
ETH Library

Design space for distributed
search (DS)²: a system designers'
guide

Report

Author(s):
Mischke, Jan; Stiller, Burkhard

Publication date:
2002-09

Permanent link:
https://doi.org/10.3929/ethz-a-004403411

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
TIK Report 151

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-004403411
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use


 Eidgenössische Technische Hochschule Zürich
Swiss Federal Institute of Technology Zurich

TIK-Report
Nr. 151, September 2002

 Institut für Technische Informatik und Kommunikationsnetze
Computer Engineering and Networks Laboratory

Jan Mischke, Burkhard Stiller

Design Space for Distributed Search (DS)2
- A System Designer's Guide



Jan Mischke, Burkhard Stiller:
Design Space for Distributed Search (DS)2 - A System Designer's Guide
September 2002
Version 1
TIK-Report Nr. 151

Computer Engineering and Networks Laboratory,
Swiss Federal Institute of Technology (ETH) Zurich

Institut für Technische Informatik und Kommunikationsnetze,
Eidgenössische Technische Hochschule Zürich

Gloriastrasse 35, ETH-Zentrum, CH-8092 Zürich, Switzerland



Design Space for Distributed Search (DS)2 
— A System Designers’ Guide —

Jan Mischke1 and Burkhard Stiller2,1

1 Computer Engineering and Networks Laboratory TIK, Swiss Federal Institute of Technology (ETH Zurich)
Gloriastrasse 35, CH – 8092 Zürich, Switzerland

2 Information Systems Laboratory IIS, University of Federal Armed Forces Munich
Werner-Heisenberg-Weg 39, D-85577 Neubiberg, Germany

E-Mail: [mischke|stiller]@tik.ee.ethz.ch
Abstract
Important research efforts are conducted in the area of 

search, lookup, and routing, and are even increasing in light 
of promises and challenges of peer-to-peer (P2P) systems or 
the semantic web. To organize these areas of concern, this 
paper proposes an exhaustive two-dimensional design space 
that structures and classifies current and facilitates future 
research. In the functional dimension, it identifies a series of 
mappings and integrated approaches like keyword lookup or 
semantic routing. In the structural dimension, design options 
for each mapping include computational approaches, central 
or completely replicated tables, classic or symmetric hierar-
chies, ordered spaces, as well as random structures and 
topologies. An evaluation of these design options serves as a 
guideline for system designers and leads to the design of a 
novel peer-to-peer based keyword routing scheme.

Keywords: Distributed systems, peer-to-peer, design 
space, keyword search, semantic routing, lookup, distributed 
tables, overlay topology, symmetric hierarchy

1 Introduction

A distributed system is a network of nodes and links 
between these nodes. Particularly in large networks, nodes 
collectively host abundant amounts of resources. Resources 
include content or information residing on hosts, like music 
files, newspapers, or files in distributed file systems, further-
more hardware resources, like storage space, computing 
cycles, network links, or output devices, and finally all kinds 
of services, e.g., specific application software [20].

The difficulty of finding and retrieving or using these 
resources is increasing with the network size and degree of 
decentralization. While it was rather easy in times of main-
frame computing with only few connected terminals, the 
move towards completely decentralized peer-to-peer systems 
with millions of active nodes imposes huge challenges on dis-
tributed search and routing. Innumerable efforts have been 
started to address these issues and design new search systems 
meeting the requirements of today’s peer-to-peer networks. 
However, a clear structure and delineation of the approaches 
is yet missing as well as a comparative evaluation. Further-
more, there is no clear statement as to what designs are viable 
at all and may not even have been looked into.

Consider peer-to-peer file-sharing services as an example. 
Napster [33] provided a central directory server to enable 

users to find content - it failed, mostly due to legal issues with 
its centralized architecture. Hence, Gnutella [6] chose a com-
pletely decentralized approach based on flooding - but it can 
obviously not scale to the millions of nodes expected to join 
future P2P systems [29]. Chord [1], CAN [25], Tapestry [41], 
Pastry [9], or AGILE [18] (cf. also [18] for a comparison) 
designed highly scalable combined lookup and routing sys-
tems - however, their highly structured approach makes them 
vulnerable to malicious users and makes keyword search a 
non-trivial task. In the world wide web, search engines like 
Google, together with DNS and IP routing [24] jointly sup-
port information search and retrieval and proved to be highly 
successful - but they rely on hierarchies and central infra-
structure or authorities that are not available in decentralized 
P2P environments. And even despite their success in the web, 
alternative or supplementary approaches like TRIAD are 
being developed and proposed [10].

So several questions arise: What is the best design to 
choose for a specific application? What are the fundamental 
parallels or differences between these and further approaches 
that make them better or less well suited for one or the other 
application? To what extent can application-specific require-
ments be met, and what is the effect of choosing one or 
another design, what are the trade-offs? How to effectively 
approach new system design in a highly structured way? And, 
finally, are there any fundamentally new approaches yet to be 
discovered and developed that may achieve significant per-
formance leaps?

This paper addresses these and further issues. It gives clear 
guidance to system designers on which design to choose or 
what kind of system to develop for their specific needs. And 
it helps researchers to classify existing systems and current 
efforts, to identify blind spots in the design space, and to 
structure future research.

The following design space first yields a clear separation 
of two fundamental design dimensions, the functional and the 
structural dimension. Regarding the functional dimension, 
Section 2 gives an overview of the necessary steps required to 
find and use or retrieve resources in a distributed system and 
identifies possible short-cuts. As to the structural design 
dimension, Section 3 spans the possible solution space in a 
top-down approach. Section 4 discusses methodologies as 
well as advantages and disadvantages of the design options 
and extensively tests the framework by organizing current 
solutions and efforts accordingly, thus also presenting related 
- 1 -



- 2 -
work. A more detailed evaluation of functional and structural 
design options along a set of major requirements follows in 
Section 5. This evaluation forms the basis for a guide to 
search system design in Section 6. The same Section also 
tests the guide along a peer-to-peer application, leading to 
the proposition of a novel keyword routing scheme. Addi-
tionally, it derives implications for future directions in 
research on peer-to-peer searching algorithms. Finally, Sec-
tion 7 concludes and gives an outlook on future work.

2 The Search Process and Functional Design 
Space

For a thorough understanding of the functionality required 
to find and use or retrieve resources and for possible optimi-
zations, it is required to disaggregate the search process and 
identify necessary steps and possible short-cuts. Figure 1
shows the process from keywords over names and addresses
to the path to target node hosting the desired resources. 

