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Abstract� The Method of Transport was originally developed for the Euler equa�

tion in ���� by M� Fey� He introduced the physical property of in	nitely many

propagation directions into the numerical method� Here� we present the extension

of this method to equations with inhomogeneous 
uxes� such as the shallow water

equations� For e�ciency reasons and to reach higher order accuracy certain mod�

i	cations had to be made to the method� whereby the multidimensional character

will be kept� The resulting scheme can then be interpreted as a decomposition of

the nonlinear equations into a system of linear advection equations with variable

coe�cients in conservative form� We present a multidimensional high order reso�

lution scheme for the advection equation and for the shallow water equations� A

special limiting technique is used for these methods to keep the multidimensional

properties�
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�� Introduction

The two�dimensional shallow water equations in conservation form read

U t �r � F � �����

with

U �

�
h
hu

�
the state vector� where h is the total depth of the �uid and u � �u� v�T the velocity
vector� The divergence acts on the rows of the �ux matrix F given by

F � U uT �
h c�




�
�T

I

�
�

where c �
p
g h is the celerity with g the constant of gravity and I is the 
 � 


identity matrix�
In Section 
� we derive a di�erent formulation of the shallow water equations that
indicates the possible decomposition� Error analysis shows that this system can be
approximated to any order of accuracy by a number of linear advection equations in
conservative form which can be solved independently� The idea of transport can also
be applied to this type of equations� The extension to a high order scheme follows
in a natural way as shown in Section �� We discuss a new idea for the limiting
process and present a high order resolution scheme for the shallow water equations�
In Section �� we present numerical results obtained with the developed scheme for
free surface �ow problem�


� Decomposition of the equations

In �
� and ���� the contributions are decomposed into two waves� C� and C�� These
waves are related to critical waves� It is the aim of this section to decompose the
shallow water equations in a similar fashion� In ��� the decomposition is done for
the Euler equations�

���� Decomposition in in�nitely many advection equations� Using the co�
e�cients R� and L dened in ��� as�

R� � h

�
�
u

�
and L �

h c




�
�T

I

�
�

F can be written as

F�U� � R� u
T � cL�

The propagation of the quantity R� with the velocity u � c n is a translation by u
combined with an expansion c n� For each n we can interpret the behaviour of R�

as a transport process described by

�
�
�n� �� �R��t �r � �R��u� c n�T ��

Since the critical waves move in all directions� we have to split R� and propagate it
in all directions� With the identities

�

jSj
Z
S
dS � � and

�

jSj
Z
S
n dS � ��

�



where S is the unit sphere in IRN � N is the space dimension in our case 
 and jSj
its surface� With the state vector U written as

U �
�

jSj
Z
S
R� dS�

the integral of �
�
�n� over the unit sphere becomes

�

jSj
Z
S
�
�
�n� dS � U t �r � �U uT ��

However� this is not the left�hand side of the shallow water equations� The missing
term in the �ux matrix can be associated with the C� wave� The vector Ln is also
transported with the velocity u� c n� The corresponding transport terms are

�
�
�n� �� �Ln�t �r � �Ln�u� cn�T ��

Clearly� since L is independent of n

�

jSj
Z
S
LndS � � and

�

jSj
Z
S
nnT dS �

�

N
I�

To get consistency with the shallow water equations ���� we take N times �
�
� Then

the equations

�

jSj
Z
S
�
a
�n� dS � U t �r � F � ���
�

with
�
a
�n� �� �

�
�n� �N�

�
�n�

recover the original nonlinear system� �
a
�n� is the combination of the C� and C�

waves� Using
Ra�n� �� R� �N Ln�

we get for �
a

�
a
�n� � �Ra�t �r � �Ra�u� c n�T ��

Hence the state vector is represented by

U �
�

jSj
Z
S
Ra�n� dS����

In the next section we shall make use of this representation to create a numerical
scheme� The similar decomposition for the Euler equations is described in ����

