );

b) for u ∈ H0,0
βK
(K ), v ∈ L∞(K ) the integral � K uv dx is well-defined and

����
�

K
uv dx

���� ≤ Ch1−βK
K ‖v‖L∞(K )‖u‖H0,0

βK
(K );

c) for all u ∈ H1,1
βK
(K ) the trace u|∂K belongs to L1(∂K ) and satisfies

‖u‖L1(∂K ) ≤ C � ‖u‖L2(K ) + h1−βK
K |u|H1,1

βK
(K ) � .

All the constants C > 0 are independent of h K and of pK .

Proof : Let u ∈ H0,0
βK
(K ). Then,

�
K
|u| dx ≤ ‖r−βK ‖L2(K )‖rβK u‖L2(K ) = ‖r−βK ‖L2(K )‖u‖H0,0

βK
(K ),

and since ‖r−βK ‖L2(K ) ≤ Ch1−βK
K , a) is proved. The second assertion follows

then straightforwardly from Hölder’s inequality. For the proof of c), let u ∈
H1,1
βK
(K ). Applying the standard trace theorem and using a scaling argument,

yields
‖u‖L1(∂K ) ≤ C � h−1

K ‖u‖L1(K ) + ‖∇u‖L1(K ) � .
Furthermore, since

h−1
K ‖u‖L1(K ) ≤ C‖u‖L2(K )
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and ∇u ∈ H0,0
βK
(K )2, the desired trace estimate follows similarly with the bound

‖∇u‖L1(K ) ≤ Ch1−βK
K |u|H1,1

βK
(K ),

and the proof is complete. �

Remark 1.3.3 The trace of a function u ∈ H 1,1
βK
(K ) on an edge e of an element

K is usually not in L2(e). To see this, consider the following example:

u(x) = |x|−1/2 on K = (0, 1)2, e = {(x, 0) : x ∈ (0, 1)}.
Obviously, u ∈ H1,1

βK
(K ), rK = |x|βK , for all βK ∈ (1/2, 1), but u|e 6∈ L2(e).

Lemma 1.3.4 Let u ∈ H 1,1
β (�) for a weight vector 0

�
β ≺ 1. Then, for an

interior edge e ∈ Eint, there holds [u] = 0 a.e. on e.

Proof : Remark 1.2.2 a) implies that u ∈ H1(�0) for all domains �0 ⊂ � with
P 6∈ �0, ∀P ∈ S P(�, 0D, 0N ). Hence, [u] = 0 on all edges e ∈ Eint not
including a singular point (cf. [48], Proposition 3.2.1).

Consider then the case where, for e ∈ Eint, there exists a singular point P ∈
S P(�, 0D, 0N ) with P ∈ e. Assume that e is parameterized by e = x(t), t ∈
[0, 1], with x(0) = P . As above, it follows that [u] = 0 away from P , and
therefore � 1

ε

|[u]||ẋ(t)| dt = 0

for all ε > 0. Since e is a straight line, |ẋ| is constant. Thus,

� 1

ε

|[u]| dt = 0.

By Lemma 1.3.2 c), [u] ∈ L1(e). Therefore, Lebesgue’s dominated convergence
theorem implies � 1

0
|[u]| dt = 0.

This finishes the proof. �
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Chapter 2

The DGFEM for Diffusion Problems

2.1 The Diffusion Problem

Let � ⊂ � 2 be a bounded, polygonal domain as introduced in Section 1.1. Con-
sider the following diffusion problem

−∇ · (A∇u)+ cu = f in �
u = gD on 0D

(A∇u) · n� = gN on 0N .

(2.1)

Here,
A = �

Ai j � 2
i, j=1 ∈ C∞(�)2×2

sym (2.2)

is the (symmetric) diffusivity,

c ∈ C∞(�) with c(x) ≥ 0 ∀x ∈ � (2.3)

represents the reaction coefficient and f ∈ H−1(�) is an external source. In addi-
tion, gD ∈ H 1/2(0D) and gN ∈ H−1/2(0N ) are prescribed Dirichlet and Neumann
boundary conditions.

Henceforth, (2.1) is assumed to be strongly elliptic on �, i.e. there exist two
constants a, a > 0 such that for all x ∈ � there holds

a|ξ |2 ≤ ξ>A(x)ξ ≤ a|ξ |2 (2.4)

for all ξ ∈ � 2.

2.2 Regularity

In [5, 6] the following regularity result was proved for the diffusion problem (2.1)–
(2.4):

15
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Theorem 2.2.1 (Regularity) Let � be a polygon in
� 2 and m ≥ 0 an integer.

Then, there exists a weight vector βmin with 0
�
βmin ≺ 1 depending on the

diffusivity A and on the opening angles of� at the vertices Ai ∈ S P(�, 0D, 0N ),
i = 1, 2, . . . , M, such that for weight vectors β with βmin

�
β ≺ 1 and for

f ∈ Hm,0
β (�), gD ∈ Hm+3/2,3/2

β (0D), gN ∈ Hm+1/2,1/2
β (0N ), (2.5)

the diffusion problem (2.1)–(2.4) has a unique solution u ∈ H m+2,2
β (�).

Moreover, for piecewise analytic data

f ∈ B0
β(�), gD ∈ B

3/2
β (0D), gN ∈ B

1/2
β (0N ), (2.6)

the solution of (2.1)–(2.4) belongs to B2
β(�).

2.3 Discontinuous Galerkin Discretization

2.3.1 Finite Element Spaces

In order to define an appropriate class of finite element spaces for the DGFEM,
polynomial spaces have to be introduced. To do so, let p ∈ � be arbitrary and
denote by K either a quadrilateral or a triangle. Then,

Pp(K ) = � u =
�

0≤i, j≤p
i+ j≤p

ci j x i
1x j

2 : ci j ∈ �
, (x1, x2) ∈ K �

is the space of polynomials of total degree at most p on K , and

Qp(K ) = � u =
�

0≤i, j≤p

ci j x
i
1x j

2 : ci j ∈ �
, (x1, x2) ∈ K �

is the space of polynomials of degree at most p in each variable on K .
With these definitions, the (discontinuous) finite element spaces that will be

used for the DGFEM are given by

Vh = {u ∈ L2(�) : u|K ∈ VpK , K ∈ T }, (2.7)

where T is a FE mesh on �, and VpK = PpK (K ) or VpK = QpK (K ), K ∈ T .
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2.3.2 Variational Formulation

There is a wide variety of discontinuous Galerkin formulations for elliptic (and
especially diffusion) problems. Most of them are closely related to each other
(see [3, 46], for example). Following the approaches of Arnold [1], Rivière [52],
Rivière, Wheeler, Girault [54], Süli, Schwab, Houston [61] and Wheeler [64], the
symmetric (SIPG) and non-symmetric (NIPG) interior penalty Galerkin method
will be considered here. For convenience, the non-symmetric formulation will be
denoted by ’+’ and the symmetric formulation by ’−’, respectively.

Definition 2.3.1 (DGFEM) Define two bilinear forms B+h and B−h by

B±h (u, v) =
�

K∈T

�
K
(∇v · (A∇u)+ cuv) dx

−
�

e∈Eint,D

�
e
(〈A∇u〉 · [v] ∓ [u] · 〈A∇v〉) ds

+
�

e∈Eint,D

�
e
d [u] · [v] ds,

and two corresponding linear functionals L±h by

L±h (v) =
�

K∈T

�
K

f v dx +
�
0N

gNv ds

±
�
0D

((A∇v) · n�)gD ds +
�
0D

d gDv ds.

Here, d ∈ L∞(Eint,D) is the so-called discontinuity stabilization function which
is given by

d = ωp
2

h
, (2.8)

where ω ∈ �
, ω > 0 is a constant to be specified later and, for e ∈ Eint,D,

p|e = � max
�

pKϕint,1(e)
, pKϕint,2(e) � , e ∈ Eint,

pKϕ0(e)
, e ⊂ 0D,

h|e = � min
�
hKϕint,1(e)

, hKϕint,2(e) � , e ∈ Eint,

hKϕ0(e)
, e ⊂ 0D.

(2.9)

Then, the DGFEM for the diffusion problem (2.1)–(2.4) reads as follows:
Find u±h ∈ Vh such that

B±h (u
±
h , v) = L±h (v) (2.10)

for all v ∈ Vh .



18 Chapter 2. The DGFEM for Diffusion Problems

Proposition 2.3.2 (Consistency) Let� be a polygon and βmin
�
β ≺ 1 a weight

vector. Then, for f ∈ H 0,0
β (�), gD ∈ H

3/2,3/2
β (0D), gN ∈ H

1/2,1/2
β (0N ), the

bilinear forms and the linear functionals in Definition 2.3.1 are well-defined and,
moreover, the DGFEM (2.10) is consistent:

B±h (u, v)− L±h (v) = 0 ∀v ∈ Vh . (2.11)

Here, u is the exact solution of the diffusion problem (2.1)–(2.4).

Proof : Due to Lemma 1.3.2, all terms in Definition 2.3.1 are well-defined. Fur-
thermore, Theorem 2.2.1 implies that u ∈ H2,2

β (�). Thus, by Remark 1.2.2 b), u

is continuous on �. Consequently,

[u]|e = 0 ∀e ∈ Eint and [u]|e = gDn� ∀e ∈ Eint,D \ Eint.

In addition, using that, for all e ∈ E \ Eint,

[v] = vn� and νe = n� and 〈A∇v〉 = A∇v,
reduces the left hand-side of (2.11) to

�

K∈T

�
K

� ∇v · (A∇u)+ cuv � dx −
�

K∈T

�
K

f v dx

−
�

e∈Eint,D

�
e
〈A∇u〉 · [v] ds −

�
0N

gNv ds
(2.12)

Since A∇u ∈ H1,1
β (�)2, the integrals in the first sum of (2.12) may be integrated

by parts (Lemma A.2.1). This yields

B±h (u, v)− L±h (v) =
�

K∈T

�
∂K
v(A∇u) · nK ds −

�
0N

gNv ds

−
�

e∈Eint,D

�
e
〈A∇u〉 · [v] ds,

where nK is the unit outward vector on ∂K , K ∈ T . Moreover, using that
�

K∈T

�
∂K
v(A∇u) · nK ds

=
�

e∈E

�
e
[v(A∇u)] ds

=
�

e∈Eint,D

�
e
[v] · 〈A∇u〉 ds

+
�

e∈Eint

�
e
〈v〉 [A∇u] ds +

�
0N

gNv ds
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implies that

B±h (u, v)− L±(v) =
�

e∈Eint

�
e
〈v〉 [A∇u] ds.

Finally, applying Lemma 1.3.4 completes the proof. �

The following ’energy’ norm will be associated with the DGFEM:

‖u‖2h = B+h (u, u)

=
�

K∈T
� ‖√A∇u‖2L2(K ) + ‖

√
cu‖2L2(K ) � +

�

e∈Eint,D

‖√d[u]‖2L2(e).

Remark 2.3.3 From Proposition A.2.13 it directly follows that

‖u‖2L2(�)
≤ C

� �

K∈T
‖
√

A∇u‖2L2(K ) +
�

e∈Eint,D

‖√d[u]‖2L2(e) � (2.13)

for a constant C > 0 which is independent of h and of p. Therefore, ‖ · ‖h is a
norm on Vh even if c ≡ 0.

2.3.3 Coercivity, Continuity, Existence and Uniqueness

In this section, some basic properties of the DGFEM defined above will be ex-
plored. To do so, the ensuing auxiliary result is required.

Lemma 2.3.4 Let u ∈ Vh for a given polynomial degree distribution p and a finite
element mesh T . Furthermore, let d be the discontinuity stabilization function
from Definition 2.3.1 with ω > 0, ω ∈ �

. Then, there holds

�

e∈Eint,D ���
1√
d
〈A∇u〉 ���

2

L2(e)
≤ Cdiffω

−1
�

K∈T
‖
√

A∇u‖2L2(K ). (2.14)

Here, A is the diffusivity from (2.2) and Cdiff > 0 is a constant independent of
u, p and of h.
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Proof : The left-hand side of (2.14) is bounded as follows:

�

e∈Eint,D ���
1√
d
〈A∇u〉 ���

2

L2(e)

≤ C
�

e∈Eint,D ���
1√
d
〈|∇u|〉 ���

2

L2(e)

≤ C � �

e∈Eint

�
���

1√
d
∇u+ ���

2

L2(e)
+ ���

1√
d
∇u− ���

2

L2(e) �
+

�

e∈E :
e⊂0D

���
1√
d
∇u ���

2

L2(e)
� (2.15)

≤ C
�

K∈T

�

e∈Eint,D :
e⊂∂K

���
1√
d
∇u ���

2

L2(e)

≤ Cω−1
�

K∈T
p−2

K hK

�

e∈Eint,D :
e⊂∂K

‖∇u‖2L2(e).

The polynomial trace inequality (A.1) implies that

‖∇u‖2L2(e) ≤ C
p2

K

hK
‖∇u‖2L2(K )

for all e ∈ EK , K ∈ T . Therefore,

�

e∈Eint,D ���
1√
d
〈A∇u〉 ���

2

L2(e)
≤ Cω−1

�

K∈T
‖∇u‖2L2(K )

�

e∈Eint,D :
e⊂∂K

1

From (1.9) it follows that the second sum on the right-hand side is bounded for all
K ∈ T . Finally, referring to (2.4) completes the proof. �

Continuity of B±h

Proposition 2.3.5 For ω > 0 and d as in (2.8), the bilinear forms B±h are contin-
uous with respect to the ‖ · ‖h-norm, i.e.

|B±h (u, v)| ≤ max{2, 1+ Cdiffω
−1}‖u‖h‖v‖h

for all u, v ∈ Vh . Here, Cdiff is the constant from Lemma 2.3.4.
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Proof : Let u, v ∈ Vh . Then, Hölder’s inequality implies

|B±h (u, v)| ≤
�

K∈T

�
K
(|√A∇u||√A∇v| + |√cu||√cv|) dx

+
�

e∈Eint,D

�
e
(|[u]|| 〈A∇v〉 | + | 〈A∇u〉 ||[v]|) ds

+
�

e∈Eint,D

�
e
|√d[u]||√d[v]| ds

≤
�

K∈T
� ‖√A∇u‖L2(K )‖

√
A∇v‖L2(K ) + ‖

√
cu‖L2(K )‖

√
cv‖L2(K ) �

+
�

e∈Eint,D

‖√d[u]‖L2(e) ���
1√
d
〈A∇v〉 ���

L2(e)

+
�

e∈Eint,D ���
1√
d
〈A∇u〉 ���

L2(e)
‖√d[v]‖L2(e)

+
�

e∈Eint,D

‖√d[u]‖L2(e)‖
√
d[v]‖L2(e).

Furthermore,

|B±h (u, v)| ≤ � �

K∈T
� ‖√A∇u‖2L2(K ) + ‖

√
cu‖2L2(K ) �

+
�

e∈Eint,D

�
���

1√
d
〈A∇u〉 ���

2

L2(e)
+ 2‖√d[u]‖2L2(e) � � 1/2

· � �

K∈T
� ‖√A∇v‖2L2(K ) + ‖

√
cv‖2L2(K ) �

+
�

e∈Eint,D

�
���

1√
d
〈A∇v〉 ���

2

L2(e)
+ 2‖√d[v]‖2L2(e) � � 1/2

.