In most cases, a user will want to specify what he or she is 
looking for in terms of keywords. In the simplest case, key-
words are just one or more terms appearing in the desired 
content or describing the desired resource. More sophisti-
cated approaches apply content/resource meta information 
based on attribute-value pairs. The Resource Description 
Framework, RDF [27], attempts to standardize this meta 
information. Keyword search describes the functionality of 
mapping the resource meta information onto one, or, in the 
case of multiple matching resources, several unique names or 
identifiers in the network. The most classical example of 
such names are the Uniform Resource Locator, URL, or file 
names in a Unix file system. Lookup maps unique names 
onto addresses in the network. Addresses specify the net-
work location of the node hosting the resource with a given 
name. This can be the IP address of the host or, e.g., an 
address in an overlay network as it is common in peer-to-
peer networks. Finally, routing is the process of finding a 
path and moving queries to the target node. Routing can also 
take place on a physical or an overlay network. 

Three short-cut mechanisms can help optimize search. 
Name routing is becoming more and more common in P2P 
systems and combines the (distributed) lookup of the target 
node address with path identification and query forwarding 
to that node. Keyword lookup returns one or more addresses 
of nodes hosting resources with given keyword descriptions. 
Napster is the most prominent example. Finally, keyword 
routing directly routes towards a node hosting specified 
resources. Keyword routing is sometimes also called seman-
tic routing or content routing. 

3 The Structural Design Space for Existing 
and Future Systems

With the search process defined and disaggregated, it 
becomes obvious that searching requires a series of map-
pings, from the keyword space to the name space to the 
address space to the space of paths to nodes. In order to assist 
system design, the options for such a mapping in distributed 
systems are depicted in Figure 2.

A mapping is defined through a computation or a table. 
Computation is difficult to achieve, but some attempts have 
been made, usually involving hashing. More widely adopted 
are tables with entries for the desired search items, e.g., a 
node address for each valid name. Mapping then comes 
down to finding the desired table entry and looking up the 
associated value. In a distributed environment, a table can 
either reside on a central entity like a search engine server, or 
be completely replicated on each node, or be distributed
among the nodes. 

Distributed tables are probably most interesting and chal-
lenging in that they require for each mapping to collabora-
tively find and contact the node that has the desired informa-
tion or table entry. Two important aspects distinguish 
distributed table approaches: the structure of the table, i.e. 
the distribution of table entries to nodes, and the physical or 
overlay topology of the network. The distribution of table 
entries either happens at random or in a well-designed pro-
cess leading to a clear target table structure; the same applies 
for the distribution of links and, hence, the topology. 
Whether the table structure and topology are designed and 
aligned, or both random, or at least one of them designed but 
not aligned with the other, has substantial implications on 
search.

In a random table structure and random topology, it is nat-
ural that each node at least carries information about itself, 
i.e. its address, the names of its resources and content, and 
corresponding keyword descriptions. In addition to informa-
tion on their own tables, nodes may have knowledge on the 
table entries of their neighbors, i.e. the nodes they directly 
know about and may contact for search, in an aggregated or 
non-aggregated form. The knowledge on neighboring table 
entries will in some cases be restricted to the direct neigh-
bors, but can also involve recursion: An arbitrary node A not 
only learns about the table entries of its neighbors Bi, but 
also through Bi about Bi’s neighbors Cij, Cij’s neighbors Dijk, 
and so on. This way, nodes eventually know about all key-
words, names, or addresses in the direction of each neighbor 
in a usually aggregated way.

Rather than keeping explicit knowledge on neighboring 
table entries, nodes can exploit implicit knowledge when the 
table distribution and topology follows a clear and aligned
structure that every node knows. The most common 
approach is certainly the classical hierarchy. A root node 
informs about table areas represented by a number of sec-
ond-level nodes. The second-level nodes, in turn, delegate to 
third-level nodes for sub-areas within their own area, and so 
on, until a request finally reaches the leaf node responsible 
for the desired entry. Particularly in the quest for scalable 
peer-to-peer search algorithms, “symmetric hierarchies”

Keywords Name Node
Address

Path To
Target
Node

Keyword
Search Lookup Routing

Name RoutingKeyword Lookup

Keyword Routing

Figure 1: Search in Peer-to-peer or other Distributed 
Systems



- 3 -
have been created by adding redundancy. In symmetric hier-
archies, every node can become the root or be on any other 
level of the hierarchy. This can be achieved by replicating the 
root information on table areas on each node as well as the 
second-level information on sub-areas etc. Note that on each 
node, only the sub-area information within one top-level area 
is available rather than that within all top-level areas; other-
wise the table on each node would be complete. Also note 
that nodes acting as a root will usually point to different 
neighbors for the second level table areas (and so on for all 
remaining levels) as there are multiple different options due 
to the replication. The symmetric hierarchies being created 
show structural similarities with k-ary n-cubes, see [18] for a 
more detailed discussion. Non-hierarchical structures are 
also possible and available. In an ordered space, the table is 
split into consecutive areas. Each of the areas is represented 
on one node. The nodes, in turn, are ordered in the same way, 
i.e. neighboring table areas reside on neighboring nodes. 
Examples of such spaces are rings or Euclidean spaces.

Unaligned table structures and topologies occur when 
either the topology is designed but the table structure ran-
dom, or the table is distributed according to a clear structure 
but the topology is random, or both table and topology are 
clearly structured but in different ways. While the first case 
can be advantageous for performance improvements com-
pared to a completely random approach, the second case is 
particularly used to allow aggregation of table area informa-
tion. It appears difficult to gain from the third case. 

4 Functional and Structural Design Space: 
Methodologies and Sample Systems

This section presents a framework for design options in 
distributed search and gives an overview of existing systems. 
By briefly discussing key requirements, advantages, and 
drawbacks, it explains the rationale for choosing a specific 
design. Furthermore, blind spots in the design space will be 

identified where further research may lead to entirely new 
systems with significantly improved performance.

Table 1 classifies existing approaches into the design 
space categories. While it represents the best of the authors’ 
knowledge, it primarily serves as the basis for detailed dis-
cussions, a proof of concept, and the outline of major 
research dimensions. 

4.1 Computational Approaches

Computational mapping is very efficient in that it involves 
neither large tables to reside in memory nor bandwidth-con-
suming query messages to be sent. However, it is difficult to 
achieve as it requires that all possible outcomes of the com-
putation be allowed in the target range, i.e. name space, 
address space, or space of routes. Constantly changing target 
spaces or value ranges, due to the addition or removal of 
nodes and node addresses, or resources with their corre-
sponding names, limit the applicability of computational 
approaches. Some have been made, however, usually involv-
ing hashing, and circumventing the problem by simply defin-
ing name or address spaces such as to cover all possible com-
putation outcomes. This is impossible, however, for routing 
in dynamic environments, as the paths to nodes have to exist 
and cannot simply be defined.

