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Abstract

The implementation of a fast� wavelet�based Galerkin discretization of second

kind integral equations on piecewise smooth surfaces � � IR� is described� It al�
lows meshes consisting of triangles as well as quadrilaterals� The algorithm generates

a sparse� approximate sti�ness matrix with N � O�N�logN��� nonvanishing en�

tries in O�N�logN��� operations where N is the number of degrees of freedom on

the boundary while essentially retaining the asymptotic convergence rate of the full

Galerkin scheme� A new proof of the matrix�compression estimates is given based

on derivative�free kernel estimates� The condition number of the sparse sti�ness ma�

trices is bounded independently of the meshwidth� The data structure containing

the compressed sti�ness matrix is described in detail	 it requires O�N � memory and

can be set up in O�N � operations� Numerical experiments show that the asymptotic

performance estimates apply for moderate N � Problems with N � 
�� degrees of

freedom were computed in core on a workstation� The impact of various parameters
in the compression scheme on the performance and the accuracy of the algorithm is

studied�
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� Introduction

Wavelets have� since their appearance in the mid ��ies� in�uenced many areas of applied
mathematics� After the fundamental work in signal processing and in harmonic analysis
�see ���	 and the references there
 it was pointed out in the paper ��	 that wavelet bases
might also be very advantageous for the discretization of integral operators� This was later
made more precise in ��	 where it was shown that a wide class of classical pseudodi�eren
tial operators could be discretized by GalerkinPetrov schemes using test and trial spaces
spanned by �biorthogonal
 wavelet bases in such a way that a
 the asymptotic convergence
rate of the numerical solution was optimal and b
 the work and the storage of the discretiza
tion scheme was bounded by O�N�logN
a
 �with a either zero or a small positive integer
�
see also ���	� This pointed the way to a new class of fast algorithms for integral equations�
in addition to the slightly older multipole and panelclustering algorithms� Waveletbased
schemes for integral equations promise moreover preconditioning of �rst kind integral equa
tions ��� ��	 and a new approach to adaptivity and aposteriori error estimation ��	� In
particular� wavelet based boundary element methods do not require explicit kernel expan
sions for each problem under consideration� Some technical issues in the construction of
practically viable algorithms� such as numerical quadrature� were addressed in ���	 where it
was shown that fully discrete schemes preserving the above bene�ts are possible� However�
no implementation of an order N waveletbased scheme for boundary integral equations on
general surfaces in IR� seems to be available yet �the computations reported ���	 were based
on applying a wavelet transform to the full N �N sti�ness matrix
�

To present an object oriented C�� implementation of order N�logN
a algorithms and
data structures of a waveletGalerkin discretization for boundary integral equations on
polyhedra and to analyze the performance is the purpose of the present paper� Some of the
developments presented here were reported in ��	� We con�ne the exposition to second kind
boundary integral equations or� more generally� to boundary integral operators of order zero
and to the fully orthogonal discontinuous multiwavelets introduced in ���� ��	� We give a
detailed description of the algorithms necessary to locate the N � O�N�logN
�
 nonzero
entries in the compressed sti�ness matrix and of the data structure to manipulate it� We
show that this requires only O�N 
 operations and O�N 
 memory� We further elaborate
in detail on the implementation of the numerical quadrature scheme introduced in ���	 We
�nd in particular that it is essential for a good performance of the scheme to reuse some
elementary integrals on various levels judiciously and present a cachingstrategy to this end�
Based on the theoretical analysis of the compression strategy� our algorithm has various
parameters governing the compression threshold� In numerical experiments� we investigate
in detail the impact of these parameters upon the performance of the algorithm� We �nd
that the compression rate can be strongly in�uenced without compromising stability� but
that the accuracy of the solution does su�er under too severe compression� In our ex
periments� problems with N � O����
 were tractable without accessing external memory�
In addition� we present a new approach to the compression estimates which are based on
sharp� derivativefree kernel estimates in the complex domain� They allow to make predic
tions on the compression of Helmholtz type kernels in dependence on the �nondimensional

wavenumber �� We �nd that the wellknown reduced compressibility at large wavenumbers
� can be compensated by overcompression� i�e� by using wavelets with a correspondingly
high number of vanishing moments�
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The outline of the paper is as follows� in Section �� we present some notation and the
class of boundary integral equations which we will consider� Section � is then devoted
to the Galerkin boundary element method and the construction of the multiwavelets is
presented� Further� we give derivativefree decay estimates and explain the compression
strategy� In Section �� we address the numerical integration� Section � is devoted to a
detailed explanation of the main algorithms used in the implementation of the multiscale
scheme� Finally� in Section � we discuss numerical results obtained with the presented
algorithms�

� Boundary Integral Equations

Let D � IR� be a bounded domain with a piecewise analytic boundary � � �D which
is globally Lipschitz� More precisely� � is partitioned into N� open pieces �k which are
smooth images of either the triangle T � f �x�� x�
 j � � x� � x� � � g or the square
S � f �x�� x�
 j � � x�� x� � � g in IR�� i�e� there exist bijective maps �k which are analytic
in U � U � fT �Sg such that

�k � �k�U
�

The partition f�kgN���
k�� is assumed to be regular� i�e� for k �� k� the set �k � �k� is either

empty� a vertex� or an entire edge� Under these assumptions there exists a Lipschitz atlas
of � with charts ��k which� when restricted to �k� coincide with �k�

By L���
 we denote the space of functions u � � � IR that are square integrable with
respect to the surface measure dsx� The space L���
� equipped with the inner product

hu� vi �
Z
�
uvdsx� ����


is a Hilbert space� An inner product � � � � 
 which is equivalent to h � � � i �i�e� giving rise to
equivalent norms
 in L���
 can be de�ned by

�u� v
 �
N���X
k��

Z
U

�u � �k
 �v � �k
 dx� dx� ����


For s � �� we consider also the Sobolev spaces Hs��k
 of functions with pullback in Hs�U

endowed with the norm k � kHs	�k
� The space of functions u � L���
 with uj�j � Hs��k


for s � � is denoted by
QN���

k�� Hs��k
� Evidently� the expression

kuks ��

�
�N���X

k��

kuk�Hs	�k


�
A
���

����


is a norm in
QN���

k�� Hs��k
�
For a given f � L���
� we consider the variational boundary integral equation

u � L���
 hv� Aui � hv� fi 	v � L���
� ����


For the integral operator A� we suppose the following�

Assumption � A � L���
 � L���
 is continuous and injective�
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Assumption � A admits the representation via a kernel k�

�Au
�x
 �� c�x
u�x
 �
Z
�
k�x� y
u�y
dsy x � �� ����


where k�x� y
 � Lip��� � �
nfx � yg
 is an analytic function of x � �k� y � �k�� � 

k� k� � N� which admits an analytic extension for x in some neighborhood of �k resp� for
y in some neighborhood of �k�� We furthermore assume that the kernel satis�es the bound

jk�x� y
j 
 C

jx� yj� ����


for every x� y in some complex neighborhood of each boundary piece �k�

The integral in ����
 must be taken in the Cauchy Principal Value sense� in general� and
c�x
 is assumed to be positive and analytic on �k� i�e� A is formally a Fredholm integral
operator of the second kind� Further� D�

x � D
�
y are Cartesian derivatives in IR� acting on a

smooth extension of k�x� y
 to tubular neigborhoods in IR� of each surface piece �k�

Remark � Since the charts �k are assumed to be bijective and analytic� there exists a
constant � � � depending only on �k and the shape of � such that

