
ETH Library

A service management toolkit for
active networks

Report

Author(s):
Brunner, Marcus

Publication date:
1999-09

Permanent link:
https://doi.org/10.3929/ethz-a-004287836

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
TIK Report 78

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-004287836
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

, is a
man-
ge-
king
e cus-
cus-
hout
hich
hnol-
tion
T, an

ling.

rking
ich is
and
re the

rations
cus-
hich
of ser-

man-
e call
of

tual
rmed
s up
mer
iron-
Net-
A Service Management Toolkit for Active Networks

Marcus Brunner
Computer Engineering and Networks Laboratory, TIK
Swiss Federal Institute of Technology Zurich (ETH)

Gloriastr. 35, CH-8092 Zurich, Switzerland
E-Mail: brunner@tik.ee.ethz.ch

Abstract

Active networking, where network nodes perform customized processing of packets
rapidly expanding field of research. This paper investigates the realization of service
agement on a Virtual Active Network (VAN), the key concept in our active network mana
ment framework [11]. A VAN can be seen as a thin (software) layer in an active networ
environment, which creates a generic service abstraction, offered by the provider to th
tomer. The VAN concept transforms a multi-domain situation into a single domain for a
tomer. The customer can install, run and supervise network services into the VAN, wit
interaction with the provider. In this paper, we describe a service management toolkit, w
facilitates designing and managing services taking advantage of active networking tec
ogy for code reuse, code distribution, flexible event filtering, and programmable informa
aggregation. Further, we show how the service management toolkit is realized on ANE
active networking testbed that we are in the process of building.

Keywords

Active Network Management, Service Management, Network Monitoring, Event Hand

1 Introduction

In this paper, we investigate the problem of service management in an active netwo
environment. Based on the fact that an active network node is able to run code, wh
remotely installed or carried along with active packets, and that service functionality
management functionality can be accessed via a generic service interface, we explo
options for realizing the task of service management.

The generic service interface for network services is enabled by the concept ofactive pack-
etsand can be used by the customer for service management interactions, i.e., for ope
related to the installation, supervision, upgrading and removal of a specific service. The
tomer-provider interaction over the management interface, i.e., the interface through w
the customer and the provider management systems cooperate, is restricted to the task
vice provisioning, which includes setting up connectivity and securing resources. The
agement interface is kept generic; it relates to a generic service abstraction, which w
Virtual Active Network (VAN) [12] that allows for installing and running a large class
network services.

The VAN service abstraction transforms a physical multi-domain environment into a vir
single domain environment, which allows service management operations to be perfo
by a customer without interaction with the provider’s management system. This open
new possibilities but also more responsibility and complexity for the customer. A custo
not only requests a new service from a service provider as in a traditional telecom env
ment, but he installs and supervises customized active services into a Virtual Active
1Submitted to IFIP/IEEE International Symposium on Network Operations and Management (NOMS 2000)

and
to the
mized
uld be

man-
is rec-

ware

fore
tems
s and
ment
. The

ology

hich
rvice

m does
le do

t being
lds

. And
cause

ment
gies.
our

er of
racer.
nage-
n fur-

net-

an be
r the

r ser-
dif-

active
work, which probably spans over multiple provider domains. Additionally, service
management system of a service are tidily coupled, because they are introduced in
same VAN over the same interface. This tide coupling enables a fine-grained and custo
control and management of services. Note, that the party we denote as a customer, co
a end-user of a service, or a service provider selling a service to end-users.

In order to facilitate the design and implementation of different services and service
agement systems, a modularization of the service and the service management system
ommended to reuse software and to enhance the flexibility by extending the soft
towards service-specific and the customer-specific requirements.

On the other hand, active networking technology is very well suited to overcome be
mentioned problems. It really facilitates the implementation of service management sys
in a extendable, reusable, and scalable way. The problem of performance bottleneck
scalability in service supervision is attacked with programmable event filters, manage
by delegation, flexible grouping of nodes, and grouping of events into composite events
installation, upgrade, removal of services is supported by the active networking techn
through the possibility to efficiently implement customized multi-casting.

In this paper, we propose an flexible and extensible service management toolkit, w
extracts and implements the service-independent functionality common to most se
management system. The challenge of this is that (1) the service management syste
not know in advance what services are installed and supervised, but it should be ab
adapt to service-specific and customer-specific control and management needs withou
totally replaced. Further, (2) a VAN spanning over many provider domains typically yie
in a large number of EEs, which poses problems in the scalability in the number of EEs
(3) the installed services may produce a large amount of management information, be
not only transmission is a factor but also the execution of active packets in EEs.

The paper is organized as follows. Section 2 outlines our framework for service manage
and provisioning in a telecom environment that is based on active networking technolo
Section 3 describes a service management toolkit. The realization of the toolkit on
ANET active networking platform is presented in Section 4. Section 5 shows the pow
the service management toolkit by describing the implementation of a active packet t
Section 6 surveys current efforts on active technologies for network and service ma
ment, and Section 7 summarizes the contributions of this paper and gives an outlook o
ther work.