INS/Twine [2] builds attribute-value trees from complex 
resource descriptions and disaggregates them into strands of 
variable length. Hashing is applied to map the strands onto 
128-bit names (which are not necessarily unique in
INS/Twine). Chord’s name routing algorithm ([1], see 
below) completes the search. 

4.2 Centralized Tables

Central tables are very bandwidth-efficient and incur little 
overhead. However, they require that a central entity have 
trust, reliability, and authoritative information access neces-
sary to own the central table. Furthermore, a possible outage 

Figure 2: Design Space for Mapping Relations in Distributed Systems

Mapping
Relation

Computation

Table Complete On
Each Node

Central

Distributed

Random Table
Structure and

Random Topology

Aligned Table
Structure and

Topology

No
Neighborhood

Information

Neighborhood
Information

Without
Recursion

With
Recursion

Hierarchical

Non-Hierarchical
Ordered Space

Non-Symmetric
(Classical)
Hierarchy

Symmetric
(Redundant)

Hierarchy

Unaligned
Table Structure
and Topology

Topology
Structured

Table
Structured



- 4 -
of a central server represents a considerable risk for the 
entire network.

Web search engines like Google apply inverse indices to 
provide URL names based on keywords. In the non-IP 
world, phone directories return the phone number, i.e., 
address, when provided with a name. In star topologies, the 
central server has the routing information of the entire net-
work and is able to route and forward packets when provided 
with an address. Napster operates central servers to identify 
addresses of peers where content files with a file name con-
taining given keywords are stored [33]. Many load balancing 
hubs route towards a specific server in a server farm based 
on the URL (name) of the request.

4.3 Completely Replicated Tables

Key advantages of complete replication of tables on each 
node are the increased autonomy and fault tolerance in the 
system when compared to central tables while keeping the 
simplicity and bandwidth-efficiency. However, replication 
and synchronization issues as well as high memory needs 
usually restrict the approach to small tables and networks.

Collaboration tools like Groove synchronize keyword, 
name, and address information as well as actual objects or 
object updates on all nodes [12]. Subsequently, all informa-
tion necessary for, e.g., keyword search, is available on all 

nodes, even though the system is based less on a reactive 
search but more on proactive synchronization. As a prede-
cessor to the Domain Name System (DNS), the Network 
Information Center (NIC) distributed a file, hosts.txt, to all 
internet hosts for translation of domain names into IP 
addresses [24]. Complete information on routing corre-
sponds to a complete mesh, either physical or as a logical 
overlay, being created.

4.4 Distributed Structured Tables with Aligned 
Topologies

Classical hierarchies are very efficient for searching and, 
in contrast to central tables, allow for delegation of responsi-
bility. However, they require an equally hierarchical topol-
ogy and source domain, i.e. keyword space, name space, or 
address space, in order to work efficiently.

DNS applies hierarchically organized domain names and 
an equivalent hierarchy of domain name servers to yield an 
IP address when asked about a domain name. The hierarchy 
of IP addresses is exploited for routing in the Internet. 
Finally, TerraDir [37] organizes all content in a hierarchical 
keyword structure. For each content item or keyword, a vir-
tual node is created, enabling keyword routing towards that 
node along the hierarchy.

Table 1: Search Systems in the Design Space

Design
Keyword 

Search Lookup Routing
Keyword 
Lookup Name Routing

Keyword 
Routing

Computational INS/Twinea n/a n/a n/a n/a n/a

Ta
bl

e

Central Search engines, 
web directories

Phone 
directoriesa

Star topo-
logies

Napster Load balancing hub n/a

Complete on Each Node Groovea NIC’s 
Hosts.txt

(Overlay) com-
plete mesh

n/a n/a n/a

D
is

tr
ib

ut
ed

 T
ab

le

Al
ig

ne
d 

Ta
bl

e
St

ru
ct

ur
e

an
d 

To
po

lo
gy

H
ie

ra
r-

ch
ic

al

Classical n/a DNS  IP n/a n/a TerraDir
Symmetric 
(Redundant)

n/a n/a n/a n/a Pastry, Tapestry, 
AGILE

SHARK

Non-Hierarchical 
Ordered Space

n/a n/a n/a n/a CAN, Chord n/a

U
na

lig
ne

d 
Ta

bl
e

St
ru

ct
ur

e
an

d 
To

po
lo

gy

Topology 
Structured 

n/a n/a n/a n/a HyperCuPa, Brocadea, 
Morpheus, Kazaa, 
LimeWireb, Bear-
Share, Clip2 Reflector

LimeWireb

Table Struct-
ured

n/a n/a BGP, RIP n/a TRIAD/NBRP n/a

Ra
nd

om
 T

ab
le

St
ru

ct
ur

e 
an

d
Ra

nd
om

 T
op

ol
og

y

No Neighborhood
Information

n/a n/a Reactive 
MANET, DSR, 
AODV

n/a Random Walk, 
Gnutella, Expanding 
Ring

Random Walk, 
LimeWireb

N
ei

gh
bo

rh
oo

d

In
fo

rm
at

io
n

Without 
Recursion

Manual http- 
Browsing

n/a ZRPa P2P 
relational 
database

Freenet Best match

With 
Recursion

n/a n/a Bellman-Ford n/a Variants of Bloom 
filters

Semandex 
Netlink, Bloom 
filters, e.g. 
LimeWireb

a. Only partial fit into category; see text for explanation.
b. LimeWire proposes multiple add-ons to Gnutella and is listed subsequently multiple times in the table.



- 5 -
Symmetric (redundant) hierarchies combine the advan-
tages of a classical hierarchy with the symmetry and fault 
tolerance requirements of a peer-to-peer system, at the cost 
of additional redundancy in the system and complex node 
and resource insertion and removal.

In Pastry [9] and Tapestry [41], content names and IP 
addresses of nodes are hashed onto the same numerical iden-
tifier (ID) space, such as to combine name space and address 
space in the overlay network; this allows name routing when 
making that node responsible for holding a resource or a link 
to it that is closest to the resource in the ID space. The hierar-
chy is created through a digit representation of the ID to a 
base value and an association of each digit with one hierar-
chy level, starting from the last (Tapestry) or the first digit 
(Pastry), respectively. AGILE (Adaptive, Group-of-Interest- 
based Lookup Engine, [18]) follows a similar approach as 
Tapestry but introduces an additional three-level hierarchy 
for the resource description. Even though motivated through 
performance improvements (pruning), this is already a step 
towards symmetric hierarchy-based keyword routing. This 
approach will be extended in SHARK (Symmetric Hierarchy 
Adaption for Routing of Keywords, cf. Section 6.2).

