
Diss. ETH No. 14520

Control and Estimation of Hybrid Systems
with Mathematical Optimization

A dissertation submitted to the

Swiss Federal Institute of Technology (ETH)

Zurich

for the degree of

Dr. sc. techn.

presented by

Domenico Mignone

Dipl. El.-Ing. ETH

born on March 23, 1972

from Italy

accepted on the recommendation of

Prof. Dr. Manfred Morari, examiner

Dr. Jürg Tödtli, co-examiner

January, 2002

c© 2002

Domenico Mignone

All Rights Reserved

Preface

to boldly go

where no man has gone before

This work has been developed during my stay at the Automatic Control Laboratory of

ETH Zürich, Switzerland. I had the unique opportunity to work with several outstanding

scientists, from whom I learned to structure new thoughts, to search the answers where

they are least expected and to be perseverant in pursuing a goal.

First of all I express my gratefulness to Prof. Manfred Morari, who gave me the opportunity

to do a PhD thesis. I admire the illuminating inspiration of his ideas, his enthusiasm and

his ability to motivate people. A very special thanks goes to Alberto Bemporad, who

initiated the research on the topic, this thesis is about. His stimulating intuitions lay the

foundations to several parts of this work. I’m very indebted to Giancarlo Ferrari Trecate,

for the long and fruitful collaboration I had with him, which is also reflecting itself in

many parts of this work. Many thanks go to Jürg Tödtli who accepted to be co-examiner

and provided essential suggestions to improve this text. I express my big gratitude to the

whole hybrid systems group at the Automatic Control Laboratory. It was a pleasure and

an honour to work with Fabio Danilo Torrisi, Francesco Cuzzola, Francesco Borrelli, Tobias

Geyer and Mato Baotic.

iii

iv

I sincerely thank the proof readers of my thesis for their patience, their valuable comments

and suggestions. They are Janusz Milek, Francesco Cuzzola, Fabio Danilo Torrisi, Jan

Ulrich, Giancarlo Ferrari Trecate and Franta Kraus.

Thanks also to all colleagues of the Automatic Control Laboratory for the nice atmo-

sphere they contributed to create, for the intriguing discussions and for the exciting lunch

breaks. In particular, I thank Eleonora Bonanomi, Cornelius Dorn, Jan Ulrich, Oliver

Kaiser, Christian Frei, Konrad Stadler, Ron Pearson, Vaclav Cechticky, Mayuresh Kothare,

Markus Kottmann, Marco Sanvido and Federica Piras. I would like to thank the admin-

istrative staff of the Automatic Control Laboratory including Esther Hagenow, Martine

D’Emma, Danielle Couson, Alice Vyskocil and Myriam Lämmel.

The collaboration with researchers from other laboratories at ETH Zürich was instructive

and fruitful. Especially I thank Samarjit Chakraborty, Philipp Kutter and Lukas Finschi.

I express my acknowledgment to all people from institutions outside ETH, with whom I

had the chance to discuss about my work, in particular Jacques Chapuis, Kazuro Tsuda,

Eric Kerrigan, Tal Pasternak, Laurent El Ghaoui, Carsten Scherer, Nick Sahinidis and the

ABB corporate research center team in Dättwil, Switzerland, with Eduardo Gallestey and

Dario Castagnoli, as well as ABB power automation in Baden, Switzerland with Andrew

Paice, Babak Mataji and Marc Antoine.

A big acknowledgment goes to all students, I worked with: Dario Castagnoli, Paolo Letizia,

Matteo Spedicato, Marina Vasić, Natascia Monachino, Massimo Mannelli. The experi-

mental results in this work have been made possible with the valuable help of Hanspeter

Mössner, Ulrich Wenk, Martin Vogt and Daniel Wegmann.

My thoughts are also with Hannes Wichser, who left us too early. May his soul find a

peaceful rest.

v

I would like to thank all my friends and relatives for the support, for the confidence and for

the affection during the last years. Innanzitutto vorrei ringranziare Mami e Papi per avermi

dato la possibilità di portare a termine questa impresa. Per quanto mi potrò allontanare

e cercare una mia vita propria, voi sarete sempre parte di me, e ne sono fiero. A huge

thanks goes to Gunesh and Nina for turning on a light that was off for so much time, and

for the helping hand in many occasions. Another huge thanks goes to Naty (... the 3 PM

mosquito©··̂ ...) for the marvellous discussions, the innumerable dinners and for the really

great time I had with you. Thanks to Tobi, Ele, Max, Roberto, Nicole and Thiban, who

were beside me during this journey. All of you made my life richer and happier in these

years.

Thanks also to the CHAutomatOS SOLA teams, to the Kondi instructors Markus Burri,

Claudia Marth, Edgar Sieber, Mischa Senn, to the Mensa teams for the many “grossi

Portione”, to Cinzia, Damaris, Sabina and to my cousins Francesco and Miranda.

And last, I thank God for giving me the strength and the health to master the obstacles

and to go down the way He planned for me.

Domenico Mignone

vi

Abstract

Many practical systems consist of both continuous valued and discrete valued components.

The term hybrid systems has been used to describe models, where both continuous and

discrete aspects are considered within the same framework. This thesis presents theoretical

results and experiments about the Mixed Logic Dynamical systems modelling framework

for hybrid systems, introduced by Bemporad and Morari (1999a). The framework allows

to model systems comprising interacting propositional logic, continuous dynamics and

constraints. Besides their broad modelling capabilities, Mixed Logic Dynamical systems

allow to systematically formulate and solve various analysis and synthesis problems using

mathematical optimization techniques.

The contributions of this thesis are:

• We present systematic methods for the efficient and automatized derivation of models.

Classical analytical approaches for the modelling of system components are compared

to a geometrical approach. The proposed methods reduce the number of variables in

the model.

• Two practical systems are modelled in the Mixed Logic Dynamical systems frame-

work: a three tank laboratory system and the outflow units of a hydroelectric power

plant. Both systems illustrate the typical modeling capabilities of Mixed Logic Dy-

namical systems.

vii

viii

• We report experiments with a Model Predictive Control scheme for Mixed Logic

Dynamical systems. The controller is applied to the three tank laboratory model, a

multi-input multi-output hybrid plant.

• We introduce a fault tolerant control scheme for hybrid systems comprising two

stages:

First, we present an approach for fault detection and state estimation of Mixed Logic

Dynamical systems. It casts the fault detection problem as an estimation problem

to be solved as a mixed integer continuous optimization.

Second, we introduce strategies for the controller reconfiguration, to be used if the

plant exhibits hardware redundancies. If a fault occurs, we show that the decision

about the choice of alternative system components can be formulated within the

same modeling framework.

The fault detection and the reconfiguration algorithms are illustrated both with sim-

ulations and experiments.

• The mathematical problems arising for Mixed Logic Dynamical systems are NP-hard.

However, the experience of this work shows that the worst case of computational

burden is seldom necessary to achieve a solution. We present a heuristic rule, which

speeds up the computations on average. It is a tree exploring strategy in the branch

and bound algorithm, which exploits the structure of the optimization problems, as

they arise for control and estimation of Mixed Logic Dynamical systems. We give a

quantification of its complexity.

• The model class of Mixed Logic Dynamical systems is equivalent to the class of

Piecewise Affine systems. In this thesis we present sufficient conditions for stability

of Piecewise Affine systems. These methods rely on linear matrix inequalities in order

to find piecewise quadratic and more general Lyapunov functions.

Zusammenfassung

Viele praktische Systeme bestehen sowohl aus wertekontinuierlichen, als auch aus werte-

diskreten Komponenten. Der Begriff hybride Systeme wurde eingeführt, um solche Sys-

teme zu beschreiben, bei denen sowohl diskrete, als auch kontinuierliche Aspekte inner-

halb desselben Ansatzes berücksichtigt werden. In dieser Dissertation werden theoretische

und experimentelle Resultate für hybride Systeme vorgestellt, die mit dem Ansatz der

“Mixed Logic Dynamical”-Systeme modelliert wurden. Dieser Ansatz wurde von Bempo-

rad and Morari (1999a) eingeführt und erlaubt die Modellierung von logischen Komponen-

ten, kontinuierlicher Dynamik und Einschränkungen. Mit dem “Mixed Logic Dynamical”-

Systeme Ansatz können vielfältige Systemklassen modelliert werden. Zudem können ver-

schiedene Analyse- und Synthese-Probleme formuliert und mittels mathematischer Opti-

mierung gelöst werden.

Die Beiträge dieser Arbeit sind:

• Diese Arbeit präsentiert systematische Methoden zur effizienten und automatisierten

Herleitung von Modellen. Klassische Verfahren werden mit einem geometrischen

Verfahren verglichen. Die Methoden reduzieren die Anzahl der Systemvariablen.

• Es wird die Modellierung von zwei praktischen Anlagen mit dem Formalismus der

“Mixed Logic Dynamical”-Systeme durchgeführt. Es handelt sich dabei um ein Drei-

Tank Labormodell und um die Abfluss-Organe eines Laufwasserkraftwerkes. Beide

Systeme illustrieren typische Modellierungseigenschaften dieses Ansatzes.

ix

x

• Ein Ansatz zur Modellprädiktiven Regelung von hybriden Systemen wird in dieser

Arbeit experimentell validiert. Dazu wird das Labormodell eines Drei-Tank Systems

verwendet, ein hybrides Mehrgrössensystem.

• Ein Verfahren zur fehlertoleranten Regelung von hybriden Systemen wird eingeführt.

Es besteht aus zwei Stufen:

Einerseits wird ein Ansatz für die Fehlererkennung und Zustandsschätzung von “Mi-

xed Logic Dynamical” Systeme vorgestellt. Die Fehlererkennung wird als Schätzungs-

problem formuliert, das mittels gemischt ganzzahlig kontinuierlicher Optimierung

gelöst werden kann.

Andererseits beschreibt diese Arbeit verschiedene Strategien zur System-Rekonfigu-

ration bei Anlagen mit redundanten Komponenten. Bei Auftreten von Fehlern, wird

die Entscheidung über die Wahl alternativer Komponenten als Optimierung inner-

halb desselben Ansatzes gelöst.

Die Fehlererkennungs- und die Rekonfigurationsalgorithmen werden sowohl mit Sim-

ulationen, als auch experimentell validiert.

• Die mathematischen Probleme, die beim Ansatz der “Mixed Logic Dynamical”-

Systeme entstehen, sind NP-hart. Die Erfahrung in dieser Arbeit zeigt jedoch, dass

der Rechenaufwand häufig einen Umfang aufweist, der weit unter der maximalen

Anzahl Rechenschritte liegt. Es wird eine heuristische Regel vorgestellt, welche die

Rechenzeit im Durchschnitt verkürzt. Es handelt sich um eine Such-Strategie in

einem “Branch and Bound” Algorithmus, welche die Problemstruktur ausnützt, wie

sie bei Optimierungen für “Mixed Logic Dynamical”-Systeme auftritt.

• Die Modellklasse der “Mixed Logic Dynamical”-Systeme ist äquivalent zur Klasse

der stückweise affinen Systeme. In dieser Arbeit werden hinreichende Bedingun-

gen für die Stabilität von stückweise affinen Systeme vorgestellt. Diese Methoden

beruhen auf lineare Matrixungleichungen, welche für die Bestimmung von stückweise

quadratischen oder allgemeinere Lyapunov Funktionen benützt werden.

Contents

1 Introduction 1

1.1 Motivation for Hybrid Systems . 1

1.2 Modelling Approaches . 7

1.2.1 Model Classes for Hybrid Systems 7

1.2.2 Examples of Hybrid Systems . 11

1.2.3 Practical Applications . 12

1.2.4 Mixed Logic Dynamical Systems 12

1.3 Organization and Contributions of this Thesis 14

2 The Mixed Logic Dynamical Systems Framework 19

2.1 Introduction . 19

2.2 Propositional Calculus and Linear Integer Programming 21

2.2.1 Logic Propositions . 21

2.2.2 Mixed Logic-Continuous Propositions 24

2.3 Structure of Mixed Logic Dynamical Systems 27

2.4 Efficient Modelling of Mixed Logic Dynamical Systems 30

2.4.1 Logic Propositions . 30

2.4.2 Mixed Logic-Continuous Propositions 42

2.4.3 Summary . 52

2.5 The Tolerance ε of Mixed Logic Dynamical Systems and Well Posedness . . 53

xi

xii Contents

2.6 Modelling Capabilities of Mixed Logic Dynamical Systems 57

2.6.1 Piecewise Affine Systems . 57

2.6.2 Equivalences of Classes . 58

2.6.3 Example: Finite State Machines in MLD and PWA Form 59

2.7 HYSDEL – The Hybrid Systems Description Language 61

2.8 Steady States for Mixed Logic Dynamical Systems 62

3 Mixed Logic Dynamical Models of Practical Systems 67

3.1 Introduction . 67

3.2 Case Study: Three Tank System . 69

3.2.1 The System Description . 69

3.2.2 System Equations . 70

3.2.3 Derivation of the MLD Model of the Three Tank System 72

3.2.4 Nominal Operation . 76

3.2.5 The Problem Definition of the Benchmark System 77

3.2.6 Including Faults in the MLD Model 77

3.2.7 System Description in HYSDEL . 82

3.2.8 Implementation and Experiments 83

3.3 Case Study: Hydroelectric Power Plant . 87

3.3.1 Introduction . 87

3.3.2 The Model of the Flaps . 89

3.3.3 Simulation of the Flap Model . 97

3.3.4 Models of Gates and Turbines . 98

3.3.5 Dimensions of the Power Plant Components 102

3.3.6 Overall Plant . 102

3.3.7 Simplified Power Plant . 104

4 Control and Supervision of Mixed Logic Dynamical Systems 113

Contents xiii

4.1 Model Predictive Control of Mixed Logic Dynamical Systems 113

4.1.1 Introduction . 113

4.1.2 Description of the Method . 115

4.1.3 Application of Model Predictive Control to the Three Tank System:
Experiment . 117

4.1.4 Application of Model Predictive Control to the Simplified Power
Plant: Simulation . 119

4.1.5 Summary . 121

4.2 Minimum Time Control . 123

4.2.1 Introduction . 123

4.2.2 Minimum Time Control of the Three Tank System 123

4.2.3 Heuristic Control Strategy . 124

4.2.4 Open Loop Optimal Control . 126

4.2.5 Model Predictive Control . 128

4.2.6 Comparison of the Strategies . 129

4.2.7 Summary . 131

4.3 Moving Horizon Estimation . 131

4.4 Fault Detection of Mixed Logic Dynamical Systems 136

4.4.1 A Brief Survey of Fault Diagnosis Literature 136

4.4.2 Fault Detection of MLD Systems 139

4.4.3 Application to the Three Tank System: Simulation 143

4.4.4 Application to the Three Tank System: Experiment 146

4.4.5 Summary . 150

4.5 Reconfiguration of Mixed Logic Dynamical Systems 151

4.5.1 Introduction . 151

4.5.2 Fault Tolerant Control Systems . 151

4.5.3 Reconfiguration of the Three Tank System 153

4.5.4 Reconfiguration of MLD Systems 156

xiv Contents

4.5.5 Reconfiguration of MLD Systems as a Control Problem 156

4.5.6 Reconfiguration of MLD Systems on Two Decision Levels 159

4.5.7 One Step Compensation . 166

4.5.8 Application to the Three Tank System: Simulation 169

4.5.9 Application to the Three Tank System: Experiments 170

4.5.10 Summary . 177

4.6 Constraints Prioritizations . 179

4.6.1 Introduction . 179

4.6.2 Soft Constraints and Their Hierarchy 180

4.6.3 Increasing the Number of Satisfied Constraints 182

5 Computational Aspects 185

5.1 Introduction . 185

5.2 Mixed Integer Optimization . 186

5.3 The Branch and Bound Method . 188

5.3.1 Branch and Bound Algorithms for Mixed Integer Quadratic Programs189

5.3.2 Representation of Mixed Integer Quadratic Programs as Trees . . . 189

5.3.3 The Outside First Tree Exploring Strategy 196

5.3.4 Computational Complexity of the Outside First Tree Exploring Strat-
egy . 202

5.3.5 Implementation Scheme . 206

5.3.6 Extension to Optimal Control . 208

5.3.7 Example: Control of the Three Tank System 208

5.3.8 Example: Fault Detection of the Three Tank System 212

5.3.9 Summary . 213

5.4 Solvers for Mixed Integer Continuous Optimizations 213

5.5 miqp.m: A Mixed Integer Quadratic Programs Solver for Matlab 215

Contents xv

6 Mixed Logic Dynamical and Piecewise Affine Systems 217

6.1 Introduction . 217

6.2 Stability of Discrete-Time Piecewise Affine Systems 221

6.3 Linear Matrix Inequalities Algorithms for Exponential Stability Analysis . 225

6.3.1 Q-stability . 225

6.3.2 PWQ-stability . 229

6.3.3 Stability with Parameterized Lyapunov Functions 236

6.3.4 Comparison . 236

6.3.5 Relaxation of Finite-Dimensional LMI Tests for Exponential Stability 239

6.4 Conservativeness of the Various Stability Analysis Algorithms 243

6.5 Performance Analysis Techniques . 245

6.5.1 l2-gain of PWA Systems . 246

6.5.2 l2-gain Analysis for PWA Systems 247

6.6 Summary . 249

7 Conclusions and Outlook 251

A Boolean Functions and Clausal Inequalities 257

B Description of the Three Tank System in HYSDEL 261

C Linear Matrix Inequalities 265

C.1 Definition . 265

C.2 Why Linear Matrix Inequalities? . 266

C.3 Schur Complements . 267

C.4 Software Tools . 268

D List of Abbreviations 269

E Curriculum Vitae of Domenico Mignone 271

xvi Contents

Bibliography 272

Index 293

List of Tables

2.1 Conversion of basic logic relations into integer inequalities 23

2.2 Conversion of basic mixed logic continuous relations into mixed integer in-

equalities . 25

2.3 Implications of (2.5) and (2.6) . 26

2.4 Truth tables for some Boolean formulas . 36

2.5 Solution of (2.34) for the example (2.40) 50

3.1 Variables of the three tank system . 71

3.2 Model parameters of the benchmark three tank system 71

3.3 Faults of the three tank system . 78

3.4 Truth table and inequalities for the faults of valve V1 81

3.5 Variables of the three tank system . 83

3.6 Coding of the logical inputs of the stepper motor 91

3.7 Coding of the logical states of the stepper motor 91

xvii

xviii List of Tables

3.8 Interpretations of the variables in model of the flaps 96

3.9 Dimension of MLD models of the outflow elements 103

3.10 Variables in the model of a simplified outflow unit 104

3.11 Dimensions of the MLD model for one single outflow element 106

3.12 Priorities for the use of outflow units . 106

4.1 Parameters of the control experiment in Figure 4.1 117

4.2 Data of the MIQPs for the experiment in Figure 4.1 122

4.3 Heuristic algorithm to control the three tank system 125

4.4 Fault sequence in the simulation of Figures 4.11, 4.12 143

4.5 Parameters in the simulation of Figures 4.11, 4.12 145

4.6 Weights for fault detection experiments in Figures 4.14-4.16 147

4.7 Parameters of the fault detection experiments in this section 147

4.8 Steady states in presence of φ1 . 172

4.9 Look up table suggested by polytopic steady state analysis 172

4.10 Summary of the reconfiguration algorithms 179

4.11 Example: Priorities assigned to the inputs of the three tank system 183

5.1 Classification of subproblems according to guaranteed switches 198

5.2 Number of nodes with less than kmax switches in a tree of length n 206

List of Tables xix

5.3 Number of QPs during the simulation of Figure 5.12 210

5.4 Number of QPs during the simulation of Figure 5.14 213

A.1 Truth table of a Boolean function . 258

B.1 HYSDEL description of the three tank system, part 1 261

B.2 HYSDEL description of the three tank system, part 2 262

B.3 HYSDEL description of the three tank system, part 3 263

D.1 List of abbreviations, part 1 . 269

D.2 List of abbreviations, part 2 . 270

xx List of Tables

List of Figures

1.1 Hybrid systems . 4

1.2 A hybrid system structure . 5

1.3 Hybrid automaton . 9

2.1 Convex hull of the rows of the truth table of X3 = X1 ∧X2. 39

2.2 PCNF and PCH of the rows of the truth table of (2.19) and 41

2.3 Feasible set defined by (2.26) . 43

2.4 Feasible points represented by (2.40) . 49

2.5 Feasible set defined by (2.26) in a three dimensional space 52

2.6 Set of valid points of (2.55) in the (δ, y) plane 55

2.7 Set of valid points of (2.55) in the (δ, y) plane using the ε approach 56

2.8 Set of valid points of (2.55) in the (δ, y) plane without well posedness . . . 56

3.1 COSY three tank benchmark system . 70

3.2 Approximation of sign(x)
√
|x| with straight lines 73

xxi

xxii List of Figures

3.3 Fault of manipulated valve V1 . 79

3.4 Karnaugh map . 82

3.5 Three tank system: Laboratory set-up . 84

3.6 Nominal behaviour of the three tank system: Simulation 85

3.7 Nominal behaviour of the three tank system: Measurement 85

3.8 Manipulated variables in the nominal behaviour of the three tank system . 86

3.9 Configuration of the river power plant . 88

3.10 Model of the flap: Parameters characterizing the outflow of a flap 90

3.11 Model of the flap: Automaton of the stepper motor 90

3.12 Approximation of the outflow profile. 94

3.13 Simulation of the flap opening . 97

3.14 Simulation of the flap: Outflow profile. 98

3.15 Automaton of the turbine. 99

3.16 Variables of the turbine . 100

3.17 Turbine location . 100

3.18 Regions Xj on the ∆y, α-plane, for which the outflow is linearized 102

3.19 Opening of the outflow elements on simplified power plant 108

3.20 Total outflow with the openings shown in Figure 3.19 108

List of Figures xxiii

4.1 Control experiment on the three tank system: States 118

4.2 Control experiment on the three tank system: Pumps 118

4.3 Control experiment on the three tank system: Valves 119

4.4 Trajectory tracking of the simplified power plant 120

4.5 Openings of outflow elements for controlled simplified power plant 121

4.6 Heuristics 1 for filling the tanks . 126

4.7 Modified heuristics for filling the tanks . 127

4.8 Open loop optimal control for filling the tanks 129

4.9 MPC for filling the tanks . 130

4.10 Moving horizon estimation . 135

4.11 State trajectories during fault detection simulation 144

4.12 Fault estimates during fault detection simulation 144

4.13 Fault estimates during fault detection simulation with limited computational

time . 146

4.14 Detection of fault φ1 on the laboratory model 148

4.15 Detection of fault φ2 on the laboratory model 148

4.16 Detection of fault φ3 on the laboratory model 149

4.17 Magnified view of a state estimate plot in moving horizon estimation . . . 149

4.18 Reconfiguration scheme . 155

xxiv List of Figures

4.19 Outputs Yi of steady states . 163

4.20 Collapsing of steady states . 165

4.21 Faulty system behaviour for fault φ2 . 169

4.22 Reconfiguration with complete model in MPC after fault occurrence 170

4.23 Reconfiguration with one step compensation after fault occurrence 171

4.24 Reconfiguration with polytopic steady state analysis of Table 4.9: Fault φ1 173

4.25 Reconfiguration with polytopic steady state analysis of Table 4.9: Fault φ2 174

4.26 Reconfiguration with polytopic steady state analysis of Table 4.9: Fault φ3 174

4.27 Reconfiguration with physical motivation: Fault φ1 175

4.28 Reconfiguration with one step compensation for fault φ1: States 176

4.29 Reconfiguration with one step compensation for fault φ1: Inputs 176

4.30 Reconfiguration with one step compensation for fault φ2 177

4.31 Reconfiguration with one step compensation for fault φ3 178

4.32 Reconfiguration with one step compensation for fault φ3 and additional

opening of tank 2 . 178

5.1 The binary tree for a MIQP with 3 integer variables 191

5.2 Separation of the root on the second variable 191

5.3 Order how problems are solved in the depth first and in the breadth first

tree exploring strategy . 195

List of Figures xxv

5.4 Motivation for the outside first tree exploring strategy 197

5.5 Order how problems are solved in the outside first strategy 199

5.6 Number of switches for each subproblem in the outside first tree 203

5.7 Tree of depth 1 with a root of 0 switches 203

5.8 Number of switches per node marked in a binary tree 204

5.9 Branching on the first free variable generates subproblems of either k, or

k + 1 switches . 207

5.10 Branching according to an arbitrary criterion generates subproblems of ei-

ther k, k + 1 or k + 2 switches . 207

5.11 Vector δguess in the modified outside first tree exploring strategy 209

5.12 Number of relaxed QPs to be solved controlling the three tank system . . . 210

5.13 Control of the three tank system limiting the number of relaxed QPs . . . 211

5.14 Number of QPs during a fault detection simulation 212

6.1 Open and closed loop behaviour of system (6.76). 243

6.2 Open loop Lyapunov function for system (6.76). 244

6.3 Conservativeness of the different stability analysis approaches. 245

xxvi List of Figures

Chapter 1

Introduction

1.1 Motivation for Hybrid Systems

Models in Engineering

One of the main goals of engineering is the application of scientific laws and natural re-

sources for the benefit of mankind. To achieve this goal, the different disciplines of engi-

neering are concerned with the development of processes and structures, the combination

of available components, and the forecast of the system behaviour under certain influences.

A common notion in virtually all engineering fields is the concept of a model. A model

is an abstract, simplified representation of the real world, which has a sufficient degree of

complexity to allow the description of the behaviour of interest. At the same time a model

should exclude all features that are not relevant for the current investigations and might

form an obstacle to an efficient solution of the specified tasks.

Each branch of science and engineering has developed its own formalisms for models that

allow to tackle the problems of interest in the corresponding fields. In systems and control

theory we are concerned with the manipulation of system variables to achieve goals like

1

2 1 Introduction

stabilization, disturbance rejection or robustness. The key idea is the usage of a feedback

structure, where the evolution of some monitored variables determines the current or fu-

ture actions on the system. The concept of a model of a system is therefore traditionally

associated with differential or difference equations describing those evolutions. Typically a

model is either derived by application of physical laws governing the dynamics of the sys-

tem, or by estimation from experimental data sequences collected for modelling purposes.

Therefore, most of the control theory and tools have been developed for such systems, in

particular for systems, whose evolution is described by smooth linear or nonlinear state

transition functions, either in continuous time

ẋ(t) = f(x(t), u(t), t) (1.1)

x(t) ∈ Rn u(t) ∈ Rm t ∈ R≥t0 f : Rn+m+1 → R
n

or in discrete time

x(k + 1) = g(x(k), u(k), k) (1.2)

x(k) ∈ Rn u(k) ∈ Rm k ∈ N≥k0 g : Rn+m+1 → R
n

Most practical systems can be studied with tools devised for continuous systems. However,

in many applications the system to be analyzed, supervised or controlled comprises both

parts described by discrete valued variables and parts described by continuous valued

variables. The discrete valued parts of a system include all those components that can

take on only a finite number of states. Their range is therefore not a continuum as for the

states x and the inputs u in (1.1) and (1.2). Practical examples of such components include

for instance on/off switches or valves, gears or speed selectors, evolutions dependent on

if-then-else rules, and many more.

Several activities in computer science and digital circuit design dealt with modelling for-

malisms, where the system variables take on values in a finite set. Microprocessor based

circuits and computer codes for control or supervision of technical systems have a quantized

state space. Techniques devised for the analysis of computer codes in embedded systems

1.1 Motivation for Hybrid Systems 3

lead to formalisms for discrete event systems. The most common discrete counterparts to

(1.1) and (1.2) are finite state machines or Petri-Nets.

While control engineers often neglected a systematic treatment of the discrete valued com-

ponents, focusing on the continuous valued world, computer scientists did the opposite by

working with models that were often inadequately describing the continuous valued parts.

Indeed, an ad-hoc treatment of one or the other part might give satisfactory results in

some cases, but a priori there is no good reason to do so, besides a hitherto lack of good

modelling frameworks combining both paradigms. In the past, control of these systems was

based on heuristic rules inferred from practical plant operation. Analysis and synthesis of

these systems relied on common sense and practical knowledge of the plant. An extensive

simulation phase was performed to make plausible the correctness of the algorithms.

The importance of systematically combining the continuous valued and the discrete valued

components of a system has been recently recognized. Levis et al. (1987) point out the lack

of good dynamically oriented models that take into account both types of variables and

allow the application of control and analysis techniques. A case of a dramatic failure of

a system partly due to the insufficient consideration of these interactions is mentioned in

(van der Schaft and Schumacher, 1999): the failure of the European space mission Ariane-

5 was attributed to a software error in the inertial reference system. The code had been

ported from the Ariane-4 predecessor environment to Ariane-5, however the interactions

of the computer code with the continuous dynamics of the new launcher were insufficiently

considered (Lions, 1996).

Hybrid Systems

Recently, several research activities started dealing with hybrid systems, i.e. the class of

systems that explicitly takes into account continuous valued and discrete valued variables

as well as their interaction in one common framework, see Figure 1.1. We will intention-

4 1 Introduction

 Computer Science Systems and Control
Theory

Petri Nets
Finite State Machines

Differential Equations
Difference Equations

⋅x(t) = f(x(t),u(t),t)

x(k+1) = g(x(k),u(k),k)

Hybrid Systems
Theory

Figure 1.1: Hybrid systems

ally avoid to give a more precise definition of a hybrid system, because in view of the

rich variety of system classes that have been proposed, a more formal definition would

be too restrictive. The theory of hybrid systems aims at joining the contributions from

continuous system theory with discrete event systems theory. The field of hybrid systems

offers theoretical challenges to be tackled, and it is expected to have a significant impact on

practical applications. The rise of interest in this class of systems can be tracked e.g. in the

increasing number of sessions dedicated to hybrid systems at periodic international control

conferences, like the American Control Conference (ACC) or the Conference on Decision

and Control (CDC). Moreover, several meetings and workshops strictly dedicated to hybrid

systems have taken place recently, some of them have already taken on a fixed repetition

period, like the international workshop on “Hybrid Systems: Computation and Control

(HSCC)”, see (Henzinger and Sastry, 1998; Vaandrager and van Schuppen, 1999; Lynch

and Krogh, 2000; Di Benedetto and Sangiovanni-Vincentelli, 2001), or the biennial con-

ference “Automation des Processus Mixed (ADPM)” (Engell et al., 2000). Several inter-

national control journals have published special issues on hybrid systems, like Automatica

1.1 Motivation for Hybrid Systems 5

(Morse et al., 1999), System and Control Letters (Evans and Savkin, 1999), the IEEE

Transactions on Automatic Control (Antsaklis and Nerode, 1998). Other special issues of

control journals have appeared in (Krebs and Schnieder, 2000; Krebs and Schnieder, 2001).

A research program founded by the European Science Foundation has dealt with verifi-

cation aspects of hybrid systems and has involved several research groups from European

Universities (VHS). Some of the first monographs in this field include: (van der Schaft and

Schumacher, 1999) and (Matveev and Savkin, 2000).

Plant

Digital
Automaton

D/A
Converter

A/D
Converter

Symbol o[kT]

Manipulated
variable u(t)

Measurement y(t)

Symbol i[kT]

Figure 1.2: A hybrid system structure

Hybrid systems manifest themselves in a large variety of application and forms. One often

encountered structure consists of hierarchical systems comprising dynamical components

at the lower level, governed by upper level logical or discrete components, as represented

schematically in Figure 1.2. However, in some applications such a precise distinction

between different hierarchic levels is not possible, especially when dynamical and logical

facts are dramatically interdependent. In fact, hybrid behaviour of a system can arise not

only from the interaction with external devices, but also due to internal causes, like failures

or operating mode changes (Labinaz et al., 1997). For these systems the first challenge is

to decide upon a suitable modelling framework. Two basic requirements for a model of a

hybrid system are:

6 1 Introduction

1. The model must be descriptive enough to capture with sufficient precision the be-

haviour of the system. In particular the interdependence between the parts described

by logic and the parts described by continuous dynamics must be reflected in the

modelling framework.

2. The model must allow to formulate problems arising in the system design and its

operation, like e.g. controller synthesis, state estimation, or fault detection. These

problems must be solvable with reasonable effort, typically using numerical tools.

Some of the modelling methods proposed in the literature are reviewed in Section 1.2. The

rapid progress of computer and information technology represents a further driving force

for dealing with hybrid systems. In fact, only recently the hardware tools became available

that allowed tackling complex computational problems, as they arise dealing with hybrid

systems. Note however that several questions are NP-hard (Blondel and Tsitsiklis, 1999),

therefore the ultimate bottleneck for a comprehensive treatment in arbitrary dimensions

will most likely be the available computing power. In spite of this, there exist several appli-

cations, where the recent state-of-the-art hardware and software tools, support a solution

in reasonable time. Moreover, we recall that the computational time grows exponentially

with the problem dimension in the worst case. Practical problems, however, usually have

a lower complexity than predicted by the worst case.

An interesting thought can be found in the editorial to (Antsaklis and Nerode, 1998). We

are now speaking about hybrid systems, stressing the heterogeneous nature of the system

components. However, in the future when the hybrid systems theory will be mature, we

will have a motivation to consider the system as a whole entity. As soon as the tools will

become powerful enough to handle all questions of interest, there will be no need anymore

to point out that a system is “hybrid”, it will just be a system!

1.2 Modelling Approaches 7

1.2 Modelling Approaches

1.2.1 Model Classes for Hybrid Systems

Hybrid systems have attracted the interest of control and computer science communities

from different perspectives. Many modelling approaches have been proposed that put

more emphasis either on the continuous valued or on the discrete valued components. The

analysis and synthesis methodologies for these models strongly depend on the modelling

framework adopted. Among the different approaches (Labinaz et al., 1997; Grossmann

et al., 1993) we mention:

Hybrid Automata: A hybrid automaton is a finite state machine, where a continuous

dynamics is associated to each discrete state. More precisely (see e.g. (van der Schaft

and Schumacher, 1999) and references therein) a hybrid automaton consists of seven

components:

• A set L of discrete states or locations

• A set X of continuous states

• A set E of edges or transitions, where every edge is a 5-tuple:

(l, a, Guardll′, Jumpll′, l
′)

The transition from the discrete state l ∈ L to the discrete state l′ ∈ L is enabled

if x ∈ Guardll′ ⊂ X. During the transition the state x ∈ X jumps to x′ ∈ X

according to the relation given in Jumpll′ ⊂ X ×X. a ∈ A labels the edge.

• A set A of symbols labelling the edges

• A set W of the continuous external variables

• A mapping Inv from L to the subsets of X. Whenever the system is at location

l, the continuous state has to satisfy x ∈ Inv(l). All sets Inv(l) are called

location invariants.

8 1 Introduction

• A mapping Act assigning to each discrete state l a differential-algebraic equation

system Fl. The solution to these DAE are called the activities of the system.

A switch is a change of the discrete location of a hybrid automaton. A jump is a

resetting of the continuous state of a hybrid automaton when a switch takes place.

The time instant, when the switch takes place is called event time. The switch

and the jump are two phenomena associated with each event. The graph of a hybrid

automaton is depicted in Figure 1.3 (source: (van der Schaft and Schumacher, 1999)).

Petri Nets: A Petri Net is a model of a discrete event system, where transitions can

occur asynchronously, i.e. out of a fixed time schedule. Petri Nets allow to model be-

haviours comprising concurrency, synchronization and resource sharing. This frame-

work can be fluidified or continuized, meaning that it can be modified to include

continuous dynamics. An overview of their characteristics and possible extensions is

given by David and Alla (1994).

Generalized Hybrid Dynamical Systems: Branicky (1995) collects the most impor-

tant hybrid phenomena encountered in practice and presents a review of several

models for hybrid systems, introduced in the literature. Branicky et al. (1998) show,

how a modelling framework can be defined that encompasses a number of model

classes in a unified set-up.

Linear Complementarity Systems: This framework was originally used to model me-

chanical systems with inequality constraints but it can be extended to a general class

of hybrid systems. The question about existence and uniqueness of solutions can be

formulated within this framework. We refer to (van der Schaft and Schumacher, 1998)

for more details.

Piecewise Affine Systems: The evolution of a piecewise affine system is governed by a

different affine model according to the present value of the state or the input. These

1.2 Modelling Approaches 9

F (x,x,w)=0

x(t)∈Inv(l4)

l4

l4

˙

F (x,x,w)=0

x(t)∈Inv(l3)

l3

l3

˙

F (x,x,w)=0

x(t)∈Inv(l2)

l2

l2

˙

F (x,x,w)=0

x(t)∈Inv(l1)

l1

l1

˙

Guard

Jump

a

Guard

Jump

b

d

Jump
x’ := 0

Guard
x(t) ≥ ∆

Guard

Jump
c

Guard

Jump

a

Guard

Jump

c

Guard
Jump

b

Figure 1.3: Hybrid automaton: The locations are labelled by `i (i = 1 . . . 4), the edges are

labelled by the letters a, b, c, d, the jumps and guards are explicitly given only for the edge

(`1, d, Guard`1`2, Jump`1`2 , `2), in each location the invariants and activities are specified.

10 1 Introduction

systems are introduced in Section 2.6 and are analyzed in Chapter 6. We refer to

(Sontag, 1981) for theoretical results about state and output feedback, observers, and

inverses for piecewise affine systems.

Mixed Logic Dynamical Systems: This is the modelling framework, this thesis is mainly

dedicated to. We defer to Section 1.2.4 for an introduction to the framework, Chap-

ters 2 and 3 for details about modelling, and Chapter 4 for algorithms about analysis

and synthesis for these systems1.

Often the proposed approaches are adaptations of common modelling tools in the respective

field, for instance a hybrid automaton can be seen as a finite state machine, for which

continuous valued components have been added to.

These modelling frameworks differ from each other both for their capability to capture dif-

ferent system behaviours and for their suitability to solve analysis and synthesis problems.

While a particular system is more accurately modelled with one method, the solution to

some practical problems might be easier to find, if a model in another framework is avail-

able. For instance, there exist stability criteria for piecewise affine systems (Johansson

and Rantzer, 1998), while conditions on existence and uniqueness of trajectories can be

established for linear complementarity systems (van der Schaft and Schumacher, 1998).

The list of modelling approaches above should not be understood as a disjoint classification

of models. It can rather be shown that under certain circumstances the system classes are

equivalent, in the sense that they represent the same behaviour within different frameworks

(Bemporad and Morari, 1999a; Bemporad, Ferrari-Trecate and Morari, 2000; Heemels

et al., 2001). In principle this allows to translate analysis and synthesis techniques for

one class to another.

1In some references, the term “Mixed Logical Dynamical Systems” is used. Of course, both names refer

to the same class of systems.

1.2 Modelling Approaches 11

1.2.2 Examples of Hybrid Systems

There is a wide range of systems that can be modelled in a hybrid systems framework.

Some classes are listed next:

Multiple model systems: These are systems whose overall evolution is governed by dif-

ferent submodels, either by partitioning the state space into cells (e.g. piecewise

linear systems) or by changing system parameters according to a given signal (e.g.

switched systems or systems with operating mode changes)

Systems with switchings components: Systems in this category include switching el-

ements like relays, dead-zones or hysteresis. A practical example is the heating and

cooling system in houses. A thermostat provides the current information as one of

the symbols { cold, normal, hot }. The furnace, the air conditioner or the blower

take on these symbols as inputs and form, along with the heat flow characteristics

of the rooms, a continuous valued system. Their combination can be considered as a

hybrid system.

Adaptive systems: The hybrid nature of these systems derives from switching rules,

provided e.g. by finite state machines governing the adaptation law.

Systems with modelled failures: In case of sudden or abrupt faults2, the occurrence of

a failure in a system can be modelled as a switching signal. The fault-prone system

can then be considered as a hybrid system.

Systems involving synchronization signals: Such systems arise e.g. in communica-

tion networks.

2This is the opposite case of slowly occurring or incipient faults.

12 1 Introduction

1.2.3 Practical Applications

Driven by the recent developments of modelling, analysis and synthesis techniques, the

number of applications for practical hybrid systems grows steadily. In this work we focus

on two practical systems: a three tank system and a hydroelectric power plant that are

described in detail in Chapter 3. Several other examples were considered in the literature.

Here we list just a few:

• Air Traffic Management Systems: The problem of modelling and controlling air traffic

collision avoidance maneuvers can be considered with techniques for hybrid systems,

as studied e.g. in (Tomlin, 1998).

• Automated Highway Systems: The functionality of these systems ranges from the

provision of driver advisory information to the complete control of the lateral and

longitudinal motion. The goal of managing compositions of vehicles driving at short

distance from each other can only be reached, if the safety requirements are fulfilled,

especially for maneuvers like emergency decelerations (Lygeros and Lynch, 1998).

• Power Generation Units: Spedicato (2001) and Letizia (2001) consider a model of

a combined cycle power plant with one steam and one gas turbine. The optimal

operation of these units over a daily or weekly horizon, taking into account startup

times, wear and economic considerations is a problem that can be considered in its

complete detail within a hybrid systems framework.

1.2.4 Mixed Logic Dynamical Systems

The seminal paper by Bemporad and Morari (1999a) first introduced the modelling frame-

work of Mixed Logic Dynamical (MLD) systems. It laid the foundations for a growing

research area at the Automatic Control Laboratory of ETH Zürich and several other aca-

demic institutions. While in the first years of this research the focus was on theoretical

1.2 Modelling Approaches 13

aspects, now the efforts are dedicated both to theory and applications with industrial

partners, corroborating the relevance of the methods.

The evolution of an MLD model is governed by linear dynamic equations subject to linear

mixed integer inequalities, i.e. inequalities involving both continuous and binary variables.

Binary variables represent the discrete-valued components and they are introduced accord-

ing to logical inference techniques used in operations research. The key idea is to transform

propositional logic statements into linear inequalities involving integer and continuous vari-

ables.

MLD systems generalize a wide set of models, among which there are constrained linear

systems, finite state machines interacting with dynamic systems, some classes of discrete

event systems, piecewise linear systems, systems with discrete inputs and more. Several

aspects when dealing with MLD systems can be formulated as mixed integer optimization

problems. For feedback control purposes, a predictive control scheme can be set up, which

is able to stabilize MLD systems on desired reference trajectories while fulfilling operating

constraints, and possibly take into account qualitative knowledge in the form of heuristic

rules (Bemporad and Morari, 1999a). The dual problem of state estimation can be set up as

an optimization problem over a sequence of past measurements (Ferrari-Trecate, Mignone

and Morari, 2000; Bemporad, Mignone and Morari, 1999b). Using model equivalences

and mathematical optimization methods the online computations for model predictive

controllers can be moved offline by synthesizing piecewise linear state feedback control

laws (Bemporad, Borrelli and Morari, 2000b).

A key issue when working with hybrid systems is verification. The aim of verification is to

check, whether there exists an initial condition and an input sequence, such that a system

can be driven to a certain state space region. Typically such a region represents a set of

dangerous or unsuitable operating conditions. This is closely related to the reachability

question. Verification allows to systematically specify safety requirements and to reduce

system simulation in the test phase. For systems in MLD form this problem can be solved

14 1 Introduction

through algorithms based on linear and mixed integer linear programs (Bemporad and

Morari, 1999b; Bemporad, Torrisi and Morari, 2000).

The list of problems that can be recast as a mixed integer optimization with help of MLD

models is constantly growing, including recently observability and reachability analysis,

reconfiguration, scheduling, system identification or selective constraint prioritization in

model predictive control.

1.3 Organization and Contributions of this Thesis

This thesis presents theoretical results and experiments on the Mixed Logic Dynamical

(MLD) systems modelling framework for hybrid systems.

In Chapter 2 we summarize the general MLD form, as it was introduced in (Bemporad and

Morari, 1999a). We present systematic methods for the efficient and automatized deriva-

tion of MLD models, focusing on the translation of propositional logic into inequalities.

Classical analytical approaches for the modelling of system components are compared to

a new geometrical approach. The proposed methods reduce the total number of variables

in the model. Moreover, we discuss some typical properties of MLD systems, like well

posedness and steady states.

In Chapter 3 we present the MLD model of two practical systems: a three tank benchmark

system for fault detection and reconfigurable control and the outflow units of a hydroelectric

power plant. The goal of this chapter is to show in detail the modeling capabilities of MLD

systems.

The models of Chapter 3 are used as examples for the algorithms presented in Chapter 4.

In this chapter we outline the formulation of several problems in control and supervision

for MLD systems. In Section 4.1 we report experiments of the Model Predictive Control

1.3 Organization and Contributions of this Thesis 15

scheme of Bemporad and Morari (1999a) on the three tank laboratory model, a multi-

input multi-output hybrid plant. We consider the minimum time control problem and

show, how to integrate heuristic rules within the systematic methods for MLD systems.

We introduce a fault tolerant control scheme for hybrid systems, which is composed of two

stages: In Section 4.4 we present a new approach for fault detection and state estimation.

The method relies on the modelling framework of MLD systems. It casts the fault detection

problem as an estimation problem to be solved as a mixed integer continuous optimization.

In Section 4.5 we introduce strategies for the controller reconfiguration, to be used if the

plant exhibits hardware redundancies. If a fault occurs, we show that the decision problem

about the choice of alternative system components can be formulated within the MLD

framework. The fault detection and the reconfiguration algorithms are illustrated both

with simulations and experiments.

The techniques presented in Chapter 4 rely on mathematical optimization methods that

are reviewed in Chapter 5. These problems are in general difficult to solve as the problem

size increases, since they are NP-hard. However, the experience of this work shows that the

worst case of computational burden is seldom necessary to achieve a solution. We present a

heuristic rule, which speeds up the computations on average. It is a tree exploring strategy

in the branch and bound algorithm. It exploits the structure of the optimization problems,

as they arise for analysis and synthesis of Mixed Logic Dynamical systems. We give a

quantification of its complexity.

The model class of Mixed Logic Dynamical systems is equivalent to several other classes

of systems, in particular to the class of Piecewise Affine systems. In this thesis we present

sufficient conditions for stability of Piecewise Affine systems. These methods rely on lin-

ear matrix inequalities in order to find piecewise quadratic and more general Lyapunov

functions.

Some conclusions and an outlook are given in Chapter 7. The appendix collects further

documentations to various topics referenced within the text. In particular, for better

16 1 Introduction

understanding of this text, we draw the reader’s attention to the list of abbreviations in

Appendix D and the index at the end of this work.

This thesis is based on the post-diploma thesis (Mignone, 1999) and the following publi-

cations:

• (Bemporad, Mignone and Morari, 1999b) for a fault detection scheme of MLD sys-

tems.

• (Bemporad, Mignone and Morari, 1999a) presenting a computational strategy for

improving the speed in solving the optimization problems, as they arise for MLD

systems.

• (Mignone, Bemporad and Morari, 1999) showing a geometrical interpretation of the

variable space of an MLD system and suggesting an efficient modelling technique for

components of MLD systems.

• (Morari et al., 1999a), (Morari et al., 1999b), (Bemporad, Ferrari-Trecate, Mignone,

Morari and Torrisi, 1999) summarize Bemporad and Morari’s (1999a) publication

and show simulations of controllers and estimators of MLD systems.

• (Ferrari-Trecate, Mignone and Morari, 2000), (Ferrari-Trecate, Mignone and Morari,

2001) present a state estimation technique with convergence guarantees for piecewise

affine systems.

• (Kerrigan, Bemporad, Mignone, Morari and Maciejowski, 2000) considers systematic

constraint prioritization within MLD systems.

• (Ferrari-Trecate, Mignone, Castagnoli and Morari, 2000) shows the modelling phase

for the model of a hydroelectric power plant.

• (Mignone, Ferrari-Trecate and Morari, 2000a), (Ferrari-Trecate, Cuzzola, Mignone

and Morari, 2001) consider the stability analysis for piecewise affine systems.

1.3 Organization and Contributions of this Thesis 17

• (Tsuda, Mignone, Ferrari-Trecate and Morari, 2001) suggests several reconfiguration

strategies for MLD systems.

The following technical reports contain further material about selected topics considered

in this thesis:

• (Bemporad and Mignone, 2000) describes a solver for mixed integer quadratic pro-

grams for Matlab, which has been developed during this thesis.

• (Mignone, 2001) collects several tables supporting the translation of logic propositions

into inequalities.

• (Torrisi, Mignone and Morari, 2001) presents a comparison between heuristic and

systematic methods for controller design for hybrid systems that achieve the control

goal in minimum time. The techniques are tested on a laboratory model.

• (Torrisi, Bemporad and Mignone, 2000) considers some theoretical modelling aspects

and describes a software tool for automated model generation.

• (Mignone and Monachino, 2001) is a manual for the operation of a laboratory exper-

imental set-up used to validate the methods presented in this work.

• (Tsuda, Mignone, Ferrari-Trecate and Morari, 2000) contains details and simulations

about the application of reconfiguration strategies on the three tank system.

18 1 Introduction

Chapter 2

The Mixed Logic Dynamical Systems

Framework

In this chapter we introduce the modelling framework for hybrid systems used in this thesis.

2.1 Introduction

Several systems include logic components like e.g. relays, switches or finite state machines

interacting with continuous valued components. Logic components usually cannot be de-

scribed by continuous equations like (1.1) or (1.2). Their functionality is better represented

by propositional logic (Williams, 1993; Mendelson, 1964), than by difference and differen-

tial equations. In some cases the inclusion of logic rules in a model occurs without an

interaction to a control mechanism. This situation happens, for example, in nonlinear sys-

tems, for which piecewise linear approximations are used to model the system evolution.

There, the logic rules express an internal mode change. Even though this type of switching

may not be physically present in the plant, it is introduced in the model, and any analysis

or synthesis technique is therefore required to take it into account. In addition to a quanti-

19

20 2 The Mixed Logic Dynamical Systems Framework

tative system description, there might be some available qualitative information about the

system, for instance in terms of heuristic knowledge that is gathered from the expertise

of operators. In classical design methods it is often unclear, how this knowledge can be

systematically taken into consideration, beyond the suggestion of tuning guidelines derived

from it. For an accurate system description it is useful to have the possibility to include

this knowledge into the model. However, it should be suitably combined to the sharp

mathematical description stemming from first principle modelling or system identification.

Recently it was shown (Bemporad and Morari, 1999a; Tyler and Morari, 1999) that ex-

pressing logical propositions in the form of linear constraints on binary variables represents

the key to a powerful modelling framework for hybrid dynamical systems, the Mixed Logic

Dynamical (MLD) form. It allows to describe several classes of systems, like piecewise lin-

ear systems, systems with mixed discrete/continuous inputs and states, continuous valued

systems interacting with discrete valued components, and many others more. The frame-

work permits to include and prioritize constraints, and incorporate heuristic rules in the

description of the model. Therefore it offers the possibility to cover most of the modelling

capabilities required for hybrid systems. In this chapter, by presenting the main properties

of MLD systems, we will show that the apparently contradicting and broad requirements

previously stated, can be subsumed into the common framework of MLD systems.

In Section 2.2 we outline the connection between logic propositions and linear constraints,

taken from the theory of propositional calculus. Section 2.3 describes the general form of

MLD systems. Section 2.4 is dedicated to the efficient modeling of MLD system, focusing

on the inclusion of logic propositions in MLD models. Some considerations about well

posedness are given in Section 2.5. MLD systems are equivalent to other system classes. We

summarize these equivalences in Section 2.6. We conclude this chapter briefly describing

a tool for computer aided modeling and some properties of MLD systems in Sections 2.7

and 2.8.

2.2 Propositional Calculus and Linear Integer Programming 21

2.2 Propositional Calculus and Linear Integer Pro-

gramming

2.2.1 Logic Propositions

In operations research the field of logical inference has received some attention (Chandru

and Hooker, 1999). By following standard notation (Williams, 1977; Cavalier et al., 1990;

Williams, 1993), we adopt capital letters Xi to represent statements, e.g. “x ≥ 0” or

“Temperature is hot”. Xi is commonly referred to as a literal or Boolean variable , and

has a truth value of either “T” (true) or “F” (false). Boolean algebra enables statements

to be combined in compound statements by means of operators, often termed connectives.

These are:

∧ logical conjunction, logical “and”

∨ logical disjunction, logical “or”

.̄ logical negation, logical “not”

→ logical implication

↔ logical equivalence, if and only if

⊕ logical “exclusive or”

A comprehensive treatment of Boolean calculus can be found in digital circuit design texts,

e.g. (Christiansen, 1997; Hayes, 1993). For a rigorous exposition see e.g. (Mendelson, 1964).

Connectives satisfy several properties (Christiansen, 1997) that can be used to transform

compound statements into equivalent statements involving different connectives, and sim-

plify complex statements. It is known that all connectives can be defined in terms of a

subset of them, which is said to be a complete set of connectives.

22 2 The Mixed Logic Dynamical Systems Framework

Example 2.1:

The set of connectives {∨, .̄ } is a complete set of connectives. Other con-

nectives can be written in terms of these by applying logic equivalences, for

instance

X1 → X2 is the same as X̄1 ∨X2 (2.1a)

X1 → X2 is the same as X̄2 → X̄1 (2.1b)

X1 ↔ X2 is the same as (X1 → X2) ∧ (X2 → X1) (2.1c)

X1 ∧X2 is the same as X̄1 ∨ X̄2 (2.1d)

2

Correspondingly one can associate with a literal Xi a binary variable δi ∈ {0, 1}, which

has a value of either 1 if Xi =T, or 0 if Xi =F.

