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Abstract

The implementation of a fast, wavelet-based Galerkin discretization of second
kind integral equations on piecewise smooth surfaces I' C IR? is described. It al-
lows meshes counsisting of triangles as well as quadrilaterals. The algorithm generates
a sparse, approximate stiffness matrix with N’ = O(N(log N)?) nonvanishing en-
tries in O(N(log N)*) operations where N is the number of degrees of freedom on
the boundary while essentially retaining the asymptotic convergence rate of the full
Galerkin scheme. A new proof of the matrix-compression estimates is given based
on derivative-free kernel estimates. The condition number of the sparse stiffness ma-
trices is bounded independently of the meshwidth. The data structure containing
the compressed stiffness matrix is described in detail: it requires O(N') memory and
can be set up in O(N') operations. Numerical experiments show that the asymptotic
performance estimates apply for moderate N. Problems with N = 10° degrees of
freedom were computed in core on a workstation. The impact of various parameters
in the compression scheme on the performance and the accuracy of the algorithm is
studied.



1 Introduction

Wavelets have, since their appearance in the mid 80ies, influenced many areas of applied
mathematics. After the fundamental work in signal processing and in harmonic analysis
(see [10] and the references there) it was pointed out in the paper [1] that wavelet bases
might also be very advantageous for the discretization of integral operators. This was later
made more precise in [3] where it was shown that a wide class of classical pseudodifferen-
tial operators could be discretized by Galerkin-Petrov schemes using test- and trial spaces
spanned by (biorthogonal) wavelet bases in such a way that a) the asymptotic convergence
rate of the numerical solution was optimal and b) the work and the storage of the discretiza-
tion scheme was bounded by O(N(log N)*) (with a either zero or a small positive integer),
see also [12]. This pointed the way to a new class of fast algorithms for integral equations,
in addition to the slightly older multipole and panel-clustering algorithms. Wavelet-based
schemes for integral equations promise moreover preconditioning of first kind integral equa-
tions [3, 12] and a new approach to adaptivity and a-posteriori error estimation [2]. In
particular, wavelet based boundary element methods do not require explicit kernel expan-
sions for each problem under consideration. Some technical issues in the construction of
practically viable algorithms, such as numerical quadrature, were addressed in [16] where it
was shown that fully discrete schemes preserving the above benefits are possible. However,
no implementation of an order N wavelet-based scheme for boundary integral equations on
general surfaces in IR* seems to be available yet (the computations reported [12] were based
on applying a wavelet transform to the full N x N stiffness matrix).

To present an object oriented C++ implementation of order N(log N)® algorithms and
data structures of a wavelet-Galerkin discretization for boundary integral equations on
polyhedra and to analyze the performance is the purpose of the present paper. Some of the
developments presented here were reported in [9]. We confine the exposition to second kind
boundary integral equations or, more generally, to boundary integral operators of order zero
and to the fully orthogonal discontinuous multiwavelets introduced in [16, 15]. We give a
detailed description of the algorithms necessary to locate the N” = O(N(log N)?) nonzero
entries in the compressed stiffness matrix and of the data structure to manipulate it. We
show that this requires only O(N') operations and O(N) memory. We further elaborate
in detail on the implementation of the numerical quadrature scheme introduced in [16] We
find in particular that it is essential for a good performance of the scheme to reuse some
elementary integrals on various levels judiciously and present a caching-strategy to this end.
Based on the theoretical analysis of the compression strategy, our algorithm has various
parameters governing the compression threshold. In numerical experiments, we investigate
in detail the impact of these parameters upon the performance of the algorithm. We find
that the compression rate can be strongly influenced without compromising stability, but
that the accuracy of the solution does suffer under too severe compression. In our ex-
periments, problems with N = O(10°) were tractable without accessing external memory.
In addition, we present a new approach to the compression estimates which are based on
sharp, derivative-free kernel estimates in the complex domain. They allow to make predic-
tions on the compression of Helmholtz type kernels in dependence on the (nondimensional)
wavenumber w. We find that the well-known reduced compressibility at large wavenumbers
w can be compensated by overcompression, i.e. by using wavelets with a correspondingly
high number of vanishing moments.



The outline of the paper is as follows: in Section 2, we present some notation and the
class of boundary integral equations which we will consider. Section 3 is then devoted
to the Galerkin boundary element method and the construction of the multiwavelets is
presented. Further, we give derivative-free decay estimates and explain the compression
strategy. In Section 4, we address the numerical integration. Section 5 is devoted to a
detailed explanation of the main algorithms used in the implementation of the multiscale
scheme. Finally, in Section 6 we discuss numerical results obtained with the presented
algorithms.

2 Boundary Integral Equations

Let D C R*® be a bounded domain with a piecewise analytic boundary I' = 9D which
is globally Lipschitz. More precisely, I' is partitioned into Np open pieces [y, which are
smooth images of either the triangle 7 = {(x1,22) | 0 < z9 < x; < 1} or the square
S=1{(21,72) |0 < x,25 < 1} in R? i.e. there exist bijective maps x; which are analytic
inU, U € {T,S} such that
Ty = xa(U).

The partition {I';},5 " is assumed to be regular, i.e. for k # k' the set Ty N Ty is either
empty, a vertex, or an entire edge. Under these assumptions there exists a Lipschitz atlas
of I with charts x; which, when restricted to 'y, coincide with xy.

By L?(T") we denote the space of functions u : ' — IR that are square integrable with
respect to the surface measure ds,. The space L?(T), equipped with the inner product

(u, v) :/Fuvdsx, (2.1)

is a Hilbert space. An inner product (-, -) which is equivalent to (-, -) (i.e. giving rise to
equivalent norms) in L?(T") can be defined by

Nr—1

(u, Z/ wo xx) (v o xx) dvydrs (2.2)

For s > 0, we consider also the Sobolev spaces H*(I'y) of functions with pullback in H* (i)
endowed with the norm || - ||gs(r,). The space of functions u € L*(I') with U|rj € H*(['y)

for s > 0 is denoted by [Tty " H*(T'x). Evidently, the expression

Np—1 1/2
[[ull, - ( > Nullzro ) (2.3)

is a norm in [[p0 " H*(L'y).
For a given f € L*(T"), we consider the variational boundary integral equation

u € L*(I) (v, Au) = (v, f) Vv e L*(I). (2.4)
For the integral operator A, we suppose the following.

Assumption 1 A : L*(I') — L*(I') is continuous and injective.
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Assumption 2 A admits the representation via a kernel k:
(Au)(x) == c(x)u(z) + /F k(z,y)u(y)ds, zel, (2.5)

where k(z,y) € Lip((T' x T)\{z = y}) is an analytic function of v € T}, y € Tw, 0 <
k,k' < Nr which admits an analytic extension for x in some neighborhood of I'y. resp. for
y in some neighborhood of T'y. We furthermore assume that the kernel satisfies the bound

|k(z,y)| < (2.6)

P
|z =y
for every .,y in some complex neighborhood of each boundary piece T,.

The integral in (2.5) must be taken in the Cauchy Principal Value sense, in general, and
c¢(x) is assumed to be positive and analytic on T'y, i.e. A is formally a Fredholm integral
operator of the second kind. Further, DS, Dg are Cartesian derivatives in R? acting on a
smooth extension of k(x,y) to tubular neigborhoods in R? of each surface piece T'y.

