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ABSTRACT

We present a comprehensive concept to fit animation models to a variety of different data derived from multi-image video
sequences. Our goal is to record dynamically the body surface of a human in motion and to model it for animation pur-
poses. This includes setting up and calibrating a system of three CCD-cameras, extracting image silhouettes, tracking in-
dividual key body points in 3-D, and generating surface data by stereo or multi-image matching. All these observations
are brought together under a joint least squares estimation system, from which the body model parameters are derived.
This represents a first report concerning our concept. The presented data stems from individual tests and is highly incom-
plete. However, these results support strongly the chosen concept and will lead to further developments and refinements.

International Archives of Photogrammetry and Remote Sensing,
Hakodate, Japan, 1998, Vol. 32 (B5), pp 866-873
1. INTRODUCTION

Synthetic modeling of human bodies and the simulation of
motion is a longstanding problem in animation and much
work is involved before a near-realistic performance can
be achieved. At present, it takes an experienced designer a
very long time to build a complete and realistic model that
closely resembles a specific person. Digital photogramme-
try offers a means to obtain the necessary data faster and in
a more realistic fashion. Our ultimate goal is to automate
the process: Eventually the whole task should be per-
formed quickly by an operator who is not necessarily an
experienced graphics designer. We should be able to invite
a visitor to our laboratory, make him walk in front of a set
of cameras, and produce, within a single day, a realistic an-
imation of himself.
We concentrate on a video-based approach because of its
comparatively low cost and better control of the dynamic
nature of the process. While laser scanning technology
provides a fairly good surface description of a static object
from a given viewpoint, videogrammetry allows us in ad-
dition to measure and track particular points of interest,
such as joints, and to record and track surface and point
features on and around the object. Dynamic tracking can
also be achieved using systems based on active infrared
markers or magnetic sensors. But the first are expensive
and also involve image processing techniques while the
others entail the use of cumbersome wiring and associated
inaccuracies.
The problem to be solved is twofold: First, robustly extract
image information from the data; second fit the animation
models to the extracted information. In this paper, we use
video sequences acquired with two or more synchronized
CCD-cameras to extract:

• Trajectories of body movement: Individual promi
nent body points are tracked in 3-D throughout the s
quence.

• Corresponding image patches: Wherever a body p
faces two or more of the cameras, its shape can be
fectively derived from stereo and multi-image tech
niques.

• Outlines: Wherever a body part slants away from th
camera, a silhouette edge appears in the images
can be used to derive 3-D information about the su
face.

The last two sources of information are therefore compl
mentary: The former is unreliable where the surface slan
away from the camera, which is precisely where silho
ettes can be found.
However, these information sources are noisy and may
clude artifacts. We aim at using the animation models n
only to represent the data but also to guide the feature
traction process which allows for a substantial gain in pe
formance. This paper reports on some preliminary resu
for our project, including an approach for tracking marke
points and techniques for extracting stereo and silhoue
data. Furthermore, we describe the animation models
use and show that we can recover joint locations and rou
shapes of the limbs from motion sequences. In future wo
we will integrate all data sources and use this knowled
to initialize the complete model and optimize its shape.

2. TRACKING OF PROMINENT POINTS

Our approach to tracking is based on multi-image recor
ing. For this early study, we have chosen to analyse t
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movement of retroreflective points stuck on the skin.
These points can be treated as single particles, so that the
particle tracking velocimetry concept (Maas et al., 1992,
Malik et al., 1992) can be used without any modifications.

2.1 Image acquisition

Three CCD cameras in a triangular arrangement (left,
right, bottom) are used (Figure 1).

Fig. 1: Arrangement of the three CCD cameras

A sequence of triplet images is acquired with a frame grab-
ber and the images are stored with 768x576 pixels at 8 bit
quantisation. Figure 2 shows the images taken by the three
cameras for the start and for the end frames of a sequence.

Fig. 2: Start (top) and end (bottom) frames of a sequence
left: left view, centre: right view, right: bottom view

2.2 System calibration

A reference bar with two retroreflective target points is
moved through the object space and at each location image
triplets are acquired. The image coordinates of the two tar-
get points are measured with centroid operations for each
triplet. The three camera system can then be calibrated by
self-calibrating bundle adjustment with the additional in-
formation of the known distance between the two points at

every location (Maas, 1998).