2 Active Network Management Framework

In the following, we outline our management framework for interaction in an active
working environment, which we have first proposed in [11].

2.1 Service Provisioning in Active Network Environments

In an active networking environment, interactions between a customer and a provider c
realized in a flexible way with respect to service abstractions and control capabilities fo
customer in the provider’s domain and vice versa.

Figure 1 shows the interaction between a customer domain and a provider domain fo
vice provisioning, service delivery and service management in our framework. The key
ferences between a traditional and an active environment becomes clear. First, the
2

ervice

r the
vider

ervice
active
an be

er a
tion a
es

es
lying
it.

uch a

tions
work
ork
irtual

VAN
cess
con-

com
node’s
, sepa-
E.
networking approach allows for a clear separation between service provisioning and s
management. Second, service management can be realized via the service interface.

Service provisioning includes creating service connectivity and securing resources fo
service. It is performed in a cooperative manner between the customer and the pro
through a management interface. In a traditional telecom environment, the process of s
provisioning and the resulting service abstractions are service-specific, whereas in an
networking environment, both the provisioning process and the service abstraction c
realized to be truly generic.

Service provisioning in our active network management framework gives the custom
more complex, but also more powerful service abstraction. We call this service abstrac
Virtual Active Network (VAN). A VAN can be described as a graph of virtual active nod
interconnected by virtual links. Virtual active nodes can also be calledExecution Environ-
ments (EE),following the terminology of the AN working group [7]. An EE has resourc
attached to it in form of processing and memory resources, provided by the under
active networking platform. Similarly, a virtual active link has bandwidth allocated to
During the provisioning phase, the customer and the provider cooperatively set up s
graph and allocate resources to the VAN.

The VAN is a powerful abstraction in the sense that the customer can, within the limita
of the specific VAN topology and the allocated resources, install, configure and run net
services without further interaction with the provider. It further divides the active netw
resources into partitions for different customers. For a deeper discussion of the V
Active Network and the setup of a VAN refer to [12].

2.2 Architecture of an Active Network Node

The architecture of an active network node has to provide mechanisms to provision a
and to separate VAN’s of different customers. For VAN provisioning, it needs an ac
point for a VAN management system. The VAN separation mainly consists of resource
trol on a network node.

Figure 2 gives an operating system point of view of an active network node in a tele
environment. A node operating system layer configures and provides access to the
resources, such as links, processing and memory resources. This layer runs the EEs
rates them from each other, and polices the use of the resources consumed by each E

Figure 1: Management Interaction in an Active Telecom Environment

Customer NMS

Service Generic

Management Interface
Provider DomainCustomer Domain

Service

Service Provisioning

Provider NMS

Service Provisioning

Network Element

Network
Management
Interface

Network

Management

Network

Element

Mgt

Network
Management
Interface

VAN

Management

Service

Service

Network Element

Management Network

Element

Mgt

Service Interface
3

sev-
active
tional-
n of
age-
ates

ervice
VAN,
ept
tion

pro-

super-
ith a
ervices
. The

he sta-
Figure 2 specifically shows the case where a provider offers Virtual Active Networks to
eral customers (Customer 1,..., Customer N). The figure shows one node of such an
network. Each customer runs its services in a separate EE. Service management func
ity is installed and runs together with the service in an EE. This allows the tide integratio
service, service control and service management functionality. A privileged EE (Man
ment EE) runs the provider’s VAN provisioning and configuration system, which cre
EEs for customers and is able to modify and terminate them.

2.3 Customer Service Management

Service management include the installation, running, supervision, and removal of a s
on an active networking infrastructure. The service management system runs on one
which possibly consists of interconnected VANs of different domains. The VAN conc
transforms a multi-domain situation into a single-domain situation through the virtualiza
of the network.

Figure 3 shows a VAN spanned over two customer premises active networks and two

vider networks. The service management system autonomously installs, updates and
vises one or more services on the VAN. Autonomous means, that no interaction w
provider is needed, that the reserved VAN resources are guaranteed, and that the s
introduced by the system are not disturbed by malicious services of other customers
service management system is controlled from aService Management Station (Figure 3),
which serves as the human-computer interface for the service management system. T
tion initiates service management actions and displays monitoring information.

Figure 2: Architecture of an Active Network Node in a Telecom Environment

Figure 3: A Virtual Active Network over three Domains

Hardware

Node Operating System

Service
VAN Provisioning

Configuration

Service

Management

Customer 1 Customer N.....