Also popular for name routing in peer-to-peer systems is 
the non-hierarchical ordered space approach. The prerequi-
site here is that source domain, i.e. keywords, names, or 
addresses, and nodes can be arranged in the same totally 
ordered, non-hierarchical space.

Chord [1] hashes resource names and node IP addresses to 
a 128-bit ID. The IDs are arranged in a circle with the prede-
cessor node of a resource ID being responsible for providing 
the resource or a link to it. Fingers are used as short-cuts to 
prevent the name routing mechanism from moving around 
the circle in unit steps. In CAN (Content Addressable Net-
work, [25]), hashing is similarly applied to map resource 
names onto an ID in a d-dimensional torus. Nodes distribute 
responsibility for the ID space among themselves and main-
tain virtual links to all direct neighbors in the torus. Queries 
for a name, i.e. ID, can then at each node easily be routed 
into the optimum direction. To the author’s knowledge, there 
is no proposal yet to apply an ordered space to keyword rout-
ing, except for extensions of the HyperCuP approach (cf. 
below, [32]), even though it appears promising particularly 
for peer-to-peer networks.

4.5 Unaligned Distributed Table Structures and 
Topologies

Search based on unaligned table structures and topologies
is most common where a structuring of the table appears pro-
hibitive yet a clear topology improves system performance. 
This particularly applies to widely-spread peer-to-peer sys-
tems, where free-riding and non-trustworthiness of some 
peers inhibit distributing responsibility for some table entries 
beyond the corresponding resources’ owner.

HyperCuP builds a hypercube topology of nodes to sup-
port efficient flooding [32]. An extension arranging 
resources in the same hypercube space as the nodes which is 
also proposed by the authors would move it to ordered-space 
keyword routing. Hierarchies with “landmarks”, “supern-
odes”, or “ultranodes” are introduced into many peer-to-peer 

name routing systems to reduce latency, like in Brocade [42], 
or to improve scalability, like in Morpheus/Kazaa, 
LimeWire, BearShare or Clip2 Reflector [40]. In these sys-
tems, the landmarks or supernodes replicate address and 
name information for all subordinate nodes and act as gate-
ways or proxies for name requests between the subordinate 
nodes and the remaining network. However, as only a hierar-
chical overlay topology is applied, but not an equivalently 
hierarchical address or name space, the benefit of the hierar-
chy is limited.

The Routing Information Protocol (RIP [14]), Border 
Gateway Protocol (BGP, [26]), and TRIAD/NBRP (Translat-
ing Relaying Internet Architecture integrating Active Direc-
tories/Name-Based Routing Protocol, [11]), in contrast, build 
on hierarchical address and name spaces, respectively, in 
order to aggregate information, while the topology can be 
random. RIP is a distance vector protocol where each router 
advertises the number of hops to other routers in the network. 
The Border Gateway Protocol adapts the approach by having 
routers only advertise reachability without distance informa-
tion. Address prefixes assist aggregation wherever possible 
and constitute the hierarchical element in BGP and RIP. The 
TRIAD/NBRP system essentially extends the BGP approach 
to name routing, aggregating through name suffixes [11].

4.6 Random Distributed Tables and Random 
Topologies

Even though random table structures for mapping rela-
tionships in search appear less sophisticated than aligned 
structures and do not allow to exploit implicit structural 
knowledge, there are a couple of advantages to this 
approach. The maintenance burden for creating and keeping 
an explicit table structure can be too high, particularly in 
fast-changing environments like mobile ad-hoc networks. 
This also leads to issues regarding fault-tolerance: if the 
structure is not correct in algorithms that rely on it, queries 
may not be successful. Finally, structured approaches require 
a high degree of collaboration and trust. Unless ownership 
for certain resources referred to in table entries coincides 
with the assigned responsibility for these table entries, 
resource owners and search requestors have to rely on third 
parties to provide correct information. Even though this coin-
cidence applies for DNS, in many cases, like Pastry or Tapes-
try, this is not the case. 

The most simple form of a randomly distributed table lets 
each node only maintain a table of keywords, names, and 
addresses (if several on a node) of its own resources without 
neighborhood information. This approach is extremely sim-
ple and helpful in environments changing so fast that knowl-
edge about neighbors usually becomes stale before it is used. 
However, for all mappings, it requires to either arbitrarily 
choose neighbors to send requests to, or, more commonly, 
flood the entire network.

Reactive routing mechanisms in mobile ad-hoc networks 
(cf. [34]), like Dynamic Source Routing (DSR, [15]) or Ad-
hoc on-Demand Distance Vector Routing (AoDV, [23]) 
apply flooding. The approach is also used in the Gnutella 
name routing [6] and its extension to keyword routing pro-
posed within LimeWire [38], [39]. In expanding ring 



- 6 -
searches, the requestor is contacted before each additional 
request forwarding to check whether the desired object has 
already been found such as to allow early termination of the 
query flooding. Multiple random walks with termination 
checking can drastically reduce the number of messages due 
to the finer granularity of node visits and reduced duplication 
of messages, and, hence, improve bandwidth scalability [16]. 
The improvements, however, require sufficient replication of 
objects and come at the cost of significantly increased 
latency.

Direct neighborhood information on each node can 
improve query forwarding decisions within a distributed 
table. However, unless flooding is used, the approach 
remains indeterministic as to whether a result can be found in 
the direction of a neighbor.

Hyperlinks in http provide users with names, i.e. URLs, of 
resources on neighboring nodes; they can be used for manual 
keyword search or browsing. The Zone Routing Protocol 
(ZRP, [13]) for routing in mobile ad-hoc networks stores path 
information to neighbors within a surrounding zone but 
applies flooding beyond that zone. Of course, only one node 
per zone needs to be contacted for the flooding. Peer-to-peer 
based relational databases as proposed in [3] and return 
addresses of or links to neighboring databases when searched 
locally. In Freenet [21], name routing is based on hashes of 
file names or content information. Each node forwards a 
query to the neighbor storing content with a hash ID numeri-
cally closest to the request. The approach converges due to 
Freenet’s aggressive caching strategy.

Recursive neighborhood information, usually in a very 
aggregated form, makes a random table structure search 
deterministic while avoiding flooding. However, the syn-
chronization overhead incurred can be substantial. Specific 
attention is due in networks containing loops in order to 
avoid a count-to-infinity problem.