Remark 3 Since the charts x, are assumed to be bijective and analytic, there exists a
constant v > 0 depending only on y; and the shape of [' such that

Xk (1) — Xk (u)]

0<y'<
u — |

<y (2.7)

for u,u' € U, u # u'.

Remark 4 We point out that in our compression estimates we only require the analyticity
of k and the charts y, and the estimate (2.6), but not the estimates

Cap
2+|al+|8]|

[DEDk(,y)| <
|z =y

for any multiindices o, 3 € IN; which are used, for example, in [3, 16, 12]. The analyticity
assumptions are usually satisfied in applications for boundary integral equations and are
also underlying the quadrature error analysis, see [16].

3 Wavelet Galerkin Discretization

We present now a fully discrete wavelet Galerkin discretization of (2.4) together with its
properties. Full proofs for all assertions can be found in [15, 16].

3.1 Galerkin Discretization

We will be interested in Galerkin discretizations of (2.4). Given a dense subspace sequence
{VE}2 , in L*(T), the Galerkin approximations u” of u are defined by

ut e VP <v,AuL> = (v, ) Vv e VI (3.1)
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By introducing a basis {}} for the subspace V'* the vector of coefficients u” = (u}) of the
discrete solution u! is determined by the linear system

Ala' = (M" + K")u” = £ (3.2)

where mass- and stiffness matrix are given by

(ML)jj, = <<pJL,cg0]L,> :/c(x)apJL(x)gojL,(x) ds,, (3.3)
(K = (ef Kol = [ [ hlan)eh@)ef) dsds, (34)

and the right hand side by £ := ((¢%, f)).
We make the assumption that the Galerkin scheme (3.1) is stable in the following sense:

Assumption 5 For Ly sufficiently large, there exists ¢ > 0 such that

A
VL > Ly : inf sup M

>c> 0. (3.5)
ueVL/{0} veVL/{0} l|ullollv]]o

The stability (3.5) implies that for sufficiently large L, the Galerkin solutions u® of (3.1)
exist and are quasioptimal [6], i.e.

—ub|lp < C inf — . 3.6
= o < C it flu—vll (36)

Remark 6 The stability (3.5) of the Galerkin discretization (3.1) is not self-evident, since
we consider equations of the second kind. There are two basic situations in which (3.5)
does hold, however. In the first case, we assume that the surface [' is smooth, i.e. C*°. In
this case, the operators A arising from the boundary reduction of elliptic boundary value
problems in € are in fact classical pseudodifferential operators and the stability (3.5) follows
from a Garding inequality in L?(T") for these operators. The validity of a Garding inequality
has been obtained for several second kind integral operators of mathematical physics [17].

The second case occurs for I' being the boundary of a polyhedron. Here a Garding
inequality in L?(T') does in general not hold. Nevertheless, stability of (3.1) has been shown
by other means in [5] under the provision that V¥ is constrained to be zero in an O(h)
vicinity of the edges of I'.

It has been observed in numerous numerical experiments, however, that on polyhedra
(3.5) apparently holds even without the zero constraint, although a proof does not seem to
be available. We assume (3.5) in our analysis.

3.2 Multiwavelet Basis

In order to define a dense subspace sequence {V¥}%°_ by a multiscale scheme we construct a
hierarchy of meshes on the manifold I' as follows: divide ¢/ into four congruent subdomains
U', 1 < i < 4, by successively halving the sides. The subdomains can be expressed by
translations and scalings 7; of the reference domain U:

7 R* = R?,  with U' = 7,(U). (3.7)
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Applying 7; recursively yields a hierarchy of meshes {MZ%}% on the reference domain U
which is lifted on the manifold I" in order to define meshes M* on the boundary:

MY = {u}, ME = {Ti(Z/[) : ueML*1,1§i§4}

Mh={UF: 0<j <4 Neh o= {a) - U e M0 <k < Ny} (3.8)

The subspaces V¥ are constructed in the same manner namely by defining the structure
in local coordinates and lifting them on the boundary. Let

Py(U) := span{¢” : £ € U,v € N} with |v| < d}
be the space of polynomials of total degree d. Then define the spaces:
Vo=PuU), V':= {90 € L*U): Vie{l,...,4} por € VLil} for L > 0,

W=V, WE={y eVt Voe Vi (p4) =0} for L>0.

The space V* is derived by a replication of the space V*~! in each of the four subdomains
U'. Therefore, the spaces V¥ form a hierarchy, i.e.

Wevic-..cvitcvic. .. (3.9)

with A7, := dim V! = 4% dim P, (U).
The subspaces W are for L > 0 the L?(U)-orthogonal complements of VX=! in V¥ such
that we obtain the multilevel splitting

VeE=W'oW e . oW (3.10)

To construct an orthonormal basis for V¥ we proceed in the following way: obtain, for
example by applying the Gram-Schmidt process, orthonormal bases ¥° and W! for the
subspaces WY and W' respectively:

\ilo::{q;?: 0§j<./\/0}, \Tll::{&]l-: 0§j<N1—N0}.

Subsequently, derive via translation and scaling orthonormal bases UL for the remaining
spaces WL, L > 1:

o= {L/;JL 0§j<NL—NL71}
= {2L_11/~)€L2(Z/l): 3J1<i<4 or e ¥ and suppt/N)CW}.
Then
L ~
VL:spanU\Ifl

1=0
defines an orthonormal basis of V.

Finally, we lift the subspaces and the multiwavelet bases onto the manifold [' and obtain
the desired dense sequence of subspaces {VL}%°  in L?(I):

VE o= {p e’ (D) : poxp €V VEe{0,...,Np — 1}} (3.11)
wh o= {Y e L’(1): Yoy e W VEe{0,...,Nr — 1}} (3.12)
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and
L {qpf: 0§j<NL—NH} (3.13)
= {wELz(F):30§k<Np Yoy, € ¥ and supp@/)CF_k}

where Ny, := NpNp,, N_; := 0. The spaces W% remain orthogonal complements of V=1 in
VL but now with respect to the inner product (2.2). In this sense the multilevel splitting
(3.10) is preserved such that (4}, 9%) = 66,5 for all [,I' € Ny, i.e.

L
U ={f: 0<j<N - Ny, 0<I< L) (3.14)
=0

is an orthonormal basis of V*. Accordingly, ||ul|;zr) can be characterized by wavelet
expansion coefficients:

Proposition 7 For every u € L*(T), there holds

oo Ni—Ny_1-1

2
lullZamy ~ >0 > (w4 (3.15)
=0  j=0
and
L Ni—Nj_1-1 9 L Ni—Nj_1-1 2
oY @[~ > | (3.16)
1=0 §=0 1=0 §=0

where ~ denotes the equivalence of norms and (ué) the vector of coefficients of the L*(T)-
orthogonal projection of u on V¥ with respect to the basis (3.14). The equivalence constants
depend on the geometry I' and are independent of the level L.

Remark 8 The equivalence (3.16) depends on the polynomial degree d in general. If D is
a straight-sided polyhedron in IR?, there is obviously no dependence on d. If, on the other
hand, the Iy are curved, the d-dependence can be eliminated if the inner product (-,-) in
(3.1) is changed to (-,-). The equivalence (3.15) is always independent of d.

