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Abstract

In this paper we address min-max equations for periodic and non-periodic problems. In the
non-periodic case a simple algorithm is presented to determine whether a graph has a potential
satisfying the min-max equations. This method can also be used to solve a more general min-
max problem on periodic graphs. Also some results regarding the uniqueness of solutions in the
periodic case are given. Finally, we address a more general quasi periodic problem and provide
an algorithm for its solution.
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1 Introduction

Problems most closely related to the results presented in our paper are network flow problems
(non-periodic case), see e.g. [1], and the well known maximum cycle mean problem (periodic
case), see e.g. [14], [12]. In particular, known results in the non-periodic case can be related to
a feasible potential function p observing lower linear constraints

p(vj) < p(vi) + w(vi,v5) Voj € V7, (vi,05) € B (1)
and an optimal potential function p using min constraints
p(v;) = min{p(v;) + w(v;,vj) | (vi,v;) € E} Vo, € V™ (2)

associated with some network G~ (V—, E,w). Our paper addresses a generalization where these
sets of inequalities are mixed for a given network G(V, E, w) with their dual forms, that is upper
linear constraints

p(vj) > p(v;) + w(vi,vj) Yo € VT, (vi,v5) € B (3)

and max constraints
p(v;) = max{p(v;) + w(v;,vj) | (vi,v;) € E} Vo, € %S (4)

with VT UV~ = V. If a distance function d is given additionally, the corresponding periodic
problems deal with edge weights w(v;, v;) — Ad(v;,v;) using the period A as a parameter. More-
over, we define a quasi-periodic problem with edge weights w(v;, vj) — A(v;)d(v;, vj) where A(vj)
is the specific period associated with node v;.

1.1 Results and Applications in the Non-periodic Case

In the area of interface timing verification, see [15], [21], [22], frequently problems related to the
existence of min and/or max constraints occur. There, the difference between the potentials of
two nodes must be maximized under various constraints. In particular, it is possible to transform
one of the problems addressed in [15], [21] and [22] to a problem with mixed constraints (1),
(2) and (3). Different pseudo-polynomial algorithms are derived for the solution of this problem
based on iterative tightening [15], removing negative cycles [21] and maximum separations [22].
However so far, neither a polynomial algorithm nor a proof of intractability is known.

In comparison to these results, we are mainly dealing with constraints (2) and (4). Note that
constraints of the form (1) or (3) can easily be converted into constraints (2) and (4) by a simple
transformation of the graph. In particular, one additional node and two edges must be added
for each node v; with constraints of type (1) or (3). With respect to the non-periodic case our
paper contains the following results:

e A relation between potential functions based on (2,4) and those on (3, 2) and (1, 4) is
given.

e We present efficient pseudo-polynomial algorithms for finding optimal potentials satisfying
constraints (2) and (4).



1.2 Results and Applications in the Periodic Case

The consideration of constraints (4) in connection with periodic graphs has raised significant
interest in the past as it is the root for many problems from different application areas. This
includes e.g. control theory and manufacturing [7], timing properties of discrete event systems
[4], [19]), parallel algorithms [20], [9], and other areas of computer science. A comprehensive
treatment of the theory and applications can be found in [2]. Many results have been developed
while considering linear equations over a new max-plus algebra, see [7], [8], [23] and [2]. One of
the main results is the establishment of a relation between the asymptotic period of a dynamic
graph, the eigenvalue of the weight matrix of the corresponding static graph G and the maximum
cycle mean of the static graph. Different algorithms are known to compute this value, notably
an algorithm based on binary search [14] and a polynomial algorithm discovered by Karp [12].
For dynamic graphs several other combinatorial problems have been investigated as well, see e.g.
[5], [13], [18]. Some of these results have even been generalized to problems which are periodic
in multiple dimensions, see [3].

Driven by application areas like asynchronous circuit design, timing and protocol verification
and timing behavior of general Petri nets there have been recently several attempts to generalize
these results to dynamic graphs with constraints of the form (4) and (2). These dynamic min-
max systems have been investigated in [16], [17] and [2]. Further results in this direction are
described in [10] and [11]. However, the models used in these investigations are quite different.
Olsder [16, 17] describes a periodic min-max problem in terms of an eigenvalue problem, whereas
Gunawardena [10, 11] defines a certain class of min-max functions. Both models are special cases
of those used in our paper. In particular, the model proposed by Olsder corresponds to the case
that d(v;,v;) = 1 while that of Gunawardena can be obtained with d(v;,v;) € {0,1}.

Also, results in [16], [17] with respect to the uniqueness of the period and the numerical proce-
dures are restricted to a subclass of min-max problems. On the other hand, [10] and [11] contain
”complete” results in the case that only two distances have the value 1 while all others are zero.
For all other considered cases (d(v;,v;) € {0,1}), there is no procedure which decides whether a
min-max system has a period or not. Moreover, the given algorithm for the computation of the
period is exponential in the size of the graph.

Our paper contains the following new results:

e A relation between potential functions of dynamic and weight transformed static graphs
is derived. This is similar to a known result for max-plus problems [6].

e The first efficient (pseudo-polynomial) algorithm for the determination of the period of
min-max systems is presented.

e Results on the existence and uniqueness of the period of a dynamic min-max system are
given.

e Results on the uniqueness of the periods in the quasi-periodic case are given as well as
algorithms to determine these periods.

2 The Static Min-Max Problem

2.1 Definitions and Properties

We start this section by defining various forms of graph potentials.