Using (2.14) yields

|B±h (u, v)| ≤
� �

K∈T
� (1+ Cdiffω

−1)‖√A∇u‖2L2(K ) + ‖
√

cu‖2L2(K ) �
+ 2

�

e∈Eint,D

‖√d[u]‖2L2(e) � 1/2
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·
� �

K∈T
� (1+ Cdiffω

−1)‖√A∇v‖2L2(K ) + ‖
√

cv‖2L2(K ) �
+ 2

�

e∈Eint,D

‖√d[v]‖2L2(e) � 1/2

≤ max{2, 1+ Cdiffω
−1}‖u‖h‖v‖h.

�

Coercivity of B±h
From the definition of the ‖ · ‖h-norm it is already clear that B+h is coercive (with
respect to the ‖ · ‖h-norm) with coercivity constant 1. The coercivity of B−h will
be proved in the following

Proposition 2.3.6 Let ω > Cdiff, where Cdiff is the constant from Lemma 2.3.4,
and d as in (2.8). Then, for all u ∈ Vh , the ensuing estimate holds true:

B−h (u, u) ≥ (1−
�

Cdiffω−1)‖u‖2h.

Proof : The definitions of B−h and ‖ · ‖h imply

B−h (u, u) = ‖u‖2h − 2
�

e∈Eint,D

�
e
〈A∇u〉 · [u] ds

≥ ‖u‖2h − � ω

Cdiff

�

e∈Eint,D

�
e

1

d
| 〈A∇u〉 |2 ds

− � Cdiff

ω

�

e∈Eint,D

�
e
d|[u]|2 ds

Inserting (2.14) yields

B−h (u, u) ≥ ‖u‖2h − � Cdiff

ω

�

K∈T
‖
√

A∇u‖2L2(K )

− � Cdiff

ω

�

e∈Eint,D

�
e
d|[u]|2 ds

≥ (1− � Cdiffω−1)‖u‖2h.
�
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Existence and Uniqueness

Theorem 2.3.7 Let (2.5) be satisfied for (at least) m = 0. Furthermore, let ω > 0
in the ’+’-formulation andω > Cdiff in the ’−’-formulation of the DGFEM, where
Cdiff is the constant from Lemma 2.3.4. Then, under the assumptions (2.2)–(2.4),
and with d as in (2.8), the DGFEM (2.10) have unique solutions u±h ∈ Vh .

Proof : The Cauchy-Schwarz inequality and the broken Poincaré estimate (2.13)
imply the continuity of the linear functionals L±h with respect to the ‖ · ‖h-norm
(see also [44, Proposition 3.2]). Moreover, due to the continuity and the coercivity
of the bilinear forms B±h , the Lax-Milgram Lemma is applicable and the proof is
complete. �

2.4 Stability

Let π pu ∈ Vh be an arbitrary interpolant of the exact solution u of the diffusion
problem (2.1)–(2.4). Furthermore, let u±h be the solutions of the DGFEM (2.10).
Then, the finite element errors e±h are decomposed in the following way:

e±h = u − u±h = u − π pu� ��� �
=η

+π pu − u±h� ��� �
=ξ±

. (2.16)

As the ensuing Proposition 2.4.1 shows, ξ± may be bounded by η.

Proposition 2.4.1 (Stability) Let ω be as in Theorem 2.3.7 and u ∈ H2,2
β (�) for

a weight vector 0
�
β ≺ 1. Additionally, assume that η = 0 in all element

vertices of T . Then, the a-priori estimate

‖ξ±‖2h ≤ CC±| p|2(ω + ω−1)(E1 + E2 + E3)

holds true, where

E1 =
�

K∈T
‖η‖2H1(K )

E2 =
�

K∈T \K0

h2
K |η|2H2(K )

E3 =
�

K∈K0

h2(1−βK )
K |η|2

H2,2
βK
(K )
,

and

C± =
�

1 for the ’+’-formulation
(1− � Cdiffω−1)−2 for the ’−’-formulation

.

C > 0 is a constant independent of u, ω, p and of h.
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Proof : The consistency of the DGFEM (2.10) (Proposition 2.3.2) implies

B±h (ξ
±, ξ±) = B±h (u − u±h − η, ξ±) = −B±h (η, ξ

±),

and hence, due to the coercivity of the bilinear forms B±h , it holds that

‖ξ±‖2h ≤
√

C±|B±h (η, ξ±)|. (2.17)

The right-hand side of (2.17) is bounded as follows:

|B±h (η, ξ±)| ≤ I + I Ia + I Ib + I I I,

where

I =
�

K∈T
� ‖√A∇η‖L2(K )‖

√
A∇ξ±‖L2(K ) + ‖

√
cη‖L2(K )‖

√
cξ±‖L2(K ) � ,

I Ia =
�

e∈Eint,D

�
e
| 〈A∇η〉 ||[ξ±]| ds,

I Ib =
�

e∈Eint,D

�
e
|[η]|| � A∇ξ± � | ds,

I I I =
�

e∈Eint,D

�
e
d|[η]||[ξ±]| ds.

Clearly,

I + I I I

≤
� �

K∈T
� ‖√A∇η‖2L2(K ) + ‖

√
cη‖2L2(K ) � +

�

e∈Eint,D

‖√d[η]‖2L2(e) � 1/2

·
� �

K∈T
� ‖√A∇ξ±‖2L2(K ) + ‖

√
cξ±‖2L2(K ) +

�

e∈Eint,D

‖√d[ξ±]‖2L2(e) � 1/2

≤ C‖ξ±‖h
� �

K∈T
‖η‖2H1(K ) +

�

e∈Eint,D

‖√d[η]‖2L2(e) � 1/2

≤ C‖ξ±‖h
�
E1 +

�

e∈Eint,D

‖√d[η]‖2L2(e) � 1/2
.
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Furthermore, by Hölder’s inequality and Lemma A.1.1, it follows that

I Ia ≤ C
�

e∈Eint,D

‖[ξ±]‖L∞(e)

�
e
〈|∇η|〉 ds

≤ Cω−1/2
�

e∈Eint,D

‖√d[ξ±]‖L2(e)

�
e
〈|∇η|〉 ds

≤ Cω−1/2 � �

e∈Eint,D

‖√d[ξ±]‖2L2(e) � 1/2 � �

e∈Eint,D

� �
e
〈|∇η|〉 ds � 2 � 1/2

≤ Cω−1/2‖ξ±‖h
� �

e∈Eint,D

‖ 〈|∇η|〉 ‖2L1(e) � 1/2
,

and
�

e∈Eint,D

‖ 〈|∇η|〉 ‖2L1(e) ≤ C
� �

e∈Eint

� ‖∇η+‖2L1(e) + ‖∇η−‖2L1(e) �
+

�

e∈E :
e⊂0D

‖∇η‖2L1(e) �
≤ C

�

K∈T

�

e∈EK∩Eint,D

‖∇η‖2L1(e).

Referring to Remark 1.2.2 and applying Lemma 1.3.2 c) results in
�

K∈T

�

e∈EK∩Eint,D

‖∇η‖2L1(e) ≤ C
� �

K∈T
‖∇η‖L2(K ) +

�

K∈T \K0

h2
K ‖∇η‖2H1(K )

+
�

K∈K0

h2−2βK
K ‖∇η‖2

H1,1
βK
(K ) �

≤ C(E1 + E2 + E3).

Hence,
I Ia ≤ Cω−1/2‖ξ±‖h � E1 + E2 + E3.

An estimate for I Ib is obtained by using Lemma 2.3.4:

|I Ib| ≤
� �

e∈Eint,D

‖√d[η]‖2L2(e) � 1/2 � �

e∈Eint,D ���
1√
d

� A∇ξ± �
���

2

L2(e) � 1/2

≤ Cω−1/2
� �

e∈Eint,D

‖√d[η]‖2L2(e) � 1/2 � �

K∈T
‖
√

A∇ξ±‖2L2(K ) � 1/2

≤ Cω−1/2‖ξ±‖h
� �

e∈Eint,D

‖√d[η]‖2L2(e) � 1/2
.
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Summing up all the bounds above leads to

|B±h (η, ξ±)| ≤ C‖ξ±‖h � ω−1(E2 + E3)

+ (1+ ω−1)
�

E1 +
�

e∈Eint,D

‖√d[η]‖2L2(e) � � 1/2
.

It remains to estimate the last sum in the above inequality.
�

e∈Eint,D

‖√d[η]‖2L2(e) ≤ C
�

e∈Eint

� ‖√dη+‖2L2(e) + ‖
√
dη−‖2L2(e) �

+
�

e∈E :
e⊂0D

‖√dη‖2L2(e)

≤ C
�

K∈T

�

e∈EK∩Eint,D

‖√dη‖2L2(e)

≤ Cω| p|2
�

K∈T

�

e∈EK∩Eint,D ���
1√
h
η ���

2

L2(e)
.

The trace inequalities from Lemma A.2.4 and the bounded variation property (1.9)
imply that

�

K∈T

�

e∈EK∩Eint,D ���
1√
h
η ���

2

L2(e)

≤ C
� �

K∈T \K0

h2
K |η|2H2(K ) +

�

K∈K0

h2−2βK
K |η|2

H2,2
βK
(K ) �

≤ C(E2 + E3).

Therefore,

|B±h (η, ξ±)| ≤ C | p| � ω + ω−1 � E1 + E2 + E3‖ξ±‖h.
Finally, inserting this estimate into (2.17) and dividing both sides by ‖ξ±‖h com-
pletes the proof. �

Corollary 2.4.2 Let the assumptions of Proposition 2.4.1 be satisfied. Then, there
holds

‖u − u±h ‖2h
≤ C | p|2

� �

K∈T
‖η‖2H1(K ) +

�

K∈T \K0

h2
K |η|2H2(K ) +

�

K∈K0

h2(1−βK )
K |η|2

H2,2
βK
(K ) � ,
(2.18)

where the constant C > 0 is independent of u, p and of h.
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Proof : Since, by (2.16),

‖u − u±h ‖h ≤ ‖η‖h + ‖ξ‖h,
the assertion follows directly from Proposition 2.4.1. �

2.5 Convergence of the h DGFEM

In the following section the h-version of the DGFEM, i.e. the DGFEM with fixed
polynomial degree p > 0, p ∈ � on all elements, will be analyzed. It is well-
known that, if u ∈ H p+1(�), where u denotes the exact solution of (2.1)–(2.4),
then the standard (conforming) finite element method (and also the DGFEM) con-
verges at an optimal algebraic rate, i.e.

‖u − uh‖h ≤ C N−p/2,

where N = dim(Vh) with p = {p, p, . . . , p} is the number of degrees of freedom
and T is a uniform mesh on �. Typically, this result is not anymore attainable if
the assumption u ∈ H p+1(�) is weakened, i.e. u ∈ H p+1,2

β (�) with β � 0.
Although the convergence rate remains algebraic in this case, the optimal order

O(N−p/2) is usually reduced to O(N−α/2) with α � p. This effect is especially
pronounced at higher orders of approximation.

The aim of this section is to prove that the optimal convergence rate may be
preserved even if the exact solution is singular, i.e. u 6∈ H p+1(�). The main idea
is to replace the uniform meshes by so-called ’graded meshes’ which are able to
resolve the singularities without the need of additional degrees of freedom.

2.5.1 h DGFEM Approximations on Polygons

By Corollary 2.4.2, the DG-error ‖u − uh‖h may be bounded by ‖η‖h , where
η = u − π pu, for an arbitrary interpolant π pu with u = π pu in the element

vertices of T . Therefore, h DGFEM approximations of functions in H p+1,2
β (�)

are of a main interest.
As mentioned above, graded meshes will be introduced (cf. [7]).

Graded Meshes on �

Definition 2.5.1 Let γ be a weight vector as defined in Section 1.2 and 8γ the
corresponding weight function on �. Then, a mesh Tγ on � is called a graded
mesh with grading vector γ if there exists a constant L > 0 such that the following
properties are satisfied:
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i) if K ∈ Tγ \K0 then

L−1hTγ8γ (x) ≤ hK ≤ LhTγ8γ (x) ∀x ∈ K ;

ii) if K ∈K0 then

L−1hTγ sup
x∈K

8γ (x) ≤ hK ≤ LhTγ sup
x∈K

8γ (x).

Here, hTγ is the mesh width of Tγ , cf. (1.7).

Interpolants for the h DGFEM

The following results are required for the convergence analysis of the h DGFEM.
The first statement shows, how H 2,2

β functions may be approximated on elements
abutting at a singular point. The second result is a well-known approximation
statement on functions in H p+1.

Lemma 2.5.2 Let K be a triangle (or quadrilateral) with the vertices A1, A2, A3

(and A4). Further, let u ∈ H2,2
βK
(K ) with 8βK (x) = |x − A1|βK , 0 < βK < 1.

Then, the linear (bilinear) interpolant of u in the vertices of K , denoted by I 0
K u,

satisfies

‖u − I 0
K u‖H1(K ) ≤ Ch1−βK

K |u|H2,2
βK
(K ), (2.19)

‖u − I 0
K u‖H2,2

βK
(K ) ≤ C |u|H2,2

βK
(K ). (2.20)

Proof : See [58, Lemma 4.16 and Lemma 4.25]. �

Remark 2.5.3 The above Lemma 2.5.2 holds also true for βK = 0, i.e. u ∈
H2(K ). In this case, (2.19) and (2.20) simplify to

‖u − I 0
K u‖H1(K ) ≤ ChK |u|H2(K ),

‖u − I 0
K u‖H2(K ) ≤ C |u|H2(K ).

Lemma 2.5.4 Let p ≥ 1 be a fixed polynomial degree. Furthermore, let K be a
triangle (or quadrilateral) and u ∈ H p+1(K ). Then, there exists an interpolant
IK u ∈ Pp(K ) of u with IK u = u in the vertices of K such that

|u − IK u|Hm(K ) ≤ Ch p+1−m
K |u|H p+1(K ), 0 ≤ m ≤ p + 1,

with a constant C > 0 independent of u and of h K .
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Optimal h Approximations on �

Proposition 2.5.5 Let u ∈ H p+1,2
β (�) for a weight vector 0

�
β ≺ 1 and p > 0

be a fixed polynomial degree. Further, let Tγ with γ 0
�
γ ≺ 1, where

γ0,i = � 1− 1−βi
p if βi > 0

0 if βi = 0
, i = 1, 2 . . . , M, (2.21)

be a graded mesh as in Definition 2.5.1. Moreover, the finite element spaces Vh

from Section 2.3.1 are specified by the following choice of the degree vector

p = {pK = p : K ∈ Tγ } (2.22)

and of the polynomial spaces Vp,

for p = 1 : V1 =
�

P1(K ) if K ∈ Tγ is a triangle,
Q1(K ) if K ∈ Tγ is a quadrilateral,

for p > 1 : Vp = Pp(K ) or Vp = Qp(K ).

(2.23)

Then, there exists an interpolant 5pu ∈ Vh of u with 5pu = u in all element
vertices of Tγ , such that there holds the following estimate

�

K∈Tγ
‖η‖2H1(K ) +

�

K∈Tγ \K0

h2
K |η|2H2(K ) +

�

K∈K0

h2(1−βK )
K |η|2

H2,2
βK
(K )
≤ C N−p/2,

where η = u − 5pu and C > 0 is a constant independent of h and of N =
dim(Vh).

In order to show this result, the ensuing lemma has to be proved:

Lemma 2.5.6 Let Tγ be a graded mesh as in Definition 2.5.1 and p be the poly-
nomial degree vector from (2.22). Then,

N = dim(Vh) ≤ Cp2h−2
Tγ
,

where C > 0 is a constant independent of p and of h.