Moreover, due to the multiscale decomposition (3.10) the basis functions 1/);, which we
will call multiwavelets in what follows, have vanishing moments of order d 4+ 1 in local
coordinates:
/(1/);. o i) ()& dE =0 for |v| <d, | >0 (3.17)
u
which implies the smallness of certain entries in the stiffness matrix (see Section 3.3).
We employ the multiwavelet basis (3.14) in the Galerkin equation (3.1) to determine
the discrete solutions u” € V¥ where the stiffness matrix K’ is given by

(KL)(l,j)(l’,j/) = //k(x,y)wé-(x)wéf,(y) dsyds, for 0 <1[,I' <L.
I T

Note that K% is not symmetric in general. It follows from the stability (3.5) and the
norm equivalence (3.15) that the condition numbers of the sequence {A%} of matrices are
bounded:

Proposition 9 There exists k € R such that for all L
condy(AY) < k. (3.18)



3.3 Compression

The vanishing moment property (3.17) of the wavelet basis {¢;} defined in (3.14) implies
with (2.6) that many of the entries in K* are small.

Proposition 10 Let S]l- = supp wé-. The entries (K")q @) with d” = dlSt(SJl, S]l ) >
satisfy
’ d+2 ’
(K wygn| < € ME,T) (e(d))? (ralt) " 2-@et) (3.19)
where C'is independent of d, 1,1, 7, j" k,T, ¢(d) = (d+1)(1+log(d+1)) and M (k,T") denotes

the mazimum of the analytic continuation of k(xx(£), xx(n)) into a neighborhood of £ € U
and n € U in C*.

Decay estimates like (3.19) are well-known (see, e.g., [10, 3, 12]) to hold for all classical
pseudodifferential operators on smooth manifolds. We give here a new proof a) yielding
stronger estimates than (3.19) for kernels k(z, y) which are analytic off the diagonal {z = y},
b) which is derivative-free, i.e. the proof does not involve derivatives of k(z,y) and of the
surface parametrization. The estimates are therefore more explicit in kernel parameters
such as the wavenumber for time-harmonic vibrations and c) yielding bounds which are
explicit in the polynomial degree d and the number of vanishing moments.

3.3.1 Some Approximation Results

The proof of the decay estimate (3.19) is based on polynomial approximation results for
analytic functions. We start with some notation.

For the interval 1 = (—1,1) C IR, we consider the ellipse £, C C with foci in z = +1
and semiaxis sum p > h. In dimension n > 1, we denote by £ C C" the polycylinder
corresponding to (—1,1)".

The following approximation result is essential.

Lemma 11 Let f(x) be analytic in I = [—1,1] and let f admit an analytic extension (again
denoted by f(z)) to the closed ellipse &,, C C with foci at x = Rz = £1 and with semiaxis
sum rog > 1. Then there holds the error estimate

—(d+1) (1 _ =2\t
1 =l < @+ D0 (1) T Pl (320

forl <r<rgandd=0,1,2,.... The constant ¢ is independent of r,ry, f and d.

Proof:
This follows from classical approximation results, see, e.g., [14] and by using the embed-
ding theorem. O

For the kernel approximation we require a two-dimensional version of this result which
we derive by tensor product construction. To this end, let II;f(z) denote the polynomial
of degree d in I interpolating f(x) at the Lobatto points. For bivariate functions f of
r = (71, 23), denote by II4f the interpolant with respect to x;, 1 = 1, 2.

Lemma 12 Let f(xy,33) be analytic in [—1,1]> and admit, for fired x, € I, an analytic
continuation with respect to x4 € &, C C and vice versa. Then, for 1 <r < ry there holds

| £ — | < e(d)r V(1 — ) T ML(f) (3.21)

Lo(IxI) —



where ¢(d) := c¢(d + 1)(1 +log(d + 1)) with ¢ independent of v, f and d and with

M (F) = may gy Voo )l +pax g 17, )] (3.22)
Proof:
We write
17 = WL gy < 7 = iy + 12 (=120

For the first term, we use Lemma 11 directly. For the second term, we use the L>-stability
of Iy, i.e.
Vg € C°(I) Mgl peopy < C (1 +1log(d + 1)) llgll o

and again Lemma 11 to conclude. O

Below we denote by IT; = ITLII2 the tensor product interpolant and write H )# when f (z,v)
is interpolated with respect to x etc.

3.3.2 Proof of the decay estimates

In the remainder of this section, we assume that
djj, = dist (S}, S%) > (3.23)

g

with S} := suppe!. We will prove the decay estimate (3.19) the above approximation
results to the kernel k(x,y) in local coordinates, i.e. to k(&,7). We recall that

() o /F /p k()05 ()0 (y)dsads,
= 21+z'—2_2(l—1)—2(l'—1)/u/ul}(kyl)(k,,l,)(g,n)@(g)@,(n)dgdn (3.24)

Here the kernel k. (€, 7) is the composition of k(x,y) |ds,||ds,| with y; and X, re-
spectively, and with a translation in the parameter domain &/ and a dilation by 2!~! resp.
by 2/~ (the scaling factor in (3.24) results from the normalization of the wavelets and the
Jacobian of this scaling). Henceforth we omit the subscripts and write simply k.

We use now the vanishing moment property (3.17) and Fubini’s theorem and write

(KL)(z,j)(l',j') N /r/rk(x’y W5y )dsyds‘”
= o2 [ ge) [ 0 o' ()] dnde (3.29)
= o2 [ g / G @' (&) — olEm)] dedn

where ¢(&;n) is an arbitrary polynomial of & in IP;(U) with coefficients depending on 1 and
©'(&; ) is a polynomial of 7 in P4(U) with coefficients depending on . The decay estimates
will follow from the following approximation error estimates.

Proposition 13 Assume (3.23). Then there exists v > 0 depending only on I' and the
domains of analyticity of k(x,y) and of the parametric representations xy such that
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i) for every € € U, k(€,n) in (3.25) is a real analytic function of n € U and it admits an
analytic continuation to the bicylinder 53, C C? with semiazis sum p' satisfying the
bound

P> p(Sh, Sh =1+72"d}},. (3.26)

i) Conversely, for every n € U, k(€,1) in (3.25) is real analytic in € € U and admits an

analytic continuation to €p2 C C? with semiazxis sum p satisfying

p > p(Sh,Sh) ==1+~2d},. (3.27)

Moreover, there hold the estimates

M, (k) := max max

~ "N —2
k < M (d%, 2
£COEF neoe?, (€ 77)‘ N ( 7 ) (3.28)

where the constant M depends only on the analytic continuation of the kernel k.

Proof:
We first establish the analyticity of the kernel in local coordinates, i.e. of k(xx(+), x&(+))-
This is immediate from the assumed analyticity of the kernel k, Assumption 2, and
from the analyticity of the charts x;. The size of the domains of analyticity is £, with

p=1+ vd]l-;-: for some 7 > 0 by Assumption 2 on the kernel (cf. also Remark 3). Now k

is obtained from k(xx(), & (*)) by scaling the variables ¢ and 7 by 2 resp. by 2" which
implies (3.26), (3.5), since the domains of analyticity scale analogously. The estimate
(3.28) follows as Lemma 5 in [16]. O

We are now in position to prove the main result of this section which will imply Proposition
10.