Definition 1 (Min-Max Potential) Assume a weighted digraph G(V = VT UV ™, E,w) with
VIiNnV-=0,ECV XV and w: E — Q, also called min-maz graph subsequently. Then, a
potential p: V — Q is called feasible if

p(vi) {

Further, a feasible potential p : V — Q is a min potential if

p(vj) +w(vj,v) Y(vj,v;) € B,v; € VT
p(v;) +w(vj,v) V(vj,v;) € B,v; € V™

IN IV

p(vi) = min(p(vy) +w(vj, vi) | (vj,vi) € E) Vv, € V7
Similarly, o feasible potential p:V — Q is a mazx potential if
p(vi) = max(p(vj) + w(vj, vi) | (vj,v) € E) Vo e V*

Finally, a potential p: V — Q is a min-max potential if it is a min potential and a max potential
at the same time.

The definition of a min-max potential directly leads to our first key problem:
Problem 1 Is there a min-maz potential for a given min-maz graph G?
Before addressing this problem a few statements can provide some help to simplify the problem:

1. If G consists of two independent graphs it is sufficient to consider each graph separately.

2. f Gt = (V,En (VT x V1), w) contains a positive weight cycle then there is no min-max
potential for G.

3. f G- =(V,EN (V- x V), w) contains a negative weight cycle then there is no min-max
potential for G.

Further, it suffices to consider only bipartite min-max graphs where E C (VT xV7)U(V ™ x V™)
as shown in the next corollary.

Corollary 1 Assume a min-max graph G(V, E,w) without non-negative weight cycles among

nodes from V' and non-positive weight cycles among nodes from V. Then there is a bipartite
min-maz graph Gy(V,Ey, C (VT x VYU (V- x V), wy) such that there is a min-maz potential
for Gy if and only if there is a min-max potential for G.

Proof: Consider all simple paths (v = vg,v1,...,05 1,0 = vg) between a node v € V'~ and a
node v; € V1 in G such that v; € V't for all 1 < i < k. If there is at least one such path then in-
troduce an edge (vs,v;) in Ej with edge weight wy(vs,vr) = max,)) quch paths Zf;ol w(vi, Vit1)-

If there is a max potential for G there must be one of the above described paths for any v; € V'
with p(vit1) = p(vi) + w(vi,vi41) for all 0 < i < k as there are no zero weight cycles among



nodes from V. Therefore, a max potential for G is also a max potential for Gy. The other
direction can be proven in a similar way. Also the same proof can be used for min potentials as
well. |

Note that the existence of zero weight cycles among nodes from V' or V™~ can be easily checked
by the use of shortest or longest path algorithms. Then, by introducing an additional node
from V= or VT, respectively, into these cycles the conditions for Corollary 1 can be satisfied.
Moreover, in-degree(v) > 0 for all v € V' is a necessary condition for the existence of a min-max
potential. Therefore, we assume for the remainder of this section that G is a connected bipartite
graph and that for each node v; € V' there is at least one edge (v;,v;) € E.

In the next corollary we show that a graph with a min potential will retain this property even
if the weights of some edges are reduced.

Corollary 2 If a bipartite graph G(V, E,w) has a min potential then any graph G'(V,E,w'")
with w'(vi, v;) < w(vs,v;) for all (vi,v;) € E has a min potential as well. On the other hand if
a bipartite graph G(V, E,w) has no min potential then any graph G'(V, E,w') with w'(v;,v;) >
w(vi,vj) for all (vi,v;) € E also has no min potential.

Proof: Let p be a min potential of G and w' (v, v;) < w(v;,v;) for all (v;,v;) € E. Then p’ with

,(U‘) _ p(Uz) for v; € V+

pvi) = min{p(v;) + w'(vj,v;) | (vj,vi) € E) for v; € V-

is a min potential for G" as p'(v;) > p(v;) + w(vj,vi) > p'(v;) + w'(vj,v;) for all v; € VT and
(Ujavi) €FE.

The second claim of the corollary is a direct consequence of the first one. [ |

Of course, a similar corollary holds for max potentials as well. Now, the confining edges of a
min-max potential can be described by use of the tightness graph.

Definition 2 (Tightness Graph) For any weighted digraph G(V, E,w) and a potential func-
tion p : V. — Q the tightness graph G,(V,E,) is the graph over V with the edge set E, =

{(vi,v5) € B p(vg) = p(vi) + w(vi, v)}-

Note that for any min-max potential p, there must be an edge (v;,v;) € E, for each node
v; € V. It is further easy to see that a min-max potential for a graph G implies the existence of
a cycle C in the corresponding tightness graph. In G this cycle C must be zero weight cycle, i.e.
> (v 0)€C w(v;,vj) = 0. Some of the definitions given so far are clarified in the examples shown

in Figures 1 and 2.

As a min-max potential p for a graph G is never unique we restrict ourselves to those min-max
potentials where G, is connected by using Corollary 3.

Corollary 3 Given a connected bipartite graph G with min-maz potential p. Then there is
always a min-mazx potential p. such that Gy, is connected.

Proof: Assume two unconnected components G; and Gs of G,. Then, we use

Eiy = {(vi,vj)) €E]v, e VT NG and v; € V7 NGa} and
Eyn = {(vj,v;) e E|v € VtNg; and vj € VT NG}

4



Figure 1: Example of a weighted digraph with a min-max potential. The edge weights w(v;, v;)
are shown besides the edges. Tight edges, i.e. those in Ej,, are bold.

p(v)=1 p(v,)=0

Figure 2: Example of a weighted digraph with a min potential. The edge weights w(v;,v;) are
shown besides the edges. The graph has no min-max potential. Tight edges, i.e. those in E,,
are bold.

