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Abstract

The portfolio selection problem is traditionally modelled by two different approaches. The
first one is based on an axiomatic model of risk-averse preferences, where decision makers are
assumed to possess an expected utility function and the portfolio choice consists in maximiz-
ing the expected utility over the set of feasible portfolios. The second approach, first proposed
by Markowitz (1952), is very intuitive and reduces the portfolio choice to a set of two criteria,
reward and risk, with possible tradeoff analysis. Usually the reward-risk model is not con-
sistent with the first approach, even when the decision is independent from the specific form
of the risk-averse expected utility function, i.e. when one investment dominates another one
by second order stochastic dominance. In this paper we generalize the reward-risk model for
portfolio selection. We define reward measures and risk measures by giving a set of properties
these measures should satisfy. One of these properties will be the consistency with second
order stochastic dominance, to obtain a link with the expected utility portfolio selection. We
characterize reward and risk measures and we discuss the implication for portfolio selection.

Keywords: stochastic dominance, coherent risk measure, decision under risk, mean-risk
models, portfolio optimization.
JEL Classification: G11.

1 Introduction

Markowitz (1952) introduced an intuitive model of return and risk for portfolio selection. This
model is useful to guide one’s intuition, and because of its simplicity it is also commonly used
in practical finance decisions. Markowitz (1952) proposed to model return and risk in term of
mean and variance, but he also suggested other measures of risk as for example the semivariance
(Markowitz 1959).
The advantage of using the variance for describing the risk component of a portfolio, is principally
due to the simplicity of the computation, but from the point of view of risk measurement the
variance is not a satisfactory measure. First, the variance is a symmetric measure and “penalizes”
gains and losses in the same way. Second, the variance is inappropriate to describe the risk of
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†Contact address: degiorgi@math.ethz.ch. Institute for Empirical Research, University of Zurich, Blümlisalp-
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low probability events, as for example the default risk. Third, the mean-variance approach is not
consistent with second order stochastic dominance and thus with the expected utility approach
for portfolio selection. This is well illustrated by the (µ, σ)-Paradox.
As already suggested by Markowitz (1959), Ogryczak and Ruszczynski (1997) also proposed semi-
variance models, where the reward-risk approach is maintained, but the choice of semivariance
instead of variance makes the model consistent with second order stochastic dominance. They
also extend the consistency concept to higher order stochastic dominance by defining a more
general central semideviation measure. Other risk measures have been proposed for portfolio se-
lection, as for example Value-at-Risk (Jorion 1997, Duffie and Pan 1997) or Expected-Shortfall
(Acerbi and Tasche 2001). The latter one is consistent with second order stochastic dominance
under weak conditions on the distributions. Value-at-Risk is widely used in practice: it is only
consistent with respect to first order stochastic dominance (see Hürlimann 2002). Moreover, it
has been shown by Artzner, Delbaen, Eber, and Heath (1997), that Value-at-Risk fails in con-
trolling the risk of large losses with small probability, since it only consider the probability of
certain losses to occur, but not the magnitude of these losses. Moreover, Value-at-Risk usually
does not satisfy the sub-additivity property, which ensures - if satisfied - a reasonable behaviour
of the risk measure when adding two positions. Artzner, Delbaen, Eber, and Heath (1999), be-
ing concerned with banking regulations, have proposed an axiomatic approach to the definition
of a risk measure. They presented a set of four properties for measures of risk and they called
measures satisfying these properties, coherent risk measures. Moreover, they show that a coherent
risk measure can be still characterized by a non-empty set of scenarios (called generalized sce-
nario), such that “any coherent risk measure arises as the supremum of the expected negative of
final net worth for some collection of probability measures on the states of the world” (Artzner,
Delbaen, Eber, and Heath 1999, Section 4.1). Unfortunately, coherent risk measures are usually
not consistent with second order stochastic dominance. Pflug (1998) considered various classes
of risk measures and gave the general properties for these classes, generalizing the approach of
Ogryczak and Ruszczynski (1997) he introduced expectation-dispersion risk measures and showed
that under some conditions they are consistent with stochastic dominance but not coherent.
We want to proceed analogously as Artzner, Delbaen, Eber, and Heath (1999), i.e. for portfolio
selection we give and justify a set of properties for measures of reward and measures of risk. We
give a characterization of these measures and we present some examples. Future researches will
be devoted to the portfolio selection problem and to the question posed by Jaschke and Küchler
(2000) about a possible extension of the Markowitz theory to the reward-risk framework.

As already pointed out, we would like to define a reward-risk framework for portfolio selection
which is consistent (in some sense) with utility expectation. This is attained by imposing some
specific axioms defining reward and risk measures. We give a brief overview of our axioms. A
reward measure should be linear on the space of random variables. If this is not the case, it would
be possible to increase (or decrease) the reward of a portfolio by just splitting it in two or more
positions. Moreover, a reward measure should satisfy a risk-free condition, which states that the
reward of a risk-free asset must be identical with the certain payoff (or change in value of the
portfolio) provided by the risk-free asset. Finally, to ensure the link with the utility expectation
approach, we impose a consistency of the reward measure with second order stochastic dominance.
This last axiom implies that whenever a risk is preferred to another one by all rational, risk-averse
expected utility maximizers, then this risk should provide an higher reward than the dominated
risk.
Anlogously, a risk measure is defined by the following axioms. First, the convexity, which ensures
the diversification effect. In fact, if the risk measure were not convex, then it would be possible
to reduce the risk of some portfolio by splitting the portfolio in two or more single positions.
Second, a risk measure must be invariant under addition of a risk-free position. In a reward-risk
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framework, the contribution of risk-free asset to the portfolio should be captured by the reward
measure, since a risk-free asset gives a certain reward without adding risk. Third, the principle “no
investment, no risk” leads to the very natural axiom that a zero position have zero risk. Finally,
following the same argument introduced above for reward measure, we impose the consistency of
the risk measure with second order stochastic dominance.

The paper is organized as follows: in Section 2 we present the portfolio selection problem and
some standard results from decision theory. In Section 3, the definitions of reward and risk mea-
sures are given, with some example. In Section 4, we characterize reward measures and we present
a possible simple characterization of risk measures. Section 5 concludes.

2 Portfolio selection and decision theory

We consider a two period economy. Let Ω denote the state of nature in the final period t = T .
We suppose that Ω is finite and we write Ω = {1, . . . , S}.
Let F be a σ-algebra on Ω. We take F = 2Ω. (Ω,F) define our measurable space. On (Ω,F)
we define a probability measure P. We call P the physical probability measure or the objective
probability measure. We assume that P

[
s
]

> 0 for all s ∈ Ω.
Since our analysis is addressed to the portfolio selection problem, we suppose that K + 1 assets
are available for investment and prices at time t = 0 are given by qk for k = 0, . . . ,K. The payoff
Ak ≥ 0 of asset k (k = 0, . . . ,K) is a random variable on Ω giving the payoff Ak

s of asset k in each
each state of nature s ∈ Ω.
Let Rk = Ak

qk − 1 for k = 1, . . . ,K and R = (R0, . . . , RK)′. Rk gives the return of asset k at time
T . We suppose that asset k = 0 is a risk-free asset and P

[
Rk < R0

]
> 0 for all k = 1, . . . ,K: else

a risky asset k′ exists , which is still preferred to the risk-free asset 0 by every rational investor
and thus asset 0 will never be selected.
We suppose that investor has decided to fully invest the initial wealth w0. Consumption at t = 0
has already passed. The portfolio selection problem consists in finding the number zk of assets of
type k, such that the portfolio z = (z0, . . . , zK)′ is feasible and is optimal with respect to some
criterion. The final wealth of an investor with portfolio z is given by

W =
K∑

k=0

zkAk, (1)

and is a random variable on the state space Ω. The portfolio selection problem has not been fully
characterized, since it still depends on the two concept of “feasible” and “optimal”. Under the
assumption that all the initial wealth is invested in the financial market, feasibility means that
the cost at time t = 0 of the portfolio z, i.e.