Theorem 14 With p,p' as in (3.26), (3.27), there holds the decay estimate

‘ (KL) (L)"')

Here the constant C' is independent of p, p,d and k.

< 02 (e(d)? () Y (1= p2) (1 - () D) Mup(B). (329)

Proof:
We apply Lemma 12 to (3.25) and select

e for every £ the function ¢'(§,7) = f[((i")/;(ﬁ,n) as tensor product polynomial inter-
polant of degree d of k(&,n) with respect to 7, and

e for every 7 the function p(&,n) = fI((f) (l%(f, n) — ¢'(&, 77)) as tensor product polyno-
mial interpolant of degree d of k(€,n) — ¢'(€,n) with respect to &.

Since ¢'(€;n) is, for every 7, a linear combination of kernel evaluations in sampling points
Nij, ¥'(§5m) is an analytic function of § with the same domain of analyticity in & as F,
and so is therefore & — ¢'. We may therefore apply Lemma 12 to the difference

k(-n) — ¢ (),

9



resulting in the bound

< cld)p I = )M, (BCom) = @(5m) v eU

with M, as in (3.22).
Next, we consider for every £ € 0E7:

(ECom) = & (m) = ol 77)HLOO(,XI)

(3.30)

(¢,
Since /;(f ,m) is seperately analytic in each variable by Proposition 13 and continuous, it
is jointly analytic in (&, 7).
We may therefore apply Lemma 12 once more to estimate the polynomial approxi-
mation error in 7 of k(&,n) — H&")k(f, n) for § € 0E7:

7€) = @& gy < ) ()Y (1= (0)72) 7 My (RS ) (3.31)

Combining (3.31) and (3.30) gives the assertion. O
In order to deduce (3.19) from Theorem 14 we note that
1-d —d

—(d+1) oL 14 14 1 g1\ —(d+1)
P 1—0p = < - < (v2'd; . 3.32
( ) (p+1)(p—1) = y2dj;, (2d) (3.52)

Combining (3.32) and an analogous bound with respect to p’ with (3.28) in (3.29) proves
(3.19).

Remark 15 In the case of the double layer potential of the Helmholtz-kernel

e 2 (£

on, \4rm |z —y|

where w € R is the dimensionless wavenumber, we have in (3.28) the bound

My, (k) < C(I') [w| exp(c |w])

Here ¢ is an absolute constant, depending only on the global regularity of the surface I'.
Inserting this into (3.19), we find after possibly changing ¢ the compression estimates

< O M(T) (e(d))? (yalh) 7 ol ey

|(K5) 0w

Assuming ¢ ~ 1, we see that the compression can only take place when (d+2)(I+1") > |w|.
This underlines the advantage of a higher number of vanishing moments for such problems.
For example, if the number of vanishing moments is equal to |w|, one can expect to obtain
again the usual compression behavior (notice that a large number of vanishing moments
does not cause larger supports in our setting and that a high polynomial degree is also
advantageous for the solution approximation in Helmholtz problems).
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3.3.3 Matrix truncation

The truncation strategy for the stiffness matrix in the wavelet basis is now as follows:

~ L . . l ll
(KL)(l,j)(l’,j’) = { (K )(l,j)(l’,j’) 1f dlSt(Sj’ S]’) S T (333)
0 otherwise

where (7;7) is a matrix of truncation parameters at our disposal.
For a given selection of the truncation parameters 7/, we solve instead of (3.2) the
perturbed system
Arat = (M" + K") @b = £ (3.34)

and denote by
L
at =3y Y akyl e vF

1=0 j

the corresponding approximate solution. The multiwavelets introduced above exist for any
approximation order d. They are fully orthogonal and their support does not increase with
d. This is paid for by their discontinuity which implies an increased dimension of V¥ as
compared to, for example, smoothest splines of the same degree d on the same mesh. For
example, for d = 1, i.e. piecewise (bi)linear functions, the space V¥ of discontinuous func-
tions has, roughly speaking, six times as many degrees of freedom as the corresponding
continuous trial space while giving the same asymptotic convergence rates (even though
the constant in the convergence estimate is certainly smaller). It is therefore not clear if
a Galerkin BEM based on continuous trial spaces and, for example, the panel-clustering
approach, will outperform the multiwavelet Galerkin scheme with d = 1 in terms of accu-
racy versus CPU-time. If so, special, biorthogonal wavelet bases for spaces of continuous
functions must be employed.

A special case occurs for d = 0, i.e. for piecewise constants. This corresponds to the clas-
sical panel method, resp. to the Haar wavelet. Here the dimension of the trial space is not
increased by using the wavelet basis. Notice, however, that we have only vanishing mean
then and equation (3.19) indicates that higher order vanishing moments imply correspond-
ing faster decay. It is therefore often argued that the piecewise constant Haar multiwavelets
(d = 0) are unsuitable as basis functions since the decay (3.19) resulting from (3.17) with
d = 0 is too weak. This argument arose in the context of the so-called e-truncation advo-
cated in [1], but is, as we shall see, completely unjustified. What is essential is the proper
number of vanishing moments with respect to the approximation order of V! and the order
of the operator A (see [3] for an analysis of operators of nonzero order). Indeed, in our
case the decay (3.19) is sufficient to allow the approximation of the full Galerkin matrix
A’ by the compressed one A* with A" = O(N,(log N1,)?) essential, nonvanishing elements
so that the asymptotic convergence rate of the Galerkin scheme (2.4) is not reduced, as we
will now show.

3.4 Asymptotic Complexity and Convergence

In the following Theorem we collect the main results on convergence and complexity of the
compressed Galerkin scheme.
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Theorem 16 Let s,s" € [0,d+ 1] and assume that the truncation parameters Ty in (3.33)
are given by

7”/ — aQ 2l ' 21, 121, (335)
< < S, < ! < (3 36)
(6 (6] .
l 1 = = 5 l 1 = =

Then the following holds:

1. For sufficiently large a there exists a level Ly such that for sufficiently large a in (3.35)
the compressed Galerkin scheme is stable for every a,a’ € [0,1], i.e.

(v*, APut)
VL > Ly : inf sup -~ >c>0 (3.37)
0£vLeVL 0£ul eVl ||U ||0||U ||0

where AV . VI — (VLY denotes the finite-dimensional operator associated to the
compressed system matriz AY .= MY + K~.

2. Given the reqularity u, f € H*(T') and L sufficiently large yields for any o/ € [0, 1] the
error estimate

lu — @"[lo < CN,, ?* (log Ni.)” ||ulls = Ch® |log A" [Jul|, (3.38)
with
0 o1 <a<l
v=2S 5 for x=a<l, (3.39)
1 ﬁ =a=1.

3. Let g € H* (') and denote by ¢ € L*(T) the solution of the adjoint equation A*p = g.
Assume the reqularity ¢ € H*(T') and u € H*(T') and that (3.36) holds. Then, for
sufficiently large L we have the error estimate

(gou—at)| < N Qog M) Jlulllglls

, ok (3.40)
Ch*™ log A" |lull[lglls

with v as in (3.39) and V' defined analogously in terms of s'.