Execution Environment

Provider

Management EE

Physical Active Network

Physical Active Network

Physical Active Network

Virtual Active Network (VAN)

Provider 1

Customer Customer

Service Management Station

Physical Active NetworkProvider 2
4

age-
er-

system
sible,
anage-
rma-

AN
re con-
ckets

ecut-

er pre-
s are

nodes
many

func-
makes
queue
posi-

eduler
hich
ser-
tput
d for
mpo-

ans-
n the
ple-
3 A Service Management Toolkit

In such an active networking environment it is very promising to design a service man
ment toolkit, which implements similarities and which is extensible to adapt to custom
specific or service-specific needs. A service designer and a service management
designer can take components out of the toolkit, may customize and use it. This is pos
because many services can be composed of similar components and many service m
ment tasks need similar mechanisms, similar informations about services or similar info
tion access mechanisms.

An active network service, as defined in our framework, consist ofstationary service compo-
nentsinstalled on the EEs of a VAN, and active packets, which travel through the V
accessing the stationary components when they execute on an EE. Further, the EEs a
figured to meet the run-time requirements of an active service. Figure 4 shows active pa

arriving at a Virtual InPort of the EE, accessing stationary service components while ex
ing, and leaving the EE on a Virtual OutPort.

Stationary service components include data structures and algorithms accessible ov
defined interfaces. The code and initial values of the algorithms and data structure
brought into the EE during the service installation phase, and they are stored in the
memory. Many of the service components to be installed in the EE can be reused for
different services. We call this componentsbasic service components.

The basic service components implement most commonly used data structures and
tions, and are extensible for service-specific needs. Our service management toolkit
available packet queues to store packets for later execution or transmission. Further,
composition nodes to build hierarchical queueing systems are available. A queue com
tion node consists of many queues or of other queue composition nodes and a sch
implementing a scheduling discipline. Additionally, packet classifiers are available, w
decide into which queue a packet arriving on the Virtual InPort is queued. This allows a
vice to forward particular packets, which do not need any computation, directly to ou
buffers. Also a set of different schedulers are contained by the toolkit, which are use
packet scheduling or CPU scheduling. Note that a service designer can implement co
nents not based on basic service components.

Active packets are the basic communication entity in terms of what information they tr
port, and they are the basic computation entity in terms of what functions they execute o
EEs. Active packets are used for two different tasks. First, they are the objects which im

Figure 4: Active Packets and Service Components

Execution Environment

Active Packet

Stationary Service Components

Stationary Service Management Components

Active Service

configure &
configure & monitor

install &

Virtual InPorts Virtual OutPorts

Virtual Processor

configure &

supervise

arrive

leave

execute

access

monitor

monitor

Management Packet

access

Virtual Memory

configure &
monitor
5

active
man-

lowing

tomer
ervice
figu-

ents are
talled
ser-

ecific,
hich is

deci-

types
uration
en in
effi-
clone
ets.

a more
bili-
Es of

e-spe-
E.g.,
ched
oad-
talla-
logy.

ecific
f the
ser-

s on
irtual
tion

n order
ly tar-
ment an end-to-end networking service on behalf of a distributed application. Second,
packets are executing service control and management tasks on behalf of the service
agement system. In Figure 4, they are labeledactive service management packets. Active
service management packets prepare the EE to be used by an active service. The fol
sections describe the installation and monitoring of an active service.

3.1 Installing an Active Service

The service installation is initiated by the service management station, where the cus
decides what service to install. The steps performed by the installation process of a s
are as follows. First, after the decision about what service to install, service-specific con
ration parameters need to be set. Second, code and parameters of service compon
transported to the EEs of the VAN. Third, the service code and data structures are ins
and configured into the EE in order to setup the functional and run-time behavior of the
vice.

Setting the configuration parameters in the service management station is service-sp
therefore the service package exports a user interface for setting the parameters, w
included into the service management station’s user interface and is displayed after the
sion about the service to install has been taken.

Distributing service code and parameters to each node of the VAN is for most service
service-independent, because most services need the same code with similar config
parameters on all EEs. Different distribution algorithms and strategies can be chos
terms of efficiency, scalability, and capabilities of the EEs. E.g., [13] shows that more
cient implementations of the installing process can be achieved if the EEs are able to
the active installation packets, which yields to an efficient multi-casting of active pack
Service types using not the same code or the same configuration parameters need
complex, customized installation algorithm, but can also profit from multi-casting capa
ties of the active network. We choose broadcasting of active installation packets to all E
a VAN as the basic installation algorithm in our toolkit.

