
ETH Library

Routed message driven beans: a
new abstraction for using EJBs

Report

Author(s):
Wilde, Erik; Meyer, Manfred

Publication date:
2001-12

Permanent link:
https://doi.org/10.3929/ethz-a-004284037

Rights / license:
In Copyright - Non-Commercial Use Permitted

Originally published in:
TIK Report 102

This page was generated automatically upon download from the ETH Zurich Research Collection.
For more information, please consult the Terms of use.

https://doi.org/10.3929/ethz-a-004284037
http://rightsstatements.org/page/InC-NC/1.0/
https://www.research-collection.ethz.ch
https://www.research-collection.ethz.ch/terms-of-use

Routed Message Driven Beans:

A new Abstraction for using EJBs

Erik Wilde and Manfred Meyer
Computer Engineering and Networks Laboratory

Swiss Federal Institute of Technology, Zürich

TIK Report 102
December 2001

Abstract

Asynchronous messaging between cooperating software components proves to be useful
in many scenarios. One framework supporting this functionality is Sun’s J2EE platform
with its Message-Driven Beans (MDB) model. We present a novel way to use MDBs by
providing a way to add routing information to the messages, which is then used to send
a message through a given path of processing components. We call this model Routed
Message-Driven Beans (RMDB), and the two main topics that are important for RMDBs
are (1) the message format that is used for the routing information, and (2) the API which
can be used by programmers to take advantage of the abstraction provided by RMDBs.
Performance measurements show that the overhead caused by our RMDB framework is
acceptable if messages are routed through several EJBs.

Contents

1 Motivation 2
1.1 Web Servers . 2
1.2 XLinkbase . 3

2 Related Work 4

3 The Concept 5

4 Implementation 6
4.1 RMDB Message Format . 6
4.2 The Class Structure . 8

5 Performance 10

6 Conclusions 11

7 Challenges and Future Work 12

8 Acknowledgements 12

1 Motivation

Programming frameworks are used to make program development easier, faster, and more
reliable, and the overall goal is to produce better software with less expenses. In the last
10 years, the World Wide Web (WWW) [15] — and in particular applications built on top
of the services provided by it — has increasingly been the focus of software developments,
as indicated by frequently used keywords such as Intranet, Business-to-Business (B2B) and
Business-to-Consumer (B2C), or other keywords referring to Web- or Internet-specific tech-
nologies. Thus, programming environments for Web-enabled applications have become quite
popular.

In the context of a Web-focused software system, we have developed the Routed Message-
Driven Bean (RMDB) abstraction for asynchronously routed messages between Enterprise
Java Beans (EJB), based on a pre-computed path through a any number of RMDBs. These
RMDBs all contribute to the processing of the message as cooperating software components.
In the following sections, we briefly introduce the topics relevant to our work.

1.1 Web Servers

Web server architectures have gone a long way from the first Web server (implemented in
1989/90 [1]) to the complex integrated server architectures of today. The first Web server
simply mapped the request’s URI path to a file system path, and then returned the file’s con-
tent in the response. While the communications mechanism between Web clients and servers,
the Hypertext Transfer Protocol (HTTP) [5], basically still works the same way than it did 10
years ago (clients send a request with a URI path and get back a response containing a result),
the architectures on the server side have evolved significantly. Three basic evolutionary steps
can be identified:

• Server directives

Simple directives for invoking pre-defined server operations, such as inclusion of a file’s
content or inclusion of the modification date of a file. These mechanisms are very easy
to use, but also very limited in their functionality. Extending the server’s functional-
ity means extending the server’s set of supported directives, which normally involves
modifying the server software.

• Scripting languages

Scripting languages are still very popular today, the most widely used are probably
PHP1, Sun’s Java Server Pages (JSP), and Microsoft’s Active Server Pages (ASP).
Scripting languages are embedded into Web pages, and the Web server scans the Web
page for scripting before delivering it. Scripting languages are a very powerful way to
embed dynamically generated information into static content.