Once a set of logic propositions has been formulated for a system, it is possible to check

the truth of properties formulated in terms of the involved literals. To this purpose integer

programming has been advocated as an efficient inference engine to perform such an auto-

mated deduction (Cavalier et al., 1990). A propositional logic problem, where a statement

X1 must be proven to be true given a set of (compound) statements involving literals X2,

. . . , Xn, can in fact be solved by means of a linear integer program (Schrijver, 1986),

by suitably translating the original compound statements into linear inequalities involving

binary variables δi. These inequalities are termed integer linear inequalities. In fact, the

propositions and linear constraints reported in Table 2.1 can easily be seen to be equiva-

lent. Similar ideas originally came up in the early 1960s dealing with the synthesis of linear

switching circuits (Minnick, 1961; Stram, 1961). Threshold logic was introduced to synthe-

size arbitrary combinational circuits as an alternative to realizations with AND/OR/NOT

gates. Alternative methods and formulations for transforming propositional logic problems

into equivalent integer programs exist, and no method is uniformly better than the others.

Cavalier et al. (1990) conclude that the choice of an efficient modelling approach is depen-

2.2 Propositional Calculus and Linear Integer Programming 23

relation logic proposition mixed integer (in)equalities

AND (∧) [δ1 = 1] ∧ [δ2 = 1] δ1 = 1

X1 ∧X2 δ2 = 1

[δ3 = 1]↔ −δ1 + δ3 ≤ 0

X3 ↔ (X1 ∧X2) [δ1 = 1] ∧ [δ2 = 1] −δ2 + δ3 ≤ 0

δ1 + δ2 − δ3 ≤ 1

OR (∨) [δ1 = 1] ∨ [δ2 = 1] δ1 + δ2 ≥ 1

X1 ∨X2

[δ3 = 1]↔ δ1 − δ3 ≤ 0

X3 ↔ (X1 ∨X2) [δ1 = 1] ∨ [δ2 = 1] δ2 − δ3 ≤ 0

−δ1 − δ2 + δ3 ≤ 0

NOT (.̄) [δ1 = 1] δ1 = 0

X̄1

XOR (⊕) [δ1 = 1]⊕ [δ2 = 1] δ1 + δ2 = 1

X1 ⊕X2

[δ3 = 1]↔ −δ1 − δ2 + δ3 ≤ 0

X3 ↔ (X1 ⊕X2) [δ1 = 1]⊕ [δ2 = 1] −δ1 + δ2 − δ3 ≤ 0

δ1 − δ2 − δ3 ≤ 0

δ1 + δ2 + δ3 ≤ 2

IMPLY (→) [δ1 = 1]→ [δ2 = 1] δ1 − δ2 ≤ 0

X1 → X2

IFF (↔) [δ1 = 1]↔ [δ2 = 1] δ1 − δ2 = 0

X1 ↔ X2

Table 2.1: Conversion of basic logic relations into integer inequalities

24 2 The Mixed Logic Dynamical Systems Framework

dent on the form of the logical statements. It is clear that a preprocessing for reduction

of the propositional logic problem might produce large benefits for the numerical solution

of the resulting mixed integer program. A similar problem, i.e. the problem of finding

minimal forms, is well known in the digital network design realm, where the need arises to

minimize the number of gates and connections, and therefore the implementation cost. A

variety of methods exist to perform such a task. The reader is referred to (Hayes, 1993,

Chap. 5) for a detailed exposition.

2.2.2 Mixed Logic-Continuous Propositions

We borrow the logical inference technique to model logical parts of processes and heuristic

knowledge about plant operation as integer linear inequalities. As we are interested in

systems which have both discrete logic and continuous dynamics, we wish to establish a

link between the two worlds. In particular, we need to establish how to build statements

from operating events concerning continuous dynamics. The key idea is to use mixed

integer linear inequalities , i.e. linear inequalities involving both continuous variables x ∈

Rn and logical variables δ ∈ {0, 1}m. In (Raman and Grossmann, 1991; Raman and

Grossmann, 1992) the idea of introducing qualitative knowledge in process synthesis using

propositional logic has been presented. An early application to scheduling and resource

allocation is described in (Glover, 1975). In Table 2.2 a list of equivalences can be found

that allow to perform the translation into a set of inequalities to be used as constraints in

mathematical optimization problems. An extensive list of such transformations is given in

(Mignone, 2001). Note that relations involving the form [δ = 0] instead of [δ = 1] in Tables

2.1 and 2.2 can be obtained by substituting (1− δ) for δ in the corresponding inequalities.

Example 2.2:

As an illustration of Table 2.2 consider for instance the statement

X , [f(x) ≤ 0] (2.2)

2.2 Propositional Calculus and Linear Integer Programming 25

relation logic proposition mixed integer inequalities

IMPLY (→) [f(x) ≤ 0]→ [δ = 1] f(x) ≥ ε+ (m− ε)δ

[f(x) ≤ 0]→ X

X → [f(x) ≤ 0] [δ = 1]→ [f(x) ≤ 0] f(x) ≤M −Mδ

IFF (↔) [f(x) ≤ 0]↔ [δ = 1] f(x) ≤M −Mδ

[f(x) ≤ 0]↔ X f(x) ≥ ε+ (m− ε)δ

Product z = δ · f(x) z ≤M δ

IF X THEN z = f(x) −z ≤ −m δ

ELSE z = 0 z ≤ f(x)−m(1− δ)

−z ≤ −f(x) +M(1− δ)

Table 2.2: Conversion of basic mixed logic continuous relations into mixed integer inequal-

ities. M,m in R are upper and lower bounds to the linear function f(x) for x ∈ X , ε > 0

is a small tolerance, see Section 2.5

where f : Rn 7→ R is linear, assume that x ∈ X , where X is a given bounded

set, and define

M , max
x∈X

f(x) (2.3)

m , min
x∈X

f(x) (2.4)

Theoretically, an over[under]-estimate of M [m] suffices for our purpose. How-

ever, more realistic estimates provide computational benefits (Williams, 1993,

p. 171). By associating the binary variable δ with the literal X, one can

transform (2.2) into the following mixed integer inequalities

f(x) ≤ M −Mδ (2.5)

f(x) ≥ ε+ (m− ε)δ (2.6)

where ε is a small tolerance, typically the machine precision (see Chapter 2.5),

beyond which the constraint is regarded as violated. To check the equivalence

26 2 The Mixed Logic Dynamical Systems Framework

of the logical statement to the given set of inequalities, one can verify that (2.5)

and (2.6) reduce to the four constraints in column “resulting implication” of

Table 2.3, provided that the corresponding additional assumptions in column

“fixed quantity” are made.

fixed quantity inequality (2.5) inequality (2.6) resulting implication

δ = 0 f(x) ≤M (inactive) f(x) ≥ ε f(x) ≥ ε

δ = 1 f(x) ≤ 0 f(x) ≥ m (inactive) f(x) ≤ 0

f(x) ≤ 0 δ ∈ {0, 1} (inactive) δ = 1 δ = 1

f(x) ≥ ε δ = 0 δ ∈ {0, 1} (inactive) δ = 0

Table 2.3: Implications of (2.5) and (2.6)

Note that according to the “fixed quantity” in Table 2.3, one inequality of (2.5)

and (2.6) becomes inactive in the sense that it is always fulfilled1, assuming

(2.3), (2.4) and δ ∈ {0, 1}. 2

From a semantic point of view, note that the range of δ in the right column of Table 2.2

is understood as a subset of the real numbers. Even though we are often speaking about δ

being a logic or a discrete variable, when it comes down to the translation to inequalities,

the inherent assumption is

δ ∈ {0, 1} ⊂ R (2.7)

In this text we will sometimes abuse of the notation concerning the Boolean variable X

and its associated binary variable δ, by using the correspondences as follows:

false ⇔ F ⇔ 0

true ⇔ T ⇔ 1

1a tautology

2.3 Structure of Mixed Logic Dynamical Systems 27

Sometimes this translation requires the introduction of auxiliary variables (Williams, 1993),

for instance according to the last rule in Table 2.2 a product between binary and continuous

quantities requires the introduction of a real variable z. In Section 2.4 we will return to

these concepts.

2.3 Structure of Mixed Logic Dynamical Systems

Mixed Logic Dynamical models for hybrid systems rely on the combination of three ideas

and observations that have been presented isolatedly in the literature. The ideas are:

1. Representation of logical propositions as linear inequalities involving binary variables.

2. Representation of propositions coupling logic relations to continuous variables as

linear inequalities involving continuous and binary variables.

3. Inclusion of binary variables and linear constraints in a description for continuous

valued systems.

The first two points have been considered in Section 2.2. The last step is merging all

inequalities that are built using the methods in Section 2.2 into a set of constraints. To allow

the formulation of computationally tractable problems for system analysis and synthesis,

a linear discrete time model is chosen for the state evolution. The logic components

influence the continuous dynamics, therefore it is necessary to introduce binary variables in

a continuous valued system description. One of the first works using this idea, is reported in

(Witsenhausen, 1966), where a linear model is suggested, allowing to have both continuous

and discrete valued states and inputs.

28 2 The Mixed Logic Dynamical Systems Framework

The general form of an MLD system is given by the following expressions:

x(k + 1) = Ax(k) +B1u(k) +B2δ(k) +B3z(k) (2.8a)

y(k) = Cx(k) +D1u(k) +D2δ(k) +D3z(k) (2.8b)

E2δ(k) + E3z(k) ≤ E1u(k) + E4x(k) + E5 (2.8c)

Equation (2.8a) is the state update function, (2.8b) is the output function, and the set

of inequalities in (2.8c) collects constraints on the system, as well as translations from

logic proposition, as in Tables 2.1 and 2.2. The inequality (2.8c) has to be understood

componentwise. The meaning of the variables is the following:

• x are the continuous and binary states:

x =


xc

x`


 , xc ∈ Rnc , x` ∈ {0, 1}n`

• y are the continuous and binary outputs:

y =


yc

y`


 , yc ∈ Rpc , y` ∈ {0, 1}p`

• u are the continuous and binary inputs:

u =


uc

u`


 , uc ∈ Rmc , u` ∈ {0, 1}m`

• δ ∈ {0, 1}r` are the auxiliary binary variables

• z ∈ Rrc are the auxiliary continuous variables

Note that by removing (2.8c) and by setting δ and z to zero, Equations (2.8a) and (2.8b)

reduce to an unconstrained linear discrete time system in state space. The variables δ and

z are introduced when translating logic propositions into linear inequalities. All constraints

are summarized in the inequality (2.8c). The description (2.8) only appears to be linear

2.3 Structure of Mixed Logic Dynamical Systems 29

since the variables δ, x`, y` and u` are constrained to be binary. To illustrate the modelling

procedure in MLD form, we defer to Chapter 3, as well as e.g. to (Castagnoli, 2000;

Mignone, 1999). We point out that the variables δ, x`, u` and y` are implicitly assumed to

be binary, and this is not explicitly mentioned in each MLD model.

The system (2.8) is assumed to be completely well posed (Bemporad and Morari, 1999a).

This means that given a state x(k) and an input u(k) the inequalities (2.8c) have a unique

solution for δ(k) and z(k). In other words, at each time instant, the maps (x(k), u(k)) 7→

δ(k) and (x(k), u(k)) 7→ z(k) are single-valued. As a consequence, x(k + 1) is uniquely

defined, allowing to find a unique trajectory of the state x(.) given an initial state x(0) and

an input sequence u(0) . . . u(N). Well posedness is a condition for well defined simulation

of MLD systems:

Algorithm 2.1 Simulation of MLD systems

1. Set k = k0 and choose x(k).

2. Given x(k) and u(k), obtain δ(k) and z(k) from a feasibility test over (2.8c).

3. Determine x(k + 1) from (2.8a).

4. Set k = k + 1 and go to 2.

It is possible to determine δ(k) and z(k) in point 2 with a mixed integer feasibility test

(MIFT). This problem, along with related ones are considered in Chapter 5. The assump-

tion on well posedness is usually not restrictive in practice. Even though it is easy to define

MLD systems that are not well posed, these cases are often only of academic interest, and

they arise if the system is not modelled precisely, see e.g. Section 2.5. For simulation of

large systems, more efficient algorithms than Algorithm 2.1 can be devised (Torrisi, 2002).

The matrices A,B1, . . . , B3, C,D1, . . . , D3, E1, . . . , E5 are real and have appropriate di-

mensions. While the matrices A,B1, B3 in (2.8a) are set as general matrices, some entries

30 2 The Mixed Logic Dynamical Systems Framework

have to be excluded, if binary states are present in x. More precisely, the logic com-

ponents x` of the state cannot depend directly on continuous variables xc, uc, z through

(2.8a). The corresponding entries in A,B1, B3 have to be zero for a valid MLD model

(Torrisi, 2002; Ferrari-Trecate, Cuzzola and Morari, 2002). For instance, the state update

matrix A has the form

A =


 Acc Acd

0n`×nc Add




2.4 Efficient Modelling of Mixed Logic Dynamical Sys-

tems

The translation of logic propositions or mixed logic continuous statements into inequalities

in Section 2.2 is a step that critically determines the size of the resulting MLD model in

terms of the number of variables. As it will be clear in Chapter 5, we are envisioning

to find models that have a small number of binary variables. This allows to improve the

speed in solving the mathematical optimization problems, required for analysis, synthesis

and supervision of hybrid systems. In this section we propose methods to efficiently find

the translation of logic proposition into inequalities by decreasing the number of auxiliary

variables needed. The methods are applicable when the propositional logic statements are

more complex than in Table 2.1, involving arbitrary combinations of connectives.

2.4.1 Logic Propositions

General Remarks

Assume that Xi are Boolean variables. A Boolean formula F

F (X1, . . . , Xn) (2.9)

2.4 Efficient Modelling of Mixed Logic Dynamical Systems 31

is an arbitrary combination of literals Xi with the connectives listed on page 21, i.e. the

unary operator .̄ (NOT), the binary logic operators ∨,⊕,∧,←,→,↔ and brackets (.). A

Boolean formula F is a conjunctive normal form (CNF) or product of sums, if it is written

in the following form:

F =

n∧
i=1

ψi (2.10)

where

ψi =

m∨
j=1

Xij (2.11)

The Boolean formulas ψi are called terms of the product or maxterms, and Xij are the

terms of the sum. It is well known that any Boolean formula can be converted into CNF,

by using laws of distribution, negation, and De Morgan. A CNF is minimal, if it has the

minimum number of maxterms and each maxterm has the minimum number of terms of

the sum. This definition of minimality is motivated from the logic circuit design field,

where each logic operator of a CNF is implemented using a gate or having an additional

input in multi-input gates. Every Boolean formula can be rewritten as a minimal CNF

(Kohavi, 1978).

A Boolean formula f is called Boolean function if, after possibly renaming the literals, it

is used to define a literal Xn as a function of X1, . . . , Xn−1 as

Xn ↔ f(X1, X2, . . . , Xn−1) (2.12)

which can be equivalently written as Xn = f(X1, X2, . . . , Xn−1), where f is an arbi-

trary Boolean formula. More generally, we can define relations among Boolean variables

X1, . . . , Xn through a Boolean relation

F (X1, . . . , Xn) = T (2.13)

where F is a Boolean formula. Note that each Boolean function is also a Boolean relation,

but the opposite is not true. The satisfiability problem for a Boolean relation is the problem

32 2 The Mixed Logic Dynamical Systems Framework

to determine whether there exists an assignment of {F, T} to its literals such that the

corresponding Boolean formula evaluates to true. A satisfying truth assignment for a

Boolean formula is called a valid point2. The idea of solving this logic inference problem

with optimization methods relies on tools from the field of integer programming (Chandru

and Hooker, 1999; Nemhauser and Wolsey, 1988; Schrijver, 1986). Note that

• Each Boolean function has exactly 2n−1 valid points.

• A Boolean formula with exactly 2n−1 valid points need not be a Boolean function.

By associating binary variables δi ∈ {0, 1} with each Boolean variable Xi ∈ {F, T}, a

valid point for a Boolean formula can be equivalently described as an element of the

set {0, 1}n ⊂ [0, 1]n. Therefore the set of all valid points of a Boolean formula can be

represented as set of vertices of the hypercube [0, 1]n, i.e. as the vertices of a polytope in

[0, 1]n. We call PCH the polytope spanned by all the valid points of a Boolean formula F :

PCH(F) , {x ∈ [0, 1]n : x ∈ conv(all valid points of F)} (2.14)

Here, conv(Y) denotes the convex hull of the set of points Y .

A polytope has two standard representations: the V-representation that specifies the poly-

tope through its vertices and the H-representation that specifies the polytope as the inter-

section of half-spaces given by linear inequalities (Ziegler, 1995). A vertex, all components

of which are integers, is called an integral vertex.

The following methods can be seen as a generalization of the rules of Table 2.1. The goal

is to find equivalent linear inequalities for arbitrary Boolean relations (2.13). We pro-

pose three methods: the substitution method, the analytical method, and the geometrical

method. The latter method is the main contribution of this section.

2According to the nomenclature of Chandru and Hooker (1999) a valid point is also called a model for

a Boolean formula. However, we will not use this name to avoid confusions with system models.

2.4 Efficient Modelling of Mixed Logic Dynamical Systems 33

Substitution Method

Given a Boolean relation (2.13), this method consists of recognizing elementary terms

listed in Table 2.1 and substituting them with additional Boolean variables. The idea is

easily applicable since it is based on a recursive application of the basic rules of Table

2.1. However, the introduction of additional variables is a severe disadvantage, and it is

unnecessary, as we show with the next methods.

Analytical Method, or CNF method

The analytical method consists of first converting (2.12) or (2.13) into CNF, which can

be performed automatically by using one of several techniques available, see e.g. (Miller,

1965; Sasao, 1999). Let the CNF have the form

m∧
j=1


∨

i∈Pj

Xi ∨
∨

i∈Nj

Xi


 (2.15)

where Pj denotes the set of indices of the literals that appear in positive form in the j−th

maxterm, and Nj denotes the set of indices of the literals that appear in negated form in

the j−th maxterm. The CNF indicates that all maxterms must be true in order for the

Boolean formula to be true. By setting up a set of constraints in an optimization problem

we require as well that the feasible points satisfy all inequalities simultaneously. For each

maxterms we can therefore deduce one integer inequality. Note further that a maxterm is

true, if and only if at least one of its terms of the sum is true. With these observations,

the set of integer linear inequalities corresponding to (2.15) is




1 ≤
∑

i∈P1
δi +

∑
i∈N1

(1− δi)
...

1 ≤
∑

i∈Pm
δi +

∑
i∈Nm

(1− δi)

(2.16)

34 2 The Mixed Logic Dynamical Systems Framework

Inequalities (2.16) can be included as constraints in an MLD model in (2.8c). With these

inequalities we can define the set PCNF (F) for any Boolean formula F as:

PCNF (F) , {x ∈ [0, 1]n : (2.16) is satisfied with x = [δ1, . . . , δn] ∈ [0, 1]n} (2.17)

PCNF (F) is the polytope in the unit hypercube of dimension n that includes all integer

points x ∈ {0, 1}n for which F (x) = T . It is the set of points defined by (2.16) relaxing

the integrality constraints on δi from δi ∈ {0, 1} to δi ∈ [0, 1].

No auxiliary variables need to be introduced with this technique. Another advantage is its

simplicity, once the CNF of the desired Boolean formula is known. One disadvantage is the

effort in computing symbolically the CNF from an arbitrary Boolean formula. This may

require techniques like Karnaugh maps, see e.g. (Kohavi, 1978), if the Boolean formula is

given implicitly by its valid points. Another drawback concerns the set PCNF (F). As it will

be outlined next, PCNF (F) may be a set, which is larger than actually required in order

to define the integer feasible points. Indeed, PCNF (F) may have non-integral vertices.

Geometrical Method, or Truth Table Method

The third method is based on a geometric interpretation. We show that this method over-

comes the drawback concerning PCNF (F) of the analytical method described previously.

It allows an automatic translation of truth tables representing Boolean formulas into linear

integer inequalities.

A truth table for a Boolean formula F (X1, . . . , Xn) is the complete list of valid points for

F (.), i.e. all vectors X = (X1, . . . , Xn) ∈ {F, T}n for which F (X) = T . For any Boolean

formula, the truth table can be set up e.g. by enumeration. The rows of the truth table

form the complete list of valid points, i.e. all those points in {0, 1}n that render F (X)

true, or satisfy Xn = f(X1, . . . , Xn−1).

When we model systems in MLD form we often encounter the following problems:

2.4 Efficient Modelling of Mixed Logic Dynamical Systems 35

• P1 Impose that the Boolean formula F (X1, . . . , Xn) is true, i.e. add the constraint

given by the Boolean relation F (X1, . . . , Xn) = T

• P2 Define the Boolean function Xn = f(X1, . . . , Xn−1)

Both f and F are assumed to be defined with the basic connectives on page 21. The

problem P1 specifies a constraint or a characteristic of the system.

Example 2.3:

An example for P1 is the statement that two binary inputs u1 and u2 are not

allowed to take on the value “1” at the same time, if a third input u3 is zero.

The corresponding Boolean formula F1 reads

F1(u1, u2, u3) = ū3 → (u1 ∧ u2)

2

While P1 has the character of a constraint, P2 defines an auxiliary quantity for further use

in the MLD model and has the character of an algebraic equation.

Example 2.4:

A typical case where P2 appears is the definition of a state transition in a

finite automaton. X1, . . . , Xn−1 code the present state and inputs and Xn

is the subsequent state. Then, the function f represents the state transition

function. 2

As it is immediate to transform Boolean relations into truth tables, without loss of gener-

ality we assume that F , f are defined via a truth table. Note that the truth table in P2

has always 2n−1 rows and n columns. On the other hand the truth table of P1 can have

any number of rows3 from 1 to 2n − 1.
3The truth table with no rows is not meaningful since it represents an infeasible system and the truth

table with 2n rows does not exclude any combinations of variables X1, . . . , Xn and is therefore tautologic.

36 2 The Mixed Logic Dynamical Systems Framework

Example 2.5:

To further illustrate the difference between P1 and P2, consider the example

of the Boolean formula X1 ∧X2 and the Boolean function X3 = X1 ∧X2. The

truth tables are given in Table 2.4.

X1 X2

T T
⇒

δ1 δ2

1 1

X1 X2 X3

T T T

T F F

F T F

F F F

⇒

δ1 δ2 δ3

1 1 1

1 0 0

0 1 0

0 0 0

Table 2.4: Truth tables for the Boolean formula X1 ∧X2 (left) and the Boolean function

X3 = X1 ∧X2

Note that in the first case there is only one valid point and the truth table

consists therefore only of one row. 2

Consider the unit hypercube H , [0, 1]n, and let H denote the set of its vertices. Let

conv(S) be the convex hull of a set S ⊆ H , and CH(S) the complementary set in H of S,

i.e.

CH(S)
⋃

S = H

CH(S)
⋂

S = ∅

Lemma 2.1 says that the subsets S of H can be “wrapped” inside a polytope which does

not contain any vector of the complementary set CH(S).

Lemma 2.1 Let S ⊆ H. Then conv(S)
⋂
CH(S) = ∅.

Proof. All vectors h ∈ H are extreme points of H. Therefore, they cannot

be written as nontrivial convex linear combinations of other vectors in H. In

2.4 Efficient Modelling of Mixed Logic Dynamical Systems 37

particular, the vectors hc ∈ CH(S) cannot be written as convex combinations

of vectors hs ∈ S. This proves that hc 6∈ conv(S), ∀hc ∈ CH(S). 2

Consider now the truth table T expressing the valid points associated with problems P1

or P2. Let m be the number of rows in T , and let T = {R1, . . . , Rm} the set of the rows

Ri of T , considered as vectors in Rn , i.e. the collection of all valid points. Each component

of a row Ri is either 0 or 1, and therefore Ri ∈ H , i.e. Ri is a vertex of the hypercube H.

Theorem 2.1 Let T be a truth table with rows T , associated to a Boolean formula F

on literals X1, . . . , Xn. Then F (X1, . . . , Xn) is true if and only if the associated vector

δ , [δ1, . . . , δn] ∈ {0, 1}n satisfies the inequalities

Aδ ≤ B

where A and B define the polytope

PCH , {δ ∈ [0, 1]n : Aδ ≤ B} = conv(T) (2.18)

Moreover, each integer translation P̄ = {δ ∈ [0, 1]n : Āδ ≤ B̄} of F is such that PCH ⊆ P̄ ,

i.e. PCH is minimal.

Proof. If δ ∈ {0, 1}n is a combination of binary variables associated to a valid

point of F , then δ is a row Ri of the truth table, i.e. δ ∈ T , and therefore

δ ∈ conv(T).

On the other hand, let δ ∈ conv(T). If δ were a false combination, i.e.

δ ∈ CH(T), Lemma 2.1 would be violated. Moreover, if P̄ is an integer rep-

resentation of F , then Ri ∈ P̄ , ∀i = 1, . . . , m. Since P̄ is convex, PCH =

conv({R1, . . . , Rm}) ⊆ P̄ . 2

The proposed approach does not introduce any additional Boolean variable. This feature,

and the minimality of the relaxed set, are particularly appealing when the model is used

38 2 The Mixed Logic Dynamical Systems Framework

in an optimization problem. While there is no need to do symbolical manipulations for

finding the conjunctive normal form, this method suffers from the heavy computations

required to find the convex hull of the valid points and the large storage requirements to

store the truth table. Some software tools for the computation of the convex hull of points

are listed in the next paragraph.

Convex Hull Computation

Several packages exist for transforming a polyhedron P from the form

P = {x : x =
m∑

i=1

λixi +

p∑
i=1

µiri}

where xi, ri are the extreme points and extreme directions of P respectively, and

0 ≤ λi ≤ 1,
m∑

i=1

λi = 1, µi ≥ 0

to the form

P = {x : Ax ≤ B}

For a detailed survey of these packages, the reader is referred to http://www.geom.umn.

edu/software/cglist/ch.html. A small selection is listed next:

• qhull by Brad Barber, David Dobkin and Hannu Huhdanpaa, The Geometry Center

(Barber et al., 1996)

• chD by Ioannis Emiris, U.C. Berkeley

• Hull by Ken Clarkson, Bell Labs

• Porta by Thomas Christof, Heidelburg University and Andreas Loebel, Konrad-Zuse-

Zentrum fur Informatik (ZIB).

• cdd by Komei Fukuda, ETH Zurich, Switzerland and University of Tsukuba, Japan

2.4 Efficient Modelling of Mixed Logic Dynamical Systems 39

δ
1

δ
2

δ
3

(0,0,0) (1,0,0)

(1,1,0)

(1,1,1)

Figure 2.1: Convex hull of the rows of the truth table of X3 = X1 ∧X2.

• lrs (rs, qrs) by David Avis, McGill University (ftp://mutt.cs.mcgill.ca/pub/C)

(Avis, 1997).

Example 2.6:

Consider the Boolean function X3 = X1 ∧ X2, whose truth table is given in

Table 2.4. The rows of the truth table are represented as points in R
3 in

Fig. 2.1. Their convex hull, computed by using the package lrs, coincides with

the linear inequalities mentioned in the second rule of Table 2.1. 2

Comparison of the methods

There are cases where the substitution method gives a smaller number of inequalities

than the other methods (Cavalier et al., 1990). However, the complexity of introducing

additional binary variables should be avoided. The other two methods do not require

the introduction of any additional variable. However, they require pre-processing, either

40 2 The Mixed Logic Dynamical Systems Framework

for building up the truth table or for deriving the conjunctive normal form. Especially,

building up the complete truth table and deriving the convex hull of its rows can be a

computationally expensive task, even though efficient software is available for this purpose.

Note, however, that it is a task that can be done offline. In some cases the truth table

might contain only a small number of rows, because some combinations of the independent

variables can be excluded a priori.

Using the truth table method or the transformation to CNF for finding the inequalities

representing a Boolean formula do not have to give the same results. From Theorem 2.1 it

holds that PCH ⊆ PCNF . In other words, all integral vertices of PCNF are valid points of

the corresponding Boolean formula, however PCNF can have nonintegral vertices. There

exist Boolean formulas, for which PCH 6= PCNF , even if PCNF is derived from a minimal

CNF.

Example 2.7:

Consider the Boolean formula described by:

(X1 ∨X2) ∧ (X1 ∨X3) ∧ (X2 ∨X3) (2.19)

Since (2.19) is in CNF, we can use (2.16) to get the corresponding inequalities

as

PCNF = {x ∈ [0, 1]3 :




1 1 0

1 0 1

0 1 1





x1

x2

x3


 ≥




1

1

1


} (2.20)

The truth table of (2.19) contains the rows [1, 1, 0], [1, 0, 1], [0, 1, 1], [1, 1, 1]. The

Boolean formula (2.19) is characterized by the fact that at least two Boolean

variables are true. It can therefore be shown that

PCH = {x ∈ [0, 1]3 : x1 + x2 + x3 ≥ 2} (2.21)

While in PCH all vertices are integral by construction, PCNF includes one vertex

at (0.5, 0.5, 0.5) that is not integral. This example illustrates that the inequal-

2.4 Efficient Modelling of Mixed Logic Dynamical Systems 41

[1,1,1]

[0,0,0]

[1,1,1]

[0,0,0]

Figure 2.2: Left: PCH of the rows of the truth table of (2.19), Right: PCNF of (2.19), the

light vertex is not integral

ities stemming from the CNF can describe a nonminimal representation of the

relaxation of a logic proposition, because of the presence of nonintegral vertices.

By direct enumeration, it can be shown that besides (2.19) there is only one4

Boolean formula involving three Boolean variables, for which PCH 6= PCNF ,

namely

(X1 ∨X2) ∧ (X1 ∨X3) ∧ (X2 ∨X3) ∧ (X̄1 ∨ X̄2 ∨ X̄3) (2.22)

For all other Boolean Formulas in {0, 1}3 it holds that PCH = PCNF . 2

Clausal Inequalities

A set of inequalities Ax ≥ b is clausal, if each element of A is 0, 1 or -1, and each bi satisfies

bi = 1−#{α : α = Aij = −1, j = 1 . . . n} (2.23)

where Aij is the j-th element of row i in A and # denotes the cardinality of a set (Chandru

and Hooker, 1999). The set of inequalities (2.16) associated with a CNF is clausal by

construction.

4not considering permutation of variables

42 2 The Mixed Logic Dynamical Systems Framework

Theorem 2.2 Let F be a Boolean formula. If PCH(F) is given by clausal inequalities,

then there exists a CNF, for which PCH(F) = PCNF (F).

Proof. If the H-representation of PCH(F) has only clausal inequalities, then

each one of them can be mapped to a maxterm of a CNF. 2

For dimensions up to 3, it holds that if f is a Boolean function, then PCNF has only integral

vertices5, i.e. PCH = PCNF . This can be seen by enumeration. However, this rule does not

extend to higher dimensions. As a counterexample, in Appendix A we report a Boolean

function f : {0, 1}4 → {0, 1} for which PCH has a nonclausal inequality.

We apply these methods to an example in Section 3.2.6.

2.4.2 Mixed Logic-Continuous Propositions

In this section the results of Section 2.4.1 are extended to mixed continuous-logic proposi-

tions. We consider the same three approaches that were outlined for Boolean formulas and

show their application to propositions involving both continuous and binary variables.

A Generalized Boolean Formula (GBF) is the extension of a Boolean formula obtained by

allowing linear inequalities X̃i = [fi(x) ≤ 0] as additional terms in a Boolean formula. A

Generalized Conjunctive Normal Form (GCNF) is defined accordingly, as the expression

in Equation (2.24)

p∧
j=1

(
mj∨
i=1

[fij(x) ≤ 0] ∨
nj∨

k=1

[δkj = 1]

)
(2.24)

Every GBF admits a GCNF equivalent representation. We show that every GCNF can

be translated into mixed integer inequalities, provided that a sufficient number of auxil-

iary variables is introduced. We develop a systematic way for translating complex logical
5Note that the PCNF with a nonintegral vertex (2.20) is defined by a Boolean formula, but not a

Boolean function.

2.4 Efficient Modelling of Mixed Logic Dynamical Systems 43

propositions into mixed integer inequalities. An assignment (x, δ) ∈ R
n1 × {0, 1}n2, that

renders (2.24) true, is called a valid point.

Motivation

In the sequel, we assume that upper and lower bounds are known on real affine functions

fi(x) = a′ix− bi, fi : Rn 7→ R. Consider the logic disjunction

m∨
i=1

[fi(x) ≤ 0] (2.25)

which in general defines a nonconvex set in R
n , e.g. the set of Figure 2.3, corresponding

to the disjunction

[x1 ≤ 0] ∨ [x2 ≤ 0] (2.26)

where m1 ≤ x1 ≤M1, m2 ≤ x2 ≤M2. The set in Figure 2.3 is not convex, and therefore it

x

x

2

1

m1

m2

M1

M
2

Figure 2.3: Feasible set defined by (2.26)

cannot be written as a system of linear constraints {x ∈ Rn : Cx ≤ d}. Indeed, the smallest

convex set containing the feasible region of (2.26) contains points in the first quadrant

44 2 The Mixed Logic Dynamical Systems Framework

excluded by (2.26). However, by introducing additional binary variables δ ∈ {0, 1} it

becomes possible to represent it as a set of mixed integer constraints. Using Tables 2.1

and 2.2, we can introduce δ1, δ2 ∈ {0, 1} as

δ1 , [x1 ≤ 0] (2.27)

δ2 , [x2 ≤ 0] (2.28)

The statement in Equation (2.26) becomes

δ1 ∨ δ2 (2.29)

Each one of the three propositions (2.27), (2.28) and (2.29) can be translated into inequal-

ities using Tables 2.1 and 2.2. This shows that in the space (x1, x2, δ1, δ2), i.e. in a subset

of R4 , the feasible set of (2.26) can be represented as {x ∈ R2 × {0, 1}2 : Cx ≤ d}. This

implies that after the relaxation of the integrality constraints to 0 ≤ δi ≤ 1, the feasible set

of (2.26) becomes a convex polyhedral set in {x ∈ R4 : Cx ≤ d}. Increasing the dimension

of the space by binary variables permits a convex representation of a set that in the original

coordinates of interest is not convex.

Substitution Method

Similar to the case of logical relations, the substitution method consists of iteratively ap-

plying the rules of Tables 2.1 and 2.2 to substitute elementary logical propositions with

additional binary auxiliary variables. With Equations (2.27), (2.28) and (2.29) we illus-

trated the method. Contrary to the substitution for purely logical function in Section

2.4.1, we have shown with the logical proposition in (2.26) that the introduction of auxil-

iary variables may be necessary for mixed logic continuous translations. The substitution

method may however introduce more variables than required, as will be shown next.

2.4 Efficient Modelling of Mixed Logic Dynamical Systems 45

The Generalized Conjunctive Normal Form

Here we provide a general procedure for translating GBFs into a set of mixed integer linear

inequalities. Theorem 2.3 is the main contribution of this Section. The proof of Theorem

2.4 contains some constructive hints for this translation.

Theorem 2.3 The GCNF with affine real-valued functions fij(x)

p∧
j=1

(
mj∨
i=1

[fij(x) ≤ 0] ∨
nj∨

k=1

[δkj = 1]

)
(2.30)

can be translated into a set of mixed integer inequalities adding
∑p

j=1dlog2(m
′
j +1)e binary

variables, where m′
j ≤ mj is the number of non-redundant constraints in the set {x :

fij(x) > 0, i = 1, . . . , mj}

Before proving Theorem 2.3 we need some preliminaries. A constraint [fj(x) ≤ 0] is

redundant for the proposition (2.25), if{
x :

m∨
i=1

[fi(x) ≤ 0]

}
=

{
x :

m∨
i=1,i6=j

[fi(x) ≤ 0]

}
(2.31)

Theorem 2.4 The logical proposition with m affine functions fi(x)

m∨
i=1

[fi(x) ≤ 0] (2.32)

can be translated into a set of mixed integer inequalities by adding ` = dlog2(m
′)e binary

variables, where m′ ≤ m is the number of non-redundant constraints

Proof. The proof is constructive and involves the following steps:

1. Define the closure of the infeasible set B as6

B = {x :

m∧
i=1

[fi(x) ≥ 0]}. (2.33)

Since all fi are affine, B is convex.
6Note that we include the edge points in B.

46 2 The Mixed Logic Dynamical Systems Framework

2. Eliminate the redundant constraints. This can be done by solving for each

i = 1 . . .m a linear program of the form

Jc(i) = minx fi(x)

s.t.
∧m

j=1, j 6=i[fj(x) ≥ 0].
(2.34)

If Jc(i) ≥ 0, the i-th constraint is redundant. This gives the number of

non-redundant constraints m′. Note that the disjunction (2.32) can be

written equivalently only using the non-redundant constraints. This step

aims at having a minimal representation of (2.32). Moreover, m′ is the

number of facets of the polytope B.

3. According to Bemporad, Morari, Dua and Pistikopoulos (1999, Theorem

3), the set X\B can be partitioned into m′ disjoint convex sets Cj. Each

set can be described by the inequalities

Cj = {x : Ajx ≤ bj}

where by appropriate numbering, we have Aj ∈ Rj×s and bj ∈ Rj (j =

1 . . .m′).

4. Temporarily introduce m′ binary variables δj with the property that

[δj = 1]↔ [x ∈ Cj].

According to the rules in Section 2.2, the latter relations can be translated

into mixed integer inequalities as:

Ajx− bj ≤ Mj(1− δj) (j = 1 . . .m′) (2.35)
m′∑
i=1

δi = 1. (2.36)

5. Code the regions Ci as follows: Introduce ` = dlog2(m
′)e binary variables

µ1 . . . µ`, such that

[δj = 1] ↔ [j = 1 +

`−1∑
i=0

2iµi+1]. (2.37)

2.4 Efficient Modelling of Mixed Logic Dynamical Systems 47

Use them in (2.35) to obtain:

A1x− b1 ≤ M1(`− (1− µ1)− . . .− (1− µ`))

A2x− b2 ≤ M2(`− µ1 − . . .− (1− µ`))

...
...

Am′x− bm′ ≤ Mm′(`− µ1 − . . .− µ`)

If m′ < 2`, add constraints to exclude the combinations of (µ1 . . . µ`) that

are not used to code any region. For the representation with δj , (2.36)

expresses the fact that exactly one δj is one for each data point x. This

is not required when working with (µ1 . . . µ`), since each code (µ1 . . . µ`)

either identifies a region, or it is excluded.

2

The number of inequalities resulting from the algorithm described above is given by

• (i) the bounds on either x or each function fi(x)

• (ii)
∑m′

i=1 i = m′(m′+1)
2

constraints defining µ1, . . . , µ`, and

• (iii) the constraints excluding the unused combinations of µ1, . . . , µ`

Note that neglecting the redundancy removal procedure in step 2 increases the number of

binary auxiliary variables to dlog2(m)e, but does not change the algorithm itself.

Corollary 2.1 The logical proposition with m affine functions fi(x)

m∨
i=1

[fi(x) ≤ 0] ∨
n∨

k=1

[δk = 1] (2.38)

can be translated into a set of mixed integer inequalities adding `′ = dlog2(m
′ + 1)e binary

variables, where m′ ≤ m is the number of non-redundant constraints in the disjunction∨m
i=1[fi(x) ≤ 0].

48 2 The Mixed Logic Dynamical Systems Framework

Proof. Using the constructive arguments of Theorem 2.4, we can model the

terms involving
∨m

i=1[fi(x) ≤ 0]. Contrary to Theorem 2.4, we have to assign

also a combination of (µ′
1 . . . µ

′
`) to the infeasible set B, because (2.38) can be

true even if x ∈ B. For computational simplicity we assign the code [0, . . . , 0]

to B. Therefore the number of regions to code with (µ′
1 . . . µ

′
`) is increased by

one. The disjunction (2.38) can then be imposed by the inequality

`′∑
i=1

µi +
m∑

k=1

δk ≥ 1 (2.39)

2

Finally, the last step consists of translating general GBFs to inequalities over continuous

and binary variables. This can be done by considering the inequalities [fi(x) ≤ 0] as

symbolic Boolean variables and manipulating the overall function according to Section

2.4.1:

1. Replace each inequality [fi(x) ≤ 0] over continuous variables with a Boolean variable

yi.

2. Find the CNF of the expression using the methods described in Section 2.4.1.

3. Replace back the Boolean variables yi with [fi(x) ≤ 0].

4. Apply the theorem above

Note that the effectiveness of the approach presented here can be increased, if the scheme

is given the possibility to recognize common parts in the logic relations, like the multiple

occurrence of an inequality [fij(x) ≤ 0] in (2.30).

Proof. (of Theorem 2.3) Using Corollary 2.1, each term in the conjunction

(2.30) can be translated into inequalities. The overall conjunction can then be

modelled by contemporarily imposing all constraints obtained. 2

2.4 Efficient Modelling of Mixed Logic Dynamical Systems 49

1

1

f3(x)=0

x2

x1

f1(x)=0

f2(x)=0

f4(x)=0

B

Figure 2.4: Feasible points represented by (2.40)

Example 2.8:

Consider the following GBF

4∨
i=1

[fi(x) ≤ 0] (2.40)

where x = [x1, x2]
T ∈ [−10, 10]2 ⊂ R2 , fi: R

2 → R and

f1(x) = x1 + x2 (2.41)

f2(x) = 2x1 + x2 + 2 (2.42)

f3(x) = x2 − 1 (2.43)

f4(x) = 1.5x1 + x2 + 4.5 (2.44)

The set of feasible points to represent is the nonconvex, shaded area in Figure

2.4. We apply the procedure described in the proof of Theorem 2.4 to find

the inequalities describing (2.40), following the same steps and terminology

introduced there.

1. The set B is given by B = {x :
∧4

i=1[fi(x) ≥ 0]} and it is shown as the

unshaded area in Figure 2.4.

50 2 The Mixed Logic Dynamical Systems Framework

2. Solving (2.34) yields the results in Table 2.5. Therefore i = 4 denotes a

i 1 2 3 4

Jc(i) -0.5 -7.33 -11 3.5

Table 2.5: Solution of (2.34) for the example (2.40)

redundant constraint and m′ = 3.

3. The sets Cj are:

C1 = {x ∈ R2 :
[
1 1

]
x ≤ 0} (2.45)

C2 = {x ∈ R2 :


−1 −1

2 1


x ≤


 0

−2


} (2.46)

C3 = {x ∈ R2 :



−1 −1

−2 −1

0 1


x ≤




0

2

1


} (2.47)

4. Using the bounds on x, the expressions (2.35) become:

[
1 1

]
x ≤ 20(1 − δ1) (2.48)

−1 −1

2 1


x−


 0

−2


 ≤


20

32


 (1− δ2) (2.49)



−1 −1

−2 −1

0 1


x−



0

2

1


 ≤




20

28

9


 (1− δ3) (2.50)

5. Here it holds that ` = 2 and we code the regions as:

[δ1 = 1] ⇔ [µ1 µ2] = [0 0] (2.51)

[δ2 = 1] ⇔ [µ1 µ2] = [1 0] (2.52)

[δ3 = 1] ⇔ [µ1 µ2] = [0 1] (2.53)

Finally, defining X = [x1 x2 µ1 µ2]
T and using the expressions above,

2.4 Efficient Modelling of Mixed Logic Dynamical Systems 51

we obtain the desired inequalities as


1 1 −20 −20

−1 −1 20 −20

2 1 30 −30

−1 −1 −20 20

−2 −1 −30 30

0 1 −10 10



X ≤




0

20

30

20

30

10




(2.54)

2

Geometrical Method

We have motivated that a geometrical interpretation of introducing additional binary vari-

ables is an enlargement the dimension of the space considered. In the higher dimensional

space, the specified region is a convex set. The projection onto the space of original vari-

ables is still nonconvex. While this is an appealing interpretation, it is not immediate to

generalize it to a procedure for finding the inequalities, beyond low dimensional spaces.

Indeed, it is not clear a priori, how to enlarge the space with additional binary variables.

For the GBF (2.26) we sketch in Figure 2.5 the effect of applying the idea of the following

algorithm:

1. Introduce naux = 1 auxiliary binary variable.

2. Split the nonconvex set into disjoint convex sets, the union of which gives in the

original set.

3. Assign to each subset so obtained a different combination of the auxiliary binary

variables.

4. Compute in the higher dimensional space the convex hull of the vertices.

5. If the convex hull contains points excluded by the logic proposition,

52 2 The Mixed Logic Dynamical Systems Framework

- increase the number naux of auxiliary binary variables in 1. or

- choose a different splitting in 2. or

- choose a different code in 3.

δ

x1

2x

M1

m 1

M
2

m 2

Figure 2.5: Feasible set defined by (2.26) in a three dimensional space

In general, we do not recommend to rely on these geometrical interpretations for translating

GBFs into inequalities, due to the unsystematic actions to be taken in point 5.

2.4.3 Summary

In Sections 2.4.1 and 2.4.2 we have motivated a fundamental difference between the trans-

lation of purely logical relations and mixed logic continuous relations into inequalities:

The former can be translated without adding additional variables, while the latter can re-

quire the introduction of Boolean variables. By construction we have shown the following

statement.

2.5 The Tolerance ε of Mixed Logic Dynamical Systems and Well Posedness 53

Theorem 2.5 Let P be a logical proposition involving nc continuous and nb binary vari-

ables. Let V ⊂ XV = Rnc × {0, 1}nb be the set of valid points of P and assume that V is

compact set.

Then, by introducing na additional binary variables, V can always be delimited by inequal-

ities in a space X̃ = R
nc × {0, 1}na+nb of dimension na + nb + nc such that in the higher

dimensional space the convex hull of valid points does not contain any invalid points.

Moreover, if nc = 0 then na = 0

Proof. Theorem 2.3 shows by construction that adding at most

na =

p∑
j=1

dlog2(m
′
j + 1)e

binary variables, allows to find the desired inequalities. The statement for

purely logical functions nc = 0 has been shown either in Theorem 2.1 or in

(2.16). 2

2.5 The Tolerance ε of Mixed Logic Dynamical Sys-

tems and Well Posedness

For the translation of some logical propositions into inequalities, it is required to introduce

small tolerances ε > 0, as can be seen in Table 2.2. The main justification for these variables

is the ability to express the inequalities as non-strict, rather than as strict inequalities. This

allows their inclusion as constraints in optimization problems.

This section describes a couple of consequences of this approach for the constraints so

obtained and it shows, how well posedness depends on the choice of ε.

54 2 The Mixed Logic Dynamical Systems Framework

Example 2.9:

Consider the for instance the proposition:

[δ = 1]↔ [f(x) ≤ 0] (2.55)

and its translation

f(x) ≤ M −Mδ (2.56)

f(x) ≥ ε+ (m− ε)δ (2.57)

It is easy to verify that inequalities (2.56) and (2.57) actually define the rela-

tions:

[δ = 1] ↔ [m ≤ f(x) ≤ 0] (2.58)

[δ = 0] ↔ [ε ≤ f(x) ≤M] (2.59)

If f(x) takes on values in the range

0 < f(x) < ε , (2.60)

the variable δ remains undefined and the inequalities (2.56) and (2.57) are

infeasible for any pairs (δ, f(x)) ∈ {0, 1}× (0, ε). Indeed, if e.g. f(x) = ε
2
, then

(2.56) and (2.57) become

ε

2
≤ M −Mδ (2.61)

− ε
2
≥ (m− ε)δ (2.62)

Here, (2.61) is feasible for δ = 0 only, whereas (2.62) can only be satisfied

with δ = 1. Note that if (2.60) is guaranteed, never to occur, no feasibility

problems are expected. In this case ε can be chosen as the representable machine

precision. 2

With a geometrical interpretation we can visualize, whether there are alternatives for

representing (2.55), apart from (2.56) and (2.57). We plot the set of valid points in the

2.5 The Tolerance ε of Mixed Logic Dynamical Systems and Well Posedness 55

δ

y0
0

1

Figure 2.6: Set of valid points of (2.55) in the (δ, y) plane represented as the bold lines

(δ, y) plane, where y = f(x), as shown in Figure 2.6. From Figure 2.6, we see that the point

(δ, y) = (0, 0) is element of the convex hull of valid points, even though it is invalid. Note

that extending the space with additional binary variables does not help in this case, since

the set of valid points is an open set. This does not meet the assumption of compactness

in Theorem 2.5. For any extension of the domain space (δ, y) with auxiliary variables, the

set of valid points is a nonconvex set.

One way to represent this relation as inequalities is to sacrifice well posedness. The solution

(2.56) and (2.57) modifies the set of valid points, such that there is a gap, in which δ is

undefined, as shown in Figure 2.7. This means that strictly speaking the system is not

completely well posed, since for y ∈ (0, ε) no δ is defined. If we are willing to sacrifice well

posedness, we can propose an alternative translation, as shown in Figure 2.8. Here we do

not have ranges of the continuous variable y, where the binary variable δ is undefined, but

we have both possible values of δ, if y = 0. The inequalities in this case are obtained by

setting ε ≤ 0 in (2.56) and (2.57).

56 2 The Mixed Logic Dynamical Systems Framework

δ

y0
0

1

ε

Figure 2.7: Set of valid points of (2.55) in the (δ, y) plane using the ε approach. The valid

points are represented as bold lines.

δ

y0
0

1

Figure 2.8: Set of valid points of (2.55) in the (δ, y) plane without well posedness. The

valid points are represented as bold lines.

2.6 Modelling Capabilities of Mixed Logic Dynamical Systems 57

2.6 Modelling Capabilities of Mixed Logic Dynamical

Systems

In this section we mention a few general considerations about the modeling capabilities of

MLD systems. In Chapter 3 we model two practical systems within the MLD framework.

2.6.1 Piecewise Affine Systems

One class of hybrid systems, having a close connection to MLD systems, is the class of

piecewise affine (PWA) systems, considered in Chapter 6. A PWA system is defined as

follows. Assume that the state space is partitioned into disjoint cells. In each state space

cell the dynamics is governed by a different affine dynamical system. PWA systems are

therefore described by the state-space equations:

xk+1 = Aixk +Biuk + ai

yk = Cixk +Diuk + ci

(x, u) ∈ X

, for
[

xk
uk

]
∈ Xi (2.63)

where the state+input set X ⊂ Rnc ×{0, 1}n` × Rmc ×{0, 1}m` is a polyhedron containing

the origin, {Xi}si=1 is a polyhedral partition7 of X and ai, ci are constant vectors of suitable

dimension. We refer to each Xi as a cell.

In (Bemporad and Morari, 1999a) it is shown, how a general PWA system can be written

as an MLD system. We point out that one single MLD model can represent the dynamics

of a PWA system with an arbitrary number s of linear subsystems. Logic propositions

modelled as linear inequalities, as shown in this chapter, are determining which dynamics

is currently active. The converse to this result is stated in the next proposition.

Theorem 2.6 ((Bemporad, Ferrari-Trecate and Morari, 2000)) Consider generic tra-

7Each set Xi is a (not necessarily closed) convex polyhedron s.t. Xi

⋂
Xj = ∅, ∀i 6= j,

⋃s
i=1 Xi = X.

58 2 The Mixed Logic Dynamical Systems Framework

jectories xk, uk, yk of the MLD system (2.8). Then, there exist a polyhedral partition

{Xi}si=1 of the state+input space X and 5-tuples (Ai, Bi, Ci, Di, ai, ci), i = 1, . . . , s, such

that xk, uk, yk satisfy (2.63).

Therefore, PWA systems are equivalent to MLD systems, in the sense that they can describe

the same model behaviour. Theorem 2.6 was proven in (Bemporad, Ferrari-Trecate and

Morari, 2000) by using a constructive argument that allows the explicit computation of

the sets Xi and the matrices (Ai, Bi, Ci, Di, ai, ci) defining the PWA system.

2.6.2 Equivalences of Classes

In (Heemels et al., 2001) the equivalence between system classes is taken a step further.

It is shown that under some technical conditions, five classes of models are equivalent to

each other. These are:

• MLD (Mixed Logic Dynamical) Systems

• LC (Linear Complementarity) Systems

• ELC (Extended Linear Complementarity) Systems

• PWA (Piecewise Affine) Systems

• MMPS (Max-Min-Plus-Scaling) Systems

LC systems in discrete time are given by the equations:

x(k + 1) = Ax(k) +B1u(k) +B2w(k) (2.64a)

y(k) = Cx(k) +D1u(k) +D2w(k) (2.64b)

v(k) = E1x(k) + E2u(k) + E3w(k) + g4 (2.64c)

0 ≤ v(k) ⊥ w(k) ≥ 0 (2.64d)

2.6 Modelling Capabilities of Mixed Logic Dynamical Systems 59

Equation (2.64d) expresses the fact that each component of v(k) and w(k) is nonnegative

and the scalar product of v(k) and w(k) is zero.

ELC systems are given in discrete time:

x(k + 1) = Ax(k) +B1u(k) +B2d(k) (2.65a)

y(k) = Cx(k) +D1u(k) +D2d(k) (2.65b)

E1x(k) + E2u(k) + E3d(k) ≤ g4 (2.65c)

p∑
i=1

∏
j∈φi

(g4 − E1x(k)− E2u(k)−E3d(k))j = 0 (2.65d)

An MMPS system is given by:

x(k + 1) = Mx(x(k), u(k), d(k)) (2.66a)

y(k) = My(x(k), u(k), d(k)) (2.66b)

Mc(x(k), u(k), d(k)) ≤ c (2.66c)

where Mx,My,Mc are MMPS expressions. An MMPS expression M of the variables xi is

defined by the rule

M , xi | α | max(Mk,Mi) | min(Mk,Mi) | Mk +Mi | βMk (2.67)

where Mi are MMPS expressions.

