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Abstract

In this thesis we develop a numerical method for the aerodynamic inverse
design problem:

find the shape of a flow device which generates a given target
pressure along its walls.

The design method is based on the inverse Euler equations of J.J. Keller
[ZAMP 49 (1998)]. The inverse Euler equations are a particular formula-
tion of the Euler equations of gas dynamics. The Euler equations are rewritten
in a flow aligned system of coordinates and the dependent and independent
variables are exchanged. Because of their relevance in the turbomachinery in-
dustry the method is applied to the design of internal flow configurations, such
as diffusers or nozzles.

The first part of this work deals with the two dimensional and axis—symme-
tric formulation of the inverse Euler equations. The derivation of the equations
presented in this work shows that they are composed by a system of equations
for the generation of the shape of the device and by equations describing the
physics of the flow. This splitting of the system of partial differential equa-
tions allows to determine a set of physically relevant boundary conditions and
to modify the equations for the shape generation in order to devise a more
efficient numerical method.

The numerical method is based on a finite difference discretization and on
a Newton solver for the resulting system of algebraic equations. The linear
system is solved by the Bi—CGStab iterative solver preconditioned with an in-
complete LU factorization. It is shown that the coupling of Newton’s method
with a nested iterations strategy gives a speedup by a factor 6 and more.




vi Abstract

The three-dimensional extension of the inverse Euler equations due to J.J
Keller is shown to be valid only for complex lamellar flows, i.e. flows in which
the velocity vector is perpendicular to the vorticity.

In the second part of the thesis the axis—symmetric inverse Euler equations
are extended to handle quasi-three—dimensional flows. New effects such as
blade blockage and deflection can be taken into account in the novel inverse
formulation of the quasi-three—dimensional flow equations. Viscous losses
can be incorporated in the design by the inverse form of the distributed loss
model or by means of a boundary layer method coupled to the inverse Euler
equations.

A broad set of numerical examples shows the capabilities of our design
tool.




Zusammenfassung

In dieser Arbeit wird ein numerisches Verfahren entwickelt fiir das aerody-
namische inverse Entwurfsproblem:

Finde die Form eines Stromungsgerits, welches eine gegebene
Ziel-Druckverteilung entlang seiner Winde erzeugt.

Die Methode basiert auf den inversen Eulergleichungen von J.J. Keller [ZAMP
49 (1998)]. Die inversen Eulergleichungen sind eine besondere Formulierung
der Eulergleichungen der Gasdynamik. Dazu werden die Eulergleichungen in
einem rechtwinkligem Stromlinien—Koordinatensystem geschrieben und die
abhéngigen und unabhingigen Variablen vertauscht. Wegen ihrer Relevanz in
der Turbinenindustrie wird die Methode fiir das Design von Stromungsgeriten,
wie Diisen und Diffusoren, angewandt.

Im ersten Teil dieser Arbeit geht es um die zwei—dimensionalen und axial-
symmetrischen inversen Eulergleichungen. Die dort vorgestellte Herleitung
zeigt, dass die inversen Eulergleichungen aus einem Gleichungssystem fiir die
Erzeugung der Form des Gerites und aus Gleichungen, die das Stromumgsfeld
beschreiben, bestehen. Dieses Aufspalten des Systems von partiellen Differ-
entialgleichungen ermdglicht es einen Satz physikalisch relevanter Randbe-
dingungen herzuleiten und die Gleichungen fiir die Formgenerierung zu mod-
ifizieren, um ein effizienteres numerisches Verfahren zu entwickeln.

Das numerische Verfahren basiert auf einer Finite-Differenzen-Diskreti-
sierung und auf einem Newton—Loser fiir das resultierende System von alge-
braischen Gleichungen. Das mit einer unvollstandigen LU Zerlegung vorkon-
ditionierte, lineare Gleichungssystem wird mit dem iterativen Loser Bi-CGStab
gelost. Es wird gezeigt, dass die Kopplung zwischen dem Newton—Vefahren
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viii Zusammenfassung

und den geschachtelten Iterationen eine Beschleunigung um den Faktor 6 und
mehr bringt.

Fiir die drei-dimensionale Erweiterung der inversen Eulergleichungen von
J.J. Keller wird gezeigt, dass sie nur fiir komplex lammellare Strémungen
giiltig ist, d.h fiir Stromungen, in denen der Geschwindigkeitsvektor senkrecht
zu der Wirbelstérke steht.

Im zweiten Teil dieser Arbeit werden die axial-symmetrischen inversen
Eulergleichungen verallgemeinert, um quasi—drei—dimensionale Strémungen
behandeln zu konnen. Neue Effekte, wie die Blockierung oder Umlenkung
durch Schaufeln, konnen aufgenommen werden. Viskose Verluste werden mit
einem “verteilte—Verluste—Modell” modelliert oder durch ein Grenzschichten-
verfahren, das mit den inversen Eulergleichungen gekoppelt wird.

Mehrere numerische Beispiele zeigen die Einsatzmdglichkeiten des Ent-
wurfswerkzeuges.
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Chapter 1

Introduction

The advent of fast computers is changing the strategy for the solution of com-
plex industrial problems. A more and more pronounced shift from the neces-
sity of conducting experiments towards the development of suitable numeri-
cal methods can be observed. A lot of effort has gone, and is still put, into
the development of models of the physics of the problem. For example in
fluid dynamics, models ranging from the simple potential flow to the viscous
Navier—Stokes equations with turbulence models have been developed. There
is a wide literature on the various flow models and on their validation by com-
parison with experiments. The development of numerical schemes for flow
simulation is at an advanced stage too. Most of the research is concentrated in
reproducing in a virtual environment the setting and the results of the classical
experiment: the behavior of one configuration can be studied and predicted in
an efficient and accurate way.

The ultimate goal of the industry is not to simulate one configuration but
to produce better products, e.g. airplanes with a low level of fuel consumption
because of reduced drag on the wings or a turbine with a higher efficiency in-
dex because of an improved combustion chamber, etc. There is a gap between
the main flow of the research, which concentrates on simulation tools, and
the high interest of the industry in design tools. In fact, although numerical
methods (for simulation) have been introduced in the design cycle in order to
speed it up, the design methods still rely heavily on the knowledge and on the
intuition of the designer. The simplest, less efficient but more common way to
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design a new device is to notice the shortcoming of the existing design by an-
alyzing the results from a simulation tool, to identify the possible causes and
to propose a new design. The new configuration is analyzed with the com-
putational tools at disposal and the loop is repeated until a satisfactory design
point is reached. This “trial-and—error” approach is simple and does not need
new computational tools, the improvements in the design however are usually
limited.

We present a brief overview of some more complex strategies for the aero-
dynamic design and optimization of a flow device.

PDE-constrained optimization is the most general and flexible approach
for the improvement of the aerodynamic properties of a device. Such meth-
ods consist in a functional to be minimized (or maximized), such as the drag
or the pressure recovery, subject to the flow equations. Some manufacturing
constraints such as a minimal thickness of the blade or the maximal length
of the diffuser can complicate the problem. This approach is very natural: in
many cases the definition of the functional is straightforward and the avail-
able flow solver can be coupled with a black—box optimization package. This
approach is called deterministic optimization. The biggest drawback of the
deterministic optimization is the high cost of the computation of the gradient
of the functional. The straightforward approach of a finite difference approxi-
mation of the gradients is too costly since many solutions of the flow equations
are needed: the cost of the simple-minded optimization is of many order of
magnitude higher than the cost of a plain simulation. New ideas are used
to reduce this shortcoming, for example by applying automatic differentiation
techniques [41] [S1]. A widespread alternative is the computation of the gradi-
ents or sensitivities via adjoint methods [33] [34]. An adjoint method reduces
the computational cost of the design to about 5—-10 flow simulations, by finding
the gradient of the functional as the solution of a partial differential equation.
A second point of concern of gradient based optimization tools is their local
character. The solution is always a local minimizer (or maximizer) but there
is no way to tell whether the solution is a global minimum (or maximum) too.
The stochastic optimization overcomes this problem [55] [42] [28]. It consists
in an evolutionary strategy for driving a population of configurations, maybe
50, towards an optimal one by applying the biological rules of evolution. By
keeping many designs under consideration, local minima can be avoided and a
global optimal solution can be found. The computational cost of solving many
flow problems, one for each individual of the population, can be reduced by
exploiting the perfect intrinsic parallelism of the method. To sum up, opti-




mization methods are very flexible, can handle complex constraints and use
state of the art flow solvers; unfortunately these methods are computationally
very intensive.

An alternative approach is based on inverse methods. Under “inverse
methods” we understand all the analytical and numerical methods which im-
prove the aerodynamic properties of a device by controlling a physical quan-
tity such as the pressure or the swirl along the walls of the device. The proto-
typical problem formulation is the “target—pressure problem”:

find the shape of a device which generates a prescribed target
pressure along its walls.

Inverse methods are appealing since many kinds of losses, such as those aris-
ing from viscous effects and separation, can be controlled and reduced by a
judicious choice of the pressure distribution, and in particular of the pressure
gradient, along the side walls of the domain. Inverse methods have been suc-
cessful in the re—design of turbine blades, airplane wings and channels in two
and three dimensions.

Analytical work on the target—pressure problem is mainly based on con-
formal mappings. Lighthill in [38] [39] showed how to apply conformal map-
pings to the design of cascade blades. An incompressible, irrotational flow
is assumed. In [38] conditions for the existence of a closed blade profile are
given. The methods of complex variables are used by Daripa [12] [13] for
generating airfoils for compressible irrotational flows. Both authors prescribe
the modulus of the velocity vector on the whole boundary.

In the attempt to consider rotational, inviscid flow, various iterative inverse
methods, based in general on existing Euler solvers, have been developed. An
iterative design method is based on the coupling of an Euler solver with a
wall modification procedure. An iteration consists in a geometry modifica-
tion followed by a time step of the flow solver. The two parts of the iteration
are basically independent and decoupled. Particularly appealing is the possi-
bility of (re)using a known flow solver. Various strategies for the geometry
update have been developed, for example the elastic membrane concept [27]
{14]), where the walls are considered as a membrane which moves according
to the force exerted by the difference between actual and target pressure. An
alternative is given by a transpiration model, which consists in assuming that
the wall is porous and the mass can be fictitiously injected in such a way that
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the new wall satisfies the slip boundary condition [61] [16]. These iterative
methods converge slowly, since the coupling between the flow and the geom-
etry is very weak. Demeulenaere and van den Braembussche [16] first noticed
that the convergence rate of the iterative scheme could be greatly improved by
introducing “driving terms” expressing the coupling between geometry and
flow. In [16], viscous and three dimensional flows are considered. Because of
their modular structure, the iterative inverse methods can be applied on gen-
eral configurations. Most of the focus has been put into design systems for
turbine blades.

On the opposite side, some researchers try to solve the target—pressure
problem in a fully coupled way. These approaches are based on the defini-
tion of an intrinsic or natural system of coordinates, in which the unknown
domain is represented by a rectangle. For potential flows these systems of
coordinates are based on the stream—function and on the potential. The first
work in this direction is due to Stanitz [52]. Ahmed and Myring [1] follow the
same ansatz for axis—symmetric flows. Zannetti [64] considers the two dimen-
sional and axis—symmetric Euler equations in a fixed computational domain,
image of the physical space with moving walls. The computational domain
is based on the stream—function, which is constant along the side walls, in-
dependently of their shape. The time dependent Euler equations are solved
and the steady state solution yields the desired design. The work of Stanitz
[52] has been extended to two dimensional rotational flow by Dedoussis et
al. [15]. Chaviaropoulos and coworkers [8] [9] extend their method to three
dimensional potential flows. Some peculiarities of these works deserve an ex-
planation. First of all the geometry of the device is found in one step, being
the solution of a set of partial differential equations. For this reason they are
called single—pass methods. Secondly, the configurations under investigation
are internal configurations such as channels and nozzles. This striking differ-
ence to the iterative inverse methods described above is due to the fact the the
intrinsic system of coordinates used in the single—pass methods is singular at
stagnation points. The leading edge of a blade cannot be handled in a simple
way. Last, the three dimensional equations and methods are limited to poten-
tial flows [8] [9]. We will show that this restriction is a direct consequence of
the ansatz for the three dimensional natural coordinates. The strength of this
class of methods lies in their speed and robust convergence of the solvers.

Single—pass methods are based on special systems of partial differential
equations, which do not have a simple interpretation. Specifically, the equa-
tions do not look like the Euler or Navier-Stokes equations. One exception




is the single—pass inverse method developed by Troxler [57], where the Euler
equations and a standard grid generation problem [54] are solved in a fully
coupled manner. This approach combines the intuitive flavor of the iterative
inverse methods with the speed and robustness of the single—pass methods.

The inverse Euler equations of J.J. Keller [36], fall in the class of the
single-pass methods. They are based on rewriting the Euler equations in a
natural system of coordinates in the same way as [15] [8] [9] [64] [52] and
on the interchange of dependent and independent variables. By means of this
transformation new types of boundary conditions, in particular geometrical
constraints, can be taken into account in the single—pass inverse method. Fur-
ther, the standard inlet and outlet boundary conditions for internal flows [30]
apply. The inverse Euler equations, not being based on purely geometric con-
siderations, can be extended to handle quasi—three—dimensional flows.

We consider in this thesis the aerodynamic design of internal flow config-
urations and develop a numerical method for its solution based on the inverse
Euler equations of J.J. Keller [36]. The strength of our method consists in
physically relevant inlet and outlet boundary conditions as well as the possi-
bility to prescribe on the side walls a pressure distribution and/or a geometri-
cal constraint. Further our method adds to the standard axis—symmetric flow
mode] (for which other single—pass inverse methods already exist) quasi—three
dimensional effects such as blade blockage and deflection and viscous losses
via a distributed loss model. The method accounts for losses generated by
viscous effects near the walls by a boundary layer method too, thus allowing
viscous design for unseparated flows.

This thesis is organized as follows:

In chapter 2 we first introduce the reader to the target—pressure problem
from an industrial point of view and then derive the inverse formulation of the
Euler equations due to Keller [36] for a two dimensional flow. This deriva-
tion of the inverse Euler equations shows the main points of the whole con-
struction, in such a way that its validity in the three dimensional case can be
analyzed. Chapter 2 is a reference for the whole thesis and in particular for
chapter 5. We present the complete set of boundary conditions and the axis—
symmetric inverse Euler equations too.

In chapter 3 we describe a numerical method for the solution of the in-
verse Euler equations. It is based on a finite difference discretization and on a
Newton—Krylov-ILU solver. A nested iteration strategy for finding the initial
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guess on a fine grid is applied to accelerate the method and to enhance its ro-
bustness. The second part of chapter 3 is devoted to the validation of the code
and to a comparison of different simplified versions of the solver.

A gallery of numerical results is presented in chapter 4. We stress the flex-
ibility of our method by presenting results for potential and rotational flows,
for inverse computations as well as computations with a mixture of inverse
boundary conditions and geometrical constraints. Results for a technical rel-
evant configuration of an axis—symmetric diffuser are presented; in particular
we describe a simple parametric study which can be used as a guideline for a
designer.

In the last chapter we describe some extensions of the inverse Euler equa-
tions. We show in chapter 2 that the three dimensional inverse formulation of
the Euler equations is valid only for potential or complex lamellar flows. For
relevant fully three dimensional duct flows, the inverse Euler equations de-
scribed by Keller in [36] do not have a solution or the solution is unphysical.
In chapter 5 we introduce therefore a quasi—three—dimensional flow model
[35] [32] and rewrite it in a novel inverse form. The quasi-three—dimensional
equations are augmented by a distributed loss model [30] for handling losses
caused by shocks or viscosity. Furthermore an integral boundary layer method
is described and coupled with the two dimensional inverse Euler equations.
Examples elucidating the various effects are given.




