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Abstract: In this note we present i) a microscopic model for the self-assembly of linear
wormlike micelles for which loop formation is allowed, and ii) an analytica mesoscopic
description of such systems. Both approaches predict the extent of loop formation under
different conditions. As a matter of fact, even if loop formation is unfavorable under certain
conditions, e.g., for stiff micelles and low end cap energies, they have to be treated correctly
in any statistical approach to their behavior, since their presence can significantly affect the
relaxation time spectrum, the rheological behavior and correlation function of various types.

Résumé:  Dans cette note nous présentons: i) un modéle microscopique de I’ auto-assemblage
des micelles vermiculaires pour lequelles on permet la formation de cycles; ii) une description
analytique de ces méme systemes a une echelle mesoscopique. Les deux approches permettent
de prédire le nombre de cycles formés dans des conditions données. La formation de cycles
est peu favorable, notemment dans le cas de micellesrigides et d’ énergies de scission faibles.
Mais, ces cycles doivent étre pris en compte dans toute approche statistique visanta décrire le
comportement des micelles vermiculaires. Elles peut affecter de facon notable comportement
rheol ogique, spectre de relaxation et diverses fonctions de correlations. *

. INTRODUCTION

It isusually argued that the population of closed loops (or rings) in wormlike micellar systems
isalwayssmall and can be neglected at all practical concentrations[1]. But at leastin Brownian
dynamics simulations we do observe loop formation, which is— for a positive end-cap energy
— an energetically favored, but entropically disfavored state of the system. How much it is
disfavored at first glance should depend mainly on i) the ratio between average length and
persistence length of the chains and ii) the end-cap energy. The average length in turn depends
on the end-cap energy and concentration, since the flexibility which is an intrinsic quantity, is
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affected by concentration. We will demonstrate it later. Hence, if the end-cap energy is large,
on one hand loop formation is preferred, on the other hand the ratio between average length and
persistence length becomes large. For the same reason the limiting case of no ring formation
is not simply obtained for very small end-cap energies, since then this ratio becomes small.
In together, we have two concurrent mechanisms which are affected by the end-cap energy.
With increasing concentration the average length increases, but the chains usually become
more flexible, such that we do not expect an universal increase or decrease of the ratio between
averagelength and persistencelength with concentration. For concentrated systemsthe end-cap
energy should play a more important role for loop formation than in the dilute case.

In the following we study the length distribution of linear wormlike micelles and related
guantities by using afunctional integral approach in connection with methods provided by the
statistical thermodynamics of Amphiphile self-assembly. [1,2]. The analytical results are in
agreement with findings from our Brownian dynamics computer simulations. The treatment
presented here is more general than the onesin [3,4] for polymers since it takes into account
semiflexibility and scission/recombination of micelles.

1. MESOSCOPIC MODEL
Chemical potential for self-assembling systems

Let us denote the chemical potential of a cluster (which has to be identified with a linear
chain) of size N in configuration s by x(V) = E(N) + kT pN), where E(N) denotesits energy
and p{V) stands for the number density of clusters of size NV in configuration s. In chemical
equilibrium, where al reactions N A; = Ay aswell aslinear combi natlons of these reactions
take place simultaneously, one usualy requires, for al s: Nu® = V) [1]. Hence we can
express the number densities of configurations s as

pM) o PNu® =B (1)
The number density of clustersof size N isthen
Z p{) = 1) [PV o ¢Me : @)
where the confl gurati onal integral
N
¢ = Z e~ BAE: ©)

S

has been introduced. The densities are subject to the constraint of fixed number of beads of the
total system, or alternatively, the bead concentration ¢ = - N p™). Within the context of the
following dimensionless analysis, ¢ has to be interpreted as the extent of contour length per
volume, measured in units of the width of the wormlike micelles. Obviously, the aim becomes
to calculate the configurational integral ¢(™) of acluster of size N.

In order to estimate the probability of finding loops, we split the configurational integral of

linear chains of size NV as
(N) Ioop

4,
q(N) = Q(()pa)w[l + (OOI))] (()pa)w[l + ]o\;faen Ez]’ (4)
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where gy, abbreviates the degeneracy of configurations with same energy and same size V.
The expression involvesthe ratio of degeneraciesof linear chainswith and without loopstimes
the Boltzmann factor according to the energy difference between a closed and open chain of
Size N. respectively.