Proof : Obviously, there holds

N ≤ Cp2
�

K∈Tγ
1.
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In addition, the shape regularity (1.8) implies that

h2
K ≤ C

�
K

dx.

Hence,

N ≤ Cp2
� �

K∈Tγ \K0

h−2
K

�
K

dx +
�

K∈K0

1 � .
From the definition of the graded meshes it follows

N ≤ Cp2h−2
Tγ

� �

K∈Tγ \K0

�
K
8−2

Tγ
dx + h2

Tγ

�

K∈K0

1 �
≤ Cp2h−2

Tγ

� �
�

8−2
Tγ

dx + h2
Tγ

�

K∈K0

1 �
By definition, the components of γ are strictly smaller than 1, and thus the integral
above is well-defined. Furthermore, since the number of elements in K0 is finite
(due to the shape regularity of Tγ ), � K∈K0

1 is bounded, and hence, the proof is
complete. �

Proof : (Proposition 2.5.5) Consider first the case, where βi > 0 for all i =
1, 2, . . . , M . Define an interpolant 5pu on Tγ as follows:

if p = 1 : 51u|K = I 0
K u, ∀K ∈ T ,

if p > 1 : 5pu|K =
�

I 0
K u if K ∈K0,

IK u if K ∈ T \K0.

Here, I 0
K and IK are the interpolants from Lemma 2.5.2 and Lemma 2.5.4, respec-

tively. Obviously,5pu ∈ Vh . Then,
�

K∈K0

� ‖5pu − u‖2H1(K ) + h2(1−βK )
K |5pu − u|2

H2,2
βK
(K ) �

+
�

K∈T \K0

� ‖5pu − u‖2H1(K ) + h2
K |5pu − u|2H2(K ) �

≤ C
� �

K∈K0

h2(1−βK )
K |u|2

H2,2
βK
(K )
+

�

K∈T \K0

h2p
K |u|2H p+1(K ) �

≤ C
�
h2(1−βK )

Tγ

�

K∈K0

� sup
x∈K

rγK
K � 2(1−βK )|u|2

H2,2
βK
(K )

+ h2p
Tγ

�

K∈T \K0

�
K

r2pγK
K |D p+1u|2 dx � . (2.24)
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For all K ∈ K0 there holds rK (x) ≤ hK , ∀x ∈ K . Hence,

hK ≤ ChTγ sup
x∈K

rγK
K ≤ ChTγ hγK

K ,

and therefore

hK ≤ Ch
1

1−γK
Tγ

.

Thus,

sup
x∈K

rγK
K ≤ ChγK

K ≤ Ch
γK

1−γK
Tγ
≤ Ch

γ0 K
1−γ0 K
Tγ

≤ Ch
p

1−βK
−1

Tγ
.

Inserting these bounds into (2.24) results in

�

K∈K0

� ‖5pu − u‖2H1(K ) + h2(1−βK )
K |5pu − u|2

H2,2
βK
(K ) �

+
�

K∈T \K0

� ‖5pu − u‖2H1(K ) + h2
K |5pu − u|2H2(K ) �

≤ Ch2p
Tγ

� �

K∈K0

|u|2
H2,2
βK
(K )
+

�

K∈T \K0

�
K

r2(p−(1−βK ))|D p+1u|2 dx �
≤ Ch2p

Tγ

� �

K∈K0

|u|2
H2,2
βK
(K )
+

�
�

82
β+p−1|D p+1u|2 dx �

≤ Ch2p
Tγ
|u|2H p+1,2(�)

.

Finally, according to the previous Lemma 2.5.6,

h2p
Tγ
≤ C N−p.

If βi = 0 for some i ∈ {1, 2, . . . , M}, the Proposition may be proved in a very
similar way.

�

2.5.2 Optimal Convergence of the h DGFEM on Polygons

Inserting the interpolant from Proposition 2.5.5 into the error estimate (2.18)
yields the following convergence result for the h DGFEM:

Theorem 2.5.7 Let� ⊂ � 2 be a polygonal domain and p ∈ � , p ≥ 1. Moreover,
let the exact solution u of (2.1)–(2.4) be in H p+1,2

β (�) for a weight vector 0
�

β ≺ 1. Then, for ω as in Theorem 2.3.7, the solutions u±h of the DGFEM (2.10)
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on a graded mesh Tγ with 1 � γ � γ 0, where γ 0 is defined as in (2.21), satisfy
the following optimal algebraic error estimate:

‖u − u±h ‖h ≤ C N−p/2. (2.25)

Here, p = {p, p, . . . , p} and C > 0 is a constant independent of h and of N =
dim(Vh).

Remark 2.5.8 Since B2
β(�) ⊂ H p+1,2

β (�), the above theorem holds also true

for u ∈ B2
β(�).

2.5.3 Numerical Results

Model Problems

The theory above will now be illustrated and confirmed with some numerical ex-
periments. Consider therefore the following two model problems on the unit tri-
angle (cf. Figure 2.1):

• Problem 1. The Laplace equation with absolute term

−1u + u = f in �. (P1)

• Problem 2. The Laplace equation without any absolute term

−1u = 0 in �. (P2)

Here, using polar coordinates, the right-hand side f in (P1) is set to be

f = √r sin(φ/2),

and the boundary conditions for both problems (P1) and (P2) are chosen as fol-
lows:

u = √r sin(φ/2) on ∂�.

A few calculations show that the exact solution of the above problems (P1)
and (P2) is, in both cases, given by

u = √r sin(φ/2),

and belongs to B2
β(�) for all β = (β1, 0, 0), β1 > 1/2.

Therefore, Theorem 2.5.7 implies that, for p ≥ 1 and grading vectors

γ = γ (β1) = � 1− 1− β1

p
, 0, 0 � , (2.26)
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PSfrag replacements
0D1

0D2

0N

A2 = (1, 0)

A3 = (0, 1)

�

x

y

A1 = O

Figure 2.1: Boundary conditions on the computational domain.

the use of graded meshes Tγ (cf. Definition 2.5.1) leads the DGFEM (2.10) for
the model problems (P1) and (P2) to converge optimally as long as β1 > 1/2 in
(2.26).

In order to clarify the dependence of the h DGFEM’s convergence regime on
the regularity of the exact solution (i.e. on the choice of the weight vectors for
the corresponding weighted Sobolev spaces), the gradings of the meshes in the
following considerations are always expressed in terms of β1 (and of p).

Variation in β1

Referring to the explanations above, the h DGFEM for (P1) and (P2) is not ex-
pected to achieve optimal algebraic convergence rates on Tγ , γ = γ (β1) (cf.
(2.26)), if β1 ≤ 1/2. Indeed, as the results in Tables 2.1–2.3 and Figures 2.2–
2.5 show, the algebraic convergence rates of the h DGFEM strongly depend on
the choice of β1 and clearly deteriorate as β1 → 0. Even in the borderline case
β1 = 1/2, a small loss of optimality is visible. However, in contrast to these
findings, the choice β1 = 0.6 > 1/2 leads the h DGFEM to show the desired con-
vergence regime, and hence, the numerical experiments seem to correlate with the
theory.

In these examples, the L2 errors are found to converge twice as fast as the H 1

errors (for sufficiently large β1); see also [3] for details.

Variation in p

Figures 2.6 and 2.7 show the performance of the ”+”- and of the ”−”-version
(NIPG and SIPG) of the h DGFEM for different choices of p. As before, the
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β1 = 0.0 β1 = 0.25 β1 = 0.5 β1 = 0.6
H1 error 0.25 0.32 0.44 0.48
L2 error 0.73 0.93 1.00 1.00

Table 2.1: Algebraic convergence rates of the ”+”-version of the h DGFEM (NIPG) with p = 1
for the model problem (P1).

β1 = 0.0 β1 = 0.25 β1 = 0.5 β1 = 0.6
H1 error 0.25 0.32 0.44 0.48
L2 error 0.73 0.91 0.99 0.99

Table 2.2: Algebraic convergence rates of the ”+”-version of the h DGFEM (NIPG) with p = 1
for the model problem (P2).

β1 = 0.0 β1 = 0.25 β1 = 0.5 β1 = 0.6
H1 error 0.25 0.32 0.43 0.47
L2 error 0.73 0.92 0.99 0.99

Table 2.3: Algebraic convergence rates of the ”−”-version of the h DGFEM (SIPG) with p = 1
for the model problems (P1) and (P2) (results are similar for both problems).
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Figure 2.2: Performance of the NIPG for the model problem (P1).
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Figure 2.3: Performance of the SIPG for the model problem (P1).
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Figure 2.4: Performance of the NIPG for the model problem (P2).
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Figure 2.5: Performance of the SIPG for the model problem (P2).
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Figure 2.6: Performance of the NIPG and the SIPG with β1 = 0.6 for the model problem (P1).

results for β1 = 0.5 are slightly worse compared with those which were obtained
using graded meshes with β1 = 0.6. However, the expected convergence rates are
acceptably achieved in both cases.

A detailed list of the algebraic convergence rates for the model problem (P2)
is given in Tables 2.4 and 2.5. The corresponding numbers for the model problem
(P1) are almost alike.

p = 1 p = 2 p = 3
NIPG 0.44 0.91 1.38
SIPG 0.43 0.90 1.38

Table 2.4: Algebraic convergence rates of the
H 1 error of the h DGFEM with
β1 = 0.5 for the model problem
(P2).

p = 1 p = 2 p = 3
NIPG 0.48 0.96 1.43
SIPG 0.47 0.96 1.44

Table 2.5: Algebraic convergence rates of the
H 1 error of the h DGFEM with
β1 = 0.6 for the model problem
(P2).

2.6 Convergence of the hp DGFEM

In this section it is proved that a judicious combination of mesh refinement and
decrease of the polynomial degrees towards the singular points of the polygon
(i.e., corner vertices and vertices of changing boundary condition type) leads the
DGFEM to converge at an exponential rate.

Again, Corollary 2.4.2 implies that the errors ‖u−u±h ‖h of the DGFEM (2.10)
may be estimated by the interpolation error η = u − π pu, where π pu ∈ Vh is an
arbitrary interpolant of the exact solution u. Thus, hp approximations of u in Vh

have to be developed.
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Figure 2.7: Performance of the NIPG and the SIPG with β1 = 0.6 for the model problem (P2).

In order to resolve singular solution behaviour near singularities, geometric
meshes, i.e. meshes that are geometrically refined towards the singular points of
� will be introduced. Here, the main idea is to keep the ratio

element diameter

distance to the singularity

bounded as it is shown in Figures 2.8 and 2.9.

2.6.1 Geometric Meshes

First of all, basic geometric meshes on the unit square �̂ = (0, 1)2 with refinement
towards the origin O = (0, 0) will be defined.

Definition 2.6.1 Let n ∈ � 0 and σ ∈ (0, 1). On �̂, the basic geometric mesh
1n,σ with n+1 layers and grading factor σ is constructed recursively as follows:
If n = 0, 10,σ = {�̂}. Given 1n,σ for n ≥ 0, 1n+1,σ is generated by subdividing
the square K with O = (0, 0) ∈ K into four smaller rectangles by dividing its
sides in a σ : (1− σ) ratio.

An example of a basic geometric mesh is shown in Figure 2.8. The elements are
denoted by {Ki j} as indicated there. Moreover, the elements K1 j , K2 j and K3 j

are said to constitute layer j , for j ≥ 2. K11 is the element at the origin.

Remark 2.6.2 For simplicity, all elements in this section are supposed to be
quadrilaterals. However, the following results (and especially the exponential con-
vergence result, Theorem 2.6.6) may be extended to meshes consisting of trian-
gles. Clearly, the geometric refinement property of the meshes has to be preserved.
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Figure 2.8: The basic geometric mesh 1n,σ with n = 3 and σ = 0.5.

Definition 2.6.3 A geometric mesh Tn,σ in a polygon � is obtained by mapping
the basic geometric meshes1n,σ from Definition 2.6.1 affinely from �̂ to a vicinity
of each convex corner of �. At vertices of changing boundary condition type two,
and at reentrant corners three suitably scaled copies of 1n,σ are required. The
remaining part of � is meshed with a fixed affine, quasi-uniform partition.

Figure 2.9 shows an example of local geometric mesh refinement in a polygon.

Definition 2.6.4 A polynomial degree distribution vector p on a geometric mesh
Tn,σ is called linear with slope µ > 0 if the elemental polynomial degrees are
layer-wise constant in the geometric patches and given by p j = max{1, bµjc}
in layer j , j = 1, 2, . . . , n + 1. In the interior of the domain � the elemental
polynomial degrees are set constant to max{1, bµ(n + 1)c}.

2.6.2 hp DG Approximations

Proposition 2.6.5 Let � ⊂ � 2 be a polygon and u ∈ B2
β(�) for a weight vector

0
�
β ≺ 1. Then, there exists φ ∈ Vh and µ0 = µ0(σ,β) > 0 such that for linear
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Figure 2.9: Example of geometric mesh refinement towards singular points in polygon.

polynomial degree distribution vectors p with slope µ ≥ µ0 there holds

�

K∈Tn,σ

� h−2
K ‖u − φ‖2L2(K ) + |u − φ|2H1(K ) �

+
�

K∈Tn,σ \K0

h2
K |u − φ|2H2(K ) +

�

K∈K0

h2−2βK
K |u − φ|2

H2,2
βK
(K )
≤ Ce−b 3√N

with constants C, b > 0 independent of N = dim(Vh). Furthermore, u = φ in all
element vertices of Tn,σ .

Proof : The proof consists of two steps.
Step 1: Consider first the case where � = (0, 1)2 and Tn,σ = 1n,σ is the

basic geometric mesh from Definition 2.6.1. Then, by Lemma 2.5.2, there exists
φ11 ∈ Q1(K11) with u = φ11 in the vertices of K11 such that

h−2
K11
‖u − φ11‖2L2(K11)

+ |u − φ11|2H1(K11)
+ h

2−2βK11
K11

|u − φ11|2H2,2
βK11

(K11)

≤ Cσ 2n(1−βK11 )|u|2
H2,2
βK11

(K11)
.
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Furthermore, from [58, Lemma 4.48] it follows that, for K i j ∈ T \K0, there are
φi j ∈ QpKi j

with u = φi j in the vertices of Ki j such that

h−2
Ki j
‖u − φi j‖2L2(Ki j )

+ |u − φi j |2H1(Ki j )
+ h2

Ki j
|u − φi j |2H2(Ki j )

≤ Cσ 2(n+2− j)(1−βKi j )
0(pKi j − si j + 1)

0(pKi j + si j − 1)

� ρ
2 � 2si j‖u‖2

H
si j+3,2
βKi j

(Ki j )

for any 1 ≤ i ≤ 3, 2 ≤ j ≤ n + 1 and si j ∈ [1, pKi j ]. Here, ρ = max{1, (1−σ)/σ}.
Summing up, yields

�

K∈1n,σ

� h−2
K ‖u − φ‖2L2(K ) + |u − φ|2H1(K ) �

+
�

K∈1n,σ \K0

h2
K |u − φ|2H2(K ) +

�

K∈K0

h2−2βK
K |u − φ|2

H2,2
βK
(K )

≤ Cσ 2n(1−βK11 )
�
‖u‖2

H2,2
βK11

(K11)

+
3�

i=1

n+1�

j=2

σ
2(2− j)(1−βKi j )

0(pKi j − si j + 1)

0(pKi j + si j − 1)

� ρ
2 � 2si j‖u‖2

H
si j+3,2
βKi j

(Ki j )
� .