Chapter 2

An Introduction to the
Inverse Euler Equations

This first chapter gives an introduction to the inverse shape design problem
and its solution based on the approach of Keller [36]. In the first section we
introduce and motivate the inverse design problem by considering the indus-
trial relevant problem of improving the performance of a diffuser. In the ten
successive sections we derive in a detailed manner the inverse Euler equations.
We will refer to these sections later on when rewriting some more advanced
flow models in inverse coordinates. In the last section we give an overview of
the axis—symimetric case.

2.1 Aerodynamic Inverse Shape Design: A Moti-
vation

Diffusers are devices used for converting kinetic energy into pressure by slow-
ing the flow [62]. They are relevant components of gas turbines and turbofans
or wind tunnels. For example the exhaust diffuser in a gas turbine, used to
bring the pressure of the flow after the turbine stages back to the atmospheric
pressure, is known to have a significant impact on the performance of the
whole unit.
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Figure 2.1: Schematic view of the conical diffuser. The shape parameters are
the length N, the inlet radius R\ and the opening angle ¢ of the diffuser. Data
on the efficiency of the diffuser in dependence of the shape parameters is given
in Table 2.1.

The underlying principles of a diffuser can be understood by considering
an incompressible flow in a diverging channel, with uniform inlet and outlet
flow conditions. Denoting by

o, pruy, A (p2,ua, A2) 2.1

the inlet (resp. outlet) values of the density, pressure, velocity and area, we

can write the continuity equation and conservation of momentum (Bernoulli

's equation) as

ujAl = urA» (2.2a)
1

pu3 + pa. (2.2b)

p A\’
2
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¢ |Ri| &£ | AR | 7
2010 (40| 1.3 | 081
2010 | 80| 164 | 0.81
4011040 | 164 | 0.78
40110180243 0.78
79 1 1.0 | 40| 243 | 0.59
791 1080|448 | 0.60

Table 2.1: Experimental data on the efficiency n of a conical diffuser depend-
ing on the length N, the inlet radius R\, the opening angle ¢ and the area
ratio AR. Data from [40]. It is worth to notice that the efficiency sinks for
constant area ratio and increasing opening angle .

In the ideal case of an inviscid flow, the pressure rise depends on the area ratio
AR = ﬁ—f. By increasing the area ratio, more kinetic energy is converted into
pressure. The dimensionless coefficient

_p2—p

22
72U

Cpr (2.4)

is known as the pressure recovery coefficient and in the ideal case is equal to
the ideal pressure recovery coefficient

A\ 1
ri = I - _— = 1 - . 2.5

Ideally the pressure recovery coefficient can be made as close as possible to
one by increasing the area ratio, meaning that all the kinetic energy is trans-
formed into static pressure. Unfortunately this ideal situation is not confirmed
by experiments. For a conical diffuser we present in Table 2.1 the efficiency n

C,,
n=="

= 2.6
Cpr.i (26)

of the diffuser in dependence of the opening angle ¢, the area ratio AR, and
the ratio between the length of the diffuser N and the inlet radius R;. The
various shape parameters can be seen in Figure 2.1.

From Table 2.1 it can be deduced that diffusers with the same area ratio
but different opening angles do not have the same efficiency. This discrepancy
between theory and experiment, and hence the measurement of an efficiency n
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smaller than one, is due to the presence of viscous effects in the real flow. The
difficulty in the design of a diffuser is to minimize the losses due to viscous
effects. From Table 2.1 we see that a large opening angle reduces the effi-
ciency of the diffuser. The responsible phenomenon is the separation induced
by a too strong adverse pressure gradient or by a too big curvature of the wall.
The losses introduced by the separation bubble are relevant and the task of the
designer is to avoid them as much as possible. There are analytical methods,
such as the boundary layer methods of section 5.3, or empirical rules such as

o the opening angle of the diffuser should be less than 4 degrees and

e the diffuser should be bell-shaped,

as well as experimental data which allow the designer to determine an opti-
mal pressure distribution along the walls. In this sense optimal means with a
high pressure recovery and possibly low viscous losses. Related work on the
specification of an optimal pressure distribution over airfoils can be found in
[20].

The existence of methods for finding optimized pressure distributions nat-
urally leads to the formulation of the target—-pressure problem or aerodynamic
inverse shape design problem:

find the shape of a diffuser which generates a given target pressure
along its walls.

This problem has been considered by various authors; some approaches have
been described in the introduction. We follow in this thesis the ansatz of Keller
[36], which consists in rewriting the flow equations in a streamline aligned
system of coordinates and interchanging the dependent and independent coor-
dinates. We present this approach for two dimensional flows in the sequel of
this chapter.

2.2 Flow Equations

An easy—to follow derivation of the inverse Euler equations can be given
provided that the flow equations are manipulated in the physical coordinates
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(x, y) instead of working out the algebra in the transformed coordinates as in
[36]. First, the Euler equations are manipulated in order to find an equivalent
formulation which is well suited for a transformation to inverse coordinates.

We consider a steady, compressible, inviscid and two dimensional flow
described by the (conservative) Euler equations

div(pu) = 0 2.7)
div(puuT+Ip) -0 (2.8)
div(pHu) = 0. (2.9)

The unknown variables are the density p, the pressure p, the temperature T
the velocity vectoru = (u, v)7 and the total enthalpy H = cp T+ % llull?. The
divergence acts on the rows of the matrix puu’ + Ip, where L is the identity.
The closure of the system is given by the state equation

p=pRT, (2.10)

where R is the gas constant, which is related to the heat coefficients at constant
pressure ¢, and at constant volume ¢, by R = ¢, — ¢,. The heat coefficients
are related to the isentropic coefficient by

y =< 2.11)

Cy
Forairwe sety = 1.4and R = 287%.

For formal reasons we assume that the flow is smooth, and therefore we
can expand the derivatives in (2.7)—(2.9) to get the non—conservative formula-
tion of the Euler equations

div(pu) = 0 (2.12)
(u~V)u+%Vp = 0 (2.13)
w-VYH = 0. (2.14)

Introducing the vorticity w = vy — uy, and by using the identity

(u-V)u:V(%Hqu) —utw (2.15)
we can rewrite (2.13) as

1 1
V(gllullz) —uwtw+-Vp=0. (2.16)
0
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Through all the work we will use the notations ut = (v, —u)T and V+ =
(3, —80)".
From the first law of thermodynamics
d
Tds = c,dT — £%2 2.17)
o p
and from the state equation
p=p(cp —cy)T = pRT (2.18)
we deduce that
dp
— =cpdT — Tds, (2.19)
P

where s denotes the entropy. Again in (2.19) we assume that the flow is
smooth and therefore rule the presence of shocks out.

Inserting (2.19) in the pressure gradient %Vp we get Crocco’s formulation
of the momentum equations (2.8)

VH — TVs = utow. (2.20)

(2.20) describes the generation of vorticity because on non-vanishing total
enthalpy or entropy gradients. The case of vorticity generation by a shock is
ruled out by our smoothness assumption. The only possibility for a rotational
flow is due to non—uniform inlet values such as those after a turbine stage.

Away from a stagnation point we are allowed to project (2.20) along the
flow and along a direction perpendicular to it. In particular, by projecting
(2.20) along the flow we get

u-(220) <= u-VH —Tu - Vs =0<=u- Vs =0. (2.21H)
——
(2.14)
Projection on the direction perpendicular to the flow gives
ul . VH — Tut . Vs = |jufw. (2.22)

To summarize, a smooth, isentropic planar flow can be described, away from
a stagnation point, by the following set of equations

div(pu) = 0 (2.23)
wt (VH=-TVs) = |ujfe (2.24)
u-Vs = 0 (2.25)

u-VH = 0. (2.26)
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Neglecting the continuity equation (2.23), only transport operators of the form
ul - V and u - V occur. This property will be fully exploited by the inverse
Euler equations.

2.3 Inverse Coordinates

In the target—pressure problem, the computational domain in the physical
(x, y)-space is not known a priori. We are anyway able to define a fixed com-
putational domain by introducing a body—fitted system of coordinates based
on the stream—function y.

We define the stream—function ¥ for the divergence free vector field pu
by
WY = pu, (2.27a)

—8. ¥ = pu. (2.27b)

It follows that the continuity equation (2.23) is automatically satisfied and can
be dropped. Further consequence of this definition and of the slip bound-
ary condition u - n = 0 is that along the side walls of the configuration the
stream—function V¥ is constant independently of their shape. In other words,
the unknown wall coincides with a level set of ¥. This is easily seen from the
following computation

dyr (x(s))

y) =Vy -x(s) = pu-xt = pu-n=0, (2.28)
s

where x(s) is a parameterization of the boundary, x* = (y, —x)7 and n is the
normal to the boundary.

A further simplification of (2.24)—(2.25) can be obtained by introducing a
coordinate o along the flow. The natural coordinate o is defined by

= —. 2.29
7= Tl (2.29)

The existence of the “potential” ¢ is assured by the presence of the integrating
factor h (also called stretching factor).

In the case of an irrotational, isentropic flow, definition (2.29) can be re-
duced to the usual definition of the potential o

Vo =u. (2.30)
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Physical Space

y

=

Inverse Coordinates

as

v

{5

Figure 2.2: Diffuser with streamline aligned orthogonal system of coordinates
(top) and its representation in inverse coordinates (bottom). The iso—lines of
o and Y generating an orthogonal grid are plotted

We remark that the material derivative u - V is equivalent to a derivative in o
direction, see section 2.5.

The definitions of ¢ and ¥ can be interpreted as the implicit definition of
a mapping between the (x, y)—plane and the (o, ¥ )—plane or as the definition
of a body fitted system of coordinates. The peculiarity of this mapping or new
system of coordinates is that the side walls of the flow device are mapped,
independently of their actual shape, on ¥ = const lines. The computational
domain in the inverse coordinates (o, ¥) is a known rectangle! A diffuser
with the flow aligned orthogonal system of coordinates and its representation
in inverse coordinates is shown in Figure 2.2. The grid lines consist in iso—line
of o and .

We remark that the iso—lines of o and ¥ generate an orthogonal grid in
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the physical space (x, y) since

1
Vo Vi = ———u-put =0. (2.31)
h|luj

The orthogonal grid is generated automatically by the design method. It can,
possibly after a refinement towards the side walls, be used as grid for a Navier—
Stokes computation needed to quantify the losses in the diffuser in a late stage
of the design process.

The main idea behind the inverse Euler equations is to rewrite the equa-
tions (2.23)—(2.26) in the (o, ¥)-plane and then apply the hodograph trans-
formation. For the details of the definition of the computational domain we
refer to section 2.9.

2.4 A Remark on the Inverse Coordinates in 3D

In the “classical” fluid dynamics the potential and the stream—function are
used in order to simplify the governing equations and/or to reduce the compu-
tational cost of a simulation. The interest in the natural coordinate o and in the
stream—function ¥ in the field of the inverse design comes from the fact that
y assumes two constant values along the walls of the diffuser; ¥ can be used
as an independent variable. Therefore the question arises, whether these ideas
can be extended to the three dimensional case. We will show in this section
that unfortunately the three dimensional inverse Euler equations hold only for
a restricted class of flows.

The definition of the natural coordinate o for a three dimensional velocity
field is

Vo

(2.32)

u
i’

where now u € R is the velocity vector in cartesian coordinates. The simple
computation

u-V xu= (Jjulh)Vo - (V(hllﬁl[) x Vo + (h|u])V x Va) =0 (2.33)

proves the
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Figure 2.3: Stream—ribbons of a flow for which the natural coordinate does
not exist. The stream—ribbons follow the streamlines of the flow and their twist
is proportional to the vorticity.

Propeosition 1 The integrating factor h and the natural coordinate o exist if
and only if
u-Vxu=0. (2.34)

In particular h and o exist for two dimensional and axis—symmetric rotational
flows, or for three dimensional potential flows.

Flows satisfying (2.34) are called complex lamellar [44]. From Proposition 1
it follows that we cannot expect the existence of the natural coordinate for a
general flow, and therefore Keller’ s construction of the inverse Euler equation
cannot be applied. An example of a flow not satisfying (2.34) is a free vortex
generated by the velocity vector

u=(—y,x, 7. (2.35)
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Stream ribbons of (2.35) can be seen in Figure 2.3.

Since this kind of flow is very common in turning ducts, the three dimen-
sional inverse Euler equations lose their validity, resp. they have no solution
or produce a non physical flow.

2.5 Transformation Rules

After the three—dimensional interlude, we return to the two dimensional case.
The next step in the derivation of the inverse Euler equations is to rewrite
(2.23)-(2.26) in the (o, ¥) coordinates. We therefore recall the basic rules of
the change of variables as well as the relations between the various derivatives.

We consider two systems of coordinates, the cartesian coordinates denoted
by x = (x, y)T and the inverse coordinates (o, ¥). We present some relation-
ships for the mapping x = x(o, ¥).

The regularity of the mapping

(x,y) < (0, %) (2.36)

is controlled by the determinant of the Jacobi matrix of the transformation
which is defined as
J =XoYy — YoXy. (2.37)

It is assumed that J remains bounded, see section 2.10 for conditions ensuring
the regularity of the mapping. J can be interpreted as the area element in
(o, ¥) coordinates.

The length element 1/x2 + y2 assumes a simple form because of the nor-

malization m‘m in (2.29):

h* =x2 +y; = x4 1% (2.38)
(2.38) expresses the equivalence between £ and the arc—length.

From the chain rule the following rules can be derived [37] [54]

y —x
o = 7"’ . oy = J‘” (2.39)

Yo = —27 Yy =22 (2.40)
X — J k) y = J - .
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The first application of (2.39) and (2.40) is to express ||u|| as a function of x, y
and 4. It holds

loul VYL kel A

= = = —. (241)
o (27 P (2.39).(240) pJ (238 pJ

lul =
From (2.39) and (2.40) we find the representations

u h y h?
" ( v ) (2.29) lullhve (239 ||u||J ( Xy ) (241 pJ2x‘/’ ( )

and

ut = v _ _l Yy _ L Yo _ LXJ‘
=( = = B = L
w Jaan p\ ¥y ) a0 pJ Xo ) 241y pJ

(2.43)
Again the notation x* = (y, —x)7 has been used.
The gradient transforms as follows
TS
Vxf = 7\ —xy x | Vouf=1C-Voyulf, (2.44)

where Vx = (3, 3,)7 and V. y = (35, dy)7.

From (2.44) we can derive some simple formulas for the differential op-
erators arising in (2.24)—(2.26). For example the material derivative u - Vy
reduces to

2

h? 1 h? 1
OV, = ﬁ(nanz,owﬂ_w = p—Ja,, (2.45)

U'VX=WX¢'J

since Vxo is parallel to u, while the cross—flow derivative obeys

2

1 1 1 h*
1 L 2
-Vy = —=CVfy = 0, -h)Vsy = — Ay, 2.46
u X pjxg 7 R p]z( ) oy p.]z W ( )
since ut is anti—parallel to V. In both cases we use the orthogonality of the

(o, ¥) system of coordinates, X, - xy = 0.

The divergence of a vector field f transforms as follows
1
divyf = 7div(,. s CTt, (2.47)

where divyf = Vy - fand divy yf =V, y - f.
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2.6 Keller’s Inverse Formulation of the Euler Equa-
tions

In section 2.3 we implicitly defined a mapping between two system of coordi-
nates

x(o,¥) < (a(x, y), ¥(x, y)). (2.48)

The new system of coordinates (o, ¥) has three valuable properties

o the unknown walls coincide with a Y = const line, thus we have a
fixed, rectangular computational domain and

o the derivatives along the flow such as u- V reduce to derivatives in sigma
direction. In particular we deduce that (2.25) and (2.26) can be written
as H = H(),s = s(y¥). Since H,s are given at the inlet by the
boundary conditions, we can in practice drop the equations (2.25) and
(2.26) and just use the thermo-dynamical formula (2.72)—(2.74).

e the new system of coordinates is orthogonal. This is easily seen in
(2.31).