If E19 U By = () then the components G; and Gy are simply exchanged. Next, we define

di2 = min{oo,p(v;) — p(vi) — w(vi,vj) | (vi,v5) € Era}
dy1 = min{oo,p(vj) — p(vi) + w(vi,v;) | (vj,v;) € Ear}.

Finally, if p(v;) is reduced by min(dy9, doy) for all v; € G5 the resulting potential is still a min-max
potential and both components are connected.

A generalization to more components is straight forward. |
Next, we define an upper bound s for the length of any simple path in G:

s= Y ( max_(lw(vi,v;)]). ()

v; eV (viv;)ER

Therefore, Corollary 3 states that any min-max potential of G can be transformed into a min-
max potential p with |p(v;) — p(v;)| < s for all v;,v; € V. The same holds for min potentials
and max potentials.



Boolean Function simple-increase(G,p, G;) {
in G; inout p; out Gy;
a=max(p(v) |v e VT);
loop:  p(vj) = min(p(v;) + w(vi,vj) | (vi,v;) € E) for all v; € V75
if (3(vj,v;) € E with v; € VT and p(v;) < p(vj) + w(vj, v;)) {
p(vi) = p(v;) +w(vj, vi); }
else { G; = (; return ‘true’; }
if (there is no change in the potential of any node v; with p(v;) < a+s) {
Gy = subgraph of G induced by all nodes with p(v;) > a + s;
return ‘false’; }
goto loop;

Table 1: Function simple-increase

2.2 Algorithms

Now, we describe a method to determine whether a bipartite weighted digraph has a min-max
potential. This method is based on Function simple-increase in Table 1.

If the initial potential pj,; is feasible then p(v) does not decrease for any node during the
execution of the loop while Y~ i+ p(v) increases in every iteration but the last. Otherwise p(v)
may only decrease in the first statement of the first iteration for some nodes v € V'~ which can
be neglected. Therefore, the function definitely terminates.

Also note that Function simple-increase returns a subgraph G; of G. This subgraph is of relevance
in the dynamic case only and will be discussed later.

Corollary 4 If and only if the bipartite min-max graph G has a min potential then Function
simple-increase returns ‘true’ and the generated potential p is a min potential.

Proof: Assume a min potential p' of G such that p'(v) > pini(v) for all nodes v € V. Note that
such a min potential always exists if G has a min potential. Then, we show by induction that
p(v) < p'(v) for all v € V during the execution of the loop in Function simple-increase.

Obviously, this condition is true at the start of the loop. The validity of this condition for all
nodes v € V implies its validity for all nodes v € VT after the first statement in the loop. The
same observation can be made for the modification of nodes in V'~ afterwards.

On the other hand if Function simple-increase returns ‘true’ then the generated potential is
clearly a min potential. [ |

Further, any change of the potential of a node v; € VT requires that at some time during the
execution of the function there was a node v; € V= with p(v;) = p(v;) + w(vj,v;). On the other

hand if p(v;) = p(v;) + w(v;, v;) at any time during the execution of the loop for a node v; € V'*

then there is an edge (vg,v;) € E, for some node v, € V™ provided the function returns ‘true’.
Hence, if Function simple-increase starts with a max potential and returns ‘true’ the generated
potential p will be a min-max potential.

Therefore, we can state the following theorem.



Theorem 1 G has a min-maz potential if and only if it has a min potential and a mazx potential.

Proof: Obviously, a min-max potential of G implies the existence of a min and a max potential
of G.

If G has a max potential and a min potential then we could start Function simple-increase with
the max potential. According to the discussion above, the function will return ‘true’ with a
min-max potential p. [ |

Therefore, a min-max potential of G can be detected by first applying Function simple-increase
to an arbitrary initial potential and then applying its dual counterpart Function simple-decrease
to the resulting potential. G has a min-max potential if and only if Function simple-increase
and Function simple-decrease both return ‘true’.

This procedure constitutes a pseudo polynomial way to solve the min-max problem. However,
cycles with a small weight sum, like e.g. w(v;,v;) + w(vj,v;) = € — 0, in connection with large
edge weights may lead to a large number of iterations. Therefore, we propose an improved
algorithm by replacing functions simple-increase and simple-decrease.

As the new Function path-increase is based on shortest paths we use the notation I(v;,v;) to
describe the weight of the shortest path from node v; to node v; in a weighted digraph. If there is
no path from v; to vj, then I(v;, vj) = co. Further, the min-reduction graph G, is introduced:

Definition 3 (Min-Reduction Graph) Assume a bipartite weighted digraph G(V,E,w), a
start potential p : V — Q, and a predecessor function b: VT — VU {vg} where vg € V is an
additional root node and (b(v;),v;) € E for all v; € VT with b(v;) # vo.

~

A min-reduction graph of G, p, and b is a graph Gmin(Vmin,Emin,wmin) such that

Vinin = V- U{uwl,
Ermin = {(vi,vj) | vi,v; € Vinin and v, € VT with b(vg) = v; and (vg,v;) € EY,
Wmin(vi,v;) = w(vi, vg) + w(vg, vj) for bvk) = vi # vo

e p(vi) + w(vg,v)) for b(vg) = v; = vg.