In this work, we will limit ourselves to the equivalence of MLD and PWA systems. It is

however useful to keep in mind the opportunities given by the equivalent representation of

a system in different modelling frameworks.

2.6.3 Example: Finite State Machines in MLD and PWA Form

As an illustration for the equivalence of MLD systems and PWA systems, we describe the

model structure for a finite state machine in both frameworks. Assume that a synchronous

60 2 The Mixed Logic Dynamical Systems Framework

finite automaton A is given by the five-tuple

A = {X,U, f, x0, t} (2.68)

where the symbols have the following meaning:

X The finite state space of the automaton

U The finite input space of the automaton

f The state transition function

f : X × U −→ X (2.69)

(x(k), u(k)) 7−→ x(k + 1) (2.70)

x0 The initial state

t The clock determining the state transitions

This system can be modelled in the MLD form, provided that the state transitions occur

synchronously at a fixed rate given by the sampling period. The first step is to define a

coding of the state values in X and input values in U as subsets of {0, 1}nx and {0, 1}nu,

respectively. Note that the state update given by the function f is determined with logical

propositions. It is therefore required to formulate the state update as an update of a binary

variable in the MLD model, rather than a direct update given by equation (2.8a) in the

MLD form. We define for each binary state

δ(k) = x(k + 1) (2.71)

and we formulate the state update as a logical proposition involving (u(k), x(k), δ(k)). As

we have seen in the previous sections, these propositions can be translated into inequalities

that are added as constraints to the MLD model. Summarizing, the MLD model of a finite

2.7 HYSDEL – The Hybrid Systems Description Language 61

state machine has the following structure:

x(k + 1) = δ(k) (2.72a)

y(k) = x(k) (2.72b)

E2δ(k) ≤ E1u(k) + E4x(k) + E5 (2.72c)

The procedure to derive the piecewise affine form of a finite state machine is outlined

next. First define the state and input set

Ω = X × U (2.73)

The state and input space partition ∪s
i=1Xi = Ω of the PWA system is defined such that

each element of Ω is in exactly one region Xi. The PWA system has zero matrices Ai and

Bi. The state update is given by the drift term ai in the state update formula of (2.63),

which is uniquely determined by the current state and current input. The PWA model has

therefore the structure

x(k + 1) = ai (2.74a)

y(k) = x(k) (2.74b)

for
[

xk
uk

]
∈ Xi ⊂ Ω

The information about the state update transitions is coded in the partition of the state

and input space.

2.7 HYSDEL – The Hybrid Systems Description Lan-

guage

The derivation of MLD models “by hand” is a tedious task and involves the repeated appli-

cation of the rules presented in the previous sections. This procedure is further complicated

if one aims at finding a good model in terms of a low number of variables or inequalities

62 2 The Mixed Logic Dynamical Systems Framework

involved. To simplify the modelling for the user, a compiler was developed for the auto-

mated translation of a high level modelling description into the MLD form. The aim of

the compiler is to generate the matrices A, Bi, C, Di and Ei in (2.8). These matrices are

generated in Matlab syntax (Mat).

The problem specification language to the compiler is HYSDEL (HYbrid System DEscrip-

tion Language). A preliminary work about HYSDEL is reported in (Anlauff et al., 1999).

Torrisi et al. (2000) describe the recent status of the language. In Appendix B we included

an example of a HYSDEL listing. At present, HYSDEL translates logical propositions into

inequalities by the CNF method.

HYSDEL is tailored for modeling MLD systems, but it is by no means the only modelling

language for hybrid systems. Other languages and tools are described e.g. in (Benveniste

et al., 1993; Fabian, 1999). The connection of HYSDEL to other existing modelling and

simulation tools for hybrid systems is under investigation (Torrisi, 2002). The tool LPL

is described in (Huerlimann, 2001). It allows the modelling of systems containing logic

components and translates the model into the MPS format (Murtagh, 1981), a widespread

formalism for the specification of mathematical optimization problems.

2.8 Steady States for Mixed Logic Dynamical Sys-

tems

MLD systems are capable to model rich system behaviours. They can exhibit several prop-

erties that are typical for nonlinear systems, like multiple isolated equilibria or limit cycles.

For instance, Kennedy (1993) analyzes an electrical circuit described by piecewise linear

equations, that exhibits chaotic behaviour. In this section selected properties concerning

steady states are mentioned that have been encountered in the case studies considered in

Chapter 3. Properties like deadlocks or livelocks, typically encountered in discrete event

2.8 Steady States for Mixed Logic Dynamical Systems 63

systems, can be found in MLD models as well, however the detection of these phenomena

and their avoidance will not be considered in this work.

A steady state value xf for an MLD system can be determined by solving the following

mixed integer program (see Chapter 5):

min
xf ,uf ,δf ,zf

||yf − r||ρy + ||xf ||ρ4 + ||uf ||ρ1 + ||zf ||ρ3 + ||δf ||ρ2 (2.75)

s.t.

xf = Axf +B1uf +B2δf +B3zf (2.76)

yf = Cxf +D1uf +D2δf +D3zf (2.77)

E2δf + E3zf ≤ E1uf + E4xf + E5 (2.78)

Here ||.||. is an arbitrary norm, the vector r is the constant reference, ρi = ρT
i are nonnega-

tive definite weighting matrices. In general, the complete set of all steady states is defined

by the feasible points satisfying (2.76),(2.78). However, since the solution xf , uf , δf , zf is

typically used for control purposes (see Section 4.1.2), we are interested in a solution of

(2.75)-(2.78), where ρy � ρj , (j = 1 . . . 4), i.e. a steady state yielding an output close to

the reference.

Due to the rich behaviour of general MLD systems, the result (xf , uf , δf , zf) of (2.75) -

(2.78) should be further analyzed prior to its usage in a control scheme. Some difficulties

that can arise are listed next.

Unreachability of Steady States The steady state obtained with (2.75) - (2.78) can

be unreachable. We call a state xe unreachable, if there exists an initial state x0, for which

no feasible input sequence [u(0), u(1), . . . , u(N)] of length N (N ≥ 1) exists, such that

x(N) = xe for all N . We refer to Section 3.3.7 for an example of such a system.

Multiplicity of Steady States Even though all weights ρi in (2.75) are chosen different

from zero, the steady state obtained with (2.75) - (2.78) can be nonunique because of the

64 2 The Mixed Logic Dynamical Systems Framework

presence of binary variables. A simple example for this phenomenon is a piecewise affine

system, where the steady state belonging to the affine dynamics of region Xi lies in Xi for

all i. Systems can be found, the steady states of which give the same value of (2.75) for

all steady states of the subsystems.

Limit Cycles Consider the problem of stabilizing an MLD system to a constant reference

r. When searching for a state giving an output y of an MLD system, which stays close to

r, (2.75) - (2.78) might give a unique and reachable solution. However, in some cases it

turns out that the equilibrium so obtained is far away from the reference. The cumulated

error over a finite horizon of length M

M∑
k=1

||yf(k)− r||

can be smaller, if y tracks a cycle of states instead of being controlled to a constant value.

Such a cycle is generated by the periodical switching of discrete system components. In

other words, the system goes through a cycle of states to stay close to the reference, instead

of converging to a constant state. The three tank model discussed in Section 3.2 shows

this behaviour for certain reference values, as we show in Section 3.2.8.

For systems exhibiting limit cycles, instead of finding one single steady state, we can search

for entire state sequences. The optimization is then given by:

min
x,u,δ,z

||y
f
− r||+ ||xf ||ρ4 + ||uf ||ρ1 + ||zf ||ρ3 + ||δf ||ρ2 (2.79)

2.8 Steady States for Mixed Logic Dynamical Systems 65

s.t.

xf(1) = Axf(0) +B1uf(0) +B2δf (0) +B3zf (0)

xf(2) = Axf(1) +B1uf(1) +B2δf (1) +B3zf (1)

...

xf (N) = Axf(N − 1) +B1uf(N − 1) +B2δf(N − 1) +B3zf (N − 1)

xf(0) = Axf(N) +B1uf(N) +B2δf(N) +B3zf (N)

E2δf(0) + E3zf(0) ≤ E1uf(0) + E4xf(0) + E5

...

E2δf (N) + E3zf (N) ≤ E1uf(N) + E4xf (N) + E5

The variables xf , uf , δf , zf in (2.79) are sequences of the corresponding variables xf , uf , δf , zf

of length N , i.e.

xf =



xf (0)

...

xf (N)


 uf =



uf(0)

...

uf(N)


 δf =



δf (0)

...

δf (N)


 zf =



zf (0)

...

zf (N)


 r =



r
...

r


 (2.80)

r is the constant reference vector. In general the length N of the sequence is not known a

priori and has to be found iteratively. If a short cycle is required, we solve the optimization

min
N∈N
{ min

yf (0),...,yf (N)
||y

f
− r||ρ̃ + γ(N)} (2.81)

where γ(.) : R+
0 → R

+
0 is a strictly monotonically increasing, nonnegative function penal-

izing the use of long cycle lengths N .

66 2 The Mixed Logic Dynamical Systems Framework

Chapter 3

Mixed Logic Dynamical Models of

Practical Systems

In this chapter we present the MLD models of two practical systems, a three tank laboratory

model and a hydroelectric power plant.

3.1 Introduction

We illustrate the modeling capabilities of MLD models with two practical systems, a three

tank laboratory model and a hydroelectric power plant. The control and supervision

algorithms that are considered in Chapter 4 have been applied to these systems. In the

first case study we show how to model a system for fault detection and isolation purposes.

In general, the following model classes can be written as an MLD system:

• Linear hybrid systems;

• Sequential logical systems (finite state machines, automata);

67

68 3 Mixed Logic Dynamical Models of Practical Systems

• Nonlinear dynamic systems, where the nonlinearity can be expressed through com-

binational logic;

• Systems with discrete inputs and outputs;

• Systems with qualitative inputs and outputs;

• Some classes of discrete event systems;

• Linear time-invariant systems, possibly subject to constraints

• Systems interacting with logic automata

We defer to (Bemporad and Morari, 1999a) for a detailed discussion of these model types.

To model a system in MLD form means to find the numerical expressions for the matrices

A, B1, B2, B3, C, D1, D2, D3, E1, E2, E3, E4, E5 in (2.8). While some derivations

are nowadays automatically performed and supported by the MLD modelling software

tool HYSDEL, mentioned in Section 2.7 , several steps shown in the two case studies are

typical for the modelling procedure in MLD form and need to be performed in order to

obtain a syntax that can be used with HYSDEL.

Several authors have modelled other practical systems in MLD form. In (Bemporad and

Morari, 1999a) a gas supply system to an electric power plant is modelled in the MLD

framework. Three types of gases are generated as a by-product from a steel-works and have

to be distributed to five different boilers in order to generate electric power. Bemporad

and Morari (1999b) consider an active car suspension system, controlled by a pneumatic

system. In (Borrelli et al., 2001) a traction control scheme for road vehicles is considered.

The goal is to improve safety of the car by preventing the wheel from slipping. Bemporad

et al. (2001) consider a batch evaporator system, for which safety requirements are verified.

Spedicato (2001) and Letizia (2001) derive a model of a combined cycle power plant with

one steam turbine and one gas turbine. The goal is a maximization of profit for the

3.2 Case Study: Three Tank System 69

operator of the turbines over a daily, weekly, or longer horizon, taking into account the

electric power demand, the startup times, the wear and operating costs.

3.2 Case Study: Three Tank System

3.2.1 The System Description

The three tank system depicted in Figure 3.1 has been adopted recently as a benchmark

problem for fault detection algorithms and reconfigurable control (Lunze, 1998; Heiming

and Lunze, 1999; Steffen and Lunze, 2001; Lunze et al., 2001). The system has been

elaborated within the research program “Control of Complex Systems” (COSY), which

is sponsored by the European Science Foundation (COSY),(Åström et al., 2001). In this

chapter we consider the modelling in MLD form. This system is used to illustrate the

analysis and synthesis techniques in Chapter 4.

The system consists of three liquid tanks that can be filled with two identical, independent

pumps acting on the outer tanks 1 and 2. The pumps deliver the liquid flows Q1 and Q2

and they can be continuously manipulated from a flow of 0 to a maximum flow Qmax. The

tanks are interconnected to each other through upper and lower pipes. The flow through

these pipes can be interrupted with switching valves V1, V2, V13, V23 that can assume either

the completely open or the completely closed position. The liquid levels h1, h2, h3 in each

tank can be measured with continuous valued level sensors1. The nominal outflow from

the system is located at the middle tank, i.e. VL3 is open. The outflows QL1 and QL2

through valves VL1 and VL2 are zero in nominal behaviour and are used to model failures

1Note that this is a slight modification to the original benchmark problem, where an additional qual-

itative measurements is assumed. These sensors report that the liquid level is within a certain range of

values, i.e. “low”, “medium”, or “high” (Heiming and Lunze, 1999). Medium level is chosen as the range,

which fulfills the nominal requirements.

70 3 Mixed Logic Dynamical Models of Practical Systems

Q Q

Q

Q

Q

Q
QQ

V

V

V

V

1 2

13V1

13V13
V

23V23

23V2

13 23

1 2

N3L1 L1

h
3

h
1 h

2
1

3 2
h

v

QL2
VL2VL3

Figure 3.1: COSY three tank benchmark system

of the system. The system represents a processing unit, the goal of which is to provide a

constant flow QN3 through the middle tank to a consumer.

3.2.2 System Equations

From the conservation of mass in the tanks we obtain the differential equations

ḣ1 =
1

A
(Q1 −Q13V 1 −Q13V 13 −QL1) (3.1)

ḣ2 =
1

A
(Q2 −Q23V 2 −Q23V 23 −QL2) (3.2)

ḣ3 =
1

A
(Q13V 1 +Q13V 13 +Q23V 2 +Q23V 23 −QN3) (3.3)

where the Q’s denote flows and A is the cross-sectional area of each of the tanks (Lunze,

1998). Details are given in Tables 3.1 and 3.2.

With a slight abuse of notation we will use the term Vh to denote both the valve h and its

3.2 Case Study: Three Tank System 71

Symbol Meaning

hi water level in tank i (i = 1, 2, 3)

Qi inflow through pump i (i = 1, 2)

QijV h flow between tank i and tank j through valve Vh

QLi outflow due to leak in tank i (i = 1, 2)

QN3 outflow from tank 3

Vh status of valve h (0=closed, 1=open)

Table 3.1: Variables of the three tank system

Symbol Value (MKS) Meaning

A .0154 tank section

az 1 flow correction term

Sh 2 · 10−5 cross-section of valve Vh

g 9.81 gravity constant

hv 0.3 height of valves V1, V2

hmax 0.62 maximum water level in each tank

Qimax 10−4 maximum inflow through pump i (i = 1, 2)

Ts 5 sampling time

Table 3.2: Model parameters of the three tank system, as defined for the benchmark system

72 3 Mixed Logic Dynamical Models of Practical Systems

status. In the latter case Vh has to interpreted as a binary signal. Assuming that the flow

obeys Torricelli’s law, the flow through a lower valve Vi3 is given by:

Qi3V i3 = Vi3azSi3 sign(hi − h3)
√
|2g(hi − h3)| (i = 1, 2) (3.4)

The flows through the valves VL1, VL2 and VN3 are given in a similar way:

QL1 = VL1azSL1

√
2gh1 (3.5)

QL2 = VL2azSL2

√
2gh2 (3.6)

QN3 = VN3azSN3

√
2gh3 (3.7)

The flows through the upper valves Vi (i = 1, 2) are:

Qi3V i = ViazSi sign(max{hv, hi} −max{hv, h3})
√
|2g(max{hv, hi} −max{hv, h3})| (3.8)

3.2.3 Derivation of the MLD Model of the Three Tank System

The three tank system can be modelled in MLD form. To this purpose, the following five

main steps are required:

1. Linearization of nonlinear relations. For this system, this concerns the flow through

the pipes given by Equations (3.4)-(3.8).

2. Introduction of binary level indicator variables, denoting whether the liquid level has

reached the height of the upper pipes.

3. Introduction of the states of the valves as binary inputs Vi.

4. Elimination of products of binary and continuous variables using the techniques

shown in Chapter 2.

5. Formulation of the system in discrete time.

3.2 Case Study: Three Tank System 73

These steps are now outlined for the three tank system. In order to express the physical

model (3.1)–(3.8) in the MLD form (2.8), we approximate the nonlinearity in (3.4) with a

straight line, as depicted in Figure 3.2 (right), to obtain for i = 1, 2

Qi3V i3 ≈ ki3Vi3(hi − h3) (3.9)

ki3 , azSi3

√
2g

hmax
(3.10)

Note that more accurate approximations of the square root could be used, choosing piece-

Xmin X max Xmin X max

Figure 3.2: Approximation of sign(x)
√
|x| with the straight line k1x, |x| ≤ xmax (left) and

with piecewise linear functions (right)

wise linear functions, like e.g. in Figure 3.2 (left). The higher accuracy comes however at

the expense of a larger number of binary variables. Using the straight line approximation

74 3 Mixed Logic Dynamical Models of Practical Systems

of Figure 3.2, the other flows are linearized similarly:

QL1 ≈ kL1VL1h1 (3.11)

kL1 , azSL1

√
2g

hmax
(3.12)

QL2 ≈ kL2VL2h2 (3.13)

kL2 , azSL2

√
2g

hmax

(3.14)

QN3 ≈ kN3VN3h3 (3.15)

kN3 , azSN3

√
2g

hmax
(3.16)

Qi3V i ≈ kiVi(max(hv, hi)−max(hv, h3)) (i = 1, 2) (3.17)

ki , azSi

√
2g

hmax − hv
(i = 1, 2) (3.18)

According to Table 2.2 we have that:

[f(x) ≤ 0]↔ [δ = 1] is true iff


 f(x) ≤M(1− δ)

f(x) ≥ ε+ (m− ε)δ
(3.19)

where the symbols have the meaning introduced in Chapter 2. Moreover, we use the

equivalence:

z = δf(x) is true iff




z ≤Mδ

z ≥ mδ

z ≤ f(x)−m(1− δ)

z ≥ f(x)−M(1− δ)

(3.20)

(3.19) and (3.20) are used to obtain the MLD form. By introducing the auxiliary variables

zi3 , Vi3(hi − h3) (i = 1, 2) (3.21)

and using (3.20), Equation (3.9) can be expressed through mixed integer linear inequalities.

In order to take into account the flows through the upper valves V1, V2, we define for

i = 1, 2, 3 the auxiliary binary variables

[δ0i(t) = 1] ↔ [hi(t) ≥ hv] (3.22)

3.2 Case Study: Three Tank System 75

and continuous variables

z0i , max{hv, hi} − hv = δ0i(hi − hv). (3.23)

Then, for i = 1, 2 we define

zi , Vi(z0i − z03) (3.24)

and we obtain

Qi3V i ≈ kizi (3.25)

ki , azSi

√
2g

hmax − hv
(3.26)

Similarly, one has

QL1 ≈ kL1zL1 (3.27)

QL2 ≈ kL2zL2 (3.28)

QN3 ≈ kN3zN3 (3.29)

where kL1, kL2, kN3 depend on SL1, SL2, SN3 respectively and are defined as in (3.10), and

zL1 , VL1h1 (3.30)

zL2 , VL2h2 (3.31)

zN3 , VN3h3 (3.32)

In addition, hi, Qj must fulfill the operating constraints

0 ≤ hi ≤ hmax, (i = 1, 2, 3) (3.33)

0 ≤ Qj ≤ Qmax, (j = 1, 2) (3.34)

Finally, the differential equations (3.1)-(3.3) are discretized by replacing ḣi(t) with the

forward difference hi(t+1)−hi(t)
Ts

, where Ts is the sampling time. Defining

x , [h1 h2 h3]
T

u , [Q1 Q2 V13 V23 V1 V2 VL1 VL2 VN3]T

δ , [δ01 δ02 δ03]T

z , [z13 z23 z01 z02 z03 z1 z2 zL1 zL2 zN3]
T

76 3 Mixed Logic Dynamical Models of Practical Systems

one obtains the form (2.8) as:

h1(k + 1) = h1(k) +
Ts

A

(
Q1(k)− k1z1(k)− k13z13(k)− kL1zL1(k)

)
(3.35a)

h2(k + 1) = h2(k) +
Ts

A

(
Q2(k)− k2z2(k)− k23z23(k)− kL2zL2(k)

)
(3.35b)

h3(k + 1) = h3(k) +
Ts

A

(
k1z1(k) + k2z2(k) + k13z13(k) + k23z23(k)− kN3zN3(k)

)
(3.35c)

y(k) = x(k) (3.35d)

E2δ(k) + E3z(k) ≤ E1u(k) + E4x(k) + E5 (3.35e)

The matrices Ei (i = 1, . . . , 5) in (3.35e) collect all constraints of the three tank system

(3.33), (3.34) and all inequalities stemming from the propositions (3.21), (3.23), (3.24),

(3.30), (3.32). Here they are omitted, however the complete set of constraints can be

found in (Mignone, 1999). In (Lunze et al., 2001) the three tank system is modelled in a

nonlinear multi-model set-up, using a case distinction over 23 = 8 cases to determine the

currently valid dynamics2.

3.2.4 Nominal Operation

The nominal operating condition (Heiming and Lunze, 1999) is described by constant

set-point values for levels h1 and h3, as

h1ref = 0.5

h3ref = 0.1

In closed loop operation, level h1 is controlled by a PI controller manipulating the flow

Q1. To control level h3, a switching controller manipulating valve V1 is used, having the

description:

V1 =


 1 if h3 < 0.09

0 if h3 > 0.11
(3.36)

2The eight regions of the state space are obtained by choosing each level hi (i = 1, 2, 3) to be higher or

lower than the height hv of the upper valves

3.2 Case Study: Three Tank System 77

The valves V13, V2, V23, VL1, VL2 are closed and the flow Q2 is zero. Tank 2 is therefore not

used in nominal operation. Its purpose is outlined in the next section.

3.2.5 The Problem Definition of the Benchmark System

The three tank benchmark system has been introduced as a test system for fault detection

algorithms and reconfigurable control. Three fault scenarios are considered within the

benchmark system:

• Tank 1 has a leak

• The actuator V1 is blocked closed

• The actuator V1 is blocked open

The first goal is to detect, whether such a failure has occurred by measuring the liquid levels

in the tanks, and to determine, which failure actually affects the system. This problem is

a Fault Detection and Isolation (FDI) task.

The second goal is to propose remedies to keep the outflow from tank 3 as constant as

possible. In order to achieve latter goal, it might be required to use the redundant actuators

present in the system, i.e. valves V13, V2, V23 and pump Q2. This procedure will be called

Reconfiguration in the sequel. Tank 2 is therefore a redundant storage tank, the usage of

which is allowed, if failures occur in the system.

3.2.6 Including Faults in the MLD Model

The MLD form can be used to model systems with faults in a concise way. Consider a

system, where the occurrence of f faults can be modelled with unmeasured binary distur-

78 3 Mixed Logic Dynamical Models of Practical Systems

bances. We assume that the dynamics of the system in the presence of each fault is known.

Therefore we extend the MLD model (2.8) by including three unmeasured variables:

• Fault variable φ(t) ∈ {0, 1}f

• Input disturbance ξ(t) ∈ Rn

• Output disturbance ζ(t) ∈ Rp

ξ and ζ are introduced, because in Section 4.4.2 we will consider the fault detection problem

as an estimation problem. We define the Mixed Logic Dynamical Faulty (MLDF) form:

x(t+ 1) = Ax(t) +B1u(t) +B2δ(t) +B3z(t) +B6φ(t) + ξ(t) (3.37a)

y(t) = Cx(t) +D1u(t) +D2δ(t) +D3z(t) +D6φ(t) + ζ(t) (3.37b)

E2δ(t) + E3z(t) ≤ E1u(t) + E4x(t) + E5 + E6φ(t) (3.37c)

We introduce the following notation for the faults of the three tank system mentioned in

Section 3.2.5:

symbol type of fault

φ1 Tank 1 has a leak QL1

φ2 Valve V1 is stuck closed

φ3 Valve V1 is stuck open

Table 3.3: Faults of the three tank system

Including Faults in the Three Tank Model

In Section 4.4.2 a model based FDI algorithm is used to perform fault detection and

isolation of the three tank system. The assumption is the availability of a model (3.37)

3.2 Case Study: Three Tank System 79

that is capable of describing both the faulty and the faultless system behaviour. Fault φ1

has already been considered in the modelling of Section 3.2.3 as binary input u7 = VL1.

To model φ2 and φ3, we can resort to the techniques of Section 2.4.1, since the effect of

valve V1 blocking can be described by logic propositions. The control signal u5 to valve V1

is filtered with a processing unit that introduces the potential faults, see Figure 3.3. The

δu
5

φ
2

φ
3

fault valve
V1

v

Figure 3.3: The faults φ2 and φ3 can override the binary control signal u5 to valve V1

actual actuator signal to valve V1 is a new auxiliary variable δv, defined by:

[δv = 1] ↔ ([φ2 = 0] ∧ [u5 = 1]) ∨ [φ3 = 1] (3.38)

[δv = 0] ↔ ([φ3 = 0] ∧ [u5 = 0]) ∨ [φ2 = 1] (3.39)

(φ2 ∧ φ3) (3.40)

In case of faultless operation, δv is identical to the output u5 of the switching controller.

Equation (3.38) determines when V1 is open, Equation (3.39) determines, when V1 is closed,

and Equation (3.40) excludes the occurrence of both faults contemporarily. To translate

these relations into linear inequalities we can use the three approaches of Section 2.4.1.

Substitution Method Two auxiliary boolean variables δx and δy are introduced to take

account of the inner terms of the logical propositions in the expressions (3.38) and (3.39):

[δx = 1] ↔ [φ2 = 0] ∧ [u5 = 1] (3.41)

[δy = 1] ↔ [φ3 = 0] ∧ [u5 = 0] (3.42)

80 3 Mixed Logic Dynamical Models of Practical Systems

Equations (3.38) and (3.39) can then be written as:

[δv = 1] ↔ ([δx = 1] ∨ [φ3 = 1]) (3.43)

[δv = 0] ↔ ([δy = 1] ∨ [φ2 = 1]) (3.44)

Using Table 2.1 we get the following inequalities representing the desired Boolean formula.

Inequality (3.45) stems from (3.40), inequalities (3.46)-(3.48) come from (3.41), inequalities

(3.49)-(3.51) from (3.42), inequalities (3.52)-(3.54) from Equation (3.43), and inequalities

(3.55)-(3.57) from Equation (3.44):

φ2 + φ3 ≤ 1 (3.45)

δx +φ2 ≤ 1 (3.46)

δx −u5 ≤ 0 (3.47)

−δx −φ2 + u5 ≤ 0 (3.48)

δy +φ3 ≤ 1 (3.49)

δy +u5 ≤ 1 (3.50)

−δy −φ3 − u5 ≤ −1 (3.51)

δx −δv ≤ 0 (3.52)

φ3 − δv ≤ 0 (3.53)

−δx −φ3 + δv ≤ 0 (3.54)

δy +δv ≤ 1 (3.55)

φ2 + δv ≤ 1 (3.56)

−δy −φ2 − δv ≤ −1 (3.57)

Conjunctive Normal Form Equations (3.38) - (3.40) can be transformed into CNF.

The steps to do the transformation are to move negations inwards to the literals and to

3.2 Case Study: Three Tank System 81

repeatedly use de Morgan’s law (Clocksin and Mellish, 1981). The resulting CNF is:

(φ2 ∨ φ3) ∧ (δv ∨ φ2 ∨ u5) ∧

(δv ∨ φ2) ∧ (δv ∨ φ3) ∧ (δv ∨ φ3 ∨ u5) (3.58)

Using (2.16), we obtain the following set of inequalities:

−φ2 − φ3 ≥ −1 (3.59)

δv + φ2 − u5 ≥ 0 (3.60)

−δv − φ2 ≥ −1 (3.61)

δv − φ3 ≥ 0 (3.62)

−δv + φ3 + u5 ≥ 0 (3.63)

Truth Table Method The truth table describing the propositions (3.38)-(3.40) is given

in Table 3.4, along with the inequalities defining PCH as presented in Section 2.4.1. All

u5 φ2 φ3 δv

0 0 0 0

0 0 1 1

0 1 0 0

1 0 0 1

1 0 1 1

1 1 0 0

⇒




−u5 −φ3 +δv ≤ 0

u5 +φ2 −φ3 +δv ≤ 2

φ3 −δv ≤ 0

u5 −φ2 −δv ≤ 0

φ2 +φ3 ≤ 1

Table 3.4: Truth table for the relations between the control signal to V1 and the faults and

the corresponding linear inequalities

combinations of [u5, φ2, φ3, δv] ∈ {0, 1}4 not appearing as a row in Table 3.4 are not valid

and are excluded by one or more inequalities in Table 3.4. On the other hand, each row of

the truth table satisfies each inequality.

82 3 Mixed Logic Dynamical Models of Practical Systems

u
5 2

3

ϕ

ϕ δ 00

00

01

01 11

11

10

10

1 1 1 0

0 0 0 1

1 0

0

0 1

0 00

v

Figure 3.4: Karnaugh map

Karnaugh Maps and Comparison of the Methods To verify the derivation of the

CNF, we can use a Karnaugh map (Turner, 1968; Hayes, 1993; Grogg, 1991). To each com-

bination of [u5, φ2, φ3, δv] in Table 3.4 we assign the truth value 1, and to each combination

not occurring in the table3 we assign the truth value 0. The Karnaugh map is shown in

Figure 3.4. The terms of the CNF in Equation (3.58) correspond exactly to the marked

blocks.

Model Size Table 3.5 summarizes the parameters of the MLD model of the three tank

system after the inclusion of faults.

3.2.7 System Description in HYSDEL

Modelling the three tank system as in Section 3.2.2 and 3.2.3 enables the user to use

HYSDEL (Torrisi et al., 2000) as a tool for automated translation of an MLD model into

Matlab syntax. The HYSDEL description of the three tank system is reported in Appendix

B.

3i.e. to each invalid combination

3.2 Case Study: Three Tank System 83

Number of auxiliary binary variables δ 4

Number of auxiliary continuous variables z 9

Number of states x 3

Number of inputs u 7

Number of constraints 59

Table 3.5: Variables of the three tank system

3.2.8 Implementation and Experiments

The three tank system has been built as a laboratory experiment at the Automatic Control

Laboratory of ETH Zürich. A picture of the system can be seen in Figure 3.5. Details

about the components, the usage of the system, the software and applications can be found

in (Mignone and Monachino, 2001). All experiments of this thesis have been collected from

the set-up shown in Figure 3.5. The nominal behaviour of the system is represented in

Figure 3.6, where we show a simulation of the MLD system, and in Figure 3.7, where the

measured data of an experiment on the laboratory set-up can be seen. The sampling time

in all plots is 10 seconds. The differences between simulation and experiment, especially

for the time constant of trajectory h3, are mainly due to the nonideal characteristics of

the connecting valves. In (Mignone and Monachino, 2001) we report several measurement

series used to identify the valve parameters.

Differences to the Benchmark System Compared to the benchmark system (Lunze,

1998), the model at the Automatic Control Laboratory of ETH Zürich exhibits mainly

quantitative differences. The parameters of the experimental set-up differ from the ones

listed in Table 3.2:

• The cross-sectional areas of the valves are not all of the same size.

• The connecting valves V1, V2, V13, V23 have a 4-5 times smaller cross sectional area

84 3 Mixed Logic Dynamical Models of Practical Systems

Figure 3.5: Three tank system: Laboratory set-up

than the benchmark system. Moreover, the flow through the valves is direction

dependent.

• The outflows are located at each tank and can be manually, continuously opened

from closed position to the opening position defined in the benchmark system.

• The pumps convey a maximum flow that is about twice as large as the maximum flow

of the benchmark system. The pump action is artificially limited by the software.

These differences along with a smaller hysteresis width reflect themselves in smaller oscil-

lations of the levels h1 and h3 in Figure 3.6.

In Figure 3.8 we show the manipulated variables during the simulation in Figure 3.6.

Note that the setpoint of [0.5, 0, 0.1] generates a switching trajectory for valve V1. Indeed,

this system exhibits a limit cycle as described in Section 2.8. The cycling behaviour is

3.2 Case Study: Three Tank System 85

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

time [s], sampling time Ts=10 s

Simulation, MLD model, parameters from laboratory

le
ve

ls
 h

1,
 h

3
 [m

]

0
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Simulation, MLD model, parameters from benchmark

100 200 300 400 500 600

time [s], sampling time Ts=10 s

le
ve

ls
 h

1,
 h

3
 [m

]
Figure 3.6: Nominal behaviour of the three tank system: Simulation of the MLD model

using the estimated parameters of the laboratory set-up (left) and using the parameter

defined in the COSY benchmark system (right). The reference at 0.5 m corresponds to h1.

0 100 200 300 400 500 600
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
Experiment on laboratory model

time [s], sampling time Ts=10 s

le
ve

ls
 h

1,
 h

3
 [m

]

Figure 3.7: Nominal behaviour of the three tank system: Measurement on the laboratory

set-up. The reference at 0.5 m corresponds to h1.

86 3 Mixed Logic Dynamical Models of Practical Systems

a property observed only for certain reference values, like the one chosen above. Other

reference values, like [0.4, 0, 0.1] do not result in any cycles.

0

0.2

0.4

0.6

0.8

1 x 10
−4

pu
m

p
Q

[m

 /
s]

1

Simulation, MLD model, parameters from laboratory

0 100 200 300 400 500 600

time [s], sampling time Ts=10 s

3

0

1

va
lv

e
V

1

0 100 200 300 400 500 600

time [s], sampling time Ts=10 s

Simulation, MLD model, parameters from laboratory

Figure 3.8: Pump action of Q1 (left) and valve V1 (right) during the simulation of the MLD

model of the three tank system using the estimated parameters of the laboratory set-up

3.3 Case Study: Hydroelectric Power Plant 87

3.3 Case Study: Hydroelectric Power Plant

This section is a modified version of the paper (Ferrari-Trecate, Mignone, Castagnoli and

Morari, 2000) and has been written based on the Master’s thesis by Castagnoli (2000), from

which most of the results have been taken. We present the model of a hydroelectric power

plant in the framework of MLD systems. Each outflow unit exhibits a hybrid behaviour

since flaps, gates and turbines are controlled with logical inputs and the outflow dynamics

depend on the logical state of the unit. We show how to derive detailed models of the units

considering not only standard operating conditions, but also emergencies and startup and

shut-down procedures.

Our goal is to provide a practical modelling example of a system in MLD form, rather than

solve the complex control problem connected to it. To illustrate the controller synthesis, we

reduce the model to a simplified form in Section 3.3.7. The simplified model is used in the

next chapter for controller synthesis, even though we do not claim it to be representative

of the actual plant.

3.3.1 Introduction

The outflow control for hydroelectric power plants is a multiobjective, multivariable, con-

strained control problem that is difficult to handle with conventional control techniques in

its full generality. The final goal of maximal power generation can be achieved by properly

distributing the outflow through the available outflow units. In (Chapuis, 1998) the control

problem has been solved with a fuzzy controller. Several aspects further complicate the

controller synthesis problem, like environmental aspects (protection of river banks, respect

for the fauna, possibility of sailing), or operational constraints (contracts with other plants

along the river)

In this section we consider the hydroelectric power plant described in (Chapuis, 1998;

88 3 Mixed Logic Dynamical Models of Practical Systems

Rake

Reservoir

Level sensor

Flaps

Gates

reference level
Water

Turbines

Figure 3.9: Configuration of the river power plant

Chapuis and Kraus, 1999) that includes three types of water outflow units: Four gates,

four flaps and two turbines. The weirs (i.e. the gates and the flaps) form a barrage across

the river (see Figure 3.9, source: (Chapuis, 1998)) and the total outflow of the dammed

river is determined both by the water level in the reservoir and by the opening of the units.

The manipulated variables are the openings of each outflow element and the measured

variables are the total outflow and the power generated.

There are three main reasons why the outflow units are suitably modelled as hybrid sys-

tems:

1. The actuator action is given by a discrete input to the stepper motors of the compo-

nents, namely the commands to open, close, or leave unchanged the opening of the

outflow element.

2. The internal description of every element is given by a finite state machine that

3.3 Case Study: Hydroelectric Power Plant 89

associates different opening dynamics to different logical states.

3. The plant operation is strongly influenced by qualitative decision rules about the use

of one type of outflow unit rather than another one.

The preferences mentioned in point 3 above involve for instance rules, like: if the desired

outflow increases, the controller should first try to increase the flow through the turbines,

rather than the weirs, in order to maximize the produced power. A less trivial constraint is

that the procedure of opening and closing an outflow element cannot be arbitrarily short.

If an outflow element has started to move, it should be kept on moving for a given minimal

time. Moreover, the minimal opening of an outflow unit is given. If the opening falls

below this limit, the outflow element must be closed completely. Such a behaviour avoids

damages due to obstacles, which might be trapped in the plant.

In this work we model the outflow units as hybrid systems in the MLD form. For MLD

systems the control synthesis problem can be formulated and solved in a systematic way

using a Model Predictive Control scheme, see Section 4.1. Besides of being capable to

handle the hybrid characteristics of the outflow elements, the MLD form allows to prioritize

the use of some outflow elements or outflow units in certain operating regimes, as it is

outlined in Section 4.6. Other reasons for using MLD models are the possibility to include

heuristic rules in the model via propositional logic statements and to include hard and/or

soft constraints, the possibility to solve fault detection and state estimation problems

within a receding horizon estimation scheme.

3.3.2 The Model of the Flaps

The openings of the turbines and the weirs control the total outflow of the hydroelectric

power plant. An outer loop with a simple PI regulator is present, whose output is the

setpoint value for the outflow controller (Lahlou, 1994). The level in the water reservoir,

90 3 Mixed Logic Dynamical Models of Practical Systems

Figure 3.10: Model of the flap: Parameters characterizing the outflow of a flap

Figure 3.11: Model of the flap: Automaton of the stepper motor

3.3 Case Study: Hydroelectric Power Plant 91

denoted by uc in Figure 3.10, is therefore a continuous input to the system formed of

flaps and gates. The opening α [m] of a single weir is regulated by a stepper motor

whose behaviour in normal and emergency conditions is described by the automaton in

Figure 3.11. An emergency usually occurs when there are problems due to the connected

electric network: In this case the turbines must be closed as fast as possible and the weirs

must be opened quickly to maintain the global outflow constant. For sake of simplicity, in

Figure 3.11 we omitted the obvious transitions from one state to itself.

The stepper motor is driven by a discrete input u`(t) ∈ {open, close, stop, emergency}

that controls the transitions between the five logical states Opening, Closing, Stop,

Emergency and, Stand-by. In order to derive an MLD representation of the stepper

motor, we have to code the logical states and the inputs into vectors of binary variables.

In principle, it is possible to associate with each different state/input a new binary variable,

but this procedure would increase the computational burden for the simulation (and the

control) of the model. Therefore, we use the minimal number of logical variables, i.e. two

logic input variables u`,1, u`,2 and three logic state variables x`,1, x`,2, x`,3 that code the

discrete inputs and states of the automaton as in Tables 3.6 and 3.7.

stop open close emergency

u`,1 0 1 0 1

u`,2 0 0 1 1

Table 3.6: Coding of the logical inputs of the stepper motor

Stop Opening Closing Emergency Stand-by

x`,1 0 1 0 1 1

x`,2 0 0 1 1 1

x`,3 ? ? ? 0 1

Table 3.7: Coding of the logical states of the stepper motor. The symbol ? denotes indif-

ferently 0 or 1.

In Figure 3.11 we note that the admissible transitions depend on the value of α that is

92 3 Mixed Logic Dynamical Models of Practical Systems

constrained between the minimum and maximum opening (αmin = 0 [m] and αmax = 2 [m]).

For instance, the transition from stop to opening is not allowed if the weir is completely

opened (i.e. α = αmax) even if the command open occurs. To take into account these

conditions, we introduce two logical variables δmax(t) and δmin(t) defined by

[δmax(t) = 1] ↔ α(t) ≥ αmax (3.64)

[δmin(t) = 1] ↔ α(t) ≤ αmin (3.65)

To model the evolution of the logical state x`(t), it is convenient to introduce three logical

variables δ`,1(t), δ`,2(t), δ`,3(t) defined as

δ`,i(t) , x`,i(t+ 1) i ∈ {1, 2, 3} (3.66)

and

δ` ,



δ`,1

δ`,2

δ`,3


 (3.67)

This is similar to the definition of a finite state machine in Section 2.6.3. With the notations

introduced so far, every state transition of the automaton depicted in Figure 3.11 can be

described as a logical implication. For instance, the transition from the state Opening at

time t to Stop at time t+ 1 is modelled as


x` (t) =




1

0

?


∧


u` (t) =


 0

0


 ∨ u` (t) =


 0

1


 ∨ δmax = 1


∧


u` (t) =


 1

1






→


δ` =




0

0

?




 (3.68)

In order to find the linear inequalities representing (3.68) we can use the methods shown

in Section 2.4.1. For this work we have chosen the truth table method.

3.3 Case Study: Hydroelectric Power Plant 93

The dynamics of the opening α depends on the logical state of the stepper motor

α̇ =




1
τ

if x` = Opening

− 1
τ

if x` = Closing

0 if x` = Stop or Stand-by

1
τe

if x` = Emergency.

(3.69)

where for a flap τ = 120 [s] and τe = 60 [s]. Since all the dynamics are simple integrators,

we can discretize them with a sampling time TC = 10 [s] and write

α(t+ 1) = α(t) + δo(t)
TC

τ
− δc(t)

TC

τ
+ δe(t)

TC

τe
(3.70)

provided that the new logic variables δo, δc, δe are set equal to one when the values of the

logical states, the logical inputs and the saturation indicators δmax and δmin allow opening

or closing the weir. For instance, the value of δe is assigned by the proposition


x` (t) =




1

1

0


 ∨ u` (t) =


 1

1




 ∧ (δmax (t) = 1)


→ δe (t) = 1. (3.71)

The last task is to compute the outflow that is the output of the system. For this purpose

we describe the outflow of a flap. The case of a gate is similar. The outflow law is given

by (Krivchenko, 1994):

y(t) =




2
3
bCD

√
2g∆L(t)

3
2 ∆L(t) > 0

0 ∆L(t) ≤ 0
(3.72)

where b = 14.5 [m] is the length of the flap, ∆L = uc − Lref + α is the difference between

the level of the river and the opening of the flap, see Figure 3.10, Lref = 7.5 [m] and

CD = 0.6 is the discharge coefficient. From (3.72) it is apparent that the outflow is a

nonlinear function of ∆L. In order to embed (3.72) in the MLD form (2.8) we have to

94 3 Mixed Logic Dynamical Models of Practical Systems

Figure 3.12: Approximation of the outflow profile.

approximate it either in a linear or piecewise affine way. By using a linear function it was

impossible to reduce the maximum error below 10.63% in the range of interest for ∆L.

To reduce the error, we approximate (3.72) with the piecewise affine function depicted in

Figure 3.12, thus obtaining a maximum error of 3.31%. Then, the approximated outflow

is described by the equations

y(t) =




0 ∆L(t) ≤ 0

m1∆L(t) 0 ≤ ∆L(t) ≤ p

m2∆L(t) + p(m1 −m2) ∆L(t) ≥ p

(3.73)

where p = 0.91, m1 = 21.81, and m2 = 48.54. The piecewise linear function (3.73) can be

incorporated into the MLD equations in the following way. First, we introduce the logical

variables

[δlin1(t) = 1] ↔ [∆L(t) ≥ 0] (3.74)

[δlin2(t) = 1] ↔ [∆L(t) ≤ p] (3.75)

[δlin3(t) = 1] ↔ [∆L(t) ≥ p] (3.76)

3.3 Case Study: Hydroelectric Power Plant 95

and write the outflow as

y(t) = 0 · (1− δlin1) δlin2 (1− δlin3) +m1∆L(t) · δlin1 δlin2 (1− δlin3) (3.77)

+(m2∆L(t) + p(m1 −m2)) · δlin1 (1− δlin2) δlin3.

Then, we introduce the binary variable

δlin(t) = δlin1(t)δlin2(t)

and the auxiliary real variables

zlin1(t) = δlin(t)uc(t)

zlin2(t) = δlin(t)α(t)

zlin3(t) = δlin3(t)uc(t)

zlin4(t) = δlin3(t)α(t)

Finally, we obtain the expression

y(t) = m1zlin1(t) +m1zlin2(t) +m2zlin3(t) +m2zlin4(t) − Lrefm1δlin(t)

+(p(m1 −m2) − m2Lref) δlin3(t) (3.78)

where we have made use of the identities

δlinδlin3 = 0 (3.79)

δlin1δlin3 = δlin3 (3.80)

To summarize the results obtained so far, the overall MLD model, for a single flap is

described by the following variables

x =
[
α x`,1 x`,2 x`,3

]T
u =

[
uc u`,1 u`,2

]T
z =

[
zlin1 zlin2 zlin3 zlin4

]T
δ =

[
δ`,1 δ`,2 δ`,3 δmax δmin δo δc δe δlin1 δlin2 δlin3 δlin

]T

96 3 Mixed Logic Dynamical Models of Practical Systems

input u uc water level in the reservoir [m]

u`,1, u`,2 code of the input signals to the stepper motor

state x α(t) opening of the flap [m]

x`,1(t), x`,2(t), x`,3(t) code of the stepper motor state

output y y(t) outflow [m3

s
]

Table 3.8: Interpretations of the variables in model of the flaps

The inputs, states and outputs have the interpretation listed in Table 3.8 and the matrices

are given in (3.81)-(3.88).

A =




1 0 0 0

0 0 0 0

0 0 0 0

0 0 0 0


 (3.81)

B1 = O4×3 (3.82)

B2 =




0 0 0 0 0 TC

τ
− TC

τ
TC

τe
0 0 0 0

1 0 0 0 0 0 0 0 0 0 0 0

0 1 0 0 0 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0 0 0 0


 (3.83)

B3 = O4×4 (3.84)

C = O1×4 (3.85)

D1 = O1×3 (3.86)

D2 =
[
0 0 0 0 0 0 0 0 0 0 (p(m1 −m2)−m2Lref) −Lrefm1

]
(3.87)

D3 =
[
m1 m1 m2 m2

]
(3.88)

The symbol Oa×b denotes the zero matrix of dimensions a× b. The 125 inequalities stem-

ming from the representation of the δ and z variables are collected in the matrices Ei,

i = 1, . . . , 5 of (2.8c) and are not reported here due to the lack of space.

3.3 Case Study: Hydroelectric Power Plant 97

3.3.3 Simulation of the Flap Model

The MLD system derived in the previous section is completely well-posed and can be

simulated as outlined in Algorithm 2.1 of Section 2.3. Although the model has a moderately

large size, the simulation can be performed very efficiently. For instance, the simulation

presented in Figure 3.13 was computed in 11.23s on a Sun Sparc Ultra60 workstation

running Matlab 5.3 and using the code in (Bemporad and Mignone, 2000).

Figure 3.13: Simulation of the flap opening: Squares: opening α(t + 1), Crosses: logical

input u`(t). We associate the value 1 with open, the value 0 with stop, the value -1 with

close and the value -2 with emergency

The simulation in Figures 3.13 and 3.14 was obtained by keeping the water level in the

reservoir constant (uc(t) = 7 [m]), and setting the initial conditions as α(0) = 1 [m] and

x`(0) = Stop. The corresponding outflow profile is depicted in Figure 3.14. We excited

the system in such a way to show its behavior in many operating conditions. For instance,

when the emergency signal occurs , the flap correctly opens up to αmax at the fast speed

98 3 Mixed Logic Dynamical Models of Practical Systems

Figure 3.14: Simulation of the flap: Outflow profile.

Tc

τe
ignoring the input applied at the next time samples.

3.3.4 Models of Gates and Turbines

By using the methodology outlined in Section 3.3.2, we can derive the MLD description of

the gates and the turbines. Details are available in (Castagnoli, 2000). Here we only sum-

marize the main issues in rather broad lines in order to illustrate the modelling capabilities

of MLD systems.

The model of the gates differs from the flap model only in the approximation of the outflow

law, which is

y(t) =


 bGCG

√
2gα(t)

√
2gu2

c(t)
uc(t)+CGα(t)

α(t) > 0

0 α(t) ≤ 0
(3.89)

and depends in a nonlinear way both on α(t) and uc(t).

3.3 Case Study: Hydroelectric Power Plant 99

Figure 3.15: Automaton of the turbine.

100 3 Mixed Logic Dynamical Models of Practical Systems

Concerning the turbines, the automaton of which is depicted in Figure 3.15, one has to

take into account the start and stop procedures that involve the presence of timers. In the

MLD framework, clocks can be modelled by introducing additional states and they can be

initialized by properly modelling the resetting logic (Castagnoli, 2000).

The schematic representation of the turbine is given in Figure 3.16. The inputs are the

difference of water levels (the head) ∆Y [m] before and after the power plant (see Figure

3.17) and the discrete control input u` to the stepper motor. The states are the opening

∆y

u l

α, x , x lt

Q

Pel

Figure 3.16: Variables of the turbine: binary variables are underlined with a dashed line

α [%] of the water guide vane, the timer xt [s] and the discrete operating mode x`. The

outputs are the outflow Q [m3

s
] and the electric power produced Pel [kW]. The dynamics

Figure 3.17: Turbine location

3.3 Case Study: Hydroelectric Power Plant 101

of the guide vane opening can be described as in (Castagnoli, 2000):

α(t+ 1) = α (t) + δα
Ts

τm
− δβ

Ts

τm
+ δγ

Ts

Tstart1

− δξ
Ts

Tstart2

(3.90)

where δα, δβ, δγ, δξ denote, whether the motor is in the mode opening, closing / stop 1,

start 1 or start 2 respectively4. If all δ’s are zero, the turbine is in stand-by, stop or stop 2

mode. The fact that the turbine is exactly in one mode at each time instant is enforced

with the constraint

δα + δβ + δγ + δξ ≤ 1 (3.91)

The outflow has been determined in (Castagnoli, 2000) by linearizing the nonlinear relation

Q = f(∆Y, α) over 6 regions in the ∆y, α−plane. The linearized outflow in (3.92)

Q (α,∆Y) =




L1α +M1∆Y +N1 for


 α

∆Y


 ∈ X1

...

L6α +M6∆Y +N6 for


 α

∆Y


 ∈ X6

(3.92)

achieves an average error of the outflow of 1.6% over the feasible range of ∆Y and α. The

regions Xj are defined by the partition shown in Figure 3.18 and Li, Mi and Ni are the

coefficients of the linearized outflow.

For a turbine, one must compute the produced power (that depends on the outflow, among

other variables) as additional output. Usually, this nonlinear relation between the opening

α of the turbine, the head ∆y and the outflow Q is provided by the manufacturer of the

turbine in the form of a lookup table. Therefore one has to approximate the lookup table

with a piecewise linear function keeping in mind that the finer the approximation is chosen,

the more complex the overall model becomes in terms of binary variables.

4We use the same terminology as in Figure 3.15 for the turbine modes.

102 3 Mixed Logic Dynamical Models of Practical Systems

0 0.2 0.4 0.6 0.8 1
0

2

4

6

α [% α
 Max

]

∆ Y

[
 m

]

χ 6

χ 5

χ 1

χ 2

χ 4

χ 3

Figure 3.18: Regions Xj on the ∆y, α-plane, for which the outflow is linearized

3.3.5 Dimensions of the Power Plant Components

In Table 3.9 we report the size of the models of gates, flaps and turbines derived in

(Castagnoli, 2000).

3.3.6 Overall Plant

For the successful application of the controller there are a list of constraints and specifica-

tions to be taken into account. For instance:

• if the outflow should increase, open turbines rather than flaps

• if the outflow should increase, open flaps rather than gates

• if the outflow should decrease, close flaps rather than turbines

3.3 Case Study: Hydroelectric Power Plant 103

Turbine Flap Gate

continuous states 2 1 1

binary states 3 3 3

continuous inputs 1 1 1

binary inputs 3 2 2

auxiliary binary variables 19 12 9

auxiliary continuous variables 7 4 2

number of constraints 287 125 106

Table 3.9: Dimension of MLD models of the outflow elements

For a complete description of such specifications we defer to (Chapuis, 1998). These spec-

ifications can be added as soft or as hard constraints in the model of the power plant and

they can be systematically considered in the choice of the control moves, as it is shown in

Section 4.6.

The control algorithm is applied to the overall plant, which is obtained by aggregating the

individual outflow units. For nominal operation however, the complexity of the components

modelled in (Castagnoli, 2000) is unnecessarily high, see Table 3.9. For instance, there is

no need to model the emergency signals, since emergencies are very unlikely to be handled

by the MPC (see Section 4.1.2) scheme in an automated way. The use of simplified models

allows to improve the speed of the numerical computations involved for the controller

synthesis. The complexity of such problems depends mainly on the number of binary

variables in the model. To improve the efficiency of the control algorithm, we have built

a simplified model of lower complexity in terms of the total number of binary variables,

reducing the description of the automata governing the outflow components.