Statistics of the wormlike chain

The wormlike chain model was first proposed by Kratky and Porod [5] and extended to the
continuum model (functional integrals) by Saitd, Takahashi and Yunoki [6] and Freed [7],
which is described by the statistical weighting factor p[r(s)] where the wormlike chain is
described by a continuous curvein three-dimensional spacer(s). Here, s measuresthe contour
length along the chain, 0 < s < L, « isthe bending elastic coefficient and u(s) = dr(s)/ds
the differential (tangent) of the curve r(s), and A a normalization constant which is equal to
the inverse of the partition function.

ple(s)] = Ae l_% 0 u?(s)ds — =k /0 L(u’)z(s)ds] . 5)

The stretching coefficient [ will be related to « below. So far, this model does not take into
account concentration effects, i.e., we should at least regard an effective «, being afunction of
concentration (see Tab. 1). But notice that the model works also in both limits, flexible chains
(k < L) aswell as tiff chains (« > L). Using the constraint |u(s)| = 1 which means that
the polymer chains cannot be stretched, Saitd et a. derived a approximate (series) solution
for the tangent distribution function (Green’'s function). There are many other contributions
in thisfield but no analytical solutions for all « and the case of |u(s)| = 1 are available. We
follow herethe most recent approach of Zhao, Sun and Zhang. They got analytical solutionsfor
any type of correlation function for the model (5) by studying the configurational statistics by
functional integrals in quasi-momentum space [8]. A fundamental quantity is the correlation
function

C(R,s) oc (é(r(s1) —r(s2) — R)), (6)

where s = s; — s2, 0 < s1,8, < L and (...) means the statistical average over various
configurations of the chain by functional integrals. In[8] it was stressed out that the correlation
functionsareactually morefundamental than the end-to-end distribution functionsfor wormlike
chains. As pointed out in [9], the end-to-end distribution function gives the mean end-to-end
distance as ( #?) = IL in the long chain limit, which in fact is only valid for ideal Gaussian
chains. For the average end-to-end distance they obtain, by making use of an additional
condition of the average length of the chain being L, which leadsto the relationship [ = 4«/3
[3,10]

(R?) = [[L- é(l — 72,
(R?) = IL fork—0 (Gaussian), (R?)=1? forkx— oo (rodike). (7)



Other reasonable constraints can be formulated and lead to dlightly different relationships
between [ and «, e.g., [ = 372x/16 (for [u?| = 1), = x/3[7] or also [ = 4x/3 by taking a
limit on C'(R., s) which reads 8]

C(R,s) = Ae F/4(s) (8)
where
l 1 Cn _ /3 3
al(s)zé[s—a(l—e )], and o = =5 9

Using (8) we get the average monomer-monomer distance (distinguished from the end-to-end
distance) separated by the contour distance s, for the wormlike chain model

(R (s) = 1 [3 - 3(1 - e—w)] , (10)

from which (7) follows under the additional condition cited above, since (R?) = (R?) (L).
From the correlation function the persistencelength /,(s) for finite contour distance s isderived

Lis)= S(1— ™), 1, =1,(1) (11)

Probability of loop formation

Now, to get the probability of finding the ends of alinear multibead chain with contour length
L or aternatively N beads (1. = a N with bond length « = 1 in order to use the same notation
as used in acomputational study of a discretized version of the wormlike chain model) within
afinite interaction distance r. ~ « = 1, we have to carry out the appropriate integral over
C(R,s)

loop RI<L

B = | /O'R'S”C(R,L)CFR]/[ /0' C(R, )R]

— /0 " R2C(R, L)dR)/| /0 " R2C(R, 1) dR] (12)

Two plots are givenin Fig. 1. We find the following scaling behavior (r. = 1)
loop
e = (kN)™C for N > (&,
IN
loop

jgvpen ~ (kON7% for N <(k, with (= g’ (13)
N
which isvalid for classical polymerstoo [11]. To derive the number density of living chains

of size N, i.e., N beads, one hasto determine the coefficient of proportionality in (2) from the
constraint of fixed concentration ¢ (by making use of Eq. 17)

g™

_ V) — S LN
¢ = %:Np —%:Nq(l)(p )

loop
= ¢° Z Ne_NaO[l + gé\,;en eEZ]
N N

loop

= e—Sa;2 + w_lzNe_Nao gé\,;en (14
N 9N




witha, = —logp® — 6,6 = E,+logw and qop = wl=1e2(N-1) 'wherew isindependent of
N for open chains[1]. An approximate expression for w as function of the bending coefficient
x we relate to the bending potential /() (see next section)

T 1
logw = / singe (1760 gy — (1 — 72, (15)
0 K
ie, w — 2177 and w — e for flexible and stiff chains, respectively. The expression