Scripting languages can be used in conjunction with other technologies, a very popular
example being the LAMP (Linux, Apache, MySQL, PHP) application suite [14], which
makes it possible to easily access relational databases from within PHP’s scripting
environment. However, the applications used by the scripting languages are outside of
the scope of the scripting language itself.

1See http://www.php.net/

2

http://www.php.net/

• Programming environments

Complete programming environments for Web services not only include a scripting
language for embedding dynamically generated information into static content, but
also an entire programming framework for building Web-based applications. These
environments are undoubtedly more complex than the rather simple scripting languages,
but they are becoming increasingly popular due to the growing number of complex Web-
based applications.

One important class of programming environments are application servers based on Sun’s
Java 2 Enterprise Edition (J2EE) [11], which is a platform based on a Java run-time environ-
ment and a number of additional services. J2EE is not the only programming environment for
Web-centric applications (Microsoft’s .NET platform is a well-known competitor), but with
dozens of implementations (including several free software initiatives) it is the most widely
implemented one.

J2EE is a specification from Sun Microsystems [12], including a large number of technolo-
gies, most notably a Java runtime environment as the most basic component, Java Database
Connectivity (JDBC) for database connectivity, Java Server Pages (JSP) as the scripting
approach for Web pages, and EJB as its software component model. In the latest release
of J2EE (version 1.3), the Java Message Service (JMS) [7] and the Java Transaction API
(JTA) [3] have been added to better support EJB development. Furthermore, the following
enhancements have been made to the architecture:

• A new kind of enterprise bean, the Message-Driven Bean (MDB), enables the asyn-
chronous consumption of messages.

• Message sends and receives can participate in JTA transactions, thus making it possible
to combine JMS-based asynchronous messaging with the transaction services provided
by JTA.

In many application scenarios involving several autonomous services, asynchronous mes-
saging can be a very powerful abstraction. In our application scenario, we have a large
database of URI references and semantic relationships between them, and we are implement-
ing a server that can make use of this data in a variety of ways, effectively implementing a
specialized database for linking information (often also referred to as a linkbase [4]).

1.2 XLinkbase

The XLinkbase system is based on the observation that it is not the amount of information
available on the Web which often limits our ability to use it in a meaningful way, but the lack of
relationships between individual information resources. XLinkbase is based on the idea of an
Open Hypermedia System (OHS) [9], and its data model is similar to Topic Maps [8,10]. In the
context of this paper, the interesting aspect of XLinkbase is that its current implementation
is built on top of the J2EE platform and JMS. For a more detailed discussion of the ideas
and concepts behind XLinkbase, please refer to a paper by Lowe and Wilde [16].

Basically, requests to the XLinkbase server may be issued via HTTP to a Web server,
or from other applications via an EJB API. The request is then handled by a controller
EJB, which computes routing information for the request and then sends it as a message via
the RMDB mechanism. The routing information specifies which EJB(s) should process the

3

message, and the RMDB framework makes the routing transparent for the XLinkbase-specific
EJB code.

Seen from an architectural perspective, the RMDB framework is used by the XLinkbase
server to implement message routing among the EJBs within the XLinkbase server. These
EJBs may implement functionalities such as XSLT transformations, logging, security checks,
access to data storage for XLinkbase data (such as access via JDBC), or any other function-
ality that might be useful within the XLinkbase server. XLinkbase is designed as a generic
platform for implementing linkbases, and it can easily be extended by implementing new
functionality in RMDB components, which can then be used to process requests.

A typical example of an XLinkbase request is the following scenario: The XLinkbase Web
server receives a request and forwards it to the controller EJB. The controller computes a
processing graph, consisting of any number of RMDBs, for example a logging component, a
security check, a database access component retrieving data, an XSLT transformation com-
ponent converting the XLinkbase data to HTML, and another logging component, before
the controller finally gets back the result of the request processing and sends it to the client
via the Web server. All the components are RMDBs, and they use the RMDB framework
to transparently route the message between the components. If at any time the processing
graph changes (for example because the security components rejects the request and needs
to re-route it), the RMDB routing information can be changed via the API to reflect the new
processing graph. In general, all interaction between the application functionality and the
RMDB framework is handled via the RMDB API.