���� Decomposition in �nitely many advection equations� The disadvan�
tages of the formulations �
� and ��� are that the state vector U is represented by
an integral and innitely many advection equations have to be solved� The integral
will now be replaced by a nite sum of k terms� ��� becomes

U �
�

k

kX
i��

Ra�ni� �
�

k

kX
i��

�
R� �N Lni

�
���

and �
�

�

k

kX
i��

�
a
�ni� � U t �r � F � �����

�



In order that ��� and ��� hold exactly� the ni have to satisfy certain conditions�
From equation ��� follows

kX
i��

ni � ����

and from ���

N

k

kX
i��

ni ni
T � I����

Collecting these results we can represent the shallow water equations ��� by a com�
bination of k advection equations if ��� and ��� hold�
The condition ��� and ��� do not dene ni uniquely� Here we consider in particular
the four vectors aligned on the horizontal and vertical axis� which are

ni �
��

�
�

�
�

�
�
�

�
�

�
��
�

�
�

�
�
��

��
�	�

for i � �� � � � � �� Note that this choice of ni is not related to the dimensional
splitting approach� In general the nal propagations u�cni are not aligned with the
coordinate axes� These ni are also a natural way to approximate the characteristic
cone� The vectors ni can be interpreted as the support points for a quadrature rule
to integrate the characteristic cone�
Another possible choice is given by the unit vectors lying on the diagonal� In this
case strips along the edges of the exact support are not recovered� We solved this
problem by replacing the vectors ni by the eni

eni �
��

�
�

�
�

�
�
��

�
�

�
��
�

�
�

�
��
��

��
���

for i � �� � � � � �� The choice of eni is identical to the Method of Transport simple� To
allow non unit vectors for the directions ni� we have to use a more general denition
for Ra�
We already introduced the scaling factor N to get consistency in ���� If we dene
Ra as eRa�eni� �� R� � �i L eni�
where

�i ��
NenTi eni �

we get exactly the shallow water equations

�

k

kX
i��

e�
a
�eni� � U t �r � F � ������

�
a
becomes

e�
a
�eni� �� � eRa�eni��t �r � � eRa�eni� �u� c eni�T ������

�



Note� that even though the numerical celerity seem to be larger by a factor of
p
N

the CFL condition is not a�ected by this choices� i�e�

�t � min�
�x

juj� c
�

�y

jvj� c
��

���� High order corrections� To solve the equations ���� for one timestep� we

linearize e�
a
�eni� and set each component of the sum to zero� At a given time� t�� we

eliminate the time dependency of u and c by freezing the time so that

a�x� eni� �� u�U �x� t��� � eni c�U�x� t���
becomes a function of x only� Thus� we obtain a set of linear advection equations of
the form

ee�
a
�eni� �� � eRa�eni��t �r � � eRa�eni� a�x� eni�

T � � ����
�

which we have to solve for one timestep �t with initial conditions

eRa�eni� � R��U�x� t��� � �i L�U�x� t��� eni�����

Summing up the solutions of ��
� for i � �� � � � � k leads to an approximate solution
of ����� i�e�

U �x� t� ��t� �� �

k

kX
i��

eRa�eni��x� t� ��t������

The time evolution of the exact solution can be approximated by the average of
the solutions of the decomposed equations� For a general nonlinear system� this
approximation is only of rst order�

A more accurate approximation can be found by replacing ���� by

eRa�eni� � R� � �i �L�K� eni�����

The correction matrix K

K�x� t�� �

�B� k�� k��
k�� k��
k�� k��

	CA �

can be chosen such that the error after one timestep is of third order� It is determined





by an error analysis in ���� The components of K are given by

k�����t


 c
���� ��



�hx c

� � huux � huy v�

k�����t


 c
�hu vx � ��� ��



�hy c

� � h v vy�

k�����t


 c
��
�

�
���



�hx c

� u��
�



���h c� ux � hu� ux�

�

�
hy c

� v � huuy v �
�



h c� vy�

k�����t


 c
�hu� vx � ��� ��



�hy c

� u� � h c� uy � hu v vy�

k�����t


 c
���� ��



�hx c

� v � huux v � � h c� vx � huy v
��

k�����t


 c
�
�

�
hx c

� u�
�



h c� ux � hu v vx ��

�

�
���



�hy c

� v ��
�



���h c� vy � h v� vy��

where

� �
�

k

kX
i��

n�i�� �
�

k

kX
i��

n�i���

���� shows that the corrected equations have the same structure as before� This is
true even for higher order corrections�

�� Higher order scheme

In the previous section� we introduced a second order decomposition of the shallow
water equations in a set of linear advection equations with variable coe�cients� Now
we want to present a high order numerical scheme to solve these linear equations�
Therefore� we consider the two�dimensional advection equation in conservative form

ut �r � �uaT � � ������

with a � a�x� � �a� b�T � The advection equation ���� can be written as

ut � �ru� � a � �u �r � aT ������

���� Two�dimensional approach� We want to extend the multidimensional
Method of Transport to higher order� The Method of Transport is a nite vol�
ume method� where the update to the new timestep is done by adding incoming
and subtracting outgoing �ows with all the neighbouring cells� The nal scheme in
conservation form for the scalar equation reads

un���i
� un�i

� �

j�ij
X
j ��i

�F�i�j � F�j�i��

where j�ij is the area of the cell� The contributions F�i�j
represent the quantity of

information which �ows from domain �i into domain �j� The contributions F�i�j

approximate the physical multidimensional �ux F and are dened as

F�i�j �
Z
�j

U�x� t� ��t� dx�

�



The wave U describes the transport of u from the computational cell �i to any point
x in space and is given by

U�x� t� ��t� �
Z
�i

u��� t����z�t� ��t� ��� x� d����	�

� is the Dirac�s delta distribution and z�t� ��t� �� is the characteristic curve along
which the evolution of u in ���� satises

d

dt
u�z�t�� t� � �u �r � aT ��

The characteristic curve z�� � is dened as the solution of

�z�� � � a�z�� ��� z�t�� � ������

The integration of the delta distribution in ��	� is not trivial� due to the nonlinear
argument� Assuming the map dened in ���� to be bijective� then the variable
transformation

v��� x� �� z�t� ��t� ��� x

has an inverse s�v� x�� i�e� v � s � Id� which allows the integration of the delta
function� Thus� the computation of the contributions F�i�j becomes

F�i�j �
Z
�j

u�s��� x�� t��
�

det�J�
dx��
��

where J � dz�d� is the Jacobian of the mapping in �����
It turns out� that the integration of ���� determines the accuracy in time� where as
the reconstruction of the function u in cell �i limits the spatial accuracy� For this
reason� choosing constant values for a and u in each cell leads to rst order scheme�
In this case� the wave U is given by

U�x� t� ��t� �
Z
�i

u��� t����x��t a� �� d�

and the contributions by

F�i�j �
Z
�j

u�x��t a� t�� dx�

To get a second order approximation of the characteristic curve we take a linear
reconstruction for a�z�

a�z� � a�Az��
��

where the matrix A is dened as

A �

�
ax ay
bx by

�
�

Since A is constant� the solution of the corresponding linear di�erential equation

�z�� � � a�Az� z�t�� � �

is given by

z�� � � �A�� a� eA� �A�� a� ���

�



Taking the Taylor expansion of z�� �

z�� � � � � � �a�A�� �
� �



�Aa�A� �� �O�� ���

we get

z�t� ��t� �� � � ��t �a�A�� �
�t�



�Aa�A� �� �O��t����

�

Substituting �

� into v��� x�� the equations

v��� x� � �

can be solved and the solution is

s��� x� � �I � �tA�
�t�



A�����x��t a� �t�



Aa� �O��t���

Using the Neumann series we get as second order approximation

s��� x� � �I ��tA�
�t�



A���x��t a� �t�



Aa� �O��t��

� x��tAx��t a�
�t�



Aa�

�t�



A�x�O��t���

By the variable substitution x � s��� y� we get for the contributions

F�i�j �
Z
s���Gj	

u�x� t�� dx�

where s��� Gj� � �i describes the inverse of the domain Gj � which is sketched in
Figure ��

F

F

F

F

Ω Ω
Ω Ω

Ω ΩΩ Ω

8

0

0 1

0 70 3

s(0,G )

8
G

8

Figure �� Sketch of transformation �
	�� The solid line represents
the forward transformation of the original cell� The dotted line de�
notes the backward transformation of G
 into the original cell�

The domains of integration can be triangles� quadrilaterals� pentagons or hexagons�
To get second order in space� we reconstruct u�x� linearly and use a quadrature rule
to get the contributions�
We can check that with the contributions F�i�j dened above� the numericalmethod
is of second order� Further explanation about the scheme can be found in ��� and
����

�



���� Limiting process� In this subsection we study two limiting processes for con�
servation laws� They are based on rst order solutions which we assume to converge
to the physically correct solutions� We discuss two type of limiters� namely the
slope�limiter and the contribution�limiter method� For stability reasons� all second
order methods must degenerate to rst order near discontinuities� Unfortunately�
this also causes a degeneration near extreme points� Only a very few limiter func�
tions overcome this problem �	��
For simplication� we consider the contributions F�i�j

for the one dimensional case�
For the rst order scheme we get

F�i�i�� �

�
�t ai ui if ai 	 �
� else

�

With the notation of section ���� the second order scheme reads

F�i�i�� �
Z xi����

s���xi����	
�ui � �ux�i x� dx�

where

s��� xi����� � s��� xi �
�x



� �

�x



��t a��t ax

�x



�

�t�



a ax�

This is equivalent to

F�i�i�� � �t�aiui � �� � �t

�x
a� ��ax�i ui � ai �ux�i�

�x



��

if s��� xi����� 
 xi����� The x�derivatives of a and u can be approximated in di�erent
ways� First order approximation is su�cient to get a second order scheme� if the
same stencil is used everywhere� Unfortunately� limiter functions will switch between
di�erent stencils even in smooth regions� e�g� extreme or saddle points� To keep
second order accuracy it is su�cient to use the rst derivatives but with a better
approximation than O��x� like

�ux�
upwind
i �

�ui�� � �ui�� � �ui

�x

�

�ux�centrali �
ui�� � ui��


�x
�

�ux�downwindi �
�ui � �ui�� � ui��


�x
�

�
��

The rst limiting strategy uses a slope�limiter� The slope in cell �i is given by one
of these three di�erent nite di�erences

�ux�i �


�������
�ux�

upwind
i if j�ux�upwindi j � min�

�ux�centrali if j�ux�centrali j � min�

�ux�downwindi if j�ux�downwindi j � min�

�
��

where min� � min�j�ux�upwindi j � j�ux�centrali j � j�ux�downwindi j��
The scheme with this limiter is essentially non oscillatory for the advection equa�
tion� For the shallow water equations� this limiter does not prevent overshoots and
oscillations at discontinuities� This phenomena is also observed with all sort of
slope�limiters� e�g� the minmod� van Leer� superbee limiters�

�



This ENO�like strategy gets worse in several space dimensions since the numbers of
possible stencils increases drastically� e�g� �� in the two�dimensional case compared
to the three in �
��� In addition to this� the limiting process introduces a new grid
dependence� since grid aligned gradients are treated di�erently than oblique ones�
The second strategy uses a contribution�limiter and is based on the non oscillatory
character of the rst order solution� To conserve this property� we compute the rst
and second order solution without any limiter� The derivatives in the high order
computation are always approximated by the central di�erence� The next timestep
is then given by

un���i
� un�i

� �

j�ij
X
j�V

�F�i�j �

where �F�i�j � F�i�j � F�j�i � We want to use the second order contributions if

min
j�V

�un��j �� � �un��i �� � max
j�V

�un��j ����
��

where V � fi � �� i� i � �g� otherwise the rst order contributions are taken� The
superscripts � and 
 denotes the order of the quantities between brackets� To keep
the method conservative� F�i�j has to be chosen more restrictive� If the cell �i or
�j is marked to be of rst order� then F�i�j includes the rst order contributions
from both sides� otherwise the second order terms are used� In addition if