(15) reflects a scaling of the configurational integral with the contour length in units of the
persistence length. Inserting (13) into (14), with r. = 1, we have
¢ = ela _2 +w it Z N=2¢7Neao 4 y=1g=¢ Z N~-Y2e=Nao (16)
N<(x N>(x
Beforewe proceed we should recall relationships, whichwill befrequently usedinthefollowing
(forany £k +2 > 0, > 0):

o0

My = Y NHleoN o [T NEHLemoN N = [(f 4 2)a~(+2),
N=1 N=1

T4 10— (k4 2)/o,

My 41/ M, Tht2)

(17)

where (k) = (k — 1)!, if k£ isan integer. E.g., for linear chains without loops the density ¢
is proportional to the quantity M, with £ = 0 and the number and weight averaged sizes of
linear micelles are expressed through the M’sas[1]

n)y= ¢/ ™M = My/Mroa,  (n),, = Mypa/My. (18)
Obvioudly, in the classical case the ratio between weight and number average size is readily

evaluated as My, 1 My _1/M? = (k+2)/(k+ 1) = 2. In opposite, eval uating the bounded sums
in (16) which involve N**+1 with k£ + 2 < 0 is more complicated. For example, we have for

a, >0
(=3/2) = Z N2 = ,/ 1 Erf[\/a.(k]) aocml,/ —2¢/(k

N=(r
x g olr . .
M 3= N2V = ¢ — + a[Ei(—a,) — Ei(—au(k)]  (19)
N=1 (K

with the the error function Erf(..) and the exponentia integral function Ei(..). Here, we will
only treat extreme cases.
Analytical results

Quite stiff semiflexible chains To proceed with (16) in case of quite stiff chains, for which
(ka, > lisrequired, wefind

a, §Y25/2
pNSeR) = o NOTHRTIE01] | (€O (Ee)
p(N>CH) — e—N¢_1/28_6/2—5[1 4+ (KJN)_CGEZ] ~ e—N¢_1/26_6/2—6

<n># — ¢1/265/2: ¢1/26E2/2\/u_-}' (20)



As expected, in case of stiff chains and few loops we recover the classical resullt.

Flexible non-ideal chains In case of flexible chains, i.e., for x — 0, or even for x( < 1the
second term in (16) vanishes— N < (« cannot be fulfilled — and the remaining terms read

o= e‘5a;2 + w_llf_c, /l (21)
Q,

In case that loop formation is preferred, i.e., if the second term on the rhs of (21) dominates,
e.g., a large end-cap energies F,, for the size distribution and average weight size we get a
result which is now independent of £,

a, = (¢w)?rr3

p(N) = w ik CeNaoN—¢
(n),, = T(3/2)a;t = (w)x*(4r)"Y2.
(22)

Semiflexible chains In general, for chains with finite semiflexibility the nonlinear equation
for «, and the expression for the size distribution read

¢ = e’la?4+uwt [CCM(_s) + KMz
loop
pN) = g Nao[ 4 gévweEz], (23)
IN
Therich scaling behavior of (n),, , followsdirectly by inserting the solution for «, of (233) into
Egs. 13,19,18,23b. The number and weight averages involve also the symbols M_1/2), M(1/2)

and M(—Z) and M(—l)'

II.A BROWNIAN MOLECULAR DYNAMICS STUDY

Aswe mentioned before, the reason to study the probabilities of 1oop formation stemmed from
our observation of loops in model wormlike micellar systems. We will briefly introduce this
method and will concentrate on the equilibrium results, although the rheological properties
of the samples under study are also known [13], as studied within the framework of gene-
rally branched self-assembling systems by an extended version of the algorithm, a so called
Nonequilibrium Brownian dynamics computer simulation.

The Brownian dynamics method solves a many particle system numerically by adding sto-
chastic forces to the deterministic part of the equation of motions in accordance with the
fluctuation dissipation theorem. Typically, we study 500-5000 particles. The deterministic part
of the motion of our particlesis completely determined by the model potentials. Thefirst one
is aLennard-Jones potential which acts between al pairs of beads.



