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Abstract

In this report� we suggest interval diagram techniques for formal veri�cation of
timed automata� Interval diagram techniques are based on interval decision diagrams
�IDDs��representing sets of system con�gurations of� e�g�� timed automata�and
interval mapping diagrams �IMDs��modeling their transition behavior� IDDs are
canonical representations of Boolean functions and allow for their e�cient manipu�
lation� We present the methods necessary for our approach and compare its results
to another� similar veri�cation technique�
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Chapter �

Introduction

Especially for safety�critical applications like those in tra�c control� medical engi�
neering� or avionics� simulation often is not su�cient to guarantee the correctness
of a technical system�s model� Additionally� formal methods are employed to veri�y
the system behavior and to determine timing properties� Several approaches exist
to model timing behavior� mostly derived from conventional �nite state automata
which are expanded to describe timing properties of the transition behavior� As one
of the most universal ones� Alur and Dill have proposed timed automata �AD����
represented by state�transition graphs with timing constraints using �nitely many
clocks�

In �MP���� Maler and Pnueli describe a possible application of timed automata
for modeling asynchronous circuits� The digital circuit considered is transformed
into a timed automaton re�ecting timing behavior aspects such as uncertainties in
gate delays and input arrival times� The constructed automaton may be used for
formal veri�cation or timing analysis� Besides reachability analysis� formal veri�ca�
tion comprises real�time symbolic model checking� i�e�� checking the satisfaction of
timing properties expressed in one of various real�time temporal logics� Timing con�
straints on input signals may be inferred or delay characteristics required in order
to meet some given behavioral speci�cations may be calculated�

The most severe restrictions on formal veri�cation of timed automata result from
resource limitations� i�e�� computational power and memory� Formal veri�cation
such as reachability analysis of timed automata may be performed using di�erence
bounds matrices �DBMs� �Dil��� to represent clock regions during computation� as
explained later on� As DBM methods often fail for large models� other approaches
have been proposed using di�erent kinds of region representations� For instance�
numerical decision diagrams �NDDs� �ABK���� BMPY���� a derivative of binary
decision diagrams �BDDs� �Bry��� have been employed successfully�

Interval diagram techniques�using interval decision diagrams �IDDs� and inter�
val mapping diagrams �IMDs��have shown to be convenient for formal veri�cation
of� e�g�� process networks �ST��a� or Petri nets �ST��b�� often providing advantages
regarding computation time and memory resources� In this report� interval diagram
techniques are applied to formal veri�cation of timed automata� We present the used
interval diagrams and veri�cation techniques and compare their runtime behavior






CHAPTER �� INTRODUCTION 	

with that of the NDD approach� In Section 	� timed automata and their analysis
are summarized� We brie�y present IDDs and IMDs in Section �� Section � explains
how formal veri�cation of timed automata may be performed especially using in�
terval diagram techniques� while Section � presents experimental results concerning
this� Finally� Section  gives a short summary�
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Timed Automata

Figure 	�
 shows an example timed automaton� It may be used to model two
independent non�deterministic input oscillators of which the pulse widths are known
only in certain time ranges� First� we give a brief and informal introduction to timed
automata� They will be de�ned formally later on�

C1≥1/C1:=0

C1≥2/C1:=0

v1=0

C1≤2

v1=1

C1≤5

C2≥3/C2:=0

C2≥1/C2:=0

v2=0

C2≤5

v2=1

C2≤4

Figure 	�
� Example timed automaton�

The automaton of Figure 	�
 has four locations depicted by circles and two
clocks C� and C� which we suppose to be set to � at the beginning� The product
of the locations of the partial automata results in four discrete states q � Q with
q � �v�� v�� and Q �

�
��� ��� ��� 
�� �
� ��� �
� 
�

�
� Starting with the con�guration

�q� C�� C�� �
�
��� ��� �� �

�
� representing the entity of discrete state and all clock

values� time progresses and makes the values of C� and C� increase uniformly� The
automaton is allowed to stay in a certain location as long as the corresponding
staying condition�depicted in the lower part of each location�is satis�ed� The
guards at the transitions represent conditions which have to be ful�lled to enable
the respective transition� If a transition is taken� given clocks are reset to ��

��� The Timed Automaton

Timed automata are completely de�ned and described in �AD���� In this section�
we use the following de�nitions analogous to �ABK����� Bold�face letters are used

�
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to denote vectors in R
d � i�e�� v stands for �v�� � � � � vd� where vi � R for i � 
� � � � � d�

