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ABSTRACT

In this thesis, a new method for non-destructive testing (NDT) of cylindrical structures is
developed. The aim is the detection of defects as well as the determination of their posi-
tions. In order to avoid the time-consuming scanning of the whole structure, as it is done
in classical ultrasonic testing methods, guided elastic waves are used instead. Structural
waves are excited and propagated along the sample. These waves interact with a possible
defect which results in a scattered wave field. This field is measured at different loca-
tions distributed equally around a circumference at a fixed axial coordinate. Instead of
analyzing these complex time signals to determine the presence and position of a defect
as is done in many other NDT methods, the recorded signals are evaluated with a time
reverse numerical simulation (TRNS). This new combination of experiment, time rever-
sal method and numerical simulation provides a fast and valuable tool for the NDT of
large structures.

The main idea of the method is the time reversal of the wave propagation phenomena.
This is applicable because the equations describing the wave propagation are time-rever-
sal-invariant. If the time histories of a wave experiment with a point source are reversed
in time and played back in the identical structure, the waves travel back the same path
and interfere constructively which leads to an amplitude increase at their origin. This
means that if one plays back the scattered field, generated by a defect, the retransmitted
waves interfere exactly at the position of the defect.

Therefore, an experiment is performed in a defective tube and the displacements of
the scattered field are measured at several points along the circumference at one end.
Since the TRNS method only works if all three displacement components are played
back, a three-dimensional vibrometer is built. The laser beam of a commercial interfer-
ometer is divided into three beams using two beamsplitters. Then, the three beams are
guided from different directions onto one spot on the surface of the structure.

Instead of playing back the time histories in the experiment as is done in common
time reversal applications, this step is replaced by a simulation. The main advantage of
this new approach is the determination of the position of the interference and the maxi-
mum amplitude. While in an experiment, one would have to scan the structure to find the
maximum, in a numerical simulation the displacement and stress components can easily
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be monitored. Another benefit is that the accurate excitation of all three displacements in
the corresponding points is very difficult in an experiment but easy in the numerical sim-
ulation.

To perform the simulations, the structure is implemented in a numerical code. Even if
no defect is present in the simulated sample, the played back displacement histories
interfere, and the maximum amplitude is reached at the exact position where the defect
was located during the experiment. This works as long as the simulated structure and the
sample used in the experiment are identical in terms of material and geometrical parame-
ters and boundary conditions.

Due to the non-axisymmetric scattered fields and the implementation of part-through
notches, a three-dimensional code in cylindrical coordinates is used in the present work.
The applied algorithm is a displacement-stress finite-difference code. In order to deter-
mine the exact axial and circumferential position of the defects, the numerical simulation
must be of high accuracy. Special care must be taken to eliminate errors due to numerical
dispersion. Even though the implementation of a second-order accurate code is much
easier, especially for the boundary conditions, a fourth-order algorithm is used. This is
due to the fact that the fine grid, which is required for an accurate second-order code
exceeds the computational hardware. Therefore, a three-dimensional code in cylindrical
coordinates which is fourth-order accurate in axial and circumferential direction, and
second-order accurate in radial direction and time has been implemented for the first
time.

To verify the applicability of the TRNS method to the NDT of tubes, the entire proce-
dure is simulated. This eliminates the errors caused by the experimental measurements
and the uncertainties of the material and geometrical parameters of the test samples. The
obtained result verifies the concept of the TRNS method.

Then, different experiments are performed with axial and circumferential notches as
well as a notch that is orientated at a 45 degree angle with respect to the axis of the tube.
The defects are at a distance of 0.8 m from the measurement position and are only part-
through the thickness of the tubes. The waves are excited with an axisymmetric piezo-
electric element glued to one end of the tube. However, since the time signals are not
analyzed directly, there is no need to excite specific wave modes. Basically, any excita-
tion that generates a scattered field at the defect can be applied.

The experimental results show that the defects are detected in all cases and that the
axial, as well as the circumferential positions and the orientation of the defect could be
determined with great accuracy. Even for very small defects with only 0.3% of the cross-
sectional area removed, the TRNS method still provides good results.

The new NDT method of the present thesis is developed and tested for the case of
cylindrical structures and homogeneous isotropic material. However, the idea can be
applied to structures with other geometries and material behavior as well.
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ZUSAMMENFASSUNG

In dieser Arbeit wird eine neue Methode zur zerstörungsfreien Detektion von Defekten
in zylindrischen Strukturen entwickelt und vorgestellt. Im Gegensatz zur klassischen
Ultraschallprüfung werden hier geführte, elastische Wellen verwendet. Dadurch kann
das zeitaufwendige Abtasten der gesamten Struktur vermieden werden. Die Strukturwel-
len werden an einem Ende angeregt und breiten sich entlang des Probestückes aus. Im
Falle eines Fehlers interagieren die Wellen mit dem Defekt, und es entsteht ein gestreutes
Wellenfeld. Diese Verschiebungen werden an verschiedenen Punkten, entlang einem
Umfang an einer fixen axialen Stelle, in Funktion der Zeit gemessen. Auf Grund der vie-
len Wellenmoden sind diese Zeitsignale sehr kompliziert und schwierig zu interpretieren.
Deshalb werden sie, im Gegensatz zu vielen anderen Methoden, nicht direkt analysiert,
sondern mit Hilfe einer numerischen Simulation der Zeitumkehr-Methode (time reverse
numerical simulation, TRNS) ausgewertet um den Fehler zu detektieren und seine Posi-
tion zu bestimmen. Diese neuartige Kombination von Experimenten, der Zeitumkehr-
Methode und Simulationen liefert ein schnelles und wertvolles Werkzeug für die zerstö-
rungsfreie Prüfung grosser Strukturen.

Die Methode basiert auf der zeitlichen Umkehr von Wellenausbreitungsphänomenen.
Wenn man die aufgenommenen Zeitsignale aus einem Wellenexperiment mit Punktanre-
gung zeitlich umkehrt und in derselben Struktur zurückspielt, laufen die Wellen den glei-
chen Weg zurück und interferieren konstruktiv an ihrem Ursprung, was zu einer
detektierbaren Amplitudenüberhöhung führt. In Bezug auf gestreute Wellenfelder von
Defekten bedeutet dies, dass die zurückgespielten Wellen an der Stelle des Fehlers
fokussiert werden.

Zuerst werden in einem Experiment mit Hilfe eines piezoelektrischen Elementes
Strukturwellen in einem fehlerhaften Rohr angeregt. Die Verschiebungen des gestreuten
Wellenfeldes werden in mehreren Punkten entlang einem Umfang aufgenommen. Eine
Voraussetzung für ein korrektes Interferieren in der Zeitumkehr-Simulation ist, dass alle
drei Verschiebungskomponenten zurückgespielt werden müssen. Deshalb wurde ein
Vibrometer gebaut, das drei Verschiebungsrichtungen messen kann. Der Laserstrahl
eines herkömmlichen Laserinterferometers wird durch zwei Strahlteiler in drei Strahlen
aufgeteilt, welche dann mittels Spiegeln von drei verschiedenen Richtungen auf einen
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Punkt der Struktur fokussiert werden.
Anstatt die zeitlich umgekehrten Wellen wieder in dem Experiment zurückzuspielen,

wie dies üblicherweise bei Zeitumkehr-Experimenten der Fall ist, wird dieser Schritt
durch eine Simulation ersetzt. Dieser neue Ansatz hat die beiden folgenden Vorteile. Die
Anregung aller drei Verschiebungsrichtungen in den entsprechenden Punkten des Prüf-
körpers ist im Experiment sehr schwierig, in der Simulation jedoch einfach zu realisie-
ren. Ausserdem müsste man im Experiment die gesamte Oberfläche der Struktur
während dem Zurückspielen abgetasten, um den Ort der Amplitudenüberhöhung zu fin-
den. Dieses Abtasten kann eliminiert werden, da die Verschiebungs- und Spannungs-
komponenten in der Simulation einfach visualisiert und beobachtet werden können.

Dazu wird das Testobjekt mittels einem numerischen Modell beschrieben. Solange
sowohl Geometrie, als auch Materialdaten und Randbedingungen der simulierten Struk-
tur genau mit denjenigen des Testobjektes übereinstimmen, interferieren die zurückge-
spielten Wellen genau an der Stelle, wo der Fehler im Experiment war, auch wenn gar
kein Fehler in der Simulation implementiert wird. Aufgrund des nicht axialsymmetri-
schen, gestreuten Feldes ist ein dreidimensionaler Algorithmus in Zylinderkoordinaten
notwendig. Hier wurde ein Verschiebungs-Spannungs-Finite-Differenzen Code verwen-
det. Um die genaue Position der Fehler zu bestimmen, muss der Algorithmus eine hohe
Genauigkeit aufweisen. Insbesondere müssen die Fehler aufgrund der numerischen
Dispersion klein gehalten werden. Da das feine Gitter, welches für eine genügende
Genauigkeit des 2. Ordnung-Codes notwendig wäre, an die Grenzen der Computerlei-
stungen stösst, wird eine Approximation höherer Ordnung verwendet. Dazu wurde zum
ersten Mal ein dreidimensionaler Algorithmus in Zylinderkoordinaten mit einer Genau-
igkeit von 4. Ordnung in axialer und tangentialer Richtung und 2. Ordnung in radialer
Richtung und der Zeit implementiert. 

Zur Überprüfung der Anwendbarkeit der TRNS-Methode zur zerstörungsfreien Prü-
fung von Rohren, wird der gesamte Ablauf, d.h. auch der experimentelle Teil, simuliert.
Die genauen Resultate verifizieren das Prinzip der entwickelten TRNS-Methode.

Experimente an Aluminiumrohren mit verschiedenen Nuten, welche in Bezug auf die
Wandstärke nicht durchgehend sind, wurden durchgeführt. Die Defekte befinden sich
jeweils etwa 0.8 Meter von der Mess- und Anregungsstelle entfernt. Obwohl in den
Experimenten ein axialsymmetrisches Piezoelement verwendet wurde, kann im Prinzip
eine beliebige Anregung verwendet werden. Dies ist möglich, da die Zeitsignale nie
direkt analysiert werden müssen und darum keine definierten Wellenmoden notwendig
sind. Die experimentellen Resultate zeigen, dass nicht nur alle Nuten erkannt wurden,
sondern dass sowohl deren axiale, als auch tangentiale Position und die Orientierung der
Fehler genau bestimmt werden können. Sogar bei sehr kleinen Nuten, wo nur gerade
0.3% der Querschnittsfläche entfernt wurde, kann die Position bestimmt werden.

Diese neue Methode zur zerstörungsfreien Prüfung, welche in der vorliegenden
Arbeit anhand von homogenen, isotropen Rohren hergeleitet und getestet wurde, kann
natürlich auch auf Strukturen andere Geometrien und Materialien angewendet werden.
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1. INTRODUCTION

1.1 Motivation

The extensive use of pipes in many applications and installations demands non-
destructive testing (NDT) methods to ensure the safety of the environment. The
integrity of pipeline systems is not only vital to the industry but also crucial in
terms of water, oil, gas, chemical, or nuclear leakage. The increasing application of
tubes asks for fast and simple NDT methods. Therefore, quality control requires
that structures are tested on-line during the manufacturing process, which is
described in detail in [58]. To monitor the conditions during the service, field
inspections are performed periodically. In the last decades, a variety of NDT proce-
dures, such as eddy-current testing, radiography, ultrasonic testing, thermography,
magnetic particle examination, and many others, have been developed and used.
The various operating methods are explained in [58], while Bar-Cohen provides a
good overview of the techniques currently applied in [3]. The method most fre-
quently used on pipelines is the ultrasonic testing (UT). In traditional UT, mechan-
ical waves in the MHz range are used to test the structures. Since these high-
frequency waves are damped out quickly, the method can only be applied to
inspect the area below or adjacent to the transducer. Therefore, the probe must be
moved over the whole surface of the object to be tested, which is very time-con-
suming and requires overall access.

An alternative method for single location measurements is the use of guided
elastic waves which propagate along the structure. The wavelengths of these struc-
tural waves are several times the thickness of the structure (e.g. a beam, plate, or
shell) and are at least an order of magnitude larger than the ones used in traditional
UT. In spite of the large wavelength, small defects can still be detected as shown by
Dual et al. [12] who use guided waves for the detection of defects in rods. The
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advantage of guided waves is that they travel many wavelengths along a structure,
depending on material and geometry. This enables fast long-range testing and
eliminates the need to scan the whole sample. Since structural waves propagate
along the structure, even normally inaccessible regions can be tested and the
removal of any insulation can be avoided.

Motivated by the existing know-how of elastic wave propagation in cylindrical
structures at the Center of Mechanics at the ETH Zurich, which was achieved by
the dissertations of Dual [10], Vollmann [56], and Gsell [22], the goal of the
present work is the development of a NDT method for the detection of defects in
cylindrical structures using guided waves. Displacement measurements taken from
only a few positions are analyzed to inspect a large part of the structure and to
determine the axial as well as the circumferential position of the notches and their
orientation.

1.2 Guided waves in cylindrical tubes

Guided waves appear if an elastic wave propagates between two boundaries, e.g. in
plates or shells. The superpositions of compression and shear waves caused by
multiple reflections from the boundaries lead to interference patterns which form
guided wave packets. These different modes propagate along the structure at dif-
ferent velocities.

The first paper on an exact theoretical investigation of guided wave propagation
in hollow circular cylindrical structures in the isotropic case was written by Gazis
in 1959 [18]. The displacement components of non-axisymmetric harmonic waves,
travelling in the axial direction, can be written in cylindrical coordinates 
in the form

(1.1)

where , , and  denote the displacement components in radial, circumferen-
tial, and axial direction, respectively. , , and  are the corresponding dis-
placement amplitudes which can be composed of Bessel functions.  is
the circumferential order,  the axial wave number, and  the angular frequency.

r j z, ,( )

ur Ur r( ) nj( )cos wt kz+( )cosÿ ÿ=

uj Uj r( ) nj( )sin wt kz+( )cosÿ ÿ=

uz Uz r( ) nj( )cos wt kz+( )sinÿ ÿ=

ur uj uz
Ur Uj Uz

n 0,1,2,...=
k w
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Three different classes of modes can be recognized in infinitely long pipes, all
propagating along the axis of the tube. Gazis showed that there are a doubly infi-
nite number of modes for a circular cylinder, which includes an infinite number of
torsional modes, an infinite number of longitudinal modes, and a doubly infinite
number of flexural modes. Following the notation of Meitzler [35], Silk and Bain-
ton [47], and Rose [40], they are designated as follows

• longitudinal modes: (axisymmetric modes)

• torsional modes: (axisymmetric modes)

• flexural modes: (non-axisymmetric modes)

with mode number  and circumferential order  for the
flexural modes. The longitudinal and torsional modes for which  are axi-
symmetric. For the other circumferential orders the displacements are no longer
axisymmetric and the occurring modes are the non-axisymmetric flexural modes.

Dispersion diagrams are an effective means to visualize the dispersive behavior
of the structure and to anticipate what modes to expect at a particular frequency.
Dispersion means, that the velocity of a wave is a function of its frequency or
wavelength. The modes depend on material properties and characteristic geometri-
cal parameters of the waveguide, such as radius and wall thickness in the case of
pipes.

In Fig. 1.1 one method for representing the dispersion relation of an isotropic
aluminum tube with a radius of midplane  and a wall thickness

 is depicted. The exact material parameters are given in Table A.1 in
Appendix A.1. The wave numbers of the different modes are plotted versus the fre-
quency up to . The first three longitudinal and two torsional modes (cir-
cumferential order ), which are axisymmetric modes, are plotted as dashed
black curves. The solid gray lines correspond to the first five non-axisymmetric
flexural modes with . The flexural modes with circumferential order higher
than one are not plotted.
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Figure 1.1: Frequency spectrum for an aluminum tube (data see Table A.1 in Appendix 
A.1). The axisymmetric longitudinal and torsional wave modes for n = 0 (dashed black 
curves) and the flexural modes for n = 1 (solid gray lines) are plotted.

Another method to display the various wave modes is shown in Fig. 1.2, where the
phase velocities of the modes are given as a function of frequency.

Figure 1.2: Phase velocity dispersion curves for an aluminum tube (data see Table A.1 in 
Appendix A.1). The axisymmetric modes (longitudinal and torsional) are plotted as dashed 
black lines while the gray curves correspond to the flexural modes with n = 1.
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In the third frequently used dispersion diagram the group velocity curves are plot-
ted versus frequency (Fig. 1.3) or wave number. The group velocity is defined as

(1.2)

The group velocity corresponds to the propagation velocity of a group of waves of
similar frequency. It can also be understood as the velocity at which the energy of a
wave packet travels.

Figure 1.3: Group velocity dispersion curves for an aluminum tube (data see Table A.1 in 
Appendix A.1) for longitudinal L(0,m) and torsional T(0,m) modes (shown as dashed black 
lines), and flexural F(1,m) modes (solid gray curves).

The dispersion diagrams are generated using a numerical analytical method
(NAM) described by Nelson et al. [38], which is based on the variational principle
of the mechanical energy. Therefore, the functions for the displacements from Eq.
(1.1) are used to calculate the kinetic and strain energies. The three functions

, , and  are approximated by linear finite elements. The varia-
tion of the total energy leads to a generalized eigenvalue problem for each wave
number . The natural frequencies at the particular wave number can be calculated
from the resulting eigenvalues and the eigenvectors correspond to the displace-
ments of the nodes. For a detailed description of this effective and fast method for
the determination of dispersion diagrams, the reader is referred to the dissertation
by Gsell [22].
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While in the case of longitudinal modes  the radial and axial particle
motions are coupled and no tangential displacements exist, the only occurring dis-
placements for torsional modes  are circumferential. The reason is that the
equation of motion in circumferential direction is uncoupled from the equations of
motion in radial and axial directions. With non-axisymmetric modes  all
three particle motions are coupled to one another.