end-cap energy F = 4.7

end-cap energy F» = 8.1

Toop

P

0k loglem (), ()y b || 6 K oGk (n), () b
005 1 -126 398 266 053| 001 O -063 341 279 090
005 2 -148 491 307 100| |001 5 -176 7.88 464 269
005 3 -167 505 291 144| |00l 20 -239 849 460 136
005 5 -267 537 302 358| |00l 100 -271 501 238 578
005 10 -317 546 306 754| |002 O -062 369 3.07 040
005 20 -343 504 295 135| |002 5 -193 135 657 353
005 50 -399 520 252 312| |002 20 -294 146 898 186
005 100 -422 517 222 626| |002 100 -451 115 3.95 834
005 200 -510 406 194 942| |005 O -067 513 379 047
010 1 -127 574 367 063| |005 5 -225 200 100 380
010 2 -155 773 419 119| |005 20 -270 215 127 171
010 3 -225 894 448 211| |005 100 -340 344 128 750
010 5 271 928 478 343| |010 0 -079 100 459 041
010 10 -289 101 484 684| |010 5 -229 355 186 382
010 20 -290 114 48 120| |010 20 -280 384 219 145
010 50 -309 124 480 211| |010 100 -350 339 187 596
010 100 -431 127 399 549| |015 0 -101 192 682 041
010 200 -622 211 349 103.| |015 5 -239 430 219 389
020 1 -165 129 670 096| |015 20 -269 394 238 131
020 2 -183 119 640 138| |015 100 -319 347 185 380
020 3 -238 142 717 202| |020 O -115 222 841 052
020 5 -339 149 763 337| |020 5 -269 408 224 368
020 10 -317 165 7.87 573| |020 20 -281 578 303 132
020 20 -447 210 872 103| |020 100 -329 691 169 281
020 50 -339 229 798 233| (030 O -125 472 112 057
020 100 -281 230 694 398| |030 5 -160 493 231 295
020 200 -350 309 802 619| |030 20 -260 731 288 111
030 100 -341 533 239 217
Iogw% (Fp=81)
¢ k=0 5 20 100
001 -0.63 -176 -239 -271 logyo Zem (F2 = 4.7)
002 -0.62 -193 -294 -451 ¢ k=1 2 3 5 10 20 50 100 200
005 -0.67 -225 -270 -340| [005 -1.26 -1.48-1.67 -2.67 -3.17 -3.43 -3.99 -4.22 -5.10
010 -0.79 -229 -280 -350| [010 -1.27 -155-2.25-2.71-2.89-2.90 -3.09 -4.31 -6.22
015 -101 -239 -269 -319| [020 -1.65 -1.83-2.38-3.39-3.17 -4.47 -3.39 -2.81 -3.50
020 -115 -269 -281 -3.29
030 -125 -160 -260 -3.41

Tab. 1. Preliminary results from a Brownian dynamics computer simulation of linear wormlike micel-
les. Given are extracted values for the number and weight size averages (n),,, aswell as the number
of loops per bead and the measured persistence length /,, for different bead number concentrations ¢,
end-cap energies £, and bending coefficients .
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Fig. 1. Analyticresultsfor the probability of loop formation asfunction of thelength of awormlikechain
(N = L/a) andthe persistencelength. The resultsfor wormlike micellar (living) chainsincorporatethe
nature of scission and are discussed in the text. They depend on the end-cap energy and concentration
too. The persistence length /,, and N are measured in units of the width of the wormlike chain. Left:
I, =1,3,5,10, 20, 30, 50, 100. Right: N = 3,5, 10, 20, 50, 100, 1000.

Second, in order to form chains, an attractive nonlinear spring force (FENE-C potential,
introduced in [14]) acts between all pairs of beads (whose spatial distance is below a certain
threshold value) as long as both beads have only one or two interacting neighbors. Such a
transient bond between connected beads defines the chain itself as well as its contour and it
breaksif any bond length exceeds the threshold value. The parameters of the FENE-C potential
define the end-cap energy F, of our model.

Moreover, we apply a bending potential which makesit possible to study chainswith different
flexibilities, it is a bending potential between neighboring bonds within chains of the form
U(¥) = k[1—cos(?)], where « isthe bending coefficient and ¥ isthe angle between connected
bonds, such that + = 0 for a stretched chain. Here, we present results of a Brownian dynamics
simulation which does not take into account hydrodynamic interactions [15]. Someresults are
collectedin Tab. 1. The agreement with thetheoretical predictionsisgood for all concentrations,
if the effect of concentration isincorporated into the bending coefficient.

I1l. CONCLUSIONS

In this note we presented a route to the study of the statics and dynamics of loop formation
in wormlike micellar systems. As shown, the probability of finding loops depends only on the
end-cap energy and the persistence length, as the effect of concentration can be incorporated
into arelationship between elastic bending coefficient and persistence length. With increasing
concentration the persistencelength increasesuntil loop formation becomesvery unprobable, at
high concentration the persistence length and hence the effective bending coefficient decrease
dueto collisionswhich occur on alength scalewhichiscomparableto the mesh size. Hence, for



real systems, if the persistencelength and the probability of loops has been determined, e.g., by
optical methods[16], the end-cap energy and the size distribution of micelles can be estimated
by using the above formulas. We did not estimate the effect of branching on the number of
loops here. A more complete discussion, which treats also branchings will be available soon
[13].
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