104 3 Mixed Logic Dynamical Models of Practical Systems

3.3.7 Simplified Power Plant

To derive a simplified model of the power plant, we model each of the three components

(turbines, gates and flaps) as a “universal” outflow unit. No qualitative distinction between

the three types is made. A simplified, linear, discrete-time model of an outflow unit is given

by:

αo`(t+ 1) = αo`(t) + µo∆Q
+
o`(t)− µo∆Q

−
o`(t) (3.93)

subject to saturations on αo`

αo min ≤ αo`(t) ≤ αo max (3.94)

The variables are explained in Table 3.10.

o index denoting one of the outflow units, i.e. o ∈ {g, f, t} where:

g: gates; f : flaps; t: turbines

αo` opening of outflow element `

µo coefficient relating the opening of the outflow element

to the control signal of the stepper motor

∆Q+
o` signal to stepper motor of element ` (opening) ∆Q+

o` ∈ {0, 1}

∆Q−
o` signal to stepper motor of element ` (closing) ∆Q−

o` ∈ {0, 1}

Table 3.10: Variables in the model of a simplified outflow unit

The modelling of saturated variables can be done in several ways for MLD systems. The

simplest way is to extend the linear model in Equation (3.93) with constraints on the state,

as in Equation (3.94). A more elaborated way is the introduction of 2 binary indicator

variables that allow to identify the 3 regions where the outflow element can be: lower

saturation, linear operation and upper saturation. The advantage of introducing these

binary variables are:

3.3 Case Study: Hydroelectric Power Plant 105

• The additional binary variables allow to impose easily constraints on the use of

outflow elements and units. The availability of an outflow unit to perform a closing

or an opening operation is given in terms of these variables

• The prioritizations of one type of unit rather than another one can be expressed in

terms of these variables.

• The simulation of the system is always feasible, also for input sequences that drive

the system into saturations. For MLD systems the simulation is performed solving a

mixed integer continuous feasibility test at each time step, as outlined in Algorithm

2.1.

The additional binary variables have been introduced in the following way:

δ1 = 1 ⇔ outflow element is in upper saturation (3.95)

δ2 = 1 ⇔ outflow element is in linear operation (3.96)

Assuming αo min = 0, the MLD model of an outflow element is given by

αo`(t+ 1) = z(t) (3.97)

Q(t) = νox(t) (3.98)

subject to


αo max εo

−µo 0

µo µo

1 1

−αo max −αo max + εo




δ(t) +




−1

−1

1

0

1




z(t) ≤




0 0

−µo µo

µo −µo

0 0

0 0




u(t) +




0

−1

1

0

0




x(t) +




0

0

µo

1

0



(3.99)

The output Q is the outflow through the element, εo is a small tolerance. In Equation

(3.98) we assume a linear relation between the outflow and the opening of the element,

with a proportionality coefficient νo [m3

s
]. The dimensions of the MLD model of one single

outflow element are summarized in Table 3.11. To obtain the size of an MLD model for

106 3 Mixed Logic Dynamical Models of Practical Systems

variable type symbol number of variables

binary inputs u [∆Q+
o`,∆Q

−
o`] nu = 2

binary auxiliary variables δ [δ1, δ2] nδ = 2

real auxiliary variables z z nz = 1

states x αo` nx = 1

inequalities ne = 5

Table 3.11: Dimensions of the MLD model for one single outflow element

the overall plant, the numbers nu, nδ, nz, nx in Table 3.11 scale linearly with the number of

elements required in the plant. The coupling between the outflow elements is specified with

additional constraint. For instance, we have to impose that at most one outflow element is

moved at each time step. Moreover, if we take into account the priorities on the operation

of opening and closing the outflow elements, summarized in Table 3.12, the total number

of inequalities would become 177.

turbines flaps gates

∆Q ≥ 0 high medium low

∆Q < 0 low medium high

Table 3.12: Priorities for the use of outflow units

Comparison with the Detailed Models of the Outflow Units

Compared to the detailed model of the outflow unit, the simplified model does not take

into account several features:

• The emergency mode of each outflow unit is neglected.

• The procedure of opening and closing an outflow element cannot be arbitrarily short.

3.3 Case Study: Hydroelectric Power Plant 107

If an outflow element has been started moving, it should be kept on moving for a

given minimal time.

• The minimal opening of an outflow unit is given. If the opening falls below this limit,

the outflow element must be closed completely. Such a behaviour avoids damages

due to obstacles, which might be trapped in the plant.

Simulation of the Power Plant

In Figure 3.19 we simulated the outflow units of a power plant according to the model

described in this section. We have chosen a system with 2 gates, 2 flaps, and 1 turbine.

The plot shows the opening of the outflow elements that are driven by an arbitrary control

sequence. The only additional constraint in this simulation is the requirement that at most

one element can be moved at each sampling time. For the trajectories of the openings in

Figure 3.19, we obtain a total outflow shown in Figure 3.20.

Steady States

When setting up the model predictive control scheme, the required reference values in

Equation (4.1) are obtained by solving (2.75) - (2.78) for xf , uf , δf , zf . The latter opti-

mization problem can lead to an unreachable steady state, see Section 2.8. The resulting

state xf is a valid state for the MLD system, from which a system trajectory can be simu-

lated. However, for any initial state, there exists no input sequence leading to the steady

state.

This situation occurs for the system under consideration. The result of the optimization

(2.75) - (2.78) leads to a steady state where one gate is open, while the turbines and flaps

are closed. Indeed, the model contains explicit constraints about opening turbines, flaps

and gates in this order, and closing them in reverse order, see Table 3.12. Note that the

108 3 Mixed Logic Dynamical Models of Practical Systems

0 10 20 30 40 50
0

2

4

6

8

10
Openings of the outflow elements

gate 1
gate 2
flap 1
flap 2
turbine 1

time [s], sampling time Ts = 1 s

O
pe

ni
ng

s
 [1

]

Figure 3.19: Opening of the outflow elements on the simplified power plant excited by some

arbitrarily chosen input sequence; the parameters are αgmax = 20, αfmax = 15, αtmax = 10,

µg = 1, µf = 1.5, µt = 2, νg = 5, νf = 2, νt = 1 (normalized per unit representation)

0 10 20 30 40
0

10

20

30

40

50

60
Total outflow

time [s], sampling time Ts=1 s

T
ot

al
 o

ut
flo

w
 [1

]

Figure 3.20: Total outflow with the openings shown in Figure 3.19 (normalized per unit

representation)

3.3 Case Study: Hydroelectric Power Plant 109

system inputs are binary and modelled as ∆u. They denote a step up or down in opening

or closing the outflow elements. This guarantees that starting the model from a sensible

initial condition will keep the system on a trajectory of valid states.

The components which are responsible for the unreachable states in the simplified power

plant are isolated in the following MLD model. Here we show, how this problem can arise.

Consider the system:

x1(k + 1) = x1(k) + µ1u
+
1 (k)− µ1u

−
1 (k) (3.100)

x2(k + 1) = x2(k) + µ2u
+
2 (k)− µ2u

−
2 (k) (3.101)

y(k) = c1x1(k) + c2x2(k) (3.102)

where c1, c2, µ1, µ2 are positive coefficients; x1 ≥ 0, x2 ≥ 0 are continuous states, u+
1 , u−1 ,

u+
2 , u−2 are binary inputs. Let the system be subject to the following constraints:

[δ1 = 0]⇔ [x1 ≥ xmax] (3.103)

[δ1 = 1]⇒ [u+
2 = 0] (3.104)

u+
1 (k) ∧ u−1 (k) (3.105)

u+
2 (k) ∧ u−2 (k) (3.106)

where c1 > 0; c2 > 0; µ1 > 0; µ2 > 0. We assume the initial state x(k = 0) = 0. The

inputs to this system are binary and they can drive the system in a quantized way, either

a step up or down or they can leave the state unchanged. The logical proposition (3.104)

expresses the fact that state x2 can be manipulated in positive direction, only if the state x1

has reached a given threshold. This is a form of hard prioritization of state x1 with respect

to state x2. Expressions (3.105) and (3.106) exclude that the states can be increased and

decreased at the same time. Defining u = [u+
1 , u

−
1 , u

+
2 , u

−
2] and x = [x1, x2], the MLD

form of this system is:

x(k + 1) =


1 0

0 1


 x(k) +


µ1 −µ1 0 0

0 0 µ2 −µ2


u(k) (3.107)

y(k) =
[
c1 c2

]
x(k) (3.108)

110 3 Mixed Logic Dynamical Models of Practical Systems




−m1

−M1 − ε

1

0

0

0

0




δ(k) ≤




0 0 0 0

0 0 0 0

0 0 −1 0

−1 −1 0 0

0 0 −1 −1

0 0 0 0

0 0 0 0




u(k) +




1 0

−1 0

0 0

0 0

0 0

1 0

0 1




x(k)+




−xmax−m1

xmax − ε

1

1

1

0

0




(3.109)

where

M1 = max(x1 − xmax) (3.110)

m1 = min(x1 − xmax) (3.111)

For this system we compute a steady state, assuming that the reference values for y lies in

the range

r ∈ [0, c1xmax − ε]

Indeed, the maximal output for which δ1 = 0 is c1xmax − ε. This means that all reference

values up to c1xmax − ε can be reached having x2f = 0. Because of (3.105) and (3.106),

in steady state the inputs to the system must all be zero. The steady state for δ is zero,

since we assume that x1e < xmax. Therefore, with the choice of

xe =


 r

c1

0


 (3.112)

we can reach the reference value exactly. Note that (3.112) is the unique reachable steady

state for the system under the assumption of r < c1xmax.

The solution of (2.75) - (2.78), however, can lead to an unreachable state. With the

considerations above, we find that the cost function (2.75) of the optimization problem

reduces to the minimization

min
x
ρ (||x||) (3.113)

3.3 Case Study: Hydroelectric Power Plant 111

This is due to the facts that the reference value can be reached exactly, the system does

not have any auxiliary real variable z and the steady state values for u and δ are zero.

Therefore all terms in (2.75) are zero, except for ||x||. Without taking into account the

reachability properties, the optimization (3.113) chooses the state with the smallest norm.

This results in the steady state

x̃f =


 c1r

c21+c22

c2r
c21+c22


 (3.114)

The condition r < c1xmax implies that c1r
c21+c22

< xmax. In the resulting steady state both

state components are nonzero, and x̃1f < xmax. Therefore x̃f cannot be reached from the

initial state x(0) = 0.

112 3 Mixed Logic Dynamical Models of Practical Systems

Chapter 4

Control and Supervision of Mixed

Logic Dynamical Systems

In this chapter we consider some analysis and synthesis aspects of MLD models by pre-

senting strategies and algorithms, on how to tackle control and supervision problems. The

effectiveness of the methods is demonstrated with simulations and practical experiments

on a laboratory model.

4.1 Model Predictive Control of Mixed Logic Dynam-

ical Systems

4.1.1 Introduction

The traditional approach to design embedded controllers is based on the development of

rules that rely on heuristics or on the plant knowledge by the operators. Such rules are

often based on “common sense” and take into account specific plant scenarios. However

113

114 4 Control and Supervision of Mixed Logic Dynamical Systems

the analysis of the overall controlled plant for all the possible scenarios is usually a hard

task, which is typically solved in industry by performing a large number of simulations or

runs of the controller.

Formal verification certifies that a hybrid system satisfies certain requirements. This

amounts to solve the following reachability problem: For a given set of initial conditions

and disturbances, guarantee that all possible trajectories never enter a set of unsafe states,

or possibly provide a counterexample. Clearly, verification only assesses if an existing con-

troller performs in a safe way or not, but does not provide any direct hint on how the

controller should be modified. Moreover, it is well known that formal verification of hybrid

systems is an undecidable problem (Alur et al., 1993). In spite of this complexity, several

tools for formal verification of hybrid systems have been proposed in the literature, see

(Bemporad, Torrisi and Morari, 2000; Torrisi, 2002) and references therein.

Recent research efforts produced techniques that allow a direct synthesis of controllers that

are in some sense optimal and take into account physical and operational constraints. For

MLD systems the main methods available are:

• Model predictive control of MLD systems using online mixed integer continuous op-

timizations (Bemporad and Morari, 1999a). We review this method in Section 4.1.2.

• Piecewise linear state feedback for the equivalent PWA systems obtained using linear

matrix inequality optimizations (Mignone et al., 2000a). This technique is presented

in Chapter 6.

• Explicit form of Model Predictive Controllers obtained by multiparametric optimiza-

tion techniques (Bemporad, Borrelli and Morari, 2000a). The main idea of this

approach is to move the computations offline that are required to synthesize the op-

timization based controller. It can be shown that the control law obtained with an

online model predictive control scheme can be reproduced with a piecewise linear

state feedback. We defer to (Borrelli, 2002) for details.

4.1 Model Predictive Control of Mixed Logic Dynamical Systems 115

A comparison of these methods is beyond the scope of this work. We will focus on the first

two approaches.

4.1.2 Description of the Method

Model predictive control (MPC) is a form of feedback control, where the current value of the

manipulated variables is determined online as the solution of an optimal control problem

over a horizon of given length. The behaviour of the system over the horizon is predicted

with a model and the current state of the plant is the initial state for this prediction.

While a possibly large set of control moves is computed, only the first one is implemented

on the plant. When an updated information about the plant state is available at the

next sampling instant, the optimization is repeated over a shifted horizon. The ability to

systematically include constraints and the possibility to handle plants with multiple inputs

and outputs have made MPC an attractive technique in process industry (Lee and Cooley,

1997; Mayne, 1997; Qin and Badgewell, 1997; Mayne et al., 2000; Garcia et al., 1989). We

defer to the recent monographs (Camacho and Bordons, 1999; Maciejowski, 2002) for an

introduction to classical model predictive control.

In the present context, due to the presence of integer variables, the optimization procedure

is a Mixed Integer Program. We consider this type of mathematical optimization problem in

Chapter 5. A first attempt to use on-line mixed integer programming to control dynamic

systems subject to logical conditions has appeared in (Tyler and Morari, 1995). Other

works aiming at combining MPC to hybrid control have appeared in (Slupphaug and

Foss, 1997; Slupphaug et al., 1997).

An application of the concepts of predictive control to MLD systems has been proposed in

(Bemporad and Morari, 1999a). Assuming a quadratic cost function and given x0, for an

116 4 Control and Supervision of Mixed Logic Dynamical Systems

MLD system the optimization at time t = 0 has the following form:

min
uT−1
0 ,δT−1

0 ,zT−1
0

J(uT−1
0 , x0) =

T−1∑
t=0

‖u(t)− uf‖2Q1
+ ‖δ(t, x0, u

t
0)− δf‖2Q2

+

‖z(t, x0, u
t
0)− zf‖2Q3

+ ‖x(t, x0, u
t−1
0)− xf‖2Q4

+ ‖y(t, x0, u
t−1
0)− yf‖2Q5

(4.1)

subject to

x(t + 1, x0, u
t
0) = Ax(t, x0, u

t
0) + B1u(t) + B2δ(t, x0, u

t
0) + B3z(t, x0, u

t
0) (t=0 . . .T−1) (4.2)

x(T, x0, u
T−1
0) = xf (4.3)

E2δ(t, x0, u
t
0) + E3z(t, x0, u

t
0) ≤ E1u(t) + E4x(t, x0, u

t
0) + E5 (t = 0 . . . T) (4.4)

where ‖x‖2Q = xTQx, Qi = QT
i ≥ 0, i = 1, . . . , 5, are given weight matrices, xf , uf ,

δf , zf , yf are given offset vectors satisfying (2.8b)–(2.8c), for which we recall the possible

difficulties described in Section 2.8. uT−1
0 = [u(0|0), u(1|0), . . . u(T − 1|0)] ∈ Rnu×T is the

sequence of manipulated variables over a horizon of T steps computed at time t = 0, uk−1
0

is the sequence uT−1
0 truncated to the first k values. x(t + 1, x0, u

t
0) is the state at time

t+ 1 computed from the initial state x0 with the input sequence ut
0. The other quantities

are defined accordingly. The weighting matrices on the auxiliary variables δ and z allow to

formulate the optimization problem with a positive definite cost function. For a practical

application however, the weights Q1, Q4, Q5 are more important, since they determine the

trade-off between the control action effort and the accuracy of the reference tracking.

The resulting mathematical optimization problem is a mixed integer quadratic program

(MIQP), see Chapter 5. In (4.1) a quadratic cost function is used to penalize the deviations

between the references and the model predictions. In (Bemporad, Borrelli and Morari,

2000a) the 1/∞-norm is chosen, where the ∞-norm is taken over the vector components

and the 1-norm over the horizon. The resulting mathematical problem is a Mixed Integer

Linear Program (MILP), see Chapter 5.

4.1 Model Predictive Control of Mixed Logic Dynamical Systems 117

4.1.3 Application of Model Predictive Control to the Three Tank

System: Experiment

We have applied the control scheme (4.1)-(4.4) to the three tank system described in Section

3.2. In this section we report an application to the real experimental set-up of Figure 3.5.

In the experiment shown in Figure 4.1 we assume a time varying trajectory for the levels

h1, h2 and a constant reference for h3 in the middle tank. This scenario simulates, e.g., a

varying supply to the outer tanks, despite of which the outflow from the middle tank is

required to be constant. This experiment has been performed with the solution of MIQPs

online, using the solver Xpress-MP (Dash Associates, 1999). The main parameters are

listed in Table 4.1. In order to show the capability of handling a multivariable hybrid

control problem, we have used both pumps and all four switching valves as actuators.

Figure 4.2 shows the pump action during the experiment. The maximum pump action at

control horizon 3 steps

prediction horizon 3 steps

sampling time 10 sec

Q4 diag(1,1,1)

Q5 diag(1000, 3000, 10000)

Q1, Q2, Q3 diag(0.01, 0.01, 0.01, ...)

Table 4.1: Parameters of the control experiment in Figure 4.1; diag(x,y,...) denotes a

diagonal matrix with the entries x, y, ... in this order.

the beginning of the experiment is due to the fact that the initial states all lie below their

reference. Note that the experiment involves a significant switching of the binary inputs

and the level indicator variables δ. The inputs to the switching valves required to keep

track of the references is shown in Figure 4.3.

In Figure 4.1 the state trajectories show a systematic delay compared to their reference.

118 4 Control and Supervision of Mixed Logic Dynamical Systems

0 200 400 600 800
0

0.1

0.2

0.3

0.4
Tank levels, dashed line: reference, solid line: measurements

time [s], sampling time Ts=10 s

Le
ve

ls
 h

1,
 h

2,
 h

3
 [

m
]

h3

h1

h2

Figure 4.1: Control experiment on the three tank system: The dashed lines represent the

reference trajectory for the three levels, the solid lines are the measured levels

0 200 400 600 800

in
pu

t Q

[m
 /s

]
1

0 200 400 600 800
0

2

4

6

8
x 10

−5

time [s], sampling time Ts=10 s

Pump actions

in
pu

t Q

[m
 /s

]
2

x 10
−5

0

2

4

6

8

10

3
3

Figure 4.2: Control experiment on the three tank system: Pump action during the exper-

iment. The maximum flow is limited to 0.8 · 10−4 m3

s

4.1 Model Predictive Control of Mixed Logic Dynamical Systems 119

0

1

in
pu

t V
13

0

1
in

pu
t V

23

0

1

in
pu

t V
1

0

1

in
pu

t V
2

0 200 400 600 800

time [s], sampling time Ts=10 s

Switching Valves

Figure 4.3: Control experiment on the three tank system: Discrete control action of the

switching valves

Indeed, this experiment uses the current reference value yf(t) as a constant reference over

the whole horizon in (4.1). The delays are significantly reduced, if we use the complete

time-varying reference [yf(t), yf(t+ 1), yf(t+ T − 1)] in (4.1). We defer to (Mignone and

Monachino, 2001) for a comparison.

4.1.4 Application of Model Predictive Control to the Simplified

Power Plant: Simulation

The simplified model of the outflow units of a hydroelectric power plant in Section 3.3.7

has been used to perform a reference tracking control problem. We have assumed a power

plant with one outflow element for each of the three outflow unit types. The simulated

outflow and its reference are given in Figure 4.4. For this simulation a horizon of three

steps has been used in the model predictive controller.

120 4 Control and Supervision of Mixed Logic Dynamical Systems

0 5 10 15 20 25 30
5

10

15

20

25

30

35

40

45

ou
tfl

ow
, r

ef
er

en
ce

 [
1]

Simplified Hydroelectric Power Plant

reference
outflow

time [s], sampling time Ts=1 s

Figure 4.4: Trajectory tracking of the simplified power plant (normalized per unit repre-

sentation).

In Figure 4.5 we see how the individual outflow elements are used to achieve the desired

control goal.

For the successful application of the controller there are additional constraints and specifi-

cations to be taken into account. For instance if the desired outflow increases, the controller

should first try to increase the openings of the turbines, rather than the openings of gates

and flaps, see Table 3.12. For a complete description of such specifications we defer to

(Chapuis, 1998). These specifications can be added as soft or as hard constraints in the

model of the power plant and they can be systematically considered in the choice of the

control moves by the model predictive controller. In Section 4.6 we outline, how to perform

this inclusion without altering the type of the optimization problem to be solved.

4.1 Model Predictive Control of Mixed Logic Dynamical Systems 121

0 10 20 30
10

20

30

40

reference outflow

0 10 20 30

0

4

8
openings

gate

flap

turbine

time [s], sampling time Ts=1 s

re
fe

re
nc

e
 [1

]
op

en
in

gs
 [

1]

Figure 4.5: Openings of outflow elements for controlled simplified power plant (normalized

per unit representation).

4.1.5 Summary

In this section we reported simulations and an application of MPC for hybrid systems

to two plants. Concerning the experiments on the three tank system, we highlight some

reasons contributing to the results presented here.

• The process under consideration is slow and therefore it can be operated with a

relatively large sampling period. This allows to perform the optimization (4.1)-(4.4)

required for controller synthesis. For the experiment in Figure 4.1 each MIQP at

each time step could be solved in less than the sampling time of 10 seconds on a

Pentium III, 900 MHz. The optimizations had the size mentioned in Table 4.2,

which illustrates the size of affordable problems.

• The controller is robust to the plant-model mismatches introduced by the modelling

procedure in Section 3.2. Moreover, the level variations stay within a small range,

122 4 Control and Supervision of Mixed Logic Dynamical Systems

number of binary variables 24

number of continuous variables 30

number of constraints 162

maximum time for solution ≤ 10 sec

solver Xpress-MP

Table 4.2: Data of the MIQPs for the experiment in Figure 4.1

where the linearized model has an acceptable accuracy.

• Except for the start-up phase, the system operates with a pump action which is

always below 25 % of the full scale value. The measurement noise due to the water

flowing in, is therefore in a tolerable range (Mignone and Monachino, 2001).

• The choice of weights in (4.1) is not so critical for the success of the scheme. In fact

experiments with detuned weights still gave good results.

We also point out the difficulties, we were faced to, while implementing the controller.

• For fast variations of the reference, the terminal state constraint (4.3) may not be

feasible and the controller fails to find a solution for the manipulated variables. In

this case a larger terminal region must be defined or the reference has to be chosen

such that it fulfills some additional rate constraints.

• As mentioned in Table 4.1, the control horizon was limited to three steps. Longer

horizons required an increased amount of computations, violating the given sampling

time frame.

4.2 Minimum Time Control 123

4.2 Minimum Time Control

4.2.1 Introduction

The contents of this section have appeared as a technical report in (Torrisi, Mignone and

Morari, 2001).

The minimum time control problem amounts to find a control action, that transfers, as

fast as possible, the state of a system from an initial condition to some target region. This

section presents a comparison of different heuristic and systematic approaches to solve

this problem. Moreover, it shows how the MLD modeling framework allows to integrate

heuristics in the systematic design. The techniques are motivated by, and applied to the

three tank system.

4.2.2 Minimum Time Control of the Three Tank System

Consider the following problem: Given a plant Σ, its MLD model S, an initial state x0 and

a target set Xr on the state x of Σ, find the optimal control sequence u(t), t = 1, . . . , T

such that x(T) ∈ Xr and T is minimum.

For the three tank system, the problem can be reformulated in the following way: Assume

that the tanks are initially empty and the outflow valves are closed, i.e. valves VL1, VL2

and VL3 are closed. Given three constant set points r1, r2, r3 for the liquid levels, find the

control strategy that fills the three tanks to the desired levels in minimal time. In the

laboratory set-up, the problem is encountered, if we would like to start experiments from

a specific state of the system, and we would like to reach that state as fast as possible.

This problem is known in the literature as minimum time control or time-optimal control.

It has been analyzed in the past for linear systems. For instance, Feldbaum (1962) shows

124 4 Control and Supervision of Mixed Logic Dynamical Systems

that for a stable, linear, nth-order system with input constraints, the minimum time control

signal is piecewise constant. It takes on either the upper or the lower bound on the input,

i.e. it is of the bang-bang type. If the poles are real, then the control signal has at most

n− 1 switches. Sontag (1998) gives a rigorous treatment of minimum time control within

the context of convex analysis. In (Rothwangl, 2001) the minimum time control problem

for linear time invariant systems has been tackled by solving a number of mixed integer

optimizations for different initial states, and implementing a look-up table of the results

as a neural network. Each mixed integer optimization minimizes the time T needed to

reach the reference by introducing a number of binary variables proportional to an upper

bound to T . However, it is not clear how the neural network preserves the optimality of

the control strategy and how this can scale up with the dimension and the time horizon.

Gutman (1982) states the early idea for the use of mathematical programming to solve

minimum time control problems.

The minimum time control problem arises in various practical situations, e.g. robotics (Ma

and Watanabe, 2001) or in electronic systems (Jong and Seung, 1998).

4.2.3 Heuristic Control Strategy

In this section we show how it is possible to solve the problem by understanding the plant

and stating some logic rules. Clearly this approach does not rely on any mathematical

model of the plant and does not provide any guarantee of optimality. In fact, simulating

and testing the control loop may leave subtle phenomena concealed. For large and complex

systems, modifying such a controller may require a major effort.

For the three tank system, we propose Algorithm 1 summarized in Table 4.3. The algo-

rithm is basically a set of conditions that determine the control action according to some

conditions on the levels and on the references. In particular Rule 3 switches both the

pumps off when enough liquid has been pumped into the system. Rule 4 isolates tank 3

4.2 Minimum Time Control 125

Algorithm 1

1 V1 = 1, V2 = 1, V13 = 1, V23 = 1, Q1 = Qmax, Q2 = Qmax;

2 while (h1 ≥ r1) ∧ (h2 ≥ r2) ∧ (h3 ≥ r3)

3 if (h1 + h2 + h3 ≥ r1 + r2 + r3) then Q1 = 0, Q2 = 0;

4 if (h3 ≥ r3) then V1 = 0, V2 = 0, V13 = 0, V23 = 0;

5 if (h1 ≥ hmax) then Q1 = 0;

6 if (h2 ≥ hmax) then Q2 = 0;

7 if ((h1 ≥ r1) ∧ (r3 ≤ r1) ∧ (r3 ≤ r2))∨
((h1 ≥ r1) ∧ (r1 ≤ r2) ∧ (r1 ≤ r3))∨
((h1 ≥ r1) ∧ (r2 ≤ r1) ∧ (r2 ≤ r3) ∧ (h3 ≥ r3)) then Q1 = 0;

8 if ((h1 ≥ r1) ∧ (r1 ≤ r2) ∧ (r1 ≤ r3))∨
((h1 ≥ r1) ∧ (h3 ≥ r3) ∧ (r2 ≤ r1) ∧ (r2 ≤ r3)) then V1 = 0, V13 = 0;

9 if ((h2 ≥ r2) ∧ (r3 ≤ r2) ∧ (r3 ≤ r1))∨
(h2 ≥ r2) ∧ (r2 ≤ r1) ∧ (r2 ≤ r3))∨
((h2 ≥ r2) ∧ (r1 ≤ r2) ∧ (r1 ≤ r3) ∧ (h3 ≥ r3)) then Q2 = 0;

10 if ((h2 ≥ r2) ∧ (r2 ≤ r1) ∧ (r2 ≤ r3))∨
((h2 ≥ r2) ∧ (h3 ≥ r3) ∧ (r1 ≤ r2) ∧ (r1 ≤ r3)) then V2 = 0, V23 = 0;

Table 4.3: Heuristic algorithm to control the three tank system

when h3 ≥ r3. Rules 5 and 6 stop the inflow in tank 1 respectively tank 2 when the levels

reach the physical limitations (hmax). Note that if r3 < hmax then Rule 4 guarantees that

the level in tank 3 does not exceed the physical limitations. Rules 7 and 8 are somehow less

immediate: They are the logical OR of different conditions, where each condition describes

a possible scenario for the mutual position of the set-points r1, r2, r3 and the satisfaction

of the control specifications. Rule 7 switches off the pump feeding tank 1 when the tank is

full and it cannot fill tank 3 any more. Rules 9 and 10 are the analogous rules for tank 2 as

Rules 7 and 8. Figure 4.6 shows the simulation and experimental results of the application

of Algorithm 1.

126 4 Control and Supervision of Mixed Logic Dynamical Systems

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

time [s], sampling time Ts = 1 s

target: [0.5, 0.4, 0.4] time to reach target = 231 s

st
at

es
 h

1,
 h

2,
 h

3
 [m

] h1

h2

h3

(a) Simulation results

0 50 100 150 200 250
0

0.1

0.2

0.3

0.4

0.5

0.6

st
at

es
 h

1,
 h

2,
 h

3
 [m

]

target: [0.5, 0.4, 0.4] time to reach target = 227 s

time [s], sampling time Ts = 1 s

h1

h2

h3

(b) Experimental results

Figure 4.6: Heuristics of Algorithm 1 for filling the tanks to r = [0.5, 0.4, 0.4]

Note that the heuristics can be further improved by filling tank 1 over its reference r1 to

increase the flow to tank 3. This observation could be used to improve the behaviour by

exploiting an overshoot in tank 1 to achieve a faster filling of tank 3. This can be done by

substituting the condition for closing the valves in Rule 8 of Algorithm 1 as:

((h1 ≥ r1) ∧ (r1 ≤ r2) ∧ (r1 ≤ r3) ∧ (h3 ≥ r1)) ∨

((h1 ≥ r1) ∧ (h3 ≥ r3) ∧ (r2 ≤ r1) ∧ (r2 ≤ r3)) (4.5)

and in point (8) of Algorithm 1

((h2 ≥ r2) ∧ (r2 ≤ r1) ∧ (r2 ≤ r3) ∧ (h3 ≥ r2)) ∨

((h2 ≥ r2) ∧ (h3 ≥ r3) ∧ (r1 ≤ r2) ∧ (r1 ≤ r3)) (4.6)

Figure 4.7 shows an experiment using the modified algorithm.

4.2.4 Open Loop Optimal Control

In this section we show how to find an open loop optimal control strategy by solving a

series of MILPs.

4.2 Minimum Time Control 127

0 40 80 120 160

0

0.1

0.2

0.3

0.4

0.5

0.6

st
at

es
 h

1,
 h

2,
 h

3
 [m

]

time [s], sampling time Ts = 1 s

target: [0.5, 0.4, 0.4] time to reach target = 190 s

200

h1

h2

h3

(a) Simulation results

target: [0.5, 0.4, 0.4] time to reach target = 164 s

0 40 80 120 160
0

0.1

0.2

0.3

0.4

0.5

0.6

st
at

es
 h

1,
 h

2,
 h

3
 [m

]

time [s], sampling time Ts = 1 s
200

h1

h2

h3

(b) Experimental results

Figure 4.7: Modified heuristics for filling the tanks to r = [0.5, 0.4, 0.4]

First, exploit the linear structure of the MLD model (2.8) to impose the condition that the

state reaches the terminal condition in T steps:

x(T) = ATx0 +
∑T−1

t=0 A
t [B1w(T − 1− t) +B2δ(T − 1− t) +B3z(T − 1− t)]

x(0) = 0

x(T) ∈ Xr

subject to (2.8c) for t = 1, . . . , T .

(4.7)

Clearly, all the constraints are linear. Therefore we can check if Xr is reachable from x(T)

by solving the associated Mixed Integer Feasibility Test (MIFT)1.

Then, evaluate upper and lower bounds (TM , Tm) on the optimal time such that the

MIFT (4.7) is feasible for TM and is infeasible for Tm. Finally run a bisection algorithm

that performs a number of MIFTs to find the minimum time T such that MIFT (4.7) is

feasible.

In our case study we set Tm by noting that the minimum filling time cannot be less than

1This is a special case of reachability analysis for MLD systems, for which an efficient algorithm exists

(Bemporad, Torrisi and Morari, 2000).

128 4 Control and Supervision of Mixed Logic Dynamical Systems

the time needed by the pumps to transport the total amount of liquid specified by the

reference values, i.e.

Tm =
(r1 + r2 + r3)A

Qmax

where A is the cross section of the tanks. We compute TM by simulating Algorithm 1.

To keep the computational time tractable, the trajectory produced by the heuristics, was

used as initial guess for the feasibility tests. The mixed integer optimizer can take advan-

tage of the suggested solution to direct properly the branch and bound algorithm.

Moreover, assuming that in the optimal trajectory Valve V1 and Valve V13 as well as

Valve V2 and Valve V23 are actuated at the same time samples, we can reduce the model by

adding the constraints V1 = V13 and V2 = V23. Finally the proper choice of the sampling

time is critical. Together with constraining the number of switches of the discrete inputs

it can dramatically improve the computational performance.

Figure 4.8 shows the optimal open loop trajectory. In Figure 4.8(a) we show the simulation

and in Figure 4.8(b) the application of the control action to the plant. The computation

is indeed important as comparison, as it provides the lower bound on the filling time.

The algorithm computed the optimal solution after 32 s, and the solution was proved to

be optimum in 2707 s. The algorithm ran on a PC Pentium III 650 MHz using CPLEX

(ILOG, Inc., 2000) on the reduced model sampled with Ts = 8 s.

4.2.5 Model Predictive Control

It is possible to recast the minimum time control problem as an MPC problem having

the structure shown in Section 4.1.2. To enforce the minimum time requirement, we can

extend the dynamical model of the plant with additional flag variables si ∈ {0, 1} denoting

the achievement of the desired references:

(si = 1)↔ (hi ≥ ri) (i = 1, 2, 3) (4.8)

4.2 Minimum Time Control 129

0 40 80 120 160
0

0.1

0.2

0.3

0.4

0.5

0.6

st
at

es
 h

1,
 h

2,
 h

3
 [m

]
target: [0.5, 0.4, 0.4] time to reach target = 155 s

time [s], sampling time Ts = 8 s

h1

h2

h3

(a) Simulation results

0 40 80 120 160
0

0.1

0.2

0.3

0.4

0.5

0.6

st
at

es
 h

1,
 h

2,
 h

3
 [m

]

time [s], sampling time Ts = 8 s

target: [0.5, 0.4, 0.4] time to reach target = 136 s

h1

h2

h3

(b) Experimental results

Figure 4.8: Open loop optimal control for filling the tanks to r = [0.5, 0.4, 0.4]

and ti denoting an acceptable final error:

(ti = 1)↔ (hi ≤ ri + ε) (i = 1, 2, 3) (4.9)

where ε is a tolerance. Finally, we add the variable

m = s1 ∧ s2 ∧ s3 ∧ t1 ∧ t2 ∧ t3 (4.10)

By placing a high weight on this variable, the optimization, tries to reach the specified

levels faster, at the price of large overshoots during the transient, see Figure 4.9.

4.2.6 Comparison of the Strategies

The main advantage of heuristic methods is that they don’t need any mathematical model

of the system and that they can be implemented on a cheap control hardware. In fact, they

rely on some rules that the designer invents, once a clear understanding of the plant has

been acquired. A well designed heuristics can perform extremely well, but there are only

few ways to tune heuristics. Moreover they do not guarantee satisfaction of the physical

130 4 Control and Supervision of Mixed Logic Dynamical Systems

h1

h2

h3

0 50 100 150 200 250

st
a

te
s

h
1
,
h

2
,
h

3

[m

]

time [s], sampling time Ts = 10 s

0

0.1

0.2

0.3

0.4

0.5

0.6

target: [0.5, 0.4, 0.4] time to reach target = 190 s

(a) Simulation results

0 50 100 150 200 250

st
at

es
 h

1,
 h

2,
 h

3
 [m

]

time [s], sampling time Ts = 10 s

target: [0.5, 0.4, 0.4] time to reach target = 180 s

0

0.1

0.2

0.3

0.4

0.5

0.6
h1

h2

h3

(b) Experimental results

Figure 4.9: MPC for filling the tanks to r = [0.5, 0.4, 0.4]

and operational constraints. Verification can provide the certification that the heuristics

are safe, but provides few hints on how to improve them.

On the other hand, systematic methods rely on a theoretical, general purpose core that

together with a model of the plant, solve the problem in an optimal way according to

the chosen criteria. It is very easy to impose constraint satisfaction in optimization based

methods. Due to their generality, these methods often require only minor changes in order

to be ported to other systems.

MLD models allow the inclusion of heuristic rules to solve in a faster way the optimization

associated with the control problem. In the tank system one such idea is to perform the

optimization with the constraints V1 = V13 and V2 = V23 as shown in Sections 4.2.4 and

4.2.5. Heuristic methods can also support the solution of systematic methods by providing

feasible initial solutions that tighten the bounds in the branch and bound search.

4.3 Moving Horizon Estimation 131

4.2.7 Summary

In this section we proposed several solutions to the minimum time control of an experi-

mental hybrid plant using heuristic and systematic techniques. The systematic techniques

rely on the MLD modeling framework and can be applied to any hybrid system modelled

in MLD form. We showed the flexibility of MLD models in incorporating knowledge on

the system to improve the performance of systematic methods.

4.3 Moving Horizon Estimation

Similar ideas as the model predictive control paradigm lead to the definition of a receding

horizon estimator for hybrid systems. A moving horizon estimation (MHE) or receding

horizon estimation scheme is an optimization based observer for the states of a system.

The ideas of MHE date back to the early nineties (Michalska and Mayne, 1992). The basic

philosophy of MHE can be summarized as follows: The estimates of the states are obtained

by solving a least squares problem, which penalizes the deviation between measurements

and predicted outputs of a system. The data considered for the optimization are laying

in a window of fixed finite length, which slides forward in time. Contrary to the control

problem, the estimation horizon extends backwards in time, allowing at time t to estimate

the quantities of interest at times prior to t.

MHE is appealing because of its capability to incorporate nonlinearities, and constraints on

states and disturbances. Moreover, from a computational point of view, MHE algorithms

are suitable for practical implementation because they amount to optimization problems

of finite dimension. Rao et al. (1999) applied MHE to constrained linear systems, show-

ing that it can guarantee stability of the estimate. This fact is important because in

(Rao, 2000) and (Tyler and Morari, 1995) examples are reported, where the presence of

constraints can cause instability of the classical Kalman filter. The use of an MHE scheme

132 4 Control and Supervision of Mixed Logic Dynamical Systems

for nonlinear plants was investigated in (Michalska and Mayne, 1992; Muske and Rawl-

ings, 1995; Robertson et al., 1996) and a detailed analysis of its stability properties was

given in (Rao and Rawlings, 1998) under the assumption that the state-transition and

output maps are Lipschitz continuous.

Very little research has focused on observer theory for hybrid systems, although the ability

to reconstruct the state of the system is fundamental for developing both state feedback

control schemes and online system supervisions. In (Sontag, 1981) the conditions for the

existence of a piecewise linear observer for piecewise linear systems are given. In (Alessandri

and Coletta, 2001) an approach for the state estimation of hybrid systems is given based

on the design of Luenberger observers. Stability of the estimation scheme is guaranteed

with LMI criteria.

MHE with asymptotic convergence guarantees

Ferrari-Trecate, Mignone and Morari (2000) and Ferrari-Trecate, Mignone and Morari

(2001) present a moving horizon estimation scheme for piecewise affine (PWA) systems and

provide sufficient conditions on the design parameters in order to guarantee asymptotic

convergence of the estimates. Here we discuss only the main results presented in those

papers. As is customary in filtering theory, when noises are present on the input and the

output, we consider autonomous PWA systems of the form

Σ̂ : x(t+ 1) = Aix(t) + fi + w(t) (4.11a)

y(t) = Cix(t) + gi + v(t), for x(t) ∈ Xi (4.11b)

x ∈ X (4.11c)

w ∈ W (4.11d)

where v(t) ∈ Rpc × {0, 1}p` and w(t) ∈ W ⊂ Rnc × {0, 1}n` is a bounded polyhedron

containing the origin (i.e. there exist two matrices E6 and E7 such that E6w ≤ E7). The

4.3 Moving Horizon Estimation 133

matrices Xi define a polyhedral partition of the state space. The signals w and v model

unmeasured input and output disturbances respectively. The condition w ∈ W takes into

account constraints on the input disturbances.

We introduce the cost functional

J(τ, t, w, v, x(τ),Γτ) , Γτ (x(τ)) +

t−1∑
k=τ

‖v(k)‖2R + ‖w(k)‖2Q (4.12)

where τ, t ∈ N , τ < t, Γτ is a continuous function and Q and R are positive-definite

matrices of suitable dimension.

Consider a generic time instant T and assume that the output samples y(k), k = 0, . . . , T−

1 have been measured. The Full Information (FI) observer is defined as the estimation of

the state trajectory x(k) obtained by solving the constrained minimization problem

min
x(0),w

J(0, T, w, v, x(0),Γ0) subj. to (4.11). (4.13)

From (4.13) it is apparent that the matrices Q and R weight the deviation between mea-

sured and predicted state/output. In a probabilistic setting, they should be chosen as the

inverse of the covariance matrices of the noises w and v. Similarly, Γ0 should reflect the

confidence we have about how much the true initial state of (4.11) differs from an initial

guess x̄ of the state x(0). The function Γ0 is assumed to be bounded on X and such that

Γ0(x) ≥ 0, ∀x ∈ X and arg minx∈XΓ0(x) = x̄.

The FI observer uses all the collected output samples y(k), k = 0, 1, . . . , T in order to

reconstruct the state trajectory. The use of all the available information is desirable for

the accuracy of estimation but is unappealing from a computational point of view. Indeed,

the main drawback of the FI scheme is that, as T increases, the number of optimization

variables in (4.13) grows without bounds. To overcome this problem, one can use forward

dynamic programming. Consider a time instant T > M , where M ∈ N+ is a fixed horizon.

Then one can rewrite (4.13) as

min
x(T−M),w

J(T −M,T,w, v, x(T −M), Γ̄T−M(x(T −M))) subj. to (4.11) (4.14)

134 4 Control and Supervision of Mixed Logic Dynamical Systems

where

Γ̄T−M(z) , min
x(0),w

J(0, T −M,w, v, x(0),Γ0) (4.15)

subj. to (4.11)

x(T −M) = z

and z belongs to the reach set R(X0, T −M) at time T −M . For a set of initial states

X0, the reach set R(X0, t) is defined as the set of all states x, for which there exist a

trajectory x0 . . . xt with x0 ∈ X0 and x = xt (see e.g. (Varaiya, 1998)). The size of the

optimization (4.14) is now bounded and the penalty Γ̄T−M (the so-called arrival cost)

relates the fixed-horizon problem (4.14) to the FI problem. As discussed in (Rao and

Rawlings, 1998), the arrival cost intuitively summarizes the information carried by the

past data y(k), k = 0, . . . , T −M − 1.

If the system (4.11) is linear and unconstrained, we can compute the arrival cost by using

the Kalman Filter covariance update recursion. For the general PWA form, the exact cal-

culation of the arrival cost is an involved problem. Therefore we propose an approximation.

In an MHE scheme we maintain the computational advantages of (4.14) by solving, at each

time instant T ≥ 0

Θ∗
T = min

x(T−M),w
J(T −M,T,w, v, x(T −M),ΓT−M) subj. to (4.11), (4.16)

where, by convention T −M is set to zero if T < M and ΓT−M is a sequence of penalties at

the beginning of the horizon, called initial penalties that should approximate in a suitable

sense the arrival cost Γ̄T−M . In fact, note that (4.16) and the FI estimator (4.14) coincide

if Γ̄T−M = ΓT−M .

In Figure 4.10 we describe the difference between the scheme outlined here and the case,

where MHE is performed using the most recent data in a window of fixed length only,

i.e. if ΓT−M = 0. If we neglect data outside the window, we may experience sensitivity

to noise or convergence problems (Rao and Rawlings, 1998). The summary of neglected

4.3 Moving Horizon Estimation 135

data, included in the cost function to optimize allows to use the relevant information for

estimation, by keeping the size of the mathematical problem bounded.

k

 •
 • • •

 • • • • • •

0

measurements

estimates

k-M+1

• • •

k

 •
 • • •

 • • • • • •

0 k-M+1

Summarize neglected data
for the present window

}
Figure 4.10: Moving horizon estimation. Left: Neglecting data outside the Estimation

Window. Right: Approximating neglected data for the current estimation.

The main result of Ferrari-Trecate, Mignone and Morari (2001) shows that an approxi-

mation of Γ̄T−M suffices for convergence. The authors provide methods based on Linear

Matrix Inequalities (see Appendix C) to calculate such approximations in a recursive way.

The computation of the initial penalties can be done quite efficiently. However, the scheme

shows only a small improvement in practical estimation problems for PWA systems, com-

pared to the case, where past data is neglected (Figure 4.10, left). An improvement is ex-

pected to be noticed if the signal to noise ratio deteriorates, as the estimation progresses.

In this case the information at the beginning of the estimation is valuable. Discarding

it in favour of more recent, but noisy measurements is likely to lead to bad estimates.

An illustrative example for such a system is provided in (Ferrari-Trecate, Mignone and

Morari, 2001).

136 4 Control and Supervision of Mixed Logic Dynamical Systems

4.4 Fault Detection of Mixed Logic Dynamical Sys-

tems

4.4.1 A Brief Survey of Fault Diagnosis Literature

Many processes are subject to faults or malfunctions. During nominal operation, sensors

or actuators can break down and fail to accomplish their task. The failure of subsystems

or components can partially or fully disable the controller action. This results in an unsat-

isfactory performance of the system, decreased availability, emergency shutdowns or even

significant damages to the plant and to its environment. For this reason, recently several

research activities focused on the safety aspects of control systems (Gertler, 1998; Chen

and Patton, 1998). Indeed, control engineers have become aware of the need to consider

possible faults already in the early design phase of a plant. The requirement for a physical

system to be reliable and safe has gained importance. The system should be able to op-

erate satisfactorily in case of malfunctions of some of its components or it should at least

report the increased likelihood of an abnormal system operation.

The techniques found in the literature tackle the safety problem on different levels of

detail and complexity. The field of fault tolerant control merges several disciplines into a

framework with a common goal (Blanke, 1999), namely to provide tools and guidelines for

coping with faults in control systems. Research activities on fault diagnosis have increased

lately mainly due to the following reasons:

• There is a demand for high efficiency and availability, as well as short down-times of

the plants.

• Real systems are operating under more complex and sophisticated algorithms than

in earlier times.

• The reliability of the system is becoming a performance specification to be fulfilled

4.4 Fault Detection of Mixed Logic Dynamical Systems 137

by the system designer.

• Advances in computing power allow the implementation and application of new al-

gorithms and tools.

• In some cases the control system is operating satisfactorily, and controller design is

not a crucial issue anymore. However, there is the need to improve safety in the

control systems.

Even though there exist several books and survey articles on the field of fault diagnosis of

dynamical systems, there are still some inconsistencies to what concerns the terminology

used (Chen and Patton, 1998; van Schrick and Christiansen, 1997). In the context of this

work, a fault is considered as an undesired deviation of the characteristics of a system

component. Under fault detection we understand the act of identifying the presence of a

fault in a system. Fault isolation is concerned with the determination of kind, location and

time of detection of a fault. The term fault diagnosis encompasses both fault detection

and isolation.

Fault diagnosis techniques can be classified in two groups: model-based approaches and

model-free approaches.

Model-free approaches or signal-based approaches perform fault diagnosis without

relying on an explicit model of the process. The basic idea is to measure certain signals

of the system that are likely to carry information about faults (Chen et al., 2001). The

comparison of these signals with a database of signals reflecting different behaviours, allows

to characterize the current operation with respect to faults. Model-free approaches use

signal processing techniques, like e.g. neural networks, spectral power densities, frequency

spectrum estimation and require an extensive training scheme prior to their application.

Simpler schemes may only take into account trends, mean and limit values, or magnitudes

of the measured signals. In some cases it is difficult to perform fault isolation with these

138 4 Control and Supervision of Mixed Logic Dynamical Systems

schemes (Chen and Patton, 1998).

Model-based approaches perform fault diagnosis using an explicit model of the pro-

cess. Here a fault is diagnosed from the comparison of available measurements with a

priori information given by the system’s mathematical model. These techniques rely on

the principle of consistency-based diagnosis (Chen et al., 2001). A fault can be declared,

either if an inconsistency of the measured input-output sequence to the fault-free model is

detected or if a consistency of the data to a faulty model can be found. The model used

for fault diagnosis can be of qualitative nature; such approaches are advocated to be less

fault sensitive, but they can be applied, even if an exact mathematical model of the plant

is not available (Glass et al., 1995).

In most cases these approaches rely on the generation of residuals. Residuals are signals

that determine the mismatch between the prediction of the system response given by the

mathematical model and the corresponding measured signals. The two main tasks in the

design of a model-based fault diagnosis scheme are the residual generation and the pro-

cessing of the residuals, i.e. the decision making to get a statement about the current

fault situation. A review about common methods used for these two tasks can be found in

(Chen et al., 2001).

Other methods rely on parameter estimation to perform fault detection and isolation. The

diagnosis scheme for MLD systems presented next is related to this idea. In this section

we focus on fault detection and isolation for MLD systems. The question about the reme-

dies to be taken in case of faults is considered in Section 4.5 on reconfiguration of hybrid

systems.

4.4 Fault Detection of Mixed Logic Dynamical Systems 139

4.4.2 Fault Detection of MLD Systems

The moving horizon estimation approach can be used to detect failures in a hybrid system.

If an MLD model of a faulty system is available2, as in Section 3.2.6, the least squares

estimation problem over a finite horizon backwards from the current time is used to estimate

the fault variables φ in (3.37). As in the state estimation, the resulting problem is an MIQP.

In this context we focus on faults that are modelled as binary variables, although extension

to continuous valued faults are possible. The types of faults that can be considered in the

MLD framework include the main classes of faults considered in practice. These are:

• Actuator faults

• Sensor faults

• Plant faults

The key idea is to model the effects of a fault on the system as logic propositions, as shown

in Chapter 2 and to translate them into inequalities to be added to the MLD model of a

system.

A moving horizon estimator for (3.37) can be set up with the same cost function as in

(4.12). We propose here an alternative structure that neglects the arrival cost (see Section

4.3) and allows to have more influence on the solution by providing more design parameters.

It is formulated as follows. At time t the estimator knows the last T input and output

data U(t) and Y (t):

U(t) = [u(t− T), u(t− T + 1), . . . , u(t− 1), u(t)] (4.17)

Y (t) = [y(t− T), y(t− T + 1), . . . , y(t− 1), y(t)] (4.18)

2I.e. if the system behaviour in presence of faults is known and can be modelled within an MLD system.