Active installation packets contain, beside the code and installation parameters, servic
cific network information, which can be gathered during the installation process.
installing an IP-service the routing algorithm is interested, what neighbors can be rea
directly over the virtual links, which is easily gathered. The example shows that the br
casting is enhanced by distributing service-specific information during the service ins
tion process. Such a flexibility can be achieved by the use of active networking techno

The execution of the active installation packets installs the service code and service-sp
data structure on the EE, initializes the service, and calls the initialization procedure o
code to let the service perform service-specific run-time configuration. Specifically, the
vice-specific initialization consists of installing and configuring programmable classifier
the Virtual InPorts, packet schedulers on Virtual OutPorts, memory management on V
memory, and CPU schedulers on the Virtual Processor. Additionally, active installa
packets are used to install stationary service management components on the EEs, i
to setup service-specific and general service management functionality, which is main
geted to control and supervision of the service.
6

vision

po-
is ser-

EE
upervi-
chro-

ement
actions

onents
rfaces
uctures
n the
syn-
ented

-time
nts is
rvices
event.
to gen-
cket on

ervi-
cha-
ay.

ring
stalled
l very
ecific
g., all
ple-
nitor-
d by
r to

ompo-
ype
to the
gement,
n also
3.2 Support for Service Supervision on a Node

Service supervision can be understood as a normal service in terms of how the super
components are installed and run on a VAN. Service supervision is composed ofservice-
dependentandservice-independentparts. Service-dependent parts supervise service com
nents installed on a EE in a service-dependent manner, where as monitoring of the EE
vice-independent.

Our toolkit supports service-dependent supervision in two different ways. First, the
makes predefined mechanisms available, which helps designing service-dependent s
sion components. One is an event collection point for events in the EE to support asyn
nous communication between service components and their service manag
components. Others are predefined, extensible classes of events representing service
such as error events, warnings, or debugging information. Second, basic service comp
have build-in support for service supervision. These basic components have open inte
for synchronous access by service supervision components, and instrumented data str
and functions, which sent an event to the collection point on defined conditions. E.g., i
case where current number of bytes used in a buffer is monitored, the information is
chronously accessible over a defined interface to the buffer, further the code is instrum
to send an event to the collection point, when the buffer overflows.

Service-independent supervision components monitor the EE’s behavior during the run
of services and the re-configuration of the EE. Supervision support for EE compone
implemented by instrumenting the EE at two places. First, the interface between se
and the EE is instrumented such that each invocation of that interface generates an
Second, the interface between the node operating system and the EE is instrumented
erate an event on each invocation. E.g., the EE creates an event on each arrival of a pa
a Virtual InPort.

3.3 Information Collection

Mechanisms known to increase the scalability and efficiency of distributed service sup
sion are filtering, information aggregation, and management by delegation. All this me
nisms are supported by active networking technology in very flexible and customized w

In our toolkit filters are programs installed into the event collection point. This means du
the service management components installation phase, also filter programs are in
into the event collector, to pass or drop events of a specific type. These allows to instal
fine grained filters, which only pass events of a specific type of active packets with sp
payload, or it may pass all events triggered by an action of an active packet type, e.
packets belonging to the routing algorithm. Predefined events together with pre-im
mented, configurable filters are available to use and extended for service-specific mo
ing. Filter are not only configured towards specific requirements, but are also replace
new ones on the fly. Further, the collection point allows to install more than one filte
allow different service management components to get another trace of event.

The events passing the filter are stored and later fetched by a service management c
nent calledEvent Dispatcher,which takes appropriate actions depending on the event’s t
and content. Typically, the action taken by the Event Dispatcher is sending the event
service management station. Or in the case of delegated and automated service mana
a re-configuration of the service or the EE is executed. As later discussed the events ca
be sent to a representative of the particular node’s group.
7

tep.
age-
rma-
unt of

by

nted
on
re a
tion
tion,

ener-
ment
ding
n be
le rep-

grega-
s a

ble.

h. On

rma-
rvice

sys-
freely

nario.
entra-
ning
of

nami-

trate
ts of a
ns on
The process of collecting management information from all EEs of a VAN is the next s
Since a VAN may consist of a large number of EEs and Virtual Links, the service man
ment system may not scale well in terms of overwhelming amount of management info
tion to be transmitted and processed in the service management station. The amo
monitoring data is reduced by information aggregation, which is very-well supported
active networking technology.

In our toolkit, information is aggregated by assigning EEs to a group, which is represe
by one of these EE (representative). The group and representative information is stored
each EE. All information collected in EEs of a group is sent to its representative, whe
concentratorcollects the information and compacts it with a service-specific aggrega
function, which is a program installed during the service management system installa
and which can be replace on the fly during monitoring. The aggregated information is g
ally sent to the next representative in hierarchical grouping or to the service manage
station in flat grouping. In order to allow the concentrator to take another action depen
on the result of the aggregated management information, the forwarding function ca
replaced dynamically to execute a delegated management task. Which node is a suitab
resentative and how EEs are grouped depend on the application of the information ag
tion process, and is therefore left open in the toolkit. E.g., for monitoring purpose
grouping of highly interconnected nodes or organizational related nodes may be suita

Figure 5 shows a VAN grouped into three groups of EEs with one representative eac

the service management station only the three groups are visible. The monitoring info
tion of the services running on this VAN is aggregated in the representatives. The se
management station only get the calculated result for each group.