For u�v � R
d � u � v denotes that ui � vi for i � 
� � � � � d� A set S � R

d is said to
be monotonic i� for every u � R

d satisfying u � v� v � S implies u � S�
Gqq� denotes the subset of the clock space satisfying the transition guard from q to

q� �� q� while Gqq represents the set of clock values satisfying the staying condition
of q� The number of clocks is denoted by d� For timed automata� Gqq� and Gqq

are restricted to be k�polyhedral subsets of Rd�sets resulting from the application
of set�theoretic operations to half�spaces of the form fv � vi � cg� fv � vi � cg�
fv � vi � vj � cg� or fv � vi � vj � cg for some integer c � f�� � � � � kg� Such sets
are called regions and constitute the region graph �AD��� of which the properties
underlie all analysis methods for timed automata� Rqq� � Rd � R

d is the reset
function associated with q and q�� setting some of its arguments to � while leaving
the others intact�

Without loss of generality� the timed automata considered are restricted as fol�
lows�


� At most one transition is associated with every pair of locations�

	� the clock space is ��� k�d as the clock values are bounded by k�

�� Gqq� is convex for every q� q� � Q� and

�� Gqq is monotonic for every q � Q�

Any timed automaton may be easily transformed into one satisfying these properties�
K denotes the interval ��� k� for dense time or the set f�� � � � � k� 
g for discrete

time� z� t stands for z� t ��� where � � �
� � � � � 
� is the d�dimensional unit vector�

De�nition �	�	� 
Timed Automaton� A timed automaton is a triple A �
�Q�Z� �� such that

� Q is a discrete state set�

� Z � Kd is the clock space �Q	 Z is the con�guration space�� and

� � � Q	Z � 	Q�Z is the transition relation admitting the following decomposi�
tion� For every q� q� � Q� let Gqq� � Z be a k�polyhedral monotonic set and let
Rqq� � Z � Z be a reset function� Then� for every con�guration �q� z� � Q	Z�

��q� z� �
n
�q�� z�� � 
t � K such that �z� t � Gqq �Gqq�� �

�
z� � Rqq��z� t�

�o
�

�	�
�

��� Time Forward Projection

The application of the transition relation ��q� z� results in the set consisting of
all con�gurations reachable from �q� z� after waiting some time t �which may be
zero� and then taking at most one transition� The process of waiting before the
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possible discrete transition is called time forward projection and de�ned as a function
� � 	Z � 	Z with

��P � � fz� t � z � P� t � Kg � Z� �	�	�

�q� P � denotes subsets of Q	Z of the form fqg	P where P is k�polyhedral� All
subsets of Q	 Z encountered in the analysis of timed automata are decomposable
into a �nite union of such sets� Functions on elements are extended to functions on
sets in the natural way� e�g�� �

�
�q� P �

�
�
S

z�P ��q� z� and Rqq��P � �
S

z�P Rqq��z��
With P� � ��P � � Gqq and Pq� � Rqq��P� � Gqq�� for every q�� the immediate

successors of a set of con�gurations �q� P � are denoted as

�
�
�q� P �

�
� �q� P�� 

�
q� ��q

�q�� Pq��� �	���

Figure 	�	 shows the con�gurations reachable after up to one transition of each
partial automaton of Figure 	�
� The state q � �v�� v�� corresponding to each of the
three regions is given� Beginning with the initial state q� � ��� �� and con�guration
�q� C�� C�� � �q�� �� ��� time is projected resulting in the oblique line in the �gure�
restricted by C� � 	� This corresponds to the time forward projection ��P ���Gq�q�

of the initial clock region P � �
�
�C�� C�� � C� � C� � �

�
� restricted by the staying

condition of q�� For C� � 
� C� may be reset to � by taking the transition from
v� � � to v� � 
� The result of this is depicted by the bold line at the left border of
the dark�shaded trapezoid� The set of immediate successors �

�
�q�� P ��

�
consists of

the union of the sets of con�gurations corresponding to both lines mentioned above�
Projecting time up to C� � � yields the complete trapezoid for �
� ��� Resetting C�

for C� � � and projecting time results in the light�shaded trapezoid for �
� 
��

(0,0)

(1,1)

(1,0)

1 2 3 4 5 C1

1

2

3

4

5

C2

0
0

Figure 	�	� Con�gurations reachable �rst�
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Interval Diagram Techniques