4. The number N of nonzero entries in K* is of order O(Ny(log N.)?) if « = o/ =1
and O(Nylog Ny) otherwise.

The proof of this theorem is analogous to the results in [15, 3, 16] and therefore omitted.
We note, analogous to (3.18), that as an immediate consequence of the stability (3.37) and
the norm equivalence (3.15) we obtain the boundedness of the condition numbers of the

compressed stiffness matrices: }
condy(AF) < &*. (3.41)
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Remark 17 We observe that for « = o in (3.35) we have 7 = 7, which implies a sm-
metric compression pattern. In the Galerkin setting, the superconvergence estimate (3.40)
implies the choice & = o = 1 for a maximal convergence rate at an interior point (regularity
of the exact solution provided). We therefore assume below that o = o/. Note, however,
that for collocation methods, also nonsymmetric compression patterns corresponding to
a = 0,a’ = 1 are more efficient. The algorithms below can be straightforwardly adapted
to this situation.

Remark 18 We point out that the compression strategy (3.33) together with (3.35) is quite
different from the so-called “e-truncation” proposed in [1]. In fact, this compression criterion
is analysis-based and keeps matrix elements of different size in different blocks. Dropping
all matrix entries below a certain treshhold will not, in general, lead to a compressed scheme
with proper asymptotic convergence rates.

4 Numerical Integration

The preceding analysis still assumes that the entries
(K ) wjwg = / / k@, )0 (@)l () dsyds, = [ [ k(€I () dndg  (4.1)
u u

of the stiffness matrix are evaluated exactly. This is not possible, in general, and approxima-
tions by means of numerical integration must be used. Theorem 16 estimated the impact
of the consistency error introduced by the matrix compression (3.33) on the asymptotic
convergence rates of the Galerkin scheme. In the same framework the consistency error due
to numerical integration has been analyzed in [16].

It is clear that with sufficient effort arbitrarily accurate approximations can be computed
so that Theorem 16 will hold for the resulting, fully discrete scheme as well. It is less
trivial, however, to find a quadrature scheme that will achieve this without undue increase
in complexity. In our implementation we use the quadrature scheme that was proposed and
analyzed in [16]. We now describe this scheme and present its principal properties.

For ease of exposition, we focus only on the basic case Y = S, i.e. the supports of the
wavelets are images of the unit square (see Remark 20 below for modifications for triangles).
Since each multiwavelet is polynomial in the four subdomains U* of U the integral (4.1) may
be assembled from the integrals related to the 16 combinations of subdomains. For these
subintegrals tensor product Gaussian quadrature formulas converge exponentially with the
rate depending on the size of the integrand’s domain of analyticity:

Lemma 19 Let ¢ > 0 and let G}, denote the quadrature rule that employs in each of
the four subdomains of U a two dimensional tensor product Gaussian quadrature with n
Gauss points in each direction. Then for all wavelets 1, ' with U := suppvy € M,
U' = supp )’ € MY satisfying 0 := dist(U, U") > 0 the error estimate

[ Ky @) (v) dsyds, — Gl G, b, v @' )| = O()  (42)
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holds, provided the number of Gauss points is selected according to
S d n e P 4 Ne

a —’ n - 77
~ 2 logp(U,U")? 2 logp(UIU)
with p defined in (3.26) and (3.27), respectively. Moreover, for

| &

ne = —log(2*'e) — logd®  (4.3)

[>1">0 and p(U\U) > 2 (4.4)

(4.2) is satisfied if
ne == —log(2" ¢) + log 7. (4.5)

Remark 20 The cases of (4.1) involving triangular panels are easily reduced to the con-
sidered case of quadrilaterals by applying the surjective mapping

6182

sometimes called the Duffy transformation. Then Lemma 19, in particular (4.2), remains
valid if the number of Gauss points selected exceeds n + % and n' + %, respectively.

D:S—T, D(g)::( & )

Unfortunately, the domain of analyticity may degenerate such that the complexity of the
quadrature according to Lemma 19 cannot be bounded logarithmically: let [ = L, I' =0
and § = O(271), then for n/ in (4.3) it follows that

n' = Q(2"|loge|) = Q(VNy),

i.e. n' grows at least as v/IN;. Hence, the number of kernel evaluations for such an entry is at
best bounded by O(Ny). Since there are O(y/Np) entries of this kind and since all of them
occur in the compressed stiffness matrix the reduction of the complexity by compression is
almost cancelled.

In order to recover the almost optimal complexity estimates of the previous Section a
dyadic subdivision of the larger panel in the quadrature scheme is introduced (see [13][16]).

Lemma 21 Let [ >1'">0and U € M', U' € MY, Then there exists a subdivision

ANUUY c MY U---uM! (4.6)
of U" such that
UcAUU) = p(U,U)>2 or (dist(U, U)=0 and U ¢ Ml) (4.7)
and
AwuynM|<c,  fori<i<l, (4.8)

i.e. the number of panels contained in the subdivision is bounded by O(log Ny).

Note that due to the subdivision the singular cases, i.e. dist(U,U’) = 0, that may occur
are reduced to three basic situations: U equal to U’', U and U’ sharing a common edge or
U and U’ sharing a common vertex. They can be handled by special quadrature schemes
[11][7] to provide an error of order O(g) in at most O(|loge|®) operations.

Combining the results of the previous lemmas constitutes the following strategy, which
in effect is a variable order, composite quadrature rule (see [13]):
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Theorem 22 Let ¢, > 0, 5 > 0 and U € M', U' € MY with 1 > I' > 0. Then for all
wavelets ¢, " with suppy = U and supp )’ = U’ the following error estimate holds:

[ [ F@ @ @) dsyds, = 3 Qua k@ n)u@e')| = O, +e)  (49)

TeAU,U")
where i o N
GG, if dist(U,U) > 0
Qui = special quadrature scheme otherwise (4.10)
of accuracy O(gy) [11]
and p p
PO NI I — (4.11)
2 logp(U,U)? 2 logp(U,U)*
with
n., = —log(2""&,) +log(l — I' + 1) + log 7. (4.12)
In particular, the choice ¢, = 2~ HNRL=OH A gpg o = 2720 Dg e,
ne, == ((d+2)2L =1 —=1") +1' = I)log2 +log(l — I' + 1) + log¥?, (4.13)

preserves all assertions of Theorem 16. Moreover, the total cost of the numerical integra-
tion in order to generate the compressed stiffness matriz can be estimated to be of order
O(Ny(log N1)*) operations.

Theorem 22 cites the results shown in [16] which hold for any polynomial degree d. For
d = 0 in fact small improvements are possible such that the time to assemble the stiffness
matrix in our numerical experiments could be reduced by a factor of three:

Remark 23 The term log(/ — '+ 1) in (4.12) compensates the influence of the number of
panels in a subdivision on the quadrature error. If dist(U, U’) >> 0 then A(U, U")NM' = 0),
I > 1> 1, in most of the cases. Hence, a subdivision consists of less than O(l — I' + 1)
panels. Replacing log(l — I’ 4+ 1) by elog(l — I' + 1) with € > 1 attends to these situations
while (4.9) still holds.
Furthermore, the choice ¢, = 2~

e if p(U",U) < 2,
Er = {2_2(L_l)85 if p(U’, U) > ) (414)

2AL=De . may be refined:

without changing the assertion of Theorem 22.