~

A max-reduction graph QmaX(VmaX, Eax, Wmax) 1s defined in a similar fashion by exchanging V'~
and VT,

Informally, in the min-reduction graph each node v; € VT is attached to a node v; € V~
or the root node vy. A single source shortest path algorithm then guarantees that p(v;) =
min(p(v;) + w(vi,v;) | (vi,v;) € E) for all nodes v; € V~. This idea is the basis for Function
path-increase described in Table 2.

Corollary 5 If and only if the bipartite min-max graph G has a min potential then Function
path-increase returns ‘true’ and the generated potential p is a min potential.

Proof: Assume a min-reduction graph during any iteration of the function and v; € V' with
b(v;) # vo. Then, we have for any (v;,v;) € E:

l(vo, vi) < U(vo, bora(vj)) +w(bea(vi), vj) +w(vj,vi) < U(vo, bpew(vj)) +w(bnew(vj), vj) +w(vj, v;).



Boolean Function path-increase(G,p, G;) {
in G; inout p; out Gy;
b(v) = v for allv € VT
loop: generate the min-reduction graph Gmin of G , p, and b;
determine [(vg, v;) for all nodes v; € V7
p(v;) = l(vg,v;) for all v; € V5
while (3(v;,v;) € E with v; € VT and p(vj) < p(v;) + w(v;,v;)) do {
p(vj) = p(vi) + w(vi, v5); blvj) = vis; }
if (Av € V' for which p(v) has changed) {
Gy = subgraph of G induced by all nodes v with p(v) < oo;
return (G, == G); }
goto loop;

Table 2: Function path-increase

The case b(v;) = vg can be omitted as no node v; € V' can obtain predecessor vy during the
execution of the loop. Consequently, p(v) cannot decrease for any v € V' during the execution
of Function path-increase with the exception of the first change of the initial potential for nodes
from V'~ if the initial potential was not feasible. On the other hand it is easy to see that
Y wey+ P(v) increases in every iteration but the last. Further note that the first min reduction
graph is clearly free of any negative cycle. From the above follows that this must hold as well
for all other min reduction graphs. As [(vg,v;) < s or [(vg,v;) = oo for all v; € V'~ Function
path-increase will terminate.

After the generation of each min reduction graph we have for all nodes v; € V'

)< i . )L
p(vj) < (o 2in AP(vi) +w(vi,vj)}

If Function path-increase terminates with ‘true’ then the generated potential must therefore be
a min potential.

Next assume that Functions simple-increase and path-increase are executed on the same graph
G with the same initial potential p;,;;. We denote the potentials p of both functions by ps and
Dp, respectively. Then the edge selection in Function simple-increase can be done in a fashion
such that:

1. ps(v) = pp(v) = pinit(v) for all nodes v € V' with b(v) = vy,

2. ps(v) < pp(v) for all other nodes in V.

If G has no min potential then Function simple-increase will produce ps(v) > a + s for some
node v € V. Therefore, we must have p,(v) = oo. ]

Again for the detection of min-max potentials a dual Function path-decrease must be used as
well.



3 The Dynamic Min-Max Problem

3.1 The Periodic Case

In this section we address the periodic min-max problem on dynamic graphs. To this end, first
dynamic graphs are defined via static graphs as usual, see e.g. [5]. Then, Problem 1 is extended
to dynamic graphs.

Definition 4 (Static Graph) A (bipartite) static graph Gs(V = VT UV, E,w,d) is a bipar-
tite weighted digraph with a weight function w: E — Z and a distance function d : E — Z>.

Definition 5 (Dynamic Graph) The dynamic graph corresponding to a given static graph
Gs(V, E,w,d) is an infinite weighted bipartite graph Gq(Vy, Eq,wq) where

Vi = {vi(k) |vi e V.k € Z5¢}
Ey = {(vi(k — d(vi,vj)),vj(k)) | (vi,vj) € B,k € Z,k > d(vi,v5)}
wq(vi(k — d(vi,vj)),vi(k)) = w(vi,v;) for all (vi(k — d(vi,vj)),v;(k)) € Eq

Definition 6 (Periodic Min-Max Potential) The periodic min-maz potential pg : Vy —
Q of a dynamic graph Gy(Vg, Eq,wq) is a min-maz potential pg for all k > K with K =
max{d(vj,v;) | (vi,v;) € E}. Moreover, there is a period A € Q such that

pa(vi(k + 1)) = pa(vi(k)) + A for all vi(k) € Vy
Problem 2 Is there a periodic min-maz potential for a dynamic graph Gq(Vg, Eq,wq)?

In order to avoid dealing with infinite dynamic graphs, the cycle graph is introduced, see also

[1].

Definition 7 (Periodic Cycle Graph) For a static graph Gs(V, E,w.d) and a period \ € Q
the periodic cycle graph G.(V, E,w.) is the graph over V and E with the edge weight

we(vi, v5) = w(v;,vj) — Ad(vi,v5) for all (v;,v;) € E.

Then the following corollary establishes a close relation between the periodic min-max problem
of a dynamic graph and the min-max problem of the corresponding periodic cycle graph.

Corollary 6 Assume a static graph Gs(V,E,w,d). Then, the following two statements are
equivalent:

e The dynamic graph G4 corresponding to G has a periodic min-maz potential pg with period
A e Q.

e The periodic cycle graph G. corresponding to Gs and X has a min-max potential.