To illustrate the coupling of radial and axial displacements of the longitudinal
modes, the normalized displacements are plotted versus the tube thickness for the
modes L(0,1) and L(0,2) in Fig. 1.4.

Figure 1.4: Radial (dashed line) and axial (solid line) displacements of the longitudinal 

modes L(0,1) [left, k ≈ 586 m-1] and L(0,2) [right, k ≈ 172 m-1] at 150 kHz for an aluminum 
tube (data see Table A.1 in Appendix A.1). The displacements are normalized and plotted 
versus the radial coordinate. Due to the curvature, the displacements are not symmetric 
with respect to the midplane.

Compared to guided waves in plates, the displacements are no longer symmetric
with respect to the midplane of the wall (with Radius ). The reason is the curva-
ture of the tube. Especially at higher frequencies the cross-sections do not remain
plane and the displacements are neither constant over the thickness of the tube nor
a linear function of  (Fig. 1.5), which justifies the use of the three-dimensional
theory instead of the shell theory.
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Figure 1.5: Radial (dashed line) and axial (solid line) displacements of the longitudinal 

modes L(0,1) [left, k ≈ 2320 m-1] and L(0,2) [right, k ≈ 1290 m-1] at 1 MHz for an aluminum 
tube (data see Table A.1 in Appendix A.1). The displacements are normalized and plotted 
versus the radial coordinate. Due to the curvature, the displacements are not symmetric 
with respect to the midplane.

1.3 Common NDT approaches using guided waves

The idea of using guided waves for improved inspection efficiency has been
around for many years. The nature of the guided waves is such that they propagate
along the tube for many wavelengths before being attenuated. Any potential
defects within this range reflect some of the incident waves and the displacements
of these scattered waves are recorded and interpreted to detect the flaws. Rose et al.
[42] list the main advantages of this technique compared to the normal beam ultra-
sonic or eddy current methods as follows:

• The ability to simultaneously inspect a large length of tubing thus greatly
increasing the cost-effectiveness of inspections.

• The ability to simultaneously inspect the entire cross-section of the tubes,
resulting in 100% coverage.

• No need for complicated and expensive insertion or rotation devices since
the probe does not have to be moved during the inspection.

• An increased sensitivity to many of the defects occurring in the tubes.

Already in 1976, Mohr and Höller [37] used electrodynamic transducers for the
non-contacting excitation of the L(0,2) and T(0,1) modes in tubes for the detection
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of echos in the time signals from tangential, and longitudinal notches, respectively.
A survey of the history of guided wave inspection as well as early and recent
guided wave pioneering work in the area of guided waves is provided by Rose
[41].

The principle of the most commonly used guided wave techniques is the inter-
pretation of reflections from faults in the time signals. However, this is a difficult
task since after the interaction with a defect several wave modes are present in hol-
low cylinders, even with an axisymmetric excitation. Another problem is that the
modes are generally dispersive, which means that the shape of a propagating wave
changes with distance along the propagating path.

The concept of Alleyne et al. [1] consists in choosing one specific mode in a
non dispersive frequency range which they try to excite in isolation. They use a
large number of transducers (e.g. 16 for a 76 mm diameter pipe) which are distrib-
uted evenly around the circumference and driven in a parallel manner. Using multi-
ple transducer rings of that type, mounted at intervals of the wavelength, they are
able to excite mainly one axisymmetric longitudinal mode. Using the same trans-
ducers, the reflections from defects, welds and flanges are recorded. Their goal
was the detection of regions of corrosion larger than  in dimension and

 depth (where  denotes the thickness of the wall), which they achieved in
field experiments in ranges of up to  with an axial accuracy of approximately

 ([2]). To distinguish between axisymmetric reflections from welds and
non-axisymmetric echos from defects, Lowe et al. [32] introduce an angularly
dependent phase lag to each transducer element of the receiver before summing
their signals.

Shin and Rose [44] use transducers placed on variable angle beam shoes for the
excitation and detection of non-axisymmetric waves. The motivation is that the
generation of axisymmetric waves is often hard to achieve due to limited access.
For 100% inspection coverage, however, three-dimensional tuning (distance, fre-
quency, and angle tuning) must be employed to avoid blind spots.

The above mentioned methods are successfully applied to locate the axial posi-
tions of defects in long range NDT. Therefore, the recorded time signals are ana-
lyzed to determine the time differences between the incident wave and the
reflections. This result is distorted due to the dispersive behavior of the wave pack-
ets. The second challenge consists in the selection of the appropriate group veloc-
ity from the dispersion diagram. Even with a single-mode pulse, the waves
reflected from the defects are multi-mode due to mode conversion. Hence, the
determination of the corresponding modes and their velocities is no longer straight-
forward.

3h 3hµ
h 2• h

15 m
100 mm
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Another method for the NDT is the application of the time reverse method
described by Fink [14]. The principle of this method is explained in detail in
Chapter 3.1. Ing et al. [26] use the time reverse method to detect flaws in plates.
The scattered field from a defect is recorded using an array of transducers. Then
these signals are reversed in time and retransmitted in another experiment into the
same structure. This procedure is repeated several times until the location of the
defect can be determined by analyzing the time signals from the different transduc-
ers. In another experiment, they use a laser interferometer to detect the origin of a
wave. Therefore, the time reversed signals measured again with the transducer
array are retransmitted and the position with the maximum amplitude in the time
reversed experiment is found by searching the maximum displacement with a laser.

1.4 Objective and outline of the present work

The goal of the present work consists in the development of a long-range NDT
approach for cylindrical structures, which is based on guided elastic waves and not
only allows the detection of the axial and circumferential position but also the ori-
entation of defects. Instead of directly analyzing the time signals, another concept
is used to detect the positions of notches. The recorded signals which are reflected
from the defect are reversed in time and used as excitation signals for a simulation
of waves in pipes.

For the simulations, a three-dimensional code to describe the phenomena of
wave propagation in hollow cylinders is necessary. The technique applied in the
present thesis is based on the finite-difference method (FDM) and is described in
detail in Chapter 2. A three-dimensional code in cylindrical coordinates which is
fourth-order accurate in axial and tangential, and second-order accurate in radial
direction and time is implemented for the first time.

 Compared to commonly used time reverse methods, the recorded signals are
not played back in another experiment on the defective structure, but are used as
input data for a numerical simulation. This is a new approach and eliminates the
time-consuming scanning of the structure and the interpretation of the time signals.
The principle of the time reverse method and its verification is discussed in
Chapter 3. One of the benefits is that even small reflections that are barely visible
in the time signals can be used to find defects. Since there is no need to assign the
reflections in the time signals to a specific mode, any method for generating scat-
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tered fields from the defects can be used. A complicated setup for generating only
one specific wave mode is not necessary. The experimental results for different
notches, the evaluation procedure, and the testing setup are presented in Chapter 4.

The combination of experimental measurements, the time reversal method, and
numerical simulations, which is done for the first time to the authors knowledge,
provides a new tool for the fast NDT of large structures. In the present thesis, the
method is developed and tested for the case of cylindrical structures and homoge-
neous isotropic material. However, the idea can also be applied to structures with
other geometries and material behavior.
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2. NUMERICAL SIMULATION OF WAVE
PROPAGATION

2.1 Introduction

Numerical simulations are very useful methods to describe wave propagation phe-
nomena in more complex structures. While analytically, it is very difficult to find
an exact solution for the interaction of waves with a defect in a tube, the scattered
wave fields that occur can be calculated more easily numerically. The numerical
treatment of complicated three-dimensional problems is becoming increasingly
popular due to the fast development of computational hardware and the decline of
computing costs. In order to solve a problem numerically, the area is divided into
many small cells, and the appropriate equations and boundary conditions are ful-
filled for each cell.

Today, the following three numerical methods are used predominantly for the
simulation of wave propagation in linear elastic media.

In the finite integration technique (FIT) (see Marklein [34] and Schubert et al.
[43]), the basic laws of physics of the problem are spatially discretized by an inte-
gration of the differential equations over a certain control volume or integration
cell. The temporal discretization is done by using second-order central differences
in time, which leads to an explicit scheme.

The second procedure is the finite-difference time domain method (FDTD),
which was introduced in 1966 by Yee [59] to discretize the differential form of
Maxwell’s equations. The algorithm was applied for the first time to the elastic
equations for homogeneous isotropic material in two dimensions by Madariaga in
1976 [33]. In the FDTD method the coupled partial differential equations which
describe the physics of the problem are directly discretized in time and space by
using central differences, which also results in an explicit solution. 
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The finite element method (FEM) which is described by Bathe [4], among oth-
ers, is the third algorithm used for numerical simulations. Instead of discretizing
the basic laws of physics directly, they are solved by using the variational principle
to minimize the corresponding energy function. The discretization of time can
either be done explicitly by central differences or implicitly by using the integra-
tion method of Newmark (see Ref. [57]).

All three methods are applied successfully in different areas, such as continuum
mechanics, fluid dynamics, acoustics, and electrodynamics. Although the proce-
dures can be implemented quite easily and in a straightforward manner, certain
restrictions must be met. Errors resulting from numerical dispersion can be kept
small by using a sufficiently high spatial sampling rate (see Chapter 2.4). The sec-
ond crucial parameter is the time step used for the temporal discretization. In order
to obtain a stable scheme, the stability criterion must be satisfied (see Chapter 2.3).
The advantages and disadvantages of the FDTD and FEM procedures, especially
the higher computational costs of the finite elements, are discussed by Gsell [22].

In this thesis, the FDTD method for cylindrical coordinates will be used
(Chapter 2.2.1). In the last few years, the algorithm of Yee, which has second-order
accuracy in space and time, was applied to many different problems. A selective
survey of the finite-difference time domain literature is given by Shlager and
Schneider [46]. In his original scheme, Yee distributed the electric and electromag-
netic field components on a staggered grid in space and time domain. Madariaga’s
method, which also uses the allocation of velocity and stress components on a stag-
gered grid, is known as the velocity-stress finite-difference method (VS-FD). The
main purpose for using a staggered grid is to calculate spatial derivatives halfway
between two grid points. Hence, if a component is needed between two defined
grid points, its value has to be averaged. In 1984 and 1986 Virieux ([54], [55])
applied the VS-FD method to geophysical problems such as the SH- and P-SV-
wave propagation in heterogeneous media in two dimensions. With increasing
computer power, the simulation of three-dimensional problems gathered interest in
the FDTD-related research activities. Temple [52] described the propagation and
scattering of elastic waves in inhomogeneous anisotropic media in three-dimen-
sional Cartesian coordinates in 1988. A three-dimensional code in cylindrical coor-
dinates was published in 1998 by Chen and Chew [6].

In order to model open region problems or larger structures, it is necessary to
truncate the computational domain. Therefore, absorbing boundary conditions
(ABC) are implemented, which is one of the most active research area in the FDTD
field. The ABC’s can be grouped into two types: those that employ material
absorbers and those that are derived from differential equations. The first differen-
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tial techniques e.g. by Lindman [31] were improved by Higdon [25] and Liao et al.
[30]. The most popular and advanced material-based ABC is called the perfectly
matched layer (PML) absorbing boundary condition by Berenger [5].

2.2 Second-order finite-difference method

The first code used in this work for the simulation and visualization of the elastic
wave propagation in tubes is a second-order accurate algorithm in space and time
domain. It is based on a displacement-stress finite-difference method for homoge-
neous isotropic material. However, it can be extended to any linear material law
governed by the general stress-strain relation

(2.1)

where  and  are the stress and strain components, respectively, and 
the stiffness elements. Einstein’s summation convention is used for repeated indi-
ces.

In the VS-FD method introduced by Madariaga [33] and applied by many other
authors ([6], [54], [55]), the velocity and stress components are not only staggered
in space, but also in time. As shown by Gsell and Leutenegger [23], this time shift
is not required to obtain a stable scheme (see also Chapter 2.3). If displacements
are used instead of velocities and all components are on the same time grid, the
integration of the velocities can be eliminated. This leads to the present displace-
ment-stress finite-difference code.

The explicit calculation of the stress components can be eliminated by inserting
the stress-strain relation (2.1) and the kinematic relations (2.7) into the equations of
motion (2.2) before the discretization. This results in a displacement finite-differ-
ence code which is described by Gsell and the author in Ref. [23]. The elimination
of the six stress components reduces the amount of variables and the required
memory to approximately one third. Because no stress components need to be cal-
culated, computational time is reduced by about 25%. In spite of these two advan-
tages, the stresses are not eliminated in the present work and a displacement-stress
code is used because the changes in the stress components are important values for
the detection of defects. Also, by doing this, the implementation of boundary con-
ditions (Chapter 2.2.3) and notches (Chapter 2.2.4) is rendered much simpler.

slm Clmpq ¶pqÿ=

slm ¶pq Clmpq
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2.2.1 Three-dimensional code in cylindrical coordinates

The target applications of the simulation code consist in the study of the interaction
between waves and notches and the playing back of reflections from defects (see
Chapter 3.). For both tasks, a three-dimensional algorithm is required. The reason
for this is that even with an axisymmetric excitation, the scattered wave fields are
no longer axisymmetric. Since the rotation angles of the shell theory are difficult to
measure experimentally, the three-dimensional theory is chosen instead. This also
enables the implementation of notches with various depth, as described in
Chapter 2.2.4.

If there are no external body forces, the three equations of motion in cylindrical
coordinates  are provided by Graff [20] as

(2.2)

where , , and  denote the radial, tangential, and axial displacements,  the
time, and  is the mass density. In the next step, these partial differential equations
(2.2) are discretized. Therefore, all of the first derivatives with respect to the spa-
tial coordinates , , and  are approximated by central differences (see e.g.
Strauss [49]). For example, the second-order approximation of the first derivative
of the stress component  with respect to the axial coordinate  at the position

 (see Fig. 2.1) is given as

(2.3)

The order of the error depends on the number of terms considered in the Taylor
expansions to derive the central differences. The derivatives could also be dis-
cretized by using forward or backward differences. However, to describe wave
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propagation phenomena, central differences must be used in order to enable the
waves to propagate into both directions.

The second derivatives with respect to the time  are also replaced with second-
order central differences, e.g.

(2.4)

The index  denotes the time step. The three displacement and six stress compo-
nents are allocated on a staggered grid as shown in Fig. 2.1. This is the only possi-
bility for properly approximating all first derivatives of the equations of the
problem with second-order central differences, which is necessary to obtain a sta-
ble scheme.

Figure 2.1: Allocation of the displacement and stress components for three-dimensional 
cylindrical coordinates. This distribution on a staggered grid is the only possibility to obtain 
a stable scheme.

t

∑2
ur t( )

t
2∑

-----------------
t tn=

ur tn Dt+( ) 2 ur tn( )ÿ ur tn D– t( )+–

Dt
2

------------------------------------------------------------------------------------ O Dt( )2[ ]+=

n

∆ϕ

∆r

∆z

rk

ϕ
i

zj

ϕ

z
r

ur

ur

uz

uz

uϕ

uϕ

σrϕ

σrϕ

σrϕ

σrϕ

σϕz

σϕz

σϕz

σϕz

σrz

σrz

σrz

σrr σϕϕσzz
σrz



16

a

Substituting the discretization rules (2.3) and (2.4) into Eqs. (2.2) and solving for
the displacements at the time  leads to three explicit linear equa-
tions. For example, the radial displacement  at the next time step  is calcu-
lated as

(2.5)

where the superscript  refers to the transposed vector. The superscript  denotes
the index of time, with . The indices , , and  define the axial, cir-
cumferential, and radial positions of the corresponding components on the grid.
The surrounding stress components of the grid region , ,  at the
time step , which are required for the present case, are the elements of the vector

. The elements of the vector  are functions of the discretization parameters
, , , and , the radius , and the mass density , and are used to weigh

the influences of the neighboring stress values. The components of the vectors 
and  for Eq. (2.5) are given in Eqs. (A.2) and (A.3) in Appendix A.2 as an exam-
ple. Since these elements depend on the radial coordinate, they must be calculated
separately for each radial layer of the grid. The tangential and axial displacements
at the next time step are calculated in the same manner, but with different vectors,

 and .
The stress components at the time step  are computed using Hooke’s law for

isotropic linear elasticity (applying Einstein’s summation convention for repeated
indices)

(2.6)

where  are the strain components and  denotes the Kronecker symbol. The
linear kinematic relations in cylindrical coordinates are given as
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(2.7)

The Lamé constants  and  will be replaced by

(2.8)

since the material of the experimental samples is described by Young’s (or elastic)
modulus  and the shear modulus  or Poisson’s ratio .

Inserting Eqs. (2.7) into (2.6) and replacing all first derivatives of the displace-
ments with central differences leads to six explicit equations for the stress compo-
nents at the time step . For example

(2.9)

where the vector  contains the required surrounding displacement components at
the time step  and the elements of the vector  are functions of the geometrical,
discretization, and material parameters. Due to the curvature, these elements must
once again be calculated for each radial layer. The components of  and  for
the radial normal stress component [Eq. (2.9)] are given in Eqs. (A.5) and (A.6) in
Appendix A.2. The other stress components are derived accordingly.
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2.2.2 Implementation and excitation

The structure can be excited by driving either displacement or stress components
with a given function. Therefore, a region of the grid is chosen as the source posi-
tion, and during the excitation duration  the corresponding stress or displace-
ment components are replaced by the excitation value at each time step. The major
steps of the implementation of the algorithm are shown in Fig. 2.2.