(2.27)

In [58, Section 4.5.3] it has been shown that there exist si j , 1 ≤ i ≤ 3, 2 ≤ j ≤
n+1 and µ0 > 0 such that, for linear polynomial degree distribution vectors as in
Definition 2.6.4 with slope µ ≥ µ0, the right-hand side of (2.27) is exponentially
small with respect to N . More precisely, there holds:

�

K∈1n,σ

� h−2
K ‖u − φ‖2L2(K ) + |u − φ|2H1(K ) �

+
�

K∈1n,σ \K0

h2
K |u − φ|2H2(K ) +

�

K∈K0

h2−2βK
K |u − φ|2

H2,2
βK
(K )
≤ Ce−b 3√N .

Step 2: Let now Tn,σ be a geometric mesh on an arbitrary polygon �, as in
Definition 2.6.3. Since Tn,σ is obtained by mapping affinely up to three basic
geometric mesh patches 1n,σ to a neighbourhood of each corner, it is possible to
construct an interpolant φ as in Step 1, using a generalization of the result there
to affinely mapped meshes. This may be established straightforwardly; see, e.g.,
[31, 32, 58] and the references therein. �

2.6.3 Exponential Convergence of the hp DGFEM

Combining the estimates from Corollary 2.4.2 and Proposition 2.6.5 leads to the
main result of this section.
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Theorem 2.6.6 Let � ⊂ � 2 be a polygonal domain. Moreover, assume that the
exact solution u of (2.1)–(2.4) belongs to B2

β(�) for a weight vector 0
�
β ≺ 1.

Then, for n ∈ � 0 and σ ∈ (0, 1), there exists µ0 = µ0(σ,β) > 0 such that
for linear degree distribution vectors p with slope µ ≥ µ0 and ω as in Theorem
2.3.7, the solutions u±h of the DGFEM (2.10) on a geometric mesh Tn,σ satisfy the
following error estimate

‖u − u±h ‖h ≤ Ce−b 3√N .

Here, C, b > 0 are independent of N = dim(Vh).

2.6.4 Numerical Results

The following numerical results are again based on the two model problems (P1)
and (P2) from Section 2.5.3. However, here, the hp-version of the DGFEM is
considered.

The computational domain is chosen to be an ’L-shaped’ polygon with a reen-
trant corner at the origin O (cf. Figure 2.10). Furthermore, the right-hand side f
in (P1) is given by

f = r 2/3 sin(2/3φ),

where (r, φ) denote polar coordinates in
� 2. Moreover, the boundary conditions

are set to be (cf. Figure 2.10):

u = 0 on 0D

and

∇u · n� =

����� ����
−2/3r−1/3 sin(φ/3) on 0N1

2/3r−1/3 cos(φ/3) on 0N2

2/3r−1/3 sin(φ/3) on 0N3

2/3r−1/3 cos(φ/3) on 0N4

.

Then, for both problems (P1) and (P2), the exact solution is

u = r 2/3 sin(2/3φ),

and belongs to B2
β(�) for all β = (β1, 0, 0, 0, 0, 0) with β1 > 1/3.

In order to obtain exponential convergence rates for the model problems (P1)
and (P2), a geometric mesh with refinement towards the origin O (cf. Figure 2.11)
has to be used for the hp DGFEM. The polynomial degree distribution vector is
chosen as in 2.6.4, with slope µ = 1.

Figures 2.12 and 2.13 show the performance of the hp DGFEM (NIPG and
SIPG) for both problems (P1) and (P2). The asymptotic exponential convergence
rates are clearly visible, and, in addition, they seem to be achieved already for a
moderate number of degrees of freedom.
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Figure 2.12: Performance of the hp NIPG for the model problems (P1) and (P2).
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Figure 2.13: Performance of the hp SIPG for the model problems (P1) and (P2).
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Chapter 3

Locking-Free h DGFEM for
Elasticity Problems

3.1 Problem Formulation

Let � ⊂ � 2 be a polygon as in Section 1.1. Then, the linear elasticity problem
reads as follows:

−∇ · σ (u) = f in �
u = g D on 0D

σ (u) · n� = gN on 0N .

(3.1)

Here, u = (u1, u2) is the displacement and σ = {σi j }2i, j=1 is the stress tensor for
homogeneous isotropic material given by

σ (u) = 2µε(u)+ λ∇ · u 12×2,

where ε(u) = {εi j(u)}2i, j=1 with

εi j(u) = 1

2
(∂xi u j + ∂x j ui ) (3.2)

is the symmetric gradient of u. Furthermore, µ and λ are the so-called Lam é
coefficients satisfying

0 < min{µ,µ+ λ}.

3.2 Regularity

The functional setting in this chapter is again based on the theory of weighted
Sobolev spaces (cf. Section 1.2).

45
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3.2.1 Regularity of Generalized Stokes Problems

In order to obtain a regularity result for the elasticity problem (3.1), the following
generalized Stokes problem in the polygon � is considered:

−∇ · σ (u, p) = f in �
−∇ · u = h in �

u = gD on 0D

σ (u, p) · n� = gN on 0N .

(3.3)

Here, u is the velocity field, p a Lagrange multiplier corresponding to the (hy-
drostatic) pressure in the incompressible limit and σ (u, p) the hydrostatic stress
tensor of u defined by

σ (u, p) = −p 12×2 + 2νε(u),

where ε(u) is given as in (3.2) and ν > 0 is the (kinematic) viscosity. If 0N = ∅,
the following compatibility condition has to be fulfilled:

�
�

h dx +
�
∂�

gD · n� ds = 0 (3.4)

In [34] the following regularity result was proved:

Theorem 3.2.1 Let � ⊂ � 2 be a polygonal domain and m ≥ 0. In addition, if
0N = ∅, let (3.4) be satisfied. Then, there exists a weight vector 0

�
βmin ≺ 1

depending on the opening angles of � at the vertices Ai ∈ S P(�, 0D, 0N ), i =
1, 2, . . . , M (cf. Section 1.2), such that for weight vectors β with βmin

�
β ≺ 1

and for f ∈ Hm,0
β (�)2, h ∈ Hm+1,1

β (�), gD ∈ Hm+3/2,3/2
β (0D)

2 and gN ∈
Hm+1/2,1/2
β (0N )

2 the generalized Stokes problem (3.3) admits a unique solution

(u, p) ∈ Hm+2,2
β (�)2 × Hm+1,1

β (�) and the a priori estimate

‖u‖Hm+2,2
β (�)

+ ‖p‖Hm+1,1
β (�)

≤ C � ‖ f ‖Hm,0
β (�)

+ ‖h‖Hm+1,1
β (�)

+ ‖gD‖Hm+3/2,3/2
β (0D)

+ ‖gN‖Hm+1/2,1/2
β (0N ) �

(3.5)

holds true.
Moreover, if f ∈ B0

β(�)
2, h ∈ B1

β(�), g D ∈ B
3/2
β (0D)

2, gN ∈ B
1/2
β (0N )

2,

then (u, p) ∈ B2
β(�)

2 ×B1
β(�).
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3.2.2 Regularity of Linear Elasticity Problems

A regularity result for linear elasticity problems in polygons has already been de-
veloped in [33, Theorem 5.2]. However, referring to the previous Theorem 3.2.1,
a more specific statement, which clarifies the regularity of the linear elasticity
problem (3.1) in dependence on the Lamé coefficient λ, can be proved.

Theorem 3.2.2 Let � ⊂ � 2 be a polygon and m ≥ 0. Then, there exists a
weight vector 0

�
βmin ≺ 1 depending on the opening angles of � at the vertices

Ai ∈ S P(�, 0D, 0N ), i = 1, 2, . . . , M, such that for weight vectors β with
βmin

�
β ≺ 1 and for

f ∈ Hm,0
β (�)2, g D ∈ Hm+3/2,3/2

β (0D)
2, gN ∈ Hm+1/2,1/2

β (0N )
2, (3.6)

the linear elasticity problem (3.1) has a unique solution u ∈ H m+2,2
β (�)2. In

addition, there exists a constant C > 0 independent of λ such that the ensuing
estimate holds true:

‖u‖Hm+2,2
β (�)

+ |λ|‖∇ · u‖Hm+1,1
β (�)

≤ C � ‖ f ‖Hm,0
β (�)

+ ‖gD‖Hm+3/2,3/2
β (0D)

+ ‖gN‖Hm+1/2,1/2
β (0N ) � .

(3.7)

Proof : As already mentioned above, the unique solution uelast of the linear elas-
ticity problem (3.1) belongs to Hm+2,2

β (�)2 ([33, Theorem 5.2]). Therefore, the
choice

h = −∇ · uelast ∈ Hm+1,1
β (�)

leads to the following solution (u, p) of the generalized Stokes problem (3.3):

p = −λ∇ · uelast

and
u = uelast.

Hence, using (3.5) implies that

‖u‖Hm+2,2
β (�)

+ |λ|‖∇ · u‖Hm+1,1
β (�)

≤ C � ‖ f ‖Hm,0
β (�)

+ ‖∇ · u‖Hm+1,1
β (�)

+ ‖gD‖Hm+3/2,3/2
β (0D)

+ ‖gN‖Hm+1/2,1/2
β (0N ) � .

(3.8)
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Thus, if |λ| < 2C , it follows that

‖u‖Hm+2,2
β (�)

+ |λ|‖∇ · u‖Hm+1,1
β (�)

≤ C̃‖u‖Hm+2,2
β (�)

≤ C̃ � ‖ f ‖Hm,0
β (�)

+ ‖gD‖Hm+3/2,3/2
β (0D)

+ ‖gN‖Hm+1/2,1/2
β (0N ) �

for a constant C̃ independent of |λ| ∈ (0, 2C). In the last step, Theorem 5.2 in
[33] was applied.

Alternatively, if |λ| ≥ 2C , the term C‖∇ · u‖Hm+1,1
β (�)

in the right-hand side

of (3.8) may obviously be absorbed into the left-hand side. �

3.3 The Discontinuous Galerkin Method

3.3.1 Finite Element Spaces

In contrast to the previous Chapter 2, the finite element meshes considered here are
assumed to be regular and to consist of triangles only. Furthermore, the ensuing
analysis is restricted to the case of piecewise (discontinuous) linear functions, i.e.
the finite element spaces are given by

V h = {u ∈ L2(�)2 : u|K ∈ P1(K )
2, K ∈ T }, (3.9)

where

P1(K ) = {u(x, y) = ax + by + c : a, b, c ∈ � }
is the space of all linear functions on the element K , K ∈ T .

3.3.2 Variational Formulation

The non-symmetric interior penalty discontinuous Galerkin finite element method
(NIPG) for the linear elasticity problem (3.1) is introduced.

Definition 3.3.1 (DGFEM) Find uh ∈ V h such that

Bh(uh, v) = Lh(v) (3.10)
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for all v ∈ V h , where the bilinear form Bh is given by

Bh(u, v) =
�

K∈T

�
K
σ (u) : ε(v) dx

−
�

e∈Eint,D

�
e
(〈σ (u)〉 : [v] − [u] : 〈σ (v)〉) ds

+ µ
�

e∈Eint,D

1

|e|
�

e
[u] : [v] ds,

and the corresponding linear functional Lh is defined by

Lh(v) =
�

K∈T

�
K

f · v dx +
�
0N

gN · v ds

+
�
0D

(σ (v) · n�) · g D ds + µ
�

e∈E :
e⊂0D

1

|e|
�

e
gD · v ds.

Here, |e| denotes the length of e ∈ E .

The following norm is associated with the DGFEM:

‖u‖2h =
�

K∈T
‖ε(u)‖2L2(K ) +

µ

melast

�

e∈Eint,D

1

|e|
�

e
|[u]|2 ds, (3.11)

where
melast = 2 min{µ,µ+ λ}.

Remark 3.3.2 For all u ∈ V h there holds that � � K∈T |u|2H1(K ) � 1/2 ≤ C‖u‖h ,
where C > 0 is a constant independent of u and of h. A corresponding result may
be found in [13], where a discrete Korn inequality was proved.

3.3.3 Basic Properties

Proposition 3.3.3 (Consistency) If, for a weight vector 0
�
β ≺ 1, the exact

solution u of the linear elasticity problem (3.1) belongs to H2,2
β (�)2, then the

DGFEM (3.10) is consistent:

Bh(u, v) = L(v) ∀v ∈ V h . (3.12)

Proof : Using the integration by parts formula from Lemma A.2.2, the proof is
very similar as in the diffusion case (Proposition 2.3.2). �
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Proposition 3.3.4 (Coercivity) The bilinear form Bh is coercive on V h . More
precisely,

Bh(u, u) ≥ melast‖u‖2h
for all u ∈ V h .

Proof : For K ∈ T , let

ε0(u) = ε(u)− 1

2
∇ · u 12×2.

Then, there holds that�
K
σ (u) : ε(u) dx

= 2µ
�

K
ε(u) : ε(u) dx + λ

�
K
|∇ · u|2 dx

= 2µ
�

K

�
ε0(u)+ 1

2
∇ · u 12×2 � : �

ε0(u)+ 1

2
∇ · u 12×2 � dx

+ λ
�

K
|∇ · u|2 dx

= 2µ
�

K

�
ε0(u) : ε0(u)+ 1

2
|∇ · u|2 � dx + λ

�
K
|∇ · u|2 dx

= 2µ
�

K
ε0(u) : ε0(u) dx + (µ+ λ)

�
K
|∇ · u|2 dx.

Moreover, since�
K
ε(u) : ε(u) dx =

�
K

�
ε0(u)+ 1

2
∇ · u 12×2 � : �

ε0(u)+ 1

2
∇ · u 12×2 � dx

=
�

K

�
ε0(u) : ε0(u)+ 1

2
|∇ · u|2 � dx,

it follows that �
K
σ (u) : ε(u) dx ≥ melast

�
K
ε(u) : ε(u) dx.

Thus,

Bh(u, u) ≥ melast

�

K∈T

�
K
ε(u) : ε(u) dx + µ

�

e∈Eint,D

|e|−1
�

e
[u] : [u] ds

≥ melast‖u‖2h.
�

The above result immediately implies:

Theorem 3.3.5 Let (3.6) hold for (at least) m = 0. Then, the DGFEM (3.10) has
a unique solution uh ∈ V h .
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3.4 Error Analysis

3.4.1 Interpolants

Proposition 3.4.1 Let K ∈ T be a triangle with vertices A1, A2, A3. Then, for
each βK ∈ [0, 1) and for8βK (x) = rβK

K = |x− A1|βK , there exists an interpolant

πK : H2,2
βK
(K )2 −→ P1(K )

2

such that the following properties are satisfied:

a)
�

e
(u − πK u) ds = 0, ∀e ∈ EK ;

b)
�

e
(u − πK u) · ne ds = 0, ∀e ∈ EK ;

c)
�

K
∇ · (u − πK u) dx = 0.

Here, for e ∈ EK , ne denotes the unit outward vector of K on e.

Proof : For u ∈ H2,2
βK
(K )2 the interpolant πK u ∈ P1(K )2 is uniquely defined by

πK u(xe) = 1

|e|
�

e
u ds, ∀e ∈ EK ,

where xe denotes the midpoint of e ∈ EK . Then, a) and b) follow directly from
this definition. c) results from b) and from Green’s formula:�

K
∇ · (u − πK u) dx =

�
∂K
(u − πK u) · n∂K ds = 0.