2.3 Determination of 3-D coordinates

The first task of the tracking process is the determinatio
of the 3-D coordinates of the target points for each tripl
of the sequence. In case of strong interlacing effects, t
odd and the even lines of the images are treated separat
To detect the retroreflective points, the images are first
filtered (high pass filter and then thresholding) and the c
ordinates of the candidate points in the images are det
mined by centroid operations. Once this process is done
the three images of all frames, the 3-D coordinates of t
points can be computed by forward intersection. The res
is a list of data setsSeti i=1...n (n number of triplets)which
contain the 3-D point coordinates for each triplet.

2.4 Tracking process

The aim of the tracking process is now to derive the 3-
connections between the points through the sequence.
tracking system operates on three successive data setsSeti,
Seti+1 andSeti+2. A point of the setSeti firstly defines a
three dimensional search volume fori+1 with the premise
of a maximum velocity of the movement. When there a
two or more candidates in the search volume, the feasi
connections betweenSeti and Seti+1 are extrapolated to
Seti+2, where a reduced search volume is defined with th
premise of a maximum acceleration of the movement.
even in this reduced search volume two or more candida
are found, then the one with the smallest acceleration (i
the difference between the velocity vector in two adjace
frames) is preferred. This last rule is based on the obser
tion that the trajectories are generally smooth.
Figure 3 shows part of the analysed sequence, taken by
right camera. The arm is firstly lifted, then twisted, then
is bended and at the end it returns a little bit.

Fig. 3: Motion of the arm in a particalur frame
(upper left to lower right)

The result of the tracking process forms a database of t
jectories. Figure 4 shows the computed 3-D trajectories
the target points for the arm motion sequence.

bottom

leftright
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Fig. 4: Computed 3-D trajectories of the target points

Obviously, the trajectories are broken. This is because
points disappear and new points appear through the three
distinguished steps of the arm motion (lift, twist, bend).
The trajectories therefore do not continue for all points
through the full sequence. Figure 5 shows the trajectories
of the arm lift and arm bend motion projected back into one
view. Tracking a complete and complex motion (e.g. con-
necting the lift of the arm with the twist and the bend) is at
this stage of the project not yet reliably available, indeed it
is an important task for the future work.

Fig. 5: Trajectories for arm lift and bend operations
projected back into image frames

Also, we plan to solve this task without using retro-target
In a further step we will have the person wear tight an
well-textured textiles, which will allow us to track the tex-
tile pattern.

3. GENERATING SILHOUETTE DATA

This can be achieved in many ways. Many authors cite t
use of Canny edge detectors in the images with subtrac
background. This is an automatic but low-level metho
and thus relatively easy to implement but not very robu
in practice. Automated silhouette edge detectors have be
developed and could be implemented for this use (Vailla
and Faugeras, 1992). In this work, we experiment wi
semi-automated tools to allow the user to quickly sketc
the silhouette edges (Grün and Li, 1997, Mortensen a
Barett, 1995).
We have made first tests concerning the application of e
ergy-minimizing functions (Snakes). Figure 6 shows th
results of applying LSB-Snakes to the silhouette of an ar
Since, in general, silhouettes from several instantaneo
frames do not form a unique space curve, we use the LS
Snakes in their image space version.

Fig. 6: Silhouette extraction with LSB-snakes

4. MODELS

In this section, we first describe the complete model th
we use for animation purposes. This model has too ma
degrees of freedom to be effectively fit to noisy data with
out a-priori knowledge. We therefore introduce a simpl
fied model that we have used to derive an initial shape a
position. In future work, we will use this knowledge to in
itialize the complete one before refining it.