The displacement values at the three times , , and  are labeled ,
, and . The stress components are only needed at the time step  and are

denoted as . The durations of the excitation and the simulation are given as
 and , respectively.

Figure 2.2: Diagram of the major steps of the implementation of the three-dimensional 
finite-difference algorithm in cylindrical coordinates.
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2.2.3 Boundary conditions

Due to the staggered grid, one can choose where to define the structural bound-
aries. For example, two different radial layers can be used for the inner and outer
surface of the tube, either the layer with the components , , and , or the
layer with an offset of  (see Fig. 2.1). In the case presented here, the layer
with the components , , , , , and  is chosen as the structural
boundary. The reason for this is that the displacements at the outer surface are mea-
sured in the experiments (Chapter 4.) and in order to increase the accuracy, as
many displacement components as possible should be allocated on the outer sur-
face of the discrete structure.

Stress-free and displacement-fixed boundary conditions can be applied. For
example, the following stress components must vanish for stress-free inner and
outer surfaces of the tube. In this case, the tube is assumed to be surrounded by
vacuum.

(2.10)

Here  denotes the radius of the midplane and  the wall thickness of the tube.
The corresponding components which are located on the boundary of the structure,
can directly be set to zero. In the present configuration this is only . Since the
finite-difference approach is based on the use of the values of neighboring points,
the following problem arises. The remaining values on the grid points describing
the structural boundaries cannot be calculated using the explicit Eqs. (2.5) and
(2.9) because they are missing the appropriate neighboring points. This means that
some of the elements of the vectors  and  are not defined on the boundaries.
To correct this, the concept of a fictitious layer next to the surfaces outside the
structure is introduced as described by Harker [24]. The displacement and stress
components of the fictitious grid points are calculated by solving the discretized
boundary conditions. These steps are explained in detail in Chapter 2.5.1.
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2.2.4 Implementation of notches

To study the influence of defects with different sizes, depths, and orientations,
notches with variable axial, circumferential, and radial extents are implemented
into the present FDM code. Basically, the notches are realized as empty or
removed cells in the grid, while the notch boundaries are implemented as stress-
free. Fig. 2.3 shows part of an implemented notch with the stress-free boundaries
colored in gray.

Figure 2.3: The staggered grid allows an easier implementation of stress-free boundaries 
(colored in gray) at the notches, which are realized as removed cells in the grid.

The goal does not consist in describing the exact interactions at a crack tip or in
accurately calculating the stress field in the crack region. The use of notches
instead of cracks results in a much easier realization but still enables the numerical
generation of scattered fields. However, the stress fields do not match the ones
caused by a real defect or notch in an experiment. The simulated wave fields are an
important tool for testing the applicability and accuracy of the proposed time
reverse numerical simulation method (Chapter 3.). Another reason for the imple-
mentation of slots instead of cracks is that the defects used in the experiments are
also machined into the tubes using a milling cutter and have the shape of notches.
Even if a crack is used in the experiments, its correct shape must not be reproduced
in the simulation, since the algorithm with a notch included is only used to verify
the method. For the evaluation and detection of the defect in a real experiment, the
numerical code without a defect is used.
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2.2.5 Numerical examples

To demonstrate the capabilities of the present finite-difference code, two numerical
examples are given below.

In the first case, an aluminum tube (mass density , Young’s
modulus , Poisson’s ratio ) with a wall thickness of

, a radius of midplane , and a length of , is
used. The structure is excited axisymmetrically by driving all axial, tangential, and
radial displacements of the cross-section at the left end. 

Figure 2.4: Axial (a), tangential (b), and radial (c) displacements at the outer surface of 
an aluminum tube (data see Table A.1 in Appendix A.1) 81 µs after the initiation of the 
excitation. All three displacement directions are excited at the front surface at the left end 
at 150 kHz. The radius is enlarged for better visualization.

r 2700 kg/m
3

=
E 7.2 10

10
 N/m

2ÿ= n 0.33=
h 0.002 m= R 0.016 m= l 0.6 m=

(a)

(b)
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The driving function consists of a sine wave with a frequency of  multi-
plied by a Hanning window. In radial and axial direction, 3 and 750 cells are used,
respectively (see Table A.1 in Appendix A.1). Due to the axisymmetry of the
example, the number of circumferential grid cells is irrelevant. Fig. 2.4 shows the
axial, tangential, and radial displacements at the outer surface of the tube 81 µs
after the excitation. For the present tube at 150 kHz three axisymmetric modes
exist as can be seen in the dispersion diagram Fig. 1.1 in Chapter 1.2.
While the first longitudinal L(0,1) and torsional T(0,1) modes are always present,
the second longitudinal mode L(0,2) occurs only when the excitation frequency is
above the first axisymmetrical cutoff frequency, which is at about  for the
present tube. While the displacement field of the torsional mode T(0,1) is only in
tangential direction, the two longitudinal modes L(0,1) and L(0,2) are coupled in
radial and axial directions, which is visible in Fig. 2.4 (a) and (c). The displace-
ment of the L(0,2) mode with the higher group velocity is primarily in the axial
direction, and the slower L(0,1) mode displays a dominant radial displacement
field at this particular frequency.

In a second example, an aluminum tube (data see Table A.1 in Appendix A.1)
with a length of  is excited at the left end in radial direction at .
To generate a scattered field, a notch with an axial, and circumferential length of

, and , respectively, is implemented in the model. While the tube
thickness is 2 mm, the notch is only 1 mm deep, starting at the outer surface.
Therefore it is named part-through notch. The radial displacements at the outer
surface of the tube are plotted , , and  after the excitation in
Fig. 2.5 (a), (b), and (c), respectively. Before the excited waves reach the defect
[Fig. 2.5 (a)], the displacement field is axisymmetric. However, after the interac-
tion with the notch, the generated scattered field and the initial waves are non-axi-
symmetric. This illustrates the need of a three-dimensional algorithm. In radial,
circumferential, and axial directions, 5, 100, and 300 cells are used, respectively.

150 kHz

55 kHz

l 0.3 m= 200 kHz

1 mm 10 mm

42 ms 57 ms 65 ms
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Figure 2.5: Interaction with a circumferential part-through notch in an aluminum tube 
(data see Table A.1 in Appendix A.1). The radial displacements at the outer surface of the 
tube are plotted 42 µs (a), 57 µs (b), and 65 µs (c) after the excitation. The front surface at 
the left end is excited in radial direction at 200 kHz. The radius is enlarged for better visu-
alization.

(a)

(b)

(c)
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2.2.6 Validity check

To test the accuracy of the present FDM code, the mechanical energy is observed
for the duration of a long-term simulation. Since the implemented linear elastic
model is non-dissipative, the total energy as a function of time must remain con-
stant in the conservative system after the excitation. Therefore, the total mechani-
cal energy which is the sum of the kinetic and the strain energy is calculated for
each cell after every time step. The summation over the whole structure yields to
the total energy. Several simulations with different material, geometrical, excita-
tional, and discretization parameters are performed by Gsell and the author in [23]
and show that even for simulations of 120’000 time steps, the deviation of the total
energy of 0.01% is negligible.

2.3 Stability

Since finite-difference modeling approximates derivatives by numerical operators
using Taylor polynomials, inaccuracies occur. These numerical errors can be sepa-
rated into phase errors and amplitude errors. The first group of errors, which may
also be viewed as frequency-dependent velocity errors, are called numerical dis-
persion. They cannot be excluded completely but can be reduced to an acceptable
level. To prevent these spatial aliasing errors, the shortest wavelength  of the
propagating modes must be sufficiently sampled in space. This leads to the follow-
ing criterion for a three-dimensional staggered grid in cylindrical coordinates
([43], [52]), which determines the largest dimension of a grid cell

(2.11)

However, even with a spatial sampling of eight grid cells, errors in the wave veloc-
ities occur, which negatively affect the accuracy of the simulation. The impact of
these errors as well as the necessary sampling rate to avoid them is discussed in
Chapter 2.4.

 The second group of errors are the amplitude errors. In numerical simulations it
is possible that the amplitude increases exponentially with every time step. In this
case, the scheme is said to be unstable. The critical value is the maximum size of
the time step . The correct stability examination for the original Yee algorithm
was first presented by Taflove [51]. Since no exact criterion for cylindrical coordi-
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nates in three dimensions can be found in the literature, the main steps of the stabil-
ity investigation are given below. To determine the critical size of the time step ,
the von Neumann stability analysis ([27], [13]) is applied to the present code.

First, the equations of motion (2.2) are expressed in terms of displacements
only. Therefore, the stress components are replaced using Hooke’s law (2.6) and
the kinematic relations (2.7). Subsequently, all first and second derivatives of the
displacements are approximated with second-order central differences. This results
in three equations for  (in which  represents either , , or ) of the form

(2.12)

Then the harmonic wave ansatz

(2.13)

in which , , and  are the components of the wave vector , and  represents
the imaginary unit, is substituted into Eqs. (2.12). This leads to

(2.14)

where  is the 3x3-identity matrix and . Matrix  depends on
material, geometrical, and discretization parameters and the wave vector . Using

        and (2.15)

Eq. (2.14) can be expressed as

(2.16)

The 6x6 matrix  is called amplification matrix.
As proved by Strikwerda [50], the following condition must apply to all eigen-

values  of the amplification matrix  in order to guarantee stability

(2.17)
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Constant  is independent of , , , , and . To the author’s knowledge,
its value can neither be calculated, nor is it specified in the literature. Equation
(2.17) is called the general von Neumann condition [17] and must be fulfilled if the
amplification matrix is a function of the discretization parameters. If  is indepen-
dent of , , , , the restricted von Neumann condition

(2.18)

must be satisfied.
Eq. (2.18) was solved by Fellinger et al. [13] for a three-dimensional code for

isotropic material in Cartesian coordinates . They obtained the follow-
ing criterion for the time step

(2.19)

where , , and  denote the space increments and  the primary wave
speed

(2.20)

The same result was derived by Taflove [51]. Chen and Chew [6] used the findings
of Taflove and Fellinger [Eq. (2.19)] to achieve the following empirical condition
for cylindrical coordinates

(2.21)

This can also be expressed as

(2.22)

where  is called the stability factor and  is the fastest wave velocity. To ver-
ify the empirical criterion Eq. (2.21), its performance is investigated by the author.
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For this purpose, the largest absolute eigenvalue  of the amplification
matrix  and the stability factor  are calculated for different time steps, and the
comparison is shown in Fig. 2.6. An aluminum tube (material and geometrical
parameters are given in Table A.1 in Appendix A.1) with a length of ,
is used for the simulations. While geometrical, material, and spatial discretization
parameters (6, 120, and 100 cells in radial, circumferential, and axial direction,
respectively) are kept constant, the time step  is varied.

 

Figure 2.6: Comparison of the stability factor  (dashed line) and the largest absolute 

eigenvalue  of the amplification matrix G (solid line) for different time steps  

(dots).

For each time step, the largest eigenvalue , which is always greater than
one, and the stability factor  are calculated and plotted in Fig. 2.6 (black dots).
Then, the simulations with the corresponding parameters are run and visually
observed to check wether they are stable or not. As excitation all three displace-
ment components at one point are driven with a sine wave with a frequency of

 multiplied by a Hanning window.
The region depicted in Fig. 2.6 can be divided into three zones. Zone I is the

area in which the stability factor  is smaller than one and the largest absolute
eigenvalues are only slightly larger than one and approximately constant. Stability
is always guaranteed in this region. In zone II the eigenvalues increase remarkably
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and  is larger than one. While the slope of the stability factor curve (dashed line)
is more or less constant, definite changes in the gradient of the eigenvalues can be
observed. The FDM scheme is still stable in region II. In zone III stability can no
longer be achieved. The problem is that there is no noticeable change in the stabil-
ity factor or the eigenvalue curve at the border between zone II and III.

The investigation shows that stability can even be guaranteed if the stability fac-
tor is slightly larger than one. This finding was also noticed by Chen and Chew
who realized that their criterion [Eq. (2.21)] could be extended. The reason for this
is that they based their stability condition on the results of Fellinger and Taflove
[Eq. (2.19)] who used the restricted [Eq. (2.18)] instead of the general von Neu-
mann criterion [Eq. (2.17)]. However, one must be careful when using stability
factors larger than one. While the border between zone I and II is always situated at
the time step where  equals one, the position of the border between zone II and III
depends on the material, geometrical, and discretization parameters. Consequently,
the upper limit for  which would still assure stability cannot be determined.
Therefore, the author suggests to use Eq. (2.21) as a stability condition.

2.4 Numerical dispersion

As mentioned in Chapter 2.3, numerical dispersion (grid dispersion) is the most
significant numerical problem and as such limits the usefulness of discretization
schemes for wave equations. This numerical artifact causes phase speeds and
group velocities to become functions of the discretization parameters. In theory, it
is always possible to choose a grid size small enough to ensure that the errors due
to numerical dispersion are outside the range of interest and can be neglected. In
practice, the limitations on the sampling rate are determined by the computational
performance of the central processing unit (CPU), the availability of memory, and
the patience of the user.

The numerical dispersion relation was first investigated by Taflove [51] for the
original Yee algorithm. Marklein [34] extended it to the two- and three-dimen-
sional case of elastic waves, and Shlager et al. [45] used it to compare the disper-
sion error of different FD methods. Taflove showed that the numerical phase
velocity diminishes with increasing grid sizes and, for coarse grids, can even sink
to zero. Consequently, it can be concluded that a numerical low-pass filter is inher-
ent in the finite-difference schemes. Waves with a very short wavelength that are
sampled less than three times over a wavelength can no longer propagate.

s

s
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Different sampling rates are suggested in the literature. For a second-order code,
generally eight to ten grid points per minimum wavelength are required. This is the
condition given in Eq. (2.11). By satisfying this restriction for the grid size, quali-
tatively nice wave propagation phenomena without oscillations can be simulated.
However, when playing back experimental results (Chapter 4.) fulfilling Eq.
(2.11), all defects were consistently attributed to a position to far away as com-
pared to the actual position of the defect. This is indicative of deviations in the
group (and phase) velocity in the simulation. Since errors in the phase and group
velocity caused by numerical dispersion are cumulative, they must be lowered even
more for long-term simulations in large structures. Therefore, the ratio between the
group velocity and the number of grid cells per minimum wavelength is investi-
gated in the next section for the second-order code.

2.4.1 Grid dispersion in the second-order scheme

To examine the influence of the grid size, a numerical axisymmetric example is
repeated several times, varying only the axial discretization parameter . An alu-
minum tube with material and geometrical parameters according to Table A.1 in
Appendix A.1 is excited axisymmetrically in axial and radial direction at one of the
free ends. The driving function for the displacements is a sine in a Hanning win-
dow at . The axial and radial displacements are recorded as a function of
time at different axial positions along the structure. Two different simulation series
are performed with this configuration. In the first run, the time steps  are kept
constant, so that stability is guaranteed for the smallest grid. The result is a time
oversampling for larger . In the second set, the time steps are always adjusted to
obtain a stability factor just below one. The comparison of these two series showed
that the time step does not affect the numerical dispersion as long as stability is
guaranteed. While three cells are used in radial and circumferential directions for
all simulations, the number of grid points in axial direction is variable due to the
different sizes of . The axisymmetry of the examples justifies the few cells in
the tangential direction.

Fig. 2.7 shows the normalized axial displacements of the outer surface of the
tube  away from the excitation for two different grid sizes. Two longitudi-
nal wave modes are visible. The faster mode L(0,2) has a wavelength of about

, the second L(0,1) mode about , which corresponds to .
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Figure 2.7: Normalized axial displacement for two different sampling rates in axial direc-

tion. In the case of the solid gray line, the shortest wavelength  is sampled about 

eight times. The dashed black curve results from a sampling rate of approximately forty.

The solid gray line is the result of a simulation with , and the dashed
black line for . While the two curves match almost perfectly for the
first mode [L(0,2)], a noticeable difference is observed in the slower L(0,1) mode.
This is due to the fact that the first mode with a wavelength of  is sampled
sufficiently in space for both  with 26 and 130 cells per wavelength, respec-
tively, whereas the sampling rate of the L(0,1) mode with the shorter wavelength

 becomes critical. Using the finer grid, the number of samples per
wavelength is still about forty, but with  the sampling rate drops to
approximately eight. Although this value still fulfills the criterion Eq. (2.11), the
simulated wave form is no longer accurate, and big differences in the arrival times
of the L(0,1) mode result. Fig. 2.7 explains the errors in the time reverse simula-
tions of the experiments caused by the excessively slow group velocities. Simula-
tions with different sampling rates  are performed and compared to the results
of Fig. 2.7. The results of the L(0,1) mode shift from the solid gray curve (eight
samples) towards the dashed black curve (forty samples) for increasing sampling
rates. For more than forty cells per minimum wavelength, the achieved time signals
remain constant and match the dashed black curve.
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To establish the minimum sampling rate for accurate results, the group velocities
are determined for different grids in several simulations. To this end, the displace-
ments are recorded at different axial positions as functions of time for each spatial
sampling rate . In order to calculate the group velocities of a mode, the differ-
ence in the arrival times  must be determined from the signals at two positions
which are  apart. Then the group velocity is defined as

(2.23)

Due to numerical and physical dispersion of the simulated wave modes, which
means that different frequencies travel at different velocities, distorsion arises.
Even for a narrow-band signal, the shape of the pulse is changed slightly and one
must be careful to evaluate the correct time difference . It is not possible to
measure the difference between characteristic points, such as the beginning, end or
maxima of the pulse, since the corresponding points cannot be identified at two
locations.