To summarize, in the inverse coordinates o, ¥ the Euler equations reduce just
to (2.24). Its inverse formulation can be found by rewriting (2.24) in the (o, ¥)
coordinates by applying the chain rule and by interchanging the dependent and
independent coordinates in the same way as in the hodograph transformation.
The inverse formulation of (2.24) is found to be

oy H —Ta : ad h? (2.49)
— § = — — 1, .

as one easily computes
2
-1

h di ]CT h? L, h? (2.50)
——— —div, —C'x, ) =— — — 1. .
PENEN B A U7 0d2dp "\ pJ

We can now concentrate on the mapping between the system of coordinates.
The mapping is described by the following set of equations

2
allw =

lpul|hVo = Viy (2.51)
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which are a direct consequence of the definitions V¢ = pu and hVo =
u/|lu||. By applying (2.39) and (2.40) we find the inverse formulation

h2
1
Xo = TX‘//’ (2.52)
where we used the identity /2 = ||x, 2. The system of partial differential

equations (2.52) is called generalized Cauchy-Riemann equations.

The complete set of the inverse Euler equation for smooth, planar, com-
pressible and rotational flows as derived in [36] is given below,

W2
Xo = 7y1// (2.53a)
h2

Yo = —7x¢, (2.53b)
oy H —Toys = L8 (ﬁ) (2.53¢)

pJ pJ
osH = 0 (2.53d)
0ss = 0. (2.53e)

The unknowns in the inverse Euler equations are x, y and h. The remaining
variables can be expressed as a function of x, y and 4 in the way described in
section 2.10. For sake of an easier implementation, in the numerical method
developed in chapter 3 we substitute /# by the auxiliary variable

hZ
-7

o] (2.54)
representing the ratio between the squared length element in o direction /42
and the local area element J.

Numerical methods for the Cauchy—Riemann equations The main diffi-
culty in the development of a numerical method for the inverse Euler equations
(2.53a)—(2.53e) lies in the discretization of the generalized Cauchy—Riemann
equations (2.52). In particular (2.52) is not a quasi-linear system. A model

problem can be found by setting the nonlinear factor 4 = 1. Physically this
coincides with the assumption of an irrotational, incompressible flow. In the
literature the model problem

Oxut +3yv =0in Q (2.55a)




2.7. The Scaled Laplace Equations 21

v —dyu =0in Q (2.55b)
n-u=gonas2, (2.55¢)

is considered, where n is the normal to the domain , u = (u, v)7 and ga
given function. By integration by part (2.55) can only have a solution if

/ gds = 0. (2.56)
IR

A numerical method for (2.55) must incorporate this constraint. In the litera-
ture [45] [26] [59] [6] the constraint is found in the least squares formulation
of the discretization. Only if a discrete version of (2.55c) holds then the over-
determined system of algebraic equations reduces to a square system.

The inverse design problem is nonlinear. It would be very inefficient to
solve it by a nonlinear least squares problem, not to speak about the difficul-
ties in interpreting the results in case of non—vanishing residual. Therefore,
we distance ourselves from the generalized Cauchy—Riemann based formu-
lation of the inverse Euler equations (2.53) in the next section and decide to
work with the corresponding second order system. Numerical experiments in
section 3.3.1 show that the (possible) compatibility problems do not arise.

2.7 The Scaled Laplace Equations

The main difficulty in the numerical solution of the inverse Euler equations lies
in the first order, nonlinear system (2.52). In fact there are a few numerical
methods for (2.52), such as those described in [45] [26] [6] [59]. The common
feature of these methods is that they rely on a least squares formulation of the
discretized equations. This would lead to a computationally inefficient method
and therefore we distance ourself from the original formulation of the inverse
Euler equations due to Keller by rewriting the first order elliptical system in
its corresponding second order system. The second order system is found by
computing

J h?
o (h—zar,x) =y 0y xT = By d,xT = —dy <78¢,x> . (2.57)

The resulting scaled Laplace equations

J h2
O ﬁa{,x + 3y 76¢,x =0 (2.58)
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replace the generalized Cauchy—Riemann equations in the new formulation of
the inverse Euler equations.

The scaled Laplace equations are a well known tool for planar grid gen-
eration [54] [37] and have been shown to be effective to construct orthogonal
grids [53] [21] [22].

From now on the system of partial differential equations (2.58), (2.53c)-
(2.53e) will be called inverse Euler equations.

By substituting the scaled Laplace equations (2.58) for the generalized
Cauchy—Riemann equations (2.52) we lose a—priori the orthogonality of the
grid (2.31). The orthogonality of the grid generated by the scaled Laplace
equations holds in the case of

Proposition 2 For each sufficiently smooth solution of the nonlinear elliptic
problem

Xoo +Xyy = 0inQ (2.59)
Xo Xy = 0ondQ (2.60)

it holds that
Xo Xy = 0in Q. (2.61)

In particular the grid generated from an isentropic, irrotational and incom-
2 .
pressible flow, i.e. for bj— = 1, is orthogonal.

Proof

The idea of the proof is to show that the function f = X, - xy satisfies
a Laplace equation with zero boundary condition and therefore, invoking the
maximum principle [24], must vanish identically in 2. A simple computation
reveals that

Joo + fuy =Xy - 35 (AX) +2X5 y - AX + X5 - Iy (AX) =01in Q. (2.62)
This completes the proof.

We remark that the last Proposition can be extended to handle the case

of a given g = p(o)q(¥) by making a change of variables. For general

é, no proof of the orthogonality of the resulting grid is known, numerical
computations in section 3.3.1 confirm the orthogonality of the grid.
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Similarly the relation

h? =[x, | (2.63)

is a~priori lost in the substitution of the scaled Laplace equations for the gen-
eralized Cauchy—Riemann equations. Numerical experiments show that (2.63)
holds anyway.

2.8 Interpretation

The inverse Euler equations consist in an elliptic system (2.58) which is de-
rived by purely geometric considerations and in a set of three ordinary dif-
ferential equations (2.53c)—(2.53e) derived directly from the Euler equations
of fluid dynamics. Depending on the viewpoint we can give the following
interpretations:

The grid generation-interpretation: The inverse Euler equations can be inter-
preted as a special type of grid generation procedure. In fact the scaled
Laplace equations (2.58) are well known in the field of elliptic grid gen-
eration [37]. The elliptic grid generation procedures are characterized
by the procedure they use to place the grid lines, i.e. where to refine.
In the inverse Euler equations, the position of the grid lines, or of the
streamlines, is determined by the factor @ = # This geometrical fac-
tor is found by solving the momentum conservation (2.53c). We can
therefore say that our method for inverse design consists in a grid gen-
eration procedure driven by physical considerations for placing the grid
lines.

The flow problem interpretation: The inverse Euler equations can be thought
of as being the Euler equations written in a special system of coordi-
nates. In this case the main equation are (2.53¢)—(2.53¢). The remain-
ing equations can be interpreted as a linear combination of the continu-
ity equation written once for the natural coordinate ¢ and once for the
stream—function ¥.
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Figure 2.4: Comparison of the shapes of two Laval nozzles for different total
massflows in the case of an inverse computation. The total massflow deter-
mines the height of the channel.

2.9 Definition of the Computational Domain

By construction the lower and upper wall of the unknown device are mapped
onto iso-lines of v; without loss of generality we can assume that ¥ ranges
from O to a still to be specified value ¥,,,,. By definition the quantity ¥,
is equal to the total massflow through the inlet or, by the continuity equation,
outlet surface. Thus

Ymax =f ou-ndS. (2.64)
inlet

Inverse Design In an inverse computation, the height of the nozzle or dif-
fuser is not given a—priori since only a pressure distribution is known but no
geometry. In this case, the total massflow through the device must be pre-
scribed. The resulting geometry will adjust itself in order to produce the
correct massflow through the device. In Figure 2.4 we compare two nozzles
which are generated by the same pressure distribution along the upper wall
but have different total massflows. In this case the inlet conditions consist of
a uniform flow with density p = 1 and velocity u = (1, 0)7. We clearly see
that in order to generate a total massflow of 0.5 the height of the channel must
be 0.5 while for a total massflow of 1.0 the height must be 1.0.
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1.2F

Figure 2.5: Bell-shaped diffuser with non—isopotential inlet. The orthogonal
grid and the Mach number contours are shown. The inlet does not coincide
with a grid line. (Courtesy of A. Troxler)

Direct computation The situation is slightly different in the case of a direct
computation where the total massflow results from the difference between the
inlet total pressure and the outlet static pressure. In the special case of uniform
(irrotational) inlet flow conditions, ¥, can be computed explicitly

Ymax = pu-NnA, (2.65)

where A is the area of the inlet surface. Using (2.65) we can define the com-
putational domain in the case of a potential flow. In this case we can choose
the outlet pressure to be compatible with the inlet total massfiow.

In the case of a rotational flow ¥, cannot be found a priori since the
flow conditions at inlet and outlet are not fully known. The quantity ,,,, can
be found iteratively by updating it after every iteration by integrating (2.64).

We assume further that inlet and outlet surfaces coincide with iso—lines
of o. This does not hold in general as seen in Figure 2.5. A procedure for
handling this problem has been developed by Troxler [46]. A consequence of
this simplifying assumption is that the inlet and outlet are perpendicular to the
flow. Without loss of generality we assume that o ranges form 0 to 0,

The computational domain in the (o, ¥) plane is the rectangle [0, 0,4 ] X
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[0, Ymax]- The value of 0, is determined by the length of the reference
streamline, e.g. at ¥ = 0. For this length L it holds

Omax
L =/ ds = f hdo = opgy, (2.66)
on streamline 0

where ds is the length element in the physical space (x, y) and under the
assumption that A2 = 1 along ¥ = 0. This is imposed as a boundary condition
in section 2.11. Recalling (2.38) we conclude that prescribing 22 = 1 along
one streamline is equivalent to set its length. In practice we assume that the
wall at ¥ = 0 is given, we compute its length L and we set 0,4y = L.

In the case of two inverse walls, the length of a streamline can be freely
chosen. It must be kept in mind that this length will determine the pressure
gradient along the side wall.

2.10 Flow Field-Geometry Relations

The grid, or better the mapping
(x,y) = (0(x, ), ¥(x,y)) (2.67)

is related to the flow velocity by means of the definitions (2.27) and (2.29). By
exploiting the relations derived in section 2.5 similar relations for the inverse

mapping
(0.9) = (x(0,¥), y(0, %)) (2.68)

can be found. This type of relations follows by considering the definition of
the stream—function and the transformation rule (2.40)

1
pu=Viy = +%o (2.69)

and thus by (2.38)

h
m = |pu)| = pvu?+v? = 7 (2.70)

m is called specific massflow. An alternative formulation to (2.70) can be
found by using the generalized Cauchy—Riemann equations (2.52)

i_ 1
h o lpull’

J
Xy ll = 25 lIxo |l = (2.71)
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We notice that the mapping x = x(o, ¥) becomes singular in the case of a
stagnation point since |lujl - Oand J = “ph—“” — oo under the reasonable
assumption that 4 is @(1) in the whole domain.

The remaining flow variables in (2.53a)—(2.53e) can be found from m by
means of the isentropic gas identities for an ideal gas:

M2
m? = pac = (2.72)

!
(1+ 17 m2)”
1

T = To—m——— (2.73)
1+ L m2

A 2.74

» = w(z) e

p = pRT. (2.75)

In (2.72)—(2.74) we assume that the stagnation quantities pg, co, Tp are known.
As we will see in section 2.11, this is the case. Ty can be thought as being the
temperature of the fluid if it were brought to rest isentropically. Similar char-
acterisations hold for pp and pg. As explained in section 2.2 the rotational
effects are given by non—vanishing gradients of H and s which are a conse-
quence of non—uniform stagnation quantities.

In the case of a swirling axis—symmetric flow an additional term taking
into account the angular momentum must added to (2.72)—(2.74) as described
in section 2.12.

2.11 Boundary Conditions

The aim of this work is to develop a method for the design of internal flow con-
figurations. In particular we would like to be able to keep the same boundary
conditions as in the direct computation.

For a subsonic internal flow configuration such as a diffuser or a nozzle,
the correct boundary conditions are [30]

inlet: the flow angle «, and the stagnation pressure pg and temperature T are
prescribed. In particular we can compute the total enthalpy H = ¢, Tp
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and integrate the first law of thermodynamics (2.17) to get the entropy
distribution.

outlet: the static pressure distribution is prescribed. This is a signal of the
elliptic character of the flow.

side walls (standard): the tangential flow condition u - n = 0 is imposed.
This coincides with the fact the the stream—function ¥ is constant on
the side walls.

side walls (inverse): a pressure distribution is imposed. At the outlet corners,
the side wall pressure distribution must be compatible with the outlet
pressure distribution.

We remark that these boundary conditions originate from the analysis of the
characteristic relations for the Euler equations [30], and that they make phys-
ically sense as for example the outlet pressure of an exhaust diffuser is known
to be the atmospheric pressure.

For the solution of the target-pressure problem we need to reformulate
this set of boundary conditions in inverse coordinates. Since the system of
the scaled Laplace equations (2.58) is of second order and elliptic, we need
to impose two boundary conditions along each wall in order to have a unique
solution. First of all we discuss the boundary condition arising from the flow
equations.

flow angle BC: the flow angle « can be imposed by the equation
Yo — tan(a)x, = 0. (2.76)
We recall that the inlet wall is orthogonal to the flow.

stagnation quantities BC: the stagnation quantities are prescribed as a func-
tion of Y. The resulting integrals of motions are used in the thermo-
dynamical formulas (2.72)—(2.74).

outlet: in a preprocessing step the imposed static pressure is transformed to

a specific massflow distribution m,,;; by (2.72)— (2.74). This is mo-

tivated by the fact that the simplest geometry — flow relation (2.70) is

based on the specific massflow. The resulting specific massflow distri-
bution is imposed by the equation

& —JIml,, =0, 2.77)

outlet
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where & = % (2.77) follows directly from (2.70) by inserting the
definition of ®.

side walls (standard): the slip boundary condition is automatically satisfied
and the shape of the configuration is specified by an algebraic equation

flx,y)=0. 2.78)

In [46] a method for handling geometric boundary conditions in para-
metric form is described.

side walls (inverse): the imposed static pressure is transformed to a specific
massflow distribution m,,;; which is imposed by the equation

1 1
%y 11? = —5— = xj + 5§ = —— =0 (2.79)

wall Mowall

which follows from (2.71). Again, the motivation for the transforma-
tion of the pressure to a specific massflow is given by the fact that the
geometry — flow relations are simpler for the specific massflow than
for the pressure.

These boundary conditions are all related to the state of the flow. The second
boundary condition must be related to the grid generation, and in particular
must enforce the grid orthogonality.

orthogonality BC: along all four boundaries we impose the orthogonality of
the grid in the form

Xo - Xy = XgXy + Yo yy = 0. (2.80)
A justification of this boundary condition for irrotational, incompress-
ible flows is given in section 2.7, Proposition 2.
In this way we set all the necessary BC for the scaled Laplace equations.

The inverse form of Crocco’s theorem (2.53c) is an ordinary differential
equation in ¥ direction and as such needs an initial value along the ¢ = 0
boundary.
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length BC: We prescribe h? along the boundary ¥ = 0, i.e. we impose a
given length to the streamline along the lower wail. This BC is imple-
mented by imposing the equation

®J -1=0, (2.81)

on ¥ = 0. By means of (2.81), the distance in flow direction between
two successive o iso-lines is set.