4.1 Complete Animation Model

Generally, virtual human bodies are structured as articul
ed bodies defined by a skeleton. When an animator spe
fies an animation sequence, he defines the motion us
this skeleton.
A skeleton is a connected set of segments, correspond
to limbs and joints. A joint is the intersection of two seg
ments, which means it is a skeleton point where the lim
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linked to that point may move. Motion control methods
(MCMs) specify how an actor is animated and may be
characterized according to the type of information it privi-
leges when animating the Virtual Human (Thalmann and
Thalmann, 1991). For example, in a keyframe system for
an articulated body, the privileged information to be ma-
nipulated is the angle. In a forward dynamics-based sys-
tem, the privileged information is a set of forces and
torques; of course, in solving the dynamic equations, joint
angles are also obtained in such a system, but they are con-
sidered as derived information. In fact, any MCM eventu-
ally has to deal with geometric information (typically joint
angles), but only geometric MCMs explicitly privilege this
information at the level of animation control. The nature of
privileged information for the motion control of actors
falls into three categories: geometric, physical and behav-
ioral, giving rise to three corresponding categories of MC-
Ms. Once the motion of the skeleton is designed, the
realism of motion needs to be improved not only from the
joint point-of-view, but also in relation to the deformations
of bodies during animation. The body’s inherent complex-
ity makes things very difficult: A great many different ma-
terials that have no homogeneous behavior, from bones to
muscles to fat tissues, come into play.
Since the overall appearance of a human body is very
much influenced by its internal muscle structures, the lay-
ered model is the most promising for realistic human ani-
mation. The key advantage of the layered methodology is
that once the layered character is constructed, only the un-
derlying skeleton need to be scripted for animation; con-
sistent yet expressive shape deformations are generated
automatically.
Our model (Thalmann et al., 1996) is depicted by Figure 7.
It incorporates a highly effective multi-layered approach
for constructing and animating realistic human bodies.

Figure 7: The layered human body model: (a) Skeleton,
(b) Ellipsoidal metaballs used to simulate muscles
and fat tissue, (c) Polygonal surface representation

of the skin, (d) Shaded rendering

Ellipsoidal metaballs are used to simulate the gross beh
ior of bone, muscle, and fat tissue; they are attached to
skeleton and arranged in an anatomically-based appro
mation. The skin construction is made in a three step pro
ess. First, the implicit surface resulting from th
combination of the metaball’s influence is automaticall
sampled along cross-sections with a ray casting meth
(Shen and Thalmann, 1995, Thalmann et. al., 1996). S
ond, the sampled points constitute control points of a B
spline patch for each body part (limbs, trunk, pelvis, neck
Third, a polygonal surface representation is constructed
tessellating those B-spline patches for seamless join
different skin pieces together and final rendering. Th
method, simple and intuitive, combines the advantages
implicit, parametric and polygonal surface representatio
producing very realistic and robust body deformations. B
applying smooth blending twice (metaball potential fiel
blending and B-spline basis blending), the model’s da
size is significantly reduced.

4.2 Simplified Model of a Limb

To reduce the number of degrees of freedom (DOFs) a
to be able to robustly estimate the skeleton’s position, w
replace the multiple metaballs of Section 4.1 by one elli
soid attached to each bone in the skeleton, as shown in F
ure 8(a).

Figure 8: Simplified arm model. (a) Shaded view of the
two ellipsoids representing the upperarm and the forearm

(b) Position of the two ellipsoids on the skeleton

4.2.1 Modeling the skeleton

The state of the skeleton is described by the state vecto

Sbody= [Sskel,Smotion] . (1)

The initial state of the skeletonSskel consists of the rota-
tions and translations from each DOF to the preceding on
It is fixed for a given body model. The variable state vecto

(a) (b) (c) (d)

(a)

(b)
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Smotioncontains the actual values for each DOF, i.e. the an-
gle around the z-axis towards the next DOF. They reflect
the position of the body with respect to its rest position.
Thus, for any given joint, this state vector can be written as
Spart= [Spre,Θi], whereSpre is the state vector for the pre-
ceding joint, andΘi is a rotation angle around the z-axis of
that joint.
The joint local referential and coordinates are defined by a
transformation matrix from a global referential to the local
one. This matrix is computed recursively by multiplying
all the transformation matrices that correspond to the pre-
ceding joints in the body hierarchy:

 ,

with being local, resp. global
(world) coordinates and the homogeneous transformation
matricesDi, which depend on the state vectorS, ranging
from the root joint’s first to the reference joint’s last DOF.
These matrices are of the form:

 .

The joints consist of several DOFs, each having its own
transformation matrix . Take as ex-
ample the elbow joint which has the two DOFs flex and
twist:

.