∑K
k=0 qkzk, corresponds exactly to the initial wealth

w0, i.e.

z ∈ B = {z = (z0, . . . , zK)′ ∈ RK+1 |q′z =
K∑

k=0

qkzk = w0}, (2)

where q = (q0, q1, . . . , qK)′. Moreover one can additionally introduce other constraints Z (into
the budget constraint (2)), as for example short-sale contraints

Z = {z = (z0, . . . , zK)′ ∈ RK+1 |zk ≥ 0 for k = 0, . . . ,K},

which ensure that short-selling is not allowed, or diversification contraints

Z = {z = (z0, . . . , zK)′ ∈ RK+1 |zk ∈ (δk, δk) for k = 0, . . . ,K},



Reward-Risk Portfolio Selection and Stochastic Dominance 4

which give the minimal and maximal number of asset of each type to be purchased or sold. More
general the portfolio z is called feasible if z ∈ B ∩ Z for some Z.
Optimality is a less obvious concept and the debate on the choice of a criterion with respect to
which one should optimize the portfolio selection is still open, as discussed in the introduction.
We briefly consider here two methodologies.
Before proceeding we want to rewrite the portfolio choice problem in an other way. We introduce
the vector λ = (λ0, λ1, . . . , λK)′ ∈ RK+1 giving the budget shares λk (k = 0, . . . ,K) invested in
asset k. Formally we have

λk =
qkzk

w0
. (3)

λ is also called strategy, since it gives independently of w0, the proportion of wealth to be invested
in each asset. The feasibility or budget constraint (2) is now given as follows

K∑
k=0

λk = 1,

thus λ ∈ ∆K = {x ∈ RK+1 |
∑K+1

k=1 xk = 1}. The final wealth can be expressed by

W = w0

(
1 +

K∑
k=0

Rkλk

)
.

and thus the absolute change in wealth is given by

w0

K∑
k=0

Rkλk.

2.1 Preferences

In the general setting we suppose that an investor have some preference {�} on a subset H of
G = {X : Ω → R | X isF −measurable}, the space of real-valued random variables on (Ω,F , P).
When an investor is asked to choose between to random outcomes X, Y ∈ H, then one of the
following can occur

(i) X � Y , i.e. X is preferred to Y ;

(ii) Y � X (or X ≺ Y ), i.e. Y is preferred to X;

(iii) X ∼ Y , i.e. investor is indifferent or indefinite between X and Y .

Note that �, ≺ and ∼ are operators, while the corresponding preference relations {�}, {≺} and
{∼} are subsets of H × H, e.g. {�} = {(X, Y ) ∈ H × H|X � Y }. Similarly, {≺} = {(X, Y ) ∈
H×H|(Y, X) ∈ {�}} and {∼} = H×H\ ({�}∪ {≺}). Thus, given {�} ({≺}) one can uniquely
determine {≺} ({�}) and {∼}. We define {�} = {�}∪{∼} and we say that X is weakly preferred
to Y when (X, Y ) ∈ {�}. More generally, a binary relation R on H is a subset of H×H.

Definition 2.1. The binary relation R on H is said to be

(i) reflexive if for X ∈ H we have (X, X) ∈ R;

(ii) transitive if for X, Y, Z ∈ H we have: if (X, Y ) ∈ R and (Y,Z) ∈ R then (X, Z) ∈ R;
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(iii) complete if for X, Y ∈ H, X 6= Y we have either (X, Y ) ∈ R or (Y, X) ∈ R;

(iv) an equivalence if R is reflexive, transitive and complete.

The preference relation {�} is usually assumed to be transitive (rationality). {�} is not
reflexive and usually also not complete. The preference relation {�} is usually assumed to be
transitive and reflexive, but not complete.

Definition 2.2. The preference relation {�} is called

(i) a partial order if {�} is transitive;

(ii) a weak order if {�} is transitive and {�} is also transitive;

(iii) a strict order if {�} is a complete weak order.

When {�} is a weak order, then {∼} is an equivalence.
Depending on the properties of the preference relations, one can represent these relations numer-
ically. As suggested above, we propose here two methodology which has been used for portfolio
selection purposes.

2.2 Value function

Following Yu (1985) we give the conditions such that a preference relation {�} on a set H can
be represented by a value function v : H → R, i.e. (X, Y ) ∈ {�} ⇔ v(X) > v(Y ). This case is
interesting since the expected utility preference relations belong to this class of preferences, where
the value function, called expected utility function, has some special form (see Example below).
We assume that {�} is a weak order. Then it follows that {∼} is an equivalence and one can
define equivalence classes on H by

[X] = {Y ∈ H|X ∼ Y }. (4)

[H] denotes the set of equivalence classes on H induced by {∼}. We define an induced preference
relation {�ind} on [H] by

[X] �ind [Y ] ⇔ X � Y, ∀X ∈ [X], Y ∈ [Y ].

One can easily verify that {�ind} defines a strict order on [H].

Definition 2.3. Let R be a binary relation on H. Let K ⊂ H. Then K is said to be �-dense in
H iff for X, Y ∈ H \ K with X � Y , there exists Z ∈ K such that X � Z and Z � Y .

Proposition 2.1. The weak order {�} on H has a value function representation if and only if
there is a countable subset of [H] that is �ind-dense in H.

Remember, a weak order is a preference relation which is transitive and the corresponding
preference relation {�} is also transitive.

Example
Let P be a probability measure on (Ω,F). Let u : H → R be a real-valued function on H such
that u(X) ∈ L1(Ω,F , P) ∀X ∈ H. We define a preference relation {�u} on H by

X �u Y ⇔ E
[
u(X)

]
> E

[
u(Y )

]
. (5)

By definition, {�u} has a value function representation, where v(·) = E
[
u(·)

]
. The representation

(5) is called expected utility representation and u is the utility function.
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For a given preference relation {�} on H to possess an expected utility representation, strong
assumptions are required, i.e. {�} has to be a weak order, with a countable �ind-dense subset for
[H] and a very strong �-separability condition should be satisfied see (see Yu 1985, Chapter 5).
Even when we assume that a preference relation possesses an expected utility representation, one
should define the utility function u and this is not a trivial task. Fortunately, we can characterize
the utility function u for a typology of investors and moreover, independently of the specific form
of u within this typology of investors, some preferences hold.
The first assumption on u is that u is increasing, meaning that decision makers prefer more than
less (rationality). The second assumption on u is that u is concave, i.e. a decision maker is risk
averse (see Eichberger and Harper 1997).
Let U2 denotes the set of increasing, concave utility functions.

Definition 2.4 (Second order stochastic dominance). Let X, Y ∈ G. Then X dominates Y
by second order stochastic dominance (written X �2 Y ) iff

EP [u(X)] ≥ EP [u(Y )] (6)

for all u ∈ U2 and there exists at least one element in U such the inequality is strict.

The concept of second order stochastic dominance was first introduced by Rothschild and
Stiglitz (1970). If X dominates Y by second order stochastic dominance, then X will be preferred
to Y by any expected utility maximizers, who is risk averse and satisfies the “more than less”
assumption. The following result holds.

Lemma 2.1. For X, Y ∈ G and P a probability measure on (Ω,P) are equivalent

(i) X �2 Y ;

(ii)
∫ x

−∞ FX(t) dt ≤
∫ x

−∞ FY (t) dt, ∀x ∈ R and the inequality is strict for at least one x ∈ R,
where FX(t) = P

[
X ≤ t

]
and FY (t) = P

[
Y ≤ t

]
;

(iii)
∫ t

0
F−1

X (x) dx ≥
∫ t

0
F−1

Y (t) dt, ∀t ∈ (0, 1] and the inequality is strict for at least one t ∈ (0, 1],
where F−1

X (t) = inf{x ∈ R |FX(z) ≥ t} and analogously for F−1
Y .

Proof. Levy (1998, Theorem 3.2, Theorem 4.2).