5 Implementation

The implementation of our method is based on the library Concepts-1.2. This library pro-
vides an object-oriented framework for boundary element methods where basic concepts of
Petrov-Galerkin schemes such as subspaces, functions, operators or dualforms are captured
in class definitions [8].
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5.1 Basic Structures

For an efficient evaluation of the stiffness matrix by element matrices an abstract data type is
required which associates each panel UJZ-, 0 <[ < L with basis functions ¢ € |J ¥' satisfying
supp ¢ = U;. We call each association of this kind an element represented in the existing
framework by the abstract base class Element. The interface of this base class provides the
access to the underlying panel and the corresponding basis functions represented by a global
index b € INy. The implementation of the class by means of derived classes depends on the
shape of the panel and the basis functions involved. For the algorithm under consideration
two classes become necessary to cover triangular and quadrangular panels. In addition
to the standard interface of the base class Element the interface of the wavelet classes
must offer the possibility to access the elements corresponding to the four subdomains of
the particular panel UJZ-, which we will denote by Ui;“l, cee iﬁg in what follows. This
guarantees the efficient implementation of the composite quadrature scheme discussed in
the previous section. Moreover, the information about referencing the subelements can be
used to build element trees. The roots of the trees are the elements of level zero, whereas
the leafs consist of level L — 1 elements. Accordingly, we introduce the following ordering
relation of the panels U} which reflects a preorder depth-first traversal of the element trees:

UL <UL = j<j4"or (j=j4"andl<1). (5.1)

The construction of the wavelet elements with respect to a given polyhedra as well as
the generation of the global index for the basis functions is the task of the class Multiscale
a specialization of the base class Space already defined in the framework. This class is used
to represent test and trial spaces of the discretization scheme. It provides the operation to
scan all elements of the particular space used, for example, to assemble the stiffness matrix.
In the case of the class Multiscale the elements are listed using preorder depth-first traversal
of the element trees. This ordering is the natural choice to assemble the compressed stiffness
matrix. Due to the discontinuity of our multiwavelets the generation of a global index is
easily accomplished by scanning the elements and assigning each associated basis function
the number of functions visited so far. Thus, when using preorder depth-first traversal of
the elements subsequent indices in general reflect a clustering of basis functions. This is
used to determine and compress blocks of zeros in the stiffness matrix easily.

5.2 Discrete Operator

The essential characteristic of operators, i.e. the mapping of functions, is represented by
the abstract base class Operator in Concepts—1.2. In the case of standard boundary el-
ement methods, i.e. when no compression of the system matrix is applied, the obvious
implementation of an operator is a two-dimensional array. In this case the mapping of the
operator is just an ordinary matrix-vector product. This situation is covered by the class
OP_Allpurpose in the framework Concepts—1.2.

In the case of the presented multiscale scheme we have to choose a more sophisticated
implementation to meet the objectives of the method. According to Theorem 16, the trun-
cation criterion (3.33) yields a compressed stiffness matrix with O(Ny,(log Nz)?) nonzero
entries. Thus, it is essential that the nonzero entries can be localized also in O(Ny,(log Np,)?)
operations, i.e. without an exhaustive search of the N? combinations. Furthermore, a stor-
age scheme for the compressed matrix with a memory consumption proportional to the
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number of nonzero entries and a small overhead for the management must be provided.
In addition, an efficient access to the entries of the stiffness matrix when processing a
matrix-vector product is essential.

As it is well known from the implementation of finite elements, the most efficient and
natural way to exploit the quadrature is to perform the assembly be means of evaluating
element matrices for each combination of panels U and U:

(Y ) gy = //k’(x,y)t/)(x)t//(y) dsyds,, suppty = U, suppy)’ =U". (5.2)
U U

Therefore, element matrices form the basic structure of the following algorithms. Besides
it is ensured that the algorithms can also be applied in the case of continuous wavelets,
since the constraints due to the continuity are handled by an appropriate generation of the
global index which does not affect element matrices.

5.2.1 Localization

The algorithm for the localization of nonzero entries is based on the obvious implication
. oyl I 4 . Uorrl
dist(U;, Uy) > my and U; C Uy = dist(Uj, U;) > 75 (5.3)

where the threshold values 7y and 7;; are chosen according to (3.35). Hence, if the ele-
ments are scanned in depth-first order with respect to the element tree described in the
previous Section the elements that do not contribute to the stiffness matrix are located in
subtrees that can be skipped in O(1) operations. This strategy yields the following recursive
algorithm:

Algorithm 24
assemble(UT, U]li) {
if dist(U},U}:) <mw or =0 or I'=0{
evaluate Egjl,,UJl_j and update K*

if (I'<L—-1)
fori=0to3 assemble(U}, Ui/jﬂi)

For given panels U and U’ Algorithm 1 determines all entries in the compressed stiffness
matrix that correspond to the wavelets 1, ¢’ € U, ¥' with supp ¢ = U and supp ¢’ C U’
Therefore, the calling sequence

L—-1
for Ue |JM, U €M’ assemble(U,U’) (5.4)
=0

generates the complete compressed stiffness matrix K* row by row. In particular, rows
related to the wavelets ¢ with ¢ C U are treated simultaneously.
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Remark 25 Note that in general the basis functions of ¥° do not have the vanishing
moment property (3.17) such that the corresponding entries are not compressible. In Al-
gorithm 24, we take this into account by evaluating the element matrix in the cases [ = 0
or I' = 0 additionally. However, in this way more entries than necessary are evaluated,
but it is doubtful if a special treatment of ¥ in the implementation is more efficient, espe-
cially when a subdivision of the elements may become necessary such that element matrices
corresponding to U! must be evaluated anyway.

Lemma 26 The nonzero entries of the compressed stiffness matriz KU are localized in
O(N) operations, where N denotes the number of nonzero entries.

Proof:
With respect to the localization each call of the function assemble() is of order O(1).
Hence, the complexity of localizing the nonzero entries is proportional to the number of
calls of assemble() which itself is bounded by the number of nonzero entries. a

Since the evaluation of the exact distance of two panels is an expensive operation, even for
triangles or quadrilaterals, the distance of their related bounding boxes, i.e. the smallest
box [¢;,¢,] := {z € R* : ¢ < x < ¢,} containing the considered panel, is used instead.
This approximation is conservative in the sense that it is a lower bound for the exact value.
Thus, more entries of the stiffness matrix (cf. 24) and more Gauss points (cf. (4.3)) than
necessary are employed.

5.2.2 Compression

Our compression technique is based on runlength encoding, where we only encode sequences
of zero entries in the stiffness matrix. In particular, for a given row of the matrix we replace
sequences of zeros by control tags that specify the length and the starting index of the
following block of nonzero values. In contrast to standard data structures such as lists of
entries to represent sparse matrices, this approach preserves blocks of nonzero entries in
the stiffness matrix. Thus, the amount of informations necessary to decode the compressed
matrix, in our case the control tags, are reduced and matrix-vector products could be
realized efficiently, since the entries are not randomly distributed in the memory.

However, we cannot affort to assemble a complete row by Algorithm 24 and compress
afterwards since scanning the row amounts to O(Ny) operations. Therefore, we relate the
global index b € INjy of the wavelets to the calling sequence of the elements implied by
Algorithm 24, i.e. the depth-first ordering (5.1) such that a subtree of elements is aligned
with a block of subsequent entries in a row of the stiffness matrix. Then, the subtrees
skipped during the assembly correspond to sequences of zeros. Hence, each zero block can
be matched in O(1) operations making a compression in O(N') operations available.