In distance-vector or Bellman-Ford IP-routing [4], [10], 
routers advertise their distance to other routers. Even though 
in the stable state, every router has complete information on 
distances and next hops towards a peer router, information is 
aggregated (and distributed) in that only the next hop but not 
the entire path is stored. For name and keyword routing in 
peer-to-peer networks, various variants of Bloom filters (cf. 
[5]) have been proposed to aggregate and compress informa-
tion on resources in the direction of each neighbor. Put sim-
ple, one bit is set in a word for each name occurring in a cer-
tain direction. Rhea and Kubiatowitcz suggest attenuated 
Bloom filters storing name information up to d-levels of 
depth with weights decreasing with distance [28]. For key-
word routing, Prinkey proposes standard Bloom filters in tree 
topologies with aggregated signatures of a branch, i.e. the 
Bloom filter bits represent the hashed keywords present in a 
tree branch. LimeWire modifies the proposal to cope with 
arbitrary topologies [30] by adding the number of hops to a 
resource when propagating the keyword routing information. 
Crespo and Garcia-Molina [7] suggest to store and propagate 
the number of matching documents for each keyword, either 
together with the number of hops to a document (hop count 
routing indices), or weighting the number of documents with 
a cost function depending on the distance (exponentially 
weighted routing indices). Semandex Netlink routers 

exchange aggregated XML-based user profile information to 
subsequently be able to route information to interested users 
based on meta-information [35], [36], [22].

4.7 Hybrid Approaches

In addition to pure approaches, hybrid approaches are pos-
sible and used, like Brocade [42], where a central table 
aggregates information within a group on a landmark router, 
while a symmetric redundant hierarchy is proposed between 
the landmark routers.

5 Evaluation of the Design Options

The design space presented in the previous Section leaves 
the system developer with multiple alternatives. It is impos-
sible to make a general statement as to which designs are 
best. Moreover, different requirements and importance of 
requirements characterize various systems. Hence, this sec-
tion focuses on discussing in detail advantages and draw-
backs along a set of major requirements, lying the foundation 
for structured and conscious future design decisions.

5.1 Functional Design Space

The functional design space can be condensed into two 
major choices: (a) build a disaggregated search involving the 
separate steps keyword search, lookup, and routing, or (b) 
take one of the integrated approaches of keyword lookup, 
name routing, or keyword routing. The two options will be 
compared by identifying the advantages of each of them with 
respect to the other one.

Integrated Approaches
The key advantage of integrated approaches, their effi-

ciency, is already reflected in their current deployment 
mostly for peer-to-peer systems: only one or two mappings 
are required rather than three. Particularly in widely distrib-
uted tables (rather than computational, centralized, or strictly 
hierarchical approaches), each mapping requires the collabo-
ration of many nodes and incurs high bandwidth demands
and latency. Integrated approaches avoid a duplication of 
highly similar mapping functionalities.

Keyword or name routing also vastly simplify the integra-
tion of sophisticated mechanisms as they allow keyword- or
name-based re-routing and, hence, make the system trans-
parent to path changes, e.g., due to broken links, address 
changes, e.g., due to site outage or caching and replication, 
and, in the former case, even name changes, e.g., due to addi-
tion or removal of content for a given keyword. This can also 
alleviate real-time search.

Disaggregated Approaches
A decoupling of keyword search, lookup, and routing 

shows the set of following advantages: 
• Reusability: Each mapping can be used separately to sup-

port a wide range of services; e.g., IP routing can not only 
be used for keyword search but also to create virtual pri-
vate networks (VPNs) or enable multimedia multicast.



- 7 -
• Innovation: Innovation in one area does not affect 
another area; e.g., improvements to Google’s search algo-
rithms are independent of any router upgrades.

• Simplicity: Devices for each step can be simpler and more 
specialized than for integrated systems, e.g., ultra-fast 
hardware-based IP routers. Similarly, software engineer-
ing is alleviated, also increasing the maintainability of 
the system.

• Horizontal and Vertical Variety: Different choices for 
keyword search, lookup, and routing smoothly inter-
operate, both horizontally at each step, e.g., central Goo-
gle-type keyword search in parallel to peer-to-peer based 
search like Infrasearch, as well as vertically across the 
three steps, e.g., central search and hierarchical lookup 
and routing. 

• Ownership Separation: Each mapping can be offered by 
a separate entity, allowing more competition leading to 
higher efficiency and innovation, potentially also ham-
pering censorship.

• Delegation: Almost a consequence of ownership separa-
tion and vertical variety, but extremely important, is the 
possibility to logically separate name space and address
space, e.g., independent allocation of and even delegation 
of responsibility for IP address space and domain names.

5.2 Structural Design Space

Table 2 presents an overview on system design require-
ments and the degree to which they are met by various struc-
tural design options. Note that many system developers have 
added more details to their design-specific features that 
address shortcomings or fortify strengths of the system. 
Table 2 can thus only be regarded as a rough guideline. 
Major advantages and prerequisites of each system have 
already been highlighted in Section 4. An explanation and 
definition of these requirements is given below, extending 
prior work in [17].
• Manageability and Control: How hard is it to control and 

manage the system, i.e. how complex is it, how much 
maintenance does it require, and what level of control can 
be exercised?

• Coherence: Does the system deterministically find 
authoritative information, or does it behave in an indeter-
ministic way, or is it prone to retrieve stale replicated 
information?

• Extensibility: How easy or difficult is it to add resources 
or nodes to the system?

• Fault Tolerance and Adaptability: How severely is the 
system affected by a fault and how easily and quickly can 
it cope with system changes like node joins or leaves?

• Scalability: To what limits can the system grow at reason-
able performance, particularly with regards to bandwidth 
and latency, but also memory and processing load on 
average nodes as well as hot spots?

• Publish Autonomy and Security: Is information mostly 
kept at the resource owner, can even responsibility for the 
corresponding name or address space be delegated?

• Search Autonomy and Security: Does searching require 
the collaboration of many, particularly untrusted parties?

• Infrastructure Independence: How independent is the 
system from shared infrastructure like central servers? 
This property is particularly required for peer-to-peer net-
works; here, the system cannot rely on shared infrastruc-
ture other than basic Internet services as it is usually not 
available. 