The “initial transformation’’ is a
matrix directly taken from the BODYlib skeleton. It trans-
lates by the bone length and rotates the local coordinate
system from the previous to this DOF. The matrix entries
are calculated with the values of the state vectorSskeland
the variable coefficientq is necessary because we don’t
know the exact size of the person’s limbs yet. For the first
DOF of a joint this matrix is usually dense but the other
DOFs have no translation (T = [ 0 , 0 , 0 ]T ) and the rota-
tional part usually consists only of a swap of the axes to en-
sure that the DOF rotates around the z-axis:

 .

The rotation matrix is a sparse matrix allowing only
a rotation around the local z-axis ( ):

 .

4.2.2 Modeling the ellipsoids

The ellipsoids attached to the skeleton have a fixed po
tion and orientation with respect to their enclosing join
and are assumed to be cylindrically symmetric around t
longest axis. Their center lies in the middle of the bone a
their axes coincide with the axis of the reference joint’s lo
cal coordinate system. The corresponding positions are
picted by Figure 7(b). The origin and the angles of eac
ellipsoid are calculated in an incremental manner, since t
position and orientation of parts which are further dow
the hierarchy tree depend on the positions and orientatio
of all previous joints. For example the forearm depends
the upper arm which depends on the shoulder and so
until the root of the hierarchy is reached. Due to this incr
mental parameter calculation, the actual number of para
eters for each body part differs.
We have chosen ellipsoids because, along with cylinde
they are the 3-D shapes with the least number of param
ters (2: length and thickness plus the values of the ske
ton’s DOFs) that can be used to model human extremitie
Ellipsoids, however, approximate more closely human e
tremities than cylinders. Furthermore, we rely on the rig
skeleton structure of Section 4.1 to constrain the length a
connectivity of body parts. The different body parts ar
segmented before the optimization starts and we need
wait for a motion of the person to split a limb such as th
arm into two parts, upperarm and forearm, as is the case
the work of (Kakadiaris and Metaxas, 1994).
More sophisticated models that include both global and l
cal deformations, such as tapered superquadrics or Se
an’s evolving surfaces (Malladi et al., 1995), may be ab
to approximate more closely the exact shape of the lim
However, they require the setting of more parameters a
are thus harder to fit.
We represent 3-D ellipsoids using the standard implic
formulation:

(2)

wherexl, yl andzl are expressed in joint local coordinate
of the bone to which the ellipsoid is attached and whe
[xc,yc,zc] denote its center andrx, ry, rz its radii. Thezaxis
is taken to be the one that is parallel to the bone.
In practice, we constrain the center of the ellipsoid to lie
the center of the bone and to be cylindrically symmetr
around the axis of the bone. This can be written as:

xc = yc = 0
zc = bone_l
rx = ry = part_ω
rz= bone_l

wherebone_lis half the bone length andpart_ω half the
width of the body part (or thickness). Equation (2) can thu
be rewritten as:

Xl Di S( ) Xω⋅
i

∏=

Xl ω, x y z, ,[ ]T
=

D RX T+( )

R11 R12 R13 Tx

R21 R22 R23 Ty

R31 R32 R33 Tz

0 0 0 1

= =

D Drotz
Dini⋅=

Delbow Drottwist
Dini twist

Drot flex
Dini flex

⋅ ⋅ ⋅=

Dini RX qT+( )=

R
0 1 0

0 0 1

1 0 0

=

Drotz Θκ

Drotz

Θκ( )sin Θκ( )cos 0 0

Θκ( )cos Θκ( )sin– 0 0

0 0 1 0

0 0 0 1

=

xl xc–

r x
--------------- 

 
2 yl yc–

r y
--------------- 

 
2 zl zc–

r z
-------------- 

 
2

+ + 1=
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wherebone_landpart_ω, in addition to the values of the
joint angles of Section 4.2.1, become the unknown to be
adjusted by the optimization process of Section 5. In this
way, we do not need an exact model of the specific person
to capture his motion. Instead, we recover the model di-
mensions and its motion during one single processing step.
We start from a “standard’’ body model and refine it dur-
ing the fitting process to correspond as closely as possible
to the person.

5. FITTING THE MODELS TO IMAGE DATA

Figure 9: Arm motion sequence: (a) The three left images
of the three stereo pairs . (b) The corresponding disparity
maps. (c) After motion recovery, a virtual human performs

the same actions as the real person.