The uniqueness of the solution is not yet assured. To see this one should
consider the target—pressure problem not as a fluid flow problem, but just as
a geometrical problem. In particular a solution remains valid if it is displaced
or rotated. To avoid the problem of the orientation we set the flow angle and
to avoid the problem of the displacement we set the

displacement BC: the corner (¢ = 0, ¥ = 0) must be mapped onto x =
0,y=0.

A schematic review of the boundary conditions can be found in Figure 2.6.

2.12 Axis-Symmetric Flows

The inverse Euler equations can be extended to handle axis—symmetric flows
with swirl. Here we simply state the equations and present the differences with
respect to the two dimensional case. Further details can be found in [36][47]
and in chapter 5.

The definition of v is modified to

1
pu =~y (2.82a)
r

1
pv = ——dc Y, (2.82b)
r

in order to take the radius changes into account, while the definition of o
does not change. We denote by (i, v, w)T the axial, radial and azimuthal
component of the velocity vector.
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Figure 2.6: Schematic view of the boundary conditions for the inverse Euler

equations.

The inverse Euler equations for smooth, inviscid, axis—symmetric flows

o h?
da h—za,,x +a¢, 78¢/X —_—O

are

dyH —ToyS — E,,awc = L811,(—}1—2—)
re prJ prd
05 =0
0eH=0
3, C =0.

(2.83a)

(2.83b)

(2.83¢)
(2.83d)
(2.83e)

The unknowns are the axial and radial coordinates x = (x, )7 and the inte-
grating factor h. The determinant of the Jacobi matrix of the transformation
can be expressed as J = xory — Xy 7. There is an additional integral of mo-
tion, the angular momentum C = rw, as one easily deduces from the momen-
tum conservation in azimuthal direction. The possibility of handling a non—
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vanishing angular momentum provides an extension to the axis—symmetric
inverse design method [1].

The geometry—flow field relations are based on the same gas dynamics
identities. In order to take into account the azimuthal component of the veloc-
ity, we modify the definition of the total enthalpy H to

1
H=c,T+ 5(142 +v* + wh). (2.84)

The density can be computed by

1

h? CI\ v-T
R L S— + -
75272 2
p=po |l -5 (2.85)
since , ,
2, .20 .2 h \" (€Y

The boundary conditions are modified as follows. On an inverse wall we pre-
scribe a pressure distribution, which is first transformed into a Mach number
distribution and then into a specific massflow distribution by the isentropic
gas identities in order to apply the simplest flow — geometry relations. On an
inverse side wall we impose the equation

1

loul? = p*® +v*) =
Notice that the differece with respect to the planar case (2.71) consists just in
an additional r factor. The outlet boundary condition is implemented as

h2

r2J2

=m?=p? (u2 + uz) . (2.88)

In both cases we consider only the specific massflow in the meridional (x, r)
plane. It is worth to notice that the pressure depends via (2.84) from the full
velocity vector, and in particular from the angular momentum C. There are no
conceptual problems in prescribing the full three-dimensional specific mass-
flow as a boundary condition. A code implementing this feature is presented
in [56].

The angular momentum C = rw is given at inlet as additional boundary
condition, either directly or by prescribing w().
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2.13 Conclusions

In this chapter we presented the inverse Euler equations. By developing the
algebra of Keller [36] in the physical space, the main ideas of the method
were pointed out and we showed that they cannot be extended to general three
dimensional flows. This is a strong limitation of all inverse methods based on
a natural coordinate.

In the two dimensional and axis—symmetric case the strength of the inverse
Euler equations lies in the boundary conditions. On one side, inlet and outlet
allow exactly the same boundary conditions as in a standard CFD code, while
all other single—pass inverse methods are based on ad hoc inlet and outlet
boundary conditions. Flexibility is guaranteed on the side walls too. Unlike
other single—pass methods we can prescribe any mixture of geometrical and
inverse boundary conditions.

The main change with respect to the original paper of Keller [36] con-
sists in substituting the generalized Cauchy—Riemann equations by the scaled
Laplace equations. Even in its simplicity, this change has a great impact on
the efficiency of the numerical method described in the next chapter.
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Chapter 3

Discretization and
Numerical Method

The inverse Euler equations are a set of nonlinear partial differential equations
for which no general analytical solution can be given. In order to find an
approximated solution we need to formulate a suitable discretization and to
implement an efficient solver.

Since the solutions of the inverse Euler equations are by assumption smooth,
combining a discretization based on finite differences on a uniform grid and
an inexact Newton—-Krylov—ILU solver turns out to be a suitable choice for the
numerical solution of the problem.

For sake of completeness we recall the system of partial differential equa-
tions to be solved

0, 13 + 0 hza =0 (3.1a)
o n2 o X 1 7 yX ) = .la
oy H —Ta Ly, (# (3.1b)

hd S = — — 1] . .
12 v oJ 14 0J

Equations (3.1a)- (3.1b) are augmented by the boundary conditions described
in section 2.11 and by the thermodynamic relations (2.72)—(2.74).

35
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This chapter is structured as follows. First we present a second order dis-
cretization of the inverse Euler equations based on finite differences. In sec-
tion 3.2 we describe the algorithm for the solution of the algebraic system of
equations arising form the discretization of (3.1). Section 3.3 is devoted to the
validation of the method by means of a numerical study of convergence and of
the so called “recovery problem”. In the last section we introduce some sim-
plifications in the solution procedure and compare the execution times of the
resulting methods. A comparison with a totally different solver for the inverse
Euler equations is also included.

3.1 Discretization

3.1.1 Setup

The particular choice of the independent coordinates (o, 1) allows us to pose
the target—pressure problem in the rectangle 2 = [0, omax] X [0, ¥max]. In
we introduce a uniform grid, the grid points are given by

(i, ¥j) = (iAo, jAY) fori =0,--- Ny, j=0,--- Ny (3.2)

where Ag = Zue Ay = % Ny and Ny denote the number of cells in
. . a a

every spatial direction.

On this grid we introduce the standard difference operators

foi+ Ao, ) — floi — Ao, )

DYf(oi v = v (3.3)
Df f(oi,¥)) = J(oi + Ao, Z’z — i ¥i) (3.4)
D, floi.yj) = Joi ¥j) = ig” — A0 ¥)) (3.5)

and their counterparts in ¥ direction

floi b+ Ay) — floi, ¥; — AY)

0 fim vy —

Dy floi, ¥j) = TN (3.6)
floi, ¥j+ AY) — floi, ¥j)

Dy fei ¥)) = v : 3.7

D; o b)) = floi, ¥j)— floi, ¥ — Al/f). (3.8)

AY
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Strictly speaking, the unknowns in the inverse Euler equations are x, y, h.

Anyway, for sake of an easier implementation we prefer to work with x, y, ® :=

g and p as unknowns. Their nodal values are denoted by

Xi.j = x({Ao, jAY), yij = y(Ao, jAY), - (3.9)

3.1.2 Interior of the Domain

The scaled Laplace equations can be rewritten as

J h? J h?
h—zxm, + 7X‘/,¢, + 8(; Fl‘ Xy + 81// 7 Xy = 0 (310)

since by assumption the solution is smooth. In the interior of the domain,
where the scaled Laplace equations hold, we use central differences for the
first order derivatives and the standard second order discretization for the
Laplace operator. The discretized equations read

| - - of |1 0 0 0
(—)T;D;' Dox; i+ D; D'ﬁ Xi.j+Dy (?’) Dr,x,;‘,‘+D¢ D; D\ﬁx’?/‘ =0.
(3.11)
Equations 3.11)hold fori =1,---Ny —1,j=1,--- Ny — L.

Crocco’s theorem (3.1b) is discretized by the implicit trapezoidal rule [29]

P P
— ={—) +av(Fin+F;) (3.12)
PJij+ P /i

fori=0,--- ,Nyand j=0,--- Ny — 1. Weset F = pJ (dy H — Tdys).

The determinant of the Jacobi matrix of the transformation J 1s discretized
in (2.70) and (2.74), relating the density to the geometry, by central differ-
ences.

3.1.3 Boundary Conditions

The boundary conditions are discretized by finite differences in the same way
as the equations in the interior of the domain. Nevertheless there is one critical
point. In order to use a preconditioner based on the LU decomposition such as
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ILU, or in order to use an iterative solver, such as Gauss—Seidel, for the linear

system we need to be sure that all the elements on the diagonal of the Jacobi

matrix are different from zero. The central difference operator D2 cannot be

used on the boundary !

On the boundaries ¢y = 0, ¥ = Y, we use the following third order
finite difference approximation of the tangential derivative o,
(1 1 1 1

OoXi.j M\ gXim2.j = Xi-lj + 5Xij + 3Xit1j | == (3.13)

The remaining derivatives are discretized by one—sided finite differences. For
example along ¥ = ¥4 We apply

2 2

It can be easily seen that the discretization of the orthogonality boundary con-
dition does not have any zeros on the diagonal of the Jacobi matrix.

3 1 1
dyx;j ~ <—x,'_Nw — 2X,‘,N¢,_1 + —X,'_N,//_2> H (3.14)

By construction the discretization is of second order of accuracy. Numer-
ical experiments of section 3.3.1 will confirm this theoretical result.

The discretization at every grid node of the two scaled Laplace equations,
of the inverse form of Crocco’s theorem and of (2.74) results in a nonlin-
ear system of 4(N, + 1)(Ny + 1) algebraic equations which is solved by a
Newton—Krylov method.

3.2 The Solution Procedure

The solutions of the inverse Euler equations have two properties which render
appealing the use of a Newton based solution procedure. The solutions are
by assumption smooth, and thus the Taylor expansion in the derivation of
Newton’s method is allowed. Further the geometrical character of the problem
makes it easy to define a good starting value for the iterative scheme.

3.2.1 The Newton-Krylov Method

A Newton—Krylov method for nonlinear systems of algebraic equations is a
Newton method where the linear system is solved by a Krylov subspace iter-
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ative method. Since the main components of the method are standard tools in
computational mathematics, we just sketch the overall algorithm and give the
references in the literature.

Newton’s method for solving the system of equations

Fx*)=0 3.15)

can be formulated as
DFx"HAX" = —Fx" (3.16a)
Xl = X" 4 AX", (3.16b)

where the sequence x” should approximate the exact solution x*. DF is the
Jacobi matrix of the functional F. A cubic backtracking method [17], which
gives a globally convergent method (see Theorem 6.3.3 in [17]) and a mono-
tone convergence behavior enhances the basic algorithm (3.16).

The linearized equations (3.16a) are solved by the BiConjugate Gradient
Stabilized (Bi—-CGSTAB) linear solver [58]. Bi-CGSTAB can be seen as an
extension of the Conjugate Gradients method to non—symmetric matrices.

An incomplete LU factorization algorithm (ILU) is used as preconditioner
for improving the convergence of the iterative solver for (3.16a). It is well
known that even for a sparse matrix A, its LU factors are not sparse. The ILU
overcomes this problem by applying the LU decomposition only for a set S of
indices, such as the set of indices for which a; ; # 0 [5].

It should be noted that the ILU preconditioner, if applied without pivoting,
needs non—zero elements on the diagonal of the matrix DF; for this reason a
third order finite difference approximation of X, in the boundary conditions
of the inverse Euler equations has been introduced, cf. section 3.1.3.

In the sequel we will call this solution algorithm “Newton solver”, even
though the precise denomination would be inexact Newton—Krylov—ILU me-
thod. In particular when analyzing the convergence curves of the solver one
should keep in mind that the linear system is not solved exactly and therefore
the quadratic convergence characteristic of the standard exact Newton method
cannot be expected.

When not otherwise stated, all the numerical examples in this thesis are
solved with a standard set of parameters, the most important being the relative
termination tolerance of Newton’s method which is set to 1077, of the linear
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solver set to 10~>and the number of fill in levels of the preconditioner which
is set to 2.

All methods used in this work are implemented in a library of numer-
ical schemes called Portable Extensible Toolkit for Scientific Computation
(PETSc) [4]. For more informations on PETSc we refer to the web page {2]
and to [3].

3.2.2 Finding the Initial Guess: The Nested Iterations

In order to exploit the fast local convergence of Newton’s method, a good
initial guess for the iteration must be provided. Our strategy is based on the
nested iterations.

We assume that the fine grid on which we look for a solution consists of
2K N0 cells in o direction and of 2% Ny ¢ cells in v direction.

On the very coarse grid with N, ¢ x Ny o cells an initial guess can be de-
fined by means of the transfinite interpolation [37] between the two side walls
of the configuration or by taking some old design. The transfinite interpolation
is the simplest method for algebraic grid generation. It just needs a parame-
terization of the boundaries of the domain to generate a grid by an algebraic
formula [37]. The idea is to solve the inverse Euler equations on the coarse
grid and then to transfer the resulting solution on the next finer grid, found by
doubling the number of cells in each coordinate direction. This interpolated
solution is already very accurate and therefore Newton’s method will converge
very fast. We repeat this procedure until we find a solution on the desired grid.

The interpolation step is based on the standard bilinear interpolation.

In Figure 3.1 we plot, in a logarithmic scale, the residual of Newton’s itera-
tion on a sequence of nested grids versus the number of iterations. One clearly
sees that the convergence is very fast on the fine level. Since the linear sys-
tems are not solved exactly, we do not expect the local quadratic convergence
of Newton’s method. In Figure 3.2 we present the convergence curve of New-
ton’s method on the finest grid without computing the initial guess by nested
iterations. We clearly recognize the long searching phase of the algorithm.

The qualitative behavior of the method alone, does not indicate if the use
of the nested iterations introduces a gain in computing time. For the test case
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Figure 3.1: Convergence curve of Newton’s method coupled with the nested
iteration. The evolution of the residual on five nested grids is shown.

presented in section 4.1.1 we find the CPU times reported in Table 3.1. The
starting value of the simple Newton method is found by a transfinite interpo-
lation of the given geometry (4.2)—(4.3) which can be thought of as being an
existing design to be improved. The computing times for the scheme accel-
erated by the nested iterations are cumulative, i.e. they are the sum of the
execution times on all levels reported in Table 3.6. A speedup of a factor 6
can be obtained by simply coupling the standard Newton method to a nested
iteration strategy. Further the speedup increases as the grid is refined.

More insight in this behavior can be obtained by looking at how much time
is spent on every level with respect to the total execution time for example on
the 384 x 32 grid. As seen in Table 3.2 the CPU time spent in the coarse
levels is about 11 % of the total computing time, which is comparable with %
of an iteration on the finest level. The nested iterations produce a very good
initial guess on the finest grid. The number of iterations on the grid where an
iteration step is expensive are reduced at a cost which is almost negligible. The
influence of the nested iterations on the overall method is not only restricted to
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Figure 3.2: Convergence curve of Newton’s method without the nested itera-
tions, i.e. on a fixed grid. Most of the computing time (up to 90%) is spent in
the searching phase where the residual barely drops.

Level | Ny x Ny Newton | Newton + NI || Speedup
0 24 x 2 2.56e-01
1 48 x 4 1.19¢+00 5.43e-01 2.2
2 96 x 8 4.49¢+00 1.71e+00 2.62
3 192 x 16 || 7.41e+01 1.41e+01 5.25
4 384 x 32 || 8.01e+02 1.30e+02 6.16

Table 3.1: Comparison of the cumulative CPU times for the method with and
without the nested iteration strategy (NI). By a simple procedure the comput-
ing time can be reduced significantly.

a speedup. In fact finding a starting value on a very coarse grid is much easier
than on a fine grid since the attempts are less CPU intensive and the system is
easier to solve. Further, once a converged solution on the coarse grid is found,
no user interaction is needed to compute the solution on the finer levels.
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Level | Ny x Ny || % CPU Time
0 24 x 2 0.15
1 48 x 4 0.22
2 96 x 8 0.90
3 192 x 16 9.53
4 384 x 32 89.2

Table 3.2: Percentage of the computing time spent on each level with respect
to the total execution time. Only 10% of the total computing time is spent in
the computation of the initial guess.