In order to improve the ratio of compression we exploit the symmetry 7 = 7, of the
threshold defined in (3.35) which implies a symmetric pattern of zero and nonzero entries of
the stiffness matrix (cf. Remark 17). Hence, assembling rows and columns simultaneously
offers the possibility to reuse the control tags of a row for the corresponding column saving
each time the storage of one tag. Obviously only half of the entries, say the lower triangular
matrix with respect to an arbitrary ordering, should be evaluated in row mode whereas the
rest is to be evaluated in column mode. To distinguish row and column mode we chose a
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different ordering of the entries as implied by (5.1), namely an ordering corresponding to
lexicographically ordered panels:

! v _ .
Ui <Uj = I<l' or (I=10"andj<j'). (5.5)

In regard of the quadrature algorithm of Section 4, this ordering ensures the assumption
[ > I'. We finally get the following modification of Algorithm 24, which we use in our
implementation:

Algorithm 27
assemble(U], U]li) {
if (dist(U!,US) <) or I'=0) and (I>1 or (I=1"and j <j') {

EY, . and update K-
ULUj

evaluate EY
U J

l Ul’}

3 j/

if (I'<L—1)
fori=0to3 assemble(U}, Ui}ﬂi)

5.3 Quadrature

The general structure of the quadrature strategy used is already described in Section 4.
However, there are two topics concerning an efficient implementation that should be dis-
cussed in detail:

e construction of subdivisions and

e recycling of temporary results of the composite quadrature.

5.3.1 Quadrature Algorithm

To construct a subdivision consistent with (4.6) - (4.8) one obviously has to exploit the
element trees. This yields a recursive reformulation of the quadrature @) (cf. Theorem 22)
with an appropriate subdivision incorporated:

3
. S Qv pULTUY <2and 1> 1
QU! U = =0 Uj,U4j’+i ! ! (56)
Jjr gt

Qui g otherwise
j’ j’

for [ > I'. Since the recursion terminates at least for [ = I’ and since p(U},,U}) < 2 implies
dist(U}, U}) = 0 the properties (4.6) and (4.7) are satisfied. In particular, they are satisfied
with a minimal number of recursion steps yielding a minimal number of elements in the
implicit subdivision of (5.6) such that (4.8) holds due to Lemma 21.

We interlace the evaluation of all entries of an element matrix with the quadrature
shown above to derive the following algorithm:
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Algorithm 28
integrate(U7, Ujl-i, Uji) {
if p(U;,Ug) >2 or l=1
E = (QU}:UJz k(x,y)@/)(@@//(y))suppw:U;,suppw’:Uj-i

else
3 ~
E = Z mtegmte(U]l-,UJl-:,Ugji)
i=0
return E

}

By calling integrate(U, U',U’) the element matrix E}¥;, is returned, provided U € M! and
U' € M" with [ > I'. The remaining entries, i.e. £, with [ < I', could be determined
by invoking integrate(U,U’,U). However, in order to exploit the construction of a subdi-
vision exhaustively, the evaluations of Ej, and its symmetric equivalent E; should be
embedded in one function:

Algorithm 29
integrate(Uy, Ujl-i, UJZ) {
if pULUY>2 or 1=1
E = (QUJz_,UJg k@, )Y @)Y Y))supp y=01, supp w0

E' = (QUé',U; k(ff;y)w(x)wl(y))suppszéﬁySuppw'ZUJI-
J

else
3

(E,E") = ; z'ntegmte(UJl-,UJl-i,Uiﬁi)
return (E, E")
}

This way the subdivision, which is identical in both cases, is only generated once. Besides,
during the assembly according to Algorithm 27 always such a pair of element matrices is
requested.

5.3.2 Cache

Generating the entries of the stiffness matrix by means of the described dyadic subdivi-
sion scheme imposes the addition of several temporary quantities. Chances are that these
quantities could be reused for subsequent calculations. However, this is not possible in the
formulation of Algorithm 28. Therefore, we have to introduce a slight modification. We
consider the following bases for the subspaces VX and V%, respectively:

o = ¢
ol = {@ELZ(F): J1<i<4 gor e ® " and suppaﬁCZ/?},
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ol = {QOJL-:OSj<NL}
= {QOELZ(I‘):EIOSk<Np gpoxkEéLand suppngF_k}.

Then, the two scale relation
oi = 2 et (5.7)
J'eJ(d)
is satisfied with coefficients a;; independent of L, provided an appropriate ordering of
the basis functions is used. Moreover, (5.7) implies a corresponding relation for element
matrices with respect to the new bases:

3 3
o _ ® o T
By = 2 Born A = 2 A B (5.8
where A; are certain N, x Aj—matrices and
(Efp)oe = | [ ba)e(@)e' () dsyds, (5.9)

Uj Ujl_j
with ¢ € ®1 o' € &'+ such that suppp C U}, suppy)’ C U;;. Similarly, since U* C
span ®F, there exists a N} x Nj—-matrix By and a N} X (N} — Ny)-matrix B; such that
(BJ Efyy By if1=0and I'=0,
BY Bl By i1=0ad ! >0

v —
Eowy =\ BT B8, By it1>0and I =0, (5.10)
Jj 4!
BY EY v By ifl>0andl >0.
\ .] j’

The modification of Algorithm 28 consists in evaluating E® using recursion (5.8) instead
of EY. Hence, in every step of the recursion a complete element matrix with respect to the
bases ®! is generated. Due to (5.10) these element matrices can be used to retrieve possibly
necessary information in subsequent calls. Note that the accuracy of the recycled element
matrices is sufficient since n., in (4.13) decreases with respect to I.

Algorithm 30
integrate(U7, Ujli) {

if (EI%UJ% not cached) reclaim(UL, UL, UY)

v
U]%Ujl_j
reclaim(U}, U, Uji) {

if (p(ULUY>2 or 1=1)

Eq> = (CQUJI’Ujé~ k(l‘Jy)gp(x)gpl(y))suppngUJl.ysuppgp’CUj;
else
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3 ~
E® = )" reclaz'm(U]l-,Ujl-:,UlJrl )Ai
i=0

45+i

load cache with EY, ;
viu!

.= BYE®B;

return E®

}

In Algorithm 30 the function integrate(U,U’) initiates a cache reclaim if the requested
element matrix EJ;; is not available; otherwise a cached value of the matrix is returned
immediately. Again, according to Algorithm 29, we evaluate the symmetric counterpart of
every element matrix simultaneously. However, to simplify the algorithmic formulation this
is not shown in Algorithm 30.

In the implementation we cache all information that is generated during one call of the
function reclaim(U,U’,U"), i.e. we provide a cache size of order O(N). If one takes the
hierarchical sequence of the element matrix generation of Algorithm 24 into account, the
cache size is sufficient to reuse almost all informations generated by the subdivision scheme
and to satisfy the maximum potential number of requests to integrate(U,U’) by cached
values.

However, with Algorithm 30 it is not possible to prevent all element matrices from being
calculated twice. In particular, for U € M!, U' € M°, | > 0 and U € A(U,U") N M* the
element matrices Er\gﬁ and EgU are generated in the subdivision process. Note that, in

addition, U € A(U,U") for an appropriate U” € M° holds in most of the cases. Hence,
both element matrices are evaluated anew since they are not in the hierarchy of element
matrices cached. Nevertheless, numerical experiments show, that one could only save less
than 20% of the kernel evaluations, i.e roughly speeking at most a speed up of 1.25, if a
more sophisticated cache strategy is used, which guarantees that no element matrices are
evaluated more than once for any particular calling sequence.