• Special Prerequisites: As already discussed in Section 3, 
some designs have special requirements. A computa-
tional approach requires that all computation results lead 
to valid values in the target range of the mapping, i.e.
name space, address space, or space of paths. Hierarchi-
cal approaches require source domains of the mapping, 
i.e. keyword space, name space, or address space, to be 
hierarchical. Finally, a non-hierarchical ordered-space 
approach requires an arbitrary order other than a hierar-
chy to be imposed on the source domain, usually a linear 
order.

6 Guideline and Implications 

This section will draw conclusions from the design space 
and its evaluation by providing system designers with a brief 
application guide (Section 6.1), illustrating the approach 
along a sample peer-to-peer system and creating a novel key-
word routing approach (Section 6.2), and finally giving gen-
eral recommendations and directions for research on search 
in peer-to-peer networks (Section 6.3).

6.1 A 5-step System Designers’ Guide

This Section outlines a five-step high-level procedure on 
how to methodologically apply the design space to derive an 
optimum search algorithm for a specific application. Each of 
the steps obviously requires detailed examinations of 
requirements and algorithms.

1. Define Requirements: Define all requirements of your 
system in detail, particularly based on those requirements 
evaluated in Section 5. Categorize them into obligatory and 
optional ones and further prioritize within the categories.

2. Choose Functional Design: Based on Section 5.1, trade 
off an efficient integrated approach with dynamic re-routing 
vs. a disaggregated approach with the indicated advantages 
of decoupling. 

3. Establish a Shortlist of Structural Design Options: Con-
sult Table 2 to determine the best-suited design choices for 
your proprietary requirement ranking.

4. Reconsider Functional Design: If your shortlist includes 
designs with special prerequisites toward the source domain 
or target range that you cannot meet, reconsider your initial 
choice of functional design and find out if you can meet them 
with a different level of disaggregation.

5. Choose or Craft Search System: Consult Table 1 and 
further literature to identify candidate systems. Evaluate 
them in detail, including their specific features, and compare 
to your requirements. Beware that the more detailed evalua-
tion you perform might lead you to reconsider your choice of 
functional or structural design. Choose an existing solution, 



- 8 -
craft one from multiple existing solutions, or develop an 
entirely new one.

Upon completion of this procedure, a design should have 
been selected that is optimum with respect to the individual 
requirements of the application, in a design space believed to 
be exhaustive.

6.2 Implications for a Novel Keyword Routing

The validity and usefulness of the design space and the 5-
step guide are very briefly demonstrated along their applica-
tion to a concrete problem and the conception of a novel sys-
tem. Within the MMAPPS project (“Market Management of 
Peer-to-Peer Services”, [19]), inter alia a search system is to 
be designed as described below.

1. Requirements: The system absolutely has to scale to and 
be efficient up to several millions of nodes and must not 
depend on shared infrastructure other than basic Internet con-
nectivity, as there is no entity interested in supplying such an 
infrastructure. Furthermore, it has to be easily extensible and 
highly adaptable and fault-tolerant as resources are expected 
to frequently be added and removed (cf. [31]). Extensive 
caching of popular content make dynamic re-routing facili-
ties highly desirable. The system is supposed to run on a ser-
vice-specific overlay network. Therefore, reusability, inno-
vation, horizontal variety, and ownership separation appear 
less important than this may be the case in other systems. 
Finally, as peer nodes usually are complex multi-purpose 

personal computers, device simplicity and specialization 
seem to be of little importance.

2. Functional Design: Overall, the requirements stated 
above and the functional design space strongly recommend 
integrated keyword routing.

3. Shortlist of Structural Design: The evaluation in Table 2
with respect to the prime requirements, scalability and infra-
structure independence, recommends three options, a sym-
metric redundant hierarchy, a non-hierarchical ordered space, 
or a random structure with recursive neighborhood informa-
tion. For this specific case, the advantage in terms of scal-
ability of the first two designs outweighs the advantage of 
the latter one in terms of autonomy, particularly since addi-
tional peer incentives and the creation of a hierarchy that 
reflects the ownership structure are contemplated to improve 
on this dimension. 

4. Reconsider Functional Design: Assuming that a hierar-
chical or ordered keyword space can be built, a change in 
functional design is not necessary.

5. Craft System: Table 1 indicates that a keyword routing 
based on a symmetric redundant hierarchy or a non-hierar-
chical ordered space do not yet exist. This blind spot will be 
filled by SHARK, Symmetric Hierarchy Adaption for Rout-
ing based on Keywords. This approach will extend AGILE’s 
symmetric hierarchy for name routing and build on a hierar-
chical keyword ontology to allow efficient and highly scal-
able keyword routing. Virtual nodes based on interest pro-

Table 2: Evaluation of Structural Design Optionsa

Design M
an

ag
ea

bi
lit

y
an

d 
C

on
tr

ol

C
oh

er
en

ce

E
xt

en
si

bi
lit

y

Fa
ul

t T
ol

er
an

ce
&

 A
da

pt
ab

ili
ty

Sc
al

ab
ili

ty

Pu
bl

is
h

A
ut

on
om

y 
an

d
Se

cu
ri

ty

Se
ar

ch
A

ut
on

om
y 

an
d

Se
cu

ri
ty

In
fr

as
tr

uc
tu

re
In

de
pe

nd
en

ce

Sp
ec

ia
l

Pr
er

eq
ui

si
te

sb

Computational ++ ++ -- -- ++ ++ ++ ++ yes

Ta
bl

e

Central ++ ++ - - - or +c - or ++d - or ++d -- -

Complete on Each Node -- -- 0 ++ -- ++ ++ ++ -

D
is

tr
ib

ut
ed

 T
ab

le Al
ig

ne
d 

T.
S 

&
To

po
lo

gy
.e

H
ie

ra
r-

ch
ic

al

Classical +/0 +/0 ++/+ - 0 or 
++c

++/- or 
++/++d 

-/- or ++/++d - yes

Symmetric 0/- 0/- +/0 + ++ ++/-- - ++ yes
Non-Hierarchical 

Ordered Space
0/- 0/- +/0 +f ++f ++/-- - ++ yes

Unaligned T.S. & Topology tbd.g tbd.g tbd.g tbd.g tbd.g tbd.g tbd.g tbd.g tbd.g

Ra
nd

om
 T

.S
. &

Ra
nd

om
 T

op
ol

og
y No Neighborhood 

Information
-- ++ ++ ++ -- ++ - ++ -

N
ei

gh
bo

r.
In

fo
.