From a fitting point of view, the body model of section 4.2
embodies a rough knowledge about the shape of the body
and can be used to constrain the search space. Our goal is
to fix its degrees of freedom so that it conforms as faithful-
ly as possible to the image data.
Here we use motion sequences such as the one shown in
Figure 9 and corresponding stereo data computed using
correlation based stereo (Fua, 1997). Thus, the expected
output of our system is a state vector that describes the
shape of the ellipsoids and a set of joint angles correspond-
ing to their positions.
In this section, we introduce the least squares framework
we use and show how we can exploit the tracking, stereo
and silhouette data that we derive from the images.

5.1 Least Squares Framework

In standard least-squares fashion, we will use the image

data to writenobsobservation equations of the form

 , (4)

whereSbody is the state vector of Equation 1 that define
the shape and position of the limb andεi is the deviation
from the model. We will then minimize

vT P v⇒ Min (5)

wherev is the vector of residuals andP is a weight matrix
associated with the observations (P is usually introduced
as diagonal).
Our system must be able to deal with observations comi
from different sources that may not be commensurate w
each other. Formally we can rewrite the observations equ
tions of Equation (4) as

 ,  , (6)

with weightPtype, wheretypeis one of the possible types
of observations we use. In this paper,typemay be object
space coordinates, silhouette position or other feature lo
tion information.
The individual weights of the different types of observa
tions have to be homogenized prior to estimation accor
ing to:

 , (7)

where , are the a priori standard deviations of th
observationsobsi , obsj of typek, l.
Applying least squares estimation implies the joint min
mum

 , (8)

with nt = number of observations types, which then lead
to the well-known normal equations which need to b
solved using standard techniques.
Since our overall problem is non-linear, the results are o
tained through an iteration process.

5.2 Integrating Stereo Data

Let us assume that we are given a 3-D point that has be
computed using stereo data. We want to minimize the d
tance of the reconstructed limb to all such “attractor
points. Given the implicit description of our ellipsoids, th
simplest way to achieve this result for a single ellipsoid
to write an observation equation of the form:

,

xl

part_ω
------------------- 

 
2 yl

part_ω
------------------- 

 
2 zl bone_l–

bone_l
---------------------------- 

 
2

+ + 1=

(b)

(a)

(c)

f i Sbody( ) obsi εi–= 1 i nobs≤ ≤

f i
type

Sbody( ) obsi
type εi

type
–= 1 i nobs≤ ≤

pi
k

pj
l

-----
σ j

l( )
2

σi
k( )

2
-------------=

σ j
l σi

k

v
Ttype Ptypev

type

type 1=

nt

∑ Min⇒

x
a

part_ω
------------------- 

 
2

y
a

part_ω
------------------- 

 
2

z
a

bone_l–
bone_l

----------------------------- 
 

2

+ + 1 ε–=
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wherebone_landpart_ω are the state variables introduced
in Section 4.2.2 and are the coordinates of the
attractor point, expressed in local joint coordinates.
Equation (9) is actually a simplification of the stricter least
squares modeling of this problem in form of condition
equations with unknown parameters as

 . (10)

In order to stay within the least squares framework as pre-
sented in chapter 5.1 we use the simplified observation
equations (9) instead of (10).

Figure 10: Fitting the model to cloud of points:
(a) The cloud of points computed by one of
the disparity maps of Figure 9(b). Note the
many outliers. (b) The corresponding fit.

Since our limbs are made of more than one ellipsoid, for
each attractor, we must also decide for which we should
write Equation (9). In other words, we should decide to
which body part we should attach the attractors. Here, be-
cause we use a small number of ellipsoids, we can simply
evaluate the observation value using the formula of Equa-
tion (9) for each one and, at every iteration, pick the one
that yields the smallest value. Once the body limbs are in-
itialized there should be no problem assigning the attrac-
tors correctly through the motion sequence.
Because some of the attractors derived from stereo may be
spurious, we use a variant of the Iterative Reweighted
Least Squares technique (Beaton and Turkey, 1974, Fua,
1997) to discard outliers. We first fit the model by giving
equal weight to all these attactors. We then weigh them in-
versely proportionally to their respective residuals and per-
form the optimization again. We iterate this process, which
corresponds to the concept of robust estimation, several
times.
Using this approach and the noisy stereo data of Figure
9(b), we can reconstruct the positions and shapes depicted
by Figure 10. The joint angles stored in the state vector can
then be used to animate the virtual human of Figure 9(c).