However, by applying the main idea of the Wavelet Transform (see Refs. [39],
[48]), the author developed a method to determine the time differences. In this
time-frequency analysis method, a wavelet with a defined frequency content is
compared to a signal in a specific time range. The wavelet is a short signal which is
limited in time and frequency domain. The convolution between the wavelet and
the signal is calculated and the result indicates, how similar the two signals are at
the corresponding time in the specific frequency range. Further information about
the Wavelet Transform and its applications to wave propagation phenomena are
provided by the author in Ref. [29].

This convolution method is applied to the simulated time signals from two dif-
ferent locations, which is explained in Fig. 2.8. 
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Figure 2.8: The major steps of the convolution method to determine the time difference 
between to dispersive signals.

The convolution of the time signals is calculated, which is the sum of the element-
wise multiplication of the two discrete vectors. At the beginning, the convolution
function is zero since the two signals do not overlap [Fig. 2.8(a)]. Now the second
time signal (dotted line) is shifted in the time domain towards the signal at location
one (solid curve), and the convolution is calculated again [Fig. 2.8(b)]. By repeat-
ing this procedure, one obtains the convolution as a function of the time shifts .
The convolution reaches the maximum value when the two compared signals
achieve the optimal overlap [Fig. 2.8(c)]. If  is the number of time shifts
where the maximum value of the convolution function is received, the time differ-
ence is expressed as

(2.24)

where  is the number of points of the digitized time signals, and  is the sam-
pling frequency.
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With this method, the time differences and the group velocities for the slower wave
mode (with the shorter wavelength) are evaluated for different grid parameters .
In Fig. 2.9, the normalized group velocity is plotted versus the number of grid cells
per minimum wavelength.

Figure 2.9: Normalized group velocity as a function of the sampling rate for the minimum 
wavelength for the second-order scheme.

The curve in Fig. 2.9 shows that with a sampling rate of ten the group velocity is
still underestimated. To eliminate this error, at least forty cells per shortest wave-
length are necessary. Therefore, a very fine grid must be chosen to obtain accurate
group velocities, which is essential for large structures and long-term simulations.
In addition to the tremendous amount of memory required, another problem is the
size of the time step . In order to satisfy the stability criterion, a very small time
step is necessary for fine grids. The result is a large increase in the number of float-
ing point operations (flops) to simulate the same period of time, which leads to
very long computing times. Since the simulations of large three-dimensional struc-
tures with the second-order code exceed the computational limits of today’s com-
puters, it is inevitable to use a fourth-order accurate scheme.
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2.5 Fourth-order finite-difference method

As described in the previous section, the use of second-order central differences is
no longer possible for the simulation of large three-dimensional structures. There-
fore, especially in the field of geophysics, where P- and S-waves are investigated
and large regions must be simulated, higher-order finite-differences are used to
approximate the derivatives in the wave equation. Dablain [7] showed that compu-
tational efficiency can be achieved by using higher-order differences. Particularly
in simulations where a fine grid is necessary because of the cumulative errors of
the numerical dispersion, rather than due to the need to resolve fine geometrical
features, much coarser grids can be used with higher-order finite-differences. A
disadvantage of higher-order central differences is the more complex implementa-
tion of the boundary conditions, which is discussed later.

The following algorithm is based on central differences which are second-order
accurate in time and fourth-order accurate in space. Similar to the second-order
finite-difference method, one starts with the equations of motion (2.2), but in this
case, the first spatial derivatives are approximated by fourth-order accurate differ-
ences. Therefore, more terms of the Taylor expansions are used to approximate the
first-order derivatives. E.g. the expansion for the shear stress component

 is given as

(2.25)
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The positions of the different values within the discrete structure are shown in
Fig. 2.10, where part of an axial line of the staggered grid is plotted.

Figure 2.10: Part of an axial line of the staggered grid showing the allocation of the stress 
component σrz and its first derivatives with respect to the axial coordinate z.

To eliminate the second, third, and fourth derivatives in (2.25), the Taylor series for

           

are calculated accordingly. Solving for the first derivative with respect to  leads to
the fourth-order central differences

(2.26)

In Eqs. (2.2) and (2.7), all first derivatives with respect to the axial and circumfer-
ential coordinates  and  are replaced with the corresponding fourth-order cen-
tral differences. Since thin-walled structures are investigated in this thesis and the
wavelength in the applied frequency range are large compared to the wall thick-
ness, the derivatives with respect to the radial coordinate  are still approximated
with second-order differences only.
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Analogous to the second-order scheme, three explicit equations for the displace-
ments at the time step  and six equations for the stress components result.
The equations are of the same form as Eqs. (2.5) and (2.9) but the vectors  and

 contain the surrounding stress and displacement components of the larger grid
region , , . Consequently, the calculation of the new components
requires many more neighboring values, which significantly complicates the
implementation. As an example, the vectors , , , and  [see Eqs. (2.5)
and (2.9)] are given in Eqs. (A.7) - (A.10) in Appendix A.3. Since the present
scheme is only fourth-order accurate in axial and circumferential but not in radial
direction and the time, it would be more appropriate to call it a quasi-fourth-order
code. However, the author refers to it as a fourth-order code, although this is not
quite correct. The stability criterion Eq. (2.21) is used successfully with the fourth-
order algorithm.

2.5.1 Boundary conditions for the fourth-order code

While the fourth-order scheme can manage much coarser grids, which saves com-
putational time as well as memory requirements, there is one major drawback.
Since more surrounding components are necessary, the implementation of the
boundary conditions becomes a difficult task. Similar to the second-order scheme,
a fictitious area which holds all additional components is introduced outside the
structure. Because the region containing the necessary values for evaluating the
new displacements and stresses is larger, the fictitious layers consist of three levels
of grid cells in axial and one level in radial direction. In Fig. 2.11 two sectional
views of the discretized structure are depicted. The sections show the inner left
area of a tube (hatched) with a wall thickness  and a radius of midplane .
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Figure 2.11: Longitudinal (left) and transverse (right) sectional views of the discretized 
structure (hatched area) and the necessary fictitious layers. The stress-free boundaries of 
the structure are marked as thick black lines.

Since the tube is closed completely in circumferential direction, no boundary con-
ditions must be fulfilled there. However, at the left and right axial end and at the
inner and outer surface of the tube, stress-free boundaries are implemented.
For the inner surface ( ) the necessary fictitious components are

(2.27)

The indices , , and  (which is -1 for this particular fictitious layer) define the
axial, circumferential, and radial positions of the corresponding components on the
grid according to Fig. 2.11. The two stress components are calculated by using lin-
ear interpolation in radial direction and the zero stress relations (2.10), which
yields

(2.28)
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To determine the fictitious radial displacements, Eqs. (2.6) and (2.7) are used to
calculate . The first derivatives are approximated in axial and circumferential
directions by fourth-order, and in radial direction by second-order central differ-
ences. Then Eq. (2.10) is solved for  by fulfilling the boundary condition

. This leads to an explicit equation for the calculation of the radial dis-
placement of the fictitious layer as a function of the surrounding displacement val-
ues, the discretization parameters, the radial position  (which is  for the
inner surface), and Poisson’s ratio .

(2.29)

To satisfy the stress-free conditions at the left end ( ), the following fictitious
values, which are also shown in Fig. 2.11, must be determined.

(2.30)

According to Graves [21], the stress components are again evaluated by linear
interpolation in axial direction, which leads to

(2.31)

(2.32)

For the calculation of the fictitious displacements one must again use Eqs. (2.6)
and (2.7) to evaluate the stress components at the boundary. In order to determine a
rule for the desired displacement components, the first derivatives in axial direc-
tion are only approximated with second-order central differences. This leads to a
different order of accuracy of the scheme at the boundaries but is the only possibil-
ity for implementing the stress-free surfaces. Solving

(2.33)

leads to similar functions as Eq. (2.29) for , , and .
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Special care must be taken in the ring-regions at the inner and outer surface at the
axial ends. In these areas some of the values used to calculate the fictitious compo-
nents are no longer located within the structure but become fictitious points too.
They must be replaced by using the boundary conditions on the inner and outer
surface.

These different rules for calculating all values of the fictitious layers illustrate
the difficulties encountered by implementing the correct boundary conditions in
the present code. Example: The calculation of the fictitious axial displacements at
the left end involves seventeen displacement values. The situation becomes even
more complicated if one applies fourth-order differences in radial direction instead
of second-order approximations.

2.5.2 Grid dispersion in the fourth-order scheme

The reason for the implementation of a fourth-order algorithm is the higher accu-
racy which leads to smaller numerical dispersion. To verify this and to determine
the minimum sampling rate, the group velocities are once again determined as a
function of the axial cell size . Consequently, the same numerical examples
described in Chapter 2.4.1 are also performed for the present fourth-order code.

Figure 2.12: Normalized group velocity as a function of the sampling rate for the minimum 
wavelength for the second- (solid) and fourth-order scheme (dashed).
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Fig. 2.12 depicts the normalized group velocities for the second-order (solid line)
and fourth-order (dashed curve) as a function of the number of grid cells per mini-
mum wavelength. The curves show that at a sampling rate of only about eight, one
already obtains the accurate group velocity for the fourth-order scheme, while the
second-order code still produces significant deviations. This implies that a much
coarser grid can be used with the fourth-order scheme in order to bring about the
desired reduction of computing time and memory requirement and still achieves a
high accuracy. The achieved results justify the costs of implementing a higher-
order algorithm.

2.5.3 Comparison of the second- and fourth-order algorithms

To compare the two codes with respect to accuracy and computational perfor-
mance, the examples previously used to investigate the numerical dispersion (see
Chapter 2.4.1 and Table A.1 in Appendix A.1) are examined again. In Fig. 2.13 the
normalized radial displacements for the fourth-order code with a sampling rate of
eight (thick gray line), and the two results for the second-order accurate scheme
with eight (solid black line) and forty samples (dashed black line) per minimum
wavelength are plotted.

Figure 2.13: Comparison of the normalized radial displacements for the second- and 
fourth-order schemes. The tube (data see Table A.1 in Appendix A.1) is excited axisym-
metrically in axial and radial direction at 200 kHz. The black curves result from the second-
order code with an axial sampling rate of eight (solid black line) and forty (dashed black 
line). The thick gray line represents the result of the fourth-order algorithm where the 
shortest wavelength is sampled about eight times.
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Very good agreement is found between the fourth-order result and the curve from
the second-order code with the higher sampling rate. However, for the lower sam-
pling rate the expected deviation appears due to undersampling in axial direction.
The comparison shows that for the axisymmetric example the same results can be
achieved with five times less cells in axial direction using the fourth-order code.

The resulting savings in the area of memory requirements and calculating time
are even more crucial in the case of non-axisymmetric wave propagation simula-
tions. In order to assess the actual savings with regard to floating point operations,
memory usage and simulation times, a numerical experiment with a point source is
first evaluated using the second-order scheme with a sampling rate of forty (in cir-
cumferential and axial directions), and then with the fourth-order code using eight
cells per minimum wavelength. To generate a non-axisymmetric wave field, a point
source is applied to a tube with a wall thickness , radius of midplane

, and length . The material parameters are given in Table
A.2 in Appendix A.1. The radial displacements at a given axial and circumferential
position are excited at , which leads to a minimum wavelength

. Fig. 2.14 shows the radial displacements at the outer surface of the
tube at three different times.

Figure 2.14: Radial displacements at the outer surface, 18 µs (a), 24 µs (b), and 32 µs (c) 
after the initiation of the excitation. The aluminum tube (data see Table A.2 in Appendix 
A.1) is excited radially in one single point at 200 kHz.

The radial displacements at the outer surface are recorded at the same circumferen-
tial position in the middle of the tube with respect to the axial direction, which is

 away from the excitation. Fig. 2.15 shows part of these time signals for the
two simulations. The first wave packet represents the wave propagating directly in
the axial direction from the excitation to the measurement point. The second waves
have travelled once around the circumference. The result of the second-order
scheme is plotted as a dashed black curve, while the thick gray line represents the
signal from the fourth-order code. The small deviations are caused by the group
velocity of the second-order simulation, which is still slightly underestimated (see
Fig. 2.12).

h 0.002 m=
R 0.012 m= l 0.15 m=

200 kHz
lmin 8 mmº

(a) (b) (c)

25 mm



42

a

Figure 2.15: Comparison of the normalized radial displacements for the second- and 
fourth-order schemes. The dashed black curve results from the second-order code with a 
sampling rate of forty. The solid gray line represents the result of the fourth-order algo-
rithm, where the shortest wavelength is sampled about eight times.

Since in the non-axisymmetric cases the guided waves travel mainly in two direc-
tions for the chosen frequencies, sufficiently fine grids must be used in axial and
circumferential directions. Consequently, the saved memory is in proportion to the
square of the ratio of the sampling rates. In the following table, the important com-
putational parameters for the two simulations are listed.

Parameter Second-order Fourth-order Percentage [%]

sampling rate 40 8 20

cells in axial direction 750 150 20

cells in tangential direction 400 80 20

cells in radial direction 3 3 100

total number of cells 900’000 36’000 4

time step ∆t [s] 1*10-8 4*10-8 400

memory requirements [MB] 454 20 4.4

floating point operations 3.5*1011 4.9*109 1.4

simulation time [min.] 351 5 1.4

Table 2.1: Comparison of the computational parameters between the second- and 
fourth-order finite-difference schemes. The last column shows the ratios between the 
values of the two codes.
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The ratio between the parameters of the codes are listed in the last column of
Table 2.1. The two most important values with respect to the simulation of large
structures are the number of floating point operations (flops) and the required
memory. The savings achieved by using the fourth-order code are 98.6% and
95.6%, respectively, for these two parameters, which demonstrates the significant
advantage of higher-order schemes. In order to further validate the fourth-order
algorithm, the mechanical energy could be observed according to Chapter 2.2.6.
However, due to the good agreement between the second- and fourth-order codes,
this validation was not performed in the present work.

2.6 Conclusions

The three-dimensional finite-difference code in cylindrical coordinates with sec-
ond-order central differences is a valuable tool for the study and visualization of
wave propagation phenomena. The implementation of notches enables the genera-
tion of scattered wave fields and the verification of the time reverse method (see
Chapter 3.3). The von Neumann stability analysis explains why the stability factor
can even be slightly larger than one and confirms the empirical stability criterion
found in the literature. However, an accurate simulation of large structures is not
possible with the second-order code because the computational requirements
exceed the available hardware. This is mainly due to the very fine grid and the cor-
respondingly small time steps which are necessary to minimize the errors caused
by numerical dispersion. For this purpose, a three-dimensional quasi-fourth-order
accurate scheme has been implemented in cylindrical coordinates for the first time.
The comparison of the two codes shows very good agreement in the results as well
as a drastic reduction - indeed more than 95% - in the areas of memory require-
ments and calculating time when using the higher-order scheme. This enables the
long-term simulations of large structures, which is necessary for the evaluation of
the experiments.
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3. TIME REVERSE NUMERICAL SIMULATION

3.1 The time reversal method

3.1.1 Introduction

When a phenomenon or event is filmed, the movie can be played back in reverse,
giving the impression of going back in time. Fink [14] used the following thought
experiment to see if the actual event, instead of the filmed image, can also be
reconstructed in reverse chronology.

For instance, can the scattered pieces of an exploded block be used to reconsti-
tute the original structure? Imagine the block to be surrounded by a closed layer,
which is crossed by all the particles after the explosion. The position, time of
impact and velocity of each particle is measured and recorded when this surface is
penetrated. Then, the same speed is applied in opposite direction to each particle at
the appropriate time at the corresponding intersection points on the layer. If the
slowest particle, i.e. the last one to arrive, is sent back first, and the fastest one last,
the initial block should be reconstructed at its origin position. However, this type of
experiment only works if the information (such as position, velocity, and time of
impact) for each particle is resolved with infinite precision. The explanation of this
is the phenomenon of chaos in classical mechanics. According to this theory, a
small change in a particle’s initial position can result in a major change in its final
position and therefore makes such time reversal experiments impossible.

Another example described by Fink [15] uses a ball which is shot through a
fixed array of randomly arranged obstacles. Even in simulation, the ball cannot be
played back. Due to minor truncation errors made by the computer, the ball will
miss an obstacle sooner or later, which changes the outcome completely. And in a
real experiment, it is impossible to start the ball in the exact direction with the
appropriate velocity.
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Since wave propagation is linear, a minor change in the initial wave results only in
a small change of the final wave. Therefore, time reversal can be applied to all
wave phenomena, as long as the following restrictions are fulfilled.

3.1.2 Basic principles and applications

The time reversal method can be applied to every phenomenon described by equa-
tions which contain only second-order derivatives (or, more general, derivatives of
even order) with respect to time . Equations of this type are called time-reversal-
invariant equations. For each solution , there exists a second solution of the
form , because the second derivative of  is identical to that of

. Another restriction for the present approach demands that the medium be
non-dissipative. However, it might be possible to reverse the attenuation as well,
but this was not taken into consideration in this work.