The grouping is flexible and need to be configured by the implementor of a supervision
tem. Note that the mechanism for grouping and aggregation are separated and both are
programmable, which allows a customer to choose an appropriate supervision sce
Beyond the traffic reduction achieved by programmable filters and programmable conc
tors, their is also the benefit of on demand creation of different views of the services run
on the VAN, the view can range from very high-level overviews to very low-level views
one part of the system. This can be achieved in our service management toolkit by dy
cally changing filter and concentrator functions.

4 Realizing the Service Management Toolkit on the ANET Platform

We have built an active networking platform, in order to test, evaluate and demons
active networking service and management concepts. The core of this platform consis
cluster of Ultra-SPARCs, interconnected via an Ethernet. Each active network node ru

Figure 5: Grouping of Nodes

Representative Service Management Station
8

age-
s and

of its
irectly
ional
t, and
on, an

of
ough-
r, we
ne of

cture
n as

la-
onds
ead

ing
om-
queue,
E. The
rvice.
f the

itially
some
on as
ed with
a separate workstation. On top of this infrastructure, we have implemented a VAN man
ment system to setup VANs, the service management toolkit, and some simple service
their management components.

All software components of our platform are written in Java. We chose Java because
strengths as a prototyping language for networking environments, and because Java d
supports the realization of active packets through the concept of mobile code. Addit
Java features which we take advantage of include object serialization, thread suppor
safe memory access achieved by the type-safety of the language. In our implementati
active network node is implemented entirely in software, which gives us the flexibility
experimenting with different designs. Performance issues, such as realizing a high thr
put of packets on a network node, are currently beyond the scope of our work. Howeve
plan, in a future phase of this project, to realize the key capabilities of our system on o
the emerging high-performance active networking platforms, such as [6].

4.1 Realizing an Execution Environment for a Customer Service

When our VAN provisioning system creates an EE in an active network node, a stru
shown in Figure 6 is initialized. This structure represents an EE in a VAN. It can be see

an initially empty wrap, which is filled with service functionality during the service instal
tion phase. The EE contains Virtual InPorts and Virtual OutPorts (each of which corresp
to a link of the Virtual Active Network), a central queue for all incoming packets, a thr
pool containing one thread, and storage for data and functions.

A packet classifier is associated with each virtual in-bound link to dispatch the incom
packets according to its content to different locations. Initially, the classifier puts all inc
ing packets to the central queue. The thread takes active packets out of the central
binds code to the packet, and processes them, using the basic instruction set of the E
first few packets configure the Execution Environment for the specific needs of the se
The Virtual OutPort packet scheduler and buffer hierarchy are empty at the start-up o
EE. Actually, the service management system has minimally to install one buffer.

The service management system can replace or re-configure all the components in
available on the Execution Environment. E.g., a classifier can be installed, that puts
packets in the central queue, and other directly to a buffer in the buffer hierarchy. As so
more than one thread is in the thread pool, the processing scheduler need to be replac
one implementing a scheduling policy, e.g. a round-robin or priority based policy.

Figure 6: Initial Configuration of an Execution Environment

Physical Ports

Storage

Execution Environment

Virtual OutPortsVirtual InPorts

Active Network Node

Physical Ports

Classifier Packet Scheduler

Processing

Buffer Hierarchy

Scheduler
Thread-Pool

Virtual Memory Virtual Processor

Central
Queue
9

ser-
code

ng an

exe-

avior
during

heduler
o con-
t that
CPU

iron-

and

ection
hows
s an
to the
rvice-
pre-

s in the
ckets to
rface-
nts at
appen-
ted
. The

spatch-
Figure 6 can be interpreted as a virtual machine. It allows us to install and configure a
vice-specific, more complex virtual machine, by sending active packets that contain the
for the new virtual machine to the EE. This process can be compared to boot-strappi
operating system on a computer.

4.2 Configuration Interface

The configuration interface (Table 1) consists of functions to configure and extend the

cution environment for specific needs of an active service, specifically the run-time beh
of an active service. These functions are called by service management active packets
the service installation process. TheinstallPacketScheduler function installs a
packet scheduler into a Virtual OutPort. TheinstallPacketSchedulerNode installs
a new scheduler node. A scheduler node contains either a queue, or again a packet sc
scheduling packets from different queues. This allows a service management system t
figure hierarchical scheduling or only parallel output queues. A similar interface, excep
only one Virtual Processor exists per execution environment, is used for installing
schedulers. TheputClass andgetClass function allows a service to install code into
the execution environment, and to get code for transporting it to other execution env
ments not configured to contain that particular code. Finally, theinstallClassifier
function is used to install a classifier at the Virtual InPort to classify incoming packet
possibly put them in different queues waiting to get the processing resource.