3.3 Validation of the Code

We validate our code in three different ways. First we check that the predicted
order of accuracy is obtained. Secondly, we analyze the error of the angle
between grid lines and the arc-length with respect to consistent values of the
solution of the Cauchy—Riemann equations (2.52), see section 2.7. In section
3.3.2 we present results for the third type of validation, the so called “recovery
problem”. In the recovery problem we solve the flow equations by means of
a commercial flow solver on a geometry found by the inverse method. The
validation consists in comparing the specific massflow distribution found by
the flow solver with the one we imposed to the inverse design tool.

3.3.1 Numerical Study of the Order of Accuracy

The first step in the validation of the code is a numerical study of the conver-
gence rate. We consider a rotational flow through a constant radius bend, for
which an exact solution can be given

x(o,¥) = sin(o) exp(% + 1) 3.17)
y(o,¥) = cos(o) exp(% + 1) —exp(l) (3.18)
d = 2 (3.19)

1
plo, ) = — (3.20)

exp(y +2)
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Ny x Ny L norm
Discr. Error | Factor
5x5 4.38e-02

10 x 10 1.12e-02 391
20 x 20 2.80e-03 4.00
40 x 40 7.02e-04 3.99
80 x 80 1.76e-04 3.99
160 x 160 4.40e-05 3.99
320 x 320 1.10e-05 3.99

Table 3.3: Discretization error and convergence rate of the numerical method
in the maximum norm. The second order of convergence is clearly recogniz-
able.

The inlet boundary conditions are

14
To(y) = Q¥ +3)exp(¥ +2) (3.21)
(v +17/3)°
22— 22
po(¥) T (3.22)
a(y) = 0, (3.23)

while at the outlet and along the side walls we prescribe the specific massflow

m(y) = 2exp(—(% + 1)). (3.24)

On a Ny x Ny grid we measure the discretization errors in the maximum norm

lellz> = max I1Xi.j — X(oi, ¥j)lleo (3.25)

where X = (x, y, p, ®) is the vector of the unknowns and || - |« is the usual
maximum norm of a vector.

The results of the numerical study of convergence are summarized in Table
3.3. The second order of convergence can be easily seen. The theoretical
predictions of section 3.1 are confirmed.

The choice of the scaled Laplace equations system (2.58) instead of the
Cauchy—Riemann equation (2.52) is very favorable from the numerical point
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Orthogonality Arc-length
No x Ny MDO Factor || L®®—Error | Factor
5x5 1.11e-03 3.62¢-02

10 x 10 1.97¢-04 | 5.62 9.81e-03 3.68
20 x 20 2.81e-05 | 6.99 2.55e-03 3.85
40 x 40 4.18e-06 | 6.72 6.52¢-04 391
80 x 80 6.29¢-07 | 6.65 1.66e-04 3.94
160 x 160 || 8.84e-08 | 7.11 4.18e-05 3.96
320 x 320 || 1.19¢-08 | 7.40 1.05e-05 3.98

Table 3.4: Convergence rate of the MDO and of the arc—length.

of view but unfortunately one loses a—priori the orthogonality of the grid and
the equivalence of the arc—length with the stretching factor

W =dJ = |x 1. (3.26)

In order to analyze these potential problems we introduce two standard mea-
sures of the quality of an orthogonal grid [22] [21] [53]. We define the maxi-
mum deviation from orthogonality MDO and the mean deviation from orthog-
onality ADO as

MDO = max|> -6l (3.27)
ij 2 :
1 T
ADO = = =0 3.28
(Nn+1><N¢,+1);'2 & (328
where
Xy 'X]I,
cos(f) = ———. (3.29)
1% 1%y |

In Table 3.4 is it shown that the deviation from the orthogonality of the grid
lines and the error in the definition of the arc—length are very small and they
tend to zero as the grid is refined. Therefore in the limit, the solutions satisfy
the original system of the Cauchy—Riemann equations (2.52). Notice that the
convergence rate of the MDO is higher than the theoretical one of 2.

More significant results can be obtained by studying the MDO and ADO
for the benchmark problem of section 4.1.1 and [43] [15]. The results are
summarized in Table 3.5.
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No x Ny ADO Factor MDO Factor
48 x 4 6.93e-04 8.77e-03
96 x 8 2.35e-04 | 2.95 3.13e-03 | 2.80

192 x 16 6.95¢-05 | 3.38 9.55e-04 | 3.27

384 x 32 1.90e-05 | 3.65 3.15e-04 | 3.04

768 x 64 4.99¢-06 | 3.81 1.05e-04 | 3.02

1536 x 128 1.28-6 3.90 3.27e-05 | 3.19

Table 3.5: MDO and ADO convergence behavior for the Laval nozzle problem
(cf. section4.1.1).

We notice that the ADO converges at almost the theoretical rate while the
reduction factor for the MDO is of only about 3.

3.3.2 The Recovery Problem

The validation of a simulation code consists in a numerical study of the order
of convergence, consisting in the comparison of the numerical solution with
an exact one, and in the case of complex flows, in the comparison with ex-
perimental data. The validation of an inverse method has one more stage: the
recovery problem.

The recovery problem addresses the following question: given a geometry
found by and inverse method from a prescribed specific massflow distribution,
will a simulation with an “external” flow solver recover the imposed specific
massflow distribution?

We consider as a benchmark the Laval nozzle problem described in section
4.1.1, a slight modification of a test case of the EUROPT project on “Optimum
Design Methods in Aerodynamics”. In a first step, an inverse computation is
carried out with a prescribed specific massflow distribution along the side wall.
The resulting geometry (and grid) is used in a second step for a simulation of
this configuration with the flow solver NSMB [23]. In Figure 3.3 we compare
the specific massflow distribution along the upper wall of the nozzle found by
NSMB with the one prescribed in the inverse computation. The agreement is
good, as confirmed by the plot of the relative error shown in Figure 3.4.

The inverse design method is therefore validated.
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Figure 3.3: Comparison of the specific massflow distribution computed by
NSMB (dashed line and squares) with the prescribed (solid line). The compu-
tations are carried out on the grid found by the inverse design tool.
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Figure 3.4: Relative error in the specific massflow distribution along the up-
per wall of the Laval nozzle.
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Level Direct Inverse
1 4.35e-01 | 2.56e-01
1.67e+00 | 1.17e+00
1.40e+01 | 1.24e+01
1.01e+02 | 1.16e+02

S W N

Table 3.6: Comparison of the CPU time spent on each level for a direct and an
inverse computation. The differences are in the order of 30% and the method
can be said to be single—pass.

Level | Ny x Ny || Nr. BICGStab lter. | Nr. Newton Iter.
Direct | Inverse Direct | Inverse

0 24 x 2 9 5 5 5

1 48 x 4 39 31 3 3

2 96 x 8 64 64 3 3

3 192 x 16 139 145 3 3

4 384 x 32 229 269 3 3

5 768 x 64 502 449 3 3

Table 3.7: Detailed comparison of the execution of the code in a direct and
an inverse computation. No significant differences exist in the performance.

3.4 Performance of the Code

In this section we evaluate the performance of the code. The industrial back-
ground of this work defines the goals in terms of performance of the program.
A designer is interested is assessing the quality of many designs in a short
time. A very high accuracy is not required. The code must therefore run on a
workstation and must yield results in about 1-2 minutes for typical grid sizes.
Computationally intensive simulations are done only at advanced stages of the
design.

The computations have been carried out on a Sun Ultra—Enterprise work-
station with a peak performance of 10 MFlops/second.
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3.4.1 Inverse vs. Direct Computations

We described in the introduction different approaches to the design problem.
Since most of them are built upon a standard flow solver, the coupling to the
geometry is weak and its update is done in an iterative way. This is very
similar to a block Jacobi iteration and therefore converges very slowly. In
practice an increase in computing time of a factor 5-10 in not uncommon.
In this section we show the true single-pass character of our method, where
single-pass means that the geometry is part of the solution and that there is
almost no difference in the computing time for a simulation run and a design
run.

The single-pass property is shown in Table 3.6, where we compare the
execution times for the inverse and direct mode of the code. The difference in
CPU time lies in the range of about 30% and thus our approach can be said to
be truly single-pass. In Table 3.7 a comparison of the number of iterations of
the linear solver and the number of Newton iterations is presented. We notice
that the inverse mode of the code is, in some cases, a little faster.

Some recent research by Troxler [57] shows that every flow solver can be
extended to be a single-pass inverse design tool provided that the flow equa-
tions and the grid generation equations are solved in an implicit and coupled
way. The poor convergence behavior of many inverse methods in the literature
is therefore due to the bad coupling between flow solver and geometry update.

3.4.2 Comparison of Different Solution Strategies

It is a common belief that the construction of the Jacobi matrix and of the
preconditioner for the linear system are two of the most computationally ex-
pensive parts of a Newton—Krylov method. We present in this section two
possible optimizations, and discuss whether they are really effective or not.
In the first case we do not build a new preconditioner every step. The second
attempt to optimize the code is done by freezing the Jacobian of the system,
leading to a simplified Newton method. In the last part of this section we
compare the execution times of our Newton solver with a completely differ-
ent solver for the inverse Euler equations: the Recursive Projection method
developed in [56].




50 Chapter 3. Discretization and Numerical Method

Level | Ny x Ny CPU(s) Speedup
Direct Inverse Direct | Inverse
0 24 x 2 1.21e+00 | 1.76e-01
1 48 x 4 2.46e-01 2.84e-01 1.76 0.91
2 96 x 8 1.03e+00 | 1.31e+00 1.62 0.89
3 192 x 16 || 1.091e+01 | 1.36e+01 1.28 091
4 384 x 32 9.86e+01 | 1.25e+02 1.03 0.93

Table 3.8: Computing times for Newton method with frozen preconditioner.
The speedup is to be understood with respect to the basic algorithm and its
execution times given in Table 3.6.

Frozen Preconditioner. Building the preconditioner is in general a time
consuming operation. In this section we would like to understand the influ-
ence of this step in the overall efficiency of the code. To this end we built the
preconditioner only in the first Newton step and we froze it for the remaining
iterations. The timing results are presented in Table 3.8. In the direct case the
code is marginally faster. Unfortunately, in the much more interesting case of
an inverse computation the code slows down by about 10%. This amounts to
the increased number of iterations needed for the linear solver.

Frozen Jacobi Matrix. A simplified Newton method is characterized by the
fact that the the Jacobi matrix is not computed in every step. The drawback is
that in general the convergence rate deteriorates to first order. To be precise,
our implementation of the simplified Newton method consists in computing
the Jacobian only in the first two iterations on a given level. This is motivated
by the fact that the linear interpolation between levels will not represent cor-
rectly some of the derivatives. Comparing Table 3.9 with Table 3.6 we see that
the simplified Newton formulation is 5% — 10% faster than the standard New-
ton formulation in the inverse case, while a speedup of about 10% — 30% can
be obtained in the direct case. Further, by comparing the convergence curves
in Figure 3.1 and 3.5 we see that the fast convergence is not destroyed by the
frozen formulation.

The Recursive Projection Method. Troxler in his diploma thesis [56] [47]
developed an iterative solver for the inverse Euler equations based on a nonlin-
ear, collective Gauss—Seidel iterative solver accelerated by a deflation strategy
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Level | Ny x Ny CPU(s) Speedup
Direct Inverse Direct | Inverse
0 24 x 2 1.58¢-01 | 1.49e-01
1 48 x 4 3.07e-01 | 2.37¢-01 1.42 1.08
2 96 x 8 1.26e+00 | 1.05¢+00 1.32 1.1
3 192 x 16 || 1.04e+01 | 1.20e+01 1.34 1.03
4 384 x 32 || 8.94e+01 | 1.11e+02 1.13 1.05

Table 3.9: Computing times for Newton method with frozen Jacobian. The
speedup is to be understood with respect to the basic algorithm and its execu-
tion times given in Table 3.6.

Level | Ny x Ny Newton RPM Speedup
0 24 x 2 2.56e-01 | 4.16e-02 0.02
1 48 x 4 2.87¢-01 | 2.33e-02 0.08
2 96 x 8 1.17e+00 | 1.69e+00 1.44
3 192 x 16 || 1.24e+01 | 1.55e+01 1.25
4 384 x 32 || 1.26+e02 | 1.88e+02 1.49
Table 3.10: Comparison of the execution times of RPM from [56] and of the

Newton solver
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Iteration Nr.

Figure 3.5: Convergence curve for the simplified Newton method. The evolu-
tion of the logarithm of the residual on five nested grids is shown.

called Recursive Projection Method (RPM) [50] {7]. In Table 3.10 we com-
pare the execution times of the RPM solver and of the Newton method on each
level of the grid hierarchy. The Newton scheme is about 1.5 times faster than
the RPM code. This consideration, together with the fact that the components
of our method are standard and hence of easier use for the non—expert, show
that the proposed Newton solver is competitive and can be used in practice.

3.5 Conclusions

We presented a simple, yet effective and efficient numerical method for the
solution of the inverse Euler equations. The limitation of the inverse Euler
equations to smooth subsonic flows, drives the choice of the finite differences
discretization. The Newton solver is greatly enhanced by the coupling with
the nested iterations. There is a substantial gain in both speed and robustness.
The code can be made marginally faster by reducing the computational cost
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associated with the construction of the Jacobian (and in some cases of the
preconditioner); the robustness suffers marginally from these simplifications
since it is more difficult to find a converged solution on the coarsest level.
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Chapter 4

Numerical Results

In this chapter we present a gallery of shapes found by our inverse design
method. We focus on the different aspects of our method, i.e we show that it
can handle a fixed geometry in the same way as a standard simulation tool, as
well as a fixed wall and an inverse wall, where the fixed wall can be thought
as being a constraint or that it can design both walls from a specific massflow
distribution. We present the results in increasing order of difficulty. We begin
with two dimensional potential flows, then step to rotational flows to end with
the (three dimensional) axis—symmetric case. In the last section we present
two parametric studies for a typical configuration of a diffuser in a gas turbine.

4.1 Numerical Results for Potential Flows

Potential flows represent the simplest model of a flow. The governing equa-
tions are particularly simple because the integrals of motion are constant not
only along streamlines but also across the flow. They are interesting for a first,
coarse design and in some cases are very useful as an initial guess for the
corresponding rotational problem.
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4.1.1 Laval Nozzle

We consider a potential flow through a Laval nozzle. This kind of nozzle is
often used in wind tunnels. A possible application of our inverse method is
to improve the quality of the flow in the testing part of the wind tunnel. This
example is a benchmark test case of the EUROPT Project [43].

The reference (inlet) Mach number is 0.2. The uniform inlet conditions
are normalized in such a way that

u=1,T=1p=1. @1

We consider two different classes of problems. In both cases the lower wall of
the nozzle is given by the equation

y =0. (4.2)

The first test case consists in a direct computation where the upper wall is
prescribed and the we look for the flow. The upper wall is given by

% forx <2andx >4
3

4,
*§+%sin(7r(x—%)) for2 <x <4 .3)

yi(x) =

The resulting flow pattern is shown in the two lower pictures of Figure 4.1.
We recall that the grid consists of iso~lines of o and ¥ and coincides with the
direction of the flow.