Without 
Recursion

- + ++ + - ++ - ++ -

With 
Recursion

- - + + + or -h 0 0 ++ -

a. -- very weak/low ... ++ very good/high
b. See text for explanation
c. If additional servers allowed and possible
d. If central entities regarded as trusted and collaborative
e. x/y: First value, if table structure and topology reflect ownership structure, second value if separate from ownership structure
f. In existing systems CAN and Chord, depends on system details
g. To be defined, depends on system details.
h. Depending on level of information aggregation 



- 9 -
files will increase the efficiency and the autonomy of nodes 
in the system.

6.3 Search in Peer-to-peer Networks - Implications 
and Recommendations

Apart from the implications of the design space on specific 
systems, a few general trends in search can be observed and 
discussed, focusing on peer-to-peer networks that have 
gained much attention due to their explosive proliferation.

Symmetric hierarchy- or ordered space-based name rout-
ing approaches have recently been a hot research topic for 
peer-to-peer systems, leading to systems like Pastry [9], Tap-
estry [41], AGILE [18], Chord [1], or CAN [25]. In absence 
of central keyword searching facilities as provided in the 
world-wide web, however, name routing seems mostly help-
ful for backup or storage systems like the Cooperative File 
System (CFS, [8]) where the requestor exactly knows the 
name of the file to be retrieved. Furthermore, the reliance on 
hash-based symmetric hierarchies or ordered space that do 
not reflect the ownership structure of resources brings about 
security and autonomy issues. Hence, these systems lend 
themselves toward fairly trusted environments like corporate 
networks. 

However, for some typical peer-to-peer requirements like 
arbitrary content search in largely untrusted file- or resource-
sharing services, these approaches do not appear well suited. 
A move to keyword routing rather than name routing is 
clearly desirable. Furthermore, random structures with recur-
sive neighborhood information are better suited for untrusted 
environments. Symmetric hierarchy or ordered space key-
word routing approaches would have to pay particular atten-
tion to security and free-riding issues.

7 Summary, Conclusions, and Future Work

While it is impossible to find the one and optimum solu-
tion for search in distributed systems, the best solution for 
each specific application can be identified. The application-
relevant fundamental differences between the possible 
approaches have been identified based on a design space that 
distinguishes two basic dimensions of distributed search 
design: functional and structural. Functionally, the search 
process has been disaggregated into a series of mappings, 
keyword search, lookup, and routing, and integrated 
approaches have been identified, viz keyword lookup, name 
routing, and keyword or semantic routing. Structurally, for 
each mapping in the functional design space, 11 design 
options have been derived, grouped into computational 
approaches, central tables, completely replicated tables, and 
distributed tables where table structures and topologies can 
be aligned, unaligned, or both random. A classification and 
description of example systems validated the framework.

When choosing or designing a search system for a specific 
application, trade-offs have to be made. The effects of choos-
ing one design over another should be evaluated with respect 
to the most relevant requirements and criteria in both dimen-
sions, functional and structural, including, e.g., scalability 
and efficiency or dynamic re-routing facilities, fault-toler-
ance and adaptability, or infrastructure independence. The 

design space provides an appropriate tool and high-level 
evaluation to do so.

New search system design should start with a prioritized 
set of specific requirements, a corresponding choice of func-
tional succeeded by structural design options, and conclude 
with the detailed evaluation of existing approaches within 
this scope, or the design of new alternatives where necessary.

Based on the design space, fundamentally new search 
designs for peer-to-peer systems, keyword routing based on 
symmetric hierarchies or ordered spaces, have been identi-
fied. They have been outlined in this document and may lead 
to significant performance improvements for some applica-
tions.

Going forward, symmetric redundant hierarchy-based 
keyword routing will be explored in detail and the corre-
sponding system, SHARK, will be developed. Similarly, 
non-hierarchical ordered-space-based keyword routing 
seems promising and should be further investigated. In addi-
tion, many discussions will be needed to improve compre-
hensiveness and accuracy of both, the design space with the 
classification of existing systems as well as the evaluation 
and implications of the design space and the trade-offs. 

Acknowledgements
This work has been performed partially in the framework of the EU IST 

project MMAPPS “Market Management of Peer-to-Peer Services” (IST-
2001-34201), where the ETH Zürich has been funded by the Swiss 
Bundesministerium für Bildung und Wissenschaft BBW, Bern under Grant 
No. 00.0275. Special thanks go to Matthias Bossardt for encouraging work 
on a design space. Additionally, both authors like to acknowledge discus-
sions with all of their project partners.

References
[1] H. Balakrishnan, M. Kaashoek, D. Karger, R. Morris, I. Stoica: 

Chord: A Scalable Peer-to-peer Lookup Service for Internet 
Applications; ACM SIGCOMM, San Diego, California, 
U.S.A., August 2001.

[2] M. Balazinska, H. Balakrishnan, D. Karger: INS/Twine: A 
Scalable Peer-to-Peer Architecture for Intentional Resource 
Discovery; Pervasive 2002 - International Conference on Per-
vasive Computing, Zurich, Switzerland, August 2002.

[3] P. Bernstein, F. Giunchiglia, A. Kementsietsidis, J. Mylopou-
los, L. Serafini, I. Zaihrayeu: Data Management for Peer-to-
Peer Computing: A Vision; http://sra.itc.it/people/serafini/dis-
tribution/webdb-02.pdf, August 2002.

[4] O. Bertsekas, R. Gallager: Data Networks, 2nd Edition; Pren-
tice-Hall, U.S.A., 1992.

[5] B. Bloom: Space/time trade-offs in hash coding with allow-
able errors; Communications of the ACM 13, July 1970, pp. 
422-426.

[6] Clip2: The Gnutella Protocol Specification v0.4; 
http://www.clip2.com/GnutellaProtocol04.pdf, May 2002.

[7] A. Crespo, H. Garcia-Molina: Routing Indices For Peer-to-
Peer Systems; International Conference on Distributed Com-
puting Systems (ICDCS), Vienna, Austria, July 2002.

[8] F. Dabek, M. Kaashoek, D. Karger, R. Morris, I. Stoica: Wide-
area cooperative storage with CFS;18th ACM Symposium on 
Operating Systems Principles (SOSP '01), Chateau Lake Lou-
ise, Banff, Canada, October 2001.

[9] Druschel, Rowstron: Pastry: Scalable, distributed object loca-
tion and routing for large-scale peer-to-peer systems; 
IFIP/ACM International Conference on Distributed Systems 
Platforms (Middleware), Heidelberg, Germany, 2001, pp.329-
350.



- 10 -
[10] L. Ford, D. Fulkerson: Flows in Networks; Princeton Univer-
sity Press, Princeton, N.J., U.S.A., 1962.