� � ��� 
 j�k�u
� �k�u
�
j

ju� u�j 
 � ����


for u� u� � U � u �� u��

Remark � We point out that in our compression estimates we only require the analyticity
of k and the charts �k and the estimate ����
� but not the estimates

���D�
xD

�
yk�x� y


��� 
 C��

jx� yj��j�j�j�j

for any multiindices 	� 
 � IN�
� which are used� for example� in ��� ��� ��	� The analyticity

assumptions are usually satis�ed in applications for boundary integral equations and are
also underlying the quadrature error analysis� see ���	�

� Wavelet Galerkin Discretization

We present now a fully discrete wavelet Galerkin discretization of ����
 together with its
properties� Full proofs for all assertions can be found in ���� ��	�

��� Galerkin Discretization

We will be interested in Galerkin discretizations of ����
� Given a dense subspace sequence
fV Lg�L�� in L���
� the Galerkin approximations uL of u are de�ned by

uL � V L
D
v� AuL

E
� hv� fi 	v � V L� ����


�



By introducing a basis f�L
j g for the subspace V L the vector of coe�cients uL � �uLj 
 of the

discrete solution uL is determined by the linear system

ALuL �
�
ML � KL

�
uL � fL ����


where mass and sti�ness matrix are given by

�ML
jj� ��
D
�L
j � c �

L
j�

E
�
Z
�

c�x
�L
j �x
�L

j��x
 dsx� ����


�KL
jj� ��
D
�L
j � K�L

j�

E
�
Z
�

Z
�

k�x� y
�L
j �x
�L

j��y
 dsydsx ����


and the right hand side by fL ��
�D
�L
j � f

E�
�

We make the assumption that the Galerkin scheme ����
 is stable in the following sense�

Assumption � For L� su�ciently large� there exists c � � such that

	L � L� � inf
u�V L�f�g

sup
v�V L�f�g

hv� Aui
kuk�kvk� � c � �� ����


The stability ����
 implies that for su�ciently large L� the Galerkin solutions uL of ����

exist and are quasioptimal ��	� i�e�

ku� uLk� 
 C inf
v�V L

ku� vk�� ����


Remark � The stability ����
 of the Galerkin discretization ����
 is not selfevident� since
we consider equations of the second kind� There are two basic situations in which ����

does hold� however� In the �rst case� we assume that the surface � is smooth� i�e� C�� In
this case� the operators A arising from the boundary reduction of elliptic boundary value
problems in � are in fact classical pseudodi�erential operators and the stability ����
 follows
from a G�arding inequality in L���
 for these operators� The validity of a G�arding inequality
has been obtained for several second kind integral operators of mathematical physics ���	�

The second case occurs for � being the boundary of a polyhedron� Here a G�arding
inequality in L���
 does in general not hold� Nevertheless� stability of ����
 has been shown
by other means in ��	 under the provision that V L is constrained to be zero in an O�h

vicinity of the edges of ��

It has been observed in numerous numerical experiments� however� that on polyhedra
����
 apparently holds even without the zero constraint� although a proof does not seem to
be available� We assume ����
 in our analysis�

��� Multiwavelet Basis

In order to de�ne a dense subspace sequence fV Lg�L�� by a multiscale scheme we construct a
hierarchy of meshes on the manifold � as follows� divide U into four congruent subdomains
U i� � 
 i 
 �� by successively halving the sides� The subdomains can be expressed by
translations and scalings �i of the reference domain U �

�i � IR� � IR�� with U i � �i�U
� ����


�



Applying �i recursively yields a hierarchy of meshes fMLg�L�� on the reference domain U
which is lifted on the manifold � in order to de�ne meshes ML on the boundary�

M� �� fUg � ML ��
n
�i�U
 � U � ML��� � 
 i 
 �

o

ML ��
n
UL
j � � 
 j � �LN�

o
��

n
�k�U
 � U � ML� � 
 k � N�

o
����


The subspaces V L are constructed in the same manner namely by de�ning the structure
in local coordinates and lifting them on the boundary� Let

IPd�U
 �� spanf� �  � U � � � IN�
� with j�j 
 dg

be the space of polynomials of total degree d� Then de�ne the spaces�

V� �� IPd�U
� VL ��
n
� � L��U
 � 	 i � f�� � � � � �g � � �i � VL��

o
for L � ��

W� �� V�� WL ��
n
� � VL � 	� � VL�� h�� �i � �

o
for L � ��

The space VL is derived by a replication of the space VL�� in each of the four subdomains
U i� Therefore� the spaces VL form a hierarchy� i�e�

V� � V� � � � � � VL�� � VL � � � � ����


with NL �� dimVL � �L dim IPd�U
�
The subspaces WL are for L � � the L��U
orthogonal complements of VL�� in VL such

that we obtain the multilevel splitting

VL �� W� �W� � � � � �WL� �����


To construct an orthonormal basis for VL we proceed in the following way� obtain� for
example by applying the GramSchmidt process� orthonormal bases ��� and ��� for the
subspaces W� and W� respectively�

��� ��
n

���
j � � 
 j � N�

o
� ��� ��

n
���
j � � 
 j � N� �N�

o
�

Subsequently� derive via translation and scaling orthonormal bases ��L for the remaining
spaces WL� L � ��

��L ��
n

��L
j � � 
 j � NL �NL��

o
�

n
�L�� �� � L��U
 � � � 
 i 
 � �� � �i � ��L�� and supp �� � U i

o
�

Then

VL � span
L�
l��

��l

de�nes an orthonormal basis of VL�
Finally� we lift the subspaces and the multiwavelet bases onto the manifold � and obtain

the desired dense sequence of subspaces fV Lg�L�� in L���
�

V L ��
n
� � L���
 � � � �k � VL 	 k � f�� � � � � N� � �g

o
�����


WL ��
n
� � L���
 � � � �k � WL 	 k � f�� � � � � N� � �g

o
�����


�



and

�L ��
n
�L
j � � 
 j � NL �NL��

o
�����


�
n
� � L���
 � � � 
 k � N� � � �k � ��L and supp� � �k

o
where NL �� N�NL� N�� �� �� The spaces WL remain orthogonal complements of V L�� in
V L but now with respect to the inner product ����
� In this sense the multilevel splitting
�����
 is preserved such that ��l

j� �
l�

j�
 � �ll��jj� for all l� l� � IN�� i�e�

L�
l��

�l �
n
�l
j � � 
 j � Nl �Nl��� � 
 l 
 L

o
�����


is an orthonormal basis of V L� Accordingly� kukL�	�
 can be characterized by wavelet
expansion coe�cients�

Proposition � For every u � L���
� there holds

kuk�L�	�
 �
�X
l��

Nl�Nl����X
j��

����u� �l
j

���� �����


and
LX
l��

Nl�Nl����X
j��

����u� �l
j

���� � LX

l��

Nl�Nl����X
j��

���ulj
���� �����


where � denotes the equivalence of norms and �ulj
 the vector of coe�cients of the L���
�
orthogonal projection of u on V L with respect to the basis �����
� The equivalence constants
depend on the geometry � and are independent of the level L�

Remark � The equivalence �����
 depends on the polynomial degree d in general� If D is
a straightsided polyhedron in IR�� there is obviously no dependence on d� If� on the other
hand� the �k are curved� the ddependence can be eliminated if the inner product h�� �i in
����
 is changed to ��� �
� The equivalence �����
 is always independent of d�

Moreover� due to the multiscale decomposition �����
 the basis functions �l
j� which we

will call multiwavelets in what follows� have vanishing moments of order d � � in local
coordinates� Z