��F�i�j �
� � ��F�i�j�

� � �

the rst order contribution has to be chosen�
For the one�dimensional advection and shallow water equations� this limiter performs
very well� The speed of the discontinuity or the shock is correct resolved� The same
idea can naturally be extend to the two�dimensional case� The decision� which
contribution to take� is related to the results of two multidimensional methods and
is independent of the grid as the methods� In �
�� the indices i and j become multi�
indices i � �i�� i�� and j � �j�� j��� The set of all neighbours is V � f�i� � k� i� �
l�� l� k � f��� �� �g�
For the shallow water equations this limiter prevents overshoots and oscillations at
discontinuities�

�� Numerical results

This method is implemented on a parallel machine� with domain decomposition
strategy� It performs very well on the Intel paragon� We have simulated di�erent
problems such as the abrupt expansion in a channel or the explosion problem� A
more delicate one is the shock focusing problem� The results show the advantage of
the multidimensional method compared with a dimension splitting scheme�

���� Shock Focusing Problem� Solving a rotational symmetric problem on a
Cartesian mesh causes a lot of problems for any kind of numerical method� In the
case of the shallow water equations� we compute the circular shock focusing problem
as dened in ���� The initial values are given by

g � h�x� �� �
�
��� if jxj � ����
� else

�



and u�x� �� � �� The two�dimensional calculations are done on the square domain
������ ����� with ��� points in each direction and �t � ����	� which corresponds to
a CFL number of �� Results are shown at time t � ����
At time t � �� a circular shock of the initial discontinuity moves inwards� At time
t � ���� the initial circular shock has passed through the singularity and a circular
shock is expanding outward from the centre and is interacting with the rarefaction
wave�
Figure 
 shows the geopotential and the total velocity along cuts of y � � and
x� y � � of the rst order solution and the radial symmetrical solution with �����
points� which is a good approximation of the exact solution�
Figure � shows the second order solution� computed with the slope limiter �
��� For
the total velocity we observe a large di�erence between the two strips at time t � ��
This di�erence results from errors produced at the focusing point� Until the shock
reaches the focusing point� the symmetry is preserved� For this limiter the di�erence
between the two cuts does not converge to zero when the mesh size tends to zero�
This e�ect can be observed in ���� where the solution is computed with a operator
split scheme using a van Leer limiter� It also appears in the solution computed with
the software package CLAWPACK� A second order Godunov method described in
��� is used with a minmod limiter �see Figure ��� Furthermore the rst order solution
from CLAWPACK presents a di�erence between the x and the diagonal strip�
In a rst approach to solve this problem we increased the number of propagation
directions ni up to �
 satisfying ��� and ���� but the di�erence did not decrease
essentially�
We noticed that the second order solution without limiter function� i�e� using always
the central di�erence to compute the slopes� does not present this problem �see
Figure ��� This indicates that the loss of symmetry is due to the limiter�
The use of the contribution�limiter �
�� removes this behaviour �see Figure ��� We
observe that the structure of the x and the diagonal strips are almost identical and
the solution converges for step size to zero�
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line the diagonal strip from the rst order scheme� The solid line
represents the rst order radial symmetric solution�
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Figure �� The dashed line represents the x�strip and the dashdotted
line the diagonal strip from the second order scheme� The solid line
represents the rst order radial symmetric solution�
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Figure �� The dashed line represents the x�strip and the dashdotted
line the diagonal strip from the second order scheme computed with
the software package CLAWPACK� The solid line represents the rst
order radial symmetric solution�
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Figure �� The dashed� dashdotted and solid lines are enlargements
of the previous gure� the dotted and longdashed lines represent the
x and the diagonal strip from the second order solution computed
without limiter�
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Figure �� The dashed line represents the x�strip and the dashdot�
ted line the diagonal strip from the second order scheme with the
contribution�limiter� The solid line represents the rst order radial
symmetric solution�
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