The time reversal experiments typically consist of two steps. First, a wave field
is generated either by a source or by scattering at an obstacle. This wave field

 is measured at different fixed positions (defined by ) as a function of
time and stored. The duration of this recording is given by . Next, the measure-
ments at each position are reversed in time, which results in the time reversed sig-
nals

(3.1)

In the second step, the measurement positions are used as sources where the time
reversed signals  are applied simultaneously. The resulting waves propagate
back through the medium and interfere constructively at the position of the original
source.

In the last few years, many time reversal experiments were performed and dif-
ferent applications presented. In 1995, Derode et al. [8] carried out the first surpris-
ing experimental demonstration of the reversibility of a multiple scattered acoustic
wave. Their setup is immersed in a water tank and includes an acoustic source, a
scattering medium comprised of 2000 randomly positioned steel rods and a time
reversal mirror (TRM). The TRM consists of an array of receiver and transmitter
transducers connected to a device to store signals. In the first step, a very short sig-
nal is excited at the point source and propagates through the scattering media. The
transmitted waves are recorded at the TRM, using the transducers as receivers. Due
to the multiple scattering, these signals are much longer than the initial pulse at the
source. In the next step, the recorded displacement histories are reversed in time
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and retransmitted through the medium by the same transducer array operating in
the transmission mode. The result is a highly compressed signal with respect to
time and space at the position of the initial source.

Further applications of the time reversal method, such as underwater acoustics,
medical imaging and pulse-echo detection are described in Refs. [15] and [16]. In
the next section, a numerical experiment is executed to demonstrate the applicabil-
ity of the time reversal method to elastic wave phenomena in solids.

3.1.3 Numerical time reversal experiment

In this example, flexural waves are excited in the center of an aluminum plate
(material parameters according to Table A.2 in Appendix A.1). It is described
using Mindlin’s theory [36], which includes the influence of rotatory inertia and
shear. This higher-order theory must be applied because of the small wavelengths
corresponding to the applied frequency range. The plate is lying in the -plane
and the displacement field is described by the transversal displacement  and two
rotation angles  and . It is assumed that the in-plane displacements are pro-
portional to the plate thickness coordinate  with constant slopes  and , and
that the out-of-plane displacement  remains independent of . The three equa-
tions of motion (principle of linear momentum in  direction and principles of
angular momentum in  and  directions) are discretized using second-order cen-
tral differences (see Chapter 2.2). This yields three explicit equations for , ,
and  at the new time step . Although the elimination of the rotation angles
would reduce the system of equations to one equation only, this step is not per-
formed here. The reason is that the resulting equation would contain the fourth
derivative in time and mixed derivatives with respect to time and space, which can-
not be implemented with the finite-difference method.

The displacement  in the center of an aluminum plate (size  by ,
plate thickness ) is excited at . The boundaries of the plate
are implemented as being stress-free. 600 cells are used in both directions. Snap-
shots of the transversal displacements  are shown in Fig. 3.1 at three different
times, 20 µs (a), 40 µs (b), and 60 µs (c) after the initiation of the excitation.
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Figure 3.1: Out-of-plane displacements of a plate, 20 µs (a), 40 µs (b), and 60 µs (c), 
after the initiation of the excitation. The square aluminum plate (data see Table A.2 in 
Appendix A.1) is excited transversely in the center of the plate at 200 kHz. The white dots 
mark the measurement positions.

During the simulation, the transversal displacement  and the two rotation angles
 and  are recorded as a function of time at 21 points. These measurement

positions are marked in Fig. 3.1 and Fig. 3.2 as white dots. They are distributed in
a parallel manner to one side of the plate with a spacing of  between each
other. The principle of this first step is illustrated in Fig. 3.2. The measurements
and the excitation in the center of the plate are started at the same time. The differ-
ences among the arrival times are clearly visible in the signals at the left, which
show the recorded time signals at five different positions.

Figure 3.2: Principle of the first step of a time reversal experiment. During the excitation 
of the structure (right signal), the displacements are recorded at different positions (white 
dots) as a function of time (left signals).
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In the next step, the measured signals are reversed in time. Then, the same points
that were used for the recording are excited with the displacement histories in a
time reverse order using an identical simulation model. To obtain the correct wave
field, all components of the displacement vectors at the measuring locations must
be retransmitted. The reason is that the implemented finite-difference scheme is
based on all three displacement components. Therefore, the transversal displace-
ment  and the two rotation angles  and  must be recorded and excited in
this example. Another important point is that all displacements must be excited
simultaneously with the appropriate time delays at the corresponding positions.
This step is visualized in Fig. 3.3, where the time reversed recorded signals are
shown on the left. Comparing these signals with the measured histories of Fig. 3.2
(left), the principle of last-in first-out becomes obvious. The signals that arrived
last during the simulation (in this case, the signals at the top and at the bottom,
which correspond to the recording positions furthest away from the source) are
played back first, while the fastest signal (middle) is retransmitted last.

Figure 3.3: In the second step, the recorded signals are time reversed and retransmitted. 
Therefore, the structure is excited simultaneously at all the measurement points, with the 
corresponding signals and appropriate time delays.

During the simulation of the time reversed signals, each measurement point acts as
a point source with the corresponding excitation signal. The waves propagate in
circular motion from the points and start interfering with each other. In Fig. 3.4 the
resulting wave fields are plotted for three different times, 55 µs (a), 75 µs (b), and
87 µs (c) after the playback initiation. The absolute time values are irrelevant and
depend only on the used time origin, which is given by the duration  of the
recording sequence.
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Figure 3.4: Out-of-plane displacements of an aluminum plate (data see Table A.2 in 
Appendix A.1), 55 µs (a), 75 µs (b), and 87 µs (c), after the initiation of the play back. The 
recording positions (white dots) are excited with the time reversed measured signals. The 
three snapshots show the wave fields before (a), after (c), and at the time (b) with the
maximum interference.

If the relation between the grayscale values and the amplitudes is kept constant,
one can observe the displacements during the simulation to find the time with the
maximum interference, which corresponds to the brightest value in the current rep-
resentation. Once the time with the maximum amplitude is determined, the dis-
placement field at this time is evaluated in order to find the position of the
maximum. The plot in the center of Fig. 3.4 corresponds to the time with the maxi-
mum interference.

Fig. 3.5 shows a three-dimensional zoom of the center area of the plate at the
time with maximum amplitude. The position with the maximum displacement is
found by analyzing Fig. 3.5 and has the coordinates  and . This cor-
responds to the center of the plate, where the original pulse was initiated. The
amplitude increase at the maximum interference time can be clearly distinguished
from the amplitude field at other times.

The numerical example performed confirmed that the time reversal method can
also be applied to wave propagation experiments, at least in simulations. As long as
the displacements and the rotation angles are recorded and retransmitted at some
positions, the origin of a wave field (in this case the point source in the center of
the plate) can be determined, even if it is far away. This is an important finding for
the application of the time reversal method for detecting defects which is explained
in the next section and in [28] by the author.

(a) (b) (c)

0.15 m 0.15 m
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Figure 3.5: Three-dimensional zoom of the center area of the plate (darker region on the 
left) at the time where the interference of the played back signals is maximal. The ampli-
tude is normalized with respect to the excitation signal used in the first step of the time 
reverse experiment.

3.2 Detection of defects using the time reversal method

The experiments of Derode et al. [8] with steel rods in water, and the numerical
example of the plate described in the previous chapter show that the time reversal
method can be used to detect the origin of a recorded wave field. In both cases, the
waves are generated by a point source and recorded at different locations. Then,
the time reversed signals are retransmitted and interfere to the maximum extent at
the position of the source. Instead of using the method to determine the original
source, it can also be applied to a defective structure in order to determine the pres-
ence of a defect and its exact position. This idea was developed and implemented
by the author who named it time reverse numerical simulation (TRNS) method.
This new approach is explained below.

Imagine a guided wave that propagates along a structure and interacts with a
present defect. The result is a scattered field which contains a part of the energy of
the initial waves. The scattered waves are then recorded at certain measuring posi-
tions. This step is outlined in Fig. 3.6 for a tube with an axial notch used as an
example. The axisymmetric waves initiated at the left end of the tube interact with
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the notch, which generates the scattered field as indicated. These reflected waves
are recorded at the measurement points distributed equally around the circumfer-
ence at the outer surface at the left end of the tube.

Even though the waves are excited at the beginning of the tube, the notch can be
viewed as the origin of the scattered field. The defect acts as a source where the
scattered waves are generated during the interaction with the initial wave pulse.
The fact that the length of the notch in Fig. 3.6 is in the range of the wavelength of
the excited waves is only coincidence.

Figure 3.6: Diagram of the recording of the scattered field from a notch at several points 
distributed equally around the circumference at the outer surface of the tube at the left 
end. The length of the notch is only by coincidence similar to the wavelength.

According to the previous plate example, the time reversed displacement measure-
ments are used to determine their origin. If the recorded displacement histories are
reversed in time and used as excitation signals at the appropriate measuring posi-
tions, the waves travel back through the structure and interfere with each other.

In order to obtain the correct location of the maximum amplitude, the structure
used for playing back the time reversed signals must be identical with respect to
material parameters, boundary conditions, and geometry, and the measuring and
retransmission positions must be the same. 

The maximum amplitude which results from the constructive interference is
obtained at the position of the source, which is exactly the beginning of the notch.
Fig. 3.7 shows a diagram of the played back waves at the time with maximum
interference. The position of the notch is indicated by the dashed rectangle.

measurement
points

scattered
field

notch
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As noted previously, the time reversal method only works properly, if all displace-
ment components are recorded at the measuring positions. In the case of cylindri-
cal structures, these are the radial, tangential, and axial displacements , , and

. As shown with different simulations, it is sufficient to record the three dis-
placements only on the outer surface of the structures, as long as the wavelength is
large compared to the thickness of the tube. The reason is that for this frequency
range, the wave propagation directions are mainly axial and circumferential.

Figure 3.7: Diagram of the played back waves at the time with the maximum interfer-
ence. All three displacement histories are time reversed and played back in the corre-
sponding locations on the outer surface of the tube. The highest amplitude occurs at the 
origin of the scattered field which is the beginning of the defect. The position where the 
notch was located during the first step is indicated by the dashed rectangle.

The recording of the three displacement components in the first step can be done
experimentally, using a special laser interferometer which is described in
Chapter 4.1. However, for the playback part, imposing precise displacements in
three directions at the measuring positions of the structure is difficult in an experi-
ment, especially when dealing with small samples.

Another challenge is the detection of the amplitude increase due to the interfer-
ence within the structure. If the playback is done experimentally, the tube must be
scanned in order to find the maximum amplitude. This procedure is performed by
Ing et al. [26] who use a laser interferometer to find the origin of time reversed
lamb waves in thin plates. Since the main goal of this thesis is the development of
a new method for the fast NDT of large structures, the aim is to eliminate such
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steps. For this reason, and also to avoid the complex excitation of the displace-
ments and the scanning of the sample, the playback part is replaced by a numerical
simulation. This enables also the visualization of the position of the maximum
amplitude. In this case, imposing the time reversed displacement histories is easy.
As long as the simulated structure shares the same geometrical and material param-
eters and the same boundary conditions as the sample used in the experiment, the
reverse wave propagation can be calculated numerically. To obtain accurate
results, the physics of the wave propagation phenomenon must be described appro-
priately by the simulation. To fulfill this requirement, a three-dimensional code in
cylindrical coordinates with a high accuracy must be used. The finite-difference
codes described in Chapter 2. meet these demands.

One important characteristic of the time reversal method is that even though no
defect is present in the simulated structure used in the playback step, the waves
interfere constructively, and the maximum displacement or stress takes place at the
position where the defect is located in the sample used for the recording. This is
one of the key features of the TRNS method. It means that measured signals
obtained in an experiment performed on a defective structure can be time reversed
and used as input signals in a notch-free simulation to determine the position of a
defect within a large structure. A summary of the major steps of the TRNS method
is provided below:

• In a physical experiment, guided waves are excited in a defective tube.
Compared to other NDT methods using guided waves, the initiation of the
waves is not a crucial step in this approach. It is not necessary to excite one
specific mode. Basically, any method that generates scattered waves at the
defect is applicable.

• The amplitudes of the scattered waves that are generated at the defect are
measured as a function of time at different positions. All three displace-
ment components must be recorded, which is done by using a three-dimen-
sional laser interferometer. It is sufficient to measure points on the surface
of the tube only.

• A structure with the same geometrical and material parameters is imple-
mented in the simulation code. This structure is free of defects and must
have the same boundary conditions as the sample used in the experiment.

• The recorded signals are time reversed and used as excitation signals in the
simulation. Therefore, the points in the simulated structure that correspond



Time reverse numerical simulation

55

a

to the measuring positions are driven simultaneously in all three directions,
with the corresponding signals and the appropriate time delays.

• The waves start to propagate back through the structure and begin to inter-
fere with each other. During the playback simulation the displacement
amplitudes are observed in order to determine the time and position of the
maximum interference.

• From this location in the simulated structure, the axial and circumferential
coordinates of the defect within the defective tube are calculated by using
the corresponding discretization parameters. Since the time signals are not
analyzed directly, it is neither necessary to determine any time differences
nor to identify the scattered wave modes or their group velocities.

Until now, the time reversal method was either used for strictly theoretical exam-
ples or as a tool for investigations where both steps, recording and retransmitting,
are performed experimentally on the same sample. In contrast to the applications
found in literature, the TRNS method at hand combines experiments and numerical
simulations. The result of this new combination is an efficient and accurate method
for the detection of defects in real structures. Since scanning the sample is elimi-
nated by using simulations, the present approach can also be applied to tubes with
insulation or limited access. The experiments performed and results achieved are
presented and discussed in Chapter 4.

3.3 Verification of the method using simulated data

To validate the TRNS method, the whole procedure is simulated. Accordingly, the
first two steps are performed in a simulation as well instead of an experiment. The
defect is approximated by a notch implemented into the FDM code as described in
Chapter 2.2.4. Then, this simulation of the defective structure is excited, and the
scattered field is recorded at the measuring points. The next steps are performed
following the standard procedure of the TRNS method.

This verification allows the user to check the concept and applicability of the
TRNS method to large structures and to test the accuracy of the introduced
approach. Thanks to the simulation of all steps, the following uncertainties and
errors encountered during the experiment can be eliminated:
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• The material parameters and the geometry of the defective structure used
for the generation of the scattered field are known in detail due to their
exact definition in the simulation code. This prior knowledge eliminates the
determination and measurement of these values in the sample to be tested.

• The recording positions are identical to the retransmission points, and the
three displacement directions match the radial, tangential, and axial com-
ponents. Errors resulting from the three-dimensional laser interferometer
and positioning deviations are excluded.

• The excitation of purely axisymmetric wave modes is possible in the simu-
lation. Although this is not necessary, it simplifies the interpretation of the
recorded time histories. Another advantage is that the implemented struc-
ture is homogeneous, geometrically axisymmetric, completely straight and
of even wall thickness. This assures that the structures used to record and
play back the waves are identical except for the notch.

• Since no measuring equipment, excitation transducers, interferometer and
optical devices are used for the verification, the recordings are free of noise
or offsets, and the piezo element has no influence.

An aluminum tube (mass density , Young’s modulus
, Poisson’s ratio ) with a wall thickness of

, with a radius of midplane , and a length of ,
is used for the validation. A part-through circumferential notch is implemented at a
distance of  from the excitation location at the left end. The notch starts at
the outside of the structure, is  deep and  wide. The circumferential
extent is  which corresponds to approximately . 4, 106, and 2000 cells
are used in radial, circumferential, and axial directions, respectively. The left end
of the tube is excited axisymmetrically in axial direction across the wall thickness
with 10 cycles of a sine wave at a frequency of . According to the disper-
sion diagram in Fig. 1.1, two wave modes [L(0,1) and L(0,2)] are expected for the
applied axisymmetric excitation at the chosen frequency. The driving function is
multiplied by a Hanning window before being applied. This is equivalent to the
experiment described in Chapter 4.5.1.

Four snapshots of the axial displacement at different times are shown in
Fig. 3.8. Since the excitation is above the first cutoff frequency, the L(0,2) mode
exists and is clearly visible. Of course the L(0,1) mode also occurs but is barely
visible in this representation of the axial displacement. This is due to the ratio

r 2700 kg/m
3

=
E 6.9 10

10
 N/m

2ÿ= n 0.34=
h 0.002 m= R 0.015 m= l 2 m=

0.8 m
1 mm 1 mm
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between the radial and axial displacements of the two modes. For the geometry and
frequency in this example, the axial displacements of L(0,1) at the outer surface are
much smaller than those of L(0,2).

Figure 3.8: Interaction with a circumferential part-through notch that is 0.8 m away from 
the left end of an aluminum tube (see Table A.2 in Appendix A.1) of 2 m length. The axial 
displacements at the outer surface are shown at 130 µs (a), 180 µs (b), 231 µs (c), and 
300 µs (d) after the axial excitation at 200 kHz at the left end. The tube is plotted in a 
developed view, with the axial length on the horizontal, and the circumference on the verti-
cal axis. The circumference is enlarged for better visualization.

To display the entire tube surface, a developed view is chosen with the axial and
circumferential extent on the horizontal and vertical axis, respectively. For better
visualization, the circumference, which is about  for the present tube, is
enlarged relative to the length of . The amplitudes are represented as different
gray values with a constant range for all four snapshots.