U

��l
j � �k
�
 � d � � for j�j 
 d� l � � �����


which implies the smallness of certain entries in the sti�ness matrix �see Section ���
�
We employ the multiwavelet basis �����
 in the Galerkin equation ����
 to determine

the discrete solutions uL � V L where the sti�ness matrix KL is given by

�KL
	l�j
	l��j�
 ��
Z
�

Z
�

k�x� y
�l
j�x
�l�

j��y
 dsydsx for � 
 l� l� 
 L�

Note that KL is not symmetric in general� It follows from the stability ����
 and the
norm equivalence �����
 that the condition numbers of the sequence fALg of matrices are
bounded�

Proposition 	 There exists � � IR such that for all L

cond��A
L
 
 �� �����


�



��� Compression

The vanishing moment property �����
 of the wavelet basis f�Ig de�ned in �����
 implies
with ����
 that many of the entries in KL are small�

Proposition �
 Let Sl
j �� supp�l

j� The entries �KL
	l�j
	l��j�
 with d
l l�

jj� �� dist�Sl
j� S

l�

j�
 � �
satisfy ����KL
	l�j
	l��j�


��� 
 CM�k��
 �c�d

�
�
�d

l l�

jj�

���	d��

��	d��
	l�l

�
 �����


where C is independent of d� l� l�� j� j �� k��� c�d
 � �d��
���log�d��

 and M�k��
 denotes
the maximum of the analytic continuation of k��k�
� �k���

 into a neighborhood of  � U
and � � U in C��

Decay estimates like �����
 are wellknown �see� e�g�� ���� �� ��	
 to hold for all classical
pseudodi�erential operators on smooth manifolds� We give here a new proof a
 yielding
stronger estimates than �����
 for kernels k�x� y
 which are analytic o� the diagonal fx � yg�
b
 which is derivative�free� i�e� the proof does not involve derivatives of k�x� y
 and of the
surface parametrization� The estimates are therefore more explicit in kernel parameters
such as the wavenumber for timeharmonic vibrations and c
 yielding bounds which are
explicit in the polynomial degree d and the number of vanishing moments�

����� Some Approximation Results

The proof of the decay estimate �����
 is based on polynomial approximation results for
analytic functions� We start with some notation�

For the interval I � ���� �
 � IR� we consider the ellipse E� � C with foci in z � ��
and semiaxis sum � � h� In dimension n � �� we denote by En� � Cn the polycylinder
corresponding to ���� �
n�

The following approximation result is essential�

Lemma �� Let f�x
 be analytic in I � ���� �	 and let f admit an analytic extension �again
denoted by f�z
� to the closed ellipse Er� � C with foci at x � �z � �� and with semiaxis
sum r� � �� Then there holds the error estimate

inf
��Pd	I


kf � �kL�	I
 
 c�d � �
r�	d��

�
�� r��

���
max
z��Er

jf�z
j �����


for � � r 
 r� and d � �� �� �� ���� The constant c is independent of r� r�� f and d�

Proof�
This follows from classical approximation results� see� e�g�� ���	 and by using the embed

ding theorem� �

For the kernel approximation we require a twodimensional version of this result which
we derive by tensor product construction� To this end� let �df�x
 denote the polynomial
of degree d in I interpolating f�x
 at the Lobatto points� For bivariate functions f of
x � �x�� x�
� denote by �i

df the interpolant with respect to xi� i � �� ��

Lemma �� Let f�x�� x�
 be analytic in ���� �	� and admit� for �xed x� � I� an analytic
continuation with respect to x� � Er� � C and vice versa� Then� for � � r 
 r� there holds���f � ��

d�
�
df
���
L�	I�I



 c�d
r�	d��
��� r��
��Mr�f
 �����


�



where c�d
 �� c�d � �
�� � log�d � �

 with c independent of r�� f and d and with

Mr�f
 �� max
x��I

max
x���Er

jf�x�� x�
j� max
x��I

max
x���Er

jf�x�� x�
j �����


Proof�
We write���f � ��

d�
�
df
���
L�	I�I




���f � ��

df
���
L�	I�I


�
�����

d

�
f � ��

df
����

L�	I�I

�

For the �rst term� we use Lemma �� directly� For the second term� we use the L�stability
of �d� i�e�

	g � C��I
 � k�dgkL�	I
 
 C �� � log�d � �

 kgkL�	I


and again Lemma �� to conclude� �

Below we denote by ��d � ��
d�

�
d the tensor product interpolant and write ��

	x

d f when f�x� y


is interpolated with respect to x etc�

����� Proof of the decay estimates

In the remainder of this section� we assume that

d
l l�

jj� �� dist
�
Sl
j� S

l�

j�

�
� � �����


with Sl
j �� supp�l

j� We will prove the decay estimate �����
 the above approximation

results to the kernel k�x� y
 in local coordinates� i�e� to �k�� �
� We recall that

�
KL

�
	l�j
	l��j�


�
Z
�

Z
�
k�x� y
�l

j�x
�l�

j��y
dsxdsy

� �l�l
�����	l��
��	l���


Z
U

Z
U

�k	k�l
	k��l�
�� �
 ���
j �
 ���

j���
dd� �����


Here the kernel �k	k�l
	k��l�
�� �
 is the composition of k�x� y
 jdsxj jdsyj with �k and �k�� re
spectively� and with a translation in the parameter domain U and a dilation by �l�� resp�
by �l

��� �the scaling factor in �����
 results from the normalization of the wavelets and the
Jacobian of this scaling
� Henceforth we omit the subscripts and write simply �k�

We use now the vanishing moment property �����
 and Fubini s theorem and write

�
KL

�
	l�j
	l��j�


�
Z
�

Z
�
k�x� y
�l

j�x
�l�

j��y
dsydsx

� C��l�l
�

Z
U

���
j �


Z
U

���
j���


h
�k�� �
� ���! �


i
d�d �����


� C��l�l
�

Z
U

���
j���


Z
U

���
j �


h
�k�� �
� ���! �
� ��! �


i
dd�

where ��! �
 is an arbitrary polynomial of  in IPd�U
 with coe�cients depending on � and
���! �
 is a polynomial of � in IPd�U
 with coe�cients depending on � The decay estimates
will follow from the following approximation error estimates�

Proposition �� Assume �����
� Then there exists � � � depending only on � and the
domains of analyticity of k�x� y
 and of the parametric representations �k such that

�



i� for every  � U � �k�� �
 in �����
 is a real analytic function of � � U and it admits an
analytic continuation to the bicylinder E��� � C� with semiaxis sum �� satisfying the
bound

�� � ��Sl�

j�� S
l
j
 �� � � ��l

�

d
l l�

jj�� �����


ii� Conversely� for every � � U � �k�� �
 in �����
 is real analytic in  � U and admits an
analytic continuation to E�� � C� with semiaxis sum � satisfying

� � ��Sl
j� S

l�

j�
 �� � � ��ld l l�

jj�� �����


Moreover� there hold the estimates

M������k
 �� max
	��E��

max

��E�

��

����k�� �

��� 
M

�
d
l l�

jj�

���
�����


where the constant M depends only on the analytic continuation of the kernel �k�

Proof�
We �rst establish the analyticity of the kernel in local coordinates� i�e� of k��k��
� �k���

�

This is immediate from the assumed analyticity of the kernel k� Assumption �� and
from the analyticity of the charts �k� The size of the domains of analyticity is E� with