The second case consist in an inverse computation where we impose a
given specific massflow distribution along the upper wall instead of fixing the
geometry. We choose the following specific massflow distribution

forx <2ando >4

mi(o) = { 5 — %cos(n(o —2)) for2 <o <4 44)

(STl

We recall that because of the isentropic relations (2.72)—(2.74), to prescribe
a specific massflow distribution is equivalent to the prescription of a pressure
distribution. In Figure 4.1 we present the shapes and density contours for both
examples. We recognize that the shape arising from the inverse computation is
smoother than the one given for the direct computation. This is due to the fact
that the specific massflow is found by computing the derivative of the shape
mapping x(o, ¥), see (2.70), and therefore by integration we find a smoother,
in this particular case C? shape.
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Figure 4.1: Density contours and shape of the two Laval nozzles, on top in
the case of the inverse computation, on the bottom in the direct one.

4.1.2 Channel Flow

We present a two dimensional elbow channel, whose inlet Mach number is
0.4. The specific massflow distribution along the walls has a transition from 1
at inlet to 0.5 at outlet, therefore the area ratio of the diffuser will be 2. The
specific massflow distribution along the walls has the form

1 forog <2
m(o) = 5 foro >4
% + % cos(5(0 —2)) =+ %(0 —2)(c —4) otherwise

4.5)
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Figure 4.2: Specific massflow distributions along the side walls for the elbow
channel. The corresponding geometry can be found in Figure 4.3

where the sign + (—) corresponds to the lower (upper) wall. The specific
massflow distributions along the diffuser walls are presented in Figure 4.2.
In Figure 4.3 we see the orthogonal grid generated by the iso-lines of o and
Y. The shape of the specific massflow distributions is taken from [11] and
[10], where similar specific massflow distributions are used to design blades
without considering the leading edge or its stagnation point.

4.2 Numerical Results for Rotational Flows

Rotational flows are characterized by the presence of entropy or enthalpy gra-
dients across the flow. In the inverse formulation of Crocco’s theorem

0y H — T L (1 (4.6)
— 5§ = — o .
v vs =270\ 77

the left hand side cannot be dropped, nor (4.6) integrated explicitly as in the
potential case.

Rotational flows are relevant since usually the flow after the compressor or
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Figure 4.3: Geometry of the two dimensional channel generated from the spe-
cific massflow distributions of Figure 4.2. The iso-lines of ¢ and  generate
an orthogonal grid.

turbine stages is not uniform and therefore the assumption of a potential flow
is plainly wrong.

4.2.1 Laval Nozzle

We consider a rotational flow through a Laval nozzle. The rotational effects
are given by the non—uniform total quantities at inlet, in particular we pre-
scribe

po = 18.3633 (4.72)
To = 1.008+0.2(1—y)y (4.7b)
o = 0. (4.7¢)

The lower wall is kept fixed by y = 0 and the profile of the upper wall is
implicitly defined by the specific massflow distribution

forx <2ando >4

— Lcos(n(c —2)) for2<o <4 (4.8)

my(o) = {

(SIS
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Figure 4.4: Outlet pressure distribution for the rotational Laval nozzle.

The total massflow ¥, is 0.5. The outlet boundary condition is given by the
pressure distribution of Figure 4.4. This pressure distribution corresponds to a
constant outlet specific massflow m,, () = 1. The resulting shape and density
contours are given in Figure 4.5.

4.3 Axis-Symmetric Flows

Axis—symmetric flows are of practical interest for the design of gas turbine.
In this section we present first the results for a diffuser and then show how our
inverse method can be used to evaluate different configurations of a turning
diffuser such as the one connecting the compressor to the combustion cham-
ber.




4.3. Axis—-Symmetric Flows 61

Level 1 2 3 4 5 6 7 8 9 10
RHO: 0.830 0.901 0.912 0.923 0.934 0.945 0.956 0.967 0.978 0.989

7 7
g
-ﬁ&_& A Y

Figure 4.5: Geometry of the Laval nozzle with prescribed specific massflow
distribution along the upper boundary (rotational case). The orthogonal grid
is shown in the top picture, while in the lower picture the density contours are
plotted.

4.3.1 Diffuser

We design an axis-symmetric diffuser. The flow is irrotational and the inlet
Mach number is 0.8. By normalizing the field quantities by their inlet (refer-
ence) values we find that

To = 1.128, po = 1.70127. (4.9)

Further at the inlet we set « = 0, C = 0. The lower wall is defined by r = |
while the upper wall should generate the massflow distribution

1 foro <2

m,(o) = % foro >4 . (4.10)
24 3cos(Z(o —2)) for2<o <4
8 8 2

The outlet massflow is %, The computational domain is [0, 6] x [0, 1.5], thus
the total massflow through the diffuser is 1.5. The grid size is 128 x 32. The
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Figure 4.6: Shape of the axis-symmetric diffuser. Plotted are the contour lines
of the Mach number with AM = 0.028 starting form M = 0.770.

resulting diffuser can be seen in Figure 4.6.

We would like to point out that most of the examples are constructed in
such a way that they show interesting features in the geometry, even if a con-
figuration such as the one in Figure 4.6 surely generates a separation bubble in
the opening part of the diffuser due to the strong curvature and the big opening
angle.

4.3.2 Parametric Studies of an Elbow Channel

We close the gallery of examples by two parametric studies of an elbow chan-
nel. The device under consideration is an idealization of the diffuser con-
necting the compressor to the combustion chamber in a gas turbine. A three
dimensional view of this, supposedly, axis—symmetric configuration is given
in Figure 4.7 (actually this is the view of one of the diffusers found later on).
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Figure 4.7: 3D view of the axis—symmetric (curved) diffuser. A similar con-
figuration is used to connect the compressor to the combustion chamber is an
axial gas turbine.

We consider an axis—symmetric flow, whose inlet Mach number is 0.4.
The external wall of the channel is kept fixed by the algebraic equation f(x,r) =
0, where

r—1 forx<2andr <3
fx,r)y=1 (x =22+ —35)2-625 forx>2
r —6 otherwise
.11
The outlet specific massflow is set to 0.3.

In the first case, the distribution of the specific massflow along the internal
wall is given by the function

1.0 foro <oy
m(o) = 03 foro >o0p+5 . (4.12)
0.65+0.35 cos(5 (0 —op)) otherwise
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Figure 4.8: Shapes of the elbow channel for oy = 2,3,4,5, 6 (from left to
right). oo gives the position of the transition between low and high pressure.

oo is the parameter defining the position of the transition between the two
constant pressure (or specific massflow) states.

The first parametric study is based on changing the value of oy. The rea-
soning behind this is that for a given diffuser and given pressure rise there
are different ways to achieve the pressure rise. Since the slope of the spe-
cific massflow distribution is limited by the occurrence of separation, we are
left with one parameter which will determine the position of the transition be-
tween the low and high pressure. In Figure 4.8 we compare the shapes of the
diffusers arising from the choices o9 = 2,3, --- , 6, while in Figure 4.9 we
present the Mach number contours in the different cases.

In the second parametric study we keep the position of the transition fixed
but we allow for different pressure gradients, possibly in the real case ranging
in a domain where no separation occurs. The specific massflow distribution
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Figure 4.9: Mach numbers iso-lines at different design points. The different
positions of the transition between the two pressure levels are clearly recog-
nizable.

along the internal wall is given by

1.0 foro <4
m(o) = 0.3 foro >4+ Ao
0.65+ 0.35 cos(i=(0 —4)) otherwise

. (4.13)

where Ao is the width of the non—constant part of the given specific masstlow
distribution. We notice that Ao drives the maximal magnitude of the gradient
of the specific massflow distribution. A plot of m(o) for various values of
Ao is given in Figure 4.11. We recall that the target—pressure problem was
motivated by the fact that one would like to avoid separation in a viscous flow,
it is therefore of great interest to know how the form of a diffuser changes in
dependence of the specific massflow (or pressure) gradient. The results are
presented in Figure 4.12 and 4.10.

4.4 Conclusions

The numerical examples of this chapter give a better feeling of the possible
applications of the inverse method developed in this thesis. It seems to the
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Ac=2

Figure 4.10: Density contours for Ao = 2,4,7, and comparison of the
shapes for various pressure gradients. The contour lines show the variation
of the width of the transition zone in dependence of Ao.

author that the parametric studies based on changing the main characteristic of
the boundary pressure distribution can be very useful for devising new designs.

From a mathematical point of view, Figures 4.8 and 4.12 suggest that the
shape of the domain depends in a continuous way from the boundary data.
The inverse shape design problem is well-posed even though it is an inverse
problem.
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Figure 4.11: Distribution of the specific massflow along the boundary
parametrized by Ao (Ao = 2,3,4,5,6,7, from left to right). The result-
ing shapes are shown in Figure 4.12.

Figure 4.12: Shapes of the elbow channels for different pressure gradients
(Ao =2,3,4,5,6,7, from left to right).
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Chapter 5

Advanced Flow Models in
Inverse Coordinates

The nature of turbomachinery flows is not as simple as the axis—symmetric
flow model of chapters 2 and 3. Unsteady, viscous and fully three dimen-
sional effects are present and strongly influence the behavior and the perfor-
mance of the turbine. Anyway, an accurate simulation of all flow phenomena
exceeds the needs and the resources of the designer, since in the design and
optimization process the requirement in computing power increases by orders
of magnitude with respect to plain simulation. The topic of this chapter is to
present a more detailed flow model, which can handle some of these effects,
but which retains the computational complexity, and the structure of a two
dimensional method.

For the aerodynamic design only steady flows make sense, since it is not
feasible to design the casing of a turbine which adapts itself to the underlying
time dependent flow.

One of the main concerns of a designer is to reduce the losses of the tur-
bine. These losses have many causes, such as frictional losses at the walls
and losses due to the presence of shocks in a blade row. Further losses can be
caused by secondary flows, leakage and wakes. The reliability of the predic-
tions and the quality of the design is strongly affected by these phenomena,
and therefore they need to be taken into account. Since a simulation resolv-
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ing all the effects is not practicable, simplifications are made, for example
the leakage effects are incorporated in the boundary layer. In this chapter we
present two methods for handling the viscous losses, the distributed loss model
and the boundary layer method. These two strategies are complementary, the
distributed loss model can be used to simulate the losses due to a shock be-
tween the blades, while the boundary layer method is to be preferred for the
evaluation of the boundary layer effects.

The interest in the reduction of the dimensionality of the problem comes
from the fact that the full three dimensional character of the flow cannot be
incorporated in the framework of the inverse Euler equations as seen in sec-
tion 2.4, For an almost axis—symmetric flow an alternative, and in practice
sufficiently accurate description is given by a quasi—three—dimensional (Q3D)
model. The Q3D flow equations are widely used in the design of the compo-
nents of a gas turbine. The Q3D flow model consists in a set of passage aver-
aged equations with source terms to incorporate the 3D effects. These source
terms are found either by a blade-to—blade computation or by measurements.
This model is very attractive and widely used in the design process of diffusers
since it gives accurate predictions at a low computational cost.

In this chapter we extend the range of applicability of the basic inverse
design tool described in the chapters 2 and 3. In section 5.1 we extend the
axis—symmetric inverse Euler equations (2.83) to incorporate the Q3D effects
such as blade blockage and the deflection of the flow caused by the presence
of blades. A novel inverse formulation of the Q3D equations is presented. In
section 5.2 we describe the distributed loss model, which is the mechanism
for considering viscous and shock—induced losses in the Q3D equations. A
more detailed description of the boundary layer losses and development can
be given by an integral boundary layer method. This is the topic of section
5.3.

5.1 Quasi-Three-Dimensional Flow Model

The quasi-three—dimensional (Q3D) flow model predicts the averaged flow
in a device. It can be derived by averaging the flow equations in cylindrical
coordinates over the angular variable 6. This results in a set of equations in
the meridional plane or Sy—surface, where the deviation from the mean flow
is taken into account by source terms which depend on the spatial fluctuations
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of the flow around its mean value. The spatial fluctuations express the three
dimensional character of the flow and can be either found from a blade—-to—
blade computation in the tangential S|—surface or derived from experiments or
simply neglected. This model is widely used in the turbomachinery industry
because the averaging reduces the number of independent variables by one,
while the calibration of the source terms allows for very accurate prediction
of the losses.

Since a fully three dimensional description of the flow is not possible in the
framework of the inverse Euler equations (see section 2.4), we present a novel
inverse formulation of the Q3D flow equations in the framework developed by
Keller [36].

In the next sections, we summarize the three steps in the derivation of
the inverse form of the Q3D equations. In section 5.1.1 we present the flow
equations in the physical space, in section 5.1.2 we define the inverse coordi-
nates while the inverse formulation is described in section 5.1.3. A numerical
example follows in section 5.1.4.

5.1.1 Passage Averaged Equations

The passage averaged Euler equations are found by integrating the three di-
mensional Euler equations over the angular variable 6. The equations are then
rewritten in terms of passage averaged and density weighted averaged vari-
ables. In this section we recall the basic definitions of the averaging procedure
and present the passage averaged Euler equations.

In an (x, r, 8) cylindrical system of coordinates the three dimensional Eu-
ler equations are

dx (rpu) + 0, (rpv) + 9 (pw) =0 (5.1a)
3, (rpu2> + 3, (rpuv) + 3 (puw) = —rdep (5.1b)
dy (rpuv) + 0, (rpvz) + dp (pvw) — ,ow2 = —ro,p (5.1¢)

oy (rouw) + 9, (rpvw) + dg (pwz) + pvw = —dyp (5.1d)

ud,H +vo, H+ wogH = 0. (5.1e)
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Figure 5.1: Blade row and meridional surface on which the Q3D equations
hold.

These are the equations stating the conservation of mass (5.1a), of momentum
(5.1b)~(5.1d) and of energy (5.1¢). The unknowns are the axial, radial and az-
imuthal velocities u, v, w, the density p, the pressure p and the total enthalpy
H=c,T + %(u2 + v? 4+ w?) where T is the temperature and cp is the heat
coefficient at constant pressure. The equations are closed by the equation of
state

p = pRT. 5.2)

We consider a channel containing stationary blades such as those in Figure
5.1 or 5.2 and average (5.1) over 6 from the pressure side 6,(x, r) of the
blade to the suction side 6, (x, r). The integration is carried out on surfaces of
revolution.

In order to write the passage averaged equations we need to introduce
the passage average A of the quantity A with corresponding perturbation A’
defined as
1

65 — 6p

8, _
A= / AdO A=A+ A, (5.3)

6p
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and the density weighted average A

12 pAdo

20 7T
fo,f pdo

A= JA=A+ A", (5.4)

The perturbations of a density weighted averaged quantity are denoted by A”.

The advantage of introducing two distinct averages is that in this way a
passage averaged continuity equation without perturbation terms can be de-
rived. In particular, the definition of a stream—function satisfying the passage
averaged continuity equation is possible. A discussion on the various averag-
ing strategies can be found in [32] and [31].

The passage averaging consists in integrating (5.1) over a surface of revo-
lution from the pressure side to the suction side of the blade [35]. This results
in the passage averaged equations

dx (Brpu) + 8, (Brpv) =0 (5.5a)
~y o~ o~ o~ 1 —
uoxu + Vo, = ——0d¢p+ Py (5.5b)
19
~2
o~ ~a o~ W7 1 —
UO U+ V0,0 — — = —%B,p-{-P, (5.5¢)
r
~ ~ o~ ~ l——
Uoy (rw) +vd, rw)y =——=rogp+r~ky (5.5d)
0
W0 H +70,H = Py (5.5¢)
The blade blockage term
N
B=— (6 —8,) (5.6)

is the non dimensionalized circumferential spacing between the blades. N
is the number of blades. An example of the form of B, based on the blades
depicted in Figure 5.1, can be seen in Figure 5.2. The averaging procedure
produces source terms depending on the perturbations of the velocity field.
Their explicit form is

P, = ——1; (3x (Brm) +8 (BrW)) (5.7a)
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e~

ac (Brouwv") + 8, (Brp(v")? +(i”12- (5.7b)
g5 (o< (Br7e7) + 0 (Bro07?)) + 2

= (8 (Brpu”w ) + oy (BrW)) + v (5.7¢)
Py = _% ( (BrpH” ) +a (BrﬁW)) (5.7d)

The perturbation terms are usually computed from a blade—to—blade compu-
tation. Given their lower order effect and the difficulty of interpreting them
in inverse coordinates, they are neglected in the subsequent algebra and in the
numerical examples.