2 Related Work

Web-based application frameworks are very popular today, and they range from rather small
software suites to rather heavy programming environments such as J2EE. One of the early
approaches to use XML technologies for building a publishing framework is Apache’s Cocoon2

project, which is built on standard Web technologies such as DOM, XML, and XSL(T).
However, Cocoon does not support distributed processing and load balancing, and because
we wanted to be able to support this, we decided to not use it.

One step further, the Java 2 Platform Enterprise Edition (J2EE) supports distributed
processing and load balancing, and (starting with version 1.3) also supports message passing
between components. Furthermore, J2EE is a specification (and not a product), and therefore
software built on top of it is not restricted to one vendor’s platform. Even though most J2EE
products are commercial products (with BEA System’s WebLogic and IBM’s WebSphere
currently being the market leaders), there are also open source J2EE implementations such
as JBoss3.

J2EE provides a powerful programming environment, but from an application program-
mer’s point of view, the level of support for the typical J2EE application is not as good as it
could be. Sun Microsystems, author of the J2EE specification, has recognized this and now
offers the so-called J2EE Blueprints4, which basically are design patterns [6] for using EJBs.
At the time of writing, the set of blueprints available is quite small, and we see our framework
as one contribution to the overall goal of producing generic solutions for J2EE, which may be

2See http://xml.apache.org/cocoon/
3See http://www.jboss.org/
4See http://java.sun.com/j2ee/blueprints/

4

http://xml.apache.org/cocoon/
http://www.jboss.org/
http://java.sun.com/j2ee/blueprints/

Servlet

RMDB

W
eb

 C
lie

nt
s

Logger

RMDB
Handler

Kicker
RMDB

Controller

Queue
JMS

Port
HTTP

Figure 1: XLinkbase server

re-used for similar application scenarios.
Asynchronous messaging is provided in many environments5, but the ability to compute

(and modify) paths through any number of components, and to pass the path information as
well as any results through these components, to our knowledge is not available as a generic
component in any J2EE platform.

3 The Concept

In a very simple setup, an XLinkbase server could be constructed as shown in Figure 1. A
servlet is set up to receive client requests from browsers or other Internet applications. This
servlet then kicks off the RMDB mechanism by sending a JMS message to the Controller in
the EJB container. The Kicker servlet must have its own JMS Queue to be able to receive
the response in order to send it back to the client.

Routed Message Driven Bean

Pr
ol

og

A
PI

E
pi

lo
g

XML
Message

XML
Message A

PI

L
og

ic
A

pp
lic

at
io

n

Figure 2: RMDB framework

RMDBs are based on the Message-Driven Beans (MDB) model of the new Enterprise Java
Beans (EJB) 2.0 specification. MDBs are a very simple type of EJBs. They are exclusively
addressed through the JMS queue or topic they are deployed to listen to. There is no home
and no remote interface and they can be coded in one single class file by simply implementing
two interfaces.

5IBM’s MQSeries and Microsoft’s MSMQ currently are probably the most widely deployed messaging
platforms.

5

Like any MDB, a RMDB starts to work when a message arrives in the JMS queue. In the
MDB model, next to the JMS Queues there also exist JMS topics which make it possible to
send a message to many recipients. However, for RMDBs these JMS topics are not supported,
because the message path is not allowed to split anywhere in the processing path, as there
can only be one message per request in the server. All communication is done using JMS text
messages, because they can carry a payload of type string, which enables the RMDBs to send
and receive XML strings. The message is an XML document containing all the information
about what the RMDB is supposed to do:

• The command and its parameters

• The data to process

• The route to the next RMDBs

The message format and its semantics are described in detail in Section 4.1. Before the
application logic of the RMDB has access to the data in the message, the RMDB message
(which is an XML document) must be parsed. After processing it, a new message must be
compiled and serialized to a string, in order to send it to the next RMDB. Figure 2 shows
the schematic message flow through one RMDB.