4.3 Service Supervision Support

In Section 3, we present different mechanisms to support service supervision. In this s
the implementation of the mechanisms on the ANET platform is described. Figure 7 s
the Execution Environment part of the node architecture depicted in Figure 2. It show
EE with service components and service management components installed, similar
one shown in Figure 4 except that we have an operating system view of the EE. Se
Triggers use the information interface (Section 4.4) for sending service-specific or
defined events, representing service actions to the event collector. Open data structure
service components are accessed synchronously by active service management pa
get service-specific information. Service-independent actions are recorded by the Inte
Triggers and the EE-Triggers. Interface-Triggers record actions of the service compone
the interface between service components and the EE. EE-Triggers registers actions h
ing within the EE without any interaction with the service components. All the collec
events are filtered according to the filter installed by the service management system
events are time-stamped and stored in event queues, ready to be retrieved by event di
ers.

void installPacketScheduler (Message caller, OutPort p, PacketScheduler sched);

boolean installPacketSchedulerNode (Message caller, OutPort p, SchedulerNode n);

void installCPUScheduler (Message caller, CPUScheduler sched);

void installCPUSchedulerNode (Message caller, CPUScheduler s, SchedulerNode n);

void putClass (Message caller, String name, byte[] code);

byte[] getClass (Message caller, String name);

void installClassifier (Message caller, InPort port, Classifier classifier);

Table 1: Configuration Interface
10

urce

event

ts to

ueued

ment.
rovider
twork

to a
Port
l and

e
queue,
4.4 Information Interface

The information interface Table 2 contains functions to get information about the reso

consumption of the service running on the execution environment and it contains
mechanisms functions for monitoring purposes.

The putEvent function is used by service components to send service-specific even
the event collection point. TheregisterEventQueue installs an event filter together
with an event queue into the event collection point. The events passing the filter are q
into the event queue and can be dequeued by a service management component.

The functionsgetOutPortResource , getMemoryResource, and getCPURe-
source allows a service to ask about the reserved resource for this execution environ
The reservation of this resource has been negotiated between the customer and the p
over the VAN management interface, and is further propagated to the nodes over the ne
management interface (see Figure 1).

Each Execution Environment has Virtual InPorts and Virtual OutPorts corresponding
physical InPort and physical OutPort. Since most physical links are duplex links, a In
and a OutPort can belong together. This correlation is used in different service contro
management implementations, and is asked for by the functionsgetCorresponding-
InPort andgetCorrespondingOutPort .

A function calledgetCentralCPUQueue asks for the CPU-central queue for activ
packets, because the first active installation packets are stored in the CPU-central

Figure 7: Event Mechanism to Support Service Supervision

void putEvent (AnetEvent evt);

void registerEventQueue (EventQueue queue, Filter filter);

void removeEventQueue (EventQueue queue);

ResourceAmount getOutPortResource (OutPort port);

ResourceAmount getMemoryResource ();

ResourceAmount getCPUResource ();

InPort getCorrespondingInPort (OutPort port);

OutPort getCorrespondingOutPort (InPort port);

Queue getCentralCPUQueue ();

Table 2: Information Interface

Management Packet

Execution Environment

EE Interface

Service Service Management

Event Queue

Collector

Stationary

EE-Triggers

Interface-Triggers

Service-Triggers

Filter

Active
Packet

Service
Components

install &

filter

Event
Dispatcher

Event
Dispatcher

get event

synchronous
access

Active Service

install
action

configureinvoke

access

putEvent
11

rther,
e, and

exam-
ined
ctive
. It

rma-
an-
ted.

ctive
f the

ents
rent
E is

termi-
on the
ecifies
. This
rep-

service

nd the
mu-
leaves
repre-

e
roup,

roup
anage-
8.

re re-
ge the
ith

active
des
rigi-
acket
lly,
events
one
. The
which need to run in this execution environment in order to bootstrap the service. Fu
this allows a active packet to create new active packets, ask for the central CPU-queu
put them into the CPU-central queue for processing.

5 Active Packet Tracer: An Example

We have built an active packet tracer on top of the service management toolkit, as an
ple application of the described supervision mechanisms and to show the flexibility ga
with our service management toolkit. The active packet tracer allows a designer of an a
service to follow active packets and monitor their execution on different EEs of a VAN
shows the possibilities of event retrieval, flexible event filtering, and programmable info
tion aggregation within the network, before displaying the information on the service m
agement station. Further, the on the fly generation of different views can be demonstra

The installation of the active packet tracer service is implemented as follows. The a
installation packets implementing the broadcasting mechanism distribute the code o
packet tracer service. Further, it initializes and installs a filter, which only filters out ev
originating from the packet tracer service itself. The filter can be configured in two diffe
ways. First, it passes all events of services later running on the EE, if a full trace of this E
needed. Second, it passes only events, which indicate the arrival, creation, leaving or
nation of active packets. This is used in cases, where the designer is not interested
specific execution trace of the active packet. Further, the user of the packet tracer sp
which nodes are grouped together, and which node is the representative of the group
information is distributed to the appropriate EEs and a concentrator is installed in each
resentative. Note that the groups and representatives are chosen manually over the
management station user interface.