For formal veri�cation of� e�g�� process networks �ST��a� and Petri nets �ST��b��
interval diagram techniques�using interval decision diagrams �IDDs� and interval
mapping diagrams �IMDs��have shown to be a favorable alternative to BDD tech�
niques� This results from the fact that for this kind of models of computation� the
transition relation has a very regular structure that IMDs can conveniently repre�
sent� While BDDs have to represent explicitly all possible state variable value pairs
before and after a certain transition� IMDs store only the state distance�the di�er�
ence between the state variable values before and after the transition� Especially for
models with large numbers of tokens� this approach is reasonable and useful� IDDs
are used to represent state sets during computations� IDDs and IMDs are presented
in detail in �ST��b�� In this report� we only give a brief� informal summary of their
structure and properties and the methods required�

��� Interval Decision Diagrams

IDDs are a generalization of BDDs and MDDs�multi�valued decision diagrams
�SKMB����allowing diagram variables to be integers and child nodes to be as�
sociated with intervals rather than single values� In Figure ��
� an example IDD is
shown� It represents the Boolean function f�u� v� w� � �u � �� � �v � � � �u �
�� � �w � �� with u� v� w � ������

Equivalent to BDDs� IDDs have a reduced and ordered form� providing a canon�
ical representation of a class of Boolean functions�which is important with respect
to e�cient �xpoint computations often necessary for formal veri�cation� Methods
such as the If�Then�Else operator ITE are de�ned similar to their BDD equivalents
and may be computed as usual for decision diagram applications using a computed
table to improve performance�

��� Interval Mapping Diagrams

IMDs are represented by graphs similar to IDDs� Their edges are labeled with
interval mapping functions f � I � I mapping intervals onto intervals� where I
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u

0

v

w

1

[4,∞)[0,3]

[0,5]
[6,∞)

f

[0,7]

[8,∞)

Figure ��
� Example interval decision diagram�

denotes the set of all integer intervals� The graph contains only one terminal node�
In general� IMDs are not canonical� However� this means no restriction for the
considered kind of application�

The most important subclass of IMDs are predicate action diagrams �PADs� of
which the mapping functions are either shift functions

f��I� �

�
I � IP � IA if I � IP �� �
� � otherwise

or assign functions

f��I� �

�
IA if I � IP �� �
� � otherwise

�

where IP is the predicate interval� IA the action interval� and � stands for interval
addition as usual�

The combination of predicate and action interval parameterizes the mapping
function and completely de�nes its behavior� Figure ��	 shows an example PAD�
The syntax IP� � IA is used for the shift function f� and IP� � IA for the assign
function f�� The shift about I � �a� b� in reverse direction corresponding to interval
substraction is achieved by addition of �I � ��b��a� � IA and is denoted as IP��I�

With regard to transition relations� PADs work as follows� Each edge is labeled
with a condition�the predicate interval�on its source node variable and the kind
and amount of change�the action operator and the action interval�the variable is
to undergo� Each path represents a possible state transition which is executable if
all edges along the path are enabled�



CHAPTER �� INTERVAL DIAGRAM TECHNIQUES �

u

v

1

–[2,2]

–[1,1] +[0,1]

T

ww

v

[2,∞)/

=[3,4]

–[1,2] +[1,4]

[4,∞)/ [0,∞)/

[0,∞)/ [2,∞)/

[0,6]/

=[0,0]
[0,5]/

Figure ��	� Example predicate action diagram�
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Formal Veri�cation of Timed

Automata

In this report� we consider only reachability analysis of timed automata� It is per�
formed by iterated application of the transition relation as described in Section 	�	
until reaching a �xpoint� The techniques are directly adaptable for real�time sym�
bolic model checking�

For instance� �HNSY��� considers model checking of timed automata using the
real�time logic TCTL over dense time� �ACD��� is similar with regard to timed
graphs� �CC��� describes symbolic model checking of timed transition graphs �TTGs�
over discrete time using the logic CTL augmented by a bounded until operator�

Only discrete time represented by integer clock values is considered here�
�ABK���� introduces a discretization scheme transforming dense�time models into
discrete�time ones and thus allowing analysis using� e�g�� NDDs�

��� Using Di�erence Bounds Matrices

Di�erence bounds matrices �DBMs� as introduced in �Dil��� may be used for formal
analysis of timed automata� DBMs are square matrices of bounds representing con�
vex polyhedra canonically� Unfortunately� non�convex polyhedra� especially unions
of convex polyhedra as arbitrary clock regions used in formal veri�cation� have no
canonical representations using DBMs� but have to be represented� e�g�� by lists of
matrices instead� Thus� equivalence testing during �xpoint computation becomes
more and more di�cult and expensive as the system model grows� Furthermore�
DBMs may not easily be combined with symbolic representations of discrete system
states�

��� Using Numerical Decision Diagrams

Essentially� numerical decision diagrams �NDDs� �ABK���� are nothing else than
BDDs representing sets of integer vectors� The integer elements are coded binarily
using �standard positional encoding�� The sets to be represented may be described

�
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using conjunctions and disjunctions of unequations on integer variables� similar to
IDDs� As the binary encoding requires an upper variable value bound� only �nite
sets may be described in contrast to IDDs� Nevertheless� this is no limitation with
respect to formal veri�cation of timed automata�

In contrast to DBMs� NDDs may be used as canonical representations of arbi�
trary clock regions� �ABK���� provides a method for formal veri�cation of timed
automata using NDDs� While it is based in the main on conventional BDD tech�
niques such as Boolean operations� time projection requires a new algorithm using
binary modulo substraction� It is brie�y described as a recursive procedure for for�
ward time projection of only one clock� but obviously may be expanded for more
than one�

��� Using Interval Diagram Techniques

Analogous to above�mentioned models of computation� interval diagram techniques
are suitable for formal veri�cation of timed automata due to similar reasons�
Discrete�valued clocks may be regarded as particular integer state variables of which
the values increase simultaneously when time progresses� Integer time forward pro�
jection may be performed by repeated and simultaneous incrementation of all clock
values about a time distance of 
� depending on the actual system state and thus
similar to state distances�

Similar to NDDs� IDDs allow for canonical representations of arbitrary clock re�
gions which is important concerning �xpoint computations� Moreover� they provide
a suitable combination with symbolic representations of the discrete part�

Unlike other approaches� our�s does not distinguish between time projection and
discrete state transitions� Conventionally� both computation stages are performed
alternately� First� starting with an initial con�guration� time is projected to de�
termine all con�gurations reachable from the inital one by only progressing time�
Thereafter� all possible state transitions are performed concurrently� etc� In contrast
to this� using interval mapping diagrams allows for a conjoint transition behavior
consisting of partial time projection�increasing time by one time unit�and dis�
crete state transitions at the same time� This is performed using image computation
as for conventional reachability analysis� As previous investigations have shown�
this seems to be signi�cantly superior to the alternate way with respect to interval
diagram techniques� Although more �xpoint iterations are necessary� each one is
essentially cheaper than otherwise�

To achieve this� we use a modi�ed transition relation �� � Q	 Z � 	Q�Z with

���q� z� �
n
�q�� z�� � �z � Gqq �Gqq�� �

�
z� � Rqq��z�

�o

n
�q� z� �� � z� � � Gqq

o
���
�

instead of �	�
�� This transition relation e�ectively performs either at most one dis�
crete state transition with respect to the argument con�guration or time projection
of about exactly one time unit�
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We replace �	�	� by using a bounded time forward projection e� � 	Z � 	Z

de�ned as

e��P � � fz � Z � z � P � z� � � Pg� ���	�

After rede�ning eP� � e��P � � Gqq and ePq� � Rqq��P � Gqq � Gqq�� �note the
di�erence to the previous de�nition here�� the immediate successors of a set of
con�gurations �q� P � are denoted�analogous to �	����as

��
�
�q� P �

�
� �q� eP�� 

�
q� ��q

�q�� ePq��� �����

Figure ��
 shows the transition relation PAD T of the example timed automaton
of Figure 	�
� An omitted predicate interval for the mapping functions means �no
condition� for the respective variable� while an omitted action results in no vari�
able value change� Single integer values stand for singleton intervals with this only
element�

[1,1]/[0,0]/=1

1

T

v1

v2

C1 C1C1 C1

v2

C2C2 C2 C2

[0,0]/
/

[0,1]/+1

[1,∞)/=0

[1,1]/=0

[2,∞)/=0 [0,4]/+1

[0,0]/=1 [1,1]/=0 [0,0]/ [1,1]/

[3,∞)/=0 [1,∞)/=0
[0,4]/+1

[0,3]/+1

Figure ��
� Transition relation PAD�

The two left�most paths of the PAD T describe the transition guards� state
changes� and reset functions resulting from both transitions� respectively� of the
upper partial automaton� For instance� the top�most transition is enabled if �v� �
�� � �C� � 
�� i�e�� v� � ��� �� � C� � �
���� The consequence of this transition
is that state variable v� is set to 
� and clock C� is reset to �� Similarly� the two
paths in the middle of T represent the transitions of the lower partial automaton�
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Altogether� the paths of both automata describe the right argument of the union
operator in ������

The right�most paths�four altogether�are required to model time progress de�
pending on the actual state� Time can only progress if all clock values are increased
simultaneously by not violating any of the staying conditions� The clocks increase
about one time unit per step� but only if the respective conditions depending on the
system state are satis�ed� Thus� these paths describe the left argument of the union
operator in ����� except for �q� P � which is added algorithmically to the �nal result
for ��

�
�q� P �

�
later on�

In �ST��b�� an e�cient algorithm is described to perform image computation
using an IDD S for the state set and a PAD T for the transition relation� resulting in
an IDD S � representing the image state set� This algorithm may be used to perform
reachability analysis or real�time symbolic model checking by �xpoint computation�
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Empirical Results

In �ABK����� two parameterized models are used to compare the NDD and the
DBM approach� As NDDs seem to be greatly superior to DBMs�which on the
other hand are suitable for directly handling dense time�regarding computation
time and memory resources� only NDDs are considered here� We compare their
runtime behavior to that of the interval techniques approach�

The examples used are a timed automaton A with one discrete state and an
automaton B with many states�shown in Figure ��
 a� and Figure ��
 b�� respec�
tively� A con�guration parameter n indicates the number of self�loop transitions
from and to A�s only location or the number of concurrent partial automata�each
consisting of two locations and two transitions�of B� respectively� For both A and
B� n denotes the number of clocks as well� The total number of states of B is 	n�

b) Many States

Ci≥li/Ci:=0

Ci≥li/Ci:=0 (n times)
...vi=0

Ci≤ui

vi=1

Ci≤ui

a) One State

Ci≥li/Ci:=0

(n times)

...Ci≤ui

V
i

Figure ��
� Timed automata A with one state and B with many states�

A may be used to model a system generating n events ��� ���� �n such that every
occurrence of �i must be followed by another one within ui time units� while every
two occurrences of �i must be separated by li units� B may represent n boolean input
signals of which the only constraints are that every two changes in their values are
separated by some time between li and ui� Such automata are indispensable for
analyzing system behaviors under all possible inputs�

As no NDD implementation was available and �ABK���� and �BMPY��� do
only sketch the used algorithms� the comparison had to be performed based on the
results reported in �ABK����� obtained on a Sun Ultra 
 with 
�� MHz� The results
considering computation time have been downscaled due to di�erent computing
powers�for our experiments� we used a Sun Ultra �� with ��� MHz�using a factor


�
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of 
��� determined by comparative experiments on both machines�
In Figure ��	� the computation time T to determine the set of reachable con�gu�

rations of the �one state� automaton A is depicted in logarithmic scale� depending
on the con�guration parameter n�

6 8 10 12 14 16 18
n

0.01

0.1

1

10

T

IDD,PAD

NDD

Figure ��	� Computation time T in 
�� seconds for �one state� timed automaton A�

The �many states� example behaves very similar� Figure ��� shows the compu�
tation time of reachability analysis for automaton B�

4 5 6 7 8 9 10 11
n0.001

0.01

0.1

1

10

T

IDD,PAD

NDD

Figure ���� Computation time T in 
�� seconds for �many states� timed automaton
B�

For large models� the IDD�PAD approach signi�cantly outperforms the NDD
approach� The break�even occurs in the region of several minutes of computation
time which is of importance especially with regard to practical application� Most
noteworthy is that the weaker gradient of the IDD�PAD computation time for both
examples seems to be an indication that the algorithmic complexity for this kind of
application is better�
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For our implementation� we used the programming language Java for experi�
mental purposes� while the NDD approach was implemented in C� Current Java
compilers and interpreters achieve implementation speeds which are about � to 
�
times lower than those of C� Hence� equivalent implementations should shift the
IDD�PAD graph about up to one decade downward such that our approach outper�
forms the NDD approach even for small parameter values of n�
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Summary and Conclusion

An approach for formal veri�cation of timed automata using interval diagram tech�
niques has been presented� IDDs and IMDs have been explained together with the
veri�cation methods necessary for reachability analysis and real�time symbolic model
checking of timed automata� Our results outperform those of the NDD approach
with regard to computation time�

Without further modi�cations� interval diagram techniques may be applied to
the analysis of discrete hybrid automata on integer variables�analogous to timed
automata�by replacing the common clock addition of ��
� 
� by non�uniform integer
rates�
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