The parsing is done in the RMDB’s prolog, while the generation, routing, and sending of
the new message is done in the epilog phase. This behavior is identical for every RMDB, and
consequently the code for doing this can be encapsulated in a framework to be transparently
processed at the beginning and the end of an RMDB’s execution. Creating a new RMDB
using this framework is then reduced to implementing the application logic. The access to
the XML data is provided by an API and similarly data can be added to the message as well
as adding new commands to the path for delegating work to other RMDBs.

4 Implementation

Two main aspects discussed in this section are the format of the XML message, and the class
structure used to implement the routing and data handling mechanisms. The actual XML
message is never visible for the RMDB programmer, since access to it is exclusively provided
through an API. Because of the sophisticated design of the message format, RMDBs can be
kept stateless and the processing of messages can be easily parallelized and distributed.

The class structure described in Section 4.2 has been invented to hide framework code
from the developer who wants to create new RMDBs and to provide a hook to insert the
RMDB’s application logic into the framework. The transparency achieved by this is a relief
for programmers, reduces the opportunities to make errors in the own code, and enables rapid
software development.

4.1 RMDB Message Format

The XML structure of messages exchanged by RMDBs is shown in Figure 3. It contains the
document element message with four child elements. The message DTD is listed in Figure 4,
and the document element’s child element types have the following semantics:

6

message

commands current history stack

Figure 3: RMDB message structure

<!ELEMENT message (commands,current,history,stack) >
<!ATTLIST message
history (yes | no) "yes" >

<!ELEMENT commands (rmdb*) >
<!ELEMENT current (rmdb) >
<!ELEMENT history (rmdb*) >
<!ELEMENT stack (data*) >
<!ELEMENT rmdb (arg*) >
<!ATTLIST rmdb
name CDATA #REQUIRED
data IDREFS #IMPLIED >

<!ELEMENT arg ANY >
<!ATTLIST arg
name CDATA #REQUIRED >

<!ELEMENT data ANY >
<!ATTLIST data
id ID #IMPLIED >

Figure 4: RMDB message DTD

7

commands: A list of the following RMDBs which are scheduled to further process the re-
quest. They are registered by their JMS queue name, and may contain several arguments
(wrapped in arg elements) to customize their behavior or tell them on which data stack
entries to operate. The command element can be regarded as a stack, since the topmost
command is always next to receive the message. Newly added commands are pushed
on the top of the stack exclusively. This ensures that the message finally returns to the
client and that the order of the RMDBs on the stack remains unchanged, as they might
rely on that by passing information on the data stack. For the case of an unrecoverable
error occurring in an RMDB so that normal processing is not possible anymore, the
API function sendException is available, which interrupts the routing and returns an
error message to the client.

current: The current command, representing the RMDB which is about to process the mes-
sage. We use an own branch of the XML tree to enable the framework to easily access
it. This means to read the arguments from it, or add references to freshly generated
data stack entries. During the RMDB’s epilog phase, just before the message is sent to
the next RMDB, the current command is exchanged. The first element in the commands
stack is moved here, while the replaced one is appended to the history.

history: This branch contains a list of all successfully processed commands. A developer
could use this for logging or debugging purposes as well as for discovery of data on the
data stack, learning by which RMDB it has been produced. If an application developer
does not intend to access the history, the XML attribute history="no" can be set
in the document element of the message to disable the RMDB history mechanism, in
which case executed commands will be discarded instead of being added to the history.

stack: This is a data stack where all the information needed while processing a request can
be stored. Its entries can be of type string or of arbitrarily complex XML structures.
For retrieval, they can be addressed implicitly through the position on the stack, or
explicitly by their ID. The ID is automatically generated by the framework as a unique
number6, and returned to the application logic for later reference.