During the simulation, radial, tangential, and axial displacements are recorded
in 106 points distributed equally around the circumference on the outer surface at
the left end. Fig. 3.9 shows the recorded time histories in one measuring location.
The amplitudes are normalized with respect to the maximum excitation in axial
direction. The amplitude ranges of the three displacements are different.
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Figure 3.9: Recorded time histories of the radial, tangential, and axial displacements in 
one of the measuring points at the outer surface at the left front side of the tube. The 
amplitudes are normalized with respect to the maximum applied excitation in axial direc-
tion.

The time histories are recorded for a duration of . The wave packet in the
axial displacement at around  corresponds to the first reflection of the
L(0,2) mode from the right end. Between the excitation and the first reflection,
many different wave packets exist, and the time signals are difficult to interpret.

Fig. 3.10 shows the group velocity dispersion curves for the simulated tube for
circumferential orders  and mode numbers . Since
L(0,2) is the fastest mode in the selected frequency range, all waves between the
excitation and the first reflection from the end must correspond to reflections from
the defect and therefore have the same propagation direction.
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Figure 3.10: Group velocity dispersion curves for the tested aluminum tube (data see 
Table A.2 in Appendix A.1) for longitudinal L(0,m), torsional T(0,m), and flexural F(n,m) 
modes. The curves for mode numbers m=0,1,...,10 and circumferential order n=0,1,...,10 
are plotted. The unlabeled lines correspond to flexural modes.

Since the excitation is perfectly axisymmetric, the first non-axisymmetric signals
must be reflections from the notch. They are most visible in the tangential dis-
placement, which is zero until around . After this first reflection from the
notch, many more wave packets arrive at the measurement positions. Since the
scattered field is generated at the notch, which is a quasi point source, it changes
from position to position and cannot be described by plane waves near the defect.
Even far away from the notch, only the first wave packets in the time histories can
be assigned to specific modes. The reflections at later times can no longer be clas-
sified since the waves modes are not separated. Therefore, the determination of
their group velocities from dispersion diagrams becomes very ambiguous.

As described in Chapter 2.2, the stress components are also calculated explicitly
in the present FDM code. The disadvantage of this approach in terms of memory
requirements and computational time turns out to be an advantage for the TRNS
method. The interaction of the excited waves with a defect are most visible in the
stress components. As examples, the six stress components are plotted in Fig. 3.11
and Fig. 3.12 at four different times during the generation step of the scattered
field. The same times are chosen here that were used for the snapshots of the axial
displacements in Fig. 3.8. The notch is plotted as a white line, and the amplitudes
are normalized with respect to the highest stress that occurs during the simulation.
For the current excitation in axial direction, these are the axial normal stresses .
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Figure 3.11: Snapshots of the stress components below the outer surface are shown 130 
µs (top) and 180 µs (bottom) after the axial excitation at 200 kHz at the left end.
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Figure 3.12: Snapshots of the stress components below the outer surface are shown 231 
µs (top) and 300 µs (bottom) after the axial excitation at 200 kHz at the left end.
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The scattered field is much more visible in the stress components than in the axial
displacements of Fig. 3.8. Even the L(0,1) mode is apparent in the shear stress
component  in Fig. 3.11 (top). The reason for this is that the range of this com-
ponent is small enough before the L(0,2) mode reaches the notch. At  after
the excitation (Fig. 3.11 bottom), the L(0,2) mode interacts with the notch. The
beginning of the scattered field at the defect is most visible in the shear compo-
nents, which are very small or zero before the interaction with the notch for the
chosen axisymmetric excitation. After the L(0,2) packet has crossed the notch
region, a part of the scattered field propagates back towards the left end. The other
part travels in the same direction as the initial waves (Fig. 3.12 top) but at a lower
speed than the original L(0,2) mode. The excited L(0,2) mode is always faster than
all other wave modes generated at the notch, which is visible in the dispersion dia-
gram in Fig. 3.10. Since the scattered field consists of a superposition of many
wave modes, it changes with time and space. The different group velocities
become apparent by comparing the snapshots of Fig. 3.12, top and bottom.

In the next step, the notch is removed from the previously used structure, and
another simulation is performed. For excitation, the time reversed signals recorded
at the 106 positions at the left end, are applied simultaneously at the corresponding
points. In the example at hand, the first  of the displacement histories are
played back, excluding the reflections from the right end. As a result, the scattered
waves travel back along the tube. Snapshots taken at four different times during the
playback simulations are depicted in Fig. 3.13 and Fig. 3.14. Again, the absolute
times are irrelevant and depend only on the duration of the recording and the used
time origin. At the top and bottom of Fig. 3.13, the snapshots are shown at 
and . The various wave packets and their different group velocities can be
seen. The snapshot at the top of Fig. 3.14 depicts the stress components at the time
when the maximum amplitudes occur. The wave field is focused on one location,
which corresponds exactly to the position of the defect at  from the left end.
The position is clearly visible in all stress components. At later times, the waves
start to separate again (see Fig. 3.14, bottom). The amplitudes of the stress compo-
nents are normalized with respect to the maximum value that occurs during the
TRNS. This is the axial normal stress  at . The comparison of the stress
amplitudes during the playback simulation shows an intense increase of up to
100% when the waves reach the location of the defect. This enables an accurate
determination of the axial and circumferential position of the notch.

srz
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Figure 3.13: Snapshots of the stress components 456 µs (top) and 531 µs (bottom) after 
the start of the playback of the recorded displacement histories.
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Figure 3.14: Snapshots of the stress components 573 µs (top) and 648 µs (bottom) after 
the start of the playback. The top picture shows the time when the maximum amplitude 
occurs. The position of the notch is clearly visible and matches the exact location.
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Since the scattered field is generated in a simulation, the recorded time signals and
the TRNS method in its entirety are of high quality. Accordingly, the position of
the defect can also be detected by observing the displacements. Fig. 3.15 (top)
shows the developed view of the structure with the defect that was used for the
generation of the scattered field. The bottom picture displays the axial displace-
ment field at the time with maximum interference. The position of the notch is
clearly visible and matches the exact location.

Figure 3.15: Developed view of the unexcited structure with the notch (top) and the axial 
displacement field at the time of maximum interference (bottom). The waves are focused 
on a location which matches the exact position of the notch in axial as well as circumferen-
tial direction.

However, in real experiments, the positions can be determined from the displace-
ment signals only with difficulty, which is why the stress components are observed
there.

It is important to play back only direct reflections from the defect. If reflections
of the transmitted field from the end of the structure are retransmitted as well, the
defect cannot be located correctly. Assume, for this example, that the displace-
ments are recorded for a duration of . These histories also include the first
reflection of the L(0,2) mode from the right end (after ) and the fastest
transmitted wave packets which were generated at the notch and reflected at the
right end. Since these reflections travel along the whole structure twice before
reaching the recording positions, they arrive much later. In the playback part, this is
compensated for by exciting them first. The played back reflected waves from the
end are also reflected at the right end in the time reverse simulation and travel back
towards the recording or excitation positions. On their way back, they cross the
direct reflections from the defect that are retransmitted later at the left end. Even if
the time delays are appropriate, the two fields do not interfere constructively at the
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position of the defect. This is due to the fact that the reflections from the end of the
structure pass the defect twice before being recorded. When played back, they can-
not interact with the defect on their first path because no defect is present in the
sample used for the time reversed simulation. This changes the path of the waves
so that they can no longer interfere correctly. Therefore, it is important to only play
back signals that interacted just once with the defect. For this example, this means
that only the first  of the recorded displacements are time reversed and
retransmitted.

3.4 Conclusions

Since elastic wave propagation is described by time-reversal-invariant equations,
wave phenomena can be reversed in time and played back. This is demonstrated for
the example of flexural waves in a plate, where the recorded wave field is time
reversed and played back. The retransmitted waves interfere and reach a maximum
amplitude at the position of their origin, which can be either a source or a notch.
This is the key element of the developed time reverse numerical simulation
(TRNS) method. Structural waves are generated in a defective sample, and the
scattered field that results from the interaction with the defect, is recorded at sev-
eral positions. Then, these signals are time reversed and used as excitation signals
in a numerical simulation of the same structure, but without a defect. The played
back waves refocus at the position of the defect as long as all three displacement
components are excited simultaneously. It is found that it is sufficient to only
record the displacements on the surface of the structure. The advantage of using a
simulation for the playback part is that the position and time of the maximum
amplitude can be determined by observing the displacement and stress components
during the simulation. Hereby, the time-consuming scanning of the structure,
which would require overall access and the removal of any possible insulations, is
eliminated. The simulation of a complete experiment allows the verification of the
TRNS method and its applicability to the NDT of large structures.

750 ms
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4. EXPERIMENTS AND RESULTS

4.1 Three-dimensional vibrometer

To perform a TRNS from an experiment, it is necessary to know the radial, tangen-
tial, and axial displacement histories in the recording points distributed circumfer-
entially and equally on the outer surface of the structure at a fixed axial position. In
order to measure the scattered field without disturbing the wave propagation, a
non-contact method is chosen. In this thesis, a heterodyne laser interferometer
(Polytec OFV 303) is used, a device which is well-established at the Center of
Mechanics. Since the vibrometer measures only the displacement component par-
allel to the beam, three measurements must be taken from different directions to
determine the complete displacement vector in one point. To avoid time-consum-
ing repositioning of the laser head and to improve the repeatability and the focus
on a single point, the laser beam is split into three separate rays. This is achieved
by using the optical setup shown in Fig. 4.1.

Figure 4.1: Diagram of the optical setup of the three-dimensional vibrometer.
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The laser beam is first divided into two rays by passing the beamsplitter BS1
(broadband hybrid beamsplitter cube, 30:60, 440-680 nm, Coherent). The ratio of
reflected and transmitted intensity is 30:60. The transmitted ray passes another
beamsplitter BS2 (laser non-polarizing cube beamsplitter, 50:50, 633 nm, Coher-
ent), which splits it into two equal beams. Each of the three beams contains about
30% of the laser energy.

Then, these three beams are guided onto one spot, using the mirrors M2 to M4
(dielectric mirrors, reflectivity > 99%, 632.8 nm, Newport) to adjust the directions.
All optical components are chosen to match the helium-neon (HeNe) laser wave-
length of 633 nm. Although the beams reflected back to the laser head contain less
than 9% of the initial energy, the displacements can still be measured, provided
that very good reflectivity at the sample is guaranteed. This is achieved by gluing
retro-reflective tape onto the surface of the sample.

Fig. 4.2 shows a picture of the optical setup used in the experiments. The com-
ponents are labelled according to the diagram in Fig. 4.1. The ray paths are out-
lined with white lines (solid line for the patched-through beam and dashed lines for
the rays blocked by the shutters).

Figure 4.2: Optical setup with the components labelled according to the previous dia-
gram. The three ray paths are outlined with white lines (solid line for the patched-through 
beam and dashed lines for the rays blocked by the shutters).
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The working principle of the vibrometer only allows the measurement of one
direction at a time. Therefore, each optical path is equipped with a shutter (S1 to
S3), which enables sequential patch-through of the three beams. The shutters
(Fig. 4.3 left) are lifting magnets that are driven by the computer via the serial
interface using a self-made shutter control (Fig. 4.3 right). This is an important step
in the automation of the whole experiment. A circuit diagram and a description of
the functionality of the control are provided in Appendix A.4. To minimize reflec-
tions from the closed shutters, their ends are coated with dull black anodized alu-
minum.

Figure 4.3: Close-up view of a shutter in its closed position (left). The ends are coated 
with dull black anodized aluminum to minimize reflections of the laser beam. The right pic-
ture shows the shutter control mounted above the laser head and the optical setup in the 
background.

To ensure focussing of all three rays and to simplify the adjustments onto one spot,
the optical components must be arranged in such a way that the three beam paths
are of equal length. For this reason, another mirror M1 (same characteristics as M2
to M4) is inserted to extend the path of beam 1. In addition to these precautions, an
auto-focussing routine is implemented into the measuring procedure to eliminate
small focussing deviations between the different positions. Although the laser
could be completely refocused automatically after every beam change, much time
can be saved by arranging the components in an appropriate way. The exact posi-
tioning of the optical components is provided in Appendix A.5.
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4.1.1 Determination of the displacement histories

The three measured displacement components , , and , which correspond
to the beams 1 to 3, contain the superpositions of the projections of the radial, tan-
gential, and axial displacements onto these directions. It is necessary to distinguish
between the displacement components at the measuring position , , and 
and the staggered components , , and  which are used in the TRNS. The
measured displacements are given as

(4.1)

where , , and  are the angles between the measuring directions and the coor-
dinate axis according to Fig. 4.4. While beam 1 and beam 3 are positioned in the

-plane, ray 2 is an element of the -plane. The laser head is aligned with the
-axis.

Figure 4.4: The three angles α, β, and γ define the directions of the three measurement 
beams with respect to the coordinate system used for the tube.

The displacement components in the -system can be calculated from the
measured values as
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(4.2)

(4.3)

(4.4)

The angles , , and  must be determined from the optical setup used for the
experiment. The applied procedure is explained in Appendix A.6.

Due to the staggered grid in the finite-difference code, the time reversed dis-
placement histories must be applied at different locations in the simulation. The
grid is deliberately chosen so that the axial and tangential components are posi-
tioned on the surface of the structure and the radial displacement is shifted in radial
direction by half a cell. The distribution is shown in Fig. 4.5.

Figure 4.5: Allocation of the measured and simulated displacement components.

As a first approximation and for fine grids and long wavelength, the measured val-
ues , , and  can directly be used as , , and  which are shifted by half
the spatial step sizes.

However, the radial and tangential components can be approximated more accu-
rately using the following assumptions. Since the measuring positions are distrib-
uted around the circumference, the appropriate values for the tangential
displacements, which have the same axial and radial coordinates as the measuring
positions, can be linearly interpolated from two neighboring points. This works if
the grid size  corresponds to the angular step between the measuring locations.
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The radial displacements are calculated by solving the boundary condition Eq.
(2.10) (  must vanish on the surface). Therefore, Eq. (2.6) is discretized and
solved for the radial displacements, using linear interpolation in radial direction to
determine the fictitious values. Neglecting the deviations of the axial displacement
in axial direction, yields

(4.5)

, , , , and  denote radius of midplane, wall thickness, radial, and tan-
gential discretization parameters, and Poisson’s ratio, respectively. The index 
defines the circumferential position.

Good results are obtained with this method. To achieve even better accuracy,
additional measurements must be taken at a second circumference, shifted in axial
direction by .

4.2 Experimental setup

The applied method for measuring wave propagation phenomena in cylindrical
structures experimentally was used at the Center of Mechanics over the years
([10], [22], [56]). In the present case, waves are excited using piezoelectric ele-
ments. The displacement amplitudes, which are in the nanometer range, are mea-
sured by laser interferometry. For better accuracy, a high resolution phase
demodulator based on the idea of Goodbread [19] and described in detail by Dual
et al. [11], is used. To dampen vibrations transmitted by the building, the measure-
ments are performed on an optical table (Newport RS4000). 
The experiments are computer-controlled using the software LabView (National
Instruments). The electronic devices and the computer communicate via the IEEE
488 (GPIB) interface and the serial data interface.

The experimental setup is shown in Fig. 4.6 and consists of the sample mounted
in the rotational axis, the three-dimensional vibrometer, the piezoelectric excitation
and the electronic devices. While the setup of the test specimen and the excitation
are described in Chapter 4.2.1, the other steps of the experiment are explained
below:
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Figure 4.6: Experimental setup

• The excitation signal is generated in the computer, and the discrete values
are loaded via GPIB into the function generator (Stanford DS345). The
analog output signal is transferred to the amplifier. The SRS DS345 also
generates the trigger signal (20 Hz).

• The signal from the function generator has an amplitude of  and is
amplified by the voltage amplifier (Krohn-Hite 7500) by a factor of 100.

• This excitation signal is used to drive the piezoelectric transducer which
generates waves in the samples (Chapter 4.2.1). To monitor the amplified
signal, it is attenuated by a factor of 100 and transferred to the computer.
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There, it is digitized with an analog-digital converter (National Instruments
NI 5911). The vertical resolution is 12 bits at the chosen sampling fre-
quency of . The converter is activated using the trigger signal
from the function generator.

• The displacements of the surface of the tube are measured with the laser
interferometer (Polytec OFV 303) and the optical setup. The shutter con-
trol, which is activated by the computer via the serial interface, allows the
patching-through of the three beams.

• The signal from the laser is transferred to the original demodulator (Polytec
OFV 3001). However, to obtain more accurate results, a high-resolution
phase demodulator (MHPD 004) which was developed at the Center of
Mechanics is used for the demodulation of the signal. The OFV 3001 is
only used for the computer-controlled focussing of the laser.

• The voltage signal from the demodulator, which is proportional to the sur-
face displacement, is analog band-pass filtered (Krohn-Hite 3988).

• A second analog-digital converter (NI 5911) is used to digitize the filtered
displacement signal.

• The value of the signal level from the MHPD 004 is proportional to the
focussing status of the laser. It is read out by a multimeter (Fluke 8842A)
and transferred to the computer via GPIB. The implemented auto-focussing
routine is based on this parameter.

• The rotation stage (Newport M-URM 100ACC) is driven by the motor con-
troller (Newport MM 100 DC) and allows for the accurate rotation of the
test specimen with a resolution of .