2.3 Multiple-criteria decision

To describe a preference relation {�} on H, one could assume that the preference relation is
characterized by a set of m criteria. This means that one can find a function f : H → Rm

attributing to each element X ∈ H a set of m criteria f1(X), . . . , fm(X) in Rm. The decision
problem is now transferred to the subset X = f(H) of Rm, i.e. one should define a preference
relation {�f} on X such that

X � Y ⇔ f(X) �f f(Y ). (7)

In our discrete setting, we require that m < S. In fact under our assumption on Ω we can identify
G with RS and consider a realization X(s) of X ∈ G for s = 1, . . . , S as a criterion for the decision,
i.e. one could define f̃ : G → RS , X 7→ (X(1), . . . , X(s)). Since H ⊆ G, f̃(H) ⊆ RS .
The value function approach is a special case of a “multi”-criteria decision, where m = 1. From now
on we assume that m > 1. Using more then one criterion complicates the decision problem, but
on the other side the multiple criteria representation is less restrictive allowing a characterization
of a large class of preference relations.
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On the subset X = f(H) ⊆ Rm we define a very natural preference relation, assuming that
f1(X), . . . , fm(X) are positive characteristics and therefore appreciated by the decision maker
with is non satiable with respect to each fj for j = 1, . . . ,m. In other words, “more is better” for
each criterion fj (j = 1, . . . ,m). We define {�m} by

x �m y ⇔ x > y, (8)

where x,y ∈ Rm and x > y means that xj ≥ yj for j = 1, . . . ,m and x 6= y. This preference
is also called a Pareto preference on Rm and we denote it by {�m,P} and we drop the index m
if there is no confusion about the dimension of the criteria space. Note that {�P} is not a weak
order, since the induced relation {∼P } is not an equivalence.

Definition 2.5. Let x∗ ∈ X . Then x∗ is called a Pareto optimum, if and only there does not
exist an element x ∈ X such that x �P x∗.

Under weak condition on X we are able to prove the existence of Pareto optima on X . We
would like to find minimal conditions on X such that each element x ∈ X is a Pareto optimum or
is dominated by a Pareto optimum: if X satisfies this property, we say that X is nondominance
bounded with respect to {�P }. Nondominance boundedness ensures that the set of Pareto optima
is the “good” set to look for. In fact, if X is not nondominance bounded with respect to the Pareto
preference, then it can occur that an element x ∈ X is not Pareto optimal but no Pareto optimum
dominates it. Therefore, a decision maker considering only Pareto optima, maybe eliminates
some “good” solution, which can also be the preferred one when additional information about
preferences are introduced.
Note that if X is a open set, then no Pareto optimum exists. Another property which could be
problematic for the existence of Pareto optima, is the unboundedness of X . We introduce the
following definitions.

Definition 2.6.

Λ� = {d ∈ Rm |d � 0}, (9)
Λ≤ = {d ∈ Rm |d ≤ 0}, (10)
Λ< = {d ∈ Rm |d < 0}. (11)

where d � 0 means that di < 0 ∀i = 1, . . . ,m, d ≤ 0 means that di ≤ 0 ∀i = 1, . . . ,m and d < 0
means that di ≤ 0 ∀i = 1, . . . ,m, d 6= 0.

The advantage of these definitions is that we can express the Pareto preference in the following
way

x,y ∈ X ,x �P y ⇔ y ∈ x + Λ<. (12)

Moreover

{y ∈ X |x �P y} = X ∩ (x + Λ<). (13)

defines the subset of elements in X which are dominated by x, and

{y ∈ X |y �P x} = X ∩ (x− Λ<) (14)

defines the subset of elements in X which dominate x. It follows that x ∈ X is a Pareto optimum
if and only if X ∩ (x− Λ<) = ∅.
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Remark
One can generalize this characterization and define preference relations on a subset X ⊆ Rq by
giving the preferred cone Λ(x) for each x ∈ X , i.e.

y � x ⇔ ∃α > 0 : y − x ∈ αΛ(x). (15)

For the Pareto preference we have Λ(x) = −Λ≤ for all x ∈ X .

Definition 2.7. Let Λ be a convex cone and Λ is its closure1. X is said to be Λ-compact if for
every x ∈ X , X ∩ (x− Λ) is compact.

Proposition 2.2. Assume X is nonempty and Λ≤-compact, then

(i) there exists a Pareto optimum in X ,

(ii) X is nondominance bounded with respect to {�P }.

Proof. Yu (1985, Theorem 3.3).

In the sequel we give a general characterization of Pareto optima under various assumptions.
We want to obtain simple methodologies for computing Pareto optima.

Proposition 2.3. Let x ∈ X . Then x is a Pareto optimum on X if and only if for any j ∈
{1, . . . ,m} x uniquely maximizes yj on Xj(x) = {y ∈ X |yk ≥ xk, k 6= j, k = 1, . . . , q}.

Proof. Yu (1985, Theorem 3.4).

Proposition 2.4. (i) If x ∈ X maximizes λ′x for some λ ∈ Λ� over X , then x is a Pareto
optimum (Λ� = −Λ�).

(ii) If x ∈ X uniquely maximizes λ′x for some λ ∈ Λ≥ over X , then x is a Pareto optimum
(Λ≥ = −Λ≤).

Proof. Yu (1985, Theorem 3.5).

Proposition 2.5. x ∈ X is a Pareto optimum if for any i ∈ {1, . . . ,m} there exists m − 1
constants r(i) = {rk |k 6= i, k = 1, . . . ,m} so that x uniquely maximizes yi over X (r(i)) = {y ∈
X |yk ≥ rk, k 6= i, k = 1, . . . , q}.

Proof. Yu (1985, Theorem 3.6).

An additional assumption on X is that of Λ≤-convexity.

Definition 2.8. ) X is said to be Λ≤-convex if and only if X + Λ≤ is a convex set.

Lemma 2.2. If fj, j = 1, . . . ,m are concave funtions on a convex set H, then X = f(H) is
Λ≤-convex.

Proof. Yu (1985, Theorem 3.7).

Proposition 2.6. If X is Λ≤-convex, then a necessary condition for x ∈ X to be a Pareto
optimum, is that x maximizes λ′x over X for some λ ∈ Λ≥.

Proof. Yu (1985, Theorem 3.8).

1A =
⋂
{F |F abgeschlossen, A ⊆ F}
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Definition 2.9 (Efficieny on H). An random variable X ∈ H is efficient if and only if f(X) is
a Pareto optimum. The efficient-set, is the subset of efficient random variables in H.

Theorem 2.1. (i) A necessary condition for X ∈ X to be efficient is that for any j ∈ {1, . . . , q},
fj(X) uniquely maximizes fj(Y ) over Hj(X) = {Y ∈ H|fk(Y ) ≥ fk(X), k 6= j, k =
1, . . . ,m}.
A sufficient condition for X to be efficient is that X is the unique element in H which solve
the above problem.

(ii) X is efficient if X maximizes λ′f(X) over H for some λ ∈ Λ>, or uniquely maximizes
λ′f(X) over H for some λ ∈ Λ≥.

(iii) A necessary condition for X ∈ H to be efficient is that for any j ∈ {1, . . . ,m} there are
m − 1 constants r(j) = {rk |k 6= j, k = 1, . . . ,m} so that fj(X) uniquely maximizes fj(Y )
over H(r(j)) = {Y ∈ H|fk(Y ) ≥ rk, k 6= j, k = 1, . . . ,m}.
A sufficient condition for X to be efficient is that X indeed is the unique maximum point of
the above problem.

Proof. Yu (1985, Theorem 3.14).

Theorem 2.2. If H is a convex set and each fi(X) (i = 1, . . . ,m) is concave, then for X ∈ H to
be efficient it is necessary that X maximizes λ′f(X) over H for some λ ∈ Λ≥.

Proof. Yu (1985, Theorem 3.15).

3 Definition of reward and risk measure

Let Hi =
{

wi
0

∑K
k=0 Rk λi,k |

∑K
k=0 λi,k = 1

}
be the return set of all feasible portfolios of investor

i, i = 1, . . . , I, with initial wealth wi
0. The set Hi gives the absolute changes in value for each

portfolio financed at time 0 by the initial wealth wi
0. We consider absolute changes in values and

not relative changes, because we belief that an increase in the initial wealth should not necessarily
implies that one proportionally increase the ability or willingness to face with risky positions. In
fact when we consider relative changes in wealth instead of absolute changes, the relative return
of a portfolio remains unchanged with increasing or decreasing initial investment and thus the
portfolio decision will be independent of the initial wealth.
We drop the index i whenever we discuss the general properties of the set Hi.