[11] M. Gritter, D. Cheriton: An Architecture for Content Routing 
Support in the Internet; 3rd Usenix Symposium on Internet 
Technologies and Systems (USITS), San Francisco, Califor-
nia, U.S.A., March 2001, pp. 37-48.

[12] Groove: Groove Architecture Flash Movie; 
http://www.groove.net/flash/architecture.exe (September 11, 
2002).

[13] Z. Haas, M. Pearlman, P. Samar: Zone Routing Protocol 
(ZRP); IETF Internet Draft, draft-ietf-manet-zrp-04.txt, July 
2002.

[14] C. Hedrick: Routing Information Protocol; Internet Request 
For Comments RFC 1058, June 1988.

[15] D. Johnson, D. Maltz: Dynamic Source Routing in Ad Hoc 
Wireless Networks; In: Mobile Computing, Vol. 353, Kluwer 
Academic Publishers, U.S.A., edited by Imielinski and Korth, 
1996.

[16] Q. Lv, P. Cao, E. Cohen, K. Li, S. Shenker: Search and repli-
cation in Unstructured Peer-to-Peer Networks;16th ACM 
International Conference on Supercomputing (ICS'02), New 
York, U.S.A., June 2002.

[17] N. Minar: Distributed Systems Topologies: Part 2
http://www.openp2p.com/pub/a/p2p/2002/01/08/p2p_topologi
es_pt2.html, June 2002.

[18] J. Mischke, B. Stiller: Peer-to-peer Overlay Network Manage-
ment Through AGILE: Adaptive, Group-of-Interest Based 
Lookup Engine; Computer Engineering and Networks Labora-
tory (TIK), ETH Zürich, Switzerland, TIK-Report No. 149, 
August 2002.

[19] MMAPPS: Annex 1 - Description of Work; Information Soci-
eties Technology (IST) Program, EU Fifth Framework Project, 
Project Number: IST-2001-34201, 2002.

[20] MMAPPS: Deliverable 4: Peer-to-peer Services Architecture 
V2.7; Information Societies Technology (IST) Program, EU 
Fifth Framework Project, Project Number: IST-2001-34201, 
June 2002.

[21] A. Oram (ed.): Peer-To-Peer: Harnessing the Power of Dis-
ruptive Technologies; O'Reilly&Associates, Sebastopol, 
U.S.A., 2001.

[22] M. Ott, L. French, R. Mago, D. Makwana, D. Reininger: 
Semantic Multicast based on XML Routing; Submitted to 
Workshop on Hot Topics in Networks, October 28-29, 2002, 
Princeton, New Jersey, U.S.A.

[23] C. Perkins, E. Royer: Ad-hoc on-demand distance vector rout-
ing; MILCOM '97 Panel on Ad Hoc Networks, Monterey, Cal-
ifornia, U.S.A., November 2-5, 1997.

[24] L. Peterson, B. Davie: Computer Networks:  A Systems 
Approach, 2. Edition; Morgan Kaufman Publishers, San Fran-
cisco, U.S.A., 2000.

[25] S. Ratnasamy, P. Francis, M. Handley, R. Karp, S. Shenker: A 
Scalable Content-Addressable Network; ACM SIGCOMM, 
San Diego, California, U.S.A., August 2001.

[26] Y. Rekhter: A Border Gateway Protocol 4 (BGP-4); Internet 
Request For Comments RFC 1771, March 1995.

[27] Resource Description Framework (RDF); August 2002, 
http://www.w3.org/RDF (August 29, 2002).

[28] S. Rhea, J. Kubiatowicz: Probabilistic Location and Routing; 
21st Annual Joint Conference of the IEEE Computer and 
Communications Societies (INFOCOM), New York, U.S.A., 
June 2002.

[29] J. Ritter: Why Gnutella Can't Scale. No, Really.; 
http://www.darkridge.com/~jpr5/doc/gnutella.html, (August 
23, 2002).

[30] C. Rohrs: Query Routing for the Gnutella Network, Version 
1.0; May 2002, http://www.limewire.com/devel-
oper/query_routing/keyword%20routing.htm (September 3, 
2002).

[31] S. Saroiu, P. Gummadi, S. Gribble: A Measurement Study of 
Peer-to-peer File Sharing Systems;Technical Report # UW-
CSE-01-06-02, Department of Computer Science & Engineer-
ing, University of Washington, Seattle, U.S.A., 2002.

[32] M. Schlosser, M. Sintek, S. Decker, W. Nejdl: HyperCuP - 
Hypercubes, Ontologies and Efficient Search on P2P Net-
works; International Workshop on Agents and Peer-to-Peer 
Computing (AP2PC), Bologna, Italy, June 2002.

[33] The Napster Protocol; April 2000, http://opennap.source-
forge.net/napster.txt (September 3, 2002).

[34] R. Schollmeier, I. Gruber, M. Finkenzeller: Routing in Mobile 
Ad Hoc and Peer-to-Peer Networks - A Comparison; Interna-
tional Workshop on Peer-to-Peer Computing, Pisa, Italy, May 
2002.

[35] Semandex: What is Content-Based Routing?; Semandex Infor-
mation Note, http://www.semandex.net/library.html, August 
2002.

[36] Semandex: Information Services on a Semantic Network; 
Semandex Information Note, http://www.semandex.net/lib-
rary.html, August 2002.

[37] B. Silaghi, S. Bhattacharjee, P. Keleher: Routing in the Terra-
Dir Directory Service; SPIE ITCOM'02, Boston, MA, U.S.A., 
July 2002. 

[38] S. Thadani: Meta Information Searches on the Gnutella Net-
work; http://www.limewire.com/index.jsp/metainfo_searches, 
September 2002.

[39] S. Thadani: Meta Data Searches on the Gnutella Network 
(Addendum); http://www.limewire.com/developer/Meta
Proposal2.htm, September 2002.

[40] K. Truelove, A. Chasin: Morpheus Out of the Underworld; 
July 2002, http://www.openp2p.com/pub/a/p2p/2001/07/02/
morpheus.html (August 29, 2002). 

[41] B. Zhao, J. Kubiatowicz, A. Joseph: Tapestry: An infrastruc-
ture for fault-tolerant wide-area location and routing; Techni-
cal Report UCB/CSB-01-1141, Computer Science Division, 
U.C. Berkeley, California, U.S.A., April 2001.

[42] B. Zhao, Y. Duan, L. Huang, A. Joseph, J. Kubiatowicz: Bro-
cade: Landmark Routing on Overlay Networks; First Interna-
tional Workshop on Peer-to-Peer Systems (IPTPS), 
Cambridge, Massachusetts, U.S.A., 2002.