4.2.1 Specimen setup and excitation

Instead of moving the laser and the optical setup, the test specimen is mounted in a
rotation stage at one end. The tube is clamped into position with three screws, cov-
ered with silicone caps to minimize reflections (Fig. 4.7 left). In addition to the
clamping, the sample is supported by a styrofoam v-block which generates only
negligible reflections. It is important to keep the distance between the rotating sam-
ple and the three-dimensional vibrometer constant. Otherwise, the rays cannot be
focused into one point for all measuring locations. For this purpose, the tube must
be aligned exactly with the rotational axis of the stage. This is achieved by adjust-

12.5 MHz

1/1000±
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ing the three screws until the tube and the rotation stage are concentric with an esti-
mated accuracy of about . A gauge is used for verification. The position of
the styrofoam support is tuned with two translation stages.

The three-dimensional vibrometer is mounted completely on a separate plate to
avoid long setup times. The plate can be positioned by using a rail system horizon-
tally and adjustable posts vertically. In the next step, the three laser beams are
guided onto one spot by trimming the mirrors.

Figure 4.7: Rotation stage with mounted tube. Three screws are used for positioning. 
Rubber caps minimize reflections (left). The right picture shows the experimental setup on 
the optical table. The three-dimensional vibrometer is mounted on a separate plate, 
adjustable in the horizontal plane and in height.

Since the laser rays are not perpendicular to the surface of the sample, retro-reflec-
tive tape must be used to guarantee reflection into the incident direction. The dis-
placement histories are measured at the beginning of the tube, right adjacent to the
piezo element. This allows the separation of the excitation signal and the scattered
field and, thus, the determination of the propagation direction.

A piezoelectric transducer is used for the excitation of the waves. A longitudi-
nally polarized piezoceramic ring (Ferroperm, Pz26) is glued to the front surface at
one end of the tube with a fast-cure two-component epoxy (Perma Bond, double
bubble). The radius and the thickness of the piezo match the dimensions of the test
specimen, while the length is . An electric field with an axial polarization is
applied to the piezo. With this configuration, mainly the axial displacements are
excited. Even though the radius of the piezo ring is chosen to match the tube, it is
impossible to achieve a perfectly axisymmetric excitation due to geometrical and
positioning inaccuracies and the effect of the glue.

In the following experiments, 10 cycles of a sine at a center frequency of
, multiplied with a Hanning window, are used as excitation functions.

0.1 mm

2 mm

200 kHz
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4.3 Measuring sequence

The entire experiment is controlled via the computer and LabView and is fully
automated. An outline of the measuring sequence is shown in Fig. 4.8.

Figure 4.8: Measuring sequence

This sequence is repeated for all measuring positions on the circumference. Prior
to every laser measurement, the focus is checked. If the signal level of the demodu-
lator MHPD 004 is below a pre-defined threshold, the auto-focussing routine
starts. It refocuses the laser and re-checks the level. This procedure is repeated
until the required signal level is reached or the number of refocus attempts (focus#)
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is larger than the specified number totfocus. In this case, the sequence stops and the
operator is notified to focus the laser manually.

If the reflection is above the desired level, the measuring routine for the
patched-through beam is initiated. The measurements are averaged and saved on
the computer. Then, the next beam is selected by activating the shutter control, and
the sequence starts again. After the third beam is measured, the tube is rotated to
the next measuring position.

4.4 Test specimen

The tested samples are drawn and warm-hardened aluminum tubes with a wall
thickness of  and a radius of midplane . The material is
an aluminum alloy (Alusuisse Extrudal-043 AlMgSi0.5), with Young’s modulus

, mass density , and Poisson’s ratio
, according to the manufacturer. The tolerances of the geometrical

dimensions conform to DIN 1795. The length of the specimens is approximately 2
meters.

Since the influence of the material parameters is quite large (see Chapter 4.6),
the actual values are determined experimentally. The Young’s modulus is obtained
by observing longitudinal resonance frequencies in the low frequency range
( ). In this frequency regime waves propagate in tubes as they do in bars
(see Dual [10]). Poisson’s ratio is determined from wave propagation experiments
in the higher frequency range. The phase velocity dispersion diagrams are obtained
from experimental data using a Matrix Pencil algorithm which is described by
Gsell [22] and is based on the Linear Prediction method. Since in the isotropic case
the phase velocity of the L(0,2) mode approaches the velocity of the first symmet-
rical plate mode for high wave numbers (Dual [10]), Poisson’s ratio can be deter-
mined using the known Young’s modulus. The determined values are given in
Appendix A.1.

Defects are introduced by machining notches of different extents and orienta-
tions into the tube. This is done with a small carbide end mill of  and

 diameter (Hitachi Miniature carbide end mill, hyper square long neck,
HPSLN-2005C).

h 2 mm= R 0.015 m=

E 6.9 10
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 N/m
2ÿ= r 2700 kg/m

3
=

n 0.34=
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4.4.1 Positions and dimensions of the notches

The results of three different notch types are given and discussed in this chapter.
The samples are numbered as tube #2, #3, and #5, and the exact dimensions, posi-
tions and orientations of the notches are given in the following drawings. The tubes
are plotted in a developed view (Fig. 4.9, Fig. 4.10, and Fig. 4.11) with the length
on the horizontal and the circumference on the vertical axis. A sectional view of
the notch is provided on the right in each case. The unit of the dimensions is mm.
The indicated angles on the left vertical axis define the orientation of the notch rel-
ative to the circumferential position of the first measurement location (which is
always at ).

A longitudinal part-through notch is machined into tube #2 (Fig. 4.9, data see
Table A.2 in Appendix A.1). The notch is  deep and originates from the out-
side. It is  long and  wide. This results in approximately 0.26% of
the cross-sectional area.

Figure 4.9: Tube #2 with a longitudinal part-through notch.

A circumferential part-through notch with depth  is machined into tube #3
(Fig. 4.10, data see Table A.2 in Appendix A.1). It is  wide and has a circum-
ferential extent of  which corresponds to approximately . About 4.3%
of the cross-sectional area are removed in this case.
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Figure 4.10: Tube #3 with a circumferential part-through notch.

Tube #5 (data see Table A.2 in Appendix A.1) contains a part-through notch
(  deep) which is orientated at a 45 degree angle with respect to the axial
direction (Fig. 4.11). The notch is  wide and  long.

Figure 4.11: Tube #5 with a part-through notch, orientated at a 45 degree angle with 
respect to the axial direction.
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4.5 Results

As excitations in the performed experiments, 10 cycles of a sinusoid at 
are multiplied with a Hanning window and applied to the transducer. The piezo
element (Ferroperm Pz26) is fixed to the left end of the tubes (see Chapter 4.2.1).
The right ends of the samples are clamped in the rotation stage, and the styrofoam
block is positioned  away from the piezo ring. The band-pass filter is set to

 and , respectively. Each measurement is averaged 150 times (if
not stated otherwise) with a trigger frequency of . The displacements are
recorded along a circumference approximately  away from the piezo at the
left end.

4.5.1 Circumferential notch

A first experiment is performed with tube #3 (see Fig. 4.10) with a circumferential
part-through notch. In this case, the measurements are taken in 53 points distrib-
uted equally along the entire circumference. The center of the notch is positioned
at an angle of approximately  relative to the first measurement location.
Fig. 4.12 shows the radial, tangential, and axial displacements as a function of time
in one of the measuring positions. They are calculated from the recorded displace-
ments , , and , using Eqs. (4.2) - (4.4). The displacements are normalized
with respect to the maximum axial amplitude.

This experiment corresponds to the numerical simulation used for the verifica-
tion of the TRNS method (Chapter 3.3). Therefore, the measured time histories can
be compared to the ones recorded during the simulation (Fig. 3.9). During the exci-
tation, the tangential displacement is not zero in the experiment and the radial dis-
placement is larger than in the simulation. This is due to the non-axisymmetric
positioning and the coupling between axial and radial displacements in the piezo-
electric ring. The scattered field originating from the notch is non-axisymmetric
and its start at around  is best determined from the tangential displace-
ments. This matches the findings of the corresponding simulation.

200 kHz
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10 kHz 400 kHz

20 Hz
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175±
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Figure 4.12: Recorded displacement histories of the scattered field from a circumferential 
notch in tube #3 (data see Table A.2 in Appendix A.1). The measurement is taken in one 
point on the outer surface of the tube at the left end close to the piezo element. The solid, 
dotted, and dashed vertical lines define the portions of the signals which are played back. 
The signals are normalized with respect to the maximum recorded axial displacement.

In a first TRNS, the time histories between  and , marked by the
solid vertical lines in Fig. 4.12, are used for the simulation. This corresponds to the
first reflections from the notch. A structure with material and geometrical parame-
ters (see Table A.2 in Appendix A.1) equivalent to the values of tube #3 (but with-
out the notch) is implemented in the fourth-order finite-difference code. The
selected time range of the displacements of all 53 measuring locations are time
reversed and applied at the corresponding circumferential positions on the outer
surface at the left end. The simulation parameters used are provided in Chapter 4.6.
The focussing of the played back waves is again most visible in the stress compo-
nents which are shown in Fig. 4.13 at the time when the maximum amplitude
occurs. In Fig. 4.13 and the following figures, the tube is plotted in a developed
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view, with the axial length on the horizontal and the circumference on the vertical
axis. For better visualization, the circumference is enlarged.

Figure 4.13: Stress components of the TRNS of an aluminum tube (see Table A.2 in 
Appendix A.1) with a circumferential part-through notch 0.8 m from the left end. The first 
reflections of the scattered field measured in 53 points distributed around the circumfer-
ence are played back. The axial and tangential positions of the notch are clearly visible 
and can be determined. Again, the tube is plotted in a developed view, and the circumfer-
ence is enlarged for better visualization.

The axial and circumferential position and the orientation of the notch are visible
in the stress components. The stress components  and  are shown in detail
at the position of the notch in Fig. 4.14 (a) and (b), respectively. The axial position
is determined in the axial normal stress component. The notch originates at the
axial position with the largest difference between dark and white. The absolute val-
ues of the positions are calculated by using the known geometry of the test sample
and the discretization parameters. For the present experiment, this is at a length of

 [Fig. 4.14 (a)].
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Figure 4.14: Detailed view of the stress components σzz (a) and σϕz (b) at the position of 
the notch for the TRNS with 53 points excited. The axial and circumferential position of the 
notch are marked with dashed black lines in the normal stress component σzz and the 

shear stress component σϕz, respectively. The absolute values can be determined accord-
ing to the known discretization parameters and the geometry of the sample.

The tangential position can be determined from the shear stress component ,
seen again, at the border between dark and white. The circumferential position of
the center of the notch turns out to be at  relative to the first measurement
location. While the tangential position is quite accurate, small deviations in the
axial location of the notch are observed. However, the accuracy is within the range
of the wavelength. Possible explanations for this deviation in the axial position are
given in Chapter 4.6.

To obtain a higher accuracy, one can play back not only the first reflections,
which can be interpreted as the fastest wave mode (with large wavelength) gener-
ated at the defect, but also the slower modes with shorter wavelengths. Therefore,
the time signals between  and  are played back (marked by the dot-
ted vertical lines in Fig. 4.12). This time range contains the first, mainly axial
reflection and also the mode with dominant radial displacement at around .
The obtained stress component  is shown in Fig. 4.15.
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Figure 4.15: Stress component σzz of the TRNS with the first two reflected modes played 
back. Despite a higher noise level, the circumferential and axial positions of the notch can 
be determined more accurately thanks to the smaller wavelength and the interference of 
the two modes.

Because more noise and measurement errors are included in the longer retransmit-
ted signals, the overall impression of the TRNS is less clear now. However, since
the region of the notch is known from the previous TRNS, one can zoom onto this
part to determine the position and extent of the notch, as shown in Fig. 4.16.

Figure 4.16: Detailed view of stress component σzz at the position of the notch for the 
TRNS with 53 points excited. The axial and circumferential positions of the notch are 
marked with dashed black lines.

Even with the smaller wavelength, a slight axial offset is detected. However, the
deviation is smaller than 2%. Possible reasons for this axial offset are discussed in
Chapter 4.6.

In a next TRNS, the same part of the recorded displacements that was used in
the first simulation for this sample are played back. However, this time only ten
points distributed equally around the circumference at the left end are excited. The
retransmitted waves are still focused at the position of the notch as can be seen in
the axial normal stress component in Fig. 4.17.
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Figure 4.17: Stress component σzz of the TRNS when only ten points distributed equally 
around the circumference at the left end are excited. The circumferential and axial posi-
tions of the notch can still be determined with the known discretization parameters.

When measuring only a few points along the circumference, special care must be
taken when calculating the displacement values to apply in the simulation from the
measured displacements (see Chapter 4.1.1). Since the circumferential step  is
much larger, Eq. (4.5) is no longer accurate. Therefore, at each circumferential
position, two more measurements should be taken at locations with a small angular
step size. Using these three-point groups, the correct excitation values for the
TRNS can be calculated.

In a last TRNS of tube #3, the complete recorded displacement histories
between the excitation and the first reflection from the right end, which is the range
between  and  (marked by the dashed vertical lines in Fig. 4.12), are
time reversed and played back. Again, the measurements of all 53 locations are
excited in the simulation. The stress components at the time with maximum ampli-
tude are shown in Fig. 4.18. Although increased noise and more errors are con-
tained in these signals, the TRNS still focuses, and the notch and its position can be
determined. This is an important finding because it means that the defect can be
discovered without interpreting or analyzing the recorded time signals. Especially
in cases where the excitation is no longer axisymmetric or if the scattered field is
very small, the determination of the first reflected parts from the defect in the mea-
sured signals is no longer possible. In this case, the time signals can be played back
in their entirety.
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Figure 4.18: Stress component σzz of the TRNS of an aluminum tube (see Table A.2 in 
Appendix A.1) with a circumferential part-through notch 0.8 m from the left end. The com-
plete measured displacement histories of the 53 points distributed equally along the cir-
cumference are time reversed and played back. The axial and tangential positions of the 
notch are still visible and can be determined.

4.5.2 Longitudinal notch

The results for the detection of a longitudinal part-through notch (tube #2, Fig. 4.9)
are presented next. The notch is positioned at an angle of approximately  rel-
ative to the first measurement location, and 108 points are measured along one cir-
cumference.

Fig. 4.19 shows three stress components at the time of the maximum amplitude
of a TRNS where the first reflected mode is played back in all 108 points.

Figure 4.19: Stress components σzz, σϕϕ, and σϕz of the TRNS of an aluminum tube (see 
Table A.2 in Appendix A.1) with a longitudinal part-through notch 0.8 m from the left end. 
The first reflections of the scattered field measured in 108 points distributed equally 
around the circumference are played back. The axial and tangential positions of the notch 
are visible and can be determined.
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The axial and circumferential positions of the notch are, once again, determined
from the normal stress  and the shear stress , which are shown in Fig. 4.20.

Figure 4.20: Detailed view of the stress components σzz (a) and σϕz (b) at the position of 
the longitudinal notch for the TRNS with 108 points excited. The axial and circumferential 
positions of the notch are marked with dashed black lines in the normal stress σzz and the 

shear stress component σϕz, respectively. The absolute values can be determined with 
the known discretization parameters and the geometry of the sample.

Even for this very small defect (only 0.26% of the cross-sectional area are
removed), the axial and circumferential positions can be determined. While the cir-
cumferential location is correct, the beginning of the notch is detected to be
slightly too far away in axial direction.

Fig. 4.21 shows the normal stress component  when the complete recorded
displacement histories between the excitation and the reflection from the right end
are retransmitted. In spite of the noise, the position of the notch is still detectable
with some TRNS experience.

Figure 4.21: Axial normal stress component of the TRNS of an aluminum tube (see Table 
A.2 in Appendix A.1) with a longitudinal part-through notch 0.8 m from the left end. The 
complete measured displacement histories of the 108 points distributed equally along the 
circumference are time reversed and played back. The axial and tangential positions of the 
notch are still visible and can be determined.
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Again, one can obtain the axial position from the zoom-picture of the axial normal
stress in the notch region as shown in Fig. 4.22. No interpretation of the time signal
is necessary.

Figure 4.22: Detailed view of stress component σzz at the position of the notch for the 
TRNS with 108 points excited. The axial positions of the notch can still be determined with 
some TRNS experience.

Since the complete recorded signal is played back the parts with smaller wave-
length are also included. Therefore, the accuracy of the axial position can be
increased. The longitudinal notch is determined to be located at an axial distance of

. However, because more noise is retransmitted as well the interpretation is
more difficult. Although the deviation is in the range of 5%, this very small defect
is still successfully detected. Possible reasons for this axial offset are discussed in
Chapter 4.6.

4.5.3 45-degree notch

To check the ability of the TRNS method to detect the orientation of the notches,
tube #5 (see Table A.2 in Appendix A.1)with a part-through notch at an angle of

 with respect to the axial direction is investigated (Fig. 4.11). Therefore, the
displacements are recorded in 108 points, and each measurement is averaged 300
times. The center of the notch is positioned at an angle of approximately  rel-
ative to the first measurement location. Since the notch is also  away from
the measurement positions, the same time range used for the circumferential notch
is played back. The stress components  and  are shown in Fig. 4.23 at the
time with the maximum amplitudes.
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Figure 4.23: Stress components σzz and σϕϕ of the TRNS of an aluminum tube (see Table 
A.2 in Appendix A.1) with a part-through notch at 45º, 0.8 m from the left end. The first 
reflections of the scattered field measured in 108 points distributed along the circumfer-
ence are played back. The axial and tangential positions and the orientation of the notch 
are visible and can be determined.