The complete XML DTD of RMDB messages is shown in Figure 4. Since we assume that
messages are only produced and consumed by the RMDB framework itself, we currently do
not validate the messages (ie, upon arrival at an RMDB, the message is only checked for
wellformedness), but this behavior could be changed easily with switching on validation of
the XML parser.

4.2 The Class Structure

Regular J2EE MDBs do not inherit any code from superclasses and are easily constructable
by implementing two interfaces. However, the EJB specification 2.0 explicitly allows to use
subclassing for MDBs. This gives us the possibility to write our own RMDB class, including
the prolog and epilog code, the API to access the message, and a hook for later insertion
of the application logic. The RMDB class implements all necessary methods of the interfaces
MessageDrivenBean and MessageListener to fulfill the requirements set by the EJB con-
tainer (see Figure 6).

6Including a leading character to satisfy the XML naming constraints for ID attributes.

8

<message history="yes">
<commands>

<rmdb name="Controller"/>
<rmdb name="Kicker"/>

</commands>
<current>

<rmdb name="Monitor"/>
</current>
<history>

<rmdb name="Controller" data="i0"/>
<rmdb name="Logger"/>
<rmdb name="RequestHandler" data="i1">
<arg name="cmd">request=0</arg>

</rmdb>
</history>
<stack>

<data id="i1">
<!-- XML data omitted for brevity -->

</data>
<data id="i0">request=linux</data>

</stack>
</message>

Figure 5: An example message

«Interface»
MessageDrivenBean

+ejbCreate()
+ejbRemove()
+ejbActivate()
+ejbPassivate()
+setMessageDrivenContext(...)

«Interface»
MessageListener

+onMessage(msg:Message)

«abstract»
RMDB

+ejbCreate()
+ejbRemove()
+ejbActivate()
+ejbPassivate()
+setMessageDrivenContext(...)
+onMessage(msg:Message)
+processMessage(attr:String[])
+getData(): Element[]
+getDataById(id:String): Element
+addData(arg:Element): String
+addData(arg:String): String
+addCommand(handler:String)
+getHistory(): Element[]
+getParser(): DocumentBuilder
+sendException(ex:RMDBexception)
 ...

Controller

+onMessage(msg:Message)
+processMessage(...)
+buildResponse(): String

Logger

+processMessage(...)

RequestHandler

+processMessage(...)

Figure 6: RMDB class structure

9

The RMDB class also contains the abstract method processMessage, which has to be
overridden by a subclass, because it will be called to execute the actual application logic of
the RMDB. This is the only programming work a developer has to do to construct a new
RMDB. The example classes Logger and RequestHandler shown in Figure 6 demonstrate
the simplicity of RMDBs.

The Controller class is a special case. At least one instance of this bean must be present
in every RMDB based server and is located at the beginning and the end of every message
path. It is designed to handle the direct communication with the client. Upon reception
of a new request, the controller builds a new XML message frame, adds a default route to
the command stack, and the actual request as a first data stack element. The default route
always leads to the Controller a second time at the end of the path. This is the moment when
the Controller finally removes the message frame and passes the response to the Client. It is
the responsibility of the extra method buildResponse to return the correct response string.
By default, it simply returns the top of stack element as a plain text string. This is a simple
default strategy, and it is possible to override this method if a different behavior is required
(for example for passing complex data structures as responses).

5 Performance

Programming RMDBs means programming on a very high level of abstraction. This is very
comfortable, but there are a lot of lower software layers (the Java Virtual Machine, the J2EE
application server, and the RMDB class) which all consume CPU time and other system
resources. To get an idea how RMDBs perform, we measured their minimal processing time
compared to the simpler MDBs (which provide the foundation for our RMDBs). Figure 7
shows the chart of the benchmark measurement. The X-axis shows zero to five Beans. On the
lower line there are just MDBs, the upper one has been measured using RMDBs containing
the full routing and XML messaging mechanisms. Both types of beans do not contain any
application logic.