Remark (i) H is convex.

(ii) H remains convex if one adds other convex constraints Z into the budget constraint B.

(iii) If we suppose suppose that the vector of returns R has the joint distribution F under the
physical probability measure P on (Ω,F), then the set H can be considered as a subset of
the space of distribution functions, i.e.

H ≡ {F (λ)(
·

w0
) |R′λ ∼ F (λ), λ′1 = 1, R ∼ F}. (16)

Using this equivalence between set of portfolio return and distribution function, we can
define reward and risk measures on random variables or on their distribution functions (see
Pflug 1998).
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Let f : H → X be a m-dimensional function giving a set of m-criteria describing the preference
relation on H, where X = f(H). Note that X is Λ≤-convex (see Definition 2.8), if fi is concave for
all i = 1, . . . ,m (Lemma 2.2). As we did before, we suppose that f induces a Pareto preference
on the set X . We restrict our analysis to the case where investors select only two characteristics
(m = 2), a reward function f1 = µ and a risk function ρ = −f2, that we will define below. f1

and f2 are identical for all investors, who only differs by the different “weights” they put on one
characteristic or on the other one. Moreover, we assume that f1 and f2 are restriction on H of
functions defined on G, the set of all random variable on (Ω,F , P).

Definition 3.1 (Reward measure). A reward measure µ : G → R satisfies the following condi-
tions

(i) Linearity. ∀X, Y ∈ G, α ∈ R we have:

µ(X + Y ) = µ(X) + µ(Y ), (17)
µ(αX) = αµ(X). (18)

(ii) Risk-free condition

µ(X(e0)) = R0, (19)

where X(ej) is the value change in the portfolio where only one unit of initial wealth is in-
vested in asset j, j = 0, . . . ,K and asset j = 0 is the risk-free asset, ej = (0, . . . , 0, 1︸︷︷︸

j−te

, 0, . . . , 0)′.

(iii) Stochastic dominance. For X, Y ∈ G we have

X �2 Y ⇒ µ(X) ≥ µ(Y ). (20)

We say that µ is isotonic with respect to second order stochastic dominance (following the
nomenclature given by Pflug (1998)).

Remark (Justification of the axioms)
Analogously to the mean in the (µ, σ)-approach of Markowitz, the reward measure is a location
measure for the performance of the portfolio. Remember that we consider the absolute changes
in value of a position.
The linearity condition says that one cannot increase or decrease the reward of portfolios by just
separating the single positions. In fact, if the reward measure were not linear, then one can find
risks X and Y in G and α ∈ R such that the reward of the portfolio X+αY is greater (or less) than
the sum of the reward of the single positions. This means that one can increase or decrease the
reward by taking single positions in a portfolio. A reward measure should avoid this behaviour.
The risk-free condition states that the reward of a certain payoff, correspond to the difference
between this payoff and the initial investment. Suppose that one invests all her wealth w0 in a
risk-free asset with return R0. Then the final wealth is given by w0(1+R0) and thus the absolute
change in wealth by w0R

0. Since there is no risk in that position (and thus no dispersion),
one would expect that the reward measure gives exactly the same amount w0R

0 to describe the
location of the portfolio. If this is not the case and linearity holds, one could still normalize a
reward measure such that the risk-free condition is satisfied.
Finally, the isotonicity with respect to second order stochastic dominance ensures the link to the
expected utility approach for portfolio selection. In fact, whenever a risk X dominates another
risk Y by second order stochastic dominance, then every risk-averse expected utility maximizer,
prefers X to Y . We want that our reward measure µ capture this preference and thus we impose
the isotonicity with respect to second order stochastic dominance.
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Example
The expectation EP

[
·
]
, where P is the physical measure with respect to which second order

stochastic dominance is defined, is a reward measure. We will show that EP
[
·
]

is the unique
reward measure on G.

Analogously to the reward measure we introduce now the definition of a risk measure and the
properties we belief that such a measure should satisfy.

Definition 3.2 (Risk measure). A risk measure ρ : G → R satisfies the following conditions

(i) Convexity. ∀X, Y ∈ G, α ∈ (0, 1) we have:

ρ(αX + (1− α)Y ) ≤ αρ(X) + (1− α)ρ(Y ). (21)

(ii) Risk-free condition. For X ∈ G, α ∈ R we have

ρ(X + αX(e0)) = ρ(X). (22)

(iii) Zero payoff. We have

ρ(0) = 0. (23)

(iv) Stochastic dominance. For X, Y ∈ G we have

X �2 Y ⇒ ρ(X) ≤ ρ(Y ), (24)

i.e. ρ is isotonic with respect to second order stochastic dominance.

Moreover we say that a risk measure ρ is positive homogeneous iff

∀X ∈ G, α > 0 ⇒ ρ(αX) = αρ(X). (25)

Remark (Justification of the axioms)
The convexity ensures the diversification effect. In fact, when convexity is not satisfied for some
X, Y ∈ G and α ∈ (0, 1), then one could split the portfolio αX + (1 − α)Y in two parts, hold α
times the position X and 1 − α times the position Y and consequently reduce the risk. Similar
arguments are provided by Artzner, Delbaen, Eber, and Heath (1997, 1998).
The risk-free condition says that adding a risk free position to the portfolio does not change the
risk! This is different as in the definition of coherent risk measure introduced by Artzner, Delbaen,
Eber, and Heath (1999), where the authors interpret a risk measure as the minimal extra cash
one should add to his risky position and allocate “prudently”, to make the investment acceptable.
Dealing with portfolio selection, we suggest that the the contribution of a risk free position to the
portfolio should be captured by the reward measure and not by the risk measure.
The zero payoff condition is a natural assumption, which states that “no investment” means no
risk.
Finally the isotonicity with respect to second order stochastic dominance, analogously to the same
property for the reward measure, ensures that an investment which is preferred to another one by
all risk averse rational expected utility maximizers, is at most so risky as the dominated investment.

Example (and counterexample) (i) A coherent risk measure in the sense of Artzner, Del-
baen, Eber, and Heath (1999) is not a risk measure as defined above. First, the risk free
condition is not satisfied since for a coherent risk measure ρ̃, we have ρ̃(X(e0)) = −R0. Sec-
ond, a coherent risk measure is usually not isotonic with respect to second order stochastic
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dominance. Consider the following simple example.
Let Ω = {1, 2, 3, 4} and F = 2Ω. Moreover we define X and Y on Ω by

X(1) = −1, X(2) = −0.5, X(3) = −0.25 and X(4) = 4;
Y (1) = −1, Y (2) = −1, Y (3) = 0 and Y (4) = 4.

Under the probability measure P = (0.5, 0.125, 0.125, 0.25) on Ω, X dominates Y by second
order stochastic dominance (see picture).

-
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We generate now a coherent risk measure ρ̃ such that ρ̃(Y ) < ρ̃(X). A risk measure ρ̃ is
coherent, if and only if there exists a non-empty family P of probability measures on Ω such
that

ρ̃(X) = sup{EQ [−X] |Q ∈ P},

by Artzner, Delbaen, Eber, and Heath (1999, Proposition 4.1).
We choose P = {P, P1, P2} where P1 = (0.5, 0, 0.5, 0) and P2 = (0, 0, 0.5, 0.5) then it follows:

ρ̃(X) = max{EPi [−X] | i = 0, 1, 2} = max{−0.40625, 0.625,−2.375} = 0.625;
ρ̃(Y ) = max{EPi [−Y ] | i = 0, 1, 2} = max{−0.375, 0.5,−2.5} = 0.5.

Naturally, a necessary condition for this results, is that P contains at least one measure Q̃
such that Y is not dominated by X by second order stochastic dominance under Q̃. In our
example, the measures Pi for i = 1, 2 are such measures. Moreover, under ρ̃, the random
variable Z = Y + 0.5 has non-positive risk. However, under scenarios s = 1 and s = 2, Z
has negative values, i.e. the future net worth is negative.

(ii) The Minkowski-gauge of a random variable X ∈ G is defined as follows.