Proof: A max potential of G, requires for all v;(k) € V" and k > K the correctness of the
equation

pa(vi(k)) = (v_(kfd(viggﬁvi(k))@d{pd(vj(k' — d(vj,vi))) + wa(vj(k — d(vj, vi)), vi(k))}

Using the definition of a dynamic graph and the periodicity of p, this equation can be trans-
formed equivalently into

pa(vi(0)) = pa(vi(k)) — kA
= MAX (4 (k—d(v; v7)) i (k) By 1P (V5 (B — d(vj,v3))) + wa(vj(k — d(vj,vi)),vi(k)) — kA}
= maX(’U]‘ ,vi)EE{pd(Uj (0)) + wC(Uja UZ)}
On the other hand, a periodic cycle graph with a max potential satisfies
pe(vi) = max(pe(v;) + we(vj,v;) | (v,v;) € E) for all v; € V.

With pg(v;(0)) = pe(v;) for all v; € VT both conditions are equivalent. Similar arguments for
all v;(k) € V;” are used to conclude the proof. |

The definitions and the above corollary are explained in the example shown in Figures 3 and 4.

3/3 4/3 5/3 6/3 713 8/3

1,0 -2,1
-3,2 4,1
11/3 12/3 13/3 14/3 15/3 16/3
k=0 k=1 k=2 k=3 k=4 k=5
static graph dynamic graph

Figure 3: A static graph G5 and the corresponding dynamic graph G;. The edges of the static
graph are labeled with w(v;,v;), d(vi,v;). The edges of the dynamic graph are labeled with
w(v;(k),vj(k)) and to the nodes there are associated periodic min-max potentials py(v;(k)).
Tight edges are shown bold.

Corollary 6 states that the evaluation of the periodic cycle graph is sufficient for the computation
of periodic min-max potentials. Further, if a dynamic graph G4 has a periodic min-max potential
with period A then the corresponding cycle graph G. has at least one directed cycle C' with
> (vi ;)€ Welvis v) = 0. Assuming 3, yec d(vi,v;) > 0 this results in

Z(’U_;,’Uj)EC w(vi’ U])

Z(’U_;,’Uj)EC d(vi’ U]) .

A= (6)
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1
1( |-2- A 1{ |73

0

3- AN |a-a -11/3< |11/3

11/3
cycle graph cycle graph for A=1/3

Figure 4: The periodic cycle graph G, corresponding to the static graph G, in Figure 3 and
the periodic cycle graph for the period A = 1/3. Min-max potentials p.(v;) for A = 1/3 are
associated to the nodes.

Next, we introduce Function lower-period in Table 3 to determine the minimal period A, for
which a periodic min-max potential may exist. This function is based on binary search, see
also [14], [1], and includes a Function increase which may either stand for simple-increase or
path-increase and a Function critical-cycle which is described below. Also, Function lower-period
uses the following upper bound ¢ for the sum of distances in any simple path in G,:

t= > ( max (|d(vi,v))])). (7)

v cv (’Ui,’l)j)EE

The purpose of Function critical-cycle(Gs, Aj, Ajoy) is to determine a period Ajg,, with A < Ajgqy <
Ay such that there exists a directed cycle C' with 32, , yec we(vi,v5) = 0. One possibility can

be described as follows:
e Determine the periodic cycle graph G, corresponding to G and ;.

e Execute Function simple-increase(G., p, G¢). The function returns ’false’ and a subgraph

G.

e Determine a subset E; of edges of G; which contains all tight edges to nodes in V;* and
the tightest edges to nodes in V; . In particular, E} = E| U Ej where E| = {(v;,v;) €
Ey | p(vj) = p(vi) +we(vi, vj),v; € V') and B = {(vj,v5) € Ey | p(vi) +we(vi, vj) —p(v;) =
min(p(vx) + we(vk, v;) — p(vj) | (vk,v5) € Ey),v5 € Vi }.

e Determine a cycle C' using edges from Ej only and calculate );,,, using Equation 6.

The correctness of Function lower-period is addressed in Corollary 7.

Corollary 7 If Function lower-period returns ‘false’ then the dynamic graph Gg corresponding
to Gs has no periodic min-maz potential. Otherwise, G4 has min potentials for all k > K and
for all periods X\ > Aoy while there is no min-potential for all periods A < gy -

11



Boolean Function lower-period(Gs, Ajow, P) {
in Gs; out )\;; inout p;
determine s and t;
AN = =8 Ay = s;
generate the periodic cycle graph G, of Gs and A
if (increase(Ge, p, Gi)) { Ny = —o0; return ‘true’; }
generate the periodic cycle graph G. of G and Ay;
if (lincrease(Ge, p, G;)) { return ‘false’; }
loop A=A+ N)/2;
generate the periodic cycle graph G, of G5 and A;
if (Yincrease(Ge, p, Gi)) { N =X; }else { Ay =\ }
it (- A < 1/1) {
critical-cycle (Gs, Ay Aow);
return ‘true’;

}

goto loop;

Table 3: Function lower-period

Proof: Suppose that G. has a min potential for A = —s. Due to Corollary 2 there are min
potentials for each A > —s. Also note that for any cycle C' with Z(v,—,v,—)ec d(vi,vj) > 0 we
already have 37, ,.)ec(w(vi,vj) — Ad(vi,v;)) = 0 while other cycles are not affected by A.

Hence, any further reduction of A will not influence the sign of the sum of weights in any cycle
of G.. Therefore, G. also has min potentials for all A < —s.

The same arguments are also used to show that there is no min potential in G, for any A if G,
has no min potential for A = s.