The Y-axis shows the time for a round trip from a client application through a variable
number of beans and back to the client. For the RMDBs as well as for the MDBs, the total
time depends linearly on the number of beans in the path. In the measurement of the RMDBs,
the controller bean has not been counted as a working bean. Hence the value in the chart for
zero RMDBs is 32ms and contains the time the controller needs to set up the initial message
and communicate with the client. The client application also consumes about 4ms in both
test cases.

The measurement has been made on Intel Pentium III processor machine with 500MHz and
384MByte RAM running Linux 2.2.14 and the BEA Weblogic 6.0sp1 server. The application
server has been advised to create a sufficient amount of beans at deployment time, so the
time for instantiating and initializing them did not affect the measured delay. Besides that,
no further optimizations have been made for the application server, but there are plenty of
parameters to tweak in the Weblogic server and in the operating system.

From the measured data, it can be concluded that the average time needed by a single
RMDB is 17.4 milliseconds to fulfill all the required parsing, routing and communication work.
This is to see as a minimal response time under very low work load. But for applications
with very high work load the system is designed to achieve a good load balancing to keep the
response time acceptable.

10

110

48

26

4

44

63

85

119

69

83

101

32

0

20

40

60

80

100

120

140

0 1 2 3 4 5

Nr. of Beans

P
ro

ce
ss

in
g

 T
im

e
(m

s)

MDB RMDB

Figure 7: RMDB Performance

Naturally, performance for RMDB depends on many factors, the most important one
being the size of the messages, ie the size of the data being sent through the RMDB message
path. If there are big and complexly structured messages, parsing and serializing them will be
more expensive than in our example, which used a very simple message structure. However,
XML parsing and serialization may be neglected if the application logic is very complex and
time-consuming and therefore predominates the overhead caused by the RMDB framework
and the lower layers (JVM and J2EE).

6 Conclusions

We started thinking about an abstraction for routing messages through a number of software
component as a result of our work on the XLinkbase system. When we started our work
on the XLinkbase server, JMS was not part of J2EE, and we were very pleased with the
inclusion of the messaging service. However, we discovered that asynchronous messaging as
provided by MDBs was not as powerful an abstraction as we were looking for. In an effort to
create a generic solution to the problem of a message flow through a complex set of software
components, we invented the concept of the Routed Message-Driven Bean (RMDB), which
proved to be very useful in our application scenario.

It was our goal to separate the generic concept of RMDBs from our XLinkbase application,
and we believe that we have succeded in creating an abstraction which might prove useful
in a wide variety of application involving asynchronous messaging. It would be pretentious
to think of RMDBs as something to be included in the next release of J2EE, but we believe
that something similar to it, ie supporting a more abstract way of messaging as through the
rather simple mechanisms of JMS queues and topics, would be an interesting idea. However,
there are still some open issues, which we discuss shortly in the following section.

11

7 Challenges and Future Work

So far, we have concentrated on making the RMDB framework as generic and flexible as
possible, so that it may be re-used in similar scenarios than our linkbase application. How-
ever, one important aspect we have not yet implemented is the issue of reliability. While
JMS guarantees the delivery of messages, there is no transaction concept. We are currently
investigating how to integrate J2EE’s JTA service with our RMDB abstraction for imple-
menting transactional semantics, ideally being able to make the whole RMDB processing of
a request one transaction. Our plan is to extend the RMDB API and the RMDB message
format with support for transactions, so that critical applications may choose between the
more efficient and faster messaging service as provided by JMS only, and a more expensive,
but more reliable transactional variant implemented by using JMS and JTA services.

Another issue we would like to investigate is the support for conditional paths within the
messages, where the routing of RMDB messages is based on the result of computations earlier
in the path. Again, this would require changes to the API as well as to the message format,
but we believe that conditional routing could be useful in many scenarios, the most widely
known being the handling of exceptions (ie, error conditions) in a more general way than only
providing one exception handler.