A closer look to (5.5) reveals that we did not work out the averaging of the
pressure gradients terms such as

dx p- (5.8)

In the framework of the inverse Euler equations, the pressure gradient is trans-
formed by means of the first law of thermodynamics (2.17) to a combination
of total enthalpy and entropy gradients. The algebra required for the deriva-
tion of Crocco’s form of the passage averaged equations is more involved.
Two possibilities to handle the pressure gradient term and to derive a Crocco’s
formulation are discussed.

Straightforward averaging of (5.8) as in [35] leads the following passage
averaged momentum equations (the perturbation terms are omitted)

~n o~ e~ | S
Uoxu +v0,u = ——0op+ Fpy (5.9a)
0
e WP 1, _
U0+ 03, v — — =—=0,p+ Fp., (5.9b)
r P
Woy (rw) + 00, rw) =rFpyg (5.9¢)

where the blade forcing terms

N , ,

Fix = 5= (Plats = Pty (5.100)
N , /

For= 5o (Pioc6s = p)o,6)) (5.10b)
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N
Fpo = —— < - /) , 5.10
B0 = 5 Bs \Pp T s (5.10c)

have been introduced. The blade forces are responsible for the deflection of
the flow by changing the angular momentum C = rw.

This formulation of the Q3D equations can be rewritten in Crocco ’s form
by introducing an averaged first law of thermodynamics

Tds = c,dT + L ap. (5.11)
17
or equivalently by defining the entropy of the averaged flow by
§=cylog (%) (5.12)
D

Perturbation terms occur in Crocco’s form of the flow equations, since the
entropy of the averaged flow § in (5.11) and (5.12) does not coincide with
the density weighted average of the entropy 5. In particular § is not constant
anymore along the averaged streamlines. Under the assumption that these per-
turbation terms can be neglected, Crocco’s form of the momentum equations
for the averaged flow (5.16) follows by the algebra presented in section 2.2

A more formal derivation [32] of the Crocco form of momentum conser-
vation for the averaged flow can be found by the substitution

Vp=p(c,VT —TVs), (5.13)

where exceptionally the gradient is three dimensional, V = (9, d,, 89)7, and
then applying the averaging procedure. It follows

— ~ o~
—dp = (cpd T — T0,5)
D

N
- T/ 0.6, — pyT"3,0 )

2;1356”(’9‘ s Oxbs = pplp 0x0p )+ (5.14)
oy (pj Tos!d.6s — pp T,,s;;axe,,)
+ Ox

where A8 = 6, — 6, and Q is the perturbation term, which will be neglected.
For the radial component a similar formula, with 3, instead of 3., holds, while
in the tangential direction we get

I — N
00p = = (P = P})- (5.15)
D 2rBp \"° P
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Inserting (5.14) and (5.15)into (5.5) yields Crocco’s form of the passage
averaged equations

~ o~ C_~ i~
VH-TV§ - SVC=u'3+F, (5.16)
r
Under the simplifying assumption that all perturbation terms can be neglected,
and thus just keeping the blade forces arising from entropy and tempera-
ture differences between pressure and suction side, the forcing term F =
FBlades = (FB.x, Fp.r)" is found to be

R ([pc,,T”Bx@]';, - [pfs”axe]-;,) (5.17a)

For=5ge ([,oc,,r”a,e]-;, - [pfs”are];) (5.17b)
Fpo=—(p — ) 5.17

B9~ 2nrBp (p,, Ps (>.17¢)

where [A]';, = Ay — A denotes the jump across the blade.

The choice of neglecting the perturbation terms reflects the difficulty of
prescribing the perturbations terms Q =-(Qy, O, 06)7 in inverse coordi-
nates and the fact that they induce lower order effects.

The two derivations of Crocco’s formulation of the passage averaged equa-
tions lead formally to the same result (5.16), the difference consisting in the
explicit form of the blade forces. The blade forces (5.10) are used in the in-
dustry, while (5.17) is to be preferred in the framework of the inverse Euler
equations since it is directly related to the entropy and total enthalpy.

We consider now the energy equation (5.5¢) and notice that the total en-
thalpy of the averaged flow, defined as

N ~ 1 2 ~ 2
A =c,T+ 3 (@02 +®+@?) (5.18)

does not coincide with the average of the total enthalpy H appearing in (5.5¢).
The exact relation between H and H is

S h L (L Ton .
H_H+2((u)+(v)+(v)). (5.19)

These perturbation terms are neglected in the energy and Crocco’s equation.
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A transport equations for the entropy of the mean flow can be derived
by the averaging procedure used above and then neglecting the perturbation
terms. The entropy § is seen to satisfy

73cS + 70,5 =0. (5.20)

Again we substitute to the averaged entropy 5 the entropy of the averaged flow
§. The corresponding perturbation terms in Crocco’s equation are discarded.

In the framework of the inverse Euler equation Crocco’s equation (5.16)
is dotted by the velocity in the meridional plane § = (%, 7)7 and by U+ =
(v, —u)T to get the final formulation of the passage averaged equations

3¢ (Brpi) + 0, (Brpd) =0 (5.21a)
~1 TNl s 6~J_ ~ ~i2~  ~1
u -VH—-Tu-Vs — su~ -VC = |ufj‘o+u -F (5.21b)
2 .

70,C +73,C =rFgy (5.21¢)
S C. _~
Ho.H+793,H=u-F+ =u-VC (5.21d)

2
HoeS + 79,5 =0, (5.21¢)

where @ = 9,V — 0,11

The right hand side of (5.21d) can be rewritten with the help of (5.21¢) as

~

~ C. _~ - ~ ~
u-F+—-u-VC=uFp,+vFp,+wFpp=0 (5.22)
r

since the blade forces are perpendicular to the velocity vector.

To summarize, the passage averaged equations are derived by assuming
that the integration is done on surfaces of revolution, by neglecting all pertur-
bation terms and by introducing the entropy and the total enthalpy of the mean
flow. The resulting set of equations is very similar to (2.83) and a framework
for their transformation in an inverse form exists, see chapter 2.

5.1.2 Inverse Coordinates and Transformation Rules

The Q3D flow equations are similar to the axis—symmetric equations (2.83);
the difference consists in additional source terms. For the derivation of the
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Q3D inverse Euler equations we follow the steps outlined in chapter 2. Most
of the algebra is skipped and only the differences outlined.

The definition of the stream—function needs to be modified to take into
account the blockage term B. In order to automatically satisfy the equation of
mass conservation (5.21a) we define

viy = Brpu (5.23)

where V4 = (3,, —3,)7. We notice that the stream~function ¥ defined in
(5.23) is constant along the walls of the channel, independently of their shape
even in the case of B 7# 1. We define the natural coordinate as being the
coordinate along the streamlines of the averaged flow

~

u
[[af]

The inverse coordinates (o, ¥) enjoy the same properties as in the planar and
axis—symmetric case. In particular the grid generated by the mapping

x=x(o,¥)andr =r(o, ) (5.25)

is orthogonal and streamline aligned. The algebra needed to derive the Q3D
inverse Euler equations makes use of the transformation rules

1
orBJ

u-V=

0 (5.26a)

2

i V=
prBJ=

3y (5.26b)

and of the meridional specific massflow—geometry equation

2

m? = 7 = (5.27)
=l rBJ) '
The determinant of the Jacobi matrix of the transformation assumes the form

J =xgry —xyts. (5.28)
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5.1.3 Q3D Inverse Euler Equations

The formulas of section 5.1.2 allow us to state the inverse Q3D equations. The
mass conservation is dropped and we get

f o~ C_  ~ 1 h? J
dyH—Toys — 509,C = a( )——F-xi (5.29a)
r

orBJ Y \5rBi | K2
3,C = pr’BJFp (5.29b)
dH =0 (5.29¢)
3,5=0 (5.29d)

It is remarkable that the equations for the geometry do not change

J h*
B ;z—zar,x + 3y 7a¢x =0. (5.30)

The system of partial differential equations (5.29)—(5.30) is called quasi-three—
dimensional inverse Euler equations.

The structure of the Q3D inverse Euler equations is very similar to the
axis—symmetric or 2D equations. In particular only the inverse form of Croc-
co’s theorem is modified in order to take into account the blockage and the
defection of the flow arising from the presence of blades. Surprisingly enough
these effects can be handled with simple changes to the basic equations. In
the same way as in a normal CFD code, where for Q3D effects the core solver
must not be changed, in the inverse formulation, the “core” consisting in the
scaled Laplace equations (5.30) does not change.

5.1.4 Numerical Example

The Q3D flow model introduces new effects which influence the shape of the
diffuser. We consider a diffuser with inlet Mach number 0.4 whose lower wall
1s kept fixed at r = 1. Along the upper wall we impose the specific massflow
distribution

foro <2
foro >4 | (5.31)
+ %cos(%(a —2)) elsewhere

m(o) =

BlA|— —
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Figure 5.2: Tangential view of the blade row and corresponding blockage
Sunction (dashed line). A three dimensional view of the configuration is given
in Figure 5.1.

In the region 2 < o < 4 we introduce four blades, which are represented in
Figure 5.2. The corresponding blockage function is shown in Figure 5.2 too.

A comparison of the shape of the diffuser with and without blades is shown
in Figure 5.3. Figure 5.3 allows to appreciate the strong dependence of the
shape of the diffuser on the continuity equation. In the presence of blades,
the distance in circumferential direction between the walls of the channel
decreases. Therefore, in order to fulfill the continuity equation the channel
designed with the Q3D model must be higher than the corresponding axis—
symmetric duct. This effect is clearly recognizable in Figure 5.3.
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Figure 5.3: Comparison of the shapes of a diffuser with and without blades.
The upper line is the Q3D design, which takes into account the restriction of
the channel in the region with blades.

5.2 Distributed Loss Model

Our flow model can handle Q3D inviscid flows, but there is still no model
for the losses occurring in the channel. A typical and widespread model for
the losses in internal and channel flows, particularly in turbomachinery ap-
plied in conjunction with the averaged Q3D flow model, is given by a so
called distributed loss model, which consists in assuming that the effects of
the shear stresses are equivalent to the action of a distributed force. This force
is mainly constructed from empirical data; correlations are available for many
typical flows in turbomachinery. The motivation for the use of a distributed
loss model comes from the fact that a flow in a turbine is so complicated that
the simulation of all the effects (three dimensionality, unsteadiness, influence
of the viscosity, leakage, etc.) is prohibitively costly and certainly not suited
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for the design stages where many configurations must be evaluated in a short
time. In our Q3D model of the flow the losses are considered on a global basis.
We could for example prescribe a drop, between inlet and outlet of the total
pressure by 10 % without taking into account the exact mechanism and the
location of these losses. At the Q3D level of approximation, there is therefore
no point in considering the exact structure of the losses and so the losses can
be modeled by a forcing term. Our flow model remains basically inviscid, but
is not isentropic anymore, since the entropy variation along a streamline will
be connected to the energy dissipation.

5.2.1 Flow Model

We present in this section the main idea of the distributed loss model by means
of the two dimensional Euler equations, since this simplifies the notation. In
Appendix A we present the complete distributed loss model for the Q3D ap-
proximation.

We consider Crocco’s form of the momentum equations for a viscous flow
(30]

1
VH -TVs =utw + ;div(r) (5.32)

where T is the shear stress and the divergence acts on the rows of the ten-
sor. The corresponding energy equation with heat diffusion and kinetic energy
losses reads

div(puH) = div(kVT) + div(t - u), (5.33)

where k is the thermal conductivity. By dotting (5.32) with u we derive the
equation for transport and production of the entropy

Tou-Vs =V .(kVT)+ (t-V)-u. (5.34)

The distributed loss model is based on the following two assumptions

o the heat diffusion compensates the kinetic energy losses
div(kVT) 4+ div(t -u) = 0 (5.35)

This relation holds for flows at Prandl number of one. It is not valid in
complex flows such as wakes but it remains still a useful approximation.
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A more severe assumption would be to neglect the heat diffusion and to
assume that
div(z -u) =0. (5.36)

This assumption does not hold in regions near the walls. We describe
in section 5.3, a boundary layer method that can be coupled to the dis-
tributed loss model in order to take into account the viscous losses near
the walls.

¢ The shear stresses can be modeled by a distributed force Fy responsible
of the overall entropy increase in the flow

divt = pF,. 5.37)

F; is the only responsible of the entropy production.

Under these assumptions, the entropy equation (5.34) is modified to
Tu-Vs=—u-F,. (5.38)

We further simplify (5.38) by assuming that the distributed force acts only
in the direction opposite to the local velocity vector w. Thus there exists a
positive scalar function F7 such that
u
Fr=—-—F. (5.39)
flall
The final form of the entropy-production equation is found by inserting (5.39)
into (5.38)
Tu-Vs = |u||F;. (5.40)

The complete flow equations under assumptions of the distributed loss model
are

dx(pu) + 0y (pv) =0 (5.41a)

ulw=VH—TvS+ﬁF, (5.41b)
u

u.-VH =0 (5.41¢)

Tu-Vs = |u||F;. (5.41d)

The flow equations under the the distributed loss model (5.41) are similar to
the flow equations considered in section 2.2. The difference consists in the
occurrence of an external force, responsible for the entropy generation, in
Crocco’s equations and in the entropy equation.
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The inverse formulation of (5.41) is again found by taking ut - (5.41b)
and applying the transformations of section 2.5. Since

vt L E =0 (5.42)
llull
the inverse form of Crocco’s equations, with and without the distributed loss
model, coincide.

The inverse form of the entropy production equation is
Toss =hF;. (5.43)

Since F7 is positive , the entropy increases along the streamlines. In the case of
a non—uniform friction force F; an irrotational flow at inlet becomes rotational
because of the different levels of entropy on each streamline, see figure 5.5.

The inverse Euler equations with the distributed loss model have the same
boundary conditions as the inverse Euler equations without the loss model,
since only an external force has been added.

5.2.2 Distributed Forces

The distributed loss model is not closed until we specify the form of the fric-
tional force F;. The accuracy of the results depends on how much experi-
mental information is used for the derivation of the forcing term. There are
different models for F7, such as the specified pressure loss method, the speci-
fied skin friction coefficient approach and the eddy viscosity model [18].

We describe a simple loss model which allows to take into account the
losses generated in a shock and in a less accurate way by the boundary layers.
For the latter an integral method is preferred, see section 5.3. The idea is
to impose a static pressure loss along the streamlines. The static pressure is
assumed to vary linearly with the meridional distance from the inlet. In order
to have a linearly varying static pressure, F; must depend only on ¥ and not
ono.

Further, in order to simulate the boundary layer effects, i.e. concentrate
the losses in the near-wall regions, we use a loss term of the form
2“)[, 'n
v/max

Fr = Apmid + (Apyall — Apmi)|1 — : (5.44)
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Figure 5.4: Distributed forces are used to simulate viscous effects. For grow-
ing n, the losses are concentrated near the walls, in a way similar to a bound-
ary layer.

where Appiq and Apy,qy) are the static pressure drop in the middle of the
channel, respectively along the walls. If Apy. > Appid an increasing
value of n concentrates the losses near the walls, as seen in figure 5.4.