� � � � �d
l l�

jj� for some � � � by Assumption � on the kernel �cf� also Remark �
� Now �k

is obtained from k��k��
� �k���

 by scaling the variables  and � by �l resp� by �l
�

which
implies �����
� ����
� since the domains of analyticity scale analogously� The estimate
�����
 follows as Lemma � in ���	� �

We are now in position to prove the main result of this section which will imply Proposition
���

Theorem �� With �� �� as in �����
� �����
� there holds the decay estimate

�����KL
�
	l�j
	l��j�


���� 
 C��l�l
�

�c�d

� ����

�	d��


�
�� ���

��� �
�� ���


��
���

M������k
� �����


Here the constant C is independent of �� ��� d and �k�

Proof�
We apply Lemma �� to �����
 and select

� for every  the function ���� �
 �� ��
	


d

�k�� �
 as tensor product polynomial inter
polant of degree d of �k�� �
 with respect to �� and

� for every � the function ��� �
 �� ��
		

d

�
�k�� �
� ���� �


�
as tensor product polyno

mial interpolant of degree d of �k�� �
� ���� �
 with respect to �

Since ���! �
 is� for every �� a linear combination of kernel evaluations in sampling points
�ij� �

��! �
 is an analytic function of  with the same domain of analyticity in  as �k�
and so is therefore �k � ��� We may therefore apply Lemma �� to the di�erence

�k��� �
� ����! �
�

�



resulting in the bound�����k��� �
� ����! �

�
� ���� �


���
L�	I�I



 c�d
��	d��
��� ��
��M�

�
�k��� �
� ����! �


�
	� � U

�����


with M� as in �����
�
Next� we consider for every  � �E�� �

����k�� �
� ���! �

���
L�	I�I


�

Since �k�� �
 is seperately analytic in each variable by Proposition �� and continuous� it
is jointly analytic in �� �
�

We may therefore apply Lemma �� once more to estimate the polynomial approxi
mation error in � of �k�� �
� ��

	


d

�k�� �
 for  � �E�� �

����k�� �
� ���! �

���
L�	I�I
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�� ���


��
���

M����k�� �
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Combining �����
 and �����
 gives the assertion� �

In order to deduce �����
 from Theorem �� we note that

��	d��

�
�� ���

���
�

���d

�� � �
��� �


 ��d

��ld l l�

jj�



�
��ld l l�

jj�

��	d��

� �����


Combining �����
 and an analogous bound with respect to �� with �����
 in �����
 proves
�����
�

Remark �� In the case of the double layer potential of the Helmholtzkernel

k�x� y
 �
�

�ny

	
ei�jx�yj

�� jx� yj



where � � IR is the dimensionless wavenumber� we have in �����
 the bound

M������k
 
 C��
 j�j exp�c j�j

Here c is an absolute constant� depending only on the global regularity of the surface ��
Inserting this into �����
� we �nd after possibly changing c the compression estimates

����KL
	l�j
	l��j�

��� 
 CM��
 �c�d

�

�
�d

l l�

jj�

���	d��

�cj�j�	d��
	l�l

�


Assuming c � �� we see that the compression can only take place when �d� �
�l� l�
 � j�j�
This underlines the advantage of a higher number of vanishing moments for such problems�
For example� if the number of vanishing moments is equal to j�j� one can expect to obtain
again the usual compression behavior �notice that a large number of vanishing moments
does not cause larger supports in our setting and that a high polynomial degree is also
advantageous for the solution approximation in Helmholtz problems
�

��



����� Matrix truncation

The truncation strategy for the sti�ness matrix in the wavelet basis is now as follows�

� �KL
	l�j
	l��j�
 ��
�

�KL
	l�j
	l��j�
 if dist�Sl
j� S

l�

j�
 
 �ll�

� otherwise
�����


where ��ll�
 is a matrix of truncation parameters at our disposal�
For a given selection of the truncation parameters �ll�� we solve instead of ����
 the

perturbed system
�AL�uL �

�
ML � �KL

�
�uL � fL �����


and denote by

�uL �
LX
l��

X
j

�uLj �
l
j � V L

the corresponding approximate solution� The multiwavelets introduced above exist for any
approximation order d� They are fully orthogonal and their support does not increase with
d� This is paid for by their discontinuity which implies an increased dimension of V L as
compared to� for example� smoothest splines of the same degree d on the same mesh� For
example� for d � �� i�e� piecewise �bi
linear functions� the space V L of discontinuous func
tions has� roughly speaking� six times as many degrees of freedom as the corresponding
continuous trial space while giving the same asymptotic convergence rates �even though
the constant in the convergence estimate is certainly smaller
� It is therefore not clear if
a Galerkin BEM based on continuous trial spaces and� for example� the panelclustering
approach� will outperform the multiwavelet Galerkin scheme with d � � in terms of accu
racy versus CPUtime� If so� special� biorthogonal wavelet bases for spaces of continuous
functions must be employed�

A special case occurs for d � �� i�e� for piecewise constants� This corresponds to the clas
sical panel method� resp� to the Haar wavelet� Here the dimension of the trial space is not
increased by using the wavelet basis� Notice� however� that we have only vanishing mean
then and equation �����
 indicates that higher order vanishing moments imply correspond
ing faster decay� It is therefore often argued that the piecewise constant Haar multiwavelets
�d � �
 are unsuitable as basis functions since the decay �����
 resulting from �����
 with
d � � is too weak� This argument arose in the context of the socalled �truncation advo
cated in ��	� but is� as we shall see� completely unjusti�ed� What is essential is the proper
number of vanishing moments with respect to the approximation order of V l and the order
of the operator A �see ��	 for an analysis of operators of nonzero order
� Indeed� in our
case the decay �����
 is su�cient to allow the approximation of the full Galerkin matrix
AL by the compressed one �AL with N � O�NL�logNL
�
 essential� nonvanishing elements
so that the asymptotic convergence rate of the Galerkin scheme ����
 is not reduced� as we
will now show�

��� Asymptotic Complexity and Convergence

In the following Theorem we collect the main results on convergence and complexity of the
compressed Galerkin scheme�

��



Theorem �� Let s� s� � ��� d� �	 and assume that the truncation parameters �ll� in �����

are given by

�ll� � a ��
L�l
�

��� L�l�

�
� l�l�

� �����


with a � � to be selected and

s

d � �

 	 
 ��

s�

d � �

 	� 
 �� �����


Then the following holds�

	� For su�ciently large a there exists a level L� such that for su�ciently large a in �����

the compressed Galerkin scheme is stable for every 	� 	� � ��� �	� i�e�

	L � L� � inf
���vL�V L

sup
���uL�V L

D
vL� �ALuL

E
kuLk�kvLk�

� c � � �����


where �AL � V L � �V L
� denotes the �nite�dimensional operator associated to the
compressed system matrix �AL �� ML � �KL�


� Given the regularity u� f � Hs��
 and L su�ciently large yields for any 	� � ��� �	 the
error estimate

ku� �uLk� 
 CN
� s
�

L �logNL
� kuks � Chs jlog hj� kuks �����


with

� �

��
�

� s
d��

� 	 
 ��
�
�

for s
d��

� 	 � ��
� s

d��
� 	 � ��

�����


�� Let g � Hs���
 and denote by � � L���
 the solution of the adjoint equation A�� � g�
Assume the regularity � � Hs���
 and u � Hs��
 and that �����
 holds� Then� for
su�ciently large L we have the error estimate

���Dg� u� �uL
E��� 
 CN

� s�s�

�

L �logNL
���
� kukskgks�

� Chs�s
� jloghj���� kukskgks�

�����


with � as in �����
 and � � de�ned analogously in terms of s��

�� The number N of nonzero entries in �KL is of order O�NL�logNL
�
 if 	 � 	� � �
and O�NL logNL
 otherwise�

The proof of this theorem is analogous to the results in ���� �� ��	 and therefore omitted�
We note� analogous to �����
� that as an immediate consequence of the stability �����
 and
the norm equivalence �����
 we obtain the boundedness of the condition numbers of the
compressed sti�ness matrices�

cond�� �AL
 
 ���� �����


��



Remark �� We observe that for 	 � 	� in �����
 we have �ll� � �l�l which implies a sm
metric compression pattern� In the Galerkin setting� the superconvergence estimate �����

implies the choice 	 � 	� � � for a maximal convergence rate at an interior point �regularity
of the exact solution provided
� We therefore assume below that 	 � 	�� Note� however�
that for collocation methods� also nonsymmetric compression patterns corresponding to
	 � �� 	� � � are more e�cient� The algorithms below can be straightforwardly adapted
to this situation�

Remark �� We point out that the compression strategy �����
 together with �����
 is quite
di�erent from the socalled "�truncation# proposed in ��	� In fact� this compression criterion
is analysisbased and keeps matrix elements of di�erent size in di�erent blocks� Dropping
all matrix entries below a certain treshhold will not� in general� lead to a compressed scheme
with proper asymptotic convergence rates�

� Numerical Integration

The preceding analysis still assumes that the entries

�KL
	l�j
	l��j�
 ��
Z
�

Z
�

k�x� y
�l
j�x
�l�

j��y
 dsydsx �
Z
U

Z
U

�k�� �
 ��l
j�
 ��l�

j���
 d�d ����


of the sti�ness matrix are evaluated exactly� This is not possible� in general� and approxima
tions by means of numerical integration must be used� Theorem �� estimated the impact
of the consistency error introduced by the matrix compression �����
 on the asymptotic
convergence rates of the Galerkin scheme� In the same framework the consistency error due
to numerical integration has been analyzed in ���	�

It is clear that with su�cient e�ort arbitrarily accurate approximations can be computed
so that Theorem �� will hold for the resulting� fully discrete scheme as well� It is less
trivial� however� to �nd a quadrature scheme that will achieve this without undue increase
in complexity� In our implementation we use the quadrature scheme that was proposed and
analyzed in ���	� We now describe this scheme and present its principal properties�

For ease of exposition� we focus only on the basic case U � S� i�e� the supports of the
wavelets are images of the unit square �see Remark �� below for modi�cations for triangles
�
Since each multiwavelet is polynomial in the four subdomains U i of U the integral ����
 may
be assembled from the integrals related to the �� combinations of subdomains� For these
subintegrals tensor product Gaussian quadrature formulas converge exponentially with the
rate depending on the size of the integrand s domain of analyticity�

Lemma �	 Let � � � and let Gn
U denote the quadrature rule that employs in each of

the four subdomains of U a two dimensional tensor product Gaussian quadrature with n

Gauss points in each direction� Then for all wavelets �� �� with U �� supp� � M l�
U � �� supp�� �M l� satisfying � �� dist�U� U �
 � � the error estimate

������
Z
�

Z
�

k�x� y
��x
���y
 dsydsx �Gn
U�xG

n�

U ��y k�x� y
��x
���y


������ � O��
 ����


��



holds� provided the number of Gauss points is selected according to

n � d

�
�

n�

log ��U� U �
�
� n� � d

�
�

n�

log ��U �� U
�
� n� �� � log��l�l

�

�
� log �� ����


with � de�ned in �����
 and �����
� respectively� Moreover� for

l � l� � � and ��U �� U
 � � ����


����
 is satis�ed if
n� �� � log��l�l

�

�
 � log ��� ����


Remark �
 The cases of ����
 involving triangular panels are easily reduced to the con
sidered case of quadrilaterals by applying the surjective mapping

D � S � T � D�
 ��

	
�
��




sometimes called the Duy transformation� Then Lemma ��� in particular ����
� remains
valid if the number of Gauss points selected exceeds n � �

�
and n� � �

�
� respectively�

Unfortunately� the domain of analyticity may degenerate such that the complexity of the
quadrature according to Lemma �� cannot be bounded logarithmically� let l � L� l� � �
and � � O���L
� then for n� in ����
 it follows that

n� � ���Lj log �j
 � ��
p
NL
�

i�e� n� grows at least as
p
NL� Hence� the number of kernel evaluations for such an entry is at

best bounded by O�NL
� Since there are O�
p
NL
 entries of this kind and since all of them

occur in the compressed sti�ness matrix the reduction of the complexity by compression is
almost cancelled�

In order to recover the almost optimal complexity estimates of the previous Section a
dyadic subdivision of the larger panel in the quadrature scheme is introduced �see ���	���	
�

Lemma �� Let l � l� � � and U �M l� U � �M l�� Then there exists a subdivision

$�U� U �
 �M l� � � � � �M l ����


of U � such that

�U � $�U� U �
 �� �� �U� U
 � � or
�
dist�U� �U
 � � and �U �M l

�
����


and ���$�U� U �
 �M
�l
��� 
 C for l� 
 �l 
 l� ����


i�e� the number of panels contained in the subdivision is bounded by O�logNL
�

Note that due to the subdivision the singular cases� i�e� dist�U� U �
 � �� that may occur
are reduced to three basic situations� U equal to U �� U and U � sharing a common edge or
U and U � sharing a common vertex� They can be handled by special quadrature schemes
���	��	 to provide an error of order O��
 in at most O�j log �j�
 operations�

Combining the results of the previous lemmas constitutes the following strategy� which
in e�ect is a variable order� composite quadrature rule �see ���	
�

��



Theorem �� Let �r � �� �s � � and U � M l� U � � M l� with l � l� � �� Then for all
wavelets �� �� with supp� � U and supp�� � U � the following error estimate holds�

�������
Z
�

Z
�

k�x� y
��x
���y
 dsydsx �
X

�U�	U�U �


QU� �U k�x� y
��x
���y


������� � O��s � �r
 ����


where

QU� �U ��

��
�
Gn

U�x
G�n

�U�y
if dist�U� �U
 � �

special quadrature scheme
of accuracy O��s
 �		�

otherwise
�����


and

n � d

�
�

n�r

log ��U� �U
�
� �n � d

�
�

n�r

log �� �U� U
�
� �����


with
n�r �� � log��l�l

�

�r
 � log�l � l� � �
 � log ��� �����


In particular� the choice �s � ��	d��
	�L�l�l
�
�l��l and �r � ���	L�l
�s� i�e�

n�r �� ��d � �
��L� l � l�
 � l� � l
 log � � log�l � l� � �
 � log ��� �����


preserves all assertions of Theorem 	�� Moreover� the total cost of the numerical integra�
tion in order to generate the compressed stiness matrix can be estimated to be of order
O�NL�logNL
�
 operations�

Theorem �� cites the results shown in ���	 which hold for any polynomial degree d� For
d � � in fact small improvements are possible such that the time to assemble the sti�ness
matrix in our numerical experiments could be reduced by a factor of three�

Remark �� The term log�l� l� � �
 in �����
 compensates the in�uence of the number of

panels in a subdivision on the quadrature error� If dist�U� U �
 �� � then $�U� U �
�M�l � ��
l � �l � l�� in most of the cases� Hence� a subdivision consists of less than O�l � l� � �

panels� Replacing log�l � l� � �
 by � log��l � l� � �
 with � � � attends to these situations
while ����
 still holds�

Furthermore� the choice �r � ���	L�l
�s may be re�ned�

�r �
�
�s if ��U �� U
 � ��
���	L�l
�s if ��U �� U
 � �

�����


without changing the assertion of Theorem ���

� Implementation

The implementation of our method is based on the library Concepts����� This library pro
vides an objectoriented framework for boundary element methods where basic concepts of
PetrovGalerkin schemes such as subspaces� functions� operators or dualforms are captured
in class de�nitions ��	�

��



��� Basic Structures

For an e�cient evaluation of the sti�ness matrix by element matrices an abstract data type is
required which associates each panel U l

j� � 
 l � L with basis functions � � S�l satisfying
supp� � U l

j� We call each association of this kind an element represented in the existing
framework by the abstract base class Element� The interface of this base class provides the
access to the underlying panel and the corresponding basis functions represented by a global
index b � IN�� The implementation of the class by means of derived classes depends on the
shape of the panel and the basis functions involved� For the algorithm under consideration
two classes become necessary to cover triangular and quadrangular panels� In addition
to the standard interface of the base class Element the interface of the wavelet classes
must o�er the possibility to access the elements corresponding to the four subdomains of
the particular panel U l

j� which we will denote by U l��
�j � � � � � U l��

�j�� in what follows� This
guarantees the e�cient implementation of the composite quadrature scheme discussed in
the previous section� Moreover� the information about referencing the subelements can be
used to build element trees� The roots of the trees are the elements of level zero� whereas
the leafs consist of level L � � elements� Accordingly� we introduce the following ordering
relation of the panels U l

j which re�ects a preorder depth�rst traversal of the element trees�

U l
j � U l�

j� ��� j � j ��l�l
�

or
�
j � j ��l�l

�

and l � l�
�
� ����


The construction of the wavelet elements with respect to a given polyhedra as well as
the generation of the global index for the basis functions is the task of the class Multiscale

a specialization of the base class Space already de�ned in the framework� This class is used
to represent test and trial spaces of the discretization scheme� It provides the operation to
scan all elements of the particular space used� for example� to assemble the sti�ness matrix�
In the case of the class Multiscale the elements are listed using preorder depth�rst traversal
of the element trees� This ordering is the natural choice to assemble the compressed sti�ness
matrix� Due to the discontinuity of our multiwavelets the generation of a global index is
easily accomplished by scanning the elements and assigning each associated basis function
the number of functions visited so far� Thus� when using preorder depth�rst traversal of
the elements subsequent indices in general re�ect a clustering of basis functions� This is
used to determine and compress blocks of zeros in the sti�ness matrix easily�

��� Discrete Operator

The essential characteristic of operators� i�e� the mapping of functions� is represented by
the abstract base class Operator in Concepts����� In the case of standard boundary el
ement methods� i�e� when no compression of the system matrix is applied� the obvious
implementation of an operator is a twodimensional array� In this case the mapping of the
operator is just an ordinary matrixvector product� This situation is covered by the class
OP Allpurpose in the framework Concepts�����

In the case of the presented multiscale scheme we have to choose a more sophisticated
implementation to meet the objectives of the method� According to Theorem ��� the trun
cation criterion �����
 yields a compressed sti�ness matrix with O�NL�logNL
�
 nonzero
entries� Thus� it is essential that the nonzero entries can be localized also in O�NL�logNL
s

operations� i�e� without an exhaustive search of the N�

L combinations� Furthermore� a stor
age scheme for the compressed matrix with a memory consumption proportional to the

��



number of nonzero entries and a small overhead for the management must be provided�
In addition� an e�cient access to the entries of the sti�ness matrix when processing a
matrixvector product is essential�

As it is well known from the implementation of �nite elements� the most e�cient and
natural way to exploit the quadrature is to perform the assembly be means of evaluating
element matrices for each combination of panels U and U ��

�E�
UU �
��� ��

Z
U

Z
U �

k�x� y
��x
���y
 dsydsx� supp� � U� supp�� � U �� ����


Therefore� element matrices form the basic structure of the following algorithms� Besides
it is ensured that the algorithms can also be applied in the case of continuous wavelets�
since the constraints due to the continuity are handled by an appropriate generation of the
global index which does not a�ect element matrices�

����� Localization

The algorithm for the localization of nonzero entries is based on the obvious implication

dist�U l
j� U

l�

j�
 � �ll� and U
�l
�j � U l�

j� � dist�U l
j� U

�l
�j
 � �l�l ����


where the threshold values �ll� and �l�l are chosen according to �����
� Hence� if the ele
ments are scanned in depth�rst order with respect to the element tree described in the
previous Section the elements that do not contribute to the sti�ness matrix are located in
subtrees that can be skipped in O��
 operations� This strategy yields the following recursive
algorithm�

Algorithm ��

assemble�U l
j� U

l�

j�
 f
if dist�U l

j� U
l�

j�
 
 �ll� or l � � or l� � � f
evaluate E�

U l
j
�U l�

j�

and update KL

if �l� � L� �


for i � � to � assemble�U l
j� U

l���
�j��i


g
g

For given panels U and U � Algorithm � determines all entries in the compressed sti�ness
matrix that correspond to the wavelets �� �� � SL

l�� �l with supp� � U and supp�� � U ��
Therefore� the calling sequence

for U �
L���
l��

M l� U � �M� assemble�U� U �
 ����


generates the complete compressed sti�ness matrix KL row by row� In particular� rows
related to the wavelets � with � � U are treated simultaneously�

��



Remark �� Note that in general the basis functions of �� do not have the vanishing
moment property �����
 such that the corresponding entries are not compressible� In Al
gorithm ��� we take this into account by evaluating the element matrix in the cases l � �
or l� � � additionally� However� in this way more entries than necessary are evaluated�
but it is doubtful if a special treatment of �� in the implementation is more e�cient� espe
cially when a subdivision of the elements may become necessary such that element matrices
corresponding to �� must be evaluated anyway�

Lemma �� The nonzero entries of the compressed stiness matrix KL are localized in
O�N 
 operations� where N denotes the number of nonzero entries�

Proof�
With respect to the localization each call of the function assemble�� is of order O��
�
Hence� the complexity of localizing the nonzero entries is proportional to the number of
calls of assemble�� which itself is bounded by the number of nonzero entries� �

Since the evaluation of the exact distance of two panels is an expensive operation� even for
triangles or quadrilaterals� the distance of their related bounding boxes� i�e� the smallest
box �cl� cu	 �� fx � IR� � cl 
 x 
 cug containing the considered panel� is used instead�
This approximation is conservative in the sense that it is a lower bound for the exact value�
Thus� more entries of the sti�ness matrix �cf� ��
 and more Gauss points �cf� ����

 than
necessary are employed�

����� Compression

Our compression technique is based on runlength encoding� where we only encode sequences
of zero entries in the sti�ness matrix� In particular� for a given row of the matrix we replace
sequences of zeros by control tags that specify the length and the starting index of the
following block of nonzero values� In contrast to standard data structures such as lists of
entries to represent sparse matrices� this approach preserves blocks of nonzero entries in
the sti�ness matrix� Thus� the amount of informations necessary to decode the compressed
matrix� in our case the control tags� are reduced and matrixvector products could be
realized e�ciently� since the entries are not randomly distributed in the memory�

However� we cannot a�ort to assemble a complete row by Algorithm �� and compress
afterwards since scanning the row amounts to O�NL
 operations� Therefore� we relate the
global index b � IN� of the wavelets to the calling sequence of the elements implied by
Algorithm ��� i�e� the depth�rst ordering ����
 such that a subtree of elements is aligned
with a block of subsequent entries in a row of the sti�ness matrix� Then� the subtrees
skipped during the assembly correspond to sequences of zeros� Hence� each zero block can
be matched in O��
 operations making a compression in O�N 
 operations available�

In order to improve the ratio of compression we exploit the symmetry �ll� � �l�l of the
threshold de�ned in �����
 which implies a symmetric pattern of zero and nonzero entries of
the sti�ness matrix �cf� Remark ��
� Hence� assembling rows and columns simultaneously
o�ers the possibility to reuse the control tags of a row for the corresponding column saving
each time the storage of one tag� Obviously only half of the entries� say the lower triangular
matrix with respect to an arbitrary ordering� should be evaluated in row mode whereas the
rest is to be evaluated in column mode� To distinguish row and column mode we chose a

��



di�erent ordering of the entries as implied by ����
� namely an ordering corresponding to
lexicographically ordered panels�

U l
j � U l�

j� ��� l � l� or �l � l� and j � j �
 � ����


In regard of the quadrature algorithm of Section �� this ordering ensures the assumption
l � l�� We �nally get the following modi�cation of Algorithm ��� which we use in our
implementation�

Algorithm ��

assemble�U l
j� U

l�

j�
 f
if
�
dist�U l

j� U
l�

j�
 
 �ll�
 or l� � �
�

and
�
l � l� or �l � l� and j 
 j �


�
f

evaluate E�
U l
j �U

l�

j�

� E�
U l�

j�
�U l

j

and update KL

if �l� � L� �


for i � � to � assemble�U l
j� U

l���
�j��i


g
g

��� Quadrature

The general structure of the quadrature strategy used is already described in Section ��
However� there are two topics concerning an e�cient implementation that should be dis
cussed in detail�

� construction of subdivisions and

� recycling of temporary results of the composite quadrature�

����� Quadrature Algorithm

To construct a subdivision consistent with ����
  ����
 one obviously has to exploit the
element trees� This yields a recursive reformulation of the quadrature Q �cf� Theorem ��

with an appropriate subdivision incorporated�

�QU l
j �U

l�

j�
��

��
�

�X
i��

�Q
U l
j �U

l���

�j��i

��U l�

j� � U
l
j
 � � and l � l�

QU l
j
�U l�

j�
otherwise

����


for l � l�� Since the recursion terminates at least for l � l� and since ��U l
j� � U

l
j
 � � implies

dist�U l
j� � U

l
j
 � � the properties ����
 and ����
 are satis�ed� In particular� they are satis�ed

with a minimal number of recursion steps yielding a minimal number of elements in the
implicit subdivision of ����
 such that ����
 holds due to Lemma ���

We interlace the evaluation of all entries of an element matrix with the quadrature
shown above to derive the following algorithm�
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Algorithm ��

integrate�U l
j� U

l�

j�� U
�l
�j

 f

if ��U l
j� U

�l
�j

 � � or l � �l

E �� �Q
U l
j
�U

�l
�j

k�x� y
��x
���y

supp��U l
j
� supp���U l�

j�

else

E ��
�X

i��

integrate�U l
j� U

l�

j�� U
�l��
��j�i




return E

g

By calling integrate�U� U �� U �
 the element matrix E�
UU � is returned� provided U � M l and

U � � M l� with l � l�� The remaining entries� i�e� E�
UU � with l � l�� could be determined

by invoking integrate�U� U �� U
� However� in order to exploit the construction of a subdi
vision exhaustively� the evaluations of E�

UU � and its symmetric equivalent E�
U �U should be

embedded in one function�

Algorithm �	

integrate�U l
j� U

l�

j�� U
�l
�j

 f

if ��U l
j� U

�l
�j

 � � or l � �l

E �� �Q
U l
j �U

�l
�j

k�x� y
��x
���y

supp��U l
j � supp�

��U l�

j�

E � �� �Q
U
�l
�j
�U l

j

k�x� y
��x
���y

supp��U l�

j�
� supp���U l

j

else

�E�E �
 ��
�X

i��

integrate�U l
j� U

l�

j�� U
�l��
��j�i




return �E�E �

g

This way the subdivision� which is identical in both cases� is only generated once� Besides�
during the assembly according to Algorithm �� always such a pair of element matrices is
requested�

����� Cache

Generating the entries of the sti�ness matrix by means of the described dyadic subdivi
sion scheme imposes the addition of several temporary quantities� Chances are that these
quantities could be reused for subsequent calculations� However� this is not possible in the
formulation of Algorithm ��� Therefore� we have to introduce a slight modi�cation� We
consider the following bases for the subspaces VL and V L� respectively�

�%� �� ����

�%L ��
n

�� � L���
 � � � 
 i 
 � �� � �i � �%L�� and supp �� � U i
o
�

��



%L ��
n
�L
j � � 
 j � NL

o
�

n
� � L���
 � � � 
 k � N� � � �k � �%L and supp� � �k

o
�

Then� the two scale relation
�L
j �

X
j��J	j


ajj��
L��
j� ����


is satis�ed with coe�cients ajj� independent of L� provided an appropriate ordering of
the basis functions is used� Moreover� ����
 implies a corresponding relation for element
matrices with respect to the new bases�

E�
U l
j
U l�

j�
�

�X
i��

E�

U l
j
U l���

�j��i

Ai �
�X

i��

AT
i E

�
U l��
�j�i

U l�

j�
����


where Ai are certain N� �N�&matrices and

�E�
U l
j
U l�

j�

��� ��

Z
U l
j

Z
U l�

j�

k�x� y
��x
���y
 dsydsx ����


with � � %l��� �� � %l��� such that supp� � U l
j� supp�� � U l�

j�� Similarly� since �L �
span %L� there exists a N� �N�&matrix B� and a N� � �N� �N�
&matrix B� such that

E�
U l
j
U l�

j�
�

��
�

BT
� E�

U l
j
U l�

j�

B� if l � � and l� � ��

BT
� E�

U l
jU

l�

j�

B� if l � � and l� � ��

BT
� E�

U l
jU

l�

j�

B� if l � � and l� � ��

BT
� E�

U l
jU

l�

j�

B� if l � � and l� � ��

�����


The modi�cation of Algorithm �� consists in evaluating E� using recursion ����
 instead
of E�� Hence� in every step of the recursion a complete element matrix with respect to the
bases %l is generated� Due to �����
 these element matrices can be used to retrieve possibly
necessary information in subsequent calls� Note that the accuracy of the recycled element
matrices is su�cient since n�r in �����
 decreases with respect to l��

Algorithm �


integrate�U l
j� U

l�

j�
 f
if �E�

U l
jU

l�

j�

not cached
 reclaim�U l
j� U

l�

j�� U
l�

j�


return E�
U l
j
U l�

j�

g

reclaim�U l
j� U

l�

j�� U
�l
�j

 f

if ���U l
j� U

�l
�j

 � � or l � �l


E� �� �Q
U l
j �U

�l
�j

k�x� y
��x
���y

supp��U l
j � supp�

��U l�

j�

else
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E� ��
�X

i��

reclaim�U l
j� U

l�

j�� U
�l��
��j�i


Ai

load cache with E�
U l
j
U
�l
�j

�� BT
k E

�B�k

return E�

g

In Algorithm �� the function integrate�U� U �
 initiates a cache reclaim if the requested
element matrix E�

UU � is not available! otherwise a cached value of the matrix is returned
immediately� Again� according to Algorithm ��� we evaluate the symmetric counterpart of
every element matrix simultaneously� However� to simplify the algorithmic formulation this
is not shown in Algorithm ���

In the implementation we cache all information that is generated during one call of the
function reclaim�U� U �� U �
� i�e� we provide a cache size of order O�N
� If one takes the
hierarchical sequence of the element matrix generation of Algorithm �� into account� the
cache size is su�cient to reuse almost all informations generated by the subdivision scheme
and to satisfy the maximum potential number of requests to integrate�U� U �
 by cached
values�

However� with Algorithm �� it is not possible to prevent all element matrices from being
calculated twice� In particular� for U � M l� U � � M�� l � � and �U � $�U� U �
 �M l the
element matrices E�

U �U
and E�

�UU
are generated in the subdivision process� Note that� in

addition� U � $� �U� U ��
 for an appropriate U �� � M� holds in most of the cases� Hence�
both element matrices are evaluated anew since they are not in the hierarchy of element
matrices cached� Nevertheless� numerical experiments show� that one could only save less
than ��' of the kernel evaluations� i�e roughly speeking at most a speed up of ����� if a
more sophisticated cache strategy is used� which guarantees that no element matrices are
evaluated more than once for any particular calling sequence�

� Numerical Experiments

In this Section� we present the results of three numerical experiments obtained with the
described implementation of the multiscale scheme� On a polyhedron D � IR� we considered
the Laplace equation with Dirichlet boundary conditions�
For given f � L��D
 �nd U � H��D
 such that

(U � � in D�

U � f on � �� �D�

The double layer ansatz U�x
 � hk�x� �
� ui where the double layer kernel is given by

k�x� y
 � � �

��

hn�y
� y � xi
ky � xk� ����


leads with the jump relations to the second kind boundary integral equation

u � L���
 � hv� Aui � hv� fi 	v � L���
 ����
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level NL a� 	 time�s	 mem�MB	 it cpr

� �� ���� ��� ��� ���� �� �����
� ��� ���� ��� ��� ���� �� �����
� ���� ���� ��� ���� ���� �� �����
� ���� ���� ��� ����� ���� �� �����
� ����� ���� ��� ������ ����� �� �����
� ����� ���� ��� ������ ������ �� �����
� ������ ���� ��� ������� ������ �� �����

Table �� First experiment� a� 	 � threshold parameter� time � time for assembly and
solution� mem � memory required to store the compressed matrix inclusive management
overhead� it � number of iterations� cpr � memory consumption with respect to a dense
matrix�

with the integral operator

�Au
�x
 � ��

�
u�x
 �

Z
�

k�x� y
u�y
 dsy

de�ned almost everywhere on �� We solved ����
 on several polyhedral domains with quite
similar performance� Here� we only report the results obtained with a polyhedron de�ned
by six equilateral triangles and the right hand side

f�x
 � kx� x�k��� x� � IR� in the exterior of D�

For the discretization constant test and trial functions �d � �
 were used� In our experi
ments� we did not make use of the fact that entries in the sti�ness matrix corresponding to
panels located in the same face of the polyhedron D vanish� Therefore� the memory and
CPUtime listings below are representative of the algorithm s performance also for bound
ary integral equations with kernels other than ����
 and for curved surfaces� The following
results were obtained on a SUN Ultra�Enterprise on a single processor with � GB RAM
and ��� MHz clock�

In the �rst experiment we kept the parameters a and 	 � 	� of the thresholds �����

controlling the compression �xed and solved the problem on various levels up to about
������ unknowns �Table �
� On the �nest mesh the compressed matrix consists of only
���' of the entries of the dense sti�ness matrix� In addition� it can be observed that
the number of iterations used by the solver �GMRes without restart
 is almost constant
validating the bounded condition numbers of the compressed matrices�

In Figure � the time of assembly and compression is depicted� Here� the upper dashed
line corresponds to the predicted bound O�NL�logNL
�
 in Theorem ��� The plot indicates
that the in�uence of the higher order logarithmic terms on the computing time seems to
be negligible compared to the O�NL�logNL
�
 term illustrated by the lower dashed line�
Roughly speaking� on an average nearly a constant number of operations is used to evaluate
an entry of the sti�ness matrix�

In all numerical experiments the time for solution accounts only for less than ��' of
the total time shown in the tables� Therefore� with the present method the BEMparadigm
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Figure �� Time for assembly and compression of the matrix�
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that most of the work is spent for quadrature is still valid and a speed up similar to the
one for dense matrices can be achieved with the parallelization of the matrixassembly�

Figure � and Figure � show the behaviour of the L�error of the density u on the
boundary and the average error in several interior points of the solution U � respectively�
The L�error is approximated by the di�erence of the norm of the discrete density and the
norm of the exact density� Since an exact solution is not available we have computed an
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Figure �� Error at interior points versus NL�

approximate value by higher order quadrature and extrapolation� According to Theorem ���
the expected rate of convergence is determined by regularity properties of A and its adjoint
A�� From the known edge and vertex singularities of the Laplacean in polyhedra ��	 it can
be veri�ed that in the example under consideration here both operators admit solutions
belonging to H���
 for smooth right hand sides� This means that we have Theorem �� with

s � �s � � and expect O�N
����
L 
 convergence in the L���
norm and O�N��

L 
 convergence
at an interior point �note that collocation or Nystr)om schemes do not display this kind of
superconvergence at an interior point and would require H�regularity on � and d � � to
achieve O�N��

L 
 convergence at an interior point
�

Again� the dashed line illustrates the expected behaviour of essentially O�N
����
L 
� For

the error in interior points twice the convergence rate should be observed� hence essentially
O�N��

L 
 �lower dashed line
 or� according to Theorem ��� O�N��
L �logNL
�
 �upper dashed

line
�
Finally� we compared our method with a standard boundary element implementation

generating the fully populated sti�ness matrix with an optimized quadrature rule� For
both methods the time used to generate a solution satisfying a given L� error is depicted
in Figure � where the dashed line corresponds to the standard approach� It turns out that
already for moderate errors� "moderate# with respect to our model problem� the wavelet
method beats the standard approach� assuming an error between ���� and ���� the wavelet
method is �� times faster� Moreover� in this case it saves about ��' of the memory�

The second experiment investigates the behaviour of the method when the amount of
compression driven by the parameter a changes �Table �
� The constant number of itera
tions shows that even for a high compression the algorithm remains stable� The convergence
rates� in addition� are in all cases preserved as indicated by the error in interior points shown
in Figure �� when the in�uence of the coarser meshes� where practically no compression
is possible� vanishes� the lines corresponding to di�erent values of a fan out� Nevertheless�
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Figure �� CPUTime versus L�error�

level NL a� 	 time�s	 mem�MB	 it cpr

� ����� ���� ��� ������ ������ �� �����
� ����� ���� ��� ������ ������ �� �����
� ����� ���� ��� ������ ������ �� �����
� ����� ���� ��� ������ ������ �� �����
� ����� ���� ��� ������ ������ �� �����

Table �� Second experiment

they �nally take the same slope� However� if the amount of compression is reduced by
means of parameter 	 instead of a� this is not the case as predicted by Theorem �� and
observed in the last experiment �Table �� Figure �
�

We point out that the in�uence of the amount of compression on the computing time�
in particular the time of assembly� is small compared to the in�uence on the memory
consumption �Tables ���
� The reason for this is that the time to evaluate an entry of the
sti�ness matrix depends on the distance of the supports of the related wavelets whereas the
amount of memory to store the value is always the same� Increasing the thresholds means
adding entries to the matrix with more or less distant support� which can be computed very
fast compared to the entries near the diagonal� The time of solution� however� increases as
fast as the memory�
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