�

Proposition 3.4.2 For u ∈ H 2,2
βK
(K )2, K ∈ T , the interpolant πK u from Propo-

sition 3.4.1 satisfies the following estimates:

‖u − πK u‖L2(K ) + hK |u − πK u|H1(K ) ≤ Ch2−βK
K |u|H2,2

βK
(K ) (3.13)

|u − πK u|H2,2
βK
(K ) ≤ |u|H2,2

βK
(K ) (3.14)

and

‖∇ · (u − πK u)‖L2(K ) ≤ Ch1−βK
K |∇ · u|H1,1

βK
(K ) (3.15)

|∇ · (u − πK u)|H1,1
βK
(K ) ≤ |∇ · u|H1,1

βK
(K ). (3.16)

C > 0 is a constant independent of h K and of u.
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Proof : Set U = u − πK u. Then, since πK u ∈ P1(K )2, there holds:

|U |H2,2
βK
(K ) = |u|H2,2

βK
(K ) and |∇ · U |H1,1

βK
(K ) = |∇ · u|H1,1

βK
(K ).

Thus, applying Proposition A.2.12 to U and Corollary A.2.11 to ∇ ·U , completes
the proof. �

3.4.2 Stability

In a polygon � consider a finite element mesh T satisfying the conditions from
Section 1.3.1. Moreover, let β = (β1, . . . , βM) be a weight vector and 8β the
corresponding weight function as described in Section 1.2. Then, on V h , define
the interpolant

5T : H2,2
β (�)2 −→ V h

by

5T |K u = πK u, ∀K ∈ T ,

where πK , K ∈ T is the interpolant from Proposition 3.4.1.
Then, the DG-error eh = u − uh , where u is the exact solution of the lin-

ear elasticity problem (3.1) and uh is the solution of the DGFEM (3.10), can be
represented as follows:

eh = u −5T u� ��� �
=η

+5T u − uh� ��� �
=ξ

. (3.17)

Remark 3.4.3 Since H 2,2
β (�)2 ⊂ C0(�)2 (cf. Remark 1.2.2), u ∈ H2,2

β (�)2

implies that �
e
[η] ds = 0

for all edges e ∈ Eint.

Proposition 3.4.5 shows that ‖ξ‖h is bounded by ‖η‖h . Therefore, the error
eh = u−uh of the DGFEM may be controlled by η only (as in the diffusion case).
In order to prove this, consider the following Lemma which will be useful for the
error analysis of the DGFEM.
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Lemma 3.4.4 Let u ∈ H2,2
β (�)2. Then,

µ2
�

K∈T
‖ε(η)‖2L2(K ) +

�

K∈T

�

e∈EK
e∈Eint,D

‖σ (η)‖2L1(e) + µ2
�

e∈Eint,D

|e|−1‖[η]‖2L2(e)

≤ C � µ2
� �

K∈T
� h−2

K ‖η‖2L2(K ) + |η|2H1(K ) � +
�

K∈T \K0

h2
K |η|2H2(K )

+
�

K∈K0

h2−2βK
K |η|2

H2,2
βK
(K ) � + λ2

� �

K∈T
‖∇ · η‖2L2(K )

+
�

K∈T \K0

h2
K |∇ · η|2H1(K ) +

�

K∈K0

h2−2βK
K |∇ · η|2

H1,1
βK
(K ) � � ,

where η = u −5T u.

Proof : Obviously,
�

K∈T
‖ε(η)‖2L2(K ) ≤ C

�

K∈T
|η|2H1(K ).

Furthermore, Lemma 1.3.2 c) and Remark 1.2.2 a) imply that
�

K∈T

�

e∈EK
e∈Eint,D

‖σ (η)‖2L1(e)

≤ C
�
µ2

�

K∈T

�

e∈EK
e∈Eint,D

‖ε(η)‖2L1(e) + λ2
�

K∈T

�

e∈EK
e∈Eint,D

‖∇ · η‖2L1(e) �
≤ Cµ2

� �

K∈T
‖∇η‖2L2(K ) +

�

K∈T \K0

h2
K |η|2H2(K ) +

�

K∈K0

h2−2βK
K |η|2

H2,2
βK
(K ) �

+ Cλ2
� �

K∈T
‖∇ · η‖2L2(K ) +

�

K∈T \K0

h2
K |∇ · η|2H1(K )

+
�

K∈K0

h2−2βK
K |∇ · η|2

H1,1
βK
(K ) � .

Additionally, by the standard trace theorem (cf. [58, Theorem A.11], for example),
there holds

�

e∈Eint,D

|e|−1‖[η]‖2L2(e) ≤ C
�

K∈T

�

e∈EK∩Eint,D

|e|−1‖η‖2L2(e)

≤ C
�

e∈Eint,D

� |e|−2‖η‖2L2(K ) + |∇η|2L2(K ) �
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≤ C
�

e∈Eint,D

� h−2
K ‖η‖2L2(K ) + |∇η|2L2(K ) � .

�

Proposition 3.4.5 (Stability) Let the exact solution u of the linear elasticity prob-
lem (3.1) be in H2,2

β (�)2 for a weight vector 0
�
β ≺ 1. Then, there holds the

following stability estimate for the DGFEM (3.10)

‖ξ‖2h ≤ CCµ,λ(µ
2(Eµ1 + Eµ2 + Eµ3 )+ λ2(Eλ1 + Eλ2 + Eλ3 ))

with

Eµ1 =
�

K∈T
� h−2

K ‖η‖2L2(K ) + |η|2H1(K ) � Eλ1 =
�

K∈T
‖∇ · η‖2L2(K )

Eµ2 =
�

K∈T \K0

h2
K |η|2H2(K ) Eλ2 =

�

K∈T \K0

h2
K |∇ · η|2H1(K )

Eµ3 =
�

K∈K0

h2−2βK
K |η|2

H2,2
βK
(K )

Eλ3 =
�

K∈K0

h2−2βK
K |∇ · η|2

H1,1
βK
(K )
,

where η and ξ are defined in (3.17), and where

Cµ,λ = max � 1,
2 min{µ,µ+ λ}

µ
�

is bounded independently of λ and µ as λ→ ∞. Moreover, C > 0 is a constant
independent of µ, λ and of h.

Proof : Due to the consistency of the DGFEM (cf. Proposition 3.3.3), it holds that

Bh(ξ , ξ) = Bh(e− η, ξ) = −Bh(η, ξ).

Therefore, by Proposition 3.3.4,

melast‖ξ‖2h ≤ −Bh(η, ξ). (3.18)
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Furthermore, using that ∇ · ξ and σ (ξ) are element-wise constant leads to

Bh(η, ξ) =
�

K∈T

�
K
σ (η) : ε(ξ) dx

−
�

e∈Eint,D

�
e
(〈σ (η)〉 : [ξ ] − [η] : 〈σ (ξ)〉) ds

+ µ
�

e∈Eint,D

|e|−1
�

e
[η] : [ξ ] ds

= 2µ
�

K∈T

�
K
ε(η) : ε(ξ) dx + λ

�

K∈T
∇ · ξ

�
K
∇ · η dx

−
�

e∈Eint,D

� �
e
〈σ (η)〉 : [ξ ] ds − 〈σ (ξ)〉 :

�
e
[η] ds �

+ µ
�

e∈Eint,D

|e|−1
�

e
[η] : [ξ ] ds.

Applying Proposition 3.4.1 and Remark 3.4.3 results in

Bh(η, ξ) = 2µ
�

K∈T

�
K
ε(η) : ε(ξ) dx −

�

e∈Eint,D

�
e
〈σ (η)〉 : [ξ ] ds

+ µ
�

e∈Eint,D

|e|−1
�

e
[η] : [ξ ] ds

= I − I I + I I I.

By Hölder’s inequality, there holds that

|I | =
��� 2µ �

K∈T

�
K
ε(η) : ε(ξ) dx

���
≤

�
4µ2

�

K∈T
‖ε(η)‖2L2(K ) � 1/2 � �

K∈T
‖ε(ξ)‖2L2(K ) � 1/2

.

A bound for I I is obtained as follows:

|I I | ≤
�

e∈Eint,D

�
e
| 〈σ (η)〉 ||[ξ ]| ds

≤
�

e∈Eint,D

‖[ξ ]‖L∞(e)‖ 〈σ (η)〉 ‖L1(e)

≤ C
�

K∈T

�

e∈EK∩Eint,D

‖[ξ ]‖L∞(e)‖σ (η)‖L1(e).
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Furthermore, Lemma A.1.1 implies that

|I I | ≤ C
�

K∈T

�

e∈EK∩Eint,D

|e|−1/2‖[ξ ]‖L2(e)‖σ (η)‖L1(e)

≤ C
� �

K∈T

�

e∈EK∩Eint,D

|e|−1‖[ξ ]‖2L2(e) � 1/2

·
� �

K∈T

�

e∈EK∩Eint,D

‖σ (η)‖2L1(e) � 1/2

= C � melast

µ

� µ

melast

�

e∈Eint,D

|e|−1‖[ξ ]‖2L2(e) � 1/2

·
� �

K∈T

�

e∈EK∩Eint,D

‖σ (η)‖2L1(e) � 1/2
.

Finally,

|I I I | ≤ � melast

µ

�
µ2

�

e∈Eint,D

|e|−1‖[η]‖2L2(e) � 1/2

� µ

melast

�

e∈Eint,D

|e|−1‖[ξ ]‖2L2(e) � 1/2
.

Summing up and using (3.18) yields

‖ξ‖2h ≤
1

melast
|Bh(η, ξ)|

≤ 1

melast
(|I | + |I I | + |I I I |)

≤ C max � 1, � melast

µ
� ‖ξ‖h · �

µ2
�

K∈T
‖ε(η)‖2L2(K )

+
�

K∈T

�

e∈EK∩Eint,D

‖σ (η)‖2L1(e) + µ2
�

e∈Eint,D

|e|−1‖[η]‖2L2(e) � 1/2
.

Applying Lemma 3.4.4 completes the proof immediately. �

A direct consequence of the above statement is the ensuing

Corollary 3.4.6 Let the assumptions of Proposition 3.4.5 be satisfied. Moreover,
let Eµi and Eλi , i = 1, 2, 3, be defined as before. Then, the following a priori error
estimate holds true

‖u − uh‖2h ≤ C �Cµ,λ(µ
2(Eµ1 + Eµ2 + Eµ3 )+ λ2(Eλ1 + Eλ2 + Eλ3 )).
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Here, u is the exact solution of (3.1), uh is the solution of the DGFEM (3.10) and

�Cµ,λ = max{µ−2, µ−1m−1
elast,Cµ,λ},

where Cµ,λ is the constant from Proposition 3.4.5.

Remark 3.4.7 Obviously, the constant �Cµ,λ from the above Corollary 3.4.6 loses
its dependence on λ if λ is sufficiently large, i.e.:

∃λ0(µ) : �Cµ,λ ≤ �Cµ ∀λ > λ0,

where �Cµ is a constant independent of λ.

Proof : From the error splitting (3.17) it follows that

‖e‖2h ≤ C(‖η‖2h + ‖ξ‖2h)
≤ C

� �

K∈T
‖ε(η)‖2L2(K ) +

µ

melast

�

e∈Eint,D

|e|−1
�

e
|[η]|2 ds + ‖ξ‖2h �

≤ C max{µ−2, µ−1m−1
elast}

�
C‖ξ‖2L2(K )

+ µ2
�

K∈T
‖ε(η)‖2L2(K ) + µ2

�

e∈Eint,D

|e|−1
�

e
|[η]|2 ds � .

Thus, using Lemma 3.4.4 and inserting the stability bound from Proposition 3.4.5
completes the proof. �

3.4.3 Optimal Convergence of the DGFEM

The mesh refinement strategies from Section 2.5 (graded meshes), which lead to
optimal algebraic convergence rates for the DGFEM for diffusion problems, are
also applicable to the DGFEM presented in this chapter. More precisely, it will
be proved here that for u ∈ H 2,2

β (�)2, where u denotes the exact solution of the
linear elasticity problem (3.1), the following error bound may be obtained:

‖u − uh‖h ≤ C N−1/2. (3.19)

In addition, the convergence is robust, i.e. the constant C in (3.19) is independent
of the Lamé coefficient λ as λ → ∞. This is typically not true for conform-
ing finite element methods whose convergence regime usually deteriorates sub-
stantially for nearly incompressible materials (cf. Section 3.5 and the numerical
experiments there).
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Theorem 3.4.8 (Robust Optimal Convergence) Let the exact solution u of (3.1)
belong to H2,2

β (�)2 for a weight vector 0
�
β ≺ 1. Moreover, let Tγ with

1 � γ � β be a graded mesh as introduced in Definition 2.5.1 (for p = 1). Then,
for the solution uh of the h DGFEM (3.10), there holds the following optimal
algebraic error estimate:

‖u − uh‖h ≤ C �Cµ,λN−1/2.

Here, N = dim(V h), �Cµ,λ is the constant from Corollary 3.4.6 (independent of λ
as λ→∞) and C > 0 is a constant independent of N and of the Lamé coefficients
µ and λ.

Proof : Let 5Tγ be the global interpolant from Section 3.4.2, i.e.

5Tγ |K = πK , K ∈ Tγ ,

where πK is the interpolant from Proposition 3.4.1. Referring to Corollary 3.4.6
yields the following error bound for the DGFEM:

‖u − uh‖2h
≤ C �Cµ,λ � µ2

� �

K∈Tγ
� h−2

K ‖u − πK u‖2L2(K ) + |u − πK u|2H1(K ) �
+

�

K∈Tγ \K0

h2
K |u − πK u|2H2(K ) +

�

K∈K0

h2−2βK
K |u − πK u|2

H2,2
βK
(K ) �

+ λ2
� �

K∈Tγ
‖∇ · (u − πK u)‖2L2(K )

+
�

K∈Tγ \K0

h2
K |∇ · (u − πK u)|2H1(K )

+
�

K∈K0

h2−2βK
K |∇ · (u − πK u)|2

H1,1
βK
(K ) � � .

Moreover, inserting the estimates from Proposition 3.4.2 results in

‖u − uh‖2h
≤ C �Cµ,λ � µ2

� �

K∈Tγ \K0

h2
K |u|2H2(K ) +

�

K∈K0

h2−2βK
K |u|2

H2,2
βK
(K ) �

+ λ2
� �

K∈Tγ \K0

h2
K |∇ · u|2H1(K ) +

�

K∈K0

h2−2βK
K |∇ · u|2

H1,1
βK
(K ) � �
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= C �Cµ,λ
� �

K∈Tγ \K0

h2
K � µ2|u|2H2(K ) + λ2|∇ · u|2H1(K ) �

+
�

K∈K0

h2−2βK
K � µ2|u|2

H2,2
βK
(K )
+ λ2|∇ · u|2

H1,1
βK
(K ) � � . (3.20)

Furthermore, from the definition of the graded meshes (Definition 2.5.1) it follows
that

‖u − uh‖2h
≤ C �Cµ,λ

�
h2

Tγ

�

K∈Tγ \K0

�
K

r2γK
K (µ2|D2u|2 + λ2|D1(∇ · u)|2) dx

+
�

K∈K0

h2−2βK
Tγ

� sup
x∈K

rγK
K � 2−2βK � µ2|u|2

H2,2
βK
(K )
+ λ2|∇ · u|2

H1,1
βK
(K ) � � .