We currently use an XML DTD to describe the RMDB message format. We are currently
looking into using XML Schema [13, 2] for the schema definition, which would enable us to
specify a better formal model of the message format. In particular, XML Schema’s datatype
concept could be used to make the RMDB code lighter by moving more data checking into
the validation of the messages. However, this would require using a schema-validating XML
parser, and we still have to look into the performance implications of such a step.

In our current RMDB framework, the calculation of the processing graph has to be done
by the controller, and is completely handled by the application logic. One could easily think of
making the RMDB model even more abstract by specifying certain constraints and conditions
for each RMDB available to the controller, and then having the RMDB code compute the
actual processing graph based on the incoming request and the RMDB specifications. This,
however, would be a very hard task to solve generically, which is the main reason why we did
not put any effort into it.

8 Acknowledgements

We would like to thank BEA Systems Switzerland for providing us with an extended trial
license for their WebLogic application server. We would also like to thank Yves Langisch for
providing the foundations of the XLinkbase EJB architecture.

References

[1] Tim Berners-Lee. The World Wide Web. In Proceedings of the 3rd Joint European Networking
Conference, Innsbruck, Austria, May 1992.

[2] Paul V. Biron and Ashok Malhotra. XML Schema Part 2: Datatypes. World Wide Web
Consortium, Recommendation REC-xmlschema-2-20010502, May 2001.

[3] Susan Cheung and Vlada Matena. Java Transaction API (JTA) — Version 1.0.1. Technical
report, Sun Microsystems, April 1999.

12

[4] Steven J. DeRose, Eve Maler, and David Orchard. XML Linking Language (XLink)
Version 1.0. World Wide Web Consortium, Recommendation REC-xlink-20010627, June 2001.

[5] Roy T. Fielding, Jim Gettys, Jeffrey C. Mogul, Henrik Frystyk Nielsen, Larry
Masinter, Paul J. Leach, and Tim Berners-Lee. Hypertext Transfer Protocol —
HTTP/1.1. Internet proposed standard RFC 2616, June 1999.

[6] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns:
Elements of Reusable Object-Oriented Software. Addison-Wesley, Reading, Massachusetts, Jan-
uary 1995.

[7] Mark Hapner, Rich Burridge, Rahul Sharma, and Joseph Fialli. Java Message Service
— Version 1.0.2b. Technical report, Sun Microsystems, August 2001.

[8] International Organization for Standardization. Information technology — SGML
Applications — Topic Maps. ISO/IEC 13250, 2000.

[9] Peter J. Nürnberg and John J. Leggett. A Vision for Open Hypermedia Systems. Journal
of Digital Information, 1(2), 1997.

[10] Steve Pepper and Graham Moore. XML Topic Maps (XTM) 1.0. TopicMaps.Org Specifi-
cation xtm1-20010806, August 2001.

[11] Ed Roman. Mastering Enterprise JavaBeans and the Java 2 Platform, Enterprise Edition.
John Wiley & Sons, New York, September 1999.

[12] Bill Shannon. Java 2 Platform Enterprise Edition Specification, v1.3. Technical report, Sun
Microsystems, July 2001.

[13] Henry S. Thompson, David Beech, Murray Maloney, and Noah Mendelsohn. XML
Schema Part 1: Structures. World Wide Web Consortium, Recommendation REC-xmlschema-
1-20010502, May 2001.

[14] Luke Welling and Laura Thomson. PHP and MySQL Web Development. Sams, Indianapo-
lis, Indiana, March 2001.

[15] Erik Wilde. Wilde’s WWW — Technical Foundations of the World Wide Web. Springer-
Verlag, Berlin, Germany, November 1998.

[16] Erik Wilde and David Lowe. From Content-Centered Publishing to a Link-Based View of
Information Resources. In Proceedings of the 33rd Hawaii International Conference on System
Sciences, Maui, Hawaii, January 2000. IEEE Computer Society Press.

13