Definition 3.3. Let h be a convex, monotonic function on R+ with h(0) = 0. Then

‖X‖h = inf{a |EP
[
h

(
|X|
a

)]
≤ 1} (26)

is called the Minkowski-gauge of X under h.
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The Minkowski-gauge is homogeneous and fulfills the triangle inequality.
Let ρ(X) = ‖(X − EP

[
X
]
)−‖h, where x− = min{0, x}, then ρ is subadditive, positive

homogeneous (and therefore convex). Moreover ρ is isotonic with respect to second order
stochastic dominance.

Proof. (a) The positive homogeneity of ρ follows directly from the homogeneity of the
Minkowski-gauge.

(b) Subadditivity and isotonicity with respect to second order stochastic dominance are
proved in Pflug (1998, Proposition 2.3).

Since obviously ρ(0) = 0 and ρ(X + αX(e0)) = ρ(X), ρ defines a risk measure.

Remark (i) The risk-free condition implies that

ρ(X(e0)) = ρ(αX(e0) + (1− α)X(e0)) = ρ(αX(e0)).

For α = 0 we obtain that ρ(X(e0)) = ρ(0) = 0, i.e. the risk-free asset has risk zero.

(ii) For X ∈ G and α ∈ (0, 1) we have

ρ(αX) ≤ αρ(X).

(iii) For X ∈ G, X < 0 and α ∈ (0, 1) we have 0 �2 αX �2 X and thus

0 ≤ ρ(αX) ≤ αρ(X) ≤ ρ(X),

by the isotonic property and the convexity.

(iv) For X ∈ G, X > 0 and α ∈ (0, 1) we have X �2 αX �2 0 and thus

ρ(X) ≤ ρ(αX) ≤ αρ(X) ≤ 0,

by the isotonic property and the convexity. On the other side for α = maxs∈Ω(X(s)) and
ε > 0, (α + ε)X(e0) �2 X and thus ρ(X) ≥ ρ((α + ε)X(e0)) = 0. It follows that for X > 0,
ρ(X) = 0.

Given a reward measure and a risk measure, we can now define a reward-risk pair on G as
follows:

Definition 3.4. Let µ be a reward measure on G and ρ be a risk measure on G. Then the pair
(µ, ρ) is called a reward-risk pair on G.

Remark (i) Given a reward-risk pair (µ, ρ), a necessary condition for a portfolio X ∈ H to
be efficient is that X minimizes ξ1ρ − ξ2µ over H for some (ξ1, ξ2)′ ∈ Λ> (Theorem 2.1).
If ξ1 = 0, then an investor is risk neutral and it takes care only on the reward µ. We
assume that ξ1 6= 0. If ξ2 = 0, then the minimization problem has an obvious solution on
H, i.e. X = w0X(e0). Thus we assume that both ξ1 and ξ2 are positive. In this case we
can minimize the objective function ξρ − µ where ξ = ξ1

ξ2
> 0. This function can also be

interpreted as a utility function depending on µ and ρ, since µ is linear and ρ is convex.

(ii) Given a reward-risk pair (µ, ρ), one can easily construct a combined measure of location and
dispersion as suggested by Pflug (1998). We define the measure Rξ on G by

Rξ(X) = ξρ(X)− µ(X),

where ξ > 0. Then the following holds:
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(a) X �2 Y ⇒ Rξ(X) ≤ Rξ(Y ), i.e. Rξ is isotonic with respect to the second order
stochastic dominance;

(b) Rξ(X + R0) = ξρ(X)− µ(X)−R0 = Rξ(X)−R0, i.e. Rξ is translation-equivariant;
(c) Rξ(αX + (1− α)Y ) ≤ αRξ(X) + (1− α)Rξ(Y ), i.e. Rξ is a convex measure.

If we additionally assume that ρ is positive homogeneous, then Rξ is a coherent measure
in the sense of Artzner, Delbaen, Eber, and Heath (1999). Note that the isotonicity with
respect to second order stochastic dominance, is a stronger condition than just monotonicity,
as suggested by Artzner, Delbaen, Eber, and Heath (1999): in fact it is well know that for
X, Y ∈ G such that X > Y , then X �2 Y but the opposite is not true. Moreover, the
measure Rξ depends on the preferences of the investor through ξ. This suggests that set
of acceptable risks {X ∈ G |Rξ(X) ≥ 0} introduced by Artzner, Delbaen, Eber, and Heath
(1999) and which uniquely defines a coherent measure depends on the investor’s preferences
as one should expect.

4 Characterization of reward and risk measures

Given the properties we would like that reward and risk measures satisfy, one can ask the question
whether there is a characterization of these measures. As we have already seen (Examples), one can
find some functional on G which fulfills the conditions defining reward, respectively risk measures.
In this section we prove that on G we can find only one linear functional satisfying the risk-
free condition and the isotonicity with respect to the second order stochastic dominance, namely
the expectation with respect to the physical probability measure, which is also the one giving
the stochastic order between random variables. For risk measures we cannot prove a uniqueness
result, but we can still find a family of functionals on G, which are risk measures.

4.1 Reward measure

Theorem 4.1. Let µ : G → R be a reward measure and P = (P (1), . . . , P (S)) be the physical
probability measure on (Ω,F) (second order stochastic dominance is defined with respect to P).
We assume that P (s) > 0 ∀s ∈ Ω. Then

µ(X) = EP [X] . (27)

Proof. (i) Since Ω is finite and card(Ω) = S, we can identify G with RS and the reward measure
µ with a linear functional RS → R. We define the usual scalar product on RS by

〈X, Y 〉 =
S∑

s=1

X(s)Y (s). (28)

Then (G, 〈·, ·, 〉) is an Hilbert space and thus by the the Riesz’s Representation Theorem
there exists a unique P ∗ ∈ G such that

µ(X) = 〈P ∗, X〉 =
S∑

s=1

P ∗(s)X(s). (29)

The riskfree condition for µ implies

R0 = µ(X((e)0)) =
S∑

s=1

P ∗(s)R0 = R0
S∑

s=1

P ∗(s).

Thus
∑S

s=1 P ∗(s) = 1.
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(ii) Consider now Xs ∈ G for s = 1, . . . , S defined by

Xs(s′) =
{

1 if s′ = s,
0 if s′ 6= s,

for s′ = 1, . . . , S. Then Xs > 0 and thus Xs �2 0 ∀s. By the isotonic property it follows
µ(Xs) ≥ µ(0) = 0. On the other side we have

0 ≤ µ(Xs) = 〈P ∗, Xs〉 =
S∑

s′=1

P ∗(s′)Xs(s′) = P ∗(s).

Therefore, the S-tuple P∗ = (P ∗(1), . . . , P ∗(S)) defines a probability measure on Ω with

µ(X) = EP∗ [X] .

(iii) We show: P (s) > P (s′) ⇒ P ∗(s) ≥ P ∗(s′).
For s, s′ ∈ Ω such that P (s) > P (s′) we have Xs �2 Xs′ and therefore by isotonicity with
respect to second order stochastic dominance, µ(Xs) ≥ µ(Xs′). Since P ∗(Xs) = µ(Xs) the
statement follows.

(iv) We show: P (s) = P (s′) ⇒ P ∗(s) = P ∗(s′).
Suppose that P (s) = P (s′) > 0 for s, s′ ∈ Ω and P ∗(s) > P ∗(s′). Then there exists ε > 1
such that P ∗(s) > εP ∗(s′). Since P (s) = P (s′) we have εXs′ �2 Xs. Thus by isotonicity
and linearity of µ we obtain

εP ∗(s′) = εµ(Xs′) = µ(εXs′) ≥ µ(Xs) = P ∗(s) > εP ∗(s′).

A contradiction. Thus we must have P ∗(s) ≤ P ∗(s′). By the same argument we can exclude
P ∗(s) < P ∗(s′) and therefore P ∗(s) = P ∗(s′).

(v) We show: P∗ = P.
Let X ∈ G. Let Z : G → R be the density of P∗ with respect to P, i.e. Z(s) = P∗(s)

P (s) for
s ∈ Ω (the density exists since P (s) > 0 for all s ∈ Ω). Following the idea of Dana (2002),
we define

Ψ(X, Z) = arg min{EP [ZY ] |Y ∈ G, Y �2 X, Y ∼d X}.