6 Numerical Experiments

In this Section, we present the results of three numerical experiments obtained with the
described implementation of the multiscale scheme. On a polyhedron D C IR? we considered
the Laplace equation with Dirichlet boundary conditions:
For given f € L*(D) find U € H'(D) such that
AU =0 in D,
U=f on I':=0D.

The double layer ansatz U(z) = (k(z,-),u) where the double layer kernel is given by
1 {nly),y — =)

k(z,y) = — 6.1
D=5y - PP o1

leads with the jump relations to the second kind boundary integral equation
ue L(T): (v,Au) = (v, f) Vve L*) (6.2)
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level | N, a, « | time[s] | mem[MB] | it | cpr
2 9 | 0.3, 1.0 0.5 0.06 | 16 | 0.827
3 3841 0.3, 1.0 5.0 0.37 | 17 | 0.333
4 1536 | 0.3, 1.0 37.5 2.03 | 17| 0.113
> 6144 | 0.3, 1.0 224.6 9.97 | 17 | 0.035
6 24576 | 0.3,1.0 | 1181.3 46.68 | 17 | 0.010
7 98304 | 0.3, 1.0 | 6449.6 213.44 | 18 | 0.003
8 1393216 | 0.3, 1.0 | 36026.4 959.76 | 18 | 0.001

Table 1: First experiment: a, a = threshold parameter, time = time for assembly and
solution, mem = memory required to store the compressed matrix inclusive management
overhead, it = number of iterations, cpr = memory consumption with respect to a dense
matrix.

with the integral operator
1
(Au)(z) = —iu(x) + /k(x,y)u(y) dsy
r

defined almost everywhere on I'. We solved (6.2) on several polyhedral domains with quite
similar performance. Here, we only report the results obtained with a polyhedron defined
by six equilateral triangles and the right hand side

f(z) = ||z — o] 71, 79 € R? in the exterior of D.

For the discretization constant test and trial functions (d = 0) were used. In our experi-
ments, we did not make use of the fact that entries in the stiffness matrix corresponding to
panels located in the same face of the polyhedron D vanish. Therefore, the memory and
CPU-time listings below are representative of the algorithm’s performance also for bound-
ary integral equations with kernels other than (6.1) and for curved surfaces. The following
results were obtained on a SUN Ultra-Enterprise on a single processor with 1 GB RAM
and 125 MHz clock.

In the first experiment we kept the parameters a and a = o' of the thresholds (3.35)
controlling the compression fixed and solved the problem on various levels up to about
400000 unknowns (Table 1). On the finest mesh the compressed matrix consists of only
0.1% of the entries of the dense stiffness matrix. In addition, it can be observed that
the number of iterations used by the solver (GMRes without restart) is almost constant
validating the bounded condition numbers of the compressed matrices.

In Figure 1 the time of assembly and compression is depicted. Here, the upper dashed
line corresponds to the predicted bound O(Ng(log N1,)*) in Theorem 22. The plot indicates
that the influence of the higher order logarithmic terms on the computing time seems to
be negligible compared to the O(Ny(log Nz)?) term illustrated by the lower dashed line.
Roughly speaking, on an average nearly a constant number of operations is used to evaluate
an entry of the stiffness matrix.

In all numerical experiments the time for solution accounts only for less than 10% of
the total time shown in the tables. Therefore, with the present method the BEM-paradigm
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Figure 1: Time for assembly and compression of the matrix.
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Figure 2: ||u||o — ||ullo versus Ny.

that most of the work is spent for quadrature is still valid and a speed up similar to the
one for dense matrices can be achieved with the parallelization of the matrixassembly.
Figure 2 and Figure 3 show the behaviour of the L2-error of the density u on the
boundary and the average error in several interior points of the solution U, respectively.
The L2-error is approximated by the difference of the norm of the discrete density and the
norm of the exact density. Since an exact solution is not available we have computed an
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Figure 3: Error at interior points versus Np,.

approximate value by higher order quadrature and extrapolation. According to Theorem 22,
the expected rate of convergence is determined by regularity properties of A and its adjoint
A*. From the known edge and vertex singularities of the Laplacean in polyhedra [4] it can
be verified that in the example under consideration here both operators admit solutions
belonging to H!(T") for smooth right hand sides. This means that we have Theorem 22 with
s = § = 1 and expect O(NL_I/Z) convergence in the L?(I')-norm and O(N; ') convergence
at an interior point (note that collocation or Nystrom schemes do not display this kind of
superconvergence at an interior point and would require H?-regularity on I' and d = 1 to
achieve O(N; ) convergence at an interior point).

Again, the dashed line illustrates the expected behaviour of essentially O(Ngl/z). For
the error in interior points twice the convergence rate should be observed, hence essentially
O(N; ') (lower dashed line) or, according to Theorem 16, O(N; '(log N;)?) (upper dashed
line).

Finally, we compared our method with a standard boundary element implementation
generating the fully populated stiffness matrix with an optimized quadrature rule. For
both methods the time used to generate a solution satisfying a given L? error is depicted
in Figure 4 where the dashed line corresponds to the standard approach. It turns out that
already for moderate errors, “moderate” with respect to our model problem, the wavelet
method beats the standard approach: assuming an error between 10> and 10~ the wavelet
method is 10 times faster. Moreover, in this case it saves about 98% of the memory.

The second experiment investigates the behaviour of the method when the amount of
compression driven by the parameter a changes (Table 2). The constant number of itera-
tions shows that even for a high compression the algorithm remains stable. The convergence
rates, in addition, are in all cases preserved as indicated by the error in interior points shown
in Figure 5: when the influence of the coarser meshes, where practically no compression
is possible, vanishes, the lines corresponding to different values of a fan out. Nevertheless,
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Figure 4: CPU-Time versus L?-error.

level | N a, o | time[s] | mem[MB] | it | cpr

7 198304 | 0.1, 1.0 | 6349.3 153.72 | 18 | 0.002
98304 | 0.3, 1.0 | 6449.6 213.44 | 18 | 0.003
98304 | 0.6, 1.0 | 6862.0 335.46 | 18 | 0.005
98304 | 0.9, 1.0 | 7286.9 467.95 | 18 | 0.006
98304 | 1.2, 1.0 | 7910.1 641.21 | 18 | 0.009

ESEENEEN BEN

Table 2: Second experiment

they finally take the same slope. However, if the amount of compression is reduced by
means of parameter « instead of a, this is not the case as predicted by Theorem 16 and
observed in the last experiment (Table 3, Figure 6).

We point out that the influence of the amount of compression on the computing time,
in particular the time of assembly, is small compared to the influence on the memory
consumption (Tables 2,3). The reason for this is that the time to evaluate an entry of the
stiffness matrix depends on the distance of the supports of the related wavelets whereas the
amount of memory to store the value is always the same. Increasing the thresholds means
adding entries to the matrix with more or less distant support, which can be computed very
fast compared to the entries near the diagonal. The time of solution, however, increases as
fast as the memory.
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