The function executed during the run-time of the tracer are the event trace recording a
concentration of the information arriving from different node. The event dispatcher cu
lates the event trace for each active packet in a separate structure. If the active packet
the node or if it terminates, the event dispatcher sends the event trace to the group’s
sentative. The leaving and termination of a packet is signaled by the pre-definedPack-
etLeaveEvent andPacketTerminateEvent . The concentrator on the representativ
compacts all active packet event traces such that only the arrival of the packet in the g
the leaving of the group, the creation within the group, and the termination within the g
are contained in the event trace. This newly created event trace is sent to the service m
ment station, where the event traces are displayed on the screen, as shown in Figure

Our service management toolkit has the nice property, that filtering and concentration a
configured or exchangeable. This allows a observer of the active packet tracer to chan
grouping or filtering in the nodes on the fly, an operation which is hardly possible w
today’s management systems.

Figure 8 shows the display on the service management station, after installing the
packet tracer and running the installation of a IP-Service. It shows a VAN with four no
(SMgt., N0, N1, N2), where N1 and N2 are forming a group of nodes. The first trace o
nating in the service management station (SMgt) shows the service installation active p
flooding the VAN and installing IP-service components into the EE of the VAN. Typica
the event traces on an EE have been aggregated to an event trace containing only two
indicating that the active packet was arrived and that it left the particular EE. Further,
full event trace of an active packet running on the service management station is shown
12

of two
at the
by the

tarted.

ge-
man-
es of
and

age.
ehav-
ch is

dapt-
gents

on-

s.
full trace displays two accesses to memory, a routing table change, and the creation
active packets, sent to node N0 and to one of the nodes in the group N1 & N2. Note th
routing table change event is service-specific, whereas the other events are caught
interface-triggers (Figure 7).

6 Related Work

Network management research related to active technologies has only recently been s
Many approaches taken today can be seen as a generalization of the concept ofmanagement
by delegation[1]. They are focusing on using mobile code for building an active mana
ment middle-ware, i.e., a software layer between the management applications and the
aged objects (MOs) that represent physical or other local resources. In [2] new class
MOs, called active managed objects (AMOs), are proposed for event discrimination
aggregation of monitoring data. The behavior of AMOs is defined in a scripting langu
The scripts encoding this behavior stored as values of AMO attributes. Therefore, the b
ior of AMOs can be changed using standard management protocols. A similar approa
pursued in [3], where the concept of a dynamic MO is proposed, in order to make Q-a
ers programmable. A third approach replaces the management protocols with mobile a
[4][14], and the efficiency and scalability of this approach is shown in [13] and [15]. In c
trast to these approaches, this paper assumes anunderlyingactive networking infrastructure,
and its contributions are based on exploiting the capabilities of active networking node

Figure 8: Example Application: Active Packet Tracer

the service creation
active packet

Service Management Station Node 0 Node 1 and Node 2

Indicating all
active packets

node 1 or node 2

leaving towards
or arriving from

A trace of an
active packet

(trace aggregated)
on node 0

A trace of an
active packet
on SMgt. node
(not aggregated)

An event
originating in
a service
component

(nodes and traces
aggregated)

Start of the trace of
13

sess,
ent of
ork,
ontrol

plat-
ically
During
roject,
xible
com-

orce
age-

other
is-

ports
le, and

ment
with

er;
g the
reused;
g of
ts, in
ervi-

 ser-
ts, an

ech-

ge
o

s of
the
t tool-

ective,

-

The adaptable network control and reporting system (ANCORS) [16] is a system to as
control, and design active networks. It supports the deployment and system managem
legacy software and new active network applications in a network. In contrast to our w
code for the services are loaded only from trusted code servers and deployment and c
commands are only accepted if they arrive from a known set of IP addresses.

The Netscript project [5] deals with management of active networks. In that project, a
form for programming network services is being built. These services can be automat
instrumented for management purposes, and corresponding MIBs can be generated.
operation, services can be managed through those MIBs. Contrary to the Netscript p
our work takes a framework approach to service instrumentation. It focuses on a fle
framework for supporting service management, with predefined instrumented service
ponents customized through extending the components.

7 Conclusion

Rapid deployment of new services on an network infrastructure is the main driving f
behind active networking research. In this work, we specifically focused on service man
ment in an active network environment, which allows to isolate customers from each
by implementing the concept of a Virtual Active Network. Further, we showed the prom
ing potential that active networking opens up in this area and how the technology sup
mechanisms to execute service management in a very extendable, reusable, flexib
scalable way.