The prominent trajectory points obtained from tracking are
introduced in the same manner as the attractor points from
stereo above. However, due to their superior accuracy,
they have assigned much higher weights.

5.3 Integrating Silhouette Data

Contrary to 3-D edges, silhouette edges are typically 2
features since they depend on the viewpoint and cannot
matched across images. However, they constrain the s
face tangent. Each point of the silhouette edge define
line, the camera ray, that goes through the optical center
the camera and is tangent to the surface at its point of co
tact with the surface. The points of a silhouette edge the
fore define a ruled surface that is tangent to the surface
In terms of our model fitting this meas that the tange
plane for each silhouette ray may be formulated as

 , (11)

with the coefficientsA, B, C, D derived from silhouette im-
age data and the given sensor orientation. A tangent pla
onto an ellipsoid can be represented as

(12)

with [xs,ys,zs] being the silhouette pointPs in object space.
Equating corresponding coefficients of (11) and (12) r
sults in

 ,  ,

(13)
,  .

If we consider the coefficientsA, B, C as (derived) obser-
vations we can set up the observation equations

 ,

 , (14)

 .

Here we have to introduce for each set of 3 observation
new unknown parametersxs, ys, zs.
In addition, we can formulate the observation equations f
the image coordinates (x’ s, y’ s) of the silhouette ray, based
on collinearity conditions, as

 ; px
(15)

 ; py

with Ps = [ xs , ys , zs ] .... object space coordinates
of the silhouette point

eo .......vector of exterior orientation elements

x
a

y
a

z
a, ,[ ]

x
a εx–

part_ω
-------------------

 
 
 

2
y

a εy–

part_ω
-------------------

 
 
 

2
z
a εz– bone_l–

bone_l
---------------------------------------

 
 
 

2

+ + 1=

(a) (b)

Ax By Cz D+ + + 0=

xx
s

part_ω( )2
-------------------------- yy

s

part_ω( )2
-------------------------- z bone_l–( ) z

s
bone_l–( )

bone_l( )2
-----------------------------------------------------------------+ + 1=

A
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s

part_ω( )2
--------------------------= B

y
s

part_ω( )2
--------------------------=

C
z
s

bone_l–

bone_l( )2
----------------------------= D

z
s

bone_l
------------------–=

A εA– x
s

part_ω( )2
--------------------------=

B εB– y
s

part_ω( )2
--------------------------=

C εC– z
s

bone_l–

bone_l( )2
----------------------------=

x'
s εx– f

x
P

s
eo io, ,( )=

y'
s εy– f
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Equations (14) should be amended by the constraint

 . (16)

In order to stay within the framework of least squares ob-
servation equations we also express (16) as observation
equation, but with an associated very large weightpD for
the pseudo-observationD:

 ; pD (17)

Equations (14) , (15) and (17) will contribute to (8).

6. CONCLUSIONS

We have presented some basic ideas how we intend to use
image data from video sequences for the modeling of a hu-
man body under motion. This clearly represents an initial
report with some preliminary results, including 3-D deter-
mination and tracking of passive marker points, extraction
of silhouette data, generation of surface models by image
matching, and setting up a framework for joint least
squares estimation.
We have outlined a technique that allows us to fit a simpli-
fied animation model to noisy image data with very limited
manual intervention. Because this model is closely related
to the complete model we apply to perform animation,
these results can be used to initialize this complete model
and further refine it using the same data.
The capability we intend to develop will be of great appli-
cability in an area such as the generation of feature films
for entertainment. Generating and animating sophisticated
models requires a tremendous amount of manual labor.
While this may be appropriate for big-budget one-off use,
the mass market of television entertainment is much more
cost-driven and would benefit greatly from using tech-
niques such as those described above. Furthermore, there
currently is an inherent limit to the complexity of the ani-
mation models: Realism requires complex models, that is,
models that are controlled by large numbers of parameters.
As this number increases, so does the difficulty of the task
faced by the designer. Automating the process will help
solve this problem and will allow an increase in realism
while reducing the cost.
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