5.2.3 Numerical Example

We consider again the exhaust diffuser of section 5.1.4. The viscous losses are
modeled by a distributed force of the form

2y I, (5.45)

Fr = Apmid + (Apwall — APmid)|1 —
‘.‘//’ndx

with the the numerical values

Apmid = 0.08 , Apyap = 0.15. (5.46)
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Figure 5.5: Entropy contours in the exhaust diffuser. An increase of 5% of the
entropy has been reached by adding a frictional force to the entropy transport
equation (5.43).

The outlet specific massflow distribution has been modified to
Moutlet(¥) = 0.83(¥ — 0.85)% + 0.58 (5.47)

to take into account that the outlet, atmospheric, pressure is constant.

The resulting geometry with the entropy contours is given in figure 5.5.
The computation has been carried out on a 160 x 40 grid. The concentration
of the viscous losses near the walls is clearly recognizable. At first it might
be strange that the outlet wall is not vertical. Because of the orthogonality of
the grid, we are not allowed to prescribe the position and shape of the outlet
surface. It automatically adjusts in order to combine the requirements of a
prescribed specific massflow and of the orthogonality of the grid.
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5.3 Boundary Layer Computations

Inviscid flow models are important and useful in the first stages of the de-
sign process, where big changes in the geometry are expected. The ultimative
goal of the design, i.e. the reduction of the losses and an increased perfor-
mance of the device, cannot be reached nor assessed without considering the
viscous dissipation. In many cases a complete description of the flow given
by the solution of the full Navier-Stokes equation is not necessary. When the
recirculation regions are small or absent, simpler and computationally less ex-
pensive methods can be applied. These methods consists in a zonal approach,
1.e. the domain is divided into an inner and an outer region. In the outer re-
gion, the viscous effects are neglected and the inviscid Euler equations used.
In the inner, boundary layer region, a simplified version of the Navier-Stokes
equations that still retains some viscous terms, is used.

The boundary layer method adds the following properties to our inverse
design tool.

fictitious walls: because of the no-slip boundary condition, there is less mass-
flow passing through the boundary layer for the real viscous profile than
there would if an inviscid profile existed. By considering a modified,
“displaced” inviscid wall, the same massflow near the wall as in the real
viscous case can be generated. From the definition of the displacement

thickness §*
c_ pu
8 =/ 1 — dn, (5.48)
0 Pelle

where the subscript . denotes the variables on the boundary layer edge,
follows that the two shaded patches in figure 5.6 have the same area.
Therefore an inviscid profile

pu:{o forn <34

pette forn > §* (5.49)

has the same massflow near the wall as the viscous profile. §* is the dis-
tance, viscous effects appear to displace the inviscid flow from the wall.
When the displacement thickness becomes large, the effective shape of
the walls is quite different from the physical shape of the walls and the
flow pattern must be recomputed. In the case of the inverse design we
assume that the prescribed specific massflow distribution determines the
shape of the inviscid domain, and that the displacement induced by the
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Figure 5.6: Schematic view of the definition of the displacement thickness of a
boundary layer. The two shaded areas are the same. The actual inviscid com-
putational domain is displaced by a distance §* in the direction perpendicular
to the wall denoted by the coordinate 1.

boundary layer can be added to it in a postprocessing step, see section
5.3.2. It is a very favorable property of the inverse design method that
the inviscid computation and the boundary layer computation are totally
decoupled. In the case of a fixed wall an implicit treatment is needed.
The details can be found in section 5.3.2.

control of separation: we motivated the target—pressure—problem by the at-
tempt to avoid a separating flow, but we never discussed how such pres-
sure distributions can be obtained. The boundary layer method can an-
swer this question as the ordinary differential equations of the boundary
layer method become singular at a stagnation point, and hence at the
beginning of the recirculation zone.

evaluation of the diffuser: after a new design is proposed, it must be evaluated
and in particular the losses must be predicted. A boundary layer method
gives, for non separated flow, accurate predictions of the viscous losses
at a reduced computational cost.



5.3. Boundary Layer Computations 89

Neither the solution of the full Navier—Stokes equations nor of Prandl’s bound-
ary layer equations is necessary to address these three points. We present in
the next section a two equation integral method for boundary layers. The next
section is a mere collection of formulas and can be skipped by the reader in-
terested more in the ideas than in the details. In this case, the main point is that
the integral method is just a black—box for finding the displacement thickness
and hence for finding the effective inviscid walls.

5.3.1 Integral Method

The global features of the boundary layer, such as the displacement thickness
or the viscous losses, can be described in an economical way by an integral
method.

An integral method is derived by integrating Prandl’s boundary layer equa-
tions over the boundary layer [49] [48]. Following [19] we use a two equation
integral method which consists in the integral momentum equation

de 0 du Cy
—tQ+H-MHE =L 5.50
do +2+ e)ue do 2 (5.30)
and in the kinetic shape parameter equation
dH* 6 du, Cy
o 2H*™ 4+ H*(1 — H))— =2Cp — H*—. 5.51
do +( + ( )) u, do b 2 ( )

The coordinate ¢ is a coordinate aligned with the wall. The definitions of the
symbols arising in (5.50) and (5.51) are shown in table 5.1. In the boundary
layer method the flow variables at the edge of the boundary layer p., M., u,
are assumed to be known from the computation of the inviscid flow field. In
particular the velocity gradient ‘i,‘; drives the development of the boundary
layer and the generation of separation. Equations (5.50) and (5.51) are solved
for 6 and H™.

Many of the variable introduced in (5.50) and (5.51) and in table 5.1 de-
pend on the density and on the velocity field inside the boundary layer. It is
therefore necessary to assume that the velocity has a special form, such as the
Falken—Skan profile [49]. Closure relations and correlations for a Falken-Skan
profile can be expressed as

H —0.290M?

5.52
1+ 0.113M2 (©-22)

k=
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density on the boundary layer edge

velocity on the boundary layer edge
Mach number on the boundary layer edge

wall shear stress

viscosity on the boundary layer edge
momentum thickness Reynolds number

displacement thickness
momentum thickness
density thickness

kinetic energy thickness
shape parameter

kinetic shape parameter
density shape parameter
skin—friction coefficient

dissipation coefficient

Table 5.1: Quantities arising in the two equation integral method (5.50) and

(5.51).

Cy

Reg— =

R€9

2

2Cp

H*

(4—Hy)*
b =1.515+o.076H—‘} for Hy <4

1515 +0.04045°  for . > 4

~0.067 +0.01977 Z3=Ek for Hy < 7.4
2
~0.067+0.022 (1 = g45)"  for Hy > 7.4
0.207 + 0.00205(4 — Hy)>3  for Hy < 4
0.207 — 0-m3ﬁ1§ffﬁ€zﬁ for Hy > 4
0.064 )
H* = —""_ 10251 | M2
(Hk 08 " ) ¢

(5.52b)

(5.52¢)

(5.52d)

(5.52¢)

The closure relations (5.52) hold for laminar flows. The corresponding rela-
tions for turbulent flows can be found in [19]. Hy is the kinetic shape param-
eter defined with the density taken constant across the boundary layer. There-
fore (5.52a) represents the correction needed to handle compressible flows.

At Hy = 4 the relation between H* and Hj becomes singular. In this case
separation occurs and the equations cannot be integrated further.
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5.3.2 Viscous-Inviscid Coupling

In this section we address the problem of coupling the inviscid flow field com-
puted by the inverse method of chapters 2 and 3 with the fictitious inviscid
walls found by the boundary layer method of section 5.3.1.

In the literature, two ways of coupling the viscous and the inviscid flow
model have been devised.

direct coupling: In the direct coupling the inviscid flow equations are solved
and the pressure at the wall is used as input quantity for computing the
boundary layer development. From the solution of the boundary layer
equations the displacement effects (see figure 5.6) can be computed and
the effective shape of the domain (for the inviscid core of the flow) can
be found. Since the effective shape does not coincide with the original,
the procedure is repeated until convergence is reached. The iterative
procedure is known to converge slowly [60]. A full coupling of the two
set of equations is more effective [63] and is simple to implement in our
framework. We present the details of this approach later in this section.

inverse coupling: In the inverse boundary layer method the thickness of the
boundary layer is specified and the velocity distribution along the bound-
ary layer edge is found by solving the boundary layer equations (5.50)
and (5.51). An inviscid inverse design tool can be applied to find the
shape of the inviscid core. The overall shape is found by adding the
given displacement to the inviscid shape. In this case the boundary
layer computation is totally decoupled (!) from the inviscid compu-
tation, therefore only a preprocessing step is needed to find the correct
velocity distribution. For this reason this method has not been explicitly
implemented.

In the specific case of our inverse flow solver, the viscous—inviscid cou-
pling is treated in two different ways according to the type of boundary con-
dition imposed.

inverse wall: the thickness displacement §, computed by the integral method,
is added to the shape resulting from the inverse computation

X
Xyiscous wall = Xinviscid T ¢ I’ (5.53)
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where —xh is the normal to the wall. As already pointed out in this

Ix

case the two flow models are independent. The coupling consists in
the pressure distribution (or in the flow speed) along the edge of the
boundary layer. Given this quantity, the two problems can be solved

independently.

fixed wall: the pressure distribution along the wall is in this case a—priori not
known, and depends on the whole flow field. The streamline along the
edge of the boundary layer is found by adding the displacement thick-
ness to the shape of the wall. Therefore it holds

Xy
f (Xfirst streamline — ‘Sm) =0, (5.54)

where f(x, y) is the algebraic equation defining the shape of the wall.

The integral momentum equation (5.50) and the kinetic shape parameter
equation (5.51) are discretized by the trapezoidal rule, which is A—stable and
hence does not have any problems with the stiffness of the integral equations
(5.50) and (5.51) for high Reynolds numbers.

In order to avoid the convergence problems related with an iterative proce-
dure continuously switching between flow solver and boundary layer method,
we solve the equations for the core flow and for the boundary layer in a cou-
pled way with the Newton solver described in section 3.2.

5.3.3 Numerical Example

We demonstrate the influence of a thick inlet boundary layer on the shape of
a planar diffuser. We consider a Mach number 0.2 flow at a Reynolds number
of Re = 9.7 - 105, The inlet boundary layer thickness is about 10% of the
channel height. This is reasonable for an exhaust diffuser in a gas turbine,
when the actual boundary layer and the leakage effect are taken into account.
The lower wall is kept fixed by the boundary condition y = 0, while on the
upper wall we prescribe the specific massflow distribution

foro <2

1’
m(o) = =2 555
@) {%m otherwise ( )



5.4. Concluding Remarks and Outlook 93

The specific massflow distribution is plotted in figure 5.7, while in figure 5.8
we compare the inviscid solution (lower picture) and the solution from the
viscous—inviscid method.
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Figure 5.7: Specific massflow distribution along the boundary layer edge on
the upper wall of the diffuser. The resulting geometry is shown in figure 5.8.

5.4 Concluding Remarks and Outlook

In this chapter we presented some flow models in inverse coordinates to over-
come, at least in part, the impossibility to have a fully three dimensional design
tool based on the inverse coordinates (o, ¥, n).

The quasi—three—dimensional equations usually used for the simulation
and design in industry have been rewritten in an inverse form and applied to
the design of a diffuser with stationary blades. The most evident changes im-
posed by the quasi—three—dimensional equations regard the continuity equa-
tions. Changes in the width of the channel can be taken into account in the
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Figure 5.8: Two dimensional laminar boundary layer in a diffuser. The spe-
cific massflow distribution along the edge of the boundary layer of the upper
wall is plotted in figure 5.7.

shape of the diffuser. The deflection of the flow due to the blades is with less
influence on the shape, but still important for the accurate prediction of the
flow. The deflection manifests itself in a change of the angular momentum.
The influence of the perturbation terms is neglected because of the difficulties
in prescribing them in inverse coordinates: one does not know a—priori how to
prescribe the perturbation in function of o and .

The inverse formulation of the quasi-three dimensional flow equations ex-
tends all previously available single—pass methods based on natural (or inverse
or intrinsic) system of coordinates.

Since the viscosity plays an important role, its effects are introduced in our
inverse equations by means of a distributed force, responsible for the entropy
production and by means of a boundary layer method. These two strategies
are complementary since the distributed loss model can be used to simulate
shock—induced losses between blades, while the boundary layer method is
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better suited for the evaluation of the effects of viscosity in the near—wall re-
gions.

The coupling of an inverse method with a boundary layer method is al-
ready present in the literature [1], while the inverse formulation of the dis-
tributed loss model is basically new. Our inverse design tool presents more
features than the previously available design tools of the same type.

Stressing “of the same type” in the last sentence is not casual. The inverse
method based on standard Euler or Navier—Stokes solvers can handle much
more complex flows, in particular three dimensional turbulent flows in a blade
row. The trade-off between flow complexity and execution speed must be
carefully assessed in every specific design problem, but it seems a promising
direction in the research to work towards the extension of existing flow solvers
to single—pass inverse methods.

Flow design optimization [25], i.e. optimization of the flow based on an in-
verse method, as opposed to shape optimization, is further an interesting topic
in the situation where a flow of “good quality” is sought. In this case, the re-
duced computational requirements of our method are interesting for coupling
an optimization procedure with the inverse method and its adjoint formula-
tion to find the sensitivities. More complex constraints such as a prescribed
outlet surface or only bounds on the pressure (opposed to a given pressure
distribution), could then be handled.
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Appendix A

Distributed Loss Model

The distributed loss model presented in section 5.2 can be extended to quasi—
three—dimensional flows by incorporating a component in 6 direction of the
frictional force G;.

We consider a frictional force G; = (Fr.x, Fr.r, Fr.(-))T responsible for
the entropy generation in the flow. The three dimensional Euler equations in
cylindrical coordinates are augmented by the external force G

oy (rpu) + 9, (rpv) + d (pw) =0 (A.la)
Oy (rpuz> + 0y (rpuv) + 09 (puw) = —royp+rpfFr (A.1b)
dy (rpuv) + 0, (rpvz) + dg (pvw) — pw2 =—ro,p+prkr, (A.lc)

Oy (rpuw) + 8, (rpvw) + dy (pwz) +pvw=—-dgp+prFp (A.ld)

uorH +vo, H + wopH =0 (A.le)

Passage averaging and transformation to Crocco’s formulation yields

dy (Brpu) + 0, (Brpv) =0 (A.2a)
e, Cox ~
VH —-TVs — —EVC =uw+Fg+F,; (A.2b)
r
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#8,C +73,C =r (Fpo + Frp) (A2c)
7o H +78,H =0, (A.2d)

where f; = (1‘::( s I"‘:,)T represents the components of (TT in the meridional
plane, and F g has the same meaning as in section 5.1.1.

The entropy transport equation is derived by dotting (A.2b)by & = (i, 7)7
and inserting (A.2c) and (A.2d)

—T8-Vsi=1% -F, + 5F,. (A.3)

Under the distributed loss model assumption, G; is a vector anti—parallel

to the velocity vector v = (u, v, w)T. Thus there is a positive function F;
such that v

G, =—-——F,. (A4)

vl

The entropy production equation (A.3) can therefore be rewritten as

TU -V = V| F,. (A.5)

The transformation to inverse coordinates is straightforward and gives

[ | R?

O h—za,,x + 3y 78¢x = (A.6a)
dy H —Toys L, ’ 535 J(F+F”) L (A.6b)
- 5 - - = = —— X .

v VT eBI Y \GrBr) 2% K2 R
8:C = priBJ(Fp.o+ Frp) (A.6¢)
WwH=0 (A.6d)
T .
—— 3,5 = ||[V||F, (A.6e)
prBJ

The right hand side of (A.6e) can be rewritten in inverse coordinates with
the help of the expression

2 ~\ 2

=)+ () A7
vl _(ﬁrBJ) (r> : (A7)

The description of the distributed loss model in the case of a quasi-three—
dimensional flow is complete.
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