The paper includes the following contributions. We have outlined a service manage
toolkit based on our active network management framework for a telecom environment
the benefits of

• executing service installation in provider domains without interaction with the provid
• facilitating the design of a service-specific service management system by composin

system out of basic service management components, which can be extended and
• introducing programmable event filters, management by delegation, flexible groupin

nodes represented by a representative, and grouping of events into composite even
order to solve the problem of performance bottlenecks and scalability in service sup
sion;

• supporting the service supervision with mechanism to retrieve events from different
vices running in the EE in a very flexible and reusable way such as pre-defined even
event collection point, and programmable filters;

• supporting the installation, upgrade, removal of services by extendable distribution m
anisms;

• supporting the collection of information from a Virtual Active Network taking advanta
of easily aggregate information within the VAN using active networking technology t
flexibly install and program concentrators in a customized way within the network.

Further, we have illustrated the toolkit by describing the realization of some key function
service management on our active networking platform (ANET). And we described
implementation of an active packet tracer using and extending the service managemen
kit in order to show the power of the architecture.

Our work to date opens up the way for further research. From the management persp
some of the topics worth pursuing are:

• Automation of the instrumentation of code installed in the VAN for management pur
14

rma-

nd
ton

-

le
on

fth
San

na-
’96),

igh

.

et-

a-
95.

ol.

an-
ated

for
uted

ed
b-

le
7.
P/
ment

m
ent
poses. [5] proposes such an approach in their specific programming language.
• Automation of the grouping of nodes and events for the purpose of aggregating info

tion within the VAN [9][10].
• Study in more depth event correlation in an active networking environment.

8 References

[1] Y. Yemini, G. Goldszmidt, S. Yemini, “Network Management by Delegation,” Seco
International Symposium on Integrated Network Management (ISINM’91), Washing
DC, USA, 1991.

[2] A. Vassila, G. Pavlou, G. Knight, “Active Objects in TMN,” Fifth IFIP/IEEE Interna
tional Symposium on Integrated Network Management (IM’97), San Diego, 1997.

[3] Y. Kiriha, M. Suzuki, I. Yoda, K. Yata, S. Nakai, “Active Q Adaptor: A Programmab
Management System Integrator for TMN,” Ninth IFIP/IEEE International Workshop
Distributed Systems: Operations and Management (DSOM’98), 1998.

[4] M. Suzuki, Y. Kiriha, S. Nakai, “Delegation Agents: Design and Implementation,” Fi
IFIP/IEEE International Symposium on Integrated Network Management (IM 97),
Diego, USA, 1997

[5] Y. Yemini, S. da Silva, “Towards Programmable Networks,” Seventh IFIP/IEEE Inter
tional Workshop on Distributed Systems: Operations and Management (DSOM
L’Aquila, Italy, October 1996.

[6] D. Decaspar, G. Parulkar, S. Choi, J. DeHart, T. Wolf, B. Plattner, “A Scalable, H
Performance Active Network Node,” IEEE Network, Vol. 13(1), 1999.

[7] AN Architecture Working Group, “Architectural Framework for Active Networks,” K
Calvert (editor), 1998.

[8] AN Composable Services Working Group, “Composable Services for Active N
works”, E. Zegura (editor). 1998.

[9] T. Kunz, “High-Level Views of Distributed Execution”, Proceedings of the 2nd Intern
tional Workshop on Automated and Algorithmic Debugging, Saint Malo, France, 19

[10]C. Olson, “Parallel Algorithms for Hierarchical Clustering”, Parallel Computing, V
21, 1995.

[11]M. Brunner, R. Stadler, “The Impact of Active Networking Technology on Service M
agement in a Telecom Environment,” IFIP/IEEE International Symposium on Integr
Network Management (IM’99), Boston, USA, 1999.

[12]M. Brunner, R. Stadler, “Virtual Active Networks -- Safe and Flexible Environments
Customer-managed Services”, Tenth IFIP/IEEE International Workshop on Distrib
Systems: Operations and Management (DSOM’99), Zurich, 1999.

[13]A. Liotta, G. Knight, G. Pavlou, “On the Efficiency and Scalability of Decentraliz
Monitoring using Mobile Agents”, Tenth IFIP/IEEE International Workshop on Distri
uted Systems: Operations and Management (DSOM’99), 1999.

[14]M. Baldi, S. Gai, G. Picco, “Exploiting Code Mobility in Decentralized and Flexib
Network Management,” First International Workshop on Mobile Agents, Berlin, 199

[15]E. Al-Shaer, “Programmable Agents for Active Distributed Monitoring,” Tenth IFI
IEEE International Workshop on Distributed Systems: Operations and Manage
(DSOM’99), 1999.

[16]L. Ricciulli, P. Porras, “An Adaptable Network COntrol and Reporting Syste
(ANCORS),” IFIP/IEEE International Symposium on Integrated Network Managem
(IM ‘99), Boston, USA, 1999.
15