For all K ∈ K0 there holds rK (x) ≤ hK ∀x ∈ K . Hence,

hK ≤ ChTγ sup
x∈K

rγK
K ≤ ChTγ hγK

K ,

and therefore

hK ≤ Ch
1

1−γK
Tγ

.

This implies that

sup
x∈K

rγK
K ≤ ChγK

K ≤ Ch
γK

1−γK
Tγ
≤ Ch

βK
1−βK
Tγ

.

Thus,

‖u − uh‖2h
≤ C �Cµ,λh

2
Tγ

� �

K∈Tγ \K0

�
K

r2γK
K (µ2|D2u|2 + λ2|D1(∇ · u)|2) dx

+
�

K∈K0

� µ2|u|2
H2,2
βK
(K )
+ λ2|∇ · u|2

H1,1
βK
(K ) � �

≤ C �Cµ,λh
2
Tγ

� �

K∈Tγ \K0

�
K
82
β(µ

2|D2u|2 + λ2|D1(∇ · u)|2) dx

+
�

K∈K0

� µ2|u|2
H2,2
βK
(K )
+ λ2|∇ · u|2

H1,1
βK
(K ) � �

≤ C �Cµ,λh
2
Tγ

� �
�

82
β(µ

2|D2u|2 + λ2|D1(∇ · u)|2) dx

+
�

K∈K0

� µ2|u|2
H2,2
βK
(K )
+ λ2|∇ · u|2

H1,1
βK
(K ) � �
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≤ C �Cµ,λh2
Tγ � µ2|u|2

H2,2
βK
(�)
+ λ2|∇ · u|2

H1,1
βK
(�) � .

Finally, by Lemma 2.5.6, i.e.

hTγ ≤ C N−1/2,

and with the aid of Theorem 3.2.2, the proof is complete. �

Remark 3.4.9 On uniform meshes Tγ it holds:

hTγ ∼ hK ∼ 1√
N

∀K ∈ Tγ .

Therefore, (3.20) directly implies that, even if γ = 0, the DGFEM still converges
independently of µ and λ. However, due to the occurrence of the term h2−2βK

K ,
the rate of convergence is not anymore optimal for β � 0.

Remark 3.4.10 The DGFEM above is closely related to non-conforming meth-
ods of Crouzeix-Raviart type. In 1992, S. C. Brenner, L. Sung [14] already
showed that these schemes are locking-free even for p = 1. However, their results
are based on the assumption that the displacements are H 2 regular, and therefore,
the case of non-convex polygons is in general not covered by that work. Neverthe-
less, applying the regularity results and the mesh refinement strategies presented
in this chapter (Theorem 3.2.2, Theorem 3.4.8), it can be proved that the conver-
gence statements in [14] are extensible to the case where the exact solutions of the
elasticity problems exhibit corner singularities.

3.5 Numerical Results

The aim of this section is to confirm the theoretical results with some numerical
examples. More precisely, it will be shown that, even if the exact solutions of
the corresponding problems are singular, the convergence rate of the DGFEM on
graded meshes remains of order O(N−1/2), as expected. Moreover, the robustness
of the method against volume locking will be illustrated.

3.5.1 L-shaped Domain

Model Problem

Let � be the polygonal domain with vertices

A1 = (0, 0), A2 = (−1,−1), A3 = (1,−1), A4 = (1, 1), A5 = (−1, 1).
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Figure 3.1: Polygonal domain�.

Note, that the origin O = (0, 0) is a reentrant corner of � (cf. Figure 3.1). Then,
consider the following model problem

−∇ · σ (u) = 0 in �

u = gD on 0D = ∂�. (3.21)

Here, gD := u|0D , where u is the exact solution of (3.21) given by its polar
coordinates

ur (r, θ) = 1

2µ
rα(−(α + 1) cos((α + 1)θ)+ (C2 − (α + 1))C1 cos((α − 1)θ)),

uθ (r, θ) = 1

2µ
rα((α + 1) sin((α + 1)θ)+ (C2 + α − 1)C1 sin((α − 1)θ)).

Above, α ≈ 0.544484 is the solution of the equation

α sin(2ω)+ sin(2ωα) = 0

with ω = 3π/4, and

C1 = −cos((α + 1)ω)

cos((α − 1)ω)
, C2 = 2(λ+ 2µ)

λ+ µ .

Robust Optimal Convergence Rates on Graded Meshes

A few calculations show that the exact solution u of the model problem (3.21) is
in H2,2

β (�)2 with β = (β1, 0, 0, 0, 0) for all 1 > β1 > 1− α ≈ 0.455516. Thus,
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Figure 3.2: Graded mesh with refine-
ment towards the origin
(γ = (1/2, 0, 0, 0, 0)).
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Figure 3.3: Uniform mesh (i.e. graded mesh
with γ = (0, 0, 0, 0, 0)).

in order to obtain the optimal convergence rate, a graded mesh with refinement
towards the origin must be used for the numerical simulations.

The first picture of Figure 3.4 shows the errors of the DGFEM for

λ ∈ {1, 100, 500, 1000, 5000} (µ = 1)

in the energy norm

‖u‖2h =
�

K∈T
‖ε(u)‖2L2(K ) +

1

melast

�

e∈Eint,D

|e|−1
�

e
|[u]|2 ds

on a graded mesh with grading vector γ = (1/2, 0, 0, 0, 0) (cf. Figure 3.2). Ob-
viously, the convergence rate of the DGFEM is already almost optimal for ap-
proximately 5000 degrees of freedom (∼ 800 elements). Moreover, the expected
robustness of the DGFEM with respect to the Lamé coefficient λ is clearly visible
(the lines for λ ≥ 100 almost coincide).

In the second picture of Figure 3.4 the energy error of the DGFEM on a uni-
form mesh (i.e. γ = (0, 0, 0, 0, 0)) is presented. Although the DGFEM still
converges robustly, the optimal convergence rate is not anymore achieved (cf. Re-
mark 3.4.9) and the use of graded meshes is justified.

In addition, the L2 errors for the computations above are shown in Figure
3.5. Again, the performance of the DGFEM on a uniform mesh is notably worse.
However, the convergence rate of the L2 error seems to be twice as high as of the
energy error.

Volume Locking

Figure 3.6 shows that the standard (i.e. conforming) finite element method does
not converge independently of λ. Although the asymptotic rate of convergence is
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Figure 3.4: Performance of the DGFEM on the L-shaped domain with γ = (1/2, 0, 0, 0, 0) (graded
mesh) and with γ = 0 (uniform mesh).
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Figure 3.5: Performance of the DGFEM on the L-shaped domain with γ = (1/2, 0, 0, 0, 0) (graded
mesh) and with γ = 0 (uniform mesh).
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Figure 3.6: Performance of the conforming FEM on the L-shaped domain with γ = (1/2, 0, 0, 0, 0)
(graded mesh).

optimal on graded meshes, the onset of the errors’ decay is remarkably retarded
for λ → ∞. This non-robustness of the convergence rate with respect to λ is
widely known as ’volume locking’ which, in contrast to the DGFEM, seems to be
unavoidable for low-order standard h FEM in the primal variables.

3.5.2 Unit Square

Consider the following problem on � = (0, 1)2:

−∇ · σ (u) = 0 in �

u = � g(1)D
0 � on 0D = ∂�

(3.22)

with

g(1)D (x, y) =
�

1− 4(x − 1/2)2 if (x, y) ∈ (0, 1)× {1},
0 else.

Due to Theorem 3.2.2, the exact solution of this problem belongs to H 2(�)2.
Therefore, referring to the numerical analysis above, no mesh refinement is re-
quired for the DGFEM to converge optimally. The computational (uniform) mesh
is shown in Figure 3.7. Additionally, the results for different choices of λ are pre-
sented (Figures 3.8–3.11). In contrast to the DGFEM, the standard FEM shows
clear evidence of locking.
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Figure 3.7: Computational mesh.
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Figure 3.8: Standard FEM / DGFEM for λ = 100.
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Figure 3.9: Standard FEM / DGFEM for λ = 500.
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Figure 3.10: Standard FEM / DGFEM for λ = 1000.
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Figure 3.11: Standard FEM / DGFEM for λ = 5000.
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Chapter 4

Mixed hp DGFEM for Stokes
Problems

4.1 Problem Formulation

Let � ⊂ � 2 be a polygonal domain with 0D = 0 = ∂� (cf. Section 1.1). The
Stokes problem is to find a velocity field u and a pressure p such that

−1u +∇ p = f in �
∇ · u = 0 in �

u = g on ∂�.
(4.1)

Here, the right-hand side f ∈ H−1(�)2 is an exterior body force, and g ∈
H 1/2(∂�)2 a prescribed Dirichlet datum satisfying the compatibility condition

�
∂�

g · n� ds = 0. (4.2)

Due to the continuous inf-sup condition, the Stokes system (4.1) has a unique
solution (u, p) in H1

0 (�)
2 × L2

0(�) (see, e.g., [15, 29] for details). Here,

L2
0(�) = � u ∈ L2(�) :

�
�

u dx = 0 � .
4.2 Regularity

A regularity result for (4.1), (4.2) follows directly from Theorem 3.2.1.

Theorem 4.2.1 Let � ⊂ � 2 be a polygonal domain. Then, there exists a weight
vector 0

�
βmin ≺ 1 depending on the opening angles at the vertices Ai ∈

69
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S P(�, 0D, 0N ), i = 1, 2, . . . , M (cf. Section 1.2), such that for weight vectors β
with βmin

�
β ≺ 1 and for

f ∈ B0
β(�)

2, g ∈ B
3/2
β (∂�)

2 (4.3)

the Stokes problem (4.1) has a unique solution

(u, p) ∈ B2
β(�)

2 ×B1
β(�). (4.4)

4.3 Discontinuous Galerkin Discretization

In this section, a mixed discontinuous Galerkin finite element method for the
Stokes problem is introduced, and, using the recent results in [56], the well-
posedness of the scheme is recalled.

4.3.1 Mixed DGFEM

Given a mesh T and a degree vector p = {pK }, pK ≥ 1, K ∈ T , the Stokes
problem is approximated by finite element functions (uh, ph) ∈ V h × Qh , where

V h = { v ∈ L2(�)2 : v|K ∈ QpK (K )
2, K ∈ T },

Qh = { q ∈ L2
0(�) : q|K ∈ QpK−1(K ), K ∈ T }.

Here, Qp(K ) denotes the space of all polynomials of degree at most p ≥ 0 in
each variable on K . In addition, for further reference, the following space is
introduced:

�Qh = { q ∈ L2(�) : q|K ∈ QpK−1(K ), K ∈ T }.

Definition 4.3.1 (Mixed DGFEM) Find (uh, ph) ∈ V h × Qh such that

Ah(uh, v) + Bh(v, ph) = Fh(v)

−Bh(uh, q) = Gh(q)
(4.5)

for all (v, q) ∈ V h × Qh . The forms Ah and Bh are discontinuous Galerkin
forms that discretize the Laplace operator and the incompressibility constraint,
respectively, with corresponding right-hand sides Fh and Gh . These forms are
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given by

Ah(u, v) =
�

K∈T

�
K
∇u : ∇v dx −

�
E
(〈∇v〉 : [u] + 〈∇u〉 : [v]) ds

+
�

E
d [u] : [v] ds,

Bh(v, q) =−
�

K∈T

�
K

q ∇ · v dx +
�

E
〈q〉 [v] ds,

Fh(v) =
�
�

f · v dx −
�

E
(g ⊗ n) : ∇v ds +

�
0

d g · v ds,

Gh(q) =−
�
0

q g · n ds.

(4.6)

Here, d ∈ L∞(E) is the discontinuity stabilization function from (2.8) with ω > 0.

Remark 4.3.2 Lemma 1.3.2 implies that the forms Ah and Bh are well-defined
when inserting the exact solution (u, p) satisfying (4.4). Similarly, Fh and Gh are
well-defined due to (4.3).

Remark 4.3.3 The form Ah corresponds to the symmetric interior penalty dis-
cretization (SIPG) of the Laplace operator; see [3] and [56], where the presen-
tation and analysis of several different DG methods were unified for diffusion
problems and the Stokes system, respectively.

The results presented in this chapter hold true verbatim for all the mixed dis-
continuous Galerkin methods investigated in [56].

4.3.2 Well-posedness

Well-posedness of the discrete system (4.5) was established in [56]. Indeed, by
introducing the space V (h) = V h + H1(�)2, endowed with the broken norm

‖v‖2h =
�

K∈T
‖∇v‖2L2(K ) +

�
E

p2

h
|[v]|2 ds, v ∈ V (h),

the forms Ah and Bh are continuous on V h and Qh , that is

|Ah(v,w)| ≤ C‖v‖h‖w‖h, ∀v,w ∈ V h

|Bh(v, q)| ≤ C‖v‖h‖q‖L2(�), ∀v ∈ V h, ∀q ∈ Qh ,

with continuity constants C > 0 independent of h and p. Furthermore, there
exists a parameter ωmin > 0 independent of h and p such that for any ω ≥ ωmin

there is a coercivity constant C > 0 independent of h and p with

Ah(v, v) ≥ C‖v‖2h, ∀v ∈ V h .
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Henceforth, assume that ω ≥ ωmin .
Finally, for pK ≥ 2, the following discrete inf-sup condition for the finite

element spaces V h and Qh holds true:

inf
06=q∈Qh

sup
06=v∈V h

Bh(v, q)

‖v‖h‖q‖L2(�)

≥ C | p|−1 > 0,

with a constant C > 0 that is independent of h and p.
The above properties of the forms Ah and Bh imply the well-posedness of the

system (4.5).

4.3.3 Basic Error Estimates

The following abstract error bounds were obtained in [56, Sect. 3 and 4]: Let
(u, p) be the exact solution of the Stokes system and (uh, ph) the discontinuous
Galerkin approximation (4.5). Then there holds

‖u − uh‖h
≤ C | p|

�
inf
w∈V h

‖u − w‖h + inf
q∈Qh
‖p − q‖L2(�) + sup

v∈V h

|Rh(u, p; v)|
‖v‖h � ,

(4.7)

as well as

‖p − ph‖L2(�)

≤ C | p|2
�

inf
q∈Qh
‖p − q‖L2(�) + inf

w∈V h
‖u −w‖h + sup

v∈V h

|Rh(u, p; v)|
‖v‖h � ,

(4.8)

where the constants C > 0 are independent of h and p. In the above estimates
(4.7) and (4.8), the term Rh(u, p; v) is a residual term which results from the
nonconformity of the DG method. It will be defined and investigated next. To do
so, consider the auxiliary space

6h := { τ ∈ L2(�)2×2 : τ |K ∈ QpK (K )
2×2, K ∈ T }.

Moreover, introduce the lifting operators L : V (h) → 6h , as well as M :
V (h)→ Qh given by�

�

L(v) : τ dx =
�

E
[v] : 〈τ 〉 ds, ∀τ ∈ 6h,�

�

M(v)q dx =
�

E
[v] 〈q〉 ds, ∀q ∈ Qh .

The residual can be expressed as follows:
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Lemma 4.3.4 Let f ∈ B0
β(�)

2. For all test functions v ∈ V h , there holds

Rh(u, p; v) =
�

K∈T

�
K
(∇u − p I) : ∇v dx −

�

K∈T

�
K
∇u : L(v) dx

+
�
�

pM(v) dx −
�
�

f · v dx.

4.4 Error Analysis

This section is dedicated to an error analysis of the DGFEM valid for piecewise
analytic solutions.