140 4 Control and Supervision of Mixed Logic Dynamical Systems

and the estimates Ẑ(t − 1), ∆̂(t − 1), Φ̂(t− 1) and X̂(t− 1) from the estimation at time

t− 1:

Ẑ(t− 1) = [ẑ(t− T |t− 1), ẑ(t− T + 1|t− 1), . . . , ẑ(t− 2|t− 1)] (4.19)

∆̂(t− 1) = [δ̂(t− T |t− 1), δ̂(t− T + 1|t− 1), . . . , δ̂(t− 2|t− 1)] (4.20)

Φ̂(t− 1) = [φ̂(t− T |t− 1), φ̂(t− T + 1|t− 1), . . . , φ̂(t− 2|t− 1)] (4.21)

X̂(t− 1) = [x̂(t− T |t− 1), x̂(t− T + 1|t− 1), . . . , x̂(t− 2|t− 1), x̂(t− 1|t− 1)] (4.22)

The quantities, we are interested in, are the fault estimates φ̂. At time t we can consider

the following estimate evolution:


x̂(t− T |t) , x̂(t− T |t− 1) +∆x(t)

x̂(t+ k + 1|t) = Ax̂(t+ k|t) +B1u(t+ k) +B2δ̂(t+ k|t)+

B3ẑ(t+ k|t) +B6φ̂(t+ k|t) +ξ(t+ k|t)

ŷ(t+ k|t) = Cx̂(t+ k|t) +D1u(t+ k) +D2δ̂(t+ k|t)+

D3ẑ(t+ k|t) +D6φ̂(t+ k|t) +ζ(t+ k|t)

E2δ̂(t+ k|t) +E3ẑ(t+ k|t) ≤ E4x̂(t+ k|t)+E1u(t+ k) +E5 + E6φ̂(t+ k|t)

(4.23)

for k = −T, . . . ,−1. Let us define the optimization variable at time t as:

χt = [∆x(t), δ̂(t− T + 1|t), . . . , δ̂(t− 1|t), ẑ(t− T + 1|t), . . . ,

ẑ(t− 1|t), φ̂(t− T + 1|t), . . . , φ̂(t− 1|t), (4.24)

ξ(t− T + 1|t), . . . , ξ(t− 1|t), ζ(t− T + 1|t), . . . , ζ(t|t)]

and the cost function at time t as:

J(χt) = ||∆x(t)||2Q9 +∑0
k=−T+1

(
||ŷ(t+ k|t)− y(t+ k)||2Q5 + ||ζ(t+ k|t)||2Q8 + ||φ̂(t+ k|t)||2Q10

)
+∑−1

k=−T+1

(
||x̂(t+ k|t)− x̂(t+ k|t− 1)||2Q4 + ||ξ(t+ k|t)||2Q7

)
+∑−2

k=−T+1

(
||δ̂(t+ k|t)− δ̂(t+ k|t− 1)||2Q2 + ||ẑ(t+ k|t)− ẑ(t+ k|t− 1)||2Q3+

||φ̂(t+ k|t)− φ̂(t+ k|t− 1)||2Q6

)
(4.25)

4.4 Fault Detection of Mixed Logic Dynamical Systems 141

where the matrices Qi are symmetric, positive semidefinite and have appropriate dimen-

sions. The different upper limits of the indices for the summations in (4.25) are due to

the availability of the summands at a given time. The estimates at time t are obtained by

solving the optimization problem:

min
χt

J(χt)

subject to (4.23) (4.26)

With the estimates χt and with the estimate evolution (4.23), we can reconstruct the state

estimate X̂(t):

X̂(t) = [x̂(t− T + 1|t), . . . x̂(t− 1|t), x̂(t|t)] (4.27)

Note that the optimization problem is an MIQP. The effects of the weighting matrices are

listed next along with advice on their usage. The advice should be taken as rules of thumb,

since it is motivated by our practical experience with the case study exposed in Section

4.4.4.

Q2,Q3,Q4,Q9 Large values of these matrices give “inertia” to the estimator since variations

from the estimate at time t to the estimate at time t−1 are penalized. We recommend

to set these weights to a relatively low value, in order to get estimates with the most

recent fault information, and the estimator to be fault sensitive.

Q5 Similarly as above, this matrix represents the inertia of the output estimate. We

recommend to set this weight to a medium value in order to allow enough freedom

for the estimator to track the measurements but at the same time to avoid large

changes of estimates at subsequent times.

Q6 Large values of Q6 penalize the frequent switching of the binary fault indicator vari-

ables. We recommend to set this weight to a relatively high value, reflecting the fact

that faults are events that do not appear very often.

142 4 Control and Supervision of Mixed Logic Dynamical Systems

Q8 This matrix penalizes the output error, i.e. the deviation of measured and estimated

outputs. It should contain large values if the noise level on the output is low, and

medium values otherwise.

Q7 This matrix penalizes the model error. Similar to the Kalman filtering, if we allow our

model to be inaccurate, Q8 should contain smaller values than Q7.

Q10 This matrix penalizes the occurrence of fault estimates. Large values in Q10 cause the

estimator to be “cautious” in detecting faults and it reflects our wish to fit the data

using the nominal model, rather than the fault dynamics.

Tuning the relatively large set of design parameters can be a difficult task. A scaling

of the system variables to a common range can help to compare the contribution of the

individual terms of the cost function. Note that the form (3.37) allows to describe systems,

whose behavior depends on the faults in a nonlinear manner. It is possible to include

multiplicative faults or actuator failures, as it is shown for the three tank system. The key

idea is to express the occurrence of these faults as a propositional logic statement involving

binary and continuous variables.

In analogy to classical fault detection schemes, we can interpret the value of the cost

function (4.25) as the magnitude of a residual signal. On one hand this allows to provide a

measure of reliability of the estimates. On the other hand this allows to detect the presence

unmodelled faults. In the latter case the scheme is only able to perform fault detection,

leaving the task of fault isolation to further analysis. Note that a classical residual signal

is a signed quantity, whereas the value of the cost function (4.25) is nonnegative. In this

sense it carries less information than a residual signal.

In the form presented in this work the moving horizon estimator does not address all

relevant issues in state estimation and fault detection. For example, it does not explicitly

take into account any stochastic aspects. Nevertheless, it is a new and promising method

to deal with state estimation and fault detection for the broad class of hybrid systems.

4.4 Fault Detection of Mixed Logic Dynamical Systems 143

4.4.3 Application to the Three Tank System: Simulation

To illustrate the effectiveness of the fault diagnosis scheme, we applied the method to the

three tank benchmark system of Section 3.2. In the simulation of Figures 4.11-4.12 we

simulated all possible combinations of faults that can occur in the system, according to

Table 4.4. This simulation has been performed with a model parameterized with the values

of the original benchmark system.

time faults

0 - 245 none

250 - 370 φ1

375 - 495 none

500 - 620 φ2

625 - 745 none

750 - 870 φ3

875 - 995 none

1000 - 1120 φ1

1125 - 1245 φ1, φ2

1250 - 1370 φ1

1375 - 1495 φ1, φ3

Table 4.4: Fault sequence in the simulation of Figures 4.11, 4.12

In Table 4.5 we report some parameters of the simulation in Figures 4.11-4.12. To what

concerns the timing, we remark that the solver used is the code miqp.m described in Section

5.5. The code is not optimized for speed, therefore the duration of the simulation has to

be understood as a loose upper bound to what is achievable with commercial solvers.

The simulation ran on a Sun Sparc Ultra 10 workstation (333 MHz, SunOS 5.7) using

Matlab R12.1. In this case the average computational time exceeds the sampling time

144 4 Control and Supervision of Mixed Logic Dynamical Systems

0 250 500 750 1000 1250 1500

0

0.1

0.2

0.3

0.4

0.5

0.6

time [s], sampling time Ts = 5 s

le
ve

ls
 h

1,
 h

3
 [m

]

Fault Detection and Isolation: Simulation

h1

h3

φ1 φ2 φ3 φ1 φ1,φ2 φ1 φ1,φ3

Figure 4.11: State trajectories during fault detection simulation; the sequence of faults is

given on top of the plot

0

1

0

1

0

1

0 250 500 750 1000 1250 1500

time [s], sampling time Ts = 5 s

Fault Detection and Isolation: Simulation

φ
1

ˆ
φ

2
ˆ

φ
3

ˆ

Figure 4.12: Fault estimates during fault detection simulation. The sequence of faults is

given in Table 4.4

4.4 Fault Detection of Mixed Logic Dynamical Systems 145

of 10 seconds. In the experimental set-up this problem is overcome thanks to the faster

computer used there. The number of QPs to be solved for each MIQP lies below 2% of

the worst case number.

Number of binary variables for each MIQP 12

Number of continuous variables for each MIQP 26

Number of MILPs solved (Simulation) 303

Number of MIQPs solved (Fault Detection) 300

Total execution time 4213 sec

Average time for each computational step 13.9 sec

Total number of QPs solved 21’416

Average number of QPs for each step 72

Maximum number of QPs over all steps 169

Minimum number of QPs over all steps 1

Worst case number of QPs for each MIQP 8191

Number of constraints for each MIQP 82

Horizon length 3 steps

Table 4.5: Parameters in the simulation of Figures 4.11, 4.12

The MLD framework for fault detection allows to include heuristic knowledge in the esti-

mation procedure that can be used to avoid false alarms. In the three tank system we can

formulate one such simple rule as

([h1 ≤ hv] ∧ [h3 ≤ hv]) ⇒ [φ2 ∧ φ3] (4.28)

The proposition (4.28) determines that faults concerning valve V1 being blocked cannot

be identified, if the liquid level in tanks 1 and 3 are both lower than the location of the

valve itself. Indeed, in this case there is no information available allowing to detect a

failure of valve V1. In the simulation of Figure 4.13 we simulated an occurrence of φ1

146 4 Control and Supervision of Mixed Logic Dynamical Systems

for (200 ≤ t ≤ 350), an occurrence of φ2 for (350 ≤ t ≤ 500) and an occurrence of φ3

for (500 ≤ t ≤ 600). Moreover we artificially limited the time allowed for computations,

simulating hard real time constraints. In Figure 4.13 (left) we see that the scheme reports

a false alarm and it detects fault φ3 only at t = 600, despite its earlier occurrence. On the

right plot we used the same design parameters but enhanced the model with additional

heuristics. We note that the false alarm has disappeared. The detection of φ3 is still

delayed, but it occurs one step earlier than before.

0

1

0

1

0

1

0 100 200 300 400 500 600

time [s], sampling time Ts = 10 s

Fault Detection and Isolation: Simulation

φ
1

ˆ
φ

2
ˆ

φ
3

ˆ

0

1

0

1

0

1

0 100 200 300 400 500 600

time [s], sampling time Ts = 10 s

Fault Detection and Isolation: Simulation

φ
1

ˆ
φ

2
ˆ

φ
3

ˆ

Figure 4.13: Fault estimates during fault detection simulation with limited computational

time. Left: A False alarm occurs. Right: The false alarm disappears thanks to a heuristic

rule added to the model.

4.4.4 Application to the Three Tank System: Experiment

The scheme is able to produce acceptable results when working with measurements on the

real plant. The set-up for the experiments shown in this section is reported in (Mignone and

Monachino, 2001). All experiments shown in Figures 4.14-4.16 have been performed with

the same set of design parameters in (4.25). The scheme was able to correctly detect each

fault with only 2 to 3 time steps of delay. The search for a set of weights that avoid false

4.4 Fault Detection of Mixed Logic Dynamical Systems 147

Q2 Q3 Q4 Q5 Q6 Q7 Q8 Q9 Q10

0.001 · I 0.001 · I 0.001 · I 1 · I 1000 · I 1000 · I 10 · I 0.001 · I 6 · I

Table 4.6: Weights for fault detection experiments in Figures 4.14-4.16, I denotes the

identity matrix of appropriate dimensions.

alarms and do not exhibit missed detections is a delicate procedure that has to be performed

by extensive simulation, following the hints given in Section 4.4.2. The experiments have

been implemented with the weights given in Table 4.6. Further parameters are listed

in Table 4.7. The choice of the sampling time and the horizon length is motivated by

the amount of computations required to solve the MIQPs at each time step. In these

experiments the fault detection procedure has been performed in real time, without missing

the given time frame. We used the solver miqp.m, see Section 5.5.

estimation horizon 3 steps

sampling time (= 1 step) 10 s

cases, where time frame was missed none

instant of fault occurrence 10 steps

Table 4.7: Parameters of the fault detection experiments in this section

The state estimates in the left plots of Figures 4.14-4.16 show the measurements as solid

lines and the state estimates as short superposed lines. The latter represent the state

estimates at different time instances, as it is depicted in Figure 4.17. Each line segment of

the estimates has the length of the estimation horizon.

In our experience the detection of faults is not equally difficult for each of the three fault

scenarios. The tuning of the algorithm for correct detection of fault φ1 is more delicate.

In fact, for a leak of small size, the detectability is bad, since the effect on the measured

variables can hardly be noticed on the output.

148 4 Control and Supervision of Mixed Logic Dynamical Systems

0 50 100 150 200 250 300

0

0.1

0.2

0.3

0.4

0.5

0.6

Fault Detection and Isolation: Experiment

time [s], sampling time Ts = 10 s

le
ve

ls
 h

1,
 h

3,
 h

1,
 h

3
 [m

]
ˆ

ˆ

h1

ĥ3

h3

ĥ1 0

1

0

1

0 50 100 150 200 250 300
0

1

Fault= Time of Occurrence=100φ 1

time [s], sampling time Ts = 10 s
φ

1
ˆ

φ
2

ˆ
φ

3
ˆ

Figure 4.14: Detection of fault φ1 on the laboratory model: The fault occurred at time

step t = 100. Left: Measured and estimated state trajectories; Right: Estimated fault

h1

ĥ3

h3

ĥ1

0 50 100 150 200 250 300

0

0.1

0.2

0.3

0.4

0.5

0.6

Fault Detection and Isolation: Experiment

time [s], sampling time Ts

le
ve

ls
 h

1,
 h

3,
 h

1,
 h

3
 [m

]
ˆ

ˆ

 = 10 s

0

1

0

1

0 50 100 150 200 250 300
0

1

Fault= Time of Occurrence=100φ 2

time [s], sampling time Ts = 10 s

φ
1

ˆ
φ

2
ˆ

φ
3

ˆ

Figure 4.15: Detection of fault φ2 on the laboratory model: The fault occurred at time

step t = 100. Left: Measured and estimated state trajectories; Right: Estimated fault

4.4 Fault Detection of Mixed Logic Dynamical Systems 149

0 50 100 150 200 250 300

0

0.1

0.2

0.3

0.4

0.5

0.6

Fault Detection and Isolation: Experiment

le
ve

ls
 h

1,
 h

3,
 h

1,
 h

3
 [m

]
ˆ

ˆ

h1

ĥ3

h3

ĥ1

time [s], sampling time Ts = 10 s

0

1

0

1

0 50 100 150 200 250 300
0

1

Fault= Time of Occurrence=100φ 3

time [s], sampling time Ts = 10 s
φ

1
ˆ

φ
2

ˆ
φ

3
ˆ

Figure 4.16: Detection of fault φ3 on the laboratory model: The fault occurred at time

step t = 100. Left: Measured and estimated state trajectories; Right: Estimated fault

k k+1k-1

y

estimates
at time k

y(kk)

y(kk+1)

estimates
at time k+1

k+2

y(kk+2)ˆ
ˆ

ˆ
estimates
at time k+2

Figure 4.17: Magnified view of a state estimate plot in moving horizon estimation

150 4 Control and Supervision of Mixed Logic Dynamical Systems

4.4.5 Summary

The success of the fault detection and isolation experiments can be attributed to a number

of reasons that are discussed in detail in (Mignone and Monachino, 2001). We notice for

instance that the pump action to keep the system at the reference value is low, conse-

quently the measurements are corrupted by noise of negligible magnitude. Moreover, the

asymmetric characteristics of the valves is not affecting fault detection, since the flows are

in one direction only for each valve. We remark that the estimation horizon was limited

by the available computing power. Indeed, for horizons longer than three steps, compu-

tations lasted too long and the time frame was missed. The simulation in Figure 4.13

outlines a strength of using MLD systems for fault detection. Unlike other fault detection

schemes where fine tuning is performed by extensive training schemes, for MLD system the

formulation of heuristic rules supporting fault detection can be directly integrated in the

models. False alarms due to incomplete modelling and inappropriate choice of the weights

can be elegantly corrected in some cases. On the other hand our experience shows that

choosing the weights avoiding false alarms and missed detections is in general a difficult

task. The guidelines we gave in this section aim at relieving this problem. Moreover, the

mathematical problems we are generating are sometimes badly conditioned and hard to

solve, despite the robustness of the available tools. We recommend a normalization of the

optimization problem in such cases.

4.5 Reconfiguration of Mixed Logic Dynamical Systems 151

4.5 Reconfiguration of Mixed Logic Dynamical Sys-

tems

4.5.1 Introduction

In this section we consider the reconfiguration problem using the MLD framework. After

some general remarks about fault tolerant control systems in Section 4.5.2, we outline the

reconfiguration problem for the three tank system in Section 4.5.3. The main contribution

is in Sections 4.5.5, 4.5.6 and 4.5.7, where we present three strategies for reconfiguration of

MLD systems. Some simulations and experiments are reported in Sections 4.5.8 and 4.5.9.

We conclude with a comparison of the methods in Section 4.5.10.

4.5.2 Fault Tolerant Control Systems

A fault tolerant control system is able to maintain stability and acceptable performance in

the presence of a set of predefined failures in its components. There are two approaches to

achieve these goals. On one hand techniques are available based on passive fault tolerance.

These systems are designed in order to be robust against the occurrence of failures. Usually

these systems carry on their operation even in presence of faults and no particular qualita-

tive changes are required for the control scheme. However, since the system behaviour and

its operating conditions in case of faults can span over a wide range, the design is often

conservative. Therefore, the performance degradation can be significant. Some works in

this area include (Veillette et al., 1992), where the authors propose a reliable control scheme

with guaranteed stability and H∞ performance, both in the nominal case and in the case

of sensor or actuator failures. Zhou and Ren (2001) propose a control structure, where a

given control loop is enhanced with an additional controller that renders the overall loop

robust against model uncertainties or faults.

152 4 Control and Supervision of Mixed Logic Dynamical Systems

On the other hand, the field of active fault tolerant systems encompasses those systems,

where the information about the presence of faults is used to reconfigure the control scheme.

The controller structure and the controller parameters may be changed after detection of

anomalies. Here the system is designed to be adapted to the current plant operation.

This can be done either through online-computations deciding in real-time about the best

remedy to be taken, or via precomputed strategies and look-up tables that are set up corre-

spondingly. In order to devise an active fault tolerant system the concept of redundancy is

of key importance. For a system to be reconfigurable, a certain amount of hardware and/or

software redundancy has to be present. Contrary to the analytical redundancy3, we re-

quire that the system contains redundant sensors or actuators, subsystems with similar

functions, or alternative control loops. Practical applications of reconfiguration strategies

can be found e.g. in safety critical flight control systems (Bajpani et al., 2001). Izadi-

Zamanabadi (1999) uses a Finite State Machine to structure and guide the action to be

taken as reconfiguration. After having gained informations about fault propagation, reme-

dies are determined and governed by the supervisory logic. While this approach requires

detailed knowledge of the fault effects, a more automated framework is provided by model

predictive control, which is advocated as a promising tool for fault tolerant controllers

(Maciejowski and Lemos, 2001). Considering classical linear MPC evidences the main

reasons:

• The internal model can be updated to represent the faulty system behaviour. For in-

stance, the constraints can be modified to reflect different operating ranges of system

components.

• Control objectives can be adapted to the current capabilities of the plant.

In the context of MLD systems we focus on active fault accommodation. The main con-

3Analytical redundancy is a concept in fault detection and isolation, where fault diagnosis is performed

by checking the consistency of the measurements with a model output, in order to detect deviations from

the nominal behaviour.

4.5 Reconfiguration of Mixed Logic Dynamical Systems 153

tribution of this section is to propose several solutions for the decision problem about the

choice of redundant hardware, in particular redundant inputs, using mathematical opti-

mization. We refer to this decision simply as reconfiguration of the control scheme.

There are four main reasons for formulating active fault accommodation within the MLD

framework.

1. The MLD framework allows to model several classes of practical systems and a large

set of fault scenarios can be covered within the same model.

2. Often there are user’s preferences concerning the usage of system components. The

priorities on redundant components can be directly included in the MLD model and

can therefore be systematically considered during computations, see Section 4.6.

3. The formulation of the mathematical optimization problems for solving the recon-

figuration problem can be tackled by solvers, which are commercially available, see

Chapter 5.

4. The decision about the usage of redundant inputs is an inherently binary problem,

therefore the modelling with binary variables is appropriate and does not alter the

structure, which is already present in MLD models.

4.5.3 Reconfiguration of the Three Tank System

The three tank system described in Section 3.2 has been used to illustrate the proposed

ideas. The reconfiguration problem for the three tank system has been defined as a COSY

benchmark problem, see (Lunze, 1998; Heiming and Lunze, 1999) and (COSY). In presence

of the faults defined in Section 3.2.6, the goal of the reconfiguration algorithms is:

1. To keep the level h3 around 0.1 m, in order to provide a constant outflow from tank

3.

154 4 Control and Supervision of Mixed Logic Dynamical Systems

2. To minimize the liquid loss from tank 1, if a leak occurs in tank 1.

In the latter case, tank 1 should ideally be emptied as fast as possible and not used anymore.

There are some aspects that complicate the reconfiguration for this system:

• There are several possibilities for the choice of the redundant hardware. To check

and evaluate all combinations represents a large combinatorial problem.

• The choice of redundant hardware has to be made fulfilling a hierarchy of preferences.

On one hand, the use of some actuator is preferred over the use of some other actuator

with similar functions. For instance valve V1 is preferred over valve V13, even though

both are interconnecting the same two tanks. On the other hand, we want to involve

as little equipment as possible. For instance it is desirable to avoid using tank 2 if

the control goal can be reached with tanks 1 and 3 only.

• The plant exhibits typical characteristics of a hybrid system. In fact, the dynamics

change, if the liquid reaches the height of the upper valves. Moreover, the model has

to take into account discrete inputs because of the presence of switching valves.

• The control goal in nominal operation can only be reached by providing a sequence

of periodic inputs to the system. For some reference values no constant steady state

exists, if pump Q1 and valve V1 are used, see Section 2.8.

• The system is subject to constraints on the liquid levels hi (i = 1, 2, 3) and on the

inflows Qj (j = 1, 2).

Previous works on the three tank system are reported in (Askari et al., 1999) and (Lunze

and Schröder, 1999), where schemes that only take into account qualitative information

about the state of the plant are considered. In (Rato and Lemos, 1999) the reconfiguration

is formulated as a multi-model switching control task. Approaches using neural networks

are reported in (Marcu et al., 1999).

4.5 Reconfiguration of Mixed Logic Dynamical Systems 155

The supervision scheme we are considering consists of two stages. The conceptual scheme

is shown in Figure 4.18.

PlantControllerr

Reconfigu-
ration

Fault
Detection

y
u

φ

∆s

e+

-

ˆ

Figure 4.18: Reconfiguration scheme

In a first stage a fault detection and isolation algorithm is required to monitor the operation

of the plant. This part should estimate at each time step which faults occurred or that no

fault was detected. We assume that this stage is already implemented, for instance by using

the tools described in Section 4.4. The second stage is the actual reconfiguration device,

which decides on the system modification that is most suitable in order to achieve the

control goals, or the best performance in terms of some value function. The reconfiguration

block takes as inputs the reference r, the control action u, the output signal y and the fault

information φ̂. The output is a modification of the controller structure ∆s, which can be

the inclusion or exclusion of some actuators or sensors or a switch to a different controller.

We require that in absence of faults no reconfiguration occurs, i.e.

[
φ̂ = 0

]
⇒ [∆s = 0] (4.29)

156 4 Control and Supervision of Mixed Logic Dynamical Systems

4.5.4 Reconfiguration of MLD Systems

We present various strategies for performing the decision on redundant hardware in case

of faults. We characterize the manipulated variables of an MLD system as follows:

The set VN (Nominal Inputs) is the set of all manipulated variables used in nominal

operation.

The set VR (Redundant Inputs) is the set of all other manipulated variables, i.e., those

inputs that can be used additionally for reconfiguration.

The sets Vi (Candidate Inputs) (i = 1, . . . , nf) are the sets of manipulated variables

that are proposed to be used by the reconfiguration scheme when fault φi is detected.

nf is the number of fault scenarios considered.

We assume that all manipulated variables have been partitioned into the sets VN and VR

and that the following statements hold.

VR 6= ∅ (4.30)

VR ∩ VN = ∅ (4.31)

Vi ⊂ (VR ∪ VN) (i = 1, . . . , nf) (4.32)

4.5.5 Reconfiguration of MLD Systems as a Control Problem

One way to handle the reconfiguration problem is to treat it as a control problem within

a receding horizon framework as described in (4.1)-(4.4). As soon as a fault has been de-

tected, the reconfiguration block modifies the model of our system, such that it henceforth

describes the system behaviour in presence of the fault. Typically the occurrence of a fault

involves the failure of actuators, sensors or subsystems. We assume that such a fault can

be modelled as a set of constraints or additional logic propositions for the MLD model.

4.5 Reconfiguration of Mixed Logic Dynamical Systems 157

For MLD models with faults, we can extend the Model Predictive Control algorithm (4.1)-

(4.4) and the steady state finding procedure (2.75)-(2.78) by including fault estimates φ̂.

We treat the faults φ̂ as exogenous variables. Instead of (4.2), we get for t = 0 . . . T − 1

x(t+ 1, x0, u
t
0) = Ax(t, x0, u

t
0) +B1u(t) +B2δ(t, x0, u

t
0) +B3z(t, x0, u

t
0) +B6φ̂(t) (4.33)

Instead of (4.4), we get for t = 0 . . . T the constraints:

E2δ(t, x0, u
t
0) + E3z(t, x0, u

t
0) ≤ E1u(t) + E4x(t, x0, u

t
0) + E5 + E6φ̂(t) (4.34)

Similarly, the optimization (2.75) - (2.78) becomes for faulty MLD systems:

min
xf ,uf ,δf ,zf

||yf − r||+ ||xf ||ρ4 + ||uf ||ρ1 + ||zf ||ρ3 + ||δf ||ρ2 (4.35)

s.t.

xf = Axf +B1uf +B2δf +B3zf +B6φ̂ (4.36)

E2δf + E3zf ≤ E1uf + E4xf + E5 + E6φ̂ (4.37)

Once a fault has been detected, we carry on solving for the MPC control law with the

model that includes the corresponding fault information. In faultless mode we impose the

usage of the set VN of manipulated variables by adding prioritizations in the control syn-

thesis optimization, as mentioned in Section 4.6. This idea is summarized in the following

reconfiguration algorithm.

Algorithm 4.1

1. Consider the complete model (3.37) of the plant, including the complete set of ma-

nipulated variables VN ∪ VR.

2. Run the fault detection scheme and the control scheme in parallel, as shown in Figure

4.18.

158 4 Control and Supervision of Mixed Logic Dynamical Systems

3. While φ = 0, apply the MPC control algorithm in Section 4.1.2 to the complete model.

To avoid the usage of the inputs VR in nominal operation include prioritizations on

the inputs VN .

4. If a fault φi is detected, update φ̂(t) and use it in the MPC optimization for all future

time steps where the fault is active.

In step 4 the prioritizations on VN might have to be modified or dropped, especially if they

are formulated as hard constraints. Multiple occurrences of faults can be handled as well

by setting φi accordingly in step 4. The advantage of this algorithm is its optimality in

terms of the cost function (4.1) for the controller. The drawback is the large size of the

optimizations, done at each time instant over the complete model. The large number of

variables is a difficulty that is particularly pronounced in the mixed integer optimizations

of MLD systems.

We can prove stability of this reconfiguration scheme as in (Bemporad and Morari, 1999a,

Theorem 1), since it is a direct application of the control scheme presented there.

Theorem 4.1 Let (xf , uf) be an equilibrium pair and (δf , zf) definitely admissible in the

sense of (Bemporad and Morari, 1999a). Let (xf , uf , δf , zf) be unique and reachable. As-

sume further that a constant fault φf is present and that the initial state x(0) is such that

a feasible solution of problem (4.1),(4.33),(4.3),(4.34) exists at time t = 0.

Then ∀Q1 = QT
1 > 0, Q2 = QT

2 ≥ 0, Q3 = QT
3 ≥ 0, Q4 = QT

4 > 0, and Q5 = QT
5 ≥ 0 the

control law (4.1),(4.33),(4.3),(4.34) stabilizes the system in that

lim
t→∞

x(t) = xf

lim
t→∞

u(t) = uf

lim
t→∞
‖δ(t)− δf‖Q2 = 0

lim
t→∞
‖z(t)− zf‖Q3 = 0

lim
t→∞
‖y(t)− yf‖Q5 = 0

4.5 Reconfiguration of Mixed Logic Dynamical Systems 159

Proof. The MLD system with faults can be rewritten as an MLD system

without faults by redefining the vector of auxiliary binary variables as:

δ̃ =


 δ
φf


 (4.38)

Since the fault φf is assumed to be constant, its value can be formulated as

additional, time invariant constraints in (4.34). Stability then follows from

stability of MPC for MLD systems. 2

4.5.6 Reconfiguration of MLD Systems on Two Decision Levels

In order to avoid the large size of the online optimization problems involved in receding

horizon control for reconfiguration purposes, we propose three methods, on how to lower

the computational complexity of (4.1),(4.33),(4.3),(4.34). In this context we measure the

complexity by the number of manipulated variables used in the optimization. We assume

that the receding horizon control scheme is operating with the inputs VN , as long as no

fault is detected. If a fault φi occurs, the first task of the reconfiguration procedure is

to decide, which inputs Vi have to be used for control. Note that for Algorithm 4.1 this

question did not arise, since the choice of manipulated variables was implicitly given by

the optimization over all available manipulated variables in VN ∪ VR. The second task

consists of applying the receding horizon control strategy using the manipulated variables Vi

determined in the first task. The three methods described in this section differ from each

other in the first decision level, i.e., in the decision about Vi.

Reconfiguration with Look Up Table

In this strategy we propose to determine the manipulated variables Vi offline. A look up

table is set up that denotes the set Vi for each possible fault scenario φi. The following

algorithm describes the procedure:

160 4 Control and Supervision of Mixed Logic Dynamical Systems

Algorithm 4.2

1. Build up a look up table with the assignment of a set Vi to each possible fault scenario

φi.

2. Run the fault detection scheme and the control scheme in parallel, as shown in Figure

4.18.

3. For each fault scenario φi detected, switch the model used in control according to the

look up table, i.e., determine the candidate inputs Vi from the look up table.

4. Apply the MPC algorithm using the candidate inputs Vi as manipulated variables.

5. Go to step 3. and use the most recent fault information.

The lookup table with Vi can be found offline via physical considerations or reachability

analysis.

Choice by physical motivation The look up table is found by analyzing all possible

fault scenarios. The sets of candidate inputs Vi are found by gaining physical insight into

the plant, by considering experience and a priori plant knowledge.

Choice by reachability analysis The look up table is found using tools from verifi-

cation (Bemporad and Morari, 1999b) and observability/reachability analysis (Bemporad,

Ferrari-Trecate and Morari, 1999). A given set of inputs is considered as candidate input

Vi, if it allows to reach the desired reference value from a set of initial states, despite the

influence of φi.

4.5 Reconfiguration of Mixed Logic Dynamical Systems 161

Reconfiguration with Static Steady State Analysis

We assume that the system has a constant control target that can be reached without

requiring cycling states (see Section 2.8), and that the steady state obtained by (4.35) to

(4.37) is reachable. If a fault φi is detected, the candidate inputs Vi are chosen based

on the steady state optimization (4.35)-(4.37). Vi is chosen as the set of inputs that are

different from zero in this optimization. The search for the steady state can be modified to

include further constraints or prioritizations. This method requires a low computational

load, however it lacks guarantees of optimality for the choice of Vi in the transients. The

algorithm can be summarized as follows:

Algorithm 4.3

1. Run the fault detection scheme and the control scheme in parallel, as shown in Figure

4.18.

2. If a fault φi is detected, run the steady-state finding procedure (4.35)-(4.37) on the

model with inputs VN ∪ VR.

3. Choose those inputs, which are different from zero in steady state, as candidate inputs

Vi.

4. Apply the MPC algorithm using the candidate inputs Vi as manipulated variables.

5. Repeat step 2. at the next time step using the most recent fault information.

Reconfiguration with Polytopic Steady State Analysis

The algorithm presented here is a modification of the method shown previously. Its moti-

vation is given by the possibility that a system does not exhibit one single steady state, but

162 4 Control and Supervision of Mixed Logic Dynamical Systems

rather tracks a cycle of states in order to stay close to the reference. We assume that the

cycle consists of reachable states. While in the Reconfiguration with Static Steady State

we extracted the candidate inputs Vi from a single steady state, for systems with cycling

states we propose to extract Vi from multiple steady states. For a system with ny outputs

we solve M = 2ny optimizations, given by (4.35)-(4.37), subject to exactly one additional

constraint:

µkyf ≤ µkr (k ∈ 1 . . . 2ny) (4.39)

where

µk ∈
{
diag(d) | d ∈

{
[ξ1, . . . , ξny] | ξi ∈ {−1, 1}

}}
(4.40)

Example 4.1:

Consider for instance a system with ny = 2 outputs. The M = 22 = 4 steady

states are found by solving (4.35)-(4.37) subject to one of the following four

additional constraints, respectively:

k = 1 :


−1 0

0 −1


 yf ≤


−1 0

0 −1


 r (4.41)

k = 2 :


1 0

0 −1


 yf ≤


1 0

0 −1


 r (4.42)

k = 3 :


−1 0

0 1


 yf ≤


−1 0

0 1


 r (4.43)

k = 4 :


1 0

0 1


 yf ≤


1 0

0 1


 r (4.44)

2

Let Yi be the set of outputs generated by the M steady states computed above. We assume

that

r ∈ conv({Yi|i = 1 . . .M}) (4.45)

4.5 Reconfiguration of Mixed Logic Dynamical Systems 163

i.e., the desired reference value is element of the convex hull of the M steady state outputs.

If (4.45) is fulfilled, we define M tentative sets of inputs Vik (k = 1 . . .M, i = 1 . . . nf)

as those inputs that are different from zero at steady state. The candidate set of inputs

Vi is then chosen such that Vik ⊂ Vi (k = 1 . . .M, i = 1 . . . nf). The set of inputs Vi

allows to keep the system at each of the M steady state values. Therefore, if r is within

the polytope spanned by Yi, it is reasonable to use these inputs to achieve the actual goal

of staying close to the reference r.

Example 4.2:

We visualize graphically the M = 22 steady states for the previous example

in Figure 4.19. Assuming that the axes are normalized to have the desired

reference r = [r1 r2]
T at the origin, the equilibria Yi (i = 1 . . . 4) fulfill the

conditions denoted in the corresponding quadrants. The shaded area marks

the convex hull of Yi (i = 1 . . . 4) and the reference r fulfills (4.45). 2

y1 ≥ r1y1 ≤ r1

y1 ≤ r1

y2 ≤ r2

y1 ≥ r1

y2 ≤ r2

y2 ≥ r2y2 ≥ r2

y2

y1

Y1
Y2

Y3Y4

Figure 4.19: Outputs Yi of steady states: The origin is the desired reference value r =

[r1 r2]
T , the outputs Y1, Y2, Y3, Y4 result as steady state outputs from the optimization

(4.35)-(4.37), (4.39). The origin r is an element of the convex hull of Y1, Y2, Y3, Y4

164 4 Control and Supervision of Mixed Logic Dynamical Systems

The reconfiguration algorithm is summarized next:

Algorithm 4.4

1. Run the fault detection scheme and the control scheme in parallel, as shown in Figure

4.18.

2. If the fault φi is detected, find M steady states with property (4.45). The steady states

are found with (4.35)-(4.37) on the model with inputs VN ∪VR. For each steady state

define Vik as the set of manipulated variables that are nonzero in steady state.

3. Find the set of candidate inputs Vi from Vik.

4. Apply the MPC algorithm using the candidate inputs Vi as manipulated variables.

5. Repeat step 2. at the next time step using the most recent fault information.

Some remarks about this approach are discussed next.

Finding a common set of inputs Vi from Vik: An obvious choice for Vi is given by

Vi = ∪M
k=1Vik

However, in terms of the number of manipulated variables, this can be suboptimal.

We defer to (Tsuda et al., 2000) for more details, where the aggregation of Vik (k =

1 . . .M) is considered. The idea there is that the set of manipulated variables Vik is

in general not unique4. This nonuniqueness can be exploited to find Vi, such that its

cardinality is as small as possible.

4The complete set of admissible manipulated variables is obtained by solving the feasibility test (4.36)-

(4.37),(4.39) rather than the optimization problem (4.35)-(4.37),(4.39).

4.5 Reconfiguration of Mixed Logic Dynamical Systems 165

Number of vertices M : The method requires to find M = 2ny steady states for each

possible fault. Therefore it has to be limited to systems with a low number of

outputs.

Collapsing steady states: Solving for the M = 2ny steady states, it can occur that some

steady state fulfills several sets of constraints (4.36)-(4.37),(4.39). This is the case,

if one or more components of the reference are reached exactly by some steady state

value, see Figure 4.20. For these cases the number of different steady states drops

below 2ny .

y1 ≥ r1y1 ≤ r1

y1 ≤ r1

y2 ≤ r2

y1 ≥ r1

y2 ≤ r2

y2 ≥ r2y2 ≥ r2

y2

y1

Y1
Y2

Y3Y4

Figure 4.20: Collapsing of steady states: When solving for Y3 we see that Y3 satisfies also

the constraints for Y4. Therefore, Y4 can be neglected. The origin r is an element of the

convex hull of Y1, Y2, Y3

Infeasibilities: The additional constraints in the steady state finding procedure can lead

to infeasibilities. In this case the set of steady states Yi contains M
′
< 2nf elements.

This is not a limitation to the method, as long as (4.45) is satisfied.

In Section 4.5.9 we apply this method to the three tank system.

166 4 Control and Supervision of Mixed Logic Dynamical Systems

4.5.7 One Step Compensation

In the previous section, we first determined the manipulated variables Vi to be used and

then ran the MPC controller with those variables. In this approach we set Vi = VN∪VR, i.e.

we use the complete set of manipulated variables and we propose a strategy to compute the

values of Vi in case of faults, avoiding to run the MPC optimization over all manipulated

variables. We use the redundant inputs VR to minimize at each time step the effect of

faults, i.e. we propose a scheme for fault compensation. The MLD model is rewritten as:

x(t+ 1) = Ax(t) +B1u(t) +B2δ(t) +B3z(t) + B̄1ū(t) +B6φ̂(t) (4.46a)

y(t) = Cx(t) +D1u(t) +D2δ(t) +D3z(t) + D̄1ū(t) +D6φ̂(t) (4.46b)

E2δ(t) + E3z(t) ≤ E1u(t) + E4x(t) + E5 + Ē1ū(t) + E6φ̂(t) (4.46c)

Here we explicitly split up the inputs used in nominal operation and the inputs for recon-

figuration purposes as u ∈ VN and ū ∈ VR, respectively. In nominal operation, we have

φ̂ = 0 and ū = 0. Running the MPC optimization we obtain at each time step t a triple

(un(t), δn(t), zn(t)). The state evolution in nominal operation is then given by

x(t+ 1) = Ax(t) + sn(t) (4.47)

where sn(t) is determined online by the MPC controller and

sn(t) = B1un(t) +B2δn(t) +B3zn(t) (4.48)

Note that at each t, sn(t) is determined by the MPC algorithm on the nominal model, and

is therefore known. In faulty operation the state update is different from sn(t). In fact in

presence of a fault, we use the reconfiguration inputs VR as well. The state evolution is

then given by:

x(t+ 1) = Ax(t) + se(t) (4.49)

The total state update can therefore be expressed as:

se(t) = B1ue(t) +B2δe(t) +B3ze(t) +B6φ̂(t) + B̄1ūe(t) (4.50)

4.5 Reconfiguration of Mixed Logic Dynamical Systems 167

The key idea of this method is to make se(t) as close to sn(t) as possible by exploiting the

freedom we have to choose the redundant inputs ū(t). This specification can be translated

into the following optimization problem:

Js = min
ue,ūe,δe,ze

‖ sn(t)− se(t) ‖Qos (4.51)

s.t. E2δ(t) + E3z(t) ≤ E1u(t) + E4x(t) + E5 + Ē1ū(t) + E6φ̂(t) (4.52)

In other words, when a fault is detected, we reproduce as best as possible the state update

of the system, as it would be in nominal operation. The algorithm is described as follows.

Algorithm 4.5

1. Run the fault detection scheme and the control scheme in parallel, as shown in Figure

4.18.

2. Compute the MPC control moves with the faultless model, yielding un(t), δn(t), zn(t)

and determine sn(t) from equation (4.48).

3. If a fault φi is detected, run the optimization (4.51), (4.52) to obtain ue(t), ūe(t),

δe(t), ze(t). If no fault is detected, set ue(t) = un(t), ūe(t) = 0, δe(t) = δn(t), ze(t) =

zn(t).

4. Apply ue(t) and ūe(t) to the system

5. Repeat 1. at the next time step.

A couple of remarks about this algorithm are given next.

• Online we solve two optimization problems. The first one is the standard MPC

optimization with faultless model and manipulated variables VN in order to determine

sn(t). The second one is (4.51)-(4.52) and represents a correction step, which yields

168 4 Control and Supervision of Mixed Logic Dynamical Systems

the actual inputs to apply to the plant, i.e. ue(t) and ūe(t). The computational

advantage over the complete optimization mentioned in Section 4.5.5 is that the full

model is only used for an optimization over one step (4.51)-(4.52), instead of the

optimization over the complete MPC horizon.

• Note that in general δn(t) 6= δe(t) as well as zn(t) 6= ze(t). This is due to the influence

of the faults φ on the set of feasible points for the auxiliary variables δ and z.

• The partition of the inputs in VN and VR is done, such that in faultless operation the

reconfiguration inputs VR are never used, i.e.[
φ̂ = 0

]
⇒ [ūn = 0] (4.53)

which explicitly satisfies requirement (4.29). Since the triple (un(t), δn(t), zn(t)) sat-

isfies the constraints in (4.52), we note that the optimum is Js = 0, which can be

reached by choosing

(ue(t), δe(t), ze(t)) = (un(t), δn(t), zn(t)) (4.54)

Therefore we see that in faultless operation the reconfiguration procedure (4.51)-

(4.52) is bypassed, in the sense that the nominal control action is not modified. This

justifies the action in the fault free case of step 3 in Algorithm 4.5.

• One Step Compensation is not necessarily linked to MPC. Other control algorithms

like e.g. output feedback can be used as control schemes. To determine the quan-

tity (4.48) necessary for One Step Compensation a simulation step is required to

determine δn(t) and zn(t).

• The main decision variables are the weighting coefficients of Qos in the norm of

Equation (4.51). They determine the relative importance of tracking the individual

state components.

The correction step done at each single time instant can be a drawback of the method,

since in presence of a fault, it might not be the best strategy to try to follow the nominal

4.5 Reconfiguration of Mixed Logic Dynamical Systems 169

state update as close as possible. The method is however fast, and in Section 4.5.9 we

show that it can provide the correct remedy to fault scenarios of the three tank system.

4.5.8 Application to the Three Tank System: Simulation

In this section we simulate the system behaviour for an occurrence of fault φ2, i.e. valve

V1 is blocked closed. We apply the One Step Compensation strategy in Section 4.5.7 and

compare it to the MPC controller using the complete model of Section 4.5.5. The fault

information is assumed to be exact, i.e. the fault is not estimated, but its type and time of

occurrence is known exactly. The fault is assumed to occur at t = 150, which would result

in the faulty system trajectories of Figure 4.21.

0 100 200 300
0

0.2

0.4

0.6

faulty system behaviour

le
ve

ls
 h

1,
 h

3
 [m

]

h1

h3

time [s], sampling time Ts = 5 s

Figure 4.21: Faulty system behaviour for fault φ2: The model parameters correspond to

those of the original benchmark system with increased cross sectional areas of the pipes

In Figure 4.22 we use MPC with a reduced model of the system5 before the fault φ2 occurs

5including only Q1 and V1 as manipulated variables

170 4 Control and Supervision of Mixed Logic Dynamical Systems

and the reconfiguration block switches to the complete model, as soon as the fault occurs.

The scheme decides to isolate tank 1, i.e. not use the lower valve V13. Instead it uses tank

2 to control level h3. The oscillations of h3 disappear, since level h2 is controlled at 0.2 m.

The strategy obtained with One Step Compensation is different, as it is shown in Figure

4.23. The scheme decides to use valve V13. Tank 2 is used to buffer the increased amount

of liquid flowing from tank 1 to tank 3 due to the usage of V13 instead of V1. Pump 2 is

not used and the oscillations in tank 3 remain, as in nominal behaviour.

0 100 200 300

0

0.2

0.4

MPC with complete model after fault occurrence

time [s], sampling time Ts = 5 s

le
ve

ls
 h

1,
 h

2,
 h

3
 [m

]

h1

h3

h2

Figure 4.22: Reconfiguration with complete model in MPC after fault occurrence at t = 150

4.5.9 Application to the Three Tank System: Experiments

We show an application of the reconfiguration based on polytopic steady state analysis and

on One Step Compensation on the laboratory model in Figure 3.5. For all experiments

the assumption is that the fault information is exact, i.e. the fault is not estimated, but

its type and time of occurrence is assumed to be known exactly.

4.5 Reconfiguration of Mixed Logic Dynamical Systems 171

0

0.2

0.4

0.6
reconfiguration with one step compensation

time [s], sampling time Ts = 5 s

le
ve

ls
 h

1,
 h

2,
 h

3
 [m

]

h1

h3

h2

0 100 200 300

Figure 4.23: Reconfiguration with one step compensation after fault occurrence at t = 150

Polytopic Steady State Analysis

The three tank system exhibits cycling trajectories when it is controlled to the reference

[0.5, 0, 0.1]. Therefore, we don’t apply static steady state reconfiguration, but rather extract

the information about the inputs to be used from the cycle of states, the system goes

through. We solved the steady state finding procedure (4.35)-(4.37) four times, adding in

each case one of the constraints shown in Table 4.8.

It is easy to verify that the reference r1 = 0.5 and r3 = 0.1 lies in the convex hull of the

steady states in Table 4.8. Considering the third column of Table 4.8 we find that the

manipulated variables to be used are those different from zero in the steady states, i.e.

[Q1, Q2, V1, V23]. Repeating the analysis for φ2 and φ3 gives the suggested manipulated

variables in Table 4.9.

We implemented the MPC scheme on the three tank system, where in faultless mode we

use the nominal manipulated variables {Q1, V1}. The controller switches model and uses

172 4 Control and Supervision of Mixed Logic Dynamical Systems

Additional constraints Resulting steady Manipulated variables [Q1, Q2, V13, V23, V1, V2]

to (4.35)-(4.37) state xf in steady state

y1f ≥ r1, y3f ≥ r3 [0.5, 0.2, 0.1] [0.27 · 10−4, 0.13 · 10−4, 0, 1, 0, 0]

y1f ≥ r1, y3f ≤ r3 [0.62, 0.3, 0.1] [0.42 · 10−4, 0.01 · 10−4, 0, 0, 1, 0]

y1f ≤ r1, y3f ≥ r3 [0.34, 0.21, 0.1] [0.20 · 10−4, 0.13 · 10−4, 0, 1, 0, 0]

y1f ≤ r1, y3f ≤ r3 [0.49, 0.2, 0.1] [0.27 · 10−4, 0.13 · 10−4, 0, 1, 0, 0]

Table 4.8: Steady states in presence of φ1, where yf = [y1f , y2f , y3f], r1 = 0.5, r3 = 0.1

Fault Manipulated variables to be used

φ1 [Q1, Q2, V1, V23]

φ2 [Q2, V23]

φ3 [Q1, Q2, V23]

Table 4.9: Look up table: Manipulated variables to be used in case of faults, suggested by

polytopic steady state analysis

4.5 Reconfiguration of Mixed Logic Dynamical Systems 173

the variables in Table 4.9, when a fault occurs. Since the scheme suggests to use tank 2,

we introduce a reference value r2 = 0.2 when the model is switched. The experiments for

the three fault scenarios are shown in Figures 4.24 - 4.26.

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

Reconfiguration based on polytopic steady state analysis

time [s], sampling time Ts = 10 s

le
ve

ls
 h

1,
 h

2,
 h

3
 [m

]

h1

h2

h3

0

10
x 10−5 Fault φ1 at t = 100

0

10

0

1

V
23

0

1
Q

[m

 /s
]

1

3

x 10−5

Q

[m
 /s

]
2

3
V

1

0 100 200 300 400 500

time [s], sampling time Ts = 10 s

Figure 4.24: Reconfiguration based on polytopic steady state analysis of Table 4.9, Fault

φ1 at time step t = 100: State trajectories (left), reconfiguration inputs Q1, Q2, V23, V1

(right)

If valve V1 is blocked closed (fault φ2, Figure 4.25), the system decides to isolate tank 1

and uses tank 2 to control h3. If valve V1 is blocked open (fault φ3), it is not possible to

keep both the reference for h1 and h3. Indeed, if V1 is blocked open, keeping h1 at r1 = 0.5

causes a large amount of liquid flowing in tank 3 and h3 ≥ r3. On the other hand, to keep

r3 at h3 requires that the amount of liquid in tank 1 is about at h1 = 0.4, i.e. lower than

its reference. Both behaviours can be obtained with the manipulated variables given in

Table 4.9 by appropriate choice of the weights in the MPC cost function. In Figure 4.26 we

show an experiment, where the scheme decides to lower the target value for h1. For fault

φ1, the suggested manipulated variables result in a state trajectory that does not minimize

the liquid loss in tank 1, as it is shown in Figure 4.24. If we impose the usage of tank 2

only, using the manipulated variables Q2, V2, V23, we obtain the desired draining of tank 1,

174 4 Control and Supervision of Mixed Logic Dynamical Systems

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

Reconfiguration based on polytopic steady state analysis

time [s], sampling time Ts = 10 s

le
ve

ls
 h

1,
 h

2,
 h

3
 [m

]

h1

h2

h3

0
2
4
6
8

10
x 10

−5

0 100 200 300 400 500

time [s], sampling time Ts = 10 s
V

23

0

1

Q

[m
 /s

]
2

3

0 100 200 300 400 500

Fault φ2 at t = 100

Figure 4.25: Reconfiguration based on polytopic steady state analysis of Table 4.9, Fault

φ2 at time step t = 100: State trajectories (left), reconfiguration inputs Q2, V23 (right)

0 100 200 300 400 500
0

0.1

0.2

0.3

0.4

0.5

0.6

Reconfiguration based on polytopic steady state analysis

time [s], sampling time Ts = 10 s

le
ve

ls
 h

1,
 h

2,
 h

3
 [m

] h1

h2

h3

0

10
x 10−5 Fault φ3 at t = 100

0

10

0

1

V
23

Q

[m
 /s

]
1

3

x 10−5

Q

[m
 /s

]
2

3

0 100 200 300 400 500

time [s], sampling time Ts = 10 s

Figure 4.26: Reconfiguration based on polytopic steady state analysis of Table 4.9, Fault

φ3 at time step t = 100: State trajectories (left), reconfiguration inputs Q1, Q2, V23 (right)

4.5 Reconfiguration of Mixed Logic Dynamical Systems 175

see Figure 4.27. Explicitly setting r1 = 0 in the polytopic steady state finding procedure

allows to find the same set of manipulated variables, confirming the choice of Q2, V2, V23.

400 600 800
0

0.1

0.2

0.3

0.4

0.5

0.6

Reconfiguration based on physical motivation

time [s], sampling time Ts = 10 s

le
ve

ls
 h

1,
 h

2,
 h

3
 [m

]

200 0

h1

h2

h3

Figure 4.27: Reconfiguration based on physical motivation, Fault φ1 at time step t = 100,

these system trajectories result imposing the usage of tank 2.

One Step Compensation

In Figure 4.28 we applied one step compensation for the fault scenario φ1 on the three

tank system. Despite the fault occurrence at time t = 100, the state trajectories do not

show any visible effect. Indeed, the One Step Compensation scheme decides to increase the

pump action of Q1 in order to force the output to stay at the reference value of [0.5, 0, 0.1].

This has been achieved by increasing the power to pump Q1, as we show in Figure 4.29.

One Step Compensation automatically decides to use valve V13, if V1 is blocked closed,

i.e. if fault φ2 occurs. The oscillations of h3 in Figure 4.30 are larger than in nominal

behaviour, because using V13 the liquid flow from tank 1 to tank 3 cannot be dosed as

finely as using V1. To compensate for this, the scheme decides to allow a liquid flow into

tank 2.

176 4 Control and Supervision of Mixed Logic Dynamical Systems

0 100 200 300 400 500

0

0.1

0.2

0.3

0.4

0.5

0.6

Reconfiguration based on one step compensation

time [s], sampling time Ts = 10 s

le
ve

ls
 h

1,
 h

2,
 h

3
 [m

]
h1

h3

600

h2

Figure 4.28: Reconfiguration based on one step compensation for fault φ1. The fault occurs

at t = 100.

0 100 200 300 400 500 600
0

2

4

6
x 10

−5

0 100 200 300 400 500 600
0

1

Reconfiguration based on one step compensation

Q

[m
 /s

]
1

3

V
1

time [s], sampling time Ts = 10 s

0
2
4
6

x 10
−5

0

1

Fault φ1 at t = 100

Q

[m
 /s

]
2

3
V

2

0

1

V
23

V
13

0

1

0 100 200 300 400 500
time [s], sampling time Ts = 10 s

600

Figure 4.29: Reconfiguration based on one step compensation for fault φ1: Nominal actu-

ator action (left) and reconfiguration actuator action (right). The fault occurs at t = 100.

4.5 Reconfiguration of Mixed Logic Dynamical Systems 177

0 100 200 300 400 500

0

0.1

0.2

0.3

0.4

0.5

0.6

Reconfiguration based on one step compensation

time [s], sampling time Ts = 10 s

le
ve

ls
 h

1,
 h

2,
 h

3
 [m

]

600

h1

h3

h2

Figure 4.30: Reconfiguration based on one step compensation for fault φ2. The fault occurs

at t = 100.

In Figure 4.31 we show the case where V1 is blocked open, i.e. fault φ3 occurs. The

scheme decides to use V23 to redirect the exceeding amount of liquid to tank 2. However,

in this case the scheme is not able to recognize the need to lower the reference for h1, and

ultimately both tanks 2 and 3 settle at a level of around 0.2 m.

In Figure 4.32 we report an experiment, where we modified slightly the set-up of the

reconfiguration problem by opening the outflow of tank 2, when φ3 occurred. Note that

One Step Compensation performs better than in Figure 4.31 in this case. The opening in

tank 2 provides a further possibility for liquid outflow and the scheme correctly decides to

let liquid flow out through tank 2, see Figure 4.32.