In addition to the axial and tangential positions of the notch, the orientation is also
derived from the normal stress component as shown in Fig. 4.24.

Figure 4.24: Detailed view of the stress component σzz at the position of the part-through 
notch for the TRNS with 108 points excited. The axial and circumferential positions as well 
as the orientation can be determined using the known discretization parameters and the 
geometry of the sample.

Since the circumferences are plotted enlarged in all previous TRNS pictures, one
must use the discretization parameters to calculate the orientation angle, which is
detected to be approximately . The deviation of the axial position is again in
the range of the wavelength of the first played back mode.
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Therefore, a second TRNS is performed where the reflections from the first two
modes are played back. The axial normal stress component  for this case is
shown in Fig. 4.25.

Figure 4.25: Axial normal stress component of the TRNS of an aluminum tube (see Table 
A.2 in Appendix A.1) with a part-through notch at 45º, 0.8 m from the left end. The first two 
reflected modes are played back in 108 points distributed along the circumference. The 
axial positions can be determined more accurately due to the smaller wavelength.

Again, one can obtain the axial position from the zoom-picture of the axial normal
stress in the notch region as shown in Fig. 4.22. No interpretation of the time signal
is necessary.

Figure 4.26: Detailed view of stress component σzz at the position of the part-through 
notch at 45º for the TRNS with 108 points excited. Since the first two modes are played 
back and in spite more noise in the signal, the axial position of the defect can be deter-
mined more accurately.

The smaller wavelength allows a more accurate detection of the axial position of
the notch which is determined to be at a distance of . This corresponds to
an error of approximately 1%.
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4.6 Discussion of the results

The true positions of the notches in the experiments can only be accurately deter-
mined if the time reverse numerical simulations are highly accurate. Since the fine
grid which would be necessary for the second-order algorithm exceeds the capacity
of currently available computational hardware, the fourth-order code is used for all
of the above TRNS. In radial and axial directions three and 1250 cells are used in
all TRNS, while the number of grid points in circumferential direction corresponds
to the number of measurement points (53 locations for the circumferential and 108
points for the longitudinal and 45-degree notches). The tubes are implemented
with stress-free boundaries, and neither the piezo element nor the styrofoam block
nor the rotational stage are included in the simulation.
The performed experiments show that the defects are detected in all cases and that
even for very small defects, the TRNS method delivers reliable results for the axial
and circumferential position and the orientation of notches which are situated far
away from the measurement locations. Several reasons can cause the deviations in
the circumferential and axial coordinates, which are  and  for the 45-
degree and the circumferential notches, respectively. This results in an error which
is less than 2%. A larger deviation of , which corresponds to 5%, is
obtained for the longitudinal notch. However, since this notch is very small (only
0.26% of the cross-sectional area are removed), already the detection of it is a good
result.

One possibility are errors in the material parameters, which affect the wave
propagation. Variations of Young’s modulus show a detectable influence on the
positions of the maximum interference. Therefore, the material parameters were
determined experimentally as described in Chapter 4.4. The used parameters are
given in Table A.2 in Appendix A.1.

In a next step, the wall thickness and the radius of midplane of the tube are var-
ied. While the variation of the wall thickness showed only negligible influence on
the position of the maximum amplitudes, the radius of midplane effects the loca-
tion remarkably.

Another possible reason for the axial offset might be the missing piezo element
in the simulations and the influence of the retro-reflective tape. The measured sig-
nals are used to excite the outside circumference at the free end of the sample in the
TRNS. Almost no differences are observed in the axial position of the focussing
when the position of the excited circumference is varied within the first 5 mm of
the tube, which corresponds to the region of the retro-reflective tape in the experi-
ments. However, the presence of the piezo at the end influences the stiffness of the

9 mm 14 mm

40 mm
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tube and therefore the wave propagation phenomena.
The used aluminum test samples are drawn and warm-hardened tubes. Espe-

cially the drawing-process influences the material behavior and the resulting tubes
are no longer isotropic. However, the implemented finite-difference code for the
TRNS of the performed experiments is written for isotropic materials. This might
be another cause for errors in the determined positions of the notches. Therefore,
the implementation of an anisotropic material law in the simulation code might
improve the accuracy of the results.

The TRNS method allows the determination of the beginning of a notch, as well
as its circumferential extent and orientation, also with only a few measurement
points. To establish the length of the defects, an additional experiment and TRNS
from the other side of the tube can be performed, which returns the position of the
end of the notch.
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5. CONCLUSIONS AND OUTLOOK

The experimental results show the applicability of the present TRNS method to the
long-range non-destructive testing of large structures. Not only the axial and cir-
cumferential positions but also the orientation of defects can be determined. Both,
the excitation and the measurements can be reduced to a small area of the structure,
which is an important advantage with respect to limited access. Another benefit of
the developed method is the elimination of the time-consuming scanning of the
whole structure. Since the recorded time signals of the scattered wave field are not
analyzed directly, the TRNS method is also applicable for very complex reflected
signals. Therefore, it is not necessary to try to excite only a few, or, in the best case
scenario, one specific wave mode. Basically, any excitation that generates a scat-
tered field can be applied. Below, some suggestions are listed which aim to further
improve the accuracy of the procedure. Finally, some ideas to extend the applica-
bility of the TRNS method are proposed.

• To investigate the influence of the piezo element in the simulations, it could
be implemented into the FDM code. This was done by Gsell [22] for the
second-order finite-difference algorithm. However, the impact of the layer
of glue between piezo and tube is very difficult to describe and has not
been taken into consideration.

• Another possible approach is the non-contact excitation of structural waves
using electromagnetic acoustical transducers (EMAT) [53], or the point
source excitation of the structure with a small piezo element or a laser.
However, since the experiments are repeated several times, the damage of
the structure by the laser must be prevented.
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• To further improve the method, the detection of the time and region with
maximum amplitude could be automated. Since the refocussing sequence
has a characteristic pattern, a picture recognition method could possibly be
implemented. A simple search for the maximum value of the different
stress components did not work reliably due to high amplitudes during the
excitation of the recorded time histories and reflections from boundaries.
Especially for low signal-to-noise ratios, only ambiguous maxima were
detected by a simple maximum search. However, by carefully observing
the development of the retransmitted field the exact position could never-
theless be determined. This step, in particular, demands some experience
and a thorough understanding of the TRNS method.

• Especially when dealing with larger reflections, it is conceivable that the
ratio of the maximum refocused amplitude and the excited amplitude are
factors for the characterization of the defect. If the maximum refocused
amplitude is normalized with respect to the number of retransmitted points
and the damping coefficients are known, it might be possible to determine
the depth of the defect by comparing the results with the reflection coeffi-
cients for different notches. This would be an important finding for the
quantitative non-destructive evaluation (QNDE). The reflection coeffi-
cients for guided waves from circumferential defects are studied by
Alleyne et al. [1] using a membrane model for through-thickness notches
and an axisymmetric model for part-through notches which extend over the
full circumference. For the investigation of the coefficients of cracks, a
fracture mechanics approach must be used as is done e.g. by Ditri [9].

• It is possible that the detectability can be improved by incorporating mod-
elling information about the occurring wave modes in the tube at a particu-
lar frequency. An idea is that not only the ring on the surface of the
simulation is excited, but the entire cross-sectional area at the measurement
position. Therefore, the distribution of the displacement components as a
function of the radial coordinate must be determined. Since the reflected
signals are relatively narrowband in frequency, one can imagine the mea-
sured circumferential displacement distribution on the surface as a super-
position of the corresponding displacements of all existing wave modes at
the particular frequency. The idea is to determine the number of wave
modes and their amplitudes by fitting the superimposed amplitudes at the
surface on to the measured displacement field at each specific time. With
the known amplitude ratios, number of waves, and geometrical and mate-
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rial parameters of the sample, the displacement distributions for each mode
can be calculated using the numerical analytical method described in
Chapter 1.2. The superimposed displacement field can then be applied as
an excitation for the entire cross-sectional area. Even though this might
lead to an increase of the amplitude maxima, as was shown for a purely
simulated experiment, it results in many additional calculation steps, since
the amplitude ratios and wave modes must be determined for each time
step during the retransmission sequence.

• If only a part of a large structure is of interest, the implementation of
absorbing boundary conditions (see Chapter 2.1) might be very helpful in
the truncation of the computational domain.

• In order to apply the TRNS method to tubes filled with fluid, the interac-
tion between the solid structure and the fluid must be implemented in the
simulation code. This is the subject of another project currently conducted
at the Institute of Mechanical Systems by Frank May.

• In order to successfully use the playback concept, one must ensure that the
simulated structure corresponds exactly to the performed experiment. This
includes not only the tube itself, but also the environment. Therefore,
known objects, e.g. welding seams, isolation, or surrounding soil must be
taken into account.

• Even if multiple defects are present in the tested sample, the TRNS method
should theoretically still be capable to detect all of them. In that case, the
recorded time signals contain several scattered fields from the different
defects. When playing back the time reversed signals into the simulated
structure, the result is a refocussing at the position of the closest defect.
However, because the refocussing is also achieved if only parts of a scat-
tered field are retransmitted, an amplitude increase should also be detect-
able at the positions of the other defects. This works as long as some of the
scattered fields from defects further away arrive at the measuring locations
and are being recorded and retransmitted. First examples of completely
simulated experiments with two notches showed that both defects can be
detected successfully.
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• For further applications and the wide use of the TRNS method for NDT
and QNDE, the relations between the minimum number of recording posi-
tions, the maximum signal to noise ratio (SNR) and the minimum detect-
able defect size must be determined. Therefore, an experimental and
numerical study with different notch sizes and variable numbers of record-
ing points distributed around the circumference must be performed and
evaluated.

• The developed TRNS method is not at all restricted to the NDT of the
cylindrical structures described in the present work. It can be applied to any
structure, as long as the sample is represented accurately in a numerical
simulation with respect to geometry, boundary conditions, and material
law. Possible applications are the NDT of rods or plates as well as the inter-
pretation of classical UT signals.
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APPENDIX 

A.1 Data tables

The material, geometrical, and discretization parameters of the performed and dis-
cussed simulations, examples, and experiments are given in the two tables below.

name
dispersion 

curves
numerical 

example #1
numerical 

example #2
stability 
analysis

numerical
dispersion

chapter 1.2 2.2.5 2.2.5 2.3 2.4.1

figure(s) 1.1 - 1.5 2.4 2.5 2.6 2.7, 2.13

Young’s modulus 

[N/m2]
6.9*1010 7.2*1010 7.2*1010 7.2*1010 7.2*1010

mass density

[kg/m3]
2700 2700 2700 2700 2700

Poisson’s ratio 0.34 0.33 0.33 0.33 0.33

radius of mid-
plane [m]

0.016 0.016 0.016 0.016 0.016

wall thickness 
[mm]

2 2 2 2 2

length [m] - 0.6 0.3 0.08 0.72

notch - - tangential - -

notch length / 
width / depth [mm]

- - 10 / 1 / 1 - -

radial / tangential / 
axial cells

- 3 / 30 / 750
5 / 100 / 

300
6 / 120 / 

100
3 / 3 /

variable

Table A.1: Material, geometrical, and discretization parameters
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name
comparison

2nd-4th
plate

example
verify
TRNS

tube
#2

tube
#3

tube
#5

chapter 2.5.3 3.1.3 3.3 4.5.2 4.5.1 4.5.3

figure 2.14, 2.15 3.1 - 3.5
3.8 - 
3.15

4.19 - 
4.21

4.12 - 
4.18

4.23, 4.24

Young’s mod-

ulus [N/m2]
7.2*1010 7.2*1010 6.9*1010 6.78*1010 6.78*1010 6.78*1010

mass density

[kg/m3]
2700 2700 2700 2700 2700 2700

Poisson’s ratio 0.33 0.33 0.34 0.35 0.35 0.35

radius of mid-
plane [m]

0.012 - 0.015 0.0149 0.0149 0.0149

wall thickness 
[mm]

2 2 (plate) 2 2.1 2.1 2.1

length [m] 0.15 0.3*0.3 2 1.999 2.000 1.999

notch - -
tangen-

tial
axial tangential 45 degree

notch length / 
width / depth 
[mm]

- -
9.5 / 1 / 

1
20 / 0.5 / 

1
8.5 / 1 / 1

11 / 0.5 / 
1

radial/tangen-
tial/ axial cells

3/400/
750(2nd)

3/80/150(4th)

600/600 
(x/y)

4 / 106 / 
2000

3 / 108 / 
1250

3 / 53 / 
1250

3 / 108 / 
1250

Table A.2: Material, geometrical, and discretization parameters
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A.2 Coefficient vectors for the second-order code

As an example, the complete form of the explicit Eq. (2.5) for the calculation of the
radial displacement components at the next time step for second-order scheme and
the components of the vectors  are given below:

(A.1)

With the vector  defined for the present case as

(A.2)

the vector , which is dependent on the discretization parameters , , ,
, the mass density , and the radial coordinate , is given as

(A.3)

The vectors  and  for the calculation of the tangential and axial components
are derived accordingly.
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The written out form of Eq. (2.9) to calculate the radial normal stress components
yields to

(A.4)

With the vector  defined for the present case as

(A.5)

the vector , which is dependent on the discretization parameters , , ,
the material parameters  and , and the radial coordinate , is given as

(A.6)
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The coefficient vectors for the calculation of the other stress components are
derived accordingly.

A.3 Coefficient vectors for the fourth-order code

Analogous to the second-order scheme, the explicit equations for the calculation of
the displacement and stress components are of the same form as Eqs. (2.5) and
(2.9). The vectors  and  for the calculation of the radial displacement are
given below as an example.

(A.7)

(A.8)
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The vectors  and  for the calculation of the radial normal stress for the
fourth-order scheme are given below as an example.

(A.9)

(A.10)
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A.4 Shutter control

To choose between the laser beams, three shutters are used in the setup for block-
ing the ray paths. Therefore, dull black anodized aluminum plates are attached to
the ends of lifting magnets (Farnell Keyswitch Lifting Magnet SM00 12VDC). The
shutters (S1 to S3) are controlled via the serial interface, which can be controlled
with LabView. Two pins of the serial interface can be easily actuated by changing
the output from 0 to 5V. These are Data Terminal Ready (DTR, pin 4) and Request
to Send (RTS, pin 7). In addition to the three beams, an adjustment case is also
implemented, where all ray paths are patched-through. This yields four states that
can be selected with a logical combination of the two programmable pins accord-
ing to the following table.

The circuit diagram of the shutter control is shown in Fig. A.1. For the logical
operations two digital integrated circuits (IC) are used, one with inverters (Motor-
ola MC14049B, Hex Inverter/Buffer) and one with logical NAND gates (Motorola
MC14011B, Quad 2-Input NAND Gate). The 12V lifting magnets are driven with
a high-voltage, high-current darlington array (SGS-Thomson ULN2004A). To
enable the adjustment of the mirrors without running LabView, a manually oper-
ated switch opens all shutters. Three LEDs indicate the status of the shutters.

DTR RTS OPEN

0 0 S1

1 0 S2

0 1 S3

1 1 S1 / S2 / S3

Table A.3: Logic table for the four states to choose between the three laser beams
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Figure A.1: Circuit diagram of the self-made shutter control.

A.5 Positioning of the optical components

To avoid or minimize the time-consuming auto-focussing of the laser, the three
beams must have equal length. The distance  from the beamsplitter BS1 to the
surface of the object and the angles , , and  can be chosen. The three-dimen-
sional diagram, side elevation and plan view are shown in Fig. A.2. In the present
approach the values , , , and  are used. The
distance  between the beamsplitter BS1 and the mirror M1, and the gap 
between the two beamsplitters are the parameters that need to be adjusted properly
in order to ensure consistent lengths of the ray paths.
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Figure A.2: Positioning of the optical components to achieve equal ray path length for 
beam 1 (solid black), beam 2 (dashed black), and beam 3 (solid gray). The side elevation 
(upper left) and the plan view (lower right) of the three-dimensional (upper right) diagram 
are shown.
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(A.12)

A.6 Experimental determination of the angles

To calculate the displacement components in radial, circumferential, and axial
directions [Eqs. (4.2) - (4.4)], the angles , , and  must be known. Since the
exact distances between the optical components are difficult to determine, the three
angles are measured directly. For this purpose, a sheet of millimeter paper is
mounted parallel to the -plane on a translation stage, moving into the -direc-
tion. The plane with the paper is positioned and aligned between the optical setup
and the sample, and all shutters are opened. Fig. A.3 shows the setup and the paper
sheet at two different positions (plane E and F).

Figure A.3: Setup to determine the three angles. A sheet of millimeter paper is positioned 
between the laser beams and the sample at two different locations (plane E and F), and 
the points of intersection are marked on the paper (E1, E2, E3, F1, F2, F3).
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At the first location (plane E), the positions where the three laser beams hit the
plane are marked on the millimeter paper (points E1, E2, and E3). Then, the sheet
is moved into the radial direction by the distance  using the translation stage
(plane F). Again, the locations of the intersection points are marked on the same
sheet (F1, F2, and F3). Fig. A.4 shows the millimeter paper with the marked inter-
section points.

Figure A.4: Millimeter sheet with the marked intersection points of plane E (E1, E2, and 
E3) and plane F (F1, F2, and F3).

The distances , , and  are measured on the millimeter paper. With the
known geometry shown in the two views in Fig. A.5 and the distance 
between the two planes E and F, the three angles can be calculated.

Figure A.5: Side elevation (left) and plan view (right) to determine the angles α, β, and γ 
from the measured distances.
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