4.4.1 The Residual

For smooth solutions, the residual expression in Lemma 4.3.4 has been shown to
be optimally convergent in [56]. For solutions satisfying the regularity assumption
(4.4) a more careful investigation is required.

Lemma 4.4.1 Assume (4.3) and (4.4). Let P : L2(�)2×2 → 6h and P :
L2

0(�) → Qh denote the L2-projections onto 6h and Qh , respectively. Then,
there holds

Rh(u, p; v) =
�

E
〈∇u − P(∇u)〉 : [v] ds −

�
E
〈p − P(p)〉 [v] ds

for all v ∈ V h .

Proof : First note that, by definition of the lifting operators,
�

K∈T

�
K
∇u : L(v) dx =

�

K∈T

�
K

P(∇u) : L(v) dx =
�

E
〈P(∇u)〉 : [v] ds

and �
�

pM(v) dx =
�
�

P(p)M(v) dx =
�

E
〈P(p)〉 [v] ds.

Furthermore, integrating by parts (cf. Lemma A.2.3) the expression in Lemma
4.3.4 over each element K ∈ T results in

Rh(u, p; v)
=

�
�

(−1u +∇ p − f ) · v dx +
�

K∈T

�
∂K
(∇u − p I) : (v ⊗ nK ) ds

−
�

E
〈P(∇u)〉 : [v] ds +

�
E
〈P(p)〉 [v] ds.
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Note that all the integrals above are well-defined thanks to Lemma 1.3.2, (4.3) and
(4.4). Elementary manipulations then show that

�

K∈T

�
∂K
(∇u − p I) : (v ⊗ nK ) ds

=
�

Eint

[∇u − p I ] · 〈v〉 ds +
�

E
〈∇u − p I〉 : [v] ds.

Application of Lemma 1.3.4 implies

�

K∈T

�
∂K
(∇u − p I) : (v ⊗ nK ) ds =

�
E
〈∇u〉 : [v] ds −

�
E
〈p〉 [v] ds.

Combining the above results and observing that −1u + ∇ p = f in H 0,0
β (�)2,

yields the assertion. �

Rh may be bounded in the following way:

Lemma 4.4.2 Assume (4.3) and (4.4). For v ∈ V h , the following estimate is
satisfied,

|Rh(u, p; v)| ≤ C‖v‖h(‖u − w‖h + ‖p − q‖L2(�))

+
���

�
E
〈∇u −∇w〉 : [v] ds −

�
E
〈p − q〉 [v] ds

��� ,
for any (w, q) ∈ V h × Qh .

Proof : Let (w, q) ∈ V h × Qh be arbitrary. From the result in Lemma 4.4.1
and since the L2-projections reproduce polynomials in 6h and Qh , respectively,
it follows that

Rh(u, p; v) =
�

E
〈∇u −∇w − P(∇u −∇w)〉 : [v] ds

−
�

E
〈p − q − P(p − q)〉 [v] ds.

The term T with the L2-projections may be bounded by

|T | =
���

�
E
〈P(∇u −∇w)〉 : [v] ds −

�
E
〈P(p − q)〉 [v] ds

���
≤ C‖v‖h

�

K∈T

� hK

p2
K

‖P(∇u −∇w)‖2L2(∂K ) +
hK

p2
K

‖P(p − q)‖2L2(∂K ) � 1/2

≤ C‖v‖h � ‖P(∇u −∇w)‖L2(�) + ‖P(p − q)‖L2(�) �
≤ C‖v‖h � ‖u − w‖h + ‖p − q‖L2(�) � .
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Here, the Cauchy-Schwarz inequality, the definition of h and of p, the fact that
|[v]|2 ≤ |[v]|2, the discrete trace inequality Lemma A.1.2 and the stability of the
L2-projections were used. The triangle inequality completes the proof. �

4.4.2 Error Estimates

To obtain the ensuing result, the bounds (4.7) and (4.8) have to be combined with
the estimates in Lemma 4.4.2.

Theorem 4.4.3 Let the exact solution (u, p) of the Stokes system satisfy (4.4).
In addition, let (uh, ph) be the discontinuous Galerkin approximation (4.5) with
pK ≥ 2, for all K ∈ T . Then, for any (w, �q) ∈ V h × �Qh , there holds

‖u − uh‖h + ‖p − ph‖L2(�) ≤ C | p|3 � E1 + E2 + E3 � ,
where

E2
1 =

�

K∈T
� |u −w|2H1(K ) + h−2

K ‖u − w‖2L2(K ) + ‖p − �q‖2L2(K ) � ,
E2

2 =
�

K∈T \K0

h2
K � |u − w|2H2(K ) + |p − �q|2H1(K ) � ,

E2
3 =

�

K∈K0

h2(1−βK )
K � |u − w|2

H2,2
βK
(K )
+ |p − �q|2H1,1

βK
(K ) � .

The constant C > 0 is independent of h and of p.

Proof : Let w ∈ V h , �q ∈ �Qh be arbitrary. Set q = �q − 1
|�| � � �q dx ∈ Qh . Then,

the bounds from (4.7), (4.8) and Lemma 4.4.2 yield

‖u − uh‖h + ‖p − ph‖L2(�)

≤ C | p|2
�
‖u − w‖h + ‖p − q‖L2(�) + sup

v∈V h

|Eh(u − w, p − q; v)|
‖v‖h � ,

(4.9)

with Eh given by

Eh(u − w, p − q; v) =
�

E
〈∇u −∇w〉 : [v] ds −

�
E
〈p − q〉 [v] ds.

In the following, the right-hand side of (4.9) is estimated in terms of {Ei}3i=1.
First, using the mesh properties (1.8), (1.9), and the standard trace inequality

‖ϕ‖2L2(∂K ) ≤ C � h−1
K ‖ϕ‖2L2(K ) + hK |ϕ|2H1(K ) � , ∀ϕ ∈ H1(K ),
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yields

‖u − w‖2h =
�

K∈T
|u −w|2H1(K ) +

�
E

p2

h
|[u − w]|2 ds

≤ C | p|2
� �

K∈T
|u − w|2H1(K ) + C

�

K∈T
h−1

K ‖u − w‖2L2(∂K ) �
≤ C | p|2

�

K∈T
� h−2

K ‖u − w‖2L2(K ) + |u − w|2H1(K ) �
≤ C | p|2 E2

1 .

(4.10)

Next, since �
�

p dx = �
�

q dx = 0, it follows

‖p − q‖L2(�) = ���
p − �q − |�|−1

�
�

(p − �q) dx ���
L2(�)

≤ ‖p − �q‖L2(�) + |�|−1/2

�
�

|p − �q| dx

≤ 2‖p − �q‖L2(�)

≤ 2E1.

(4.11)

Moreover,

|Eh(u − w, p − q; v)| ≤
�

e∈E

�
e
(| 〈∇u −∇w〉 : [v]| + | 〈p − q〉 [v]|) ds

≤
�

e∈E

�
e
(| 〈∇u −∇w〉 | + | 〈p − q〉 |)|[v]| ds

≤
�

e∈E
‖[v]‖L∞(e)

�
e
(| 〈∇u −∇w〉 | + | 〈p − q〉 |) ds.

Applying the inverse inequality from Lemma A.1.1 yields

‖[v]‖L∞(e) = ‖|[v]|2‖1/2
L∞(e) ≤ C

p|e√
h|e ‖|[v]|

2‖1/2

L1(e) ≤ C
p|e√
h|e ‖[v]‖L2(e).

Therefore, using the shape regularity of the mesh it follows that

|Eh(u − w, p − q; v)|
≤ C

�

e∈E ���
p√
h
[v] ���

L2(e)

�
e
(| 〈∇u −∇w〉 | + | 〈p − q〉 |) ds

≤ C
� �

E

p2

h
|[v]|2 ds � 1/2 � �

K∈T
‖∇u −∇w‖2L1(∂K ) + ‖p − q‖2L1(∂K ) � 1/2

≤ C ‖v‖h
� �

K∈T
‖∇u −∇w‖2L1(∂K ) + ‖p − q‖2L1(∂K ) � 1/2

.
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In addition, the third assertion in Lemma 1.3.2 implies that

|Eh(u − w, p − q; v)|
‖v‖h

≤C
� �

K∈T
� |u − w|2H1(K ) + ‖p − q‖2L2(K ) �

+
�

K∈T \K0

h2
K � |u − w|2H2(K ) + |p − q|2H1(K ) �

+
�

K∈K0

h2−2βK
K � |u −w|2

H2,2
βK
(K )
+ |p − q|2

H1,1
βK
(K ) � � 1/2

.

Finally, applying (4.11) and using the fact ∇(q − �q) ≡ 0 results in

|Eh(u −w, p − q; v)|
‖v‖h

≤C
�
E2

1 +
�

K∈T \K0

h2
K � |u − w|2H2(K ) + |p − �q|2H1(K ) �

+
�

K∈K0

h2−2βK
K � |u − w|2

H2,2
βK
(K )
+ |p − �q|2H1,1

βK
(K ) � � 1/2

≤C(E1 + E2 + E3),

(4.12)

for all v ∈ V h . Combining (4.10)–(4.12) with (4.9) completes the proof. �

4.5 Exponential Rates of Convergence

The aim of this section is to show that the error estimates in Theorem 4.4.3 are
exponentially convergent on geometric meshes.

Theorem 4.5.1 Assume that the exact solution (u, p) of the Stokes equations sat-
isfies (4.4) with βmin

�
β ≺ 1. Let (uh, ph) ∈ V h × Qh be the hp DGFEM

approximation (4.5) on geometric meshes Tn,σ (cf. Definition 2.6.3). Then there
exists µ0 = µ0(σ,β) > 0 such that for linear polynomial degree vectors p with
slope µ ≥ µ0 (cf. Definition 2.6.4) there holds the error estimate

‖u − uh‖h + ‖p − ph‖L2(�) ≤ Ce−b 3√N

with constants C, b > 0 independent of N = dim(V h) ≈ dim(Qh).
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Proof : The proof consists of two steps.
Step 1: Consider first the case where � = (0, 1)2 and Tn,σ = 1n,σ is the

basic geometric mesh from Definition 2.6.1. From [55, Proposition 27] and [32]
or Lemma 2.5.2, there exist �q11 ∈ Q0(K11) and w11 ∈ Q1(K11)

2 such that

‖p − �q11‖2L2(K11)
+ h

2−2βK11
K11

|p − �q11|2H1,1
βK11

(K11)
≤ Cσ 2n(1−βK11 )|p|2

H1,1
βK11

(K11)

and

h−2
K11
‖u − w11‖2L2(K11)

+ |u − w11|2H1(K11)
+ h

2−2βK11
K11

|u − w11|2H2,2
βK11

(K11)

≤ Cσ 2n(1−βK11 )|u|2
H2,2
βK11

(K11)
.

Moreover, for Ki j ∈ Kint there are �qi j ∈ QpKi j−1(Ki j) and wi j ∈ QpKi j
(Ki j )

2

such that

‖p − �qi j‖2L2(Ki j )
+ h2

Ki j
|p − �qi j |2H1(Ki j)

≤ Cσ 2(n+2− j)(1−βKi j )
0(kKi j − si j + 1)

0(kKi j + si j − 1)

� %
2 � 2si j‖p‖2

H
si j+3,1
βKi j

(Ki j )

and

h−2
Ki j
‖u − wi j‖2L2(Ki j)

+ |u −wi j |2H1(Ki j )
+ h2

Ki j
|u − wi j |2H2(Ki j)

≤ Cσ 2(n+2− j)(1−βKi j )
0(kKi j − si j + 1)

0(kKi j + si j − 1)

� %
2 � 2si j‖u‖2

H
si j+3,2
βKi j

(Ki j )

for any 1 ≤ i ≤ 3, 2 ≤ j ≤ n + 1 and si j ∈ [1, kKi j ]. Here, % = max(1, (1−σ)/σ).
This was proved, e.g., in [55, Sect. 5.2] in all details. Referring to Theorem 4.4.3
implies that

‖u − uh‖2h + ‖p − ph‖2L2(�)
≤ Cσ 2n(1−βK11 )

�
9

2,1
βK11

(u, p)

+
3�

i=1

n+1�

j=2

σ
2(2− j)(1−βKi j )

0(kKi j − si j + 1)

0(kKi j + si j − 1)

� %
2 � 2si j

9
si j+3,si j+3
βKi j

(u, p) � ,
(4.13)

where
9

m,l
βK
(u, p) = ‖u‖2

Hm,2
βK

(K )
+ ‖p‖2

H l,1
βK
(K )
.

In [5, 31] or [58, Sect. 4.5.3] it was shown that there exist si j , 1 ≤ i ≤ 3, 2 ≤
j ≤ n + 1 and µ0 > 0 such that, for linear polynomial degree distributions as in
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Definition 2.6.4 with slope µ ≥ µ0, the right-hand side of (4.13) is exponentially
small with respect to N . More precisely, there holds:

‖u − uh‖h + ‖p − ph‖L2(Q̂) ≤ Ce−b 3√N .

Step 2: A generalization of the above result to arbitrary polygon domains� is
obtained as described in the proof of Proposition 2.6.5. �
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Appendix

A.1 Inverse Inequalities

Lemma A.1.1 Let I = (a, b) be a bounded interval and h = b − a. Then, for
every u ∈ Pp(I ) = {u(x) = � p

i=0 ai x i : ai ∈ �
, i = 1, 2 . . . , p} it holds that

‖u‖L∞(I ) ≤ 2
� 8

h � 1/q
p2/q‖u‖Lq(I ), 1 ≤ q ≤ ∞.

A proof of this result may be found in [47].

Lemma A.1.2 Let K ∈ T be an element in a finite element mesh T , i.e. there
exists an affine mapping F K with K = F K (K̂ ), where K̂ is either the reference
triangle or the reference square (cf. Section 1.3.1). Furthermore, let u ∈ PpK (K ),
pK ≥ 1. Then, there exists a constant C > 0 independent of u, pK and and of hK

such that the trace inequality

‖u‖L2(∂K ) ≤ C
pK√
hK
‖u‖L2(K ) (A.1)

holds true.

Proof : The statement follows directly from [58, Theorem 4.76] and a standard
scaling argument. �

A.2 Auxiliary Results in Weighted Sobolev Spaces

Without further specifications, all elements in the present Section are denoted by
K and are assumed to be triangles with vertices A1, A2, A3 satisfying the prop-
erties from Section 1.3.1. Additionally, suppose that the weight function from
Section 1.2 is given by

8β(x) = |x − A1|β = rβ,

with β ∈ [0, 1).

81
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A.2.1 Integration by Parts Formulas

In the following, nK denotes the unit outward vector on ∂K . Exemplarily, the
proof of the first lemma will be given in full details. The other statements may
then be proved in a completely similar way.

Lemma A.2.1 Let u ∈ H1,1
β (K )2 and v ∈ C1(K ). Then, the following integra-

tion by parts formula holds true�
K
v ∇ · u dx =

�
∂K
(u · nK )v ds −

�
K

u · ∇v dx.

Proof : First of all, note that all the integrals above are well-defined due to Lemma
1.3.2 and the fact that ∇ · u ∈ H 0,0

β (K ). Furthermore, since C∞(K ) is dense in

H1,1
β (K ), there exists a sequence {un}n∈ � ⊂ C∞(K )2 with un → u in H1,1

β (K )2.
Clearly, �

K
v∇ · un dx =

�
∂K
(un · nK )v ds −

�
K

un · ∇v dx

for all n ∈ � . Lemma 1.3.2 implies that����
�

K
v∇ · (u − un) dx

���� ≤ C‖v‖L∞(K )‖∇ · (u − un)‖H0,0
β (K )

≤ C‖v‖L∞(K )‖u − un‖H1,1
β (K ),

and ����
�

K
(u − un) · ∇v dx

���� ≤ ‖∇v‖L2(K )‖u − un‖L2(K )

≤ ‖∇v‖L2(K )‖u − un‖H1,1
β (K ).