4.5.10 Summary

Table 4.10 summarizes the main differences between the reconfiguration algorithms. The

methods presented in this section aim at providing suggestions on automated system recon-

178 4 Control and Supervision of Mixed Logic Dynamical Systems

0 100 200 300 400 500

0

0.1

0.2

0.3

0.4

0.5

0.6

Reconfiguration based on one step compensation

time [s], sampling time Ts = 10 s

le
ve

ls
 h

1,
 h

2,
 h

3
 [m

]
h1

h3

600

h2

Figure 4.31: Reconfiguration based on one step compensation for fault φ3. The fault occurs

at t = 100. The trajectories of h2 and h3 settle at about 0.2 m.

0 100 200 300 400 500

0

0.1

0.2

0.3

0.4

0.5

0.6

Reconfiguration based on one step compensation

time [s], sampling time Ts = 10 s

le
ve

ls
 h

1,
 h

2,
 h

3
 [m

]

h1

h3

600

h2

Figure 4.32: Reconfiguration based on one step compensation for fault φ3 and additional

opening of tank 2. The fault occurs at t = 100.

4.6 Constraints Prioritizations 179

Algorithm Choice of candidate inputs Value of candidate inputs Vi

Vi in MPC optimization in MPC optimization given by

4.1 on page 157 Vi = VN ∪ VR MPC over Vi

4.2 on page 160 look up table MPC over Vi

4.3 on page 161 static steady state MPC over Vi

4.4 on page 164 polytopic steady state MPC over Vi

4.5 on page 167 Vi = VN ∪ VR correction (4.51)-(4.52)

Table 4.10: Summary of the reconfiguration algorithms

figuration in case of failures. We showed that the procedures are able to produce reasonable

suggestions for the three tank system benchmark model, after some tuning of the design

parameters. We also pointed out the limitations of the techniques, especially in cases where

a thorough system understanding leads to more plausible strategies. At the present stage

the methods are meant to be rather a decision support, than an autonomous, intelligent

reconfiguration mechanism.

4.6 Constraints Prioritizations

4.6.1 Introduction

So far, all topics in this work involved in one way or another a constrained optimization

to solve the desired analysis or synthesis problem. In some cases we would like to assign

a different level of importance to the constraints, in the sense that we might be willing

to accept their violation, to enlarge the search space of the optimizer. While this is not

meaningful for hard physical constraints, like e.g. the maximum volume of containers,

some constraints defining performance requirements can be relaxed without any danger for

the plant, like e.g. the size of a target region around a reference value. In a reconfiguration

180 4 Control and Supervision of Mixed Logic Dynamical Systems

algorithm we would like to avoid using some “expensive”, redundant components, unless

it is necessary to achieve the specifications. When these components are used, we would

like to impose a hierarchy of their usage by prioritizing some of them over the others.

In (Bemporad and Morari, 1999a) it is shown that such constraint prioritizations can be

directly specified within the MLD framework. We restrict the exposition of these ideas

to the controller design problem, even though the framework can in principle be applied

to any constrained optimization scheme. This section summarizes the paper by Kerrigan

et al. (2000).

4.6.2 Soft Constraints and Their Hierarchy

The key idea is to formulate the hierarchy of priorities as a set soft constraints in the MPC

optimization (4.1),(4.2),(4.3),(4.4). This MIQP can be written as an optimization of the

following form:

min
θ

θTHθ + fT θ

s.t. Aθ ≤ b

where θ = (u, δ, z), H and f are the Hessian and the linear term of the cost function,

and all constraints (4.2),(4.3),(4.4) are summarized in the matrix A and vector b. The

prioritizations of some hardware components are formulated as soft constraints in the

above MIQP, yielding:

min
θ,ε,δ

θTHθ + fT θ + εTSε+ ρMT
p δ

s.t. Aθ ≤ b+ Cε

0 ≤ ε ≤Mε

where ε is a vector of slack variables, representing the constraint violations, C is a matrix

of appropriate dimension, whose rows are 0 or eT
k according to whether the kth constraint

is hard or soft, eT
k is the kth canonical basis vector, S = ST > 0 is a weighting matrix

which decides the trade-off between cost and constraint violation.

4.6 Constraints Prioritizations 181

In order to express the hierarchy, how we allow constraint violations, we define the vector

δ = [δ1, . . . , δr]
T ∈ {0, 1}r, associating its components with constraint violations at r levels

of priority. We use the logical statements

[δ1 = 0] → [ε11 + . . .+ ε1c1 = 0]

...
...

[δr = 0] → [εr1 + . . .+ εrcr = 0] (4.55)

where εij represents the constraint violation of the jth constraint on the ith priority level,

ci is the number of constraints involved in the ith priority level. The constraints on the

first level have the highest priority. Constraint violation is indicated by δi = 1. The upper

bound Mε on the slack variables is necessary, in order for the scalar

ρ > max
θ,ε

θTHθ + fTθ + εTSε (4.56)

to be well-defined. This choice of ρ implies that any constraint violation costs more than

the constraint fulfillment. These logical statements can be converted into mixed integer

linear inequalities, see Chapter 2, and included in the constraints of the MIQP.

The key to this approach is the choice of the vector Mp. If the priority is assigned in

decreasing order from δ1 to δr, then e.g. the choice

Mp = [2r−1, 2r−2, . . . , 21, 20]T (4.57)

guarantees that the satisfaction of higher prioritized constraints always results in a greater

reduction in cost than the satisfaction of any combination of lower prioritized constraints

(Kerrigan et al., 2000). Indeed, it can be verified that for Mp as in (4.57) it holds that

Mp(i) >

r∑
j=i+1

Mp(j) (4.58)

where Mp(i) is the ith coefficient of Mp. The definition of ρ in Equation (4.56) requires

that

min
i
Mp(i) = Mp(r) ≥ 1

182 4 Control and Supervision of Mixed Logic Dynamical Systems

4.6.3 Increasing the Number of Satisfied Constraints

The approach in Equations (4.55) assigning one binary variable for each priority level

hides a potential undesired effect. Indeed, if one constraint on a certain priority level

cannot be satisfied, the choice (4.55), (4.57) will not guarantee the satisfaction of all other

constraints on the same priority level. A possible solution that guarantees the satisfaction of

a maximum number of constraints, consists of using one binary variable for each constraint

on each priority level:

[δi,j = 0] → [εij = 0]

i = 1 . . . r j = 1 . . . ci

The first index i in δi,j denotes the priority level and the second index j the constraint on

that priority level. The vector δ now contains
∑r

i=1 ci elements as

δ = [δ1,1, . . . , δ1,c1, δ2,1, . . . , δi,1, . . . , δi,ci
, . . . , δr,cr]

T

The choice of the weights Mp is such that each δi,j on the same priority level is assigned

the same weight mi, therefore

Mp = [m11c1, . . . , mr1cr]
T (4.59)

where 1j is a vector of ones of length j. We can normalize Equation (4.59) by setting the

weight corresponding to the least priority mr = 1. As in Equation (4.58) we require that

the weights at a given priority level be larger than the sum of all weights at lower priority

levels. This condition ensures that whenever there is a trade-off between satisfaction of

one high prioritized constraint instead of all lower prioritized constraints, the former is

chosen to be satisfied. Moreover, if a priority level is violated because one constraint can’t

be fulfilled, the satisfaction of as many as possible of the others at the same level results

in a reduced cost. One possible choice is

mi = 1 +
r∑

j=i+1

cjmj (4.60)

4.6 Constraints Prioritizations 183

Example 4.3:

Assume that we assign the priorities listed in Table 4.11 to the usage of ma-

nipulated variables in the three tank system. For u = [Q1, V1, V13, Q2, V2, V23]

manipulated variables priority level i number of constraints ci weight mi

Q1, V1 1 c1 = 2 m1 = 8

V13 2 c2 = 1 m2 = 4

Q2, V2, V23 3 c3 = 3 m3 = 1

Table 4.11: Example: Priorities assigned to the manipulated variables of the three tank

system

we can add the soft constraints

I6u ≤ I6ε (4.61)

where I6 is the identity matrix of dimension 6. Equation (4.61) would force all

inputs to 0, if it were formulated as hard constraint. We allow the violation

of this constraint, i.e. the usage of the corresponding manipulated variable,

according to the hierarchy of Table 4.11. In this example we have

Mp =
[
8 8 4 1 1 1

]T
as well as the logic propositions defining the constraint violations

[δ1,1 = 0] → [ε1,1 = 0]

[δ1,2 = 0] → [ε1,2 = 0]

[δ2,1 = 0] → [ε2,1 = 0]

[δ3,1 = 0] → [ε3,1 = 0]

[δ3,2 = 0] → [ε3,2 = 0]

[δ3,3 = 0] → [ε3,3 = 0]

2

184 4 Control and Supervision of Mixed Logic Dynamical Systems

Extensions to these concepts, concerning e.g. the optimization of the duration of constraint

violation can be found in (Kerrigan, 2000).

Chapter 5

Computational Aspects

This chapter is dedicated to the mathematical problems occurring in analysis and synthesis

of MLD systems.

5.1 Introduction

In Chapter 4 we have shown, how to cast practical analysis and synthesis problems for

MLD systems as mathematical optimization problems. Due to the presence of both inte-

ger variables and continuous valued variables, the resulting optimizations are Mixed Integer

Programs. In this work we focus on the Mixed Integer Quadratic Program (MIQP) for-

mulation (Fletcher and Leyffer, 1998; Lazimy, 1985; Volkovich et al., 1987). The choice

of a quadratic cost function is motivated by the same reasons as in the continuous case,

namely the relatively easy solution, the uniqueness of a solution for positive definite func-

tions and the desire to penalize large deviations stronger than small ones. The usage of

a linear cost function, resulting in a Mixed Integer Linear Program (MILP) is currently

under investigation and is expected to have computational advantages in terms of solution

times (Bemporad, Borrelli and Morari, 2000a).

185

186 5 Computational Aspects

The usual procedure for solving mixed integer programs is to rely on an iterative search

scheme. We solve a set of relaxed problems, the solutions of which approach the solution

of interest. For general MIQPs the average solution time can be significantly influenced by

the choice of the search procedure. The main goal of this chapter is to propose a strategy

to solve mixed integer programs, especially tailored for the problems occurring for MLD

systems.

After reviewing some standard facts about mixed integer optimization in Section 5.2, we

consider in Section 5.3 in detail the branch and bound method, the search procedure

of which can be represented by a tree data structure. A new algorithm, which exploits

structural characteristics of the optimizations problems for MLD systems is presented

in Section 5.3.3. We estimate the computational complexity of the algorithm and give

suggestions about its implementation. The effect of this algorithm is illustrated with

simulations on the three tank system of Section 3.2. Some commercially available solvers

are described in Section 5.4. A free solver for Matlab that has been coded during this work

is described in Section 5.5.

5.2 Mixed Integer Optimization

Mixed integer programming problems are classified in general as NP -hard, which means

that with the available algorithms in the worst case, the solution time grows exponentially

with the number of integer variables (Raman and Grossmann, 1991). Despite this combi-

natorial nature, several algorithmic approaches have been proposed and applied success-

fully to medium and large size application problems (Fletcher and Leyffer, 1998), the four

major ones being: Cutting plane methods, where new constraints (“cuts”) are generated

and added to reduce the feasible domain until the optimal solution is found; decomposi-

tion methods, where the mathematical structure of the models is exploited via variable

partitioning, duality, and relaxation methods; Logic-based methods, where disjunctive con-

5.2 Mixed Integer Optimization 187

straints or symbolic inference techniques are utilized, which can be expressed in terms

of binary variables; branch and bound (B&B) methods , where the 0-1 combinations are

explored through a binary tree, the feasible region is partitioned into sub-domains system-

atically, and valid upper and lower bounds are generated at different levels of the binary

tree. For MIQP problems, Fletcher and Leyffer (1998) mention Generalized Benders’ De-

composition (Lazimy, 1985), Outer Approximation, LP/QP based branch and bound, and

B&B as the major solver methods. See (Volkovich et al., 1987) for a review of these meth-

ods. Several authors agree on the fact that B&B methods are the most successful for mixed

integer quadratic programs (Fletcher and Leyffer, 1998).

There exist some exceptions of mixed integer programs having polynomial complexity in

the number of binary variables. A simple case consists of the presence of exclusive-or

constraints over all integer variables (Mignone, 1999). Moreover, there exist integer linear

programs, the solution of which can be found by solving one single linear program. This

occurs, e.g., if the constraints are totally unimodular (Nemhauser and Wolsey, 1988; Chan-

dru and Hooker, 1999), since then they define a polyhedron with integral vertices. This

implies that the relaxation of the constraints xi ∈ {0, 1} to xi ∈ [0, 1] leads to a continuous

optimization problem, whose solution is integral for xi. After having formulated the mixed

integer optimization according to Chapter 4 it is worthwhile checking a posteriori, if the

optimization has a form allowing an easy solution. However, most likely this will not be

the case. At present it is not clear either, under which conditions on the model the result-

ing optimization problem lies in such a class, and when the results for integer programs

mentioned above can be used for mixed integer programs.

On the other hand, the optimization problems stemming from MLD systems exhibit some

clear structural properties, like e.g. the repetition of some blocks of constraints over the

optimization vector. The latter phenomenon is due to the evolution of a system over

some given horizon, both in control and estimation problems. Devising particular B&B

algorithms that exploit the problem structure can be useful to reduce the amount of com-

188 5 Computational Aspects

putations on average. We will measure the complexity of a solution method for an MIQP

by the number of relaxed QPs (Quadratic Programs) that have to be solved during B&B.

This is only a rough measure of complexity since it does not take into account the com-

plexity of the single QPs. It is however a measure that often reflects the time required for

finding a solution.

5.3 The Branch and Bound Method

One disadvantage of MIQPs is the computational complexity that in the worst case is

exponentially increasing with the number of binary optimization variables δ and φ, as

they appear e.g. in the faulty MLD system (3.37). However, in general the complexity

is inherent to the problem and not a particular drawback of the proposed analysis or

synthesis methods. At present the only method to guarantee the fulfillment of hard timing

constraints and the global optimal solution for the optimization is explicit enumeration

of all possible combinations of the integer variables. This brute-force approach is not

recommended due to large computations precluding an online application, already for

small problem sizes. On average, branch and bound algorithms are an efficient way to

solve MIQPs (Nemhauser and Wolsey, 1988; Floudas, 1995).

Problem specific knowledge can be incorporated in the search strategy of B&B methods

in order to speed up the computations. We present in the next sections a technique that

is particularly suited for the control and estimation problems considered in this work.

5.3 The Branch and Bound Method 189

5.3.1 Branch and Bound Algorithms for Mixed Integer Quadratic

Programs

A Mixed Integer Quadratic Program (MIQP) has the following form

min
x

0.5xTQx+ bTx (5.1)

subject to Cx+ d ≤ 0

x =
[

xc
xd

]
, xc ∈ Rnc

xd ∈ {0, 1}nd (5.2)

and differs from a standard QP through the integrality constraint (5.2)1. If Q = 0, the

optimization is a Mixed Integer Linear Program (MILP).

5.3.2 Representation of Mixed Integer Quadratic Programs as

Trees

The main idea in solving MIQPs with branch and bound methods lies in the solution of sub-

problems that are relatively easy to tackle. Their solution approaches the desired optimum

or represents a bound thereof. The key concepts in branch and bound are therefore:

• separation of a problem, referring to the generation of new subproblems from a given

one

• relaxation of the integrality constraints (5.2), i.e. integer variables are allowed to

span the interval [0, 1]. The subproblems of an MIQP are therefore QPs.

The optimal values of the subproblems, if they exist, represent lower bounds on the optimal

value of the original MIQP (Floudas, 1995). A graphical representation of the concepts

1In a more general setup any integer value is allowed, but we restrict ourselves to the 0/1 case here.

190 5 Computational Aspects

relaxation and separation in branch and bound algorithms can be drawn with the help of

k-ary trees. Figure 5.1 depicts a binary tree.

We recall here some standard concepts from tree data structure terminology (Massey, 1996).

A tree consists of nodes (or vertices) and branches (or arcs). Exactly one node of a tree

is characterized as the root. Each node except the root has a unique father, i.e. a unique

predecessor towards the root. Each node including the root can have none, one or more

subsequent nodes, called the children of the node. Nodes without children are called leaves.

A tree, where each node except the leaves has exactly k children is called a k-ary tree. The

depth of a node is the number its predecessors towards the root, i.e. the number of its

‘fathers’ and ‘grandfathers’. The q-th level of a tree is the set of all nodes with depth q.

The depth of the root is 0. The length of a tree is the maximum depth over all its nodes.

A full k-ary tree of length N is a k-ary tree with kN leaves, each at depth N . The tree

obtained from a node ν by deleting the branch to its father and taking ν as root of a new

tree is the subtree of node ν.

The representation of MIQPs as trees is done as follows. Let ξ ∈ {0, 1}nd be a vector

having the same dimension nd as the vector of binary variables xd, and let the symbol

? mean that the corresponding entry of ξ is relaxed, i.e. free to span the interval [0, 1].

We associate the original MIQP (5.1) where all integrality constraints are relaxed to the

interval [0, 1] with

ξ0 = [? , ? , . . . , ?]︸ ︷︷ ︸
nd times

(5.3)

The vector ξ0 is assigned to the root of a k-ary tree. The separation of the original MIQP

or any subproblem into relaxed QPs is done by setting selected integer variables to 0 or 1.

The resulting new QP problems are assigned to the children of the node.

Example 5.1:

For instance, separating the root [? , ? , . . . , ?] on the second variable results

5.3 The Branch and Bound Method 191

[*,*,*]

[1,*,*][0,*,*]

[0,0,*] [0,1,*] [1,0,*] [1,1,*]

[0,0,0] [0,0,1] [0,1,0] [0,1,1] [1,0,0] [1,0,1] [1,1,0] [1,1,1]

Figure 5.1: The binary tree for a MIQP with 3 integer variables. Each node is marked

with the corresponding vector ξj.

in the two new subproblems:

ξ1 = [? , 0 , ? , . . . , ?] (5.4)

ξ2 = [? , 1 , ? , . . . , ?] (5.5)

In Figure 5.2 we sketch the separation of the root on the second variable. 2

[★ , ★ , ★ , ..., ★]

[★ , 0, ★ , ..., ★] [★ , 1, ★ , ..., ★]

Figure 5.2: Separation of the root on the second variable

192 5 Computational Aspects

We denote each child by a vector ξj, ξj ∈ {?, 0, 1}nd. If the i-th component ξi
j = 0 (or

ξi
j = 1), then the QP corresponding to that node is solved by setting the i-th integer

variable to 0 (or 1). If ξi
j = ?, then the i-th integer variable of ξj is regarded as free within

[0, 1] in the corresponding QP.

Example 5.2:

The tree of an MIQP with 3 binary variables is shown in Figure 5.1. Note that

the number of continuous variables nc is arbitrary in this representation. The

number of optimization variables in subproblem ξj is

nc + #{k ∈ [1, nd] : ξj(k) = ?}

As another illustration, consider the node marked with [0, 1, ?]. This node

denotes the following QP:

min
x

0.5xTQx+ bTx

subject to Cx+ d ≤ 0

x =
[

xc
xd

]
, xc ∈ Rnc

xd(1) = 0 xd(2) = 1 xd(3) ∈ [0, 1]

2

Any MIQP with nd binary variables can be associated to the 2nd+1 − 1 QPs in the tree

structure described above. A general B&B algorithm for an MIQP can be stated as follows

(Floudas, 1995):

Algorithm 5.1 Branch and Bound

1. Initialize a list of subproblems with the MIQP to be solved. Set

fopt = +∞ and xopt = [∞, . . . ,∞]

5.3 The Branch and Bound Method 193

2. If the list of subproblems is empty, terminate with fopt and xopt. If fopt == +∞, the

MIQP is infeasible.

3. Select one problem in the list of subproblems to become the current problem and delete

it from the list of subproblems.

4. Relax the current problem, solve it, and denote its solution as fR and its optimizer

as xR.

5. • If the current problem is infeasible, then go to point 2. This step is called

fathoming by infeasibility.

• Else if fR ≥ fopt, then go to point 2. This step is called fathoming by higher

cost

• Else if xR satisfies the integer constraints and fR ≤ fopt, then update the current

best solution by setting

fopt = fR and xopt = xR

and go to point 2.

6. Generate two new subproblems out of the current problem and add them to the list of

subproblems. This step is called separation. Go to point 2.

Strategies for B&B

The two decisions that determine the average performance of the B&B algorithm are

taken in steps 6 and 3. In step 6 separation is performed by setting one selected binary

optimization variable to its two possible values. The chosen variable is called branching

variable and its selection defines the branching rule. The principle according to which

the next current node is chosen in step 3 is called tree exploring strategy. A good B&B

algorithm aims at quickly fathoming large subtrees, therefore avoiding the solution of many

194 5 Computational Aspects

subproblems. The most common choices for the branching rule and the tree exploring

strategy are listed next.

The Branching Rule

Some possible branching rules are:

First Free Variable: Among the relaxed integer variables (denoted by ?),

choose the one with the smallest index.

Fractional Part-Based Branching: Solving the relaxed QPs, the solution

for the variables that are constrained to be binary will usually have a

fractional part. Choose the variable that has the largest or the smallest

distance to the next integer value as the next branching variable. Choosing

to branch on the maximal fractional part, the index of the branching

variable is therefore determined as:

j = arg max
i

(min
δi

{δi, 1− δi}) (5.6)

and branching on the minimal fractional part chooses the index as

j = arg min
i

(min
δi

{δi, 1− δi}) (5.7)

User Prioritization: The sequence of branching variables is user-specified.

This case occurs for instance, if we decide to branch on those variables

first that have a small time index over the horizon.

Branching on Multiple Variables: Groups of d variables are chosen simul-

taneously according to the rules above. This gives a 2d-ary tree for the

MIQP.

5.3 The Branch and Bound Method 195

The Tree Exploring Strategy

Some standard tree exploring strategies are:

Depth First Strategy: The QPs are solved by a last-in first-out (LIFO) rule.

Breadth First Strategy: The problems at depth N are not solved before all

problems at depth N − 1 have been solved.

Best Bound Strategy: The node is chosen with the best value for the corre-

sponding relaxed QP.

Normalized or Alternative Best Bound Strategy: The node is chosen with

the best normalized cost for the relaxed QP, where the normalization is

performed with the depth of the node, i.e. the number of variables already

set.

In order to illustrate the tree exploring strategies, consider again an MIQP with 3 binary

variables. The order in which the problems are solved for the depth first and the breadth

first strategy are given in Figure 5.3.

[*,*,*]

[1,*,*][0,*,*]

[0,0,*] [0,1,*] [1,0,*] [1,1,*]

[0,0,0] [0,0,1] [0,1,0] [0,1,1] [1,0,0] [1,0,1] [1,1,0] [1,1,1]

1

2

3

4 5

6

7 8

9

10

11 12

13

14 15

[*,*,*]

[1,*,*][0,*,*]

[0,0,*] [0,1,*] [1,0,*] [1,1,*]

[0,0,0] [0,0,1] [0,1,0] [0,1,1] [1,0,0] [1,0,1] [1,1,0] [1,1,1]

1

2 3

4 5 6 7

8 9 10 11 12 13 14 15

Figure 5.3: Order how problems are solved in the depth first tree exploring strategy (left),

and the breadth first tree exploring strategy (right).

196 5 Computational Aspects

5.3.3 The Outside First Tree Exploring Strategy

We present in this section an approach that belongs to the class of B&B methods. It is

tailored to optimal control or estimation problems, like (4.1) for MLD systems (2.8) where

the time sequence of binary variables switches rarely over the time horizon. In this case,

the integer optimization vector xd in (5.2) contains samples of δ(t) taken at different time

instants, viz.

xd = [δ(t), δ(t+ 1), . . . , δ(t+ nd − 1)]

The main motivation of the algorithm stems from the observation that in some cases the

binary variables δ(t) seldom change their value over the time horizon T . In fact, typically

binary variables δ(t) are associated with conditions on continuous states x(t), for instance

[δ(t) = 0]↔ [x(t) ≥ x0] (5.8)

This occurs for instance in the three tank system, where Equation (5.8) gives rise to a

trajectory for δ as in Figure 5.4.

Because the continuous components satisfy dynamic equations, in general, their inertia will

prevent frequent switches of the indicator variable δ(t). This phenomenon is even more

pronounced, when integer variables represent the occurrence of a fault, which involves an

irreversible physical damage, because in this case the integer variable will switch at most

once its value over the horizon [t− T, t].

We wish to take account of these simple engineering considerations in the B&B algorithm.

When we suspect that the system exhibits this kind of behaviour, we should try to solve

first the QPs, where the integer variables do indeed describe a limited number of switches.

However, we do not want to impose a limited number of switchings over the prediction

horizon as a model constraint. In fact, although unlikely, an arbitrary number of switches

might indeed occur.

5.3 The Branch and Bound Method 197

X 0

x(t)

t

x0

δ(t)

t
0

1

Figure 5.4: Motivation for the outside first tree exploring strategy: Representation of a

binary level indicator variable switching its value according to the continuous valued height

Guaranteed Switches

Given a subproblem marked by ξ, let I be the ordered m-tuple collecting the indices i for

which ξi 6= ?,

I , [i1, i2, . . . im] such that ξij 6= ? ∀ij and i1 < i2 < · · · < im

We define the number D of guaranteed switches as the number of indices iq in I such that

ξiq 6= ξiq+1.

Example 5.3:

For instance, assume that

ξ = [0, 0, ?, 1, ?, ?, 1, 0, 0, ?]

then with the notation introduced before we have I = [1, 2, 4, 7, 8, 9], andD = 2.

2

198 5 Computational Aspects

column -1 column 0 column 1 column 2

original no guaranteed 1 guaranteed 2 guaranteed

problem switches switch switches

[?, ?, ?] [0, 0, 0] [0, 0, 1] [0, 1, 0]

[0, 0, ?] [0, 1, 1] [1, 0, 1]

[0, ?, ?] [1, 1, 0]

[1, 1, 1] [1, 0, 0]

[1, 1, ?] [0, 1, ?]

[1, ?, ?] [1, 0, ?]

Table 5.1: Classification of subproblems according to guaranteed switches in the binary

variables for nd = 3

Example 5.4:

By considering again an MIQP with 3 binary variables (Figure 5.1) we can

partition the 23+1 − 1 = 15 QPs occurring in the branch and bound tree into

four classes, according to the guaranteed switches of binary variables in each

QP. This classification is given in Table 5.1. 2

Outside First Tree Exploring Strategy

The proposed tree exploring strategy solves a QP in column i of Table 5.1 only after all

problems in the columns up to i − 1 have been solved. The order of the QPs among one

column is arbitrary and offers an additional degree of freedom.

According to this rule, the tree with 3 binary variables of the example above is explored in

the order denoted in Figure 5.5. We call the strategy outside first, since the MIQP tree is

explored from the outside to the inside. The root will be assigned by definition −1 guar-

anteed switches. This technical convention simplifies the assessment of the computational

5.3 The Branch and Bound Method 199

complexity in Section 5.3.4.

[*,*,*]

[1,*,*][0,*,*]

[0,0,*] [0,1,*] [1,0,*] [1,1,*]

[0,0,0] [0,0,1] [0,1,0] [0,1,1] [1,0,0] [1,0,1] [1,1,0] [1,1,1]

1

2

3

4

5

6

78

9

1011

12

1314 15

Figure 5.5: Order how problems are solved in the outside first strategy, assuming the “first

free variable” branching rule.

We adapt the general B&B algorithm to the outside first strategy and obtain the following

algorithm:

Algorithm 5.2 Branch and Bound with outside first tree exploring strategy

1. Initialize a list of subproblems with the MIQP to be solved. Set

fopt = +∞ and xopt = [∞, . . . ,∞]

2. If the list of subproblems is empty, terminate with fopt and xopt. If fopt == ∞, the

MIQP is infeasible.

3. Determine ko as the minimum of guaranteed switches among the problems in the list

of subproblems. Select one problem with ko guaranteed switches to become the current

problem and delete it from the list of subproblems.

4. Relax the current problem, solve it, and denote its solution as fR and its optimizer

as xR.

200 5 Computational Aspects

5. • If the current problem is infeasible, then go to point 2.

• Else if fR ≥ fopt, then go to point 2.

• Else if xR satisfies the integer constraints and fR ≤ fopt, then update the current

best solution by setting

fopt = fR and xopt = xR

and go to point 2.

6. Generate two new subproblems out of the current problem, determine their guaranteed

switches and add them to the list of subproblems. Go to point 2.

Often hard restrictions on the time available to perform the required computations severely

limit the chances to find a global minimizer for (5.1)–(5.2), especially for large problems

with many binary variables. In this case, the MIQP optimization should aim at providing

good suboptimal solutions. The problem is then to choose and solve the problems in the

MIQP tree that are most likely to give a value of the cost function that is close to the global

minimum. The search for suboptimal solutions can be systematized with the outside first

tree exploring strategy by defining a maximum number of guaranteed switches kmax. Only

those subproblems are solved that have a number of guaranteed switches smaller than

kmax. The outside first approach allows therefore to select and solve the QPs that are

most promising in giving good suboptimal solutions, provided that the integer variables

do not switch their value often. For MPC of MLD systems local minima are tolerable, in

fact, Bemporad and Morari (1999a) prove that stability is not altered by local minima,

though the convergence properties of the controller deteriorate.

In principle, the outside first tree exploring strategy can be applied in combination with

any branching rule. However, if we consider the interpretation of the binary variables given

above, the most natural choice for the branching rule is the ‘User Prioritization’. In fact

in order to give a physical meaning to the guaranteed switches, the variables have to be

5.3 The Branch and Bound Method 201

selected, such that they represent subsequent time instances of the same binary system

variable.

If the MLD model contains more than one binary variable δi, it is appropriate to define

blocks of binary variables, which collect the same system variable at subsequent time steps.

The number of guaranteed switches in each block is determined independently of the other

blocks, and the total number of guaranteed switches is given by the sum of the guaranteed

switches in each block.

Example 5.5:

Assume the MPC controller is implemented with a horizon of T = 3 steps for

a model with two binary variables δ = [δ1, δ2]. The optimization at time k in

Equation (4.1) is done over the vector

δ = [δ(k), δ(k + 1), δ(k + 2)]

= [δ1(k), δ2(k), δ1(k + 1), δ2(k + 1), δ1(k + 2), δ2(k + 2)]

The count of guaranteed switches has to be done defining two blocks b1 and b2,

as

b1 = [δ1(k), δ1(k + 1), δ1(k + 1)]

b2 = [δ2(k), δ2(k + 1), δ2(k + 1)]

The guaranteed switches are counted separately for each block and added to

yield the total number of guaranteed switches. For instance, if a subproblem

in the branch and bound tree has ξ = δ = [1, 1, 0, ?, ?, 0], the number of guar-

anteed switches is 2, since b1 = [1, 0, ?] and b2 = [1, ?, 0], which have both one

guaranteed switch. 2

202 5 Computational Aspects

5.3.4 Computational Complexity of the Outside First Tree Ex-

ploring Strategy

In this section we analyze the computational complexity associated with the outside first

tree exploring strategy by using combinatorial arguments. We focus on the case, where

computations are stopped, as soon as all problems with less than kmax switches are solved.

We determine the complexity by counting the nodes in the binary tree having a given

number k of guaranteed switches.

Isoswitches – Nodes with the Same Number of Switches

Given a full binary tree An of length n and a root with −1 switches, denote by Mn(k) the

number of nodes having k guaranteed switches. The same quantity for a subtree having a

root with 0 switches is denoted by M̃n(k). In Figure 5.6 we marked the number of guar-

anteed switches for an MIQP tree with 3 integer variables. To simplify the nomenclature

we call node with k switches the node corresponding to the relaxed QP with k guaranteed

switches in the integer variables.

Lemma 5.1 Assume that the root of An has 0 switches. Then

M̃n(k) =

(
n + 1

k + 1

)
, ∀k = 0, . . . , n (5.9)

Proof. We prove (5.9) by induction on n. For n = 1, it is easy to verify that

M̃1(0) = 2, M̃1(1) = 1 (see e.g. Figure 5.7). Assume now that (5.9) holds. By

induction on the tree of length n, it holds that

M̃n+1(k) =


 M̃n(k) + M̃n(k − 1) (k = 1 . . . n+ 1)

M̃n(0) + 1 (k = 0)
(5.10)

The induction step from n to n + 1 is performed by adding a new root to a

binary tree of length n. Equation (5.10) states that the number of nodes with

5.3 The Branch and Bound Method 203

[*,*,*]

[1,*,*][0,*,*]

[0,0,*] [0,1,*] [1,0,*] [1,1,*]

[0,0,0] [0,0,1] [0,1,0] [0,1,1] [1,0,0] [1,0,1] [1,1,0] [1,1,1]

-1

0

0

0

0

0

1

1

1

11 12 2

0

Figure 5.6: Number of switches for each subproblem in the outside first tree. The root has

by definition -1 switches.

0

01

Figure 5.7: Tree of depth 1 with a root of 0 switches

204 5 Computational Aspects

-1

0

0

0

0

0

0

1

1

1

11 12 2

a b
symm

Figure 5.8: Number of switches per node marked in a binary tree. Note the symmetry with

respect to the ‘symm’ - axis. The subtrees denoted by a and b have the same differences

between the nodes, but in a the values are augmented by 1.

k switches in a tree of length n+ 1 is the sum of the nodes with k switches in

one of the main subtrees of length n and the nodes with k − 1 switches in a

subtree of length n. The latter subtree experiences an increase of the number

of switches in each node, as soon as its root becomes a node and gets a new

father, cfr. subtree a in Figure 5.8. It is now straightforward to verify that:

M̃n(k) + M̃n(k + 1) =

(
n+ 1

k + 1

)
+

(
n+ 1

k

)
=

(n+ 1)!

(k + 1)!(n− k)! +
(n+ 1)!

k!(n− k + 1)!

=
(n + 1)!

k!(n− k)!

(
1

k + 1
+

1

n + 1− k

)
=

(n+ 2)!

(k + 1)!(n− k + 1)!

=

(
n+ 2

k + 1

)
which completes the proof. 2

5.3 The Branch and Bound Method 205

In Lemma 5.1 we have assumed that the root has 0 switches. The binary trees we want to

consider in the MIQP context, have by definition a root with −1 switches. Exploiting the

symmetry of guaranteed switches in the nodes of the tree, we prove the following theorem.

Theorem 5.1 Assume that the root of An has -1 switches. Then:

Mn(k) = 2

(
n

k + 1

)
(5.11)

for k = 0 . . . n− 1.

Proof. The root has −1 switches. Therefore we have to count only the switches

in the 2 subtrees of the root. Both subtrees have a root with 0 switches, and

therefore by Lemma 5.1 Mn(k) = 2M̃n−1(k). 2

Nodes with Less Than kmax Switches

Since each tree has exactly one root, it holds that

Mn(−1) = 1

The number of nodes with less than kmax switches in a full binary tree of length n is

denoted by Cn(kmax):

Cn(kmax) =
kmax∑
k=−1

Mn(k) (5.12)

= 1 + 2

kmax∑
k=0

(
n

k + 1

)
(5.13)

206 5 Computational Aspects

kmax Cn(kmax) complexity

0 1 + 2n O(n)

1 n2 + n + 1 O(n2)

2 n3

3 + 5
3n + 1 O(n3)

Table 5.2: Number of nodes with less than kmax switches in a tree of length n

Note that (5.13) is consistent with the total number of nodes in a full binary tree of length

n, since:

Cn(n− 1) = 1 + 2

n−1∑
k=0

(
n

k + 1

)

= 1 + 2

(
n∑

k=1

(
n

k

))
= 1 + 2 (2n − 1)

= 2n+1 − 1

In Table 5.2 we illustrate that the complexity of the outside first algorithm is polynomial in

the number of binary variables once the number of switches is limited to a fixed kmax � n.

5.3.5 Implementation Scheme

Each tree exploring strategy requires a data structure to store the subproblems generated

during the tree search. In fact, the depth first tree exploring strategy can be implemented

with a stack or a LIFO-list. Similarly the breadth first strategy results from a storage of the

problems in a first-in first-out (FIFO) list. These standard data structures are appealing,

since they simplify the implementation of the search procedures.

The outside first tree exploring strategy can be implemented in a similar way, by using

multiple stacks. Each stack contains the subproblems marked by the same number of

guaranteed switches. The correct order, in which the subproblems should be solved, is

5.3 The Branch and Bound Method 207

obtained by emptying the stack first that contains the subproblems with fewer guaranteed

switches.

Branching on one variable results in at most three stacks to be used simultaneously. This

can be seen by noting that branching can add 0, 1 or 2 guaranteed switches, see Figure 5.10

for a case where three stacks are necessary. If the branching rule is the first free variable,

only two stacks are required, since in this case 2 guaranteed switches can never be added

to the number of guaranteed switches of the current subproblem, see Figure 5.9.

k guaranteed switches
[0,1,0, ... 0,1,*,*,...,*]

k guaranteed switches
[0,1,0, ... 0,1,1,*,...,*]

k+1 guaranteed switches
[0,1,0, ... 0,1,0,*,...,*]

index j

index j index j

Figure 5.9: Branching on the first free variable (here index j) generates subproblems of

either k, or k + 1 switches, if the node to be separated has k guaranteed switches

k guaranteed switches
[0,1,0, ... 0,*,0,*,...,*]

k+2 guaranteed switches
[0,1,0, ... 0,1,0,*,...,*]

k guaranteed switches
[0,1,0, ... 0,0,0,*,...,*]

index j

index j index j

Figure 5.10: Branching according to other criteria (here index j) generates subproblems of

either k, k + 1 or k + 2 switches, if the node to be separated has k guaranteed switches

208 5 Computational Aspects

5.3.6 Extension to Optimal Control

In the previous sections we have formulated the outside first tree exploring strategy, sug-

gesting to solve those problems first that have few switches in the sequence of binary

variables. The assumption is justified for binary indicator variables or for faults. In a

receding horizon context, the outside first idea can be extended to solve those problems

first that exhibit few differences in the binary variables compared to the optimal solution

at the previous time instant. In Figure 5.11 it is illustrated, how to get the sequence of

binary variables δguess by shifting δopt one step forward and padding the last entry with an

arbitrary value. In the modified outside first strategy we decide to solve those problems

first, the binary variables of which have a small Hamming distance2 to δguess. In other

words, instead of counting guaranteed switches, we count the Hamming distance between

δguess and the vector of binary variables ξ in the MIQP tree.

5.3.7 Example: Control of the Three Tank System

We have applied the outside first tree exploring strategy to a model predictive control

scheme of the three tank system in Section 3.2. For this simulation we have excluded tank

2 from the model. We compared the outside first algorithm with the breadth first and the

depth first tree exploring strategies.

In Figure 5.12 we show the number of QPs that are solved at each time step in order

to compute the global minimum, using different tree exploring strategies. The standard

breadth first and depth first strategies require a significantly higher number of QPs than

the outside first strategy at the beginning of the control experiment. After about 8 steps

the system is in steady state. In this phase we remark a smaller number of QPs solved by

the outside first strategy. In Table 5.3 we report the total number of QPs solved during

2The Hamming distance of 2 vectors x1, x2 ∈ {0, 1}nd is the number of indices, in which x1 and x2

differ.

5.3 The Branch and Bound Method 209

input horizon

k k+1 k+m k+p

past future

 •
 • • •

 • • • • • • •

manipulated inputs

predicted outputs

0 0 1 0 1 0[]δ (k) =opt

0 1 0 1 0[]0δ (k+1)=guess

Figure 5.11: Obtaining the vector δguess in the modified outside first tree exploring strategy.

Here, δguess is obtained by padding it with a 0.

the simulation.

Considering the numbers of Table 5.3, we have repeated the simulation of Figure 5.12 by

imposing an artificial upper bound on the number of QPs to be solved for each MIQP. This

is a similar specification as limiting the number of switches, as suggested in Section 5.3.4,

however it allows an easier comparison to the other tree exploring strategies. We assumed

that at each time step, the solver is allowed to solve at most 100 QPs. This simulates hard

timing constraints on the control scheme. The solver reports the currently best integer

feasible solution when this limit is reached. If no integer feasible solution could be found,

the solver reports the shifted solution from the previous simulation.

When the number of QPs is limited, the outside first approach is the only strategy allowing

to reach the steady state for both levels h1 and h3, as it can be seen in Figure 5.13.

We note in Figure 5.13 that the breadth first strategy fails to reach the target for h1 and

210 5 Computational Aspects

0 5 10 15 20 25
0

500

1000

1500

2000

2500

time step

nu
m

be
r

of
 Q

P
s

depth first
outside first
breadth first

Figure 5.12: Number of relaxed QPs to be solved at each time for controlling the three

tank system, using different tree exploring strategies

strategy total number of QPs maximum and minimum

number of QPs for 1 step

depth first 10’895 797 431

breadth first 13’759 2147 423

outside first 3467 357 131

worst case 1’376’235 65’535 (1)

Table 5.3: Number of QPs during the simulation of Figure 5.12

5.3 The Branch and Bound Method 211

0 5 10 15 20 25
0

0.1

0.2

0.3

0.4

time step

levels of tank 1 and tank 3

depth first

outside first

breadth first

h1

h3

Le
ve

ls
 h

1,
 h

3
 [

m
]

Figure 5.13: Trajectories of the states of the three tank system, when the number of relaxed

QPs is limited at 100 for each time step, using different tree exploring strategies

the depth first strategy causes tank 3 to run dry. Apparently, the outside first strategy

exploits the available computation time by solving first the most promising subproblems

among the open problems, and achieves the control goal for both levels.

When limiting the computational time, a relevant issue for a given problem is the investiga-

tion, at which point of the tree exploration the optimal solution is found. This knowledge

can be acquired offline by simulations and can be used online to limit the number of QPs

accordingly. In fact it is known that in B & B often many computations are done merely

in order to verify that the present candidate solution is optimal.

For the simulation in Figure 5.12 the first three strategies get almost down to the worst

case. This means that the optimum is found almost at the last QP. The outside first

approach not only involves fewer QPs, but also reaches the optimum after roughly half

the QPs at steady state. Limiting the number of QPs to about this value would therefore

212 5 Computational Aspects

further decrease the complexity.

5.3.8 Example: Fault Detection of the Three Tank System

In Figure 5.14 we compare the number of QPs solved during a fault detection experiment

for the outside first and the depth first strategy. All three faults occur sequentially, and

we assume that one fault is repaired, as soon as a new fault occurs. Contrary to the

0 20 40 60 80
0

1

Faults

0

5000

10000

15000
Number of QPs at each time step

depth first
outside first

0 20 40 60 80
time step

N
um

be
r

of
 Q

P
s

ϕ
1,

ϕ
2,

ϕ
3 ϕ 1 ϕ 2 ϕ 3ˆˆˆ

ˆ
ˆ

ˆ

Figure 5.14: Number of QPs during a fault detection simulation

control experiment in Section 5.3.7, we see that the outside first strategy is not uniformly

better than the depth first strategy, since it requires to solve more QPs at some time steps.

Indeed, in the simulation of Figure 5.14 there are 41 time steps, where the depth first

strategy copes with fewer QPs, but only 30 time steps, where the outside first strategy

prevails. In the overall simulation the outside first strategy computes about a factor of 7

less QPs (see Table 5.4) because there is a large difference in QPs, when the outside first

5.4 Solvers for Mixed Integer Continuous Optimizations 213

strategy total number of QPs maximum and minimum

number of QPs for 1 step

depth first 127’657 14’553 1

outside first 18’475 1769 1

worst case 40.27 · 109 536.9 · 106 1

Table 5.4: Number of QPs during the simulation of Figure 5.14

strategy is better. In our example, this difference can be up to 14’000 QPs.

5.3.9 Summary

The outside first tree exploring strategy is a heuristic rule. It exploits structural properties

of the MLD optimizations at computational level. There is no guarantee that for all systems

and for all resulting mixed integer optimizations, the scheme provides faster solutions. Its

effectiveness relies on an assumption about the switching properties of the binary variables

involved in the MLD model.

The outside first tree exploring strategy is searching for the global optimum, provided that

computations are not interrupted after all problems of a fixed number of switches have

been solved. In the latter case we have illustrated that the scheme is able to report good

suboptimal solutions compared to standard tree exploring strategies.

5.4 Solvers for Mixed Integer Continuous Optimiza-

tions

Several tools are available for mixed integer continuous optimization. The following list is

by no means complete and shows only the tools considered during this work.

214 5 Computational Aspects

CPLEX (ILOG, Inc., 2000) is a package for solving linear and mixed integer linear pro-

grams. The solver is very fast and reliable. Unfortunately it does not include routines

for solving MIQPs.

BARON (Sahinidis, 2000) is a tool for solving nonconvex optimization problems to global

optimality. Purely continuous, purely integer, and mixed integer nonlinear prob-

lems can be solved with the software. Therefore its scope encompasses both MIQPs

and MILPs. BARON requires routines from mathematical libraries, like MINOS

(Murtagh and Saunders, n.d.) or CPLEX.

Xpress-MP (Dash Associates, 1999) is an optimizer for linear programming and integer

programming problems. Starting from release 12 of the software MIQPs are also

handled.

miqp.m (Bemporad and Mignone, 2000) is a Matlab m-function for solving MIQPs and

MILPs within Matlab. The code is free, although it is slow, since its coding is not

optimized for efficiency. The emphasis has been put rather on the readability and

the portability of the routine. In Section 5.5 we briefly describe the solver.

NAG toolbox (NAG, 2001): The Numerical Algorithms Group (NAG) offers a series of

numerical and statistical libraries, used to solve different mathematical problems.

The routines on optimization represent only one small fraction of the capabilities.

In the release “Mark 5” a solver for MIQPs and MILPs has been introduced. Its

code-name is h02bbc.

MIQP solver: Fletcher and Leyffer (1994) describe a branch and bound solver, which can

exploit sparsity. The solver computes lower bounds efficiently during the tree search

using the techniques shown in (Fletcher and Leyffer, 1998).

The environment for all experiments and simulations in this work is Matlab. For most of

the packages listed above an interface to Matlab is available at http://www.aut.ee.ethz.

ch/~hybrid/internal/ComputationalTools/panmip.m.

5.5 miqp.m: A Mixed Integer Quadratic Programs Solver for Matlab 215

5.5 miqp.m: A Mixed Integer Quadratic Programs Solver

for Matlab

The Matlab function miqp.m allows to solve mixed integer quadratic programs and mixed

integer linear programs. The solver is implemented using a branch and bound technique

and allows the user to specify various options, like tree exploring strategies, branching

variable selection rules, and many more. The code is freeware and can be downloaded from

http://www.aut.ee.ethz.ch/~hybrid/miqp/. The documentation and user manual can

be found in (Bemporad and Mignone, 2000).

The Matlab function miqp.m solves the following MIQP:

min
x

0.5xTHx+ fTx

subject to Ax ≤ b

Aeqx = beq

vlb ≤ x ≤ vub

x ∈ Rnc × {0, 1}nd

x(ivartype) ∈ {0, 1}nd

The length of the optimization vector x is n = nc + nd. The variables indexed by ivartype,

which is a subset of {1, . . . , nc + nd}, are constrained to be binary. The matrix H ∈ Rn×n

is positive semidefinite. The special case, where H = 0 is an MILP and it can also be

handled by miqp.m. The matrix A ∈ Rm×n and the vector b ∈ Rm define linear inequality

constraints on the optimization variables. Linear equality constraints are given by Aeq ∈

Rm′×n and beq ∈ Rm′
Bounds on x can be specified by the vectors vlb ∈ Rn , vub ∈ Rn .

miqp.m was not conceived to compete with available optimized solvers for MIQPs, like

they are described in (Dash Associates, 1999; Fletcher and Leyffer, 1994; Sahinidis, 2000).

In fact some simulations show that miqp.m is rather slow compared to these solvers. More

emphasis has been put on the possibility to choose design parameters and solution strategies

216 5 Computational Aspects

in an easy way, allowing the user to easily write his/her own decision routines, if necessary.

miqp.m comes “ready to use” in the sense that choosing default settings allows a quick

start in the solution of MIQPs.

Chapter 6

Mixed Logic Dynamical and

Piecewise Affine Systems

In this chapter we consider the stability analysis for piecewise affine systems.

6.1 Introduction

This chapter is an extended version of the paper (Ferrari-Trecate, Cuzzola, Mignone and

Morari, 2002). We present various algorithms both for stability and performance analy-

sis of discrete-time Piece-Wise Affine (PWA) systems. For stability, different classes of

Lyapunov functions are considered and it is shown how to compute them through Linear

Matrix Inequalities that take into account the switching structure of the systems. We also

show that the continuity of the Lyapunov function is not required in the discrete-time case.

Moreover, the tradeoff between the degree of conservativeness and computational require-

ments is discussed. Finally, by using arguments from the dissipativity theory for nonlinear

systems, we generalize our approach to analyze the l2-gain of PWA systems. For some

stability analysis methods, we derive the corresponding stabilizing state feedback synthesis

217

218 6 Mixed Logic Dynamical and Piecewise Affine Systems

expressions.

Piece-Wise Affine (PWA) systems have been receiving increasing attention by the control

community because they provide a useful modelling framework for a class of hybrid systems.

The study of PWA system is motivated by the interest in this class of systems by itself, but

also for the actual goal of considering more general classes of systems, for which piecewise

affine systems are a suitable approximation. Moreover, discrete-time PWA systems are

equivalent to interconnections of linear systems and finite automata (Sontag, 1996), to

linear complementarity systems (Heemels et al., 2001) and also hybrid systems in the

MLD form, see Chapter 2.

The key idea is to exploit this equivalence to use tools and methods that were originally

developed for PWA systems, also for MLD systems, and viceversa. If we are able to solve

a problem using one modelling framework, we get in principle a solution for a system

described in the other modelling framework with little effort. The modelling capabilities

of MLD systems and their transformation to PWA systems are recalled in Section 2.6.

Another reason for considering PWA systems is that in (Bemporad, Morari, Dua and

Pistikopoulos, 2000) the explicit form of Model Predictive Control (MPC) for linear con-

strained systems was derived and, besides providing an algorithm for its computation, it

was shown that the closed-loop system has a PWA structure. In (Bemporad, Borrelli

and Morari, 2000a) such results were further generalized to obtain the explicit form of

MLD/PWA systems regulated with an MPC scheme. Also in this case the closed-loop

system is a PWA model.

An important feature of PWA models is that the state-update map can be discontinuous

along the boundary of the regions. For instance, when considering PWA systems stemming

from hybrid systems in the MLD form, discontinuities can arise from the representation of

logic conditions.

The control problem of MLD systems and consequently PWA systems is computationally

6.1 Introduction 219

difficult: in (Bemporad and Morari, 1999a) a Mixed Integer Quadratic Programming ap-

proach is proposed in order to solve the control problem of MLD systems by means of

MPC techniques. The computational complexity of this approach may increase exponen-

tially with the prediction horizon considered. The use of Linear Matrix Inequalities (LMI)

techniques, for which computationally advantageous and numerically reliable algorithms,

as well as toolboxes are available, is a valuable alternative. In Appendix C we give a short

summary on LMIs.

One aim of this chapter is to develop tests for checking the stability of the origin of a PWA

system. The main motivation for this research is that there is no easy way to check the

stability even of an autonomous PWA system defined over two polyhedral regions. Indeed,

Blondel and Tsitsiklis (1999) showed that in general this problem is either NP-complete

or undecidable1. Even the boundedness of trajectories described by a piecewise linear

dynamics is undecidable in general. Moreover, it is not possible to deduce the stability

or the unstability of a PWA system from the stability or unstability of its component

subsystems (Branicky, 1998). These results highlight that, in order to derive practical

stability tests, one must either resort to a restricted subclass of PWA system or look for

sufficient conditions. An algorithm to test stability for discrete-time PWA systems was

proposed in (Bemporad, Torrisi and Morari, 2000) by exploiting verification and robust

simulation ideas. However, this test applies only to PWA systems where the origin is

strictly contained in one region and it gives conclusive results only if the state trajectory

enters an invariant region around the origin in a number of steps that must be fixed a

priori. Nevertheless the method in (Bemporad, Torrisi and Morari, 2000) can be viewed

as complementary to the tests proposed in this chapter.

Johansson and Rantzer (1998) investigate the stability of a continuous-time PWA system

by using piecewise quadratic (PWQ) Lyapunov functions that can be computed by solving

suitable LMIs. This approach obviously leads to sufficient conditions, i.e. if the LMIs have

1A problem is undecidable if there is no algorithm which, upon input of the data associated with an

instance of the problem, provides a yes-no answer after finitely many steps.

220 6 Mixed Logic Dynamical and Piecewise Affine Systems

a solution, the origin of the system can be classified as asymptotically stable but nothing

can be said if no solution is found. In particular, their approach hinges on the use of

continuous Lyapunov functions. A Matlab toolbox implementing some of the techniques

shown in (Johansson and Rantzer, 1998; Johansson, 1999) is described in (Hedlund and

Johansson, 1999). These results have been generalized in (Pettersson and Lennartson,

1997; Pettersson and Lennartson, 1999) to a wider class of continuous-time hybrid systems

showing that stability can be also checked by exploiting PWQ discontinuous Lyapunov

functions. Ezzine and Kavranoglyu (1997) present stability criteria of discrete time jump

linear systems. This class of systems is represented by similar dynamic equations as a

PWA system2 with the only difference that the system matrices change according to a

finite state Markov chain (Romanovsky, 1970). The stability criterion is formulated as

a LMI problem (Boyd et al., 1994). Contrary to the approach shown in this chapter, it

contains probabilistic elements.