For µ to be consistent with respect to �2, we should obtain that X ∈ Ψ(X, Z). If this is not
true, we find Y ∈ G with Y �2 X but µ(Y ) = EP∗ [Y ] = EP [ZY ] < EP [ZX] = EP∗ [ZX] =
µ(X), which contradict the isotonicity of µ .
For Y ∈ Ψ(X, Z) we have

Y (s) > Y (s′) ⇒ Z(s) ≤ Z(s′). (30)

We say that Y and Z are anticomonotone. To prove this last statement we proceed by
contradiction. We assume that we find s, s′ ∈ Ω such that Y (s) > Y (s′) but Z(s) > Z(s′).
Suppose without loss of generality that P (s) < P (s′). The case P (s) > P (s′) can be treated
similarly. The case P (s) = P (s′) couldn’t occur. In fact P (s) = P (s′) ⇒ P ∗(s) = P ∗(s′)
(see above) and thus Z(s) = Z(s′), which contradicts the assumption about Z. Consider
now the random variable Ỹ defined by

Ỹ (s) = Y (s′),

Ỹ (s′) = Y (s′) +
P (s)
P (s′)

(Y (s)− Y (s′)),

Ỹ (t) = Y (t), ∀t ∈ Ω \ {s, s′}.
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Then we obtain

EP

[
Z(Ỹ − Y )

]
< 0.

Moreover for each increasing, concave function u : G → R we have

EP

[
u(Ỹ )− u(Y )

]
=

= P (s)
(
u(Ỹ (s))− u(Y (s))

)
+ P (s′)

(
u(Ỹ (s′))− u(Y (s′))

)
= P (s) (u(Y (s′))− u(Y (s))) + P (s′)

(
u(Y (s′) +

P (s)
P (s′)

(Y (s)− Y (s′)))− u(Y (s′))
)

≥ P (s) (u(Y (s′))− u(Y (s))) +

+P (s′)
(

P (s′)− P (s)
P (s′)

u(Y (s′)) +
P (s)
P (s′)

u(Y (s))− P (s′)u(Y (s′))
)

= 0.

The inequality follows from the concavity of u. Thus Ỹ �2 X and EP

[
Z(Ỹ − Y )

]
< 0, a

contradiction to Y ∈ Ψ(X, Z).
The anticomonotonicity of Y and Z it is a necessary condition for Y to be in Ψ(X, Z) but
also a sufficient condition. For µ to be consistent with �2 on G, for all X ∈ G we should
have X ∈ Ψ(X, Z). This implies that X and Z should be anticomonotone for all X ∈ G.
This is possible if and only if Z(s) = z ∀s ∈ Ω. In fact if for s, s′ we have Z(s) > Z(s′) and
µ satisfies the isotonicity, then for all X ∈ G we must have X(s) ≤ X(s′). But this naturally
false. Since Z is a density, we have z = 1. Thus P∗ = P.

Remark (i) The Theorem states that if one defines second order stochastic dominance on (Ω,F)
with respect to a probability measure P, then the unique reward measure which is isotonic
with �2 on G is the expectation under P.

(ii) We have defined the reward measure on the space G. If one restrict the space of future value
changes, then it might be possible that P∗ 6= P. Moreover, in this case, the P∗ can have
negative components.

4.2 Risk measures

Let ρ be a risk measure. We ask the question about a characterization of ρ. In this work we consider
only positive homogeneous risk measures; an extension to other risk measures will be considered
in an other work. If we additionally assume that a risk measure ρ is positive homogeneous, then it
follows that ρ is a subadditive functional on G, which is also isotonic with respect to second order
stochastic dominance and satisfies the risk free condition, i.e. ρ is invariant under addition of a
constant.
Given a positively homogeneous risk measure ρ : G → R and reward measure µ : G → R, i.e.
µ(X) = EP [X] for all X ∈ G, the measure Rξ = ξρ − µ for ξ > 0 is a coherent measure, which
additionally satisfies the isotonic property. By Artzner, Delbaen, Eber, and Heath (1999) we know
that there exists a scenario P, i.e. a nonempty family of probability measures on Ω, such that

Rξ(X) = RP(X) = sup {EQ [−X] |Q ∈ P} = − inf {EQ [X] |Q ∈ P} . (31)

The question is, what conditions should be satisfied by P in order that RP is isotonic with respect
to second order stochastic dominance.
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First some considerations. Suppose that P (s) > P (s′), then Xs �2 Xs′ and thus RP(Xs) ≤
RP(Xs′). This implies that sup {−Q(s) |Q ∈ P} ≤ sup {−Q(s′) |Q ∈ P} or,

inf {Q(s) |Q ∈ P} ≥ inf {Q(s′) |Q ∈ P} .

Therefore, if P (s) > P (s′) for some s, s′ ∈ Ω, then it should exists at least one measure Q∗ ∈ P
such that Q(s) ≥ Q∗(s′) for all Q ∈ P, and therefore also for Q∗.
Suppose now that P (s) = P (s′), then Xs �2 εXs′ for ε > 1. Thus

inf {Q(s) |Q ∈ P} ≥ ε inf {Q(s′) |Q ∈ P} .

It follows that for s, s′ ∈ Ω such that P (s) = P (s′), we find Q∗ ∈ P such that Q(s) ≥ εQ∗(s′) ≥
Q∗(s′) for all Q ∈ P, and therefore also for Q∗. By symmetry, we find Q∗∗ ∈ P such that
Q(s′) ≥ Q∗∗(s) for all Q ∈ P, and therefore also for Q∗ and Q∗∗. We have Q∗∗(s) = Q∗∗(s′) =
Q∗(s) = Q∗(s′).

Lemma 4.1.

∃ s, s′ ∈ Ω s.t.P (s) = P (s′) ⇒ ∃Q∗ ∈ P s.t. Q∗(s) = Q∗(s′),
∃ s, s′ ∈ Ω s.t.P (s) > P (s′) ⇒ ∃Q∗ ∈ P s.t. Q∗(s) ≥ Q∗(s).

The Lemma suggests that P should contain some probability measure, which is a non-decreasing
function of P. Let us consider the following class of measures on (Ω,F)

D = {ν |ν(A) = g(P
[
A
]
), ∀A ∈ F , g non-decreasing, g(0) = 0, g(1) = 1}. (32)

ν ∈ D is called a distortion of P or capacity. Note that ν is positive, ν(Ω) = 1, but ν might not
be a probability measure on (Ω,F). For example, for some A ∈ F , following could be true

ν(Ac) = g(P
[
Ac
]
) = g(1− P

[
A
]
) 6= 1− g(P

[
A
]
) = 1− ν(A).

For ν ∈ D we define the functional Rν on G as follows

Rν(X) = −
∫ 0

−∞
(ν(X > x)− 1) dx−

∫ ∞

0

ν(X > x) dx (33)

= −
∫ 0

−∞
(g(FX(x))− 1) dx−

∫ ∞

0

g(FX(x)) dx, (34)

where FX(x) = 1− FX(x) and FX(x) = P
[
X ≤ x

]
and g is the non-decreasing function on [0, 1]

associated to ν.

Remark (i) −Rν(X) is also called the Choquet integral of X with respect to ν.

(ii) The expectation of X under P can be written as

EP [X] =
∫ ∞

−∞
x dFX(x) =

∫ 0

−∞
(FX(x)− 1) dx +

∫ ∞

0

FX(x) dx.

If g is differentiable, the functional −Rν corresponds to∫ ∞

−∞
xg′(FX(x)) dFX(x).
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Therefore, −Rν can be viewed as a ”corrected” mean of X, where the realization x receives
the weight g′(FX(x)). Note that∫ ∞

−∞
g′(FX(x)) dFX(x) =

∫ ∞

−∞

d

dx
(−g(FX(x)))dx = g(1)− g(0) = 1.

Suppose that g is strict convex, differentiable. For x > y, FX(x) < FY (y), then

g′(FX(x)) < g′(FX(y)).