Furthermore, again with Lemma 1.3.2,�
∂K
(u − un) · n�v ds ≤ ‖v‖L∞(∂K )‖u − un‖L1(K )

≤ C‖v‖L∞(∂K )‖u − un‖H1,1
β (K ).

Passing to the limits finishes the proof. �

Lemma A.2.2 Let u ∈ H1,1
β (K )2 and v ∈ C1(K )2. Then, there holds�

K
σ (u) : ε(v) dx =

�
∂K
(σ (u) · nK ) · v ds −

�
K
(∇ · σ (u)) · v dx,

where ε and σ are the tensor fields from Section 3.1.

Lemma A.2.3 Let τ ∈ H 1,1
β (K )2×2 and v ∈ C1(K )2. Then, it holds that�

K
(∇ · τ ) · v dx =

�
∂K
τ : (v ⊗ nK ) ds −

�
K
τ : ∇v dx.
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A.2.2 Trace Inequalities

The following two Lemmas hold true for triangles as well as for quadrilaterals.

Lemma A.2.4 Let e ∈ EK be an edge of K . Then, there holds:

i) if u ∈ H2(K ) and u = 0 at the vertices of K , then the trace u|e ∈ H1(e)
and

‖u‖2H1(e) ≤ ChK |u|2H2(K ), (A.2)

‖u‖2L2(e) ≤ Ch3
K |u|2H2(K ); (A.3)

ii) if u ∈ H2,2
β (K ), 0 < β < 1, and u = 0 at the vertices of K , then

‖u‖2H1(e) ≤ Ch1−2β
K |u|2

H2,2
β (K )

, (A.4)

‖u‖2L2(e) ≤ Ch3−2β
K |u|2

H2,2
β (K )

, (A.5)

if e does not contain the vertex A1.

Proof : The proof of this lemma may be found in [58, Lemma 4.55]. �

A.2.3 Compactness

Proposition A.2.5 The embedding H 1,1
β (K ) ⊂ L2(K ) is compact.

In order to prove this Proposition, the following two lemmas are required.

Lemma A.2.6 Let u ∈ H 1,1
β (K ). Then, there exists a constant C = C(β) > 0

such that �
K
|x|2β−2u2 dx ≤ C‖u‖2

H1,1
β (K )

.

Proof : The proof follows directly from [58, Lemma 4.18]. �

Lemma A.2.7 Let u ∈ H 1,1
β (K ). Then, rβu ∈ H1(K ).

Proof : Set v = rβu. Then,

D1v = β
�

x

y � rβ−2u + rβD1u,
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and thus
|D1v|2 ≤ C(r2β−2u2 + r2β |D1u|2).

With the aid of Lemma A.2.6, this results in

‖v‖2H1(K ) = ‖rβu‖2L2(K ) + ‖D1v‖2L2(K ) ≤ C‖u‖2
H1,1
β (K )

.

�

Remark A.2.8 In general, u ∈ H 1(K ) does not imply r−βu ∈ H1,1
β (K ). A

counter-example is given by u(x) ≡ 1. However, it may be proved easily that for
all u ∈ H1(K ), r−βu ∈ H1,1

β+ε(K ) for all ε ∈ (0, 1− β).

Proof : (Proposition A.2.5) The case β = 0 is already covered by Rellich’s Theo-
rem. Therefore, suppose that β > 0.

Let {u j }∞j=1 be a bounded sequence in H 1,1
β (K ). Then, due to the previous

Lemma A.2.7, {rβu j}∞j=1 is a bounded sequence in H 1(K ). Since H1(K ) is com-
pactly embedded in L t(K ) for all t ∈ [1,∞), there exists v ∈ L t(K ) and a
convergent subsequence {rβu j ′} j ′ such that

‖rβu j ′ − v‖L t (K )
j ′→∞−→ 0.

Now, putting u = r−βv implies that

‖u‖L2(K ) = ‖r−βv‖L2(K )

= ‖r−2βv2‖1/2

L1(K )

≤ ‖r−2β‖1/2
Ls(K )‖v2‖1/2

Ls′(K )

≤ ‖r−βs‖1/s

L2(K )‖vs′‖1/s′
L2(K )

≤ C‖v‖L2s′(K ),

where
1/s + 1/s′ = 1 and β < sβ < 1.

Thus, u ∈ L2(K ). In the same way it follows that

‖u j ′ − u‖L2(K ) ≤ C‖rβu j ′ − v‖L2s′(K )
j ′→∞−→ 0.

Hence, {u j ′} j ′ converges in L2(K ). �
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A.2.4 Poincaré Inequalities

Theorem A.2.9 Let
A : H1,1

β (K ) −→ �
be a continuous, linear operator with

ker A ∩ {u ≡ constant} = {0}. (A.6)

Then, the inequality

‖u‖L2(K ) ≤ C � |u|H1,1
β (K ) + |Au| � (A.7)

holds true.

Proof : (By contradiction) If (A.7) was false, there would exist a sequence

{u j }∞j=1 ⊂ H1,1
β (K )

such that
‖u j‖L2(K ) = 1 ∀ j,

and
|u j |H1,1

β (K ) + |Au j | j→∞−→ 0. (A.8)

Due to the previous Proposition A.2.5, there exists a subsequence {u j ′} j ′ and u ∈
L2(K ) such that

‖u j ′ − u‖L2(K )
j ′→∞−→ 0.

By (A.8) it follows that {u j ′} is a Cauchy sequence in H 1,1
β (K ) and hence {rβu j ′}

is Cauchy in H1(K ):

‖rβ(u j ′ − uk ′)‖H1(K ) ≤ C‖u j ′ − uk ′‖H1,1
β (K ) (cf. Lemma A.2.7).

Therefore, there exists v ∈ H 1(K ) with

‖rβu j ′ − v‖H1(K )
j ′→∞−→ 0.

Thus, u = r−βv. Moreover, for all ε ∈ (0, 1− β), there holds

|u j ′ − u|2
H1,1
β+ε(K )

= ‖rβ+ε|D1(r−β(rβu j ′ − v))|‖2L2(K )

≤ C‖rβ+ε(r−β−1|rβu j ′ − v| + r−β |D1(rβu j ′ − v)|)‖2L2(K )

≤ C‖r ε−1|rβu j ′ − v| + r ε|D1(rβu j ′ − v)|‖2L2(K )

≤ C
� �

K
r2ε−2|rβu j ′ − v|2 dx + ‖D1(rβu j ′ − v)‖2L2(K ) � .
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Applying Lemma A.2.6 yields

|u j ′ − u|2
H1,1
β+ε(K )

≤ C(‖rβu j ′ − v‖2H1,1
ε (K )

+ ‖D1(rβu j ′ − v)‖2L2(K ))

≤ C‖rβu j ′ − v‖2H1(K )

j ′→∞−→ 0.

Hence,

|u|H1,1
β+ε(K )

≤ |u − u j ′|H1,1
β+ε(K )

+ C |u j ′|H1,1
β (K )

j ′→∞−→ 0,

and therefore, u is constant on K . Furthermore,

|Au| ≤ |Au j ′| + |A(u − u j ′)|
≤ C(|Au j ′| + ‖u − u j ′‖H1,1

β (K ))
j ′→∞−→ 0,

and thus, by (A.6), u ≡ 0 on K , in contrast to

‖u‖L2(K ) = lim
j ′→∞

‖u j ′‖L2(K ) = 1.

�

Corollary A.2.10 (1st Poincaré Inequality) Let e ∈ EK be an edge of K . Then,
there holds that

���
u − 1

|e|
�

e
u ds ���

L2(K )
≤ Ch1−β

K |u|H1,1
β (K ) (A.9)

for all u ∈ H1,1
β (K ).

Proof : For u ∈ H1,1
β (K ), let

Au =
�

e
u ds.

Then, by Lemma 1.3.2, A : H1,1
β (K ) → �

is continuous, and inserting u −
1
|e| � e u ds into (A.7) completes the proof. �

Corollary A.2.11 (2nd Poincaré Inequality) For all u ∈ H1,1
β (K ) and for all

�K ⊂ K with � K̃ dx > 0 the following inequality holds true:

���
u − 1

| �K |
���

K
u dx ���

L2(K )
≤ Ch1−β

K |u|H1,1
β (K ). (A.10)
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Proof : Set

Au := 1

| �K |
� �

K
u dx.

Then,
|Au| ≤ ‖u‖L1(K ) ≤ C‖u‖L2(K ) ≤ C‖u‖H1,1

β (K ).

Hence, A : H1,1
β (K )→ �

is continuous and, inserting u− 1
|

�

K | �
�

K u dx into (A.7)

finishes the proof immediately. �

Proposition A.2.12 Let u ∈ H 2,2
β (K )2. Then, there exists a constant C > 0

independent of u and of h K such that

‖u‖2
H2,2
β (K )

≤ C
�
|u|2

H2,2
β (K )

+
�

e∈EK

���
�

e
u ds

��� 2 �
holds true.

Proof : The proof is very similar to the proof of [58, Lemma 4.16]. �

Proposition A.2.13 Let T be a finite element mesh on a polygon � (with 0D ⊂
∂�, � 0D

ds > 0) as in Section 1.3.1, and uh ∈ Vh , where Vh is a finite element
space as in (2.7). Then, there holds the following inequality

‖uh‖2L2(�)
≤ C

� �

K∈T
‖∇uh‖2L2(K ) +

�

e∈Eint,D

‖√d[uh]‖2L2(e) � ,
where C > 0 is a constant independent of h and of p, and d is the discontinuity
stabilization function from (2.8).

Remark A.2.14 The above Proposition is a generalization of [1, Lemma 2.1],
where a broken Poincaré inequality on convex polygons was proved.

Proof : (Proposition A.2.13) Due to Theorem [5, Theorem 2.1], there exists w ∈
H2,2
β (�), where β depends on the opening angles at the vertices of �, such that

−1w = uh in �
w = 0 on 0D

∇w · n� = 0 on 0N ,

and
‖w‖H2,2

β (�)
≤ C‖uh‖L2(�). (A.11)
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Therefore,

‖uh‖2L2(�)
= −

�

K∈T

�
K

uh1w dx

=
�

K∈T

�
K
∇w · ∇uh dx −

�

K∈T

�
∂K
(∇w · nK )uh ds

=
�

K∈T

�
K
∇w · ∇uh dx −

�

e∈Eint,D

�
e
∇w · [uh] ds.

Applying Lemma 1.3.2 c) and Lemma A.1.1 results in

‖uh‖2 ≤ C
� �

K∈T
‖∇uh‖L2(K )‖∇w‖L2(K ) +

�

e∈Eint,D

‖[uh]‖L∞(e)

�
e
|∇w| ds �

≤ C
� �

K∈T
‖∇uh‖L2(K )‖∇w‖L2(K )

+
�

K∈T

�

e∈Eint,D∩EK

‖√d[uh]‖L2(e)‖∇w‖L1(e) �
≤ C

� �

K∈T
‖∇uh‖L2(K )‖∇w‖L2(K )

+
�

K∈T
‖w‖H2,2

βK
(K )

�

e∈Eint,D∩EK

‖√d[uh]‖L2(e) �
≤ C‖w‖H2,2

β (�)

� �

K∈T
‖∇uh‖2L2(K ) +

�

e∈Eint,D

‖√d[uh]‖2L2(e) � 1/2

Using (A.11) and dividing both sides by ‖uh‖L2(�) completes the proof. �
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β (γ ) weighted Sobolev trace space on γ 7

Bl
β(�) weighted Sobolev space on � 7

C0(�) continuous functions on � 8

C∞(�) infinitely differentiable functions on � 6

C∞(�)2×2
sym symmetric 2× 2-matrices with entries in C∞(�) 15

EK set of edges of K 10

K0 elements abutting at a singular point 11

Pp polynomials of total degree at most p 16

Qp polynomials of degree at most p in each variable 16

Tγ graded mesh 27

Tn,σ geometric mesh 38

Vp either Pp or Qp 16

L, M lifting operators 72
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Limites Elliptiques. Springer–Verlag, New York, 1992.

[11] C. Bernardi and Y. Maday. Uniform inf-sup conditions for the spectral dis-
cretization of the Stokes problem. Math. Models Methods Appl. Sci., vol. 9,
pp. 395–414, 1999.

[12] E. Boillat and R. Stenberg. An hp error analysis of some Galerkin least
squares methods for the elasticity equations. Tech. Rep. 21-94, Helsinki
University of Technology, 1994.

[13] S. C. Brenner. Korn’s Inequality for Piecewise H 1 Vector Fields. Tech. Rep.
2002:05, Department of Mathematics, University of South Carolina, 2002.

[14] S. C. Brenner and L. Sung. Linear Finite Element Methods for Planar Linear
Elasticity. Math. Comp., vol. 59, pp. 321–338, 1992.

[15] F. Brezzi and M. Fortin. Mixed and Hybrid Finite Element Methods. In:
Springer Series in Computational Mathematics, vol. 15. Springer–Verlag,
New York, 1991.

[16] P. Castillo, B. Cockburn, I. Perugia, and D. Schötzau. An a priori error
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[44] I. Perugia and D. Schötzau. An hp-Analysis of the Local Discontinuous
Galerkin Method for Diffusion Problems. J. Sci. Comput., vol. 17 (1–4),
pp. 561–571, 2002.

[45] T. E. Petersen. A note on the convergence of the discontinuous Galerkin
method. Math. Comp., vol. 28, pp. 133–140, 1991.

[46] S. Prudhomme, F. Pascal, J. T. Oden, and A. Romkes. Review of A Priori
Estimation for Discontinuous Galerkin Methods. Tech. Rep. 00-27, TICAM,
University of Texas, Austin, 2000.

[47] A. Quarteroni. Some results of Bernstein and Jackson type for polynomial
approximation in L p spaces. Japan J. Appl. Math., vol. 1, pp. 173–181,
1984.

[48] A. Quarteroni and A. Valli. Numerical Approximation of Partial Differential
Equations. Springer–Verlag, 1994.

[49] W. H. Reed and T. R. Hill. Triangular mesh methods for the neutron trans-
port equation. Tech. Rep. LA-UR-73-479, Los Alamos Scientific Labora-
tory, 1973.

[50] G. Richter. An optimal-order error estimate for the discontinuous Galerkin
method. Math. Comp., vol. 50, pp. 75–88, 1988.

[51] G. Richter. The discontinuous Galerkin method with diffusion. Math. Comp.,
vol. 58, pp. 631–643, 1992.

[52] B. Rivière. Discontinuous Galerkin Methods for Solving the Miscible Dis-
placement Problem in Porous Media. Ph.D. thesis, University of Texas,
2000.

[53] B. Riviere and M. F. Wheeler. Optimal Error Estimates for Discontinu-
ous Galerkin Methods Applied to Linear Elasticity Problems. Tech. rep.,
TICAM, 2000.

[54] B. Rivière, M. F. Wheeler, and V. Girault. Improved energy estimates for
interior penalty, constrained and discontinuous Galerkin methods for elliptic
problems. Part I. Computational Geosciences 3, vol. 3-4, pp. 337–360, 1999.
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