We propose LMI based procedures similar to (Johansson, 1999) in order to analyze the sta-

bility of discrete-time PWA systems via either PWQ or more general Lyapunov functions.

We do not require continuity of the Lyapunov functions across the boundaries and the a

major difference between the continuous and the discrete-time case is the phenomenon that

in discrete-time switching can also occur between non-adjacent regions and this fact must

be properly handled in the analysis algorithms. It is worthwhile pointing out that the use

of LMI techniques for the analysis of discrete-time affine parameter-dependent systems is

proposed in (Slupphaug et al., 2000). The PWA systems considered here have continu-

ous states and inputs. An extension to PWA systems with Boolean states and inputs is

reported in (Ferrari-Trecate, Cuzzola and Morari, 2002).

Concerning stability analysis of discrete-time PWA systems, in Sections 6.2 and 6.3 we

propose various stability tests for PWA systems that exhibit different degrees of flexibility.

The more general procedures are computationally more demanding. In particular, in Sec-

2see Equation (6.1)

6.2 Stability of Discrete-Time Piecewise Affine Systems 221

tion 6.3.5 we propose a relaxation strategy (analogous to the one proposed in (Johansson

and Rantzer, 1998; Jakubovic, 1977)) for the LMIs involved in the stability analysis through

PWQ Lyapunov functions that allows us to consider displacements in the PWA system.

These relaxations along with a proper handling of the switching structure, aim at reducing

conservativeness of the criteria. Moreover, in Section 6.4, we discuss the degree of conser-

vativeness of the analysis algorithms and compare our technique with the one proposed

in (Johansson and Rantzer, 1998) for the continuous-time case. Finally, in Section 6.5 we

generalize our approach to the synthesis of storage functions for testing the l2-gain of PWA

systems. The rationale for our derivation hinges on the use of passivity theory for nonlinear

systems (Lin and Byrnes, 1996). An application of the performance tests is the possibility

to check a posteriori the performance of MPC for both linear and hybrid systems in the

MLD form. This can be done by applying the techniques we propose to the explicit PWA

form of the closed-loop system.

6.2 Stability of Discrete-Time Piecewise Affine Sys-

tems

In this section we focus on analysis problems for autonomous PWA systems with the

following form:

xk+1 = Aixk + ai, for xk ∈ Xi (6.1)

where x ∈ X ⊆ Rn . For the autonomous PWA system (6.1) the cells {Xi}si=1 represent

a polyhedral partition of the set of states X, i.e. each set Xi is a (not necessarily closed)

convex polyhedron such that

Xi

⋂
Xj = ∅, ∀i 6= j, (6.2)

s⋃
i=1

Xi = X. (6.3)

222 6 Mixed Logic Dynamical and Piecewise Affine Systems

Moreover we assume that the origin belongs to X.

According to the notation in (Johansson and Rantzer, 1998), we call I = {1, . . . , s} the set

of indices of the state space cells of the autonomous PWA system (6.1). I is partitioned as

I = I0 ∪ I1, where I0 are the indices of the cells whose closure contains the origin x = 0,

and I1 are the indices of the cells whose closure does not contain the origin. We assume

that x = 0 is an equilibrium of system (6.1) and we focus on the stability of the origin.

This implies that ai = 0, ∀i ∈ I0 in the PWA form (6.1).

Definition 6.1 The equilibrium state x = 0 of a system xk+1 = f(xk) is stable if, for

any ε > 0, there exists a δ(ε) > 0, such that ‖ x0 ‖< δ(ε) =⇒ ‖ xk ‖< ε, ∀k > 0.

If, in addition, limk→+∞ ‖xk‖ = 0 the origin is asymptotically stable.

Finally, let X0 ⊆ X such that 0 ∈ X0. The origin x = 0 is asymptotically stable on X0

if it is asymptotically stable for any initial state x0 ∈ X0 .

Definition 6.2 Let X0 ⊆ X such that 0 ∈ X0 . The origin x = 0 is exponentially stable

on X0 if there exist two coefficients K > 0, 0 < γ < 1 and a time instant k̄ such that

∀x0 ∈ X0 then ‖xk‖2 ≤ Kγk‖x0‖2, ∀k > k̄.

Note that in (6.1), the set X is possibly defined by polyhedral constraints on the state

trajectory xk. Therefore, when focusing on stability on a set X0 it is natural to introduce

the next assumption.

Assumption 6.1 The free evolution of the state trajectory for the PWA system (6.1)

stemming from x0 ∈ X0 satisfies the condition xk ∈ X ∀k ∈ N+ .

In order to analyze the stability of the origin, we exploit a particular class of Lyapunov

functions with the structure:

V (x) = xTPi(x)x, ∀x ∈ Xi (6.4)

6.2 Stability of Discrete-Time Piecewise Affine Systems 223

where

xTPi(x)x > 0, ∀x ∈ Xi\{0}, ∀i ∈ I (6.5)

and ∀i ∈ I,

sup
x∈Xi

|λmax(Pi(x))| < +∞

sup
x∈Xi

|λmin(Pi(x))| < +∞

where Pi(x) = Pi(x)
T and λmax(P) and λmin(P) denote the largest and the smallest eigen-

values, respectively, of a real and symmetric matrix P . Note that (6.4) does not imply

that the matrices Pi(x) are positive definite because the inequality is required to hold

only for the points in the i-th region. Moreover the assumption on the maximum and

minimum eigenvalues avoids that |xT
kPi(xk)xk| goes to infinity for some sequence xk ∈ Xi,

k = 0, . . . ,+∞ that converges to a limit point belonging to the boundary of Xi. Obviously,

in order to guarantee these requirements on the eigenvalues, possible choices of matrices

Pi(x) are

1. continuous functions of x on Xi if the cell Xi is bounded;

2. constant matrices if the cell Xi is unbounded.

Note that the functions V (x) we consider can be discontinuous across the cell boundaries.

More precisely, as stated in Theorem 6.1, we do not need to require the continuity of V (x)

on the whole state-space X to prove the stability, as long as the number of cells is finite.

For this reason we introduce the following assumption.

Assumption 6.2 The cardinality |I| of the set I is finite.

For stability, we can prove the following result.

224 6 Mixed Logic Dynamical and Piecewise Affine Systems

Theorem 6.1 Let Assumption 6.2 hold. Let X0 be a set of initial states satisfying As-

sumption 6.1. The equilibrium x = 0 of (6.1) is exponentially stable on X0 if there ex-

ists a function V (x) as in (6.4) possessing a negative forward difference ∆V (xk+1, xk) =

V (xk+1)− V (xk):

∆V (xk+1, xk) = xT
k+1Pi(xk+1)xk+1 − xT

kPj(xk)xk < 0, xk ∈ Xj\{0}, xk+1 ∈ Xi. (6.6)

Proof. In view of the assumption that the minimal and maximal eigenvalues of

each matrix Pi(x) are bounded, ∀x ∈ Xi, and the assumption on the cardinality

of the set I, there exist constants α, β > 0 such that αI < Pi(x) < βI, ∀x ∈

Xi, ∀i ∈ I. Moreover, by recalling (6.6), there exists γ > 0 arbitrarily small

such that:

∆V (xk+1, xk) = V (xk+1)− V (xk)

≤ −γxT
k xk

≤ −γ
β
xT

kPi(xk)xk

= −γ
β
V (xk) (6.7)

where i is the index for which the condition x(k) ∈ Xi is satisfied.

Since the coefficient γ can be chosen arbitrarily small, we can select it such

that 0 < 1− γ
β
< 1. On the other hand, from (6.7) we can deduce that:

V (xk) ≤
(

1− γ

β

)k

V (x0), ∀k ∈ N+ (6.8)

and consequently that

‖xk‖2 ≤
β

α

(
1− γ

β

)k

‖x0‖2, ∀k ∈ N+ . (6.9)

2

6.3 Linear Matrix Inequalities Algorithms for Exponential Stability Analysis 225

Remark 1 Exponential stability

Note that if, for a fixed 0 < γ ≤ 1, we can substitute the condition (6.6) with

V (xk+1)− γV (xk) = xT
k+1Pi(xk+1)xk+1 − γxT

kPj(xk)xk < 0, xk ∈ Xj\{0}, xk+1 ∈ Xi

(6.10)

then, by following the same line of reasoning used to prove Theorem 6.1, it is possible to

state that there exists a coefficient γ̄, 0 < γ̄ < γ such that

∀k ∈ N+ , ‖xk‖2 < Kγ̄k‖x0‖2 (6.11)

where K is a suitable positive coefficient. Therefore, γ represents a strict upper bound on

the degree of exponential stability. 2

6.3 Linear Matrix Inequalities Algorithms for Expo-

nential Stability Analysis

In this section we investigate numerical procedures to check the stability conditions (6.5)

and (6.6). We first impose a convenient structure to the Lyapunov function used in (6.5)

and (6.6). More precisely, we will adopt one of the following alternatives:

• Q-stability in Section 6.3.1

• PWQ-stability in Section 6.3.2

• Stability with parameterized Lyapunov functions in Section 6.3.3

6.3.1 Q-stability

Here, the choice of Pi(x) is:

Pi(x) = P ∀x ∈ X, ∀i ∈ I (6.12)

226 6 Mixed Logic Dynamical and Piecewise Affine Systems

These conditions lead to the so-called Quadratic Lyapunov stability (Q-stability) widely

studied in the past for systems subject to uncertainties described by polytopic affine in-

clusions (see e.g. (Boyd et al., 1994)). The Lyapunov function reads

V (x) = xTPx (6.13)

In (Kantner, 1997) it is recalled that sufficient conditions on P for asymptotic stability are

given by the LMIs:

P > 0 (6.14)

AT
i PAi − P < 0 ∀i ∈ I (6.15)

If such a P exists, the function (6.13) is called a common Lyapunov function for the

matrices {A1, . . . , As}. Narendra and Balakrishnan (1994) show that a sufficient condition

for the existence of a quadratic Lyapunov function satisfying (6.14) and (6.15), is that all

the matrices Ai, i ∈ I commute pairwise.

With the exception of linear time-invariant systems, there are few necessary and sufficient

conditions for stability based on Lyapunov arguments. One of the first results of this

kind for piecewise linear systems is given in (Shorten and Narendra, 1999). The result is

however very restrictive, since it applies only to systems of second order havingm = |I| = 2.

There it is proven that a necessary and sufficient condition for the existence of a quadratic

Lyapunov function for a piecewise linear system of order two with two regions is that the

pencils σ[A1, A2] and σ[A1, A
−1
2] are both Hurwitz. A pencil is defined as:

σ[A1, A2] = {A : A = αA1 + (1− α)A2, with α ∈ [0, 1]} (6.16)

A pencil is Hurwitz, if all matrices in it have their eigenvalues in C − . For switching

systems of second order with 2 dynamics, necessary and sufficient conditions are given

by Xu and Antsaklis (1999) using geometric properties of vector field in the plane R
2 .

The generalization to higher dimensions of these criteria is not immediate because of the

different topological structure of Rn with n > 2.

6.3 Linear Matrix Inequalities Algorithms for Exponential Stability Analysis 227

State Feedback Synthesis

We consider the synthesis of a piecewise linear state feedback

uk = Kixk ∀xk ∈ Xi. (6.17)

for the piecewise linear system with input

xk+1 = Aixk +Biuk, for xk ∈ Xi (6.18)

that stabilizes the origin by means of a quadratic Lyapunov function (6.13). In other words

we look for the matrices P and Ki, ∀i ∈ I that satisfy the conditions

P > 0 (6.19)

(Ai +BiKi)
TP (Ai +BiKi)− P < 0 ∀i ∈ I (6.20)

Since both variables P and Ki are unknown, the matrix inequality (6.20) is apparently

nonlinear. However, as for LTI discrete-time systems, it can be rewritten as an LMI, using

Schur complements, see Appendix C.3. By using the equivalence between (C.6) and (C.8),

inequality (6.15) can be rewritten as:

P −AT
i PAi > 0 ⇔ P−1 − AiP

−1AT
i > 0 (6.21)

Instead of considering inequalities (6.19) and (6.20) for asymptotic stability we can consider

the conditions

Q− (Ai +BiKi)Q(Ai +BiKi)
T > 0 (6.22)

Q > 0 (6.23)

with Q = P−1. Since Q is symmetric and positive definite, these (nonlinear) matrix

inequalities are equivalent to
 Q (AiQ+BiKiQ)

(AiQ+BiKiQ)T Q


 > 0 (6.24)

228 6 Mixed Logic Dynamical and Piecewise Affine Systems

where we used the equivalence between (C.6) and (C.4). Using again the fact that Q is

positive definite, we can introduce new variables Yi as

Yi = KiQ (6.25)

and solve for Yi instead of Ki. The resulting LMI is
 Q (AiQ+BiYi)

(AiQ+BiYi)
T Q


 > 0, (6.26)

and the state feedback vector can be recovered as

Ki = YiQ
−1 (6.27)

To what concerns the region of attraction of the state-feedback derived so far, let V̄1(x) =

xTPx and choose X0 as the largest level set {x ∈ X : V̄1(x) ≤ ξ, ξ > 0} contained in X.

Then every state-trajectory of the controlled system starting from X0 , besides converging

to the origin, does not leave the set X. In summary, we have proved the following result

Lemma 6.1 Let Q and Yi be the solutions of the LMIs (6.23), (6.26) and Ki be computed

as in (6.27). Then, the piecewise linear state feedback uk = Kixk, ∀xk ∈ Xi stabilizes

asymptotically the origin of (6.18) on X0.

Remark 2 Note that the stability of the linear system

xk+1 = Aixk (6.28)

is equivalent to the stability of the dual system

xk+1 = AT
i xk (6.29)

in the following sense: If xTPx is a Lyapunov function for (6.28), then xTP−1x is a

Lyapunov function for (6.29). This can be seen with the rules in Theorem C.1. Choose

for P > 0 for instance R = P , S = A and Q = P−1 in Equation (C.8). Because of the

equivalence to Equation (C.6), we obtain Equation (6.21). 2

6.3 Linear Matrix Inequalities Algorithms for Exponential Stability Analysis 229

Bounded Inputs

The synthesis of the state feedback controller did not take into account any constraints

on the control action so far. If u is constrained, the values of Ki can possibly result in

input values violating the bounds present in (6.18). According to (Boyd et al., 1994, p.

103) we can add further LMI’s that take into account these constraints. Assuming that

the initial condition x0 satisfies xT
0Q

−1x0 ≤ 1, where Q is the same unknown appearing in

Lemma 6.1, we can enforce the constraint

max
k≥0
‖ uk ‖≤ µ (6.30)

with the LMIs 
 1 xT

0

x0 Q


 ≥ 0 (6.31)


Q Y T

i

Yi µ2I


 ≥ 0 ∀i ∈ I (6.32)

Note that LMI (6.32) is more restrictive than condition (6.30), since it holds for those

states as well that are outside the region, where the i-th controller is active. The matrix

Q is chosen such that the set {x : xTQ−1x ≤ 1} is invariant.

6.3.2 PWQ-stability

The choice of Pi(x) is:

Pi(x) = Pi ∀x ∈ X (6.33)

This class of Lyapunov functions, which leads to the so-called piecewise quadratic (PWQ)

stability, has been studied for continuous-time PWA systems in (Johansson and Rantzer,

1998).

230 6 Mixed Logic Dynamical and Piecewise Affine Systems

A piecewise quadratic Lyapunov function for a PWA system can be defined as

V (x) = xTPix ∀x ∈ Xi (6.34)

We do not have to require continuity of V (x) to prove stability, as long as the number of

cells is finite (Mignone et al., 2000b). For stability, it has to hold that V (x) is positive-

definite in a neighborhood of the origin and that Equation (6.6) holds. Assuming that

xk+1 ∈ Xi and xk ∈ Xj , we have

∆V (xk+1, xk) = xT
k+1Pixk+1 − xT

k Pjxk (6.35)

= xT
k

(
AT

j PiAj − Pj

)
xk

The LMIs to satisfy in this case are

AT
j PiAj − Pj < 0 ∀(j, i) ∈ Wall (6.36)

Pi > 0, ∀i ∈ I (6.37)

where Wall = I × I. When the LMIs (6.36)-(6.37) are feasible, we term the PWA system

Wall-PWQ stable.

Switching Regions

The main difficulty, compared to the continuous-time case, is that we have to satisfy

the LMIs (6.36) for all the pairs (i, j) because in principle the state may switch in one

step between non adjacent cells. Without further analysis of the system we have to take

into account all possible switches Wall from each state space region to each other region.

Therefore the number of possible switches grows quadratically with the number of cells.

The conservativeness introduced by this approach can be relaxed because usually not all

the transitions between cells Xi and Xj are allowed. Let W be the set of all ordered pairs

(j, i) of indices, denoting the possible switches from cell j to cell i:

W = {(j, i) : j, i ∈ I and ∃k ∈ N0 , such that xk ∈ Xi and xk−1 ∈ Xj} (6.38)

6.3 Linear Matrix Inequalities Algorithms for Exponential Stability Analysis 231

The set W can be determined via reachability analysis for MLD systems (Bemporad,

Ferrari-Trecate and Morari, 2000; Bemporad and Morari, 1999b). Since for exponential

stability it is enough that (6.36)-(6.37) holds for (j, i) ∈ W, we have the following result.

Theorem 6.2 The origin of the PWA (6.1) is exponentially stable on X if there exist s

matrices Pi, such that the following LMIs are satisfied:

Pi > 0 ∀i ∈ I (6.39)

AT
j PiAj − Pj < 0 ∀(j, i) ∈ W (6.40)

In this case the PWA system is termed W-PWQ stable. In W there are in general pairs

of the form (i, i) for each cell that is not left in one step. For these cells Equation (6.40)

states that Ai must be stable. This means that we cannot show stability of a stable piece-

wise linear system, whose components are unstable, with a piecewise quadratic Lyapunov

function (6.34), if the system stays in the same unstable cell for more than one time step.

The set W represents all possible switches in a single time-step and an easy procedure for

finding a set of switches W̄ ⊇ W is the following. First, note that it is possible to represent

each closed polyhedron Cl(Xi) as

Xi =


x : Ēi


 x

1


 = [Ei ei]


 x

1


 ≥ 0


 (6.41)

where Ei and ei are suitable matrices and the inequality holds componentwise. Then, the

pair (i, j) is included in W̄ if there is at least one point x ∈ X satisfying

EiAjx ≤ ei − Eiaj (6.42)

Ejx ≤ ej (6.43)

In fact (6.43) represents the condition x ∈ Cl(Xj) and (6.42) the condition Ajx + aj ∈

Cl(Xi). Note that W̄ does not coincide with W for the only reason that the regions Xi

are replaced with their closures. However, this allows having non strict inequalities in the

232 6 Mixed Logic Dynamical and Piecewise Affine Systems

feasibility test (6.42)-(6.43) that can be implemented by using standard linear programming

solvers. The computation of W̄ requires s2 · lp(n, nc), where lp(n, nc) is the complexity of

solving a linear program in n unknowns and nc constraints (Goodman and O’Rourke, 1997).

In practice we found that the computational burden for the determination of W̄ is usually

much less than the one needed for solving the LMIs (6.66)-(6.67). Moreover this complexity

could be reduced by computing W̄ in a different way, namely by resorting to the equivalence

between PWA and MLD systems and by exploiting switching detection procedures available

for MLD systems and based on mixed integer linear programming, see (Bemporad, Ferrari-

Trecate and Morari, 2000). Finally, a more trivial possibility is to resort to LMI constraints

of type (6.64)-(6.65) defined for each couple (i, j) contained in the setWall = I×I. In this

way we take into account all conceivable switches of a PWA system. Clearly, the stability

test obtained by exploiting Wall instead of W or W̄ can be more conservative since it can

comprise LMI constraints that are unnecessary.

In order to distinguish between these types of stability analysis, we will refer to as W-

PWQ stability, the stability condition associated with the set W. The stability condition

obtained for the set Wall will be referred to as Wall-PWQ stability. If the additional

condition Pi = P, ∀i ∈ I is imposed, it is not necessary to distinguish between the stability

test associated with the set W and the stability test associated to the set Wall. This

explains the usage of the term Q-stability to refer to the corresponding stability condition.

Systems with Switchings in Both Directions

There are PWA systems where the set W contains both pairs of indices (i, j) and (j, i).

This occurs for instance if the system trajectories point to the boundary of a state space

cell, allowing the system to change from cell i to the cell j as well as from cell j to cell i.

We define W2 as the set of such indices:

W2 = {(i, j) ∈ W : (j, i) ∈ W and i 6= j} (6.44)

6.3 Linear Matrix Inequalities Algorithms for Exponential Stability Analysis 233

We can state a necessary condition for the existence of a PWQ Lyapunov function (6.34)

for systems having a nonempty set W2.

Theorem 6.3 Assume that for a PWA system (6.1), the setW2 is nonempty and contains

2N elements. If a PWQ Lyapunov function (6.34) satisfying (6.39)-(6.40) exists, then the

2N matrices Ai1Aj1, Aj1Ai1, . . . , AiNAjN
, AjN

AiN must have all eigenvalues inside the

unit circle.

Proof. Given a system where boundary crossings can occur in both direc-

tions for cell i and j, the existence of a PWQ Lyapunov function implies the

fulfillment of the LMI’s

AT
j PiAj − Pj < 0

AT
i PjAi − Pi < 0

Therefore,

Pj > AT
j PiAj ≥ AT

j A
T
i PjAiAj

where we made use of the fact that for matrices of appropriate dimensions, it

holds that

C > D → BTCB ≥ BTDB

Analogously,

Pi > AT
i A

T
j PiAjAi

This means that both AiAj and AjAi must be stable matrices. These consid-

erations apply to each pair (i, j) ∈ S2 separately. Therefore the statement of

the Lemma follows. 2

234 6 Mixed Logic Dynamical and Piecewise Affine Systems

Note that for square matrices A,B of equal dimensions it holds that AB and BA have

the same eigenvalues, see eg. (Kailath, 1980). To verify the nonexistence of a piecewise

quadratic Lyapunov function with Theorem 6.3, we therefore only have to check the eigen-

values of at most N matrices.

We can generalize the result of Lemma 6.3 to systems that can cycle across an arbitrary

number of cells:

j1 → j2 → j3 → . . .→ jn → j1 (6.45)

In this case the existence of a PWQ Lyapunov function implies the stability of all products

of matrices denoting the cells, the system can cycle through. Define the set of ordered

n-tuples of indices

Wn = {(j1, . . . , jn) ∈ In : {(j1, j2), . . . , (jn−1, jn), (jn, j1)} ⊂ W and ji all different}

(6.46)

and define the set of products of matrices

Ã = ∪∞`=2{A : A =
∏̀
τ=1

Aiτ , (i1, . . . , i`) ∈ W`} (6.47)

We have the following corollary:

Corollary 6.1 Assume that for a PWA system (6.1), the sets Wn (n = 2 . . .∞) are not

all empty. If a PWQ Lyapunov function (6.34) exists, then all matrices in Ã must have

all eigenvalues inside the unit circle.

State Feedback Synthesis

The same rationale used in Section 6.3.1 applies also to the case of a piecewise quadratic

function. We can formally exploit the equivalence between Equations (C.8) and (C.9) as

6.3 Linear Matrix Inequalities Algorithms for Exponential Stability Analysis 235

well as the equivalence between Equations (C.4) and (C.6), yielding

Pj − (Aj +BjKj)
TPi(Aj +BjKj) > 0 (6.48)

⇔ P−1
i − (Aj +BjKj)P

−1
j (Aj +BjKj)

T > 0 (6.49)

⇔ P−1
i − (Aj +BjKj)P

−1
j PjP

−1
j (Aj +BjKj)

T > 0 (6.50)

⇔ P−1
i − (AjP

−1
j +BjKjP

−1
j)Pj(AjP

−1
j +BjKjP

−1
j)T > 0 (6.51)

⇔


 P−1

i (AjP
−1
j +BjKjP

−1
j)

(AjP
−1
j +BjKjP

−1
j)T P−1

j


 > 0 (6.52)

To obtain an LMI, we substitute

Wj = KjP
−1
j or Kj = WjPj (6.53)

which gives 
 P−1

i (AjP
−1
j +BjWj)

(AjP
−1
j +BjWj)

T P−1
j


 > 0 (∀(j, i) ∈ W̄), (6.54)

where the set W̄ will be defined next. We still have to impose the condition

Qi = P−1
i > 0, ∀i ∈ I (6.55)

The LMIs (6.54), (6.55) provide the synthesis of a piecewise linear controller that stabilizes

the origin, as can be shown with the PWQ Lyapunov function (6.34).

As for stability analysis, the LMI (6.54) must be fulfilled for all possible pairs (j, i) cor-

responding to regions, the system can switch to in one step. However, the switching

must be predicted in closed loop. Lacking of better knowledge we can always choose

W̄ =Wall = I × I. This takes into account all conceivable pairs of cells in a system with

s cells, introducing conservativeness of the approach.

To what concerns the region of attraction of the controlled system, let V̄2(x) = xTPix,

∀x ∈ Xi and choose X0 as the largest level set {x ∈ X : V̄2(x) ≤ ξ, ξ > 0} contained in X.

Then, even if V̄2 is only piecewise continuous, it is easy to prove that every state-trajectory

236 6 Mixed Logic Dynamical and Piecewise Affine Systems

of the controlled system starting from X0 , besides converging to the origin, does not leave

the set X. This is due to the fact that the number of regions Xi is finite. In summary, we

have the following Lemma:

Lemma 6.2 If W̄ contains all possible pairs of indices corresponding to the cells the closed-

loop PWA system can switch in one step, a stable piecewise linear state feedback that

stabilizes asymptotically the origin on X0 can be found solving the LMIs (6.54) and (6.55)

for Q and Yi. Ki is then given by Equation (6.53).

6.3.3 Stability with Parameterized Lyapunov Functions

The choice of Pi(x) is:

Pi(x) =

N∑
j=0

Pi(j)ρi(j)(x) (6.56)

where

ρi(j) : Xi −→ R, j = 1, 2, . . . , N (6.57)

are (bounded) basis-functions (Johansen, 2000) for Pi(x) and Pi(1), Pi(2), . . . , Pi(N) are pa-

rameter matrices. A similar class of Lyapunov functions has been proposed for continuous-

time nonlinear systems in (Johansen, 2000).

6.3.4 Comparison

The stability tests that one obtains in these three cases decrease in their degree of conser-

vativeness. We point out that all these tests can be translated into an LMI form (Scherer

et al., 1997; Gahinet et al., 1994) by replacing (6.5) and (6.6) with the following more

6.3 Linear Matrix Inequalities Algorithms for Exponential Stability Analysis 237

conservative conditions:

Pi(x) > 0, ∀x ∈ Xi (6.58)

(Ajxk + aj)
TPi(Ajxk + aj)(Ajxk + aj)− γxT

kPj(xk)xk < 0, (6.59)

xk ∈ Xj\{0}, xk+1 = Ajxk + aj ∈ Xi

where 0 < γ ≤ 1 represents a strict upper bound on the minimal degree of exponential

stability. As we have outlined in the previous sections, inequalities (6.58)-(6.59) are LMI

conditions in all the three cases i) − iii). Unfortunately, in general and even when the

state-space X is bounded one has to deal with an infinite-dimensional LMI problem or,

in other words, it is necessary to deal with a Parameterized LMI (PMI) problem that

can be reduced to a finite-dimensional LMI problem by resorting to various techniques

(Tuan et al., 2001; Gahinet et al., 1996). One of these techniques is called grid method

of the parameter space and can be straightforwardly adapted to our case. An alternative

approach, which is particularly advantageous from a computational point of view in the

case iii), is based on the so-called multiconvexity concepts (Gahinet et al., 1996) and can be

developed starting from Equations (6.58)-(6.59) by taking advantage of the boundedness

of the basis functions ρi(j)(x).

Example 6.1:

In order to analyze the conservativeness of the stability tests corresponding to

the cases i)− iii), we consider the following numerical example:

xk+1 =





 −0.999 0

−0.139 0.341


xk xk ∈ (0, 1]× [−1, 0)

 0.436 0.323

0.388 −0.049


xk xk ∈ [0, 1]× [0, 1]

 −0.457 0.215

0.491 0.49


xk xk ∈ [−1, 0]× [−1, 0]\{0}

 −0.022 0.344

0.458 0.271


xk xk ∈ [−1, 0)× (0, 1]

(6.60)

238 6 Mixed Logic Dynamical and Piecewise Affine Systems

The regions {Xi}4i=1 partition in four quadrants the state-space X = [−1, 1] ×

[−1, 1]. The partitioning corresponds to the four quadrants of the state-space

X =


x =


 x1

x2


 | x1 ∈ [−1, 1] , x2 ∈ [−1, 1]




i.e.

E1 = E2 = E3 = E4 =


 1 −1 0 0

0 0 1 −1


T

(6.61)

and

e1 =
[
−1 0 0 −1

]T
, e2 =

[
0 −1 0 −1

]T
e3 =

[
−1 0 −1 0

]T
, e4 =

[
0 −1 −1 0

]T
.

It is possible to check that if x0 ∈ X then xk ∈ X, ∀k ∈ N+ . We have applied

the stability tests corresponding to the three cases i)− iii) for different values

of the coefficient γ. In particular, according to Johansen (2000), the case iii)

has been tackled by means of the following basis-functions:

ρi(j)(x) =
µi(j)(x)∑4

k=1 µi(k)(x)
∈ [0, 1] (6.62)

where µi(j)(x) = exp
(
−0.5(x− xi(j))

)
and xi(j) (with i, j = 1, 2, 3, 4) are the

vertices of each cell Xi. The corresponding LMIs (6.58)-(6.59) were solved by

exploiting gridding techniques (Tuan et al., 2001; Gahinet et al., 1996). The

test corresponding to the case i) is feasible for γ ≥ 0.72, the test corresponding

to the case ii) is feasible for γ ≥ 0.35 and, finally, the test corresponding

to the case iii) is feasible for γ ≥ 0.14. This simple experiment highlights

that the last stability test is the least conservative and can be used to obtain

better information about the true minimal degree of exponential stability of

the considered system. 2

6.3 Linear Matrix Inequalities Algorithms for Exponential Stability Analysis 239

6.3.5 Relaxation of Finite-Dimensional LMI Tests for Exponen-

tial Stability

In this subsection we concentrate on the tests associated with Lyapunov functions of type

(6.13) and (6.34). In fact, for these cases, it is possible to obtain stability tests that do not

require gridding and that are computationally less expensive. For the sake of simplicity,

we first assume that:

ai = 0, ∀i ∈ I (6.63)

and later we will show how to remove this assumption.

It is easy to verify that conditions (6.58)-(6.59) are satisfied, for a given γ (0 < γ ≤ 1), if

the following alternative inequalities are met:

Pi > 0, ∀i ∈ I (6.64)

AT
j PiAj − γPj < 0, ∀(j, i) ∈ W (6.65)

where W is defined as in (6.38). The LMI test represented by inequalities (6.64)-(6.65)

corresponds to the case (6.34) when the matrices Pi are allowed to be different (PWQ

stability), whereas the case (6.13) corresponds to the more demanding condition Pi =

P, ∀i ∈ I (Q-stability).

Following the rationale of Johansson and Rantzer (1998) we note that the LMIs (6.64)-

(6.65) are actually valid on the whole state space, even though they would be required to

hold in a single cell only i.e. for x ∈ Xi. We can remove some conservativeness by deriving

from (6.5) and (6.6) some alternative conditions exploiting the so-called S-Procedure (see

e.g. (Jakubovic, 1977; Iwasaki et al., 2000)). More precisely, it is possible to reduce

240 6 Mixed Logic Dynamical and Piecewise Affine Systems

conservativeness if we can find matrices Fi and Gij such that

Pi − Fi > 0, ∀i ∈ I (6.66)

AT
j PiAj − γPj +Gij < 0, ∀(j, i) ∈ W (6.67)

xTFjx ≥ 0, xTGijx ≥ 0 if x ∈ Xj . (6.68)

Note that we do not require the matrices Fj and Gij to be positive or negative definite, we

only require that the quadratic forms take on the signs mentioned above in the correspond-

ing regions. From the assumptions on the matrices Fj and Gij it follows that the fulfillment

of the LMIs (6.66)-(6.67) implies the fulfillment of (6.58)-(6.59). An effective procedure

to find suitable matrices Fj and Gij meeting the requirement (6.68) can be provided by

exploiting the representation (6.41) of the cells Cl(Xi) in form of inequalities. Here, we

assume

ei = 0, ∀i ∈ I. (6.69)

This condition will be removed together with the assumption (6.63) on the vectors ai.

By exploiting (6.69), as shown in (Johansson and Rantzer, 1998), a possible choice of the

matrices Fj and Gij is given by:

Fj = ET
j UjEj (6.70)

Gij = ET
j ZijEj (6.71)

where Uj and Zij are matrices of suitable dimensions with non-negative entries.

Remark 3 Removing the assumptions on the vectors ai and ei

In this remark we provide a simple procedure to remove the assumptions on the vectors

ai and ei (Equations (6.63) and (6.69), respectively). We introduce the extended state

x̄k = [xT
k 1]T and rewrite the original system (6.1) as follows:

x̄k+1 = Āix̄k, for xk ∈ Xi (6.72)

6.3 Linear Matrix Inequalities Algorithms for Exponential Stability Analysis 241

where

Āi =


 Ai ai

0 1


 . (6.73)

The system (6.72) has the same structure of the original system (6.1), i.e. without dis-

placements. However, the matrices Āi have an eigenvalue at 1. This means that the LMIs

(6.64)-(6.65), necessary for PWQ stability, are in general not satisfied. There are two pos-

sible remedies for this problem: the first is to resort to a more complex family of Lyapunov

functions, as in point iii) of Section 6.3. The second is analogous to the procedure pro-

posed in (Johansson and Rantzer, 1998). We exploit PWQ Lyapunov functions together

with relaxations (6.66). 2

Following the same rationale used in (Johansson and Rantzer, 1998), we can formulate the

following stability test.

Lemma 6.3 Let X0 be the set of initial states satisfying Assumption 6.1. If Assump-

tion 6.2 holds and the LMIs

Pi − ĒT
i ŪiĒi > 0 ∀i ∈ I (6.74)

ĀT
j PiĀj − γPj + ĒT

j Z̄ijĒj < 0 ∀(j, i) ∈ W. (6.75)

admit a solution in Pi = P T
i , Ūi and Z̄ij (where Ūi, Z̄ij are matrices of suitable dimensions

with non-negative entries and Ēj = [Ej ej]), then the origin of (6.1) is exponentially stable

on X0 with a degree of stability γ.

Each system satisfying the stability test of Lemma 6.3 based on the use of S-Procedure,

will be referred to asW-PWQ stable with relaxations (orWall-PWQ stable with relaxations

in case Wall is used instead of W). As in (Johansson and Rantzer, 1998) one can impose

some structure to the matrices Ui and Zij, for instance by taking them diagonal or lower

triangular. This decreases the flexibility of the relaxation procedure but reduces the number

of unknowns in the LMIs (6.74)-(6.75).

242 6 Mixed Logic Dynamical and Piecewise Affine Systems

Example 6.2:

To illustrate the analysis and synthesis methods described in the previous sec-

tions we consider the following PWA system:

xk+1 =





 −0.04 −0.461

−0.139 0.341


xk +


1

0


uk E1xk ≥ 0

0.936 0.323

0.788 −0.049


xk +


1

0


uk E2xk ≥ 0

−0.857 0.815

0.491 0.62


xk +


1

0


uk E3xk ≥ 0

−0.022 0.644

0.758 0.271


xk +


1

0


uk E4xk ≥ 0

(6.76)

The partitioning corresponds to the four quadrants of the two dimensional

x1 − x2 plane, i.e.

E1 =


1 0

0 1


 E2 =


1 0

0 −1


 E3 =


−1 0

0 −1


 E4 =


−1 0

0 1




For this system the stability analysis gave conclusive results only if we were

looking for a piecewise quadratic Lyapunov function with minimal set W and

relaxations. All the other more conservative stability tests did not give any

results. The vector field of the system in the two-dimensional plane can be

seen in figure 6.1-a. The system trajectories starting from some nonzero initial

condition are in figure 6.1-b.

The controller synthesis succeeded in the search for a piecewise linear state

feedback showing stability with a quadratic Lyapunov function. The closed

loop matrices are given by the expressions:

Acli = Ai +BiK
T
i (6.77)

where the feedback gains are given by:

K1 =


 0.04

0.461


 K2 =


−0.936

−0.323


 K3 =


 0.857

−0.815


 K4 =


 0.022

−0.644


 (6.78)

6.4 Conservativeness of the Various Stability Analysis Algorithms 243

−1.5 −1 −0.5 0 0.5 1 1.5
−1.5

−1

−0.5

0

0.5

1

1.5

(x
1
,x

2
)−plane: x(t+1)−Ax(t) normalized vector field

(a) (x1, x2)-plane: x(t+1)−Ax(t) nor-

malized vector field.

0 2 4 6 8 10 12

−1

0

1

2
Unexcited system

x1
x2

0 2 4 6 8 10 12

−1

0

1

2
Controlled system

x1x2

(b) Trajectories of the open loop and

the controlled system.

Figure 6.1: Open and closed loop behaviour of system (6.76).

The contour-lines and a 3-D plot of the Lyapunov function can be seen in

figure 6.2 whereas the state trajectories of the controlled system is depicted in

figure 6.1-b.

2

6.4 Conservativeness of the Various Stability Analysis

Algorithms

The stability tests presented in this section exhibit different levels of conservativeness and

complexity in their applications. For instance it is clear that Q-stability impliesWall-PWQ

stability of the system. The relations become more complex if one considers relaxations

and minimal switching setsW. For instance systems can be found, that are notWall-PWQ

stable, but are both Wall-PWQ stable with relaxations and W-PWQ stable.

This is summarized in Figure 6.3. In general, a higher degree of conservativeness of the

244 6 Mixed Logic Dynamical and Piecewise Affine Systems

0

0

-1.5 1.5
-1.5

1.5

(a) Contour Plot of the Lyapunov

function.

0
10

20

0

10

20

0

10

20

30

(b) 3D plot of the Lyapunov Func-

tion.

Figure 6.2: Open loop Lyapunov function for system (6.76).

Lyapunov function corresponds to lower computational requirements. The classification in

Figure 6.3 has been obtained by considering several examples of piecewise linear systems

with two states. It is worth noticing that all the regions of Figure 6.3 are non-empty as

one can prove by means of examples.

In some cases, the stability of PWA systems cannot be revealed by means of PWQ

Lyapunov functions of the type (6.34) even in the discrete-time case (see e.g. (Hassibi

et al., 1999)). In fact, roughly speaking, these Lyapunov functions cannot capture the

path-dependence of the “stored energy” in hybrid dynamical systems. The structure of

the Lyapunov function of type iii) is more flexible from this point of view. In fact, there

exist PWA systems whose stability cannot be proved by exploiting Lyapunov functions of

type ii) but only by resorting to those of type iii). Therefore, Lyapunov functions of type

iii) exploiting relaxations and the switching setW embrace all theW-PWQ stability tests.

6.5 Performance Analysis Techniques 245

Stable

W-PWQ stable
+ relax.

Wall-PWQ
stable + relax.

W-PWQ stable
PWQ stable

Q stable

Figure 6.3: Conservativeness of the different stability analysis approaches.

6.5 Performance Analysis Techniques

In this section we propose algorithms for performance analysis of discrete-time PWA sys-

tems. More precisely, we focus on the l2-gain of PWA systems, showing that it can be

analyzed by resorting to LMI-based algorithms. The rationale for our derivation hinges on

the use of passivity theory for nonlinear systems (Lin and Byrnes, 1996). The proposed

LMI techniques can be adapted to consider other performance measures. An application of

the H∞ and Generalized H2 performance analysis tests is the performance analysis of MPC

for both linear (Bemporad, Morari, Dua and Pistikopoulos, 2000) and MLD (Bemporad,

Borrelli and Morari, 2000a) systems. This can be done by exploiting the explicit PWA

form of the closed-loop system.

246 6 Mixed Logic Dynamical and Piecewise Affine Systems

6.5.1 l2-gain of PWA Systems

Consider the augmented PWA system

xk+1 = Aixk +Biwk + ai

zk = Cixk +Diwk

xk ∈ Xi (6.79)

where wk ∈ Rr is a disturbance signal and zk ∈ Rs is a penalty output that can model, for

instance, tracking errors. The cells Xi define a polyhedral partition of the state-space X.

Assumption 6.1 has to be modified as follows, in order to take into account the effects of

the disturbance signal wk.

Assumption 6.3 The evolution of the state trajectory for the PWA system (6.79) starting

form x0 = 0 and due to a disturbance signal wk, k ∈ N+ satisfies the condition xk ∈ X

∀k ∈ N+ .

Analogously to the stability analysis, we first assume ai = 0, ∀i ∈ I and then we remove

this assumption by resorting to the procedure described in Remark 3

In this subsection we focus on the disturbance attenuation problem in an l2 framework:

given a real number γ > 0, the exogenous signal w is attenuated by γ if, starting from

x0 = 0, for each integer N ≥ 0 and for every w ∈ l2 ([0, N] ,Rr)

N∑
k=0

‖zk‖2 < γ2
N∑

k=0

‖wk‖2. (6.80)

A discrete-time nonlinear system is strictly dissipative with supply rate W : Rs × Rr → R

(Byrnes and Lin, 1995) if there exists a non-negative function V : Rn → R termed storage

function such that

∀wk ∈ Rr , ∀k ≥ 0, V (xk+1)− V (xk) < W (zk, wk) (6.81)

6.5 Performance Analysis Techniques 247

and V (0) = 0. Condition (6.81), is the so-called dissipation inequality that can be equiva-

lently represented through the condition (Lin and Byrnes, 1996; Willems, 1972):

∀wk, ∀N ≥ 0, ∀x0 ∈ X, V (xN+1)− V (x0) <

N∑
k=0

W (zk, wk). (6.82)

Hereafter, we concentrate on finite gain dissipative PWA systems with the following supply

rate

W∞(z, w) = γ2‖w‖2 − ‖z‖2, γ > 0 (6.83)

In fact, W∞(z, w) is related to the l2-gain of the PWA system. Other types of performance

analysis procedures can be derived by considering alternative types of supply rates (Scherer

et al., 1997). An important issue is represented by the structure of the storage function

used to test this performance criterion. The considerations reported in Section 6.3 about

the structure of a Lyapunov function for stability tests, are valid also for the choice of a

storage function.

6.5.2 l2-gain Analysis for PWA Systems

We first establish some preliminary facts on the l2-gain of a PWA system for which the

origin is stable and stability can be checked with a storage function of type (6.4)-(6.5).

Lemma 6.4 Let Assumptions 6.2 and 6.3 hold. Assume that the stability of the origin of

system (6.79) can be guaranteed with a storage function of type (6.4)-(6.5) and set x0 = 0.

Then, the l2 constraint (6.80) is satisfied ∀γ > γ0 where

γ0 =
(
C̃2γ̄2 + D̃2

)1/2

(6.84)

and

C̃ , sup
i∈I
‖Ci‖, D̃ , sup

i∈I
‖Di‖ (6.85)

248 6 Mixed Logic Dynamical and Piecewise Affine Systems

γ̄ ,
L̄1 + (L̄2

1 + 4L̄2)
1/2

2
(6.86)

L̄1 ,
2L1P̄

σ
, L̄2 ,

L2P̄

σ
(6.87)

L1 , sup
i∈I
‖Ai‖‖Bi‖ (6.88)

L2 , sup
i∈I
‖Bi‖2 (6.89)

P̄ , sup
i∈I

sup
x∈Xi

‖Pi(x)‖. (6.90)

Proof. The proof is reported in (Ferrari-Trecate, Cuzzola, Mignone and Morari,

2000). 2

The next result, which is a generalization of the classical Bounded Real Lemma (Lin and

Byrnes, 1996) to PWA systems, allows to analyze the H∞ performance of a PWA system.

Lemma 6.5 Let Assumptions 6.2 and 6.3 hold. Consider the system (6.79) with zero

initial condition x0 = 0. If there exists a function V (x) = xTPi(x)x ∀x ∈ Xi of type (6.4)

satisfying the LMIs

∀k ∈ N+ ,
[
xT

k wT
k

]
Mji(xk, wk)

[
xT

k wT
k

]T
< 0 (6.91)

where

Mji(xk, wk) ,


 AT

j Pi(xk+1)Aj − Pj(xk) + CT
j Cj

(
DT

j Cj +BT
j Pi(xk+1)Aj

)T
DT

j Cj +BT
j Pi(xk+1)Aj BT

j Pi(xk+1)Bj +DT
j Dj − γ2I


 .
(6.92)

then, the dissipativity inequality (6.81) with supply rate (6.83) is met with and the l2 per-

formance condition (6.80) is satisfied. Furthermore, the system (6.79) is exponentially

stable.

6.6 Summary 249

Proof. The proof is reported in (Ferrari-Trecate, Cuzzola, Mignone and Morari,

2000). 2

The conservativeness of the performance condition (6.83) depends strictly on the structure

imposed on the matrices Pi(x): some possible choices are reported in Section 6.3.

Note that (6.83) (or equivalently the condition (6.91)) is satisfied if the following inequality

is met

Mji(xk, wk) < 0 (6.93)

xk ∈ Xj\ {0} , xk+1 = Ajxk +Bjwk ∈ Xi.

Obviously, it is possible to reduce the condition (6.93) to a PMI problem that, as pointed

out in Section 6.3, can be solved resorting to classical techniques like the gridding method.

Furthermore, by assuming that the matrices Pi(x) are independent of the state (cases i)

and ii) of Section 6.3), and by using relaxations similar to those discussed in Section 6.3.5,

condition (6.93) becomes:

Pi −ET
i UiEi > 0, ∀i ∈ I (6.94)

M̄ji ,


 AT

j PiAj − Pj + CT
j Cj + ET

i ZijEi

(
DT

j Cj +BT
j PiAj

)T
DT

j Cj +BT
j PiAj BT

j PiBj +DT
j Dj − γ2I


 , ∀(i, j) ∈ W

(6.95)

where Ui and Zij are matrices of suitable dimensions with non-negative entries.

6.6 Summary

We have developed an LMI based technique to test stability and performance of discrete-

time hybrid systems in PWA form. The use of LMIs has been exploited in oder to obtain a

numerically reliable procedure. In this chapter we focused on three main points: first, we

250 6 Mixed Logic Dynamical and Piecewise Affine Systems

highlighted the importance of the switching structure of the PWA system, second, we made

an extensive comparison between several types of tests in terms of their conservativeness,

and third, we extended our results to the l2 analysis problem. by means of classical dissi-

pative concepts for nonlinear discrete-time systems. Such LMI procedures can be further

extended to the synthesis of state-feedback regulators. Some preliminary results concern-

ing the control of PWA systems, whose switching structure depends on the state only,

is reported in (Ferrari-Trecate, Cuzzola, Mignone and Morari, 2001) and generalizations

were derived in (Cuzzola and Morari, 2001), where the authors considered controlling PWA

systems whose switches depend not only on the state but also on the control input.

Chapter 7

Conclusions and Outlook

Even though the tools and methods dealing with MLD systems are still at an early stage,

an increasing number of practical applications and theoretical results have been reported.

Some of them are presented in this thesis. It is the author’s opinion that the MLD for-

malism provides a promising framework for formulating and solving a large number of

practical problems for hybrid systems. One of the main strengths of MLD systems is the

possibility to handle several questions of practical relevance within one common framework

in a systematic way.

The major challenge for the future consists in overcoming the computational problems that

prevent a scaling of the methods to arbitrary dimensions for general MLD systems. This

can be achieved by suitable problem formulations, by using improved and reliable solvers, or

by combining mixed integer optimization techniques with other computational methods,

like constraint logic programming (Jain and Grossmann, 2002). In view of the results

presented in this work, there are some directions in which further research is appropriate

to gain better understanding of the MLD paradigm and the analysis and synthesis methods

connected to it.

251

252 7 Conclusions and Outlook

Integral Vertices of Polytopes in the Unit Hypercube in Section 2.4.1: The

translation of logic propositions into inequalities in Section 2.4.1 leads in some cases to

sets of constraints, describing polytopes with exclusively integral vertices. The appealing

property of these cases concerns the solution of the corresponding integer linear program

that can be performed by solving the problem with relaxed integrality constraints, i.e.

an LP. The recognition of these problems and the specific modeling of systems such that

these features are reached can be further analyzed. In particular, a possible application

for mixed integer optimizations can be envisioned.

In Section 2.4.1 we have also shown that using the CNF method to find the inequalities

representing a logical proposition may lead to polytopes, which are larger than necessary.

This problem can be avoided using the truth table method. However, we still have to

provide an application, where the benefits of the truth table method over the CNF method

can be seen.

Geometrical Method for Mixed Logic-Continuous Propositions in Section 2.4.2:

The geometric interpretation of Boolean relations in Section 2.4.1 provides a method to find

the inequalities corresponding to those relations. For mixed logic-continuous propositions

the analogous procedure in Section 2.4.2 on page 51 is not as systematic as for Boolean

relations. Further research can be dedicated to this topic. The goal is the development

of an algorithm for this translation, which is possibly based on computational geometry

tools, as listed in Section 2.4.1 for the convex hull computations. In particular, it is not

clear yet, whether the polytopes obtained with the generalized conjunctive normal form

method exhibit unnecessary vertices, as it was the case for the CNF of Boolean relations.

Another goal of a geometric approach consists in finding an algorithm that avoids such

vertices.

253

Different Norms in Moving Horizon Estimation in Section 4.3: The moving hori-

zon estimation scheme in this work uses a quadratic cost function. From a computational

point of view, the software tools to solve MILPs are more advanced than for MIQPs. A

reformulation of the estimation problem with a 1-norm cost function allows to use these

tools. In the author’s experience, this approach leads, however, to bad estimator proper-

ties. If used for fault detection and isolation purposes, the estimates exhibit several false

alarms. It is not yet clear, whether the usage of nonquadratic norms for estimation of

MLD systems has any inherent limitations.

Observability Analysis for the Fault Detection Scheme in Section 4.4.2: The

method shown in Section 4.4.2 provides fault estimates using moving horizon estimation.

The choice of the design parameters influences the success of fault detection and isolation.

However, in some cases the faults are difficult to detect, because their effect on the measured

variables is too small. The FDI scheme may interpret these effects as disturbances ζ and

ξ in (3.37), rather than as faults φ. In case of such false alarms or missed fault detections,

we should have a method that helps us to determine, whether the design parameters are

badly chosen or the FDI problem is inherently difficult to solve.

As a possible answer to these question, we suggest a quantitative observability analysis

for MLD systems, as it was first investigated by Bemporad, Ferrari-Trecate and Morari

(2000). The goal is to find out, whether the degree of observability of the faults in a given

model is high enough to allow fault diagnosis. If the degree of observability lies above

a certain threshold1, then we are likely to face a problem of inadequate choice of design

parameters in case of a malfunction of the FDI scheme. On the other hand, if the degree

of observability lies below a threshold, then we should consider a modified modeling of the

faulty MLD system or additional measurements.

1which has to be determined for the system under consideration

254 7 Conclusions and Outlook

Stochastic Set-Up of the Fault Detection Scheme in Section 4.4.2: The fault

detection set-up introduced in this work does not consider any probability distribution of

the fault occurrence. In principle this type of information can be included in the problem

at least in three ways:

• In the MLD model: One possibility is to define one additional continuous state xfi

with range [0, 1] for each fault φi. The states xfi keep track of the probability of a fault

occurrence at the current time step, given the past values of the fault estimates. The

evolution of xfi may be dependent on conditional probability distribution functions.

Since xfi change in time, we can use them to introduce time-varying penalty terms

in the moving horizon estimation cost function (4.25), using the modeling techniques

shown in Chapter 2.

• In the weights of the cost function: In general, the weights on the fault estimates

φ in (4.25) reflect the probability of fault occurrence. If this probability is known a

priori, it can be used for the choice of the weights.

• In the optimization scheme, i.e. in the branch and bound procedure: Especially for

schemes with limited computational time, we can use the knowledge on the fault

probability distribution to explore those subproblems first, that correspond to the

most likely fault combinations. This idea aims at quickly find the optimal solution

in the branch and bound iterations.

Training of the Fault Detection Scheme in Section 4.4.2: It is a common practice

to train a fault detection scheme with faultless data. In our case, sets of faultless data can

be used to tune the weighting matrices Qi in the cost function of the estimator, in order

to avoid false alarms and missed fault detections.

Combination of Fault Detection and Reconfiguration in Section 4.5: The ex-

periments on the three tank system for reconfiguration, shown in Section 4.5.9 assume that

255

the fault information is exact: there is no underlying fault estimation, but the faults and

their time of occurrence are assumed to be known precisely. The combination of a fault

detection scheme with a reconfiguration scheme has still to be performed and tuned in

order to give satisfactory results on the experimental set-up.