Function lower-period performs a binary search on A. Assume two different periods A1 and Ag
with different zero weight cycles in G. which do not consist only of edges with distance 0. Then,
the following lower bound for the difference between them holds:

A1 — A9 |Z(”iﬂfj)601 w(vi, v;) 2 (v1.0,)€Cs w(vi’vj)| > 1
1 — A2l = — > —.
Ywiyecy Qi v5) Ve, dvisv) | T 2
Then, Aoy can be determined by use of the Function critical-cycle. [ ]

Similarly, a Function upper-period based on Function decrease is used to determine the maximal
period A, for which a periodic min-max potential may exist. The combination of both functions
yields an algorithm to determine whether there are periodic min-max potentials for a dynamic
graph G4. The proof is a direct consequence of Corollary 7, its counterpart for Function upper-
period and Theorem 1.

Theorem 2 If either Function lower-period or Function upper-period return ‘false’ or if Ajoyy >
Aup 15 produced, then there is no periodic min-maz potential for the dynamic graph G4 corre-
sponding to Gs. Otherwise, there are periodic min-max potentials for all periods Ny < A < Ayyp.

In the following corollary we address the computational complexity for the presented method.

12



Corollary 8 There is an algorithm which computes a periodic min-mazx potential in pseudo-
polynomial time.

Proof: The computational complexity for the whole method is identical to the complexity of
Functions lower-period and upper-period. These functions perform a binary search while calling
the Functions increase/decrease O(log(st)) times. ]

Finally, a result concerning the uniqueness of a period A is derived.

Theorem 3 If the static graph Gs corresponding to a dynamic graph Gq contains only edges
with distance > 0 then Gg either has no periodic min-maz potential or a min-maz potential with
a unique period.

Z(vi,vj)eo ’U)(’Ui,’l)j)
Z(”iﬂ’j YeEC d(vl 71)j)
positive. According to Theorem 2 any admissible periods are within an interval. This contradicts
the minimal distance of two different periods as stated in the proof of Corollary 7. [ |

Proof: If G. has a min-max potential there must be A = as the denominator is

3.2 The Quasi-Periodic Case

This section describes a generalization of the previous results. To this end, some of the definitions
need to be reformulated and expanded. This also leads to a new problem.

Deﬁnltlon 8 (Quasi-Periodic Min-Max Potentlal) The quasi-periodic min-maz potential
: Vg — Q of a dynamic graph Gq(Vg, Eq,wq) is a min-maz potential pg for all k > K with
K max{d(vi,v;) | (vi,v;) € E}. Moreover, there is a period function X\:'V — Q such that

pa(vi(k + 1)) = pa(vi(k)) + Xv;) for all vi(k) € Vy
Problem 3 Is there a quasi-periodic min-maz potential for a dynamic graph Gq(Vy, Eq,wg)?

As in the periodic case, a cycle graph is defined and its relation to a quasi-periodic min-max
potential is established. Note that A is always a period function in this section unless explicitly
stated otherwise.

Definition 9 (Quasi-Periodic Cycle Graph) For a static graph Gs(V, E,w,d) and a period
function X : V. — Q with M(v;) > A(v;) for allv; € V' and v;, v adjacent in Gy the quasi-periodic
cycle graph G.(V, E.,w.) is defined as follows:

Ee = {(vi,v)) € E | Avi) = Mvj)}

we(vi, v5) = w(vi,v;) — Mvj)d(vi,v;) for all (vi,v;) € E..
The quasi-periodic cycle graph consists of not connected subgraphs where to each subgraph
there is associated a period common to all nodes. As will be seen now, there is a one-to-one

correspondence between the existence of a quasi-periodic min-max potential and the existence
of min-max potentials in all subgraphs of the quasi-periodic cycle graph.

13



Corollary 9 Assume a static graph Gs(V, E,w,d). Then, the following two statements are
equivalent:

e The dynamic graph G4 corresponding to Gs has a quasi-periodic min-maz potential pg with
the period function .

e The quasi-periodic cycle graph G. corresponding to Gs and A has a min-maz potential.

Proof: As in Corollary 6 a max potential of G, requires for all v;(k) € V;" and k > K the
correctness of the equation

Pa(vik)) = B e, P (R = d(vg, v)) F walv;(k = d(vg, v2)), vik)}-

Using the definition of a dynamic graph and the periodicity of p; we obtain the equivalent
conditions

pa(vi(0)) = maXE{pd(Uj(U)) + we(vj, vi) + (k= d(vj,v:))(A(v;) — A(vi))} VE> K (8)

Vj,0;)€

1. G4 has a quasi-periodic min-max potential — G, has a min-max potential.

First assume that A(v;) < A(v;). Also, the validity of Equation (8) for all k > K prevents
pa(vi(0)) from being finite.

On the other hand if A(v;) > A(v;) then edge (vj,v;) cannot affect Equation (8) for & — oo.
Therefore, it need not be considered in Equation (8).

In both cases (v;,v;) does not exist in G,.
This results in

pa(vi(0)) = (Uj{gggEc{pd(vj (0)) + we(vj,vi)} Vk>K

which leads to a max potential p.(v;) = pg(v;(0)) for all v; € V.

2. G. has a min-max potential — §,; has a quasi-periodic min-max potential.
Suppose that a cycle graph is given with pc(v;) = max(y; v,)e g {Pe(vj) + we(vj, v;)} for all
v; € Ve Setting py(vi(0)) = pe(v;) for all v; € E,, Equations (8) hold as A(v;) > A(v;) and
the third term in the max-expression becomes sufficiently negative for all edges in E\E,
and k£ — oc.