Therefore, the weight assigned to a high outcome x is less than the weight assigned to a
low outcome, meaning that under g the decision maker assign a higher probability to low
outcomes.

(iii) Choquet Expected Utility Theory. The previous remark and equation (33) suggest also a
link with the Choquet Expected Utility Theory (CEU) of Schmeidler (1989). For a brief
introduction to this theory see also Eisenführ and Weber (1999, Chapter 14) and Karni
and Schmeidler (1991, Section 6). In this latter reference, the authors defines the comono-
tonic independence axiom, by restricting the independence axiom from the von Neuman-
Morgenstern Utility Theory to comonotonic outcomes2. They also show (Theorem 6.4.2)
that comonotonic independence together with monotonicity, continuity (Archimedian ax-
iom) and non-degeneracity, are equivalent to the existence of a unique (up to linear transfor-
mation) representation as integral with respect to a capacity, which is the Choquet expected
utility. The motivation for the CEU comes from the observation by the Ellsberg experiment3,
that when decision makers are asked to ranks bets, their behaviour is inconsistent with the
independence axiom of classical Expected Utility Theory. Therefore, Karni and Schmeidler
(1991) proposed a weakening form of this axiom.

Lemma 4.2. Let ν ∈ D and g the associated function. Rν satisfies the following properties:

(i) Rν(αX) = αRν(X) for X ∈ G and α > 0;

(ii) Rν(0) = 0;

(iii) Rν(X(e0)) = −R0;

(iv) If g is convex then Rν is convex.

Proof. (i) Note that for α > 0, FαX(x) = FX( x
α ). The assertion follows directly.

(ii) Obvious.

(iii) Obvious.

(iv) If g is convex, then we have the following representation due to Schmeidler (1986)

Rν(X) = −min{EQ [X] |Q ∈ core(ν)}, (35)

where core(ν) = {Q |additive on Ω s.t. Q(Ω) = ν(Ω), ∀A ∈ F : Q(A) ≥ ν(A)}. Note that
if g is convex, ν is convex in the sense of Schmeidler (1986), i.e. for all E,F ∈ F , we have

2X, Y ∈ G are said to be comonotonic, if X(s) > X(s′) ⇒ Y (s) > Y (s′) for all s, s′ ∈ Ω.
3The experiment presents to decision makers an urn with 90 balls, 30 red and 60 black or white. Decision makers

are asked to guess the color of one ball drawn at random. When the guess is correct, the get $100, else $0.
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ν(E ∩ F ) + ν(E ∪ F ) ≥ ν(E) + ν(F ). The opposite is also true.
Let X, Y ∈ G and Q ∈ core(ν) such that Rν(X + Y ) = −EQ [X + Y ] then by (35)

Rν(X) ≥ −EQ [X] ,
Rν(Y ) ≥ −EQ [Y ] .

It follows

Rν(X + Y ) = −EQ [X + Y ] = −EQ [X]− EQ [Y ] ≤ Rν(X) +Rν(Y ).

The subadditivity and the positive homogeneity imply the convexity of Rν .

The Lemma shows that given a capacity ν ∈ D for P, which is obtained by a non-decreasing,
convex function g, the measure Rν defines a coherent risk measure.

Lemma 4.3. Let Rν be the measure associated to the capacity ν ∈ D. Suppose that Rν is convex,
then g is convex.

Proof. Schmeidler (1986, Proposition 3)

The next step consists in identifying the condition such that Rν is isotonic with respect to
second order stochastic dominance. The following Lemma answer this question.

Lemma 4.4. If g is increasing and convex, then Rν is isotonic with respect to the second order
stochastic dominance.

Proof. The following proof is based on the argument used by Wang (1996).
Let X, Y ∈ G such that X �2 Y .

(i) Suppose that FX(x) ≤ FY (x) ∀x, and the inequality is strict for at least one x0. Then
FX(x) ≥ FY (x) ∀x, and the inequality is strict for at least one x0. Since g is non-decreasing
and equation (33), it follows

Rv(X) = −
∫ 0

−∞
(g(FX(x))− 1) dx−

∫ ∞

0

g(FX(x)) dx

≤ −
∫ 0

−∞
(g(FY (x))− 1) dx−

∫ ∞

0

g(FY (x)) dx

= Rv(Y ).

(ii) Suppose that FX and FY cross once. Then FX and FY also cross once. Thus we find x0

such that

FX(x) ≥ FY (x), for x < x0,

FX(x) ≤ FY (x), for x ≥ x0.

Moreover since X �2 Y at least one the following inequalities should be satisfied

FX(x) > FY (x), for some x < x0,

FX(x) < FY (x), for some x > x0.
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Let FZ = max{FX , FY } be the survival distribution function of a random variable Z.
Suppose first that x0 > 0, then

Rν(Z)−Rν(X) = −
∫ ∞

x0

[
g(FY (x))− g(FX(x))

]
dx

≥ −1− g(FX(x0))
1− FX(x0)

∫ ∞

x0

[
FY (x)− FX(x)

]
dx.

We use that my(x) = g(x)−g(y)
x−y is non-decreasing in x for y fix and non-decreasing in y for

x fix, where x, y ∈ (0, 1) since g is convex (see also Remark below). Analogously

Rν(Z)−Rν(Y ) = −
∫ x0

−∞

[
g(FX(x))− g(FY (x))

]
dx

≤ −g(FX(x0))
FX(x0)

∫ x0

−∞

[
FX(x)− FY (x)

]
dx

≤ −1− g(FX(x0))
1− FX(x0)

∫ x0

−∞

[
FX(x)− FY (x)

]
dx.

Subtracting these inequalities, we obtain

Rν(Y )−Rν(X) =
= [Rν(Z)−Rν(X)]− [Rν(Z)−Rν(Y )]

≥ −1− g(FX(x0))
1− FX(x0)

∫ ∞

x0

[
FY (x)− FX(x)

]
dx +

1− g(FX(x0))
1− FX(x0)

∫ x0

−∞

[
FX(x)− FY (x)

]
dx

=
1− g(FX(x0))
1− FX(x0)

∫ ∞

−∞

[
FX(x)− FY (x)

]
dx

=
1− g(FX(x0))
1− FX(x0)

{∫ 0

−∞

[
(FX(x)− 1)− (FY (x)− 1)

]
dx +

∫ ∞

0

[
(FX(x)− FY (x)

]
dx

}
≥ EP

[
X
]
− EP

[
Y
]
≥ 0.

The last but one inequality uses that g(x) ≤ x for x ∈ (0, 1) (see Remark below). For x0 < 0
the proof is analog. Thus, for X �2 Y we have Rν(X) ≤ Rν(Y ), if the corresponding
cumulative distribution functions cross only once.

(iii) The general case. If X �2 Y , then by Müller (1985, Corollary 4.4), there exists a sequence
of distribution functions (Gi)i≥1, such that G1 = FY , Gi and Gi+1 cross only once, Gi+1

dominates Gi by second order stochastic dominance, and Gi → FX weekly. It follows that

Rν(Y )−Rν(X) = Rν(G1)−Rν(G∞)

=
∞∑

i=1

Rν(Gi)−Rν(Gi+1)

≥
∞∑

i=1

EP
[
Gi

]
− EP

[
Gi+1

]
= EP

[
X
]
− EP

[
Y
]
.
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Corollary 4.1. Let ν ∈ D and g the associated function. Let X, Y ∈ G. If g is non-decreasing
and convex, then

X �2 Y ⇒ Rν(Y ) + EP
[
Y
]
≥ Rν(X) + EP

[
X
]
. (36)

Remark (i) Let Q ∈ core(ν). Then Q is absolutely continuous with respect to P. In fact for
A ∈ F such that P

[
A
]

= 0 we have ν(Ac) = g(P
[
Ac
]
) = g(1) = 1 and thus for Q ∈ core(ν),

Q(Ac) ≥ ν(Ac) = 1, i.e. Q(Ac) = 1.
It follows that for Q ∈ core(ν), there exists a random variable Z ≥ 0 on (Ω,F) such that
EP [Z] = 1 and EQ [X] = EP [ZX] (Z is the density of Q with respect to P). When we write
Z ∈ core(ν) we mean that Z is the density of Q ∈ core(ν) with respect to P.