Piecewise Affine Observers for Piecewise Affine Systems in Chapter 6: We re-

ported some methods based on piecewise quadratic Lyapunov functions to stabilize piece-

wise linear systems. The dual problem consists in finding a piecewise linear observer for

piecewise linear models, which stabilizes the estimation error. In analogy to the state

feedback problem, the observer gain is allowed to switch according to the current plant

operating condition.

256 7 Conclusions and Outlook

Appendix A

Boolean Functions and Clausal

Inequalities

This appendix refers to Section 2.4.1. We report a Boolean function f : [0, 1]4 → [0, 1] for

which PCH has a nonclausal inequality. f is defined by the truth table in Table A.1.

δ1, δ2, δ3, δ4 are independent variables: δ5 = f(δ1, δ2, δ3, δ4)

257

258 A Boolean Functions and Clausal Inequalities

δ1 δ2 δ3 δ4 δ5

0 0 0 0 1

0 0 0 1 0

0 0 1 0 1

0 0 1 1 0

0 1 0 0 0

0 1 0 1 1

0 1 1 0 0

0 1 1 1 1

1 0 0 0 0

1 0 0 1 1

1 0 1 0 1

1 0 1 1 1

1 1 0 0 0

1 1 0 1 1

1 1 1 0 1

1 1 1 1 0

Table A.1: Truth table of a Boolean function: δ5 is the dependent variable

259

The convex hull of the rows of Table A.1 in [0, 1]5 is described by the hyperplanes

4− δ1 − δ2 − δ3 − δ4 − δ5 ≥ 0

1− δ1 + δ3 − δ4 + δ5 ≥ 0

1− δ2 + δ3 − δ4 + δ5 ≥ 0

1− δ1 + δ2 − δ4 + δ5 ≥ 0

1− δ1 + δ3 + δ4 − δ5 ≥ 0

1− δ2 + δ3 + δ4 − δ5 ≥ 0

1 + δ1 − δ2 + δ4 − δ5 ≥ 0

1− δ1 − δ3 + δ4 + δ5 ≥ 0

+δ2 − δ3 + δ4 + δ5 ≥ 0

−1 + δ1 + δ2 + δ4 + δ5 ≥ 0

1 + δ1 − δ2 − δ4 + δ5 ≥ 0

1− δ1 + δ2 − δ3 + δ5 ≥ 0

1 + δ1 + δ2 − δ4 − δ5 ≥ 0

1− δ1 + δ2 − 2δ3 + δ4 + 2δ5 ≥ 0

Note that the last inequality is not clausal since it contains coefficients with value 2. For

this set of constraints, it is the only inequality that is not clausal. Using Karnaugh maps,

the minimal CNF of this function and therefore PCNF can be found. By construction,

PCNF contains all vertices represented by the rows of Table A.1. However, it contains also

7 nonintegral vertices. This confirms that in general PCH 6= PCNF even restricting the

considered Boolean relations to Boolean functions.

260 A Boolean Functions and Clausal Inequalities

Appendix B

Description of the Three Tank

System in HYSDEL

The HYSDEL listing of the three tank system in Chapter 3 is reported next. The model

has the characteristics mentioned in the header of the file in Table B.1.

/**/
/* file: tank03.hys */
/* system: Three tank system with faults */
/* states: 3 continuous = levels */
/* 0 logic */
/* input: 2 continuous = pumps */
/* 7 logic = V13, V23, V1, V2, phi1, phi2, phi3 */
/* parameters: estimated from laboratory model */
/* outflows: leak in tank 1 as phi1 position o1-b */
/* nominal outflow from tank 3 position o1-b */
/* author: Domenico Mignone (mignone@aut.ee.ethz.ch) */
/* date: 2001.09.04 */
/* hysdel version: 0.76 or higher */
/**/

Table B.1: HYSDEL description of the three tank system, part 1

261

262 B Description of the Three Tank System in HYSDEL

IMPLEMENTATION {

SYSTEM tank03 {

INTERFACE {
STATE {

REAL h1, h2, h3; /* continuous liquid levels */ }

INPUT {
REAL Q1, Q2; /* pumps */
BOOL V13, V23, V1, V2, phi1, phi2, phi3; /* valves and faults */ }

OUTPUT {
REAL y1, y2, y3; }

PARAMETER {
REAL az = 1.0; /* Flow Correction Term */
REAL Area = 0.0143; /* Cross-Area of tank */
REAL g = 9.81; /* Gravity Constant */
REAL s13 = 10.9e-6; /* Cross Section area of valves */
REAL s23 = 8.89e-6; /* Cross Section area of valves */
REAL s2 = 5.54e-6; /* Cross Section area of valves */
REAL s1 = 9.36e-6; /* Cross Section area of valves */
REAL sl = 8.62e-6; /* Cross Section area of valves */
REAL sn3 = 9.05e-6; /* Cross Section area of valves */
REAL dT = 10; /* sampling time */
REAL hv = 0.3; /* m */
REAL hmax = 0.62; /* m */
REAL Q1max = 0.1e-3; /* Maximum flow through Pump 1 */
REAL Q2max = 0.1e-3; /* Maximum flow through Pump 2 */

REAL k1 = az*s1*sqrt(2*g/(hmax-hv));
REAL k2 = az*s2*sqrt(2*g/(hmax-hv));
REAL k13 = az*s13*sqrt(2*g/hmax);
REAL k23 = az*s23*sqrt(2*g/hmax);
REAL kl1 = az*sl*sqrt(2*g/hmax);
REAL kn3 = az*sn3*sqrt(2*g/hmax);
REAL e = 1e-6; /* epsilon of inequalities */
REAL TdA = dT/Area; /* (sampling time (s) / Area (m^2)) */ }

} /* end interface */

Table B.2: HYSDEL description of the three tank system, part 2

263

IMPLEMENTATION {

AUX {
REAL z01, z02, z03, z1, z2, zl1, z13, z23;
BOOL d01, d02, d03, f1;

}

LOGIC {
f1 = (~phi2 & V1) | (phi3);

}

AD {
d01 = -h1 + hv <= 0.0 [hv, -hmax+hv, e];
d02 = -h2 + hv <= 0.0 [hv, -hmax+hv, e];
d03 = -h3 + hv <= 0.0 [hv, -hmax+hv, e];

}

DA {
z01 = {IF d01 THEN h1-hv [hmax-hv, -hv, 0] };
z02 = {IF d02 THEN h2-hv [hmax-hv, -hv, 0] };
z03 = {IF d03 THEN h3-hv [hmax-hv, -hv, 0] };
z1 = {IF f1 THEN z01-z03 [hmax, -hmax, 0] };
z2 = {IF V2 THEN z02-z03 [hmax, -hmax, 0] };
zl1 = {IF phi1 THEN h1 [hmax, 0, 0] };
z13 = {IF V13 THEN h1-h3 [hmax, -hmax, 0] };
z23 = {IF V23 THEN h2-h3 [hmax, -hmax, 0] };

}

CONTINUOUS {
h1 = h1 + TdA*(Q1 -k1*z1 -k13*z13 -kl1*zl1) ;
h2 = h2 + TdA*(Q2 -k2*z2 -k23*z23);
h3 = h3 + TdA*(k1*z1 +k2*z2 +k13*z13 +k23*z23 -kn3*h3);

}

MUST {
-h1 <= 0;
-h2 <= 0;
-h3 <= 0;
h1 - hmax <= 0;
h2 - hmax <= 0;
h3 - hmax <= 0;
-Q1 <= 0;
-Q2 <= 0;
Q1 - Q1max <= 0;
Q2 - Q2max <= 0;

}
} /* end implementation */
} /* end system */

Table B.3: HYSDEL description of the three tank system, part 3

264 B Description of the Three Tank System in HYSDEL

Appendix C

Linear Matrix Inequalities

In this section we give a brief introduction in the theory of Linear Matrix Inequalities that

are used in Chapter 6.

C.1 Definition

A Linear Matrix Inequality (LMI) is a constraint of the following form:

F (x) = F0 + x1F1 + . . .+ xpFp > 0 (C.1)

where x = (x1, . . . , xp) ∈ Rp are variables, Fi are given symmetric matrices. The inequality

sign in (C.1) denotes positive definiteness. One of the best known LMIs is Lyapunov’s

stability criterion for linear time invariant systems ẋ(t) = Ax(t). The system is stable if

and only if there exists a symmetric matrix P such that

ATP + PA < 0 (C.2)

P > 0 (C.3)

By choosing a basis for symmetric matrices and by merging (C.2) and (C.3) to one LMI,

we can rewrite the criterion as (C.1).

265

266 C Linear Matrix Inequalities

In an LMI Feasibility Problem we are given an LMI F (x) > 0 and wish to find an xfeas

such that F (xfeas) > 0 or prove that the LMI is infeasible.

A Semidefinite Program (SDP) is defined by a linear optimization problem constrained by

LMIs as:

min
x
cTx

subject to F (x) > 0

The first monograph on this topic is by Boyd et al. (1994), which contains a comprehensive

list of tasks that can be recast as LMI problems.

C.2 Why Linear Matrix Inequalities?

The main practical reason for formulating problems in the LMI framework is the efficiency,

these problems can solved with. On one hand the problem of interest might be difficult

to solve by other means or can lack an analytical solution, at all. On the other hand an

LMI formulation is often a convenient way to specify a constraint, which arises in several

situations, like e.g. in stability or performance requirements.

There are several problems in system and control theory that can be formulated as an

SDP or as an LMI feasibility test. From a practical point of view, a problem that can be

reduced to an LMI problem can be solved efficiently and reliably (Boyd et al., 1994). Here

we list only a couple of such problems:

• Search for Lyapunov functions for linear and some classes of nonlinear systems (e.g.

piecewise linear systems)

• H∞ control synthesis

• Multiobjective controller and system design

C.3 Schur Complements 267

• Finding the largest domain of attraction of a polytopically constrained linear system

that can be guaranteed with a quadratic Lyapunov function

• Robust stability analysis of linear systems

• Gain-Scheduling synthesis

We remark that LMIs are encountered also in several fields, other than systems and control

theory. For instance in VLSI circuit design, we encounter semidefinite programs that are

formulating the trade-off, between speed, power consumption and size of the circuits. In

economical applications the choice of a robust portfolio composition, managing risk and

expected return can be formulated with the help of LMIs.

C.3 Schur Complements

One tool often used to formulate LMI constraints is the application of Schur complements

(Boyd et al., 1994). It is used to transform matrix inequalities that are apparently nonlinear

into LMIs. We state here the main theorem.

Theorem C.1 The following LMIs are equivalent:

• 
 Q S

ST R


 > 0 (C.4)

•

R > 0 (C.5)

Q− SR−1ST > 0 (C.6)

268 C Linear Matrix Inequalities

•

Q > 0 (C.7)

R− STQ−1S > 0 (C.8)

• 
 R ST

S Q


 > 0 (C.9)

C.4 Software Tools

In the late 1980s interior point methods for solving LMI problems were introduced. This

allowed to develop efficient solvers that have polynomial complexity in the number of

variables and the number of rows in the LMIs. We defer to (Vandenberghe and Boyd, 1996)

for a review of the theory. Two software packages using these techniques for solving LMI

problems are:

• LMI control toolbox, which is distributed as a Matlab toolbox (Gahinet et al., 1994)

• LMItool (El Ghaoui and Commeau, 1998) is a package for LMI optimization that

acts as an interface for the following Semidefinite Programming solvers:

– SP developed by L. Vandenberghe and S. Boyd

– SDP developed by Alizadeh, J.-P. Haeberly, M. Nayakkankuppam, M.L. Over-

ton

– SDPHA developed by Florian A. Potra, Rongqin Sheng and Nathan Brixius

Appendix D

List of Abbreviations

abbreviation : meaning occurrences (pages)

B & B : Branch and Bound 187

CNF : Conjunctive Normal Form 31

ELC : Extended Linear Complementarity 58

F : False 21

FDI : Fault Detection and Isolation 77

FI : Full Information 133

FIFO : First-In First-Out 206

GBF : Generalized Boolean formula 42

GCNF : Generalized Conjunctive Normal Form 42

HYSDEL : Hybrid Systems Description Language 61, 68, 261

LC : Linear Complementarity 58

LIFO : Last-In First-Out 195

LMI : Linear Matrix Inequality 219, 265

LP : Linear Program 187

Table D.1: List of abbreviations, part 1

269

270 D List of Abbreviations

abbreviation : meaning occurrences (pages)

MHE : Moving Horizon Estimation 131

MIFT : Mixed Integer Feasibility Test 29, 127

MILP : Mixed Integer Linear Program 185, 189

MIQP : Mixed Integer Quadratic Program 116, 185, 189

MLD : Mixed Logic Dynamical 12, 20

MLDF : Mixed Logic Dynamical with Faults 78

MMPS : Max-Min-Plus-Scaling 58

MPC : Model Predictive Control 115

PWA : Piecewise Affine 57, 217

PWQ : Piecewise Quadratic 219

Q : Quadratic 225

QP : Quadratic Program 188

SDP : Semidefinite Program 266

T : True 21

∧ : logical conjunction (AND) 21

∨ : logical disjunction (OR) 21

.̄ : logical negation (NOT) 21

⊕ : logical exclusive-or (EXOR) 21

→ : logical implication 21

↔ : logical equivalence (IFF) 21

Table D.2: List of abbreviations, part 2

Appendix E

Curriculum Vitae of

Domenico Mignone

March 23, 1972 Born in Zürich, Switzerland

April, 1979 to April, 1987 Primary and Secondary School in Zürich, Switzerland

April, 1987 to September, 1991 High School, Wirtschaftsgymnasium,

Kantonsschule Enge, Zürich, Switzerland

October, 1991 to October, 1992 Studies of Mathematics, ETH Zürich, Switzerland

October, 1992 to April, 1997 Diploma in Electrical Engineering,

ETH Zürich, Switzerland

Since May, 1997 Postgraduate Student at the Automatic Control

Laboratory, ETH Zürich, Switzerland

November, 1999 Postdiploma in Information Technology

ETH Zürich, Switzerland

271

272 E Curriculum Vitae of Domenico Mignone

Bibliography

Alessandri, A. and Coletta, P.: 2001, Design of Luenberger Observers for a Class of Hy-

brid Linear Systems, in M. Di Benedetto and A. Sangiovanni-Vincentelli (eds), Hy-

brid Systems: Computation and Control (HSCC), Proceedings of the 4th International

Workshop on Hybrid Systems, number 2034 in Lecture Notes in Computer Science,

Springer-Verlag, Roma, Italy, pp. 7–18.

Alur, R., Courcoubetis, C., Henzinger, T. and Ho, P.: 1993, Hybrid automata: an algorith-

mic approach to the specification and verification of hybrid systems, in R. Grossmann,

A. Nerode, A. Ravn and H. Rischel (eds), Hybrid Systems, number 736 in Lecture

Notes in Computer Science, Springer-Verlag, pp. 209–229.

Anlauff, M., Bemporad, A., Chakraborty, S., Kutter, P., Mignone, D., Morari, M., Pieran-

tonio, A. and Thiele, L.: 1999, From Ease in Programming to Easy Maintenance:

Extending DSL Usability with Montages, submitted to Usenix, DSL 99, 2nd confer-

ence on domain specific languages, Austin Texas.

Antsaklis, P. and Nerode, A. (eds): 1998, IEEE Transactions on Automatic Control –

Special Issue on Hybrid Control Systems, IEEE. Volume 43, Number 4.

Askari, J., Heiming, B. and Lunze, J.: 1999, Controller Reconfiguration Based on a Qual-

itative Model: A Solution of Three-Tanks Benchmark Problem, Proceedings of the

European Control Conference,Karlsruhe, Germany . Session CM5-3.

273

274 Bibliography

Åström, K., Albertos, P., Blanke, M., Isidori, A., Schaufelberger, W. and Sanz, R. (eds):

2001, Control of Complex Systems, Springer-Verlag.

Avis, D.: 1997, User’s Guide for lrs - Version 3.2, McGill University Montreal, Canada.

http://www.cs.mcgill.ca/~avis.

Bajpani, G., Chang, B. and Lau, A.: 2001, Reconfiguration of flight control systems for

actuator failures, IEEE Aerospace and Electronic Systems Magazine 16(9), 29–34.

Barber, C., Dobkin, D. and Huhdanpaa, H.: 1996, The quickhull algorithm for convex hulls,

ACM Trans. on Mathematical Software . http://www.geom.umn.edu/software/

qhull/.

Bemporad, A., Borrelli, F. and Morari, M.: 2000a, Optimal controllers for hybrid sys-

tems: Stability and piecewise linear explicit form, Proceedings of 39th Conference on

Decision and Control .

Bemporad, A., Borrelli, F. and Morari, M.: 2000b, Piecewise Linear Optimal Controllers

for Hybrid Systems, Proceedings of the American Control Conference .

Bemporad, A., Ferrari-Trecate, G., Mignone, D., Morari, M. and Torrisi, F. D.: 1999,

Model Predictive Control - Ideas for the Next Generation, Proceedings of theEuropean

Control Conference,Karlsruhe, Germany.

Bemporad, A., Ferrari-Trecate, G. and Morari, M.: 1999, Observability and Controllability

of Piecewise Affine and Hybrid Systems, Proceedings of the Conference on Decision

and Control .

Bemporad, A., Ferrari-Trecate, G. and Morari, M.: 2000, Observability and Controllability

of Piecewise Affine and Hybrid Systems, IEEE Transactions on Automatic Control

45(10), 1864–1876.

Bibliography 275

Bemporad, A. and Mignone, D.: 2000, miqp.m: A matlab function for solving mixed

integer quadratic programs, Technical report, Automatic Control Laboratory, ETH

Zürich, http://www.aut.ee.ethz.ch/~hybrid/miqp/.

Bemporad, A., Mignone, D. and Morari, M.: 1999a, An Efficient Branch and Bound

Algorithm for State Estimation and Control of Hybrid Systems, Proceedings of the

European Control Conference,Karlsruhe, Germany .

Bemporad, A., Mignone, D. and Morari, M.: 1999b, Moving Horizon Estimation for Hybrid

Systems and Fault Detection, Proceedings of the American Control Conference.

Bemporad, A. and Morari, M.: 1999a, Control of Systems Integrating Logic, Dynamics,

and Constraints, Automatica 35(3), 407–427.

Bemporad, A. and Morari, M.: 1999b, Verification of hybrid systems via mathematical

programming, in F. Vaandrager and J. van Schuppen (eds), Hybrid Systems: Compu-

tation and Control (HSCC), Proceedings of the 2nd International Workshop on Hybrid

Systems, number 1569 in Lecture Notes in Computer Science, Springer-Verlag, Berg

en Dal, The Netherlands.

Bemporad, A., Morari, M., Dua, V. and Pistikopoulos, E. N.: 1999, The explicit linear

quadratic regulator for constrained systems, Technical Report AUT99-16, Automatic

Control Lab, ETH Zürich, Switzerland.

Bemporad, A., Morari, M., Dua, V. and Pistikopoulos, E. N.: 2000, The explicit linear

quadratic regulator for constrained systems, American Control Conference, Chicago,

IL. pdf available at http://control.ethz.ch/~bemporad/dsi/mp_frame.html.

Bemporad, A., Torrisi, F. and Morari, M.: 2000, Optimization-based verification and

stability characterization of piecewise affine and hybrid systems, in N. Lynch and

B. Krogh (eds), Hybrid Systems: Computation and Control (HSCC), Proceedings of

the 3rd International Workshop on Hybrid Systems, number 1790 in Lecture Notes in

Computer Science, Springer-Verlag, Pittsburgh, PA, USA, pp. 45–58.

276 Bibliography

Bemporad, A., Torrisi, F. and Morari, M.: 2001, Discrete-time hybrid modeling and ver-

ification of the batch evaporator process benchmark, European Journal of Control

7(4), 382–399.

Benveniste, A., Le Borgne, M. and Le Guernic, P.: 1993, Hybrid Systems: the SIGNAL

approach, in R. Grossmann, A. Nerode, A. Ravn and H. Rischel (eds), Hybrid Systems,

number 736 in Lecture Notes in Computer Science, Springer-Verlag.

Blanke, M.: 1999, Fault-tolerant Control Systems, Vol. Advances in Control - Highlights

of ECC’99, Springer-Verlag, pp. 171–196.

Blondel, V. and Tsitsiklis, J.: 1999, Complexity of Stability and Controllability of Elemen-

tary Hybrid Systems, Automatica 35(3), 479–490.

Borrelli, F.: 2002, Optimal Control of Constrained Systems, PhD thesis, ETH Zürich,

Switzerland. to appear.

Borrelli, F., Bemporad, A., Fodor, M. and Hrovat, D.: 2001, A hybrid approach to traction

control, in M. Di Benedetto and A. Sangiovanni-Vincentelli (eds), Hybrid Systems:

Computation and Control (HSCC), Proceedings of the 4th International Workshop on

Hybrid Systems, number 2034 in Lecture Notes in Computer Science, Springer-Verlag,

Roma, Italy, pp. 162–174.

Boyd, S., El Ghaoui, L., Feron, E. and Balakrishnan, V.: 1994, Linear Matrix Inequalities

in System and Control Theory, SIAM.

Branicky, M.: 1995, Studies in Hybrid Systems: Modeling, Analysis, and Control, PhD

thesis, Massachussets Institute of Technology.

Branicky, M.: 1998, Multiple Lyapunov functions and other analysis tools for switched and

hybrid systems, IEEE Transactions on Automatic Control 43(4), 475–482.

Bibliography 277

Branicky, M., Borkar, V. and Mitter, S.: 1998, A unified framework for hybrid con-

trol: model and optimal control theory, IEEE Transactions on Automatic Control

43(1), 31–45.

Byrnes, C. I. and Lin, W.: 1995, Passivity and absolute stabilization of a class of discrete-

time nonlinear systems, Automatica 31(2), 263–268.

Camacho, E. and Bordons, C.: 1999, Model Predictive Control, Springer-Verlag.

Castagnoli, D.: 2000, Modellizzazione di una centrale idroelettrica ad acqua fluente medi-

ante sistemi ibridi, Master’s thesis, Dipartimento di ingegneria elettrica, Universitá

degli Studi di Pavia, Italia.

Cavalier, T., Pardalos, P. and Soyster, A.: 1990, Modeling and integer programming

techniques applied to propositional calculus, Computers and Operations Research

17(6), 561–570.

Chandru, V. and Hooker, J.: 1999, Optimization Methods for Logical Inference, Wiley-

Interscience Series in Discrete Mathematics and Optimization.

Chapuis, J.: 1998, Modellierung und neues Konzept für die Regelung von

Laufwasserkraftwerken, Diss. ETH Nr. 12765, ETH Zürich.

Chapuis, J. and Kraus, F.: 1999, Application of fuzzy logic for selection of turbines and

weirs in hydro power plants, Proc. 14th IFAC World Congress.

Chen, J., Frank, P., Kinnaert, M., Lunze, J. and Patton, R.: 2001, Control of Complex

Systems, Springer-Verlag, chapter : Fault Detection and Isolation, pp. 191–207.

Chen, J. and Patton, R.: 1998, Robust Model-Based Fault Diagnosis for Dynamic Systems,

Kluwer Academic.

Christiansen, D.: 1997, Electronics Engineers’ Handbook, 4th edition, IEEE Press/ Mc-

Graw Hill, Inc.

278 Bibliography

Clocksin, W. F. and Mellish, C. S.: 1981, Programming in Prolog, Springer-Verlag.

COSY: n.d., European science foundation research program: Control of complex systems,

http://www.esf.org/physical/pp/cosy/cosyb.htm.

Cuzzola, F. and Morari, M.: 2001, A generalized approach for analysis and con-

trol of discrete-time piecewise affine and hybrid systems, in M. Di Benedetto and

A. Sangiovanni-Vincentelli (eds), Hybrid Systems: Computation and Control (HSCC),

Proceedings of the 4th International Workshop on Hybrid Systems, number 2034 in

Lecture Notes in Computer Science, Springer-Verlag, Roma, Italy, pp. 189–203.

Dash Associates: 1999, XPRESS-MP User Guide. http://www.dashopt.com.

David, R. and Alla, H.: 1994, Petri nets for modeling of dynamic systems - a survey,

Automatica 30(2), 175–202.

Di Benedetto, M. D. and Sangiovanni-Vincentelli, A. (eds): 2001, Hybrid Systems: Com-

putation and Control, number 2034 in Lecture Notes in Computer Science, Springer-

Verlag, Roma, Italy.

El Ghaoui, L. and Commeau, J.-L.: 1998, LMITOOL-2.0 package, ENSTA Optimization

and Control Group, http://www.ensta.fr/uer/uma/gropco/.

Engell, S., Kowalewski, S. and Zaytoon, J. (eds): 2000, ADPM 2000: The 4th International

Conference on Automation of Mixed Processes: Hybrid Dynamic Systems, Dortmund,

Germany.

Evans, R. and Savkin, A. (eds): 1999, Systems and Control Letters - Special Issue on

hybrid control systems, number 3, Elsevier. Volume 38.

Ezzine, J. and Kavranoglyu, D.: 1997, On Almost-Sure Stabilization of Discrete-Time

Jump Parameter Systems: an LMI Approach, International Journal of Control

68(5), 1129–1146.

Bibliography 279

Fabian, G.: 1999, A Language and Simulator for Hybrid Systems, PhD thesis, Technische

Universiteit Eindhoven.

Feldbaum, A. A.: 1962, Rechengeräte in automatischen Systemen, Oldenbourg.

Ferrari-Trecate, G., Cuzzola, F. A., Mignone, D. and Morari, M.: 2000, Analysis and

Control with Performance of Piecewise Affine and Hybrid Systems, Technical Re-

port AUT00-23, Automatic Control Laboratory, ETH Zürich, Switzerland, http:

//control.ethz.ch/.

Ferrari-Trecate, G., Cuzzola, F. A., Mignone, D. and Morari, M.: 2002, Analysis of discrete-

time piecewise affine and hybrid systems, Automatica to appear.

Ferrari-Trecate, G., Cuzzola, F. A. and Morari, M.: 2002, Analysis of Discrete-Time PWA

Systems with Boolean Inputs, Outputs and States, to appear in “Hybrid Systems:

computation and control (HSCC), Proceedings of the 5th international workshop on

Hybrid Systems” .

Ferrari-Trecate, G., Cuzzola, F., Mignone, D. and Morari, M.: 2001, Analysis and Con-

trol with Performance of Piecewise Affine and Hybrid Systems, Proceedings of the

American Control Conference .

Ferrari-Trecate, G., Mignone, D., Castagnoli, D. and Morari, M.: 2000, Mixed Logic Dy-

namical Model of a Hydroelectric Power Plant, Proceedings of the 4th International

Conference: Automation of Mixed Processes: Hybrid Dynamic Systems ADPM, Dort-

mund, Germany .

Ferrari-Trecate, G., Mignone, D. and Morari, M.: 2000, Moving Horizon Estimation for

Piecewise Affine Systems, Proceedings of the American Control Conference .

Ferrari-Trecate, G., Mignone, D. and Morari, M.: 2001, Moving Horizon Estimation for

Hybrid Systems, IEEE Transactions on Automatic Control to appear.

280 Bibliography

Fletcher, R. and Leyffer, S.: 1994, A mixed integer quadratic programming package, Tech-

nical report, University of Dundee, Dept. of Mathematics, Scotland, U.K.

Fletcher, R. and Leyffer, S.: 1998, Numerical Experience with Lower Bounds for MIQP

Branch-And-Bound, SIAM Journal on Optimization 8(2), 604–616. http://epubs.

siam.org/sam-bin/dbq/toclist/SIOPT.

Floudas, C.: 1995, Nonlinear and Mixed-Integer Optimization, Oxford University Press.

Gahinet, P., Apkarian, P. and Chilali, M.: 1996, Affine Parameter-Dependent Lyapunov

Functions and Real Parametric Uncertainty, IEEE Transactions on Automatic Control

41(3), 436–442.

Gahinet, P., Nemirowski, A., Laub, A. J. and Chilali, M.: 1994, LMI Control Toolbox, The

MathWorks Inc.

Garcia, C., Prett, D. and Morari, M.: 1989, Model Predictive Control: Theory and Practice

– a Survey, Automatica 25(3), 335–348.

Gertler, J.: 1998, Fault Detection and Diagnosis in Engineering Systems, Marcel Dekker,

Inc.

Glass, A., Gruber, P., Roos, M. and Tödtli, J.: 1995, Qualitative model-based fault detec-

tion in air-handling units, IEEE Control Systems Magazine 15(4), 11–22.

Glover, F.: 1975, Improved Linear Integer Programming Formulation of Nonlinear Integer

Problems, Management Science 22(4), 455–460.

Goodman, J. and O’Rourke, J. (eds): 1997, Handbook of discrete and computational Ge-

ometry, Discrete Mathematics and its applications, CRC Press, New York.

Grogg, F.: 1991, Signale und Systeme I, Lecture Notes for Electrical Engineers ETH Zürich.

Introduction in digital circuit design, in german.

Bibliography 281

Grossmann, R., Nerode, A., Ravn, A. and Rischel, H. (eds): 1993, Hybrid Systems, number

736 in Lecture Notes in Computer Science, Springer-Verlag, New York.

Gutman, P.: 1982, Controllers for Bilinear and Constrained Linear Systems, PhD thesis,

Department of Automatic Control Lund Institute of Technology, Lund.

Hassibi, A., Boyd, S. P. and How, J. P.: 1999, A Class of Lyapunov Functionals for An-

alyzing Hybrid Dynamical Systems, Proceedings of the American Control Conference

1999. Session TM18-1.

Hayes, J.: 1993, Introduction to Digital Logic Design, Addison-Wesley Publishing Com-

pany, Inc.

Hedlund, S. and Johansson, M.: 1999, A toolbox for computational analysis of piecewise

linear systems, Proceedings of the European Control Conference,Karlsruhe, Germany .

Heemels, W., De Schutter, B. and Bemporad, A.: 2001, Equivalence of hybrid dynamical

models, Automatica 37(7), 1085–1093.

Heiming, B. and Lunze, J.: 1999, Definition of the Three-Tank Benchmark Problem for

Controller Reconfiguration, Proceedingsof theEuropeanControlConference,Karlsruhe,

Germany .

Henzinger, T. and Sastry, S. (eds): 1998, Hybrid Systems: Computation and Control

(HSCC), Proceedings of the 1st International Workshop on Hybrid Systems, number

1386 in Lecture Notes in Computer Science, Springer-Verlag, Berkeley, CA, USA.

Huerlimann, T.: 2001, Reference Manual for the LPL Modeling Language, Version

4.42, Departement for Informatics, Université de Fribourg, Switzerland, http://

www2-iiuf.unifr.ch/tcs/lpl/TonyHome.htm.

ILOG, Inc.: 2000, CPLEX 7.0 User Manual, Mountain View, CA, USA; www.ilog.com.

Iwasaki, T., Meinsma, G. and Fu, M.: 2000, Generalised S-Procedure and Finite Frequency

KYO Lemma, Mathematical Problems in Engineering 6(2-3), 305–320.

282 Bibliography

Izadi-Zamanabadi, R.: 1999, Fault-tolerant Supervisory Control - System Analysis and

Logic Design, PhD thesis, Aalborg University, Denmark.

Jain, V. and Grossmann, I.: 2002, Algorithms for hybrid MILP/CLP models for a class of

optimization problems, INFORMS Journal of Computing . to appear.

Jakubovic, V.: 1977, The S-Procedure in Nonlinear Control Theory, Vestnik Leningrad

Univ. Math. 4.

Johansen, T. A.: 2000, Computation of Lyapunov functions for smooth nonlinear systems

using convex optimisation, Automatica 36(11), 1617–1626.

Johansson, M.: 1999, Piecewise Linear Control Systems, PhD thesis, Lund Institute of

Technology, Sweden, Department of Automatic Control.

Johansson, M. and Rantzer, A.: 1998, Computation of Piecewise Quadratic Lyapunov

Functions for Hybrid Systems, IEEE Transactions on Automatic Control 43(4), 555–

559.

Jong, W. C. and Seung, K. S.: 1998, Generalized solution of minimum time current con-

trol in three-phase balanced systems, IEEE Transactions on Industrial Electronics

45(5), 738–44.

Kailath, T.: 1980, Linear Systems, Prentice Hall.

Kantner, M.: 1997, Robust Stability of Piecewise Linear Discrete Time Systems, Proceed-

ings of the American Control Conference .

Kennedy, M.: 1993, Three Steps to Chaos – Part I: Evolution and Part II: A Chua’s Circuit

Primer, IEEE Transactions on Circuits and Systems – I: Fundamental Theory and

Applications 40(10), 640–674.

Kerrigan, E.: 2000, Robust Constraint Satisfaction: Invariant Sets and Predictive Control,

PhD thesis, Control Group, Department of Engineering, University of Cambridge.

Bibliography 283

Kerrigan, E., Bemporad, A., Mignone, D., Morari, M. and Maciejowski, J. M.: 2000, Multi-

objective Prioritisation and Reconfiguration for the Control of Constrained Hybrid

Systems, Proceedings of the American Control Conference .

Kohavi, Z.: 1978, Switching and Finite Automata Theory, McGraw-Hill.

Krebs, V. and Schnieder, E. (eds): 2000, at Automatisierungstechnik - Special Issue on

Hybrid Systems I : Modeling and Control, number 9, Oldenbourg.

Krebs, V. and Schnieder, E. (eds): 2001, at Automatisierungstechnik - Special Issue on

Hybrid Systems II: Analysis, Modeling and Verification, number 2, Oldenbourg.

Krivchenko, G.: 1994, Hydraulic Machines: Turbines and Pumps - Second Edition, Lewis

Publishers.

Labinaz, G., Bayoumi, M. and Rudie, K.: 1997, A Survey of Modeling and Control of

Hybrid Systems, Annual Reviews of Control 21, 79–92.

Lahlou, M.: 1994, Modélisation des canaux hydrauliques et application au règlage de niveau,

Institut d’ électronique industrielle, EPF Lausanne, Switzerland.

Lazimy, R.: 1985, Improved algorithm for mixed-integer quadratic programs and a com-

putational study, Mathematical Programming 32, 100–113.

Lee, J. and Cooley, B.: 1997, Recent advances in model predictive control, Chemical

Process Control - V, Vol. 93, no. 316, AIChE Symposium Series - American Institute

of Chemical Engineers, pp. 201–216b.

Lennartson, B., Tittus, M., Egardt, B. and Pettersson, S.: 1996, Hybrid Systems in Process

Control, IEEE Control Systems Magazine 16(5), 45–56.

Letizia, P.: 2001, Controllo di impianti cogenerativi mediante sistemi ibridi, Master’s thesis,

Dipartimento di ingegneria elettrica, Universitá degli Studi di Pavia, Italia.

284 Bibliography

Levis, A., Marcus, S., Perkins, W., Kokotovic, P., Athans, M., Brockett, R. and Willsky,

A.: 1987, Challenges to Control: A collective View; Report of the Workshop Held

at the University of Santa Clara on September 18-19, 1986, IEEE Transactions on

Automatic Control 32(4), 275–285.

Lin, W. and Byrnes, C. I.: 1996, H∞ Control of Discrete-Time Nonlinear Systems, IEEE

Transactions on Automatic Control 41(4), 494–510.

Lions, J.: 1996, Ariane 5 – flight 501 failure, Technical report, Ariane 501 Inquiry Board

report, http://www.esa.int/export/esaCP/Pr_33_1996_p_EN.html.

Lunze, J.: 1998, Laboratory Three Tanks System — Benchmark for the Reconfiguration

Problem, Technical report, Tech. Univ. of Hamburg-Harburg, Inst. of Control. Eng.,

Germany. http://www.tu-harburg.de/rts/software/cosy/.

Lunze, J., Askari-Marnani, J., Cela, A., Frank, P., Gehin, A.-L., Heiming, B., Lemos,

J., Marcu, T., Rato, L. and Staroswiecki, M.: 2001, Control of Complex Systems,

Springer-Verlag, chapter Three-Tank Control Reconfiguration, pp. 241–283.

Lunze, J. and Schröder, J.: 1999, Qualitative Diagnosis of the 3-Tanks System, Proceedings

of the European Control Conference,Karlsruhe, Germany .

Lygeros, J. and Lynch, N.: 1998, String of vehicles: modeling and safety conditions, in

T. Henzinger and S. Sastry (eds), Hybrid Systems: Computation and Control (HSCC),

Proceedings of the 1st International Workshop on Hybrid Systems, number 1386 in

Lecture Notes in Computer Science, Springer-Verlag, Berkeley, CA, USA.

Lynch, N. and Krogh, B. (eds): 2000, Hybrid Systems: Computation and Control (HSCC),

Proceedings of the 3rd International Workshop on Hybrid Systems, number 1790 in

Lecture Notes in Computer Science, Springer-Verlag, Pittsburgh, PA, USA.

Ma, S. and Watanabe, M.: 2001, Minimum-time control of coupled tendon-driven manip-

ulators, Advanced Robotics 15(4).

Bibliography 285

Maciejowski, J.: 2002, Predictive Control, Prentice Hall.

Maciejowski, J. and Lemos, J.: 2001, Control of Complex Systems, Springer-Verlag, chapter

Predictive Methods for FTC, pp. 229–240.

Marcu, T., Matcovschi, M. H. and Frank, P.: 1999, Neural Observer-Based Approach to

Fault-Tolerant Control of a Three-Tank System, Proceedings of the European Control

Conference, Karlsruhe, Germany . Session CM5-5.

Massey, J.: 1996, Applied Digital Information Theory 2, Lecture Notes ETH Zürich,

Switzerland.

Mat: n.d., Matlab - The Language of Technical Computing. http://www.mathworks.com.

Matveev, A. and Savkin, A.: 2000, Qualitative Theory of Hybrid Dynamical Systems,

Birkhäuser.

Mayne, D.: 1997, Nonlinear model predictive control: an assessment, Chemical Process

Control - V, Vol. 93, no. 316, AIChE Symposium Series - American Institute of Chem-

ical Engineers, pp. 217–231.

Mayne, D., Rawlings, J., Rao, C. and Scokaert, P.: 2000, Constrained model predictive

control: Stability and optimality, Automatica 36(6), 789–814.

Mendelson, E.: 1964, Introduction to mathematical logic, Van Nostrand.

Michalska, H. and Mayne, D.: 1992, Moving horizon observers, in M. Fliess (ed.), Nonlinear

control systems design symposium (NOLCOS), IFAC, Bordeaux, France.

Mignone, D.: 1999, Moving Horizon Estimation and Fault Detection of Mixed Logic Dy-

namical Systems, Postdiploma Thesis (Nachdiplomstudium Informationstechnik), Au-

tomatic Control Laboratory, ETH Zürich, Switzerland.

286 Bibliography

Mignone, D.: 2001, The really big collection of logic propositions and linear inequalities,

Technical report, AUT01-11, Automatic Control Laboratory, ETH Zürich, Switzer-

land.

Mignone, D., Bemporad, A. and Morari, M.: 1999, A Framework for Control, Fault Detec-

tion, State Estimation and Verification of Hybrid Systems, Proceedings of the Ameri-

can Control Conference .

Mignone, D., Ferrari-Trecate, G. and Morari, M.: 2000a, Stability and Stabilization of

Piecewise Affine and Hybrid Systems: An LMI Approach, Proceedings of the Confer-

ence on Decision and Control .

Mignone, D., Ferrari-Trecate, G. and Morari, M.: 2000b, Stability and Stabilization of

Piecewise Affine and Hybrid Systems: An LMI Approach, Technical Report AUT00-

12, Automatic Control Laboratory, ETH Zürich, Switzerland, http://control.

ethz.ch/.

Mignone, D. and Monachino, N.: 2001, The total three tank tutorial text, Technical Report

AUT01-21, Automatic Control Laboratory, ETH Zürich, Switzerland.

Miller, R. E.: 1965, Switching Theory. Volume 1: Combinational Circuits, John Wiley.

Minnick, R. C.: 1961, Linear-Input Logic, IRE Transactions on Electronic Computers

pp. 6–16.

Morari, M., Bemporad, A. and Mignone, D.: 1999a, A Framework for Control, State Es-

timation, Fault Detection, and Verification of Hybrid Systems, at Automatisierung-

stechnik 8, 374–381. Special issue at the ECC 99.

Morari, M., Bemporad, A. and Mignone, D.: 1999b, A Framework for Control, State Esti-

mation, Fault Detection, and Verification of Hybrid Systems, International Workshop

“Scientific Computing in Chemical Engineering II”, Vol. 2 (Simulation, Image Pro-

cessing, Optimization, and Control), Springer-Verlag.

Bibliography 287

Morse, A., Pantelides, C., Sastry, S. and Schumacher, J. (eds): 1999, Automatica - A

Special Issue on Hybrid Systems, number 3, Pergamon. Volume 35.

Murtagh, B.: 1981, Advanced linear programming : computation and practice, McGraw-

Hill.

Murtagh, B. and Saunders, M.: n.d., Minos 5.5, http://www.sbsi-sol-optimize.com/

Minos.htm.

Muske, K. and Rawlings, J.: 1995, Nonlinear Moving Horizon State Estimation, Kluwer

Academic Press, pp. 349–365.

NAG: 2001, NAGWare Foundation Toolbox. http://www.nag.com.

Narendra, K. and Balakrishnan, J.: 1994, A Common Lyapunov Function for Stable

Systems with Commuting A-Matrices, IEEE Transactions on Automatic Control

pp. 2469–2471.

Nemhauser, G. and Wolsey, L.: 1988, Integer and Combinatorial Optimization, Wiley.

Pettersson, S. and Lennartson, B.: 1997, Exponential stability of hybrid systems using

LMIs, Proceedings of the Conference on Decision and Control .

Pettersson, S. and Lennartson, B.: 1999, Exponential Stability of Hybrid Systems Using

Piecewise Quadratic Lyapunov Functions Resulting in LMIs, IFAC, 14th Triennial

World Congress, Beijing, P.R. China.

Qin, S. and Badgewell, T.: 1997, An overview of industrial model predictive control tech-

nology, Chemical Process Control - V, Vol. 93, no. 316, AIChE Symposium Series -

American Institute of Chemical Engineers, pp. 232–256.

Raman, R. and Grossmann, I.: 1991, Relation between MILP modeling and logical infer-

ence for chemical process synthesis, Computers and Chemical Engineering 15(2), 73–

84.

288 Bibliography

Raman, R. and Grossmann, I.: 1992, Integration of logic and heuristic knowledge in MINLP

optimization for process synthesis, Computers and Chemical Engineering 16(3), 155–

171.

Rao, C. V.: 2000, Moving Horizon Strategies for the Constrained Monitoring and Control

of Nonlinear Discrete-Time Systems, PhD thesis, University of Wisconsin-Madison.

Rao, C. V. and Rawlings, J. B.: 1998, Nonlinear Moving Horizon Estimation, International

Symposium on Nonlinear Model Predictive Control: Assessment and Future Directions

(Ascona, Switzerland).

Rao, C. V., Rawlings, J. B. and Lee, J. H.: 1999, Stability of Constrained Linear Moving

Horizon Approach, Proceedings of the American Control Conference 1999 .

Rato, L. and Lemos, J.: 1999, Multimodel Based Fault Tolerant Control of the 3-Tank

System, Proceedings of theEuropeanControlConference,Karlsruhe,Germany . Session

CM5-4.

Robertson, D., Lee, J. and Rawlings, J.: 1996, A moving horizon-based approach for

least-squares estimation, AIChE Journal 42, 2209–2224.

Romanovsky, V.: 1970, Discrete Markov Chains, Wolters-Noordhoff Publishing, Gronin-

gen, The Netherlands.

Rothwangl, H. P.: 2001, Numerical Synthesis of the Time Optimal Nonlinear State Con-

troller via Mixed Integer Programming, Proceedings of the American Control Confer-

ence pp. 3201–3205.

Sahinidis, N. V.: 2000, BARON — Branch And Reduce Optimization Navigator, Technical

report, University of Illinois at Urbana-Champaign, Dept. of Chemical Engineering,

Urbana, IL, USA. http://archimedes.scs.uiuc.edu/baron/manuse.pdf.

Sasao, T.: 1999, Switching Theory for Logic Synthesis, Kluwer Academic.

Bibliography 289

Scherer, C., Gahinet, P. and Chilali, M.: 1997, Multiobjective Output-Feedback Control

via LMI Optimization, IEEE Transactions on Automatic Control 42(7), 896–911.

Schrijver, A.: 1986, Theory of Linear and Integer Programming, Wiley-Interscience.

Shorten, R. and Narendra, K.: 1999, Necessary and Sufficient Conditions for the Existence

of a Common Quadratic Lyapunov Function for Two Stable Second Order Linear

Time-Invariant Systems, Proceedings of the American Control Conference 1999 .

Slupphaug, O. and Foss, B.: 1997, Model Predictive Control for a class of Hybrid Systems,

Proceedings of the European Control Conference, Brussels, Belgium.

Slupphaug, O., Imsland, B. and Foss, B.: 2000, Uncertainty modelling and robust out-

put feedback control of nonlinear discrete systems: a mathematical programming

approach, International Journal of Robust and Nonlinear Control 10(13), 1129–1152.

Slupphaug, O., Vada, J. and Foss, B.: 1997, MPC in Systems with Continuous and Discrete

Control Inputs, Proceedings of the American Control Conference, Albuquerque, NM,

USA.

Sontag, E.: 1981, Nonlinear Regulation: The Piecewise Linear Approach, IEEE Transac-

tions on Automatic Control 26(2), 346–358.

Sontag, E.: 1996, Interconnected automata and linear systems: A theoretical framework in

discrete-time, in R. Alur, T. Henzinger and E. Sontag (eds), Hybrid Systems III: Ver-

ification and Control, number 1066 in Lecture Notes in Computer Science, Springer-

Verlag, New Brunswick, NJ, USA, pp. 436–448.

Sontag, E.: 1998, Mathematical Control Theory, 2nd edn, Springer-Verlag.

Spedicato, M.: 2001, Modellizzazione di impianti cogenerativi mediante sistemi ibridi, Mas-

ter’s thesis, Dipartimento di ingegneria elettrica, Universitá degli Studi di Pavia, Italia.

290 Bibliography

Steffen, T. and Lunze, J.: 2001, COSY Benchmark Problem, Technical report, Arbeits-

bereich Regelungstechnik, TU Hamburg-Harburg, Germany, http://pcweb.rts.

tu-harburg.de/inter/homepage.nsf/.

Stram, O. B.: 1961, Arbitrary Boolean Functions of N Variables Realizable in Terms of

Threshold Devices, Proceedings of the IRE 49, 210–220.

Tomlin, C.: 1998, Hybrid Control of Air Traffic Management Systems, PhD thesis, De-

partment of Electrical Engineering and Computer Sciences, University of California

at Berkeley.

Torrisi, F.: 2002, Modeling and Verification of Hybrid Systems, PhD thesis, ETH Zürich,

Switzerland. to appear.

Torrisi, F., Bemporad, A. and Mignone, D.: 2000, HYSDEL — a tool for generating hybrid

models, Technical report, AUT00-03, Automatic Control Laboratory, ETH Zürich,

Switzerland.

Torrisi, F., Mignone, D. and Morari, M.: 2001, Time-optimal control of hybrid systems:

Heuristic vs systematic design, Technical Report AUT01-18, Automatic Control Lab-

oratory, ETH Zürich, Switzerland.

Tsuda, K., Mignone, D., Ferrari-Trecate, G. and Morari, M.: 2000, Reconfiguration for

mixed logic dynamical systems, Technical report, Automatic Control Laboratory, ETH

Zürich, Number AUT00-24.

Tsuda, K., Mignone, D., Ferrari-Trecate, G. and Morari, M.: 2001, Reconfiguration Strate-

gies for Hybrid Systems, Proceedings of the American Control Conference .

Tuan, H. D., Ono, E., Apkarian, P. and Hosoe, S.: 2001, Nonlinear H∞ Control for an

Integrated Suspension System via Parametrized Linear Matrix Inequality Character-

izations, IEEE Transactions on Control System Technology 9(1), 175–185.

Turner, J.: 1968, Digital Computer Analysis, Charles E. Merrill Publishing Company.

Bibliography 291

Tyler, M. and Morari, M.: 1995, Stability of Constrained Moving Horizon Estimation

Schemes, Technical Report AUT95-05, Automatic Control Laboratory, ETH Zürich,

http://www.control.ethz.ch/.

Tyler, M. and Morari, M.: 1999, Propositional Logic in Control and Monitoring Problems,

Automatica 35(4), 565–582.

Vaandrager, F. and van Schuppen, J. (eds): 1999, Hybrid Systems: Computation and

Control (HSCC), Proceedings of the 2nd International Workshop on Hybrid Systems,

number 1569 in Lecture Notes in Computer Science, Springer-Verlag, Berg en Dal,

The Netherlands.

van der Schaft, A. and Schumacher, H.: 1999, An Introduction to Hybrid Dynamical Sys-

tems, Lecture Notes in Control and Information Sciences 251, Springer-Verlag.

van der Schaft, A. and Schumacher, J.: 1998, Complementarity modeling of hybrid systems,

IEEE Transactions on Automatic Control 43(4), 483–490.

van Schrick, D. and Christiansen, D.: 1997, Remarks on terminology in the field of super-

vision, fault detection and diagnosis, Electronics Engineers’ Handbook, 4th edition,

Proceedings of the IFAC Symposium on Fault Detection, Supervision, and Safety for

Technical Processes: SAFEPROCESS ’97 .

Vandenberghe, L. and Boyd, S.: 1996, Semidefinite programming, SIAM Review 38(1), 49–

95.

Varaiya, P.: 1998, Reach Set Computation Using Optimal Control, School on Computa-

tional Aspects and Applications of Hybrid Systems, KIT Workshop on Verification of

Hybrid Systems, Grenoble.

Veillette, R., Medanić, J. V. and Perkins, W. R.: 1992, Design of reliable control systems,

IEEE Transactions on Automatic Control 37(3), 290–304.

292 Bibliography

VHS: n.d., http://www-verimag.imag.fr/VHS/. Verification of Hybrid Systems,

ESPRIT-LTR Project 26270.

Volkovich, O., Roshchin, V. A. and Sergienko, I.: 1987, Models and methods of solution

of quadratic integer programming problems, Cybernetics 23, 289–305.

Willems, J. C.: 1972, Dissipative dynamic systems, Arch. Rational Mechanics Analysis

45, 321–393.

Williams, H.: 1977, Logical problems and integer programming, Bulletin of the Institute

of Mathematics and Its Applications 13, 18–20.

Williams, H.: 1993, Model Building in Mathematical Programming, John Wiley & Sons,

Third Edition.

Witsenhausen, H.: 1966, A Class of Hybrid-State Continuous-Time Dynamic Systems,

IEEE Transactions on Automatic Control AC-11(2), 161–167.

Xu, X. and Antsaklis, P. J.: 1999, Stabilization of second-order LTI switched systems,

Proceedings of the 38th Conference on Decision and Control pp. 1339–1344.

Zhou, K. and Ren, Z.: 2001, A new controller architecture for high performance, robust,

and fault-tolerant control, IEEE Transactions on Automatic Control 46(10), 1613–

1618.

Ziegler, G.: 1995, Lectures on Polytopes, Springer-Verlag.

Index

active fault tolerant systems, 152

activity, 8

arcs, 190

arrival cost, 134

Boolean formula, 30

Boolean function, 31

Boolean relation, 31

Boolean variable, 21

branches, 190

branching rule, 193

branching variable, 193

cell, 57

children, 190

clausal, 41

conjunctive normal form, 31

connectives, 21

convex hull, 36

depth, 190

dissipation inequality, 247

father, 190

fathoming, 193

fault, 137

fault detection and isolation, 77, 137

fault diagnosis, 137

first-in first-out, 206

generalized Boolean formula, 42

generalized conjunctive normal form, 42

guaranteed switches, 197

H-representation, 32

Hamming distance, 208

hybrid automaton, 7

hybrid systems, 3

hypercube, 36

incipient, 11

initial penalties, 134

integer linear inequalities, 22

integral vertex, 32

k-ary tree, 190

leaves, 190

length, 190

linear complementarity system, 8

linear matrix inequality, 219

literal, 21

LMI feasibility problem, 266

293

294 INDEX

location, 7

location invariants, 7

maxterms, 31

minimum time control, 123

mixed integer feasibility test, 29, 127

mixed integer linear inequalities, 24

mixed integer linear program, 185

mixed integer program, 185

mixed integer quadratic program, 185

mixed logic dynamical system, 10, 28

moving horizon estimation, 131

nodes, 190

one step compensation, 166

outside first, 198

PCH , 32

PCNF , 34

passive fault tolerance, 151

petri net, 8

piecewise affine system, 8, 57

polytopic steady state analysis, 161

product of sums, 31

reach set, 134

receding horizon estimation, 131

reconfiguration, 153

redundant constraint, 45

relaxation, 189

residuals, 138

root, 190

satisfiability problem, 31

semidefinite program, 266

separation, 189, 193

stack, 206

storage function, 246

strictly dissipative, 246

terms of the product, 31

terms of the sum, 31

time-optimal control, 123

transition, 7

tree, 190

tree exploring strategy, 193

truth table, 34

unreachable, 63

V-representation, 32

valid point, 32, 43

verification, 13

vertices, 190

well posed, 29