Similar arguments are used for all v;(k) € V. [ |
The definitions and the above corollary are explained in the example shown in Figures 5 and 6.

In order to simplify the following discussions we suppose that there is no directed cycle with a
zero sum of distances in the given static graph Gg, i.e.

Z d(vi,vj) >0 for all directed cycles C of Gj.

(viv;)eC

In the periodic case described in Section 3.1 the Functions lower-period and upper-period have
been used to determine the single period A for all nodes v; € Gs. Following the result of Corol-
lary 9 the solution in the quasi-periodic case consists of subgraphs of G with different periods.

14



3

static graph dynamic graph

Figure 5: A static graph G5 and the corresponding dynamic graph G;. The edges of the static
graph are labeled with w(v;,v;), d(vi,v;). The edges of the dynamic graph are labeled with
w(v;(k),vj(k)) and to the nodes there are associated quasi-periodic min-max potentials pg(v;(k)).
Tight edges are shown bold.

In other words, the quasi-periodic cycle graph G, of G consists of unconnected subgraphs where
each subgraph has a min-max potential and a period common to all nodes. This suggests an
algorithm to determine the periods and subgraphs by iteratively pealing off subgraphs with
decreasing periods from the static graph.

To this end, these subgraphs are first defined formally. This is done using the weighted bipartite
graph G as used in the static min-max problem, see Section 2 and Definition 1,

Definition 10 (Dominating Subgraph) A dominating subgraph Gy of a bipartite min-max
graph G is a subgraph of G with the following properties:

1. There exists a min potential p of G which is a min-maz potential of G;.
2. There are no edges (vi,v;) or (vj,v;) with v; € V,” and v; € (VT\V;T).
Based on this definition, a maximal dominating subgraph of a weighted digraph has the maximal

number of nodes of all dominating subgraphs.

The following corollary provides results on one step of a procedure which determines the quasi-
periodic min-max potential of a given static graph. It is shown that the concatenation of
Functions lower-period and decrease
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a( |1
A(,)=3
AMv)=1

i |1
Av,)=1

quasi-periodic cycle graph

Figure 6: The quasi-periodic cycle graph G, corresponding to the static graph G, in Figure 5 and
the periods A(v1) = A(v2) = 3 and A(v3) = A(v4) = 1. Min-max potentials p.(v;) are associated
to the nodes and tight edges are shown bold.

e peals off a subgraph of a given static graph,
e produces a period A4, and a corresponding min-max potential for this subgraph and

e that the remaining static graph has a min potential for a period less than Ap,qq.

Corollary 10 Given a static graph Gs. After executing Function lower-period(Gs, Amaz, P)
with initial potentials p(v;) = 0 and subsequently executing Function decrease(G., p, Gi) with the
periodic cycle graph G. corresponding to G5 and Apaz, the following properties hold:

1. G; is a dominating subgraph of G..
2. The application of Function lower-period((Gs\Gi), A, p) returns ‘true’ with A < Apagz-

Proof: Note that 37, ,.)ec d(vi, v;j) > 0 results in 32, e (w(vi, v5) + s d(vi, vj)) = 0 for all
directed cycles C of G,. Therefore, Function lower-period(Gs, Amaz, p) cannot return ‘false’.

Due to Corollary 7 G4 has no min potential for any A < Apq.. Hence, application of Function
increase(Gs, p, Gy) for X = Ay — € with t% > € > 0 must return ‘false’, that is Gy # G.. Then,
there can be no edges (v;,v;) or (vj,v;) with v; € V7" and vj € (VT\V,). Also, application of
Function lower-period((Gy), A, p) will return ‘true’ with A < Ap,4,. As the difference between
any two simple paths with the same source and target node is finite, see proof of Corollary 7, we

have V\Vy = V;. Hence, there is a min-max potential for G; and G; is a dominating subgraph
of G..

Now, the complete algorithm for the calculation of the quasi-periodic min-max potential is given,
see Table 4. Input to the Function period(Gs, A()) is the given static graph G, while its output
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Boolean Function period(Gs, A()) {
in Gg; out A();
loop  p(v;) =0 for all v; € V;
lower-period(Gs, Amaz; P);
generate the periodic cycle graph G. of Gs and Apa4;
if (decrease(G., p, Gi)) {
AMv;) = Apag for all v; € Vi;
return ‘true’; }
else {
AMv;) = Apag for all v; € Vi;
gs - gs\gta
goto loop;

Table 4: Function period

is the resulting period function lambda. The corresponding min-max potentials can be either
extracted during execution of the Function period or by using the proof of Corollary 9.

The following theorem states one of the main results of this paper.
Theorem 4 Any dynamic graph G4 has a quasi-periodic min-maz potential.

Proof: The proof is a direct consequence of Corollary 10 as the potentials can be chosen such
that miny,ev; p(vi) > max(y, v, )ep |w(vi, vj)| + max, cy\v; p(vi). Therefore, both subgraphs will
not affect each other. [ |
Finally, it remains to be shown whether the resulting period function A and thus the partitioning

of Gs in subgraphs with different periods is unique. To this end some more properties of a
dominating subgraph and the quasi-periodic cycle graph are useful.

Corollary 11 The mazimal dominating subgraph of a bipartite min-mazx graph G is unique.