(ii) If g is convex and g(0) = 0, g(1) = 1, then g(x) ≤ x ∀x ∈ [0, 1].

Proof. Since g is convex, the function my(x) = g(x)−g(y)
x−y is non-decreasing in x for y fix.

Let y = 0, we obtain m0(x) = g(x)
x since g(0) = 0 and therefore m0(1) ≥ m0(x) ∀x ∈ (0, 1].

Since m0(1) = 1 we obtain g(x) ≤ x ∀x ∈ (0, 1].

It follows that ν(A) = g(P
[
A
]
) ≤ P

[
A
]

and thus P ∈ core(ν). Therefore

Rν(X) = −min{EQ [X] |Q ∈ core(ν)} ≥ −EP
[
X
]
,

i.e.

Rν(X) + EP
[
X
]
≥ 0.

Proposition 4.1. Let ν ∈ D be a capacity with respect to P and g the associated function. If g is
non-decreasing and convex, then Rν defined by equation (33) is a coherent measure and moreover,
it satisfies the isotonicity with respect to second order stochastic dominance and

Rν(X) = −min{EQ [X] |Q ∈ core(ν)}, (37)

where core(ν) = {Q |additive on Ω s.t. Q(Ω) = ν(Ω), ∀A ∈ F : Q(A) ≥ ν(A)}.

Theorem 4.2. Let ν ∈ D and g the associated function. If g is non-decreasing and convex then

ρν(X) = −min{EQ
[
X − EP

[
X
]]
|Q ∈ core(ν)}, (38)

is a risk measure.

Proof. Proposition 4.1 and Corollary 4.1.

4.3 Examples

From Theorem 4.2 one can define a risk measure ρ on G with physical probability measure P, by
choosing a non-decreasing and convex function g, with g(0) = 0, g(1) = 1 and the corresponding
Coquet integral given by equation (33).

Example (Expected Value)
Let g(x) = x. g is obviously non-decreasing and convex and g(0) = 0, g(1) = 1. Let ν be the
corresponding capacity. We have ν ≡ P and Rν(X) = −EP

[
X
]
, i.e. ρν ≡ 0. In this case the

decision maker is risk-neutral and care only about the reward.
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Example (Conditional Value-at-Risk)
Let β ∈ (0, 1). We define the function gβ by

gβ(x) =
{

0 if 0 < x ≤ 1− β,

− 1−β
β + x

β if 1− β < x ≤ 1.

gβ is non-decreasing and convex (see Figure 1). νβ denotes the corresponding capacity on (Ω,F).

-
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1− β 1

gβ1

Figure 1: Convex function, which generates the Conditional Value-at-Risk with level β.

Let xβ = F−1
X (β) = inf{x ∈ R |FX(x) ≥ β} = inf{x ∈ R |FX(x) ≤ 1 − β}. Suppose first that

xβ < 0, then we have

Rνβ
(X) = −

∫ 0

−∞
(gβ(FX(x))− 1) dx−

∫ ∞

0

gβ(FX(x)) dx

= −
∫ xβ

−∞

(
−1− β

β
+

FX(x)
β

− 1
)

dx

=
∫ xβ

−∞

(
1− FX(x)

β

)
dx =

1
β

∫ xβ

−∞
FX(x) dx.

For xβ > 0, we obtain

Rνβ
(X) =

1
β

∫ xβ

−∞
FX(x) dx− xβ .



Reward-Risk Portfolio Selection and Stochastic Dominance 23

Therefore, Rνβ
, gives the Conditional Value-at-Risk for β ∈ (0, 1) (see Vanini and Vignola 2001,

Rockafellar and Uryasev 1999). The measure

ρνβ
(X) = Rνβ

(X) + EP
[
X
]

is a risk measure. Note that ρνβ
is the usual Conditional-Value-at-Risk shifted to the left (or to

the right) by the expectation over P. This measure has also been studied by Hürlimann (2002).

Example (Bickel-Lehman Order)
Let Q be absolutely continuous with respect to P and Z = dQ

dP be the density of Q with respect
to P. Let FZ be the cumulative distribution function of Z and F−1

Z (t) = inf{z |FZ(z) ≥ t} its
generalized inverse. Then

gZ(x) =

∫ x

0
F−1

Z (t) dt∫ 1

0
F−1

Z (t) dt

is a non-decreasing, convex function on [0, 1] with gZ(0) = 0, gZ(1) = 1. Thus the corresponding
capacity νZ = gZ ◦P defines a measure RνZ

through equation (33), which is coherent and isotonic
with respect to second order stochastic dominance. The corresponding risk measure is given by
RνZ

+ EP
[
·
]
. When the market is complete, then one could define unique state prices Z(s)

for s = 1, . . . , S. These prices define a density Z and for k = 0, . . . ,K, qk =
∑S

s=1 Z(s)Rk(s).
As shown by Dana (2002, Proposition 5), the risk measure RνZ

+ EP
[
·
]

is consistent with the
Bickel-Lehman oder4.

Example (Spectral Risk Measure)
Acerbi (2002) and Acerbi and Simonetti (2002) define a spectral measures as any measure of the
form

Rφ(X) = −
∫

φ(t)F−1
X (t) dt

for a real function φ on [0, 1]. Moreover, they say that φ is an acceptable (risk) spectrum if φ

is “positive”, “decreasing” and
∫ 1

0
|φ(t)| dt = 1. Note that the properties of monotonicity and

positivity are defined by Acerbi (2002, Definition 2.3) on the space of integrable functions on
[0, 1], L1([0, 1]) and not pointwise. Positive and decreasing functions in the “pointwise”-sense are
also positive and decreasing in the sense of Acerbi (2002).
Let g be an increasing, strict convex function with g(0) = 0 and g(1) = 1 such that the first and the
second derivative exist. Let φ(t) = g′(1− t). Then obviously φ is positive (since g is increasing),
decreasing (since g is strict convex) and

∫ 1

0
|φ(t)| dt =

∫ 1

0
g′(1−t)dt = −[g(0)−g(1)] = 1. Therefore,

φ = g′ is an acceptable spectrum in the sense of Acerbi (2002). Let ν be the capacity corresponding
to g and Rν its Choquet integral (equation (33)). Then we have

Rν(X) = −
∫ 1

0

φ(t)F−1
X (t) dt = Rφ(X),

i.e. Rν is a spectral measure with acceptable spectrum. The corresponding risk measure is
ρφ = Rφ + EP

[
·
]
. Note that

ρφ(X) = −
∫ 1

0

φ(t)F−1
X (t) dt +

∫ 1

0

F−1
X (t) dt = −

∫ 1

0

(φ(t)− 1) F−1
X (t) dt,

which is still a spectral measure, but the corresponding spectrum is not acceptable in the sense of
Acerbi (2002) (see Acerbi and Simonetti 2002, Proposition 4.1).

4Let X, Y ∈ G. We say that X dominates Y by for Bickel-Lehman order denoted X �BL Y iff the map
t 7→ F−1

X (t)− F−1
Y (t) is non-increasing on (0, 1).
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5 Conclusion

In this paper we have considered the reward-risk approach for portfolio selection and we have
defined reward and risk measures through a set of axioms, following the approach proposed by
Artzner, Delbaen, Eber, and Heath (1999). To maintain a link between our reward-risk framework
and expected utility decision theory we have imposed the isotonicity axioms for both the reward
and the risk measure. The consequences of this axiom is that a reward-risk decision maker is
consistent with the expected utility maximizer, at least for all the situation where the rational,
risk averse expected utility decision does not depend on the shape of the utility index, i.e. when
one risk dominates another risk by second order stochastic dominance.
For a finite state of the world, we have shown that on the space of random variables there exists
only one reward measure, which is given by expectation under the physical probability. For risk
measures we obtain a nice characterization through Choquet integral, which can be interpreted as
a “weighted mean”, where the weights are non-increasing in the outcomes.
We do not see any reason for suggesting one particular risk measure in the class of measure
we have characterized. The choice of the “risk aversion” function g should depend on the risk
characteristics of the investor.
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