Proof: Let Gy and Gy be two maximal dominating subgraphs of G with the corresponding
potentials p; and po. Based on Definition 10 any node v; € V, = Vi1\Vi2 can only be incident
with a node v; € V\Vj if

1. v; € V" and v; € V\Vjo or

2. v; €V, and vj € Vi3 N Vi,

Next, we consider the edge set E' = (Ep, N (V" x V7)) U (Ep, N (V, x V")) where E,, and
E,, are the edges of the tightness graphs corresponding to G and p;, po, respectively. Now, each

node v € V belongs to a directed cycle C,, in E’ as p; and py are max and min potentials for
the nodes in Vj, respectively.
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Based on Definition 1 for p; and ps, we obtain the following two inequalities:

p(@) <pi(v)+ Y w(vi,v))

(viv;)€Cy

p2(v) Zpa(v) + Y wlvi,vy).

(vi,v5)€Cy

Consequently, we have >, . yec, w(v;,vj) = 0 and each edge in C, must be as well E, as in

E,,. Therefore, p; is a min-max potential for all nodes in V;, and G;; UG must be a dominating
subgraph with potential ps. This contradicts that G is a mazimal dominating subgraph of
|

The next corollary describes the structure of a quasi-periodic min-max potential. In particular, it
leads to the fact that any dynamic graph can be partitioned into a sequence of subgraphs which
are dominating each other. The observation that these subgraphs are maximal dominating
subgraphs provides the main result on the uniqueness of the period function associated to a
dynamic graph.

Corollary 12 Given a static graph Gs. Then the following statements hold:

1. The mazimal period Apmaz = max{\(v;) | v; € V5} is unique.

2. The subgraph G; of G. with V; = {v; € Vi | AM(v;) = Amaz} is the maximal dominating
subgraph of G. where G. is the periodic cycle graph corresponding to Gs and Apqz.

Proof: If G; has a quasi-periodic min-max potential then there exists a quasi-periodic cycle
graph G,. according to Definition 9 with a min-max potential, see Corollary 9. G,4. consists of
not connected subgraphs. To each subgraph there is associated a period A such that A(v;) = A
for all nodes v; of the subgraph. Now, let us construct the cycle graph G. of G, corresponding
to Apmaz- Then:

e The subgraph G; in G, containing nodes v; with A(v;) = Az in Gy has a min-max
potential in G..

e There are no edges between nodes v; € V;” and v; € (VF\V;1) as A(v;) = Az > A(v;).

e G, has a min potential. This can be seen by considering subgraphs of G,. whose nodes
v; satisfy A(vi) < Apag. If the weights of the edges are decreased from wyc(vi,v;) =
w(v;,vj) — AMv;)d(vi, v5) to we(vi,v5) = w(V;,v5) = Amaad(vi,vj) < wge(vi,vj) then GG,
is obtained. Following Corollary 2 and Theorem 3, this subgraph has a min potential.

Now, the two statements of the Corollary can be shown:

1. Let us suppose two distinct quasi-periodic min-max potentials of G with A\je01 > Amag2
and the corresponding cycle graphs G and Geo with we (vs, v5) = w(v;, v]) Amaxld(vz, vj),
wc2(v1,vj) = w(vz,v]) Amaz2d(vi,v;) and therefore We (vi,vj) < wea(vi,v;). If the sub-
graph Gy has a min-max potentlal then G.s has no min potential and thus (;Jloes not corre-
spond to a quasi-periodic min-max potential, see Corollary 2 and Theorem 3. Therefore,
Amaz 18 unique.
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2. G; is a dominating subgraph of G, as there are no edges between nodes v; € V;~ and
v; € (VF\V;), G; has a min-max potential and G, has a min potential. G; is a mazimal
dominating subgraph of G.. To proof this, let us suppose that a subgraph G, of G.\G;
could be moved to G; and the resulting partition is still dominating. In this case, G, must
have a min-max potential with tight edges within G, only, see the proof of Corollary 11.
Note that the periods corresponding to nodes v; in G, satisfy A\(v;) < Apqz. Therefore, in
going back to the quasi-periodic cycle graph the weight of edges in G, are increased and
Gy has no min-max potential according to Corollary 2 and Theorem 3.

The following theorem summarizes the main result of the paper.
Theorem 5 The period function A of a given static graph G, is unique.

Proof: According to Corollary 12, the maximal period A\, = max{A(v;) | v; € V;} is unique.
Moreover, using Corollary 11 and Corollary 12 it can be seen that the quasi-periodic cycle
graph corresponding to a given static graph G, has a unique subgraph G; whose nodes v; satisfy

)\(Q)Z) = /\ma:c-

Because of the structure of the quasi-periodic cycle graph, the above arguments can now be
recursively applied to the remaining static graph Gs\G;. Consequently, all subgraphs of the
quasi-periodic cycle graph are unique and have a unique period. [ |

4 Conclusion

The paper contains new results on a special class of weighted graphs, i.e. min-max graphs. These
graphs model problems in different application areas, for example in circuit design and in the
analysis and verification of communication protocols. These problems can be reduced to the
determination of feasible potentials and period functions associated to the nodes.

Besides results on the existence and uniqueness of these potentials the present paper describes
efficient pseudo-polynomial algorithms for their calculation. In particular, any dynamic graph
Gq (whose static graph G has no directed cycle with a zero sum of distances) has a quasi-
periodic min-max potential where to each node there is associated a private period. Moreover,
the periods A(v;) are unique for all v; € G;. In addition, there exists a pseudo-polynomial
algorithm to compute these periods and min-max potentials. The case of equal periods, i.e. the
case of periodic min-max potentials, can be considered to be a specialization thereof. These
results are based on investigations and algorithms for weighted min-max graphs.
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